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When applied to drug discovery, modern computational systems can provide insight into the highly 

complex systems underlying drug activity and predict compounds or targets of interest. Many tools have 

been developed for computer aided drug discovery (CADD), focusing on small molecule ligands, protein 

targets, or both. The aim of this thesis is the improvement of CADD tools for describing small molecule 

properties and application of CADD to several stages of drug discovery regarding two targets for the 

treatment of obesity and related diseases: the neuropeptide Y4 receptor (Y4R) and the melanocortin-4 

receptor (MC4R). 

 In the first chapter, the major categories of CADD are outlined, including descriptions for many of the 

popular tools and examples where these tools have directly contributed to the discovery of new drugs. 

Following the introduction, several improvements for encoding stereochemistry and signed property 

distribution are introduced and tested in scenarios meant to simulate applications in virtual high-

throughput screening. Y4R and MC4R are both class A G-protein coupled receptors (GPCRs) with 

endogenous peptide ligands that play critical roles in the signaling of satiety and energy metabolism. So 

far, no structures from either receptor family have been experimentally elucidated. CADD was combined 

with high-throughput screening (HTS) to discover the first small molecule positive allosteric modulators 

(PAMs) of Y4R. Secondly, CADD techniques were used to model the interaction of Y4R and pancreatic 

polypeptide based on experimental results that elucidate specific binding contacts. Similar SB-CADD 

approaches were used to model the interaction of MC4R with its high affinity peptide agonist α-MSH. 

Due to its role in monogenic forms of obesity, these models were used to predict which residues directly 

participate in binding and correlate mutated residues with their potential role in the binding site.
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Summary 

Drug discovery is a cornerstone of medical research that draws from many disciplines. In recent 

decades, these disciplines have extended into fields such as computer science, drawing from modern 

technology’s ability to simulate complex processes that demand billions of calculations per second. 

Computer aided drug discovery (CADD) is a collective term for the many in silico methods being 

developed and applied to the discovery and design of new therapeutics. The goal of CADD is not to 

replace traditional in vitro and in vivo experimental techniques, but to supplement them. With CADD, it 

becomes possible to model complex processes and narrow the seemingly endless list of possible 

experiments to a manageable strategy designed for efficiency and cost effectiveness. Chapter 1 

introduces the two categories of CADD: ligand-based CADD (LB-CADD) and structure-based CADD (SB-

CADD).  

The overall focus of this dissertation is to improve three dimensional descriptors for use in quantitative 

structure-activity relationship (QSAR) models and apply LB-CADD and SB-CADD techniques to the 

modeling and drug discovery of two peptide binding class A G-protein coupled receptors (GPCRs) that 

represent promising therapeutic targets for obesity and related diseases. 

Capturing stereochemistry in 3D-QSAR 

QSAR descriptors encode physicochemical properties used to train models for predicting biological 

activity. The Radial distribution function (RDF) and 3D auto-correlation (3DA) are two commonly used 

3D-QSAR descriptors that encode the geometry and distribution of properties within a molecule. The 

major difference between 3DA and RDF is the smoothing function applied by RDF to compensate for 

positional uncertainty caused by bond vibration and minor conformational changes. One of the major 

disadvantages of the RDF and 3DA descriptors is their failure to differentiate certain stereoisomers. This 

can hinder QSAR model performance when enantiomer pairs have different biological activities or 

toxicities.  

Chapter 2 presents the enantioselective molecular asymmetry descriptor (EMAS), a 3D-QSAR descriptor 

that implicitly distinguishes between enantiomers. Traditionally, stereoisomers are distinguished with 

the Cahn-Ingold-Prelog (CIP) ruleset. However, CIP is not sufficient to cover all cases of stereochemistry 

and suffers from limited application in QSAR. EMAS avoids the limitations of CIP by encoding the overall 

stereochemistry of a molecule and implicitly distinguishing between enantiomer pairs using geometric 
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properties rather than rulesets. EMAS takes advantage of the transformation-invariant and smoothing 

properties of RDF by applying a similar iterative framework and calculates an asymmetry score for each 

atom triplet. This asymmetry score captures the direction and extent of asymmetry by combining 

triplets with the molecule’s geometric center to create tetrahedrons that vary in shape and volume. 

The utility of EMAS was evaluated against a small dataset of 31 compounds commonly used to evaluate 

novel stereochemistry descriptors. Artificial neural network (ANN) models trained with EMAS performed 

as well as or better than half of the previously published stereochemistry descriptors. Although EMAS 

did not outperform all published methods, the broad applicability of EMAS makes it an attractive 

descriptor since it is the only stereochemistry descriptor that does not require molecule superimposition 

or ruleset-based identification of stereocenters. 

To evaluate the utility of EMAS with large datasets, ANN models were trained over a high throughput 

screening (HTS) dataset for inhibitors or substrates of cytochrome P450 2D6. Models trained with 

feature sets including EMAS were able to predict active compounds with success rate increase of 

approximately 11.7% compared to models trained without EMAS descriptors.  

Improving 3D descriptors to avoid information loss: 3DA_Sign and other modifications 

Chapter 3 presents modifications to 3DA designed to avoid several sources of information loss. As 

mentioned, the fundamental difference between RDF and 3DA is the application of Gaussian smoothing. 

This smoothing has the potential to increase descriptor performance but in its traditional 

implementation, RDF leads to underrepresentation of atom pair distances falling between distance 

centers. A 3DA/RDF hybrid descriptor called 3DA_Smooth was designed to apply Gaussian smoothing to 

3DA to avoid this problem with RDF. ANN model’s trained with 3DA, RDF, or 3DA_Smooth showed 

comparable prediction success across nine HTS datasets with varying target protein classes. Because the 

application of smoothing increases computational demand, these results suggest that the extra cost of 

RDF and 3DA_Smooth does not increase model performance and 3DA may be used in place of RDF. 

Secondly, chapter 3 presents a variation of 3DA called 3DA_Sign. 3DA_Sign is designed to avoid the loss 

of information that can occur when weighting a 3DA with signed atom properties. Traditionally, 

property weighting coefficients are calculated as the product of two atom properties. When atom 

properties are signed, this can lead to information loss as the product of two negative properties is 

equal to the product of two equivalent positive properties. 3DA_Sign splits all atom property pairs into 
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one of three curves: negative-negative, positive-positive, and opposite signs. ANN models trained using 

3DA_Sign for signed atom properties outperformed models trained with standard 3DA. This increase in 

performance was seen for all HTS datasets with an average prediction success rate increase of 

approximately 4.4%.  

Lastly, a variation of 3DA that limits maximum atom pair distance encoding to six angstrom was tested. 

The commonly applied 3DA cutoff of twelve angstroms captures the maximum width of most small 

molecules. However, conformational flexibility leads to higher chances of variability in distant atom 

pairs. Because 3DA encodes a single conformation of each molecule, atom pair distances that do not 

reflect active conformations can hinder model performance. The reduced distance cutoff was designed 

to focus on molecule fragments less susceptible to this problem. Models trained with a distance cutoff 

of six angstroms outperformed models trained with a distance cutoff of twelve angstroms across all HTS 

datasets with an average increase in prediction success of approximately 6.4%. 

Applications of computer aided drug design to the discovery of obesity therapeutics 

Chapters 4 through 6 present different applications of CADD to the discovery of novel obesity 

therapeutics. Obesity is a medical problem that has doubled in worldwide prevalence over the past 

several decades and is a major risk factor for diabetes, heart disease, cancer, and mortality. Currently, 

the most effective treatment for obesity is bariatric surgery and less invasive pharmacological 

approaches have seen moderate to little success. Two potential therapeutic targets are explored with 

methods from LB-CADD and SB-CADD: the neuropeptide Y4 receptor and the melanocortin 4 receptor. 

Discovery of the first positive allosteric modulators of the human Y4 receptor 

Hormonal changes following bariatric surgery have become promising pharmacological targets due to 

their contribution to the long term effect of this surgery. The neuropeptide Y4 receptor (Y4R) is one such 

target with its endogenous agonist pancreatic polypeptide (PP) acting as a satiety factor released in 

response and in proportion to food intake. To date, no small molecule potentiators of Y4R have been 

published nor has the three dimensional structure of any neuropeptide Y receptors been elucidated. At 

this stage in the drug discovery process CADD may be applied in several beneficial ways.  

Chapter 4 presents the first small molecule positive allosteric modulators (PAMs) of Y4R. High 

throughput screening was coupled with fingerprint-based cheminformatics to discover five Y4R PAMs 
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sharing a common scaffold. Further verification and Y receptor selectivity analyses were performed with 

an orthogonal IP accumulation assay.  

The first screen of two thousand compounds yielded niclosamide as the hit of greatest interest. 

Fingerprint-based similarity was used to enrich the second set of screened compounds for those that 

were structurally similar to niclosamide. Compounds in the Vanderbilt Institute for Chemical Biology 

library were compared with niclosamide using the Tanimoto coefficient measure. This measure 

compares the average occupancy similarity of two compounds’ molecular fingerprints for shared 

functional groups and overall geometric features. 

The second screen of 33,288 compounds was enriched with 1,288 niclosamide-similar compounds, 

yielding four verified hits structurally similar to niclosamide. These compounds showed varying 

selectivity profiles across different neuropeptide Y receptor subtypes, allowing for development of 

preliminary structure-activity relationships around this scaffold that suggest an electron-rich substituent 

on the benzoyl ring important for Y4R potency and a nitro-benzoyl substitution that decreases potency 

at Y1R. 

Structure-based computational modeling of Y4R and PP 

Chapter 5 presents the application of structure-based computational methods to model the interaction 

of Y4R and PP. This project involves a collaboration combining several rounds of complimentary in vitro 

cellular assays and in silico modeling. The primary role of the presenting author was the application of 

computational modeling. Mutagenesis and cell-based assays were performed by Xavier Pedragosa-Badia 

and Diana Lindner of the Beck-Sickinger laboratory and have been published along with the 

computational models in a paper titled “Pancreatic polypeptide is recognized by two hydrophobic 

domains of the Y4 receptor binding pocket”. Chapter 5 focuses and expands on the computational 

strategies applied and resulting models. 

Comparative modeling with the Rosetta Molecular Modeling Suite was used to take advantage of the 

shared topology of class A GPCRs for modeling Y4R. Highly disordered regions with low sequence 

conservation were extensively remodeled with cyclic coordinate descent (CCD) and refined with 

kinematic loop closure (KIC).  

The NMR structure ensemble of PP reveals a structured α-helix and highly flexible C-terminal region. 

Therefore, the rigid helix portion of PP was docked to Y4R first using standard protein-protein docking. 
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Because this protocol is unable to capture the extensive flexibility of the loop regions, the PP helix was 

docked in the absence of extracellular loops to avoid interference from rigid loops. An experimentally 

derived potential contact between Tyr2.64 of Y4R and Tyr27 of PP was used to guide helix docking.  

Unlike the helix region, the five C-terminal residues of PP exhibit substantial conformational flexibility. 

Therefore, Rosetta’s de novo folding was used to comprehensively model these five residues in the 

presence of the Y4R helices. In vitro results provided three contacts between PP and Y4R that guided 

modeling. Finally, CCD and KIC were used to reconstruct the extracellular loops of Y4R in the presence of 

PP. This approach is designed to capture changes in loop conformations that may occur when PP binds 

to Y4R. 

An ensemble of nine energetically comparable high-resolution models of PP and Y4R was generated that 

captured experimentally determined interactions including a salt bridge between Asp6.59 and Arg35, a 

hydrogen bond between Asn7.32 and Arg33, and cation-pi interactions between Phe7.35 and Arg33. Residue 

contacts were examined across all conformations to propose potential interactions beyond those 

previously explored. One such putative contact between Ser5.28 of Y4R and Thr32 of PP presents a target 

for future mutagenesis studies. 

Modeling the interaction of the melanocortin 4 receptor and α-MSH 

The melanocortin 4 receptor (MC4R) is a promising target for the treatment of obesity due to its 

contributions to monogenic forms of obesity. Approximately 150 naturally occurring MC4R gene 

mutations have been identified among obese patients and MC4R deficiency is characterized by 

hyperphagia, increased adiposity, and severe hyperinsulinemia. Anorexigenic signaling from α-MSH 

activation of MC4R appears to be critical for the regulation of feeding and metabolism. Binding studies 

with α-MSH have revealed several critical interactions between MC4R and α-MSH. However, the 

flexibility of α-MSH, a 13 amino acid linear peptide only restrained by a single reverse β-turn around the 

central residues, makes it difficult to elucidate a precise binding pose.  

Chapter 6 presents a comparative modeling and docking approach that is tailored to the flexibility of α-

MSH. A comparative modeling application recently added to Rosetta called RosettaCM was used for its 

hybrid multi-template approach. After modeling the MC4R with RosettaCM, experimental evidence 

guided a two–phase docking approach where the central region of the peptide was docked followed by 

the remodeling of flexible terminals in parallel with the receptor’s extracellular loops. In α-MSH, a core 
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tetrapeptide spanning residues 6-9 was shown to be critical and sufficient for activation of MC4R. 

Mutant binding assays consistently reveal two binding sites: an acidic pocket facing Arg8 of α-MSH 

including MC4R residues Glu2.60, Asp3.25, and Asp3.29 and a hydrophobic interaction between Phe6.51 of 

MC4R and Phe7 of α-MSH.  

Rosetta FlexPepDock was used to dock this tetrapeptide. Extracellular loop regions of MC4R and flexible 

terminals of α-MSH were modeled and refined simultaneously using the same combination of CCD and 

KIC as in chapter 5. An additional restraint within α-MSH was used during the loop building phase to 

enforce the active conformation β-turn. 

Models reveal convergence to a single binding pose of the central tetrapeptide region of α-MSH and 

significant conformational flexibility in the terminal regions. Examination of an ensemble of 

energetically-comparable conformations shows a binding interface on MC4R that encompasses three 

receptor regions: residues from transmembrane helices two and three that contact Arg8, 

transmembrane helices six and seven and extracellular loop three that contact Glu5 and His6, and 

transmembrane helices four and five and extracellular loop two that contact Trp9. Phe7 of α-MSH, 

considered to contain the most important pharmacophore for activation of MC4R, points downwards 

into the transmembrane pore in all models, engaging residues from transmembrane helices three, six, 

and seven. 

This ensemble approach identified twelve binding interactions in addition to the four used to guide 

docking. These interactions were compared with previously published binding assay results, eight of 

which are supported with published experimental results. Additionally, these models were used to 

propose a previously unidentified contact between Met7.32 of MC4R and Ser4 or Glu5 of α-MSH. 

In summary, this thesis presents improvements and applications for both categories of CADD with two 

therapeutic targets for obesity: Y4R and MC4R. Chapter 7 serves as a closing chapter that presents 

future projects to integrate results from different chapters and methods in this dissertation. An 

appendix following chapter 7 describes preliminary results that integrate chapters 4 and 5 to dock 

niclosamide to Y4R-PP models. This will help to lay important groundwork for future studies aimed at 

elucidating an allosteric binding site on Y4R and improving future drug discovery endeavors. 
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Zusammenfassung 

Arzneimittelforschung ist ein essentieller Bestandteil der Medizinforschung und kombiniert 

verschiedene Disziplinen. In den vergangenen Jahrzehnten wurde sie um Bereiche wie Informatik 

erweitert, um von deren modernen Methoden zur Simulierung komplexer Prozesse, die Milliarden von 

Berechnungen pro Sekunde erfordern, zu profitieren. Computer Aided Drug Discovery (CADD) ist ein 

Sammelbegriff für verschiedene in-silico-Methoden, welche für die Entdeckung und Entwicklung neuer 

Therapeutika angewendet werden. Das Ziel von CADD ist nicht herkömmliche in vitro und in vivo 

Techniken zu ersetzen, sondern deren Ergänzung. CADD ermöglicht die Eingrenzung einer scheinbar 

endlosen auf eine überschaubare Zahl an möglichen Experimenten, und eine auf Effizienz und 

Wirtschaftlichkeit ausgelegte Strategie. Kapitel 1 liefert eine Einführung in die zwei CADD-Kategorien: 

Ligand-basierte CADD (LB-CADD) und struktur-basierte CADD (SB-CADD). 

Der Fokus der vorliegenden Arbeit ist die Verbesserung dreidimensionaler Deskriptoren für den Einsatz 

in Modellen für quantitative Struktur-Wirkungs-Beziehungen (QSAR), sowie die Anwendung von LB-

CADD und SB-CADD zur Modellierung und Wirkstoffforschung von zwei peptidbindenden G-Protein-

gekoppelten Rezeptoren (GPCR), welche vielversprechende therapeutische Ziele für Adipositas und 

verwandte Erkrankungen sind. 

Beschreibung von Stereochemie in 3D-QSAR 

QSAR-Deskriptoren kodieren physikochemische Eigenschaften, welche verwendet werden um Modelle 

für die Vorhersage biologischer Aktivität zu trainieren. Die radiale Verteilungsfunktion (RDF) und 3D-

Autokorrelation (3DA) sind zwei häufig verwendete 3D-QSAR-Deskriptoren, welche die Geometrie und 

die Verteilung von Eigenschaften innerhalb eines Moleküls kodieren. Der Hauptunterschied zwischen 

3DA und RDF ist die durch RDF angewandte Glättungsfunktion um die durch Bindungsschwingungen und 

kleinere Konformationsänderungen verursachte Positionsunsicherheit zu kompensieren. Einer der 

Hauptnachteile der RDF- und 3DA-Deskriptoren ist ihre Unfähigkeit, bestimmte Stereoisomere zu 

unterscheiden. Dies kann die Leistung von QSAR-Modellen beeinträchtigen, wenn Enantiomerenpaare 

unterschiedliche biologische Aktivitäten oder Toxizitäten aufweisen. 

Kapitel 2 stellt den enantioselektiven, molekularen Asymmetrie Deskriptor (EMAS) vor, ein 3D-QSAR-

Deskriptor, welcher implizit zwischen Enantiomeren unterscheidet. Traditionell werden Stereoisomere 

durch den Cahn-Ingold-Prelog (CIP) Regelsatz unterschieden. Jedoch deckt CIP nicht alle Fälle der 
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Stereochemie ab und leidet unter seiner begrenzten Anwendung in QSAR. EMAS umgeht die 

Einschränkungen des CIP-Regelsatzes durch Kodierung der allgemeinen Konfiguration eines Moleküls 

und implizite Unterscheidung zwischen Enantiomerenpaaren anhand geometrischer Eigenschaften und 

nicht anhand von Regelsätzen. EMAS nutzt die Transformationsinvarianz und Glättungseigenschaften 

der RDF durch Verwendung eines iterativen Rahmenwerks und berechnet die Asymmetrie jedes Atom-

Tripletts. Dieser Asymmetrie-Score erfasst die Richtung und das Ausmaß der Asymmetrie durch 

Kombination der Tripletts mit der geometrischen Mitte des Moleküls zu Tetraedern, welche in Form und 

Volumen variieren. 

Die Nützlichkeit des EMAS wurde auf Basis eines kleinen Datensatzes bestehend aus 31 Verbindungen 

evaluiert, welcher üblicherweise verwendet wird um neue Stereochemie-Deskriptoren zu evaluieren. 

Künstliche neuronale Netz (ANN) Modelle, welche EMAS verwenden, erzielten Ergebnisse, die 

vergleichbar zu zuvor publizierten Deskriptoren sind. Obwohl EMAS zuvor veröffentlichte Methoden 

nicht übertrifft, macht ihn seine breite Anwendbarkeit attraktiv, da EMAS für die stereochemische 

Beschreibung eines Moleküls weder eine strukturelle Überdeckung noch eine Regelsatz-basierte 

Identifizierung von Sterozentren erfordert. Um die Nützlichkeit des EMAS für großen Datensätze zu 

bewerten, wurden ANN-Modelle auf einem Hochdurchsatz-Screening (HTS) Datensatz für Inhibitoren 

oder Substrate des Cytochrom P450 2D6 trainiert. Modelle, welche mit Feature-Sets einschließlich EMAS 

trainiert wurden, konnten Wirkstoffe mit einer um ca. 11,7% höheren Erfolgsquote gegenüber Modellen 

ohne EMAS-Deskriptoren voraussagen. 

Verbesserung von 3D-Deskriptoren um Informationsverlust zu vermeiden: 3DA_Sign und andere 

Modifikationen 

In Kapitel 3 werden Änderungen an 3DAs vorgestellt, um verschiedene Ursachen für Informationsverlust 

zu vermeiden. Wie erwähnt ist der grundlegende Unterschied zwischen RDF und 3DA die Anwendung 

der Gaußglättung. Diese Glättung hat das Potenzial die Leistung der Deskriptoren zu verbessern, führt in 

ihrer traditionellen Implementierung jedoch zur Unterrepräsentierung von Atompaaren, deren Abstand 

zwischen den Zentren der Abstanden liegt. 3DA_Smooth, ein 3DA/RDF-Hybrid-Deskriptor, wurde 

entwickelt, um eine Gaußglättung auf 3DAs anzuwenden um dieses Problem mit RDFs zu umgehen. 

ANN-Modelle, welche mit 3DA, RDF oder 3DA_Smooth trainiert wurden, weisen in neun HTS-

Datensätzen mit unterschiedlichen Zielprotein-Klassen vergleichbare Vorhersageergebnisse auf. Da die 

Anwendung der Glättung erhöhten Rechenbedarf mit sich zieht, legen diese Ergebnisse nahe, dass die 
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zusätzlichen Rechenkosten für RDF und 3DA_Smooth die Modellleistung nicht erhöhen und 3DA anstelle 

von RDF verwendet werden kann. 

Als zweites stellt Kapitel 3 eine Variante der 3DA, genannt 3DA_Sign, vor. 3DA_Sign wurde entwickelt, 

um Informationsverlust zu vermeiden, welcher bei der Gewichtung eines 3DA mit vorzeichenbehafteten 

Atomeigenschaften auftreten kann. Traditionell werden Gewichtungskoeffizienten für Eigenschaften als 

das Produkt von zwei Atomeigenschaften berechnet. Wenn Atomeigenschaften vorzeichenbehaftet 

sind, kann dies zu Datenverlust führen, da das Produkt von zwei negativen Eigenschaften gleich dem 

Produkt von zwei gleichartigen, positiven Eigenschaften ist. 3DA_Sign unterteilt alle 

Atomeigenschaftspaare in eine von drei Kurven: negativ-negativ, positiv-positiv und entgegengesetzte 

Vorzeichen. ANN-Modelle, welche mit 3DA_Sign für vorzeichenbehaftete Atomeigenschaften trainiert 

wurden, übertrafen Modelle, welche mit Standard-3DA trainiert wurden. Die Leistungssteigerung 

konnte für alle HTS-Datensätze beobachtet werden und betrug rund 4,4%. 

Abschließend wurde eine Variante des 3DA, welche den kodierten Maximal-Abstand zwischen 

Atompaaren auf sechs Angström begrenzt, getestet. Die am häufigsten angewendeten 3DA Cutoffs von 

zwölf Angström decken zwar die maximale Breite der meisten kleinen Molekülen ab. Allerdings führt 

Konformationsflexibilität zu höheren Wahrscheinlichkeiten für Variabilität in entfernten Atompaaren. Da 

3DA einzelne Konformationen eines Moleküls kodiert, können Entfernungen zwischen Atompaaren, 

welche die aktiven Konformationen nicht widerspiegeln, die Modellleistung beeinträchtigen. Der 

verringerte Abstands-Cutoff wurde für Molekülfragmente entwickelt, welche weniger anfällig für dieses 

Problem sind. Modelle die mit einem Abstands-Cutoff von sechs Angström trainiert wurden, übertrafen 

Modelle mit einem Abstand von zwölf Angström in allen HTS-Datensätzen mit einer durchschnittlichen 

Verbesserung des Vorhersageerfolges von rund 6,4%. 

Anwendungen des computergestützten Wirkstoffdesigns zur Entdeckung von Therapeutika gegen 

Fettleibigkeit. 

Kapitel 4 bis 6 zeigen verschiedene Anwendungen des CADD zur Entdeckung neuartiger Therapeutika 

gegen Fettleibigkeit. Übergewicht ist ein medizinisches Problem, das sich in weltweiter Prävalenz in den 

letzten Jahrzehnten verdoppelt hat und ist ein wichtiger Risikofaktor für Diabetes, Herzerkrankungen, 

Krebs und Mortalität. Derzeit sind die effektivsten Behandlungen für Fettleibigkeit Chirurgie. Weniger 

invasive, pharmakologische Ansätze, haben bisher nur zu schwachem bis mäßigem Erfolg geführt. Der 

Neuropeptid-Y4-Rezeptor und der Melanocortin 4-Rezeptor sind in diesem Zusammenhang zwei 
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potenzielle therapeutische Ziele. Beide Rezeptoren wurden in dieser Arbeitmit Methoden aus der LB-

CADD und SB-CADD untersuchen. 

Entdeckung der ersten positiven allosterischen Modulatoren des menschlichen Y4-Rezeptors 

Hormonelle Veränderungen folgend im Anschluß an eineder Adipositaschirurgie haben durch ihren 

Beitrag zum langfristigen Effekt dieser Operation Hinweise auf sich in vielversprechende 

pharmakologische Targets entwickeltgeliefert durch ihren Beitrag zum langfristigen Effekt dieser 

Operation. Der Neuropeptid-Y4-Rezeptor (Y4R) ist ein solches Ziel mit seinem endogenen Agonisten 

Pankreatischess-Polypeptid (PP), welcher welches als Sättigungsfaktor agiert und im Verhältnis zur 

Nahrungsaufnahme freigesetzt wird. Bisher wurden keine kleinen Molekülniedermolekularen 

Potentiatoren von des Y4R veröffentlicht. Auch die, noch wurde die dreidimensionale Struktur konnte 

bisher von keinem dervon jedem Neuropeptid Y-Rezeptoren bestimmt werden. Zu diesem Zeitpunkt in 

der Wirkstoffentwicklung kann CADD kann auf mehrere vorteilhafte Weisen eingesetzt werden. 

Kapitel 4 präsentiert die ersten niedermolekularen positiv allosterischen Modulatoren (PAMs) von Y4R. 

In einem Hochdurchsatz-Screening wurden fünf Y4R PAMs mit gemeinsamer Grundstruktur identifiziert. 

Studien zur Affinität, Potenz und Rezeptorelektivität wurden mit einem orthogonalen IP 

Akkumulationsassay durchgeführt. 

Der erste Screen von 2000 Verbindungen ergab Niclosamid als interessantesten Treffer. Eine Suche nach 

Niclosamid-ähnlichen Verbindungen in der gesamten Substanzbibliothek des  Vanderbilt-Instituts für 

chemische Biologiesollte einen zweiten Screen mit Verbindungen anreichern, welche eine dem 

Niclosamid ähnliche Grundstruktur aufweisen. Der Grad der Ähnlichkeit wurde hierbei mit dem 

Tanimoto-Score bewertet. Diese Messung vergleicht die durchschnittliche Ähnlichkeit der beiden 

Verbindungen durch den molekularen Fingerabdruck für gemeinsame funktionellen Gruppen und 

geometrische Merkmale. 

Der zweite Screen von 33.288 Verbindungen wurde so mit 1.288 Niclosamid-ähnlichen Verbindungen 

angereichert, was in vier überprüften Treffern resultierte, welche strukturelle Ähnlichkeit zu Niclosamid 

aufwiesen. Diese Verbindungen zeigten variierende Selektivitätsprofile an den verschiedenen 

Neuropeptid-Y-Rezeptor-Subtypen, was die Entwicklung von vorläufigen Struktur-Wirkungsbeziehungen 

um dieses Gerüst ermöglichte, welches die Wichtigkeit eines elektronenreichen Substituenten am 
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Benzoylrings fuer eine hohe Y4R Potenz vermuten laesst, wohingegen eine Nitrobenzoylsubstitution 

potenzverringernd am Y1R zu wirken scheint. 

Kapitel 5 stellt die Anwendung struktur-basierter Rechenmethoden zur Modellierung von Y4R und PP 

vor. Dieses Projekt besteht aus einer Kombination von multiplen Iterationen aus zellulären in vitro 

Assays und in silico Modellierung. Die vornehmliche Rolle des Autors war die computergestützte 

Modellierung. Mutagenese und zellbasierte Assays wurden von  Xavier Pedragosa-Badia und Diana 

Lindner im Labor von Frau Prof. Beck-Sickinger durchgeführt und gemeinsam mit den Rechenmethoden 

als “Pancreatic polypeptide is recognized by two hydrophobic domains of the Y4 receptor binding 

pocket” publiziert. Somit beschäftigt sich Kapitel 5 vornehmlich mit angewandten Rechenmethoden und 

deren Resultaten. 

Um davon zu profitieren, dass Klasse A GPCRs dieselbe Topologie haben, wurde Y4R durch Comparative 

Modelling mit der „Rosetta Molecular Modeling Suite“ modelliert. Stark unstruktierte Regionen mit 

geringer Sequenzkonservierung wurden ausführlich durch cyclic coordinate descent (CCD) remodelliert 

und durch kinematic loop closure (KIC) optimiert. 

Das NMR-Struktur-Ensemble von PP weist eine strukturierte α-Helix und eine hochflexible C-terminale 

Region auf. Daher wurde der starre helikale Abschnitt von PP zuerst unter Verwendung von Standard-

Protein-Protein-Docking an Y4R angedockt. Da dieses Protokoll nicht die umfassende Flexibilität der 

Loop-Regionen erfasst, wurde die PP-Helix in der Abwesenheit von extrazellulären Loops angedockt, um 

Interferenzen durch starre Loops zu vermeiden. Ein experimentell abgeleiteter potentieller Kontakt 

zwischen Tyr2.64 von Y4R und Tyr27 des PP wurde verwendet, um das Helix-Docking zu lenken. 

Im Gegensatz zu der Helix-Region, weisen die fünf C-terminalen Reste von PP erhebliche 

Konformationsflexibilität auf. Daher wurde die Rosetta de novo Faltung verwendet, um diese Reste 

umfassend in Gegenwart der Y4R Helices zu modellieren. In-vitro-Ergebnisse lieferten drei Kontakte 

zwischen PP und Y4R, welche die Modellierung lenkten. Abschließend wurden CCD und KIC verwendet, 

um die extrazellulären Loops des Y4R in Gegenwart von PP zu rekonstruieren. Dieser Ansatz wurde 

entwickelt, um Änderungen in den Loop-Konformationen, die auftreten können, wenn PP an Y4R bindet, 

zu erfassen. 
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Ein Ensemble von neun energetisch vergleichbaren, hochauflösenden Modellen von PP und Y4R, welches 

experimentell bestimmte Interaktionen mit einer Salzbrücke zwischen Asp6.59 und Arg35, einer 

Wasserstoffbrücke zwischen Asn7.32 und Arg33 und Kation-Pi Wechselwirkungen zwischen Phe7. 35 und 

Arg33 erfasst, wurde erzeugt. Weitere Kontakte wurden in allen Konformationen untersucht, um 

mögliche, zuvor nicht erkannte, Wechselwirkungen nahezulegen. Ein solcher vermeintlicher Kontakt 

zwischen Ser5.28 von Y4R und Thr32 von PP stellt ein Ziel für künftige Mutagenesestudien dar. 

Modellieren der Interaktion zwischen Melanocortin-4-Rezeptor und α-MSH 

Der Melanocortin-4-Rezeptor (MC4R) ist ein vielversprechendes Ziel für die Behandlung von 

Fettleibigkeit aufgrund seiner Beiträge zu monogenen Formen von Adipositas. Rund 150 natürlich 

vorkommende MC4R-Gen-Mutationen wurden bei adipösen Patienten identifiziert und MC4R-Mangel 

wird durch Hyperphagie, erhöhte Adipositas und schwere Hyperinsulinämie gekennzeichnet. 

Anorexigenes Signaling von α-MSH durch Aktivierung des MC4R scheint kritisch für die Regulierung der 

Nahrungsaufnahme und des Metabolismus sein. Bindungsstudien mit α-MSH haben mehrere kritische 

Wechselwirkungen zwischen MC4R und α-MSH enthüllt. Jedoch macht es die Flexibilität von α-MSH, 

einem 13 Aminosäure langem, linearen Peptid, welches nur durch einen einzigen Rückwärts β-turn um 

die zentralen Reste eingeschränkt wird, schwierig einen genauen Bindungsmodus zu bestimmen. 

Kapitel 6 enthält einen Comparative Modelling- und Docking-Ansatz, der auf die Flexibilität von α-MSH 

zugeschnitten ist. Eine Modellierungsanwendung, welche kürzlich zu Rosetta hinzugefügt und 

RosettaCM genannt wurde, wurde für einen Hybrid-Multi-Template-Ansatz verwendet. RosettaCM 

mischt Templatefragmente um ein Modell zu erstellen, den energetisch günstige Abschnitte über 

verschiedene Templates ausnutzt. Da die Anwesenheit oder Abwesenheit von Resten wie Prolin und 

Glycine die Topologie und das Verhalten der einzelnen Helices signifikant verändern kann, ist dieser 

Hybridisierungsansatz besonders geeignet für GPCR Vergleichsmodellierung. 

Nach der Modellierung des MC4R mit RosettaCM, lenkten experimentelle Daten einen zweiphasigen 

Docking Ansatz, bei dem die zentrale Region des Peptids gedockt wurde, gefolgt von einer 

Remodellierung der flexiblen Terminalregion parallel zu den extrazellulären Loops. In α-MSH, einem 

Kern-Tetrapeptid, wurde gezeigt, dass die Reste 6-9 kritisch und ausreichend für die Aktivierung des 

MC4R ist. Bindungsassays mit Mutanten offenbarten zwei Bindungsstellen: eine saure Tasche gerichtet 

auf Arg8 von α-MSH, einschließlich den MC4R-Resten Glu2.60, Asp3.25 und Asp3.29 sowie eine hydrophobe 

Wechselwirkung zwischen Phe6.51 des MC4R und Phe7 von α-MSH. 
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Rosetta FlexPepDock wurde verwendet, um dieses Tetrapeptid andocken. Extrazelluläre Loop-Regionen 

des MC4R und flexible Terminalregionen der α-MSH wurden modelliert und gleichzeitig verfeinert unter 

Verwendung der gleichen Kombination aus CCD und KIC wie in Kapitel 5. Eine zusätzliche Beschränkung 

in α-MSH während der Loopkonstruktion wurde verwendet, um die aktive Konformation des β-turns zu 

erzwingen. 

Die Modelle zeigen eine Konvergenz auf eine einzige Bindungs-Pose der zentralen Tetrapeptid-Region 

des α-MSH und signifikante konformative Flexibilität in den Terminalbereichen. Die Untersuchung eines 

Ensembles von energetisch vergleichbaren Konformationen zeigt ein Bindungsepitop auf, das drei MC4R 

Rezeptorbereiche umfasst: Reste aus Transmembranhelices zwei und drei, die mit Arg8 interagieren, 

Reste aus Transmembranhelices sechs und sieben und drei extrazellulären Loops, die mit Glu5 und His6 

interagieren, und Reste aus Transmembranhelices vier und fünf und sowie extrazelluläre Loops, die mit 

Trp9 interagieren. Phe7 von α-MSH, von welchem vermutet wird, dass es die wichtigste Pharmakophor-

Aktivierung von MC4R enthält, ist in allen Modellen nach unten in die Transmembranpore gerichtet und 

greift Reste aus den Transmembranhelices drei, sechs und sieben an. 

Zusätzlich zu den vier Bindungsinteraktionen die für das Docking verwendet wurden, identifizierte der 

Ensembleansatz zwölf Bindungsinteraktionen. Diese Interaktionen wurden mit zuvor veröffentlichten 

Bindungsassayergebnissen verglichen: acht Interaktionen werden durch publizierte experimentellen 

Ergebnisse gestützt. Zusätzlich wurden diese Modelle verwendet, um eine bisher nicht identifizierte 

Interaktion zwischen Met7.32 des MC4R und Ser4 oder Glu5 in α-MSH vorzuschlagen. 

Zusammenfassend zeigt diese Arbeit Verbesserungen und Anwendungen für beide CADD-Kategorien auf 

mit zwei therapeutischen Zielen für Übergewicht: Y4R und MC4R. Kapitel 7 dient als Schlusskapitel, das 

zukünftige Projekte für die Integration der verschiedenen Kapitel und Methoden in dieser Arbeit 

vorstellt. Ein Anhang, welcher auf Kapitel 7 folgt, beschreibt die vorläufigen Ergebnisse für die 

Kombination von Ergebnissen aus Kapitel 4 und 5, um Niclosamid an Y4R-PP-Modelle andocken. Dies 

wird helfen, wichtige Grundlagen für zukünftige Studien, welche auf die Aufklärung einer allosterischen 

Bindungsstelle in Y4R und die Verbesserung der künftigen Wirkstoffforschung gerichtet sind, zu legen.
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Background and Hypothesis 

The aim of this thesis is the application of computer aided drug discovery (CADD) to the study of two 

potential targets for the treatment of obesity and related disease: the neuropeptide Y4 receptor (Y4R) 

and the melanocortin 4 receptor (MC4R). Because CADD applications are continuously evolving, a sub-

aim of this thesis is the improvement of specific CADD applications with novel descriptors for reducing 

information loss. 

CADD may be applied to many different stages of the drug discovery pipeline, aiding in the analysis of 

large datasets, prioritizing experiments, and proposing studies aimed at elucidating specific interactions 

or activities. One commonly used ligand-based CADD technique is called quantitative structure activity 

relationship (QSAR). In this technique, quantitative descriptors are generated for known active and 

inactive compounds designed to capture the physicochemical properties that give rise to their activity at 

a specific protein target. These descriptors are used to train models capable of predicting activity for 

previously untested compounds.  

Three dimensional descriptors such as 3D autocorrelation (3DA) and radial distribution function (RDF) 

encode the spatial distribution of physicochemical properties within a molecule by iterating over all 

interatomic distances. 3DA and RDF are attractive descriptors because they are transformation 

independent and do not rely on molecule superimposition to compare 3D structure. However, their 

current implementation contains several potential sources of information loss. Specifically, enantiomers 

are indistinguishable with 3DA and RDF because the interatomic distances of enantiomer pairs are 

identical. This is problematic in drug discovery projects where opposite enantiomers display different 

activities. Another source of information loss comes with the inclusion of signed atom properties. To 

describe the spatial distribution of properties, the interatomic distances of 3DA and RDF are often 

weighted with the product of the two atom properties. When these properties are signed such as with 

partial charge, their products become incapable of distinguishing between negative and positive pairs. 

Novel descriptors based on the framework of 3DA and RDF can specifically address these shortcomings.  

The Y4R is a class A G-protein coupled receptor (GPCR) with strong anorexigenic potential. Its 

endogenous agonist pancreatic polypeptide (PP) is released from pancreatic islets in response and 

proportion to food ingestion to inhibit gastrointestinal peristalsis and relay anorexigenic signals. Specific 

CADD techniques can be applied to different aspects of Y4R signaling to model the interaction of Y4R and 

PP and accelerate discovery of small molecule modulators of Y4R.  
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Despite its potential as a pharmacological target for the treatment of obesity, no small molecule 

agonists or potentiators of Y4R have been described. High throughput screening (HTS) can be used to 

rapidly assess thousands of compounds for Y4R activity. To complement HTS, CADD may be applied to 

enrich hit rates or prioritize compounds for screening based on similarity to known active compounds. 

Binary molecular fingerprints encode the presence or absence of specific geometric properties and 

functional groups as predefined bit strings.  Once one or more active compounds have been identified, 

large compound libraries may be queried for structurally similar compounds and prioritized for 

screening.  

Inherent challenges in the experimental elucidation of membrane protein structures have so far 

prevented the elucidation of many GPCR structures, including Y4R. Therefore, structure-based CADD 

techniques such as comparative modeling and protein docking can help characterize the structure of Y4R 

and interactions with PP.  Comparative modeling uses known protein structures to guide the modeling 

of similar protein structures. Different GPCR types share common topology despite sometimes low 

sequence identity and are well suited for a multi-template comparative modeling approach that 

incorporates multiple GPCR structures into the prediction of a target structure. With a modeled 

structure of Y4R, it becomes possible to model the interactions of Y4R and PP based on experimentally 

determined residue contacts. 

The MC4R is another class A GPCR that relays anorexigenic signals in response to its endogenous peptide 

agonist α-MSH. As with Y4R, no three dimensional structure of MC4R is available. However, several 

contacts between MC4R and α-MSH have been experimentally elucidated. Therefore, a similar 

comparative modeling and protein docking approach can be used to model the structure of MC4R and 

interactions with α-MSH. 
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1.1 Abstract 

Computer-aided drug discovery/design methods have played a major role in the development of 

therapeutically important small molecules for over three decades. These methods are broadly classified 

as either structure-based or ligand-based methods. Structure-based methods are in principle analogous 

to high-throughput screening in that both target and ligand structure information is imperative. 

Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The 

article discusses theory behind the most important methods and recent successful applications. Ligand-

based methods use only ligand information for predicting activity depending on its 

similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods 

such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity 

relationships. In addition, important tools such as target/ligand databases, homology modeling, ligand 

fingerprint methods, etc., necessary for successful implementation of various computer-aided drug 

discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods 

for toxicity prediction and optimization for favorable physiologic properties are discussed with 

successful examples from literature. 
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1.2 Introduction 

On October 5, 1981, Fortune magazine published a cover article entitled the “Next Industrial 

Revolution: Designing Drugs by Computer at Merck” [1]. Some have credited this as the beginning of 

intense interest in the potential for Computer Aided Drug Design (CADD). While progress was being 

made in CADD, high-throughput screening (HTS) was taking priority as a means for finding novel 

therapeutics. This brute force approach relies on automation to screen high numbers of molecules in 

search of those which elicit the desired biological response. HTS has the advantage of requiring minimal 

compound design or prior knowledge and newer technologies make screening these large libraries 

efficient and relatively fast. However, while traditional HTS can result in multiple hit compounds, some 

of which are capable of being modified into a lead and then a novel therapeutic, the hit rate for HTS is 

often extremely low. This low hit rate limits the application of HTS to research programs capable of 

screening large compound libraries. In the past decade, CADD has reemerged as a way to significantly 

decrease the number of compounds necessary to screen while retaining the same level of lead 

compound discovery. Many compounds predicted to be inactive can be skipped and those predicted to 

be active can be prioritized. This reduces the cost and workload of a full HTS screen without 

compromising lead discovery. Additionally, traditional HTS assays often require extensive development 

and validation before they can be employed. Since CADD requires significantly less preparation time, 

experimenters can perform CADD studies while the traditional HTS assay is being prepared. The fact that 

both of these tools can be used in parallel provides an additional benefit for CADD in a drug discovery 

project. 

  For example, researchers at Pharmacia (now part of Pfizer) used CADD tools to screen for 

inhibitors of tyrosine phosphatase-1B, an enzyme implicated in diabetes. Their virtual screen yielded 365 

compounds, 127 of which showed effective inhibition, a hit rate of nearly 35%. Simultaneously, this 

group performed a traditional HTS against the same target. Of the 400,000 compounds tested, 81 

showed inhibition, producing a hit rate of only 0.021%. This comparative case effectively displays the 

power of CADD [2]. CADD has already been used in the discovery of compounds which have passed 

clinical trials and become novel therapeutics in the treatment of a variety of diseases. Some of the 

earliest examples of approved drugs that owe their discovery in large part to the tools of CADD include 

the carbonic anhydrase inhibitor dorzolamide, approved in 1995 [3], the angiotensin-converting enzyme 

(ACE) inhibitor captopril, approved in 1981 as an antihypertensive drug [4], three therapeutics for the 
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treatment of HIV: saquinavir (approved in 1995), ritonavir, and indinavir (both approved in 1996) [1] and 

tirofiban, a fibrinogen antagonist approved in 1998 [5].  

One of the most striking examples of the possibilities presented from CADD occurred in 2003 

with the search for novel Transforming Growth Factor-β1 (TGF-β1) receptor kinase inhibitors. One group 

at Eli Lilly used a traditional HTS to identify a lead compound that was subsequently improved through 

structure activity relationship (SAR) studies using in vitro assays [6], whereas a group at Biogen Idec used 

a CADD approach involving virtual HTS based on the structural interactions between a weak inhibitor 

and TGF-β1 receptor kinase [7]. Through virtual screening, the group at Biogen Idec identified 87 hits, 

the best being identical in structure to the lead compound discovered through the traditional HTS 

approach at Eli Lilly [8]. In this example CADD, a method involving reduced cost and workload, was 

capable of producing the same lead as a full-scale HTS. 

 

Figure 1.1: Identical lead compounds are discovered in a traditional high-throughput screen and 

structure-based virtual high-throughput screen. I) X-ray crystal structures of 1 and 18 bound to the ATP-

binding site of the TβR-I kinase domain discovered using traditional high-throughput screening. 

Compound 1, shown as the thinner wire-frame is the original hit from the HTS and is identical to that 

which was discovered using virtual screening. Compound 18 is a higher affinity compound after lead 

optimization. II) X-ray crystal structure of compound HTS466284 bound to the TβRI active site. This 

compound is identical to compound 1 in I but was discovered using structure-based virtual high-

throughput screening. Source: [6, 7] 
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1.2.1  Position of CADD in the drug discovery pipeline 

CADD is capable of increasing the hit rate of novel drug compounds because it uses a much 

more targeted search than traditional HTS and combinatorial chemistry. It not only aims to explain the 

molecular basis of therapeutic activity, but also to predict possible derivatives that would improve 

activity. In a drug discovery campaign, CADD is usually used for three major purposes: a) filter large 

compound libraries into smaller sets of predicted active compounds that can be tested experimentally,  

b) guide the optimization of lead compounds, whether to increase its affinity or optimize drug 

metabolism and pharmacokinetics (DMPK) properties including absorption, distribution, metabolism, 

excretion, and the potential for toxicity (ADMET), c) design novel compounds, either by “growing” 

starting molecules one functional group at a time or by piecing together fragments into novel 

chemotypes. Figure 1.2 illustrates the position of CADD in drug discovery pipeline. 

 

Figure 1.2 CADD in drug discovery/design pipeline. A therapeutic target is identified against which a drug has 

to be developed. Depending on the availability of structure information, a structure-based approach or a 

ligand-based approach is used. A successful CADD campaign will allow identification of multiple lead 

compounds. Lead identification is often followed by several cycles of lead optimization and subsequent lead 

identification using CADD. Lead compounds are tested in vivo to identify drug candidates. 
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CADD can be classified into two general categories: structure-based and ligand-based. Structure-

based CADD relies on the knowledge of the target protein structure to calculate interaction energies for 

all compounds tested, while ligand-based CADD exploits the knowledge of known active and inactive 

molecules through chemical similarity searches or construction of predictive Quantitative Structure-

Activity Relation (QSAR) models [9]. Structure-based CADD is generally preferred when high resolution 

structural data of the target protein is available, i.e. for soluble proteins that can readily be crystallized. 

Ligand-based CADD is generally preferred when no or little structural information is available, often for 

membrane protein targets. The central goal of structure-based CADD is to design compounds that bind 

tightly to the target, i.e. with large reduction in free energy, improved DMPK/ADMET properties, and are 

target specific, i.e. have reduced off-target effects [10]. A successful application of these methods will 

result in a compound that has been validated in vitro and in vivo, and its binding location has been 

confirmed, ideally through a co-crystal structure.  

One of the most common uses in CADD is the screening of virtual compound libraries, also known as 

virtual high-throughput screening (vHTS). This allows experimentalists to focus resources on testing 

compounds likely to have any activity of interest. In this way, a researcher can identify an equal number 

of hits while screening significantly less compounds, because compounds predicted to be inactive may 

be skipped. Avoiding a large population of inactive compounds saves money and time, because the size 

of the experimental HTS is significantly reduced without sacrificing a large degree of hits. Ripphausen et 

al note that the first mention of vHTS was in 1997 [11] and chart an increasing rate of publication for the 

application of vHTS between 1997 and 2010. They also found that the largest fraction of hits has been 

obtained for G-protein coupled receptors (GPCR’s), followed by kinases [12].  

Virtual HTS comes in many forms, including chemical similarity searches by fingerprints or topology, 

selecting compounds by predicted biological activity or pharmacophore mapping, and virtual docking of 

compounds into a target of interest, known as structure-based docking [13]. These methods allow the 

ranking of “hits” from the virtual compound library for acquisition. The ranking can reflect a property of 

interest such as percent similarity to a query compound or predicted biological activity, or in the case of 

docking, the lowest energy scoring poses for each ligand bound to the target of interest [14]. Often 

initial hits are rescored and ranked using higher level computational techniques that are too time 

consuming to be applied to full-scale vHTS. It is important to note that vHTS does not aim to identify a 

drug-compound that is ready for clinical testing, but rather to find leads with chemotypes that have not 

previously been associated with a target. This is not unlike a traditional HTS where a compound is 
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generally considered a hit if its activity is close to 10 µM. Through iterative rounds of chemical synthesis 

and in vitro testing, a compound is first developed into a “lead” with higher affinity, some understanding 

of its structure-activity-relation, and initial tests for DMPK/ADMET properties. Only after further 

iterative rounds of lead-to-drug optimization and in vivo testing does a compound reach clinically 

appropriate potency and acceptable DMPK/ADMET properties [15]. For example, the literature survey 

performed by Ripphausen et al revealed that a majority of successful vHTS applications identified a small 

number of hits that are usually active in the micromolar range, and hits with low nanomolar potency are 

only rarely identified [12]. 

The cost benefit of using computational tools in the lead optimization phase of drug development is 

substantial. Development of new drugs can cost anywhere in the range of 400 million to 2 billion dollars 

with synthesis and testing of lead analogues being a large contributor to that sum [16]. Therefore, it is 

beneficial to apply computational tools in hit-to-lead optimization in order to cover a wider chemical 

space while reducing the number of compounds that must be synthesized and tested in vitro. The 

computational optimization of a hit compound can involve a structure-based analysis of docking poses 

and energy profiles for hit analogs, ligand-based screening for compounds with similar chemical 

structure or improved predicted biological activity, or prediction of favorable DMPK/ADMET properties. 

The comparably low-cost of CADD compared to chemical synthesis and biological characterization of 

compounds make these methods attractive to focus, reduce, and diversify the chemical space that is 

explored [13].  

De novo drug design is another tool in CADD methods, but rather than screening libraries of 

previously synthesized compounds it involves the design of novel compounds. A structure generator is 

needed to sample the space of chemicals. Given the size of the search space (more than 1060 molecules) 

[17] heuristics are used to focus these algorithms on molecules that are predicted to be highly active, 

readily synthesizable, devoid of undesirable properties, often derived from a starting scaffold with 

demonstrated activity, etc. Additionally, effective sampling strategies are utilized while dealing with 

large search spaces such as evolutionary algorithms, metropolis search, or simulated annealing [18]. The 

construction algorithms are generally defined as either linking or growing techniques. Linking algorithms 

involve docking of small fragments or functional groups such as rings, acetyl groups, esters, etc., to 

particular binding sites followed by linking fragments from adjacent sites. Growing algorithms, on the 

other hand, begin from a single fragment placed in the binding site to which fragments are added, 

removed, and changed to improve activity. Similar to vHTS, the role of de novo drug design is not to 
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design the single compound with nanomolar activity and acceptable DMPK/ADMET properties, but to 

design a lead compound that can be subsequently improved.  

1.2.2  Ligand databases for CADD 

Virtual HTS uses high-performance computing to screen large chemical databases and prioritize 

compounds for synthesis. Current hardware and algorithms allow structure-based screening of up to 

100,000 molecules per day using parallel processing clusters [19]. To perform a virtual screen, however, 

a virtual library must be available for screening. Virtual libraries can be acquired in a variety of sizes and 

designs including general libraries that can be used to screen against any target, focused libraries that 

are designed for a family of related targets, and targeted libraries that are specifically designed for a 

single target. 

General libraries can be constructed using a variety of computational and combinatorial tools. 

Early systems used molecular formula as the only constraint for structure generation, resulting in all 

possible structures for a predetermined limit in the number of atoms. As comprehensive computational 

enumeration of all chemical space is and will remain infeasible, additional restrictions are applied. 

Typically, chemical entities difficult to synthesize or known/expected to cause unfavorable 

DMPK/ADMET properties are excluded. Fink et al. proposed a generation method for the construction of 

virtual libraries that involved the use of connected graphs populated with C, N, O, and F atoms and 

pruned based on molecular structure constraints and removal of unstable structures. The final database 

proposed with this method is called the GDB (Generated a DataBase) and contains 26.4 million chemical 

structures that have been used for vHTS [20, 21]. A more recent variation of this database called GDB-13 

includes atoms C, N, O, S, and Cl (F is not included in this variation to accelerate computation) and 

contains 970 million compounds [22].  

Most frequently, vHTS focuses on drug-like molecules that have been synthesized or can be easily 

derived from already available starting material. For this purpose several small molecule databases are 

available that provide a variety of information including known/available chemical compounds, drugs, 

carbohydrates, enzymes, reactants, and natural products [23, 24]. Some widely used databases are 

listed in table 1-1. 
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Table 1-1 Widely used chemical compound repositories along with content information about class of 

compounds they host and size of repositories 

DataBase Type Size 

PubChem [25, 26] Biological activities of small molecules ~68,000,000 

Accelrys Available Chemicals Directory 
(ACD) [27] 

Consolidated catalog from major chemical suppliers ~7,000,000 

PDBeChem [28] Ligands and small molecules referred in PDB 19,838 

Zinc [29] Annotated commercially available compounds 
 
~90,000,000 

DrugBank [30] 
Detailed drug data with comprehensive drug target 
information 

7469 

ChemDB [31, 32] Annotated commercially available molecules ~5,000,000 

WOMBAT Database (World Of Molecular 
BioAcTivity) [33, 34] 

Bioactivity data for compounds reported in medicinal 
chemistry journals 

331,872 

MDDR (MDL Drug Data Report) [34] 
Drugs under development or released; descriptions of 
therapeutic 

180,000 

3D MIND [35] 
Molecules with target interaction and tumor cell line 
screen data 

100,000 

 

1.2.3  Preparation of Ligand Libraries for CADD 

Ligand libraries are often constructed by enriching ligands for drug likeness or certain desirable 

physiochemical properties suitable for the target of interest. Even with rapid docking algorithms, 

docking millions of compounds requires considerable resources, and time can be saved through the 

elimination of non-drug like, unstable, or unfavorable compounds. Drug likeness is commonly evaluated 

using Lipinski’s rule of five [36] which states that in general, an orally active drug should have no more 

than one violation of the following criteria a) maximum of five hydrogen bond donors b) no more than 

10 oxygen and nitrogen atoms c) molecular mass less than 500 daltons d) an octanol-water partition 
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coefficient of not greater than five. If two or more of the conditions are violated, poor adsorption can be 

expected. Similarly, polar molecular surface is also used to predict oral absorption and brain penetration 

[37]. It is a common practice to filter molecules based on predicted DMPK/ADMET properties before 

initializing a vHTS campaign. Ligand-based methods to predict DMPK/ADMET properties use statistical 

and learning approaches, molecular descriptors, and experimental data to model biological processes 

like oral bioavailability, intestinal absorption/permeability, half-life time, and distribution in human 

blood plasma etc.  

Compound libraries are often enriched for a particular target or family of targets. 

Physiochemical filters derived from observed ligand-target complexes are used for enriching a library 

with compounds that satisfy specific geometric or physicochemical constraints. Such libraries are 

prepared by searching for ligands that are similar to known active ligands [38, 39]. Several target-specific 

libraries exist in Cambridge Structure Database (CSD) including kinase-biased, GPCR-biased, and ion 

channel-biased sets. In addition, a small molecule library requires preparations such as conformational 

sampling, and assigning proper stereo isometric and protonation state [40, 41]. Molecules are flexible in 

solvent environment and hence representation of conformational flexibility is an important aspect of 

molecular recognition. Often conformations of protein and ligand are precomputed using simulation or 

knowledge-based methods [42, 43].  

1.2.4  Representation of small molecules as “SMILES” 

Development and efficient use of ligand databases require universally applicable methods for 

the virtual representation of small molecules. SMILES (Simplified Molecular Input Line System) [44] was 

developed as an unambiguous and reproducible method for computationally representing molecules. It 

was developed as an improvement over the Wiswesser Line Notation [45] which had a cumbersome set 

of rules, but was a preferred method due to the representation of molecular structure as a linear string 

of symbols that could be efficiently read and stored by computer systems. 

Commonly, SMILES does not explicitly encode hydrogen atoms (hydrogen-suppressed graph) 

and conventionally assumes that hydrogens make up the remainder of an atom’s lowest normal valence. 

All non-hydrogen atoms are represented by their atomic symbols enclosed in square brackets. Atoms 

may also be listed without square brackets, implying the presence of hydrogens. Formal charges are 

specifically assigned as + or – followed by an optional digit inside the appropriate brackets. Aromatic 

atoms are specified using the lowercase atomic symbols. Single bonds, double bonds, triple bonds, and 
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aromatic bonds are denoted by “-“, “=”, “#”, and “:”, respectively. Branched systems are specified by 

enclosing them in parentheses. Cyclic structures are represented by breaking a ring at a single or 

aromatic bond and numbering the atoms on either side of the break with a number. For example, 

cyclohexane is represented with the SMILES string C1CCCCC1. Disconnected compounds are separated 

by a period, and ionic bonds are considered disconnected structures with complimentary formal charges 

[46]. 

SMILES algorithms are capable of detecting most aromatic compounds with an extended version 

of Huckel’s rule (all atoms in the ring must be sp2 hybridized and the number of available π electrons 

must satisfy 4N + 2) [47]. Therefore, aromaticity does not necessarily need to be defined beforehand. 

However, tautomeric structures must be explicitly specified as separate SMILES strings. There are no 

SMILES definitions for tautomeric bonds or mobile hydrogens. SMILES was designed to have good 

human readability as a molecular file format. However, there are usually many different but equally 

valid SMILES descriptions for the same structure. It is most commonly used for storage and retrieval of 

compounds across multiple computer platforms. 

SMARTS (SMILES ARbitrary Target Specification) is an extension of SMILES that allows for 

variability within the represented molecular structures. This provides substructure search functionality 

to SMILES. In addition to the SMILES naming conventions, SMARTS includes logical operators, such as 

“AND” (&), “OR” (,), and “NOT” (!) and special atomic and bond symbols that provide a level of flexibility 

to chemical names. For example, in SMARTS notation, [C,N] represents an atom that can be either an 

aliphatic carbon or an aliphatic nitrogen and the symbol “~” will match any bond type [48]. 

1.2.5   Small Molecule Representations for Modern Search Engines: InChIKey 

InChI (International Chemical Identifier) was released in 2005 as an open source structure 

representation algorithm that is meant to unify searches across multiple chemical databases using 

modern internet search engines. It is maintained by the InChI Trust and currently supports chemical 

elements up to 112 [49]. The purpose of InChI and the hash-key version InChIKey is to provide a 

nonproprietary machine-readable code unique for all chemical structures that can be indexed by major 

search engines such as Google without any alteration. By use of this protocol, researchers can search for 

chemicals in a routine and straightforward manner. Prior to INChI, chemical searches spanning multiple 

databases using typical search engines were unreliable. Different systems have their own proprietary 
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identification method for indexing chemicals; SMILES-based searches are insufficient as different 

databases have adopted their own unique SMILES. 

