

COMBINING CACHING WITH A CLOUD HOSTED PROXY TO SUPPORT MOBILE

CONSUMERS OF RESTFUL SERVICES

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Masters of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

SHOMOYITA JAMAL



Copyright Shomoyita Jamal, September 2012. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the

College in which my thesis work was done. It is understood that any copying or publication or

use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

rupmoni
Text Box
 i

iii

ABSTRACT

There are numerous problems to be addressed when connecting mobile clients (e.g.

smartphones and tablet devices) with Web services. These devices consume Web services via

wireless channels; and as a result, developers and researchers are investigating different

approaches to address challenges related to network fluctuation, latency, and low bandwidth. In

addition, most of these devices have limited capabilities in terms of information processing and

resource storage. This research focuses on enabling mobile devices for consuming RESTful Web

services efficiently.

The aforementioned problems of network instability are addressed in this research by

proposing and implementing a cloud centric proxy server architecture; which is based on

mirroring resources. The mirroring of the Web server’s resources on the mobile device and the

proposed proxy server is achieved by exploring caching techniques. Furthermore, an evaluation

is done to determine what kind of components and architecture is required for supporting

resource constraint mobile devices like smartphones and tablets while connecting them with

RESTful systems. By linking the caching components of the mobile devices with a cloud-hosted

proxy server, it becomes possible to share caches and achieve significant performance boost for

mobile consumers of the RESTful Web services.

rupmoni
Text Box
 i

rupmoni
Text Box
 i

rupmoni
Text Box
 ii

iv

ACKNOWLEDGMENTS

First of all I would like to express my sincere gratitude to my supervisor, Dr. Ralph Deters for

his advice and assistance throughout my entire duration of study. Also, my sincere thanks to the

members of my advisory committee: Dr. Julita Vassileva, Dr. Chanchal Roy and Dr. A. Wahid

Khan for their valuable advice and suggestions. Furthermore, I would like to thank Mr. Andrew

Kostiuk and TRLabs for their support. Also, I would like to appreciate the assistance of Ms. Jan

Thompson and Ms. Gwen Lancaster, at the Department of Computer Science, University of

Saskatchewan, for their support and generosity.

Thanks to all students of the Multi-Agent Distributed Mobile and Ubiquitous Computing

(MADMUC) Lab for their friendship.

Finally, I would like to thank my husband, Mohammad Asif Ashraf Khan; my mother,

Shyamoli Akbar; my father A. F. M. Jamaluddin and my entire family for the unconditional love

and support throughout this period.

rupmoni
Text Box
iii

v

TABLE OF CONTENTS

page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. xi

CHAPTER1: INTRODUCTION ...1

CHAPTER 2: PROBLEM DEFINITION ..4

CHAPTER 3: LITERATURE REVIEW ...7

3.1 Web Services ... 7

3.2 Service Oriented Architecture (SOA) .. 8
3.3 The Representational State Transfer (REST) .. 9
3.4 WADL.. 11

3.5 REST for Mobile Clients ... 12
3.6 Caching .. 14

3.7 Proxy Servers ... 15

3.8 Cloud Computing ... 16

3.9 Summary .. 18

CHAPTER 4: ARCHITECTURE ..21

4.1 Mobile Client ... 22
4.2 Proxy Server... 23

4.3 Proxy Object .. 24

CHAPTER 5: IMPLEMENTATION ..29

5.1 Cache Organization of the client.. 33

5.2 Caching Policy ... 39
5.3 Cache Data Structure ... 40

5.4 State change messages using the Proxy server .. 40
5.5 Workflow of the Proxy server .. 41

CHAPTER 6: EXPERIMENTS ...46

6.1 Experiment Goals... 47
6.2 Experiments ... 48
6.3 Experiment Setup ... 49

rupmoni
Text Box
iv

rupmoni
Text Box
 i

rupmoni
Text Box
 i

rupmoni
Text Box
 iv

rupmoni
Text Box
ii

rupmoni
Text Box
ii

rupmoni
Text Box
iii

rupmoni
Text Box
vii

rupmoni
Text Box

rupmoni
Text Box
vi

rupmoni
Text Box
x

vi

6.4 Experiment Results and Discussion ... 55

CHAPTER 7: SUMMARY AND CONTRIBUTION ...73

7.1 Summary .. 73

7.2 Implications.. 74
7.3 Contribution ... 76

CHAPTER 8: LIMITATIONS AND FUTURE WORKS ...78

8.1 Distributed Proxy ... 78

8.2 Caching Policies... 78
8.3 Security Issues ... 79

8.4 The Impact of Multi-tier Caching .. 79
8.5 The Impact of Database Size ... 79

LIST OF REFERENCES ...81

rupmoni
Text Box
v

rupmoni
Text Box
 v

vii

LIST OF TABLES

Table page

Table 3-1. REST verbs and corresponding CRUD operations ..10

Table 3-2. Difference between SOA and ROA ...11

Table 3-3. Solutions of the 4 problems found from reviewed research19

Table 6-1. Experiments and Goals ...47

Table 6-2. Results comparing the three setups for the BlackBerry 9550 Simulator..........55

Table 6-3. Results comparing the three setups for the BlackBerry Playbook device55

Table 6-4. Request-response duration through proxy server A ...58

Table 6-5. Request-response duration through proxy server B ...58

Table 6-6. Average request-response duration using the BlackBerry 9550 Simulator......61

Table 6-7. Average request-response duration using the BlackBerry Playbook device61

Table 6-8. Results comparing round- trip duration ..65

Table 6-9. Results comparing average throughput ..67

rupmoni
Text Box
vi

viii

LIST OF FIGURES

Figure page

Figure 1-1. BlackBerry Playboook tablet device ...1

Figure 1-2. BlackBerry smartphone device ...2

Figure 2-1. Mobile clients consuming RESTful WS in a Wi-Fi environment4

Figure 2-2. Mobile client consuming RESTful WS using caching and a cloud hosted proxy

server ..6

Figure 3-1. Service Oriented Architecture ...8

Figure 3-2. Example of a WADL description ...12

Figure 3-3. Working of Proxy Server ...16

Figure 3-4. Cloud computing conceptual diagram ...17

Figure 4-1. The proposed architectural design ..21

Figure 4-2. Architecture of Mobile Client ..22

Figure 4-3. Architecture of the proxy server ...23

Figure 4-4. Cache representation on the Proxy Server for multiple devices24

Figure 4-5. Two goals of Object R1 in the proxy server ..25

Figure 4-6. Communication between the client and the proxy server26

Figure 4-7. State change propagation ..27

Figure 4-8. Workflow diagram of the system ..28

Figure 5-1. WebWorks/ WebView Architecture ...29

Figure 5-2. Code snippet for Android WebView ...30

Figure 5-3. The UI of the application using WebView in Android Emulator31

Figure 5-4. Code snippet for BlackBerry WebWorks ...31

Figure 5-5(a). The UI of the application using WebWorks in BlackBerry mobile simulator

..32

rupmoni
Text Box
vii

ix

Figure 5-5(b). The UI of the application using WebWorks in BlackBerry Playbook tablet device

..32

Figure 5-6(b). Condition 2 ...36

Figure 5-6(c). Condition 3 ..37

Figure 5-6(d). Condition 4 ...38

Figure 5-7. Code snippet of the cache validation function for the client39

Figure 5-8. Code snippet for the cache validation function for the proxy server40

Figure 5-9. Response from the proxy server for the resource “b” whether there is any update or

no update ..40

Figure 5-10. Response from the proxy server for the resource “b” if there is no update .41

Figure 5-11. Response from the proxy server for the resource “b” if there is an update .41

Figure 5-12(a). State propagation when there is no update ...42

Figure 5-12(b). State propagation when there is an update in the resource43

Figure 5-13(a). State propagation when there is no update ...44

Figure 5-13(b). State propagation when there are updates in the resources45

Figure 6-1. The Experimental Setup ..46

Figure 6-2. Experiment goals ...48

Figure 6-3. Consume RESTful WS from the REST Web server50

Figure 6-4. Consume RESTful WS from the REST Web server (mobile client with cache)50

Figure 6-5. Consume RESTful WS through cloud hosted proxy server............................51

Figure 6-6. Consume RESTful WS from the REST Web server52

Figure 6-7. Consume RESTful WS from the REST Web server (mobile client with cache)52

Figure 6-8. Consume RESTful WS through cloud hosted proxy server............................53

Figure 6-9. Load Generator sends requests to the REST Web server54

Figure 6-10. Load Generator sends requests to the proxy Server54

Figure 6-11(a). Throughput in second for the BlackBerry 9550 Simulator56

rupmoni
Text Box
viii

x

Figure 6-11(b). Throughput in second for the BlackBerry Playbook device57

Figure 6-12. Minimum response times ..59

Figure 6-13. Maximum response times ...59

Figure 6-14. Comparison of minimum response times for two different proxies60

Figure 6-15. Comparison of maximum response times for two different proxies60

Figure 6-16(a). Average response times (using BlackBerry simulator)62

Figure 6-16(b). Average response times (using Playbook) ...63

Figure 6-17. Comparison of average response times for two different proxies64

Figure 6-18(a). Time per request for proxy server A ...65

Figure 6-18(b). Time per request for proxy server B (using gossiping)66

Figure 6-19. Comparison of time per request for two different proxies67

Figure 6-20(a). Throughput for proxy server A ...68

Figure 6-20(b). Throughput for proxy server B (using gossiping)68

Figure 6-21. Comparison of throughput for two different proxies69

Figure 7-1. SOPHRA app on Android tablet device ..76

rupmoni
Text Box
ix

xi

LIST OF ABBREVIATIONS

API Application Programming Interface

CPU Central Processing Unit

EC2 Amazon Elastic Cloud Computing

GAE Google App Engine

HATEOAS Hypermedia as the Engine of Application State

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IP Internet Protocol

JSON JavaScript Object Notation

LDD Location Dependent Data

MR Mixed Reality

MSS Mobile Support Station

OS

 Operating System

OTP

 Open Telecom Platform

PaaS Platform as a Service

POX Plain Old XML

RAM Random Access Memory

REST Representational State Transfer

ROA Resource Oriented Architecture

SaaS Software as a Service

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

WADL Web Application Description Language

WS Web Services

WS* Web Services

WSDL Web Services Description Language

WWW World Wide Web

XML Extensible Markup Language

rupmoni
Text Box
x

1

CHAPTER 1

INTRODUCTION

In the last decade, Web Services (WS) [58] have emerged as the standard for building open

distributed system. WS provide an open and platform independent approach to connect various

components within and across physical and organizational borders. At the same time, we have

witnessed significant growth within mobile handsets worldwide. 476.5 million mobile devices

were sold in the fourth quarter of 2011 worldwide [20][21] and every third mobile device was

sold was a smartphone. The value of the smartphone grows exponentially by its ability to

connect to external WS. This leads us to the question of how to connect this resource constrained

mobile device to the rich pool of different WS. Figure 1-1 and Figure 1-2 show a tablet device

and a smartphone device respectively.

Figure 1-1. BlackBerry Playboook tablet device [8]

2

Figure 1-2. BlackBerry smartphone device [34]

Mobile devices such as smartphones and tablets are very heterogeneous. They have different

operating systems, different hardware, and different form factors. As a result, developing a

native app (application that is developed explicitly to use on a particular platform or device)

means we are limited to building only platform specific applications. However, one way to

deploy single code base applications on multiple mobile platforms to deal with the heterogeneity

is by using the embedded browser pattern [31]. To achieve this, applications are often built using

Web technology tools such as HTML5 and JavaScript to provide attractive user interfaces, client

side functionalities, and inter component communications [31]. The flexibility of Web tools also

affords developers the ability to wrap native codes in an embedded browser [31].

These mobile devices consume WS via wireless channels; and as a result, developers and

researchers are exploring innovative ways to curtail the challenges of network fluctuation,

latency, and low bandwidth. In addition, most of these mobile devices have limited capabilities

in terms of information processing and resource storage. This research focuses on enabling

mobile devices to consume RESTful [16] web services efficiently.

