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When applied to drug discovery, modern computational systems can provide insight into the highly
complex systems underlying drug activity and predict compounds or targets of interest. Many tools have
been developed for computer aided drug discovery (CADD), focusing on small molecule ligands, protein
targets, or both. The aim of this thesis is the improvement of CADD tools for describing small molecule
properties and application of CADD to several stages of drug discovery regarding two targets for the
treatment of obesity and related diseases: the neuropeptide Y4 receptor (YsR) and the melanocortin-4

receptor (MC4R).

In the first chapter, the major categories of CADD are outlined, including descriptions for many of the
popular tools and examples where these tools have directly contributed to the discovery of new drugs.
Following the introduction, several improvements for encoding stereochemistry and signed property
distribution are introduced and tested in scenarios meant to simulate applications in virtual high-
throughput screening. Y;R and MCA4R are both class A G-protein coupled receptors (GPCRs) with
endogenous peptide ligands that play critical roles in the signaling of satiety and energy metabolism. So
far, no structures from either receptor family have been experimentally elucidated. CADD was combined
with high-throughput screening (HTS) to discover the first small molecule positive allosteric modulators
(PAMs) of Y4R. Secondly, CADD techniques were used to model the interaction of Y,R and pancreatic
polypeptide based on experimental results that elucidate specific binding contacts. Similar SB-CADD
approaches were used to model the interaction of MC4R with its high affinity peptide agonist a-MSH.
Due to its role in monogenic forms of obesity, these models were used to predict which residues directly

participate in binding and correlate mutated residues with their potential role in the binding site.
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SUMMARY

Summary

Drug discovery is a cornerstone of medical research that draws from many disciplines. In recent
decades, these disciplines have extended into fields such as computer science, drawing from modern
technology’s ability to simulate complex processes that demand billions of calculations per second.
Computer aided drug discovery (CADD) is a collective term for the many in silico methods being
developed and applied to the discovery and design of new therapeutics. The goal of CADD is not to
replace traditional in vitro and in vivo experimental techniques, but to supplement them. With CADD, it
becomes possible to model complex processes and narrow the seemingly endless list of possible
experiments to a manageable strategy designed for efficiency and cost effectiveness. Chapter 1
introduces the two categories of CADD: ligand-based CADD (LB-CADD) and structure-based CADD (SB-
CADD).

The overall focus of this dissertation is to improve three dimensional descriptors for use in quantitative
structure-activity relationship (QSAR) models and apply LB-CADD and SB-CADD techniques to the
modeling and drug discovery of two peptide binding class A G-protein coupled receptors (GPCRs) that

represent promising therapeutic targets for obesity and related diseases.

Capturing stereochemistry in 3D-QSAR

QSAR descriptors encode physicochemical properties used to train models for predicting biological
activity. The Radial distribution function (RDF) and 3D auto-correlation (3DA) are two commonly used
3D-QSAR descriptors that encode the geometry and distribution of properties within a molecule. The
major difference between 3DA and RDF is the smoothing function applied by RDF to compensate for
positional uncertainty caused by bond vibration and minor conformational changes. One of the major
disadvantages of the RDF and 3DA descriptors is their failure to differentiate certain stereoisomers. This
can hinder QSAR model performance when enantiomer pairs have different biological activities or

toxicities.

Chapter 2 presents the enantioselective molecular asymmetry descriptor (EMAS), a 3D-QSAR descriptor
that implicitly distinguishes between enantiomers. Traditionally, stereoisomers are distinguished with
the Cahn-Ingold-Prelog (CIP) ruleset. However, CIP is not sufficient to cover all cases of stereochemistry
and suffers from limited application in QSAR. EMAS avoids the limitations of CIP by encoding the overall

stereochemistry of a molecule and implicitly distinguishing between enantiomer pairs using geometric
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SUMMARY

properties rather than rulesets. EMAS takes advantage of the transformation-invariant and smoothing
properties of RDF by applying a similar iterative framework and calculates an asymmetry score for each
atom triplet. This asymmetry score captures the direction and extent of asymmetry by combining

triplets with the molecule’s geometric center to create tetrahedrons that vary in shape and volume.

The utility of EMAS was evaluated against a small dataset of 31 compounds commonly used to evaluate
novel stereochemistry descriptors. Artificial neural network (ANN) models trained with EMAS performed
as well as or better than half of the previously published stereochemistry descriptors. Although EMAS
did not outperform all published methods, the broad applicability of EMAS makes it an attractive
descriptor since it is the only stereochemistry descriptor that does not require molecule superimposition

or ruleset-based identification of stereocenters.

To evaluate the utility of EMAS with large datasets, ANN models were trained over a high throughput
screening (HTS) dataset for inhibitors or substrates of cytochrome P450 2D6. Models trained with
feature sets including EMAS were able to predict active compounds with success rate increase of

approximately 11.7% compared to models trained without EMAS descriptors.

Improving 3D descriptors to avoid information loss: 3DA_Sign and other modifications

Chapter 3 presents modifications to 3DA designed to avoid several sources of information loss. As
mentioned, the fundamental difference between RDF and 3DA is the application of Gaussian smoothing.
This smoothing has the potential to increase descriptor performance but in its traditional
implementation, RDF leads to underrepresentation of atom pair distances falling between distance
centers. A 3DA/RDF hybrid descriptor called 3DA_Smooth was designed to apply Gaussian smoothing to
3DA to avoid this problem with RDF. ANN model’s trained with 3DA, RDF, or 3DA_Smooth showed
comparable prediction success across nine HTS datasets with varying target protein classes. Because the
application of smoothing increases computational demand, these results suggest that the extra cost of

RDF and 3DA_Smooth does not increase model performance and 3DA may be used in place of RDF.

Secondly, chapter 3 presents a variation of 3DA called 3DA_Sign. 3DA_Sign is designed to avoid the loss
of information that can occur when weighting a 3DA with signed atom properties. Traditionally,
property weighting coefficients are calculated as the product of two atom properties. When atom
properties are signed, this can lead to information loss as the product of two negative properties is

equal to the product of two equivalent positive properties. 3DA_Sign splits all atom property pairs into
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one of three curves: negative-negative, positive-positive, and opposite signs. ANN models trained using
3DA_Sign for signed atom properties outperformed models trained with standard 3DA. This increase in
performance was seen for all HTS datasets with an average prediction success rate increase of

approximately 4.4%.

Lastly, a variation of 3DA that limits maximum atom pair distance encoding to six angstrom was tested.
The commonly applied 3DA cutoff of twelve angstroms captures the maximum width of most small
molecules. However, conformational flexibility leads to higher chances of variability in distant atom
pairs. Because 3DA encodes a single conformation of each molecule, atom pair distances that do not
reflect active conformations can hinder model performance. The reduced distance cutoff was designed
to focus on molecule fragments less susceptible to this problem. Models trained with a distance cutoff
of six angstroms outperformed models trained with a distance cutoff of twelve angstroms across all HTS

datasets with an average increase in prediction success of approximately 6.4%.

Applications of computer aided drug design to the discovery of obesity therapeutics

Chapters 4 through 6 present different applications of CADD to the discovery of novel obesity
therapeutics. Obesity is a medical problem that has doubled in worldwide prevalence over the past
several decades and is a major risk factor for diabetes, heart disease, cancer, and mortality. Currently,
the most effective treatment for obesity is bariatric surgery and less invasive pharmacological
approaches have seen moderate to little success. Two potential therapeutic targets are explored with

methods from LB-CADD and SB-CADD: the neuropeptide Y4 receptor and the melanocortin 4 receptor.

Discovery of the first positive allosteric modulators of the human Y, receptor

Hormonal changes following bariatric surgery have become promising pharmacological targets due to
their contribution to the long term effect of this surgery. The neuropeptide Y4 receptor (Y4R) is one such
target with its endogenous agonist pancreatic polypeptide (PP) acting as a satiety factor released in
response and in proportion to food intake. To date, no small molecule potentiators of Y,R have been
published nor has the three dimensional structure of any neuropeptide Y receptors been elucidated. At

this stage in the drug discovery process CADD may be applied in several beneficial ways.

Chapter 4 presents the first small molecule positive allosteric modulators (PAMs) of YsR. High

throughput screening was coupled with fingerprint-based cheminformatics to discover five Y,R PAMs
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sharing a common scaffold. Further verification and Y receptor selectivity analyses were performed with

an orthogonal IP accumulation assay.

The first screen of two thousand compounds yielded niclosamide as the hit of greatest interest.
Fingerprint-based similarity was used to enrich the second set of screened compounds for those that
were structurally similar to niclosamide. Compounds in the Vanderbilt Institute for Chemical Biology
library were compared with niclosamide using the Tanimoto coefficient measure. This measure
compares the average occupancy similarity of two compounds’ molecular fingerprints for shared

functional groups and overall geometric features.

The second screen of 33,288 compounds was enriched with 1,288 niclosamide-similar compounds,
yielding four verified hits structurally similar to niclosamide. These compounds showed varying
selectivity profiles across different neuropeptide Y receptor subtypes, allowing for development of
preliminary structure-activity relationships around this scaffold that suggest an electron-rich substituent
on the benzoyl ring important for Y4R potency and a nitro-benzoyl substitution that decreases potency

at YiR.

Structure-based computational modeling of Y4R and PP

Chapter 5 presents the application of structure-based computational methods to model the interaction
of Y4R and PP. This project involves a collaboration combining several rounds of complimentary in vitro
cellular assays and in silico modeling. The primary role of the presenting author was the application of
computational modeling. Mutagenesis and cell-based assays were performed by Xavier Pedragosa-Badia
and Diana Lindner of the Beck-Sickinger laboratory and have been published along with the
computational models in a paper titled “Pancreatic polypeptide is recognized by two hydrophobic
domains of the Y4 receptor binding pocket”. Chapter 5 focuses and expands on the computational

strategies applied and resulting models.

Comparative modeling with the Rosetta Molecular Modeling Suite was used to take advantage of the
shared topology of class A GPCRs for modeling YiR. Highly disordered regions with low sequence
conservation were extensively remodeled with cyclic coordinate descent (CCD) and refined with

kinematic loop closure (KIC).

The NMR structure ensemble of PP reveals a structured a-helix and highly flexible C-terminal region.

Therefore, the rigid helix portion of PP was docked to Y4R first using standard protein-protein docking.
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Because this protocol is unable to capture the extensive flexibility of the loop regions, the PP helix was
docked in the absence of extracellular loops to avoid interference from rigid loops. An experimentally

derived potential contact between Tyr?®* of Y,4R and Tyr?” of PP was used to guide helix docking.

Unlike the helix region, the five C-terminal residues of PP exhibit substantial conformational flexibility.
Therefore, Rosetta’s de novo folding was used to comprehensively model these five residues in the
presence of the Y4R helices. In vitro results provided three contacts between PP and Y4R that guided
modeling. Finally, CCD and KIC were used to reconstruct the extracellular loops of Y4R in the presence of
PP. This approach is designed to capture changes in loop conformations that may occur when PP binds

to YsR.

An ensemble of nine energetically comparable high-resolution models of PP and Y4R was generated that

6.59

captured experimentally determined interactions including a salt bridge between Asp®® and Arg®, a

735 and Arg33. Residue

hydrogen bond between Asn’3? and Arg33, and cation-pi interactions between Phe
contacts were examined across all conformations to propose potential interactions beyond those
previously explored. One such putative contact between Ser>? of Y4R and Thr3? of PP presents a target

for future mutagenesis studies.

Modeling the interaction of the melanocortin 4 receptor and a-MSH

The melanocortin 4 receptor (MC4R) is a promising target for the treatment of obesity due to its
contributions to monogenic forms of obesity. Approximately 150 naturally occurring MC4R gene
mutations have been identified among obese patients and MC4R deficiency is characterized by
hyperphagia, increased adiposity, and severe hyperinsulinemia. Anorexigenic signaling from o-MSH
activation of MC4R appears to be critical for the regulation of feeding and metabolism. Binding studies
with a-MSH have revealed several critical interactions between MC4R and a-MSH. However, the
flexibility of a-MSH, a 13 amino acid linear peptide only restrained by a single reverse B-turn around the

central residues, makes it difficult to elucidate a precise binding pose.

Chapter 6 presents a comparative modeling and docking approach that is tailored to the flexibility of a-
MSH. A comparative modeling application recently added to Rosetta called RosettaCM was used for its
hybrid multi-template approach. After modeling the MC4R with RosettaCM, experimental evidence
guided a two—phase docking approach where the central region of the peptide was docked followed by

the remodeling of flexible terminals in parallel with the receptor’s extracellular loops. In a-MSH, a core
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tetrapeptide spanning residues 6-9 was shown to be critical and sufficient for activation of MC4R.
Mutant binding assays consistently reveal two binding sites: an acidic pocket facing Arg® of a-MSH
including MC4R residues Glu?®, Asp32?°, and Asp>?° and a hydrophobic interaction between Phe®>! of

MC4R and Phe’ of a-MSH.

Rosetta FlexPepDock was used to dock this tetrapeptide. Extracellular loop regions of MC4R and flexible
terminals of a-MSH were modeled and refined simultaneously using the same combination of CCD and
KIC as in chapter 5. An additional restraint within a-MSH was used during the loop building phase to

enforce the active conformation B-turn.

Models reveal convergence to a single binding pose of the central tetrapeptide region of a-MSH and
significant conformational flexibility in the terminal regions. Examination of an ensemble of
energetically-comparable conformations shows a binding interface on MC4R that encompasses three
receptor regions: residues from transmembrane helices two and three that contact Argd,
transmembrane helices six and seven and extracellular loop three that contact Glu® and His®, and
transmembrane helices four and five and extracellular loop two that contact Trp®. Phe’ of a-MSH,
considered to contain the most important pharmacophore for activation of MC4R, points downwards
into the transmembrane pore in all models, engaging residues from transmembrane helices three, six,

and seven.

This ensemble approach identified twelve binding interactions in addition to the four used to guide
docking. These interactions were compared with previously published binding assay results, eight of
which are supported with published experimental results. Additionally, these models were used to

propose a previously unidentified contact between Met’-3? of MC4R and Ser* or Glu® of a-MSH.

In summary, this thesis presents improvements and applications for both categories of CADD with two
therapeutic targets for obesity: YsR and MC4R. Chapter 7 serves as a closing chapter that presents
future projects to integrate results from different chapters and methods in this dissertation. An
appendix following chapter 7 describes preliminary results that integrate chapters 4 and 5 to dock
niclosamide to YiR-PP models. This will help to lay important groundwork for future studies aimed at

elucidating an allosteric binding site on Y4R and improving future drug discovery endeavors.
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Zusammenfassung

Arzneimittelforschung ist ein essentieller Bestandteil der Medizinforschung und kombiniert
verschiedene Disziplinen. In den vergangenen Jahrzehnten wurde sie um Bereiche wie Informatik
erweitert, um von deren modernen Methoden zur Simulierung komplexer Prozesse, die Milliarden von
Berechnungen pro Sekunde erfordern, zu profitieren. Computer Aided Drug Discovery (CADD) ist ein
Sammelbegriff flr verschiedene in-silico-Methoden, welche fiir die Entdeckung und Entwicklung neuer
Therapeutika angewendet werden. Das Ziel von CADD ist nicht herkémmliche in vitro und in vivo
Techniken zu ersetzen, sondern deren Ergdanzung. CADD ermdoglicht die Eingrenzung einer scheinbar
endlosen auf eine Uberschaubare Zahl an moglichen Experimenten, und eine auf Effizienz und
Wirtschaftlichkeit ausgelegte Strategie. Kapitel 1 liefert eine Einfiihrung in die zwei CADD-Kategorien:
Ligand-basierte CADD (LB-CADD) und struktur-basierte CADD (SB-CADD).

Der Fokus der vorliegenden Arbeit ist die Verbesserung dreidimensionaler Deskriptoren fiir den Einsatz
in Modellen flr quantitative Struktur-Wirkungs-Beziehungen (QSAR), sowie die Anwendung von LB-
CADD und SB-CADD zur Modellierung und Wirkstoffforschung von zwei peptidbindenden G-Protein-
gekoppelten Rezeptoren (GPCR), welche vielversprechende therapeutische Ziele fiir Adipositas und

verwandte Erkrankungen sind.
Beschreibung von Stereochemie in 3D-QSAR

QSAR-Deskriptoren kodieren physikochemische Eigenschaften, welche verwendet werden um Modelle
fir die Vorhersage biologischer Aktivitdt zu trainieren. Die radiale Verteilungsfunktion (RDF) und 3D-
Autokorrelation (3DA) sind zwei hadufig verwendete 3D-QSAR-Deskriptoren, welche die Geometrie und
die Verteilung von Eigenschaften innerhalb eines Molekiils kodieren. Der Hauptunterschied zwischen
3DA und RDF ist die durch RDF angewandte Glattungsfunktion um die durch Bindungsschwingungen und
kleinere Konformationsanderungen verursachte Positionsunsicherheit zu kompensieren. Einer der
Hauptnachteile der RDF- und 3DA-Deskriptoren ist ihre Unfdhigkeit, bestimmte Stereoisomere zu
unterscheiden. Dies kann die Leistung von QSAR-Modellen beeintrachtigen, wenn Enantiomerenpaare

unterschiedliche biologische Aktivitdten oder Toxizitdten aufweisen.

Kapitel 2 stellt den enantioselektiven, molekularen Asymmetrie Deskriptor (EMAS) vor, ein 3D-QSAR-
Deskriptor, welcher implizit zwischen Enantiomeren unterscheidet. Traditionell werden Stereoisomere

durch den Cahn-Ingold-Prelog (CIP) Regelsatz unterschieden. Jedoch deckt CIP nicht alle Fille der
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Stereochemie ab und leidet unter seiner begrenzten Anwendung in QSAR. EMAS umgeht die
Einschrankungen des CIP-Regelsatzes durch Kodierung der allgemeinen Konfiguration eines Molekiils
und implizite Unterscheidung zwischen Enantiomerenpaaren anhand geometrischer Eigenschaften und
nicht anhand von Regelsdtzen. EMAS nutzt die Transformationsinvarianz und Glattungseigenschaften
der RDF durch Verwendung eines iterativen Rahmenwerks und berechnet die Asymmetrie jedes Atom-
Tripletts. Dieser Asymmetrie-Score erfasst die Richtung und das Ausmall der Asymmetrie durch
Kombination der Tripletts mit der geometrischen Mitte des Molekiils zu Tetraedern, welche in Form und

Volumen variieren.

Die Nitzlichkeit des EMAS wurde auf Basis eines kleinen Datensatzes bestehend aus 31 Verbindungen
evaluiert, welcher Ublicherweise verwendet wird um neue Stereochemie-Deskriptoren zu evaluieren.
Kinstliche neuronale Netz (ANN) Modelle, welche EMAS verwenden, erzielten Ergebnisse, die
vergleichbar zu zuvor publizierten Deskriptoren sind. Obwohl EMAS zuvor veroffentlichte Methoden
nicht Gbertrifft, macht ihn seine breite Anwendbarkeit attraktiv, da EMAS fiir die stereochemische
Beschreibung eines Molekiils weder eine strukturelle Uberdeckung noch eine Regelsatz-basierte
Identifizierung von Sterozentren erfordert. Um die Nitzlichkeit des EMAS fiir groen Datensatze zu
bewerten, wurden ANN-Modelle auf einem Hochdurchsatz-Screening (HTS) Datensatz fiir Inhibitoren
oder Substrate des Cytochrom P450 2D6 trainiert. Modelle, welche mit Feature-Sets einschlieRlich EMAS
trainiert wurden, konnten Wirkstoffe mit einer um ca. 11,7% hoéheren Erfolgsquote gegeniiber Modellen

ohne EMAS-Deskriptoren voraussagen.

Verbesserung von 3D-Deskriptoren um Informationsverlust zu vermeiden: 3DA_Sign und andere

Modifikationen

In Kapitel 3 werden Anderungen an 3DAs vorgestellt, um verschiedene Ursachen fiir Informationsverlust
zu vermeiden. Wie erwahnt ist der grundlegende Unterschied zwischen RDF und 3DA die Anwendung
der GauRglattung. Diese Glattung hat das Potenzial die Leistung der Deskriptoren zu verbessern, fiihrt in
ihrer traditionellen Implementierung jedoch zur Unterreprasentierung von Atompaaren, deren Abstand
zwischen den Zentren der Abstanden liegt. 3DA_Smooth, ein 3DA/RDF-Hybrid-Deskriptor, wurde
entwickelt, um eine Gauliglattung auf 3DAs anzuwenden um dieses Problem mit RDFs zu umgehen.
ANN-Modelle, welche mit 3DA, RDF oder 3DA_Smooth trainiert wurden, weisen in neun HTS-
Datensatzen mit unterschiedlichen Zielprotein-Klassen vergleichbare Vorhersageergebnisse auf. Da die

Anwendung der Glattung erhohten Rechenbedarf mit sich zieht, legen diese Ergebnisse nahe, dass die
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zusatzlichen Rechenkosten fiir RDF und 3DA_Smooth die Modellleistung nicht erh6hen und 3DA anstelle

von RDF verwendet werden kann.

Als zweites stellt Kapitel 3 eine Variante der 3DA, genannt 3DA_Sign, vor. 3DA_Sign wurde entwickelt,
um Informationsverlust zu vermeiden, welcher bei der Gewichtung eines 3DA mit vorzeichenbehafteten
Atomeigenschaften auftreten kann. Traditionell werden Gewichtungskoeffizienten fir Eigenschaften als
das Produkt von zwei Atomeigenschaften berechnet. Wenn Atomeigenschaften vorzeichenbehaftet
sind, kann dies zu Datenverlust fiihren, da das Produkt von zwei negativen Eigenschaften gleich dem
Produkt von zwei gleichartigen, positiven Eigenschaften ist. 3DA_Sign unterteilt alle
Atomeigenschaftspaare in eine von drei Kurven: negativ-negativ, positiv-positiv und entgegengesetzte
Vorzeichen. ANN-Modelle, welche mit 3DA_Sign fiir vorzeichenbehaftete Atomeigenschaften trainiert
wurden, Ubertrafen Modelle, welche mit Standard-3DA trainiert wurden. Die Leistungssteigerung

konnte flr alle HTS-Datensatze beobachtet werden und betrug rund 4,4%.

AbschlieBend wurde eine Variante des 3DA, welche den kodierten Maximal-Abstand zwischen
Atompaaren auf sechs Angstrom begrenzt, getestet. Die am haufigsten angewendeten 3DA Cutoffs von
zwoOlf Angstrom decken zwar die maximale Breite der meisten kleinen Molekiilen ab. Allerdings fihrt
Konformationsflexibilitdt zu hoheren Wahrscheinlichkeiten fiir Variabilitat in entfernten Atompaaren. Da
3DA einzelne Konformationen eines Molekils kodiert, kbnnen Entfernungen zwischen Atompaaren,
welche die aktiven Konformationen nicht widerspiegeln, die Modellleistung beeintrachtigen. Der
verringerte Abstands-Cutoff wurde flir Molekiilfragmente entwickelt, welche weniger anfallig fir dieses
Problem sind. Modelle die mit einem Abstands-Cutoff von sechs Angstrom trainiert wurden, Gbertrafen
Modelle mit einem Abstand von zwolf Angstrém in allen HTS-Datensatzen mit einer durchschnittlichen

Verbesserung des Vorhersageerfolges von rund 6,4%.

Anwendungen des computergestiitzten Wirkstoffdesigns zur Entdeckung von Therapeutika gegen

Fettleibigkeit.

Kapitel 4 bis 6 zeigen verschiedene Anwendungen des CADD zur Entdeckung neuartiger Therapeutika
gegen Fettleibigkeit. Ubergewicht ist ein medizinisches Problem, das sich in weltweiter Privalenz in den
letzten Jahrzehnten verdoppelt hat und ist ein wichtiger Risikofaktor firr Diabetes, Herzerkrankungen,
Krebs und Mortalitdt. Derzeit sind die effektivsten Behandlungen fiir Fettleibigkeit Chirurgie. Weniger
invasive, pharmakologische Ansatze, haben bisher nur zu schwachem bis maRigem Erfolg gefiihrt. Der

Neuropeptid-Ys-Rezeptor und der Melanocortin 4-Rezeptor sind in diesem Zusammenhang zwei

XXii



ZUSAMMENFASSUNG

potenzielle therapeutische Ziele. Beide Rezeptoren wurden in dieser Arbeitmit Methoden aus der LB-

CADD und SB-CADD untersuchen.
Entdeckung der ersten positiven allosterischen Modulatoren des menschlichen Y,-Rezeptors

Hormonelle Veranderungen folgend im Anschlufd an eineder Adipositaschirurgie haben durch ihren
Beitrag zum langfristigen Effekt dieser Operation Hinweise auf sich in vielversprechende
pharmakologische Targets entwickeltgeliefert durch ihren Beitrag zum langfristigen Effekt dieser
Operation. Der Neuropeptid-Ys-Rezeptor (Y4R) ist ein solches Ziel mit seinem endogenen Agonisten
Pankreatischess-Polypeptid (PP), welcher welches als Sattigungsfaktor agiert und im Verhéltnis zur
Nahrungsaufnahme freigesetzt wird. Bisher wurden keine kleinen Molekiilniedermolekularen
Potentiatoren von des Y4R veroffentlicht. Auch die, noch wurde die dreidimensionale Struktur konnte
bisher von keinem dervon jedem Neuropeptid Y-Rezeptoren bestimmt werden. Zu diesem Zeitpunkt in

der Wirkstoffentwicklung kann CADD kann auf mehrere vorteilhafte Weisen eingesetzt werden.

Kapitel 4 prasentiert die ersten niedermolekularen positiv allosterischen Modulatoren (PAMs) von Y4R.
In einem Hochdurchsatz-Screening wurden fiinf Y4,R PAMs mit gemeinsamer Grundstruktur identifiziert.
Studien zur Affinitdt, Potenz und Rezeptorelektivitit wurden mit einem orthogonalen IP

Akkumulationsassay durchgefiihrt.

Der erste Screen von 2000 Verbindungen ergab Niclosamid als interessantesten Treffer. Eine Suche nach
Niclosamid-ahnlichen Verbindungen in der gesamten Substanzbibliothek des Vanderbilt-Instituts fir
chemische Biologiesollte einen zweiten Screen mit Verbindungen anreichern, welche eine dem
Niclosamid 3hnliche Grundstruktur aufweisen. Der Grad der Ahnlichkeit wurde hierbei mit dem
Tanimoto-Score bewertet. Diese Messung vergleicht die durchschnittliche Ahnlichkeit der beiden
Verbindungen durch den molekularen Fingerabdruck fiir gemeinsame funktionellen Gruppen und

geometrische Merkmale.

Der zweite Screen von 33.288 Verbindungen wurde so mit 1.288 Niclosamid-dhnlichen Verbindungen
angereichert, was in vier Uberpriiften Treffern resultierte, welche strukturelle Ahnlichkeit zu Niclosamid
aufwiesen. Diese Verbindungen zeigten variierende Selektivitatsprofile an den verschiedenen
Neuropeptid-Y-Rezeptor-Subtypen, was die Entwicklung von vorldufigen Struktur-Wirkungsbeziehungen

um dieses Gerlst ermoglichte, welches die Wichtigkeit eines elektronenreichen Substituenten am
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Benzoylrings fuer eine hohe YsR Potenz vermuten laesst, wohingegen eine Nitrobenzoylsubstitution

potenzverringernd am YR zu wirken scheint.