InChI is made up of several layers that represent different classes of structural information. The 

first two layers contain only general information, including the chemical formula and connections. More 

specific conformational information such as stereochemistry, tautomerism, and isotopic information is 

represented in additional optional layers. Bonds between atoms can be partitioned into up to three 

sublayers depending on the level of specification desired. These layers represent all bonds to 

nonbridging hydrogen atoms, immobile hydrogen atoms, and mobile hydrogen atoms, respectively. The 

InChI algorithm includes six normalization rules that apply qualities such as variable protonation and 

identification of tautomeric patterns and resonances to achieve a unique and consistent chemical 

representation [49].  

InChIKey is a hash-key version of InChI that generates two blocks using a truncated SHA-256 

cryptographic hash function. This allows the keys to contain a fixed length of 27 characters with high 

collision resistance (minimal chance of two different molecules having the same hash key). Use of 

InChIKeys to search multiple database with typical search engines was tested and the incidence of false-

positive hits was low [50]. Publically available web applets are available that allow chemists to draw 

molecules and automatically search the web using an automatically calculated InChIKey. 

1.2.6  Target databases for CADD 

The knowledge of the structure of the target protein is required for structure-based CADD. The 

Protein Data Bank (PDB) [51], established in 1971 at the Brookhaven National Laboratory, and the 

Cambridge Crystallographic Data Center, are among the most commonly used databases for protein 

structure. PDB currently houses more than 100,000 protein structures, the majority of which (90%) have 

been determined using X-ray crystallography and a smaller set determined using NMR spectroscopy. 

When an experimentally determined structure of a protein is not available, it is often possible to create 

a comparative model based on the experimental structure of a related protein. When this protein is 

evolutionarily related, the term “homology modeling” is used in place of comparative modeling. The 

Swiss-Model server is one of the most widely used web-based tools for homology modeling [52]. 

Initially, static protein structures were used for all structure-based design methods. However, proteins 

are not static structures but exist as ensembles of different conformational states. The protein 

fluctuates through this ensemble depending on the relative free energies of each of these states, 
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spending more time in conformations of lower free energy. Ligands are thought to interact with some 

conformations but not others, thus stabilizing conformational populations in the ensemble. Therefore, 

docking compounds into a static protein structure can be misleading, as the chosen conformation may 

not be representative of the conformation capable of binding the ligand. Recently, it has become state 

of the art to use additional computational tools such as molecular dynamics and molecular mechanics to 

simulate and evaluate a protein’s conformational space. Conformational sampling provides a collection 

of snapshots that can be used in place of a single structure that reflect the breadth of fluctuations the 

ligand may encounter in vivo. This approach was proven to be invaluable in CADD by Schames et al [53] 

in the 2004 identification of novel HIV Integrase inhibitors [54]. Some methods, such as ROSETTA-

LIGAND [55], are capable of incorporating protein flexibility during the actual docking procedure, 

alleviating the need for snapshot ensembles.  

The collection of events that occurs when a ligand binds a receptor extends far beyond the 

noncovalent interactions between ligand and protein. Desolvation of ligand and binding pocket, shifts in 

the ligand and protein conformational ensembles, and reordering of water molecules in the binding site 

all contribute to binding free energies. Consideration of water molecules as an integral part of binding 

sites is necessary for key mechanistic steps and binding [56, 57]. These water molecules shift the free 

energy change of ligand binding by either facilitating certain noncovalent interactions between the 

ligand and protein, or by being displaced into a more favorable direct interactions between the ligand 

and protein, causing an overall change in free energy upon binding [58, 59]. Improvements in 

computational resources allows inclusion of better representations of physiochemical interactions in 

computational methods to increase their accuracies [60]. 

1.2.7  Benchmarking Techniques of CADD 

Effective benchmarks are essential for assessment of performance and accuracy of CADD 

algorithms. Design of the benchmark in terms of number and type of target proteins, size and 

composition of active and inactive chemicals, and selection of quality measures play a key role when 

comparing new CADD methods with existing ones. Scientific benchmarks usually involve screening a 

library of compounds that include a subset of known actives combined with known inactive compounds 

and then evaluating the number of known actives that were identified by the CADD technique used [61].  

Performance is commonly reported by correlating predicted activities with experimentally 

observed activities through the use of receiver operating characteristic (ROC) curves. These curves plot 
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the number of true positive predictions on the y-axis versus the false positive predictions on the x-axis. A 

random predictor would result in a plot of a line with a slope of 1, whereas curves with high initial slopes 

above this line represent increasing performance scores for the method tested [34, 62]. ROC curves are 

therefore analyzed by determining the area under the curve (AUC), positive predictive value (PPV) – the 

ratio of true positives in a subset selected in a vHTS screen, or enrichment – a benchmark that 

normalizes PPV by the background ratio of positives in the dataset.  

For structure-based CADD it is now common also to include decoy molecules that further test a 

technique’s ability to discern actives from inactives at high resolution. Irwin et al created the Directory 

of Useful Decoys (DUD) dataset designed for high-resolution benchmarking. It includes experimental 

data for approximately 3000 ligands covering up to 40 different targets and a set of carefully chosen 

decoys [63]. These decoys were designed to resemble positive ligands physically but not topologically 

[64]. These decoys, however, are not experimentally validated and are only postulated to be “inactive” 

against the targets. Good and Oprea developed clustered versions of DUD with added data sets from 

sources such as WOMBAT to avoid challenges in enrichment comparisons between methods due to 

different parameters and limited diversity [65].  

1.3  Structure-Based Computer-Aided Drug Discovery (SB-CADD) 

Structure-based computer-aided drug discovery (SB-CADD) relies on the ability to determine and 

analyze 3D structures of biological molecules. The core hypothesis of this approach is that a molecule’s 

ability to interact with a specific protein and exert a desired biological effect depends on its ability to 

favorably interact with a particular binding site on that protein. Molecules that share those favorable 

interactions will exert similar biological effects. Therefore, novel compounds can be elucidated through 

the careful analysis of a protein’s binding site. Structural information about the target is a prerequisite 

for any SB-CADD project. Scientists have been using a target protein’s structure to aid in drug discovery 

since the early 1980s [66]. Since then, SB-CADD has become a commonly used drug discovery technique 

thanks to advances in genomics and proteomics that have led to the discovery of a large number of 

candidate drug targets [67, 68]. Extensive use of biophysical techniques such as x-ray crystallography 

and nuclear magnetic resonance (NMR) spectroscopy has led to the elucidation of a number of 3D 

structures of human and pathogenic proteins. Drug discovery campaigns leveraging target structure 

information have sped up the discovery process and led to the development of several clinical drugs. A 

prerequisite for the drug discovery process is the ability to rapidly determine potential binders to the 
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target of interest. Computational methods in drug discovery allow rapid screening of a large compound 

library and determination of potential binders through modeling/simulation and visualization 

techniques. 

1.3.1 Preparation of a Target Structure 

A target structure experimentally determined through x-ray crystallography or NMR techniques 

and deposited in the PDB is the ideal starting point for docking. Structural genomics has accelerated the 

rate at which target structures are being determined. In the absence of experimentally determined 

structures, several successful virtual screening campaigns have been reported based on comparative 

models of target proteins [69-71]. Efforts have also been made to incorporate information about binding 

properties of known ligands back into comparative modeling process [72, 73].  

Success of virtual screening is dependent upon the amount and quality of structural information 

known about both the target and the small molecules being docked. The first step is to evaluate the 

target for the presence of an appropriate binding pocket [74, 75]. This is usually done through the 

analysis of known target-ligand cocrystal structures or using in silico methods to identify novel binding 

sites [76]. 

Comparative modeling 

Advances in biophysical techniques such as X-ray crystallography and NMR spectroscopy have 

increased the availability of protein structures. This provides structural information to guide drug 

discovery. In the absence of experimental structures, computational methods are used to predict the 3D 

structure of target proteins. Comparative modeling is used to predict target structure based on a 

template with a similar sequence, taking advantage of the fact that protein structure is better conserved 

than sequence, i.e. proteins with similar sequences have similar structures. Homology modeling is a 

specific type of comparative modeling in which the template and target proteins share the same 

evolutionary origin. Comparative modeling involves the following steps: a) Identification of related 

proteins to serve as template structures, b) sequence alignment of the target and template proteins, c) 

copying coordinates for confidently aligned regions, d) constructing missing atom coordinates of target 

structure, and e) model refinement and evaluation. Figure 1.3 illustrates the steps involved in 

comparative modeling. Several computer programs and web servers exist which automate the 

comparative modeling process e.g. PSIPRED [77] , MODELLER [78]. 
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Figure 1.3 Steps in homology model building process  

Template identification and alignment 

  In the first step the target sequence is used as a query for the identification of template 

structures in the PDB. Templates with high sequence similarity can be determined by a straight-forward 

PDB-BLAST search [79]. More sophisticated fold recognition methods are available if PDB-BLAST does 

not yield any hits [80, 81]. Search for template structure is followed by sequence alignment using 

methods like CLUSTALW [82] which is a multiple sequence alignment tool. For closely related protein 

structures, structurally conserved regions are identified and used to build the comparative model. 

Construction and evaluation of multiple comparative models from multiple good-scoring sequence 

alignments improves the quality of the comparative model [83, 84]. It has been demonstrated that 

combination of multiple templates can improve comparative models by leveraging well-determined 
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regions that are mutually exclusive [85].  Appropriate template selection is critical for successful 

comparative modeling. Careful consideration should be given to alignment length, sequence identity, 

resolution of template structure and consistency of secondary structure between target and templates. 

Model building 

Gaps or insertions in the original sequence alignment occur most frequently outside secondary 

structure elements and lead to chain breaks (gaps and insertions) and missing residues (gaps) in the 

initial target protein model. Modeling these missing regions involves connecting the anchor residues, 

which are the N- or C-terminal residues of protein segments on either side of the missing region. Two 

broad classes of loop-modeling methods exist: knowledge-based methods and de novo methods. 

Knowledge-based methods use loops from protein structures that have approximately the same anchors 

as found in target models. Loops from such structures are applied to the target structure. De novo 

methods generate a large number of loop conformations and use energy functions to judge the quality 

of predicted loops [86]. Both methods, however, solve the “loop closure” problem, i.e. identifying low-

energy loop conformations from a large conformational sample space that justify the structural restraint 

of connecting the two anchor points. Cyclic coordinate descent (CCD) [87] and kinematic closure (KIC) 

[88] algorithms optimally search for conformations that satisfy constraints for loop closure in a target 

structure. CCD iteratively changes dihedral angles one at a time such that a distance constraint between 

anchor residues is satisfied [87]. The KIC algorithm derives from kinematic methods which allow 

geometric analysis of possible conformations of a system of rigid objects connected by flexible joints. 

The KIC algorithm generates a Fourier polynomial in N variables for a system of N rotatable bonds by 

analyzing bond lengths and bond angles constraints [89]. Atom coordinates of the loop are then 

determined using the polynomial equation.  

Loop modeling can be affected by two classes of errors: scoring function errors and insufficient 

sampling. The former arises when nonnative conformations are assigned better scores. Confidence in 

scoring can be improved by scoring with different functions, assuming that true native conformation will 

likely be best ranked across multiple scoring methods. Insufficient sampling arises when near native 

conformations are not sampled. Sufficient sampling can be achieved by running multiple independent 

simulations to establish convergence. 

The next step in comparative modeling is prediction of side-chain conformations. A statistical 

clustering of observed side-chain conformations in PDB, called a rotamer library is used in most side-
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chain construction methods [90]. Methods like dead-end elimination [91] implemented in SCRWL [92-

94] and Monte Carlo searches [95] are used for side-chain conformation sampling. Dead-end elimination 

imposes conditions to identify rotamers that cannot be members of global minimum energy 

conformation. For example, the algorithm prunes a rotamer a if a second rotamer b exists, such that 

lowest energy conformation containing a is greater than highest energy conformations containing b. The 

SCRWL algorithm evaluates steric interactions between side chains through the use of a backbone 

dependent rotamer library which expresses frequency of rotamers as a function of dihedral angles φ 

and ψ. Monte Carlo algorithms search the side chain conformational space stochastically using the 

Metropolis criterion to guide the search into energetic minima.  

Binding pockets in homology models or even crystal structures are often not amenable for 

ligand docking because of insufficient accuracy. Ligand information has been used to improve 

comparative models. Tanrikulu et al used a pseudoreceptor modeling method to improve a homology 

model of human histamine H4 receptor. Pseudoreceptor methods map binding pockets around one or 

more reference ligands by capturing their shape and interactions with the target. Conformation 

snapshots of the homology model were obtained by MD simulation, and pocket-forming coordinates 

were extracted. Binding pockets of MD frames that matched pseudoreceptor were prioritized for virtual 

screening. Hits from virtual screening were tested experimentally and two compounds with diverse 

chemotypes exhibited pKi > 4 [96, 97]. Katritch et al. used a combined homology modeling and ligand-

guided backbone ensemble receptor optimization algorithm (LiBERO) for prediction of a protein-ligand 

complex in CASP experiments. The approach was identified as the best in that it identified 40% of the 70 

contacts that the antagonist ZM241385 makes with adenosine A2a receptor (PDB:3EML). In LiBERO 

framework multiple models are generated and normal mode analysis is used to generate backbone 

conformation ensembles. Conformers are selected according to docking performance through an 

iterative process of model building and docking [98]. Ligand information assisted homology modeling is 

contingent on the availability of high-affinity ligands and structurally similar homologs to ensure high 

quality homology models. 

Model refinement and evaluation 

Atomic models are refined by introducing ideal bond geometries and by removing unfavorable 

contacts introduced by the initial modeling process. Refinement involves minimizing models using 

techniques such as molecular dynamics [99], Monte Carlo Metropolis minimization [100] or genetic 
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algorithms [101]. For example, the ROSETTA refinement protocol fixes bond lengths and angles at ideal 

values and removes steric clashes in an initial low-resolution step. ROSETTA then minimizes energy as a 

function of backbone torsional angles φ, ψ, and ω using a Monte Carlo minimization strategy [100]. 

Molecular dynamics-based refinement techniques have been used widely as refinement strategy in 

drug-design oriented homology models [102, 103]. 

Model evaluation involves comparison of observed structural features with experimentally 

determined protein structures. Melo and Sali [104] applied a genetic algorithm that used 21 input model 

features like sequence alignment scores, measures of protein packing, and geometric descriptors to 

assess folds of models. Critical Assessment of Techniques for Protein Structure Prediction (CASP) [105] is 

a worldwide competition in which many groups participate for an objective assessment of methods in 

the area of protein structure prediction. Models are numerically assessed and ranked by estimating 

similarity between a model and corresponding experimental structure. Some evaluation methods used 

in CASP are full model root mean square deviation (RMSD), global distance test-total scores (GDT-TS) 

and alignment accuracy (AL0 score). GDT-TS is the average maximum number of residues in predicted 

model that deviate from corresponding residues in the target by no more than a specified distance while 

AL0 represents the percentage of correctly aligned residues [105]. 

 Model databases 

SWISS-MODEL [106] and MODBASE [107] databases store annotated comparative protein 

structure models. SWISS-MODEL repository contains annotated 3D protein models generated by 

homology modeling of all sequences in SWISS-PROT [106]. As of March 2015, SWISS-MODEL contained 

3.18 million entries for 2.3 million unique sequences in UNIPROT database. MODBASE is organized into 

datasets of models for specific projects which include datasets of 9 archaeal genomes, 13 bacterial 

genomes and 18 eukaryotic genomes. Together with other datasets, MODBASE currently houses 34 

million models across 5.7 million unique protein sequences [107]. 

Park et al [108] used a homology model of Cdc25A phosphatase, a drug target for cancer therapy, to 

identify novel inhibitors. The crystal structure of protein Cdc25B served as a template to generate 

structural models of Cdc25A. Docking of a library of 85,000 compounds led to the discovery of 

structurally diverse compounds with IC50 values ranging from 0.8 to 15 µM.  
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1.3.2 Binding site detection and characterization  

Protein-ligand interaction is a prerequisite for drug activity. Often possible binding sites for small 

molecules are known from cocrystal structures of the target or a closely related protein with a natural or 

nonnatural ligand. In the absence of a cocrystal structure, mutational studies can pinpoint ligand binding 

sites. However, the ability to identify putative high-affinity binding sites on proteins is important if the 

binding site is unknown or if new binding sites are to be identified, e.g. for allosteric molecules. 

Computational methods like POCKET, SURFNET, Q-SITEFINDER, etc. [76, 109] are often used for binding 

site identification. Computational methods for identifying and characterizing binding sites can be divided 

into three general classes: a) geometric algorithms to find shape concave invaginations in the target, b) 

methods based on energetic consideration, and c) methods considering dynamics of protein structures. 

Geometric method 

Geometric algorithms identify binding sites through the detection of cavities on a protein’s 

surface. These algorithms frequently use grids to describe molecular surface or 3D structure of protein. 

The boundary of a pocket is determined by rolling a “spherical probe” over the grid surface. A pocket is 

identified if there is a period of noninteraction i.e. probe doesn’t touch any target atoms, between 

periods of contact with protein. This technique is employed by POCKET [110] and LIGSITE [111]. 

SURFNET [112] places spheres between all pairs of target atoms and then reduces the radius of spheres 

until each sphere contains only a pair of atoms. The program thus accumulates spheres in pockets, both 

inside the target and on the surface. The SPHGEN program [113] generates overlapping spheres to 

describe the 3D shape of binding pocket. The algorithm creates a negative image of invaginations for 

target surface. Spheres are calculated all over the entire surface such that each sphere touches the 

molecular surface at two points. The overlapping dense representation of spheres is then filtered to 

include only largest sphere associated with each target surface atom. The main disadvantages of 

geometric-based methods include that geometric descriptors are method dependent and subjective, the 

target protein is typically rigid, and the methods are often tied to a generalized concept of a binding 

pocket and may miss unorthodox binding sites within channels or on protein-protein interaction 

interfaces [76]. 

Trypanosoma brucei is the causative agent of human trypanosomiasis in Africa [114]. A binding 

pocket identified by LIGSITE was used for identifying inhibitors of ornithine decarboxylase which is a 

molecular target for treatment of African trypanosomiasis. SPHGEN was used to identify putative 
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binding sites in BCL6 [115], a therapeutic target for B cell lymphomas. Docking of a library of 1,000,000 

commercially available compounds into the identified sites led to successful identification of inhibitors 

of BCL6 [115].  

Energy-based approaches 

Energy-based approaches calculate van der Waals, electrostatic, hydrogen-binding, 

hydrophobic, and solvent interactions of probes that could result in energetically favored binding. 

Simple energy-based methods tend to be as fast as geometric methods, but are more sensitive and 

specific. The Q-SITEFINDER [116] algorithm calculates the VDW interaction energy for aliphatic carbon 

probes on a grid, and retains pockets with favorable interactions. The GRID [117, 118] algorithm samples 

the potential on a 3D grid to determine favorable binding positions for different probes. GRID 

determines interaction energy as a sum of Lennard-Jones, Coulombic and hydrogen-bond terms. Other 

algorithms like POCKETPICKER [119] and FLAPSITE [109] use similar approaches but different metrics to 

evaluate the quality of a putative binding site. For example, POCKETPICKER defines “buriedness” indices 

in its binding site elucidation. A serious limitation of these methods is that they result in many different 

energy minima on the surface of the protein, including many false-positives [76]. These shortcomings 

can be addressed in part by including the solvation term in the scoring potential as is done in CS-Map 

algorithm [120]. More complex tools distinguish solvent accessible from solvent inaccessible surfaces. 

Kim et al present a method for defining the topology of the protein as a Voronoi diagram of spheres and 

its use to elucidate binding pocket locations [121].  

Segers et al [122] applied Q-SITEFINDER and POCKETFINDER to identify the binding site for the 

C2 domain of coagulation factor V whose interaction with platelet membrane is necessary for 

coagulation. Excessive coagulation caused by high thrombin production could be controlled by small 

molecule inhibitors of factor V. Docking of 300,000 compounds into the predicted sites identified four 

inhibitors with IC50 < 10 µM. Novel putative drug binding regions were identified in Avian Influenza 

Neuraminidase H5N1 using computational solvent mapping [123]. Virtual screening of the binding site 

with a library of compounds led to the discovery of novel small-molecule inhibitor of H5N1 [124]. 

Pocket matching 

Methods like CATALYTIC SITE ATLAS (CSA) [125], AFT [126], SURFACE [127], POCKET-SURFER [128] and 

PATCH-SURFER [129] detect similar pockets based on reference ligand binding sites. CSA contains 
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annotated descriptors of enzyme active site residues as well as equivalent sites in related proteins found 

by sequence alignment. Query made by PDB code returns annotated catalytic residues highlighted on 

amino acid sequence and on the structure via RasMol [130]. SURFACE is a repository of annotated 

protein functional sites with sequence and structure-derived information about function or interactions. 

The comparison algorithm explores all combinations of similar/identical residues in a sequence-

independent way between query protein and database structures. Pocket-surfer and patch-surfer 

describe property of binding pockets. Pocket-surfer captures global similarity of pockets, whereas patch-

surfer evaluates and compares binding pockets in small circular patches. These methods describe 

patches using four properties, surface shape, visibility, hydrophobicity, and electrostatic potential. 

Molecular dynamics-based detection 

The dynamic nature of biomolecules sometimes makes it insufficient to use a single static 

structure to predict putative binding sites. Multiple conformations of target are often used to account 

for structural dynamics of target. Classical molecular dynamics (MD) simulations can be used for 

obtaining an ensemble of target conformations beginning with a single structure. The MD method uses 

principles of Newtonian mechanics to calculate a trajectory of conformations of a protein as a function 

of time. The trajectory is calculated for a specific number of atoms in small time steps, typically 1-10 fs 

[131]. Classical MD methods tend to get trapped in local energy minima. Several advanced MD 

algorithms like targeted-MD [132], SWARM-MD [133], conformational flooding simulations [134], 

temperature accelerated MD simulations [135], and replica exchange MD [136] have been implemented 

for traversing multiple-minima energy surface of proteins.  

MD simulations elucidated a novel binding trench in HIV integrase (IN), which led to development of 

raltegravir, a drug used to treat HIV infection. MD simulations of 5CITEP, a known inhibitor of IN, 

showed that the inhibitor underwent various movements including entry into a novel binding trench 

(shown in figure 1.4) that went undetected with a static crystal structure [53]. The discovery of this 

trench led to the development of raltegravir, by Merck [137]. Frembgen-Kesner and Elcock [138] 

reproduced a cryptic drug binding site in an explicit-solvent MD simulation of ligand-free p38 MAP 

kinase protein, a target in the treatment of inflammatory diseases. 
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Figure 1.4 Discovery of novel binding trench in HIV-1 IN. Ligand in green is similar to the crystal structure 

binding pose while the one in yellow is in the novel trench. Source: [53]. 

1.3.3 Representing Small Molecules and Target Protein for Docking Simulations 

There are three basic methods to represent target and ligand structures in silico: atomic, 

surface, and grid representations [139, 140]. Atomic representation of the surface of the target is 

typically used when scoring and ranking is based on potential energy functions. An example is DARWIN 

which uses CHARMM force field to calculate energy [141]. Surface methods represent the topography of 

molecules using geometric features. The surface is represented as a network of smooth convex, 

concave, and saddle shape surfaces. These features are generated by mapping part of van der Waals 

surface of atoms that is accessible to probe a sphere [142]. Docking is then guided by a complementary 

alignment of ligand and binding site surfaces. Earliest implementation of DOCK [143] used a set of 

nonoverlapping spheres to represent invaginations of target surface and the surface of the ligand 

(method described earlier in detail for SPHGEN). Geometric matching begins by systematically pairing 

one ligand sphere a1 with one receptor sphere b1. This is followed by pairing a second set of spheres, a2 

and b2. The move is accepted if the change in atomic distances is less than an empirically determined 

cut-off value. The cut-off value specifies the maximum allowed deviation between ligand and receptor 

internal distance. The pairing step is repeated for a third pair of atoms with the same internal distance 

checks as above. A minimum of four assignable pairs is essential for determining orientation, otherwise 

the match is rejected. For the grid representation, the target is encoded as physicochemical features of 
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its surface. A grid method described by Katchalskikatzir et al [144] digitizes molecules using a 3D discrete 

function that distinguishes the surface from the interior of the target molecule. Molecules are scanned 

in relative orientation in three dimensions, and the extent of overlap between molecules is determined 

using a correlation function calculated from a Fourier Transform. Best overlap is determined from a list 

of overlap functions [144]. Physiochemical properties may be represented on the grid by storing energy 

potentials on surface grid points. 

1.3.4 Sampling Algorithms for Protein-Ligand Docking 

Docking methods can be classified as rigid-body docking and flexible docking applications 

depending on the degree to which they consider ligand and protein flexibility during the docking process 

[139, 145]. Rigid body docking methods consider only static geometric/physiochemical 

complementarities between ligand and target and ignore flexibility and induced-fit [139] binding 

models. More advanced algorithms consider several possible conformations of ligand or receptor or 

both at the same time according to the conformational selection paradigm [146]. Rigid docking 

simulations are generally preferred when time is critical, i.e., when a large number of compounds are to 

be docked during an initial vHTS. However, flexible docking methods are still needed for refinement and 

optimization of poses obtained from an initial rigid docking procedure. With the evolution of 

computational resources and efficiency, flexible docking methods are becoming more commonplace. 

Some of the most popular approaches include systematic enumeration of conformations, molecular 

dynamic simulations, Monte Carlo search algorithms with Metropolis criterion (MCM), and genetic 

algorithms. 

Systematic methods 

Systematic algorithms incorporate ligand flexibility through a comprehensive exploration of a 

molecule’s degrees of freedom. In systematic algorithms, the current state of the system determines the 

next state. Starting from the same exact state and same set of parameters, systematic methods will 

yield exactly the same final state. Systematic methods can be categorized into exhaustive search 

algorithms or fragmentation algorithms. 

Exhaustive searches elucidate ligand conformations by systematically rotating all possible 

rotatable bonds at a given interval. Large conformational space often prohibits an exhaustive systematic 

search. Algorithms such as GLIDE [147] use heuristics to focus on regions of conformational space that 
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are likely to contain good scoring ligand poses. GLIDE precomputes a grid representation of target’s 

shape and properties. Next, an initial set of low-energy ligand conformations in ligand torsion-angle 

space is created. Initial favorable ligand poses are identified by approximate positioning and scoring 

methods (shape and geometric complementarities). This initial screen reduces the conformational space 

over which the high-resolution docking search is applied. High-resolution search involves the 

minimization of the ligand using standard molecular mechanics energy function followed by a Monte 

Carlo procedure for examining nearby torsional minima. 

Fragmentation methods sample ligand conformation by incremental construction of ligand 

conformations from fragments obtained by dividing the ligand of interest. Ligand conformations are 

obtained by docking fragments in the binding site one at a time and incrementally growing them, or by 

docking all fragments into the binding site and linking them covalently. DesJarlais et al modified the 

DOCK algorithm to allow for ligand flexibility by separately docking fragments into the binding site and 

subsequently joining them [148]. FLEXX [149] uses the “anchor and grow method” for ligand 

conformational sampling. A base fragment has to be interactively selected by the user, which is followed 

by automatic determination of placements for the fragment that maximize favorable interactions with 

the target protein. The base fragment is grown incrementally by adding new fragments in all possible 

conformations, and the extended fragment is selected if no significant steric clashes (overlap volume ≤ 

4.5 Å3) are observed between ligand and target atoms. Extended ligands are optimized if new 

interactions are found or if minor steric interactions exist [149]. Fully automated “anchor and grow” 

methods have been implemented in several methods like FLOG [150], SURFLEX [151] and SEED [152].  In 

a benchmark study in which performance of eight docking algorithm was compared on 100 protein-

ligand complex, GLIDE and SURFLEX were among the methods that showed best accuracy [153]. GLIDE 

and SURFLEX generated poses close to X-ray conformation for 68 protein-ligand complexes in the 

Directory of Useful Decoys [154]. 

Human Pim-1 kinase, responsible for cell survival/apoptosis, differentiation and proliferation, is a 

valuable anticancer target as it is over expressed in a variety of leukemia. Pierce et al [155] used GLIDE 

to dock approximately 700,000 commercially available compounds and identified four compounds with 

Ki values less than 5 µM. Chiu et al [156] used SURFLEX to identify novel inhibitors of anthrax toxin lethal 

factor, responsible for anthrax-related cytotoxicity. Docking study of a compound library derived from 

seven databases including DrugBank [30], ZINC [29], National Cancer Institute (NCI) database [157] 

identified lead compounds which eventually led to the development of nanomolar inhibitors upon 
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optimization. Table 1-2 illustrates some examples of drug discovery campaigns where systematic 

docking algorithms have been used. 

Table 1-2 Successful docking applications of some widely used docking software. 

 Algorithm Target 

SEED 

 
Plasmepsin [158], target for malaria  
Flavivirus Proteases [159, 160], target for WNV and dengue virus 
Tyrosine Kinase Erythropoietin Producing Human Hepatocellular Carcinoma Receptor 
B4(EphB4) [161] 
 

FlexX 

Plasmepsin II and IV Inhibitors [162], malaria 
Anthrax edema factor [163] 
Pneumococcal peptidoglycan deacetylase inhibitors [164] 
 

Glide 

Aurora kinases inhibitors [69] 
Falcipain inhibitors [165] 
Cytochrome450 inhibitors [166] 
 

Surflex 
Topoisomerase I , anti-cancer (optimization) 
 

DOCK 
FK506 Immunophilin [167] 
BCL6, oncogene in B cell lymphomas [115] 
 

Molecular dynamics simulations 

Molecular dynamics (MD) simulation calculates the trajectory of a system by the application of 

Newtonian mechanics. However, standard MD methods depend heavily on the starting conformation 

and are not readily appropriate for simulation of ligand-target interactions. Because of its nature, MD is 

not able to cross high-energy barriers within the simulation’s lifetime and is not efficient for traversing 

the rugged hyper surface of protein-ligand interactions. Strategies like simulated annealing have been 

applied for more efficient use of MD in docking. Mangoni et al described a MD protocol for docking 

small flexible ligands to flexible targets in water [168]. They separated the center of mass movement of 

ligand from its internal and rotational motions. The center of mass motion and internal motions were 

coupled to different temperature baths, allowing independent control to the different motions. 

Appropriate values of temperature and coupling constants allowed for flexible or rigid ligand and/or 

receptor. 

The McCammon group developed a “relaxed-complex” approach that explores binding conformations 

that may occur only rarely in the unbound target protein. A 2-ns MD simulation of ligand free target is 
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carried out to extensively sample its conformations. Docking of ligands is then performed in target 

conformation snapshots taken at different time points of the MD run. This relaxed complex method was 

used to discover novel modes of inhibition for HIV integrase and led to the discovery of the first clinically 

approved HIV integrase inhibitor, Raltegravir. This MD method was also used in several other campaigns 

to identify inhibitors of target of interest [169, 170]. 

Metadynamics is a MD-based technique for predicting and scoring ligand binding. The method 

maps the entire free energy landscape in an accelerated way as it keeps track of history of already 

sampled regions. During the MD simulation of a protein-ligand complex, a Gaussian repulsive potential 

are added on explored regions, steering the simulation toward new free energy regions [54, 171, 172].  

Millisecond timescale MD simulations are now possible with special purpose machines like 

Anton [173]. Such long simulations have allowed study of drug binding events to their protein target 

[174]. Anton has been used successfully for full atomic resolution protein folding [175]. Advances in 

computer hardware capabilities means protein flexibility can be accessed more routinely on longer 

timescales. This would allow better descriptions of conformational flexibility in future. 

Monte Carlo search with metropolis criterion 

Stochastic algorithms make random changes to either ligand being docked or to its target 

binding site. These random changes could be translational or rotational in the case of ligand or random 

conformational sampling of residue side-chains in the target binding site. Whether a step is accepted or 

rejected in such a stochastic search is decided based on the Metropolis criterion, which generally 

accepts steps that lower the overall energy and occasionally accepts steps that increase energy to 

enable departure from a local energy minimum. The probability of acceptance of an uphill step 

decreases with increasing energy gap and depends on the “temperature” of the MCM simulation [176]. 

MCM simulations have been adopted for flexible docking applications such as in MCDOCK [177], Internal 

Coordinate Mechanics (ICM) [178], and ROSETTALIGAND [55, 179]. MCM samples conformational space 

faster than molecular dynamics because it only requires energy function evaluation and not the 

derivative of the energy functions. Although traditional MD drives a system towards a local energy 

minimum, the randomness introduced with Monte Carlo allows hopping over the energy barriers, 

preventing the system from getting stuck in local energy minima. A disadvantage is that any information 

about the timescale of the motions is lost.  
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ROSETTALIGAND [180, 181] uses a knowledge-based scoring procedure with a Monte Carlo-

based energy minimization scheme that reduces the number of conformations that must be sampled 

while providing a more rapid scoring system than offered through molecular mechanics force fields. 

ROSETTALIGAND incorporates side-chain and ligand flexibility during a high-resolution refinement step 

through a Monte Carlo-based sampling of torsional angles. All torsion angles of protein and ligand are 

optimized through gradient-based minimization mimicking an induced fit scenario [179]. MCDOCK uses 

two stages of docking and a final energy minimization step for generating target-ligand structure. In the 

first docking stage, the ligand and docking site are held rigid while the ligand is placed randomly into the 

binding site. Scoring is done entirely on the basis of short contacts. This allows identification of 

nonclashing binding poses. In the next stage, energy-based Metropolis sampling is done to sample the 

binding pocket [177]. QXP [182] optimizes grid map energy and internal ligand energy for searching 

ligand-target structure. The algorithm performs a rigid body alignment of ligand-target complex 

followed by MCM translation and rotation of ligand. This step is followed by another rigid body 

alignment and scoring using energy grid map. ICM [183] relies on a stochastic algorithm for global 

optimization of entire flexible ligand in receptor potential grid. The relative positions of ligand and target 

molecule make up the internal variables of the method. Internal variables are subject to random change 

followed by local energy minimization and selection by Metropolis criterion. ICM performed 

satisfactorily in generating protein-ligand complexes for 68 diverse, high-resolution X-ray complexes 

found in DUD [154]. 

ROSETTALIGAND was used by Kaufmann et al [184] to predict the binding mode of serotonin 

with serotonin transporters. The binding site predicted to be deep within the binding pocket was 

consistent with mutagenesis studies. QXP has been used to optimize inhibitors of Human β-Secretase 

(BACE1) [185-187], an important therapeutic target for treating Alzheimer’s disease by diminishing β-

amyloid deposit formation. ICM was used successfully to identify inhibitors for a number of targets, 

including Tumor necrosis factor-α [188], dysregulation of which is implicated in tumorigenesis and 

autoinflammatory diseases like rheumatoid arthritis and psoriatic arthritis. Computational screening of 

230,000 compounds from the NCI database against neuraminidase using ICM identified 4-[4-[(3-(2-

amino-4-hydroxy-6-methyl-5-pyrimidinyl)propyl)amino]phenyl]-1-chloro-3-buten-2-one which inhibited 

influenza virus replication at a level comparable to known neuraminidase inhibitor oseltamivir [124]. 
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Genetic Algorithms 

 Genetic algorithms introduce molecular flexibility through recombination of parent 

conformations to child conformations. In this simulated evolutionary process, the “fittest” or best 

scoring conformations are kept for another round of recombination. In this way, the best possible set of 

solutions evolves by retaining favorable features from one generation to the next. In docking, a set of 

values that describe the ligand pose in the protein are state variable, i.e., the genotype. State variables 

may include sets of values describing translation, orientation, conformation, number of hydrogen bonds, 

etc. The state corresponds to the genotype; the resulting structural model of the ligand in the protein 

corresponds to the phenotype, and binding energy corresponds to the fitness of the individual. Genetic 

operators may swap large regions of parent’s genes or randomly change (mutate) the value of certain 

ligand states to give rise to new individuals.  

Genetic Optimization for Ligand Docking (GOLD) [189] explores full ligand flexibility with partial 

target flexibility using a genetic algorithm. The GOLD algorithm optimizes rotatable dihedrals and ligand-

target hydrogen bonds. The fitness of a generation is evaluated based on a maximization of 

intermolecular hydrogen bonds. The fitness function is the sum of a hydrogen bonding term, a term for 

steric energy interaction between the protein and the ligand and a Lennard-Jones potential for internal 

energy of ligand. AutoDock [190] uses the Lamarckian genetic algorithm, which allows favorable 

phenotypic characteristics to become inheritable. GOLD has demonstrated better accuracy than most 

docking algorithms, except GLIDE, in various benchmark studies [153, 191, 192]. 

Inhibition of α-glucosidase has shown to retard glucose absorption and decrease postprandial 

blood glucose level, making it an attractive target for treating diabetes and obesity. Park et al [193] used 

AUTODOCK to identify four novel inhibitors of α-glucosidase by screening a library of 85,000 compounds 

obtained from INTERBIOSCREEN chemical database . AUTODOCK was also used to identify inhibitors of 

RNA Editing Ligase-1 enzyme of Trypanosoma brucei, causative agent of Human African 

trypanosomniasis [194].  

Incorporating target flexibility in docking 

Conformational variability is seen in unbound form and different apo structures [195, 196]. It is 

widely believed that the ligand-bound state is selected from an ensemble of protein conformations by 

the ligand [197]. Accounting for receptor flexibility in the form of protein side-chain and backbone 
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movement is essential for predicting correct binding pose. An ensemble of nonredundant low energy 

target structures covers a larger conformational space than a single conformation. Methods for inducing 

receptor flexibility include induced-fit docking and MD simulation snapshot ensembles. Induced-fit 

algorithms allow small overlap between the ligand and the target along with side-chain movements, 

resulting in elasticity. GLIDE uses an induced fit model in which all side-chain residues are changed to 

alanine before initial docking. Side-chain sampling is followed by energy minimization of the binding site 

and ligand. ROSETTALIGAND allows for full protein backbone and side-chain flexibility in the active site. 

Multiple fixed receptor conformations are used in docking protocols, known as ensemble-based 

screening, to incorporate receptor flexibility [198]. Receptor conformations may either be 

experimentally determined by crystallography or NMR or computationally generated from MD 

simulations, normal mode analysis and MC sampling [199]. Schames et al. used the relaxed complex 

scheme (RCS) to describe a novel trench in HIV integrase which led to the discovery of the integrase 

inhibitor raltegravir [53]. In RCS, multiple conformations are determined from MD simulations to 

perform docking studies against. Other sampling methods include umbrella-sampling, metadynamics, 

accelerated MD etc [196]. 

1.3.5 Scoring Functions for Evaluation Protein-Ligand Complexes 

Docking applications need to rapidly and accurately assess protein-ligand complexes, i.e., 

approximate the energy of the interaction. A ligand docking experiment may generate hundreds of 

thousands of target-ligand complex conformations, and an efficient scoring function is necessary to rank 

these complexes and differentiate valid binding mode predictions from invalid predictions. More 

complex scoring functions attempt to predict target-ligand binding affinities for hit-to-lead and lead-to-

drug optimization. Scoring functions can be grouped into four types: a) force-field or molecular 

mechanics-based scoring functions b) empirical scoring functions c) knowledge-based scoring functions 

d) consensus scoring functions. 

Force-field or molecular mechanics based scoring functions 

Force-field scoring functions use classic molecular mechanics for energy calculations. These 

functions use parameters derived from experimental data and ab initio quantum mechanical 

calculations. The parameters for various force terms including prefactor variables are obtained by fitting 

to high-quality ab initio data on intermolecular interactions [200]. The binding free energy of protein-

ligand complexes are estimated by the sum of van der Waals and electrostatic interactions. DOCK uses 
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the AMBER force fields in which van der Waals energy terms are represented by the Lennard-Jones 

potential function while electrostatic terms are accounted for by coulomb interaction with a distance-

dependent dielectric function. Standard force fields are however biased to select highly charged ligands. 

This can be corrected by handling ligand solvation during calculations [201, 202]. Terms from empirical 

scoring functions (discussed below) are often added to force-field functions to treat solvation and 

electronic polarizability. A semi-empirical force field has been implemented in AUTODOCK to evaluate 

the contribution of water surrounding the receptor-ligand complex in the form of empirical enthalpic 

and entropic terms, for example [203].  

Empirical Scoring Functions 

Empirical scoring functions fit parameters to experimental data. An example is binding energy, 

which is expressed as a weighted sum of explicit hydrogen bond interactions, hydrophobic contact 

terms, desolvation effects, and entropy. Empirical function terms are simple to evaluate and are based 

on approximations. The weights for different parameters are obtained from regression analysis using 

experimental data obtained from molecular data. Empirical functions have been used in several 

commercially available docking suits like LUDI [204] , FLEXX [149] and SURFLEX. 

Knowledge-Based Scoring Function 

Knowledge-Based scoring functions employ the information contained in experimentally 

determined complex structures. They are formulated under the assumption that interatomic distances 

occurring more often than average distances represent favorable contacts. On the other hand, 

interactions that are found to occur with lower frequencies are likely to decrease affinity. Several 

knowledge based potentials have been developed to predict binding affinity like potential of mean force 

[205], DRUGSCORE [206], SMOG [207] and BLEEP [208]. 

Consensus-Scoring Functions 

More recently, consensus-scoring functions have been demonstrated to achieve improved 

accuracies through a combination of basic scoring functions. Consensus approaches rescore predicted 

poses several times using different scoring functions. These results can then be combined in different 

ways to rank solutions [209]. Some strategies for combining scores include a) weighted combinations of 

scoring functions b) a voting strategy in which cutoffs established for each scoring method is followed by 

decision based on number of passes a molecule has c) a rank by number strategy that ranks each 
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compound by its average normalized score values d) a rank by rank method that sorts compounds based 

on average rank determined by individual scoring functions. O’Boyle et al [210] evaluated consensus 

scoring strategies to investigate the parameters for the success of properly combined rescoring 

strategies. It turns out that combining scoring functions that have complementary strengths leads to 

better results over those with consensus in their predictions. For example, scoring functions whose 

strengths are distinguishing actives from inactive compounds are complemented by scoring functions 

that can distinguish correct from incorrect binding poses. One disadvantage of consensus scoring is that 

a single inappropriate scoring function can lead to false negatives. 

Okamoto et al [211] used consensus scoring to identify inhibitors of death-associated protein 

kinases that may contribute to ischemic diseases in the brain, kidney, and other organs. They used 

DOCK4.0 and three scoring functions including an empirical scoring function implemented in FLEXX, a 

knowledge-based PMF scoring function [212], and the force-field function in DOCK4.0. Approximately 

400,000 compounds from a corporate compound library were docked followed by simultaneous scoring 

with the three functions. The consensus score was defined as the highest among the three. In another 

successful application of consensus scoring scheme, Friedman and Caflisch [158] discovered plasmepsin 

inhibitors for use as antimalarial agents using a scoring based on median ranking of four field-based 

scoring functions.  

1.3.6 Structure-Based virtual High-Throughput Screening  

Structure-based virtual high-throughput screening (SB-vHTS), is an in silico screening method for 

identifying putative hits out of hundreds of thousands of compounds to targets of known structure that 

relies on a comparison of the 3D structure of a ligand with the putative binding pocket. SB-vHTS selects 

for ligands predicted to bind to a particular site as opposed to traditional HTS that evaluates the ligand’s 

general ability bind and modulate a protein’s function. To make screening of large compound libraries in 

finite time feasible, SB-vHTS often uses limited conformational sampling of protein and ligand and a 

simplified approximation of binding energy that can be rapidly computed. The inaccuracies introduced 

by these approximations lead to false-positive hits that can be subsequently removed during a 

refinement stage where all putative hits are rescored with more sophisticated and computationally 

expensive methods including iterative docking and clustering of ligand poses.  The key steps in SB-vHTS 

are: 1) preparation of the target protein and compound library for docking 2) determining a favorable 

binding pose for each compound, and 3) ranking the docked structures. SB-vHTS has been used 
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successfully in identifying novel and potent hits in several drug discovery campaigns [70, 71, 167, 213-

219]. Notably, SB-vHTS played a pivotal role in discovery of lead compounds for the following studies. 

Inhibitors of Hsp90  

Hsp90 is a molecular chaperone that modulates the activity of multiple oncogenic processes, 

making it an important therapeutic target for oncology. Roughley et al [213] virtually screened 0.7 

million compounds from rCat [220] against Hsp90  to identify potential inhibitors of Hsp90. Crystal 

structures of Hsp90 bound to previously known inhibitors were used in the docking-based virtual screen. 

From over 9000 non-redundant hits identified after the virtual screen, a set of 719 chemically diverse 

compounds were purchased. A total of 13 compounds with IC50 < 100 µM and seven with IC50 < 10 µM 

were identified. Following lead-optimization, compound AUY922 was carried forward and evaluated 

against multiple myeloma, breast, lung and gastric cancers. 

Discovery of M1 Acetylcholine Receptor Agonists 

Selective agonism of M1 mAChR, a class A G-protein coupled receptor (GPCR), has therapeutic 

potential for treating dementia including Alzheimer’s disease and cognitive impairment associated with 

schizophrenia. Budzik et al [70] used a homology model of M1 based on the crystal structure of bovine 

rhodopsin to virtually screen a corporate compound collection. The docking of compounds into a 

previously known allosteric binding site yielded approximately 1000 putative hits. In vitro testing and 

optimization for potency and selectivity led to the development of a series of novel 1-(N substituted 

piperidin-4-yl) benzimidazolones, which resulted in compounds that were potent, central nervous 

system penetrant, and orally active M1 mAChR agonists. 

1.3.7 Atomic-detail / High Resolution Docking 

As mentioned, scoring function and sampling algorithms are kept simple to evaluate large 

libraries of compounds in realistic time frames. The most promising hit compounds often are evaluated 

with more sophisticated scoring functions, for example, using an electrostatic solvation model for 

evaluating energetics of protein-ligand interaction. The implicit electrostatic solvation model is achieved 

by assuming the solvent as a continuum high-dielectric-constant medium through the use of numerical 

solutions of Poisson equation [221] or a generalized-Born approximation [222]. Realistic conformational 

sampling, for example, through the inclusion of protein conformational changes is often done for lead 

compounds. The objective of this atomic-detail refinement of initial docking poses is threefold: a) 
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improved judgment if ligand will actually engage the target, b) accurate prediction of complex 

conformation, and c) accurate prediction of binding affinity. The following example illustrates this two-

stage approach. 

Inhibitors of casein kinase by hierarchical docking 

Casein kinase 2 (CK2), a target for antineoplastic and anti-infectious drugs, is involved in a large 

variety of important cell functions and many viruses exploit CK2 as phosphorylating agent of proteins 

essential to their life cycle. Cozza et al [223, 224] used a hierarchical docking process to identify a potent 

inhibitor from an in-house molecular database containing approximately 2000 compounds including 

several families of polyphenolic compounds including catechins, coumarins, and others. A rigid body 

docking step using FRED was used to dock ligand conformations generated by OMEGA v.1.1. The top 

50% of poses ranked by FRED score were selected, and one unique pose for each of the best-scored 

compounds used for subsequent steps. The selected poses were optimized via a flexible ligand-docking 

protocol with three different programs: MOE-DOCK, GLIDE and GOLD. A consensus scoring scheme was 

developed in which each docked set, i.e. FRED-DOCK, FRED-GLIDE and FRED-GOLD was scored by five 

different scoring functions MOE-Score, GlideScore, GoldScore, ChemScore and Xscore, leading to three 

docking/scoring sets. Common compounds among the top 5% of compounds ranked by consensus 

scores from each list were prioritized for in vitro testing. The hierarchical docking process allowed 

identification of nanomolar CK2 inhibitors such as ellagic acid (IC50 40 nM) and quinalizarin (IC50 50 nM). 

1.3.8 Binding Site Characterization 

The success of SB-CADD methods depends on the understanding of physiochemical interactions 

between molecules. Optimization of lead molecules into high-affinity compounds that can be tested in 

vivo requires both the optimization of binding affinity and pharmacological properties. This process 

requires a deep understanding of the molecular interactions between ligand and target. Structural 

studies aimed at elucidating binding modes are commonly done using experimental methods such as X-

ray and NMR. However, the time necessary to generate samples and determine structures can prevent 

applicability to the repetitive cycles of lead optimization. Computational methods such as molecular 

docking, molecular dynamics simulation, and quantum-mechanical simulations can be used to 

accelerate this process. 
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Experimentally determined protein structures in complex with ligand often serve as starting 

point for SB-CADD campaigns. For example, the cocrystal structure (PDB code 2BEL) of 11β-

hydroxysteroid dehydrogenase (11β-HSD1) and its inhibitor, a semisynthetic derivative of 18β-

glycyrrhetnic acid was used to generate a model of the binding site. Increased expression of 11β-HSD1 in 

liver and adipose tissue has been linked to obesity, insulin resistance, diabetes, and cardiovascular 

diseases in humans. The crystal structure illustrates interaction of carbenoxolone and active site 

residues Ser170, Tyr183 and Lys187, as shown in figure 1.5. In addition, two hydrophobic pockets exist 

on either side of the catalytic site which is exploited by a number of adamantine containing 11β-HSD1 

inhibitors. A proprietary structure-based drug design program, Contour, was used to develop binding 

models of inhibitors containing an N-(2-adamantyl) amide moiety.   Structural insight of binding site 

allowed the investigators to apply ligands containing an N-(2-adamantyl) amide moiety in a drug design 

program. With the help of the model and modeling studies, the authors discovered an 11β-HSD1 

inhibitor which is orally bioavailable in three species and is active in a primate pharmacodynamic model 

[225].  

 

Figure 1.5 Carboxynoxolone and 10j2. Overlap of carenoxolone (yellow) and urea 10j2 (green) in binding 

site of 11β-HSD1. Source: [226]. 
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1.3.9 Pharmacophore Model 

A pharmacophore model of the target binding site summarizes steric and electronic features 

needed for optimal interaction of a ligand with a target. Molecular properties most commonly used to 

define pharmacophores include hydrogen bonding potential (acceptors and donors), basic groups, acidic 

groups, partial charges, aliphatic hydrophobic moieties, and aromatic hydrophobic moieties. 

Pharmacophore features have been used extensively in drug discovery for virtual screening, de novo 

design, and lead optimization [227]. A pharmacophore model of the target binding site can be used to 

virtually screen a compound library for putative hits. Apart from querying a database for active 

compounds, pharmacophore models can also be used by de novo design algorithms to guide the design 

of new compounds.  

Structure-based pharmacophore models are developed based on an analysis of the target 

binding site or on a target-ligand complex structure. LigandScout [228] uses protein-ligand complex data 

to map interactions between ligand and target. A knowledge based rule set obtained from the PDB is 

used to automatically detect and classify interactions into hydrogen bond interactions, charge transfers, 

and lipophilic regions [228]. The Pocket v.2 [229] algorithm is capable of automatically developing a 

pharmacophore model from a target-ligand complex. This algorithm creates regularly spaced grids 

around the ligand and the surrounding residues. Probe atoms that represent a hydrogen bond donor, a 

hydrogen bond acceptor, and a hydrophobic group are used to scan the grids. An empirical scoring 

function, SCORE, is used to describe the binding constant between probe atoms and the target. SCORE 

includes terms to account for van der Waals interactions, metal-ligand bonding, hydrogen bonding and 

desolvation effects upon binding [230]. A pharmacophore model is developed by rescoring the grids 

followed by clustering and sorting to extract features essential for protein-ligand interaction. During 

rescoring, hydrogen bond donor/acceptor scores lower than 0.2 and hydrophobic scores lower than 

0.47 are reset to zero. Grids with three zero scores are filtered out, and the “neighbor number” for each 

grid is determined by counting the number of grids within 2 Å having non-zero score for a particular 

type. Grids with less than 50 donor neighbors, 30 acceptor neighbors, and 40 hydrophobic neighbors are 

reset to zero for their donor score, acceptor score, and hydrophobic scores, respectively. Grids are 

filtered by eliminating those with three zero scores, leaving only those grids that represent key 

interaction sites. The algorithm then superimposes the ligand on the grid, and a given grid is selected as 

a candidate if it is close to an atom type that can mediate the same interaction. Candidates with non-
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zero donor, acceptor, or hydrophobic scores are gathered into separate clusters, and the grid with 

highest score is defined as the center of donor, acceptor, or hydrophobic property.  

Virtual screening using a pharmacophore model  

17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays an important role in the synthesis 

of the most potent estrogen estradiol. Its inhibition could be important for breast cancer prevention and 

treatment. Schuster et al [231] used LigandScout2.0 to generate pharmacophore models of 17β-HSD1 

from cocrystallization complexes with inhibitors (PDB codes 1EQU and 1I5R). These pharmacophore 

models represent the binding mode of a steroidal compound and small hybrid compounds (consisting of 

a steroidal part and an adenosine), respectively. The 1I5R-based pharmacophore model was used to 

screen the NCI and SPECS databases for new inhibitors using CATALYST. Best scoring hit compounds 

were docked into the binding pocket of 1EQU using GOLD, and final selection for in vitro testing was 

performed according to the best fit value, visual inspection of predicted docking pose and the 

ChemScore (GOLD scoring function) value. Four of 14 compounds tested in vitro showed an IC50 value of 

less than 50 µM with the most potent being 5.7 µM. Brvar et al [232] applied pharmacophore models to 

discover novel inhibitors of bacterial DNA gyrase B, a bacterial type II topoisomerase originating from 

gyrase and a target for antibacterial drugs. A pharmacophore model obtained using LigandScout was 

used to screen the ZINC database which yielded a novel class of thiazole-based inhibitors with IC50 value 

of 25 µM. 

Multitarget inhibitors using common pharmacophore models 

Wei et al [233] used Pocket v.2 to identify a common pharmacophore for two targets involved in 

inflammatory signaling, human leukotriene A4 hydrolase (LTA4H-h) and human nonpancreatic secretory 

phospholipase A2 (PLA2). The cocrystal structure (PDB code 1HS6) of LTA4H-h with 2-(3-amino-2-

hydroxy- 4-phenylbutyrylamino)-4-methyl-pentanoic acid (bestatin) and the structure (PDB code 1DB4) 

of PLA2 with [3-(1-benzyl-3-carbamoylmethyl-2-methyl-1H-indol-5-yloxy)propyl]phosphonic acid (indole 

8) were used to derive pharmacophores of the two targets. For LTA4H-h, six pharmacophore centers 

were identified that included four hydrophobic centers, one hydrogen bond acceptor, and one zinc 

metal coordination pharmacophore. In the binding pocket of PLA2, three hydrophobic centers, one 

hydrogen bond acceptor, and two calcium ion coordination centers were identified. The comparison of 

two sets of pharmacophore models revealed that two hydrophobic pharmacophores and a 

pharmacophore that coordinated with metal, shown in figure 1.6, was common to both proteins. The 
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authors hypothesized that compounds satisfying the common pharmacophores would inhibit both the 

proteins. The MDL chemical database was screened virtually with LTA4H-h and PLA2 using Dock4.0 and 

binding conformation of top 150,000 compounds (60% of database) ranked by Dock score were 

extracted and checked for conformity to common pharmacophores. This identified 163 compounds 

whose binding conformations were reanalyzed using Autodock3.5 followed by comparison with 

common pharmacophores. Finally, nine compounds whose conformations matched the common 

pharmacophores were tested in vitro for binding with PLA2 and LTA4H-h. The best inhibitor, compound 

10, inhibited LTA4H-h at submicromolar range and inhibited PLA2 with an IC50 value of 7.3 µM.   

 

Figure 1.6 Extracting common pharmacophores of LTA4H-h and human-PLA2. Cyan spheres depict 

hydrophobic centers, red spheres represent H-bond acceptor, and yellow spheres stand for feature that 

coordinates with a metal. Source: [233]. 

1.3.10 Automated de novo Design of Ligands 

De novo structure-based ligand design can be accomplished by either a ligand-growing or ligand-

linking approach. With the ligand-growing approach, a fragment is docked into the binding site and the 

ligand is extended by adding functional groups. The linking method, on the other hand, docks multiple 

small fragments into adjacent binding pockets and then links them to form a single compound. This 
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approach is a computational version of the popular SAR by NMR technique introduced by Shuker et al 

[234]. 

Several methods have been developed implementing both ligand-growing and ligand-linking 

strategies for designing ligands that can bind to a given target. LigBuilder [235] builds ligands in a step by 

step fashion using a library of fragments. The design process can be carried out by various operations 

like ligand growing and linking and the construction process is guided by a genetic algorithm. The target-

ligand complex binding affinity is evaluated with an empirical scoring function. The program first reads 

the target protein and analyzes the binding pocket. Depending on user preference, it can then either use 

a growing or a linking strategy. In the growing strategy, a seed structure is placed in a binding pocket 

and the program replaces user defined growing sites with candidate fragments. This gives rise to a new 

seed structure that can then be used in further rounds of growing. For the linking strategy, several 

fragments placed at different locations on the target protein serve as the seed structure. The growing 

scheme happens simultaneously on each fragment biased towards linking these fragments. The LUDI 

[204] algorithm, which precedes LigBuilder, uses a ligand linking strategy. It positions seed fragments 

into binding pockets of the target structure, optimizing their interactions individually before. This step is 

followed by linking the fragments into a single molecule. The synthetic accessibility of ligands can also 

be taken into account. For example, LigBuilder 2.0 analyzes designed using a chemical reaction database 

and a retrosynthesis analyzer [236].  

The biggest challenge of de novo drug design is inseparable from its greatest advantage. By 

defining compounds that have never been seen before, one is invariably necessitating synthetic effort 

for acquisition prior to testing. This forces any de novo protocol to incorporate synthesizability metrics 

into its scoring. This increases the effort required in terms of cost, time, and expertise. Synthesizability is 

most important when designing a large number of different compounds and scaffolds. One tool that 

approaches the constraint of synthesizability is SYNOPSIS (SYNthesize and OPtimize System in Silico) 

[237], which enforces synthesizability throughout the design process by starting with available 

compounds and creating novel compounds by virtually using known chemical reactions. 70 different 

reaction types may be selected based on the presence of different functional groups in the evolving 

molecule. SYNOPSIS also provides additional restraints for desired properties such as solubility.  

De novo design by linking fragments has been successfully applied in the design of inhibitors of 

p38 MAPK [238], a key regulator in signaling pathways that control the production of cytokines such as 



CHAPTER 1 

 
 

68 
 

tumor necrosis factor-α and interleukin-1β. Inhibitors of MAPK can potentially be used for the treatment 

of various autoimmune diseases. Figure 1.7A shows four classes of interactions of a clinical compound 

BIRB 796 with MAPK: (1) interaction with residues in ATP binding site (Met109), (2) interaction with the 

“Phe pocket” (dotted arc), (3) hydrophobic interaction with the kinase specificity pocket (solid arc), and 

(4) interaction of the urea with backbone NH-bond of Asp168 and carboxylate of Glu71. A design 

strategy for exploring structurally distinct scaffolds by leveraging the interactions of BIRB 796 [1-(5-tert-

butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-[4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl] was devised as follows: 

a) A tert-butyl group was used as “Phe pocket” seed structure in place of pyrazole ring of BIRB 796 b) An 

N-formyl group was appended to tert-butyl fragment to access the hydrogen bonds with Glu71 and 

Asp168 c) a carbonyl group was used as the second seed fragment to access the hydrogen bond with 

Met109 as shown in figure 1.7B. LigandBuilder software was used to link the two seed fragments, the 

tert-butyl linked to N-formyl group, and the carbonyl group. The program consistently introduced a 4-

tolyl group in the kinase specificity pocket. However, LigandBuilder failed to predict favorable rigid 

linkers for connecting tolyl group to carbonyl group which would be essential for carbonyl display at the 

proper distance to interact with Met109. Modeling indicated N-linked azoles connected to tolyl group 

via an N-linkage as a suitable linker. Derivatives of this designed molecule were synthesized leading to 

the discovery of compound 28 as shown in figure 1.7D, with an IC50 of 83 nM.  