3

The main contribution of this research is the development of an architecture to address the

above-mentioned problems of network instability. The architecture combines a local cache in the

mobile device with a cloud hosted proxy server that works as a mediator or middleware. The

mobile devices have caches for every individual resource which are mirrored resources. The

middleware or proxy server is the intermediary between the REST Web server (which hosts the

RESTful Web services) and mobile devices and also has caches for every single resource. This

work also approaches the idea of sharing caches for multiple devices of a single user.

The rest of the thesis is structured as follows: Chapter 2 discusses the problem definition.

Chapter 3 reviews research related to WS, consuming REST-WS by mobile devices, caching,

proxy server and cloud computing. Chapter 4 discusses the proposed architecture. Chapter 5

details the prototypic implementation of the architecture and the programing techniques that are

employed. Chapter 6 presents the experiments and evaluation of the work. And finally, Chapter 7

summarizes the research contribution and Chapter 8 concludes the paper with possible future

work.

4

CHAPTER 2

PROBLEM DEFINITION

This research focuses on enabling resource constrained mobile devices to consume Web

Services (WS) over wireless connections. Laptops, smartphones and tablets are emerging as

popular consumers of WS (e.g. RESTful WS). The key question that needs to be addressed is:

how to link these mobile devices wirelessly to the rich pool of different RESTful WS. Figure 2.1

shows the mobile devices consuming RESTful [16] WS in a Wi-Fi environment.

Figure 2-1. Mobile clients consuming RESTful WS in a Wi-Fi environment

5

To answer this question, four major problems must be addressed that are arising from wireless

connectivity namely:

1. Network loss/ Temporary network loss: Mobile devices enforce location-dependent

connectivity and often suffer network loss because of the mobility of the end user (or

carrier). So the challenge is how to ensure seamless access to the services even when the

device gets out of connection range.

2. Latency: The value of the mobile device is also determined by how fast the user can access

the information. So another challenge is how latency can be decreased so that the

information will always be available on the device whenever it is needed.

3. Limited Resources: The mobile device has limited resource. There is not a lot of CPU

available because of energy limitation. How long a tablet device (e.g. iPad, PlayBook, and

so on) can run also decides their demand and market value.

4. Reduced bandwidth: Mobile devices communicate over wireless channels which have

limited bandwidth; and bandwidth is costly. Mobile consumers or the end users are billed on

the amount of data transferred over the mobile network. Therefore the challenge is how the

network traffic can be minimized so that the mobile consumers will have to pay less.

The goal of this research is to develop a cloud hosted proxy server platform and use caching

on the mobile device to address the above mentioned challenges in order to facilitate the mobile

devices to consume REST-WS efficiently. Figure 2.2 describes a system where a mobile client is

consuming RESTful Web services using a cloud hosted proxy server. The proxy server also has a

cache component. The use of caching in both the mobile client and the proxy server is the

extension of the “Dual Caching Model” proposed by Liu et al. [29].

6

Figure 2-2. Mobile client consuming RESTful WS using caching and a cloud hosted proxy

server

In this research, the key issues are:

1. How fast the mobile client and proxy server can efficiently communicate?

2. How to detect and propagate the state changes to the proxy server and mobile client?

3. How to enable the cache to be used in multiple devices of a single user?

 To know the current state-of-the-art approaches towards addressing the key issues for the

development of the framework will be discussed in the next chapter in the literature review.

7

CHAPTER 3

LITERATURE REVIEW

This section reviews related research in the following fields: The first part, 3.1 to 3.5 focuses

on Web Services, SOA, REST, WADL and REST for mobile clients respectively while the

second part discusses two issues which are network loss and latency. These two issues are

typically addressed by caching. Another important aspect within caching is the location of the

cache component. It can be on the mobile device, or it can be on intermediary servers such as a

proxy server. Therefore, general caching is discussed in section 3.6. Using a proxy server will

help with the disconnecting and re-connecting problem and the feature constraint limitations of

the mobile device. Section 3.7 and 3.8 expounds on the idea of proxy servers and the location of

the proxy servers respectively.

3.1 Web Services

Web Services (WS) technology is linked to the idea of the Service Oriented Architecture

(SOA) [45] [63]. It is a method or technology of interaction between different machines or

devices which are accessible through the Internet. According to the World Wide Web

Consortium (W3C) [58], a Web service is “a software system designed to support interoperable

machine-to-machine interaction over a network.” The Web Services Description Language

(WSDL) [58] document clearly describes all the specifications for defining a web service in an

XML grammar and the capabilities of a web service as well [10] [59]. WS use the Extensible

Markup Language (XML) messages for communication over the Internet which is a set of policy

defined by the W3C in the XML 1.0 Specification for encoding documents in a machine-

readable form [14]. The XML messages or streams “should be validated to ensure that the

8

information can be uniquely understood” while the messages or streams are exchanged for

interaction through the network or among applications [28].

The two basic architectures for WS are:

 Service Oriented Architecture, which follows WS* protocol stack, and

 REST

3.2 Service Oriented Architecture (SOA)

The Service Oriented Architecture (SOA) defines everything in terms of services. For a

request-response communication, a service consumer and a service provider use messages which

are self-containing documents. The SOA based Web service generally follows the Simple Object

Access Protocol (SOAP) standards [46] [45]. Pautasso et al. [38] introduces SOA as “Big “Web

Services. The OASIS [32] group describes Service Oriented Architecture (SOA) in their

reference model as "a paradigm for organizing and utilizing distributed capabilities that may be

under the control of different ownership domains". SOA uses the find-bind-execute paradigm

which is shown in Figure 3-1 [33].

Figure 3-1. Service Oriented Architecture [33]

9

While describing the Service Oriented Architecture, Box [9] identifies four tenets for service

orientation which focus on explicit borders of services, autonomous services, use of schema and

policies. The basic unit of communication for SOA is message-oriented, rather than an operation

[60]. The key parts heuristic of SOA is that it has a very large protocol which defines a lot of

elements and relies on a large specification. And as it relies on messages which consist of XML

messages, it produces large amount of traffic [38].

3.3 The Representational State Transfer (REST)

Recently a different approach that has gained popularity for designing Web services is the

RESTful Web Service (REST-WS) which was introduced by Fielding [16] in his doctoral

dissertation in 2002. REST is a protocol independent architectural design and the acronym stands

for “REepresentational State Transfer”. The key feature of RESTful WS is that every entity is

considered as a resource instead of considering it as a service. It follows a resource-oriented

architecture identified by a Uniform Resource Identifier (URI) where every resource has a

unique HTTP or similar protocol link. The REST architecture allows simple semantic interfaces

to a set of standard operations such as GET, POST, PUT, and DELETE in the HTTP protocol for

a client-server interaction [60]. Richardson’s Maturity Model [17] identified different types of

REST implementation [62] and what are the best and scalable models. The first level talks about

POX or Plain Old XML where there will be a “singular service endpoint” and the second level

identifies resources where instead of making all the requests to one single port address, there will

be multiple resources to be considered. The third level talks about multiple verbs and multiple

URIs. This level clearly defines operations that can be done using this standard set of multiple

verbs. The highest level, states about “Hypermedia Controls” which means the server drives the

10

clients’ states by providing the URI or URL which pre-defines the clients’ options and actions as

well.

Fielding [16] mentioned the basic principles in his thesis that characterize RESTful systems

namely: uniquely identifiable resources, stateful resources, clear operation that modify the state

of these resources, and the assumption that the client and server do not know anything about

each other except the information they exchange in that conversation. The approach for building

REST has been the HTTP protocol. Within this protocol the Unique Identifiers are URIs or

URLs. The communication is stateless because the request will not know anything about the

client or server. On the other hand, the resources are stateful because they have all the

information to represent the message or operation. The CRUD [1] model defines one method for

each operation that a resource can do on the server using the HTTP methods [1]. Table 3-1

represents the REST verbs and their corresponding CRUD [1] operations.

Table 3-1. REST verbs and corresponding CRUD operations

REST Verbs CRUD Operation

PUT Create

GET Retrieve

POST Update

DELETE Delete

Overdick [37] introduces the concept of Resource Oriented Architecture (ROA) as an

alternative to the Service Oriented Architecture. This paper is one of the first papers that

highlight the fact that REST and SOAP [32] are not very different from one another. He showed

that resources are basically services. However, by putting some constrains on unconstrained

architecture RESTful architectures can be achieved.

11

Pautasso et al. [38] compare WS*- services and REST in terms of different implementation

levels based on the architectural principles and guidelines. The strength of REST traffic is that it

is lightweight, scalable and cacheable. Table 3-2 shows some differences between SOA and

ROA.

Table 3-2. Difference between SOA and ROA

SOA ROA

Interaction between services Interaction between resources

The processes are stateless. The resources are stateful.

Large protocol Lightweight [38]

Hard to cache [38] Cacheable [38]

Semantics are not explicit [2] Semantics are explicit. [2]

Often tightly coupled [19] [23]. Loosely coupled.[16][38]

Problems with scalability Highly Scalable [38]

3.4 WADL

The Web Application Description Language (WADL) is an XML based language or

specification which is a simple alternative to WSDL (Web Services Description Language) that

provides description of HTTP based Web applications which are REST WS that can be read and

processed by a machine. It eases the creation of web 2.0 style applications for dynamically

configuring services and eliminates the manual writing of the applications [24][57]. According to

the W3C [56], “WADL is designed to provide a machine process-able description of HTTP-

based Web applications”. Takase et al [49] differentiates WADL and WSDL as a “resource-

centric description language” and an “interface-centric description language” respectively.

Figure 3-2 is an example of a WADL description for the Yahoo News Search [56] application.

12

Figure 3-2. Example of a WADL description [56]

3.5 REST for Mobile Clients

As a SOA based system needs an XML parser to understand the exchanged message or

document which includes additional cost for parsing SOAP [46] requests, Lee et al. [27] propose

13

to implement a ROA-based Web service methodology for Telco. Using low-rest [43] style

services they reduce the server side request processing cost because it communicates through

HTTP response over the network and the message body contains simple XML or JSON

messages. Christensen [11] evaluates the key aspects of using RESTful WS for mobile

applications. REST “minimizes the impact of network volatility” and “easy to invoke” as it is

URI based and stateless. Another aspect is that REST usually responds with HTTP and thus it is

“discrete”. REST delivery can be concise and it lends itself to a memory environment which is

very constrained [11].

Christensen [11], states RESTful WS are “easier to consume on mobile platforms because the

client and server agree on a simple invocation and response protocol. This eliminates the

requirement for excessive meta-data based parsing for invocation.”

Selonen et al. [43] give an outline for developing a RESTful MR (Mixed Reality) Web

Service platform at Nokia Research Center. Mixed reality defines to a combination of real and

virtual worlds for “creating environments in which physical and digital objects co-exist. They

choose REST and ROA style because they want the system to be secure and scalable. Some

additional benefits for choosing REST include “decoupling the clients from the service to

support high priority program clients and 3rd party clients in the future, uniform interface to

enable evolution of the platform to support new content types over time and aligning with Nokia

Services business unit reference stack” [43].

In his research, Stirbu [47] proposes a model to build an adaptive and multi-device application

sharing process where the user interface is designed as RESTful architecture. He claims that after

implementing it based on RESTful architecture, it is proved that the architecture is “both feasible

and effective” [47].

14

3.6 Caching

Caching is a popular mechanism for improving user experience in distributed client-server

communication. Web caching is a way to store previous Web results in order to minimize the

communication overhead in a request-response interaction. Falaki et al. [15] investigated the

network traffic caused by the smartphone and found that more than half of the traffic is

contributed by Web browsing. To deal with network traffic, connectivity problem and latency,

caching becomes vital for mobile clients. Cached data for a particular client request can be stored

on the client side for any equivalent future requests. Client cache improves performance,

advances system scalability and reduces latency, especially because of partial reduction of few

interactions.

Liu et al. [29] proposed a dual caching model where caches are put on nomadic clients and the

server. They showed that it is possible to have two caches where the client cache shields the

mobile client from the interconnectivity problem and the wired side cache shields the loss of

connectivity or spotty connection problem. With the proxy side cache, pre-fetching [29] and

caching can be used which shields the client from the complexity that arrives from the client

disconnection and re-connection problem.

To maintain consistency of data in mobile distributed systems, Wang et al. [54] [55] evaluated

a scheme called “scalable asynchronous cache consistency scheme (SACCS)”. They proposed

the scheme to maintain cache consistency between the mobile support station (MSS) and mobile

user’s (MU) caches.