Kapitel 5 stellt die Anwendung struktur-basierter Rechenmethoden zur Modellierung von Y4R und PP
vor. Dieses Projekt besteht aus einer Kombination von multiplen Iterationen aus zelluldren in vitro
Assays und in silico Modellierung. Die vornehmliche Rolle des Autors war die computergestitzte
Modellierung. Mutagenese und zellbasierte Assays wurden von Xavier Pedragosa-Badia und Diana
Lindner im Labor von Frau Prof. Beck-Sickinger durchgefiihrt und gemeinsam mit den Rechenmethoden
als “Pancreatic polypeptide is recognized by two hydrophobic domains of the Y4 receptor binding
pocket” publiziert. Somit beschaftigt sich Kapitel 5 vornehmlich mit angewandten Rechenmethoden und

deren Resultaten.

Um davon zu profitieren, dass Klasse A GPCRs dieselbe Topologie haben, wurde Y4R durch Comparative
Modelling mit der ,Rosetta Molecular Modeling Suite” modelliert. Stark unstruktierte Regionen mit
geringer Sequenzkonservierung wurden ausfiihrlich durch cyclic coordinate descent (CCD) remodelliert

und durch kinematic loop closure (KIC) optimiert.

Das NMR-Struktur-Ensemble von PP weist eine strukturierte a-Helix und eine hochflexible C-terminale
Region auf. Daher wurde der starre helikale Abschnitt von PP zuerst unter Verwendung von Standard-
Protein-Protein-Docking an YsR angedockt. Da dieses Protokoll nicht die umfassende Flexibilitat der
Loop-Regionen erfasst, wurde die PP-Helix in der Abwesenheit von extrazellularen Loops angedockt, um
Interferenzen durch starre Loops zu vermeiden. Ein experimentell abgeleiteter potentieller Kontakt

zwischen Tyr%%4 von Y,4R und Tyr?” des PP wurde verwendet, um das Helix-Docking zu lenken.

Im Gegensatz zu der Helix-Region, weisen die finf C-terminalen Reste von PP erhebliche
Konformationsflexibilitat auf. Daher wurde die Rosetta de novo Faltung verwendet, um diese Reste
umfassend in Gegenwart der YR Helices zu modellieren. In-vitro-Ergebnisse lieferten drei Kontakte
zwischen PP und Y4R, welche die Modellierung lenkten. Abschlieend wurden CCD und KIC verwendet,
um die extrazelluldaren Loops des YsR in Gegenwart von PP zu rekonstruieren. Dieser Ansatz wurde
entwickelt, um Anderungen in den Loop-Konformationen, die auftreten kénnen, wenn PP an Y.R bindet,

zu erfassen.
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Ein Ensemble von neun energetisch vergleichbaren, hochauflésenden Modellen von PP und Y4R, welches

6.59

experimentell bestimmte Interaktionen mit einer Salzbriicke zwischen Asp und Arg®*, einer

7.32 7. 35

Wasserstoffbriicke zwischen Asn’3? und Arg®® und Kation-Pi Wechselwirkungen zwischen Phe und
Arg® erfasst, wurde erzeugt. Weitere Kontakte wurden in allen Konformationen untersucht, um
mogliche, zuvor nicht erkannte, Wechselwirkungen nahezulegen. Ein solcher vermeintlicher Kontakt

zwischen Ser>28 von Y,4R und Thr32 von PP stellt ein Ziel fiir kiinftige Mutagenesestudien dar.
Modellieren der Interaktion zwischen Melanocortin-4-Rezeptor und a-MSH

Der Melanocortin-4-Rezeptor (MC4R) ist ein vielversprechendes Ziel fur die Behandlung von
Fettleibigkeit aufgrund seiner Beitrdage zu monogenen Formen von Adipositas. Rund 150 natdirlich
vorkommende MC4R-Gen-Mutationen wurden bei adipésen Patienten identifiziert und MC4R-Mangel
wird durch Hyperphagie, erhohte Adipositas und schwere Hyperinsulindmie gekennzeichnet.
Anorexigenes Signaling von a-MSH durch Aktivierung des MC4R scheint kritisch fiir die Regulierung der
Nahrungsaufnahme und des Metabolismus sein. Bindungsstudien mit a-MSH haben mehrere kritische
Wechselwirkungen zwischen MC4R und a-MSH enthillt. Jedoch macht es die Flexibilitdit von a-MSH,
einem 13 Aminosaure langem, linearen Peptid, welches nur durch einen einzigen Riickwarts B-turn um

die zentralen Reste eingeschrankt wird, schwierig einen genauen Bindungsmodus zu bestimmen.

Kapitel 6 enthalt einen Comparative Modelling- und Docking-Ansatz, der auf die Flexibilitdt von a-MSH
zugeschnitten ist. Eine Modellierungsanwendung, welche kiirzlich zu Rosetta hinzugefiigt und
RosettaCM genannt wurde, wurde fir einen Hybrid-Multi-Template-Ansatz verwendet. RosettaCM
mischt Templatefragmente um ein Modell zu erstellen, den energetisch glinstige Abschnitte Uber
verschiedene Templates ausnutzt. Da die Anwesenheit oder Abwesenheit von Resten wie Prolin und
Glycine die Topologie und das Verhalten der einzelnen Helices signifikant verdndern kann, ist dieser

Hybridisierungsansatz besonders geeignet fiir GPCR Vergleichsmodellierung.

Nach der Modellierung des MC4R mit RosettaCM, lenkten experimentelle Daten einen zweiphasigen
Docking Ansatz, bei dem die zentrale Region des Peptids gedockt wurde, gefolgt von einer
Remodellierung der flexiblen Terminalregion parallel zu den extrazelluldren Loops. In a-MSH, einem
Kern-Tetrapeptid, wurde gezeigt, dass die Reste 6-9 kritisch und ausreichend fiir die Aktivierung des
MCA4R ist. Bindungsassays mit Mutanten offenbarten zwei Bindungsstellen: eine saure Tasche gerichtet
auf Arg® von a-MSH, einschlieRlich den MC4R-Resten Glu?®°, Asp3% und Asp>?° sowie eine hydrophobe
Wechselwirkung zwischen Phe®°! des MC4R und Phe’ von a-MSH.
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Rosetta FlexPepDock wurde verwendet, um dieses Tetrapeptid andocken. Extrazellulare Loop-Regionen
des MC4R und flexible Terminalregionen der a-MSH wurden modelliert und gleichzeitig verfeinert unter
Verwendung der gleichen Kombination aus CCD und KIC wie in Kapitel 5. Eine zusatzliche Beschrankung
in a-MSH wahrend der Loopkonstruktion wurde verwendet, um die aktive Konformation des B-turns zu

erzwingen.

Die Modelle zeigen eine Konvergenz auf eine einzige Bindungs-Pose der zentralen Tetrapeptid-Region
des a-MSH und signifikante konformative Flexibilitdt in den Terminalbereichen. Die Untersuchung eines
Ensembles von energetisch vergleichbaren Konformationen zeigt ein Bindungsepitop auf, das drei MC4R
Rezeptorbereiche umfasst: Reste aus Transmembranhelices zwei und drei, die mit Arg® interagieren,
Reste aus Transmembranhelices sechs und sieben und drei extrazelluldren Loops, die mit Glu®> und His®
interagieren, und Reste aus Transmembranhelices vier und fiinf und sowie extrazelluldre Loops, die mit
Trp® interagieren. Phe’ von a-MSH, von welchem vermutet wird, dass es die wichtigste Pharmakophor-
Aktivierung von MC4R enthalt, ist in allen Modellen nach unten in die Transmembranpore gerichtet und

greift Reste aus den Transmembranhelices drei, sechs und sieben an.

Zusatzlich zu den vier Bindungsinteraktionen die fiir das Docking verwendet wurden, identifizierte der
Ensembleansatz zwolf Bindungsinteraktionen. Diese Interaktionen wurden mit zuvor veroffentlichten
Bindungsassayergebnissen verglichen: acht Interaktionen werden durch publizierte experimentellen
Ergebnisse gestiitzt. Zusatzlich wurden diese Modelle verwendet, um eine bisher nicht identifizierte

Interaktion zwischen Met’32 des MC4R und Ser* oder Glu® in a-MSH vorzuschlagen.

Zusammenfassend zeigt diese Arbeit Verbesserungen und Anwendungen fiir beide CADD-Kategorien auf
mit zwei therapeutischen Zielen fiir Ubergewicht: YsR und MC4R. Kapitel 7 dient als Schlusskapitel, das
zukilinftige Projekte fir die Integration der verschiedenen Kapitel und Methoden in dieser Arbeit
vorstellt. Ein Anhang, welcher auf Kapitel 7 folgt, beschreibt die vorlaufigen Ergebnisse fiir die
Kombination von Ergebnissen aus Kapitel 4 und 5, um Niclosamid an Y4;R-PP-Modelle andocken. Dies
wird helfen, wichtige Grundlagen fiir zukiinftige Studien, welche auf die Aufklarung einer allosterischen

Bindungsstelle in Y4R und die Verbesserung der kiinftigen Wirkstoffforschung gerichtet sind, zu legen.
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Background and Hypothesis

The aim of this thesis is the application of computer aided drug discovery (CADD) to the study of two
potential targets for the treatment of obesity and related disease: the neuropeptide Y4 receptor (Y4R)
and the melanocortin 4 receptor (MC4R). Because CADD applications are continuously evolving, a sub-
aim of this thesis is the improvement of specific CADD applications with novel descriptors for reducing

information loss.

CADD may be applied to many different stages of the drug discovery pipeline, aiding in the analysis of
large datasets, prioritizing experiments, and proposing studies aimed at elucidating specific interactions
or activities. One commonly used ligand-based CADD technique is called quantitative structure activity
relationship (QSAR). In this technique, quantitative descriptors are generated for known active and
inactive compounds designed to capture the physicochemical properties that give rise to their activity at
a specific protein target. These descriptors are used to train models capable of predicting activity for

previously untested compounds.

Three dimensional descriptors such as 3D autocorrelation (3DA) and radial distribution function (RDF)
encode the spatial distribution of physicochemical properties within a molecule by iterating over all
interatomic distances. 3DA and RDF are attractive descriptors because they are transformation
independent and do not rely on molecule superimposition to compare 3D structure. However, their
current implementation contains several potential sources of information loss. Specifically, enantiomers
are indistinguishable with 3DA and RDF because the interatomic distances of enantiomer pairs are
identical. This is problematic in drug discovery projects where opposite enantiomers display different
activities. Another source of information loss comes with the inclusion of signed atom properties. To
describe the spatial distribution of properties, the interatomic distances of 3DA and RDF are often
weighted with the product of the two atom properties. When these properties are signed such as with
partial charge, their products become incapable of distinguishing between negative and positive pairs.

Novel descriptors based on the framework of 3DA and RDF can specifically address these shortcomings.

The Y4R is a class A G-protein coupled receptor (GPCR) with strong anorexigenic potential. Its
endogenous agonist pancreatic polypeptide (PP) is released from pancreatic islets in response and
proportion to food ingestion to inhibit gastrointestinal peristalsis and relay anorexigenic signals. Specific
CADD techniques can be applied to different aspects of Y4R signaling to model the interaction of Y4R and

PP and accelerate discovery of small molecule modulators of Y4R.
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Despite its potential as a pharmacological target for the treatment of obesity, no small molecule
agonists or potentiators of Y4,R have been described. High throughput screening (HTS) can be used to
rapidly assess thousands of compounds for Y4R activity. To complement HTS, CADD may be applied to
enrich hit rates or prioritize compounds for screening based on similarity to known active compounds.
Binary molecular fingerprints encode the presence or absence of specific geometric properties and
functional groups as predefined bit strings. Once one or more active compounds have been identified,
large compound libraries may be queried for structurally similar compounds and prioritized for

screening.

Inherent challenges in the experimental elucidation of membrane protein structures have so far
prevented the elucidation of many GPCR structures, including YsR. Therefore, structure-based CADD
techniques such as comparative modeling and protein docking can help characterize the structure of Y4R
and interactions with PP. Comparative modeling uses known protein structures to guide the modeling
of similar protein structures. Different GPCR types share common topology despite sometimes low
sequence identity and are well suited for a multi-template comparative modeling approach that
incorporates multiple GPCR structures into the prediction of a target structure. With a modeled
structure of Y4R, it becomes possible to model the interactions of Y4R and PP based on experimentally

determined residue contacts.

The MCA4R is another class A GPCR that relays anorexigenic signals in response to its endogenous peptide
agonist a-MSH. As with Y4R, no three dimensional structure of MC4R is available. However, several
contacts between MC4R and a-MSH have been experimentally elucidated. Therefore, a similar
comparative modeling and protein docking approach can be used to model the structure of MC4R and

interactions with o-MSH.

XXviii



Chapter 1

Computational Methods in Drug Discovery

published in Pharmacological Reviews (2013) 66, 334-395

Gregory Sliwoski, Sandeep Kothiwale, Jens Meiler, Edward Will Lowe: Computational Methods in Drug

Discovery

29



CHAPTER 1

1.1 Abstract

Computer-aided drug discovery/design methods have played a major role in the development of
therapeutically important small molecules for over three decades. These methods are broadly classified
as either structure-based or ligand-based methods. Structure-based methods are in principle analogous
to high-throughput screening in that both target and ligand structure information is imperative.
Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The
article discusses theory behind the most important methods and recent successful applications. Ligand-
based methods wuse only ligand information for predicting activity depending on its
similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods
such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity
relationships. In addition, important tools such as target/ligand databases, homology modeling, ligand
fingerprint methods, etc., necessary for successful implementation of various computer-aided drug
discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods
for toxicity prediction and optimization for favorable physiologic properties are discussed with

successful examples from literature.
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1.2 Introduction

On October 5, 1981, Fortune magazine published a cover article entitled the “Next Industrial
Revolution: Designing Drugs by Computer at Merck” [1]. Some have credited this as the beginning of
intense interest in the potential for Computer Aided Drug Design (CADD). While progress was being
made in CADD, high-throughput screening (HTS) was taking priority as a means for finding novel
therapeutics. This brute force approach relies on automation to screen high numbers of molecules in
search of those which elicit the desired biological response. HTS has the advantage of requiring minimal
compound design or prior knowledge and newer technologies make screening these large libraries
efficient and relatively fast. However, while traditional HTS can result in multiple hit compounds, some
of which are capable of being modified into a lead and then a novel therapeutic, the hit rate for HTS is
often extremely low. This low hit rate limits the application of HTS to research programs capable of
screening large compound libraries. In the past decade, CADD has reemerged as a way to significantly
decrease the number of compounds necessary to screen while retaining the same level of lead
compound discovery. Many compounds predicted to be inactive can be skipped and those predicted to
be active can be prioritized. This reduces the cost and workload of a full HTS screen without
compromising lead discovery. Additionally, traditional HTS assays often require extensive development
and validation before they can be employed. Since CADD requires significantly less preparation time,
experimenters can perform CADD studies while the traditional HTS assay is being prepared. The fact that
both of these tools can be used in parallel provides an additional benefit for CADD in a drug discovery

project.

For example, researchers at Pharmacia (now part of Pfizer) used CADD tools to screen for
inhibitors of tyrosine phosphatase-1B, an enzyme implicated in diabetes. Their virtual screen yielded 365
compounds, 127 of which showed effective inhibition, a hit rate of nearly 35%. Simultaneously, this
group performed a traditional HTS against the same target. Of the 400,000 compounds tested, 81
showed inhibition, producing a hit rate of only 0.021%. This comparative case effectively displays the
power of CADD [2]. CADD has already been used in the discovery of compounds which have passed
clinical trials and become novel therapeutics in the treatment of a variety of diseases. Some of the
earliest examples of approved drugs that owe their discovery in large part to the tools of CADD include
the carbonic anhydrase inhibitor dorzolamide, approved in 1995 [3], the angiotensin-converting enzyme

(ACE) inhibitor captopril, approved in 1981 as an antihypertensive drug [4], three therapeutics for the
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treatment of HIV: saquinavir (approved in 1995), ritonavir, and indinavir (both approved in 1996) [1] and

tirofiban, a fibrinogen antagonist approved in 1998 [5].

One of the most striking examples of the possibilities presented from CADD occurred in 2003
with the search for novel Transforming Growth Factor-B1 (TGF-B1) receptor kinase inhibitors. One group
at Eli Lilly used a traditional HTS to identify a lead compound that was subsequently improved through
structure activity relationship (SAR) studies using in vitro assays [6], whereas a group at Biogen Idec used
a CADD approach involving virtual HTS based on the structural interactions between a weak inhibitor
and TGF-B1 receptor kinase [7]. Through virtual screening, the group at Biogen Idec identified 87 hits,
the best being identical in structure to the lead compound discovered through the traditional HTS
approach at Eli Lilly [8]. In this example CADD, a method involving reduced cost and workload, was

capable of producing the same lead as a full-scale HTS.
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Figure 1.1: Identical lead compounds are discovered in a traditional high-throughput screen and
structure-based virtual high-throughput screen. I) X-ray crystal structures of 1 and 18 bound to the ATP-
binding site of the TRR-I kinase domain discovered using traditional high-throughput screening.
Compound 1, shown as the thinner wire-frame is the original hit from the HTS and is identical to that
which was discovered using virtual screening. Compound 18 is a higher affinity compound after lead
optimization. 1) X-ray crystal structure of compound HTS466284 bound to the TBRI active site. This
compound is identical to compound 1 in | but was discovered using structure-based virtual high-

throughput screening. Source: [6, 7]
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1.2.1 Position of CADD in the drug discovery pipeline

CADD is capable of increasing the hit rate of novel drug compounds because it uses a much
more targeted search than traditional HTS and combinatorial chemistry. It not only aims to explain the
molecular basis of therapeutic activity, but also to predict possible derivatives that would improve
activity. In a drug discovery campaign, CADD is usually used for three major purposes: a) filter large
compound libraries into smaller sets of predicted active compounds that can be tested experimentally,
b) guide the optimization of lead compounds, whether to increase its affinity or optimize drug
metabolism and pharmacokinetics (DMPK) properties including absorption, distribution, metabolism,
excretion, and the potential for toxicity (ADMET), c) design novel compounds, either by “growing”
starting molecules one functional group at a time or by piecing together fragments into novel

chemotypes. Figure 1.2 illustrates the position of CADD in drug discovery pipeline.

{ Target identification ]

[ Lead optimization ]

l

[ Drug candidate ]

Figure 1.2 CADD in drug discovery/design pipeline. A therapeutic target is identified against which a drug has
to be developed. Depending on the availability of structure information, a structure-based approach or a
ligand-based approach is used. A successful CADD campaign will allow identification of multiple lead
compounds. Lead identification is often followed by several cycles of lead optimization and subsequent lead

identification using CADD. Lead compounds are tested in vivo to identify drug candidates.
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CADD can be classified into two general categories: structure-based and ligand-based. Structure-
based CADD relies on the knowledge of the target protein structure to calculate interaction energies for
all compounds tested, while ligand-based CADD exploits the knowledge of known active and inactive
molecules through chemical similarity searches or construction of predictive Quantitative Structure-
Activity Relation (QSAR) models [9]. Structure-based CADD is generally preferred when high resolution
structural data of the target protein is available, i.e. for soluble proteins that can readily be crystallized.
Ligand-based CADD is generally preferred when no or little structural information is available, often for
membrane protein targets. The central goal of structure-based CADD is to design compounds that bind
tightly to the target, i.e. with large reduction in free energy, improved DMPK/ADMET properties, and are
target specific, i.e. have reduced off-target effects [10]. A successful application of these methods will
result in a compound that has been validated in vitro and in vivo, and its binding location has been

confirmed, ideally through a co-crystal structure.

One of the most common uses in CADD is the screening of virtual compound libraries, also known as
virtual high-throughput screening (vHTS). This allows experimentalists to focus resources on testing
compounds likely to have any activity of interest. In this way, a researcher can identify an equal number
of hits while screening significantly less compounds, because compounds predicted to be inactive may
be skipped. Avoiding a large population of inactive compounds saves money and time, because the size
of the experimental HTS is significantly reduced without sacrificing a large degree of hits. Ripphausen et
al note that the first mention of vHTS was in 1997 [11] and chart an increasing rate of publication for the
application of vHTS between 1997 and 2010. They also found that the largest fraction of hits has been

obtained for G-protein coupled receptors (GPCR’s), followed by kinases [12].

Virtual HTS comes in many forms, including chemical similarity searches by fingerprints or topology,
selecting compounds by predicted biological activity or pharmacophore mapping, and virtual docking of
compounds into a target of interest, known as structure-based docking [13]. These methods allow the
ranking of “hits” from the virtual compound library for acquisition. The ranking can reflect a property of
interest such as percent similarity to a query compound or predicted biological activity, or in the case of
docking, the lowest energy scoring poses for each ligand bound to the target of interest [14]. Often
initial hits are rescored and ranked using higher level computational techniques that are too time
consuming to be applied to full-scale vHTS. It is important to note that vHTS does not aim to identify a
drug-compound that is ready for clinical testing, but rather to find leads with chemotypes that have not

previously been associated with a target. This is not unlike a traditional HTS where a compound is

34



CHAPTER 1

generally considered a hit if its activity is close to 10 uM. Through iterative rounds of chemical synthesis
and in vitro testing, a compound is first developed into a “lead” with higher affinity, some understanding
of its structure-activity-relation, and initial tests for DMPK/ADMET properties. Only after further
iterative rounds of lead-to-drug optimization and in vivo testing does a compound reach clinically
appropriate potency and acceptable DMPK/ADMET properties [15]. For example, the literature survey
performed by Ripphausen et al revealed that a majority of successful vHTS applications identified a small
number of hits that are usually active in the micromolar range, and hits with low nanomolar potency are

only rarely identified [12].

The cost benefit of using computational tools in the lead optimization phase of drug development is
substantial. Development of new drugs can cost anywhere in the range of 400 million to 2 billion dollars
with synthesis and testing of lead analogues being a large contributor to that sum [16]. Therefore, it is
beneficial to apply computational tools in hit-to-lead optimization in order to cover a wider chemical
space while reducing the number of compounds that must be synthesized and tested in vitro. The
computational optimization of a hit compound can involve a structure-based analysis of docking poses
and energy profiles for hit analogs, ligand-based screening for compounds with similar chemical
structure or improved predicted biological activity, or prediction of favorable DMPK/ADMET properties.
The comparably low-cost of CADD compared to chemical synthesis and biological characterization of
compounds make these methods attractive to focus, reduce, and diversify the chemical space that is

explored [13].

De novo drug design is another tool in CADD methods, but rather than screening libraries of
previously synthesized compounds it involves the design of novel compounds. A structure generator is
needed to sample the space of chemicals. Given the size of the search space (more than 10%° molecules)
[17] heuristics are used to focus these algorithms on molecules that are predicted to be highly active,
readily synthesizable, devoid of undesirable properties, often derived from a starting scaffold with
demonstrated activity, etc. Additionally, effective sampling strategies are utilized while dealing with
large search spaces such as evolutionary algorithms, metropolis search, or simulated annealing [18]. The
construction algorithms are generally defined as either linking or growing techniques. Linking algorithms
involve docking of small fragments or functional groups such as rings, acetyl groups, esters, etc., to
particular binding sites followed by linking fragments from adjacent sites. Growing algorithms, on the
other hand, begin from a single fragment placed in the binding site to which fragments are added,

removed, and changed to improve activity. Similar to vHTS, the role of de novo drug design is not to
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design the single compound with nanomolar activity and acceptable DMPK/ADMET properties, but to

design a lead compound that can be subsequently improved.

1.2.2 Ligand databases for CADD

Virtual HTS uses high-performance computing to screen large chemical databases and prioritize
compounds for synthesis. Current hardware and algorithms allow structure-based screening of up to
100,000 molecules per day using parallel processing clusters [19]. To perform a virtual screen, however,
a virtual library must be available for screening. Virtual libraries can be acquired in a variety of sizes and
designs including general libraries that can be used to screen against any target, focused libraries that
are designed for a family of related targets, and targeted libraries that are specifically designed for a

single target.

General libraries can be constructed using a variety of computational and combinatorial tools.
Early systems used molecular formula as the only constraint for structure generation, resulting in all
possible structures for a predetermined limit in the number of atoms. As comprehensive computational
enumeration of all chemical space is and will remain infeasible, additional restrictions are applied.
Typically, chemical entities difficult to synthesize or known/expected to cause unfavorable
DMPK/ADMET properties are excluded. Fink et al. proposed a generation method for the construction of
virtual libraries that involved the use of connected graphs populated with C, N, O, and F atoms and
pruned based on molecular structure constraints and removal of unstable structures. The final database
proposed with this method is called the GDB (Generated a DataBase) and contains 26.4 million chemical
structures that have been used for vHTS [20, 21]. A more recent variation of this database called GDB-13
includes atoms C, N, O, S, and CI (F is not included in this variation to accelerate computation) and

contains 970 million compounds [22].

Most frequently, vHTS focuses on drug-like molecules that have been synthesized or can be easily
derived from already available starting material. For this purpose several small molecule databases are
available that provide a variety of information including known/available chemical compounds, drugs,
carbohydrates, enzymes, reactants, and natural products [23, 24]. Some widely used databases are

listed in table 1-1.
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Table 1-1 Widely used chemical compound repositories along with content information about class of

compounds they host and size of repositories

DataBase

Type

Size

PubChem [25, 26]

Accelrys Available Chemicals Directory
(ACD) [27]

PDBeChem [28]

Zinc [29]

DrugBank [30]

ChemDB [31, 32]

WOMBAT Database (World Of Molecular
BioAcTivity) [33, 34]

MDDR (MDL Drug Data Report) [34]

3D MIND [35]

Biological activities of small molecules

Consolidated catalog from major chemical suppliers

Ligands and small molecules referred in PDB

Annotated commercially available compounds

Detailed drug data with comprehensive drug target
information

Annotated commercially available molecules

Bioactivity data for compounds reported in medicinal
chemistry journals

Drugs under development or released; descriptions of
therapeutic

Molecules with target interaction and tumor cell line
screen data

~68,000,000

~7,000,000

19,838

~90,000,000

7469

~5,000,000

331,872

180,000

100,000

1.2.3 Preparation of Ligand Libraries for CADD

Ligand libraries are often constructed by enriching ligands for drug likeness or certain desirable

physiochemical properties suitable for the target of interest. Even with rapid docking algorithms,

docking millions of compounds requires considerable resources, and time can be saved through the

elimination of non-drug like, unstable, or unfavorable compounds. Drug likeness is commonly evaluated

using Lipinski’s rule of five [36] which states that in general, an orally active drug should have no more

than one violation of the following criteria a) maximum of five hydrogen bond donors b) no more than

10 oxygen and nitrogen atoms c) molecular mass less than 500 daltons d) an octanol-water partition
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coefficient of not greater than five. If two or more of the conditions are violated, poor adsorption can be
expected. Similarly, polar molecular surface is also used to predict oral absorption and brain penetration
[37]. It is a common practice to filter molecules based on predicted DMPK/ADMET properties before
initializing a VHTS campaign. Ligand-based methods to predict DMPK/ADMET properties use statistical
and learning approaches, molecular descriptors, and experimental data to model biological processes
like oral bioavailability, intestinal absorption/permeability, half-life time, and distribution in human

blood plasma etc.