 

Figure 1.7 Design strategy for inhibitors of p38 MAPK. A) Key interactions of BIRB-796 inhibitor with 

MAPK. B) A fragment linking strategy to link two seed structures was applied using LigBuilder. A tert-butyl 
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phenyl fragment was used in the first pocket, whereas a carbonyl fragment was used to access the 

hydrogen bond with Met109 in the second site. An N-formyl group was attached to the first seed 

fragment to access hydrogen bonds with Glu71 and Asp168. C) General structure of optimized structures 

which showed potent activity. D) R group for compound 28, which showed IC50 value of 83 nM. Source: 

[238]. 

`The fragment extension approach was employed by Zhang et al [239] in the discovery of 

vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors, a therapeutic target for tumor-

induced angiogenesis. The authors used quinazoline as the seed fragment, since three of the nine 

clinically approved kinase inhibitor drugs are 4-anilinoquinazoline derivatives [240]. These inhibitors 

bind the active site of their respective targets such that the quinazoline ring is located at the front of 

ATP binding pocket. The ligand building process involved placing the quinazoline fragment in the binding 

pocket in the same orientation as found for known inhibitors. The design strategy sought to create a 

ligand that would extend to fit a specific hydrophobic pocket at the back of the ATP binding cleft. An 

NH2, OH, or SH group was added in the C4 position of the quinazoline ring to allow for a turn owing to 

orientation of quinazoline and the spatial arrangement of the hydrophobic pocket. A fragment-growth-

based de novo method was applied in which various fragments (approximately 1200 fragments) were 

allowed to grow on the turn fragment to extend into the hydrophobic pocket. Designed molecules were 

then rescored and ranked using GOLD. The design process led to the development of a potent and 

specific VEGFR2 inhibitor, SKLB1002, [2-((6,7-dimethoxyquinazolin-4-yl)thio)-5-methyl-1,3,4-thiadiazole], 

shown in figure 1.8, that inhibits angiogenic processes in zebra fish embryo and athymic mice with 

human tumor xenografts. 
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Figure 1.8 Computational design of novel VEGFR2 inhibitor SKLB1002. A) Chemical structure of 

SKLB1002. B) SKLB1002 is docked into the active site of VEGFR2, showing interactions between SKLB1002 

and VEGFR2 by using the in silico model. C) A 2D interaction map of SKLB1002 and VEGFR2. Source: [239]. 

1.4 Ligand-Based Computer-Aided Drug Design 

The ligand-based computer-aided drug discovery (LB-CADD) approach focuses on ligands known 

to interact with a target of interest. These methods analyze 2D or 3D structures of multiple ligands for 

the same target. The overall goal is to represent these compounds in such a way that the 

physicochemical properties most important for their desired interactions are retained, whereas 

extraneous information not relevant to the interactions is discarded. It is considered an indirect 

approach to drug discovery in that it does not necessitate knowledge of the target structure. The two 

fundamental approaches of LB-CADD are a) selection of compounds based on chemical similarity to 

known actives using some similarity measure or b) the construction of a QSAR model that predicts 

biological activity from chemical structure. Either approach can be applied to vHTS, hit-to-lead and lead-

to-drug optimization, and the optimization of DMPK/ADMET properties. LB-CADD is based on the Similar 

Property Principle, published by Johnson et al, which states that structurally similar molecules are likely 

to have similar properties [241]. In contrast to SB-CADD, LB-CADD can also be used when the structure 
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of the biological target is unknown. Additionally, active compounds identified by Ligand-Based virtual 

High-Throughput Screening (LB-vHTS) methods are often more potent than those identified in (SB-vHTS) 

[61].  

1.4.1 Molecular Descriptors / Features 

LB-CADD techniques use a variety of computational algorithms to describe small molecule 

features that balance efficiency and information content. The optimal descriptor set depends on the 

biological function predicted as well as on the LB-CADD technique used. Molecular descriptors can be 

structural as well as physicochemical and can be described on multiple levels of complexity. Chemical 

properties may include molecular weight, geometry, volume, surface area, ring content, rotatable 

bonds, interatomic distances, bond types, atom types, planar and non-planar systems, molecular walk 

counts, electronegativities, polarizabilities, symmetry, atom distribution, topological charge indices, 

functional group composition, aromaticity indices, solvation properties, and many others [242-248]. 

These descriptors are generated through knowledge-based methods, graph-theoretical methods, 

molecular-mechanical, or quantum-mechanical tools [249, 250] and are classified according to the 

“dimensionality” of the chemical representation from which they are computed [33]: 1D, scalar 

physicochemical properties such as molecular weight; 2D, molecular constitution-derived descriptors, 

2.5D, molecular configuration-derived descriptors; 3D, molecular conformation-derived descriptors. 

More complex descriptors often incorporate information from simpler ones. For example, many 2D and 

3D descriptors use physicochemical properties to weight their functions and to describe the overall 

distribution of these properties. 

Functional groups 

Functional groups are defined by the International Union of Pure and Applied Chemistry (IUPAC) 

as atoms or groups of atoms that have similar chemical properties across different compounds. These 

groups are attached to a central backbone of the molecule, also called the scaffold or chemotype. The 

spatial positioning of the functional groups dictated by the backbone defines the physical and chemical 

properties of compounds. Therefore, the location and nature of functional groups for a given compound 

contain key information for most ligand-based CADD methods. There are many different kinds of 

functional groups composed primarily of hydrocarbons, halogens, oxygens, nitrogens, sulfur, and 

phosphorous including alcohols, esters, amides, carboxylates, ethers, nitro group, thiols, and many 

others [251]. 
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Functional groups can either be explicitly described by their atomic composition and bonding or 

may be implicitly encoded with their general properties. For example, under physiological conditions 

carboxyl groups are often negatively charged, whereas amine groups are positively charged. This 

property is reflected both in the geometry of the functional group as well as its charge. Because it is the 

properties conferred by the functional groups that are most important to the biochemical activity of a 

given compound, many CADD applications treat functional groups containing different atoms but 

conferring the same properties as similar or even identical. For example, the capacity for hydrogen 

bonding can heavily influence a molecule’s properties. These interactions frequently occur between a 

hydrogen atom and an electron donor such as oxygen or nitrogen. Hydrogen bonding interactions 

influence the electron distribution of neighboring atoms and the site’s reactivity, making it an important 

functional property for therapeutic design. Commonly, hydrogen bonding groups are separated simply 

as hydrogen bond donors with strong electron-withdrawing substituents (OH, NH, SH, and CH) and 

hydrogen bond acceptors (PO, SO, CO, N, O, and S) [252, 253]. The applications Phase, Catalyst, DISCO, 

and GASP (Genetic Algorithm Superposition Program) as well as pharmacophore mapping algorithms 

discussed in greater detail below focus primarily on hydrogen-bond donors, hydrogen-bond acceptors, 

hydrophobic regions, ionizable groups, and aromatic rings. 

Prediction of physicochemical properties 

Properties within the same dimensionality can show a range of complexity. The simplest 

properties, such as molecular weight and total hydrogen bond donors, may be rapidly and accurately 

computed. More complex properties such as solubility and partial charge, on the other hand, may be 

more difficult to compute but can provide higher information content [254]. Prediction of these complex 

physicochemical properties, though more computationally expensive, may be critical for an effective set 

of molecular descriptors. These trade-offs must be considered on a case-by-case basis when designing a 

LB-CADD project. Modern computational algorithms and approximations, however, allow for the 

incorporation of certain highly complex properties. 

Electronegativity and partial charge 

Electron distribution plays an important role in a molecule’s properties and activities. Therefore, 

it was important to develop a descriptor capable of modeling the charge distribution over an entire 

molecule. One useful method is to assign a partial charge to all atoms in a molecule. Initially, electron 

distribution was assigned to individual atoms through quantum mechanical calculations. However, when 
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screening thousands or millions of compounds, a much faster and more efficient method became 

necessary. Gasteiger and Marsili developed a method for assigning partial charges to individual atoms 

called the Partial Equalization of Orbital Electronegativity (PEOE) [255]. This method is based on a 

definition of electronegativity introduced by Mulliken that relates the electronegativity of an atom to its 

ionization potential I and electron affinity E with the equation electronegativity = ½(I+E) [256]. The 

values for E and I depend on the valence state of the atom and takes advantage of a concept of orbital 

electronegativity introduced by Hinze et al [257, 258] that describes the electronegativity of a specific 

orbital in a given valence state and depends on hybridization and occupation number of the orbital.  

PEOE improves upon the concept of electronegativity equalization first proposed by Sanderson 

[259, 260] that states bonded atoms change electron density until total equalization of electronegativity 

is reached. Sanderson’s simple model leads to chemically unacceptable calculations, necessitating a 

more complex model of electronegativity equalization. Gasteiger and Marsili first introduced an 

approximation function that joins the electronegativity values of an atom in its anionic, neutral, and 

cationic state with appropriate ionization potentials and electron affinities and relates orbital 

occupation with orbital electronegativity. They also added a damping function to account for the fact 

that charge transfer generates an electrostatic field that inhibits further electron transfer and prevents 

complete equalization. Finally, they introduced an iterative procedure to account for the changes in 

charge separations following a round of electronegativity modification. Progressive iterations include 

wider spheres of neighboring atoms until the total transfer drops below a cutoff. The total charge of an 

atom is then calculated as the sum of the individual charge transfers following the iteration. 

For small-member rings, special bonds based on the valence bond model [261] were used as 

additional parameters in the PEOE method [262]. The valence bond model states that the bonds of 

three and four membered ring systems arise from orbitals with varying amounts of s and p character 

depending on the type and number of rings involved and whether exo- or endocyclic bonds are 

considered. The extra coefficients provided charge dependence for the different hybridization states 

interpolated from the values of electronegativities for sp3, sp2, sp, and p states [263]. 

Gasteiger and Saller later introduced a method for applying the PEOE method to molecules with 

multiple resonance structures [264]. Charge distribution in π-systems could be calculated on the basis of 

resonance structure weights. These weights were calculated by including a topological weight and 

electronic weight. The topological weight was based on whether resonance structures involved the loss 
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of covalent bonds, decrease in aromatic systems, or charge separation. The electronic weight was based 

on the idea that resonance structures are more important when negative charge is localized on the 

more strongly electronegative atom. Therefore, it was a measure of how well the donor atom can 

donate its lone pair of electrons and how stable a negative charge on the acceptor atom is. To calculate 

this weight, the electronegativity concept is applied. Finally, by adding the changes in charge of the 

individual resonance structures to the scaling factor the charge distribution could be calculated. 

Additionally, orbital electronegativity is often separated into σ and π bond systems. Standard 

connection tables describe connections between two atoms as twice the number of electrons per bond 

order (single bonds contain two electrons; double bonds contain four, etc). This valence bond structure, 

however, is insufficient to describe some compounds and may fail to distinguish between the different 

excited states of a molecule. Separating σ and π electrons has been shown to be advantageous to this 

representation scheme [265]. Bauershmidt and Gasteiger describe computational representation of 

chemical species using three electron systems: σ-electron systems, π-electron systems, and coordinative 

bonds [266]. 

 σ-electron systems contain electrons localized in the σ part of a bond and single bond electrons. 

These systems may consist of more than two atoms when multicenter bonds are described, including 

overlapping orbitals that point into a central region between bonded atoms and open bridging α-

electron systems where one atom is located between the other atoms part of the same system. π-

electron systems encode free electrons. One π-electron system is generated for each electron pair. For 

example, the electrons of a triple bond are distributed into one σ-electron system and two π-electron 

systems, each with two electrons. Properties such as orbital electronegativity and partial charges are 

more accurately described using the σ- and π-electron systems. Therefore, it is common to implement 

descriptors separated as σ charges, π charges, σ electronegativity, and π electronegativity. 

These methods provide a means to quantitatively calculate electronegativity and partial charge 

on a per-atom basis without the need for quantum mechanics. PEOE charges have been shown to be 

useful information for predicting chemical properties such as taste [267]. Additionally, these properties 

are often used to weight three-dimensional descriptors that would, on their own, only capture purely 

structural information. By weighting these descriptors with these properties, information regarding the 

three-dimensional distribution of electrons is available. 
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Polarizability  

Effective polarizability or mean molecular polarizability is another widely used molecular 

descriptor. It quantifies the response of electron density to an external field leading to an induced dipole 

moment [268]. Polarizability contributes to dispersion forces and influences intermolecular interactions. 

Brauman and Blair described stabilization effects of substituent polarizability [269]. For example, 

induced dipole moments in unsubstituted alkyl groups are believed to stabilize charges in gaseous ions 

formed by protonation or deprotonation [270]. The magnitude of the induced dipole is calculated as the 

product of the electric field operator and the polarizability tensor of the molecule. The average 

polarizability of a molecule is calculated as the average of the three principal components of this tensor 

[271].  

Miller and Savchik introduced a formula for calculating mean molecular polarizabilities using a 

polarizability contribution for each atom based on its atom type and hybridization state and the total 

number of electrons in the molecule [272]. Gasteiger and Hutchings improved this formula to account 

for the attenuation of substituent influence. This was accomplished through the introduction of a 

damping factor dependent on the distance in bonds between the atom and the charged reaction center 

[273].  

Glen [271] defined a method for calculating static molecular polarizability using a modified 

calculation of atomic nuclear screening constants based on effective nuclear charge described by Slater 

[274]. This calculation divides electrons into different groups with different shielding constants. These 

shielding constants reflect the fact that inner-shell electrons modify the view of the nucleus for outer-

shell electrons and adjust the field of nuclear charge for each group of electrons. 

Octanol/water partition coefficient 

LogP (logarithm of partition coefficient between n-octanol and water) is an important molecular 

descriptor that has been widely used in QSAR since the work of Leo et al [275]. Lipinksi’s rule of five, a 

class set of rules describing the “druggability” of a compound, includes measurement of the compound’s 

logP. Traditionally, logP is determined experimentally by measuring its partitioning behavior in the 

insoluble mixture of n-octanol and water and reflects the molecule’s hydrophobicity. This molecular 

property has been shown to be important in solubility, oral availability, transport, penetration of the 
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blood-brain-barrier, receptor binding, and toxicity [276, 277]. For virtual screening applications, several 

methods for calculating logP based on molecular constitution have been established. 

LogP calculations largely rely on an additive method introduced by Rekker and Mannhold [278] 

where the contributions to logP by basic fragments of a molecule (atoms and functional groups) are 

summed. Additivity methods improved with the incorporation of additional molecular properties have 

also been used to calculate logP [279, 280]. 

Wang et al developed the very popular additivity method called XLOGP [281]. This method 

originally defined 80 basic atom types for carbon, nitrogen, oxygen, sulfur, phosphorous, and halogen 

atoms. Hydrogen atoms are implicitly included in the different atom types. This method was later 

improved to include 90 atom types and ten correction factors [282]. 

Additional corrections became necessary when many simple summation approaches resulted in 

incorrect logP calculations. These corrections account for specific intramolecular interactions affecting a 

molecule’s logP beyond individual fragments. For example, simple summation underestimated 

compounds with long hydrocarbon chains due to their flexibility and aggregation behavior. Additional 

interactions that can obscure simple fragment summation include dipole shielding in compounds 

containing two or more halogen atoms, internal hydrogen bonding, the unusually strong internal 

hydrogen bonding with salicylic acids, and the existence of α-amino acids as zwitterions. Correction 

factors are often included for aromatic nitrogen pairs, ortho sp3 oxygen pairs, para donor pairs, sp2 

oxygen pairs, and amino sulfonic acids. 

Xing and Glen introduced an alternative logP calculation that was based on the evidence that 

molecular size and hydrogen-bonding account for a major part of logP [283]. They created a statistical 

model by combining molecular size and dispersion interactions using molecular polarizability and the 

sum of squared partial atomic charges on oxygen and nitrogen atoms. The final model showed that 

molecular polarizability is more significant than atomic charges and that an increase in polarizability is 

correlated with an increase in logP, whereas a decrease in charge densities on nitrogen and oxygen 

correlated with a decrease in logP. They theorized that the importance of molecular polarizability on 

logP was due in part to the relative energy required for a larger molecule to create a cavity in water or 

octanol. 
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Converting properties into descriptors 

Molecule properties must be converted into numerical vectors known as descriptors for use in 

LB-CADD. For many applications, descriptors must have a constant length independent of molecule size. 

Each position in the vector of descriptors therefore encodes a well-defined property or feature which 

facilitates the direct comparison of two compounds via mathematical algorithms. 

Binary molecular fingerprints 

Fingerprints are bit string representations of molecular structure and/or properties [284-286] 

where a 1 indicates the presence of a particular functional group or property and 0 indicates its absence. 

This allows chemical identity to be unambiguously assigned entirely by the presence or absence of a 

specific set of features [287]. The features described in a molecular fingerprint can vary in number and 

complexity (from hundreds of bits for structural fragments to thousands for connectivity fingerprints, 

and millions for the complex pharmacophore-like fingerprints) [286], depending on the computational 

resources available and the intended application. Fingerprints which rely solely on interatomic 

connectivity, i.e., molecular constitution, are known as 2D fingerprints [287]. In the prototypic 2D keyed 

fingerprint design, each bit position is associated with the presence or absence of a specific substructure 

pattern – for example carbonyl group attached to sp3 carbon, hydroxyl group attached to sp3 carbon, 

etc. [288]. 

Molecular structure itself comprises several levels of organization between the atoms within a 

molecule and, therefore, fingerprints may differ in their own levels of organization. For example, the 

simplest fingerprint may state that a given compound contains six carbon atoms and six hydrogen 

atoms. However, up to 217 different isomers may be encoded by this fingerprint. 2D fingerprints 

containing connectivity may distinguish between some of these isomers, however, stereochemistry, 

which separates compounds with identical constitutions, is beyond the realm of most 2D fingerprints. 

One extension to fingerprints is the use of hash codes. These are bit strings of fixed length that contain 

information about connectivity, stereo centers, isotope labeling, and other properties. This information 

is compressed to avoid redundancies [289]. Unfortunately, it is not always obvious which of these 

characteristics are important in a given context and which are not [287].  

Commonly used fingerprints include the ISIS (Integrated Scientific Information System) keys with 

166 bits and the MDL (Molecular Design Limited) MACCS (Molecular ACCess System) keys [290] with 960 
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bits. The ISIS keys are small topological substructure fragments while the MACCS keys consist of the ISIS 

keys plus algorithmically generated more abstract atom-pair descriptors. MDL keys are commonly used 

when optimizing diversity [291]. For example, the PubChem database uses a fingerprint that is 881 bits 

long to rank substances against a query compound. This fingerprint is comprised of the number and type 

of elements, ring systems (saturated and unsaturated up to a size of 10), pair-wise atom combinations, 

sequences, and substructures [287]. 

2D Description of molecular constitution 

2D descriptors can be computed solely from the constitution or topology of a molecule, whereas 

3D descriptors are obtained from the 3D structure of the molecule [33]. Many 2D molecular descriptors 

are based on molecular topology derived from graph-theoretical methods. Topological indices treat all 

atoms in a molecule as vertices and index-specific information for all pairs of vertices. A simple 

topological index, for example, will contain only constitutional information such as which atoms are 

directly bound to each other. This is known as an adjacency matrix and an entry of 1 for vertices vi and vj 

indicates their corresponding atoms are bonded while an entry of 0 for vi and vi indicates that the 

corresponding atoms are not [292]. For an adjacency matrix, the sum of all entries is equal to twice the 

total number of bonds in the molecule. 

Complex topological indices are created by performing specific operations to an adjacency 

matrix that allow for the encoding of more complex constitutional information. These indices are based 

on local graph invariants that can represent atoms independent of their initial vertex numbering [293]. 

For example, topological indices may contain entries for the number of bonds linking the vertices. 

Information gathered from such an index can include the number of bonds linking all pairs of atoms and 

the number of distinct ways a path can be superimposed on the molecular graph. A topological index 

that includes information such as heteroatoms and multiple bonds through the weighting of vertices 

and edges was introduced by Bertz [294]. Randic and Basak introduced an augmented adjacency matrix 

by replacing the zero diagonal entries (where vi = vj) with empirically obtained atomic properties. This 

adjacency matrix includes atom type information as well as connectivity [295]. Topological indices that 

describe the molecular charge distribution as evaluated by charge transfers between pairs of atoms and 

global charge transfers have also been developed [296, 297]. Additionally, topological indices known as 

geometrical indices have been derived to describe molecular shape. For example, the shape index E 

measures how elongated the molecular graph is [296, 298]. Statistical methods such as linear 
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discriminant analysis are often applied to topological indices and biological properties to create 

predictive descriptors relating indices to molecular activity [296, 299]. 

Topological autocorrelation (2D autocorrelation) is designed to represent the structural 

information of a molecular diagram as a fixed-length vector that can be applied to molecules of any 

shape or size. It encodes the constitutional information as well as atom property distribution by 

analyzing the distances between all pairs of atoms. Topological autocorrelations are independent of 

conformational flexibility because all distances are measured as the shortest path of bonds between the 

two atoms. The autocorrelation vector is created by summing all products for atom pairs within 

increasing distance intervals in terms of number of bonds. In other words, it creates a frequency plot for 

a specific range of atom pair distances. By including atom property coefficients for all atom pairs, 

autocorrelations are capable of plotting the arrangement of specific atom properties. For example, 

information such as the frequency at which two negatively charged atoms are three bonds apart versus 

four bonds apart is stored in an autocorrelation plot weighted by partial atomic charge [300]. 

3D Description of molecular configuration and conformation 

The physicochemical meaning of topological indices and autocorrelations is unclear and 

incapable of representing some qualities that are inherently three-dimensional (stereochemistry). 3D 

molecular descriptors were developed to address some of these issues [301].  

The 3D Autocorrelation is similar to the 2D autocorrelation but measures distances between 

atoms as Euclidian distances between their 3D coordinates in space. This allows a continuous measure 

of distances and encodes the spatial distribution of physicochemical properties. Instead of summing all 

pairs within discrete shortest path differences, the pairs are summed into interval steps [302].  

Radial distribution function (RDF) is another very popular 3D descriptor. It maps the probability 

distribution to find atoms in a spherical volume of radius r. In its simplest form, the RDF maps the 

interatomic distances within the entire molecule. Often it is combined with characteristic atom 

properties to fit the information requirements [242]. RDFs not only provide information regarding 

interatomic distances between atoms and properties, they contain information such as bond distances, 

ring types, and planar versus nonplanar molecules. These functions allow estimation of molecular 

flexibility through the use of a “fuzziness” coefficient that extends the width of all peaks to allow for 

small changes in interatomic distances.  
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GRIND (Grid-Independent Descriptor) is another 3D descriptor that does not require prior 

alignment [303]. GRIND was designed to retain characteristics that could be directly traced to the 

molecules themselves, rather than producing purely mathematical descriptors that are not obviously 

related to the molecular structures they describe. GRIND is comprised of three steps. The first step 

calculates a molecular-interaction field (MIF). Probes with different chemical properties to scan the 

molecule and identify regions showing favorable interaction energy [304]. 

Initial MIFs may contain up to 100,000 nodes. Therefore, the second step of GRIND reduces this 

set of nodes to focused regions of greatest favorable interaction energies. Initial implementation of 

GRIND used a Fedorov-like optimization algorithm [305] to reduce the number of nodes to several 

hundred by considering both the intensity of a field and the mutual node-node distances between the 

selected nodes. In the second iteration of GRIND (GRIND-2), this method was replaced with a new 

algorithm called AMANDA [306]. While the original GRIND requires users to define the number of nodes 

to extract per molecule, AMANDA allows GRIND-2 to automatically adjust the number of nodes per 

compound. After a prefiltering step that removes all nodes failing an energy cutoff, every atom in the 

molecule is assigned a set of nodes and the number of nodes to extract per atom is calculated using a 

weighting factor and function that automatically assigns additional nodes to larger regions. The node 

selection uses a recursive technique designed to assign initial selection weight based entirely on energy 

values. As the iterations continue through lower energy nodes, however, the internode distances 

become more important than the individual energy score of each node. 

The final step of GRIND-2 (and GRIND) encodes this set of nodes into descriptors using auto- and 

cross-correlation methods. Pairs of interaction energies are multiplied and only the greatest product is 

retained for each inter-node distance. This is called maximum auto- and cross-correlation (MACC) and 

allows GRIND-2 (and GRIND) to contain information that directly correlates with the initial molecular 

structure. 

GRIND-PP [307] improves GRIND-2 by removing much of the inherent repetition in the 

calculated descriptors. Structural features are often repeated across many GRIND-2 variables which can 

artificially weight certain features and reduce computational efficiency [308]. Principle Properties (PP) 

replace the original variables in GRIND and are calculated using principle component analysis. These 

variables are linear combinations of the original variables selected to explain as much of the variance in 

the original set of variables as possible. 
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Comparative field molecular analysis (CoMFA) [248] is a 3D-QSAR technique that aligns 

molecules and extracts aligned features that can be related to biological activity. This method focuses on 

the alignment of molecular interaction fields rather than the features of each individual atom. CoMFA 

was established over 20 years ago as a standard technique for constructing 3D models in the absence of 

direct structural data of the target. In this method, 3D molecules are aligned within a grid and the values 

of steric (Van der Waals interactions) and electrostatic potential energies (Coulombic interactions) are 

calculated at each grid point. Comparative Molecular Similarity Indices (CoMSIA) is an extension to 

CoMFA where the molecular field includes hydrophobic and hydrogen-bonding terms in addition to the 

steric and coulombic contributions. Similarity indices are calculated instead of interaction energies by 

comparing each ligand with a common probe and Gaussian-type functions are used to avoid extreme 

values [309]. These methods, however, are limited to static structures with similar scaffolds and neglect 

the dynamical nature of the ligands [249]. 

1.4.2 Molecular fingerprint and similarity searches 

Molecular fingerprint-based techniques attempt to represent molecules in such a way as to 

allow rapid structural comparison in an effort to identify structurally similar molecules or to cluster 

collections based on structural similarity. These methods are less hypothesis driven and less 

computationally expensive than pharmacophore mapping or QSAR models. They rely entirely on 

chemical structure and omit known biological activity of the compound, making the approach more 

qualitative in nature than other LB-CADD approaches [286]. Additionally, fingerprint-based methods 

consider all parts of the molecule equally and avoid focusing only on parts of a molecule that are 

thought to be most important for activity. This is less error prone to overfitting and requires smaller 

datasets to begin with. However, model performance suffers from the influence of unnecessary features 

and the often narrow chemical space evaluated [286]. Despite this drawback, 2D fingerprints continue 

to be the representation of choice for similarity-based virtual screening [310]. Not only are these 

methods the computationally least expensive way to compare molecular structures [287], but their 

effectiveness has been demonstrated in many comparative studies [310]. 

Similarity searches in LB-CADD 

Fingerprint methods may be employed to search databases for compounds similar in structure 

to a lead query, providing an extended collection of compounds that can be tested for improved activity 

over the lead. In many situations, 2D similarity searches of databases are performed using chemotype 
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information from first generation hits, leading to modifications that can be evaluated computationally or 

ordered for in vitro testing [4]. Bologa et al used 2D fingerprint and 3D shape-similarity searches to 

identify novel agonists of the estradiol receptor family receptor GPR30. Estrogen is an important 

hormone responsible for many aspects of tissue development and physiology [311, 312]. The GPCR 

GPR30 has recently been shown to bind estrogen with high affinity and its specific role in estrogen-

regulated signaling is being studied [313]. This group used virtual screening to identify compounds 

selective for GPR30 that could be used to study this target. 10,000 molecules provided by Chemical 

Diversity Laboratories were enriched with GPCR binding ligands and screened for fingerprint-based 

similarity to the reference molecule 17β-estradiol. Fingerprints used were Daylight and MDL and 

similarities were scored using Tanimoto and Tversky scores. The top 100 ranked hits were selected for 

biological testing and a first-in-class selective agonist with a Ki of 11 nM for GPR30 was discovered.  

[314]. 

 Stumpfe et al used SecinH3 and analogs as reference compounds for a combined fingerprint 

and fingerprint-based support vector machine modeling screen aimed at inhibitors targeting the 

multifunctional cytohesins. Cytohesins are small guanine nucleotide exchange factors that stimulate 

Ras-like GTPases, which control various regulatory networks implicated in a variety of diseases [315-

320]. The group screened approximately 2.6 million compounds in the ZINC database [29] and the top 

145 candidates were selected for biological testing. Of those tested, 40 compounds showed measurable 

activity and 26 were more potent than SecinH3 [321].  

Ijjalli et al created 2D pharmacophoric fingerprints using a query data set of 19 published T-type 

calcium channel blockers. T-type calcium channels underlie the generation of rhythmical firing patters in 

the CNS and have been implicated in the pathologies of epilepsy and neuropathic pain [322-324]. 

Specifically, T-type calcium channel 3.2 has been identified as a promising target for novel analgesic 

drugs for pathological pain syndromes [324]. A database of two million compounds was collected from 

various commercial catalogues and filtered for drug-like qualities, uniqueness, and standardization. The 

group used ChemAxon’s PF and CGC GpiDAPH3 [325] fingerprints and tested a subset of 38 unique hits 

biologically. 16 hits showed more than 50% blockade of CaV3.2-mediated T-type current. These 

compounds proved to be an interesting collection of T-type calcium channel blockers. Some showed 

reversible inhibition, whereas others resulted in irreversible inhibition, and one of the compounds 

caused alterations in depolarization/repolarization kinetics [326]. 
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In addition to the enrichment of lead compound population, fingerprints are also used to 

increase molecular diversity of test compounds. Fingerprints can be used to cluster large libraries of hits 

to allow the sampling of a wide range of compounds without the need to sample the entire library. The 

Jarvis-Patrick method clusters compounds by calculating a list of nearest neighbors for each molecule. 

Two structures cluster together if they are in each-others list of nearest neighbors and they have at least 

K of their J nearest neighbors in common. The MDL keys are also used to eliminate compounds least 

likely to satisfy the drug-likeness criterion [291]. 

Polypharmacology: similarity networks and off-target predictions 

Chemical similarity measures such as Tanimoto coefficients are being used to generate networks 

capable of clustering drugs that bind to multiple targets in an effort to predict novel off-target effects. 

Keiser et al [327] used a Similarity Ensemble Approach (SEA) [328] to compare drug targets based on the 

similarity of their ligands. SEA predicts whether a ligand and target will interact using a statistical model 

to control for chemical similarity due to chance. Sets of ligands that interact with each target are 

compared by calculating Tanimoto coefficients based on standard 2D Daylight fingerprints [329] for each 

pair of molecules between two sets. Raw similarity scores between all pairs of ligand sets are calculated 

as the sum of all Tanimoto coefficients between the sets greater than 0.57. Because the probability of 

achieving Tanimoto coefficients greater than 0.57 increases with set size, this is normalized by expected 

similarity due entirely to chance. This model for random chemical similarity is achieved by randomly 

generating 300,000 pairs of molecule sets spanning logarithmic size intervals from 10 to 1000 molecules. 

Expectation scores are calculated based on raw scores and the probability of achieving the raw score by 

random chance and used to sequentially link ligand sets into a clustered map. Keiser et al collected over 

900,000 drug-target comparisons from 65,241 ligands and 246 targets in the MDL Drug Data Report 

database [330] to generate a target similarity network. Another drug database, WOMBAT [331] included 

interactions not listed in the MDDR database and the authors tested the predictability of their networks 

by searching their networks for interactions found in WOMBAT but not MDDR. They found that 19% of 

the off-target effects listed in WOMBAT but not in MDDR were captured in their network. In addition to 

those found in MDDR and WOMBAT, 257 additional drug-target predictions were captured in their 

network, 184 of which had not been documented. The authors tested 30 of these undocumented 

predictions using radioligand competition assays and verified 23 interactions with binding constants less 

than 15 μM. Some of these interactions may help to explain well-known side effects. For example, the 

authors discovered an interaction between β-adrenergic receptors and Selective Serotonin Reuptake 
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Inhibitors Prozac (fluoxetine) and Paxil (paroxetine). This may explain the selective serotonin reuptake 

inhibitors discontinuation syndrome seen with these drugs that are analogous to discontinuation 

syndrome seen with β-blockers. 

Lounkine et al [332] used the SEA approach combined with adverse drug reaction (ADR) 

information to generate a drug-target-ADR network. This network was then used to predict off-target 

interactions that may explain specific ADRs. The authors experimentally tested 694 predictions and 

verified 151 interactions with IC50 values less than 30 μM. The clinical relevance of these off-target 

interactions was explored through the enrichment of target-ADR pairs within their network. For 

example, abdominal pain has been reported for 45 drugs that interact with COX-1, and based on their 

network, the ADR-target pair abdominal pain-COX-1 was enriched (represented in a greater degree 

within the network than average) 2.3-fold, reflecting a predicted correlation between abdominal pain 

and COX-1 interaction. Another target-ADR correlation is predicted for sedation and H1 interaction with 

an enrichment of 4.9. 

1.4.3 Quantitative Structure Activity Relationship models 

Quantitative structure-activity relationship (QSAR) models describe the mathematical relation 

between structural attributes and target response of a set of chemicals [333]. Classical QSAR is known as 

the Hansch-Fujita approach and involves the correlation of various electronic, hydrophobic, and steric 

features with biological activity. In the 1960s, Hansch and others began to establish QSAR models using 

various molecular descriptors to physical, chemical, and biological properties focused on providing 

computational estimates for the bioactivity of molecules [334]. In 1964, Free and Wilson developed a 

mathematical model relating the presence of various chemical substituents to biological activity (each 

type of chemical group was assigned an activity contribution), and the two methods were later 

combined to create the Hansch/Free-Wilson method [335, 336].  

The general workflow of a QSAR-based drug discovery project is to first collect a group of active 

and inactive ligands and then create a set of mathematical descriptors that describe the 

physicochemical and structural properties of those compounds. A model is then generated to identify 

the relationship between those descriptors and their experimental activity, maximizing the predictive 

power. Finally, the model is applied to predict activity for a library of test compounds that were encoded 

with the same descriptors. Success of QSAR depends not only on the quality of the initial set of 

active/inactive compounds, but also on the choice of descriptors and the ability to generate the 
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appropriate mathematical relationship. One of the most important considerations regarding this 

method is the fact that all models generated will be dependent on the sampling space of the initial set of 

compounds with known activity, the chemical diversity. In other words, divergent scaffolds or functional 

groups not represented within this “training” set of compounds will not be represented in the final 

model, and any potential hits within the library to be screened that contain these groups will likely be 

missed. Therefore, it is advantageous to cover a wide chemical space within the training set. For a 

comprehensive guide on performing a QSAR-based virtual screen, please see the review by Zhang [333]. 

Multidimensional QSAR: 4D and 5D Descriptors 

Multidimensional QSAR (mQSAR) goes beyond the self-contained properties of a compound and 

quantifies all energy contributions of ligand binding including desolvation, loss of conformational 

entropy, and binding pocket adaptation. 

4D-QSAR is an extension of 3D-QSAR that treats each molecule as an ensemble of different 

conformations, orientations, tautomers, stereoisomers, and protonation states. The fourth dimension in 

4D-QSAR refers to the ensemble sampling of spatial features of each molecule. A receptor-independent 

(RI) 4D-QSAR method was proposed by Hopfinger et al [337]. This method begins by placing all 

molecules into a grid and assigning interaction pharmacophore elements to each atom in the molecule 

(polar, nonpolar, hydrogen bond donor, etc.). Molecular dynamic simulations are used to generate a 

Boltzmann weighted conformational ensemble of each molecule within the grid. Trial alignments are 

performed within the grid across the different molecules, and descriptors are defined based on 

occupancy frequencies within each of these alignments. These descriptors are called grid cell occupancy 

descriptors (GCODs). A conformational ensemble of each compound is used to generate the GCODs 

rather than a single conformation.  

5D-QSAR has been developed to account for local changes in the binding site that contribute to 

an induced fit model of ligand binding. In a method developed by Vedani and Dobler [338], induced fit is 

simulated by mapping a “mean envelope” for all ligands in a training set on to an “inner envelope” for 

each individual molecule. Their method involves several protocols for evaluating induced-fit models 

including a linear scale based on the adaptation of topology, adaptations based on property fields, 

energy minimization, and lipophilicity potential. Using this information, the energetic cost for adaptation 

of the ligand to the binding site geometry is calculated. 
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Receptor-Dependent 3D/4D-QSAR 

Although QSAR methods are especially useful when structural information regarding target 

binding site is not available, more recent QSAR methods that specifically include such information may 

be used when possible. One method, known as free energy force field (FEFF) 3D-QSAR trains a ligand-

receptor force field QSAR model that describes all thermodynamic contributions for binding [339]. A 4D-

QSAR version of FEFF has also been developed to apply this method to the RI-4D-QSAR methods 

described above [339]. Structurally, the analysis is focused solely on the site of interaction between the 

ligand and target, and all atoms of interest are assigned partial charges. Molecular dynamic simulations 

are applied to these structures to generate a conformational ensemble following energy minimization. 

This approach avoids any alignment issues present in the RI-4D-QSAR method, since the binding site 

constrains the three-dimensional orientations of the ligands. The conformation ensembles of receptor-

ligand complexes generated are placed in a similar grid-cell lattice as used in RI-4D-QSAR, and occupancy 

profiles are calculated to generate receptor-dependent RD-4D-QSAR models. When tested alongside RI-

4D-QSAR against a set of glucose analogue inhibitors of glycogen phosphorylase, predictability of RD-4D-

QSAR models outperformed those of RI-4D-QSAR [339]. 

Linear regression and related methods 

Linear QSAR models may be generated using multivariable linear regression analysis (MLR), 

principal component analysis (PCA), or partial least square analysis (PLS) [249]. MLR computes biological 

activity as a weighted sum of descriptors or features. The method requires typically 4 or 5 data points 

for every descriptor used. PCA increases the efficiency of MLR by extracting information from multiple 

variables into a smaller number of uncorrelated variables. Analysis of results is however not always 

straightforward [340, 341]. It can be applied with smaller sets of compounds than MLR. PLS combines 

MLR and PCA and extracts the dependent variable (biological activity) into new components to optimize 

correlations [342]. PCA or PLS are commonly used for developing models for the molecular interaction 

field algorithm CoMFA and CoMSIA [249]. A major advantage to these models is that they can be rapidly 

trained with the tools of linear algebra. The major drawback, however, is that chemical structure often 

correlates with biological activity in a non-linear fashion. 
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Nonlinear models using machine learning algorithms 

Artificial Neural Networks (ANNs) are one of the most popular nonlinear regression models 

applied to QSAR-based drug discovery [343]. These models belong to the class of self-organizing 

algorithms in which a neural network learns the relationship between descriptors and biological activity 

through iterative cycles of prediction and improvement [249]. A major concern with neural networks is 

their sensitivity to overtraining, resulting in excellent performance within the training set but reduced 

ability to assess novel compounds. During the iterative learning process, therefore, ANN performance is 

commonly measured against an “independent” set of compounds not used to train the model. 

Support Vector Machine (SVM) is a kernel-based supervised learning method that was 

introduced by Vapnik and Lerner [344, 345]. It is based on statistical learning theory and the Vapnik-

Chervonenkis dimension [346, 347] and seeks to divide sets of patterns (molecules described with 

descriptors) based on their classification (biological function). Once this separation is performed on a 

training dataset, novel patterns can be classified based on which side of the boundary they fall. The 

simplest form of separation can be imagined as a straight line down the center of a graph with the two 

classes clustered in opposite corners of the graph. Because two classes can be separated by many 

potential lines, SVM, a maximal margin classifier, defines the hyperplane with the widest margin 

between these two classes. The patterns (compounds) that line the closest border of each class are 

known as support vectors. They define the two hyperplanes separated by that margin and are used to 

predict classes for novel unclassified patterns. All patterns that lie further from these boundaries are not 

support vectors and have no influence on the classification of novel patterns. Hyperplanes defined by 

the lowest number of support vectors are preferred. The solution is a parallel decision boundary that 

lies equidistant from the two hyperplanes defined by their respective support vectors [348-350]. 

Ideally, the margin between hyperplanes contains no patterns (molecules). However, to account 

for noise within datasets and other issues that prevent a linear solution from being reached, a soft-

margin classifier is used that allows for misclassification of some data and the existence of patterns 

within the margin between hyperplanes. In this approach, a penalization constant can be adjusted, with 

higher values stressing classification accuracy and lower values providing more flexibility.  

SVM was initially designed for datasets that could be separated linearly. However, especially in 

CADD application, this is not always possible. Therefore, SVM incorporates a high-dimensional space in 

which linear classification becomes possible. This involves the preprocessing of input data using feature 



CHAPTER 1 

 
 

88 
 

functions where the input variables are mapped into a Hilbert space of finite or infinite dimension [348]. 

This strategy, however, must be offset by the fact that higher dimensional space creates more 

computational burden and contributes to overfitting [351]. SVM utilizes kernel functions to ease the 

computational demand imposed by the existence of higher dimensional data. These special nonlinear 

functions combine the feature functions in a way that avoids explicit transformation and preprocessing 

using feature functions [348]. In other words, the higher dimensional space that allows for linear 

separation does not need to be dealt with directly. 

Several methods of SVM optimization have been considered. SVM parameter optimization is 

accomplished by solving the quadratic programming problem with a termination condition called the 

Klarush-Kuhn-Tucker condition that defines when parameters are at their minima. This can be 

computationally demanding and difficult to implement. Therefore, decompositional methods have been 

used to discard all zero parameters [352]. The sequential minimization optimization algorithm  is a 

commonly used alternative introduced by Platt  [353]. This method breaks the overall quadratic 

programming problem into subproblems and solves the smallest possible optimization problem at every 

stop involving only two parameters. One problem with sequential minimization optimization, however, 

is that it can result in selection of support vectors that include more than those necessary for the 

optimal model. Researchers have found that identical solutions can be achieved even after several of 

these support vectors have been removed [354]. Because the time needed to predict a pattern 

classification with an SVM model is dependent on the number of support vectors, it is beneficial to 

eliminate unnecessary or redundant support vectors. Zhan and Shen describe a four step method for 

removing unnecessary support vectors [354]. Once the SVM has completed training, the support vectors 

that contribute to the most curvature along the hyper-surface are removed. The SVM model is then 

retrained and the hyper-surface is further approximated with a subset of support vectors. 

Decision tree learning is a supervised learning algorithm that works by iteratively grouping the 

training dataset into smaller and more specific groups. The resulting classification resembles a tree in 

which each feature is broken into different values and each of these values is subsequently divided 

based on values of a different feature. The order in which features are divided is usually based on an 

information gain (difference between information before and after the branching) parameter with the 

highest valued features appearing first [355, 356]. Various methods are used to sort the features, with 

the overall goal being the smallest possible decision tree providing the best performance. C4.5 is a 

widely used DT algorithm that calculates information gain based on information entropy [357, 358]. The 
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information entropy of a given classification that can divide the dataset into two classes is calculated 

based on the number of compounds in either class. The information entropy of the system when 

dividing the dataset into two subsets using a specific feature is calculated based on the number of 

compounds from each class in either of the feature subsets. Finally, the information gain for that specific 

feature is calculated as the difference between the information entropy of the classification and the 

information entropy of the system. 

Once the decision tree has been optimized for the training set, new compounds can be classified 

by applying their descriptors to the decision tree and activities can be predicted based on which subset 

they fall into and the activities of the training compounds that are contained in that subset. 

Quantitative Structure-Activity Relationship applications in computer-aided drug design 

QSAR has been used to screen for novel therapeutics in the same way both pharmacophore 

models and fingerprint similarity methods have been applied to virtual libraries. Casanola-Martin et al 

used Dragon (Talete S.R.L., Italy) software to define descriptors for tyrosinase inhibitors. Tyrosinase is a 

copper-containing enzyme that catalyzes two reactions in the melanin biosynthesis pathway [359, 360]. 

Altered melanin synthesis is found in multiple disease states including hyperpigmentation, melisma, and 

age spots. Additionally, this protein has been implicated in dopamine neurotoxicity in Parkinson’s 

disease [361]. Descriptors were generated using a highly variable training set of 245 active tyrosinase 

inhibitors and 408 inactive molecules. These descriptors include constitutional, topological, BCUT, 

Galvez, topological charge, 2D autocorrelations, and empirical properties and descriptors. Seven models 

were created using linear discriminant analysis. In vitro testing revealed their most potent inhibitor with 

an IC50 of 1.72 µM. This presents a more potent inhibition of tyrosinase than the current reference drug 

L-mimosine (IC50 = 3.68 μM) [362]. 

Mueller et al used ANN QSAR models to identify novel positive and negative allosteric 

modulators of mGlu5. This receptor has been implicated in neurologic disorders including anxiety, 

Parkinson’s disease, and schizophrenia [363, 364]. For the identification of positive allosteric modulators 

(PAMs), they first performed a traditional high throughput screen of approximately 144,000 compounds. 

This screen yielded a total of 1356 hits, a hit rate of 0.94%. The dataset from this HTS was then used to 

develop a QSAR model that could be used in a virtual screen. To generate the QSAR model, a set of 1252 

different descriptors across 35 categories were calculated using the ADRIANA (Molecular Networks 

GmbH, Erlangen, Germany) software package. The descriptors included scalar, 2D, and 3D descriptor 
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categories. The authors iteratively removed the least-sensitive descriptors to create the optimal set. This 

final set included 276 different descriptors, including scalar descriptors such as molecular weight up to 

3D descriptors, including the radial distribution function weighted by lone-pair electronegativity and π 

electronegativity. A virtual screen was performed against approximately 450,000 commercially available 

compounds in the ChemBridge database. Eight hundred twenty-four compounds were tested 

experimentally for the potentiation of mGlu5 signaling. Of these compounds, 232 were confirmed as 

potentiators or partial agonists. This hit rate of 28.2% was approximately 30 times greater than that of 

the original HTS, and the virtual screen took approximately 1 hour to complete once the model had 

been optimized (figure 1.9) [365]. 

 

Figure 1.9 QSAR-based virtual screening of mGlu5 negative allosteric modulators yields lead compounds 

that contain substructure combinations taken across several known actives used for model generation. 

Source: [365] 

In a separate study, Mueller et al [366] used a similar approach to identify negative allosteric 

modulators for mGlu5. Rodriguez et al previously performed a traditional HTS screen of 160,000 

compounds for allosteric modulators of mGlu5 and found 624 antagonists [367]. The QSAR model was 

used to virtually screen over 700,000 commercially available compounds in the ChemDiv Discovery 
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database. Hits were filtered for drug-like properties, and fingerprint techniques were used to remove 

hits that were highly similar to known actives to identify new chemotypes. Seven hundred forty-nine 

compounds were tested in vitro, and 27 compounds were found to modulate mGlu5 signaling. This hit 

rate of 3.6% was a significant increase over the 0.2% hit rate of the traditional HTS screen. The most 

potent of the compounds showed in vitro IC50 values of 75 and 124 nM, respectively, and contained a 

previously unidentified scaffold. After analog synthesis and stability optimization, the experimenters 

tested the effect of their best lead in vivo against two behaviors known to involve mGlu5: operant 

sensation seeking behavior [368] and the burying of foreign objects in deep bedding [369]. Both 

behaviors were found to be inhibited given intraperitoneal administration of their lead analogue. 

QSAR has also been applied to de novo drug design techniques when structural information 

regarding the target is unknown. Descriptor and model generation is used to score the de novo 

generated molecules in place of other structure-based scoring techniques such as docking. Most 

commonly, compound generation involves iterative algorithms in which structures are repeatedly 

modified and their biological activities are estimated using QSAR models. In the simplest case, 

modifications can be achieved by randomly swapping parts of the structure such as functional groups. 

Ligand-based de novo drug design, however, is less practiced than structure-based de novo design 

because of the inherent challenges of accurately evaluating a new molecule in the absence of the 

receptor structure. To address the challenge of scoring the newly generated molecules, similarity based 

methods have been applied in addition to QSAR models [370]. 

Feher et al used five selective norepinephrine reuptake inhibitors as a training set to generate 

2200 molecules using a combination of structural similarity, 2D pharmacophore similarity, and other 

properties to drive the evolution [371]. One of the top scoring compounds was found to be highly active 

and has been selected as a lead compound in a project at Neurocrine [371].  

Golla et al applied QSAR-based methods to the design of novel chemical penetration enhancers 

(CPEs) to be used in transdermal drug delivery [372]. This group used a genetic algorithm to design novel 

CPEs. In this paradigm, new molecules are generated based on crossover and mutation operations 

randomly applied to candidates. All generated molecules are scored based on the QSAR model and 

predicted property values, and the highest scoring molecules are retained for new rounds of evolution. 

Two hundred seventy-two CPEs were used to generate the QSAR model and provide seed molecules for 

the genetic algorithm. The QSAR model was created using sequential regression analysis and heuristic 
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analysis using CODESSA and contained a final set of 40 descriptors that optimally predicted properties, 

including skin penetration coefficient, logP, melting point, skin sensitization, and irritation. The top 

scoring molecules were validated experimentally for permeation and toxicity using Franz Cell with 

porcine skin and HPLC analysis as well as toxicity effects on human foreskin fibroblasts and porcine 

abdominal skin. The study resulted in the identification of 18 novel CPEs, four of which showed minimal 

or no toxic effects [372].  

Hoeglund et al used QSAR modeling combined with synthetic optimization in a follow-up to 

their most potent hit from a 2008 in silico screen for inhibitors of autotaxin. Autotaxin is an autocrine 

motility factor and has been linked to cancer progression, multiple sclerosis, obesity, diabetes, 

Alzheimer’s Disease, and chronic pain through the production of LPA [373-378]. Analogues of the lead 

compound were tested and 4 of the 30 exhibited IC50 less than or equal to the lead. The most potent 

compound showed threefold higher affinity for autotaxin than the lead, whereas another compound 

showed twofold higher affinity [379]. 

CoMFA and CoMSIA 3D-QSAR methods have also been used to predict novel therapeutic 

compounds for a variety of disease targets. Ke et al [380] generated CoMFA and CoMSIA models using 

66 previously discovered pyrazole- and furanopyrimidine-based Aurora Kinase inhibitors [381-383]. 

Aurora kinase A is a serine/threonine kinase involved in mitosis [384] that has been shown to be 

involved in various forms of cancer [385, 386]. Using the model that showed the best predictive 

performance, the group synthesized a novel compound (compound 67). This compound was tested in 

vitro and displayed an IC50 of 25 nM against Aurora kinase A. Additionally, compound 67 displayed 

antiproliferative activity with an IC50 of 23 nM against the HCT-116 colon cancer cell line.  

Chai et al [387] used 26 previously identified anti-Hepatitis B (HBV) compounds [388, 389] to 

generate CoMFA models based on steric and electrostatic fields and CoMSIA models based on steric, 

electrostatic, hydrophobic, and H-bond acceptor fields. Three compounds were designed using these 

models and subsequently tested against replication of HBV DNA in HBV-infected 2.2.15 cells. The most 

potent compound displayed an IC50 of 3.1 μM, whereas the other two showed IC50 values of 5.1 μM and 

3.3 μM. These compounds were comparatively more potent than the control lamivudine which displays 

an IC50 of 994 μM.  

Jiao et al [390] generated CoMFA models using 38 styrylquinoline derivatives in an effort to 

understand and design potential HIV integrase inhibitors. Their model suggested that a bulky group near 
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the carboxyl group at C-7 in the quinolone ring may confer increased inhibition. Additionally, the 

presence of an H-bonding donor is favorable near the C-7 atom. Based on these predictions, they 

designed several compounds that were tested against purified HIV Integrase to determine inhibitory 

activity on the strand transfer reaction of integrase. Four of these compounds showed higher inhibitory 

activity than their positive control Baicalein (Sigma-Aldrich, St. Louis, MO). 

Over the past several decades, over 18,000 QSAR models have been reported for a variety of 

targets with a variety of descriptors. C-QSAR was used to generate a comprehensive database of QSAR 

models [391]. This collection has provided not only access to models for novel applications, but allows 

the analysis of QSAR models to identify challenges in the field. Kim examined the C-QSAR database for 

outlier patterns, i.e., compounds that showed poor prediction when the average prediction for the 

model was good. They found that over the 47 QSAR models examined, the number of compounds 

scoring as outliers ranged from 3 to 36%. Twenty-six of the 47 datasets showed 20% or more compound 

outliers [392]. They presented several theories as to why QSAR models are so sensitive to the generation 

of outliers. One possibility came from analysis of the RCSB protein databank where they discovered 

examples where related analogs were shown to bind in very different poses. Another explanation 

offered was protein flexibility, leading to multiple binding modes and or binding sites on the same 

protein. These different binding modes/sites may reflect different structure-activity relationships for 

molecules within a given dataset. Analogous compounds that do not share the same binding mode, 

therefore, present unique challenges to the classification of ligands [392]. 

1.4.4 Selection of optimal descriptors/features 

Hristozov et al analyzed the performance of different descriptors across a range of 

benchmarking datasets and found that the performance of a particular descriptor was often dependent 

on the activity class. It was found that topological autocorrelation usually offers the best 

dimensionality/performance ratio. The fusion of the ranked lists obtained with RDF codes and 2D 

descriptor improved results because RDF codes, while giving similar results, covered different parts of 

the activity spaces under investigation [34]. This suggests that it is not possible to select an optimal set 

of descriptors independent of the problem; a custom-optimized descriptor set is needed for optimal 

performance of LB-CADD.  

Excessive numbers of descriptors or features can add noise to a model, reducing its predictive 

power. Feature selection techniques remove unnecessary features to minimize the number of degrees 
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of freedom of the model. Thus, the ratio of data points versus degrees of freedom increases, leading to 

models of increased predictive power. Techniques that have proven successful in QSAR modeling 

include selecting features by measures such as information gain [393] and F–score, sequential feature 

forward selection or feature backward elimination [394], genetic algorithm [395, 396], swarm 

optimization [395], and input sensitivity analysis [366].  

Information gain measures the change of information entropy from the data distribution of two 

classes (active and inactive compounds) of one feature compared with the entropy of the feature 

overall. Thus, discriminatory power of the individual feature increases with information gain. An F-score 

is calculated that considers the mean and standard deviation of each feature across data classes. The 

higher the F-score value, the greater discriminatory power of that feature. Selecting features by 

individual benchmarks has the disadvantage that correlation between features is ignored. For example, 

let us assume a feature has a high information gain. However, if a second feature highly correlated is 

already part of the model, no improved model will result from adding the feature. More complex 

feature selection schemes address this limitation. 

Sequential feature forward selection is a deterministic, greedy search algorithm. In each round, 

the best feature set from the previous round N appends a single feature from the pool of M remaining 

features and trains the M models using the N + 1 features. The best performing feature set from this 

round then advances to the next round. This continues until all features are used in a final feature set. 

The best performing model over all iterations is then chosen as the best feature set. This process is time 

consuming and not guaranteed to yield the optimal feature set; the single best performing feature will 

always be part of the model. However, there is no guarantee that it is needed. Feature backward 

elimination inverts the process starting from a model trained from all features, eliminating one after the 

other. Although the process is more robust in terms of identifying the optimal model, it also requires 

substantial computer time. Therefore, alternative approaches have been explored to optimize feature 

sets. 

 Genetic algorithms mimic the process of evolution to create an efficient search heuristic. This 

method uses a population of individuals (distinct feature sets) to encode candidate solutions. The initial 

individuals can be generated randomly. In each iteration, or generation, the fitness of each individual is 

evaluated, i.e., the predictive power of the derived LB-CADD model. This fitness function is the 

performance metric of a model trained using that individual as the feature set. Individuals are then 
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selected based on the fitness and undergo recombination and/or mutation to form the next generation. 

The algorithm continues until a desired fitness score is achieved or a set number of generations have 

been completed.  

 Swarm optimization algorithms, such as ant colony optimization [397], particle swarm 

optimization, and artificial bee colony optimization [398], are optimization techniques based on the 

organized behavior of social animals such as birds. The algorithm iteratively searches for a best solution 

by moving individuals around the search space guided by both the local best solution as well as the best 

solutions found so far in the entire population. The best overall solution is constantly updated, letting 

the swarm converge towards the optimal solutions. 

Input sensitivity analysis seeks to combine speed of individual benchmark values with accuracy 

of methods that take correlation into account. First, a model is constructed using all features. Next, the 

influence of each feature on the model output is determined: Each feature xi is perturbed, and the 

change in output y is computed. This procedure numerically estimates the partial derivative of the 

output with respect to each input, a measure that is effective in selecting optimal descriptor sets [366]. 

1.4.5 Pharmacophore mapping 

In 1998, the IUPAC formally defined a pharmacophore as “the ensemble of steric and electronic 

features that is necessary to ensure the optimal supramolecular interactions with a specific biological 

target structure and to trigger (or to block) its biological response” [399]. In terms of drug activity, it is 

the spatial arrangement of functional groups that a compound or drug must contain to evoke a desired 

biological response. Therefore, an effective pharmacophore will contain information about functional 

groups that interact with the target, as well as information regarding the type of noncovalent 

interactions and interatomic distances between these functional groups/interactions. This arrangement 

can be derived either in a structure-based manner by mapping the sites of contact between a ligand and 

binding site or in a ligand-based approach.  

To generate a ligand-based pharmacophore, multiple active compounds are overlaid in such a 

way that a maximum number of chemical features overlap geometrically [400]. This can involve rigid 2D 

or 3D structural representations or, in more precise applications, incorporate molecular flexibility to 

determine overlapping sites. This conformational flexibility can be incorporated by precomputing the 

conformational space of each ligand and creating a general-purpose conformational model or 
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conformations can be explored by changing molecule coordinates as needed by the alignment algorithm 

[400]. For example, one popular pharmacophore-generation software package, Catalyst (Accelrys, Inc., 

San Diego, CA), uses the “polling” algorithm [401] to generate approximately 250 conformers that it 

uses in its pharmacophore generation algorithm [249]. 

Superimposing active compounds to create a pharmacophore 

Molecules are commonly aligned through either a point-based or property-based technique. 

The point-based technique involves superposing pairs of points (atoms or chemical features) by 

minimizing Euclidean distances. These alignment methods typically use a root-mean-square distance 

(RMSD) to maximize overlap [402]. Property-based alignment techniques, on the other hand, use 

molecular field descriptors to generate alignments [400]. These fields define 3D grids around 

compounds and calculate the interaction energy for a specific probe at each point. The distribution of 

interaction energies is represented by Gaussian functions, and the degree of overlap between Gaussian 

functions of two aligned compounds is used as the objective scoring function to maximize alignment 

[402]. One popular field generation method for property-based alignments is GRID [304]. 

Molecular flexibility is always an important consideration when aligning compounds of interest 

and several approaches are used to efficiently sample conformational space. These approaches include 

rigid, flexible, and semiflexible methods. Rigid methods require knowledge of the active conformation of 

known ligands and align only these active conformations. This is only applicable, however, when the 

active conformation is known with confidence. Semiflexible methods overlay pregenerated ensembles 

of static conformations and flexible methods, being the most computationally expensive, perform 

conformational search during the alignment process, often using molecular dynamics or random 

sampling of rotatable bonds. Because the conformational space can increase substantially with an 

increase in the number of rotatable bonds, strategies are often used to limit the exploration of 

conformational space through the use of reference geometry (often an active ligand with low flexibility). 