Ren et al. [41] proposed to use a “semantic caching scheme” while accessing Location

Dependent Data (LDD) or application in mobile environments.

Frangiadakis et al. [18] did research on investigating the existing caching strategies for highly

mobile environments and states that “efficiently answering multiple queries” or “reception of the

15

data” is preferred than “small delays in delivery”. They provide analysis of push, pull and hybrid

push-pull ratio for efficiently receiving data in a mobile environment.

To reduce energy consumption and latency in mobile applications, Shen et al. [22] proposed

the “Greedy Dual Least Utility mechanism”, a novel caching method with a cache replacement

algorithm and a passive pre-fetching algorithm. However, caching becomes critical for mobile

service clients due to connectivity problem and limited bandwidth.

The third feature of REST introduced by Fielding [16] in his doctoral dissertation is “client-

cache-stateless-server”. REST is absolutely vital for mobile clients because here caching and

proxies can be used as notion of the state is clear. The semantics are well known [2] and changes

in states are clear which is very important for caching.

3.7 Proxy Servers

A proxy server is a “server that acts as an intermediary for requests from clients seeking

resources from other servers” [39]. Proxy server serves the response requested by a client by

connecting with the original server on behalf of the client. To do so the proxy server checks the

requests for validation through filtering before connecting to the appropriate server for serving

the service. On the other hand, a proxy server can cache responses which allows it to serve

clients’ request for the same data without contacting the original server [39]. Figure 3-3

illustrates how a proxy server works.

16

Figure 3-3. Working of Proxy Server [64]

Endler et al. [12] in their survey based report investigate various proxy based system

approaches, main categories of tasks allocated on them and frameworks for the development and

deployment of proxy based systems for mobile computing. They argue that proxy based systems

are the “best solutions” for mobile applications. They propose the need of using “dynamic proxy

configuration, which allows shaping the proxy’s functionality according to dynamic demand by

the clients, server load, or the current mobile network conditions” [12]. They also discuss the

necessity of proxy side caching and different approaches of caching in mobile computing.

3.8 Cloud Computing

Schmidt introduced the term “cloud computing” in a conversation with Sullivan on Search

Engine Strategies Conference in 2006 by saying “data services and architecture should be on

servers. We call it cloud computing – they should be in a ‘cloud’ somewhere” [42]. According to

Armbrust et al. [6], today computing is accessible in a way where users can access the services

based on their requirements like utility services such as electricity, gas, water, and telephone.

17

Cloud computing is a new paradigm of distributed computing that allows software and data

accessing, and storage services without end-user’s knowledge of where the servers are located,

how the services are delivered and maintained [44]. Armstrong et al. [6] and Barnatt [7] state

cloud computing as “the applications delivered as services over the Internet”. Figure 3-4

illustrates a Cloud computing conceptual diagram.

Figure 3-4. Cloud computing conceptual diagram [44]

According to “Evans Data” [50], after conducting a survey with over 400 software developers

to determine their perceptions of leading cloud space vendors and providers, EC2, GAE, IBM’s

cloud and Microsoft’s Azure are the most popular and top list companies. Amazon Elastic Cloud

Computing (EC2) provides a Virtual Environment where users can choose different Operating

Systems and hardware architectures to run on their virtual machines [4]. Vaquero et al. [52]

name “scalability, pay-per-use utility model and virtualization” as the key features while

defining cloud computing. They classify three major scenarios in cloud computing based on the

18

type of provided capability namely: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS).

According to them, there are 3 major styles depending on resource abstraction technologies

for cloud computing:

1. Infrastructure as a Service (IaaS) refers to a service that exposes the hardware resources to

users. Amazon EC2 is a successful IaaS implementation in the market [52].

2. Platform as a Service (PaaS) provides computational resources as high level application

platforms. Google App Engine (GAE) is an example of PaaS [52].

3. Software as a Service (SaaS) focuses on exposing software functions as services (i.e. WS)

[52].

Qian et al. [40] study the underlying idea, history and status, advantages and risks, value chain

and standardization of cloud computing. They define five key technical features of cloud

computing: large scale computing resources, high scalability & elastic, shared resource pool,

dynamic resource scheduling and, general purpose [40]. Armbrust et al. [6] believes that with

cloud computing, some existing applications will become “more compelling and contribute

further to its momentum” and “Mobile interactive applications” is one of them.

3.9 Summary

Mobile devices are resource constrained clients. To deal with network traffic, limited

resources, connectivity problem and latency, caching becomes vital for mobile clients [15]. The

“Dual Caching Model” which introduces caching for both client and server sides, can be the

solution of the generic problems which arise while consuming WS in mobile clients [29]. Proxy

19

servers can be used to shield clients from the emerging complexities while connecting with the

server for resources [12]. Some strength features of REST traffic is that it is lightweight,

scalable, cacheable [38] and loosely coupled [16] [38]. The use of REST becomes very important

for mobile clients since caching and proxies can be used as the notion of state is clear. Hosting

the servers in a cloud computing environment can enhance the scalability and reliability of

mobile clients [36]. And also with cloud computing, mobile applications can be made more

credible [6]. Table 3.3 shows the solutions found from the previous researches.

Table 3-3. Solutions of the 4 problems found from reviewed research

Issues Findings

Network loss/

Temporary

network loss

In order to deal with network loss, the client must have a cache [29],

[15], [18], [12]. In case we are dealing with temporary outrages, it is

also good to have a proxy on the wired side to allow the client to re-

connect and continue with the session [39], [12].

Latency Caching in client side and also in proxy side is the reason for

reducing latency or speed up the information access over the network.

This rages the question of how to do pre-fetching to reduce latency

[29], [15], [18], [12].

Limited Resources To deal with resource constrains, use of a proxy server and also

hosting the proxy server in the cloud is a good solution. To deal with

limited resource problem, pre and post processing in a proxy closer to

the network resources can be one possible solution [6], [7], [36], [12].

Reduced

Bandwidth

This is again primarily the goal of using client side caching and

middleware for example a proxy server which sends the updates. We

get the idea that we can deal with this problem with the use of

lightweight protocol and push through the proxy server [29], [15],

[18], [39], [12].

In summary, the reviewed research indicates:

 A cache is needed on the mobile client side [29] [15] [18] [12].

20

 A middleware or proxy server is needed which is going to have a cache and also going to

update the mobile client side cache as well as to deal with the consistency issue [29] [12].

 Hosting the servers in Cloud can enhance the scalability and reliability of mobile clients and

mobile applications can be made more credible [6] [36].

 As REST traffic is lightweight and scalable, the use of REST becomes very important for

mobile clients since caching and proxies can be used as the notion of state is clear [16] [38].

However, there are still open questions regarding these findings that remain, namely:

 How to detect the state changes and how to push state changes on the mobile client?

 How to build a portable cache which can be used for multiple devices?

 How to build and organize the caches so that they can be used for multiple devices of a user?

 How to deal with the heterogeneous Web resources as we have so many different resources

and everyone has a different policy, different mechanisms for propagating its updates?

 How to implement the proxy server and the RESTful Web server on cloud platforms?

 How to link these resource constrain mobile devices wirelessly to different RESTful WS?

While describing these issues, everyone debated about the sub problems regarding these

questions. However, no one has actually built a complete architecture. Even if they did this, they

did not test it in realistic settings.

21

CHAPTER 4

ARCHITECTURE

Within this research, the main emphasis is on RESTful Web Services (REST-WS) that follow

the HTTP protocol. Every WS is to be considered as a different resource/object with different

policies. The mobile device will maintain multiple caches which are key/value pair storages for

each individual resource/object. Figure 4.1 illustrates the proposed architecture.

Figure 4-1. The proposed architectural design

22

In this work, the goal is to investigate the approaches for caching and the use of a proxy

server to overcome some of the challenges like network loss, bandwidth consumption, resource

constrains and latency. The architecture (Figure 4-1) consists of three parts, the mobile clients,

the proxy server and the RESTful WS hosted by REST Web server. Both the proxy server and

WS are in the Cloud. The caches will be on the mobile device itself and also in the proxy server

which will sit between the mobile device and the REST Web server. The mobile devices have

individual caches consisting of every mirrored resource. The proxy server also has caches for

every single resource. The use of caching in both the client side and the server side is the

extension of the “Dual Caching Model” proposed by Liu et al. [29].

4.1 Mobile Client

The mobile client hosts one or multiple applications. There will be caches in the mobile

device itself which will have “mirrored resources” that are copy of RESTful resources from the

REST Web server. Whenever a state change or update happens in the resources, the client caches

will get them through the proxy server. Each resource can have their own policies such as

different caching and pre-fetching strategies. Figure 4-2 shows the architecture of the mobile

client.

Figure 4-2. Architecture of Mobile Client

23

4.2 Proxy Server

The proxy server has multiple sub proxies in it and resources like R1, R2, and R3 for mobile

client1; resources R1, R2 and R3 for mobile client2 and so on as a user can have multiple mobile

devices. There will be caches for every resource. They can be shared in multiple devices or not.

In a generic proxy server, all users share the same cache making the process complex as they

have to maintain information about each user. However, in the proposed approach, every user

can now have its own set of information. This proxy server hides all the issues in the wired world

from the mobile client and knows how to interpret messages from these resources. The proxy

server will have multiple caches for every single mobile client of a user. Figure 4-3 shows the

internal architecture of the proxy server.

Figure 4-3. Architecture of the proxy server

24

The proxy server consists of:

 Part A: HTTP Server components that communicate with the mobile clients and the

RESTful WS.

 Part B: Data store which are key/value pair storage caches where for every resource we will

have caches.

 Part C: Controller which works as Resource Cache Manager (RCM). RCM executes the

requests and gets the result back. Every resource will have its own RCM. The Web server

will connect with them and notify the state change to RCM. If there is one user with two

devices, for each resource there will be one resource cache. The more the user shares

resource cache, it is easier for the proxy server to operate. When there is a state change in

one of the resources, they get updated in all of them. Figure 4-4 shows the internal

architecture of the proxy server for multiple devices.

Figure 4-4. Cache representation on the Proxy Server for multiple devices

4.3 Proxy Object

In the proposed architecture, the proxy server contains resources which are proxy objects. The

proxy objects know how often to query for services, when and where to send updates. The proxy

25

object knows how to interpret messages of the resources and the meaning of a new state of the

resource in the server. It encapsulates details of state changes in the server and the interpretation.

Either push method or pull method is applied; these proxy objects contain all the information.

These proxy objects also have the goal to later communicate to the client side proxies and can

have their own proprietary protocols to push data to the client. So the proxy object has two

different sides: the server side and the client side. The server side will know about resources (e.g.

resource R1 which is shown in Figure 4-5) in the actual service and interpret its actions, how to

send messages and how to understand if a state change is happened. The client side which after

detecting the state change, sends it to the client. It will also know how to send information to the

other clients. Figure 4-5 illustrates the two goals of a resource R1 in a proxy server.

Figure 4-5. Two goals of Object R1 in the proxy server

Question 1: How will the client cache and proxy server cache communicate?

Suppose the mobile client requests for resource R1. The client application will first go to the

client cache to see if the resource is already in the cache or not. If it is already there, it will get

the data from the cache and send it to the application. If it is not in the cache, the application will

connect with the proxy server. The communication between the client cache and proxy server

cache will be over HTTP. The proxy server will get the data from the proxy server cache if it’s

there. Otherwise the proxy server will get the data from the RESR Web server, parse it and form

26

a new service results in JSON format, stores the result in the proxy server cache and send back

the optimized result to the mobile client in JSON format. Figure 4-6 illustrates the

communication between the client and proxy server.

Figure 4-6. Communication between the client and the proxy server

Question 2: How to propagate the state changes?

 The proxy server is responsible for consuming the WS, getting the state changes, parsing,

caching and delivering the service result to the mobile client. To get the state changes the proxy

server sends a HEAD request to the REST server whenever there is a GET request coming from

the mobile client. If the ETAG [51] value, which is a unique entity of the Web resource, has

changed, that means the state is changed. To get the state changes, there are several possibilities

and I am going to evaluate them.