Compound libraries are often enriched for a particular target or family of targets.
Physiochemical filters derived from observed ligand-target complexes are used for enriching a library
with compounds that satisfy specific geometric or physicochemical constraints. Such libraries are
prepared by searching for ligands that are similar to known active ligands [38, 39]. Several target-specific
libraries exist in Cambridge Structure Database (CSD) including kinase-biased, GPCR-biased, and ion
channel-biased sets. In addition, a small molecule library requires preparations such as conformational
sampling, and assigning proper stereo isometric and protonation state [40, 41]. Molecules are flexible in
solvent environment and hence representation of conformational flexibility is an important aspect of
molecular recognition. Often conformations of protein and ligand are precomputed using simulation or

knowledge-based methods [42, 43].

1.2.4 Representation of small molecules as “SMILES”

Development and efficient use of ligand databases require universally applicable methods for
the virtual representation of small molecules. SMILES (Simplified Molecular Input Line System) [44] was
developed as an unambiguous and reproducible method for computationally representing molecules. It
was developed as an improvement over the Wiswesser Line Notation [45] which had a cumbersome set
of rules, but was a preferred method due to the representation of molecular structure as a linear string

of symbols that could be efficiently read and stored by computer systems.

Commonly, SMILES does not explicitly encode hydrogen atoms (hydrogen-suppressed graph)
and conventionally assumes that hydrogens make up the remainder of an atom’s lowest normal valence.
All non-hydrogen atoms are represented by their atomic symbols enclosed in square brackets. Atoms
may also be listed without square brackets, implying the presence of hydrogens. Formal charges are
specifically assigned as + or — followed by an optional digit inside the appropriate brackets. Aromatic

atoms are specified using the lowercase atomic symbols. Single bonds, double bonds, triple bonds, and
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aromatic bonds are denoted by “-“, “=", “#”, and “:”, respectively. Branched systems are specified by
enclosing them in parentheses. Cyclic structures are represented by breaking a ring at a single or
aromatic bond and numbering the atoms on either side of the break with a number. For example,
cyclohexane is represented with the SMILES string C1CCCCC1. Disconnected compounds are separated
by a period, and ionic bonds are considered disconnected structures with complimentary formal charges

[46].

SMILES algorithms are capable of detecting most aromatic compounds with an extended version
of Huckel’s rule (all atoms in the ring must be sp? hybridized and the number of available 1t electrons
must satisfy 4N + 2) [47]. Therefore, aromaticity does not necessarily need to be defined beforehand.
However, tautomeric structures must be explicitly specified as separate SMILES strings. There are no
SMILES definitions for tautomeric bonds or mobile hydrogens. SMILES was designed to have good
human readability as a molecular file format. However, there are usually many different but equally
valid SMILES descriptions for the same structure. It is most commonly used for storage and retrieval of

compounds across multiple computer platforms.

SMARTS (SMILES ARbitrary Target Specification) is an extension of SMILES that allows for
variability within the represented molecular structures. This provides substructure search functionality
to SMILES. In addition to the SMILES naming conventions, SMARTS includes logical operators, such as
“AND” (&), “OR” (,), and “NOT” (!) and special atomic and bond symbols that provide a level of flexibility
to chemical names. For example, in SMARTS notation, [C,N] represents an atom that can be either an

I “est?

aliphatic carbon or an aliphatic nitrogen and the symbo will match any bond type [48].

1.2.5 Small Molecule Representations for Modern Search Engines: InChiKey

InChl (International Chemical Identifier) was released in 2005 as an open source structure
representation algorithm that is meant to unify searches across multiple chemical databases using
modern internet search engines. It is maintained by the InChl Trust and currently supports chemical
elements up to 112 [49]. The purpose of InChl and the hash-key version InChiKey is to provide a
nonproprietary machine-readable code unique for all chemical structures that can be indexed by major
search engines such as Google without any alteration. By use of this protocol, researchers can search for
chemicals in a routine and straightforward manner. Prior to INChl, chemical searches spanning multiple

databases using typical search engines were unreliable. Different systems have their own proprietary

39



CHAPTER 1

identification method for indexing chemicals; SMILES-based searches are insufficient as different

databases have adopted their own unique SMILES.

InChl is made up of several layers that represent different classes of structural information. The
first two layers contain only general information, including the chemical formula and connections. More
specific conformational information such as stereochemistry, tautomerism, and isotopic information is
represented in additional optional layers. Bonds between atoms can be partitioned into up to three
sublayers depending on the level of specification desired. These layers represent all bonds to
nonbridging hydrogen atoms, immobile hydrogen atoms, and mobile hydrogen atoms, respectively. The
InChl algorithm includes six normalization rules that apply qualities such as variable protonation and
identification of tautomeric patterns and resonances to achieve a unique and consistent chemical

representation [49].

InChiIKey is a hash-key version of InChl that generates two blocks using a truncated SHA-256
cryptographic hash function. This allows the keys to contain a fixed length of 27 characters with high
collision resistance (minimal chance of two different molecules having the same hash key). Use of
InChiKeys to search multiple database with typical search engines was tested and the incidence of false-
positive hits was low [50]. Publically available web applets are available that allow chemists to draw

molecules and automatically search the web using an automatically calculated InChiKey.

1.2.6 Target databases for CADD

The knowledge of the structure of the target protein is required for structure-based CADD. The
Protein Data Bank (PDB) [51], established in 1971 at the Brookhaven National Laboratory, and the
Cambridge Crystallographic Data Center, are among the most commonly used databases for protein
structure. PDB currently houses more than 100,000 protein structures, the majority of which (90%) have
been determined using X-ray crystallography and a smaller set determined using NMR spectroscopy.
When an experimentally determined structure of a protein is not available, it is often possible to create
a comparative model based on the experimental structure of a related protein. When this protein is
evolutionarily related, the term “homology modeling” is used in place of comparative modeling. The
Swiss-Model server is one of the most widely used web-based tools for homology modeling [52].
Initially, static protein structures were used for all structure-based design methods. However, proteins
are not static structures but exist as ensembles of different conformational states. The protein

fluctuates through this ensemble depending on the relative free energies of each of these states,
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spending more time in conformations of lower free energy. Ligands are thought to interact with some
conformations but not others, thus stabilizing conformational populations in the ensemble. Therefore,
docking compounds into a static protein structure can be misleading, as the chosen conformation may
not be representative of the conformation capable of binding the ligand. Recently, it has become state
of the art to use additional computational tools such as molecular dynamics and molecular mechanics to
simulate and evaluate a protein’s conformational space. Conformational sampling provides a collection
of snapshots that can be used in place of a single structure that reflect the breadth of fluctuations the
ligand may encounter in vivo. This approach was proven to be invaluable in CADD by Schames et al [53]
in the 2004 identification of novel HIV Integrase inhibitors [54]. Some methods, such as ROSETTA-
LIGAND [55], are capable of incorporating protein flexibility during the actual docking procedure,

alleviating the need for snapshot ensembles.

The collection of events that occurs when a ligand binds a receptor extends far beyond the
noncovalent interactions between ligand and protein. Desolvation of ligand and binding pocket, shifts in
the ligand and protein conformational ensembles, and reordering of water molecules in the binding site
all contribute to binding free energies. Consideration of water molecules as an integral part of binding
sites is necessary for key mechanistic steps and binding [56, 57]. These water molecules shift the free
energy change of ligand binding by either facilitating certain noncovalent interactions between the
ligand and protein, or by being displaced into a more favorable direct interactions between the ligand
and protein, causing an overall change in free energy upon binding [58, 59]. Improvements in
computational resources allows inclusion of better representations of physiochemical interactions in

computational methods to increase their accuracies [60].

1.2.7 Benchmarking Techniques of CADD

Effective benchmarks are essential for assessment of performance and accuracy of CADD
algorithms. Design of the benchmark in terms of number and type of target proteins, size and
composition of active and inactive chemicals, and selection of quality measures play a key role when
comparing new CADD methods with existing ones. Scientific benchmarks usually involve screening a
library of compounds that include a subset of known actives combined with known inactive compounds

and then evaluating the number of known actives that were identified by the CADD technique used [61].

Performance is commonly reported by correlating predicted activities with experimentally

observed activities through the use of receiver operating characteristic (ROC) curves. These curves plot
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the number of true positive predictions on the y-axis versus the false positive predictions on the x-axis. A
random predictor would result in a plot of a line with a slope of 1, whereas curves with high initial slopes
above this line represent increasing performance scores for the method tested [34, 62]. ROC curves are
therefore analyzed by determining the area under the curve (AUC), positive predictive value (PPV) — the
ratio of true positives in a subset selected in a VHTS screen, or enrichment — a benchmark that

normalizes PPV by the background ratio of positives in the dataset.

For structure-based CADD it is now common also to include decoy molecules that further test a
technique’s ability to discern actives from inactives at high resolution. Irwin et al created the Directory
of Useful Decoys (DUD) dataset designed for high-resolution benchmarking. It includes experimental
data for approximately 3000 ligands covering up to 40 different targets and a set of carefully chosen
decoys [63]. These decoys were designed to resemble positive ligands physically but not topologically
[64]. These decoys, however, are not experimentally validated and are only postulated to be “inactive”
against the targets. Good and Oprea developed clustered versions of DUD with added data sets from
sources such as WOMBAT to avoid challenges in enrichment comparisons between methods due to

different parameters and limited diversity [65].

1.3 Structure-Based Computer-Aided Drug Discovery (SB-CADD)

Structure-based computer-aided drug discovery (SB-CADD) relies on the ability to determine and
analyze 3D structures of biological molecules. The core hypothesis of this approach is that a molecule’s
ability to interact with a specific protein and exert a desired biological effect depends on its ability to
favorably interact with a particular binding site on that protein. Molecules that share those favorable
interactions will exert similar biological effects. Therefore, novel compounds can be elucidated through
the careful analysis of a protein’s binding site. Structural information about the target is a prerequisite
for any SB-CADD project. Scientists have been using a target protein’s structure to aid in drug discovery
since the early 1980s [66]. Since then, SB-CADD has become a commonly used drug discovery technique
thanks to advances in genomics and proteomics that have led to the discovery of a large number of
candidate drug targets [67, 68]. Extensive use of biophysical techniques such as x-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy has led to the elucidation of a number of 3D
structures of human and pathogenic proteins. Drug discovery campaigns leveraging target structure
information have sped up the discovery process and led to the development of several clinical drugs. A

prerequisite for the drug discovery process is the ability to rapidly determine potential binders to the
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target of interest. Computational methods in drug discovery allow rapid screening of a large compound
library and determination of potential binders through modeling/simulation and visualization

techniques.

1.3.1 Preparation of a Target Structure

A target structure experimentally determined through x-ray crystallography or NMR techniques
and deposited in the PDB is the ideal starting point for docking. Structural genomics has accelerated the
rate at which target structures are being determined. In the absence of experimentally determined
structures, several successful virtual screening campaigns have been reported based on comparative
models of target proteins [69-71]. Efforts have also been made to incorporate information about binding

properties of known ligands back into comparative modeling process [72, 73].

Success of virtual screening is dependent upon the amount and quality of structural information
known about both the target and the small molecules being docked. The first step is to evaluate the
target for the presence of an appropriate binding pocket [74, 75]. This is usually done through the
analysis of known target-ligand cocrystal structures or using in silico methods to identify novel binding

sites [76].

Comparative modeling

Advances in biophysical techniques such as X-ray crystallography and NMR spectroscopy have
increased the availability of protein structures. This provides structural information to guide drug
discovery. In the absence of experimental structures, computational methods are used to predict the 3D
structure of target proteins. Comparative modeling is used to predict target structure based on a
template with a similar sequence, taking advantage of the fact that protein structure is better conserved
than sequence, i.e. proteins with similar sequences have similar structures. Homology modeling is a
specific type of comparative modeling in which the template and target proteins share the same
evolutionary origin. Comparative modeling involves the following steps: a) Identification of related
proteins to serve as template structures, b) sequence alignment of the target and template proteins, c)
copying coordinates for confidently aligned regions, d) constructing missing atom coordinates of target
structure, and e) model refinement and evaluation. Figure 1.3 illustrates the steps involved in
comparative modeling. Several computer programs and web servers exist which automate the

comparative modeling process e.g. PSIPRED [77] , MODELLER [78].
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Figure 1.3 Steps in homology model building process

Template identification and alignment

In the first step the target sequence is used as a query for the identification of template

structures in the PDB. Templates with high sequence similarity can be determined by a straight-forward

PDB-BLAST search [79]. More sophisticated fold recognition methods are available if PDB-BLAST does

not yield any hits [80, 81]. Search for template structure is followed by sequence alignment using

methods like CLUSTALW [82] which is a multiple sequence alignment tool. For closely related protein

structures, structurally conserved regions are identified and used to build the comparative model.

Construction and evaluation of multiple comparative models from multiple good-scoring sequence

alignments improves the quality of the comparative model [83, 84]. It has been demonstrated that

combination of multiple templates can improve comparative models by leveraging well-determined
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regions that are mutually exclusive [85]. Appropriate template selection is critical for successful
comparative modeling. Careful consideration should be given to alignment length, sequence identity,

resolution of template structure and consistency of secondary structure between target and templates.

Model building

Gaps or insertions in the original sequence alignment occur most frequently outside secondary
structure elements and lead to chain breaks (gaps and insertions) and missing residues (gaps) in the
initial target protein model. Modeling these missing regions involves connecting the anchor residues,
which are the N- or C-terminal residues of protein segments on either side of the missing region. Two
broad classes of loop-modeling methods exist: knowledge-based methods and de novo methods.
Knowledge-based methods use loops from protein structures that have approximately the same anchors
as found in target models. Loops from such structures are applied to the target structure. De novo
methods generate a large number of loop conformations and use energy functions to judge the quality
of predicted loops [86]. Both methods, however, solve the “loop closure” problem, i.e. identifying low-
energy loop conformations from a large conformational sample space that justify the structural restraint
of connecting the two anchor points. Cyclic coordinate descent (CCD) [87] and kinematic closure (KIC)
[88] algorithms optimally search for conformations that satisfy constraints for loop closure in a target
structure. CCD iteratively changes dihedral angles one at a time such that a distance constraint between
anchor residues is satisfied [87]. The KIC algorithm derives from kinematic methods which allow
geometric analysis of possible conformations of a system of rigid objects connected by flexible joints.
The KIC algorithm generates a Fourier polynomial in N variables for a system of N rotatable bonds by
analyzing bond lengths and bond angles constraints [89]. Atom coordinates of the loop are then

determined using the polynomial equation.

Loop modeling can be affected by two classes of errors: scoring function errors and insufficient
sampling. The former arises when nonnative conformations are assigned better scores. Confidence in
scoring can be improved by scoring with different functions, assuming that true native conformation will
likely be best ranked across multiple scoring methods. Insufficient sampling arises when near native
conformations are not sampled. Sufficient sampling can be achieved by running multiple independent

simulations to establish convergence.

The next step in comparative modeling is prediction of side-chain conformations. A statistical

clustering of observed side-chain conformations in PDB, called a rotamer library is used in most side-
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chain construction methods [90]. Methods like dead-end elimination [91] implemented in SCRWL [92-
94] and Monte Carlo searches [95] are used for side-chain conformation sampling. Dead-end elimination
imposes conditions to identify rotamers that cannot be members of global minimum energy
conformation. For example, the algorithm prunes a rotamer a if a second rotamer b exists, such that
lowest energy conformation containing a is greater than highest energy conformations containing b. The
SCRWL algorithm evaluates steric interactions between side chains through the use of a backbone
dependent rotamer library which expresses frequency of rotamers as a function of dihedral angles ¢
and Y. Monte Carlo algorithms search the side chain conformational space stochastically using the

Metropolis criterion to guide the search into energetic minima.

Binding pockets in homology models or even crystal structures are often not amenable for
ligand docking because of insufficient accuracy. Ligand information has been used to improve
comparative models. Tanrikulu et al used a pseudoreceptor modeling method to improve a homology
model of human histamine H,4 receptor. Pseudoreceptor methods map binding pockets around one or
more reference ligands by capturing their shape and interactions with the target. Conformation
snapshots of the homology model were obtained by MD simulation, and pocket-forming coordinates
were extracted. Binding pockets of MD frames that matched pseudoreceptor were prioritized for virtual
screening. Hits from virtual screening were tested experimentally and two compounds with diverse
chemotypes exhibited pK; > 4 [96, 97]. Katritch et al. used a combined homology modeling and ligand-
guided backbone ensemble receptor optimization algorithm (LIBERO) for prediction of a protein-ligand
complex in CASP experiments. The approach was identified as the best in that it identified 40% of the 70
contacts that the antagonist ZM241385 makes with adenosine A2a receptor (PDB:3EML). In LiBERO
framework multiple models are generated and normal mode analysis is used to generate backbone
conformation ensembles. Conformers are selected according to docking performance through an
iterative process of model building and docking [98]. Ligand information assisted homology modeling is
contingent on the availability of high-affinity ligands and structurally similar homologs to ensure high

quality homology models.

Model refinement and evaluation

Atomic models are refined by introducing ideal bond geometries and by removing unfavorable
contacts introduced by the initial modeling process. Refinement involves minimizing models using

techniques such as molecular dynamics [99], Monte Carlo Metropolis minimization [100] or genetic
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algorithms [101]. For example, the ROSETTA refinement protocol fixes bond lengths and angles at ideal
values and removes steric clashes in an initial low-resolution step. ROSETTA then minimizes energy as a
function of backbone torsional angles ¢, ), and w using a Monte Carlo minimization strategy [100].
Molecular dynamics-based refinement techniques have been used widely as refinement strategy in

drug-design oriented homology models [102, 103].

Model evaluation involves comparison of observed structural features with experimentally
determined protein structures. Melo and Sali [104] applied a genetic algorithm that used 21 input model
features like sequence alignment scores, measures of protein packing, and geometric descriptors to
assess folds of models. Critical Assessment of Techniques for Protein Structure Prediction (CASP) [105] is
a worldwide competition in which many groups participate for an objective assessment of methods in
the area of protein structure prediction. Models are numerically assessed and ranked by estimating
similarity between a model and corresponding experimental structure. Some evaluation methods used
in CASP are full model root mean square deviation (RMSD), global distance test-total scores (GDT-TS)
and alignment accuracy (ALO score). GDT-TS is the average maximum number of residues in predicted
model that deviate from corresponding residues in the target by no more than a specified distance while

ALO represents the percentage of correctly aligned residues [105].

Model databases

SWISS-MODEL [106] and MODBASE [107] databases store annotated comparative protein
structure models. SWISS-MODEL repository contains annotated 3D protein models generated by
homology modeling of all sequences in SWISS-PROT [106]. As of March 2015, SWISS-MODEL contained
3.18 million entries for 2.3 million unique sequences in UNIPROT database. MODBASE is organized into
datasets of models for specific projects which include datasets of 9 archaeal genomes, 13 bacterial
genomes and 18 eukaryotic genomes. Together with other datasets, MODBASE currently houses 34

million models across 5.7 million unique protein sequences [107].

Park et al [108] used a homology model of Cdc25A phosphatase, a drug target for cancer therapy, to
identify novel inhibitors. The crystal structure of protein Cdc25B served as a template to generate
structural models of Cdc25A. Docking of a library of 85,000 compounds led to the discovery of

structurally diverse compounds with ICso values ranging from 0.8 to 15 uM.
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1.3.2 Binding site detection and characterization

Protein-ligand interaction is a prerequisite for drug activity. Often possible binding sites for small
molecules are known from cocrystal structures of the target or a closely related protein with a natural or
nonnatural ligand. In the absence of a cocrystal structure, mutational studies can pinpoint ligand binding
sites. However, the ability to identify putative high-affinity binding sites on proteins is important if the
binding site is unknown or if new binding sites are to be identified, e.g. for allosteric molecules.
Computational methods like POCKET, SURFNET, Q-SITEFINDER, etc. [76, 109] are often used for binding
site identification. Computational methods for identifying and characterizing binding sites can be divided
into three general classes: a) geometric algorithms to find shape concave invaginations in the target, b)

methods based on energetic consideration, and c) methods considering dynamics of protein structures.

Geometric method

Geometric algorithms identify binding sites through the detection of cavities on a protein’s
surface. These algorithms frequently use grids to describe molecular surface or 3D structure of protein.
The boundary of a pocket is determined by rolling a “spherical probe” over the grid surface. A pocket is
identified if there is a period of noninteraction i.e. probe doesn’t touch any target atoms, between
periods of contact with protein. This technique is employed by POCKET [110] and LIGSITE [111].
SURFNET [112] places spheres between all pairs of target atoms and then reduces the radius of spheres
until each sphere contains only a pair of atoms. The program thus accumulates spheres in pockets, both
inside the target and on the surface. The SPHGEN program [113] generates overlapping spheres to
describe the 3D shape of binding pocket. The algorithm creates a negative image of invaginations for
target surface. Spheres are calculated all over the entire surface such that each sphere touches the
molecular surface at two points. The overlapping dense representation of spheres is then filtered to
include only largest sphere associated with each target surface atom. The main disadvantages of
geometric-based methods include that geometric descriptors are method dependent and subjective, the
target protein is typically rigid, and the methods are often tied to a generalized concept of a binding
pocket and may miss unorthodox binding sites within channels or on protein-protein interaction

interfaces [76].

Trypanosoma brucei is the causative agent of human trypanosomiasis in Africa [114]. A binding
pocket identified by LIGSITE was used for identifying inhibitors of ornithine decarboxylase which is a

molecular target for treatment of African trypanosomiasis. SPHGEN was used to identify putative
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binding sites in BCL6 [115], a therapeutic target for B cell lymphomas. Docking of a library of 1,000,000
commercially available compounds into the identified sites led to successful identification of inhibitors

of BCL6 [115].

Energy-based approaches

Energy-based approaches calculate van der Waals, electrostatic, hydrogen-binding,
hydrophobic, and solvent interactions of probes that could result in energetically favored binding.
Simple energy-based methods tend to be as fast as geometric methods, but are more sensitive and
specific. The Q-SITEFINDER [116] algorithm calculates the VDW interaction energy for aliphatic carbon
probes on a grid, and retains pockets with favorable interactions. The GRID [117, 118] algorithm samples
the potential on a 3D grid to determine favorable binding positions for different probes. GRID
determines interaction energy as a sum of Lennard-Jones, Coulombic and hydrogen-bond terms. Other
algorithms like POCKETPICKER [119] and FLAPSITE [109] use similar approaches but different metrics to
evaluate the quality of a putative binding site. For example, POCKETPICKER defines “buriedness” indices
in its binding site elucidation. A serious limitation of these methods is that they result in many different
energy minima on the surface of the protein, including many false-positives [76]. These shortcomings
can be addressed in part by including the solvation term in the scoring potential as is done in CS-Map
algorithm [120]. More complex tools distinguish solvent accessible from solvent inaccessible surfaces.
Kim et al present a method for defining the topology of the protein as a Voronoi diagram of spheres and

its use to elucidate binding pocket locations [121].

Segers et al [122] applied Q-SITEFINDER and POCKETFINDER to identify the binding site for the
C2 domain of coagulation factor V whose interaction with platelet membrane is necessary for
coagulation. Excessive coagulation caused by high thrombin production could be controlled by small
molecule inhibitors of factor V. Docking of 300,000 compounds into the predicted sites identified four
inhibitors with 1Cso < 10 uM. Novel putative drug binding regions were identified in Avian Influenza
Neuraminidase H5N1 using computational solvent mapping [123]. Virtual screening of the binding site

with a library of compounds led to the discovery of novel small-molecule inhibitor of H5N1 [124].

Pocket matching

Methods like CATALYTIC SITE ATLAS (CSA) [125], AFT [126], SURFACE [127], POCKET-SURFER [128] and
PATCH-SURFER [129] detect similar pockets based on reference ligand binding sites. CSA contains
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annotated descriptors of enzyme active site residues as well as equivalent sites in related proteins found
by sequence alignment. Query made by PDB code returns annotated catalytic residues highlighted on
amino acid sequence and on the structure via RasMol [130]. SURFACE is a repository of annotated
protein functional sites with sequence and structure-derived information about function or interactions.
The comparison algorithm explores all combinations of similar/identical residues in a sequence-
independent way between query protein and database structures. Pocket-surfer and patch-surfer
describe property of binding pockets. Pocket-surfer captures global similarity of pockets, whereas patch-
surfer evaluates and compares binding pockets in small circular patches. These methods describe

patches using four properties, surface shape, visibility, hydrophobicity, and electrostatic potential.

Molecular dynamics-based detection

The dynamic nature of biomolecules sometimes makes it insufficient to use a single static
structure to predict putative binding sites. Multiple conformations of target are often used to account
for structural dynamics of target. Classical molecular dynamics (MD) simulations can be used for
obtaining an ensemble of target conformations beginning with a single structure. The MD method uses
principles of Newtonian mechanics to calculate a trajectory of conformations of a protein as a function
of time. The trajectory is calculated for a specific number of atoms in small time steps, typically 1-10 fs
[131]. Classical MD methods tend to get trapped in local energy minima. Several advanced MD
algorithms like targeted-MD [132], SWARM-MD [133], conformational flooding simulations [134],
temperature accelerated MD simulations [135], and replica exchange MD [136] have been implemented

for traversing multiple-minima energy surface of proteins.

MD simulations elucidated a novel binding trench in HIV integrase (IN), which led to development of
raltegravir, a drug used to treat HIV infection. MD simulations of 5CITEP, a known inhibitor of IN,
showed that the inhibitor underwent various movements including entry into a novel binding trench
(shown in figure 1.4) that went undetected with a static crystal structure [53]. The discovery of this
trench led to the development of raltegravir, by Merck [137]. Frembgen-Kesner and Elcock [138]
reproduced a cryptic drug binding site in an explicit-solvent MD simulation of ligand-free p38 MAP

kinase protein, a target in the treatment of inflammatory diseases.
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Figure 1.4 Discovery of novel binding trench in HIV-1 IN. Ligand in green is similar to the crystal structure

binding pose while the one in yellow is in the novel trench. Source: [53].

1.3.3 Representing Small Molecules and Target Protein for Docking Simulations

There are three basic methods to represent target and ligand structures in silico: atomic,
surface, and grid representations [139, 140]. Atomic representation of the surface of the target is
typically used when scoring and ranking is based on potential energy functions. An example is DARWIN
which uses CHARMM force field to calculate energy [141]. Surface methods represent the topography of
molecules using geometric features. The surface is represented as a network of smooth convex,
concave, and saddle shape surfaces. These features are generated by mapping part of van der Waals
surface of atoms that is accessible to probe a sphere [142]. Docking is then guided by a complementary
alignment of ligand and binding site surfaces. Earliest implementation of DOCK [143] used a set of
nonoverlapping spheres to represent invaginations of target surface and the surface of the ligand
(method described earlier in detail for SPHGEN). Geometric matching begins by systematically pairing
one ligand sphere a; with one receptor sphere bs. This is followed by pairing a second set of spheres, a;
and b,. The move is accepted if the change in atomic distances is less than an empirically determined
cut-off value. The cut-off value specifies the maximum allowed deviation between ligand and receptor
internal distance. The pairing step is repeated for a third pair of atoms with the same internal distance
checks as above. A minimum of four assignable pairs is essential for determining orientation, otherwise

the match is rejected. For the grid representation, the target is encoded as physicochemical features of
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its surface. A grid method described by Katchalskikatzir et al [144] digitizes molecules using a 3D discrete
function that distinguishes the surface from the interior of the target molecule. Molecules are scanned
in relative orientation in three dimensions, and the extent of overlap between molecules is determined
using a correlation function calculated from a Fourier Transform. Best overlap is determined from a list
of overlap functions [144]. Physiochemical properties may be represented on the grid by storing energy

potentials on surface grid points.