This method is known as the active analog approach [403]. 

Pharmacophore feature extraction 

A pharmacophore feature map is carefully constructed so as to balance generalizability with 

specificity. A general definition might categorize all functional groups having similar physiochemical 

properties (i.e., similar hydrogen-bonding behavior, ionizability) into one group, whereas specific feature 
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definitions may include specific atom types at specific locations. More general feature definitions 

increase the population of compounds that match the pharmacophore. They allow the identification of 

novel scaffolds but also increase the ratio of false-positives. The level of feature definition 

generalizability is usually determined by the algorithm used to extract feature maps and through user-

specified parameters. The most common features used to define pharmacophore maps are hydrogen 

bond acceptors and donors, acidic and basic groups, aliphatic hydrophobic moieties, and aromatic 

hydrophobic moieties [249]. Features are commonly implemented as spheres with a certain tolerance 

radius for pharmacophore matching [400].  

Pharmacophore Algorithms and Software Packages 

The most common software packages employed for ligand-based pharmacophore generation 

include Phase [404], MOE [325], Catalyst [405, 406], LigandScout [407], DISCO [408], and GASP [409]. 

These packages use different approaches to molecular alignment, flexibility, and feature extraction. 

Catalyst approaches alignment and feature extraction by identifying common chemical features 

arranged in certain positions in three-dimensional space. These chemical features focus on those 

expected to be important for interaction between ligand and protein and include hydrophobic regions, 

hydrogen-bond donors, hydrogen-bond acceptors, positive ionizable, and negative ionizable regions. 

Chemical groups that participate in the same type of interaction are treated as identical. Catalyst 

contains two algorithms that can be used for pharmacophore construction. HipHop is the simpler of the 

two algorithms and looks for common 3D arrangements of features only for compounds with a 

threshold activity against the target. It begins with best alignment of only two features (scored by RMS 

deviations) and continues expanding the model to include more features until no further improvements 

are possible. This method is only capable of producing a qualitative distinction between active and 

inactive predictions. HypoGen, on the other hand, employs biological assay data such as IC50 values for 

active compounds as well as a set of inactive compounds. Initial pharmacophore construction in 

HypoGen is identical to HipHop but includes additional algorithms that incorporate inactive compounds 

and experimental values. These algorithms compare the best pharmacophore from the “HipHop” stage 

with the inactive compounds and features common to the inactive set are removed. Finally, HypoGen 

performs an optimization routine that attempts to improve the predictive power of the pharmacophore 

by making adjustments and scoring the accuracy in predicting the specific experimental activities [405, 

410]. This results in models that are capable of quantitative predictions that can predict specific levels of 

activity. Ten different models are created following a simulated annealing optimization [411]. Both 
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Catalyst methods incorporate molecular flexibility by storing compounds as multiple conformations per 

molecule. The Poling algorithm published by Smellie et al [401] is employed to increase the 

conformational variation within the set of conformations per molecule. This allows Catalyst to cover the 

greatest extent of conformational space while keeping the number of conformations at a minimum. 

Phase approaches alignment and feature extraction using a tree-based partitioning algorithm 

and an RMS deviation-based scoring function that considers the volume of heavy atom overlap. It 

incorporates molecular flexibility through a preparation step where conformational space is sampled 

using a Monte Carlo or torsional search [402]. 

DISCO regards compounds as sets of interpoint distances between heavy atoms containing 

features of interest. Alignments are based on the spatial orientation of common points among all active 

compounds. DISCO considers multiple conformations that have been prespecified by the user during the 

alignments and uses a clique-detection algorithm for scoring alignments [410]. 

GASP uses a genetic algorithm with iterative generations of the best models for pharmacophore 

construction [409]. Flexibility is handled during the alignment process through random rotations and 

translations. Conformations are optimized by fitting them to similarity constraints and weighing the 

conformations that fit these constraints more than conformations that do not [411]. 

Different software packages can produce different results for the same datasets, and their 

strengths and weaknesses should be considered prior to any application. For example, Catalyst only 

permits a single bonding feature per heavy atom, whereas LigandScout allows a hydrogen-bond donor 

or acceptor to be involved in more than one hydrogen-bonding interaction [400]. MOE, on the other 

hand, allows a more customizable approach to hydrogen-bonding features. Lipophilic areas are 

generally represented as spheres located on hydrophobic atom chains, branches, or groups in a similar 

manner across software packages but with slight nuances. Although subtle, these differences have 

important consequences on prediction models. Additionally, software packages that do not attach a 

hydrophobic feature to an aromatic ring are unable to predict that an aromatic group may be positioned 

in a lipophilic binding pocket [400]. The level of customizability also differs across pharmacophore 

software packages and can influence predictions. Catalyst allows the specification of one or more 

chemical groups that satisfy a particular feature, whereas Phase allows not only matching chemical 

groups but also a list of exclusions for a given feature. MOE offers a level of customization that allows 

the user to implement entirely novel pharmacophore schemes as well as modification of existing 
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schemes. However, this requires additional levels of expertise to program [400]. For a comprehensive 

analysis of the differences between commercial pharmacophore software packages, please see the 2007 

review by Wolber et al [400] and a 2002 comparison of Catalyst, DISCO, and GASP by Patel et al [412].  

Ligand-based pharmacophore methods have been used for the discovery of novel compounds 

across a variety of targets. New compounds can have activity in the micromolar and nanomolar range 

and reflect proof of concept with in vivo disease models. Al-Sha’er and Taha used a diverse set of 83 

known Hsp90-α inhibitors and the HypoGen module of Catalyst to generate a pharmacophore model. 

Hsp90-α is a molecular chaperone that is involved in protein folding, stability, and function [413]. By 

interacting with many oncogenic proteins, it has been shown to be a valid anticancer drug target [414, 

415]. The pharmacophore model was used to screen the NCI list of compounds (238,000) using the “Best 

Flexible” search option. The top 100 hits were evaluated in vitro and their most potent compound had 

an IC50 of 25 nM [416].  

Schuster et al used three steroidal inhibitors and two non-steroidal inhibitors of 17β-HSD3 and 

Catalyst to create a pharmacophore model that was used to screen for novel 17β-HSD3 inhibitors. 

Hydroxysteroid dehydrogenases (HSD3) catalyze the oxidoreduction of alcohols or carbonyls and the 

final step in male and female sex hormone biosynthesis. Therefore, these enzymes are suggested 

therapeutic targets for control of estrogen- and androgen-dependent diseases such as breast and 

prostate cancer, acne, and hair loss [417]. Eight commercial databases were screened, and 15 top 

scoring hits were tested in vitro at 2 µM. Five were verified to be inhibitors of 17β-HSD3 with the most 

potent compound able to inhibit 17β-HSD3 by 67.1% at 2 µM [418].  

Noha et al developed 5-point pharmacophore models using the HipHop algorithm of Catalyst based on a 

training set of compounds with IC50 < 100 nM against IKK-β as potential anti-inflammatory and 

chemosensitizing agents. The authors used 128 active and 44 inactive compounds to develop a 

pharmacophore model [419]. Their model was further refined with exclusion volume spheres and shape 

constraints to improve the scoring of compounds in their virtual high-throughput screen against the 

National Cancer Institute molecular database. Ten compounds were selected and the most potent 

compound (NSC719177, C26H31NO4) showed inhibitory activity against IKK-β in a cell free in vitro assay 

with IC50 of 6.95 µM. Additionally, this compound inhibited NF-κB activation induced by TNF-α in HEK293 

cells with an IC50 of 5.85 µM [419]. 



CHAPTER 1 

 
 

100 
 

Chiang et al used the HypoGen module of Catalyst to generate four-feature pharmacophore 

models based on an indole series of 21 compounds that showed antiproliferative activity through the 

inhibition of tubulin polymerization/microtubule depolymerization. Disruption of microtubules during 

the mitotic phase of the cell cycle can induce cell-cycle arrest and apoptosis [420]. Therefore, inhibitors 

of tubulin polymerization are useful cancer treatments. One hundred thirty thousand compounds of the 

ChemDiv database and an in-house compound collection were screened, and the top 142 hits were 

tested in vitro. Four novel compounds were discovered with antiproliferative activity. The most potent 

compound displayed antiproliferative activity in human cancer KB cells with an IC50 of 187 nM. This 

compound also inhibited the proliferation of other cancer cell types, including MCF-7, NCI-H460, and SF-

268 and demonstrated anticancer effects in a histoculture system. In vitro assays revealed that this 

compound inhibited tubulin polymerization with an IC50 of 4.4 µM [421].  

Doddareddy et al generated a pharmacophore model containing three hydrophobic regions, one 

positive ionizable center, and two hydrogen bond acceptor groups for the identification of novel 

selective T-type calcium channel blockers. The most potent hit showed an IC50 of 100 nM [422, 423]. T-

type calcium channels are involved in rhythmical firing patterns in the CNS and present therapeutic 

targets for the treatment of epilepsy and neuropathic pain [326].  

Lanier generated pharmacophores containing five feature points using Catalyst and CombiCode 

(Deltagen Research Laboratories, San Diego CA) software and an exclusion sphere generated in MOE 

based on a training set of 100 active and 1000 inactive compounds. This model was used to guide and 

evaluate variations of a core molecule, leading them to a gonadotropin releasing hormone GnRH 

receptor antagonist with receptor affinity below 10 nM [424]. GnRH is involved in the regulatory 

pathways of follicle stimulating hormone and luteinizing hormone. It is a target for disease therapeutics 

including endometriosis, uterine fibroids, and prostate cancer [425, 426]. 

Roche et al used known H3 antagonists to generate a pharmacophore model with four features 

including a distal positive charge, an electron-rich position, a central aromatic ring, and either a second 

basic amine or another aromatic [427]. Histamine is a central modulator in the central and peripheral 

nervous systems through four receptors (H1-H4) [428]. H3 is a presynaptic autoreceptor that modulates 

production and release of histamine and other neurotransmitters [429]. H3 antagonists have been 

studied in Alzheimer’s disease, attention deficit disorder, and schizophrenia [430]. Additionally, it has 

been suggested to be involved in appetite and obesity [431] .This model was used in a de novo approach 
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with the Skelgen software [432] to generate novel compounds from fragment libraries that match the 

pharmacophoric restraints. They found a series of four compounds with high potency and selectivity for 

H3. Their most potent compound showed inverse agonist activity with an EC50 of 200 pM in a GTPγS 

functional assay and a binding affinity Ki towards H3 of 9.8 nM [427]. 

Chao et al used pharmacophore-based design to take advantage of the therapeutic benefits of 

Indole-3-carbinol (I3C) in the treatment of cancer. I3C is known to suppress proliferation and induce 

apoptosis of various cancer cells through the inhibition of Akt activation [433, 434]. I3C, however, has a 

poor metabolic profile and low potency, likely due to the fact that its therapeutic behavior comes from 

only four of its metabolites. By overlaying these low energy conformers of these four metabolites, Chao 

et al was able to identify similar N-N’ distances and overlapping indole rings (figure 1.10) [435]. This led 

them to design SR13650, which showed an IC50 of 80 nM. Tumor xenograft studies using MCF-7 cells 

revealed antitumor effects at 10 mg/kg for 30 days. Computational analysis was also applied to increase 

the bioavailability, and three compounds showed 45-60% tumor growth inhibition in vivo compared to 

the 26% growth inhibition of SR13650. SR13668 was the most potent compound and also displayed 

antitumor effects in other xenograft models. In vitro, SR13668 was shown to inhibit Akt activation by 

blocking growth-factor stimulated phosphorylation and showed favorable toxicological profiles [435]. 

This drug is currently in phase 0 trials for the treatment of cancer (figure 1.10) [436].  
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Figure 1.10 SR13668, an anticancer therapeutic was discovered using ligand-based pharmacophore 

screening based on active components of indole-3-carbinol. Source: [435]. 

Dayam et al [437] used pharmacophore modeling in an effort to identify novel HIV-1 integrase 

(IN) inhibitors. IN is the third viral enzyme in HIV and is responsible for integration of viral DNA into host 

cell chromosomes through 3’-processing and strand transfer [438, 439]. This model was created with the 

HipHop algorithm within Catalyst and was based on the Quinolone 3-carboxylic acid class of IN inhibitors 

that show IC50 values ranging from 43.5 to 7.2 nM and EC50 against HIV-1 replication of 805 to 0.9 nM 

[440]. The final pharmacophore hypothesis consisted of four features including a negatively ionizable 

feature, hydrogen-bond acceptor, and two hydrophobic aromatic features (figure 1.11). Three hundred 

sixty-two thousand two hundred sixty commercially available compounds were screened and 56 

selected for in vitro evaluation. Eleven of those tested inhibited the IN catalytic activity with an IC50 

value < 100 µM. Five compounds had an IC50 less than 20 µM, and the most potent compound inhibited 

both the 3’ processing (IC50 14 µM) as well as strand transfer activities (IC50 5 µM) of IN [437]. Mugnaini 

et al created a pharmacophore model using 30 known inhibitors of the 3’-processing step of HIV-1 IN 

and screened the ASINEX gold database of over 200,000 compounds for inhibitors of IN. Twelve hits 
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were tested in vitro and discovered one compound with a novel scaffold and anti-integrase activity with 

IC50 of 164 µM. Further improvement of this compound yielded an analogue with IC50 of 12 µM [441]. 

 

Figure 1.11 HIV-1 Integrase inhibitor pharmacophore I) A) Novel HIV-1 Integrase inhibitor using 

ligand-based virtual screening with a pharmacophore model of quinolone 3-carboxylic acid IN 

inhibitors. B) Pharmacophore query generated from the quinolone 3-carboxylic acid IN inhibitors 

accompanied with an overlay onto a known HIV-1 integrase inhibitor. Features are color-coded, and 

their 3D arrangement/distances are shown in angstroms. Green sphere represent H-bond acceptor regions, 

blue spheres represent negatively ionizable regions, and cyan spheres represent hydrophobic aromatic regions. 

II) Pharmacophore query overlayed with 3 potent hits from the ligand-based virtual screen: compounds 8 (A), 9 

(B), and 17 (C). Source: [437]. 

 

Noeske et al [442] used 2D-pharmacophore-based virtual screening to identify novel mGlu1 

antagonists. Antagonism of this receptor has been studied in regards to therapeutic potential in 

neurodegenerative diseases, anxiety, pain, and schizophrenia [443, 444]. Six reference mGlu1 

antagonists were used to construct 2D-pharmacophores with the CATS software package [445]. This 

software assigns all atoms in a compound as either a hydrogen-bond donor, hydrogen-bond acceptor, 

positively charged, negatively charged, lipophilic, or non-interest atom type. Then, all compounds of a 

library are compared with the distances between these different atom types in the reference molecule 

and similarity scores are calculated to rank molecules that most closely fit this 2D-pharmacophore. 

Screening the Gold Collection of Asinex Ltd yielded six different hit lists (one for each reference 
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molecule). The top hits were collected from all lists as well as hits that appeared in three or more 

different lists and 23 compounds were tested experimentally for mGlu1 antagonism. Their most potent 

compound yielded an IC50 of 360 nM and was further optimized to a compound with an IC50 of 123 nM. 

1.5 Prediction and Optimization of Drug Metabolism and 

Pharmacokinetics Properties Including Absorption, Distribution, 

Metabolism, Excretion, and the Potential for Toxicity Properties 

In addition to high biological activity and selectivity for the target of interest, drug metabolism 

and pharmacokinetics (DMPK) properties including absorption, distribution, metabolism, excretion, and 

the potential for toxicity (ADMET) in humans are critical to the success of any candidate therapeutic. 

After lead discovery or design, there is considerable attention given to improving the compound’s in vivo 

DMPK/ADMET properties without losing its biological activity. It is common to apply some 

DMPK/ADMET-based restrictions early on in the discovery process to reduce the number of compounds 

necessary to evaluate, saving time and resources. Therefore, computational techniques extend to 

predicting this very important aspect of drug design and discovery. Methods used are structure-based to 

study the interaction of candidate compounds with key proteins involved in DMPK/ADMET and ligand-

based to predict of key properties using quantitative structure property relation (QSPR) models.  

1.5.1 Compound Library Filters 

Computational tools are routinely used to filter large data bases so that compounds predicted to 

have poor DMPK/ADMET profiles may be avoided. One of the earliest and still the most popular filters to 

apply to any compound database when performing a vHTS is Lipinski’s rule of 5. These rules are: a) 

molecular weight of 500 or less, b) logP coefficient less than 5, c) 5 or fewer hydrogen-bond donor sites 

d) 2x5 or fewer hydrogen-bond accepting sites [446]. The rule set is based on an analysis of 2245 

compounds from the World Drug Index that had reached phase II trials or higher. The rules were based 

on distributions for molecular weight, logP, hydrogen bond donors, and hydrogen bond acceptors for 

the top percentile of these compounds [446]. This set of rules suggests the necessary properties for 

good oral bioavailability [447] and reflects the notion that pharmacokinetics, toxicity, and other adverse 

effects are directly linked to the chemical structure of a drug. Although this criteria is well established 

and offers a relatively fast and simple way to apply DMPK/ADMET filters before any sort of screening is 

performed, it is incapable of predicting with any certainty whether a compound will make an 
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appropriate therapeutic. It has been estimated that almost 69% of available compounds in the Available 

Chemical Directory (ACD) Screening Database (2.4 million compounds) and 55% of the compounds in the 

ACD (240,000) do not violate this rule of 5 [448]. Accordingly, this rule set has always been intended to 

be a guide and not necessarily a hard-set filter. It is expected that such a simple rule of thumb will 

remove lead compounds; for example, many peptidomimetics, transporter substrates, and natural 

products will violate Lipinski’s rule. Approximately 16% of oral drugs violate at least one criterion and 6% 

fail two or more criteria, and multiple examples exist of highly successful drugs that fail one or more of 

Lipinksi’s criteria including Lipitor and Singulair [449]. At the same time the Lipinski’s rule will not, for 

example, recognize and remove compounds with structural features that give rise to toxicity. It is limited 

to evaluating oral bioavailability through passive transport only. When used to train models with 

machine learning, Lipinski’s rule failed to provide better than random classification of drugs and 

nondrugs [450]. Additionally, it is not designed to provide any discrimination beyond a binary pass or 

fail. Any compound that violates two or more criteria is treated as an equal fail, whereas any compound 

that does not is treated as an equal pass. 

On the basis of its shortcomings, several improvements and replacements have been proposed 

for the rule of 5. For example, two additional criteria have been suggested that include the number of 

rotatable bonds being less than or equal to ten and the polar surface area being less than 140 Å2 [451]. 

Bickerton et al [449] introduced the quantitative estimate of drug-likeness that is a score ranging from 0 

(all properties unfavorable) to 1 (all properties favorable). This score is taken as a geometric mean of 

individual desirability functions, each of which corresponds to a different molecular descriptor. These 

descriptors include molecular weight, logP, hydrogen bond donors and acceptors, rotatable bonds, 

aromatic rings, and the number of structural alerts [452]. 

However, the simple application of filters such as these during a lead compound search can be 

problematic by nature of the limitation of these descriptors and the evolution of lead compound to 

drug. For example, Hann et al found that, on average, over a set of 470 lead-drug pairs, lead compounds 

had lower molecular weight, lower logP, fewer aromatic rings, and fewer hydrogen-bond acceptors 

compared with their eventual drugs [453]. Therefore, it can be problematic to apply filters designed 

around the average properties of drugs to libraries that are intended for the discovery of lead 

compounds. 
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Additionally, some of the properties used in these filters can depend on conformation and 

environment. Kulkarni et al [454] state that permeability and hydrophobicity can change depending on 

the free energy of solvation, interaction of the drug with a phospholipid monolayer, and the drug’s 

flexibility. Vistoli et al [455] state that hydrophobicity and hydrogen bonding are both dependent on the 

dynamic nature of molecules and that chemical information is limited without the use of dynamic 

descriptors. For a comprehensive review on the concept of drug likeness please see the 2011 review by 

Ursu et al [456]. 

The same computational tools used to predict activity can be applied to predict a more detailed 

DMPK/ADMET profile, including solubility, membrane permeability, metabolism, interaction with 

influx/efflux transporter proteins, interaction with transcription proteins, and different aspects of 

toxicity. For example, QSAR-based techniques have been especially important in predicting the 

toxicology profiles for drugs very early on in their development. These tools collect information 

regarding known toxins such as carcinogens, neurotoxins, and skin irritating agents, and create statistical 

models that can predict the likelihood that a particular compound will reflect these undesirable 

properties [457]. 

1.5.2 Lead improvement: metabolism and distribution 

Aside from general filters applied to compound libraries preceding a screen, computational tools 

can be used to guide hit-to-lead optimization where a compound’s metabolic profile is fine tuned. This 

requires a precise balancing act as the changes necessary to improve a compound’s metabolic profile 

may also significantly reduce its target affinity. During this stage of drug development, efforts are made 

in changing the compound’s structure not only to improve affinity but also to improve its metabolism. 

Therefore, although computational tools are useful in predicting the effects on target affinity from any 

proposed changes to the lead structure, they can be used in parallel to predict the affinity and 

interactions the compound may have with metabolizing enzymes and their regulators [458]. The 

metabolism of a drug can have significant impacts not only on its bioavailability but also on its half-life 

and generation of harmful metabolites. When metabolic stability is lowered, a drug can lose its efficacy. 

Increasing stability can amplify harmful side effects owing to a long half-life. Physiologically, there are 

two important phases in drug metabolism that have been studied extensively. The phase I reactions 

include hydrolysis, reduction, and oxidation and are primarily performed by cytrochrome p450 enzymes. 

Phase II reactions are more diverse and include glucuronidation, sulfation, acetylation, methylation, and 
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glutathione conjugation [459]. These reactions accelerate the drug’s elimination from the body but can 

result in toxic products like highly reactive electrophiles or free radicals [458]. 

Computational tools have been developed to address the phase I metabolism reactions 

performed by Cytrochrome P450 enzymes, mainly through docking and QSAR procedures to predict the 

likelihood that a particular compound will bind to a cytochrome P450. At least 57 P450 isoforms exist in 

the human body, but phase I metabolism is dominated by the isoforms 1A2, 2C9, 2C19, 2D6, and 3A4 

[460] and computational methods are routinely directed against these particular P450 isoforms. In 

addition to the elimination of the drug and generation of metabolites, P450s can also be the source of 

drug-drug interactions in that one drug can reduce the elimination of another drug by blocking access to 

metabolizing enzymes or can increase elimination by upregulating expression of those enzymes. For 

example, in the early development of CCR5 antagonists, experimenters discovered hits that contained 

functional groups that are common among CYP2D6 inhibitors. By modeling the binding of these ligands 

to CYP2D6, imidazopyridines were replaced with benzimidazoles so that possible drug-drug interactions 

arising from inhibition of CYP2D6 were avoided early on [461].  

Structure-based methods are the most popular computational tools for predicting the 

interaction between a compound and P450 enzymes. Binding poses predicted through docking studies 

may provide further insight into the specific sites of metabolism within the compound. For example, 

structure-based methods successfully predicted the metabolism of celecoxib and its 13 analogues 

through CYP2C9 [462, 463]. In addition to some P450 isoforms, x-ray structures of the ligand-binding 

domain of prenane X receptor (PXR) [464], the transcription regulator of CYP3A4 [465], glutathione-S-

transferases [466], and drug transporters such as P-glycoprotein [467] have been determined. Structural 

information about PXR and drug transporters can be used to predict drug-drug interactions through the 

induction of CYP3A4 or transport channels.  

One of the major challenges in modeling P450 binding is the dynamic nature of the binding site 

that accommodates a wide variety of ligands. Another challenge with docking studies involving P450 

enzymes is the fact that the goal is often fundamentally opposite to that of most docking studies in that 

weaker binding is usually preferred over stronger binding. Monte Carlo and stochastic simulations of a 

wide variety of cocrystal structures have allowed development of several dynamic models of P450 

binding sites exploring the different orientations amino acid side chains [458]. GOLD, FlexX, DOCK, 

AutoDock, and the scoring function C-Score are most commonly used for structure-based methods with 
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P450 predictions [468]. For modeling the catalytic reaction encountered when the ligand binds to the 

P450 enzyme, ab initio calculations using Hartree-Fock or density functional theory have been used 

[458].  

For example, the formation of the hydroquinone metabolite and electrophilic quinonone from 

remoxipride was calculated using hybrid density functional theory. This information was then used to 

redesign remoxipride [469]. Density functional theory calculations were used to eliminate the formation 

of reactive metabolites from a series of tyrosine kinase-2 inhibitors. These calculations correctly 

predicted the necessary changes that avoided the formation of these harmful metabolites [470]. Park 

and Harris used DFT on CYP2E1 homology models along with docking and MD to predict the metabolism 

profiles for seven compounds [471]. Li et al used homology modeling and MD to dock ligands into 

CYP2J2 in an effort to describe the binding characteristics of this enzyme. CYP2J2 is involved in the 

creation of eicosatrienoic acids from arachidonic acid. They were able to identify key residues that were 

important for the substrate specificity of CYP2J2. Additionally, they discovered that different ligands, 

although sharing the same scaffold, show different binding modes [103]. Bazeley et al used structural 

information of CYP2D6 to identify invariant segments and performed conformational sampling with MD. 

Combining this data with neural-network based feature selection they found that only three out of 20 

conformations are relevant for CYP2D6 binding. They also analyzed the docking of 82 compounds and 

showed that the most important attributes that conferred a compound’s affinity for CYP2D6 was the 

number of hydrogen-bonding sites, molecular weight, the number of rotatable bonds, AlogP, formal 

charge, number of aromatic rings, and the number of positive atoms. With these findings, they were 

able to achieve a prediction accuracy of 85% [472].  

In addition to these structural methods, reactivity rules are also used to predict the metabolism 

of small molecules. Databases such as Accelrys Metabolite [473] contain curated metabolic 

transformations from the literature. This information can be used to predict the various metabolic 

transformations that will be produced from an input structure. META [474] is a model of mammalian 

xenobiotic metabolism that incorporates metabolic data from literature, textbooks, and monographs to 

define chemical transformation rules called transforms, which can identify and substitute functional 

groups. These focus on both phase 1 and phase 2 metabolism. 

Another method uses electronics and intramolecular sterics to predict sits of CYP3A4 

metabolism. This approach focuses on the rate-limiting step of the hydroxylation by CYP3A4, namely the 
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removal of the hydrogen-atom [475]. The model assumes that the susceptibility for removal depends 

mainly on the electronic environment surrounding the hydrogen. Therefore, the method calculates a 

hydrogen abstraction energy for each hydrogen atom and this information is used to predict sites of 

metabolism [476]. 

SMARTCyp [477] is another rule-based method that determines the reactivity of molecular 

fragments based on activation energies calculated by quantum mechanical methods. It combines a 

reactivity descriptor and accessibility descriptor. The reactivity descriptor estimates energy required for 

P450 metabolism at a given site by looking up fragments in an energy table for each atom. The 

accessibility descriptor is a calculation that determines the 2D distance from the center of the molecule 

a given atom is and always ranges between 0.5 and 1. 

The activation energy table used for the reactivity descriptor combines 11 previously defined 

rules for aliphatic, aromatic, and alkene carbon atoms for 50 carbon sites [478] with new data generated 

by the authors. This produced a collection of 139 transition states that can represent different types of 

P450 reactions. 

Other aspects of a drug’s DMPK/ADMET profile that are predicted with computational tools 

include membrane permeability, which is a large part of bioavailability as well as volume of distribution 

and penetration of the blood-brain barrier, and blood plasma protein binding, involved in a drug’s 

volume of distribution and effective plasma concentrations. The evolution of predictive models for 

blood-brain barrier penetration is reviewed in detail by Norinder and Haeberlein [479]. Additionally, the 

structure of human serum albumin is used to predict plasma protein binding and volume of distribution 

changes [480]. 

1.5.3 Prediction of human Ether-a-go-go related gene binding 

The human ether-a-go-go related gene (hERG) protein is a voltage-gated potassium channel 

expressed in the heart and nervous system. The tetramer has six transmembrane spanning regions per 

protamer and is important for repolarization during the cardiac action potential [481-483]. The delayed 

rectifier repolarizing current, an outward potassium current comprised of a rapid and slow component, 

is involved in plateau repolarization and the configuration of the action potential. Alterations in this 

channel’s conductance, especially blockade of the channel, can lead to an altered refractory period and 

action potential duration [483], often resulting in what is known as drug-induced QT syndrome and a 
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severe cardiac side effect called torsades de points [484]. The QT interval is the period of a cardiac cycle 

where ventricular repolarization occurs [482] and drug-induced QT syndrome can lead to sudden death 

[485]. Because of its importance in the proper regulation of cardiac action potential, off-target 

interactions with hERG have caused several drugs to be removed from the market and/or linked to 

arrhythmias and sudden death [481]. hERG has been termed an “antitarget” in the pharmaceutical 

industry [486]. It has been estimated that 2-3% of prescribed medications include some unintended QT 

elongation [483]. Though most drugs have been shown to inhibit the rapid component of the outward 

potassium current [487], interaction between drugs and hERG is not completely understood, and high-

affinity ligands tend to interact with the inactivated channel with low voltage-dependency, whereas low-

affinity ligands tend to interact with the activated state with high voltage-dependent kinetics [488]. 

However, key residues involved in the interaction between hERG and at least some ligands have been 

identified. For example, Phe656 and Tyr652 in the channel pore may engage in π-π and cation-π 

interactions with the ligand. Thr623 and Ser624 are thought to interact with the polar tails of some 

ligands and some evidence exists of a second binding site [482, 483, 486, 489]. In vitro and in vivo 

methods are commonly used to evaluate drug candidates for potential hERG blockade activity, 

especially patch clamp techniques and radioligand binding assays [490, 491]. However, these methods 

are difficult to scale to high-throughput candidate evaluation, making the computational approach 

attractive for this aspect of drug discovery. 

SB-CADD and LB-CADD have both been used to develop models to discriminate hERG blockers 

and non-blockers [492, 493]. SB-CADD techniques have mainly relied on docking with homology models 

and this method has not been validated with large, highly diverse data sets [494]. LB-CADD-based hERG 

models have been created using tools including ligand-based pharmacophore [495, 496], CoMFA [497], 

Bayesian classification with QSAR [498], and 2D fragment based descriptors [499]. 

Wang et al developed discrimination models based on molecular property descriptors and 

fingerprints [500]. Descriptors were calculated using Discovery Studio molecular simulation package 

(Accelrys) and included several variations on logP, molecular weight, hydrogen-bonding, the number of 

rotatable bonds, rings, and aromatic rings, the sum of oxygen and nitrogen atoms, and fractional polar 

surface area. The fingerprints included SciTegic extended-connectivity fingerprints and Daylight-style 

path-based fingerprints using the Morgan algorithm [501]. Bayesian classifiers and decision tree 

methods were used to create models based on these descriptors.  
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Wang et al [500]analyzed the results of their models and found that increased hydrophobicity 

was correlated with increased hERG binding. Additionally, molecular weight showed a significant, 

although lesser impact on hERG binding, with molecules having a molecular weight under 250 being less 

likely to be a hERG blocker. Additionally, analysis of their fingerprints revealed that most hERG-binding 

fragments contained nitrogen atoms, with four of the top five containing positively charged nitrogen 

atoms. These top five fragments also contained at least one oxygen atom or a carboxylic acid. Despite 

these correlations, the authors stressed that no single molecular property can be used to discriminate 

between hERG blockers and nonblockers.  

Obrezanova and Segall [502] used the Gaussian process to build models for hERG inhibition as 

well as other ADMET properties. The Gaussian process [503, 504] is a nonlinear regression technique 

that is resistant to overtraining. It uses Bayesian inference to link the descriptors of a molecule with the 

probability of the molecule falling into a specific class. Eventually, a posterior probability distribution is 

created that defined which functions best describe the observed data. The mean value over all functions 

can provide the prediction, whereas the full distribution can provide a measure of uncertainty for each 

prediction. The hERG inhibitor model was trained on 117 active and 51 inactive compounds evaluated 

through patch clamp in mammalian cells with descriptors generated in StarDrop’s Auto-Modeler [505]. 

These 2D descriptors were based on SMARTS and included atom type counts, functionality, and 

molecular properties such as logP, molecular weight, and polar surface areas. Datasets were also 

clustered using 2D fingerprints and tanimoto similarity. 

Nisius and Gӧller [506] used the Tripos Topomer Search technology [507] to design a modeling 

approach termed topoHERG. This method screens reference datasets for molecules similar to a query 

compound and returns pharmacophore and shape-based distances between a query molecule and its 

neighbors. The dataset contained 115 inactive compounds, 90 moderately active hERG blockers, and 70 

highly active hERG blockers. The topomer is defined as a 3D representation of a molecular fragment that 

is based on 2D topology and a rule set that generates an absolute conformation [508] so that distances 

between topomers of different molecules in large databases can be calculated. To differentiate between 

hERG active and inactive neighbors, the inverse of the topomer search distance was multiplied by one if 

the topomor search neighbor was active and negative one if it was inactive. A molecule was predicted to 

be an active hERG blocker if its overall sum was greater than zero. A two-stage approach using two 

optimized models yielded a prediction accuracy of 76-81% [506]. 
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Garg et al [487] used a genetic function approximation to generate quantitative structure-

toxicity relationship (QSTR) models using 2D descriptors generated using the QSAR+ module of Cerius 

(Accelrys). These models were trained with 56 hERG blockers and descriptors included 

electrotopological descriptors that contained information regarding the topological environments for all 

atoms in the molecule as well as electronic interactions with other atoms in the molecule. To perform 

genetic function approximation, the authors generated a number of random equations that were 

randomly selected as pairs. These parent pairs underwent crossover operations to generate new 

equations, and those that showed improved fitness scores were kept [509]. In parallel, the authors 

generated a toxicophore (pharmacophore-based toxicity model) using Catalyst’s HypoGen that included 

hydrogen-bonding, hydrophobic, aromatic, and positive ionizable features. Upon analysis of their 

models, the authors noted that both basic and neutral hERG blockers had highly flexible linkers and 

various molecular fragments. 

1.5.4 Drug Metabolism and Pharmacokinetics/Absorption, Distribution, 

Metabolism, and Excretion and the Potential for Toxicity Prediction Software 

Packages and Algorithms  

There are currently many models available for predicting absorption, bioavailability, transporter 

binding, metabolism, volume of distribution, and P450 interactions [510-516]. Comprehensive software 

packages have been developed such as QikProp which can be used to predict an array of ADMET-related 

properties such as solubility, membrane permeability, partition coefficients, blood-brain barrier 

penetration, plasma protein binding, and the formation of metabolites [517]. These predictions mainly 

come from statistical models such as regression and neural networks that are trained on known ADMET 

properties for many compounds. The OSIRIS Property Explorer allows scientists to draw chemical 

structures and predict ADMET profile [35]. The software package MetaSite (Molecular Discovery Ltd, 

Middlesex UK) is used to predict the site of metabolism using structural information from both the 

ligand and the enzyme. A probability function is created for the site(s) of metabolism using the free 

energy of P450-ligand binding and reactivity. This software uses structure-based techniques to identify 

the relevant amino acids and proposes compound modifications that can optimize its metabolism profile 

[518]. Ahlstrom et al proposed a three-step procedure using MetaSite to identify metabolic sites, in 

silico modification of these sites, and docking of new compounds [462]. These software packages aim at 

predicting overall ADMET properties with convenient and accessible tools and have shown great benefit 
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in drug development. For example, computational modeling of ADMET properties prevented a potential 

blood pressure-lowering drug from being lost early in the development process. The proposed 

compound showed low EC50 values, indicating that it was less potent than another compound of 

consideration. However, pharmacokinetic modeling showed that this compound would actually have 

greater efficacy than the one that showed higher potency. This compound did indeed show superior 

efficacy in the clinic [519]. 

1.5.5 Drug Metabolism and Pharmacokinetics/Absorption, Distribution, 

Metabolism, and Excretion and the Potential for Toxicity: Clinical Trial 

Prediction and Dosing 

Computational tools are also being developed to address the possibility of simulating early 

clinical trials to avoid the waste resources inherent in testing drugs with poor ADMET profiles. This is a 

prevalent problem in drug development because up to 90% of drugs fail during clinical development and 

the time between reaching clinical trials and approval is up to 8 years [520]. These simulations aim at 

modeling the pathophysiology of biological systems and the pharmacology of treatments and can often 

incorporate things such as disease progression, placebo response, and dropout rates.  

For example, clinical trial simulation was used by Laer et al to propose appropriate doses for 

sotalel [CAS 959-24-0; N-[4-[1-hydroxy-2-[(1-methylethyl)amino] ethyl] phenyl] methanesulfonamide 

hydrochloride] in children [521] and the Food and Drug Administration approved dosing changes for 

etanercept (Immunex Corporation, Thousand Oaks CA) in juvenile rheumatoid arthritis due to clinical 

trial simulations performed by Yim et al [522]. Simcyp (Simcyp Ltd, Sheffield UK) is a software package 

that creates virtual populations of participants with specifiable genetic and physiological characteristics 

using literature data. In vitro metabolism data can be applied to the in-vitro-in-vivo extrapolation 

process to simulate whole-live and hepatic clearances for these virtual populations [523]. Kowalski et al 

used the NONMEM software package (ICON plc, Dublin, Ireland) and PK/PD modeling to suggest a 

dosing regimen for SC-75416, a selective COX-2 inhibitor that would be comparable to the pain relief 

afforded from 50 mg of rofecoxib. This simulation saved an estimated nine months of development 

[524]. 
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1.6 Conclusions 

The extensive variety of computational tools used in drug discovery campaigns suggests that 

there are no fundamentally superior techniques. The performance of methods varies greatly with target 

protein, available data, and available resources. For example, Kruger and Evers completed a 

performance benchmark between structure- and ligand-based vHTS tools across four different targets, 

including angiotensin-converting enzyme, cyclooxygenase-2, thrombin and HIV-1 protease [525]. 

Docking methods including Glide, GOLD, Surflex, and FlexX were used to dock ligands into rigid target 

crystal structures obtained from PDB. A single ligand was used as a reference for ligand-based similarity 

search strategies such as 2D (fingerprints and feature trees) and 3D (Rapid Overlay of Chemical 

Structures (ROCS, OpenEye Scientific Software, Santa Fe, NM)), a similarity algorithm that calculates 

maximum volume overlap of two 3D structures [243, 526]. In general the authors found that docking 

methods performed poorly for HIV-1 protease and thrombin because of the flexible nature of the 

targets and the fact that the known ligands for these proteins have large molecular weight and 

peptidomimetic character.   

Enrichments based on 3D similarity searches were poor for HIV-1 protease and thrombin 

datasets compared with ACE, which is likely due to the higher level of diversity in the HIV-1 protease and 

thrombin ligand datasets. Similarity scoring algorithms like ShapeTanimoto, ColorScore, and 

ComboScore were compared with the performance of ROCS [525]. It was found that even within the 

scoring, algorithm performance varied across targets. For example, ColorScore performed best for ACE 

and HIV-1 protease, whereas ShapeTanimoto for COX-2 and ComboScore was the method of choice for 

thrombin. All vHTS tools performed comparatively well for ACE, but ligand-based 2D fingerprint 

approach generally outperformed docking methods. The authors also note an important observation in 

that, especially for HIV-1 protease, the structure-based and ligand-based approaches yielded 

complimentary hit lists. Therefore, performance metrics are not the only benchmark to consider when 

comparing CADD techniques. In some cases, discovery of novel chemotypes is more important than high 

hit rates or high activity. In the current study, Kruger and Evers found that ROCS and feature trees were 

more successful in retrieving compounds with novel scaffolds compared to other fingerprints [525].  

Warren et al published an in-depth assessment of the capabilities and shortcomings for docking 

programs and their scoring techniques against eight proteins of seven evolutionarily diverse target 

types. They found that docking programs were well adept at generating poses that included ones similar 
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to those found in complex crystal structures. In general, although the molecular conformation was less 

precise across docking programs, they were fairly accurate in terms of the ligand’s overall positioning. 

With regards to scoring, their findings agree with others that docking programs lack reliable scoring 

algorithms. So while the tools were able to predict a set of poses that included those that were seen in 

the crystal structure, the preference for the crystal structure pose was not necessarily reflected in the 

scoring. For five of the seven targets that were evaluated, the success rate, however, was greater than 

40%. It was found that the enrichment of hits could be increased by applying previous knowledge 

regarding the target. However, there was little statistically significant correlation between docking 

scores and ligand affinity across the targets. The study concluded that a docking program’s ability to 

reproduce accurate binding poses did not necessarily mean that the program could accurately predict 

binding affinities. This analysis underscores the necessity not only to re-rank the top hits from a docking-

based vHTS using computationally expensive tools but also to continue evaluating novel scoring 

functions that can efficiently and accurately predict binding affinities [527]. 

Improvements in scoring functions involve the use of consensus scoring methods and free 

energy scoring with docking techniques. Consensus scoring methods have been shown to improve 

enrichments and prediction of bound conformations and poses by balancing out errors of individual 

scoring functions.  In 2008, Enyedy and Egan compared docking scores of ligands with known IC50 and 

found that docking scores were incapable of correctly ranking compounds and were sometimes unable 

to differentiate active from inactive compounds. They concluded that individual scoring methods can be 

used successfully to enrich a dataset with increased population of actives but are insufficient to identify 

actives against inactives [13]. Page et al concluded that although binding energy calculations such as 

MM-PBSA are one of the more successful methods of estimating free energy of complexes, these 

techniques are more applicable to providing insights into the nature of interactions rather than 

prediction or screening [528]. Consensus scoring functions where free energy scores of different 

algorithms have been combined or averaged have been shown to substantially improve performance 

[529-532]. 

In their literature survey, Ripphausen et al reported that structure-based virtual screening was 

used much more frequently than ligand-based virtual screening (322 to 107 studies). Despite a 

preference for structure-based methods, ligand-based methods on average yield hits with higher 

potency than structure-based methods. Most ligand-based hits had activities better than 1 µM while 

structure-based hits fall frequently in the range of 1-100 µM [12]. Scoring algorithms in docking 
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functions have been found to be biased toward known protein ligand complexes; for example more 

potent hits against protein kinase targets are discovered when compared to other target classes (figure 

1.12) [61]. 

 

Figure 1.12 Ligand-based and structure-based lead compounds. Ripphausen, et al. report that ligand-

based computationally approaches yield compounds with higher affinity than structure-based 

computationally approaches. Source: [533]. 

One CADD approach that has been gaining considerable momentum is the combination of 

structure-based and ligand-based computation techniques [534]. For example, the GRID-GOLPE method 

docks a set of ligands at a common binding site using GRID and then calculates descriptors for the 

binding interactions by probing these docking poses with GOLPE [535]. Multivariate regression is then 

used to create a statistical model that can explain the biological activity of these ligands. Structure-

based interactions between a ligand and target can also be used in similarity-based searches to find 
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compounds that are similar only in the regions that participate in binding rather than cross the entire 

ligand. LigandScout uses such a technique to define a pharmacophore based on hydrogen bonding and 

charge-transfer interactions between a ligand and its target. Another technique known as the 

pseudoreceptor technique [96] uses pharmacophore mapping-like overlaying techniques for a collection 

of ligands that bind to the same binding site to establish a virtual representation of the binding site’s 

structure, which is then used as a template for docking and other structure-based vHTS. This approach 

has been utilized by VirtualToxLab [536] for the creation of nuclear receptors and cytochrome P450 

binding site models in ADMET prediction tools and by Schneider et al in the modeling of the H4 receptor 

binding site subsequently used to identify novel active scaffolds [97]. In a recent review by Wilson and 

Lill [537], these methods are grouped into a major class of combined techniques called interaction based 

methods. A second major class involves the use of QSAR and similarity methods to enrich a library of 

virtual compounds prior to a molecular docking project. This can increase the efficiency of the project by 

reducing the number of compounds to be docked. This is similar to the application of CADD to enrich 

libraries prior to traditional HTS projects. This review also presents comprehensive descriptions of 

software packages using a combination of ligand- and structure-based techniques as well as several case 

studies testing the performance of these tools. 

 As discussed earlier, these methods are often used in serial where ligand-based methods are 

first used to enrich libraries that will subsequently be used in structure-based vHTS. The most common 

application is at the ligand library creation stage through the use of QSAR techniques to filter out 

compounds with low similarity to a query compound or no predicted activity based on a statistical 

model. QSAR has also been used as a means to refine the docking scores of a structure-based virtual 

screen. 2D and 3D QSAR can also be used to track docking errors. This method has been used by 

Novartis where a QSAR model is built from docking scores rather than observed activities, and this 

model is applied to that set to provide additional score weights for each compound [538]. 

Although CADD has been applied quite extensively in drug discovery campaigns, certain 

lucrative therapeutic targets like protein-protein interaction and protein-DNA interactions are still 

formidable, problems mainly because of the relatively massive size of interaction sites (in excess of 1500 

Å2) [1]. Lastly, accessibility has also been a problem with CADD as many tools are not designed with a 

friendly user interface in mind. In many cases, there can be an overwhelming number of variables that 

must be configured on a case-by-case basis and the interfaces are not always straightforward. A great 

deal of expertise is often required to use these tools to get desired measure of success. Increasingly, 
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efforts are being made to develop user friendly interfaces especially in commercially available tools. For 

example, ICM-Pro (MolSoft L.L.C., San Diego, CA) is a software package designed to be a user friendly 

docking tool and replaces the front-end of current docking algorithms with an interface that is 

manageable to a wider audience [198]. More recently gamification of the ROSETTA folding program, 

known as Foldit [539], has allowed individuals outside of the scientific community to help solve the 

structure of M-PMV retroviral protease [540] and for predicting backbone remodeling of 

computationally designed biomolecular Diels-Alderase that increased its activity [541]. The successful 

application of crowd-sourced biomolecule design and prediction suggests further potential of CADD 

methods in drug discovery. 
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2.1 Abstract  

Stereochemistry is an important determinant of a molecule’s biological activity. Stereoisomers can have 

different degrees of efficacy or even opposing effects when interacting with a target protein. 

Stereochemistry is a molecular property difficult to represent in 2D-QSAR as it is an inherently three-

dimensional phenomenon. A major drawback of most proposed descriptors for 3D-QSAR that encode 

stereochemistry is that they require a heuristic for defining all stereocenters and rank-ordering its 

substituents. Here we propose a novel 3D-QSAR descriptor termed Enantioselective Molecular 

ASymmetry (EMAS) that is capable of distinguishing between enantiomers in the absence of such 

heuristics. The descriptor aims to measure the deviation from an overall symmetric shape of the 

molecule. A radial-distribution function (RDF) determines a signed volume of tetrahedrons of all triplets 

of atoms and the molecule center. The descriptor can be enriched with atom-centric properties such as 

partial charge. This descriptor showed good predictability when tested with a dataset of thirty-one 

steroids commonly used to benchmark stereochemistry descriptors (r2 = 0.89, q2 = 0.78). Additionally, 

EMAS improved enrichment of 4.38 versus 3.94 without EMAS in a simulated virtual high-throughput 

screening (vHTS) for inhibitors and substrates of cytochrome P450 (PUBCHEM AID891). 
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2.2  Introduction 

Stereoisomers are defined as different molecular species of equal constitution which are 

separated by energy barriers [1]. For organic molecules stereochemistry is most frequently caused by 

carbon atoms with four different substituents. However, other stereocenters exist such as positively 

charged nitrogen atoms with four different substituents, double bonds with different substituents on 

each of the two carbon atoms, stereoisomeric allenes, atropisomeric biphenyls, etc. Enantiomers are a 

subset of stereoisomers that are defined as non-superimposable mirror images (enantios being Greek 

for opposite and meros for part). Despite their structural similarities, enantiomers can display very 

different pharmacological profiles. Stereoisomers that are not enantiomers are called diastereomers. 

Stereoselectivity is widely prevalent in nature as most proteins are formed from the genetically encoded 

L-amino acids making small molecule binding pockets enantioselective [2]. In drug discovery, there are 

examples in which different enantiomers show different efficacies, e.g., dexrabeprazole [3] and beta 

blockers [4], and different toxicities, e.g., levobupivacaine [5]. In 1992, the FDA issued a statement 

requiring that the development of any racemate (mixture of a compound’s stereoisomers) carry a 

justification for the inclusion of both isomers [6] and in the year 2000, chiral drugs accounted for over 

$100 billion in sales [7]. Between 1985 and 2004, the number of single enantiomer drugs as a 

percentage of chiral molecules increased from 31.6% to 89.8% [8]. 

Given the importance of stereoselectivity in drug design, it is necessary that any computational 

approach to drug discovery distinguishes between stereoisomers. In Structure-Based Computer-Aided 

Drug Discovery (SB-CADD) stereochemistry is explicitly accounted for as the molecule is docked into a 

structural model of the protein binding site. The 3D structure of the molecule in complex with the 

protein is evaluated taking its stereochemistry into account. In complex with the target protein even 

enantiomers turn into diastereomers and can be distinguished. In Ligand-Based Computer-Aided Drug 

Discovery (LB-CADD) the chemical structures of active compounds are compared to derive common 

features that determine activity. The task of distinguishing stereoisomers and in particular enantiomers 

becomes more challenging as stereochemistry needs to be defined in the absence of the protein. This is 

impossible in 2D molecular descriptors where only the constitution of a molecule is taken into account. 

Therefore extensions to 2D molecular descriptors have been developed—sometimes described as 2.5D 

descriptors—that describe configuration and can therefore define stereochemistry. Lastly, 3D 

descriptors based on the molecular conformation can define stereochemistry, if appropriately designed. 
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The IUPAC convention for distinguishing stereoisomers is the Cahn-Ingold-Prelog (CIP) 

convention distinguishing R (rectus) and S (sinister) configuration of stereocenters. It requires a priority 

weighting system for the different substituents that is incapable of dealing with some complex 

scenarios. Extensions to the CIP system have been introduced to handle situations in which the chiral 

center did not rest on an atom (chirality plane or axis) and for stereoisomers which do not possess 

centers of chirality at all (stereisomeric allenes, atropisomeric biphenyls, and ansa-compounds) [1]. 

Further complications arise for pseudoasymmetric stereogenic units, defined as pairs of enantiomorphic 

ligands together with two ligands which are non-enantiomorphic. In cases such as these, the priorities of 

two substituents depend on their own chiral centers. One particular disadvantage is that the CIP 

nomenclature does not always follow chemical intuition. For example, take the two molecules 

HC(CH3)(OH)F and HC(CH3)(SH)F. Naively we would align these close derivatives by superimposing H with 

H, CH3 with CH3, OH with SH and F with F. This assigns R-HC(CH3)(OH)F to S-HC(CH3)(SH)F and vice versa. 

In fact, closely related derivatives that place similar functional groups in the same regions of space and 

are likely to have similar activity can have opposite CIP assignment. Therefore, the CIP convention is not 

suitable to describe stereochemistry effectively for LB-CADD.  

Extensions to 2D-QSAR have been proposed to distinguish enantiomers. Golbraikh and co-

workers introduced a series of chirality descriptors that use an additional term called the chirality 

correction added to the vertex degrees of asymmetric atoms in a molecular graph [9]. This method is 

similar to one proposed by Yang and Zhong [10] where the chiral index was instead appended to the 

substituents attached to the chiral center. Multiple similar algorithms have also been proposed [11-14]. 

For example, Brown, et al [11] added chirality to their graph kernel method. The drawbacks of these 

methods include their reliance on the problematic R/S designations as well as the combination of spatial 

and atom property information such that their indices become a principally mathematical concept with 

little interpretation on physical terms. 

Another approach proposed by Benigni and co-workers [15] describes a chirality measure based 

on the comparison of the 3D structure for a molecule with all others in a data set. Zabrodsky [16] 

proposed a similar continuous symmetry measure which quantifies the minimal distance movement for 

points of an object in order to transform it into a shape of desired symmetry. However, these molecular 

similarity indices are very sensitive to relative orientation and depend on pairwise molecular indices 

which can complicate QSAR-based high throughput screening. 
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Aires-de-Sousa, et al [17-19] introduced a 3D-QSAR method for handling enantiomers. Classical 

3D-QSAR descriptors such as radial distribution functions are incapable of distinguishing between 

enantiomers based on their nature. This method employs an RDF-like function that utilizes a ranking 

system for each chiral center introduced by Zhang and Aires-de-Sousa that reinterpreted the CIP rules in 

terms of more meaningful physicochemical properties. Additionally, it has the benefit of being a vector 

rather than single value which is equal and opposite for enantiomer pairs. However, this method 

requires the identification and appropriate labeling of all stereogenic units and suffers from the fact that 

spatial information is combined with atom properties where some physical interpretability is lost. It is 

also worth mentioning that it is not clear if it is pharmacologically relevant to specify every stereogenic 

component of a molecule, but rather if different profiles between enantiomers depend on specific chiral 

centers and/or an overall chirality of the molecule as a whole. 

CoMFA [20] is an appealing method for distinguishing between enantiomers as it avoids the 

necessity to identify stereogenic centers. Rather, it intrinsically takes chirality into account as the 

molecular fields of chiral isomers are inherently different. However, the method relies on superimposition of 

all molecules[9] which is difficult to achieve for large or diverse substance libraries. 

Here we propose a novel enantioselective 3D descriptor for QSAR that is similar to the RDF-like 

function proposed by Aires-de-Sousa and co-workers but with important differences to address the 

concerns raised above. We call this new method Enantioselective Molecular ASymmetry (EMAS). Our 

method does not rely on any priority ranking or distinction of every stereogenic unit, thereby 

eliminating the need to combine spatial and atomic properties and bypassing the difficulties that arise in 

non-conventional chiral centers. Rather, the enantiomeric distinctions “emerge” from the spatial 

distribution of atoms within the molecule. Additionally, EMAS is designed to avoid a rigid distinction 

between enantiomers but rather to represent the overall asymmetry of a molecule as it compares to 

other similar molecules as well as its own enantiomorphs. Therefore, EMAS intends to describe overall 

molecular asymmetry while including a directionality component that can distinguish between 

enantiomers. 
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2.3 Results and Discussion 

Enantiomorphism is Determined by Asymmetry in Shape or Property Distribution  

Enantiomorphism in small molecules is impacted by two phenomena. The first factor is the 

shape of the molecule—i.e., the distribution of its atom coordinates in space. If the mirror image of this 

shape cannot be superimposed with the original version, the two molecules are enantiomers. Beyond 

the overall shape the distribution of properties plays a role. We can envision molecules that have a 

(near) perfect symmetric shape. Image and mirror image will be identical shape wise. However, 

distribution of partial charge, polarizability, and electronegativity can be enantiomorphic. While both 

contributions are coupled they represent two dimensions of one phenomenon. For a specific molecule 

one of the other factors might be more pronounced. For example steroids can have enantiomorph 

shapes but have relatively uniform property distributions as they are dominated by apolar CH groups. 

On the other hand, the molecule CFClBrI is an almost perfect regular tetrahedron with a highly 

enantiomorph distribution of partial charge and polarizability. As both contributions can determine 

properties and activities of small molecules, stereochemical descriptors should capture and ideally 

distinguish both contributions. 

Radial Distribution Functions Separate Shape Information and Property Distribution 

Radial Distribution Functions (RDFs) are often applied in 3D-QSAR [21, 22]. As a means of 

comparison, the general form of the atomic radial distribution function is shown: 

𝑓(𝑟) = ∑ ∑ 𝑃𝑖𝑃𝑗𝑒
−𝛽(𝑟−𝑟𝑖𝑗)

2
𝑛−1

𝑗

𝑛

𝑖

 (1)  

In this equation, 𝛽 is a smoothing parameter, often called the ‘temperature’ while 𝑟𝑖𝑗 is the 

distance between atoms 𝑖 and 𝑗, 𝑛 is the total number of atoms in the molecule, and 𝑟 is the running 

variable for the function 𝑓(𝑟). Often, such equations are ‘weighted’ with a property coefficient for both 

atoms 𝑃𝑖𝑃𝑗. The function plots shape (i.e., distance between two atoms) on the x-axis, the respective 

property coefficient on the y-axis thereby separating geometry from property distribution. With 𝑃𝑖𝑃𝑗 =

1 this function is a representation of the overall shape of the molecule based on the frequencies of all 

atom pair distances within each radial distance step. As distances are invariant to mirroring, 
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enantiomers share identical RDF functions. Note that diastereomers have distinct RDFs as not all atom 

pair distances are identical.  

Expanding RDFs to ‘Signed’ Volumes that Are Sensitive to Shape Enantiomorphy 

We first look for the simplest geometric form that would be sensitive to mirroring. This shape 

would be a tetrahedron. We choose tetrahedrons consisting of all combinations of three atoms 𝑖, 𝑗, 𝑘 

and the center of the molecule. Other approaches use all permutations of four atoms. The present 

approach reduces the computational demand. The geometric property plotted for the tetrahedron is 

volume. 𝑐𝑖, 𝑐𝑗, and 𝑐𝑘 are the coordinates of the three atoms. The center of the molecule is defined by 

point 𝑜. Then, we compute the signed volume as: 

𝑠𝑖𝑔𝑛𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 =
1

6
(𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ × 𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗) ∙ 𝑜𝑐𝑖⃗⃗ ⃗⃗  ⃗ (2)  

While the absolute term always reflects volume, it is important to note that the result can have 

a positive or negative sign, depending on the order of points which is initially arbitrary. We note that the 

volume has an arbitrary sign that inverts when the molecule is converted into its mirror image. We note 

further that the volume becomes 0 if the plane defined by 𝑐𝑖, 𝑐𝑗, and 𝑐𝑘 includes 𝑜. This property is 

beneficial as a planar arrangement of atoms cannot be enantiomorphic. However, for a tetrahedron to 

contribute to enantiomorphy, its edges ‖𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ ‖, ‖𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖, and ‖𝑐𝑗𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ must be of different length. This 

property is captured by a stereochemistry score: 

𝑠𝑡𝑒𝑟𝑒𝑜𝑐ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦 =
(‖𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ ‖ − ‖𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖) ∗ (‖𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ − ‖𝑐𝑗𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖) ∗ (‖𝑐𝑗𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ − ‖𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ ‖)

0.0962243 ∗ max(‖𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ ‖, ‖𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖, ‖𝑐𝑗𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖)
𝟑

 (3)  

Two things emerge from the numerator: the asymmetry is evaluated based on the variation in 

distances between the three atoms. If any two distances are equal, the triangle formed from the three 

atom coordinates will contain perfect symmetry and the score will be 0. Additionally, the directional 

(enantiomorphic) information emerges based on the order of distances. For example, if ‖𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ ‖ > ‖𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 

> ‖𝑐𝑗𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖, then this product will have a negative sign (+) ∗ (+) ∗ (−). However, if, from the vantage 

point of the molecular center, the order of distances has been shuffled (as would be seen in an 

enantiomer ‖𝑐𝑖𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ > ‖𝑐𝑖𝑐𝑗⃗⃗ ⃗⃗ ⃗⃗ ‖ > ‖𝑐𝑗𝑐𝑘⃗⃗ ⃗⃗ ⃗⃗  ⃗‖), the sign changes as well (−) ∗ (+) ∗ (−). Figure 2.1 

demonstrates how opposite directions emerge depending on the ordering of instances. Recall that by 

allowing a signed volume, we ensure that the order of distances does not rely on the order of atoms 
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coordinates encountered, but rather as the order of distances seen from the molecular center in terms 

of the cross product’s direction. The score is normalized by a constant factor of 0.0962243 which is 

calculated as the maximum possible score when the largest of the three distances is 1. Details can be 

found in the supplementary information. Figure 2.2 compares atom triplets that give rise to high versus 

low scores as well as scores with opposite directions. 