1. Proxy server A: The proxy server checks on the resources by sending HTTP HEAD

requests to the REST Web server when the mobile client sends GET request for a particular

resource, the proxy server grabs it from the REST Web server if it is not in the proxy server

cache, stores it and sends it to the client which includes other updates from the REST Web

server as well. This method is also called “Gossiping” [3]. Figure 4-7 illustrates the

Gossiping method of state change.

27

2. Proxy server B: The proxy server checks on the particular resource by sending HTTP

HEAD request to the REST Web server when the mobile client sends GET request for a

particular resource, the proxy server grabs it from the REST Web server if it is not in the

proxy server cache, stores it and sends it to the mobile client from the proxy server. Figure 4-

7 illustrates the system.

Figure 4-7. State change propagation

Question 3: How to build a portable cache which can be used for multiple devices of a user?

Suppose a user has N mobile clients. The proxy server will maintain N caches for every single

mobile client for a user. If mobile client1 requests for resource R1 and it connects to the proxy

server, it can get the response back and can create its own cache. Or it can select an existing

cache from the proxy server. The end user can delete its existing cache as well. For

authentication, security tokens can be sent with the GET request from the client. As every

resource has its own cache, a mobile client can access with security tokens for a particular

resource. The workflow of the implementation that takes place when the user has a browser

based application running in the mobile client and issues a request for a service is described in

Figure 4-8.

28

Figure 4-8. Workflow diagram of the system

29

CHAPTER 5

IMPLEMENTATION

To evaluate the use of a cloud hosted proxy server as a means for supporting smartphones, I

implemented the architecture shown in figure 4-1 (Chapter 4) and built a prototype application

called “GradeView App”. The architecture is implemented using BlackBerry’s WebWorks

framework and Android’s WebView framework as the client application and two servers that are

identical to EC2 (Amazon) as a cloud provider. Using the application, a student will be able to

access his grading records for different courses using his mobile device that are hosted on a

REST Web server. To simplify the evaluation the BlackBerry 9550 Simulator and Android

emulator are used as the mobile clients. The application is also deployed on a BlackBerry

Playbook tablet device for testing.

The client application is BlackBerry Web Work application and Android WebView

application which is the embedded browser framework. Embedded browser framework is a

device or platform independent Web based framework that allows Web Services to be deployed

as resident applications on the mobile device. Figure 5- 1 presents the architecture of the

WebWorks/ WebView.

Figure 5-1. WebWorks/ WebView Architecture

30

Using WebWorks/WebView, the bulk of the client application is implemented using

JavaScript. The JavaScript has access to the cache component that is developed in Java and is

accessible via the JavaScript-Java bridge. The cache component intercepts all the HTTP requests

and decides based on connectivity and available cache data, how to process them. If the cache

component does not have the requested data, then it connects to the proxy server for the response.

A proxy server is used as the intermediary between the BlackBerry/ Android client and the

RESTful WS which are hosted on a REST Web server. The proxy server is developed in Erlang

[13] to ensure maximum scalability and high dependability when serving mobile consumers. For

the RESTful WS for hosting the grading records, a database server is used (CouchBD [5] server is

used which is a document oriented Non-Relational Database Management Server). Figure 5-2

shows the code snippet for the Android WebView to create a simple activity that enables

JavaScript interface and Figure 5-3 shows the UI of the application in the Android emulator.

Figure 5-2. Code snippet for Android WebView

31

Figure 5-3. The UI of the application using WebView in Android Emulator

Figure 5-4 shows the code snippet for the BlackBerry WebWorks to send a HTTP GET request

which is created using the XMLHttpRequest() class in JavaScript to send asynchronous requests

to the proxy server. Figure 5-5(a) shows the UI of the application in the BlackBerry mobile

simulator and Figure 5-5(b) shows the UI of the application in the BlackBerry Playbook tablet

device.

Figure 5-4. Code snippet for BlackBerry WebWorks

32

Figure 5-5(a). The UI of the application using WebWorks in BlackBerry mobile simulator

Figure 5-5(b). The UI of the application using WebWorks in BlackBerry Playbook tablet device

33

5.1 Cache Organization of the client

The four different cases for the cache organization of the client are as follows:

Case 1: When the resource is found in the client cache and there is no update in any of the

resources: When a student wants to know his grade for a particular course, he gives the course

id in the GradeView application in his mobile device. The GradeView application, which is the

client application, issues a request for the requested resource. It first goes to the client cache to

check if the resource is there or not. If the resource is found in the client cache, it issues a

GET/HEAD request to the proxy server to get the “ETAG” [51] (which is a unique entity of a

Web resource to determine whether the local copy of the cache has an updated version or an old

version of the Web resource) of the resource to check if there is any state change happened in the

resource by matching the recent ETAG value with previous ETAG value which is already stored

in the client cache. The proxy server checks if the resource is in the proxy cache or not. The

proxy server also issues a GET/HEAD request to the REST Web server to check if there is any

state change happened to any of the resources or not. If the resource is not found in the proxy

cache it fetches the resource from the REST Web server. If there is no state change, the ETAG is

returned to the client cache. As there is no change in the “ETAG” and it matches with the

previous value which is in the cache of the client application, the response will be retuned

directly to the UI of the client application from the client cache (Figure 5-6(c) Condition 3).

Case 2: When the resource is found in the client cache and there is update in any of

the resources: If the ETAG value is different from the previous value, then the GradaView

application contacts the proxy server with a HTTP GET request. The proxy server contacts the

REST Web server for the resource and pulls the response of the resource and the updates of other

resource as well from the REST Web Server. The proxy also keeps a copy of it in the proxy

34

cache and pushes the response to client’s cache. Then the client cache keeps a copy of the

resource in the storage with the updates for other resources and provides the response to the UI

of the application (Figure 5-6(d) Condition 4).

Case 3: When the resource is not in the client cache and there is no update in any of

the resources: If the resource is not in the client cache, it contacts the proxy server. The proxy

server checks if the resource is in proxy cache or not. If the resource is not found in the proxy

cache it fetches the resource from the REST Web server. The proxy also issues a GET/HEAD

request to the REST Web server to check if there is any state change or update happened to any

of the resources or not. If there is no state change to any other resources, the response is returned

to the proxy cache which has the requested resource only, sends it to the client cache and

provides the response to the UI of the GradeView application (Figure 5-6(a) Condition 1).

Case 4: When the resource is not in the client cache and there is update in any of the

resources: If there is any state change happened in any of the resources in the REST Web

Server, the proxy server contacts the REST Web server for the resources, and keep a copy of

them in the proxy cache and pushes the response which includes the response for the asked

resource and the responses for other updated resources to client’s cache. Then the client

application keeps a copy of the resources in the client cache with the updates for other resources

and provides the response to the UI of the application (Figure 5-6(b) Condition 2).

The four different cases of cache organization process is showed by Fig 5-6(a), Fig 5-

6(b), Fig 5-6(c) and Fig 5-6(d).

35

Condition 1. When the resource (requested grade) is not in the client cache and there is no

update in any of the resources (grades):

Figure 5-6(a). Condition 1

36

Condition 2. When the resource (requested grade) is not in the client cache and there is

update in any of the resources (grades):

Figure 5-6(b). Condition 2

37

Condition 3. When the resource (requested grade) is found in the client cache and there is

no update in any of the resources (grades):

Figure 5-6(c). Condition 3

38

Condition 4. When the resource (requested grade) is found in the client cache and there is

update in any of the resources (grades):

Figure 5-6(d). Condition 4

39

5.2 Caching Policy

For specifying the caching policy, using information in the meta tags [48] or in the headers is not

considered in this research. However, everything which is cacheable is cached since HTTP GET

request has been used as the request. Then, the HTTP HEAD request is used whenever there is a

need for accessing the resource for cache validation. Figure 5-7 and figure 5-8 show the code

snippets of the cache validation functions for the client using JavaScript and the proxy server

using Erlang respectively. The Erlang proxy server is based on some previous research on REST

and proxy server caching done by Lomotey [30].

Figure 5-7. Code snippet of the cache validation function for the client

40

Figure 5-8. Code snippet for the cache validation function for the proxy server [30]

5.3 Cache Data Structure

For the cached data which are JSON objects, the mobile client has its own cache which is a

key/value pair storage built in JavaScript where the key of the storages are the resource URIs. In

the proxy server, it has DETS [13] and ETS [13] tables built in Erlang which work as the

database for the cached data where the key of the storages are the resource URIs as well.

5.4 State change messages using the Proxy server

To get the state changes, I implemented two different proxy servers using the Erlang

programming language.

Proxy server A:

The mobile client gets the response back for a particular resource that has been updated from the

proxy server through a JSON message. Figure 5-9 shows the response from the proxy server for

the resource “b” whether there is any update or no update.

Figure 5-9. Response from the proxy server for the resource “b” whether there is any update or

no update

Proxy server B:

41

The mobile client gets the response back for a particular resource with all other resources that

have been updated from the proxy server through a JSON message. Figure 5-10 shows the

response from the proxy server for the resource “b” if there is no update and Figure 5-11 shows

the response from the proxy server for the resource “b” if there is an update.

Figure 5-10. Response from the proxy server for the resource “b” if there is no update

Figure 5-11. Response from the proxy server for the resource “b” if there is an update

The proxy server is responsible for consuming the WS, getting the state changes and delivering

the service result to the mobile client.

5.5 Workflow of the Proxy server

The workflows of the state propagations for the two different proxies are described below.

Proxy server A:

When there is no update in the resource: The GradeView application issues a GET request to

the proxy server to know the grade of a course. The proxy server then sends Request 1 which is a

42

HEAD request for the requested grade for a particular course that the client application has asked

for to the REST Web Server and gets back Response 1 which has the ETAG value for the grade.

From the ETAG value, the proxy server gets to know if any state change happened to the

requested grade or not by matching this value with its previous value which is kept in proxy

cache. If not then the proxy server sends the response in JSON format for the grade that the

client asked for from proxy cache. Figure 5-12(a) shows the workflow when there is no update in

the grades.

Figure 5-12(a). State propagation when there is no update

When there is an update in the resource: The GradeView application issues a GET request to

the proxy server. The proxy server then sends Request 1 to the REST Web server which is a

HEAD request for the resource which is the grade of a course that the client asked for and gets

back Response 1 which has the ETAG value for the grade. From the ETAG value, the proxy

server gets to know if any state change happened to the requested resource or not by matching

this value with its previous value which is kept in proxy cache. If yes, then the proxy server

sends Request 2 which is a GET request to the REST Web server for the response of the grade

43

that the client asked for and gets back Response 2. Then the proxy server sends the response in

JSON format for the resource that the client asked for from the proxy cache. Figure 5-12(b)

shows the workflow when there is an update in the grade.

Figure 5-12(b). State propagation when there is an update in the resource

Proxy server B:

When there is no update in the resources: The GradeView application issues a GET request to

the proxy server. The proxy server then sends Request 1 to the REST Web server which is for

the response of the resource which is the grade of a course that the client asked for and gets back

Response 1. Then the proxy server sends Request 2 to the server and gets Response 2. This one

contains the information about the status of the whole document. By analysing the last value of

the response which says “committed_update_seq”, proxy server gets to know if any state

change happened to any of the grades or not by matching this value with its previous value

which is kept in proxy’s “record field”. If not then the proxy server sends the response from the

44

proxy cache in JSON format for the grade that the client asked for. Figure 5-13(a) shows the

workflow when there is no update in the grades.

Figure 5-13(a). State propagation when there is no update

When there are updates in the resources: The GradeView application issues a GET request to

the proxy server. The proxy server then sends Request 1 to the REST Web server which is for

the response of the grade that the client asked for and gets back Response 1. Then the proxy

server sends Request 2 to the REST Web server and gets Response 2. This one contains the

information about the status of the whole document. By analysing the last value of the response

which says “committed_update_seq”, proxy server gets to know if any state change happened

to any of the grades or not by matching this value with its previous value which is kept in

45

proxy’s “record field”. If yes then the proxy server updates its status with the recent value of

“committed_update_seq” and sends Request 3 to the REST Web server and gets back

Response 3 which contains all the grades where any update happened. Then the proxy server

sends the response in JSON format which includes the response for the grade that the client

asked for and all other updated grades. Figure 5-13(b) shows the workflow when there are

updates in resources.