1.3.4 Sampling Algorithms for Protein-Ligand Docking

Docking methods can be classified as rigid-body docking and flexible docking applications
depending on the degree to which they consider ligand and protein flexibility during the docking process
[139, 145]. Rigid body docking methods consider only static geometric/physiochemical
complementarities between ligand and target and ignore flexibility and induced-fit [139] binding
models. More advanced algorithms consider several possible conformations of ligand or receptor or
both at the same time according to the conformational selection paradigm [146]. Rigid docking
simulations are generally preferred when time is critical, i.e., when a large number of compounds are to
be docked during an initial vHTS. However, flexible docking methods are still needed for refinement and
optimization of poses obtained from an initial rigid docking procedure. With the evolution of
computational resources and efficiency, flexible docking methods are becoming more commonplace.
Some of the most popular approaches include systematic enumeration of conformations, molecular
dynamic simulations, Monte Carlo search algorithms with Metropolis criterion (MCM), and genetic

algorithms.

Systematic methods

Systematic algorithms incorporate ligand flexibility through a comprehensive exploration of a
molecule’s degrees of freedom. In systematic algorithms, the current state of the system determines the
next state. Starting from the same exact state and same set of parameters, systematic methods will
yield exactly the same final state. Systematic methods can be categorized into exhaustive search

algorithms or fragmentation algorithms.

Exhaustive searches elucidate ligand conformations by systematically rotating all possible
rotatable bonds at a given interval. Large conformational space often prohibits an exhaustive systematic

search. Algorithms such as GLIDE [147] use heuristics to focus on regions of conformational space that
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are likely to contain good scoring ligand poses. GLIDE precomputes a grid representation of target’s
shape and properties. Next, an initial set of low-energy ligand conformations in ligand torsion-angle
space is created. Initial favorable ligand poses are identified by approximate positioning and scoring
methods (shape and geometric complementarities). This initial screen reduces the conformational space
over which the high-resolution docking search is applied. High-resolution search involves the
minimization of the ligand using standard molecular mechanics energy function followed by a Monte

Carlo procedure for examining nearby torsional minima.

Fragmentation methods sample ligand conformation by incremental construction of ligand
conformations from fragments obtained by dividing the ligand of interest. Ligand conformations are
obtained by docking fragments in the binding site one at a time and incrementally growing them, or by
docking all fragments into the binding site and linking them covalently. DesJarlais et al modified the
DOCK algorithm to allow for ligand flexibility by separately docking fragments into the binding site and
subsequently joining them [148]. FLEXX [149] uses the “anchor and grow method” for ligand
conformational sampling. A base fragment has to be interactively selected by the user, which is followed
by automatic determination of placements for the fragment that maximize favorable interactions with
the target protein. The base fragment is grown incrementally by adding new fragments in all possible
conformations, and the extended fragment is selected if no significant steric clashes (overlap volume <
4.5 A% are observed between ligand and target atoms. Extended ligands are optimized if new
interactions are found or if minor steric interactions exist [149]. Fully automated “anchor and grow”
methods have been implemented in several methods like FLOG [150], SURFLEX [151] and SEED [152]. In
a benchmark study in which performance of eight docking algorithm was compared on 100 protein-
ligand complex, GLIDE and SURFLEX were among the methods that showed best accuracy [153]. GLIDE
and SURFLEX generated poses close to X-ray conformation for 68 protein-ligand complexes in the

Directory of Useful Decoys [154].

Human Pim-1 kinase, responsible for cell survival/apoptosis, differentiation and proliferation, is a
valuable anticancer target as it is over expressed in a variety of leukemia. Pierce et al [155] used GLIDE
to dock approximately 700,000 commercially available compounds and identified four compounds with
Kivalues less than 5 pM. Chiu et al [156] used SURFLEX to identify novel inhibitors of anthrax toxin lethal
factor, responsible for anthrax-related cytotoxicity. Docking study of a compound library derived from
seven databases including DrugBank [30], ZINC [29], National Cancer Institute (NCl) database [157]

identified lead compounds which eventually led to the development of nanomolar inhibitors upon
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optimization. Table 1-2 illustrates some examples of drug discovery campaigns where systematic

docking algorithms have been used.

Table 1-2 Successful docking applications of some widely used docking software.

Algorithm Target
Plasmepsin [158], target for malaria
Flavivirus Proteases [159, 160], target for WNV and dengue virus
SEED . . . . .
Tyrosine Kinase Erythropoietin Producing Human Hepatocellular Carcinoma Receptor
B4(EphB4) [161]
Plasmepsin Il and IV Inhibitors [162], malaria
Anthrax edema factor [163]
FlexX . S
Pneumococcal peptidoglycan deacetylase inhibitors [164]
Aurora kinases inhibitors [69]
Glide Falcipain inhibitors [165]
Cytochrome450 inhibitors [166]
Surflex Topoisomerase |, anti-cancer (optimization)
FK506 Immunophilin [167]
DOCK BCL6, oncogene in B cell ymphomas [115]

Molecular dynamics simulations

Molecular dynamics (MD) simulation calculates the trajectory of a system by the application of
Newtonian mechanics. However, standard MD methods depend heavily on the starting conformation
and are not readily appropriate for simulation of ligand-target interactions. Because of its nature, MD is
not able to cross high-energy barriers within the simulation’s lifetime and is not efficient for traversing
the rugged hyper surface of protein-ligand interactions. Strategies like simulated annealing have been
applied for more efficient use of MD in docking. Mangoni et al described a MD protocol for docking
small flexible ligands to flexible targets in water [168]. They separated the center of mass movement of
ligand from its internal and rotational motions. The center of mass motion and internal motions were
coupled to different temperature baths, allowing independent control to the different motions.
Appropriate values of temperature and coupling constants allowed for flexible or rigid ligand and/or

receptor.

The McCammon group developed a “relaxed-complex” approach that explores binding conformations

that may occur only rarely in the unbound target protein. A 2-ns MD simulation of ligand free target is
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carried out to extensively sample its conformations. Docking of ligands is then performed in target
conformation snapshots taken at different time points of the MD run. This relaxed complex method was
used to discover novel modes of inhibition for HIV integrase and led to the discovery of the first clinically
approved HIV integrase inhibitor, Raltegravir. This MD method was also used in several other campaigns

to identify inhibitors of target of interest [169, 170].

Metadynamics is a MD-based technique for predicting and scoring ligand binding. The method
maps the entire free energy landscape in an accelerated way as it keeps track of history of already
sampled regions. During the MD simulation of a protein-ligand complex, a Gaussian repulsive potential

are added on explored regions, steering the simulation toward new free energy regions [54, 171, 172].

Millisecond timescale MD simulations are now possible with special purpose machines like
Anton [173]. Such long simulations have allowed study of drug binding events to their protein target
[174]. Anton has been used successfully for full atomic resolution protein folding [175]. Advances in
computer hardware capabilities means protein flexibility can be accessed more routinely on longer

timescales. This would allow better descriptions of conformational flexibility in future.

Monte Carlo search with metropolis criterion

Stochastic algorithms make random changes to either ligand being docked or to its target
binding site. These random changes could be translational or rotational in the case of ligand or random
conformational sampling of residue side-chains in the target binding site. Whether a step is accepted or
rejected in such a stochastic search is decided based on the Metropolis criterion, which generally
accepts steps that lower the overall energy and occasionally accepts steps that increase energy to
enable departure from a local energy minimum. The probability of acceptance of an uphill step
decreases with increasing energy gap and depends on the “temperature” of the MCM simulation [176].
MCM simulations have been adopted for flexible docking applications such as in MCDOCK [177], Internal
Coordinate Mechanics (ICM) [178], and ROSETTALIGAND [55, 179]. MCM samples conformational space
faster than molecular dynamics because it only requires energy function evaluation and not the
derivative of the energy functions. Although traditional MD drives a system towards a local energy
minimum, the randomness introduced with Monte Carlo allows hopping over the energy barriers,
preventing the system from getting stuck in local energy minima. A disadvantage is that any information

about the timescale of the motions is lost.
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ROSETTALIGAND [180, 181] uses a knowledge-based scoring procedure with a Monte Carlo-
based energy minimization scheme that reduces the number of conformations that must be sampled
while providing a more rapid scoring system than offered through molecular mechanics force fields.
ROSETTALIGAND incorporates side-chain and ligand flexibility during a high-resolution refinement step
through a Monte Carlo-based sampling of torsional angles. All torsion angles of protein and ligand are
optimized through gradient-based minimization mimicking an induced fit scenario [179]. MCDOCK uses
two stages of docking and a final energy minimization step for generating target-ligand structure. In the
first docking stage, the ligand and docking site are held rigid while the ligand is placed randomly into the
binding site. Scoring is done entirely on the basis of short contacts. This allows identification of
nonclashing binding poses. In the next stage, energy-based Metropolis sampling is done to sample the
binding pocket [177]. QXP [182] optimizes grid map energy and internal ligand energy for searching
ligand-target structure. The algorithm performs a rigid body alignment of ligand-target complex
followed by MCM translation and rotation of ligand. This step is followed by another rigid body
alignment and scoring using energy grid map. ICM [183] relies on a stochastic algorithm for global
optimization of entire flexible ligand in receptor potential grid. The relative positions of ligand and target
molecule make up the internal variables of the method. Internal variables are subject to random change
followed by local energy minimization and selection by Metropolis criterion. ICM performed
satisfactorily in generating protein-ligand complexes for 68 diverse, high-resolution X-ray complexes

found in DUD [154].

ROSETTALIGAND was used by Kaufmann et al [184] to predict the binding mode of serotonin
with serotonin transporters. The binding site predicted to be deep within the binding pocket was
consistent with mutagenesis studies. QXP has been used to optimize inhibitors of Human B-Secretase
(BACE1) [185-187], an important therapeutic target for treating Alzheimer’s disease by diminishing B-
amyloid deposit formation. ICM was used successfully to identify inhibitors for a number of targets,
including Tumor necrosis factor-a [188], dysregulation of which is implicated in tumorigenesis and
autoinflammatory diseases like rheumatoid arthritis and psoriatic arthritis. Computational screening of
230,000 compounds from the NCI database against neuraminidase using ICM identified 4-[4-[(3-(2-
amino-4-hydroxy-6-methyl-5-pyrimidinyl)propyl)amino]phenyl]-1-chloro-3-buten-2-one which inhibited

influenza virus replication at a level comparable to known neuraminidase inhibitor oseltamivir [124].
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Genetic Algorithms

Genetic algorithms introduce molecular flexibility through recombination of parent
conformations to child conformations. In this simulated evolutionary process, the “fittest” or best
scoring conformations are kept for another round of recombination. In this way, the best possible set of
solutions evolves by retaining favorable features from one generation to the next. In docking, a set of
values that describe the ligand pose in the protein are state variable, i.e., the genotype. State variables
may include sets of values describing translation, orientation, conformation, number of hydrogen bonds,
etc. The state corresponds to the genotype; the resulting structural model of the ligand in the protein
corresponds to the phenotype, and binding energy corresponds to the fitness of the individual. Genetic
operators may swap large regions of parent’s genes or randomly change (mutate) the value of certain

ligand states to give rise to new individuals.

Genetic Optimization for Ligand Docking (GOLD) [189] explores full ligand flexibility with partial
target flexibility using a genetic algorithm. The GOLD algorithm optimizes rotatable dihedrals and ligand-
target hydrogen bonds. The fitness of a generation is evaluated based on a maximization of
intermolecular hydrogen bonds. The fitness function is the sum of a hydrogen bonding term, a term for
steric energy interaction between the protein and the ligand and a Lennard-Jones potential for internal
energy of ligand. AutoDock [190] uses the Lamarckian genetic algorithm, which allows favorable
phenotypic characteristics to become inheritable. GOLD has demonstrated better accuracy than most

docking algorithms, except GLIDE, in various benchmark studies [153, 191, 192].

Inhibition of a-glucosidase has shown to retard glucose absorption and decrease postprandial
blood glucose level, making it an attractive target for treating diabetes and obesity. Park et a/ [193] used
AUTODOCK to identify four novel inhibitors of a-glucosidase by screening a library of 85,000 compounds
obtained from INTERBIOSCREEN chemical database . AUTODOCK was also used to identify inhibitors of
RNA Editing Ligase-1 enzyme of Trypanosoma brucei, causative agent of Human African

trypanosomniasis [194].

Incorporating target flexibility in docking

Conformational variability is seen in unbound form and different apo structures [195, 196]. It is
widely believed that the ligand-bound state is selected from an ensemble of protein conformations by

the ligand [197]. Accounting for receptor flexibility in the form of protein side-chain and backbone
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movement is essential for predicting correct binding pose. An ensemble of nonredundant low energy
target structures covers a larger conformational space than a single conformation. Methods for inducing
receptor flexibility include induced-fit docking and MD simulation snapshot ensembles. Induced-fit
algorithms allow small overlap between the ligand and the target along with side-chain movements,
resulting in elasticity. GLIDE uses an induced fit model in which all side-chain residues are changed to
alanine before initial docking. Side-chain sampling is followed by energy minimization of the binding site
and ligand. ROSETTALIGAND allows for full protein backbone and side-chain flexibility in the active site.
Multiple fixed receptor conformations are used in docking protocols, known as ensemble-based
screening, to incorporate receptor flexibility [198]. Receptor conformations may either be
experimentally determined by crystallography or NMR or computationally generated from MD
simulations, normal mode analysis and MC sampling [199]. Schames et al. used the relaxed complex
scheme (RCS) to describe a novel trench in HIV integrase which led to the discovery of the integrase
inhibitor raltegravir [53]. In RCS, multiple conformations are determined from MD simulations to
perform docking studies against. Other sampling methods include umbrella-sampling, metadynamics,

accelerated MD etc [196].

1.3.5 Scoring Functions for Evaluation Protein-Ligand Complexes

Docking applications need to rapidly and accurately assess protein-ligand complexes, i.e.,
approximate the energy of the interaction. A ligand docking experiment may generate hundreds of
thousands of target-ligand complex conformations, and an efficient scoring function is necessary to rank
these complexes and differentiate valid binding mode predictions from invalid predictions. More
complex scoring functions attempt to predict target-ligand binding affinities for hit-to-lead and lead-to-
drug optimization. Scoring functions can be grouped into four types: a) force-field or molecular
mechanics-based scoring functions b) empirical scoring functions c) knowledge-based scoring functions

d) consensus scoring functions.

Force-field or molecular mechanics based scoring functions

Force-field scoring functions use classic molecular mechanics for energy calculations. These
functions use parameters derived from experimental data and ab initio quantum mechanical
calculations. The parameters for various force terms including prefactor variables are obtained by fitting
to high-quality ab initio data on intermolecular interactions [200]. The binding free energy of protein-

ligand complexes are estimated by the sum of van der Waals and electrostatic interactions. DOCK uses
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the AMBER force fields in which van der Waals energy terms are represented by the Lennard-Jones
potential function while electrostatic terms are accounted for by coulomb interaction with a distance-
dependent dielectric function. Standard force fields are however biased to select highly charged ligands.
This can be corrected by handling ligand solvation during calculations [201, 202]. Terms from empirical
scoring functions (discussed below) are often added to force-field functions to treat solvation and
electronic polarizability. A semi-empirical force field has been implemented in AUTODOCK to evaluate
the contribution of water surrounding the receptor-ligand complex in the form of empirical enthalpic

and entropic terms, for example [203].

Empirical Scoring Functions

Empirical scoring functions fit parameters to experimental data. An example is binding energy,
which is expressed as a weighted sum of explicit hydrogen bond interactions, hydrophobic contact
terms, desolvation effects, and entropy. Empirical function terms are simple to evaluate and are based
on approximations. The weights for different parameters are obtained from regression analysis using
experimental data obtained from molecular data. Empirical functions have been used in several

commercially available docking suits like LUDI [204] , FLEXX [149] and SURFLEX.

Knowledge-Based Scoring Function

Knowledge-Based scoring functions employ the information contained in experimentally
determined complex structures. They are formulated under the assumption that interatomic distances
occurring more often than average distances represent favorable contacts. On the other hand,
interactions that are found to occur with lower frequencies are likely to decrease affinity. Several
knowledge based potentials have been developed to predict binding affinity like potential of mean force

[205], DRUGSCORE [206], SMOG [207] and BLEEP [208].

Consensus-Scoring Functions

More recently, consensus-scoring functions have been demonstrated to achieve improved
accuracies through a combination of basic scoring functions. Consensus approaches rescore predicted
poses several times using different scoring functions. These results can then be combined in different
ways to rank solutions [209]. Some strategies for combining scores include a) weighted combinations of
scoring functions b) a voting strategy in which cutoffs established for each scoring method is followed by

decision based on number of passes a molecule has c) a rank by number strategy that ranks each
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compound by its average normalized score values d) a rank by rank method that sorts compounds based
on average rank determined by individual scoring functions. O’Boyle et al [210] evaluated consensus
scoring strategies to investigate the parameters for the success of properly combined rescoring
strategies. It turns out that combining scoring functions that have complementary strengths leads to
better results over those with consensus in their predictions. For example, scoring functions whose
strengths are distinguishing actives from inactive compounds are complemented by scoring functions
that can distinguish correct from incorrect binding poses. One disadvantage of consensus scoring is that

a single inappropriate scoring function can lead to false negatives.

Okamoto et al [211] used consensus scoring to identify inhibitors of death-associated protein
kinases that may contribute to ischemic diseases in the brain, kidney, and other organs. They used
DOCK4.0 and three scoring functions including an empirical scoring function implemented in FLEXX, a
knowledge-based PMF scoring function [212], and the force-field function in DOCK4.0. Approximately
400,000 compounds from a corporate compound library were docked followed by simultaneous scoring
with the three functions. The consensus score was defined as the highest among the three. In another
successful application of consensus scoring scheme, Friedman and Caflisch [158] discovered plasmepsin
inhibitors for use as antimalarial agents using a scoring based on median ranking of four field-based

scoring functions.

1.3.6 Structure-Based virtual High-Throughput Screening

Structure-based virtual high-throughput screening (SB-vHTS), is an in silico screening method for
identifying putative hits out of hundreds of thousands of compounds to targets of known structure that
relies on a comparison of the 3D structure of a ligand with the putative binding pocket. SB-vHTS selects
for ligands predicted to bind to a particular site as opposed to traditional HTS that evaluates the ligand’s
general ability bind and modulate a protein’s function. To make screening of large compound libraries in
finite time feasible, SB-vHTS often uses limited conformational sampling of protein and ligand and a
simplified approximation of binding energy that can be rapidly computed. The inaccuracies introduced
by these approximations lead to false-positive hits that can be subsequently removed during a
refinement stage where all putative hits are rescored with more sophisticated and computationally
expensive methods including iterative docking and clustering of ligand poses. The key steps in SB-vHTS
are: 1) preparation of the target protein and compound library for docking 2) determining a favorable

binding pose for each compound, and 3) ranking the docked structures. SB-vHTS has been used
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successfully in identifying novel and potent hits in several drug discovery campaigns [70, 71, 167, 213-

219]. Notably, SB-vHTS played a pivotal role in discovery of lead compounds for the following studies.

Inhibitors of Hsp90

Hsp90 is a molecular chaperone that modulates the activity of multiple oncogenic processes,
making it an important therapeutic target for oncology. Roughley et al [213] virtually screened 0.7
million compounds from rCat [220] against Hsp90 to identify potential inhibitors of Hsp90. Crystal
structures of Hsp90 bound to previously known inhibitors were used in the docking-based virtual screen.
From over 9000 non-redundant hits identified after the virtual screen, a set of 719 chemically diverse
compounds were purchased. A total of 13 compounds with I1Csp < 100 uM and seven with 1Csp < 10 pM
were identified. Following lead-optimization, compound AUY922 was carried forward and evaluated

against multiple myeloma, breast, lung and gastric cancers.

Discovery of M; Acetylcholine Receptor Agonists

Selective agonism of M; mAChR, a class A G-protein coupled receptor (GPCR), has therapeutic
potential for treating dementia including Alzheimer’s disease and cognitive impairment associated with
schizophrenia. Budzik et al [70] used a homology model of M; based on the crystal structure of bovine
rhodopsin to virtually screen a corporate compound collection. The docking of compounds into a
previously known allosteric binding site yielded approximately 1000 putative hits. In vitro testing and
optimization for potency and selectivity led to the development of a series of novel 1-(N substituted
piperidin-4-yl) benzimidazolones, which resulted in compounds that were potent, central nervous

system penetrant, and orally active M1 mAChR agonists.

1.3.7 Atomic-detail / High Resolution Docking

As mentioned, scoring function and sampling algorithms are kept simple to evaluate large
libraries of compounds in realistic time frames. The most promising hit compounds often are evaluated
with more sophisticated scoring functions, for example, using an electrostatic solvation model for
evaluating energetics of protein-ligand interaction. The implicit electrostatic solvation model is achieved
by assuming the solvent as a continuum high-dielectric-constant medium through the use of numerical
solutions of Poisson equation [221] or a generalized-Born approximation [222]. Realistic conformational
sampling, for example, through the inclusion of protein conformational changes is often done for lead

compounds. The objective of this atomic-detail refinement of initial docking poses is threefold: a)
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improved judgment if ligand will actually engage the target, b) accurate prediction of complex
conformation, and c) accurate prediction of binding affinity. The following example illustrates this two-

stage approach.

Inhibitors of casein kinase by hierarchical docking

Casein kinase 2 (CK2), a target for antineoplastic and anti-infectious drugs, is involved in a large
variety of important cell functions and many viruses exploit CK2 as phosphorylating agent of proteins
essential to their life cycle. Cozza et al [223, 224] used a hierarchical docking process to identify a potent
inhibitor from an in-house molecular database containing approximately 2000 compounds including
several families of polyphenolic compounds including catechins, coumarins, and others. A rigid body
docking step using FRED was used to dock ligand conformations generated by OMEGA v.1.1. The top
50% of poses ranked by FRED score were selected, and one unique pose for each of the best-scored
compounds used for subsequent steps. The selected poses were optimized via a flexible ligand-docking
protocol with three different programs: MOE-DOCK, GLIDE and GOLD. A consensus scoring scheme was
developed in which each docked set, i.e. FRED-DOCK, FRED-GLIDE and FRED-GOLD was scored by five
different scoring functions MOE-Score, GlideScore, GoldScore, ChemScore and Xscore, leading to three
docking/scoring sets. Common compounds among the top 5% of compounds ranked by consensus
scores from each list were prioritized for in vitro testing. The hierarchical docking process allowed

identification of nanomolar CK2 inhibitors such as ellagic acid (ICso 40 nM) and quinalizarin (ICso 50 nM).

1.3.8 Binding Site Characterization

The success of SB-CADD methods depends on the understanding of physiochemical interactions
between molecules. Optimization of lead molecules into high-affinity compounds that can be tested in
vivo requires both the optimization of binding affinity and pharmacological properties. This process
requires a deep understanding of the molecular interactions between ligand and target. Structural
studies aimed at elucidating binding modes are commonly done using experimental methods such as X-
ray and NMR. However, the time necessary to generate samples and determine structures can prevent
applicability to the repetitive cycles of lead optimization. Computational methods such as molecular
docking, molecular dynamics simulation, and quantum-mechanical simulations can be used to

accelerate this process.
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Experimentally determined protein structures in complex with ligand often serve as starting
point for SB-CADD campaigns. For example, the cocrystal structure (PDB code 2BEL) of 11pB-
hydroxysteroid dehydrogenase (11B-HSD1) and its inhibitor, a semisynthetic derivative of 18pB-
glycyrrhetnic acid was used to generate a model of the binding site. Increased expression of 113-HSD1 in
liver and adipose tissue has been linked to obesity, insulin resistance, diabetes, and cardiovascular
diseases in humans. The crystal structure illustrates interaction of carbenoxolone and active site
residues Ser170, Tyr183 and Lys187, as shown in figure 1.5. In addition, two hydrophobic pockets exist
on either side of the catalytic site which is exploited by a number of adamantine containing 11B-HSD1
inhibitors. A proprietary structure-based drug design program, Contour, was used to develop binding
models of inhibitors containing an N-(2-adamantyl) amide moiety. Structural insight of binding site
allowed the investigators to apply ligands containing an N-(2-adamantyl) amide moiety in a drug design
program. With the help of the model and modeling studies, the authors discovered an 11B-HSD1

inhibitor which is orally bioavailable in three species and is active in a primate pharmacodynamic model

[225].
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Figure 1.5 Carboxynoxolone and 10j2. Overlap of carenoxolone (yellow) and urea 10j2 (green) in binding

site of 118-HSD1. Source: [226].
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1.3.9 Pharmacophore Model

A pharmacophore model of the target binding site summarizes steric and electronic features
needed for optimal interaction of a ligand with a target. Molecular properties most commonly used to
define pharmacophores include hydrogen bonding potential (acceptors and donors), basic groups, acidic
groups, partial charges, aliphatic hydrophobic moieties, and aromatic hydrophobic moieties.
Pharmacophore features have been used extensively in drug discovery for virtual screening, de novo
design, and lead optimization [227]. A pharmacophore model of the target binding site can be used to
virtually screen a compound library for putative hits. Apart from querying a database for active
compounds, pharmacophore models can also be used by de novo design algorithms to guide the design

of new compounds.

Structure-based pharmacophore models are developed based on an analysis of the target
binding site or on a target-ligand complex structure. LigandScout [228] uses protein-ligand complex data
to map interactions between ligand and target. A knowledge based rule set obtained from the PDB is
used to automatically detect and classify interactions into hydrogen bond interactions, charge transfers,
and lipophilic regions [228]. The Pocket v.2 [229] algorithm is capable of automatically developing a
pharmacophore model from a target-ligand complex. This algorithm creates regularly spaced grids
around the ligand and the surrounding residues. Probe atoms that represent a hydrogen bond donor, a
hydrogen bond acceptor, and a hydrophobic group are used to scan the grids. An empirical scoring
function, SCORE, is used to describe the binding constant between probe atoms and the target. SCORE
includes terms to account for van der Waals interactions, metal-ligand bonding, hydrogen bonding and
desolvation effects upon binding [230]. A pharmacophore model is developed by rescoring the grids
followed by clustering and sorting to extract features essential for protein-ligand interaction. During
rescoring, hydrogen bond donor/acceptor scores lower than 0.2 and hydrophobic scores lower than
0.47 are reset to zero. Grids with three zero scores are filtered out, and the “neighbor number” for each
grid is determined by counting the number of grids within 2 A having non-zero score for a particular
type. Grids with less than 50 donor neighbors, 30 acceptor neighbors, and 40 hydrophobic neighbors are
reset to zero for their donor score, acceptor score, and hydrophobic scores, respectively. Grids are
filtered by eliminating those with three zero scores, leaving only those grids that represent key
interaction sites. The algorithm then superimposes the ligand on the grid, and a given grid is selected as

a candidate if it is close to an atom type that can mediate the same interaction. Candidates with non-
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zero donor, acceptor, or hydrophobic scores are gathered into separate clusters, and the grid with

highest score is defined as the center of donor, acceptor, or hydrophobic property.