The final directional asymmetry score (DAS) of any given atom triplet becomes: 

𝐷𝐴𝑆 = √𝑠𝑖𝑔𝑛𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗𝑘 ∗ 𝑠𝑡𝑒𝑟𝑒𝑜𝑐ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦𝑖𝑗𝑘
3

 (4)  

Note that the products cube-root has been taken to achieve a dimension of distance resembling 

a common RDF. This procedure preserves the sign and expands the range of frequently occurring  

low-scoring triplets at the cost of rare triplets with high scores. Substituting this directional asymmetry 

in place of atom distance, the EMAS function becomes: 

𝐸𝑀𝐴𝑆(𝑟) =  ∑ ∑ ∑ 𝑠𝑖𝑔𝑛(𝐷𝐴𝑆) × 𝑒
−𝛽( 𝑟 − |𝐷𝐴𝑆𝑖𝑗𝑘| )

2
𝑛−2

𝑘

𝑛−1

𝑗

𝑛

𝑖

 (5)  

where 𝛽 is the smoothing parameter, 𝑛 is the total number of non-hydrogen atoms, and 𝑟 is the running 

variable of the function 𝐸𝑀𝐴𝑆(𝑟). The alternate sign preceding the exponential function transfers the 

“directionality” of the score to the overall function so that at any given score, the intensity reflects the 

subtraction of negative (one direction) from positive (opposite direction). Figure 2.3 maps the EMAS plot 

for epothilone B and its mirror image. 
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Figure 2.1 Calculating DAS (A) Scores reflect opposing enantiomorphs based on cross-product direction and 

geometric center. Enantiomers [(2R,3R)-2-(chloromethyl)-3-propyloxirane and (2S,3S)-2-

(chloromethyl)-3-propyloxirane] with two stereocenters are shown. (B) Two triangles are visualized in 

both enantiomers. These triangles encompass the same triplets of atoms between the two molecules. 

Four tetramers formed by the atom triplets and molecular center are visualized. i, j, k, and i', j', k' 

reflect the order of these atoms in either molecule. Importance of atom ordering is shown based on the 

direction of cross product (red arrow) and location of molecular center (black circle). (C) Volume and 

score calculations for the four tetrahedrons across both enantiomers are shown. Note the opposite 

signs and scores between the two enantiomers’ tetrahedrons. 
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Figure 2.2 Encoding diazepam: atom triplets (A) Top five scoring atom triplets in diazepam are shown. 

The black circle in all figures represents the molecular center. (B) Lowest five scoring atom triplets in 

diazepam. All triplets shown here score 0 and do not contribute to the RDF-like code. (C) Top five 

positive and top five negative scoring triplets in diazepam. Yellow: positive; orange: negative.  

 

Figure 2.3 EMAS curves for epothilone B (A) EMAS curves for epothilone B (blue) compared with 

its mirror image (red). X-axis represents the Directional Asymmetry Score in angstroms while the 

y-axis indicates the frequency of these scores across the entire molecule. (B) Atom triplets with a 

directional asymmetry score of approximately 0.3 angstroms. (C) Atom triplets with a directional 

asymmetry score of approximately 1.3 angstroms. (D) Atom triplets with a directional asymmetry 

score of approximately 1.7 angstroms. 
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As with the basic radial distribution function, the absence of any weighting coefficient results in 

a descriptor that encodes only spatial information. While this is important information in and of itself, 

the addition of a property weighting coefficient increases the utility of this descriptor. Since we are 

iterating over all atom triplets, the possibility that one atom property can throw off two other atom 

properties in unintended ways made it problematic in some cases to simply multiply the three atom 

properties together. Adding the properties, on the other hand, can circumvent this issue but two atom 

properties of equal magnitude and opposite signs can cancel each other out. Therefore, we retained the 

functionality for both property coefficient methods and suggest that any use of this descriptor in larger 

datasets test either method since one may outperform the other depending on the dataset. 

Evaluation of EMAS as a Novel Descriptor 

Predictability Benchmarking: Cramer’s Steroids 

A commonly used dataset for evaluating the predictive capability of novel stereochemistry-

based descriptors was introduced by Cramer et al. in 1988 [20] and several structures were corrected in 

a subsequent publication [23]. These thirty-one steroid structures are accompanied with their experimental 

binding affinities to human corticosteroid-binding globulins (CGB) and provide a small dataset containing 

many stereocenters. Additionally, the rigidity of these compounds makes them an ideal benchmark set 

for 3D-QSAR algorithms eliminating the factor of conformational flexibility. Since EMAS can be employed 

in three forms: spatial only, property weighting coefficient via summation, and property weighting 

coefficient via multiplication, we trained three separate artificial neural network (ANN) models using 

descriptors derived in each of these three methods. To predict binding affinities over the entire dataset, 

we used a cross-validated leave-one-out approach. To compare the predictive power of our model 

versus other descriptors that have been tested against the steroid set, we calculated the correlation 

coefficient 𝑟2 of predicted versus experimental affinities and the “cross-validated 𝑟2” 𝑞2.  

As expected, the ANN model generated using no property weighting (solely spatial information) 

performed the worst of the three, producing a 𝑟2 of 0.78 and a 𝑞2 of 0.60. By weighting with a 

multiplicative property coefficient, the performance increased considerably, resulting in a 𝑟2 of 0.86 and 

a 𝑞2 of 0.74. Weighting with the property summation coefficient yielded the best predictions with a 𝑟2 

of 0.89 and a 𝑞2 of 0.78. 
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Since we began with an interest in generating a molecular asymmetry descriptor that could 

distinguish between enantiomers, we wanted to ensure that the inclusion of directionality increased the 

information contained in the descriptor. Therefore, we created a version of the descriptor that 

incorporates just the absolute value of all stereochemistry scores, thereby eliminating all directional 

information while retaining all other spatial information. We found that by training our model without 

directional information, the predictive capabilities for the steroid affinities decreased to a 𝑟2 of 0.65 and 

a 𝑞2 of 0.41, reinforcing our original design to capture stereochemistry. We also compared the model 

employing EMAS with one created with a traditional RDF. This model performed worse than any of our 

three methods giving a 𝑟2 of 0.75 and a 𝑞2 of 0.56. Weighting the RDF’s with the same properties used 

to weight EMAS did not produce any significant improvement in the model (data not shown). Cross-

validated predictions for all variations of EMAS as well as the experimental affinities can be found in 

Table 2-1. 

Since this dataset is well-established across similar descriptors in the literature, we compared 

our predictive power to other methods and found that our best 𝑞2 fell at the average 𝑞2 of all of these 

methods (0.63 < 𝑞2 < 0.94). This result is somewhat difficult to interpret for several reasons:  

(a) different statistical models are utilized; (b) different degrees of cross validation were employed, and 

(c) our descriptor solely describes stereochemistry and is meant to be complemented by other 

descriptors (read below). Most of the competing descriptors include more information on molecule size, 

shape, and property distribution. However, it is important to note that while EMAS does not require any 

molecular alignment or pre-annotated stereocenters, it is capable of performing well with a dataset that 

contains a great deal of stereochemistry. Additionally, the inclusion of directional information 

outperforms a similar implementation lacking directional information as well as the similar RDF 

descriptor weighted with or without atom properties. For a comparison of our 𝑞2 with other 

documented tests against Cramer’s steroids, see Table 2-2. 
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Table 2-1 Experimental and predicted binding affinities for the 31 Cramer’s steroids using novel 

stereoselective descriptor to train ANN models. Spatial predictions utilize the novel descriptor without any 

atom property weighting. Multiply properties utilize the novel descriptor weighted by the product of atom 

properties. Sum properties utilize the novel descriptor weighted by the sum of atom properties. 

Molecule 
Observed 

CBG affinity 
(pKa) 

Predicted 
[spatial] 

Predicted 
[multiply 

properties] 

Predicted [sum 
properties] 

Predicted [no 
stereochemistry] 

aldosterone −6.28 −7.47 −7.31 −7.25 −7.22 

androstanediol −5.00 −5.47 −5.46 −5.33 −5.56 

5-androstenediol −5.00 −5.47 −5.43 −5.36 −5.75 

4-androstenedione −5.76 −5.64 −5.60 −5.79 −6.36 

androsterone −5.61 −5.78 −5.81 −5.55 −5.42 

corticosterone −7.88 −7.30 −7.37 −7.32 −7.34 

cortisol −7.88 −7.63 −7.58 −7.64 −7.33 

cortisone −6.89 −7.22 −6.83 −7.39 −7.07 

dehydroepiandrosterone −5.00 −5.39 −5.13 −5.46 −5.80 

11-deoxycorticosterone −7.65 −7.48 −7.47 −7.50 −6.85 

11-deoxycortisol −7.88 −7.66 −7.53 −7.59 −7.52 

dihydrotestosterone −5.92 −5.38 −5.70 −5.43 −5.96 

estradiol −5.00 −5.40 −5.36 −5.32 −5.21 

estriol −5.00 −5.25 −5.26 −5.43 −6.10 

estrone −5.00 −5.30 −5.21 −5.54 −5.42 

etiocholanolone −5.23 −6.42 −6.44 −6.22 −6.27 

pregnenolone −5.23 −5.30 −5.25 −5.37 −6.37 

17a-hydroxypregnenolone −5.00 −5.20 −5.28 −5.29 −6.65 

progesterone −7.38 −7.17 −7.27 −7.13 −6.46 

17a-hydroxyprogesterone −7.74 −7.42 −7.39 −6.97 −6.70 

testosterone −6.72 −6.08 −6.36 −6.19 −5.94 

prednisolone −7.51 −7.61 −7.36 −7.65 −7.03 

cortisolacetat −7.55 −6.74 −6.90 −7.63 −6.00 

4-pregnene-3,11,20-trione −6.78 −6.40 −6.83 −6.09 −6.46 

epicorticosterone −7.20 −5.98 −6.00 −7.03 −7.15 

19-nortestosterone −6.14 −5.58 −5.86 −5.54 −5.45 

16a,17a-dihydroxy-
progesterone 

−6.25 −7.25 −7.04 −7.46 −7.36 

16a-methylprogesterone −7.12 −6.69 −6.39 −6.78 −6.60 

19-norprogesterone −6.82 −6.01 −6.30 −7.25 −6.19 

2a-methylcortisol −7.69 −6.62 −7.22 −7.68 −6.57 

2a-methyl-9a-fluorocortisol −5.80 −7.56 −6.97 −6.22 −6.74 

 
𝑟2 0.78 0.86 0.89 0.65 

 
𝑞2 0.60 0.74 0.78 0.42 
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Table 2-2 Comparison of novel stereoselective descriptor predictability with other published QSAR methods 

against the Cramer’s steroid set. Calculation of 𝒒𝟐 can be found in the methods section. Statistical model 

generation method is indicated as well as QSAR method employed are indicated for each reference. 

QSAR Method Model Creation q2 Reference 

Purely Spatial EMAS Artificial Neural Network 0.56  

Property weighted EMAS (product) Artificial Neural Network 0.74  

Property weighted EMAS (sum) Artificial Neural Network 0.78  

Stochastic 3D-chiral linear indices Multiple Linear Regression 0.87 [13] 

Chiral Topological Indices Stepwise Regression Analysis 0.85 [10] 

Chiral Graph Kernels Support Vector Machine 0.78 [11] 

Chirality Correction and Topological Descriptors K-nearest neighbor 0.83 [9] 

Molecular Quantum Similarity Measures Multilinear Regression 0.84 [24] 

Shape and Electrostatic Similarity Matrixes Non-linear Neural Network 0.94 [25] 

Comparative Molecular Moment Analysis Partial Least Squares (PLS) 0.83 [23] 

Comparative Molecular Similarity Indices Analysis PLS 0.67 [26] 

Comparative Molecular Field Analysis PLS 0.65 [20] 

E-state Descriptors PLS 0.62 [27] 

Molecular Electronegativity Distance Vector Genetic Algorithm PLS 0.78 [28] 

Molecular Quantum Similarity Measures Multilinear Regression and PLS 0.80 [29] 

vHTS Utility and Enrichment Benchmarking: PUBMED AID891 

We provide the above analysis for comparison. However, realistically the steroid dataset is too 

small to provide a good benchmark for EMAS as often the number of features (24 features) is in the 

same order of magnitude as the number of data points (31 molecules). Therefore we tested the 

descriptor in a virtual high-throughput screening (vHTS) endeavor. For the benchmark dataset, we used 

the publicly available results of a conformational screen for inhibitors and substrates of cytochrome 

P450 2D6 (AID 891). This dataset is of moderate size (approximately 10,000 molecules) and contains 

both active (18%) and inactive (82%) compounds. We employed a forward-feature selection (FFS) 

analysis that selects optimal descriptors from RDF’s, 3D Autocorrelations (3DA), and 2D Autocorrelations 

(2DA) functions labeled with atom properties including charge, electronegativity, and effective 

polarizability (see Experimental section). For a complete list of features tested in forward-feature 

selections, please see supplementary Table S2-1. ANN 3D-QSAR models were trained with and without 

inclusion of the EMAS descriptors in the list of descriptors for FFS to choose from. Hence the utility of 

the EMAS descriptor can be evaluated in two ways: (a) are the EMAS descriptors chosen by the FFS 

procedure? and (b) has the final model that includes EMAS descriptors an increased predictive power? 

The FFS with the default set of initial features resulted in a best descriptor set of 9 features distributed 
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evenly across RDF’s, 3D Autocorrelations (3DA), and 2D Autocorrelations (2DA). Cross-validated 

predictions from the ANN model constructed with this feature set produced an enrichment of 3.94 and a 

receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 0.826.  

An identical FFS analysis was performed by combining the default set of features with 34 EMAS 

features including all three variations of EMAS (spatial, property weighting via sum, and property 

weighting via product) weighted with the same list of properties used to test RDFs, 3DAs, and 2DAs. The 

best set of features contained 20 total features distributed across RDF’s, 3DA’s, 2DA’s, number of 

hydrogen bond donors, and several EMAS features. There were a total of seven EMAS features 

represented in the best feature set. Therefore, almost one third of the total features in the best feature 

set generated through this analysis were EMAS features. This set of seven features contained a spatial 

EMAS weighted by van der Waals surface areas, three EMAS features weighted via the product method 

and three EMAS features weighted via the sum method. This substantial representation of EMAS in the 

best feature set suggests that EMAS successfully provides useful information for the model development 

that may not be represented in any other feature in the original set. Cross-validated predictions from 

the ANN model constructed from this EMAS-inclusive feature set produced an enrichment of 4.38 and a 

ROC curve with an area under the curve of 0.837. Positive predictive value (PPV) is a related measure of 

a model’s predictive capability which tracks predictive precision as more and more positive predictions 

are made. By comparing the average PPV precision over a range of the fraction of total predictions made 

(fraction positive predictions, FPP) of interest, it is possible to compare predictive capabilities for two 

models. Over the FPP range of 0.005 to 0.05, we find that our model trained with the EMAS features 

performed significantly better than the model trained without EMAS features (0.727 PPV precision 

compared with 0.651). A paired t-test for the cross-validated models comparing precisions in this FPP 

range showed that this is a statistically significant improvement (p < 0.005) over the analysis completed 

without EMAS features. For a complete list of the best features determined from both forward feature 

analyses, please see the supplementary Table S2-2. Comparative ROC and PPV curves from the forward 

feature analyses for the control set of features and the control set combined with EMAS features are 

shown in Figure 2.4. 
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Figure 2.4 ROC and PPV results for the feature forward analysis with the control set of features compared 

with the control set combined with EMAS features (A) AID891 prediction ROC curves generated from the 

ANN models trained with the best descriptor set generated from the forward feature analysis beginning with 

the control set of features combined with the novel EMAS features (red) show improved performance when 

compared with ROC curves generated from the ANN models trained with the best descriptor set generated 

from the forward feature analysis beginning with the control set of features (blue) (B) PPV curves for models 

trained with the best descriptor set of control features combined with the EMAS features (red) shows 

improved performance over those models trained with the best descriptor set of control features only (blue). 

Dashed lines of corresponding colors show the average PPV values over the FPP region from which the models 

were optimized (0.005 to 0.05 fraction positive predicted values). 
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2.4 Conclusions  

The goal of this project was to develop a 3D-QSAR descriptor that was capable of not only 

distinguishing between enantiomers, but also of describing the overall degree of asymmetry for a 

molecule. This was accomplished by developing an RDF-like curve that described the distribution of 

‘directional asymmetry scores (DAS)’ rather than inter-atomic distances. The DAS is designed to 

incorporate information regarding the degree and direction of asymmetry between each atom triplet in 

the molecule. The degree of asymmetry is calculated as a product of how asymmetrically the three 

atoms are distributed and the distance they lie from the center of the molecule. This asymmetry is 

related to the differences between their interatomic distances and the distance from the center of the 

molecule is related to the volume of the tetrahedron created by the three atom coordinates and the 

geometric center of the molecule. The direction of asymmetry is related to the distribution of the 

interatomic distances between these three atom coordinates from the point of view of the center of the 

molecule. If the sides of the triangle created by these three atoms are different, then identical triangles 

“pointing” in opposite directions will have a different ordering of sides depending on which direction 

they “point.” This is the key variable that allows the descriptor to distinguish between enantiomers.  

To exclude any influence that the order in which atoms are listed in the molecule may play on this 

directionality scheme, we offset this by incorporating the cross product of the two vectors created from 

the three atoms. This cross product will swap signs when the atoms are ordered differently thereby 

eliminating the influence of the order of atoms. 

We tested the value of this descriptor by training ANN 3D-QSAR models. In order to provide a 

basis of comparison with other documented QSAR methods that address stereoselectivity, we used a 

small dataset of steroids that is commonly used as a benchmark for these types of descriptors. We 

found that the predictability of our descriptor performed comparably with other stereochemistry-based 

descriptors when evaluated with this set of 31 steroids (𝑟2 = 0.89, 𝑞2 = 0.78). Additionally, we assessed 

the utility of the EMAS descriptor by running vHTS experiment on a publically available dataset 

(PUBCHEM AID 891). A forward-feature selection analysis that determines the most effective set of 

descriptors for this dataset was employed and the best set of features included several EMAS functions 

(seven EMAS of 20 total features). This set of features improved the performance of our models over 

those that were tested without EMAS functions (enrichment of 4.38 when including EMAS versus 

enrichment of 3.94 without EMAS).  
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Although our descriptor performs well with the datasets tested, it is still outperformed by 

several techniques with the steroid dataset. One difficulty with this dataset is that its small size adds 

significant noise to the results. Additionally, the cross-validation methods used to analyze the 

performance of these methods vary and are often more forgiving than ours. Future development of 

EMAS, however, can provide superior predictions even with smaller datasets and extensions to the 

current implementation of EMAS are being pursued in our lab. Molecular flexibility is one major avenue 

in which we are improving our implementation. By design, EMAS currently considers single, static 

conformations when scoring molecules and this may fail to incorporate widely different conformations 

seen in highly flexible molecules. 

We conclude that the EMAS descriptor encodes stereochemistry thereby providing important 

information that is not captured in other 3D-QSAR descriptors. There are several published QSAR 

methods that performed better than ours in the steroid dataset but these methods often require some 

heuristic for describing the stereocenters within each of the molecules or aligning the 3D structures of 

these molecules. Our descriptor is not subject to either of these limitations and therefore can be 

extended to broader applications than those previously described.  

2.5 Experimental Methods 

Generation of Numerical Descriptors for QSAR Model Creation 

3D models of all small molecules were generated using the CORINA software package unless 

already defined. For feature selection analysis, a set of 2,100 numerical descriptors was generated using 

the BioChemical Library (BCL) software created in our lab. The descriptors can be classified into five 

categories, including six scalar descriptors (molecular weight, number of hydrogen bond donors, number 

of hydrogen bond acceptors, logP, total charge, and topological surface area), 18  

2-dimensional auto-correlation functions, 18 3-dimensional autocorrelation functions, 18 radial 

distribution functions, and 34 novel molecular asymmetry descriptors. These 34 descriptors included 

spatially-based asymmetry functions with and without van der Waals (VDW) surface area scaling, 16 

property-weighted asymmetry functions based on the multiplicative scheme, and 16 property-weighted 

asymmetry functions based on the additive scheme. These properties included sigma charge [30-32], pi 

charge [33-35], Vcharge [36], total charge [30-35], sigma electronegativity [30-32], pi electronegativity 

[33-35], effective polarizability [37-39], and lone pair electronegativity [33-35] with and without VDW 

surface area scaling. The control comparison forward feature selection analysis was performed with a 
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feature set that included all features listed above except the novel stereochemistry features. This 

feature set contains 1,284 features. For steroid binding predictions, descriptor sets were created using 

only one novel stereochemistry method and those including property weighted used the same 

properties listed. 

Training, Monitoring, and Independent Dataset Generation 

Cramer’s Steroids 

The dataset was split for ANN training into three subsets: training, monitoring, and 

independent. The monitoring dataset is necessary to prevent over-training. Because of the small size of 

the dataset, only one molecule was labeled independent. Five molecules were used as the monitoring 

dataset, 25 for training. The set of five molecules was incremented through the entire dataset for a total 

of 6 different monitoring sets. Leave-one-out cross validation was performed where each molecule was 

used as the independent molecule while the remaining 30 molecules were used for training and 

monitoring. The predictions were averaged across the different monitoring sets to yield the final activity 

predictions for the entire set of 31 molecules. 

PUBMED AID891 

AID891 is a publically available dataset that can be found at http://pubchem.ncbi.nlm.nih.gov/.  

It contains 1,623 active compounds and 7,756 inactive compounds tested for inhibition of cytochrome 

P450 2D6. This dataset was split into 10 clusters distributed into a training set of eight clusters, a 

monitoring set of one cluster, and an independent set of one cluster. For cross validation, the 

monitoring and independent datasets are iterated and then the resulting independent predictions are 

averaged to give the final list of predicted activities that spans the entire dataset. In order to maximize 

model performance, the dataset was balanced through oversampling. In other words, the active 

compounds were represented multiple times so that the number of active compounds roughly equals 

the number of inactive compounds. This method of balancing has been used to maximize QSAR models 

in other datasets where the number of active compounds is significantly less than the number of 

inactive compounds [40].  

The pIC50 values of each compound within AID891 and the steroid binding data for the Cramer 

dataset were used as output for the ANN models. For the AID891 dataset, inactive compounds were set 
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to a pIC50 value of 3. The root-mean-square deviation (RMSD) between predicted and experimental 

activities was used as the objective function for training the ANN. 

Artifical Neural Network (ANN) Architecture and Training 

For the AID891 dataset, the ANN was trained using back propagation and a sigmoid transfer 

function with a simple weight update of eta = 0.1 and alpha = 0.5. The hidden layer contained eight 

neurons. For the steroid dataset, the ANN was trained using the same protocol as the AID891 dataset 

but the number of hidden neurons was reduced to 4 due to the smaller size of the dataset. 

Forward-Feature Selection for Optimal Descriptor Set Selection 

Descriptor selection was performed to test the novel descriptor against all other implemented 

descriptors to see if it provided an increase to enrichment over any of the other descriptors. The 

approach begins with a single descriptor, trains a model with only that descriptor, and then continuously 

adds more descriptors one at a time, training a new model each round. At the completion of each 

round, the descriptor set that produced the lowest RMSD score was retained for the next round. All 

descriptors not present in the retained list of descriptors are then added individually to that retained list 

of descriptors and the descriptor set producing the best RMSD score is retained for the next round, and 

so on. At the completion of these iterations, the round that produced the best RMSD score overall is 

recalled as the top descriptor set. If a descriptor appears in this list of best descriptors, then it suggests 

that significant information had been gleaned from that descriptor during the ANN training.  

Model Evaluation 

ANN models using the AID891 datasets were analyzed using receiver operating characteristic 

(ROC) curves to assess their predictive power. These curves plot the rate of true positives versus the rate 

of false positives as a fraction of the total number of positives. Therefore, a slope of 1 would reflect 

random guesses as each true positive would be statistically likely to be followed by a false positive. An 

increase in slope and area under the curve would indicate an increase in predictive power. The initial 

section of the ROC curve is often most important because it represents compounds with the highest 

predicted activity. Therefore, enrichment values are determined based on the slope of the ROC curve 

comprising the first subset of molecules. Increases in enrichment is often the most important measure 

for application of virtual screening in drug discovery as it reflects the expected factor at which the 

fraction of actives will be increased over an unbiased dataset. 
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Positive predictive value (PPV) is a measure related to enrichment which tracks the model’s predictive 

precision as the fraction of predicted positives (FPP) increases from highest predicted activity to lowest. 

A model is likely to become less precise as the predicted activities approach the cutoff point and 

therefore it is common to specify a range of FPP of interest when measuring a PPV. FPP is calculated as 

the number of true positive predictions plus the number of false positive predictions divided by the size 

of the dataset. PPV is calculated as the number of true positive predictions divided by the total number 

of positive predictions (true and false positive). 

To determine the statistical significance for the average PPV improvement over the FPP range of 

0.005 to 0.05, we compared the average PPV within this FPP range for each combination of training and 

modeling datasets that went into the cross-validated model. By aligning these datasets between the two 

models, we were able to perform a two-tailed paired t-test to show a significant improvement for the 

cross validated model including EMAS features over the cross-validated model without EMAS features.  

To evaluate the utility of models trained with the steroid dataset in a way which could be 

comparable with published methods, the conventional correlation coefficient 𝑟2 of the predicted 

activities against actual activities and cross validated 𝑟2, also known as 𝑞2 were calculated for each 

descriptor set.  

All predicted values used in these analyses were the average predicted activities from each of the leave-

one-out models with the different monitoring datasets. The 𝑞2 is calculated from the equation:  

𝑞2 =
𝑆𝐷 − 𝑝𝑟𝑒𝑠𝑠

𝑆𝐷
 (6)  

Here, 𝑆𝐷 is the sum of squared deviations of each biological property from their mean and 

𝑝𝑟𝑒𝑠𝑠 (predictive residual sum of squares) is the sum of the squared differences between the actual 

biological property and the cross-validated predicted property. 

Implementation 

The descriptor generation and ANN algorithms were implemented in the BioChemistryLibrary 

(BCL) version 2.4. The BCL is a C++ library that includes classes to model small molecules as well as larger 

molecules such as proteins. It contains force-fields, optimization algorithms, and different prediction 

approaches such as neural networks and support vector machines to model molecular structures, 

interactions, and properties. This application will be made freely available for academic use at 
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http://www.meilerlab.org/. The training method used is simple propagation, a supervised learning 

approach. All C++ ANN trainings were performed on a Dell T3500 workstation equipped with 12GB RAM 

and an Intel(R) Xeon(R) W3570@3.20GHz running 64-bit CentOS 5.2.  
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2.7 Supplementary information 

Normalization of stereochemistry score 

The stereochemistry score is normalized based on the maximum possible stereochemistry score which can be 

computed assuming 𝑎 ≥ 𝑏 ≥ 𝑐 and 𝑐 = 𝑎 − 𝑏: 

𝑓(𝑎, 𝑏, 𝑐) = −(𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) = −𝑎3 (1 −
𝑏

𝑎
) (

𝑏

𝑎
−

𝑐

𝑎
) (

𝑐

𝑎
− 1) = 𝑎3 (1 −

𝑏

𝑎
) (2

𝑏

𝑎
− 1) (

𝑏

𝑎
) 

With 𝑎3 being a constant and 𝑥 ∶=
𝑏

𝑎
 we find: 𝑓(𝑥) = 3𝑥2 − 𝑥 − 2𝑥3. 

𝜕𝑓

𝜕𝑥
= 6𝑥 − 1 − 6𝑥2 

0 = 𝑥2 − 𝑥 +
1

6
 

𝑥 =
1 ∓ √

2
6

2

2
      →     𝑥 =

1

2
∓ √

1

12

2

 

𝑏 = 0.211328, 𝑐 = 0.788675 

max{(1 − 𝑏)(𝑏 − 𝑐)(𝑐 − 1)} = 0.0962243 

Table S2-1. Complete feature set used in feature selection analysis. Control set included all of the same features 

without novel EMAS functions. 

 Descriptor Name Description 

Scalar descriptors Weight Molecular weight of compound  
 HbondDonor Number of hydrogen bonding donors 
 HBondAcceptor Number of hydrogen bonding acceptors 
 TopologicalPolarSurfaceArea Topological polar surface area in [Å2] of the molecule 
 LogP Octanol/water Partition coefficient calculated by 

atom-additive method 
 TotalCharge Sum of atomic formal charges across molecule 
Vector descriptors Identity  weighted by atom identities 
2D Autocorrelation  
(11 descriptors) 

SigmaCharge weighted by σ atom charges 
PiCharge weighted by π atom charges 

3D Autocorrelation  
(12 descriptors) 

TotalCharge weighted by sum of σ and π charges 
SigmaEN weighted by σ atom electronegativities 

Radial Distribution Function  
(48 descriptors) 

PiEN weighted by π atom electronegativities 
LonePairEN weighted by lone pair electronegativities 

Novel EMAS Function weighted by sum of 
properties  
(24 descriptors) 

EffectivePolarizability weighted by effective atom polarizabilities 

Novel EMAS Function weighted by product of 
properties  
(24 descriptors)  

Vcharge weighted by partial atomic charges accounting for 
alternate resonance forms 

Every Vector descriptor available with and without van der Waals surface area weighting 
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Table S2-2. Feature selection results with and without EMAS features. Novel EMAS features have been 

highlighted. 

Control feature selection (without EMAS) Novel feature selection (with EMAS) 

Descriptor Type Weight Descriptor Type Weight 

Radial Distribution 
Function 

AtomIdentity  
[surface area scaled] 

Radial Distribution 
Function 

AtomIdentity  
[surface area scaled] 

Radial Distribution 
Function 

Vcharge Radial Distribution 
Function 

Vcharge 

Radial Distribution 
Function 

EffectivePolarizability [surface 
area scaled] 

EMAS  
(product weight) 

AtomIdentity  
[surface area scaled] 

3D Autocorrelation SigmaCharge 2D Autocorrelation SigmaEN  
[surface area scaled] 

Radial Distribution 
Function 

LonePairEN Radial Distribution 
Function 

PiEN  
[surface area scaled] 

2D Autocorrelation SigmaEN Scalar HbondDonor 
3D Autocorrelation SigmaEN EMAS  

(product weight) 
SigmaEN  
[surface area scaled] 

3D Autocorrelation Vcharge 
 [surface area scaled] 

2D Autocorrelation EffectivePolarizability [surface 
area scaled] 

2D Autocorrelation Vcharge  
[surface area scaled] 

3D Autocorrelation Vcharge  
[surface area scaled] 

 Radial Distribution 
Function 

PiEN 

3D Autocorrelation SigmaCharge 
2D Autocorrelation EffectivePolarizability 
EMAS (sum weight) Vcharge  

[surface area scaled] 
EMAS  
(product weight) 

Vcharge 

EMAS  
(sum weight) 

TotalCharge 

Radial Distribution 
Function 

EffectivePolarizability 

EMAS  
(sum weight) 

LonePairEN 

EMAS  
(product weight) 

PiEN  
[surface area scaled] 

3D Autocorrelation PiEN  
[surface area scaled] 

Radial Distribution 
Function 

SigmaCharge 
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3.1 Abstract 

Quantitative Structure-Activity Relationship (QSAR) is a branch of computer aided drug discovery (CADD) 

that relates chemical structures using chemical descriptors to biological activity. One well established 

QSAR descriptor is three-dimensional autocorrelation (3DA). In this paper we evaluate two variations of 

3DA: 3DA_Smooth applies a smoothing functionality to the 3DA descriptor and 3DA_Sign accounts for 

the sign of atom properties while generating 3DA curves. Splitting unique sign pairs such as negative-

negative, positive-positive, and opposite signs avoids information loss when multiplying two negative 

properties. We evaluate these two variations with models trained on nine datasets spanning a range of 

drug target classes. 3DA_Smooth did not significantly increase model performance over 3DA, suggesting 

that the computationally more expensive smoothing does not significantly improve the information 

content of such a descriptor. Splitting up sign pair variants with 3DA_Sign, however, significantly 

increased model performance across all datasets. Lastly, we tested a limited 3DA_Sign that encodes 

atom pair distances up to six angstroms instead of the traditional twelve. We found that focusing this 

particular style of 3D descriptor to atom pair distances of six angstroms or less significantly increases 

model performance. 
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3.2  Introduction 

Computer aided drug discovery (CADD) is a multi-faceted approach that implements 

computational tools into the drug discovery pipeline [1]. CADD can reduce the time and resources 

required for the development of novel therapeutics. Scientifically, CADD can also provide insights into 

the complex interaction between small molecule and a biological target protein. Ligand-based CADD (LB-

CADD) is one approach that focuses on analyzing the collective chemical properties of a set of active and 

inactive compounds without leveraging explicit knowledge of the target protein structure. One 

fundamental principle of LB-CADD is Quantitative Structure-Activity Relationship (QSAR) modeling. The 

goal of QSAR modeling is to define the relation between chemical structure and biological activity in a 

quantitative way so that the activity of new molecules can be predicted to prioritize acquisition or 

synthesis. In general, QSAR can be separated into two major components: a quantitative description of 

molecular structure (descriptor) and a mathematical model that uses these multidimensional 

descriptors as input to predict activity. Both components come in a variety of flavors and strategies that 

vary in performance depending on the specific project. Machine learning techniques are the most 

commonly applied non-linear mathematical QSAR models [2]. For this study, we use Artificial Neural 

Networks (ANN) as implemented in BCL::ChemInfo [3] to generate our mathematical models across all 

conditions.  

Descriptors of chemical structure are typically computed as a combination of atomic properties (mass, 

volume, surface area, partial charge, electro-negativity, polarizability, etc.) that are processed with a 

translation and rotation invariant geometric function to describe the distribution of these properties in 

the molecular structure. Descriptors can be grouped into five categories, depending on the 

‘dimensionality’ of the small molecule description required: 1D) Descriptors that can be derived from 

the molecular formula such as molecular weight by summing up all atom masses or total charge by 

summing up nominal charges. 2D) Descriptors that depend on constitution such as the number of 

hydrogen bond donors/acceptors, number of ring systems, topological surface area, and some 

approximations of volume and surface area. A topological index, for example, encodes which atoms are 

chemically bonded [4]. 2.5D) Configuration-dependent descriptors that encode, for example, the 

relation of stereo-centers within a topological index [5]. 3D) Conformation-dependent descriptors 

including Radial Distribution Functions (RDF) [6] and 3-Dimensional Autocorrelation (3DA) [7] that 

encode aforementioned atomic properties in a three-dimensional fingerprint. 4D) Descriptors that take 
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conformational flexibility into account such as those derived from low energy conformational ensembles 

[8].  

A descriptor is considered useful when it provides pertinent information about a compound 

while adding minimal noise to the overall model. In this respect, the most useful descriptors are the 

ones with the greatest degree of information density (information used by the model divided by total 

information). A descriptor that provides no useful information is often ignored by statistical models but 

can sometimes reduce model performance by overwhelming it with noise [9]. The goal of this paper is to 

evaluate potential improvements to a well-established 3D descriptor known as 3DA [7]. 

RDF [6] and 3DA [7] are both 3D descriptors that employ slightly different approaches to 

describe the relative position of atom and their properties in a translation- and rotation-invariant 

manner. To accomplish this, both RDF and 3DA examine the distances between all pairs of atoms in a 

molecule. These distances are used to generate a histogram in the case of 3DAs and a probability 

distribution in the case of RDFs. To extend these descriptors beyond the geometric characteristics of a 

molecule, atom pair distances may be weighted by multiplication with atom properties such as partial 

charge, electronegativity, etc. The formal definition of a 3DA is shown in equation 1.  

3𝐷𝐴(𝑟𝑎 , 𝑟𝑏) =  ∑ ∑ 𝑃𝑖𝑃𝑗
𝑛−1
𝑗

𝑛
𝑖   when ra<= rij < rb; otherwise 0    

To generate the probability distribution, RDFs apply a Gaussian distribution function for each 

atom pair with a smoothing factor that controls the width of this distribution. The formal definition of an 

RDF is shown in equation 2. 

𝑅𝐷𝐹(𝑟) =  ∑ ∑ 𝑃𝑖𝑃𝑗𝑒
−𝛽(𝑟−𝑟𝑖𝑗)

2𝑛−1
𝑗

𝑛
𝑖  

In both equations, rij is the Euclidean distance between atoms i and j and n is the total number 

of atoms in the molecule. Pi and Pj are the atom properties for atoms i and j used to weight the 3DA or 

RDF. In equation 1, ra and rb define the lower and upper boundaries of the given distance step. In 

equation 2, β is the smoothing parameter and r is the running variable for the function RDF(r).  

The Gaussian smoothing in RDFs is designed to account for atom bond vibration and other 

sources of position uncertainty [6]. 3DAs lack this smoothing and instead allot every atom pair to the 

single nearest bin within a histogram. For example, if the distance from one bin to another is 0.5 Å, an 

atom pair with a separation of 4.0 Å and an atom pair of separation 4.25 Å will both be allotted to a 

1 

2 
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single bin defined by the lower distance boundary 4.0 Å and the upper distance boundary 4.5 Å. In case 

of the RDF, the atom pair with separation of 4.0 Å will be primarily distributed into the distance center 

4.0 Å. However, a small fraction of the signal, inversely proportional to the smoothing factor, will be 

included in the adjacent distances in the shape of a Gaussian curve centered at 4.0 Å. Atom pairs with a 

separation of 4.25 Å will be distributed with a similar Gaussian curve centering at 4.25 Å. This strategy, 

however, leads to a potential drawback with RDFs. In the specific example, the 4.25 Å distance is 

positioned between two distance centers (4.0 Å and 4.5 Å as defined by the step-size of 0.5 Å). 

Therefore, the center of the Gaussian curve at 4.25 Å, representing a significant portion of the signal for 

such an atom pair, will not be encoded. This information loss is especially problematic when the step-

size between distance centers or smoothing factor becomes too large. Figure 3.1 details a specific 

example of this information loss. In Figure 3.1A, the step-size between distance centers is 0.1 Å and in 

Figure 3.1B the step size is 0.5 Å. The greater the step size, the lower the resolution of the curve and the 

more the RDF suffers from information loss. The present study introduces a descriptor called 

3DA_Smooth that mixes the characteristics of 3DAs and RDFs. It applies the Gaussian distribution of the 

RDF to the 3DA to avoid information loss while still leveraging the smoothening effect. 

Second, we introduce a variation named 3DA_Sign that overcomes the information loss when 

signed properties are multiplied. As mentioned, 3DA and RDF are often weighted with atom properties 

to encompass information beyond the geometric structure of a molecule. One important signed atom 

property is partial charge that contains information regarding the distribution of electrons in the 

molecule. By nature, partial charge can either be positive or negative. Traditionally, when weighting an 

RDF or 3DA with atom properties, the properties are multiplied as is seen in equations 1 and 2. There is 

significant information loss when multiplying two signed properties. A pair of atoms both with positive 

partial charges will be encoded the same as if they both had negative partial charges. This inevitably 

leads to an overrepresentation of positive charges when more than one atom in the molecule has a 

negative partial charge. With 3DA_Sign, we separate a single 3DA curve into three: negative-negative, 

positive-positive, and opposite sign property pairs. Information loss for standard 3DA weighted with 

atom partial charge is highlighted for an active molecule from dataset AID 435034 in figure 3.1C.  
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Figure 3.1 3DA_Smooth and 3DA_Sign address two potential sources of information loss with 3D descriptors 

A) Distribution of two atom pairs in an RDF of resolution 0.1 Å. The atom pair of distance 4.15 (red) lies 

between distance centers 4.0 and 4.1 and is only slightly under-represented compared with atom distance at 

4.0 (blue). B) Distribution of two atom pairs in an RDF of step size 0.5 Å. The atom pair of distance 4.15 (red) 

lies between distance centers 4.0 and 4.5 and is significantly under-represented compared to the atom pair 

that lies at distance center 4.0 Å (blue). C) Information loss is revealed when standard 3DA weighted with total 

atom charge is split into three curves that isolate different sign pairs. 3DA descriptors out to twelve angstroms 

at a resolution of 1.0 angstroms per bin are compared for an active compound from screen AID 435034. 

Sections are highlighted including (a) standard 3DA encodes almost no signal for distance bin [7:8), whereas 

sign pair splitting reveals significant presence of negative sign pairs and opposite sign pairs. (b1) and (b2) 

standard 3DA encodes equal intensities for bins [8:9) and [10:11), whereas sign pair splitting reveals 

contributions of negative sign pairs and positive sign pairs are significantly different between bins. 

Lastly, by default we use 3DA and RDF descriptors that encode atom pair distances up to 12 Å [10]. 

This distance is sufficient to capture the maximum width of most small molecules. However, 3D 
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descriptors such as 3DA and RDF are computed from a single predicted conformation of each molecule. 

The smoothing factor of the RDF can be adjusted to account for some degree of conformational 

flexibility and uncertainty within a given molecule. However, as inter-atomic distance increases, the 

degree of flexibility and rotatable bonds may increase. Therefore, higher atom pair distances may come 

with a higher degree of uncertainty and error. We test a higher resolution 3DA/3DA_Sign variation that 

is limited to 6 Å instead of 12 Å. 

To test whether these variations are useful in training QSAR models, we used a generalizable 

framework for benchmarking the utility of 3DA_Smooth and 3DA_Sign [10]. With any novel QSAR 

descriptor, performance evaluation is both important and challenging. In most cases, a predictive model 

can disregard information that does not increase performance. However, this is not guaranteed and 

extra descriptors adding too much noise can decrease performance. Additionally, properties that add 

noise for one dataset may be useful information for another. One approach is to provide the model with 

as many descriptors as available and perform iterative steps of descriptor selection where those that fail 

to significantly improve model performance are discarded. However, with an initial set of n descriptors, 

there are 2n possible combinations. Coupled with the importance of cross-validation to avoid over-

fitting, this process can quickly become time consuming or even intractable. Additionally, any descriptor 

selection must be repeated for every target of interest or high-throughput screening (HTS) dataset. 

Several algorithms have been presented to perform efficient descriptor selection [9]. However, as more 

descriptors and descriptor variations are developed, it is beneficial to use heuristics to eliminate 

descriptors unlikely to be beneficial. Therefore, we evaluated our descriptors with a rigorous 

benchmarking protocol that evaluates model performance across a variety of targets and datasets to 

identify those that consistently improve model performance. 

3.3  Results 

Developing a standard approach to descriptor benchmarking 

The simplest evaluation of a descriptor’s utility is through a one-to-one comparison of models 

trained with and without the descriptor of interest. To keep the total information provided to QSAR 

models in either condition constant, it is best to compare models trained with comparable descriptors 

or variations. Different descriptors may encode comparable information with different approaches. For 

example, both RDF and 3DA descriptors describe the distribution of atoms and atom properties over a 

molecule using similar but slightly different algorithms. A meaningful evaluation of 3DA versus RDF 
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utility involves comparing conditions where models have been trained with 3DAs versus models trained 

with RDFs. To enforce statistical comparability, the resolutions of the two curves are kept constant as 

well as any atom properties used for weighting. This does not always ensure that the total information 

provided to models in both conditions is equal. For example, 3DA_Sign splits different sign pair variants 

by multiplying a single 3DA curve into three. To avoid the possibility that 3DA_Sign outperforms 3DA 

simply because it supplies more information, we decreased the resolution of 3DA_Sign three-fold to 

keep the total number of properties consistent across conditions. Any increase in model performance, 

therefore, will not be due to increased input vector length. Model performance is judged by its ability to 

predict the activity of compounds it has never seen. Compounds not used for training are evaluated and 

ranked by their predicted activity. Plotting these predictions as true or false positives generates a 

receiver operating characteristic (ROC) curve. By computing the area under the curve of a logarithmic x-

axis ROC curve, it is possible to score the ratio of true positive predictions to false positive predictions 

focusing on the high confidence predictions.  

When training and evaluating QSAR model performance, large datasets that cover large chemical 

spaces are preferred [11]. These datasets often come from high-throughput screening (HTS) projects 

where active compounds have been verified against a single target. Alternatively, smaller, focused 

datasets may be used to evaluate novel descriptors using leave-on-out (LOO) cross-validation [12]. 

However, this method of benchmarking can be misleading and tends to rely heavily on the presence of 

specific geometries rather than more subtle properties [13]. To apply the most generalizable benchmark 

possible, we used nine HTS datasets curated from PubChem [10]. These datasets target various proteins 

including G-protein coupled receptors (GPCRs), kinases, and ion channels. The number of compounds in 

these datasets range from approximately 61,000 to 344,000. These datasets are detailed in table 3-1.  

Table 3-1 Nine datasets were used to train models and evaluate model performance across different QSAR 

descriptor conditions. Dataset curation has been previously described [10]. 

Pubchem Project Bioassay ID Target Active Compounds Inactive Compounds 

1798 M1 muscarinic receptor (agonist) 187 61,646 
1843 Kir2.1 potassium channel 172 301,321 
2258 KCNQ2 potassium channel 213 302,192 
2689 serine threonine kinase 33 172 319,620 
435008 orexin 1 receptor 233 217,925 
435034 M1 muscarinic receptor (antagonist) 362 61,394 
463087 Cav3 calcium channel 703 100,172 
485290 tyrosyl-DNA phosphodiesterase 1 281 341,084 
488997 choline transporter 252 302,084 
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Because each 3D descriptor tested can be weighted with a variety of atom properties, we used 

nine different atom properties with and without accessible van der Waals (VDW) surface area scaling. 

Accessible VDW surface area accounts for varying accessibility of different atoms in a molecule arising 

from overlapping and covered VDW surfaces. Additionally, we provide all models with a standard set of 

descriptors (1D) to achieve a performance baseline that strengthens comparisons. All scalar molecule 

descriptors and atom properties used for weighting are described in table 3-2. 

Table 3-2 Properties used to train ANN models are categorized as molecule (one property per molecule) and 

atom (one property per atom). Molecule properties are used in every condition as a standard baseline of 

QSAR information and contain general information regarding overall molecular properties. Atom properties 

are used in every condition to weight the corresponding descriptor (3DA, RDF, 3DA_Smooth, or 3DA_Sign) 

with and without VDW surface area scaling. Atom properties that are split into unique sign pairs with the 

3da_Sign descriptor are indicated as ‘signed.’ 

Property Type Description Signed 

Molecular Weight Molecule Total weight of molecule  
HBondDonor Molecule Total hydrogen bond donors in molecule  
HBondAcceptor Molecule Total hydrogen bond acceptors in molecule  
LogP Molecule Octanol/water coefficient; solubility  
TotalCharge Molecule Total charge of molecule  
NRotBond Molecule Number of rotatable bonds  
NAromaticRings Molecule Number of aromatic rings  
NRings Molecule Number of closed rings  
TopologicalPolarSurfaceArea Molecule Total surface area of molecule that is polar  
BondGirth Molecule Maximum number of bonds between two toms  
MaxRingSize Molecule Number of atoms in largest ring  
MinRingSize Molecule Number of atoms in smallest ring  
AromaticAtoms Molecule Number of atoms in aromatic rings  
IntersectionAtoms Molecule Number of atoms in ring intersections  
AromaticIntersectionAtoms Molecule Number of atoms in aromatic ring intersections  
MaxSigmaCharge Molecule Maximum σ charge  
MinSigmaCharge Molecule Minimum σ charge  
TotalSigmaCharge Molecule Sum of all σ charges  
StDevSigmaCharge Molecule Standard deviation of all σ charges  
MaxVcharge Molecule Maximum V-charge  
MinVcharge Molecule Minimum V-charge  
TotalVcharge Molecule Sum of all V-charges  
StDevVcharge Molecule Standard deviation of all V-charges  
Girth Molecule Widest diameter of molecule  

Identity Atom Unweighted; 1 for all atoms  
SigmaCharge[14-16] Atom Partial charge localized to σ-electron system  X 
PiCharge[17-19] Atom Partial charge localized to π-electron system  X 
TotalCharge Atom Total partial charge of atom X 
Vcharge[20] Atom Partial charge accounting for resonance X 
EffectivePolarizability[21-23] Atom Responsiveness of electron density to external field  
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3DA_Smooth: Combining 3DA and RDF 

The goal of 3DA_Smooth is to achieve the same smoothing quality of an RDF without losing 

information for atom pairs that fall between distance centers. As with 3DA and RDF, 3DA_Smooth 

iterates over all atom pairs in a molecule and bins that atom pair depending on the distance between 

them. Atom property weighting is handled in an identical manner via the product of the two atom 

properties. There are two major differences between 3DA_Smooth and 3DA/RDF: atom pairs that lie 

between two distance centers are distributed into the two nearest centers depending on their distance 

from each and the Gaussian smoothing is performed after all atom pairs have been distributed. 

3DA_Smooth can be divided into two steps: 

Step 1 

For every atom pair i,j whose distance rij falls between distance centers ra and rb: 

𝑓(𝑟𝑎) =  ∑
𝑝𝑖𝑝𝑗

𝑒
−𝛽(𝑟𝑎−𝑟𝑖𝑗)

2
+𝑒

−𝛽(𝑟𝑏−𝑟𝑖𝑗)
2

𝑛
𝑖,𝑗 𝑒−𝛽(𝑟𝑎−𝑟𝑖𝑗)

2
 

𝑓(𝑟𝑏) =  ∑
𝑝𝑖𝑝𝑗

𝑒
−𝛽(𝑟𝑎−𝑟𝑖𝑗)

2
+𝑒

−𝛽(𝑟𝑏−𝑟𝑖𝑗)
2

𝑛
𝑖,𝑗 𝑒−𝛽(𝑟𝑏−𝑟𝑖𝑗)

2
 

Every atom pair is distributed into two bins in a method that is similar to the 3DA but has an 

additional normalization factor 1/(𝑒−𝛽(𝑟𝑎−𝑟𝑖𝑗)
2
+ 𝑒−𝛽(𝑟𝑏−𝑟𝑖𝑗)

2
) that causes any atom pair whose 

distance lies directly between two centers to be equally distributed to both and all other atom pairs to 

be distributed primarily to the closest distance center. As with 3DA/RDF, pi and pj are the atom 

properties of i and j used to weight and as with RDF, β is the smoothing parameter. 

Step 2: 

Every calculated intensity f(r) is redistributed using the same Gaussian style curve of the RDF: 

𝑔(𝑠) =  ∑ 𝑓(𝑟)𝑒−𝛽(𝑟−𝑠)2𝑑
𝑟  

IsRingIntersection Atom 1 if atom is at a non-aromatic ring intersection, 0 
otherwise 

 

IsInAromaticRing Atom 1 if atom is within aromatic ring, 0 otherwise  
InAromaticRingIntersection Atom 1 if atom is at an aromatic ring intersection, 0 

otherwise 
 

3 

5 

 
4 
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Step 1 produces discrete curves that resemble a standard 3DA at lower resolutions save any 

atom pairs whose distance lies midway between two bins. Step 2 applies a Gaussian smoothing function 

to these discrete values resulting in a curve that more closely resembles an RDF. In equation 5, r is the 

running distance center variable and d is the number of distance centers in the 3DA_Smooth code. 

Models trained with 3DA, RDF, or 3DA_Smooth perform comparably 

In our nine dataset benchmark, models trained with 3DA, RDF, or 3DA_Smooth perform 

comparably. Average model performance as scored by the area under the logarithmic ROC curve 

(logAUC) was 0.343 for 3DA, 0.343 for RDF, and 0.344 for 3DA_Smooth. This suggests that the 

information loss inherent with RDF does not significantly decrease QSAR model performance. However, 

these results also suggest that the Gaussian smoothing designed to account for flexibility and 

uncertainty within RDF and 3DA_Smooth does not provide superior ANN model performance. 

Therefore, because Gaussian smoothing adds computational expense, 3DA may be preferable over RDF 

or 3DA_Smooth. This result shows the importance of a generalizable approach to QSAR descriptor 

benchmarking as neither intuitive improvements increased model performance. Model performance 

across nine datasets is compared for 3DA, RDF, and 3DA_Smooth in figure 3.2A.  

3DA_Sign: Separating atom properties by sign 

The most common method for weighting 3DA is with the product of atom properties for each 

atom pair. For signed properties such as partial charge, information can be lost as the product of two 

negative values cannot be distinguished from the product of two positive values. To avoid this 

information loss, we modified the 3DA descriptor to allocate atom pairs into one of three vectors 

depending on the signs of the two atom properties. This descriptor is called 3DA_Sign and contains 

three times as many properties as a standard 3DA with the same number of steps. Every atom pair is 

distributed to one of three vectors depending on whether the atom properties are both negative, both 

positive, or of opposite signs. This improvement is designed specifically for signed descriptors such as 

partial charge since unsigned properties will solely fill the positive-positive vector. Therefore, when 

testing the utility of 3DA_Sign, we only apply it with signed properties. All unsigned properties are 

included with a standard 3DA. 

Since we are primarily concerned with information density, we wanted to keep the number of 

input values constant between conditions. For example, comparable conditions include 3DA with 72 

steps of step size 0.167 Å, and 3DA_Sign with 24 steps of step size 0.5 Å. Both conditions contain 36 
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quantitative properties, but 3DA is of a higher resolution than 3DA_Sign. This decreases the power of 

discovering an improvement with 3DA_Sign since it is at a lower resolution. However, by adjusting 

resolution to keep the number of inputs constant, we avoid the potential confounding variable of input 

vector size. 

Despite the lower resolution, 3DA_Sign improved model performance over standard 3DA in all 

datasets. Average model performance across nine datasets as measured by logAUC was 0.358 when 

applying signed properties with 3DA_Sign (versus 0.343 with 3DA), an average improvement of 4.4% 

(paired t-test p<0.05). Model performance across nine datasets is compared for 3DA and 3DA_Sign in 

figure 3.2B. 

Finally, we tested limiting the maximum atom pair distance encoded to 6 Å instead of 12. By 

focusing on the first 6 Å at higher resolution, model performance increased significantly from an average 

performance as measured by logAUC of 0.358 to 0.381 (6.4% improvement, paired t-test p<.001). Figure 

3.2B compares model performance across nine datasets when encoding atom pair distances up to 

twelve angstroms versus six angstroms. 
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Figure 3.2 Model performance is compared across nine datasets for 3D descriptor modifications A) Model 

performance is not significantly changed when training with 3DA, 3DA_Smooth, or RDF. Performance is 

evaluated by the area under the logarithmic ROC curve between 0.001 and 0.01. Nine datasets are indicated 

by their Pubchem HTS project assay ID. B) Model performance is compared across nine datasets for two 3DA 

variations. Splitting sign pairs into negative-negative, positive-positive, and opposite signs when weighting 

3DA with signed atom properties (3DA_Sign) significantly increases model performance when compared to 

using standard 3DA with signed properties (*3DA_Sign (12 Å) vs 3DA (12 Å) paired t-test p<0.05, n=9). Limiting 

maximum atom pair distance to 6 Å significantly increases model performance when compared to limiting 

maximum atom pair distance to 12 Å (**3DA_Sign (12 Å) vs 3DA_Sign (6 Å) paired t-test p<0.001, n=9). 

3.4 Discussion 

This study outlines a general QSAR descriptor benchmarking technique that can be used to 

evaluate novel descriptors. Three potential 3DA modifications are evaluated using this generalizable 

benchmark strategy. Descriptors represent small molecules as vectors of numerical properties that can 

train ANNs to predict small molecule activity towards a specific target. These descriptors come in a 

continuously growing range of dimensions and information content. Coupled with the high degree of 

customization for many descriptors, training models using every available descriptor is not only 

computationally inefficient, but may introduce noise that hinders model performance. Therefore, an 

evaluation of a novel descriptor is critical before including it with QSAR model application. This 

evaluation must also be applied across multiple datasets with different targets. By nature, these 

biological targets may focus on different property demands, thereby making a broad statement of a 

descriptor’s utility helpful. 
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The first modification tested is a hybrid 3DA/RDF descriptor called 3DA_Smooth. This 

modification takes advantage of the inherent Gaussian smoothing of RDF while avoiding the information 

loss that can arise for some atom pair distances. We trained comparable models using 3DA, RDF, or 

3DA_Smooth descriptors and evaluated their prediction performance across nine datasets. Surprisingly, 

models trained with any of these 3D descriptors performed comparably across all datasets. This suggests 

that the Gaussian smoothing applied to RDF and 3DA_Smooth does not significant improve information 

content over 3DA. Based on the increased computational overhead for RDF and 3DA_Smooth, 3DAs may 

be preferable to RDF or 3DA_Smooth for ANN-based QSAR model generation.  

Secondly, we tested a variation of standard 3DA that applies to weighting with signed atom 

properties. Multiplying two negative properties produces the same result as multiplying two equivalent 

positive properties, leading to misinformation for molecules with two or more atoms with negative 

properties. To avoid this problem, we introduced 3DA_Sign to replace standard 3DAs when weighting 

with signed atom properties. 3DA_Sign generates three curves of equal resolution, splitting atom pairs 

into negative-negative, positive-positive, and opposite signs. Because this modification generates three 

descriptors for every one corresponding 3DA descriptor, we decreased the resolution of 3DA_Sign 

threefold in our evaluations to avoid confounding results with different input vector sizes. We found 

that the replacing 3DA with 3DA_Sign for signed atom properties significantly increased ANN model 

performance across nine large datasets.  

Lastly, we tested a maximum atom pair distance limitation of 6 Å instead of 12. Although 12 Å 

covers the maximum width of many small molecules, encoding longer atom pair distances can provide 

false information in cases of high molecular flexibility or bond rotation. A 6 Å limitation, on the other 

hand, focuses more on fragments within the molecule that are less prone to flexible uncertainty. 

Additionally, shorter distances can be sampled at a higher resolution without increasing input vector 

size. We found that limiting the maximum atom pair distance to 6 Å significantly increases performance 

across nine datasets. 

In conclusion, we present three recommendations for ANN-based QSAR descriptor selection: 1) 

Because RDF and 3DA descriptors produce comparable model performance and 3DA is computationally 

less expensive than RDF, 3DA is the descriptor of choice for this style of 3D descriptors. 2) Multiplying 

signed properties when weighting 3DA can significantly hinder model performance. Therefore, splitting 

sign pairs into negative-negative, positive-positive, and opposite signs can significantly improve model 
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performance. 3) Limiting 3DAs to encode atom pairs up to 6 Å instead of 12 can significantly improve 

model performance. 

3.5 Methods 

Generation of numerical descriptors for QSAR model creation 

Numerical descriptors and QSAR models were generated and evaluation over nine HTS datasets 

detailed in table 3-1. The curation of these datasets has been previous outlined [10]. 3D conformations 

of all small molecules were generated using the CORINA [24] software package. 

The BioChemical Library (BCL) software was used to generate all scalar and 3D molecular 

descriptors tested in this study. All descriptors and atom properties used to weight 3D descriptors are 

described in table 3-2. When weighting 3D descriptors, all atom properties are represented with and 

without accessible surface area scaling. All conditions include 1,374 total properties distributed over 39 

descriptors. 