Figure 5-13(b). State propagation when there are updates in the resources

46

CHAPTER 6

EXPERIMENTS

For the experimental setup, a BlackBerry 9550 Simulator, a BlackBerry Playbook tablet

device and an Android Honeycomb tablet Emulator (Android 3:2 Emulator) are used as the

mobile clients to simplify the evaluation. The client-side of the GradeView app is an embedded

browser framework which is implemented using WebWorks for the BlackBerry platform and

WebView for the Android platform. The client application is implemented using JavaScript. A

proxy server is used as the intermediary between the mobile client and the RESTful Web server

to handle the numerous concurrent requests. The Erlang-based proxy server and the CouchDB

RESTful Web Server (which is a document oriented Non-Relational Database Management

Server) are hosted on servers that are identical to the Amazon EC2 cloud provider. Figure 6-1

shows the experimental setup.

Figure 6-1. The Experimental Setup

For all the experiments, the BlackBerry 9550 Simulator and Android Honeycomb tablet

Emulator are hosted on a 4GB with an Intel
®
Core™ i5 CPU 650 that ran at 3.20GHz. A gigabit

Ethernet connection is used to link the RESTful services and the proxy server. The REST Web

47

server, which is hosting the services and the proxy server ran on two different servers that use

Intel
®
Xeon

®
 CPU E5506 at 2.13GHz and accessed 16 GB of RAM.

6.1 Experiment Goals

Goal 1. What is the maximum request/ response rate when the proxy server and the

mobile client communicate? This is to determine how fast the mobile client and proxy server can

efficiently communicate.

Goal 2. How the state changes can be detected and propagated to the proxy server and the

mobile client?

Goal 3. How multiple devices of a single user can be supported by the cache efficiently?

The experiment goals and the corresponding experiments are shown in Table 6-1. Figure 6-2

shows the experiment goals in the proposed system.

Table 6-1. Experiments and Goals

Goal Experiment

What is the maximum request/ response rate when the proxy server

and the mobile client communicate? This is to determine how fast the

mobile client and proxy server can efficiently communicate.

Overhead Calculation

How the state changes can be detected and propagated to the proxy

server and the mobile client?

State propagation test

How multiple devices of a single user can be supported by the cache

efficiently?

Scalability Test

48

Figure 6-2. Experiment goals

6.2 Experiments

The following is a list of experiments that is conducted to evaluate the design of the proxy

server and the mobile client according to the architecture.

Experiment 1: Overhead Calculation

Experiment goal: experiment 1 is to measure the general overhead of the system to test Goal 1

which is to determine what is the maximum request/ response rate when the proxy server

and the client communicate.

49

Experiment 2: State propagation test

Experiment goal: experiment 2 is to test Goal 2 which is to determine the delay between the

state change occurring and the cache being notified and propagated to the proxy server and

the mobile client.

Experiment 3: Scalability Test

Experiment goal: experiment 3 is to test the scalability and reliability of the system to test Goal 3

which is to show how multiple devices of a single user can be supported by the cache

efficiently.

6.3 Experiment Setup

For conducting experiment 1 and experiment 2, three different setups are deployed.

Setup A. The first experiment is conducted without cache in the BlackBerry WebWorks

application that consumes the REST WS directly (no proxy server) using a stable high speed

connection.

Setup B. For the second experiment (with cache) the BlackBerry WebWorks application

was extended with a cache component.

Setup C. In the third experiment (with proxy server) we used the setup of experiment two

but included a proxy server (with cache).

Experiment 1: Overhead Calculation

a. For the first experiment I ran the system with a BlackBerry WebWorks application that

consumes directly (no proxy server) using a stable high speed connection and no cache and

calculated the overhead. To measure the overhead, request/ response time is calculated for the

services as the number of request is increased from 1 to 30 and 1 to 150 when the BlackBerry

9550 Simulator and BlackBerry Playbook tablet device are used as the mobile clients

50

respectively. Figure 6-3 describes the first setup for the overhead calculation where the mobile

client is consuming the RESTful WS from the REST Web server.

Figure 6-3. Consume RESTful WS from the REST Web server

b. For the second experiment I ran the system with a BlackBerry WebWorks application that

consumes directly (no proxy server) using a stable high speed connection and calculated the

overhead where the BlackBerry WebWorks application was extended with a cache component.

To measure the overhead, request/ response time is calculated for the services as the number of

request is increased from 1 to 30 and 1 to 150 when the BlackBerry 9550 Simulator and

BlackBerry Playbook tablet device are used as the mobile clients respectively. Figure 6-4

describes the second setup for the overhead calculation where the mobile client is consuming the

RESTful WS from the REST Web server.

Figure 6-4. Consume RESTful WS from the REST Web server (mobile client with cache)

51

c. For the second experiment I ran the system with a BlackBerry WebWorks application that

consumes through proxy server using a stable high speed connection and calculated the overhead

where the BlackBerry WebWorks application was extended with a cache component. The proxy

server had its own caching component in it as well. To measure the overhead, request/ response

time is calculated for the services as the number of request is increased from 1 to 30 and 1 to 150

when the BlackBerry 9550 Simulator and BlackBerry Playbook tablet device are used as the

mobile clients respectively. Figure 6-5 describes the second setup for the overhead calculation

where the mobile client is consuming the RESTful WS through a cloud hosted proxy server.

Figure 6-5. Consume RESTful WS through cloud hosted proxy server

Experiment 2: State Propagation test

a. For the first experiment I ran the system with a BlackBerry WebWorks application that

consumes directly (no proxy server) using a stable high speed connection and no cache. To

determine the delay between the state change occurring and the client being notified, maximum,

minimum and average required time is calculated for the services as the number of request is be

increased from 1 to 30 and 1 to 150 when the BlackBerry 9550 Simulator and BlackBerry

Playbook tablet device are used as the mobile clients respectively. Figure 6-6 describes the first

52

setup for the overhead calculation where the mobile client is consuming the RESTful WS from

the REST Web server.

Figure 6-6. Consume RESTful WS from the REST Web server

b. For the second experiment I ran the system with a BlackBerry WebWorks application that

consumes directly (no proxy server) using a stable high speed connection where the BlackBerry

WebWorks application was extended with a cache component. To determine the delay between

the state change occurring and the client being notified, maximum, minimum and average

required time is calculated for the services as the number of request is be increased from 1 to 30

and 1 to 150 when the BlackBerry 9550 Simulator and BlackBerry Playbook tablet device are

used as the mobile clients respectively.. Figure 6-7 describes the second setup for the overhead

calculation where the mobile client is consuming the RESTful WS from the REST Web server.

Figure 6-7. Consume RESTful WS from the REST Web server (mobile client with cache)

53

c. For the third experiment I ran the system with a BlackBerry WebWorks application that

communicates through the proxy server using a stable high speed connection where the

BlackBerry WebWorks application was extended with a cache component. The proxy server had

its own cache component in it as well. For this experiment I used two different proxies; proxy

server A and proxy server B with different state propagation mechanism as discussed in earlier

chapters. To determine the delay between the state change occurring and the client being notified,

maximum, minimum and average required time is calculated for the services as the number of

request is be increased from 1 to 30 and 1 to 150 when the BlackBerry 9550 Simulator and

BlackBerry Playbook tablet device are used as the mobile clients respectively. Figure 6-8

describes the second setup for the overhead calculation where the mobile client is consuming the

RESTful WS through cloud hosted proxy server.

Figure 6-8. Consume RESTful WS through cloud hosted proxy server

Experiment 3: Scalability Test

a. To test the scalability of the entire system, in the first experiment, apache bench [5] load

generator is configured to issue 10000 workloads as the number of concurrent request is changed

from 10 to 550 and sent it to the REST Web server. The performance is determined based on

how the concurrent requests the system is handling by calculating the throughput and time per

54

request across all concurrent requests. And Figure 6-9 describes the first setup for the scalability

test where Load Generator is sending requests to the REST Web server.

Figure 6-9. Load Generator sends requests to the REST Web server

b. In the second experiment, apache bench load generator generated 10000 workloads as the

number of concurrent request is changed from 10 to 550 and sent it to the proxy server. For this

experiment I used two different proxies; proxy server A and proxy server B with different state

propagation mechanism as discussed in earlier chapters. The performance is determined based on

how the concurrent requests the system is handling by calculating the throughput and time per

request across all concurrent requests. Figure 6-10 describes the second setup for the scalability

test where Load Generator is sending requests to the proxy server.

Figure 6-10. Load Generator sends requests to the proxy Server

55

6.4 Experiment Results and Discussion

Experiment 1: Overhead Calculation

For experiment 1, to calculate the overhead, the systems were evaluated based on different

numbers of concurrent clients that each executed 30 read requests (for the BlackBerry 9550

Simulator) and 150 read requests (for the BlackBerry Playbook device) to a RESTful web service

respectively. The tests are repeated five (5) times on each round starting from 1 request to 30

requests (for the BlackBerry 9550 Simulator) and 1 request to 150 requests (for the BlackBerry

Playbook device). Table 6-2 shows a comparative analysis of the three setups based on the

throughput in seconds for the services as the number of requests is changed from 1 to 30 for the

BlackBerry 9550 Simulator. Table 6-3 shows a comparative analysis of the three setups based on

the throughput in seconds for the services as the number of requests is changed from 1 to 150 for

the BlackBerry Playbook device.

Table 6-2. Results comparing the three setups for the BlackBerry 9550 Simulator

Experiment Setup
Setup A (no cache

and no proxy server)

Setup B (cache and

no proxy server)

Setup C (proxy

server and cache)

Average

throughput for

sending 30

requests (s)

107.6722341 117.1247076 237.2614898

Table 6-3. Results comparing the three setups for the BlackBerry Playbook device

Experiment Setup Setup A (no cache

and no proxy server)

Setup B (cache and

no proxy server)

Setup C (proxy

server and cache)

Average

throughput for

sending 150

requests (s)

398.93301 592.0737346 2652.800438

56

The results from table 6-2 show that Setup C improves the throughput for 120.3553142% than the

Setup A and 102.5716816% than the Setup B under the same conditions when using the

BlackBerry 9550 Simulator as the mobile device. The results from table 6-3 show that Setup C

improves the throughput for 564.9739103% than the Setup A and 348.0523764% than the Setup

B under the same conditions when using the BlackBerry Playbook device as the mobile device.

Figure 6-11(a) shows the throughput in seconds for the services as the number of requests is

changed from 1 to 30 for the 3 different models using the BlackBerry 9550 Simulator as the

mobile client. Figure 6-11(b) shows the throughput in seconds for the services as the number of

requests is changed from 1 to 150 for the 3 different models using the BlackBerry Playbook tablet

device as the mobile client. Setup A (no cache and no proxy server), Setup B (cache in mobile

client) and Setup C (proxy server and cache) for experiment 1 are represented in the graphs by the

blue, red and green line respectively.

Figure 6-11(a). Throughput in second for the BlackBerry 9550 Simulator

57

Figure 6-11(b). Throughput in second for the BlackBerry Playbook device

The graph shows decrement of throughput for model A and B after a while as number of

requests increases from 1 to 30 and linear line in throughput for model C in Fig 6-11a. In Fig 6-

11b, the graph shows an increment of throughput for model C (Fig 6-11a) and decrement of

throughput after a while for model A and B in Fig 6-11b as number of requests increases from 1

to 150. The graphs, Fig 6-11a shows a drop at the beginning for model A and Fig 6-11b shows a

spike at the beginning for model B respectively which is maybe while the CouchDB cache was

being filled. For both Fig 6-11a and Fig 6-11b, model C performs better than model A and model

B. Also high throughput is achieved using model C over model A and B. The result is best when

the tablet device is used over the simulator.

Experiment 2: State Propagation test

For experiment 2, to determine the delay between the state change occurring and the client being

notified, maximum, minimum and average required time is calculated based on different numbers

of concurrent clients that each executed 30 read requests (for the BlackBerry 9550 Simulator) and

150 read requests (for the BlackBerry Playbook device) to a RESTful Web server respectively.

58

The tests are repeated five (5) times on each round starting from 1 request to 30 requests (for the

BlackBerry 9550 Simulator) and 1 request to 150 requests (for the BlackBerry Playbook device).