Virtual screening using a pharmacophore model

17B-hydroxysteroid dehydrogenase type 1 (17B-HSD1) plays an important role in the synthesis
of the most potent estrogen estradiol. Its inhibition could be important for breast cancer prevention and
treatment. Schuster et al [231] used LigandScout2.0 to generate pharmacophore models of 173-HSD1
from cocrystallization complexes with inhibitors (PDB codes 1EQU and 1I5R). These pharmacophore
models represent the binding mode of a steroidal compound and small hybrid compounds (consisting of
a steroidal part and an adenosine), respectively. The 1I5R-based pharmacophore model was used to
screen the NCI and SPECS databases for new inhibitors using CATALYST. Best scoring hit compounds
were docked into the binding pocket of 1EQU using GOLD, and final selection for in vitro testing was
performed according to the best fit value, visual inspection of predicted docking pose and the
ChemScore (GOLD scoring function) value. Four of 14 compounds tested in vitro showed an ICs value of
less than 50 uM with the most potent being 5.7 uM. Brvar et al [232] applied pharmacophore models to
discover novel inhibitors of bacterial DNA gyrase B, a bacterial type Il topoisomerase originating from
gyrase and a target for antibacterial drugs. A pharmacophore model obtained using LigandScout was
used to screen the ZINC database which yielded a novel class of thiazole-based inhibitors with ICso value

of 25 uM.

Multitarget inhibitors using common pharmacophore models

Wei et al [233] used Pocket v.2 to identify a common pharmacophore for two targets involved in
inflammatory signaling, human leukotriene A4 hydrolase (LTA4H-h) and human nonpancreatic secretory
phospholipase A2 (PLA2). The cocrystal structure (PDB code 1HS6) of LTA4H-h with 2-(3-amino-2-
hydroxy- 4-phenylbutyrylamino)-4-methyl-pentanoic acid (bestatin) and the structure (PDB code 1DB4)
of PLA2 with [3-(1-benzyl-3-carbamoylmethyl-2-methyl-1H-indol-5-yloxy)propyl]phosphonic acid (indole
8) were used to derive pharmacophores of the two targets. For LTA4H-h, six pharmacophore centers
were identified that included four hydrophobic centers, one hydrogen bond acceptor, and one zinc
metal coordination pharmacophore. In the binding pocket of PLA2, three hydrophobic centers, one
hydrogen bond acceptor, and two calcium ion coordination centers were identified. The comparison of
two sets of pharmacophore models revealed that two hydrophobic pharmacophores and a

pharmacophore that coordinated with metal, shown in figure 1.6, was common to both proteins. The
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authors hypothesized that compounds satisfying the common pharmacophores would inhibit both the
proteins. The MDL chemical database was screened virtually with LTA4H-h and PLA2 using Dock4.0 and
binding conformation of top 150,000 compounds (60% of database) ranked by Dock score were
extracted and checked for conformity to common pharmacophores. This identified 163 compounds
whose binding conformations were reanalyzed using Autodock3.5 followed by comparison with
common pharmacophores. Finally, nine compounds whose conformations matched the common
pharmacophores were tested in vitro for binding with PLA2 and LTA4H-h. The best inhibitor, compound
10, inhibited LTA4H-h at submicromolar range and inhibited PLA2 with an ICso value of 7.3 uM.

The pharmacophore model of LTA4H-h The Pharmacophore model of hnps-PLA2

Common Pharmacophores of LTA4H-h and hnps-PLA2

Figure 1.6 Extracting common pharmacophores of LTA4H-h and human-PLA;. Cyan spheres depict
hydrophobic centers, red spheres represent H-bond acceptor, and yellow spheres stand for feature that

coordinates with a metal. Source: [233].

1.3.10 Automated de novo Design of Ligands

De novo structure-based ligand design can be accomplished by either a ligand-growing or ligand-
linking approach. With the ligand-growing approach, a fragment is docked into the binding site and the
ligand is extended by adding functional groups. The linking method, on the other hand, docks multiple

small fragments into adjacent binding pockets and then links them to form a single compound. This
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approach is a computational version of the popular SAR by NMR technique introduced by Shuker et al

[234].

Several methods have been developed implementing both ligand-growing and ligand-linking
strategies for designing ligands that can bind to a given target. LigBuilder [235] builds ligands in a step by
step fashion using a library of fragments. The design process can be carried out by various operations
like ligand growing and linking and the construction process is guided by a genetic algorithm. The target-
ligand complex binding affinity is evaluated with an empirical scoring function. The program first reads
the target protein and analyzes the binding pocket. Depending on user preference, it can then either use
a growing or a linking strategy. In the growing strategy, a seed structure is placed in a binding pocket
and the program replaces user defined growing sites with candidate fragments. This gives rise to a new
seed structure that can then be used in further rounds of growing. For the linking strategy, several
fragments placed at different locations on the target protein serve as the seed structure. The growing
scheme happens simultaneously on each fragment biased towards linking these fragments. The LUDI
[204] algorithm, which precedes LigBuilder, uses a ligand linking strategy. It positions seed fragments
into binding pockets of the target structure, optimizing their interactions individually before. This step is
followed by linking the fragments into a single molecule. The synthetic accessibility of ligands can also
be taken into account. For example, LigBuilder 2.0 analyzes designed using a chemical reaction database

and a retrosynthesis analyzer [236].

The biggest challenge of de novo drug design is inseparable from its greatest advantage. By
defining compounds that have never been seen before, one is invariably necessitating synthetic effort
for acquisition prior to testing. This forces any de novo protocol to incorporate synthesizability metrics
into its scoring. This increases the effort required in terms of cost, time, and expertise. Synthesizability is
most important when designing a large number of different compounds and scaffolds. One tool that
approaches the constraint of synthesizability is SYNOPSIS (SYNthesize and OPtimize System in Silico)
[237], which enforces synthesizability throughout the design process by starting with available
compounds and creating novel compounds by virtually using known chemical reactions. 70 different
reaction types may be selected based on the presence of different functional groups in the evolving

molecule. SYNOPSIS also provides additional restraints for desired properties such as solubility.

De novo design by linking fragments has been successfully applied in the design of inhibitors of

p38 MAPK [238], a key regulator in signaling pathways that control the production of cytokines such as
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tumor necrosis factor-a and interleukin-1p. Inhibitors of MAPK can potentially be used for the treatment
of various autoimmune diseases. Figure 1.7A shows four classes of interactions of a clinical compound
BIRB 796 with MAPK: (1) interaction with residues in ATP binding site (Met109), (2) interaction with the
“Phe pocket” (dotted arc), (3) hydrophobic interaction with the kinase specificity pocket (solid arc), and
(4) interaction of the urea with backbone NH-bond of Asp168 and carboxylate of Glu71. A design
strategy for exploring structurally distinct scaffolds by leveraging the interactions of BIRB 796 [1-(5-tert-
butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-[4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl] was devised as follows:
a) A tert-butyl group was used as “Phe pocket” seed structure in place of pyrazole ring of BIRB 796 b) An
N-formyl group was appended to tert-butyl fragment to access the hydrogen bonds with Glu71 and
Asp168 c) a carbonyl group was used as the second seed fragment to access the hydrogen bond with
Met109 as shown in figure 1.7B. LigandBuilder software was used to link the two seed fragments, the
tert-butyl linked to N-formyl group, and the carbonyl group. The program consistently introduced a 4-
tolyl group in the kinase specificity pocket. However, LigandBuilder failed to predict favorable rigid
linkers for connecting tolyl group to carbonyl group which would be essential for carbonyl display at the
proper distance to interact with Met109. Modeling indicated N-linked azoles connected to tolyl group
via an N-linkage as a suitable linker. Derivatives of this designed molecule were synthesized leading to

the discovery of compound 28 as shown in figure 1.7D, with an 1Cso of 83 nM.
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Figure 1.7 Design strategy for inhibitors of p38 MAPK. A) Key interactions of BIRB-796 inhibitor with

MAPK. B) A fragment linking strategy to link two seed structures was applied using LigBuilder. A tert-butyl
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phenyl fragment was used in the first pocket, whereas a carbonyl fragment was used to access the
hydrogen bond with Met109 in the second site. An N-formyl group was attached to the first seed
fragment to access hydrogen bonds with Glu71 and Asp168. C) General structure of optimized structures
which showed potent activity. D) R group for compound 28, which showed ICso value of 83 nM. Source:

[238].

‘The fragment extension approach was employed by Zhang et al [239] in the discovery of
vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors, a therapeutic target for tumor-
induced angiogenesis. The authors used quinazoline as the seed fragment, since three of the nine
clinically approved kinase inhibitor drugs are 4-anilinoquinazoline derivatives [240]. These inhibitors
bind the active site of their respective targets such that the quinazoline ring is located at the front of
ATP binding pocket. The ligand building process involved placing the quinazoline fragment in the binding
pocket in the same orientation as found for known inhibitors. The design strategy sought to create a
ligand that would extend to fit a specific hydrophobic pocket at the back of the ATP binding cleft. An
NH», OH, or SH group was added in the C4 position of the quinazoline ring to allow for a turn owing to
orientation of quinazoline and the spatial arrangement of the hydrophobic pocket. A fragment-growth-
based de novo method was applied in which various fragments (approximately 1200 fragments) were
allowed to grow on the turn fragment to extend into the hydrophobic pocket. Designed molecules were
then rescored and ranked using GOLD. The design process led to the development of a potent and
specific VEGFR2 inhibitor, SKLB1002, [2-((6,7-dimethoxyquinazolin-4-yl)thio)-5-methyl-1,3,4-thiadiazole],
shown in figure 1.8, that inhibits angiogenic processes in zebra fish embryo and athymic mice with

human tumor xenografts.

69



CHAPTER 1

A N— N Cc Leu1035(A)
/L >\ Leu840(A) — W
s e
o Phe918(A) 5
e X N I C20 Phe1047(A)
) i ) 3)77Tr<<\
= SG
\O N ) CA . C2 017 o
B Cys919(A)

L%E -
Gly922(A)

Ala866(A)

Thr916(A)
CG
Key
®——@ Ligand bond wis s3 Nonligand residues involved in
©®—@ Nonligand bond »« hydrophobic contact(s)
® - ® Hydrogen bond and @® Corresponding atoms involved in
its length hydrophobic contact(s)

Figure 1.8 Computational design of novel VEGFR2 inhibitor SKLB1002. A) Chemical structure of
SKLB1002. B) SKLB1002 is docked into the active site of VEGFR2, showing interactions between SKLB1002
and VEGFR2 by using the in silico model. C) A 2D interaction map of SKLB1002 and VEGFR2. Source: [239].

1.4 Ligand-Based Computer-Aided Drug Design

The ligand-based computer-aided drug discovery (LB-CADD) approach focuses on ligands known
to interact with a target of interest. These methods analyze 2D or 3D structures of multiple ligands for
the same target. The overall goal is to represent these compounds in such a way that the
physicochemical properties most important for their desired interactions are retained, whereas
extraneous information not relevant to the interactions is discarded. It is considered an indirect
approach to drug discovery in that it does not necessitate knowledge of the target structure. The two
fundamental approaches of LB-CADD are a) selection of compounds based on chemical similarity to
known actives using some similarity measure or b) the construction of a QSAR model that predicts
biological activity from chemical structure. Either approach can be applied to vHTS, hit-to-lead and lead-
to-drug optimization, and the optimization of DMPK/ADMET properties. LB-CADD is based on the Similar
Property Principle, published by Johnson et al, which states that structurally similar molecules are likely

to have similar properties [241]. In contrast to SB-CADD, LB-CADD can also be used when the structure
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of the biological target is unknown. Additionally, active compounds identified by Ligand-Based virtual
High-Throughput Screening (LB-vHTS) methods are often more potent than those identified in (SB-vHTS)
[61].

1.4.1 Molecular Descriptors / Features

LB-CADD techniques use a variety of computational algorithms to describe small molecule
features that balance efficiency and information content. The optimal descriptor set depends on the
biological function predicted as well as on the LB-CADD technique used. Molecular descriptors can be
structural as well as physicochemical and can be described on multiple levels of complexity. Chemical
properties may include molecular weight, geometry, volume, surface area, ring content, rotatable
bonds, interatomic distances, bond types, atom types, planar and non-planar systems, molecular walk
counts, electronegativities, polarizabilities, symmetry, atom distribution, topological charge indices,
functional group composition, aromaticity indices, solvation properties, and many others [242-248].
These descriptors are generated through knowledge-based methods, graph-theoretical methods,
molecular-mechanical, or quantum-mechanical tools [249, 250] and are classified according to the
“dimensionality” of the chemical representation from which they are computed [33]: 1D, scalar
physicochemical properties such as molecular weight; 2D, molecular constitution-derived descriptors,
2.5D, molecular configuration-derived descriptors; 3D, molecular conformation-derived descriptors.
More complex descriptors often incorporate information from simpler ones. For example, many 2D and
3D descriptors use physicochemical properties to weight their functions and to describe the overall

distribution of these properties.

Functional groups

Functional groups are defined by the International Union of Pure and Applied Chemistry (IUPAC)
as atoms or groups of atoms that have similar chemical properties across different compounds. These
groups are attached to a central backbone of the molecule, also called the scaffold or chemotype. The
spatial positioning of the functional groups dictated by the backbone defines the physical and chemical
properties of compounds. Therefore, the location and nature of functional groups for a given compound
contain key information for most ligand-based CADD methods. There are many different kinds of
functional groups composed primarily of hydrocarbons, halogens, oxygens, nitrogens, sulfur, and
phosphorous including alcohols, esters, amides, carboxylates, ethers, nitro group, thiols, and many

others [251].
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Functional groups can either be explicitly described by their atomic composition and bonding or
may be implicitly encoded with their general properties. For example, under physiological conditions
carboxyl groups are often negatively charged, whereas amine groups are positively charged. This
property is reflected both in the geometry of the functional group as well as its charge. Because it is the
properties conferred by the functional groups that are most important to the biochemical activity of a
given compound, many CADD applications treat functional groups containing different atoms but
conferring the same properties as similar or even identical. For example, the capacity for hydrogen
bonding can heavily influence a molecule’s properties. These interactions frequently occur between a
hydrogen atom and an electron donor such as oxygen or nitrogen. Hydrogen bonding interactions
influence the electron distribution of neighboring atoms and the site’s reactivity, making it an important
functional property for therapeutic design. Commonly, hydrogen bonding groups are separated simply
as hydrogen bond donors with strong electron-withdrawing substituents (OH, NH, SH, and CH) and
hydrogen bond acceptors (PO, SO, CO, N, O, and S) [252, 253]. The applications Phase, Catalyst, DISCO,
and GASP (Genetic Algorithm Superposition Program) as well as pharmacophore mapping algorithms
discussed in greater detail below focus primarily on hydrogen-bond donors, hydrogen-bond acceptors,

hydrophobic regions, ionizable groups, and aromatic rings.

Prediction of physicochemical properties

Properties within the same dimensionality can show a range of complexity. The simplest
properties, such as molecular weight and total hydrogen bond donors, may be rapidly and accurately
computed. More complex properties such as solubility and partial charge, on the other hand, may be
more difficult to compute but can provide higher information content [254]. Prediction of these complex
physicochemical properties, though more computationally expensive, may be critical for an effective set
of molecular descriptors. These trade-offs must be considered on a case-by-case basis when designing a
LB-CADD project. Modern computational algorithms and approximations, however, allow for the

incorporation of certain highly complex properties.

Electronegativity and partial charge

Electron distribution plays an important role in a molecule’s properties and activities. Therefore,
it was important to develop a descriptor capable of modeling the charge distribution over an entire
molecule. One useful method is to assign a partial charge to all atoms in a molecule. Initially, electron

distribution was assigned to individual atoms through quantum mechanical calculations. However, when
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screening thousands or millions of compounds, a much faster and more efficient method became
necessary. Gasteiger and Marsili developed a method for assigning partial charges to individual atoms
called the Partial Equalization of Orbital Electronegativity (PEOE) [255]. This method is based on a
definition of electronegativity introduced by Mulliken that relates the electronegativity of an atom to its
ionization potential | and electron affinity E with the equation electronegativity = %(l+E) [256]. The
values for E and | depend on the valence state of the atom and takes advantage of a concept of orbital
electronegativity introduced by Hinze et al [257, 258] that describes the electronegativity of a specific

orbital in a given valence state and depends on hybridization and occupation number of the orbital.

PEOE improves upon the concept of electronegativity equalization first proposed by Sanderson
[259, 260] that states bonded atoms change electron density until total equalization of electronegativity
is reached. Sanderson’s simple model leads to chemically unacceptable calculations, necessitating a
more complex model of electronegativity equalization. Gasteiger and Marsili first introduced an
approximation function that joins the electronegativity values of an atom in its anionic, neutral, and
cationic state with appropriate ionization potentials and electron affinities and relates orbital
occupation with orbital electronegativity. They also added a damping function to account for the fact
that charge transfer generates an electrostatic field that inhibits further electron transfer and prevents
complete equalization. Finally, they introduced an iterative procedure to account for the changes in
charge separations following a round of electronegativity modification. Progressive iterations include
wider spheres of neighboring atoms until the total transfer drops below a cutoff. The total charge of an

atom is then calculated as the sum of the individual charge transfers following the iteration.

For small-member rings, special bonds based on the valence bond model [261] were used as
additional parameters in the PEOE method [262]. The valence bond model states that the bonds of
three and four membered ring systems arise from orbitals with varying amounts of s and p character
depending on the type and number of rings involved and whether exo- or endocyclic bonds are
considered. The extra coefficients provided charge dependence for the different hybridization states

interpolated from the values of electronegativities for sp?, sp?, sp, and p states [263].

Gasteiger and Saller later introduced a method for applying the PEOE method to molecules with
multiple resonance structures [264]. Charge distribution in 1-systems could be calculated on the basis of
resonance structure weights. These weights were calculated by including a topological weight and

electronic weight. The topological weight was based on whether resonance structures involved the loss
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of covalent bonds, decrease in aromatic systems, or charge separation. The electronic weight was based
on the idea that resonance structures are more important when negative charge is localized on the
more strongly electronegative atom. Therefore, it was a measure of how well the donor atom can
donate its lone pair of electrons and how stable a negative charge on the acceptor atom is. To calculate
this weight, the electronegativity concept is applied. Finally, by adding the changes in charge of the

individual resonance structures to the scaling factor the charge distribution could be calculated.

Additionally, orbital electronegativity is often separated into ¢ and mt bond systems. Standard
connection tables describe connections between two atoms as twice the number of electrons per bond
order (single bonds contain two electrons; double bonds contain four, etc). This valence bond structure,
however, is insufficient to describe some compounds and may fail to distinguish between the different
excited states of a molecule. Separating o and 1t electrons has been shown to be advantageous to this
representation scheme [265]. Bauershmidt and Gasteiger describe computational representation of
chemical species using three electron systems: o-electron systems, m-electron systems, and coordinative

bonds [266].

o-electron systems contain electrons localized in the o part of a bond and single bond electrons.
These systems may consist of more than two atoms when multicenter bonds are described, including
overlapping orbitals that point into a central region between bonded atoms and open bridging a-
electron systems where one atom is located between the other atoms part of the same system. n-
electron systems encode free electrons. One m-electron system is generated for each electron pair. For
example, the electrons of a triple bond are distributed into one o-electron system and two m-electron
systems, each with two electrons. Properties such as orbital electronegativity and partial charges are
more accurately described using the o- and m-electron systems. Therefore, it is common to implement

descriptors separated as o charges, it charges, o electronegativity, and m electronegativity.

These methods provide a means to quantitatively calculate electronegativity and partial charge
on a per-atom basis without the need for quantum mechanics. PEOE charges have been shown to be
useful information for predicting chemical properties such as taste [267]. Additionally, these properties
are often used to weight three-dimensional descriptors that would, on their own, only capture purely
structural information. By weighting these descriptors with these properties, information regarding the

three-dimensional distribution of electrons is available.
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Polarizability

Effective polarizability or mean molecular polarizability is another widely used molecular
descriptor. It quantifies the response of electron density to an external field leading to an induced dipole
moment [268]. Polarizability contributes to dispersion forces and influences intermolecular interactions.
Brauman and Blair described stabilization effects of substituent polarizability [269]. For example,
induced dipole moments in unsubstituted alkyl groups are believed to stabilize charges in gaseous ions
formed by protonation or deprotonation [270]. The magnitude of the induced dipole is calculated as the
product of the electric field operator and the polarizability tensor of the molecule. The average
polarizability of a molecule is calculated as the average of the three principal components of this tensor

[271].

Miller and Savchik introduced a formula for calculating mean molecular polarizabilities using a
polarizability contribution for each atom based on its atom type and hybridization state and the total
number of electrons in the molecule [272]. Gasteiger and Hutchings improved this formula to account
for the attenuation of substituent influence. This was accomplished through the introduction of a
damping factor dependent on the distance in bonds between the atom and the charged reaction center

[273].

Glen [271] defined a method for calculating static molecular polarizability using a modified
calculation of atomic nuclear screening constants based on effective nuclear charge described by Slater
[274]. This calculation divides electrons into different groups with different shielding constants. These
shielding constants reflect the fact that inner-shell electrons modify the view of the nucleus for outer-

shell electrons and adjust the field of nuclear charge for each group of electrons.

Octanol/water partition coefficient

LogP (logarithm of partition coefficient between n-octanol and water) is an important molecular
descriptor that has been widely used in QSAR since the work of Leo et al [275]. Lipinksi’s rule of five, a
class set of rules describing the “druggability” of a compound, includes measurement of the compound’s
logP. Traditionally, logP is determined experimentally by measuring its partitioning behavior in the
insoluble mixture of n-octanol and water and reflects the molecule’s hydrophobicity. This molecular

property has been shown to be important in solubility, oral availability, transport, penetration of the
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blood-brain-barrier, receptor binding, and toxicity [276, 277]. For virtual screening applications, several

methods for calculating logP based on molecular constitution have been established.

LogP calculations largely rely on an additive method introduced by Rekker and Mannhold [278]
where the contributions to logP by basic fragments of a molecule (atoms and functional groups) are
summed. Additivity methods improved with the incorporation of additional molecular properties have

also been used to calculate logP [279, 280].

Wang et al developed the very popular additivity method called XLOGP [281]. This method
originally defined 80 basic atom types for carbon, nitrogen, oxygen, sulfur, phosphorous, and halogen
atoms. Hydrogen atoms are implicitly included in the different atom types. This method was later

improved to include 90 atom types and ten correction factors [282].

Additional corrections became necessary when many simple summation approaches resulted in
incorrect logP calculations. These corrections account for specific intramolecular interactions affecting a
molecule’s logP beyond individual fragments. For example, simple summation underestimated
compounds with long hydrocarbon chains due to their flexibility and aggregation behavior. Additional
interactions that can obscure simple fragment summation include dipole shielding in compounds
containing two or more halogen atoms, internal hydrogen bonding, the unusually strong internal
hydrogen bonding with salicylic acids, and the existence of a-amino acids as zwitterions. Correction
factors are often included for aromatic nitrogen pairs, ortho sp® oxygen pairs, para donor pairs, sp?

oxygen pairs, and amino sulfonic acids.

Xing and Glen introduced an alternative logP calculation that was based on the evidence that
molecular size and hydrogen-bonding account for a major part of logP [283]. They created a statistical
model by combining molecular size and dispersion interactions using molecular polarizability and the
sum of squared partial atomic charges on oxygen and nitrogen atoms. The final model showed that
molecular polarizability is more significant than atomic charges and that an increase in polarizability is
correlated with an increase in logP, whereas a decrease in charge densities on nitrogen and oxygen
correlated with a decrease in logP. They theorized that the importance of molecular polarizability on
logP was due in part to the relative energy required for a larger molecule to create a cavity in water or

octanol.
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Converting properties into descriptors

Molecule properties must be converted into numerical vectors known as descriptors for use in
LB-CADD. For many applications, descriptors must have a constant length independent of molecule size.
Each position in the vector of descriptors therefore encodes a well-defined property or feature which

facilitates the direct comparison of two compounds via mathematical algorithms.

Binary molecular fingerprints

Fingerprints are bit string representations of molecular structure and/or properties [284-286]
where a 1 indicates the presence of a particular functional group or property and 0 indicates its absence.
This allows chemical identity to be unambiguously assigned entirely by the presence or absence of a
specific set of features [287]. The features described in a molecular fingerprint can vary in number and
complexity (from hundreds of bits for structural fragments to thousands for connectivity fingerprints,
and millions for the complex pharmacophore-like fingerprints) [286], depending on the computational
resources available and the intended application. Fingerprints which rely solely on interatomic
connectivity, i.e., molecular constitution, are known as 2D fingerprints [287]. In the prototypic 2D keyed
fingerprint design, each bit position is associated with the presence or absence of a specific substructure
pattern — for example carbonyl group attached to sp® carbon, hydroxyl group attached to sp® carbon,

etc. [288].

Molecular structure itself comprises several levels of organization between the atoms within a
molecule and, therefore, fingerprints may differ in their own levels of organization. For example, the
simplest fingerprint may state that a given compound contains six carbon atoms and six hydrogen
atoms. However, up to 217 different isomers may be encoded by this fingerprint. 2D fingerprints
containing connectivity may distinguish between some of these isomers, however, stereochemistry,
which separates compounds with identical constitutions, is beyond the realm of most 2D fingerprints.
One extension to fingerprints is the use of hash codes. These are bit strings of fixed length that contain
information about connectivity, stereo centers, isotope labeling, and other properties. This information
is compressed to avoid redundancies [289]. Unfortunately, it is not always obvious which of these

characteristics are important in a given context and which are not [287].

Commonly used fingerprints include the ISIS (Integrated Scientific Information System) keys with

166 bits and the MDL (Molecular Design Limited) MACCS (Molecular ACCess System) keys [290] with 960
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bits. The ISIS keys are small topological substructure fragments while the MACCS keys consist of the ISIS
keys plus algorithmically generated more abstract atom-pair descriptors. MDL keys are commonly used
when optimizing diversity [291]. For example, the PubChem database uses a fingerprint that is 881 bits
long to rank substances against a query compound. This fingerprint is comprised of the number and type
of elements, ring systems (saturated and unsaturated up to a size of 10), pair-wise atom combinations,

sequences, and substructures [287].

2D Description of molecular constitution

2D descriptors can be computed solely from the constitution or topology of a molecule, whereas
3D descriptors are obtained from the 3D structure of the molecule [33]. Many 2D molecular descriptors
are based on molecular topology derived from graph-theoretical methods. Topological indices treat all
atoms in a molecule as vertices and index-specific information for all pairs of vertices. A simple
topological index, for example, will contain only constitutional information such as which atoms are
directly bound to each other. This is known as an adjacency matrix and an entry of 1 for vertices vi and v;
indicates their corresponding atoms are bonded while an entry of 0 for vi and v; indicates that the
corresponding atoms are not [292]. For an adjacency matrix, the sum of all entries is equal to twice the

total number of bonds in the molecule.

Complex topological indices are created by performing specific operations to an adjacency
matrix that allow for the encoding of more complex constitutional information. These indices are based
on local graph invariants that can represent atoms independent of their initial vertex numbering [293].
For example, topological indices may contain entries for the number of bonds linking the vertices.
Information gathered from such an index can include the number of bonds linking all pairs of atoms and
the number of distinct ways a path can be superimposed on the molecular graph. A topological index
that includes information such as heteroatoms and multiple bonds through the weighting of vertices
and edges was introduced by Bertz [294]. Randic and Basak introduced an augmented adjacency matrix
by replacing the zero diagonal entries (where v; = vj) with empirically obtained atomic properties. This
adjacency matrix includes atom type information as well as connectivity [295]. Topological indices that
describe the molecular charge distribution as evaluated by charge transfers between pairs of atoms and
global charge transfers have also been developed [296, 297]. Additionally, topological indices known as
geometrical indices have been derived to describe molecular shape. For example, the shape index E

measures how elongated the molecular graph is [296, 298]. Statistical methods such as linear
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discriminant analysis are often applied to topological indices and biological properties to create

predictive descriptors relating indices to molecular activity [296, 299].