Artificial neural network model architecture and training 

All ANN models were trained using back propagation and a sigmoid transfer function with a 

simple weight update of η = 0.05 and α = 0.5, a hidden layer of 32 neurons, 0.1 visible neuron dropout, 

and 0.5 hidden neuron dropout. Each dataset was divided into three sets of compounds: compounds 

used to train the model (training), compounds used to monitor model performance during training to 

avoid over-fitting (monitoring), and compounds kept hidden from the model during training to evaluate 

predictability after training has completed (independent). Five-fold cross-validation was used where 20 

individual ANN models were trained for each HTS dataset by rotating which compounds appeared in the 

training, monitoring, and independent sets. Final active or inactive prediction for each independent 

compound was taken as a consensus across models for which that compound appeared in the 

independent set. The objective function used during training was the area under the logarithmic 

receiver operating characteristic (ROC) curve [25, 26] (logAUC [27]) between false positive rates of 0.001 

and 0.01. 

ANN model performance evaluation 

All models were evaluated with the same objective function used for training. ROC curves with a 

logarithmic x-axis were generated for consensus predictions sorted by predicted activity and the area 
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under the curve as calculated for the range of 0.001 to 0.01 (the top 1% of predicted compound 

activities). For all statistical comparisons, two-tailed paired t-tests were performed between descriptor 

conditions across the nine HTS datasets. 
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4.1 Abstract 

The human Y4 receptor and its native ligand, pancreatic polypeptide, are critically involved in the 

regulation of human metabolism by signaling satiety and regulating food intake, as well as increasing 

energy expenditure. Thus, this receptor represents a putative target for treatment of obesity. With 

respect to new approaches to treat complex metabolic disorders, especially in multi-receptor systems, 

small molecule allosteric modulators have been in the focus of research in the last years. However, no 

positive allosteric modulators or agonists of the Y4 receptor (Y4R) have been described so far. In this 

study, small molecule compounds derived from the Niclosamide scaffold were identified by high-

throughput screening to increase Y4R activity. Compounds were characterized for their potency and 

their effects at the human Y4R and as well as their selectivity towards Y1R, Y2R and Y5R. These 

compounds provide a structure-activity relationship profile around this common scaffold and lay the 

groundwork for hit-to-lead optimization and characterization of positive allosteric modulators of the 

Y4R. 
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4.2 Introduction 

Obesity, a major risk factor for diabetes, heart disease, cancer, and mortality is a rising medical 

concern with doubled worldwide prevalence since 1980, reaching an estimated medical cost of $147 

billion in 2008 [1, 2]. Dietary changes and nutritional counseling can be an effective treatment option 

but results are inconsistent and suffer from poor long-term patient adherence that often ends in weight 

regain [3]. So far, only invasive treatments such as bariatric surgery show long term success rates, but 

are limited to patients where the benefits outweigh the risks and costs [4]. Interestingly, several studies 

suggest that hormonal changes following bariatric surgery significantly contribute to its long term 

success [2, 5]. Accordingly, the respective hormone receptors may represent promising therapeutic 

targets. For example, enhanced meal-stimulated glucagon-like peptide-1 (GLP-1) release is thought to 

participate in the long-term success of bariatric procedures. GLP-1 receptor agonists have been shown 

to produce weight loss and glucose homeostasis for subjects with type II diabetes. However, the weight 

loss seen with GLP-1 agonists alone is modest [6]. 

Two members of the pancreatic polypeptide family including peptide tyrosine tyrosine (PYY) and 

pancreatic polypeptide (PP) act as satiety factors, inhibit food intake, and modify metabolic homeostasis 

[7]. Neuropeptide Y (NPY), the third member of this class of hormones, is unlike PP and PYY not a gut 

derived hormone but acts predominantly in central regions of the nervous system as a 

neurotransmitter. All three 36 amino acid peptides act through four NPY receptor subtypes in humans, 

Y1R, Y2R, Y4R, and Y5R, which thereby are putative targets for treatment of obesity [8]. While the ligands 

PP and PYY both present promising routes for the treatment of obesity, PP may be preferred as it 

inhibits feeding in mice more than PYY and PYY-3-36 [9]. Pancreatic polypeptide have also been shown 

to inhibit food intake in man at low concentrations [10].Further, in contrast to PP, medically relevant 

doses of PYY induce nausea in humans [10, 11]. 

PP is released under vagal cholinergic control from F-cells of pancreatic islets in response and 

proportion to food ingestion [12]. The hormone is furthermore expressed in some endocrine cells of the 

intestines [13]. Primarily through Y4R, PP promotes appetite suppression, inhibition of gastric emptying, 

and increased energy expenditure [14]. The human Y4R is a 375 amino acid class A G-protein coupled 

receptor (GPCR) primarily expressed in gastrointestinal tract where it inhibits peristalsis and excretion 

[15]. Other peripheral organs that express Y4R include the heart, skeletal muscle, and thyroid gland. In 

the central nervous system, Y4R is expressed in the hypothalamus, where it relays anorexigenic signals 

[16] and inhibits neurotransmitter release [17]. The Y4R is considered as a putative target for 
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pharmacological treatment of obesity based on its strong anorexigenic potential and studies involving 

the overexpression or application of PP [16, 18-20].  

Our efforts focus on the identification and development of small-molecule positive allosteric 

modulators (PAMs) of Y4R. Allosteric ligands represent promising options for treatment of complex 

metabolic and neurological diseases [21]. Allosteric ligands may adopt a wide range of pharmacological 

activities including PAMs (including agonism, potentiation, or both), negative allosteric modulation 

(NAM), inverse agonism, or biased signaling wherein different receptor modulations can favor particular 

signaling pathways downstream of the GPCR [22]. This provides the opportunity to design compounds 

that fine tune receptor activity. Additionally, PAMs with little or no intrinsic activity may be safer 

therapeutics because their dependence on the presence of the endogenous agonist may help to prevent 

toxicity and other negative side effects [23]. Furthermore, this approach preserves the physiological 

signaling patterns, which may be critical in complex systems and is not feasible using orthosteric 

agonists [24]. Allosteric binding sites may be less conserved between receptor subtypes than the 

orthosteric binding site because they lack the evolutionary pressure to conserve affinity for the 

orthosteric ligand. Therefore it is often possible to design allosteric modulators with high selectivity [24, 

25]. This is of particular importance in multi receptor systems consisting of several subtypes sharing an 

overlapping preference for a ligand. 

Since no small-molecule PAM or agonist has been identified for Y4R, we used high-throughput 

screening (HTS) [26] to identify compounds that modulate the Y4R. Initial hit compounds were validated 

as PAMs in a complementary set of assays and subtype-selectivity was investigated for all human NPY 

receptors. 

4.3 Results 

Identification of Y4R PAMs 

Until now, no small molecule agonists of Y receptors have been described. Based on this lack of 

any structure activity data, identification of Y4R PAMs was initiated with a Ca2+-flux-based HTS approach. 

An initial pilot screen was performed with the ‘Spectrum collection’, a small scale library with 2000 

compounds comprised of synthetic small molecules as well as purified natural product covering a range 

of known biologically active properties. This pilot screen yielded 65 putative PAMs. All initial hits were 

retested for nonspecific activity in wildtype COS-7 cells and the PAM effect was validated via 
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concentration-dependent potentiation of a submaximal PP response. After eliminating structures that 

show non-specific effects, seven compounds with potencies in the micromolar range were identified 

(Figure S4.1) and selected for further investigation. Validation of the Y4R PAM activity was performed 

with a well-established assay system for Y receptor activation studies, based on cellular accumulation of 

inositol phosphate [27, 28]. Furthermore, the compound activity at Y1R, Y2R and Y5R was examined at 

this stage of Y4R PAM identification. Y receptor activation with a ligand concentration causing a 

submaximal response was monitored in presence and absence of compound. This experimental setup 

allows the detection of potential compound-induced shifts of the concentration response curve and 

parallel testing of all compounds on all Y receptor subtypes. Cells stably expressing the chimeric G-

protein Δ6Gαqi4myr and one of four different human NPY receptor subtypes (Y1R, Y2R, Y4R, or Y5R) were 

treated with test compound at a final concentration of 10 μM followed immediately by stimulation with 

1 nM endogenous peptide agonist (Y4R: PP, Y1,2,5R: NPY).  

The effect of the compounds on inositol phosphate accumulation was investigated in relation to 

the control in presence of DMSO (DMSO set to 100%, complete data of all 7 compounds see Figure 

S4.1). However, only three of the seven HTS PAM hits validated their Y4R PAM effect also in the inositol 

phosphate accumulation assay (Figure 4.1). Of all tested compounds, Niclosamide was the strongest Y4R 

PAM, significantly increasing IP accumulation following stimulation of Y4R with 1 nM PP (185.7 ± 23.5 % 

(SEM) versus 100.00 ± 13.9 %, p<0.05; see Figure 4.1). Furthermore, Niclosamide had minor effects on 

Y1R (125.4 ± 14.6 % versus 100.0 ± 28.3 %, p>0.05), Y2R (88.5 ± 6.2 % versus 100.0 ± 14.9 %, p>0.05), and 

Y5R (83.4 ± 5.9 % versus 100.0 ± 27.3 % p>0.05) when stimulated with NPY. In addition to Niclosamide, 

adenosine and compound VU0244224 induced slight increase of the Y4R signal response in the IP3 assay 

(120 ± 11 % and 127 ± 19%, respectively). Whereas compound VU0244224 had no effects on other Y 

receptor subtypes, adenosine decreased signal transduction at Y1R and Y5R. These results show 

Niclosamide to be the most effective Y4R PAM hit compound with validated activity in a complementary 

assay and it alone was selected for further investigation (Figure S4.1). Due to the lack of any viable hits 

with the exception of Niclosamide, a second screen was performed testing a total of 33,288 compounds. 

Of these 33,288 compounds, 32,000 were randomly selected from the VICB compound library. Since 

Niclosamide showed the strongest effect as a Y4R PAM, the collection of compounds for the second 

screening was enriched with 1,288 compounds structurally similar to Niclosamide based on Tanimoto 

coefficients (Table S4-1). All potential Y4R PAMs were retested for nonspecific effects in wildtype COS-7 

cells. Hit compounds that did not show any activity in wildtype COS-7 cells were tested on the Y4R in a 

concentration dependent manner for their effect on a PP EC20 and EC80. Validated hits were then tested 
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for their effects on histamine and bradykinin receptor-evoked changes in intracellular Ca2+ in order to 

further exclude off-target effects that might, for instance, result from changes in common effectors 

downstream of the GPCR. In the second HTS, four structurally similar compounds to Niclosamide were 

identified as Y4R PAMs. Along with two structurally related but inactive compounds of the VU compound 

library (VU0357475 and VU0114795), selected to supplement structure-activity relationship studies with 

YR selectivity, these compounds were further investigated for Y4R PAM activity and YR subtype 

selectivity (Figure 4.2). 

 

Figure 4.1 Validation of Y4R PAM activity and subtype selectivity of initial Ca2+-flux-based screen hit 

compounds in an inositol phosphate accumulation assay. Effect of 10 µM compound on submaximal YR 

activation by 1 nM ligand, which represents EC20-EC60 (Y1,2,5R: NPY; Y4R: PP). Data represent the mean 

± SEM of two independent experiments each performed in quadruplicate. 
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Figure 4.2 Structures of Y4R PAMs identified by HTS and inactive control compounds chosen for further 

characterization of Y4R PAM activity and YR subtype selectivity. 

 

Validation and selectivity of Y4R PAMs 

After identification of Niclosamide-like compounds in the HTS, the Y4R PAM activity was 

validated using an IP3 accumulation assay system. Compounds were investigated for potentiation of a PP 

EC20 in a concentration-dependent manner to determine their potency on the Y4R (Figure 4.3).  

Niclosamide, VU0048913, VU0048992, VU0049150 and VU0118748, identified in the Ca2+ HTS, 

also potentiated the PP signal response in the IP3 assay. In presence of 30 µM of the active compounds, 

the PP response increased to approximately 40% (Figure 4.3) compared to the PP-evoked signal in the 

absence of the compounds. However, modifications on the Niclosamide scaffold affected the potency of 

the compounds. Niclosamide, VU0048913 and VU0118748 potentiated the PP EC20 with comparable EC50 

values of 620 nM, 566 nM and 473 nM, respectively. In contrast, structural modifications in compounds 

VU0048992, VU004915 and VU0357475 lead to a dramatic loss of Y4R potency (EC50 >10 µM) or 

completely inactive structures in case of VU0357475 and VU0114795. 
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Figure 4.3 Y4R PAM activity of Niclosamide-like compounds. Potency of the Y4R PAMs were validated with an 

inositol phosphate accumulation assay through potentiation of a PP EC20 response. Data have been 

normalized to the maximum IP accumulation caused by the Emax concentration of PP. A PP concentration 

resulting in 20% of the maximum signal was used to evaluate the potentiation potency of the candidate 

compounds. Data represent the mean ± SEM of three independent experiments performed in duplicate. 

 

As noted previously, four subtypes of Y receptors are expressed in the human organism. In order to 

investigate the Y receptor subtype selectivity, we tested the effect of the Niclosamide-like structures 

(Figure 4.2) for all four human Y receptors with their native ligands (PP for Y4R and NPY for Y1R, Y2R, and 

Y5R). Full concentration-response relationships were determined for each ligand-receptor pair in 

presence of DMSO vs. 30 µM compound (Figure S4.2), the concentration at which all compounds had a 

comparable effect on the Y4R (Figure 4.3). None of the tested compounds had an effect on the basal 

level and maximum level of the signal response (Figure S4.2). Thus, the influence of the compounds on 

the agonists EC50 (EC50-shift) of the signal response was used as an indicator for selectivity (Figure 4.4). 
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Figure 4.4 YR subtype selectivity of Y4R PAMs Effect of 30 µM compound on the EC50 of Y-receptor agonists 

in COS-7 cells stable expressing a Y receptor subtype and the chimeric G-protein Gα6qi4myr. Receptors were 

stimulated with their native ligands (Y1R, Y2R, Y5R: NPY; Y4R: PP). For Y-axis values, positive modulation 

represents an increase in the apparent potency of the native agonist and negative modulation represents a 

decrease in the apparent potency of the native agonist. Data represent the mean ± SEM of at least two 

independent experiments (for full concentration-response curves see Figure S4.2). 

Niclosamide, VU0048913, VU0048992, VU049150 and VU0118748 increase the potency of PP at the 

Y4R (Figure 4.4, Figure S4.2) consistent with Y4R PAM activity observed (Figure 4.3). Testing of other Y 

receptor subtypes revealed that the compounds are not fully selective for the Y4R subtype. In addition to 

the Y4R activity Niclosamide had a small PAM effect on the Y1R. However, the structural analogs 

VU0048913, VU0118748, VU0048992 and VU0049150 had no effect on the Y1R signal. In contrast to the 

PAM effects observed on Y4R, Niclosamide and VU0118748 show a negative allosteric effect on Y5R. All 

other tested compounds were inactive on the Y5R. Whereas Niclosamide had no effect on the Y2R, 

compounds VU0048913, VU0118748 and VU0048992 showed a slight PAM effect on the Y2R. Overall, 

the effects of the Y4R PAM compounds on Y1R, Y2R, and Y5R were lower than the PAM effect at the Y4R. 

Niclosamide structure-activity relationships 

Potentiation of PP EC20 experiments showed that Niclosamide, VU0118748 and VU0048913 have 

nearly identical potencies on the Y4R. Accordingly, the loss of the Cl atom (VU0048913) on the aniline 

ring structure, as well as modification of the OH group in the benzoyl ring (VU0118748) are not affecting 
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Y4R PAM activity. In contrast, a major change of the substituents in meta or para position to the hydroxyl 

function on the benzoyl ring lead to a complete loss of Y4R PAM activity (VU0357475, VU0114795) or 

drastically reduce Y4R potency (VU0048992, VU0049150). As shown by the active compound 

VU0048913, the Cl on the benzoyl ring structure can be substituted by Br, which underlines the 

importance of the electron-rich character in this position for the potency to the Y4R (Figure 4.3 and 

Figure 4.5).  

Furthermore, investigation of PAM activity on Y1R, Y2R and Y5R suggested potential modification 

sites to control YR selectivity. Removal of the Cl substitution on the aniline ring in VU0048913 reduced 

Y1R effects and Y5R antagonism. As shown by compound VU0118748, selectivity towards Y1R can also be 

achieved by the introduction of the nitrobenzoic-acid on the OH position in the benzoyl ring. However, 

this modification had no effect on the Y5R NAM activity and Y4R PAM activity, suggesting this position as 

a potential site to control subtype selectivity. 

 

 

Figure 4.5 Distinct positions of the Niclosamide scaffold were shown to be relevant for Y4R PAM activity and 

YR selectivity. Substitutions in the benzoyl ring are important for Y4R potency (green), and offer a potential 

modification site (grey). Modifications in the aniline ring engender selectivity towards Y1R / Y5R subtype (red). 
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4.4 Discussion 

The application of allosteric modulators presents a promising approach for the treatment of 

complex receptor-ligand systems that regulate sensitive physiological processes such as nervous signal 

transduction or metabolic regulation [21, 29].  

Therapeutic potential 

The benefits of Y4R modulation on obesity and insulin resistance are becoming more important 

as the number of patients diagnosed with type 2 diabetes rises alongside risk factors such as the 

prevalence of obesity, physical inactivity, and poor diet [30]. In humans, low circulating PP levels were 

found in obese children and adults [31]. Hyperphasia in obese patients can be reduced by restoring 

basal and meal-stimulated PP levels through IV infusion [32]. Additionally, PP is hypothesized to 

sensitize the liver to insulin through upregulation of the insulin receptor β subunit [33, 34]. In patients 

with diabetes secondary to chronic pancreatitis, PP administration reduces insulin resistance and 

improves glucose metabolism [35]. Effects of PP administration and the complex interplay of obesity and 

diabetes suggest Y4R modulation may be beneficial for a wide range of metabolic disorders. This is 

already being seen in preclinical studies of TM-30339, a PP based Y4R-selective peptide agonist and 

phase I and II trials of Obineptide, an Y2/4R dual peptide agonist [36]. 

In this study, we present the first small molecule Y4R PAM. Niclosamide was identified as an Y4R 

PAM in the primary screen of the Spectrum Collection using the Ca2+ flux assay and its activity was 

validated in the alternative IP accumulation assay. The second HTS experiment identified four additional 

Y4R PAMs that are structurally similar to Niclosamide, confirming the importance of this scaffold for Y4R 

potentiation. YR subtype selectivity was characterized for four Niclosamide-like Y4R PAMs along with 

two Y4R inactive Niclosamide-derived structures.  

Y4R potency and selectivity 

Investigation of the potency of the compounds on the Y4R showed that three compounds, 

Niclosamide, VU0118748 and VU0048913, had comparable EC50 values of around 500 nM. All other 

compounds lacking the halogen substitution on the benzoyl ring were either completely inactive at the 

Y4R or had an at least 10-fold lower EC50 for potentiation of a PP EC20 (Figure 4.3). These investigations 

highlight the role of an electron-rich substituent at this position for Y4R potency. In contrast, the bulky 

nitro-benzoyl substitution in compound VU0118748 had no influence on Y4R potency and Y4R PAM 
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activity. However, this modification lowers the effect at Y1R. This offers a role for this position as a 

potential modification site for improving Y4R selectivity while maintaining the Y4R PAM activity. 

Furthermore, this position could be used for linking the modulator to the native ligand PP to create a 

bitopic ligand, as already performed for mAChRs and adenosine receptors [37-39]. Bitopic ligands can 

have the advantage over pure allosteric modulators by taking advantage of the increased selectivity 

without relying on the presence of endogenous agonist. 

Selectivity studies of Niclosamide and analogs on all four Y receptor subtypes revealed that the 

compounds are not fully selective for the Y4R. Niclosamide and VU0118748, both Y4R PAMs, showed 

antagonistic effects on Y5R. The Y4R and Y5R fulfill different actions in the regulation of appetite and food 

intake. While the Y4R has an anorexigenic effect by inducing satiety in response to the activation of the 

native ligand PP, the Y1R and Y5R are characterized to have an orexigenic effect[40]. A simultaneous Y5R 

antagonism and Y4R PAM activity thus could contribute to an anti-obesity effect of Niclosamide or 

VU0118748. However, the different analogs of the Niclosamide scaffold suggest the possibility of 

developing Y4R PAMs with a higher degree of specificity relative to other Y receptor subtypes (Figure 

4.5). It is not uncommon for compounds to produce a variety of effects at a common binding site. For 

example, recently a known metabotropic glutamate receptor 4 (mGluR4) PAM/mGluR1 NAM chemotype 

was converted into a selective mGluR1 PAMs by virtue of a double “molecular switch” [41]. 

Would an EC50 shift of 4 fold be sufficient to cause an in vivo effect? 

Niclosamide and some related analogs induced a 4-fold increase in the potency of PP at Y4R. 

Investigated allosteric modulators of other class A GPCRS, especially modulation of neurotransmitter 

response, display a stronger allosteric effects with EC50 shifts >10 fold, shown for muscarinic receptor 4 

(mAChR4) [42]. However, allosteric modulation of the CaSR by cinacalcet shows that even smaller in 

vitro effects can be effective in vivo and that clinical efficacy is dependent on the receptor, tissue and 

the metabolic state that is targeted [43]. This suggests that the comparatively small increase in PP 

potency caused by Niclosamide may be sufficient to elicit in vivo effects. 

Niclosamide improves diabetic symptoms in mice 

Niclosamide is an FDA approved anthelmintic drug that treats parasitic worm infection through 

the uncoupling of mitochondria. Interestingly, this compound was recently studied as a potential 

therapeutic for treatment of type 2 diabetes due to its high tolerability and the benefits of lipid 

mitochondrial uncoupling for treating diabetes [44]. Tao et al. fed mice the ethanolamine salt form of 
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Niclosamide and showed it to be efficacious at high nanomolar concentrations (measured with blood 

sample liquid chromatography–tandem mass spectrometry at various time points) in reducing plasma 

insulin decline in db/db mice, sensitizing the insulin response, and preventing and treating diabetic 

symptoms during high fat diet induced obesity in mice. The authors focus on mitochondrial uncoupling 

as the primary mechanism of action for Niclosamide in the treatment of diabetes symptoms. However, 

our identification of Niclosamide as an Y4R PAM suggests that the efficacy of Niclosamide on diabetic 

symptoms may result from its action on the YR signalling in addition to effects on mitochondrial 

function. 

4.5 Materials and Methods 

Cell Culture 

COS-7 cells stably expressing hY1/2/4/5R_eYFP fusion protein and the Δ6Gαqi4myr chimeric Gα-

protein were prepared as previously described [45]. The hY1/2/4/5R_eYFP cDNA was subcloned into MCS1 

of a pVitro2-MCS vector carrying a hygromycin resistance gene; the Δ6Gαqi4myr cDNA was subcloned into 

MCS1 of a pVitro2-MCS vector carrying a G418 resistance gene (Invivogen).  

COS-7 (African Green Monkey kidney) cells stably expressing the hY1/2/4/5R_eYFP fusion protein 

and the Δ6Gαqi4myr chimeric Gα-protein were cultured at 37 °C in high glucose Dulbecco’s Modified 

Eagle Medium (DMEM, Life Technologies) with glutamine and sodium pyruvate (Life 

Technologies/Lonza) supplemented with 10% FBS (Invitrogen), 1.5 mg/mL G418-sulfate (Amresco) and 

133 μg/ml hygromycin (Invivogen). 

HTS Calcium Flux Assay 

A total of 35,288 compounds were tested for their ability to modulate the Y4R activation in 

conjunction with the Vanderbilt HTS facility. In a pilot HTS experiment, 2000 compounds (spectrum 

collection, MicroSource Discovery Systems, Inc.) were screened for modulation of the Y4R. This 

collection is designed to enrich the general hit rate by including drugs with known biological profiles 

(60%), naturally occurring products with no biological profile (25%), and non-drug compounds with 

biological profiles (15%). In a following HTS, 33,288 compounds were tested for Y4R modulatory effects. 

Thirty-two thousands of these compounds were randomly selected from the Vanderbilt compound 

library and 1288 were selected based on their similarity to Niclosamide, a PAM discovered in the pilot 

HTS.  
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Cells were plated in TC-treated 384-well plates (black, clear bottom, Greiner) in 20 μL cell 

culture medium using a Multidrop Combi (Thermo Fisher) microplate dispenser (ThermoScientific, 

Thermo Fisher) at a density of 16,000 cells/well. The cells were incubated for 24 hours at 37 °C in the 

presence of 5% CO2. Following incubation, the medium was replaced with 20 μL/well fluorescent dye 

solution (1.0 μM Fluo-2 AM (TEFlabs), .01% Pluronic Acid F-127 in assay buffer) using an ELx405 cell 

washer (BioTek). Following a 90 minute incubation at room temperature, fluorescent dye solution was 

replaced with 20 μL/well assay buffer (HBSS, 20 mM HEPES, and 1.25 mM Probenecid (Sigma-Aldrich)) 

using the ELx405 and cell plates were loaded into a Functional Drug Screening System (FDSS, 

Hamamatsu). Once loaded into the FDSS, cell plates were imaged at 1Hz (excitation 470 ± 20 nm, 

emission 540 ± 30 nm using a 3-addition protocol designed to detect agonists, potentiators, and 

inhibitors: 1)after collecting 4 seconds of baseline, 20 l/well of 20 M test compounds in assay buffer + 

0.1% fatty-acid-free bovine serum albumin (Sigma-Aldrich, modified assay buffer) were added 2) 

following a 150 second delay , 10 l/well of concentration of 5-fold over the PP EC20 (55 ± 27 pM) 3) 

after 330 seconds, a 13 l/well addition 5-fold over the PP EC80 (836 ± 33 pM) in modified assay buffer 

was performed. On each screening day, PP EC20 and EC80 plates were adjusted after a test PP CRC at the 

beginning of each day to account for minor day to day variations in experimental conditions.  

Substructure Search  

Substructure searches were performed against the Vanderbilt Institute for Chemical Biology 

(VICB) library using the ChemCart application (DeltaSoft Inc.) Tanimoto coefficient similarity search. 

Higher Tanimoto coefficients indicate more similarity based on the shared presence of chemical 

subgroups. To increase our chemical search space, we altered the amide linker of Niclosamide and 

repeated the substructure search against the VICB library. Linker alterations included replacing the 

amide linker with urea, thiourea, δ-lactam, and an extension of the linker by one or two methylene 

groups. Tanimoto coefficient cut-offs were adjusted to between 0.45 and 0.63 for each substructure 

search to ensure that approximately 200 to 300 compounds were identified for each scaffold. Table S4-1 

lists the chemical structures and parameters used for all similarity searches. Reference structures with 

alternate backbone constitutions were generated using ChemBioDraw Ultra (PerkinElmer Inc.). Final 

search results were concatenated and duplicate search hits were removed. The final collection of 1288 

compounds were distributed over five plates and tested using the triple-add screen protocol. 
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IP3 Assay 

Cells were seeded into 48-well plates and incubated for 24 hours at 37°C / 5% CO2. Next, cells 

were labeled for at least 16 hours in DMEM+10% FBS containing 2 µCi/ml myo-[2- 3H(N)]-inositol 

(PerkinElmer) at 37°C / 5% CO2. Labeling solution was aspirated and cells were washed with 20 µL/well 

DMEM + 10 mM LiCl (Sigma-Aldrich; DMEM/LiCl) and stimulated with the peptide solutions and 

compounds. Therefore, 50 µl/well DMEM/LiCl were added after washing, followed by addition of 50 

µl/well test compound in DMEM/LiCl (3-fold over the final concentration) and addition of 50 µl/well 

peptide solution (3-fold over the final concentration) in DMEM/LiCl. Stimulation was performed for 2 

hours at 37°C / 5% CO2. Cell lysis, subsequent sample preparation and radiometric detection was 

performed as described previously [45]. 

Data analysis 

Data analysis was performed with GraphPad Prism 5.03 software (GraphPad Software) using 

standard non-linear regression (log(agonist) vs. response, three parameters). All data were normalized 

to the corresponding control curve in the absence of the modulator. EC50 ratios were calculated from 

global concentration response curves (EC50 shift function) summarized from the data of at least 3 

independent experiments (row means totals function). 
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4.7 Supplementary Information 

Figure S4.1 Validation Y4R PAM activity and YR subtype selectivity of initial Ca2+ HTS hit compounds in an IP3 

assay. Structurally different small molecules (A) showed a positive effect on Y4R Ca2+ signal response in an HTS 

screening of the spectrum collection. Retesting in the IP3 assay as an alternative YR activation readout validated 

Niclosamide as a Y4R PAM (B) and offered other hits to have additional effects on other YR subtypes. Submaximal 

activation of Y receptors was observed for stimulation with 1 nM ligand (Y4R: PP, Y1,2,5R: NPY) in presence of 10 

µM compound. Data represent the mean ± SEM of two independent experiments performed in quadruplicates. 

 

 

 

 

 

 

 

 



CHAPTER 4 

 

207 
 

Figure S4.2 Selectivity of Niclosamide-like allosteric modulators among human Y receptors. Receptor activation 

was investigated with an inositol phosphate accumulation assay in COS-7 cells stably expressing a Y receptor 

subtype and chimeric G-protein ΔGα6qi4myr. Data represent the mean ± SEM of at least 2 independent 

experiments. 
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Table S4-1 Substructure search: Niclosamide analogues and results. 

Backbone Modification Search Structure Tanimoto Cutoff Total Compounds 

None 

 

0.63 380 

Urea 

 

0.50 144 

Thiourea 

 

0.45 396 

δ-lactam 

 

0.57 324 

Methylene extension (a) 

 

0.57 232 

Methylene extension (b) 

 

0.60 183 
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Chapter 5  

Modeling Interactions of the Human Y4 Receptor 

and Pancreatic Polypeptide 
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Xavier Pedragosa-Badia, Gregory Sliwoski, Elizabeth Dong Nguyen, Diana Lindner, Jan Stichel, Kristian 

Kaufmann, Jens Meiler, Annette Beck-Sickinger: Pancreatic polypeptide is recognized by two 

hydrophobic domains of the human Y4 receptor binding pocket.
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5.1 Abstract 

This chapter begins with detailed background information and computational techniques used 

to generate comparative models of the Y4R and subsequently dock PP to these models. Due to the lack 

of experimental Y receptor structure, comparative modeling with multiple class A GPCR templates was 

used to generate models of the Y4R. Secondly, a two-step docking process was performed to model 

interactions between Y4R and pancreatic polypeptide. Specific interactions elucidated through in vitro 

experiments used to guide docking include contacts between Tyr2.64 of Y4R and Tyr27 of PP, Asn7.32 of Y4R 

and Arg33 of PP, and interactions between Phe7.35 and residues Arg33 and Tyr36 of PP. These experimental 

findings and high resolution models will contribute to the rational design of ligands with higher affinity 

and activity at the human Y4 receptor. 
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5.2 Introduction 

This chapter details the computational methods used to dock the peptide agonist pancreatic 

polypeptide (PP) to the human Y4 receptor (Y4R). In brief, comparative modeling was used to construct 

3D models of Y4R. Then, experimentally-derived restraints were used to guide docking of PP to these Y4R 

comparative models. 

Modeling the human Y4 receptor with Rosetta Molecular Modeling Suite 

Rosetta Molecular Modeling Suite is a computational modeling suite that contains tools for de 

novo structure prediction, comparative modeling, loop building, protein-protein docking, protein-ligand 

docking, and protein design [1-4]. It has been successfully applied to various projects including the 

creation of novel enzymes [5, 6], redesign of metalloenzymes for catalyzing new reactions [7], 

peptidomimetic design with noncanonical backbones [8], structure elucidation from sparse NMR data 

[9], NMR refinement [10], homology modeling  [11, 12], and ligand bind site elucidation [13]. In 

favorable cases, Rosetta is capable of refining small proteins to near atomic resolution [14]. In addition 

to proteins, Rosetta is capable of modeling interactions with small-molecule ligand s[15], RNA [16], and 

DNA [17]. To improve sampling accuracy and model discrimination, Rosetta accepts experimental 

restraints from a variety of sources including NMR, EM, EPR, and mutagenesis, all of which have been 

shown to improve model quality in larger systems [18]. 

Protein structure prediction involves finding the lowest energy conformation from all potential 

conformations. This is known as the global minimum in the conformation energy landscape and is 

thought to represent the native protein structure [19]. Even with approximation, the extent of 

conformational space available to a polypeptide sequence exceeds current computational resources.  To 

sample this massive conformational space efficiently, Rosetta uses a Monte Carlo (MC) based search 

designed to explore energy landscapes with multiple minima [20]. 

In lieu of computationally expensive quantum mechanical calculations, Rosetta uses an energy 

score approximation that combines statistical data from pre-existing protein structures with simplified 

physical energy terms. The total energy of a structure is the weighted sum of all energy terms. Although 

specific scoring terms may vary depending on application, the Rosetta energy score generally includes 

terms such as solvation (probability of seeing a particular amino acid with a given number of α-carbons 

within a given distance of another), electrostatics (probability of observing a given distance between 
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amino acids), orientation-dependent hydrogen bonding potential, and 6-12 Lennard-Jones potential for 

high resolution energy functions [4].  

Although powerful, Rosetta’s de novo folding application is practical only for soluble proteins 

with 150 amino acids or fewer [21]. This is insufficient for G-protein coupled receptors (GPCRs) such as 

Y4R that typically exceed 300 amino acids. A common approach to modeling larger proteins is 

comparative modeling. This method uses the structure of another, often homologous protein called the 

“template” to guide tertiary structure prediction. Conformational search space is reduced drastically by 

providing Rosetta with a scaffold over which to lay the initial backbone structure [22]. Comparative 

modeling has been successfully applied to structure-function relationship prediction, structure-based 

drug design, and site-directed mutagenesis [23-25]. 

Many high quality comparative models have been generated for class A GPCRs despite low 

sequence identity, especially when more than one template is used [26]. Shared topological 

characteristics of GPCRs that enable low sequence identity comparative modeling include seven 

transmembrane α-helices, three extracellular loops, three intracellular loops, an extracellular N-

terminus and an intracellular C-terminus [27]. Despite this overall structural similarity, GPCRs can 

respond to a wide range of stimuli and effect diverse changes across specific cell types, a variability that 

is in part due to the intrinsically disordered loops and termini [28]. 

Disordered loop regions present the greatest challenge to comparative modeling GPCRs. These 

regions comprise the lowest degree of sequence similarity between different class A GPCRs and play 

important functional roles that help determine a particular receptor’s unique behavior. Extracellular 

loop two (ECL2) presents one of the greatest challenges to class A GPCR comparative modeling due to its 

high sequence variability and length that often exceeds 12 residues [29]. However, some structural 

features of ECL2 may be conserved between template and target and used to guide modeling. A 

disulfide bond typically tethers ECL2 to the third transmembrane helix. Additionally, ECL2 may adopt 

secondary structure conformations such as the β-strands seen in rhodopsin [30]. Some class A GPCRs 

contain a second intra-loop disulfide bond in ECL3 that serves to further limit conformational freedom 

[30]. 

Rosetta is capable of low resolution loop modeling followed by high resolution refinement. Low 

resolution modeling in Rosetta refers to the simplification of residue side chains into single-body 

“centroids” and the specialized low resolution scoring term that models solvation, electrostatics, 
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hydrogen bonding between β-strands and steric clashes [4]. This low resolution representation smooths 

the energy landscape for improved sampling at the expense of accuracy [4]. Initially, loops are 

represented as a linear sequence of peptide “fragments” three or nine amino acids long [31]. Fragment 

conformations are retrieved from a database of experimentally determined conformations using local 

alignment queries [32]. This allows Rosetta to locally sample a wide variety of local conformational 

space that reflects known protein structures.  

Cyclic coordinate descent (CCD) [33] is used to close loops. Inspired by inverse kinematic 

applications in robotics, CCD minimizes the sum of the squared distances between three backbone 

atoms of the loop’s N-terminal and three backbone atoms of the fixed C-terminal anchor. Dihedral 

backbone angles are adjusted and evaluated iteratively until the loop is closed [3]. This method of loop 

closure is advantageous because of its speed and ability to close loops in 99% of instances tested and 

has been shown to outperform loop modeling in other protein modeling applications [22, 34]. Following 

loop closure, Rosetta uses another robotics inspired method called kinematic closure (KIC) to refine the 

loop conformation [35].  

High resolution models are obtained by replacing centroids with full-atom side chains 

conformations. Because systematic evaluation of all side chain degrees of freedom is intractable [36], 

Rosetta limits the number of side chain conformations sampled based on those observed in the Protein 

Data Bank (PDB). A rotamer is a specific set of chi angles derived from statistical analysis of the PDB that 

represents a likely side chain conformation [37]. Rotamer libraries define biologically probable 

conformations for all amino acids and capture likely conformations both within single side chains and 

between side chains of a given sequence. Experimental evidence may also be used to influence rotamer 

selection [38]. Sidechain modifications are combined iteratively with backbone modifications to 

determine the combination of rotamers occupying the global minimum of the energy function [1, 4]. 

The final step of comparative modeling is a whole-model all-atom refinement called “relax” [39, 

40]. The overall goal is to explore local conformational space and move the protein structure into an 

energetic minimum. During relax, local interactions are improved with iterative side-chain (rotamer) 

selection and gradient-based minimization. The global conformation of the protein is maintained while 

random backbone angle perturbations are sampled along with rigid body degrees of freedom and 

rotamer conformations. This is followed by a gradient minimization over all torsional degrees of 

freedom including phi, psi, omega, and kappa to resolve clashes and reach an energy minimum.  
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Rosetta’s implicit membrane potential 

Membrane proteins such as GPCRs function in a unique environment compared to soluble 

proteins [41]. This environment directly influences the topological features of the membrane protein 

fold. Hydrophobic amino acids such as leucine, isoleucine, valine, and phenylalanine favor the lipid 

exposed environment within the hydrophobic layer of the membrane over the protein-buried 

environment and small side-chain amino acids such as glycine, alanine, serine, and threonine favor helix-

helix interfaces [42]. Additionally, large polar and cation-π interactions are more frequent in helical 

transmembrane proteins than soluble proteins and inter-helical hydrogen bonds result in tighter packing 

for transmembrane helices [42]. 

Rosetta uses an implicit membrane representation defined as a static five-layered, 60 Å wide 

membrane. These layers approximate the water-exposed, polar, interface, inner and outer hydrophobic 

layers of the membrane. Computational applications that employ algorithms such as Hidden Markov 

Models [43] are used to predict the membrane topology of a protein based on its sequence. Rosetta 

uses this information to predict the membrane spanning segments of the protein and classifies residues 

into one of eight burial states. Specialized membrane scoring terms evaluate each residue differently 

depending on their burial and layer state [42]. 

Contact restraints guide PP docking to Rosetta 

Experimental restraints provide critical information for docking PP to the Y4R comparative models. 

Experiments performed by Xavier Pedragosa-Badia of the Annette Beck-Sickinger lab identified Tyr2.64, 

Asp2.68, Asn6.55, Asn7.32, and Phe7.35 as members of the hY4R binding pocket [12]. Furthermore, hPP 

analogs with modifications in residues 27, 33, or 36 revealed these positions as interaction partners with 

the receptor. The presented work reflects a strong collaboration between the Annette Beck-Sickinger 

lab at Leipzig University and the Jens Meiler lab at Vanderbilt University. The results presented in this 

chapter focus on the presenting author’s contribution to the computational modeling of Y4R and 

interactions with PP.  Crucial experimental evidence used to guide these models is detailed in the 

publication by Pedragosa-Badia, et al [12]. However, a summary of specific experimental results 

contributing to the definition of modeling restraints is included in table 5-1. 
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Table 5-1 Experimental evidence used to define each restraint as previously published. ND = not determined. 

Restraint: Tyr2.64 – Tyr27   

Y4R Mutation hPP Mutation EC50 ratio to wild type 
Tyr2.64Ala           -- 65 
Tyr2.64Ala [Ala27]hPP 424 
Tyr2.64Ala [Leu27]hPP 63 
Tyr2.64Ala [Cha27]hPP 14 
Tyr2.64Leu [Ala27]hPP 138 
Tyr2.64Leu [Leu27]hPP 21 
Tyr2.64Leu [Cha27]hPP 23 
 
Restraint: Asn7.32 – Arg33 

  

Y4R Mutation hPP Mutation PP EC50 ratio to wild type 
Asn7.32Ala             -- 5 
Asn7.32Ala [Lys33]hPP 60 
Asn7.32Ala [ADMA33]hPP 979 
Asn7.32Ala [SDMA33]hPP 1892 
Asn7.32Arg             -- 18 
   
Restraint: Phe7.35 – Arg33   

Y4R Mutation hPP Mutation PP EC50 ratio to wild type 
Phe7.35Ala              -- 8 
Phe7.35Ala [ADMA33]hPP 107 
Phe7.35Ala [Lys33]hPP 451 
Phe7.35Ile              -- 41 
Phe7.35Ile [ADMA33]hPP ND 
Phe7.35Ile [Lys33]hPP 762 
 
Restraint: Phe7.35 – Tyr36 

  

Y4R Mutation hPP Mutation PP EC50 ratio to wild type 
Phe7.35Ala [Ile36]hPP ND 
Phe7.35Ala [Phe36]hPP 17 
Phe7.35Ala [Cha36]hPP 138 
Phe7.35Ala [Nle36]hPP 679 

 

5.3  Results 

A final ensemble of Y4R comparative models draws from all templates 

Comparative modeling was performed in parallel for fourteen templates due to the low sequence 

identity between templates and target. Results in each template were examined to determine whether 

one or more template provided models with the lowest energy poses and therefore represented the 

most suitable templates. Table 5-2 details the templates used and lists the resulting low energy model 
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scores within each template. As shown, all templates produced models with comparable energy scores. 

Based on these results, top models from each template were selected to represent an ensemble of 37 

Y4R model conformations instead of focusing on models from a subset of templates. This ensemble 

covers a conformational space of an average RMSD of 5.4 ± 0.8 angstroms. As expected, the majority of 

this conformational variability was found within the loop regions. When comparing the transmembrane 

helix regions, the average conformation RMSD drops to 1.9 ± 0.6 angstroms. Consistent topological 

features across all conformations include a very slight bend in helix 1 near Gly1.46, a bend in helix 2 near 

Pro2.59, a distortion in helix 4 near Pro4.59, a bulge in helix 5 above Pro5.50, a bend in helix 6 near Pro6.50, 

and distortions in helix 7 above the conserved NPxxY motif. The general topology of Y4R comparative 

models is shown in figure 5.1. 

Table 5-2 Fourteen class A GPCR templates show low sequence identity and comparable model performance 

with Y4R. REU = Rosetta energy units. 

PDB ID Receptor Y4R sequence identity (%) Top pose score (REU) Average top 100 
pose scores (REU) 

1u19 Bovine rhodopsin 22 -777.6 -768.7 
2rh1 Human β2 adrenergic 23 -830.7 -798.3 
2vt4 Turkey β1 adrenergic 22 -788.5 -782.7 
3eml Human A2A 26 -816.0 -803.2 
3odu Human CXCR4 24 -772.8 -763.0 
3pbl Human D3 26 -816.6 -798.1 
3rze Human H1 22 -785.2 -772.5 
3uon Human M2 23 -792.0 -780.8 
3v2w Human S1P1 25 -753.9 -744.2 
4daj Rat M3 24 -799.9 -788.1 
4djh Human κ-opioid 25 -804.3 -787.5 
4dkl Mouse μ-opioid 24 -805.9 -793.2 
4ea3 Human N/OFQ opioid 27 -810.2 -782.4 
4ej4 Mouse δ-opioid 26 -792.6 -777.4 
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Figure 5.1 Y4R comparative model ensemble contains consistent topological features. Two views of a 

representative Y4R comparative model are shown and common helix distortions are highlighted along with 

nearby contributing residue. Helices are numbered at the intracellular end. 

Restraints guide pancreatic polypeptide docking 

Pancreatic polypeptide was docked into the comparative model of Y4R to assist interpretation of 

experimental results. The initial placement of the PP helix was guided specifically by the altered activity 

of Y4R Tyr2.64 and PP Tyr27 mutants (Table 5-1). This restraint was also used to guide docking the helix 

first due to its rigid conformation compared to the rest of the binding interface. Once the more rigid 

helix of PP was docked to the more rigid ends of the transmembrane helices of Y4R, the much more 

dynamic ECL of Y4R and PP C-terminal were folded simultaneously. Mutation data outlined in table 5-1 

provided several additional interactions that were used to guide the folding of these regions. These 

interactions specifically include a predicted salt bridge between Y4R Asp6.59 and PP Arg35, a predicted 

hydrogen bond between Y4R Asn7.32 and PP Arg33, a predicted cation-π interaction between Y4R Phe7.35 

and PP Arg33, and an interaction between Y4R Phe7.35 and PP Tyr36.  
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Experimental results were first represented as low resolution restraints to ensure residue proximity 

during the low resolution modeling phase. During the high resolution refinement, experimental results 

were represented as atom-level restraints in an attempt to capture the proposed interactions on an 

atomic level. The specific restraints imposed and their corresponding steps are described in Table 5-3. 

Final models fit well with the majority of the experimental results, accurately portraying residues found 

to affect activity as well as those residues that failed to show any effect on activity. Specifically, the 

predicted salt bridge between Asp6.59 and Arg35 is well represented in eight of the nine models. All 

models show less than a 4.0 Å distance between both inter-residue oxygen-nitrogen pairs, providing 

possible salt bridge interactions or hydrogen bonding. Six of the nine models demonstrate a distance of 

less than 3.2 Å between the oxygen in Y4R Asn7.32 and amine group in PP Arg33, providing for the 

possibility of a hydrogen bond between these residues. Y4R Phe7.35 and PP Arg33 point toward each other 

in all nine models, which is conducive to the proposed cation-π interaction. Additionally, Y4R Phe7.35 and 

PP Tyr36 were oriented toward each other in four models. Finally, Y4R Asp2.68 is within 8 Å and points 

toward the PP helix in five models, suggesting an interaction between the PP helix and Y4R Asp2.68. One 

of the nine models is shown in figure 5-2, A and B, highlighting the binding site and residues important 

for PP-Y4R binding. 

Table 5-3 Experimental restraints used to guide docking of PP with Y4R 

Y4R 
residue  

PP 
residue 

Low 
resolution 
restraint 

High resolution 
restraint 

Proposed 
interaction 

Steps imposed 

Tyr2.64 Tyr27 
C-β atoms 
within 8 Å 

None Unknown PP helix placement 

Asp6.59 Arg35 
C-β atoms 
within 8 Å 

Asp6.59 O-δ and Arg35 
NH within 4 Å  

Salt bridge 
PP C-terminal folding (low resolution), 
Y4R loop building (low resolution), 
final relaxation (high resolution) 

Asn7.32 Arg33 
C-β atoms 
within 8 Å 

Asn7.32 O-δ and Arg33 
NH within 4 Å  

Hydrogen bond 
PP C-terminal folding (low resolution), 
Y4R loop building (low resolution), 
final relaxation (high resolution) 

Phe7.35 Arg33 
C-β atoms 
within 8 Å 

None 
π-cation 
stacking 

PP C-terminal folding (low resolution), 
Y4R loop building (low resolution), 
final relaxation (high resolution) 

Phe7.35 Tyr36 None 
Phe7.35 CZ and Tyr36 
CZ within 4 Å  

Unknown Final relaxation (high resolution) 
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Figure 5.2 Characterization of the binding pocket of PP docked in the hY4R comparative model. A) side view 

of PP (purple) docked to Y4R (cyan). Residues found to be important in the activation of Y4R by PP are labeled. 

Predicted interactions are indicated by dotted red lines (salt bridge between Asp6.59 and Arg35 and hydrogen 

bond between Arg33 and Asn7.32). B) top-down view of the same docked model. C) two docked models show 

the variability in ECL1. The model shown in gray has a significantly longer ECL1 than that shown in cyan. 

Trp2.70, which was experimentally shown to be important in Y4R activation by PP, is shown to be in different 

proximity to PP depending on the size of ECL1. D) side view of the same docked model shown in A and B. 

Residues experimentally shown to be inactive in the binding of PP to Y4R are indicated in black. The disulfide 

bond in ECL2 is also shown in yellow. a = His7.39; b = Gln3.32; c = Phe6.54; d = His6.62; e = Tyr5.38; f = His5.34; 

g = Trp5.29; h = Phe4.80; i = Glu4.67; j = Glu4.79; k = Lys4.72; and l = Asp4.83. Source: [12] 
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The importance of Y4R Trp2.70 for PP binding is the only previously published experimental finding 

not well reflected in the models [12]. In all but one of the nine models, it is pointing away and/or not in 

close proximity to PP. The experimental results regarding this residue may reflect a second site on the 

receptor that leads to an indirect effect of Trp2.70 on binding. Alternatively, model inaccuracy may cause 

this residue to be oriented improperly. This region of the receptor was highly dynamic in the final model 

ensemble, suggesting that the models failed to converge on a consistent conformation within this 

region. The length of TM2 varies across the final model ensemble resulting in ECL1 that varies 

dramatically from three residues in two models, 9-11 residues in five models, and up to 12-13 residues 

in two models. This lack of precision in the final model ensemble may result in a drop in accuracy at this 

region. This discrepancy in loop length is shown in figure 5.2C. 

Models generally positioned residues that failed to affect activity in published mutational assays 

away from PP. Most of these residues are located in ECL2 which consistently lies at the edge of the 

receptor face away from PP. Specifically, Lys4.72, Glu4.79, Phe4.80, Asp4.83, His5.34, and Phe6.54 are not in 

contact with PP in any models. Gln3.32, Glu4.67, Trp5.29, His6.62, and His7.39 are within 8 Å of a PP residue in 

only three of the nine models, and Tyr5.38 is within 8 Å of a PP residue in only two of the nine models. 

ECL2 and the residues not involved in PP binding are shown in figure 5.2D.  

The ensemble of nine models was analyzed for ligand-receptor interactions. These predictions 

can serve as hypotheses to direct future mutational assays. Residue pairs between PP and Y4R with a 

distance of less than 8 Å were collected across all nine models. The total counts are shown in figure 5.3. 

This map can serve as a foundation from which to identify the residues that line the binding pocket. For 

example, five of nine models show that Y4R Ser5.28 and PP Thr32 are within 8 Å of each other, suggesting a 

possible interaction between these two residues.  
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Figure 5.3 Y4R and PP residues within an 8 Å distance (based on C-β atoms) represent possible binding 

interactions. Neighboring residue pairs were collected across the nine final PP-Y4R docked models and 

presented as a heatmap indicating the most represented neighbors. Y4R residues are listed on the x axis with 

their secondary structure indicated (orange = TM and blue = ECL). PP residues are listed on the y axis with 

similar secondary structure indications. Numbers represent the number of models (out of nine) from which 

these residue pairs were within 8 Å. TM, transmembrane helix; ECL, extracellular loop. Source: [12] 

5.4  Discussion 

This chapter presents the computational modeling strategy used in a collaboration that 

combines in vitro experiments with the Rosetta molecular modeling suite to identify and characterize a 

binding pocket for the Y4R system that is composed of several residues located on TM2, TM6, and TM7. 

This text serves to elaborate on the computational results contained in the publication by Pedragosa-

Badia, et al [12]. The reader is referred to this publication for detailed in vitro experimental methods and 

results. As shown, these models capture the majority of experimental results regarding residues that 

contact PP as well as many residues that have no effect on activity when mutated. This approach shows 

the utility of combing comparative modeling with protein docking and de novo protein folding to model 

the interaction between a GPCR and a peptide ligand with regions of different flexibility. 



CHAPTER 5 

 

222 
 

5.5 Methods 

Fourteen GPCR Templates were Considered for Y4R Comparative Modeling 

A comparative model of Y4R was constructed using the protein structure prediction software 

package Rosetta, version 3.4 [3]. Because Comparative modeling GPCRs has been shown to be more 

successful when multiple GPCR templates are used instead of one [26], fourteen experimental GPCR 

structures from the Protein Data Bank (PDB) were considered as possible templates. These structures 

include the following: rhodopsin (PDB code 1U19) [44]; β2-adrenergic receptor (PDB code 2RH1) [45]; β1-

adrenergic receptor (PDB code 2VT4) [46]; A2A-adenosine receptor (PDB code 3EML) [47]; CXC 

chemokine receptor type 4 (PDB code 3ODU) [48]; D3 dopamine receptor (PDB code 3PBL) [49]; H1 

histamine receptor (PDB code 3RZE) [50]; M2 muscarinic receptor (PDB code 3UON) [51]; sphingosine 1-

phosphate receptor (PDB code 3V2W) [52]; M3 muscarinic receptor (PDB code 4DAJ) [53]; κ-opioid 

receptor (PDB code 4DJH) [54]; μ-opioid receptor (PDB code 4DKL) [55]; nociceptin/orphanin FQ opioid 

receptor (PDB code 4EA3) [56], and δ-opioid receptor (PDB code 4EJ4) [57]. Percent identity between 

Y4R and each template can be found in table 5-3. 

These structures were aligned with MUSTANG [58], and the resulting multiple sequence 

alignment was aligned with a multiple sequence alignment of hY1R, hY2R, Y4R, and hY5R using ClustalW 

[59]. Sequence alignments were adjusted to remove gaps within transmembrane α-helices and ensure 

that highly conserved residues remain aligned (supplementary figure S5-1). Y4R residues were threaded 

onto the three-dimensional coordinates of aligned residues in each of the 14 GPCRs. 

Missing Atom Coordinates Were Constructed Using Rosetta Loop Construction Protocols 

Missing density and loop regions were reconstructed using Monte Carlo Metropolis fragment 

replacement and cyclic coordinate descent loop closure algorithms in Rosetta [33]. All models 

underwent repacking and gradient minimization with RosettaMembrane [42]. An additional constraint 

was included to account for the expected disulfide bond between Y4R residues Cys3.25 and Cys5.25.  

The final set of models was clustered based on RMSD using bcl::Cluster [60]. The top scoring 

models from the five largest clusters were used for docking studies. 
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Docking of Pancreatic Polypeptide (PP) into the Comparative Model of Y4R 

A set of NMR structure conformations of bovine pancreatic polypeptide (PDB code1LJV) [61] 

was docked into the Y4R comparative models using RosettaDock. The general design of RosettaDock 

follows the biophysical theory of encounter followed by transition to bound state[62]. In this algorithm, 

the helix of PP slides into contact with Y4R and then Monte Carlo conformational search rotates and 

translates the helix to find a low energy pose. Bovine pancreatic polypeptide differs only on positions 6 

and 23 with respect to PP and has similar affinity for the Y4R as earlier reported [63, 64]. The use of ILJV 

provided a guide for the structural distinction between the peptide's helical region and dynamic tail 

region. The helical region (residues 14PEQMAQYAAELRRYINML31) was first docked into the Y4R models. 

Four distinct helix conformations were docked into 37 Y4R comparative models without ECLs, guided by 

a predicted interaction between Y4R Tyr2.64 and PP Tyr27. 

C-terminal Residues of PP Were Added Using de Novo Folding with Experimental Restraints 

The five C-terminal residues of PP (TRPRY) were constructed using Rosetta's low resolution de 

novo folding algorithm where residues are represented as “centroids” [65]. Three experimentally 

derived restraints between Y4R and PP residues were used to guide this step using an 8-Å distance cutoff 

between residues Asp6.59 and Arg35, Phe7.35 and Arg33, and Asn7.32 and Arg33 [66, 67]. All restraints are 

detailed in Table 5-3. 

The ECLs were rebuilt as described for the comparative modeling of Y4R, with the addition of 

these experimental constraints. Additionally, these models were refined to atomic detail, replacing 

centroids with side chain rotamers based on a backbone-dependent rotamer library and energy 

minimization with RosettaMembrane [14, 68, 69]. 

Models Were Relaxed Using Atomic Resolution Experimental Restraints 

Models were again clustered based on RMSD. Top scoring models from the largest clusters were 

visually inspected for binding poses that preserved the experimental restraints. Selected models 

underwent an additional relaxation step with constraints adjusted to reflect atomic level interactions 

between residues Asp6.59 and Arg35 (3 Å distance between the two δ-oxygen atoms on Asp6.59 and the 

side chain nitrogen atoms on Arg35), and residues Asn7.32 and Arg33 (4 Å distance between the δ-oxygen 

atom on Asn7.32 and the two side chain nitrogen atoms on Arg33). These constraint distances allow for 

possible hydrogen bonding and salt bridge interactions. An additional restraint between Y4R Phe7.35 and 
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PP Tyr36 was introduced. Final models were clustered and visually inspected, and nine representative 

models were selected. The overall workflow for receptor modeling and peptide docking is summarized 

in figure 5.4. 