Table 6-4 and table 6-5 show the result of the three setups based on the minimum and maximum

required response time in seconds for the services as the number of requests is changed from 1 to

30 using the proxy server A and proxy server B respectively.

Table 6-4. Request-response duration through proxy server A

Experiment Setup Setup A (no cache

and no proxy server)

Setup B (cache and

no proxy server)

Setup C (proxy

server A and cache)

Min request-

response time for

30 requests (s)

0.110867

0.097067 0.0651

Max request-

response time for

30 requests (s)

0.125633 0.139 0.076233

Table 6-5. Request-response duration through proxy server B

Experiment Setup Setup A (no cache

and no proxy server)

Setup B (cache and

no proxy server)

Setup C (proxy

server B and cache)

Min request-

response time for

30 requests (s)

0.110867 0.097067 0.1144

Max request-

response time for

30 requests (s)

0.125633

0.139

0.132633

Figure 6-12 and Figure 6-13 shows the minimum and maximum required time in seconds for the

services as the number of requests is changed from 1 to 30 for the 3 different models using the

BlackBerry 9550 Simulator as the mobile client respectively. Setup A (no cache and no proxy

server), Setup B (cache in mobile client) and Setup C (proxy server and cache) for experiment 1

are represented in the graphs by the blue, red and green line respectively. Here I used proxy server

A for the first part of the graph and proxy server B for the second part of the graph.

59

Figure 6-12. Minimum response times

Figure 6-13. Maximum response times

Figure 6-12 and Figure 6-13 show an increment of required time as a function of the

number of request for the model A, B and model C (as we used closed loop for multiple GET

requests) when Proxy server A is used (the first part of the graphs). Here, the results show (from

table 6-4, figure 6-12 and 6-13) the minimum and maximum response times are minimal as the

number of requests is changed from 1 to 30 when model C (using proxy server A) is used which

60

is represented by the green line. Though there is no notable performance increase when Proxy

server B is used (the second part of the graphs) for model C in Figure 6-12, Figure 6-13 and table

6-5.

Figure 6-14 and figure 6-15 show the comparison of minimum and maximum response

times for two different proxies. Proxy server A and Proxy server B (gossiping) are represented in

the graphs by the blue and red line respectively.

Figure 6-14. Comparison of minimum response times for two different proxies

Figure 6-15. Comparison of maximum response times for two different proxies

61

Figure 6-14 and figure 6-15 show the comparison of minimum and maximum response

times for two different proxies where response times are minimal as the number of requests is

changed from 1 to 30 when proxy server A (presented by the blue line) is used over proxy server

B (presented by the red line).

Table 6-6 shows the result of the three setups based on the average required response

time in seconds for the services as the number of requests is changed from 1 to 30 using the proxy

server A and proxy server B respectively for the BlackBerry 9550 Simulator. Table 6-7 shows the

result of the three setups based on the average required response time in seconds for the services

as the number of requests is changed from 1 to 150 using the proxy server A for the BlackBerry

Playbook device.

Table 6-6. Average request-response duration using the BlackBerry 9550 Simulator

Experiment

Setup

Setup A (no

cache and no

proxy server)

Setup B (client

cache and no

proxy server)

Setup C (proxy

server A and

cache)

Setup C (proxy

server B and

cache)

Average

request-

response time

for sending 30

requests (s)

0.117367

0.119633

0.070607

0.121107

Table 6-7. Average request-response duration using the BlackBerry Playbook device

Experiment Setup Setup A (no cache

and no proxy server)

Setup B (client

cache and no proxy

server)

Setup C (proxy

server A and cache)

Average request-

response time for

sending 150

requests (s)

0.235608 0.222295

0.026805

The results from table 6-6 and table 6-7 show that Setup C decreases the average round-

trip time than the Setup A and the Setup B under the same conditions when proxy server A is

62

used. On the other hand, Setup C takes longer duration for the average round-trip time than the

Setup A and the Setup B under the same conditions when proxy server B is used which is shown

in table 6-6.

Figure 6-16(a) shows the average required time in seconds for the services as the number

of requests is changed from 1 to 30 for the 3 different models using the BlackBerry 9550

Simulator as the mobile client. Figure 6-16(b) shows the average required time in seconds for the

services as the number of requests is changed from 1 to 150 for the 3 different models using the

BlackBerry Playbook tablet device as the mobile client. Setup A (no cache and no proxy server),

Setup B (cache in mobile client) and Setup C (proxy server and cache) for experiment 1 are

represented in the graphs by the blue, red and green line respectively. Here I used proxy server A

for the first part of the graph and proxy server B for the second part of the graph.

Figure 6-16(a). Average response times (using BlackBerry simulator)

63

Figure 6-16(b). Average response times (using Playbook)

Figure 6-16(a) shows an increment of average required time as a function of the request

number for the model A, B and model C (as we used closed loop for multiple GET requests) as

the number of requests is changed from 1 to 30 when Proxy server A (the first part of the graph)

is used. Though there is no notable performance increase happened when Proxy server B (the

second part of the graph) is used for model C as the number of requests is changed from 1 to 30 in

Figure 6-16(a).

In figure 6-16(b), average required time increases exponentially for model A and B while

model C outperforms by showing a very linear line graph as the number of requests is changed

from 1 to 150. The huge difference in model A and C; and model B and C are notably visible in

this graph. The highest required response times for model A and model B are 0.47810029 seconds

and 0.46910029 seconds respectively when the number of request is 150. On the other hand, the

highest required response time for model C is 0.052 seconds for 150 requests which shows that

model C takes shorter duration than model A and model B even with a large number of requests

for the services.

64

 Figure 6-17 shows the comparison of average response times for two different proxies.

Proxy server A and Proxy server B (gossiping) are represented in the graphs by the blue and red

line respectively.

Figure 6-17. Comparison of average response times for two different proxies

In figure 6-17, the lowest required response times for proxy server A and proxy server B

(gossiping) are 0.003 seconds and 0.0034 seconds respectively when the number of request is 1.

The highest required response times for proxy server A and proxy server B (gossiping) are

0.1348 seconds and 0.1978 seconds respectively when the number of request is 30. The graph

shows that proxy server B takes longer duration than proxy server A for the average required

response times as the number of requests is changed from 1 to 30.

Experiment 3: Scalability Test

For experiment 3, for the scalability test, in the first and second setup, apache bench load

generator generated 10000 workloads as the number of concurrent request is changed from 10 to

65

550 and sent it to the CouchDB REST server and Erlang proxy server respectively. The result of

the round-trip test is presented in Table 6-8.

Table 6-8. Results comparing round- trip duration

Web Server CouchDB REST

server

Erlang proxy server

(proxy server A)

Erlang proxy server

(proxy server B)

Average request-

response

time for 10000

workloads (ms)

1.869181818 2.698545455 4.651927273

 Figure 6-18(a) and figure 6-18(b) show the total required time in milliseconds for the services as

the number of concurrent request is changed from 10 to 550 for 10000 workloads for the REST

server and the Proxy server (using proxy server A and Proxy server B respectively).

Figure 6-18(a). Time per request for proxy server A

66

Figure 6-18(b). Time per request for proxy server B (using gossiping)

The result shows, in figure 6-18(a) and table 6-8, the proxy server A adds a little

overhead (increased 44.37041% overhead for required time) than the REST Couch server. On the

other hand, the proxy server B adds a lot of overhead (increased 148.8750547% overhead for

required time) than the REST Couch server (in figure 6-18b and table 6-8). The reason of adding

the overhead can be that the Proxy server A and Proxy server B are doing caching, cache

validation, parsing and extracting data from the original result that is coming from the REST

Couch server which takes time.

Figure 6-19 shows the comparison of total required time in milliseconds for the services

as the number of concurrent request is changed from 10 to 550 for 10000 workloads for proxy

server A and Proxy server B respectively.

67

Figure 6-19. Comparison of time per request for two different proxies

The graph shows, in figure 6-19, Proxy server B adds a lot of overhead over Proxy server

A (increased 72.38647083% overhead for required time) as the number of concurrent request is

changed from 10 to 550 for 10000 workloads.

The analysis of the throughput calculation for the services as the number of concurrent

request is changed from 10 to 550 for 10000 workloads for the REST server and the Proxy server

is shown in table 6-9.

Table 6-9. Results comparing average throughput

Web Server CouchDB REST

server

Erlang proxy server

(proxy server A)

Erlang proxy server

(proxy server B)

Average

throughput (s) for

10000 workloads

560.154 575.8693 219.0494545

The results from table 6-9 show that Erlang proxy server produced a percentage increase

of 2.805532% throughput in comparison with the CouchDB REST server under the same

conditions when proxy server A is used. On the contrary, Erlang proxy server produced a

68

percentage decrease of 60.895% throughput in comparison with the CouchDB REST server under

the same conditions when proxy server B is used.

Figure 6-20(a) and figure 6-20(b) show the throughput in seconds for the services as the

number of concurrent request is changed from 10 to 550 for 10000 workloads for the REST

server and the Proxy server (using proxy server A and Proxy server B respectively). Figure 6-21

shows the comparison of the throughput in seconds for the services as the number of concurrent

request is changed from 10 to 550 for 10000 workloads for proxy server A and Proxy server B

respectively.

Figure 6-20(a). Throughput for proxy server A

Figure 6-20(b). Throughput for proxy server B (using gossiping)

69

Figure 6-21. Comparison of throughput for two different proxies

In figure 6-20(a), the proxy server A has the better throughput than the REST server for

the services as the number of concurrent request is changed from 10 to 550 for 10000 workloads.

On the other hand, in figure 6-20(b), the proxy server B has a very low throughput than the

REST server for the services as the number of concurrent request is changed from 10 to 550 for

10000 workloads. The graph in figure 6-21 also shows the vast difference of the throughput in

seconds for proxy server A and proxy server B where proxy server A outperforms proxy server

B.

6.5 Summary

The summary of the experiments are listed below based on the goals.

Goal 1. What is the maximum request/ response rate when the proxy server and the client

communicate? This is to determine how fast the client and proxy server can efficiently

communicate.

Experiment 1: To calculate the overhead, the systems were evaluated based on different

numbers of concurrent clients that each executed 30 read requests (for the BlackBerry 9550

70

Simulator) and 150 read requests (for the BlackBerry Playbook device) to a RESTful web

service respectively and plotted the throughput for three different setups. The result shows an

increment in throughput for model C (Fig 6-11b), and a linear line for model C (Fig 6-11a). The

graph shows a decrement in throughput for model A and B as number of requests increases from

1 to 30 in Fig 6-11a and exponential decrement for model A and B in Fig 6-11b. Also high

throughput is achieved using model C over model A and B (table 6-2 and table 6-3).

Goal 2. How the state changes can be detected and propagated to the proxy server and the

mobile client?

Experiment 2: To determine the delay between the state changes occurring and the client

being notified, maximum, minimum and average required time is calculated based on different

numbers of concurrent clients. Figure 6-12, Figure 6-13 and Figure 6-16(a) show an increase of

required time as a function of the request number for the model A, B and model C (as we used

closed loop for multiple GET requests) when Proxy server A is used. Though there is no notable

performance increase happened when Proxy server B is used for model C (Figure 6-12, Figure 6-

13 and Figure 6-16(a). On the other hand, for model A and B, average required time increases

exponentially while model C outperforms by showing a very linear line graph in Figure 6-16(b).

The huge difference in model A and C; and model B and C are notably visible in this graph. Also

by comparing Proxy server A and Proxy server B for minimum, maximum and average response

times in Figure 6-14, 6-15,6-17 and table 6-4, 6-5, 6-6 respectively, it is clear that Proxy server A

performs far better than Proxy server B.

It is also very interesting to see that the performance is tremendously well when an actual

device is used (in Figure 6-16(b)) for testing over a simulator (in Figure 6-16(a)) (table 6-6 and

table 6-7).

71

Goal 3. How multiple devices of a single user can be supported by the cache efficiently?