Topological autocorrelation (2D autocorrelation) is designed to represent the structural
information of a molecular diagram as a fixed-length vector that can be applied to molecules of any
shape or size. It encodes the constitutional information as well as atom property distribution by
analyzing the distances between all pairs of atoms. Topological autocorrelations are independent of
conformational flexibility because all distances are measured as the shortest path of bonds between the
two atoms. The autocorrelation vector is created by summing all products for atom pairs within
increasing distance intervals in terms of number of bonds. In other words, it creates a frequency plot for
a specific range of atom pair distances. By including atom property coefficients for all atom pairs,
autocorrelations are capable of plotting the arrangement of specific atom properties. For example,
information such as the frequency at which two negatively charged atoms are three bonds apart versus

four bonds apart is stored in an autocorrelation plot weighted by partial atomic charge [300].

3D Description of molecular configuration and conformation

The physicochemical meaning of topological indices and autocorrelations is unclear and
incapable of representing some qualities that are inherently three-dimensional (stereochemistry). 3D

molecular descriptors were developed to address some of these issues [301].

The 3D Autocorrelation is similar to the 2D autocorrelation but measures distances between
atoms as Euclidian distances between their 3D coordinates in space. This allows a continuous measure
of distances and encodes the spatial distribution of physicochemical properties. Instead of summing all

pairs within discrete shortest path differences, the pairs are summed into interval steps [302].

Radial distribution function (RDF) is another very popular 3D descriptor. It maps the probability
distribution to find atoms in a spherical volume of radius r. In its simplest form, the RDF maps the
interatomic distances within the entire molecule. Often it is combined with characteristic atom
properties to fit the information requirements [242]. RDFs not only provide information regarding
interatomic distances between atoms and properties, they contain information such as bond distances,
ring types, and planar versus nonplanar molecules. These functions allow estimation of molecular
flexibility through the use of a “fuzziness” coefficient that extends the width of all peaks to allow for

small changes in interatomic distances.
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GRIND (Grid-Independent Descriptor) is another 3D descriptor that does not require prior
alignment [303]. GRIND was designed to retain characteristics that could be directly traced to the
molecules themselves, rather than producing purely mathematical descriptors that are not obviously
related to the molecular structures they describe. GRIND is comprised of three steps. The first step
calculates a molecular-interaction field (MIF). Probes with different chemical properties to scan the

molecule and identify regions showing favorable interaction energy [304].

Initial MIFs may contain up to 100,000 nodes. Therefore, the second step of GRIND reduces this
set of nodes to focused regions of greatest favorable interaction energies. Initial implementation of
GRIND used a Fedorov-like optimization algorithm [305] to reduce the number of nodes to several
hundred by considering both the intensity of a field and the mutual node-node distances between the
selected nodes. In the second iteration of GRIND (GRIND-2), this method was replaced with a new
algorithm called AMANDA [306]. While the original GRIND requires users to define the number of nodes
to extract per molecule, AMANDA allows GRIND-2 to automatically adjust the number of nodes per
compound. After a prefiltering step that removes all nodes failing an energy cutoff, every atom in the
molecule is assigned a set of nodes and the number of nodes to extract per atom is calculated using a
weighting factor and function that automatically assigns additional nodes to larger regions. The node
selection uses a recursive technique designed to assign initial selection weight based entirely on energy
values. As the iterations continue through lower energy nodes, however, the internode distances

become more important than the individual energy score of each node.

The final step of GRIND-2 (and GRIND) encodes this set of nodes into descriptors using auto- and
cross-correlation methods. Pairs of interaction energies are multiplied and only the greatest product is
retained for each inter-node distance. This is called maximum auto- and cross-correlation (MACC) and
allows GRIND-2 (and GRIND) to contain information that directly correlates with the initial molecular

structure.

GRIND-PP [307] improves GRIND-2 by removing much of the inherent repetition in the
calculated descriptors. Structural features are often repeated across many GRIND-2 variables which can
artificially weight certain features and reduce computational efficiency [308]. Principle Properties (PP)
replace the original variables in GRIND and are calculated using principle component analysis. These
variables are linear combinations of the original variables selected to explain as much of the variance in

the original set of variables as possible.
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Comparative field molecular analysis (CoMFA) [248] is a 3D-QSAR technique that aligns
molecules and extracts aligned features that can be related to biological activity. This method focuses on
the alignment of molecular interaction fields rather than the features of each individual atom. CoMFA
was established over 20 years ago as a standard technique for constructing 3D models in the absence of
direct structural data of the target. In this method, 3D molecules are aligned within a grid and the values
of steric (Van der Waals interactions) and electrostatic potential energies (Coulombic interactions) are
calculated at each grid point. Comparative Molecular Similarity Indices (CoMSIA) is an extension to
CoMFA where the molecular field includes hydrophobic and hydrogen-bonding terms in addition to the
steric and coulombic contributions. Similarity indices are calculated instead of interaction energies by
comparing each ligand with a common probe and Gaussian-type functions are used to avoid extreme
values [309]. These methods, however, are limited to static structures with similar scaffolds and neglect

the dynamical nature of the ligands [249].

1.4.2 Molecular fingerprint and similarity searches

Molecular fingerprint-based techniques attempt to represent molecules in such a way as to
allow rapid structural comparison in an effort to identify structurally similar molecules or to cluster
collections based on structural similarity. These methods are less hypothesis driven and less
computationally expensive than pharmacophore mapping or QSAR models. They rely entirely on
chemical structure and omit known biological activity of the compound, making the approach more
qualitative in nature than other LB-CADD approaches [286]. Additionally, fingerprint-based methods
consider all parts of the molecule equally and avoid focusing only on parts of a molecule that are
thought to be most important for activity. This is less error prone to overfitting and requires smaller
datasets to begin with. However, model performance suffers from the influence of unnecessary features
and the often narrow chemical space evaluated [286]. Despite this drawback, 2D fingerprints continue
to be the representation of choice for similarity-based virtual screening [310]. Not only are these
methods the computationally least expensive way to compare molecular structures [287], but their

effectiveness has been demonstrated in many comparative studies [310].

Similarity searches in LB-CADD

Fingerprint methods may be employed to search databases for compounds similar in structure
to a lead query, providing an extended collection of compounds that can be tested for improved activity

over the lead. In many situations, 2D similarity searches of databases are performed using chemotype
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information from first generation hits, leading to modifications that can be evaluated computationally or
ordered for in vitro testing [4]. Bologa et al used 2D fingerprint and 3D shape-similarity searches to
identify novel agonists of the estradiol receptor family receptor GPR30. Estrogen is an important
hormone responsible for many aspects of tissue development and physiology [311, 312]. The GPCR
GPR30 has recently been shown to bind estrogen with high affinity and its specific role in estrogen-
regulated signaling is being studied [313]. This group used virtual screening to identify compounds
selective for GPR30 that could be used to study this target. 10,000 molecules provided by Chemical
Diversity Laboratories were enriched with GPCR binding ligands and screened for fingerprint-based
similarity to the reference molecule 17B-estradiol. Fingerprints used were Daylight and MDL and
similarities were scored using Tanimoto and Tversky scores. The top 100 ranked hits were selected for
biological testing and a first-in-class selective agonist with a Ki of 11 nM for GPR30 was discovered.

[314].

Stumpfe et al used SecinH3 and analogs as reference compounds for a combined fingerprint
and fingerprint-based support vector machine modeling screen aimed at inhibitors targeting the
multifunctional cytohesins. Cytohesins are small guanine nucleotide exchange factors that stimulate
Ras-like GTPases, which control various regulatory networks implicated in a variety of diseases [315-
320]. The group screened approximately 2.6 million compounds in the ZINC database [29] and the top
145 candidates were selected for biological testing. Of those tested, 40 compounds showed measurable

activity and 26 were more potent than SecinH3 [321].

ljjalli et al created 2D pharmacophoric fingerprints using a query data set of 19 published T-type
calcium channel blockers. T-type calcium channels underlie the generation of rhythmical firing patters in
the CNS and have been implicated in the pathologies of epilepsy and neuropathic pain [322-324].
Specifically, T-type calcium channel 3.2 has been identified as a promising target for novel analgesic
drugs for pathological pain syndromes [324]. A database of two million compounds was collected from
various commercial catalogues and filtered for drug-like qualities, uniqueness, and standardization. The
group used ChemAxon’s PF and CGC GpiDAPH3 [325] fingerprints and tested a subset of 38 unique hits
biologically. 16 hits showed more than 50% blockade of CaV3.2-mediated T-type current. These
compounds proved to be an interesting collection of T-type calcium channel blockers. Some showed
reversible inhibition, whereas others resulted in irreversible inhibition, and one of the compounds

caused alterations in depolarization/repolarization kinetics [326].
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In addition to the enrichment of lead compound population, fingerprints are also used to
increase molecular diversity of test compounds. Fingerprints can be used to cluster large libraries of hits
to allow the sampling of a wide range of compounds without the need to sample the entire library. The
Jarvis-Patrick method clusters compounds by calculating a list of nearest neighbors for each molecule.
Two structures cluster together if they are in each-others list of nearest neighbors and they have at least
K of their J nearest neighbors in common. The MDL keys are also used to eliminate compounds least

likely to satisfy the drug-likeness criterion [291].

Polypharmacology: similarity networks and off-target predictions

Chemical similarity measures such as Tanimoto coefficients are being used to generate networks
capable of clustering drugs that bind to multiple targets in an effort to predict novel off-target effects.
Keiser et al [327] used a Similarity Ensemble Approach (SEA) [328] to compare drug targets based on the
similarity of their ligands. SEA predicts whether a ligand and target will interact using a statistical model
to control for chemical similarity due to chance. Sets of ligands that interact with each target are
compared by calculating Tanimoto coefficients based on standard 2D Daylight fingerprints [329] for each
pair of molecules between two sets. Raw similarity scores between all pairs of ligand sets are calculated
as the sum of all Tanimoto coefficients between the sets greater than 0.57. Because the probability of
achieving Tanimoto coefficients greater than 0.57 increases with set size, this is normalized by expected
similarity due entirely to chance. This model for random chemical similarity is achieved by randomly
generating 300,000 pairs of molecule sets spanning logarithmic size intervals from 10 to 1000 molecules.
Expectation scores are calculated based on raw scores and the probability of achieving the raw score by
random chance and used to sequentially link ligand sets into a clustered map. Keiser et al collected over
900,000 drug-target comparisons from 65,241 ligands and 246 targets in the MDL Drug Data Report
database [330] to generate a target similarity network. Another drug database, WOMBAT [331] included
interactions not listed in the MDDR database and the authors tested the predictability of their networks
by searching their networks for interactions found in WOMBAT but not MDDR. They found that 19% of
the off-target effects listed in WOMBAT but not in MDDR were captured in their network. In addition to
those found in MDDR and WOMBAT, 257 additional drug-target predictions were captured in their
network, 184 of which had not been documented. The authors tested 30 of these undocumented
predictions using radioligand competition assays and verified 23 interactions with binding constants less
than 15 uM. Some of these interactions may help to explain well-known side effects. For example, the

authors discovered an interaction between B-adrenergic receptors and Selective Serotonin Reuptake
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Inhibitors Prozac (fluoxetine) and Paxil (paroxetine). This may explain the selective serotonin reuptake
inhibitors discontinuation syndrome seen with these drugs that are analogous to discontinuation

syndrome seen with B-blockers.

Lounkine et al [332] used the SEA approach combined with adverse drug reaction (ADR)
information to generate a drug-target-ADR network. This network was then used to predict off-target
interactions that may explain specific ADRs. The authors experimentally tested 694 predictions and
verified 151 interactions with ICsp values less than 30 uM. The clinical relevance of these off-target
interactions was explored through the enrichment of target-ADR pairs within their network. For
example, abdominal pain has been reported for 45 drugs that interact with COX-1, and based on their
network, the ADR-target pair abdominal pain-COX-1 was enriched (represented in a greater degree
within the network than average) 2.3-fold, reflecting a predicted correlation between abdominal pain
and COX-1 interaction. Another target-ADR correlation is predicted for sedation and H1 interaction with

an enrichment of 4.9.

1.4.3 Quantitative Structure Activity Relationship models

Quantitative structure-activity relationship (QSAR) models describe the mathematical relation
between structural attributes and target response of a set of chemicals [333]. Classical QSAR is known as
the Hansch-Fujita approach and involves the correlation of various electronic, hydrophobic, and steric
features with biological activity. In the 1960s, Hansch and others began to establish QSAR models using
various molecular descriptors to physical, chemical, and biological properties focused on providing
computational estimates for the bioactivity of molecules [334]. In 1964, Free and Wilson developed a
mathematical model relating the presence of various chemical substituents to biological activity (each
type of chemical group was assigned an activity contribution), and the two methods were later

combined to create the Hansch/Free-Wilson method [335, 336].

The general workflow of a QSAR-based drug discovery project is to first collect a group of active
and inactive ligands and then create a set of mathematical descriptors that describe the
physicochemical and structural properties of those compounds. A model is then generated to identify
the relationship between those descriptors and their experimental activity, maximizing the predictive
power. Finally, the model is applied to predict activity for a library of test compounds that were encoded
with the same descriptors. Success of QSAR depends not only on the quality of the initial set of

active/inactive compounds, but also on the choice of descriptors and the ability to generate the
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appropriate mathematical relationship. One of the most important considerations regarding this
method is the fact that all models generated will be dependent on the sampling space of the initial set of
compounds with known activity, the chemical diversity. In other words, divergent scaffolds or functional
groups not represented within this “training” set of compounds will not be represented in the final
model, and any potential hits within the library to be screened that contain these groups will likely be
missed. Therefore, it is advantageous to cover a wide chemical space within the training set. For a

comprehensive guide on performing a QSAR-based virtual screen, please see the review by Zhang [333].

Multidimensional QSAR: 4D and 5D Descriptors

Multidimensional QSAR (mQSAR) goes beyond the self-contained properties of a compound and
qguantifies all energy contributions of ligand binding including desolvation, loss of conformational

entropy, and binding pocket adaptation.

4D-QSAR is an extension of 3D-QSAR that treats each molecule as an ensemble of different
conformations, orientations, tautomers, stereoisomers, and protonation states. The fourth dimension in
4D-QSAR refers to the ensemble sampling of spatial features of each molecule. A receptor-independent
(RI) 4D-QSAR method was proposed by Hopfinger et al [337]. This method begins by placing all
molecules into a grid and assigning interaction pharmacophore elements to each atom in the molecule
(polar, nonpolar, hydrogen bond donor, etc.). Molecular dynamic simulations are used to generate a
Boltzmann weighted conformational ensemble of each molecule within the grid. Trial alignments are
performed within the grid across the different molecules, and descriptors are defined based on
occupancy frequencies within each of these alignments. These descriptors are called grid cell occupancy
descriptors (GCODs). A conformational ensemble of each compound is used to generate the GCODs

rather than a single conformation.

5D-QSAR has been developed to account for local changes in the binding site that contribute to
an induced fit model of ligand binding. In a method developed by Vedani and Dobler [338], induced fit is
simulated by mapping a “mean envelope” for all ligands in a training set on to an “inner envelope” for
each individual molecule. Their method involves several protocols for evaluating induced-fit models
including a linear scale based on the adaptation of topology, adaptations based on property fields,
energy minimization, and lipophilicity potential. Using this information, the energetic cost for adaptation

of the ligand to the binding site geometry is calculated.
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Receptor-Dependent 3D/4D-QSAR

Although QSAR methods are especially useful when structural information regarding target
binding site is not available, more recent QSAR methods that specifically include such information may
be used when possible. One method, known as free energy force field (FEFF) 3D-QSAR trains a ligand-
receptor force field QSAR model that describes all thermodynamic contributions for binding [339]. A 4D-
QSAR version of FEFF has also been developed to apply this method to the RI-4D-QSAR methods
described above [339]. Structurally, the analysis is focused solely on the site of interaction between the
ligand and target, and all atoms of interest are assigned partial charges. Molecular dynamic simulations
are applied to these structures to generate a conformational ensemble following energy minimization.
This approach avoids any alignment issues present in the RI-4D-QSAR method, since the binding site
constrains the three-dimensional orientations of the ligands. The conformation ensembles of receptor-
ligand complexes generated are placed in a similar grid-cell lattice as used in RI-4D-QSAR, and occupancy
profiles are calculated to generate receptor-dependent RD-4D-QSAR models. When tested alongside RI-
4D-QSAR against a set of glucose analogue inhibitors of glycogen phosphorylase, predictability of RD-4D-
QSAR models outperformed those of RI-4D-QSAR [339].

Linear regression and related methods

Linear QSAR models may be generated using multivariable linear regression analysis (MLR),
principal component analysis (PCA), or partial least square analysis (PLS) [249]. MLR computes biological
activity as a weighted sum of descriptors or features. The method requires typically 4 or 5 data points
for every descriptor used. PCA increases the efficiency of MLR by extracting information from multiple
variables into a smaller number of uncorrelated variables. Analysis of results is however not always
straightforward [340, 341]. It can be applied with smaller sets of compounds than MLR. PLS combines
MLR and PCA and extracts the dependent variable (biological activity) into new components to optimize
correlations [342]. PCA or PLS are commonly used for developing models for the molecular interaction
field algorithm CoMFA and CoMSIA [249]. A major advantage to these models is that they can be rapidly
trained with the tools of linear algebra. The major drawback, however, is that chemical structure often

correlates with biological activity in a non-linear fashion.
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Nonlinear models using machine learning algorithms

Artificial Neural Networks (ANNs) are one of the most popular nonlinear regression models
applied to QSAR-based drug discovery [343]. These models belong to the class of self-organizing
algorithms in which a neural network learns the relationship between descriptors and biological activity
through iterative cycles of prediction and improvement [249]. A major concern with neural networks is
their sensitivity to overtraining, resulting in excellent performance within the training set but reduced
ability to assess novel compounds. During the iterative learning process, therefore, ANN performance is

commonly measured against an “independent” set of compounds not used to train the model.

Support Vector Machine (SVM) is a kernel-based supervised learning method that was
introduced by Vapnik and Lerner [344, 345]. It is based on statistical learning theory and the Vapnik-
Chervonenkis dimension [346, 347] and seeks to divide sets of patterns (molecules described with
descriptors) based on their classification (biological function). Once this separation is performed on a
training dataset, novel patterns can be classified based on which side of the boundary they fall. The
simplest form of separation can be imagined as a straight line down the center of a graph with the two
classes clustered in opposite corners of the graph. Because two classes can be separated by many
potential lines, SVM, a maximal margin classifier, defines the hyperplane with the widest margin
between these two classes. The patterns (compounds) that line the closest border of each class are
known as support vectors. They define the two hyperplanes separated by that margin and are used to
predict classes for novel unclassified patterns. All patterns that lie further from these boundaries are not
support vectors and have no influence on the classification of novel patterns. Hyperplanes defined by
the lowest number of support vectors are preferred. The solution is a parallel decision boundary that

lies equidistant from the two hyperplanes defined by their respective support vectors [348-350].

Ideally, the margin between hyperplanes contains no patterns (molecules). However, to account
for noise within datasets and other issues that prevent a linear solution from being reached, a soft-
margin classifier is used that allows for misclassification of some data and the existence of patterns
within the margin between hyperplanes. In this approach, a penalization constant can be adjusted, with

higher values stressing classification accuracy and lower values providing more flexibility.

SVM was initially designed for datasets that could be separated linearly. However, especially in
CADD application, this is not always possible. Therefore, SVM incorporates a high-dimensional space in

which linear classification becomes possible. This involves the preprocessing of input data using feature
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functions where the input variables are mapped into a Hilbert space of finite or infinite dimension [348].
This strategy, however, must be offset by the fact that higher dimensional space creates more
computational burden and contributes to overfitting [351]. SVM utilizes kernel functions to ease the
computational demand imposed by the existence of higher dimensional data. These special nonlinear
functions combine the feature functions in a way that avoids explicit transformation and preprocessing
using feature functions [348]. In other words, the higher dimensional space that allows for linear

separation does not need to be dealt with directly.

Several methods of SVM optimization have been considered. SVM parameter optimization is
accomplished by solving the quadratic programming problem with a termination condition called the
Klarush-Kuhn-Tucker condition that defines when parameters are at their minima. This can be
computationally demanding and difficult to implement. Therefore, decompositional methods have been
used to discard all zero parameters [352]. The sequential minimization optimization algorithm is a
commonly used alternative introduced by Platt [353]. This method breaks the overall quadratic
programming problem into subproblems and solves the smallest possible optimization problem at every
stop involving only two parameters. One problem with sequential minimization optimization, however,
is that it can result in selection of support vectors that include more than those necessary for the
optimal model. Researchers have found that identical solutions can be achieved even after several of
these support vectors have been removed [354]. Because the time needed to predict a pattern
classification with an SVM model is dependent on the number of support vectors, it is beneficial to
eliminate unnecessary or redundant support vectors. Zhan and Shen describe a four step method for
removing unnecessary support vectors [354]. Once the SVM has completed training, the support vectors
that contribute to the most curvature along the hyper-surface are removed. The SVM model is then

retrained and the hyper-surface is further approximated with a subset of support vectors.

Decision tree learning is a supervised learning algorithm that works by iteratively grouping the
training dataset into smaller and more specific groups. The resulting classification resembles a tree in
which each feature is broken into different values and each of these values is subsequently divided
based on values of a different feature. The order in which features are divided is usually based on an
information gain (difference between information before and after the branching) parameter with the
highest valued features appearing first [355, 356]. Various methods are used to sort the features, with
the overall goal being the smallest possible decision tree providing the best performance. C4.5 is a

widely used DT algorithm that calculates information gain based on information entropy [357, 358]. The
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information entropy of a given classification that can divide the dataset into two classes is calculated
based on the number of compounds in either class. The information entropy of the system when
dividing the dataset into two subsets using a specific feature is calculated based on the number of
compounds from each class in either of the feature subsets. Finally, the information gain for that specific
feature is calculated as the difference between the information entropy of the classification and the

information entropy of the system.

Once the decision tree has been optimized for the training set, new compounds can be classified
by applying their descriptors to the decision tree and activities can be predicted based on which subset

they fall into and the activities of the training compounds that are contained in that subset.

Quantitative Structure-Activity Relationship applications in computer-aided drug design

QSAR has been used to screen for novel therapeutics in the same way both pharmacophore
models and fingerprint similarity methods have been applied to virtual libraries. Casanola-Martin et a/
used Dragon (Talete S.R.L., Italy) software to define descriptors for tyrosinase inhibitors. Tyrosinase is a
copper-containing enzyme that catalyzes two reactions in the melanin biosynthesis pathway [359, 360].
Altered melanin synthesis is found in multiple disease states including hyperpigmentation, melisma, and
age spots. Additionally, this protein has been implicated in dopamine neurotoxicity in Parkinson’s
disease [361]. Descriptors were generated using a highly variable training set of 245 active tyrosinase
inhibitors and 408 inactive molecules. These descriptors include constitutional, topological, BCUT,
Galvez, topological charge, 2D autocorrelations, and empirical properties and descriptors. Seven models
were created using linear discriminant analysis. In vitro testing revealed their most potent inhibitor with
an ICsg of 1.72 pM. This presents a more potent inhibition of tyrosinase than the current reference drug

L-mimosine (ICso = 3.68 uM) [362].

Mueller et al used ANN QSAR models to identify novel positive and negative allosteric
modulators of mGIlu5. This receptor has been implicated in neurologic disorders including anxiety,
Parkinson’s disease, and schizophrenia [363, 364]. For the identification of positive allosteric modulators
(PAMs), they first performed a traditional high throughput screen of approximately 144,000 compounds.
This screen yielded a total of 1356 hits, a hit rate of 0.94%. The dataset from this HTS was then used to
develop a QSAR model that could be used in a virtual screen. To generate the QSAR model, a set of 1252
different descriptors across 35 categories were calculated using the ADRIANA (Molecular Networks

GmbH, Erlangen, Germany) software package. The descriptors included scalar, 2D, and 3D descriptor
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categories. The authors iteratively removed the least-sensitive descriptors to create the optimal set. This
final set included 276 different descriptors, including scalar descriptors such as molecular weight up to
3D descriptors, including the radial distribution function weighted by lone-pair electronegativity and it
electronegativity. A virtual screen was performed against approximately 450,000 commercially available
compounds in the ChemBridge database. Eight hundred twenty-four compounds were tested
experimentally for the potentiation of mGlu5 signaling. Of these compounds, 232 were confirmed as
potentiators or partial agonists. This hit rate of 28.2% was approximately 30 times greater than that of
the original HTS, and the virtual screen took approximately 1 hour to complete once the model had

been optimized (figure 1.9) [365].

Cl

131Cs = 75 M 141C5; = 124 nu

Figure 1.9 QSAR-based virtual screening of mGlu5 negative allosteric modulators yields lead compounds
that contain substructure combinations taken across several known actives used for model generation.

Source: [365]

In a separate study, Mueller et al [366] used a similar approach to identify negative allosteric
modulators for mGlu5. Rodriguez et al previously performed a traditional HTS screen of 160,000
compounds for allosteric modulators of mGlu5 and found 624 antagonists [367]. The QSAR model was

used to virtually screen over 700,000 commercially available compounds in the ChemDiv Discovery
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database. Hits were filtered for drug-like properties, and fingerprint techniques were used to remove
hits that were highly similar to known actives to identify new chemotypes. Seven hundred forty-nine
compounds were tested in vitro, and 27 compounds were found to modulate mGlu5 signaling. This hit
rate of 3.6% was a significant increase over the 0.2% hit rate of the traditional HTS screen. The most
potent of the compounds showed in vitro 1Cso values of 75 and 124 nM, respectively, and contained a
previously unidentified scaffold. After analog synthesis and stability optimization, the experimenters
tested the effect of their best lead in vivo against two behaviors known to involve mGlu5: operant
sensation seeking behavior [368] and the burying of foreign objects in deep bedding [369]. Both

behaviors were found to be inhibited given intraperitoneal administration of their lead analogue.

QSAR has also been applied to de novo drug design techniques when structural information
regarding the target is unknown. Descriptor and model generation is used to score the de novo
generated molecules in place of other structure-based scoring techniques such as docking. Most
commonly, compound generation involves iterative algorithms in which structures are repeatedly
modified and their biological activities are estimated using QSAR models. In the simplest case,
modifications can be achieved by randomly swapping parts of the structure such as functional groups.
Ligand-based de novo drug design, however, is less practiced than structure-based de novo design
because of the inherent challenges of accurately evaluating a new molecule in the absence of the
receptor structure. To address the challenge of scoring the newly generated molecules, similarity based

methods have been applied in addition to QSAR models [370].

Feher et al used five selective norepinephrine reuptake inhibitors as a training set to generate
2200 molecules using a combination of structural similarity, 2D pharmacophore similarity, and other
properties to drive the evolution [371]. One of the top scoring compounds was found to be highly active

and has been selected as a lead compound in a project at Neurocrine [371].