 

Figure 5.4 Y4R comparative model and PP docking work flow. An ensemble of Y4R comparative models was 

constructed through several rounds of loop building and energy minimization. Alongside the flowchart are 

representative models to illustrate the evolution of the comparative model. PP docking was guided by 

experimentally derived restraints. Source: [12]. 
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5.7  Supplementary Information 

Figure S5-1 Adjusted alignment of Y4R to templates used for threading 
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4dklA Y I A V C H - - P V K A L D F R - - - T - - - - P R N A K I V N V C N W I L S S A I G L P V M F M -

4ea3A Y V A I C H - - P - - - - - - - - - - T - - - - S S K A Q A V N V A I W A L A S V V G V P V A I M -

4ej4A Y I A V C H - - P V K A L D F R - - - T - - - - P A K A K L I N I C I W V L A S G V G V P I M V M -

Y4 H Q L I I N - - P T G W K P S I S - - - - - - - - - Q A Y L G I V L I W V I A C V L S L P F L A N S
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1u19A - - - - - - W S R - - - - Y I - - - - - P E G - - - - - - - - M - - - - Q - C S C G I D - Y Y T P H

2rh1A - - - - - - W - - - - - - Y R - - - - - A T H Q E A I N C Y A E - - - - E - T C C D F F - - - - - -

2vt4A - - - - - - W - - - - - - W R - - - - - D E D P Q A L K C Y Q D - - - - P - G C C D F V - - - - - -

3emlA - - - - - - W - - - - - - N N C G Q S Q G C - - - - - - - - - G - - E G Q - V A C L F E D - - - - -

3oduA - - - - - - - - - - - - - A N - - - - - V S E - A - - - - D - D - - - - R - Y I C D R F - Y - - - -

3pblA - - - - - - F - - - - - - N T - - - - - T G - - - - - - - - - D - - - - P - T V C S I - - - - - - -

3rzeA N H - - - - - - - - - - - - - - - - - - - R - - - - - - - - - R - - - - E D K C E T D - - F - - - -

3uonA - - Q F I V G - - - - - V R - - - - - - T V - - - - - - - - - E - - - - D - G E C Y I Q - F - - - -

3v2wA - - - - - - W - - - - - - N - - - - - - - - - - - - - - - - - - - - - - - - - - - - C I - - - - - -

4dajA - - Q Y F V G - - - - - K R - - - - - - T V - - - - - - - - - P - - - - P - G E C F I Q - F - - - -

4djhA - - - - - - - - - - - - - G G - - - - - T K V - R - - - - E - D V D - - V - I E C S L Q - F P - - -

4dklA - - - - - - - - - - - - - A T - - - - - T K Y - R - - - - Q - G - - - - S - I D C T L T - F S - - -

4ea3A - - - - - - - - - - - - - G S - - - - - A Q V - E - - - - D - E - - - - E - I E C L V E - I P - - -

4ej4A - - - - - - - - - - - - - A V - - - - - T Q P - R - - - - D - G - - - - A - V V C M L Q - F P - - -

Y4 - - - - - - - - - - - - - - - - - - I L E N V F H K N H S K A L E F L A D K V V C T E S W P - - - -

1u19A E E T - - - - - - - - - N N E - - - - - S - F V - - - - - - - - I Y M F V V H F I I P L I V I F F C

2rh1A - - - - - - - - - - - - T N Q - - - - - A - Y A - - - - - - - - I A S S I V S F Y V P L V I M V F V

2vt4A - - - - - - - - - - - - T N R - - - - - A - Y A - - - - - - - - I A S S I I S F Y I P L L I M I F V

3emlA - - - - - - - - - - - - V V P M - - - - N Y M V - - - - - - - - Y F N F F A C V L V P L L L M L G V

3oduA - - - P - N - D L - - - W V V - - - - - V - F Q - - - - - - - - F Q H I M V G L I L P G I V I L S C

3pblA - - - - - - - - - - - - S N P - - - - - D - F V - - - - - - - - I Y S S V V S F Y L P F G V T V L V

3rzeA - - - - - - - Y - - - - D V T - - - - - W - F K - - - - - - - - V M T A I I N F Y L P T L L M L W F

3uonA - - - - - - - F - - - - S N A - - - - - A - V T - - - - - - - - F G T A I A A F Y L P V I I M T V L

3v2wA - - - - - - - - - - - - S A L - - - - - S - S C S T V L P L Y H K H Y I L F C T T V F T L L L L S I

4dajA - - - - - - - L - - - - S E P - - - - - T - I T - - - - - - - - F G T A I A A F Y M P V T I M T I L

4djhA - - - D D D Y S W - - - W D L - - - - - F - M K - - - - - - - - I C V F I F A F V I P V L I I I V C

4dklA - - - H - P T W Y - - - W E N - - - - - L - L K - - - - - - - - I C V F I F A F I M P V L I I T V C

4ea3A - - - T - P Q D Y - - - W G P - - - - - V - F A - - - - - - - - I C I F L F S F I V P V L V I S V C

4ej4A - - - S - P S W Y - - - W D T - - - - - V - T K - - - - - - - - I C V F L F A F V V P I L I I T V C

Y4 - - - - - - - - - - - - L A H - - - H R T I Y T - - - - - - - - T F L L L F Q Y C L P L G F I L V C

1u19A Y G Q L V F T V K - - - - - - - - - - - - - - - - - - - - - - E A A - - A Q Q Q E S - - - - - A T T

2rh1A Y S R V F Q E A K R Q - - - - - L - - - - - - K F C - - - - - - - - - - - - - - - - - - - - - - - -

2vt4A A L R V Y R E A K E Q - - - - - I R - - K I D R A S K R - K - - R V - - - - - - - - - - - - - - - -

3emlA Y L R I F L A A R R - - - - - - - - - - - - - - - - - - Q L - - R S - - - - - - - - - - - - - - - T

3oduA Y C I I I S K L S H - - - - - - - - - - - - - - - - - - - - - - - - S - - - - - - - - - - - - - - K

3pblA Y A R I Y V V L K Q R R R K G V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3rzeA Y A K I Y K A V R Q - - - - - - - - - - - - - - - - - - H C - - L H - - - - - - - - - - - - - - - -

3uonA Y W H I S R A S K S - - - - - - - - - - - - - - - - - - R - - - - - - - - - - - - - - - - - - - - -

3v2wA V I L Y C R I Y S L V - - - - - R T - - - - - - - - - - - - - - - - - - - - - - - - - - - - R A S R

4dajA Y W R I Y K E T - E - - - - - - - - - - - - - - - - - - K - - - - - - - - - - - - - - - - - - - - -

4djhA Y T L M I L R L K S V - - - - - R L L S - - - - - - - - - - G R E K - - - - - - - - - - - - - - - -

4dklA Y G L M I L R L K S - - - - - - - - - - - - - - - - - - - V - R E K - - - - - - - - - - - - - - - -

4ea3A Y S L M I R R L R G - - - - - - - - - - - - - - - - - - - - - - - - V R L - - - - - L S G S - R E K

4ej4A Y G L M L L R L R S - - - - - - - - - - - - - - - - - - - V R E - - K D - - - - - - - - - R - S - -

Y4 Y A R I Y R R L Q R Q - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G

1u19A Q K A - E - - - - - - - K E V - - - - T R M V I I M V I A F L I C W L P Y A G V A F Y I F T H - Q G

2rh1A - L K - E - - - - - - - H K A - - - - L K T L G I I M G T F T L C W L P F F I V N I V H V I Q - D N

2vt4A M L M R E - - - - - - - H K A - - - - L K T L G I I M G V F T L C W L P F F L V N I V N V F N - R D

3emlA L Q K - E - - - - - - - V H A - - - - A K S L A I I V G L F A L C W L P L H I I N C F T F F C - P D

3oduA G H Q - K - - - - - - - R K A - - - - L K T T V I L I L A F F A C W L P Y Y I G I S I D S F I L - L

3pblA P L R - E - - - - - - - K K A - - - - T Q M V A I V L G A F I V C W L P F F L T H V L N T H C - Q T

3rzeA M N R - E - - - - - - - R K A - - - - A K Q L G F I M A A F I L C W I P Y F I F F M V I A F C - K N

3uonA - - - - - I P P P S R E K K V - - - - T R T I L A I L L A F I I T W A P Y N V M V L I N T F C - A P

3v2wA S S E - N - - - - - - - V A L - - - - L K T V I I V L S V F I A C W A P L F I L L L L D V G C - K V

4dajA - - - - - - - - - - - - - - - L I K E A Q T L S A I L L A F I I T W T P Y N I M V L V N T F C - D S

4djhA D R N - L - - - - - - - R R I - - - - T R L V L V V V A V F V V C W T P I H I F I L V E A L G - S -

4dklA D R N - L - - - - - - - R R I - - - - T R M V L V V V A V F I V C W T P I H I Y V I I K A L I - T I

4ea3A D R N - L - - - - - - - R R I - - - - T R L V L V V V A V F V G C W T P V Q V F V L A Q G L G - V Q

4ej4A - - - - L - - - - - - - R R I - - - - T R M V L V V V G A F V V C W A P I H I F V I V W T L V - D I

Y4 R V F H K G - T Y S L R A G H M K Q V N V V L V V M V V A F A V L W L P L H V F N S L E D W H H E A
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1u19A - - S D - - F - - - - - - - - - G P I - - F M T I P A F F A K T S A V Y N P V I Y I M M N K Q F R N

2rh1A - - L - - - I - - - - - - - - - R K E - - V Y I L L N W I G Y V N S G F N P L I Y C R S P - D F R I

2vt4A - - L - - - V - - - - - - - - - P D W - - L F V A F N W L G Y A N S A M N P I I Y C R S P - D F R K

3emlA C S H - - - A - - - - - - - - - P L W - - L M Y L A I V L S H T N S V V N P F I Y A Y R I R E F R Q

3oduA - E I I K Q G C E F - - - E N T V H K - - W I S I T E A L A F F H C C L N P I L Y - - - - - - - - -

3pblA - C H - - - V - - - - - - - - - S P E - - L Y S A T T W L G Y V N S A L N P V I Y T T F N I E F R K

3rzeA - - C - - - C - - - - - - - - - N E H - - L H M F T I W L G Y I N S T L N P L I Y P L C N E N F K K

3uonA - - C - - - I - - - - - - - - - P N T - - V W T I G Y W L C Y I N S T I N P A C Y A L C N A T F K K

3v2wA - - K - - - T - - - - - - - - - C D I L F R A E Y F L V L A V L N S G T N P I I Y T L T N K E M R R

4dajA - - C - - - I - - - - - - - - - P K T - - Y W N L G Y W L C Y I N S T V N P V C Y A L C N K T F R T

4djhA - - - - - - - - - - - - - - - A A L S - - S Y Y F C I A L G Y T N S S L N P I L Y A F L D E N F K R

4dklA - - - - - - - - - - - P E T T F Q T V - - S W H F C I A L G Y T N S C L N P V L Y A F L D E N F K R

4ea3A - - - - - - - - - - - P S S E T A V A - - I L R F C T A L G Y V N S C L N P I L Y A F L D E N F K A

4ej4A - - - - - - - - - - N R R D P L V V A - - A L H L C I A L G Y A N S S L N P V L Y A F L D E N F K R

Y4 I P I - - - - - - - - - - - - - C H G N L I F L V C H L L A M A S T C V N P F I Y G F L N T N F K K

1u19A C M V T T L C C - G - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2rh1A A F Q E L L C L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2vt4A A F K R L L A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3emlA T F R K I I R S H V L R Q - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3oduA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3pblA A F L K I L S C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3rzeA T F K R I L H I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3uonA T F K H L L M - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3v2wA A F I R I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4dajA T F K T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4djhA C F R D F C F P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4dklA C F R E F C I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4ea3A C F R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4ej4A C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Y4 E I K A L V L T C Q Q S A P L E E S E H L P L S T V H - T E V S K G S L R L S G - - - - - - - - - -

1u19A - - - - - -

2rh1A - - - - - -

2vt4A - - - - - -

3emlA - - - - - -

3oduA - - - - - -

3pblA - - - - - -

3rzeA - - - - - -

3uonA - - - - - -

3v2wA - - - - - -

4dajA - - - - - -

4djhA - - - - - -

4dklA - - - - - -

4ea3A - - - - - -

4ej4A - - - - - -

Y4 - R S N P I

Residues were not modeled 
Secondary structure helix 
Transmembrane region as 
predicted by OCTOPUS 
Highly conserved residues 
Disulfide residues 
PP binding residues 
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Protocol Capture 

The following information includes all settings and command lines used for comparative modeling the 

Y4 receptor and docking PP. The Rosetta software suite is publically available and the license is free for 

non-commercial users at http://www.rosettacommons.org/ 

Part 1: Multi-template Y4R receptor comparative modeling 

a) Manually generated files (this information may be copied directly into new text files) 

y4_truncated.fasta 

 

 

 

 

 

 

 
y4_truncated.span 

 

 

 

 

 

 

 

 

 

 
y4.disulfide 

 

 

 

 

 

>Y4 

HCQDSVDVMVFIVTSYSIETVVGVLGNLCLMCVTVRQKEKANVTNLLIANLAFSDFLMCL 

LCQPLTAVYTIMDYWIFGETLCKMSAFIQCMSVTVSILSLVLVALERHQLIINPTGWKPS 

ISQAYLGIVLIWVIACVLSLPFLANSILENVFHKNHSKALEFLADKVVCTESWPLAHHRT 

IYTTFLLLFQYCLPLGFILVCYARIYRRLQRQGRVFHKGTYSLRAGHMKQVNVVLVVMVV 

AFAVLWLPLHVFNSLEDWHHEAIPICHGNLIFLVCHLLAMASTCVNPFIYGFLNTNFKKE 

IKALVLTCQQSA 

 

TM region prediction for y4_truncated.octopus predicted using OCTOPUS 

7 312 

antiparallel 

n2c 

  10    35    10    35 

  46    68    46    68 

  84   110    84   110 

 124   144   124   144 

 184   209   184   209 

 232   255   232   255 

 269   290   269   290 

 

82 169 
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loop_build1.options 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
loopbuild_final.options 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

-database /main/database/ 

 

-loops:timer #output time spent in seconds for each loop modeling job 

 

-loops:fa_input #input structures are in full atom format 

-in:fix_disulf y4.disulfide #read disulfide connectivity information 

-in:file:spanfile y4_truncated.span 

 

-loops:relax fastrelax 

-loops:extended true #force phi-psi angles to be set to 180 degrees 

-loops:frag_sizes 9 3 1 

-loops:frag_files aaY4Cut09_05.200_v1_3 aaY4Cut03_05.200_v1_3 none 

-loops:remodel quick_ccd 

-loops:refine refine_kic 

-out:file:silent_struct_type binary #output file type 

-out:file:fullatom #output file will be fullatom 

 

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-score:weights membrane_highres_Menv_smooth.wts 

 

-database /main/database 

 

-loops:timer #output time spent in seconds for each loop modeling job 

-loops:fa_input #input structures are in full atom format 

-in:fix_disulf y4.disulfide #read disulfide connectivity information 

-in:file:spanfile y4_truncated.span 

 

-loops:relax fastrelax 

-loops:extended true #force phi-psi angles to be set to 180 degrees 

-loops:frag_sizes 9 3 1 

-loops:frag_files aaY4Cut09_05.200_v1_3 aaY4Cut03_05.200_v1_3 none 

-loops:remodel quick_ccd 

-loops:refine refine_kic 

 

-out:file:silent_struct_type binary #output file type 

-out:file:fullatom #output file will be fullatom 

 

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-score:weights membrane_highres_Menv_smooth.wts 
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b) Steps and commands: The following steps describe specific command lines and resulting files 

 
Step  Text  Command  Comment  

1  
Create GPCR 
alignments  

Create alignment 
profile for 14 GPCR's 
from the PDB  

mustang -i 1u19A_clean.pdb 2vt4A_clean.pdb 3oduA_clean.pdb 
3rzeA_clean.pdb 3v2wA_clean.pdb 4djhA_clean.pdb 4ea3A_clean.pdb 
2rh1A_clean.pdb 3emlA_clean.pdb 3pblA_clean.pdb 3uonA_clean.pdb 
4dajA_clean.pdb 4dklA_clean.pdb 4ej4A_clean.pdb -F fasta  

Gives a pdb and 
afasta file  

2  
Create NPY 
alignments  

Create sequence 
alignment of Y1,Y2, 
and Y4 (Y5 is excluded 
due to a very long 
loop after helix 5)  

clustalw -> Sequence input from disc -> npy_1_2_4.fasta -> multiple 
Alignments  

Gives .aln and .dnd 
files  

3  
Align NPY to 
GPCR's  

Align the GPCR profile 
with the NPY 
sequence alignment  

clustalw -> Profile/Structural Alignments -> 1st profile = all_gpcr_profile.afasta; 
2nd profile/sequences = npy_1_2_4.aln -> Align sequences to 1st profile 
(slow/accurate)  

Gives .aln and .dnd 
files  

4  
Adjust 
aligments  

Manually adjust the 
alignments to remove 
gaps that may exist 
within 
transmembrane 
regions so that they 
exist in loop regions.  

N/A  
y4_gpcr_profile_adju
sted.aln  

5  Y4 preparation  

Generate secondary 
structure prediction 
using the truncated 
Y4 sequence  

http://octopus.cbr.su.se/ and convert output to span file with command perl 
/home/dongen/scripts/octopus2span.pl y4_truncated.octopus > 
y4_truncated.span  

y4_truncated.octopu
s and 
y4_truncated.span  

6  Y4 preparation  
Generate Y4 fragment 
files  

make_fragments.pl -id Y4 -nohoms -nosam y4_truncated.fasta  
jufo, psipred, ss2, 
v1_3 files output  

7  Thread Y4  
Thread Y4 over the 14 
aligned GPCR 
structures  

/sb/meiler/scripts/sequence_util/thread_pdb_from_alignment.py --template=1u19A -
-target=Y4 --chain=A --align_format=clustal y4_gpcr_profile_adjusted.aln 
1u19A_clean.pdb y4_on_1u19A.pdb 
 

All commands are in 
thread_all.sh and 
gives threaded pdbs  

8  
Generate full 
Y4 models  

Fill in missing 
densities and relax  

/sb/meiler/rosetta/rosetta-
3.4/rosetta_source/bin/loopmodel.default.linuxgccrelease@loop_build1.optio
ns -loops:input_pdb y4_on_1u19A.pdb -loops:loop_file 1u19A.loops -
out:file:silent y4_on_1u19A_loop1.out -nstruct25 > y4_on_1u19A_loop1.log  

creates 100 
structures for each 
template (out files)  

9  
Get best 
models  

Extract top 5 models 
for each template  

Gather all scores using grep "SCORE" *.out and select 5 models with lowest 
energy scores within each template. Extract these with:  
/sb/meiler/rosetta/rosetta-
3.4/rosetta_source/bin/score_jd2.default.linuxgccrelease -database 
/sb/meiler/rosetta/rosetta-3.4/rosetta_database/ -in:file:silent 
y4_on_1u19A_loop1_0.out -out:pdb -in:file:tags 0001 0002 0003 0004 0005  

gathers the 
requested pdbs from 
the out files.  

10  
Final model 
generation  

Build loops and relax 
models  

/sb/meiler/rosetta/rosetta-
3.4/rosetta_source/bin/loopmodel.default.linuxgccrelease@loopbuild_final.o
ptions -loops:input_pdb 1u19A_loop1_0.pdb -loops:loop_file 1u19A.ecloops -
out:file:silent 1u19A_final_0.out -nstruct15 > y4_on_1u19A_final.log  

Generated 21,000 
models  

11  
Cluster final 
models  

Extract all the pdbs  

foreach i ( `ls *.out` )/sb/meiler/rosetta/rosetta-
3.4/rosetta_source/bin/score_jd2.default.linuxgccrelease -database 
/sb/meiler/rosetta/rosetta-3.4/rosetta_database/ -in:file:silent $i -out:prefix $i 
-out:pdb -in:file:tagsend  

  

12  
Cluster final 
models  

Cluster pdbs  
(Do for each 
template)  

bcl.exe PDBCompare -quality RMSD -atom_list CA -pdb_list pdb_list.ls -prefix 
1u19A_rmsd -norm100 -aaclass AACaCb -convert_to_natural_aa_type -
scheduler PThread12  
 
bcl.exe Cluster -distance_input_file 1u19A__rmsdRMSD.txt -input_format 
TableLowerTriangle -output_format Rows Centers -output_file cluster5_1u19A 
-linkage Average -output_pymol1000 5 100 10000 10 dendogram5 
$TEMPLATE.py -remove_internally_similar_nodes5 -
pymol_label_output_string -scheduler PThread12  
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Part 2: Dock PP helix 

a) Manually generated files 

dock_helix_y4_1.xml 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

quota.options 

 

 

 

 

 

 

 

 

 

 

<dock_design> 

 <SCOREFXNS> #defines non-standard score functions 

  <mem_cen_cst weights=score_membrane > 

   <Reweight scoretype=atom_pair_constraint weight=10/> 

  </mem_cen_cst> 

  <mem_fa_cst weights=membrane_highres_Menv_smooth > 

   <Reweight scoretype=atom_pair_constraint weight=10/> 

  </mem_fa_cst> 

 </SCOREFXNS> 

 <FILTERS> 

 </FILTERS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name=ifcl/> 

  <RestrictToRepacking name=rtrp/> 

 </TASKOPERATIONS> 

 <MOVERS> 

  <Docking name=dock score_low=mem_cen_cst       

 score_high=mem_fa_cst fullatom=1 local_refine=1     

 optimize_fold_tree=1 conserve_foldtree=0 design=0     

 task_operations=ifcl/> 

  <FastRelax name=fastrlx_all repeats=4 scorefxn=mem_fa_cst /> 

  <FastRelax name=fastrlx_r1 repeats=1 scorefxn=mem_fa_cst /> 

  <PackRotamersMover name=repack scorefxn=mem_fa_cst     

 task_operations=rtrp/> 

  <ConstraintSetMover name=fa_cst        

  cst_file=npy4_ensemble_1_noloops.cst /> 

  <ConstraintSetMover name=lowres_cst        

 cst_file=npy4_ensemble_1_noloops.cst /> 

 </MOVERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

  <Add mover_name=fa_cst/> 

  <Add mover_name=lowres_cst/> 

  <Add mover_name=dock/> 

  <Add mover_name=fastrlx_r1/> 

 </PROTOCOLS> 

</dock_design> 

-in::file::vall vall.apr24.2008.extended.gz 

-database /main/database 

 

-frags::scoring::config quota-protocol.wghts 

-frags::frag_sizes 9 3 

-frags::n_candidates 1000 

-frags::n_frags 200 

 

-frags::picking::quota_config_file quota.def 

file:///C:/Users/:vall
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dock_helix_y4_1.options 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
quota.def 

 

 

 

 
quota-protocol.flags 

 

 

 

 

 

 

 

 

 

 

 

 

-database /main/database 

-out 

 -output 

 -pdb 

 -file 

  -fullatom 

  -silent_struct_type binary 

-jd2 

 -ntrials 5 

-docking 

 -dock_pert 4 10 

-max_inner_cycles 30 

-outer_cycles 1 

-membrane 

 -normal_cycles 100 

 -normal_mag 15 

 -center_mag 2 

-in 

 -file 

  -fullatom 

-constraints 

 -cst_weight 10 

 -cst_fa_weight 10 

 -viol 

 -viol_level 101 

-packing 

 -ex1 

 -ex2 

 -repack_only 

 -linmem_ig 10 

-overwrite 

#pool_id pool_name  fraction 

1  psipred   0.6 

2  jufo   0.2 

3  sam   0.2 

# Input databases 

-in::file::vall vall.apr24.2008.extended.gz 

-database /main/database/ 

 

# Weights file 

-frags::scoring::config quota-protocol.wghts 

 

# we need nine-mers and three-mers 

-frags::frag_sizes 9 3 

 

# Select 200 fragments from 1000 candidates. 

-frags::n_candidates 1000 

-frags::n_frags 200 

 

# Quota.def file defines the shares between difefrent quota pools. The total should be 

1.0 

-frags::picking::quota_config_file quota.def 

file:///C:/Users/:vall
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quota-protocol.wghts 

 

 

 

 

 
npy4_hpp.cst 

 

 

 
npy4_pp_highrescst.cst 

 

 

 
build_cterm.options 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

# score name   priority  wght   min_allowed  extras 

SecondarySimilarity    350   0.5     -    psipred 

SecondarySimilarity    300   0.5     -    sam 

SecondarySimilarity    250   0.5     -    jufo 

RamaScore    150   1.0    -    psipred 

RamaScore    150        1.0     -    sam 

RamaScore    150   1.0     -    jufo 

ProfileScoreL1   200   1.0     - 

PhiPsiSquareWell    100   0.0    - 

FragmentCrmsd   30   0.0     - 

AtomPair CB 69  CB 326 BOUNDED 0.00 8.0 1.0 NOE loose 

AtomPair CB 257 CB 334 BOUNDED 0.00 8.0 1.0 NOE loose 

AtomPair CB 272 CB 332 BOUNDED 0.00 8.0 1.0 NOE loose 

AtomPair CB 269 CB 332 BOUNDED 0.00 8.0 1.0 NOE loose 

AtomPair OD1 257 NH1 334 BOUNDED 0.00 3.0 1.0 NOE loose 

AtomPair OD2 257 NH2 334 BOUNDED 0.00 3.0 1.0 NOE loose 

AtomPair OD1 269 NH1 332 BOUNDED 0.00 4.0 1.0 NOE loose 

AtomPair OD1 269 NH2 332 BOUNDED 0.00 4.0 1.0 NOE loose 

AtomPair CB  272 CB  332 BOUNDED 0.00 7.0 1.0 NOE loose 

-run 

 -reinitialize_mover_for_each_job 

-score 

 -find_neighbors_3dgrid 

-membrane 

 -fixed_membrane 

 -no_interpolate_Mpair 

 -Menv_penalties 

 -Membed_init 

-abinitio 

 -membrane 

 -rg_reweight 0.01 

 -stage2_patch score_membrane_s2.wts_patch 

 -stage3a_patch score_membrane_s3a.wts_patch 

 -stage3b_patch score_membrane_s3b.wts_patch 

 -stage4_patch score_membrane_s4.wts_patch 

-fold_cst 

 -force_minimize 

-constraints 

 -cst_weight 10.0 

 -viol 

 -viol_level 101 

-out 

 -output 

 -file 

  -silent_struct_type binary 

-overwrite 
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relax_flags.txt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
npy4_ensemble_1.flags 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-loops 

 -loop_file npy4_ensemble_10.loops 

 -extended true 

 -relax fastrelax 

 -frag_sizes 9 3 1 

 -frag_files y4pep_frags_061912.200.9mers       

 y4pep_frags_061912.200.3mers none 

 -remodel quick_ccd 

 -refine refine_kic 

-relax 

 -membrane 

-score 

 -weights membrane_highres_Menv_smooth.wts 

-in 

 -fix_disulf y4pep.disulfide 

 -file 

  -spanfile y4pep.span 

-residues 

 -patch_selectors CTERM_AMIDATION 

-membrane 

 -fixed_membrane 

 -no_interpolate_Mpair 

 -Menv_penalties 

 -Membed_init 

-fold_cst 

 -force_minimize 

-constraints 

 -cst_file npy4_hpp.cst 

 -cst_weight 10.0 

 -cst_fa_file npy4_hpp.cst 

 -cst_fa_weight 10.0 

 -viol 

 -viol_level 101 

-out 

 -output 

 -file 

  -fullatom 

-database /main/database 

 

-relax:fast 

-relax:membrane 

-constrain_relax_to_start_coords 

-constraints 

 -cst_fa_file npy4_pp_highrescst.cst 

 -cst_fa_weight 10.0 

 -viol 

 -viol_level 101 

 

-in:file:fullatom 

 

-out:file:silent_struct_type binary #output file type 

-out:file:fullatom #output file will be fullatom 

 

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-score:weights membrane_highres_Menv_smooth.wts 
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b) Steps and commands 

 
Step  Text  Command  Notes  

1  
Prepare Y4 
ensemble  

Remove EC loops in 
preparation for 
docking  

Use find_loops.py within pymol and getloops_all.sh and removeloopcoordinates_all.sh  

Finds loop residues in 
pymol, then sets them 
to coordinates of 0, 
then removes residues 
with coordinates of 0  

2  
Prepare PP 
helix  

Remove c-tail from 
PP  

Got hpp ensemble from PDB (1ljv) and manually cut off c-tail  

PP PDB ensemble that 
contains only residues 
"PEQMAQYAAELRRYIN
ML"  

3  
Prepare PP 
helix  

Select 4 different 
docking start 
conformations by 
clustering  

bcl.exe PDBCompare -quality RMSD -atom_list CA -pdb_list pdb_list.ls -prefix pphelix_rmsd -
norm100 -aaclass AACaCb -convert_to_natural_aa_type -scheduler PThread 12 
  
bcl.exe Cluster -distance_input_file pphelix_rmsdRMSD.txt -input_format 
TableLowerTriangle -output_format Rows Centers -output_file cluster_pphelix -linkage 
Average -output_pymol 1000 .8 100 10000 10 dendogram_pphelix.py -
remove_internally_similar_nodes .55 -pymol_label_output_string -scheduler PThread 12 
  
grep "Leaf : 1 : " cluster_pphelix.Centers. | sort -nk10 
 

  

4  
Position 
helix  

Place the helix at 
the starting 
position based on 
experimental 
findings  

 
 
 
Manually add the 4 different helix conformations to npy4 model pdbs.  
 
 
 

This creates 37 * 4 total 
starting models  

5  

Generate 
individual 
span/constr
aints  

Adjust span and 
constraints for 
each starting 
model depending 
on what loop 
residues were 
removed.  

 
  

6  Dock helix  

Relax models with 
helix placed using 
new span and cst 
files.  

/blue/meilerlab/apps/rosetta/rosetta-
3.4/rosetta_source/build/src/release/linux/2.6/64/x86/gcc/4.5/rosetta_scripts.default.linux
gccrelease @dock_helix_y4_1.options -parser:protocol dock_helix_y4_1.xml -in:file:s 
npy4_ensemble_1_noloops_helix1.pdb -constraints:cst_fa_file 
npy4_ensemble_1_noloops.cst -nstruct 100 -out:file:silent 
docked_npy4_ensemble_1_noloops_helix1.out -out:file:scorefile 
docked_npy4_ensemble_1_noloops_helix1.sc -spanfile npy4_ensemble_1_noloops.span 
 

Generates 14,800 
models total (100 
models per receptor 
ensemble/pphelix 
combination)  

7  
Select top 
models  

Top 3 scoring 
models from each 
of the 37 starting 
receptor models  

grep for score and extract the top 3 scoring from each.    

8  
Prepare 
cterm  

Attach cterm 
residues to 
npy4+pphelix 
models  

 
  

9  

Prepare 
files for 
rebuilding 
c-term  

Create secondary 
structure 
predictions and 
fragment files  
(Need to do this for 
each starting 
model)  

runss x.fasta 
make_fragments.pl -id temp1 npy4_ensemble_1_pphelix.fasta 
 Affix the header to the necessary files so that they can be used: 
cat header.txt temp1.jufo_ss > npy4_ensemble_1_pphelix1.jufo.ss2 
cat header.txt temp1.psipred_ss > npy4_ensemble_1_pphelix1.psipred.ss2 
mv status.200_v1_3_aatemp1 > status.200_v1_3_npy4_ensemble_1_pphelix 
 

Generates .jufo.ss2, 
.psipred.ss2, 
.checkpoint, .chk, 
.psipred, .dat, .jufo_ss, 
frags.200.3mers, 
frags.200.9mers for 
each ensemble model.  

10  
prepare 
files for 
rebuilding 

Create rdb.ss2 file, 
lips4, 
fragment_picker 

/blue/meilerlab/apps/scripts/legacy/runsam npy4_ensemble_1_pphelix.fasta 
  
cat header.txt npy4_ensemble_1_pphelix.rdb > npy4_ensemble_1_pphelix.rdb.ss2 

.rdb.ss2, .lipo, .lips4, 

.pdb.color, .raw, 3mers, 
9mers for each 



CHAPTER 5 

 

240 
 

c-term part 
2  

fragments    
/sb/meiler/rosetta/rosetta-
3.2/rosetta_source/src/apps/public/membrane_abinitio/run_lips.pl 
npy4_ensemble_1_pphelix.fasta npy4_ensemble_1_noloops_cterm.span 
/sb/meiler/Linux2/x86/blast/blast-2.2.18/bin/blastpgp 
/sb/meiler/scripts/sequence_analysis/db/nr /sb/meiler/rosetta/rosetta-
3.2/rosetta_source/src/apps/public/membrane_abinitio/alignblast.pl 
  
/blue/meilerlab/apps/rosetta/rosetta-
3.4/rosetta_source/build/src/release/linux/2.6/64/x86/gcc/4.5/fragment_picker.default.linu
xgccrelease @quota.options -frags:describe_fragments 
npy4_ensemble_1_pphelix1_frags.fsc.fsc -out:file:frag_prefix 
npy4_ensemble_1_pphelix1_frags -in:file:checkpoint npy4_ensemble_1_pphelix.checkpoint 
-in:file:s npy4_ensemble_1_pphelix1_cterm.pdb -frags:ss_pred 
npy4_ensemble_1_pphelix.psipred.ss2 psipred npy4_ensemble_1_pphelix.rdb.ss2 sam 
npy4_ensemble_1_pphelix.jufo.ss2 jufo 
 

ensemble model.  

11  
Build PP C-
term  

Use Topology 
Broker to build the 
C-term of PP 
following 
constraints  

/blue/meilerlab/home/hirstsj/rosetta/rosetta_clean/rosetta_source/bin/r_broker.default.lin
uxgccrelease -database 
/blue/meilerlab/home/hirstsj/rosetta/rosetta_clean/rosetta_database/ 
@fold_cterm.options -in:file:s npy4_ensemble_1_pphelix1_cterm.pdb -in:file:spanfile 
npy4_ensemble_1_noloops_cterm.span -in:file:lipofile npy4_ensemble_1_pphelix.lips4 -
in:file:fasta npy4_ensemble_1_pphelix.fasta -in:file:frag3 
npy4_ensemble_1_pphelix1_frags.200.3mers -in:file:frag9 
npy4_ensemble_1_pphelix1_frags.200.9mers -broker:setup 
npy4_ensemble_1_pphelix1_cterm_setup.tpb -out:nstruct 100 -out:file:scorefile 
npy4_ensemble_1_pphelix1.sc -out:file:silent npy4_ensemble_1_pphelix1.out 
 

Generates 11,700 
models total (100 
models for each of the 
docked helix models)  

12  
Add NPY4 
loop 
residues  

Add loop residues 
that were removed 
for docking PP.  

Manually add loop residues at coordinates 0,0,0 or using script.  
renumber_pdb.py input.pdb output.pdb after each addition of loop segments.  

  

13  
Rebuild 
loops  

  

/sb/meiler/rosetta/rosetta-3.4/rosetta_source/bin/loopmodel.default.linuxgccrelease -
database /sb/meiler/rosetta/rosetta-3.4/rosetta_database/ @npy4_ensemble_1.flags -
loops:input_pdb npy4_ensemble_1_hpp1_full.pdb -out:prefix npy4_1_hpp1_final" -
out:nstruct 100 -out:file:scorefile npy4_1_hpp1_final.sc -out:file:silent 
npy4_1_hpp1_final.out 
 

Generates 100 models 
per initial file (16,600 
models total)  

15  
Cluster 
models  

cluster models 
within each 
receptor ensemble 
model. Collect top 
scoring models 
within the 3 largest 
clusters.  

bcl.exe PDBCompare -quality RMSD -atom_list CA -pdb_list pdb_list.ls -prefix 1_rmsd -
norm100 -aaclass AACaCb -convert_to_natural_aa_type -scheduler PThread 12 
  
bcl.exe Cluster -distance_input_file 1_rmsdRMSD.txt -input_format TableLowerTriangle -
output_format Rows Centers -output_file cluster_1 -linkage Average -output_pymol 1000 4 
100 10000 10 dendogram5_1.py -remove_internally_similar_nodes 4 -
pymol_label_output_string -scheduler PThread 12 
 

  

16  

High 
resolution 
constraint 
relax  

Perform relaxation 
using adjusted 
high-resolution 
constraints and 
addition of new 
constraint.  

/sb/meiler/rosetta/rosetta-3.4/rosetta_source/bin/relax.default.linuxgccrelease 
@post_relax_flags.txt -in:file:s final_1.pdb -in:fix_disulf y4pep.disulfide -in:file:spanfile 
y4pep.span -out:file:silent final_relax_1.out -out:prefix final_relax_1 -nstruct 100 
 

Generates 2300 models 
(100 for each starting 
model)   

18  
Contact 
map 
analysis  

Calculate number 
of models in final 
ensemble that 
contain residue 
pairs between 
NPY4 and PP closer 
than 8 angstroms.  

rosetta_scripts.default.linuxgccrelease -parser:protocol contact.xml -database 
/sb/meiler/rosetta/rosetta-3.4/rosetta_database/ -no_output -in:file:s 
final_relax_final_11.pdb_7final_11_0016_0001.pdb 
 

Generates .contacts file 
for each model which 
contains a list of all 
residue pairs between 
NPY4 and PP and lists a 
1 if they are within the 
cutoff and 0 if they are 
not based on Cbeta 
atom distance. 
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Modeling Interactions of the Melanocortin 4 

Receptor and α-MSH 
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6.1  Abstract 

Melanocortin 4 receptor (MC4R) haploinsufficiency is the most common known form of 

monogenic obesity, making this system an attractive target for the treatment of obesity and related 

diseases. However, efforts to develop treatments that target the MC4R and its endogenous peptide 

agonist α-MSH have seen little success. Therefore, a detailed understanding of the interaction between 

MC4R and α-MSH may help researchers develop drugs that effectively potentiate MC4R signaling. The 

present chapter uses comparative modeling and flexible peptide docking with Rosetta Molecular 

Modeling Suite to model the interaction between MC4R and α-MSH. A variety of experimental evidence 

suggests specific interactions used to guide docking. Additionally, docked models were analyzed and 

predicted residue contacts showed good agreement with additional mutation data. 
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6.2 Introduction 

The melanocortin 4 receptor (MC4R) is one of five class A G-protein coupled receptors (GPCRs) 

in the melanocortin (MC) system [1]. Named for its combination of melanotropic and 

adrenocorticotropic activities [2], the MC system participates in the regulation of feeding, bone 

metabolism, cardiovascular function, erectile function, drug abuse, inflammation, adiposity, energy 

homeostasis, pigmentation, and neuromuscular regeneration [2-10]. Endogenous agonists of the MC 

system primarily result from post-translational modification of the prohormone proopiomelanocortin 

(POMC) into four melanocortins: α-, β-, and γ- melanocyte stimulating hormone (MSH) and 

adrenocorticotrophic hormone (ACTH), the opioid β-endorphin, and β- and γ- lipotropin (LPH) [1, 2, 5]. 

POMC is primarily expressed in the central nervous system within the nucleus of the solitary tract (NST), 

the arcuate nucleus of the hypothalamus (Arc), and the pituitary [11, 12], but is also expressed in the 

skin, spleen, thyroid, and GI tract [13]. In addition to the peptide agonists, the MC system also contains 

two endogenous peptide competitive antagonists: agouti and agouti related protein (AgRP) [2, 5]. 

Additionally, the N-terminal region of MC4R is thought to act as a tethered agonist [14]. 

MC4R haploinsufficiency is the most common known form of monogenic obesity [15]. Since the 

first report of obesity-associated human MC4R mutations in 1998 [16, 17], approximately 150 naturally 

occurring MC4R gene mutations have been identified among patients [15] contributing to between 0.5% 

(Italian and Belgian) and 6% (British Caucasian) of early-onset morbid obesity [18, 19]. A recent analysis 

of obese European individuals found a prevalence of MC4R loss of function in 1.8% obese children and 

1.6% obese adults [20]. Human MC4R deficiency is characterized by hyperphagia, increased longitudinal 

growth, increased adiposity, and severe hyperinsulinemia, with more severe symptoms in homozygous 

carriers [1]. Taken together, over 103 residues of MC4R have seen mutations in patient cohorts covering 

31% of the total receptor [21]. Interestingly, two naturally occurring mutations in MC4R have been 

negatively correlated with obesity: V103I polymorphism appears to reduce the risk of obesity by 20% 

while I251L polymorphism appears to reduce the risk of obesity by 50% [22]. 

Genetic studies in mice have provided extensive insights into the role of the MC4R in appetite 

and energy homeostasis. One of the oldest known genetic models of obesity is the agouti mouse which 

constitutively expresses agouti in all tissues and causes a yellow coat and obesity through antagonism of 

MC1R and MC4R [23, 24]. The MC4R knockout mouse, generated in 1997, reflects many phenotypes of 

the agouti mouse [25] including maturity onset obesity characterized by hyperphagia, increased 
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adiposity, increased longitudinal growth, normal lean body mass, hyperinsulinaemia, and 

hyperleptinaemia [4]. 

The hypothalamic MC system appears to be a convergence center for peripheral and central 

factors that regulate feeding behavior and metabolism [5]. In the simplest sense, when anorexigenic 

POMC neurons are activated in a well fed state, POMC cleavage products α- and β-MSH activate MC4R 

receptors to decrease feeding behavior. When orexogenic NPY/AgRP neurons are activated in a fasting 

state, AgRP antagonizes MC4R to increase feeding behavior [26]. Many endogenous factors contribute 

to the regulation of these neurons including leptin, insulin, glucose, ghrelin, peptide YY, NPY, β-

endorphin, serotonin, GABA, melanin-concentrating hormone, and orexins [5, 27]. Leptin, for example, 

is released from adipocytes in amounts directly related to body fat mass and activates POMC neurons of 

the Arc while at the same time inhibiting nearby NPY/AgRP neurons [3]. Ghrelin, on the other hand, 

appears to oppose this action of leptin [28]. 

Due to the prevalence of MC4R defective mutations in obesity, development of MC4R specific 

drugs are actively being pursued [4]. However, the MC system has proven to be a difficult therapeutic 

target. Local injection of α-MSH into the PVN results in reduction of food intake in mice and rats but this 

effect fades over time [4]. To date no MC4R agonist has progressed past phase I except MK-0493, which 

subsequently failed in phase II [29, 30]. A comprehensive understanding of the interaction between 

peptide and non-peptide modulators and MC4R, therefore, can provide useful tools for structure-based 

drug discovery and lead improvement. 

MC4R binds α-MSH and ACTH with approximately equal affinity and β- and γ-MSH with slightly 

lower affinity [5, 31]. However, hypothalamic α-MSH appears to be the most important endogenous 

MC4R agonist involved in energy regulation [32]. α-MSH is a linear thirteen amino acid peptide capable 

of adopting many conformations owing to its high flexibility [33]. As with all MSH peptides, the 

conserved four residue motif (His-Phe-Arg-Trp) is critical for activation of MC4R by α-MSH. This 

fragment alone is capable of activating MC4R in vitro [34]. Therefore, many additional MCR ligands have 

been developed based on similarity with this pharmacophore. One of the most important of these 

ligands is [Nle4,dPhe7]-α-MSH or NDP-MSH, a more stable and potent version of α-MSH [35]. 

Modifications of α-MSH reveal that, despite its flexibility, a common reverse β-turn around the 

core residues 5-9 is important for activity [36-39]. The aromatic ring of Phe7 has been suggested as the 

most important pharmacophore element for melanocortin receptor activation [40]. Substitution of Phe7 
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with larger aromatic groups such as d-Nal(2’) in the case of SHU9119 switches the behavior from agonist 

to antagonist further underscoring the importance of this residue [41]. 

There are currently no experimentally determined MCR structures available. Therefore, a 

comprehensive understanding of the interaction between MC4R and α-MSH must involve an approach 

that combines comparative modeling and peptide ligand binding. Fortunately, a wealth of mutagenesis 

data is available to guide and evaluate the modeling of MC4R with α-MSH. 

MC4R is a 332 amino acid GPCR encoded by a single exon gene [42]. Although much of the 

characteristic class A GPCR architecture is present, MC4R is predicted to have some unique structural 

properties. The highly conserved proline in transmembrane helix five is replaced with methionine in 

MC4R and the asparagine in the conserved NPxxY motif of helix 7 is replaced with aspartic acid. Another 

major difference with MC4R is unusually short intracellular loops and extracellular loop 2 (ECL2) which is 

missing a conserved cysteine that normally forms a disulfide bond with the top of transmembrane helix 

three. Instead, MC4R contains two putative disulfide bonds: Cys271 forms an intra-loop disulfide bond 

with Cys277 in ECL3 and a disulfide bond between Cys40 and Cys279 connects the N-terminal with ECL3 [43, 

44].  

Several direct interactions between α-MSH and MC4R have been experimentally elucidated. 

Consistent mutagenesis results have elucidated two potential binding sites that engage the different 

sides of the core tetrapeptide’s β-turn. An acidic binding pocket formed by negatively charged residues 

including Glu2.60, Asp3.25, and Asp3.29 is thought to directly interact with one side of the turn [36, 45-49]. 

Specifically, Arg8 is predicted to form direct ionic interactions with Asp3.25 and Asp3.29. Mutations in these 

residues decrease affinity for Arg8 containing agonists but not Nle8 containing antagonists [45, 48]. A 

second hydrophobic binding pocket, specifically residue Phe6.51 is thought to interact with Phe7 [36, 48, 

50, 51].  

The present chapter uses the common topology of class A GPCRs to model the structure of 

MC4R. Due to the unique properties of MC4R described above, a multi-template comparative modeling 

approach called RosettaCM [52] is used to combine low energy fragments from different templates 

instead of relying on a single template. This model is then used to dock α-MSH with special attention to 

the flexibility of the peptide and the extracellular region of MC4R to which it binds. The two consensus 

binding pockets previously established to interact with Arg8 and Phe7 of α-MSH are used to guide the 

docking process. Finally, the models are used to predict the interface between α-MSH and MC4R and 
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this interface is evaluated in terms of all additional mutagenesis data that implicates residues beyond 

those used to guide docking. These models may also propose residues of interest that have not yet been 

characterized in terms of α-MSH binding. 

6.3 Results 

A conformational ensemble captures flexibility of MC4R-α-MSH interface 

Based on the flexibility of the linear peptide α-MSH and the flexible MC4R loop regions of its 

binding environment, an ensemble of MC4R conformations was used for docking instead of a single 

MC4R conformation. RosettaCM multi-template comparative modeling was used to generate an 

ensemble of 20 MC4R models. To quantitate the degree of conformational variability represented by the 

ensemble, a pair-wise RMSD analysis was performed. The highest degree of similarity between models 

in this ensemble (lowest RMSD) is 2.87 Å and the greatest dissimilarity is 5.34 Å. As expected, the 

conformational difference between models is found primarily in the disordered loop regions. When 

comparing transmembrane helix regions only, the most similar models within the ensemble differ by an 

RMSD of 1.20 angstroms and the most dissimilar models differ by an RMSD of 2.8 angstroms. MC4R 

comparative models are shown in figure 6.1. 
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Figure 6.1 MC4R comparative modeling ensemble. A)  Ensemble of 20 comparative models of MC4R used for 

α-MSH docking. Transmembrane helix regions converge on a similar topology across 20 receptor models, 

whereas loop regions in blue show high conformational variability. B) Representative model of MC4R from a 

side view with transmembrane region indicated (EC: extracellular region; IC: intracellular region). C) 

Representative model of MC4R looking down from the extracellular surface. Transmembrane helices are 

numbered in order from N-terminus to C-terminus. 

 

Docking α-MSH to the ensemble of MC4R comparative models yielded an ensemble of 21 complex 

conformations with similar interface energy scores. In general, a consensus binding mode was found in 

which the core tetrapeptide of α-MSH docked into a shallow region of the transmembrane pore and 

both termini of α-MSH extended away from the membrane, reaching outside of the loops. A second 

pair-wise model RMSD analysis was conducted, focusing on the conformational variability of α-MSH 

across these 21 docked poses. The conformational space covered by α-MSH in these models was 

moderate, the most dissimilar α-MSH poses having an RMSD of 6.16 Å and the most similar α-MSH 

poses having an RMSD of 1.86 Å. This difference was primarily in the terminal loop residues of α-MSH as 

opposed to the tetrapeptide core critical for binding and activation. The average RMSD for the 

tetrapeptide core alone was 1.17 Å and the most similar tetrapeptide poses had an RMSD of 0.26 Å. This 
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suggests that the docking procedure converged on a general position of α-MSH with high degrees of 

flexibility in the most terminal regions of the peptide. This is expected given the high flexibility of α-MSH 

and the flexible extracellular loops of MC4R that surround these residues. A representative ensemble of 

poses show the different degrees of conformational variability between the two regions of alpha-MSH in 

figure 6-2A. 

Despite a general convergence of tetrapeptide core position, there was some degree of 

variability in the central binding mode of the 21 models. Examination of these core residues reveals two 

major modes of variability: His6/Phe7 positioning and Trp9 side-chain conformation. The greatest mode 

of variability concerns the positioning of His6 and Phe7 and specifically which residue occupies a pocket 

formed by MC4R residues of TM6 and TM7. In six of the 21 models, the side chain of Phe7 occupies this 

pocket, whereas in 15 models, His6 occupies it. Comparing the interface scores of these two binding 

poses suggests that poses in which His6 occupies this pocket are more energetically favorable than poses 

in which Phe7 occupies it. Models with His6 in the pocket have an average interface score of -45.1 

Rosetta Energy units (REU), whereas models in which Phe7 occupies this core have an average interface 

score of -39.2 REU (t-test, p < .05). Because models with Phe7 occupying this pocket are less 

energetically favorable, these models were removed from the final pose ensemble. A comparison of 

these slightly different binding poses is shown in figure 6-2B. 

In six of the 21 models, the side chain conformation of Trp9 is oriented out of the receptor pore 

(upwards) and away from the membrane. In the other 15 models, Trp9 points into the pore (downwards) 

and lies closer to the membrane. However, since both side chain conformations produce comparable 

interface binding energies, neither conformation can be ruled out. Models containing downwards facing 

Trp9 conformations have an average interface score of -43.1 REU, whereas models containing an 

upwards conformation of Trp9 show an average binding interface score of -44.2 REU (p > 0.7). A 

comparison of these different side chain conformations is shown in figure 6-2C. 

Following the removal of less energetically favorable poses, average RMSD of the tetrapeptide 

core across the final ensemble of 15 complex models dropped slightly to 1.09 Å. 
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Figure 6.2 α-MSH variability across 21 model complexes. A) Overall convergence is seen at the central core of 

α-MSH (indicated by a red box) and variability increases towards the termini residues. A representative sample 

of three models is shown for clarity. B) Significant variability of two core α-MSH residues are highlighted. 

Green spheres indicate the binding site of MC4R where this variability occurs. The red pose indicates a less 

energetically favorable pose where the side-chain of Phe7 (a) points into this binding site and His6 (a) points 

“up” and away. In the blue pose, His6 (b) replaces Phe7 (a) in the center of this pocket and Phe7 (b) points 

“down” into the transmembrane pore of MC4R. C) Variability in the side-chain conformation of Trp9 in docked 

alpha-MSH poses. Both poses show equal interface energy scores. 

Contacts used to guide docking were captured in final model ensemble 

A consensus approach was used to elucidate the predicted binding site and contacts between α-

MSH and MC4R across final conformations. This approach assumes that within the conformational space 

of the final ensemble of 15 docked models, the most important residue contacts should be retained 

across models even if these contacts occur in slightly different positions or orientations. 

Four potential interactions were used to guide the docking of the α-MSH to MC4R. These 

interactions span two well defined binding sites: an ionic binding site that includes interactions between 
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α-MSH Arg8 and MC4R residues Glu2.60, Asp3.25, and Asp3.29 and a hydrophobic binding site that includes a 

direct interaction between Phe6.51 of MC4R and Phe7 of α-MSH. These interactions were used to guide 

docking only through atom-pair distance constraints. Final models were selected, in part, due to their 

adherence to these distance constraints. To elucidate whether interactions between these residues 

actually contribute to the overall interface energy, a residue-pair analysis of interface energy score was 

performed. Residue pairs between α-MSH and MC4R that contribute favorable negative energy scores 

to the overall interface score consistently across most or all of the docked models suggest direct 

contacts between α-MSH and MC4R with higher confidence.  

An interaction between Arg8 and Glu2.60 was captured in 13 models with an average score of -2.2 

REU. An interaction between Arg8 and Asp3.25 was captured in 8 models with an average score of -1.9 

REU. An interaction between Arg8 and Asp3.29 was captured in 13 models with an average score of -4.2 

REU. All models individually captured at least two of the three Arg8 interactions. An interaction between 

Phe7 and Phe6.51 was captured in all 15 models with an average score of -1.1 REU. The modeled binding 

pose of α-MSH and MC4R is represented by a single model with the lowest interface energy score in 

figure 6.3. The three atom-pair distance constraints involving Arg8 are highlighted for this model in 

figure 6.3B and the atom-pair distance constraint involving Phe7 is highlighted in figure 6.3C. 
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Figure 6.3 α-MSH docked to MC4R comparative model. A) Representative model of α-MSH (purple) docked to 

MC4R (green). Blue residues indicate receptor residues used to guide docking and orange residues indicate 

critical tetrapeptide residues docked during the first phase of docking. TM helices are numbered from N- to C-

terminus. Viewpoint is from extracellular side looking “down” towards membrane. B) Experimentally 

established binding site with Arg8 involves up to three residues. Potential contacts between Arg8 and three 

MC4R residues including Glu100, Asp122, and Asp126 were captured in a single binding site for Arg8 and TM 

helices 2 and 3. C) Experimentally established contact between Phe7 of α-MSH and Phe261 of MC4R was 

captured in docked models. In both images, α-MSH is shown in purple, MC4R is shown in green, and the 

receptor contact residues are shown in blue. Orientation is indicated with EC: extracellular, TM: 

transmembrane. 
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The predicted interface between α-MSH and MC4R can be divided into three regions 

A consensus approach was used to predict the overall binding interface between α-MSH and MC4R. 

Within a single model, residues of MC4R are considered as potential binding interface residues if they 

fall within 6 Å of any residue in α-MSH. Computing the percentage of agreement across the 15 ensemble 

models gives a measure of confidence for each of these residues. Residues are considered to potentially 

line the interface with α-MSH if they appear within 6 Å of α-MSH across 75% or more of the docked 

models. This analysis yielded three distinct binding sites that face a different portion of the α-MSH core. 

All residues predicted to line the three binding regions with α-MSH are illustrated in figure 6.4 and listed 

in table 6-1. 

Table 6-1 Prediction binding site between α-MSH and MC4R can be broken into three sections based on 

nearby α-MSH residue. *Residues are numbered according to Ballesteros-Weinstein numbering and full 

sequence number in parenthesis. **Residue is also within 6 Å of Phe7. 

Binding Region 1 
(α-MSH: Arg8) 

Binding Region 2 
(α-MSH: Glu5+His6) 

Binding Region 3 
(α-MSH: Trp9) 

Residue* Location Residue* Location Residue* Location 

Glu 2.60 (100) TM2 Phe 6.51 (261)  TM6 Phe4.60 (184) TM4 
Thr 2.61 (101) TM2 Phe 6.52 (262) TM6 Ile4.61 (185) TM4 
Val 3.22 (119) TM3 His 6.54 (264) TM6 Tyr4.63 (187) TM4 
Asn 3.23 (120) TM3 Leu6.55 (265)** TM6 Ser4.64 (188) ECL2 
Asp 3.25 (122) TM3 Phe6.57 (267) TM6 Asp4.65 (189) ECL2 
Asn 3.26 (123) TM3 Tyr6.58 (268) TM6 Ser4.66 (190) ECL2 
Ile 3.28 (125) TM3 Ile 6.59 (269) TM6 Ser5.37 (191) ECL2 

Asp 3.29 (126) TM3 Cys 6.61 (271) ECL3 Ala5.38 (192) ECL2 
Ile 3.32 (129)** TM3 Gln 6.63 (273) ECL3 Val5.39 (193) ECL2 
Cys 3.33 (130)** TM3 Tyr 7.27 (276) ECL3 Cys5.42 (196) TM5 

  Cys 7.28 (277) ECL3 Leu5.43 (197) TM5 
  Val 7.29 (278) ECL3   
  Cys 7.30 (279) TM7   
  Phe 7.31 (280) TM7   
  Met 7.32 (281) TM7   
  Ser 7.33 (282) TM7   
  His 7.34 (283) TM7   
  Phe 7.35 (284)** TM7   
  Asn 7.36 (285) TM7   
  Tyr 7.38 (287) TM7   
  Leu 7.39 (288) TM7   
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Figure 6.4 Three MC4R binding interfaces face different sections of the α-MSH. A) Residues appearing in the 

interface between α-MSH and MC4R in 13 or more of the 15 models are shown as spheres. Full side chains of 

α-MSH core tetrapeptide are shown in purple. MC4R residues used as constraints to guide docking are shown 

in blue. Image is orientated so that view is from extracellular surface looking “down” into transmembrane 

core. Specific residues for each of these binding sites are listed in table 4. B) Section of binding interface facing 

Arg8 of α-MSH. Full side chain of Arg8 only is shown. C) Section of binding interface facing Glu5 and His6 of α-

MSH. Full side chains of Glu5 and His6 are shown. D) Section of binding pocket facing Trp9 of α-MSH. Full side 

chain of Trp9 only is shown. 

The first binding region includes residues of TM2 and TM3 and involves the three contacts with Arg8 

used to guide docking. Residues that line this binding site all face Arg8 and include Glu2.60, Thr2.61, Val3.22, 

Asn3.23, Asp3.25, Asn3.26, Ile3.28, Asp3.29, Ile3.32, and Cys3.33. This binding site is illustrated in figure 6.4B.  
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The second binding region consists of residues in the upper regions of TM6 and TM7 and face α-

MSH residues Glu5 and His6. These residues include Phe6.51, Phe6.52, His6.54, Leu6.55, Phe6.57, Tyr6.58, Ile6.59, 

Cys6.61, Gln6.63, Tyr7.27, Cys7.28, Val7.29, Cys7.30, Phe7.31, Met7.32, Ser7.33, His7.34, Phe7.35, Asn7.36, Tyr7.38 and 

Leu7.39. His6 appears to enter a pocket formed by the lower residues, whereas Glu5 faces the residues at 

the extracellular ends of TM6 and TM7. This binding site is illustrated in figure 6C. 

The third binding region involves residues of TM4, TM5, and ECL2. These residues include Phe4.60, 

Ile4.61, Tyr4.63, Ser4.64, Asp4.65, Ser4.66, Ser5.37, Ala5.38, Val5.39, Cys5.42, and Leu5.43. Trp9 faces this binding site in 

all 15 models. However, the docked ensemble does not converge on a single side-chain conformation of 

Trp9 and the area of this binding site is likely over-estimated due to the varibility. This binding site is 

illustrated in figure 6D. 

Phe7 of α-MSH interfaces with two of the three binding regions 

As mentioned previously, Phe7 is a critical α-MSH residue thought to play important roles in 

binding and activation of MC4R. In all 15 models, Phe7 was oriented in the approximate center of the 

transmembrane helix pore with the side chain pointed towards the intracellular side of the receptor. In 

this position and conformation, Phe7 appears to be shared by two of the three binding interfaces. The 

intracellular-most residues of the His6 binding site were found within 6.0 Å of Phe7, including the 

expected contact Phe6.51, and residues Leu6.55 and Phe7.35. Several residues close to Arg8 were also within 

6.0 Å of Phe7, including Ile3.32 and Cys3.33. 

Sixteen MC4R residues contribute to the binding energy score with α-MSH 

In addition to the four residue contacts used to guide docking, potential direct interactions 

between α-MSH and MC4R can be predicted by examining all consensus residue-pair energy scores 

within the interface. Across 60% of the models, 12 additional MC4R residues paired with α-MSH residues 

to contribute favorable negative energy scores. Several MC4R residues paired with multiple α-MSH 

residues to contribute to the binding energy score. All consensus interactions involved one of the core 

tetrapeptide residues except for a single weak interaction between Ser4 and Met7.32, which appeared in 

11 models with an average score of -0.3 REU and several interactions involving Glu5. Interactions with 

Glu5 include Tyr6.58 (93% models, average score -1.5 REU), Phe7.31 (87% models, -0.8 REU), and Met7.32 

(73%, -0.7 REU). 
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Interactions that involve His6 include Phe6.51 (100% models, average score -0.9 REU), His6.54 (93% models, 

-1.0 REU), Leu6.55 (100% models, -0.9 REU), Tyr6.58 (100% models, -0.9 REU), Phe7.31 (100% models, -0.7 

REU), Phe7.35 (100%, -1.4 REU), and Tyr7.38 (100%, -0.2 REU). 

In addition to the expected interaction with Phe6.51, interactions that involved Phe7 include Ile3.32 (100% 

models, -0.7 REU), Cys3.33 (100% models, -0.5 REU), Leu6.55 (60% models, -0.9 REU), and Phe7.35 (100% 

models, -1.4 REU).  

Arg8 did not contribute to the binding energy score outside of the three interactions used to guide 

docking (Glu2.60, Asp3.25, and Asp3.29). 

Interactions involving Trp9 include Phe4.60 (80% models, -1.0 REU), Ile4.61 (60% models, -1.2 REU), and 

Tyr4.63 (60% models, -0.8 REU). 

6.4 Discussion 

In this study, a specialized multi-template comparative modeling technique called RosettaCM 

was used to combine fragments from 20 GPCR templates to model the MC4 receptor. A two stage 

process was used to dock α-MSH to MC4R: the core tetrapeptide (His6-Phe7-Arg8-Trp9) was first docked 

into the putative binding site guided by residue pair restraints reflecting previous modeling and 

mutagenesis data. Secondly, the terminal residues were modeled simultaneously with the extracellular 

loops of MC4R to simulate the flexibility of these regions. Additionally, the final model analysis focused 

on potential conformational flexibility of the final docked pose. Therefore, rather than selecting a single 

model over which to predict and characterize the binding site, an ensemble of 15 models was compared 

to identify a consistent binding interface across models with comparable interface energy scores. 

This modeling approach identified a binding pose of α-MSH that involves three receptor regions: 

Arg8 faces residues of TM2 and TM3, Glu5 and His6 face residues of TM6 and TM7, and Trp9 faces 

residues of TM4, TM5, and ECL2. The α-MSH residue Phe7 point into the transmembrane poor and 

engages residues from both the Arg8 and Glu5/His6 facing regions. Beyond Glu5 and the core 

tetrapeptide, residues from either terminal of α-MSH did not appear to consistently interact with 

residues of MC4R aside from a potential weak interaction between Ser4 and MC4R residue Met7.32. 
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Previously identified contacts can be used to evaluate modeling 

Many naturally occurring mutations have been identified with MC4R, largely due to their 

potential role in obesity. These mutations have been characterized based on their phenotypes, generally 

described as belonging to one of five classes: mutations causing decreased expression, intracellular 

receptor retention, impaired ligand affinity, impaired ligand efficacy and/or potency, and unknown 

effects. Some residues have been highly characterized in terms of their direct role in ligand binding. 

However, many are implicated in binding without a precise description of their role. Therefore, models 

can be used to characterize the specific role of residues in MC4R-α-MSH binding. Taken further, these 

models can be used to predict participating residues not previously implicated in ligand binding or 

activity.  

As mentioned, four putative interactions were used to guide the docking process and the 

protocol was capable of capturing these interactions consistently across the final docked models. Three 

potential interactions involve an ionic binding site that interacts with Arg8 of α-MSH. Mutations of 

Glu2.60, Asp3.25, and Asp3.29 across multiple studies reveal that this residue is critical for binding of both α-

MSH and NDP-MSH in mouse and human systems [19, 27, 36, 44, 48, 51, 53, 54]. In the present models, 

all three interactions were captured in the majority of the models, with the strongest and most 

consistently captured interaction between Arg8 and Asp3.29. The fourth potential interaction used to 

guide modeling was between Phe7 of α-MSH and Phe6.51 of MC4R. A variety of mutagenesis studies in 

both mouse and human systems reveal that Phe6.51 is critical for α-MSH binding to MC4R[36, 44, 45, 48, 

51, 54]. An interaction between Phe7 and Phe6.51 was reflected in all of the final MC4R-α-MSH models. 

Interactions with Phe7 can predict differences in α-MSH and NDP-MSH binding 

One of the major differences between α-MSH and NDP-MSH, the higher affinity modification of 

α-MSH, is the change in stereochemistry from L- to D- at Phe7 in NDP-MSH. Therefore, modeled 

interactions with α-MSH Phe7 that correlate with residues that, when mutated, disrupt α-MSH binding 

and not NDP-MSH binding, present potential agreement between modeling and experimental results. 

An interaction between Phe7 and MC4R residue Ile3.32 was captured in all models. This 

interaction agrees with I129A mutations that decreased α-MSH binding and efficacy but not NDP-MSH 

[44, 55, 56]. An interaction between Phe7 and Cys3.33 was also captured in all models. However, it is 

unclear whether this is supported with current mutagenesis data. C130A shows normal NDP-MSH 

binding but α-MSH binding data is unavailable [36, 48, 54]. Additionally, Phe7.35 is proposed to interact 
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with either His6 or Phe7 in the current models. Previous mutagenesis data suggest a direct interaction 

between Phe7.35 and Phe7 due to a strong effect on α-MSH binding but not NDP-MSH binding [45, 51, 

57]. 

Eight Predicted Interactions are Supported with Experimental Data 

In addition to the four residues involved in constraints used to guide α-MSH docking, twelve 

residues were predicted to interact with one or more residue of α-MSH. Many of these residues have 

been characterized for their mutated effects on α-MSH and/or NDP-MSH binding but do not have 

sufficient evidence to suggest a direct interaction with the ligand. Comparing predicted interaction with 

published mutagenesis data helps to validate the presented models and propose direct interactions 

between these residues and specific ligand residues. Of these twelve predicted interactions, eight are 

supported by mutagenesis experiments that revealed a decrease in α-MSH affinity. These interactions 

and their corresponding experimental evidence are listed in table 6-2.  

Models predict residue not previously tested for ligand binding to MC4R 

In addition to residues participating in the interface energy between MC4R and α-MSH with 

previously published experimental data, the current models propose the involvement of one MC4R 

residue in binding α-MSH not yet been characterized with mutagenesis approaches. Binding studies 

similar to those used to characterize many other mutations within MC4R may support the identification 

of additional residues involved in α-MSH binding to MC4R. This interaction includes Met7.32 predicted to 

interact with Ser4 or Glu5 on α-MSH. Taken together, the degree of corroboration between models and 

experimental data not used to guide docking improves the confidence in the presented models. 
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Table 6-2 Eight predicted interactions have supporting mutagenesis data in literature *mutagenesis data 

included for corresponding mouse MC4R residue **Green color indicates mutagenesis data supports 

prediction; red color indicates mutagenesis data does not support prediction; yellow color indicates previously 

untested residue. REU = Rosetta Energy Units 

Residue Average 
interface 

score (REU) 

Potential α-MSH 
partner(s) 

Experimental Evidence** 

Ile3.32 (129) -0.7 Phe7 I129A normal NDP-MSH binding and decreased 
α-MSH binding [55] 

Cys3.33 (130) -0.5 Phe7 C130M/A Normal α-MSH and NDP-MSH binding 
[36, 48] 

Phe4.60 (184) -1.0 Trp9 F184A normal binding [44]; F176S* abolished 
NDP-MSH binding (mouse) [48]; F184L normal 

NDP binding, decreased α-binding [55] 
Ile4.61 (185) -1.2 Trp9 F177K* decreased NDP binding (mouse) [48] 
Tyr4.63 (187) -0.8 Trp9 Y179C* deceased α-MSH potency, normal NDP-

MSH binding (mouse) [48] 
His6.54 (264) -1.0 His6 H264A decreased α-MSH and NDP-MSH binding 

[36, 44, 54] 
Leu6.55 (265) -0.9 His6 L265A decreased small molecule binding; normal 

α-MSH and NDP-MSH binding [44] 
Tyr6.58 (268) -1.5/-0.9 Glu5/His6 Y268A normal NDP-MSH binding, decreased α-

MSH binding; Y268F normal NDP-MSH and α-
MSH binding [55] 

Phe7.31 (280) -0.8/-0.7 Glu5/His6 F280L normal α-MSH binding [58] 
Met7.32 (281) -0.3/-0.7 Ser4/Glu5 Unknown 
Phe7.35 (284) -1.4/-1.4 His6/Phe7 F284A decreased α-MSH binding [51, 55]; F284A 

normal NDP-MSH binding [55] 
Tyr7.38 (287) -0.2 His6 Y287A decreased α-MSH and NDP-NSH binding; 

Y287F = normal binding [55] 

 

6.5 Methods 

The structure of MC4R was modeled using multi-template comparative modeling with the 

RosettaCM application in the Rosetta Molecular Modeling Suite [52, 59, 60]. Since no MCR crystal 

structures are available, twenty GPCR crystal structures were selected as templates based on resolution 

and conformational variability. This provided the widest possible conformational space over which the 

MC4R sequence could be threaded. Details regarding all templates are outlined in table 6-3. 
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Table 6-3 Twenty templates were used to model the MC4R receptor. *constitutively active mutation in 

complex with carboxy terminus of transducin. **Partially active conformation. ***Active conformation in 

complex with terniary Gs. IA = inverse agonist; AG = agonist; AN = Antagonist. 

PDB ID Protein Ligand Resolution Identity to MC4R 

1u19 Bovine Rhodopsine Retinal (IA) 2.2 13.5 
2rh1 Human β2-AR Carazolol (IA) 2.4 26.1 
2vt4 Turkey β1-AR Cyanopindolol (AN) 2.7 25.7 
2x72 Bovine Rhodopsin None* 3.0 13.4 
2y03 Turkey β1-AR Isoprenaline (AG)** 2.85 25.4 
3eml Human A2A ZM241385 (AN) 2.6 27.7 
3odu Human CXCR4 IT1t (AN) 2.5 19.7 
3pbl Human D3 Eticlopride (AN) 2.89 23.9 
3qak Human A2A UK-432097 (AG)** 2.71 27.9 
3rze Human H1 Doxepin (AN) 3.1 22.5 
3sn6 Bovine β2-AR P0G (AG)*** 3.2 26.9 
3uon Human M2 3-quinuclidinyl-benzilate (AN) 3 23.1 
3v2w Human S1P1 ML5 (AN) 3.35 30.6 
4daj Rat M3 Tiotropium (IA) 3.4 26.3 
4djh Human κ-opioid JDTic (AN) 2.9 18.3 
4dkl Mouse μ-opioid BF0 (AN) 2.8 17.0 
4ea3 Human N/OFQ opioid C-24 (AN) 3.01 19.1 
4ej4 Mouse δ-opioid Naltrindole (AN) 2.7 18.1 
4iar Human 5HT-1B Ergotamine (AG)** 2.7 25.2 
4ib4 Human 5HT-2B Ergotamine (AG)** 2.7 21.3 

 

An initial sequence alignment of MC1R, MC2R, MC3R, MC4R, and MC5R was performed using 

ClustalW [61] and a profile alignment of the GPCR templates was performed using the structural-

alignment tool MUSTANG [62]. A profile-profile alignment was performed in ClustalW between the MCR 

sequence alignment and the GPCR template structure alignment. 

Manual adjustments were made to each template-target alignment to ensure that no gaps were 

present within transmembrane helices. In addition to the removal of inter-helical gaps, minor 

adjustments were made to ensure the alignment of highly conserved residues and structurally critical 

residues such as prolines and glycines when possible. Finally, terminal residues of MC4R were removed 

to ease the modeling process. Specifically, the first 27 residues of the N-terminal and the last 11 residues 

of the C-terminal were removed. The final MC4R models, therefore, represent residues 28 through 321 

of the human MC4R sequence. The adjusted alignment used for threading can be found in the 

supplemental figure S6.1. 
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The partial-thread application in Rosetta was used to assign coordinates from each template 

onto the aligned residue in MC4R. This generated twenty incomplete MC4R models that vary based on 

the individual template-target alignments. Any residues in MC4R not assigned coordinates from a 

template were filled in during the RosettaCM hybridize phase. 

Several predictions were used to guide the generation of comparative MC4R models. The 

transmembrane regions of MC4R were predicted using the online OCTOPUS prediction tool [63]. This 

tool uses artificial neural networks trained on known protein structures to predict stretches likely to lie 

within the membrane. Residues predicted to lie within the membrane are scored according to Rosetta's 

membrane scoring terms. Transmembrane segments were defined as the following: TM1 = 47-67, TM2 = 

82-102, TM3 = 125-145, TM4 = 166-186, TM5 = 194-213, TM6 = 246-266, TM7 = 281-301. 

Based on experimental data, two disulfide bonds are predicted within MC4R. These disulfide 

bonds include one between N-term C40 and the top of transmembrane helix C279 and an intra-loop 

disulfide bond in ECL3 between cysteine C271 and C277. 

RosettaCM uses fragment-based ab initio folding to fill in missing densities and smooth the 

connections between pieces of different templates. Three and nine residue fragments were compiled 

using the truncated MC4R sequence with the online Robetta fragment library server [64]. 

The RosettaCM [52] protocol was used to generate full-atom models by combining low-energy 

fragments from different templates to generate the most energetically favorable structure based on a 

“hybrid” template. Twenty template-threaded partial models were supplied to RosettaCM's hybridize 

mover with equal weighting. Scoring terms included standard RosettaCM scoring terms previously 

describe with the addition of membrane-specific scoring terms to account for the transmembrane 

environment of MC4R. 

In brief, RosettaCM consists of initialization and three main stages. Initialization aligns all twenty 

partial models in Cartesian space and fragments them based on secondary structure elements. 

Coordinate constraints are generated based on each template to preserve the tertiary structure of the 

templates. During the first stage, low resolution scoring terms are gradually phased in while fragments 

are randomly inserted to generate a complete low-resolution model. A total of 10,000 fragment 

insertions are attempted during this phase, divided equally between template-based and de novo 

fragments. The second stage consists of a two-step Monte Carlo search that randomly swaps fragments 

to efficiently explore conformational space beyond the starting template structures. Fragment swaps 
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are performed for 1000 template-based segments and 500 de novo fragments. Selection of de novo 

fragments is biased towards regions of poor geometry and segment boundaries. This fragment 

replacement is followed by energy minimization and move evaluation. The final stage of RosettaCM 

involves a side-chain optimization and relaxation to replace all centroids with full-atom side-chains and 

arrive at an energetic minimum. 

An additional relaxation step was performed following the standard RosettaCM protocol to 

enforce disulfide bonds and an implicit membrane potential [65]. 

MC4R comparative model selection 

RosettaCM was used to build 20,000 multi-template comparative models. A model’s pose 

energy score in Rosetta Energy Units (REUs) is an approximate description of the model’s energy state. 

Low negative energy scores represent favorable energy poses with the lowest energy models expected 

to correlate with the native protein structure. The 5000 models with the lowest overall pose energy 

were clustered using the BCL clustering application [66]. A cut-off of four angstroms was selected to 

arrive at the largest clusters representing approximately 10% of the 5000 models each. The top five 

scoring models from the five largest clusters were selected for further analysis. These models were 

combined with the top twenty scoring models overall to produce a set of 33 models. Models that 

contained excessively malformed helix regions, loops that dipped far into and grossly obscured the 

central transmembrane pore, and models that failed to preserve the disulfide bonds were discarded. 

Additionally, residues used to guide α-MSH docking were inspected to ensure that at least three of the 

four residues were oriented into the binding pocket to facilitate docking. This left a final ensemble of 20 

MC4R models. The overall comparative modeling strategy is outlined in figure 6.5. 
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Figure 6.5 MC4R multi-template comparative modeling with RosettaCM. 

Docking α-MSH to MC4R Comparative Models 

α-MSH was docked into the twenty MC4R comparative models in two steps. The overall docking 

strategy is outlined in figure 6.6A and the predicted active conformation of α-MSH is shown in figure 

6.6B. 

Step 1. Experimental evidence shows the tetrapeptide His-Phe-Arg-Trp is critical and sufficient 

for activation of MC4R [34]. Therefore, this tetrapeptide was isolated and docked to the MC4R 

comparative models. Rosetta's FlexPepDock [67] protocol was used to dock His-Phe-Arg-Trp. This 

protocol allows full flexibility and rigid body orientation for the peptide's backbone and side chain 

flexibility for both the peptide and receptor. Four constraints were used during this step to reflect 

previously determined contacts between alpha-MSH and MC4R. Atom pair constraints are detailed in 

table 6-4. All FlexPepDock models were refined with 200 cycles of full-model relaxation under high 

resolution atom pair constraints, disulfide bond constraints, and the implicit membrane potential 

defined by the membrane spanning predictions used during comparative modeling. 
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The tetrapeptide His-Phe-Arg-Trp was docked to each of the twenty MC4R comparative models 

1,000 times, generating a total of 20,000 models. The top scoring models in terms of overall pose 

energy, interface energy between the tetrapeptide and MC4R, and compliance with atom pair 

constraints were selected for analysis. Forty-six models were visually inspected for structural 

inconsistencies such as unlikely loop or helix conformations and a final set of 16 models was carried to 

step two. 

Step 2. The ECL regions of MC4R and the remaining nine residues (5 N-terminal residues SYSME and 

4 C-terminal residues GKPV) of α-MSH were built and refined simultaneously to account for the high 

degree of flexibility expected in the receptor-peptide interface. An additional constraint was introduced 

during this step to account for the experimentally verified β-turn structure of α-MSH. Cα atoms of 

peptide residues Ser3 and Gly10 were kept within 6 Å based on experiments with cyclic α-MSH analogues. 

Loop closure was performed with Rosetta's cyclic coordinate descent (CCD) protocol [68]. This was 

followed by a kinematic loop modeling (KIC) [69] refinement. Finally, side chain optimization and full 

model relaxation within the implicit membrane potential produced 14,200 full-atom high resolution 

models. 

Table 6-4 Five atom-pair constraints were used to guide docking. *Constraint within α-MSH to enforce active 

β-turn conformation 

MC4R 
Residue 

α-MSH 
Residue 

Low Resolution 
Distance (Å) 

Low Resolution 
Atoms 

High Resolution 
Distance (Å) 

High Resolution 
Atoms 

E100 Arg8 8.0 Cβ-Cβ 6.0 Oε1-NH2 
D122 Arg8 8.0 Cβ-Cβ 6.0 Oδ1-NH2 
D126 Arg8 8.0 Cβ-Cβ 6.0 Oδ2-Cβ 
P261 Phe7 8.0 Cβ-Cβ 6.0 CZ-CZ 

 Ser3 + Gly4* 6.0 Cα-Cα 6.0 Cα-Cα 
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Figure 6.6 Docking α-MSH to MC4R comparative models. A) Two step docking protocol is outlined. B) Hairpin 

structure of α-MSH is shown. Critical tetrapeptide residues docked during the first round are indicated. A 

dashed line illustrates the 6 Å restraint used to enforce the β-turn feature of active α-MSH during the loop 

building step. 

Final MC4R α-MSH complex model selection 

All 14,200 high-resolution models were analyzed with Rosetta's InterfaceAnalyzer that scores 

several interface-specific metrics between the peptide ligand and receptor. Specifically, the binding 

energy is calculated as the change in energy when the peptide and receptor are separated. Models with 

poor overall pose energies, weak interface energies, or failure to retain atom-pair constraints used for 

docking were discarded, leaving a total of 412 models with good pose energy and atom-pair constraint 

compliance. These models were visually inspected for structurally inconsistencies and a large ensemble 

of 330 models remained. This large ensemble contained many highly similar models that could be traced 

to models stemming from common low-resolution intermediate CCD models. Models with highly similar 

conformations were removed to produce an ensemble representing the lowest scoring models covering 

the greatest conformational space with minimal redundancy. The final ensemble contained 21 MC4R + 

α-MSH models. 
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6.7 Supplementary Information 

 
Figure S6.1 adjusted alignment used for template threading. 
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Protocol Capture 

The following information includes all settings and command lines used for comparative modeling the 

MC4 receptor and docking α-MSH. The Rosetta software suite is publically available and the license is 

free for non-commercial users at http://www.rosettacommons.org/ 

Multi-template MC4R comparative modeling with RosettaCM 

a) Manually generated files (this information may be copied directly into new text files) 

MC4R_truncated.fasta 

 

 

 

 
MC4R_truncated.span 

 

 

 

 

 

 

 
MC4R.disulfide 

 

 
flags_membrane 

 

 

 

 

 

 

 

 

 
 

 

>MC4R 

SESLGKGYSDGGCYEQLFVSPEVFVTLGVISLLENILVIVAIAKNKNLHSPMYFFICSLA 

VADMLVSVSNGSETIVITLLNSTDTDAQSFTVNIDNVIDSVICSSLLASICSLLSIAVDR 

YFTIFYALQYHNIMTVKRVGIIISCIWAACTVSGILFIIYSDSSAVIICLITMFFTMLAL 

MASLYVHMFLMARLHIKRIAVLPGTGAIRQGANMKGAITLTILIGVFVVCWAPFFLHLIF 

YISCPQNPYCVCFMSHFNLYLILIMCNSIIDPLIYALRSQELRKTFKEIICCYP 

 

TM region prediction for MC4R_truncated.octopus predicted using OCTOPUS 

7 294 

antiparallel 

n2c 

  20    40    20    40 

  55    75    55    75 

  98   118    98   118 

 139   159   139   159 

 167   187   167   187 

 219   239   219   239 

 254   274   254   274 

13 252 

244 250 

-in:file:fasta MC4R_truncated.fasta 

-parser:protocol rosetta_cm_membrane.xml 

-in:detect_disulf true 

-relax:minimize_bond_angles 

-relax:minimize_bond_lengths 

-relax:jump_move true 

-default_max_cycles 200 

-relax:min_type lbfgs_armijo_nonmonotone 

-relax:jump_move true 

-score:weights stage3_rlx_membrane.wts 

-use_bicubic_interpolation 

-hybridize:stage1_probability 1.0 

-sog_upper_bound 15 

-membrane 

-in:file:spanfile MC4R_truncated.span 

-membrane:no_interpolate_Mpair 

-membrane:Menv_penalties 

-rg_reweight .1 

 

 

file:///C:/Users/fasta
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rosetta_cm_membrane.xml 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
relax.options 

 

 

 

 

 

 

 

 

 

<dock_design> 

 <TASKOPERATIONS> 

 </TASKOPERATIONS> 

 <SCOREFXNS> 

  <stage1 weights=stage1_membrane symmetric=0> 

   <Reweight scoretype=atom_pair_constraint weight=1/> 

  </stage1> 

  <stage2 weights=stage2_membrane symmetric=0> 

   <Reweight scoretype=atom_pair_constraint weight=0.5/> 

  </stage2> 

  <fullatom weights=stage3_rlx_membrane symmetric=0> 

   <Reweight scoretype=atom_pair_constraint weight=0.5/> 

  </fullatom> 

 </SCOREFXNS> 

 <FILTERS> 

 </FILTERS> 

 <MOVERS> 

<Hybridize name=hybridize stage1_scorefxn=stage1 stage2_scorefxn=stage2 fa_scorefxn=fullatom 

batch=1 stage1_increase_cycles=1.0 stage2_increase_cycles=1.0 linmin_only=1> 

 <Fragments 3mers="aaMC4RA03_05.200_v1_3"  9mers="aaMC4RA09_05.200_v1_3"/> 

 <Template pdb="1u19_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="2rh1_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="2vt4_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="2X72_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="2Y03_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3eml_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3odu_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3pbl_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3QAK_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3rze_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3SN6_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3uon_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="3v2w_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4daj_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4djh_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4dkl_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4ea3_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4ej4_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4IAR_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 <Template pdb="4IB4_clean.pdb.pdb" cst_file="AUTO" weight=1.000 /> 

 </Hybridize> 

 </MOVERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

  <Add mover=hybridize/> 

 </PROTOCOLS> 

</dock_design> 

-database /main/database/ 

 

-in:fix_disulf MC4R.disulfide #read disulfide connectivity information 

-in:file:spanfile MC4R_truncated.span 

-relax:membrane #set up membrane environment for relax 

-relax:dualspace 

-relax:minimize_bond_angles #setting used with dualspace relax 

-set_weights cart_bonded .5 pro_close 0 #dualspace specific setting 

-default_max_cycles 200 

-out:file:fullatom #output file will be fullatom 

-out:pdb 

-membrane:no_interpolate_Mpair # membrane scoring specification 

-membrane:Menv_penalties # turn on membrane penalty scores 

-score:weights membrane_highres_Menv_smooth.wts 
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b) Steps and commands: The following steps describe specific command lines and resulting files 

  Step  Text  Command  Comment  

1  
Create 
GPCR 
alignments  

Create alignment 
profile for 20 
GPCR's from PDB  

mustang -i 1u19A_clean.pdb 2rh1A_clean.pdb 2vt4A_clean.pdb 
3emlA_clean.pdb 3oduA_clean.pdb 3rzeA_clean.pdb 3v2wA_clean.pdb 
4djhA_clean.pdb 4ea3A_clean.pdb 3pblA_clean.pdb 3uonA_clean.pdb 
4dajA_clean.pdb 4dklA_clean.pdb 4ej4A_clean.pdb 2Y03_clean.pdb 
4IB4_clean.pdb 4IAR_clean.pdb 3SN6_clean.pdb 3QAK_clean.pdb 
2X72_clean.pdb -F fasta  

Gives a pdb and .afasta file with 
structural alignment  

2  
Create MCR 
alignments  

Create sequence 
alignment of 
MC1, MC2, MC3, 
MC4, and MC5  

clustalw -> Sequence input from disc -> MCR_all.fasta -> multiple 
alignments  

Gives .aln and .dnd files  

3  
Align MCR 
and GPCRs  

Align GPCR 
structural 
alignment profile 
with MCR 
sequence 
alignment  

clustalw -> Profile/Structural alignments -> 1st profile = 
gpcr_all_mustang.afasta; 2nd profile/sequences = MCR_all.aln -> Align 
sequences to 1st profile (slow/accurate)  

Gives .aln and .dnd files  
Convert to Gishin format 
manually 

4  
Thread 
templates  

Thread MC4 
sequence over 
each template 
using Gishin 
alignment  

partial_thread.linuxgccrelease -database ROSETTA_DATABASE_PATH/ -
in:file:fasta MC4R_truncated.fasta -in:file:alignment mc4_TEMPLATE.aln -
in:file:template_pdb TEMPLATE.pdb  

Generates one threaded pdb 
per template for a total of 20 
pdbs.  

5  

Generate 
MC4 
fragment 
files  

Use Robetta 
online fragment 
server to 
generate MC4 
fragment files 
from truncated 
MC4 sequence  

http://robetta.bakerlab.org/fragmentsubmit.jsp  
Download and save fragment 
files aaMC4RA03_05.200_v1_3 
and aaMC4RA09_05.200_v1_3  

6  
Generate 
span file  

Predict 
membrane 
spanning region 
with OCTOPUS 
and convert to 
.span file  

http://octopus.cbr.su.se/  

 

MC4R_truncated.span  

7  Hybridize  
Run RosettaCM 
hybridize protocol  

rosetta_scripts.linuxgccrelease @flags_membrane -database 
ROSETTA_DATABASE_PATH/ -out:prefix hybridize_ -nstruct 1000 > 
hybridize.log  

Generates 1000 models per 
run.  

8  
Relax 
models  

Run final relax 
over hybridize 
models including 
membrane 
spanning and 
disulfide 
definitions  

relax.linuxgccrelease @relax.options -s MODEL -nstruct 1  
Generates 1 model per 
hybridize model  

9  Cluster pdbs  
Cluster models 
using BCL  

ls *.pdb > pdb_list.ls  
 
bcl.exe PDBCompare -quality RMSD -atom_list CA -pdb_list pdb_list.ls -
prefix MC4R_rmsd -aaclass AACaCb -convert_to_natural_aa_type  
 
bcl.exe Cluster -distance_input_file MC4R_rmsdRMSD.txt -input_format 
TableLowerTriangle -output_format Rows Centers -output_file 
cluster5_MC4R -linkage Average -remove_internally_similar_nodes 5 
 
grep "Leaf : 1 : " cluster5_MC4R.Centers. | sort -nk10 | (Lists the top 5 
clusters)  

Generates cluster center and 
row files.  
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7.1  Future Directions 

3D-QSAR descriptor improvements 

Chapters 2 and 3 discuss several improvements to 3D-QSAR descriptors that increase QSAR 

model performance. Additional avenues of improvement remain and several potential modifications are 

currently being pursued. 

In chapter 3, decreasing the maximum 3DA atom pair distance cutoff from 12 Å to 6 Å 

significantly improved QSAR model performance. One possible explanation is that capturing molecule 

fragments instead of the entire structure avoids problems arising from conformational flexibility. 

Encoding a single conformation has presented a major drawback to many 3D-QSAR descriptors and 

several approaches to incorporating conformation flexibility have been published under the general 

category called 4D-QSAR (see chapter 1). One approach to account for conformational flexibility is to 

encode all low energy conformations as individual molecules with equal activities for the different 

conformations of the same molecule. This approach has several drawbacks that make it an unappealing 

approach. Many datasets used to train effective QSAR models include over one hundred thousand 

compounds. Therefore, the size of these datasets quickly becomes computationally inefficient when 

considering all low-energy conformations. 

Several more intuitive approaches are currently being explored with the BioChemical Library 

(BCL) to incorporate conformational flexibility in 3D-QSAR descriptors. If the reduced sensitivity to 

conformational flexibility is the cause for increase model performance at a distance limit of 6 Å, then 

future improvements may allow a distance cutoff to once again encapsulate the entire molecule. 

One approach is replacing the static Gaussian smoothing of 3DA_Smooth with a dynamic 

smoothing that correlates the curve width to the atom pair distance. The width of distribution is easily 

controlled with the smoothing coefficient of standard curve equation and therefore, instead of using a 

constant smoothing coefficient throughout the entire 3DA_Smooth, this coefficient can be adjusted for 

different atom pair distances. Shorter atom pair distances, being less susceptible to conformational 

flexibility, can be distributed in a narrow curve, while longer atom pair distances can be distributed over 

a wider range of distance centers. More sophisticated correlations are being explored that take into 

account the number of rotatable bonds separating two atoms and atom types that can influence 

flexibility when adjusting smoothing coefficients. 
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Chapter 3 also presents an improvement to 3DA called 3DA_Sign that separates atom pairs 

based on signs. The improved performance of 3DA_Sign is likely due to the avoidance of information 

loss inherent with combining two atom properties into a single coefficient. This inevitably leads to the 

speculation of additional forms of information loss inherent with this treatment of atom properties. For 

example, when combining two atom properties of significantly different proportions, it becomes difficult 

to encode which atom of the pair contributes more to the property coefficient than the other. We are 

currently exploring modifications to 3DA that mix atom properties in different ways in a new descriptor 

called MultiProperty3DA. This descriptor can take up to two different atom properties to encode 

property distances including the distances between hydrogen bond donors and receivers. Additionally, 

this descriptor allows for one of the two atoms for every pair to go unweighted, thereby avoiding the 

potential mixing of atom properties with significantly different intensities 

Discovering positive allosteric modulators of Y4R 

In chapter 5, high throughput screening is used to discovery five small molecule positive 

allosteric modulators (PAMs) of Y4R. These compounds all share a common scaffold. This is both 

beneficial and limiting. A common scaffold makes molecular alignment straightforward and provides 

early insight into small molecule structure-activity relationships. Importantly, IP accumulation assays 

against all neuropeptide Y receptor subtypes extended this relationship to subtype selectivity. However, 

sharing a common scaffold severely limits the chemical space covered by these hits. One of the benefits 

of unbiased HTS is its ability to identify structurally unique hits. On the other hand, the four structurally 

similar compounds identified with the help of Tanimoto similarity to the initial hit underscore the utility 

of CADD in enhancing a traditional HTS approach to improve hit rates. Therefore, while future HTS 

studies will benefit from LB-CADD guidance, care must be taken to avoid limiting chemical search space 

to this single scaffold. 

One potential approach is to train non-linear models using QSAR descriptors including those 

described in chapters 2 and 3. The data generated for chapter 4 presents a dataset of approximately 

35,000 compounds over which to train models. Despite being relatively small, this dataset is of sufficient 

size to train QSAR models that can screen virtual compound libraries and prioritize compounds to be 

screened. This approach, however, significantly suffers from the extremely small population of active 

compounds. Additionally, the common scaffold of these active compounds will significantly restrict the 

conformational space explored by these models. Models will be trained to recognize and prioritize this 
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scaffold and positive predictions outside of this scaffold will be rare if at all. This particular LB-CADD 

approach will be better served after a larger set of diverse Y4R PAMs has been compiled. 

With the present set of active compounds, a more appropriate approach is with ligand-based 

pharmacophores (see chapter 1). The shared scaffold simplifies structural alignment, a prerequisite for 

ligand-based pharmacophore generation. Additionally, the inclusion of similar inactive compounds can 

significantly refine and enhance a pharmacophore hypothesis. Most importantly, pharmacophore 

mapping is specifically powerful in cases where all compounds share a common scaffold because it is 

capable of discovering novel scaffolds through a process called “scaffold hopping.” Because 

pharmacophores represent the spatial distribution of physicochemical properties independent of overall 

molecular geometry, generating a pharmacophore hypothesis that can be used to screen virtual 

compound libraries allows for the identification of structurally distinct compounds that share a similar 

distribution of properties.  

Pharmacophore hypothesis generation is not currently implemented in the BCL framework. 

However, chapter 1 lists several software packages and instances where ligand-based pharmacophores 

were used to identify new scaffolds in similar situations. Commercially available software packages such 

as Catalyst [1] contain multiple tools such as HipHop for the development of ligand-based 

pharmacophore models.  More recent tools such as HypoGen can enhance the pharmacophore 

hypotheses for niclosamide-similar compounds with the inclusion of the structurally similar inactive 

compounds. Once one or more pharmacophore hypotheses are generated, they can be compared 

against the Vanderbilt Institute for Chemical Biology compound library to select compounds and 

prioritize a third screen. Successful identification of structurally unique hits in a third screen may provide 

the necessary chemical space to train high quality non-linear QSAR capable of screening virtual libraries 

of millions of compounds. Those predicted to be active can either be synthesized or purchased, 

extending the high throughput screening well beyond the scope of the on-site compound library. 

Y4R-PP models: application to drug discovery 

Chapter 4 describes the application of LB-CADD to enhancing the hit rate for screening small 

molecule modulators of Y4R and chapter 5 describes the application of SB-CADD to modeling the 

interaction of Y4R with its endogenous peptide agonist PP. Combining LB-CADD and SB-CADD with 

discoveries from both projects may provide additional routes for discovering Y4R modulators and 
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provide significant insights into the modulation of PP signaling at Y4R by niclosamide and related 

compounds. 

As discussed, ligand-based pharmacophores can significantly enhance future screening projects 

with Y4R. However, combining structure-based and ligand-based pharmacophores has been shown to  

increase the number of chemotypes retrieved [2]. Despite the absence of an experimentally derived 

structure of Y4R, results from chapter 5 can be combined with hit compounds of chapter 4 to generate 

structure-based pharmacophores.  

The first step towards developing a structure-based pharmacophore of these Y4R PAMs is the 

identification of a common binding pocket for this particular scaffold. However, several caveats to this 

approach must be considered. To date, few structures of GPCRs in complex with allosteric modulators 

have been experimentally elucidated. One structure reveals the binding pose of LY2119620, an allosteric 

modulator of M2 receptor that involves extracellular portions of the receptor [3]. Recently, the crystal 

structure of P2Y1 in complex with BPTU, an allosteric antagonist, has been published which reveals a 

completely distinct binding site on the receptor surface within the lipid bilayer [4]. Additionally, studies 

of the chemokine receptors reveal at least two potential allosteric binding sites including 

transmembrane and cytoplasmic binding sites [5]. This makes computationally modeling the binding site 

of Y4R PAMs challenging without any experimental evidence to guide binding site prediction.  

Y4R-PP models may help to identify the binding site of niclosamide at Y4R. Unlike crystalized M2 

receptor agonists, PP is a 36 amino-acid peptide that binds to the extracellular surface, reaching its C-

terminal into the transmembrane pore and occluding significant portions of the extracellular surface of 

Y4R. This information can restrict the conformational search space to sites that can accommodate 

niclosamide in the absence and presence of PP. 

An appendix chapter has been included that presents preliminary docking studies of niclosamide 

and Y4R-PP. This initial approach focuses on the common small molecule orthosteric binding site in class 

A GPCRs which, unlike the position of LY2119620 on M2, would not obscure the binding site of PP on 

Y4R. Small molecule docking tools in Rosetta were used to dock niclosamide to Y4R models with and 

without PP. This strategy is designed to identify low energy binding poses that incorporate similar 

residues from both sets of models. Since no experimental information was used to guide these models, 

clustering analyses were performed to generate large conformation ensembles containing models with 

good binding energies in different poses. Examining the pairwise interaction energies between 
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niclosamide and every residue of these models revealed several residues that interact with niclosamide 

across different poses. These residues present targets of interest for future targeted mutagenesis 

studies aimed at loss of niclosamide affinity and/or activity. 

Preliminary results are encouraging as several residues interacting with niclosamide across most 

models appear to participate in the GPCR agonist binding and activation. For example, Trp6.48 shows 

favorable interactions with niclosamide across over 70% of docked models. Movements at this 

conserved position have been shown to be involved in activation of M2 and A2A receptors [6, 7]. 

Therefore, interaction between niclosamide and this residue may participate in potentiation of Y4R 

activation from PP. 

If in vitro verification of these predicted interactions reveals one or more residues that 

significantly decrease binding of niclosamide to Y4R, these experimental results may be used to guide a 

second round of niclosamide docking that can focus conformational search space to model a binding 

pose of higher confidence. Alternatively, if mutagenesis studies show that these predicted residues have 

little to no effect on niclosamide binding, a second round of docking may be focused on allosteric 

binding sites outside of the transmembrane pore.  

Once the binding site has been elucidated with confidence through iterative rounds of modeling 

and in vitro experiments, two potential strategies may be used to aid in virtually screening for additional 

Y4R modulators. The first strategy, as mentioned, involves the combination of ligand-based and 

structure-based pharmacophores that has already been shown to outperform single-strategy 

pharmacophores. Residues participating in the modeled binding site of niclosamide can be used to 

construct the structure based pharmacophores. 

A second potential strategy is to combine ligand-based and structure-based approaches to 

generate a pseudoreceptor [8]. A pseudoreceptor constructs a high-resolution 3D model of only the 

binding site that can be used for virtual screening.  Peptide-based pseudoreceptors construct a binding 

site around a known ligand using amino acids found to contact the ligand, including directional 

interactions defined as vectors. Pseudoreceptor models have been used successfully to identify high 

affinity ligands for 5HT1A and binding determinants for cocaine derivatives [9, 10]. Both studies found 

that averaging potential states of ligands over multiconformer models outperformed single 

pseudoreceptor models. This finding fits well with the modeling approach used for docking PP and 
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niclosamide to Y4R that uses conformation ensembles to predict interactions rather than a single binding 

pose.  

MC4R-α-MSH models 

Chapter 6 models an interaction between α-MSH and MC4R. [Nle4,dPhe7]-MSH (NDP-MSH) is 

an analogue of α-MSH that shows dramatically improved stability and binding affinity. The altered 

stereochemistry of Phe7 is considered to be the most important factor for the superior affinity of NDP-

MSH. Modeling the underlying interactions owing to this change in affinity may be useful for designing 

high affinity drugs that target MC4R. Several interactions captured in the presented models suggest 

possible interactions that differ between α-MSH and NDP-MSH binding. Specifically, two residues that 

interacted with Phe7 in our models showed decreased binding to α-MSH but not NDP-MSH when 

mutated including Ile3.32 and Phe7.35. 

Currently, integration of non-canonical amino acids, including D-amino acids has limited support 

in Rosetta. Implementation is limited to side chain rotamer optimization and energy minimization. This 

means that the tools employed to model the interaction between α-MSH and MC4R including 

FlexPepDock and loop modeling and refinement are not current applicable to docking NDP-MSH. 

However, there are multiple researchers in different Rosetta laboratories that are extending the 

implementation of non-canonical amino acids and D-amino acids to include a variety of different 

applications including FlexPepDock and loop modeling. Once these methods have been successfully 

implemented, it will be useful to dock NDP-MSH to MC4R and rigorously compare all interaction profiles 

between the two model ensembles. 

In addition to the interactions supported with mutagenesis data, models predicted a potential 

interaction between Met7.32 of MC4R and Ser4 or Glu5 of α-MSH. This residue has not been previously 

explored with mutagenesis in α-MSH binding assays. Therefore, targeted mutagenesis can be used to 

determine whether Met7.32 is an important residue for α-MSH binding. 

7.2 Closing Remarks 

At the interface between extracellular signals and intracellular changes, GPCRs present one of 

the most important pharmacological targets in medicine. Modern advancements in experimental 

techniques provide insight into the behavior of these proteins and the psychochemical properties 

underlying their ligand interactions. The utility of such discoveries is evident in their direct contribution 
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to many sophisticated treatments capable of targeting specific and complex physiological symptoms. 

However, as with all science, every discovery prompts new questions, new ideas, and new hypotheses. 

Computer aided drug discovery gives scientists the means to combine information and new discoveries 

into systems of extraordinary complexity. With these models, it becomes possible to explore events 

involving hundreds to thousands of simultaneous processes. Not only can these models help scientists 

paint individual discoveries into comprehensive biological murals, but computational models produce 

environments where questions can be prioritized, ideas can be explored, and hypotheses tested in a 

rapid and cost-effective framework. 

The benefits of scientific collaboration can’t be overstated and computational techniques are 

not an exception but a prominent example of such benefits. This conversation between experimental 

and computational approaches fosters spectacular insight that can be directly applied to improving 

human life. Much of the present work is only possible through the strong collaboration between experts 

in the field of cell signaling, biochemistry, and protein function represented by members of the Annette 

Beck-Sickinger lab of Leipzig University and experts in computational structure biology and biophysics 

represented by members of the Jens Meiler lab of Vanderbilt University.  

During the generation of this work, many exciting discoveries and advancements were made 

regarding the conformational changes accompanying GPCR activation. In the past few years, the first 

experimentally derived structures of active GPCRs in complex with G-proteins have become available, 

contributing to a comprehensive model of GPCR activation that covers shared conformational changes 

across the common topology and those unique to specific receptors. The time scale and complexity of 

such conformational changes typically overwhelm available computational resources. However, recent 

hardware advancements and techniques that accelerate molecular dynamics simulations have allowed 

computation techniques to join experimental techniques in modeling these important processes. For 

example, the recent application of sophisticated processors designed for molecular dynamics allowed 

for the atomic-level molecular dynamic simulations of microsecond timescale events such as G-protein 

nucleotide exchange [11]. Additionally, novel tools in cloud computing allowed researchers to combine 

individual nanosecond molecular dynamic simulations into Markov state model microsecond timescale 

simulations of the activation of the β2 adrenergic receptor [12, 13].  

One exciting future for the presented work with Y4R involves modeling the overall 

conformational changes of Y4R following binding of PP and allosteric modulators. With the application of 

these new computational techniques, Y4R conformational spaces can be explored that include the 
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resting unbound states, PP bound states, and positive allosteric modulator bound states. Comparing 

these populations and the elucidating shared transition states can help explain how compounds such as 

niclosamide potentiate activation of Y4R by PP. Understanding these conformational lines of 

communication can improve small molecule therapeutics targeting subtle and specific aspects of 

receptor activation. Modeling the activation of MC4R by α-MSH, on the other hand, can help to explain 

the effects of specific mutations on MC4R signaling that contribute to monogenic obesity, contributing 

to the growth of personalized medicine. 
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Introduction 

In chapter 4, several positive allosteric modulators of Y4R were discovered with a common 

scaffold. Understanding the interaction of these molecules with Y4R and potentiation of PP signaling at 

Y4R can help discover modulators of Y4R with higher affinity and activity. Chapter 5 introduces a 

comprehensive model of Y4R and PP interaction. This appendix chapter presents initial results for 

modeling the interaction site of niclosamide on Y4R based on the models generated in chapter 5. These 

results can be used to suggest targeted mutagenesis studies that can, in turn, be applied to a second 

round of niclosamide docking to Y4R. This introduction presents the overall strategy of ligand docking in 

Rosetta and the rationale behind initial ligand placement. 

Ligand docking into GPCR comparative models is shown to be relatively successful depending on 

the information known prior to modeling [1]. However, this approach can be especially difficult when no 

information regarding the binding site is known. Rosetta does not perform binding site detection but 

relies on the user to specify the area around which ligand docking will be sampled. One option is to use 

information from templates to guide the docking process. Class A GPCRs share a relatively conserved 

orthosteric binding site occupying the extracellular portion of TM3, TM5, TM6 and to a lesser extent 

TM2, TM7, and some of ECL2 [1]. Topologically similar residues across a variety of class A GPCRs 

participate in orthosteric binding including residues 3.32, 3.33, 3.36, 6.48, 6.51 and 7.39 [2]. 

Additionally, binding pockets within receptors of the same type may be practically identical. For 

example, β1 and β2 adrenergic receptors both share a salt bridge at Asp3.32 and hydrogen bonds at 

Ser5.42 and Asn7.39 with their small molecule ligands [3].  

Despite the orthosteric binding site similarities across many class A GPCRs, the depth of this 

binding pocket can vary significantly, especially when comparing small molecule and peptide ligands. 

Peptide ligands tend to bind closer to the extracellular surface [4]. Chemokine receptors, for example, 

bind ligands at the top of the transmembrane bundle and interactions involve mainly extracellular 

domains [5]. The crystal structure of NT8-13 with NT1 receptor reveals a shallow binding cavity that 

does not penetrate the receptor with a pose almost perpendicular to the membrane [6]. 

Allosteric compounds present additional challenges for docking since they bind to sites 

topologically distinct from endogenous ligands [5]. Experimental evidence shows a trend for class A 

GPCR allosteric modulators to bind at shallow cavities that include extracellular regions [3]. The crystal 

structure of M2 in complex with the positive allosteric modulator LY2119620, for example, reveals a 
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binding site at the extracellular portions of the receptor [7]. The residues that create this binding pocket 

appear to be shared across other muscarinic acetylcholine receptors [8]. However, a shallow, 

extracellular binding pocket is not the only position allosteric ligands may bind. For example, two 

allosteric binding sites have been proposed for chemokine receptors: a transmembrane binding site 

similar to the allosteric binding site seen in class B GPCRs and a cytoplasmic allosteric binding site [8]. 

Therefore, additional care must be taken when analyzing models involving allosteric compounds when 

little or no information of the allosteric binding site is known. For docking niclosamide to Y4R, 

information is gained from the fact that PP obscures much of the extracellular surface of the receptor. In 

the absence of any experimental restraints other than the fact that niclosamide bound Y4R must 

accommodate PP binding to the extracellular surface, an initial search at the general class A GPCR small-

molecule orthosteric binding pocket is a logical choice. 

Small molecule docking in the Rosetta Molecular Modeling Suite 

RosettaLigand is a modification of its predecessor RosettaDock [9] that docks small molecule 

ligands with proteins [10]. Its unique design samples the flexibility of both the small molecule ligand and 

protein target simultaneously [11, 12]. RosettaLigand has been shown to successfully predict binding 

modes of small molecules in ten different comparative GPCR structures [13]. When compared with 

other ligand-docking programs including Dock, FlexX, Glide, GOLD, MOE, and others, RosettaLigand 

performance was comparable or better across 136 ligands and eight target receptors [14]. 

Rosetta uses two strategies to sample small molecule flexibility. A pre-generated ensemble of 

ligand conformations is provided that will be randomly sampled during the docking process and Rosetta 

internally defines bonds that may be rotated during ligand conformational sampling [15]. 

RosettaLigand begins by translating the ligand within the user-defined sphere until its geometric 

center does not clash with any atoms in the receptor. This is followed by random rotation through all 

rotational degrees of freedom. Only rotations that significantly change the pose and pass the Lennard-

Jones attractive and repulsive score filter are stored. One pose is randomly selected for high resolution 

docking. Initial translation and rotation cycles allow Rosetta to sample hard to find poses and tight 

binding cavities [15]. 

The high resolution stage of RosettaLigand combines stochastic receptor side-chain rotamer and 

ligand conformer sampling with small ligand movements evaluated with Monte Carlo simulated 

annealing [1]. This combination of ligand movement, conformation, and side chain rotamer sampling is 
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designed to capture the simultaneous flexibility of ligand and receptor during the binding event [16]. 

The final stage of RosettaLigand employs a stringent gradient-based minimization while exploring minor 

changes in ligand position and orientation as well as receptor side chain and backbone torsion sampling 

with a hard repulsive VDW potential that creates a rugged energy landscape tuned to discriminate 

native from nonnative binding modes [16]. 

Evaluating receptor-ligand models focuses on specific binding interface scores rather than the 

overall energy of the model. Several binding interface-specific scoring terms predict binding free energy 

and critical interactions [17]. The ‘interface_delta’ score is a commonly used approximation of binding 

free energy in Rosetta that identifies the contribution of the total model score for which the ligand is 

responsible. Interface_delta is calculated as the difference of total model scores with and without the 

ligand [18]. Clustering models based on ligand pose is often used to discern native from nonnative poses 

with comparable interface_delta scores. 

Results and Discussion 

When niclosamide was docked to Y4R alone, 25 residues contributed attractive energy scores to 

the interface energy of niclosamide and Y4R in at least 30% of the top scoring models. This cutoff of 30% 

was purposely low to account for the fact that the location of niclosamide binding is largely unknown. As 

expected, docking niclosamide to Y4R+PP limited the space available for niclosamide and 19 residues 

contributed attractive energy scores to the interface energy in at least 30% of the top scoring models. 

Contribution of all residues involved in niclosamide binding to Y4R in both conditions is plotted in figure 

A.1. This plot reflects the greater degree of variability in poses lacking PP. Taken together, 11 residues 

contributed to the interaction of niclosamide and Y4R across at least 30% of top models in both 

conditions. These residues are ranked in accordance with the average percentage of models across the 

two conditions that they contributed to niclosamide binding energy in table A-1. Residues of particular 

interest include conserved residues identified as contributors to activation of M2 and A2A such as Trp6.48 

and Met7.43 [19, 20]. A similar low-energy binding pose of niclosamide docked to Y4R alone and Y4R+PP is 

illustrated in figure A.2. 
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Figure A.1 Y4R residues interacting with niclosamide in docked models. Specific residues contributing to 

interface energy with niclosamide in at least 20% of models within each docking project are listed along 

the x-axis. Percent of models within specific condition is tracked in y-axis. Limited conformation space 

sampling in Y4R+PP condition is highlighted by the lack of residues including Lys4.76 through Gln5.46. 

 

Table A-1 Highly represented residues contributing to niclosamide interface energy in at least 30% of 

final models. 

 Residue Final Y4R Models 
(out of 50) 

Final Y4R+PP Models 
(out of 50) 

Average % 

1 Leu6.51 49 41 90 
2 His7.39 41 48 89 
3 Gln3.32 42 39 81 
4 Val3.36 37 40 77 
5 Cys3.33 40 33 73 
6 His6.52 27 42 69 
7 Ala7.42 21 46 67 
8 Trp6.48 16 43 59 
9 Met7.43 19 37 56 
10 Phe7.35 29 25 54 
11 Asn6.55 27 21 48 
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Figure A.2 Similar binding poses between Y4R+PP and Y4R models. A) Low energy binding pose from 

niclosamide docked to Y4R+PP B) Low energy binding pose from niclosamide docked to Y4R alone Cyan 

ribbon illustrates Y4R comparative model and purple cartoon illustrates PP. Red spheres illustrate residues 

1-5 in table A-1 and orange spheres illustrate residues 6-10 in table A-1. 

 

This small molecule docking strategy is designed to achieve the highest predictive power 

capable with the limited experimental evidence. This is the first step of an iterative workflow that passes 

information back and forth between computational modeling and in vitro studies. These models, 

therefore, represent potential binding poses based on the class A GPCR orthosteric binding pocket.  

Predicted interactions in table A-1 were gathered from the ensemble of potential binding poses 

for prioritizing in vitro studies. Residues that consistently interact with niclosamide across the majority 

of the final models may be suggested participants in niclosamide binding. It is critical to test these 

residues or protein segments in vitro through mutagenesis, protein chimeras, or other techniques to 

verify these predictions. 
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After these predictions have been experimentally verified or rejected, a second round of 

modeling can be performed with the inclusion of additional experimental evidence. Naturally, this will 

limit the conformational search space and increase the confidence of future predictions. A second round 

of predictions can be made that may focus on elucidating other residues in the binding pocket or 

proposing specific interactions between the ligand and receptor. This iterative pipeline alternating in 

vitro and in silico applications has the greatest chance of producing high quality models that describe the 

binding mode at atomic level detail. 

Methods 

Two individual docking projects were run in parallel using RosettaLigand to dock niclosamide to 

Y4R with and without PP. Results were combined for final analysis and binding interaction predictions. 

Niclosamide conformation generation 

Conformations of niclosamide were generated with LowModeMD conformational search in MOE 

using the MMFF94X force field and Born solvation. A conformation RMSD limit of 0.5 Å yielded three 

unique low-energy conformations. These conformations were used to define niclosamide 

parameterization files for RosettaLigand. 

Docking niclosamide to Y4R and Y4R+PP 

Niclosamide was docked to fifteen Y4R comparative models and nine models of PP docked to 

Y4R. Ligand starting coordinates were determined as the geometric center of niclosamide positioned 

within the class A GPCR orthosteric binding pocket as defined by the ligand overlap across the fourteen 

class A GPCR crystal structures used as templates for Y4R comparative modeling. See chapter 5 for 

template structure details. 

Low resolution docking included 50 cycles of ligand translation with a radius of six angstroms 

around the starting coordinates followed by 500 cycles of 360 degree rotation and a slide-together step 

to identify the low resolution binding pose. High resolution docking included six cycles of side chain 

refinement and minimization that included simulated potential solvent interactions at the binding site. 

Ten thousand models were generated each for niclosamide docked to Y4R and niclosamide 

docked to Y4R+PP. 
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Model analysis and selection 

The top 5,000 models by interface_delta score within each docking project (Y4R and Y4R+PP) 

were clustered independently using BCL::Cluster [21]. Models were clustered based on niclosamide 

RMSD with a cut-off of 3.5 Å. The top five models from the five largest clusters were combined with the 

top twenty five models by interface energy score to produce an ensemble of 50 models for each docking 

project. Models that produced the best interface energy scores and fell within the top clusters were 

permitted as duplicates in the final ensemble to allow for a higher influence in the prediction of binding 

interactions. 

Binding site prediction 

Pairwise energy scores were isolated for niclosamide and specific interacting residues using the 

Rosetta application Residue Energy Breakdown. Repulsive interactions were filtered and attractive 

energy potentials between specific residues and niclosamide were tallied within each docking project. 

Consistent attractive interactions were compared between projects and consensus binding poses were 

used to predict specific residues involved in the binding of niclosamide to Y4R. 
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a) Manually generated files 

dock_nic.options 

 

 

dock_nic.xml 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-database /Rosetta/main/database/ 

-in:fix_disulf y4.disulfide 

-in:file:extra_res_fa NIC.params 

-packing:ex1, ex2 

-parser:protocol dock_nic.xml 

-out:pdb 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <ligand_soft_rep weights=ligand_soft_rep> 

   <Reweight scoretype=fa_elec weight=0.42/> 

   <Reweight scoretype=hbond_bb_sc weight=1.3/> 

   <Reweight scoretype=hbond_sc weight=1.3/> 

   <Reweight scoretype=rama weight=0.2/> 

  </ligand_soft_rep> 

  <hard_rep weights=ligand> 

   <Reweight scoretype=fa_intra_rep weight=0.004/> 

   <Reweight scoretype=fa_elec weight=0.42/> 

   <Reweight scoretype=hbond_bb_sc weight=1.3/> 

   <Reweight scoretype=hbond_sc weight=1.3/> 

   <Reweight scoretype=rama weight=0.2/> 

  </hard_rep> 

 </SCOREFXNS> 

 <LIGAND_AREAS> 

<docking_sidechain_X chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true 

minimize_ligand=10/> 

<final_sidechain_X chain=X cutoff=6.0 add_nbr_radius=true all_atom_mode=true/> 

<final_backbone_X chain=X cutoff=7.0 add_nbr_radius=false all_atom_mode=true 

Calpha_restraints=0.3/> 

 </LIGAND_AREAS> 

 <INTERFACE_BUILDERS> 

  <side_chain_for_docking ligand_areas=docking_sidechain_X/> 

  <side_chain_for_final ligand_areas=final_sidechain_X/> 

  <backbone ligand_areas=final_backbone_X extension_window=3/> 

 </INTERFACE_BUILDERS> 

 <MOVEMAP_BUILDERS> 

  <docking sc_interface=side_chain_for_docking minimize_water=true/> 

<finalsc_interface=side_chain_for_finalbb_interface=backbone minimize_water=true/> 

 </MOVEMAP_BUILDERS> 

 <MOVERS> 

  <StartFrom name=start_from_X chain=X> 

   <Coordinates x=36.0856 y=7.93917 z=16.4311/>         

  </StartFrom> 

<CompoundTranslate name=compound_translate randomize_order=false allow_overlap=false> 

<Translate chain=X distribution=uniform angstroms=6.0 cycles=50/> 

  </CompoundTranslate> 

<Rotate name=rotate_X chain=X distribution=uniform degrees=360 cycles=500/> 

  <SlideTogether name=slide_together chains=X/> 

<HighResDocker name=high_res_docker cycles=6 repack_every_Nth=3 scorefxn=ligand_soft_rep 

movemap_builder=docking/> 

  <FinalMinimizer name=final scorefxn=hard_rep movemap_builder=final/> 

<InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep/> 

  <ParsedProtocol name=low_res_dock> 

   <Add mover_name=start_from_X/> 

   <Add mover_name=compound_translate/> 

   <Add mover_name=rotate_X/> 

   <Add mover_name=slide_together/> 

  </ParsedProtocol> 

  <ParsedProtocol name=high_res_dock> 

   <Add mover_name=high_res_docker/> 

   <Add mover_name=final/> 

  </ParsedProtocol> 

 </MOVERS> 

 <PROTOCOLS> 

  <Add mover_name=low_res_dock/> 

    <Add mover_name=high_res_dock/> 

  <Add mover_name=add_scores/> 

 </PROTOCOLS> 

</ROSETTASCRIPTS> 
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b) Specific commands 

 

Step Text Command  Comment 

1  
Generate 

params file  

Convert conformations 

generated in MOE to 

Rosetta-compatable 

parameterization file  

molfile_to_params.py niclosamide_conformations.sdf  

Generates LG_0001.pdb, 

LG_0002.pdb, 

LG_0003.pdb and 

LG.params  

2  
Complete 

params file  

Combine confirmations and 

add ensemble to 

parameterization file  

cat LG_000*.pdb > NIC_confs.pdb  

mv LG.params NIC.params  

Manually add 'PDB_ROTAMERS NIC_confs.pdb' to end of 

NIC.params  

Keep NIC_confs.pdb and 

NIC.params  

4  
Run 

RosettaLigand  

Dock niclosamide to Y4R 

and Y4R+PP models using 

starting coordinates 

defined in step 3.  

rosetta_scripts.default.linuxgccrelease @dock_nic.options -s 

Y4R_1_nic.pdb -out:prefix Y4R_1_nic_ -nstruct 150  

This command generates 

150 models per run. Run 

parallel trajectories to 

produce as many models 

as necessary. Run for 

each Y4R and Y4R+PP 

model.  

5  Cluster models  

Cluster top 5000 scoring 

models by interface_delta 

within Y4R and Y4R+PP 

docked models  

bcl.exe molecule:Compare all_ligands.sdf -method 

RealSpaceRMSD -output all_model_rmsd -bcl_table_format  

bcl.exe Cluster -distance_input_file "all_model_rmsd" -

input_format TableLowerTriangle -output_format Rows 

Centers -output_file Y4_nic_cluster35 -linkage Average -

remove_internally_similar_nodes 3.5  

Y4_nic_cluster35.Centers 

lists all clusters and can 

be used to identify the 

largest cluster nodes. 

Y4_nic_cluster35.Rows 

lists all models and their 

corresponding nodes.  

6  
Analyze 

residue-pairs  

Calculate all residue-pair 

energies within selected 

models.  

residue_energy_breakdown.default.linuxgccrelease -

database /Rosetta/main/database/ -in:file:extra_res_fa 

NIC.params -s DOCKED_MODEL -out:file:silent 

energy_breakdown_DOCKED_MODEL.out  

  

7  

Isolate 

niclosamide 

participating 

energies  

Isolate residue pair 

interactions that 

participate in niclosamide 

binding to Y4R  

grep 'LG' energy_breakdown_*.out > nic_interactions.tab  

nic_interactions.tab can 

be opened in spreadsheet 

or other analysis tools to 

examine common 

interactions across 

models and conditions.  
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