Experiment 3: For the scalability test, in the first and second setup, apache bench load generator

generated 10000 workloads as the number of concurrent request is changed from 10 to 550 and

sent it to the actual CouchDB REST server and Erlang proxy server respectively. Figure 6-18(a)

shows the total required time in milliseconds and Figure 6-20(a) shows the throughput in seconds

for the services as the number of concurrent request is changed from 10 to 550 for 100000

workloads for the REST server and the Proxy server A. In both figure 6-18(a) and figure 6-20(a),

we see that the proxy server A adds a little overhead (44.37041% overhead for required time)

than the REST Couch server without optimizing the overall performance. Figure 6-18(b) shows

the total required time in milliseconds and Figure 6-20(b) shows the throughput in seconds for the

services as the number of concurrent request is changed from 10 to 550 for 100000 workloads for

the REST server and the Proxy server B. In both figure 6-18(b) and figure 6-20(b), we see that the

proxy server B adds a lot of overhead (148.8750547% overhead for required time) than the REST

Couch server and does not advance the overall performance. The reason for the performance of

Couch server is because CouchDB database also runs on Erlang Open Telecom Platform (OTP)

[13] framework. The Proxy server A and Proxy server B add overhead with caching, cache

validation, parsing and extracting data from the original result. However, Proxy server A

performs better handling concurrency and number of requests which is visible in figure 6-20(a)

where the proxy server has the better throughput graph.

While comparing Proxy server A and Proxy server B in figure 6-19 for total required

time in milliseconds for the services as the number of concurrent request is changed from 10 to

550 for 10000 workloads, Proxy server A performs better that Proxy server B. Here Proxy server

B adds a lot of overhead over Proxy server A (72.38647083% overhead for required time). Figure

72

6-21 shows the comparison of the throughput in seconds for the services as the number of

concurrent request is changed from 10 to 550 for 10000 workloads for proxy server A and Proxy

server B respectively where again Proxy server A outperforms Proxy server B.

Also, during the testing in experiment 3 for figure 6-18(a), 6-18(b) and figure 6-20(a), 6-20(b)

it is observed that Erlang proxies respond successfully to all the concurrent HTTP requests

ranging from 10 to 550 for 10000 workloads. This proves that the proxy server is reliable and

high availability of the data while hosted in the cloud environment.

Also we see some spikes in the graphs which are probably caused by network traffic,

simulator issue, device issue or other interference.

73

CHAPTER 7

SUMMARY AND CONTRIBUTION

7.1 Summary

This work puts forward a cloud-hosted proxy server approach as an effective way to

support embedded browser apps on smartphones; and shows that RESTful Web services can be

consumed by these resource limited mobile devices. The work proposes a caching technique on

the proxy server to deal with the mobile network ecosystem challenges such as the sporadic (or

unpredictable) network loss, high and intolerable latency, and limited availability of wireless

bandwidth. The caching component is also extended to the mobile device in order to increase the

availability of the RESTful Web resources. The distribution of the cache across the participating

platforms is dubbed “dual caching;” a concept adapted from Liu et al. [29]. This research shows

that caching and proxy server based techniques can be a solution for: addressing bandwidth

limitations, minimizing latency to an acceptable level, recover from network loss, and managing

the limited features (e.g. storage) of the mobile device.

Moreover, a prototypic mobile browser-based application called GradeView app is

implemented based on the designed architecture. The app is developed using the embedded

browser environment for the BlackBerry platform called WebWorks Blackberry and the Android

platform called WebView. Both environments support code swapping so the entire code set is a

single JavaScript base code.

The purpose of the GradeView application is to enable students to access their course

specific grading records which are hosted on a REST Web server using their mobile devices. The

use of the embedded browser framework made it possible to deploy a single code to different

mobile platforms. I therefore, deployed and tested the GradeView app on various consumer

device platforms such as the BlackBerry mobile, Android powered tablet and BlackBerry

74

Playbook tablet. The mobile client has its own JavaScript based caching component to support

network loss, connectivity issue and bandwidth problems. The adoption of the REST WS

standard is to manage the limited storage and processor of the mobile since REST traffic is

lightweight and semantically easier to manipulate.

The proxy server was implemented using Erlang for providing high scalability and

concurrency. Two different Erlang proxy servers were implemented and evaluated to see which

one performs better and faster for state propagation to the mobile client. The first proxy is built

based on the “gossiping” technique whereby the proxy checks from the REST server whether

there is an update without the knowledge of the mobile client; and the second proxy adopts the

general caching technique whereby the proxy stores replicas of all successful transactions

between the mobile and the REST server. It is seen that the gossiping technique for the proxy

server is responsible for decreasing the performance when the concurrency level increases. On

the other hand, the proxy server with general cache validation policy performed significantly

well and minimizes the communication latency. An environment identical to the Amazon EC2

cloud environment was used for hosting separately the REST Web server and the proxy server in

order to ensure reliability and high infrastructure availability.

The results of the experiments prove that the use of caching and proxy server increase the

performance significantly while consuming Web services over the wireless network. Thus, the

use of a proxy server and proxy server caching can be more suitable option with client side

caching while dealing with these resource poor mobile clients with RESTful Web services.

7.2 Implications

In this work, I built and evaluated a mobile application called GradeView app using

embedded browser framework that can help students to access their grades for different courses

using their mobile devices. For accessing a grade of a particular grade, the student will have to

75

provide the course Id using the GradeView app in the mobile device and will see the

corresponding course name and course grade displayed on the screen. The result of the

experiments conducted using the app in a controlled lab environment are very positive and

proved that caching and a cloud hosted proxy server can be a solution for addressing network

loss, latency, limited resource and bandwidth problem while students are accessing their grades

using their mobile devices.

This work can also be extended to the E-health field where patients and medical

professionals can be aided to access information via mobile devices and reducing the waiting

time as latency becomes vital in the medical domain. The framework can be used to build an

application that will enable patients to access information, make appointments and to interact

with health professionals via mobile devices. Similarly, allow the health care professionals to

interact and push information to the patients. The caching and a cloud hosted proxy server can be

a solution for handing network loss and latency thus making it easier to access information for

patients and health professionals using their mobile devices. The E-health concept is evidenced

in another study called SOPHRA [31]. The joint E-health project with the Geriatrics Ward of the

City Hospital in Saskatoon Canada aims to aid the health professionals to access patient records

using their mobile tablet devices, using the embedded browser framework. The SOPHRA

framework used CSS, HTML5, and JavaScript for building the mobile client application [31].

For the implementation of the proxy server, the Erlang programming language is used to achieve

high concurrency and scalability. Figure 7-1 shows the screenshot for the SOPHRA app.

76

Figure 7-1. SOPHRA app on Android tablet device [31]

7.3 Contribution

The contribution and the findings of our work are summarized below.

 A prototype implementation of a framework that enforces low latency in a

distributed mobile environment.

 The mobile client is able to consume the RESTful WS through our proprietary

proxy server.

 Offline RESTful resource accessibility on mobile devices in the case of temporal

and short-lived disconnections.

 Embedded browser framework implementation for the mobile client side

enhances the deployment of the framework for various mobile platforms.

 Proxy server can be used to as an effective way to get the Web services

(resources) state propagation from the REST Web server.

77

 Client and proxy side caching can be used as an effective way to deal with the

wireless network induced problems.

 The cache can be used for multiple devices as we tested it on different platforms.

 The Erlang proxy server can give good support to the mobile client.

 The proxy server and the RESTful Web server can be hosted on other IaaS-based

clusters such as Amazon EC2 cloud environment.

78

CHAPTER 8

LIMITATIONS AND FUTURE WORKS

8.1 Distributed Proxy

This work presents the adoption of a cloud-hosted proxy server to support resource poor

devices such as smartphones and tablets to consume RESTful Web services with less processing

effort. In this work, only one proxy server is considered to sit between the mobile clients and the

RESTful Web server to deal with high communication latency. The reason for the employment

of a single proxy server is to minimize the data inconsistency that may be introduced when

multi-proxy server approach is adopted in the mobile distributed system. However, as systems

continue to grow in order to meet increasing processing and storage demands, it will be

impractical to maintain a single proxy for an enterprise system deployment. Hence, the future

work will investigate how multiple proxy servers can be implemented and maintained to increase

the performance of our system.

8.2 Caching Policies

In this work, I used session storage [61] policy for storing resources in the mobile device

cache, which is a browser dependent Web storage technique. I implemented the session storage

mechanism in our GradeView app for maintaining the data in the mobile device because mobile

devices are resource limited. Therefore, the saved data in the mobile cache is deleted as soon as

the application is turned off. In my future work, I would like to explore the persistent storage or

local storage [61] policy which allows storing data even after the browser is closed. The

persistent data storage approach will enable the support for business continuity since users can

have access to the data even when network connectivity is loss. The challenge that the persistent

data storage on the mobile may introduce is the case of distributed stale cache. This situation will

be investigated and data consistency policies will be proposed.

79

The future outlook on caching will also focus on the analysis of caching techniques based

on context, metadata and so on.

8.3 Security Issues

Currently, security issues of the data on the mobile device are not considered. Since the

current form of storage on the mobile follows the session storage technology, we expect the data

to be erased the moment the application closes. However, as the future work is going to explore

the local storage mechanism and keeping the cache data in the mobile device to handle network

loss and latency problem, I would like to conduct a study to ensure the cached data is secure on

the mobile device. Therefore, I would explore the authentication techniques for the mobile

clients in my future work so that the data can be secured even if the mobile device gets into a

wrong hand.

8.4 The Impact of Multi-tier Caching

In this work, a centralized proxy server is employed between the mobile client and the

REST Web server in the distributed system and the “Dual Caching Model” is implemented based

on the framework proposed by Liu et al. [29]. However, if the centralized proxy server crashes

for any reason, no mobile client(s) will be able to access data from the REST server as all the

requests are going to the REST server from the mobile device through the proxy server. In my

future work, I would like to investigate the impact of multi-tier application caching in scale free

networks [35]. The approach will enable the replica Web services to be stored on multiple nodes

which may be distributed across different virtual, physical, and application layers.

8.5 The Impact of Database Size

In this work, the database I worked with was a moderately small database in terms of the

size. However, if a larger database is used, the system might behave differently as I am using

80

cache in the mobile device built in JavaScript which might not have the necessary support

ability. Therefore, in my future work, I would like to implement and evaluate my framework

based on different databases in terms of their sizes and study the behavior of the result.

The database size analysis is also beneficial for the studies of “Big Data” policy

characterization. The amount of data being produced daily by the enterprise world is reaching

billions of Terabytes and the bigger challenge is these data is becoming unmanageable. Detail

studies in the future on the Big Data phenomenon will aid us to formulate policies to reduce the

data pollution.

81

LIST OF REFERENCES

[1] Adamczyk, P., Smith, P. H., Johnson, R. E., Hafiz, M. REST and Web Services: In Theory

and In Practice

[2] Alarcon, R., Wilde, E., & Bellido, J. Hypermedia-driven RESTful Service Composition,

Published in the ICSOC 2010 International Workshops PAASC, WESOA, SEE, and SC-

LOG San Francisco, CA, USA

[3] Allavena, A., Demers, A., Hopcroft, E. J. 2005. Correctness of a gossip based membership

protocol. In Proceedings of the twenty-fourth annual ACM symposium on Principles of

distributed computing (PODC '05). ACM, New York, NY, USA, 292-301.

DOI=10.1145/1073814.1073871. http://doi.acm.org/10.1145/1073814.1073871

[4] Amazon Elastic Compute Cloud. Last accessed: July 15, 2012. http://aws.amazon.com/ec2/

[5] Apache CouchDB Project. Last accessed: July 15, 2012. http://couchdb.apache.org/

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D., Rabkin, A., Stoica, I., Zaharia, M. Above the Clouds: A Berkeley View of

Cloud Computing, Technical Report UCB/EECS-2009-28, UCB, Feb. 2009.

[7] Barnatt, C. Explaining Cloud Computing [Online], 10th May 2009, Available:

http://www.explainingcomputers.com./cloud.html.

[8] BlackBerry PlayBook Review. Last accessed: January 11, 2012.

http://crackberry.com/blackberry-playbook-review

[9] Box, D. Code Name Indigo: A Guide to Developing and Running Connected Systems with

Indigo, Last retrieved from http://msdn.microsoft.com/en-a/magazine/cc164026.aspx#S1

February 14, 2011

[10] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. Web services

description language (wsdl) 1.1. W3C Recommendation, mar 2001.