Golla et al applied QSAR-based methods to the design of novel chemical penetration enhancers
(CPEs) to be used in transdermal drug delivery [372]. This group used a genetic algorithm to design novel
CPEs. In this paradigm, new molecules are generated based on crossover and mutation operations
randomly applied to candidates. All generated molecules are scored based on the QSAR model and
predicted property values, and the highest scoring molecules are retained for new rounds of evolution.
Two hundred seventy-two CPEs were used to generate the QSAR model and provide seed molecules for

the genetic algorithm. The QSAR model was created using sequential regression analysis and heuristic
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analysis using CODESSA and contained a final set of 40 descriptors that optimally predicted properties,
including skin penetration coefficient, logP, melting point, skin sensitization, and irritation. The top
scoring molecules were validated experimentally for permeation and toxicity using Franz Cell with
porcine skin and HPLC analysis as well as toxicity effects on human foreskin fibroblasts and porcine
abdominal skin. The study resulted in the identification of 18 novel CPEs, four of which showed minimal

or no toxic effects [372].

Hoeglund et al used QSAR modeling combined with synthetic optimization in a follow-up to
their most potent hit from a 2008 in silico screen for inhibitors of autotaxin. Autotaxin is an autocrine
motility factor and has been linked to cancer progression, multiple sclerosis, obesity, diabetes,
Alzheimer’s Disease, and chronic pain through the production of LPA [373-378]. Analogues of the lead
compound were tested and 4 of the 30 exhibited ICso less than or equal to the lead. The most potent
compound showed threefold higher affinity for autotaxin than the lead, whereas another compound

showed twofold higher affinity [379].

CoMFA and CoMSIA 3D-QSAR methods have also been used to predict novel therapeutic
compounds for a variety of disease targets. Ke et al [380] generated CoMFA and CoMSIA models using
66 previously discovered pyrazole- and furanopyrimidine-based Aurora Kinase inhibitors [381-383].
Aurora kinase A is a serine/threonine kinase involved in mitosis [384] that has been shown to be
involved in various forms of cancer [385, 386]. Using the model that showed the best predictive
performance, the group synthesized a novel compound (compound 67). This compound was tested in
vitro and displayed an ICso of 25 nM against Aurora kinase A. Additionally, compound 67 displayed

antiproliferative activity with an ICso of 23 nM against the HCT-116 colon cancer cell line.

Chai et al [387] used 26 previously identified anti-Hepatitis B (HBV) compounds [388, 389] to
generate CoMFA models based on steric and electrostatic fields and CoMSIA models based on steric,
electrostatic, hydrophobic, and H-bond acceptor fields. Three compounds were designed using these
models and subsequently tested against replication of HBV DNA in HBV-infected 2.2.15 cells. The most
potent compound displayed an ICso of 3.1 UM, whereas the other two showed ICso values of 5.1 uM and
3.3 uM. These compounds were comparatively more potent than the control lamivudine which displays

an I1Csp of 994 uM.

Jiao et al [390] generated CoMFA models using 38 styrylquinoline derivatives in an effort to

understand and design potential HIV integrase inhibitors. Their model suggested that a bulky group near
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the carboxyl group at C-7 in the quinolone ring may confer increased inhibition. Additionally, the
presence of an H-bonding donor is favorable near the C-7 atom. Based on these predictions, they
designed several compounds that were tested against purified HIV Integrase to determine inhibitory
activity on the strand transfer reaction of integrase. Four of these compounds showed higher inhibitory

activity than their positive control Baicalein (Sigma-Aldrich, St. Louis, MO).

Over the past several decades, over 18,000 QSAR models have been reported for a variety of
targets with a variety of descriptors. C-QSAR was used to generate a comprehensive database of QSAR
models [391]. This collection has provided not only access to models for novel applications, but allows
the analysis of QSAR models to identify challenges in the field. Kim examined the C-QSAR database for
outlier patterns, i.e., compounds that showed poor prediction when the average prediction for the
model was good. They found that over the 47 QSAR models examined, the number of compounds
scoring as outliers ranged from 3 to 36%. Twenty-six of the 47 datasets showed 20% or more compound
outliers [392]. They presented several theories as to why QSAR models are so sensitive to the generation
of outliers. One possibility came from analysis of the RCSB protein databank where they discovered
examples where related analogs were shown to bind in very different poses. Another explanation
offered was protein flexibility, leading to multiple binding modes and or binding sites on the same
protein. These different binding modes/sites may reflect different structure-activity relationships for
molecules within a given dataset. Analogous compounds that do not share the same binding mode,

therefore, present unique challenges to the classification of ligands [392].

1.4.4 Selection of optimal descriptors/features

Hristozov et al analyzed the performance of different descriptors across a range of
benchmarking datasets and found that the performance of a particular descriptor was often dependent
on the activity class. It was found that topological autocorrelation usually offers the best
dimensionality/performance ratio. The fusion of the ranked lists obtained with RDF codes and 2D
descriptor improved results because RDF codes, while giving similar results, covered different parts of
the activity spaces under investigation [34]. This suggests that it is not possible to select an optimal set
of descriptors independent of the problem; a custom-optimized descriptor set is needed for optimal

performance of LB-CADD.

Excessive numbers of descriptors or features can add noise to a model, reducing its predictive

power. Feature selection techniques remove unnecessary features to minimize the number of degrees
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of freedom of the model. Thus, the ratio of data points versus degrees of freedom increases, leading to
models of increased predictive power. Techniques that have proven successful in QSAR modeling
include selecting features by measures such as information gain [393] and F—score, sequential feature
forward selection or feature backward elimination [394], genetic algorithm [395, 396], swarm

optimization [395], and input sensitivity analysis [366].

Information gain measures the change of information entropy from the data distribution of two
classes (active and inactive compounds) of one feature compared with the entropy of the feature
overall. Thus, discriminatory power of the individual feature increases with information gain. An F-score
is calculated that considers the mean and standard deviation of each feature across data classes. The
higher the F-score value, the greater discriminatory power of that feature. Selecting features by
individual benchmarks has the disadvantage that correlation between features is ignored. For example,
let us assume a feature has a high information gain. However, if a second feature highly correlated is
already part of the model, no improved model will result from adding the feature. More complex

feature selection schemes address this limitation.

Sequential feature forward selection is a deterministic, greedy search algorithm. In each round,
the best feature set from the previous round N appends a single feature from the pool of M remaining
features and trains the M models using the N + 1 features. The best performing feature set from this
round then advances to the next round. This continues until all features are used in a final feature set.
The best performing model over all iterations is then chosen as the best feature set. This process is time
consuming and not guaranteed to yield the optimal feature set; the single best performing feature will
always be part of the model. However, there is no guarantee that it is needed. Feature backward
elimination inverts the process starting from a model trained from all features, eliminating one after the
other. Although the process is more robust in terms of identifying the optimal model, it also requires
substantial computer time. Therefore, alternative approaches have been explored to optimize feature

sets.

Genetic algorithms mimic the process of evolution to create an efficient search heuristic. This
method uses a population of individuals (distinct feature sets) to encode candidate solutions. The initial
individuals can be generated randomly. In each iteration, or generation, the fitness of each individual is
evaluated, i.e., the predictive power of the derived LB-CADD model. This fitness function is the

performance metric of a model trained using that individual as the feature set. Individuals are then
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selected based on the fitness and undergo recombination and/or mutation to form the next generation.
The algorithm continues until a desired fitness score is achieved or a set number of generations have

been completed.

Swarm optimization algorithms, such as ant colony optimization [397], particle swarm
optimization, and artificial bee colony optimization [398], are optimization techniques based on the
organized behavior of social animals such as birds. The algorithm iteratively searches for a best solution
by moving individuals around the search space guided by both the local best solution as well as the best
solutions found so far in the entire population. The best overall solution is constantly updated, letting

the swarm converge towards the optimal solutions.

Input sensitivity analysis seeks to combine speed of individual benchmark values with accuracy
of methods that take correlation into account. First, a model is constructed using all features. Next, the
influence of each feature on the model output is determined: Each feature x; is perturbed, and the
change in output y is computed. This procedure numerically estimates the partial derivative of the

output with respect to each input, a measure that is effective in selecting optimal descriptor sets [366].

1.4.5 Pharmacophore mapping

In 1998, the IUPAC formally defined a pharmacophore as “the ensemble of steric and electronic
features that is necessary to ensure the optimal supramolecular interactions with a specific biological
target structure and to trigger (or to block) its biological response” [399]. In terms of drug activity, it is
the spatial arrangement of functional groups that a compound or drug must contain to evoke a desired
biological response. Therefore, an effective pharmacophore will contain information about functional
groups that interact with the target, as well as information regarding the type of noncovalent
interactions and interatomic distances between these functional groups/interactions. This arrangement
can be derived either in a structure-based manner by mapping the sites of contact between a ligand and

binding site or in a ligand-based approach.

To generate a ligand-based pharmacophore, multiple active compounds are overlaid in such a
way that a maximum number of chemical features overlap geometrically [400]. This can involve rigid 2D
or 3D structural representations or, in more precise applications, incorporate molecular flexibility to
determine overlapping sites. This conformational flexibility can be incorporated by precomputing the

conformational space of each ligand and creating a general-purpose conformational model or
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conformations can be explored by changing molecule coordinates as needed by the alighment algorithm
[400]. For example, one popular pharmacophore-generation software package, Catalyst (Accelrys, Inc.,
San Diego, CA), uses the “polling” algorithm [401] to generate approximately 250 conformers that it

uses in its pharmacophore generation algorithm [249].

Superimposing active compounds to create a pharmacophore

Molecules are commonly aligned through either a point-based or property-based technique.
The point-based technique involves superposing pairs of points (atoms or chemical features) by
minimizing Euclidean distances. These alighnment methods typically use a root-mean-square distance
(RMSD) to maximize overlap [402]. Property-based alignment techniques, on the other hand, use
molecular field descriptors to generate alignments [400]. These fields define 3D grids around
compounds and calculate the interaction energy for a specific probe at each point. The distribution of
interaction energies is represented by Gaussian functions, and the degree of overlap between Gaussian
functions of two aligned compounds is used as the objective scoring function to maximize alignment

[402]. One popular field generation method for property-based alignments is GRID [304].

Molecular flexibility is always an important consideration when aligning compounds of interest
and several approaches are used to efficiently sample conformational space. These approaches include
rigid, flexible, and semiflexible methods. Rigid methods require knowledge of the active conformation of
known ligands and align only these active conformations. This is only applicable, however, when the
active conformation is known with confidence. Semiflexible methods overlay pregenerated ensembles
of static conformations and flexible methods, being the most computationally expensive, perform
conformational search during the alignment process, often using molecular dynamics or random
sampling of rotatable bonds. Because the conformational space can increase substantially with an
increase in the number of rotatable bonds, strategies are often used to limit the exploration of
conformational space through the use of reference geometry (often an active ligand with low flexibility).

This method is known as the active analog approach [403].

Pharmacophore feature extraction

A pharmacophore feature map is carefully constructed so as to balance generalizability with
specificity. A general definition might categorize all functional groups having similar physiochemical

properties (i.e., similar hydrogen-bonding behavior, ionizability) into one group, whereas specific feature
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definitions may include specific atom types at specific locations. More general feature definitions
increase the population of compounds that match the pharmacophore. They allow the identification of
novel scaffolds but also increase the ratio of false-positives. The level of feature definition
generalizability is usually determined by the algorithm used to extract feature maps and through user-
specified parameters. The most common features used to define pharmacophore maps are hydrogen
bond acceptors and donors, acidic and basic groups, aliphatic hydrophobic moieties, and aromatic
hydrophobic moieties [249]. Features are commonly implemented as spheres with a certain tolerance

radius for pharmacophore matching [400].

Pharmacophore Algorithms and Software Packages

The most common software packages employed for ligand-based pharmacophore generation
include Phase [404], MOE [325], Catalyst [405, 406], LigandScout [407], DISCO [408], and GASP [409].
These packages use different approaches to molecular alignment, flexibility, and feature extraction.
Catalyst approaches alignment and feature extraction by identifying common chemical features
arranged in certain positions in three-dimensional space. These chemical features focus on those
expected to be important for interaction between ligand and protein and include hydrophobic regions,
hydrogen-bond donors, hydrogen-bond acceptors, positive ionizable, and negative ionizable regions.
Chemical groups that participate in the same type of interaction are treated as identical. Catalyst
contains two algorithms that can be used for pharmacophore construction. HipHop is the simpler of the
two algorithms and looks for common 3D arrangements of features only for compounds with a
threshold activity against the target. It begins with best alignment of only two features (scored by RMS
deviations) and continues expanding the model to include more features until no further improvements
are possible. This method is only capable of producing a qualitative distinction between active and
inactive predictions. HypoGen, on the other hand, employs biological assay data such as I1Cso values for
active compounds as well as a set of inactive compounds. Initial pharmacophore construction in
HypoGen is identical to HipHop but includes additional algorithms that incorporate inactive compounds
and experimental values. These algorithms compare the best pharmacophore from the “HipHop” stage
with the inactive compounds and features common to the inactive set are removed. Finally, HypoGen
performs an optimization routine that attempts to improve the predictive power of the pharmacophore
by making adjustments and scoring the accuracy in predicting the specific experimental activities [405,
410]. This results in models that are capable of quantitative predictions that can predict specific levels of

activity. Ten different models are created following a simulated annealing optimization [411]. Both
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Catalyst methods incorporate molecular flexibility by storing compounds as multiple conformations per
molecule. The Poling algorithm published by Smellie et al [401] is employed to increase the
conformational variation within the set of conformations per molecule. This allows Catalyst to cover the

greatest extent of conformational space while keeping the number of conformations at a minimum.

Phase approaches alignment and feature extraction using a tree-based partitioning algorithm
and an RMS deviation-based scoring function that considers the volume of heavy atom overlap. It
incorporates molecular flexibility through a preparation step where conformational space is sampled

using a Monte Carlo or torsional search [402].

DISCO regards compounds as sets of interpoint distances between heavy atoms containing
features of interest. Alignments are based on the spatial orientation of common points among all active
compounds. DISCO considers multiple conformations that have been prespecified by the user during the

alignments and uses a clique-detection algorithm for scoring alignments [410].

GASP uses a genetic algorithm with iterative generations of the best models for pharmacophore
construction [409]. Flexibility is handled during the alignment process through random rotations and
translations. Conformations are optimized by fitting them to similarity constraints and weighing the

conformations that fit these constraints more than conformations that do not [411].

Different software packages can produce different results for the same datasets, and their
strengths and weaknesses should be considered prior to any application. For example, Catalyst only
permits a single bonding feature per heavy atom, whereas LigandScout allows a hydrogen-bond donor
or acceptor to be involved in more than one hydrogen-bonding interaction [400]. MOE, on the other
hand, allows a more customizable approach to hydrogen-bonding features. Lipophilic areas are
generally represented as spheres located on hydrophobic atom chains, branches, or groups in a similar
manner across software packages but with slight nuances. Although subtle, these differences have
important consequences on prediction models. Additionally, software packages that do not attach a
hydrophobic feature to an aromatic ring are unable to predict that an aromatic group may be positioned
in a lipophilic binding pocket [400]. The level of customizability also differs across pharmacophore
software packages and can influence predictions. Catalyst allows the specification of one or more
chemical groups that satisfy a particular feature, whereas Phase allows not only matching chemical
groups but also a list of exclusions for a given feature. MOE offers a level of customization that allows

the user to implement entirely novel pharmacophore schemes as well as modification of existing
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schemes. However, this requires additional levels of expertise to program [400]. For a comprehensive
analysis of the differences between commercial pharmacophore software packages, please see the 2007

review by Wolber et al [400] and a 2002 comparison of Catalyst, DISCO, and GASP by Patel et al [412].

Ligand-based pharmacophore methods have been used for the discovery of novel compounds
across a variety of targets. New compounds can have activity in the micromolar and nanomolar range
and reflect proof of concept with in vivo disease models. Al-Sha’er and Taha used a diverse set of 83
known Hsp90-a inhibitors and the HypoGen module of Catalyst to generate a pharmacophore model.
Hsp90-a is a molecular chaperone that is involved in protein folding, stability, and function [413]. By
interacting with many oncogenic proteins, it has been shown to be a valid anticancer drug target [414,
415]. The pharmacophore model was used to screen the NCI list of compounds (238,000) using the “Best
Flexible” search option. The top 100 hits were evaluated in vitro and their most potent compound had

an ICsp of 25 nM [416].

Schuster et al used three steroidal inhibitors and two non-steroidal inhibitors of 17B-HSD3 and
Catalyst to create a pharmacophore model that was used to screen for novel 17B-HSD3 inhibitors.
Hydroxysteroid dehydrogenases (HSD3) catalyze the oxidoreduction of alcohols or carbonyls and the
final step in male and female sex hormone biosynthesis. Therefore, these enzymes are suggested
therapeutic targets for control of estrogen- and androgen-dependent diseases such as breast and
prostate cancer, acne, and hair loss [417]. Eight commercial databases were screened, and 15 top
scoring hits were tested in vitro at 2 uM. Five were verified to be inhibitors of 17B-HSD3 with the most

potent compound able to inhibit 173-HSD3 by 67.1% at 2 uM [418].

Noha et al developed 5-point pharmacophore models using the HipHop algorithm of Catalyst based on a
training set of compounds with ICsp < 100 nM against IKK-B as potential anti-inflammatory and
chemosensitizing agents. The authors used 128 active and 44 inactive compounds to develop a
pharmacophore model [419]. Their model was further refined with exclusion volume spheres and shape
constraints to improve the scoring of compounds in their virtual high-throughput screen against the
National Cancer Institute molecular database. Ten compounds were selected and the most potent
compound (NSC719177, Cy6H31NO4) showed inhibitory activity against IKK-B in a cell free in vitro assay
with ICso of 6.95 puM. Additionally, this compound inhibited NF-kB activation induced by TNF-a in HEK293
cells with an ICso of 5.85 uM [419].
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Chiang et al used the HypoGen module of Catalyst to generate four-feature pharmacophore
models based on an indole series of 21 compounds that showed antiproliferative activity through the
inhibition of tubulin polymerization/microtubule depolymerization. Disruption of microtubules during
the mitotic phase of the cell cycle can induce cell-cycle arrest and apoptosis [420]. Therefore, inhibitors
of tubulin polymerization are useful cancer treatments. One hundred thirty thousand compounds of the
ChemDiv database and an in-house compound collection were screened, and the top 142 hits were
tested in vitro. Four novel compounds were discovered with antiproliferative activity. The most potent
compound displayed antiproliferative activity in human cancer KB cells with an 1Cso of 187 nM. This
compound also inhibited the proliferation of other cancer cell types, including MCF-7, NCI-H460, and SF-
268 and demonstrated anticancer effects in a histoculture system. In vitro assays revealed that this

compound inhibited tubulin polymerization with an I1Cso of 4.4 uM [421].

Doddareddy et al generated a pharmacophore model containing three hydrophobic regions, one
positive ionizable center, and two hydrogen bond acceptor groups for the identification of novel
selective T-type calcium channel blockers. The most potent hit showed an ICso of 100 nM [422, 423]. T-
type calcium channels are involved in rhythmical firing patterns in the CNS and present therapeutic

targets for the treatment of epilepsy and neuropathic pain [326].

Lanier generated pharmacophores containing five feature points using Catalyst and CombiCode
(Deltagen Research Laboratories, San Diego CA) software and an exclusion sphere generated in MOE
based on a training set of 100 active and 1000 inactive compounds. This model was used to guide and
evaluate variations of a core molecule, leading them to a gonadotropin releasing hormone GnRH
receptor antagonist with receptor affinity below 10 nM [424]. GnRH is involved in the regulatory
pathways of follicle stimulating hormone and luteinizing hormone. It is a target for disease therapeutics

including endometriosis, uterine fibroids, and prostate cancer [425, 426].

Roche et al used known H3 antagonists to generate a pharmacophore model with four features
including a distal positive charge, an electron-rich position, a central aromatic ring, and either a second
basic amine or another aromatic [427]. Histamine is a central modulator in the central and peripheral
nervous systems through four receptors (H1-H4) [428]. H3 is a presynaptic autoreceptor that modulates
production and release of histamine and other neurotransmitters [429]. H3 antagonists have been
studied in Alzheimer’s disease, attention deficit disorder, and schizophrenia [430]. Additionally, it has

been suggested to be involved in appetite and obesity [431] .This model was used in a de novo approach
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with the Skelgen software [432] to generate novel compounds from fragment libraries that match the
pharmacophoric restraints. They found a series of four compounds with high potency and selectivity for
H3. Their most potent compound showed inverse agonist activity with an ECsp of 200 pM in a GTPyS

functional assay and a binding affinity Ki towards H3 of 9.8 nM [427].

Chao et al used pharmacophore-based design to take advantage of the therapeutic benefits of
Indole-3-carbinol (I13C) in the treatment of cancer. 13C is known to suppress proliferation and induce
apoptosis of various cancer cells through the inhibition of Akt activation [433, 434]. I3C, however, has a
poor metabolic profile and low potency, likely due to the fact that its therapeutic behavior comes from
only four of its metabolites. By overlaying these low energy conformers of these four metabolites, Chao
et al was able to identify similar N-N’ distances and overlapping indole rings (figure 1.10) [435]. This led
them to design SR13650, which showed an 1Cs of 80 nM. Tumor xenograft studies using MCF-7 cells
revealed antitumor effects at 10 mg/kg for 30 days. Computational analysis was also applied to increase
the bioavailability, and three compounds showed 45-60% tumor growth inhibition in vivo compared to
the 26% growth inhibition of SR13650. SR13668 was the most potent compound and also displayed
antitumor effects in other xenograft models. In vitro, SR13668 was shown to inhibit Akt activation by
blocking growth-factor stimulated phosphorylation and showed favorable toxicological profiles [435].

This drug is currently in phase 0 trials for the treatment of cancer (figure 1.10) [436].
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Figure 1.10 SR13668, an anticancer therapeutic was discovered using ligand-based pharmacophore

screening based on active components of indole-3-carbinol. Source: [435].

Dayam et al [437] used pharmacophore modeling in an effort to identify novel HIV-1 integrase
(IN) inhibitors. IN is the third viral enzyme in HIV and is responsible for integration of viral DNA into host
cell chromosomes through 3’-processing and strand transfer [438, 439]. This model was created with the
HipHop algorithm within Catalyst and was based on the Quinolone 3-carboxylic acid class of IN inhibitors
that show ICso values ranging from 43.5 to 7.2 nM and ECs against HIV-1 replication of 805 to 0.9 nM
[440]. The final pharmacophore hypothesis consisted of four features including a negatively ionizable
feature, hydrogen-bond acceptor, and two hydrophobic aromatic features (figure 1.11). Three hundred
sixty-two thousand two hundred sixty commercially available compounds were screened and 56
selected for in vitro evaluation. Eleven of those tested inhibited the IN catalytic activity with an ICso
value < 100 uM. Five compounds had an ICsg less than 20 uM, and the most potent compound inhibited
both the 3’ processing (ICsp 14 uM) as well as strand transfer activities (ICso 5 uM) of IN [437]. Mugnaini
et al created a pharmacophore model using 30 known inhibitors of the 3’-processing step of HIV-1 IN

and screened the ASINEX gold database of over 200,000 compounds for inhibitors of IN. Twelve hits
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were tested in vitro and discovered one compound with a novel scaffold and anti-integrase activity with

ICso of 164 uM. Further improvement of this compound yielded an analogue with ICso of 12 uM [441].
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Figure 1.11 HIV-1 Integrase inhibitor pharmacophore I) A) Novel HIV-1 Integrase inhibitor using
ligand-based virtual screening with a pharmacophore model of quinolone 3-carboxylic acid IN
inhibitors. B) Pharmacophore query generated from the quinolone 3-carboxylic acid IN inhibitors
accompanied with an overlay onto a known HIV-1 integrase inhibitor. Features are color-coded, and
their 3D arrangement/distances are shown in angstroms. Green sphere represent H-bond acceptor regions,
blue spheres represent negatively ionizable regions, and cyan spheres represent hydrophobic aromatic regions.

I1) Pharmacophore query overlayed with 3 potent hits from the ligand-based virtual screen: compounds 8 (A), 9

(B), and 17 (C). Source: [437].

Noeske et al [442] used 2D-pharmacophore-based virtual screening to identify novel mGlul
antagonists. Antagonism of this receptor has been studied in regards to therapeutic potential in
neurodegenerative diseases, anxiety, pain, and schizophrenia [443, 444]. Six reference mGlul
antagonists were used to construct 2D-pharmacophores with the CATS software package [445]. This
software assigns all atoms in a compound as either a hydrogen-bond donor, hydrogen-bond acceptor,
positively charged, negatively charged, lipophilic, or non-interest atom type. Then, all compounds of a
library are compared with the distances between these different atom types in the reference molecule
and similarity scores are calculated to rank molecules that most closely fit this 2D-pharmacophore.

Screening the Gold Collection of Asinex Ltd yielded six different hit lists (one for each reference
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molecule). The top hits were collected from all lists as well as hits that appeared in three or more
different lists and 23 compounds were tested experimentally for mGlul antagonism. Their most potent

compound yielded an ICso of 360 nM and was further optimized to a compound with an ICso of 123 nM.

1.5 Prediction and Optimization of Drug Metabolism and
Pharmacokinetics Properties Including Absorption, Distribution,

Metabolism, Excretion, and the Potential for Toxicity Properties

In addition to high biological activity and selectivity for the target of interest, drug metabolism
and pharmacokinetics (DMPK) properties including absorption, distribution, metabolism, excretion, and
the potential for toxicity (ADMET) in humans are critical to the success of any candidate therapeutic.
After lead discovery or design, there is considerable attention given to improving the compound’s in vivo
DMPK/ADMET properties without losing its biological activity. It is common to apply some
DMPK/ADMET-based restrictions early on in the discovery process to reduce the number of compounds
necessary to evaluate, saving time and resources. Therefore, computational techniques extend to
predicting this very important aspect of drug design and discovery. Methods used are structure-based to
study the interaction of candidate compounds with key proteins involved in DMPK/ADMET and ligand-

based to predict of key properties using quantitative structure property relation (QSPR) models.

1.5.1 Compound Library Filters

Computational tools are routinely used to filter large data bases so that compounds predicted to
have poor DMPK/ADMET profiles may be avoided. One of the earliest and still the most popular filters to
apply to any compound database when performing a vHTS is Lipinski’s rule of 5. These rules are: a)
molecular weight of 500 or less, b) logP coefficient less than 5, c) 5 or fewer hydrogen-bond donor sites
d) 2x5 or fewer hydrogen-bond accepting sites [446]. The rule set is based on an analysis of 2245
compounds from the World Drug Index that had reached phase Il trials or higher. The rules were based
on distributions for molecular weight, logP, hydrogen bond donors, and hydrogen bond acceptors for
the top percentile of these compounds [446]. This set of rules suggests the necessary properties for
good oral bioavailability [447] and reflects the notion that pharmacokinetics, toxicity, and other adverse
effects are directly linked to the chemical structure of a drug. Although this criteria is well established
and offers a relatively fast and simple way to apply DMPK/ADMET filters before any sort of screening is

performed, it is incapable of predicting with any certainty whether a compound will make an
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appropriate therapeutic. It has been estimated that almost 69% of available compounds in the Available
Chemical Directory (ACD) Screening Database (2.4 million compounds) and 55% of the compounds in the
ACD (240,000) do not violate this rule of 5 [448]. Accordingly, this rule set has always been intended to
be a guide and not necessarily a hard-set filter. It is expected that such a simple rule of thumb will
remove lead compounds; for example, many peptidomimetics, transporter substrates, and natural
products will violate Lipinski’s rule. Approximately 16% of oral drugs violate at least one criterion and 6%
fail two or more criteria, and multiple examples exist of highly successful drugs that fail one or more of
Lipinksi’s criteria including Lipitor and Singulair [449]. At the same time the Lipinski’s rule will not, for
example, recognize and remove compounds with structural features that give rise to toxicity. It is limited
to evaluating oral bioavailability through passive transport only. When used to train models with
machine learning, Lipinski’s rule failed to provide better than random classification of drugs and
nondrugs [450]. Additionally, it is not designed to provide any discrimination beyond a binary pass or
fail. Any compound that violates two or more criteria is treated as an equal fail, whereas any compound

that does not is treated as an equal pass.

On the basis of its shortcomings, several improvements and replacements have been proposed
for the rule of 5. For example, two additional criteria have been suggested that include the number of
rotatable bonds being less than or equal to ten and the polar surface area being less than 140 A2 [451].
Bickerton et al [449] introduced the quantitative estimate of drug-likeness that is a score ranging from 0
(all properties unfavorable) to 1 (all properties favorable). This score is taken as a geometric mean of
individual desirability functions, each of which corresponds to a different molecular descriptor. These
descriptors include molecular weight, logP, hydrogen bond donors and acceptors, rotatable bonds,

aromatic rings, and the number of structural alerts [452].

However, the simple application of filters such as these during a lead compound search can be
problematic by nature of the limitation of these descriptors and the evolution of lead compound to
drug. For example, Hann et al found that, on average, over a set of 470 lead-drug pairs, lead compounds
had lower molecular weight, lower logP, fewer aromatic rings, and fewer hydrogen-bond acceptors
compared with their eventual drugs [453]. Therefore, it can be problematic to apply filters designed
around the average properties of drugs to libraries that are intended for the discovery of lead

compounds.
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Additionally, some of the properties used in these filters can depend on conformation and
environment. Kulkarni et al [454] state that permeability and hydrophobicity can change depending on
the free energy of solvation, interaction of the drug with a phospholipid monolayer, and the drug’s
flexibility. Vistoli et al [455] state that hydrophobicity and hydrogen bonding are both dependent on the
dynamic nature of molecules and that chemical information is limited without the use of dynamic
descriptors. For a comprehensive review on the concept of drug likeness please see the 2011 review by

Ursu et al [456].

The same computational tools used to predict activity can be applied to predict a more detailed
DMPK/ADMET profile, including solubility, membrane permeability, metabolism, interaction with
influx/efflux transporter proteins, interaction with transcription proteins, and different aspects of
toxicity. For example, QSAR-based techniques have been especially important in predicting the
toxicology profiles for drugs very early on in their development. These tools collect information
regarding known toxins such as carcinogens, neurotoxins, and skin irritating agents, and create statistical
models that can predict the likelihood that a particular compound will reflect these undesirable

properties [457].

1.5.2 Lead improvement: metabolism and distribution

Aside from general filters applied to compound libraries preceding a screen, computational tools
can be used to guide hit-to-lead optimization where a compound’s metabolic profile is fine tuned. This
requires a precise balancing act as the changes necessary to improve a compound’s metabolic profile
may also significantly reduce its target affinity. During this stage of drug development, efforts are made
in changing the compound’s structure not only to improve affinity but also to improve its metabolism.
Therefore, although computational tools are useful in predicting the effects on target affinity from any
proposed changes to the lead structure, they can be used in parallel to predict the affinity and
interactions the compound may have with metabolizing enzymes and their regulators [458]. The
metabolism of a drug can have significant impacts not only on its bioavailability but also on its half-life
and generation of harmful metabolites. When metabolic stability is lowered, a drug can lose its efficacy.
Increasing stability can amplify harmful side effects owing to a long half-life. Physiologically, there are
two important phases in drug metabolism that have been studied extensively. The phase | reactions
include hydrolysis, reduction, and oxidation and are primarily performed by cytrochrome p450 enzymes.

Phase Il reactions are more diverse and include glucuronidation, sulfation, acetylation, methylation, and
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glutathione conjugation [459]. These reactions accelerate the drug’s elimination from the body but can

result in toxic products like highly reactive electrophiles or free radicals [458].

Computational tools have been developed to address the phase | metabolism reactions
performed by Cytrochrome P450 enzymes, mainly through docking and QSAR procedures to predict the
likelihood that a particular compound will bind to a cytochrome P450. At least 57 P450 isoforms exist in
the human body, but phase | metabolism is dominated by the isoforms 1A2, 2C9, 2C19, 2D6, and 3A4
[460] and computational methods are routinely directed against these particular P450 isoforms. In
addition to the elimination of the drug and generation of metabolites, P450s can also be the source of
drug-drug interactions in that one drug can reduce the elimination of another drug by blocking access to
metabolizing enzymes or can increase elimination by upregulating expression of those enzymes. For
example, in the early development of CCR5 antagonists, experimenters discovered hits that contained
functional groups that are common among CYP2D6 inhibitors. By modeling the binding of these ligands
to CYP2D6, imidazopyridines were replaced with benzimidazoles so that possible drug-drug interactions

arising from inhibition of CYP2D6 were avoided early on [461].

Structure-based methods are the most popular computational tools for predicting the
interaction between a compound and P450 enzymes. Binding poses predicted through docking studies
may provide further insight into the specific sites of metabolism within the compound. For example,
structure-based methods successfully predicted the metabolism of celecoxib and its 13 analogues
through CYP2C9 [462, 463]. In addition to some P450 isoforms, x-ray structures of the ligand-binding
domain of prenane X receptor (PXR) [464], the transcription regulator of CYP3A4 [465], glutathione-S-
transferases [466], and drug transporters such as P-glycoprotein [467] have been determined. Structural
information about PXR and drug transporters can be used to predict drug-drug interactions through the

induction of CYP3A4 or transport channels.

One of the major challenges in modeling P450 binding is the dynamic nature of the binding site
that accommodates a wide variety of ligands. Another challenge with docking studies involving P450
enzymes is the fact that the goal is often fundamentally opposite to that of most docking studies in that
weaker binding is usually preferred over stronger binding. Monte Carlo and stochastic simulations of a
wide variety of cocrystal structures have allowed development of several dynamic models of P450
binding sites exploring the different orientations amino acid side chains [458]. GOLD, FlexX, DOCK,

AutoDock, and the scoring function C-Score are most commonly used for structure-based methods with
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P450 predictions [468]. For modeling the catalytic reaction encountered when the ligand binds to the
P450 enzyme, ab initio calculations using Hartree-Fock or density functional theory have been used

[458].

For example, the formation of the hydroquinone metabolite and electrophilic quinonone from
remoxipride was calculated using hybrid density functional theory. This information was then used to
redesign remoxipride [469]. Density functional theory calculations were used to eliminate the formation
of reactive metabolites from a series of tyrosine kinase-2 inhibitors. These calculations correctly
predicted the necessary changes that avoided the formation of these harmful metabolites [470]. Park
and Harris used DFT on CYP2E1 homology models along with docking and MD to predict the metabolism
profiles for seven compounds [471]. Li et al used homology modeling and MD to dock ligands into
CYP2J2 in an effort to describe the binding characteristics of this enzyme. CYP2J2 is involved in the
creation of eicosatrienoic acids from arachidonic acid. They were able to identify key residues that were
important for the substrate specificity of CYP2J2. Additionally, they discovered that different ligands,
although sharing the same scaffold, show different binding modes [103]. Bazeley et al used structural
information of CYP2D6 to identify invariant segments and performed conformational sampling with MD.
Combining this data with neural-network based feature selection they found that only three out of 20
conformations are relevant for CYP2D6 binding. They also analyzed the docking of 82 compounds and
showed that the most important attributes that conferred a compound’s affinity for CYP2D6 was the
number of hydrogen-bonding sites, molecular weight, the number of rotatable bonds, AlogP, formal
charge, number of aromatic rings, and the number of positive atoms. With these findings, they were

able to achieve a prediction accuracy of 85% [472].

In addition to these structural methods, reactivity rules are also used to predict the metabolism
of small molecules. Databases such as Accelrys Metabolite [473] contain curated metabolic
transformations from the literature. This information can be used to predict the various metabolic
transformations that will be produced from an input structure. META [474] is a model of mammalian
xenobiotic metabolism that incorporates metabolic data from literature, textbooks, and monographs to
define chemical transformation rules called transforms, which can identify and substitute functional

groups. These focus on both phase 1 and phase 2 metabolism.

Another method uses electronics and intramolecular sterics to predict sits of CYP3A4

metabolism. This approach focuses on the rate-limiting step of the hydroxylation by CYP3A4, namely the
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removal of the hydrogen-atom [475]. The model assumes that the susceptibility for removal depends
mainly on the electronic environment surrounding the hydrogen. Therefore, the method calculates a
hydrogen abstraction energy for each hydrogen atom and this information is used to predict sites of

metabolism [476].

SMARTCyp [477] is another rule-based method that determines the reactivity of molecular
fragments based on activation energies calculated by quantum mechanical methods. It combines a
reactivity descriptor and accessibility descriptor. The reactivity descriptor estimates energy required for
P450 metabolism at a given site by looking up fragments in an energy table for each atom. The
accessibility descriptor is a calculation that determines the 2D distance from the center of the molecule

a given atom is and always ranges between 0.5 and 1.

The activation energy table used for the reactivity descriptor combines 11 previously defined
rules for aliphatic, aromatic, and alkene carbon atoms for 50 carbon sites [478] with new data generated
by the authors. This produced a collection of 139 transition states that can represent different types of

P450 reactions.

Other aspects of a drug’s DMPK/ADMET profile that are predicted with computational tools
include membrane permeability, which is a large part of bioavailability as well as volume of distribution
and penetration of the blood-brain barrier, and blood plasma protein binding, involved in a drug’s
volume of distribution and effective plasma concentrations. The evolution of predictive models for
blood-brain barrier penetration is reviewed in detail by Norinder and Haeberlein [479]. Additionally, the
structure of human serum albumin is used to predict plasma protein binding and volume of distribution

changes [480].

1.5.3 Prediction of human Ether-a-go-go related gene binding

The human ether-a-go-go related gene (hERG) protein is a voltage-gated potassium channel
expressed in the heart and nervous system. The tetramer has six transmembrane spanning regions per
protamer and is important for repolarization during the cardiac action potential [481-483]. The delayed
rectifier repolarizing current, an outward potassium current comprised of a rapid and slow component,
is involved in plateau repolarization and the configuration of the action potential. Alterations in this
channel’s conductance, especially blockade of the channel, can lead to an altered refractory period and

action potential duration [483], often resulting in what is known as drug-induced QT syndrome and a
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severe cardiac side effect called torsades de points [484]. The QT interval is the period of a cardiac cycle
where ventricular repolarization occurs [482] and drug-induced QT syndrome can lead to sudden death
[485]. Because of its importance in the proper regulation of cardiac action potential, off-target
interactions with hERG have caused several drugs to be removed from the market and/or linked to
arrhythmias and sudden death [481]. hERG has been termed an “antitarget” in the pharmaceutical
industry [486]. It has been estimated that 2-3% of prescribed medications include some unintended QT
elongation [483]. Though most drugs have been shown to inhibit the rapid component of the outward
potassium current [487], interaction between drugs and hERG is not completely understood, and high-
affinity ligands tend to interact with the inactivated channel with low voltage-dependency, whereas low-
affinity ligands tend to interact with the activated state with high voltage-dependent kinetics [488].
However, key residues involved in the interaction between hERG and at least some ligands have been
identified. For example, Phe656 and Tyr652 in the channel pore may engage in m-mt and cation-mt
interactions with the ligand. Thr623 and Ser624 are thought to interact with the polar tails of some
ligands and some evidence exists of a second binding site [482, 483, 486, 489]. In vitro and in vivo
methods are commonly used to evaluate drug candidates for potential hERG blockade activity,
especially patch clamp techniques and radioligand binding assays [490, 491]. However, these methods
are difficult to scale to high-throughput candidate evaluation, making the computational approach

attractive for this aspect of drug discovery.

SB-CADD and LB-CADD have both been used to develop models to discriminate hERG blockers
and non-blockers [492, 493]. SB-CADD techniques have mainly relied on docking with homology models
and this method has not been validated with large, highly diverse data sets [494]. LB-CADD-based hERG
models have been created using tools including ligand-based pharmacophore [495, 496], COMFA [497],
Bayesian classification with QSAR [498], and 2D fragment based descriptors [499].

Wang et al developed discrimination models based on molecular property descriptors and
fingerprints [500]. Descriptors were calculated using Discovery Studio molecular simulation package
(Accelrys) and included several variations on logP, molecular weight, hydrogen-bonding, the number of
rotatable bonds, rings, and aromatic rings, the sum of oxygen and nitrogen atoms, and fractional polar
surface area. The fingerprints included SciTegic extended-connectivity fingerprints and Daylight-style
path-based fingerprints using the Morgan algorithm [501]. Bayesian classifiers and decision tree

methods were used to create models based on these descriptors.
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Wang et al [500]analyzed the results of their models and found that increased hydrophobicity
was correlated with increased hERG binding. Additionally, molecular weight showed a significant,
although lesser impact on hERG binding, with molecules having a molecular weight under 250 being less
likely to be a hERG blocker. Additionally, analysis of their fingerprints revealed that most hERG-binding
fragments contained nitrogen atoms, with four of the top five containing positively charged nitrogen
atoms. These top five fragments also contained at least one oxygen atom or a carboxylic acid. Despite
these correlations, the authors stressed that no single molecular property can be used to discriminate

between hERG blockers and nonblockers.

Obrezanova and Segall [502] used the Gaussian process to build models for hERG inhibition as
well as other ADMET properties. The Gaussian process [503, 504] is a nonlinear regression technique
that is resistant to overtraining. It uses Bayesian inference to link the descriptors of a molecule with the
probability of the molecule falling into a specific class. Eventually, a posterior probability distribution is
created that defined which functions best describe the observed data. The mean value over all functions
can provide the prediction, whereas the full distribution can provide a measure of uncertainty for each
prediction. The hERG inhibitor model was trained on 117 active and 51 inactive compounds evaluated
through patch clamp in mammalian cells with descriptors generated in StarDrop’s Auto-Modeler [505].
These 2D descriptors were based on SMARTS and included atom type counts, functionality, and
molecular properties such as logP, molecular weight, and polar surface areas. Datasets were also

clustered using 2D fingerprints and tanimoto similarity.

Nisius and Goller [506] used the Tripos Topomer Search technology [507] to design a modeling
approach termed topoHERG. This method screens reference datasets for molecules similar to a query
compound and returns pharmacophore and shape-based distances between a query molecule and its
neighbors. The dataset contained 115 inactive compounds, 90 moderately active hERG blockers, and 70
highly active hERG blockers. The topomer is defined as a 3D representation of a molecular fragment that
is based on 2D topology and a rule set that generates an absolute conformation [508] so that distances
between topomers of different molecules in large databases can be calculated. To differentiate between
hERG active and inactive neighbors, the inverse of the topomer search distance was multiplied by one if
the topomor search neighbor was active and negative one if it was inactive. A molecule was predicted to
be an active hERG blocker if its overall sum was greater than zero. A two-stage approach using two

optimized models yielded a prediction accuracy of 76-81% [506].
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Garg et al [487] used a genetic function approximation to generate quantitative structure-
toxicity relationship (QSTR) models using 2D descriptors generated using the QSAR+ module of Cerius
(Accelrys). These models were trained with 56 hERG blockers and descriptors included
electrotopological descriptors that contained information regarding the topological environments for all
atoms in the molecule as well as electronic interactions with other atoms in the molecule. To perform
genetic function approximation, the authors generated a number of random equations that were
randomly selected as pairs. These parent pairs underwent crossover operations to generate new
equations, and those that showed improved fitness scores were kept [509]. In parallel, the authors
generated a toxicophore (pharmacophore-based toxicity model) using Catalyst’s HypoGen that included
hydrogen-bonding, hydrophobic, aromatic, and positive ionizable features. Upon analysis of their
models, the authors noted that both basic and neutral hERG blockers had highly flexible linkers and

various molecular fragments.

1.5.4 Drug Metabolism and Pharmacokinetics/Absorption, Distribution,
Metabolism, and Excretion and the Potential for Toxicity Prediction Software

Packages and Algorithms

There are currently many models available for predicting absorption, bioavailability, transporter
binding, metabolism, volume of distribution, and P450 interactions [510-516]. Comprehensive software
packages have been developed such as QikProp which can be used to predict an array of ADMET-related
properties such as solubility, membrane permeability, partition coefficients, blood-brain barrier
penetration, plasma protein binding, and the formation of metabolites [517]. These predictions mainly
come from statistical models such as regression and neural networks that are trained on known ADMET
properties for many compounds. The OSIRIS Property Explorer allows scientists to draw chemical
structures and predict ADMET profile [35]. The software package MetaSite (Molecular Discovery Ltd,
Middlesex UK) is used to predict the site of metabolism using structural information from both the
ligand and the enzyme. A probability function is created for the site(s) of metabolism using the free
energy of P450-ligand binding and reactivity. This software uses structure-based techniques to identify
the relevant amino acids and proposes compound modifications that can optimize its metabolism profile
[518]. Ahlstrom et al proposed a three-step procedure using MetaSite to identify metabolic sites, in
silico modification of these sites, and docking of new compounds [462]. These software packages aim at

predicting overall ADMET properties with convenient and accessible tools and have shown great benefit
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in drug development. For example, computational modeling of ADMET properties prevented a potential
blood pressure-lowering drug from being lost early in the development process. The proposed
compound showed low ECso values, indicating that it was less potent than another compound of
consideration. However, pharmacokinetic modeling showed that this compound would actually have
greater efficacy than the one that showed higher potency. This compound did indeed show superior

efficacy in the clinic [519].

1.5.5 Drug Metabolism and Pharmacokinetics/Absorption, Distribution,
Metabolism, and Excretion and the Potential for Toxicity: Clinical Trial

Prediction and Dosing

Computational tools are also being developed to address the possibility of simulating early
clinical trials to avoid the waste resources inherent in testing drugs with poor ADMET profiles. This is a
prevalent problem in drug development because up to 90% of drugs fail during clinical development and
the time between reaching clinical trials and approval is up to 8 years [520]. These simulations aim at
modeling the pathophysiology of biological systems and the pharmacology of treatments and can often

incorporate things such as disease progression, placebo response, and dropout rates.

For example, clinical trial simulation was used by Laer et al to propose appropriate doses for
sotalel [CAS 959-24-0; N-[4-[1-hydroxy-2-[(1-methylethyl)amino] ethyl] phenyl] methanesulfonamide
hydrochloride] in children [521] and the Food and Drug Administration approved dosing changes for
etanercept (Immunex Corporation, Thousand Oaks CA) in juvenile rheumatoid arthritis due to clinical
trial simulations performed by Yim et al [522]. Simcyp (Simcyp Ltd, Sheffield UK) is a software package
that creates virtual populations of participants with specifiable genetic and physiological characteristics
using literature data. In vitro metabolism data can be applied to the in-vitro-in-vivo extrapolation
process to simulate whole-live and hepatic clearances for these virtual populations [523]. Kowalski et al
used the NONMEM software package (ICON plc, Dublin, Ireland) and PK/PD modeling to suggest a
dosing regimen for SC-75416, a selective COX-2 inhibitor that would be comparable to the pain relief
afforded from 50 mg of rofecoxib. This simulation saved an estimated nine months of development

[524].
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1.6 Conclusions

The extensive variety of computational tools used in drug discovery campaigns suggests that
there are no fundamentally superior techniques. The performance of methods varies greatly with target
protein, available data, and available resources. For example, Kruger and Evers completed a
performance benchmark between structure- and ligand-based vHTS tools across four different targets,
including angiotensin-converting enzyme, cyclooxygenase-2, thrombin and HIV-1 protease [525].
Docking methods including Glide, GOLD, Surflex, and FlexX were used to dock ligands into rigid target
crystal structures obtained from PDB. A single ligand was used as a reference for ligand-based similarity
search strategies such as 2D (fingerprints and feature trees) and 3D (Rapid Overlay of Chemical
Structures (ROCS, OpenEye Scientific Software, Santa Fe, NM)), a similarity algorithm that calculates
maximum volume overlap of two 3D structures [243, 526]. In general the authors found that docking
methods performed poorly for HIV-1 protease and thrombin because of the flexible nature of the
targets and the fact that the known ligands for these proteins have large molecular weight and

peptidomimetic character.

Enrichments based on 3D similarity searches were poor for HIV-1 protease and thrombin
datasets compared with ACE, which is likely due to the higher level of diversity in the HIV-1 protease and
thrombin ligand datasets. Similarity scoring algorithms like ShapeTanimoto, ColorScore, and
ComboScore were compared with the performance of ROCS [525]. It was found that even within the
scoring, algorithm performance varied across targets. For example, ColorScore performed best for ACE
and HIV-1 protease, whereas ShapeTanimoto for COX-2 and ComboScore was the method of choice for
thrombin. All vHTS tools performed comparatively well for ACE, but ligand-based 2D fingerprint
approach generally outperformed docking methods. The authors also note an important observation in
that, especially for HIV-1 protease, the structure-based and ligand-based approaches vyielded
complimentary hit lists. Therefore, performance metrics are not the only benchmark to consider when
comparing CADD techniques. In some cases, discovery of novel chemotypes is more important than high
hit rates or high activity. In the current study, Kruger and Evers found that ROCS and feature trees were

more successful in retrieving compounds with novel scaffolds compared to other fingerprints [525].

Warren et al published an in-depth assessment of the capabilities and shortcomings for docking
programs and their scoring techniques against eight proteins of seven evolutionarily diverse target

types. They found that docking programs were well adept at generating poses that included ones similar
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to those found in complex crystal structures. In general, although the molecular conformation was less
precise across docking programs, they were fairly accurate in terms of the ligand’s overall positioning.
With regards to scoring, their findings agree with others that docking programs lack reliable scoring
algorithms. So while the tools were able to predict a set of poses that included those that were seen in
the crystal structure, the preference for the crystal structure pose was not necessarily reflected in the
scoring. For five of the seven targets that were evaluated, the success rate, however, was greater than
40%. It was found that the enrichment of hits could be increased by applying previous knowledge
regarding the target. However, there was little statistically significant correlation between docking
scores and ligand affinity across the targets. The study concluded that a docking program’s ability to
reproduce accurate binding poses did not necessarily mean that the program could accurately predict
binding affinities. This analysis underscores the necessity not only to re-rank the top hits from a docking-
based VHTS using computationally expensive tools but also to continue evaluating novel scoring

functions that can efficiently and accurately predict binding affinities [527].

Improvements in scoring functions involve the use of consensus scoring methods and free
energy scoring with docking techniques. Consensus scoring methods have been shown to improve
enrichments and prediction of bound conformations and poses by balancing out errors of individual
scoring functions. In 2008, Enyedy and Egan compared docking scores of ligands with known 1Cso and
found that docking scores were incapable of correctly ranking compounds and were sometimes unable
to differentiate active from inactive compounds. They concluded that individual scoring methods can be
used successfully to enrich a dataset with increased population of actives but are insufficient to identify
actives against inactives [13]. Page et al concluded that although binding energy calculations such as
MM-PBSA are one of the more successful methods of estimating free energy of complexes, these
techniques are more applicable to providing insights into the nature of interactions rather than
prediction or screening [528]. Consensus scoring functions where free energy scores of different
algorithms have been combined or averaged have been shown to substantially improve performance

[529-532].

In their literature survey, Ripphausen et al reported that structure-based virtual screening was
used much more frequently than ligand-based virtual screening (322 to 107 studies). Despite a
preference for structure-based methods, ligand-based methods on average vyield hits with higher
potency than structure-based methods. Most ligand-based hits had activities better than 1 uM while

structure-based hits fall frequently in the range of 1-100 uM [12]. Scoring algorithms in docking
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functions have been found to be biased toward known protein ligand complexes; for example more
potent hits against protein kinase targets are discovered when compared to other target classes (figure

1.12) [61].
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Figure 1.12 Ligand-based and structure-based lead compounds. Ripphausen, et al. report that ligand-
based computationally approaches yield compounds with higher affinity than structure-based

computationally approaches. Source: [533].

One CADD approach that has been gaining considerable momentum is the combination of
structure-based and ligand-based computation techniques [534]. For example, the GRID-GOLPE method
docks a set of ligands at a common binding site using GRID and then calculates descriptors for the
binding interactions by probing these docking poses with GOLPE [535]. Multivariate regression is then
used to create a statistical model that can explain the biological activity of these ligands. Structure-

based interactions between a ligand and target can also be used in similarity-based searches to find
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compounds that are similar only in the regions that participate in binding rather than cross the entire
ligand. LigandScout uses such a technique to define a pharmacophore based on hydrogen bonding and
charge-transfer interactions between a ligand and its target. Another technique known as the
pseudoreceptor technique [96] uses pharmacophore mapping-like overlaying techniques for a collection
of ligands that bind to the same binding site to establish a virtual representation of the binding site’s
structure, which is then used as a template for docking and other structure-based vHTS. This approach
has been utilized by VirtualToxLab [536] for the creation of nuclear receptors and cytochrome P450
binding site models in ADMET prediction tools and by Schneider et al in the modeling of the H4 receptor
binding site subsequently used to identify novel active scaffolds [97]. In a recent review by Wilson and
Lill [537], these methods are grouped into a major class of combined techniques called interaction based
methods. A second major class involves the use of QSAR and similarity methods to enrich a library of
virtual compounds prior to a molecular docking project. This can increase the efficiency of the project by
reducing the number of compounds to be docked. This is similar to the application of CADD to enrich
libraries prior to traditional HTS projects. This review also presents comprehensive descriptions of
software packages using a combination of ligand- and structure-based techniques as well as several case

studies testing the performance of these tools.

As discussed earlier, these methods are often used in serial where ligand-based methods are
first used to enrich libraries that will subsequently be used in structure-based vHTS. The most common
application is at the ligand library creation stage through the use of QSAR techniques to filter out
compounds with low similarity to a query compound or no predicted activity based on a statistical
model. QSAR has also been used as a means to refine the docking scores of a structure-based virtual
screen. 2D and 3D QSAR can also be used to track docking errors. This method has been used by
Novartis where a QSAR model is built from docking scores rather than observed activities, and this

model is applied to that set to provide additional score weights for each compound [538].

Although CADD has been applied quite extensively in drug discovery campaigns, certain
lucrative therapeutic targets like protein-protein interaction and protein-DNA interactions are still
formidable, problems mainly because of the relatively massive size of interaction sites (in excess of 1500
A?) [1]. Lastly, accessibility has also been a problem with CADD as many tools are not designed with a
friendly user interface in mind. In many cases, there can be an overwhelming number of variables that
must be configured on a case-by-case basis and the interfaces are not always straightforward. A great

deal of expertise is often required to use these tools to get desired measure of success. Increasingly,
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efforts are being made to develop user friendly interfaces especially in commercially available tools. For
example, ICM-Pro (MolSoft L.L.C., San Diego, CA) is a software package designed to be a user friendly
docking tool and replaces the front-end of current docking algorithms with an interface that is
manageable to a wider audience [198]. More recently gamification of the ROSETTA folding program,
known as Foldit [539], has allowed individuals outside of the scientific community to help solve the
structure of M-PMV retroviral protease [540] and for predicting backbone remodeling of
computationally designed biomolecular Diels-Alderase that increased its activity [541]. The successful
application of crowd-sourced biomolecule design and prediction suggests further potential of CADD

methods in drug discovery.
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