[11] Christensen, J. H. Using RESTful web-services and cloud computing to create next

generation mobile applications. Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications, OOPSLA, p 627-633, 2009, OOPSLA

2009 Companion - 24th Annual ACM Conference on Object-Oriented Programming,

Systems, Languages and Applications, OOPSLA 2009, Orlando, Florida, USA.

[12] Endler, M., Rubinsztejn, H., C. A. da Rocha, R., Sacramento, V. Proxy-based Adaptation

for Mobile Computing.

[13] Erlang Programming Language. Last accessed: July 30, 2012. http://www.erlang.org/

http://doi.acm.org/10.1145/1073814.1073871
http://aws.amazon.com/ec2/
http://couchdb.apache.org/
http://crackberry.com/blackberry-playbook-review
http://www.erlang.org/

82

[14] Extensible Markup Language (XML) 1.0 (Fifth Edition). Last accessed: July 25, 2012.

http://www.w3.org/TR/2008/REC-xml-20081126/

[15] Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., and Estrin, D., 2010. A first

look at traffic on smartphones. In Proceedings of the 10th annual conference on Internet

measurement (IMC '10). ACM, New York, NY, USA, 281-287.

DOI=10.1145/1879141.1879176 http://doi.acm.org/10.1145/1879141.1879176

[16] Fielding, R. Architectural Styles and the Design of Network-based Software

Architectures, University of California, 2000.

[17] Fowler, M. Richardson Maturity Model: steps toward the glory of REST. March 2010

http://martinfowler.com/articles/richardsonMaturityModel.html

[18] Frangiadakis, N., and Roussopoulos, N. Caching in Mobile Environments: A New

Analysis and the Mobile-Cache System, Personal, Indoor and Mobile Radio

Communications, 2007. PIMRC 2007. IEEE 18th International Symposium.

[19] Fremantle, P., Weerawarana, S., Khalaf, R. ENTERPRISE SERVICES, Published in the

COMMUNICATIONS OF THE ACM, vol.45,no.10, pp. 77-81, Oct. 2002.

[20] Gartner releases phone market share report for 2011, 15 February, 2012

http://www.gsmarena.com/gartner_releases_phone_market_share_report_for_2011-news-

3832.php

[21] Gartner: “Market Share Analysis: Mobile Devices, Worldwide, 4Q10 and 2010”, by R.

Cozza et al. 08 February 2011.

[22] Gitzenis, S. Bambos, N. Joint Transmitter Power Control and Mobile Cache

Management in Wireless Computing, Mobile Computing, IEEE Transactions on page(s):

498 - 512 , Volume: 7 Issue: 4, April 2008

[23] Gokhale, A., Kumar, B., Sahuguet, A. Reinventing the Wheel? CORBA vs. Web

Services, Published in the Eleventh International World Wide Web (WWW2002), 2002.

[24] Hadley, M. J. Web Application Description Language (WADL), Sun Microsystems Inc:

February 2, 2009.

[25] Hypertext Transfer Protocol – HTTP/1.1, RFC 2616: Last accessed: July 30, 2012.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

[26] Jamal, S., Deters, R. Using a Cloud-Hosted Proxy to support Mobile Consumers of

RESTful Services. The 2nd International Conference on Ambient Systems, Networks and

Technologies (ANT-2011) / The 8th International Conference on Mobile Web Information

Systems (MobiWIS 2011). Procedia Computer Science, Volume 5, 2011, Pages 625-632,

ISSN 1877-0509, 10.1016/j.procs.2011.07.081.

(http://www.sciencedirect.com/science/article/pii/S1877050911004066)

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.sciencedirect.com/science/article/pii/S1877050911004066

83

[27] Lee, W., Lee, C., M., Lee, J., W., and Sohn., J., 2009. ROA based web service

provisioning methodology for Telco and its implementation. In Proceedings of the 12th

Asia-Pacific network operations and management conference on Management enabling the

future internet for changing business and new computing services (APNOMS'09). Hong, C.,

Tonouchi, T., Ma, Y., and Chao, C., (Eds.). Springer-Verlag, Berlin, Heidelberg, 511-514.

http://www.springerlink.com/content/k44131001v295679/

[28] Liu, D., and Deters, R. Management of service-oriented systems, Service Oriented

Computing and Applications. vol. 2, pp. 51-64, 2008.

[29] Liu, X. and Deters, R. An efficient dual caching strategy for web service-enabled PDAs,

SAC '07: Proceedings of the 2007 ACM symposium on Applied computing, New York, NY,

USA: ACM, 2007, pp. 788–794.

[30] Lomotey, R. K. (2012). ENABLING MOBILE DEVICES TO HOST CONSUMERS

AND PROVIDERS OF RESTFUL WEB SERVICES, M.Sc. Thesis Submitted to the

College of Graduate Studies and Research, Department of Computer Science, University of

Saskatchewan, Saskatoon, Canada. March, 2012.

[31] Lomotey, R. K., Jamal, S., Deters, R.: SOPHRA: A Mobile Web Services Hosting

Infrastructure in mHealth. Proceedings: IEEE MS 2012, 1st International Conference on

Mobile Services, Honolulu, Hawaii, USA, June 2012.

[32] MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., and Metz, R. Reference model

for service oriented architecture 1.0. Technical report, OASIS, October 2006.

[33] Mahmoud, Q. H. Service-Oriented Architecture (SOA) and Web Services: The Road to

Enterprise Application Integration (EAI). April 2005:

http://www.oracle.com/technetwork/articles/javase/soa-142870.html

[34] Mobile Device. Last accessed: January 24, 2012.http://technologygear.net/tag/mobile

[35] Oliver, H., Michael, S. Scale-free Networks: The impact of fat tailed degree distribution

on diffusion and communication processe. WIRTSCHAFTSINFORMATIK. Publisher:

Gabler Verlag, Volume 48, Issue 4, 2006, Pages 267-275, ISSN 1877-0509,

10.1016/j.procs.2011.07.081. http://dx.doi.org/10.1007/s11576-006-0058-2

[36] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., and Epema, D. An

Early Performance Analysis of Cloud Computing Services for Scientific Computing, Dec.

2008.

[37] Overdick, H. The Resource-Oriented Architecture, services, pp.340-347, 2007 IEEE

Congress on Services (Services 2007), 2007

[38] Pautasso, C., Zimmermann, O., & Leymann, F. (2008). Restful web services vs. "big"ʼ

web services. Proceeding of the 17th international conference on World Wide Web WWW

08, 08, 805. ACM Press. doi: 10.1145/1367497.1367606.

http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://technologygear.net/tag/mobile
http://dx.doi.org/10.1007/s11576-006-0058-2

84

[39] Proxy server. Last accessed: January 03, 2012. http://en.wikipedia.org/wiki/Proxy_server

[40] Qian, L., Luo, Z., Du, Y., and Guo, L., 2009. Cloud Computing: An Overview. In

Proceedings of the 1st International Conference on Cloud Computing (CloudCom '09),

Martin Gilje Jaatun, Gansen Zhao, and Chunming Rong (Eds.). Springer-Verlag, Berlin,

Heidelberg, 626-631. DOI=10.1007/978-3-642-10665-1_63 http://dx.doi.org/10.1007/978-

3-642-10665-1_63 L.M.

[41] Ren, Q., and Dunham, M. H., 2000. Using semantic caching to manage location

dependent data in mobile computing. In Proceedings of the 6th annual international

conference on Mobile computing and networking (MobiCom '00). ACM, New York, NY,

USA, 210-221. DOI=10.1145/345910.345948 http://doi.acm.org/10.1145/345910.345948

[42] Schmidt, E. Conversation with Eric Schmidt hosted by Danny Sullivan. In: Search

Engine Strategies Conference (August 2006)

[43] Selonen, P., Belimpasakis, P., You, Y. Experiences in Building a RESTful Mixed Reality

Web Service Platform. Web Engineering. Proceedings 10th International Conference, ICWE

2010, p 400-14, 2010

[44] Seminar Reports On Cloud Computing. Last accessed: July 25, 2012.

http://engineeringprojectsreports.blogspot.ca/2012/06/seminar-reports-on-cloud-

computing.html

[45] Service Oriented Architecture. Last accessed: January 30, 2012.

http://en.wikipedia.org/wiki/Service-oriented_architecture

[46] Simple Object Access Protocol (SOAP) 1.1. Last accessed: July 30, 2012.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[47] Stirbu. V., 2010. A RESTful architecture for adaptive and multi-device application

sharing. In Proceedings of the First International Workshop on RESTful Design (WS-REST

'10). Pautasso, C., Wilde, E., and Marinos, A., (Eds.). ACM, New York, NY, USA, 62-65.

DOI=10.1145/1798354.1798388 http://doi.acm.org/10.1145/1798354.1798388

[48] Sullivan, D. (October 1, 2002), Death Of A Meta Tag, Last accessed: June 03, 2012.

http://searchenginewatch.com/article/2066825/Death-Of-A-Meta-Tag

[49] Takase, T., Makino, S., Kawanaka, S., Ueno, K., Ferris, C., and Ryman, A. Definition

Languages for RESTful Web Services: WADL vs. WSDL 2.0.

[50] Top Cloud Service Providers; Amazon, Google, IBM [Online], 24th October 2009,

Available: http://www.mrwebmarketing.com/web-news/top-cloud-service-providers-

amazon-google-and-ibm.

[51] Using ETags to Reduce Bandwith & Workload with Spring & Hibernate. Last accessed:

June 7, 2012. http://www.infoq.com/articles/etags

http://engineeringprojectsreports.blogspot.ca/2012/06/seminar-reports-on-cloud-computing.html
http://engineeringprojectsreports.blogspot.ca/2012/06/seminar-reports-on-cloud-computing.html
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://searchenginewatch.com/article/2066825/Death-Of-A-Meta-Tag
http://www.infoq.com/articles/etags

85

[52] Vaquero, L. Rodero-Merino, L., Caceres, J., and Lindner, M. A break in the clouds:

towards a cloud definition, SIGCOMM Comput. Commun. Rev., vol. 39, 2009, pp. 50–55.

[53] Wang, Q. Mobile Cloud Computing, A Thesis Submitted to the College of Graduate

Studies and Research, Department of Computer Science, University of Saskatchewan,

Saskatoon, Canada. January, 2011

[54] Wang, Z., Das, S., K., Che, H., and Kumar, M., 2004. A Scalable Asynchronous Cache

Consistency Scheme (SACCS) for Mobile Environments. IEEE Trans. Parallel Distrib. Syst.

15, 11 (November 2004), 983-995. DOI=10.1109/TPDS.2004.60

http://dx.doi.org/10.1109/TPDS.2004.60

[55] Wang, Z., Kumar, M., Das, S. K., and Shen, H., 2003. Investigation of Cache

Maintenance Strategies for Multi-cell Environments. In Proceedings of the 4th International

Conference on Mobile Data Management (MDM '03), Ming-Syan Chen, Panos K.

Chrysanthis, Morris Sloman, and Arkady B. Zaslavsky (Eds.). Springer-Verlag, London,

UK, UK, 29-44.

[56] Web Application Description Language, 2009. Last retrieved from

http://www.w3.org/Submission/wadl/, July 20, 2011.

[57] Web Application Description Language. Last accessed: January 30, 2012.

http://www.w3.org/Submission/wadl/

[58] Web Services Architecture, 2004. Last retrieved from http://www.w3.org/TR/ws-arch/

February 10, 2011

[59] Web Services Essentials, Distributed Applications with XML-RPC, SOAP, UDDI &

WSDL, o’reilly. http://oreilly.com/catalog/webservess/chapter/ch06.html

[60] Web Services Glossary. Last accessed: January 29, 2012.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

[61] Web Storage. Last accessed: April 24, 2012. http://www.w3.org/TR/webstorage/

[62] Webber, J., Parastatidis, S., Robinson, I. REST in Practice: Hypermedia and Systems

Architecture.

[63] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., & Ferguson, D. F. Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-

Reliable Messaging and More, Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[64] Working of Proxy Server. Last accessed: January 7, 2012.

http://en.wikibooks.org/wiki/Communication_Networks/HTTP_Protocol

http://www.w3.org/Submission/wadl/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/webstorage/
http://en.wikibooks.org/wiki/Communication_Networks/HTTP_Protocol

	1:

