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ABSTRACT 

 

 Diverse forage mixtures have improved resilience to drought, improved persistence, 

ability to adapt to changing environmental conditions, reduced fertilizer costs, improved root 

mass and greater soil carbon sequestration but do they improve forage and animal 

production.  The objective was to determine if complex native forage mixtures provide 

superior nutritional quality throughout the grazing season as compared to simple native 

mixtures.  Three studies were conducted in 2007 at Swift Current, SK to evaluate forage 

production potentials, nutritive qualities and in vitro dry matter digestibility of native and 

tame forage species common to or having potential in Southwestern Saskatchewan.  In study 

one, plots were seeded in 2006 on Chernozemic Orthic Brown Swinton Loam soils and 

consisted of 11 native and three tame monoculture species common to southwestern 

Saskatchewan.  Clippings at a 5 cm stubble height occurred on June 20 and every 28 days 

after until October 10.  Forage DM production, in vitro OMD, NDF, ADF, ADL, CP, Ca and 

P concentrations were measured.  As species matured, production and OMD declined 

(P≤0.05) but NDF, ADF and ADL concentrations increased (P≤0.05).  There were harvest 

date by species differences (P≤0.05) in forage production and nutritional qualities of C3 and 

C4 grass and legume species.  Study two examined the in situ CP, NDF and DM 

disappearance of six selected species harvested in the fall.  EDNDF and ADDM values did 

not differ (P>0.05) among C3 grasses.  The C4 grasses had higher (P<0.05) EDNDF and 

EDDM and the legume, Canadian milkvetch had the highest (P<0.05) EDDM but lowest 

EDNDF.  Study three occurred in 2005, 2006 and 2007 to determine if complex native forage 

mixtures had superior forage and animal production as compared to simple forage stands.  

Grazing occurred from June through August to achieve 60% utilization.  Animal weights and 

available, cage and residual forage yields were taken to determine production and utilization.  

Forage production and quality did not differ (P>0.05) between simple and complex forage 

mixtures but animal production (AUD ha-1) was higher on complex native mixtures.  Overall 

results showed; 1) C3 and C4 grass and legume species have different growth patterns and 

qualities that can improve forage quality and degradability of the stand throughout the 

grazing season, 2) forage and animal production benefits associated with complex native 

forage mixtures largely depend on environmental conditions like temperature and moisture. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Native Grasslands 

In Canada, forage crops are grown on over 36 million ha of which 72% is native 

range (26 million ha), 17% is tame forage crops (6 million ha) and 11% is cultivated pasture 

(4 million ha) (Horton 1994; McCartney and Horton 1997).  On the Canadian prairies 80% of 

the native grassland has been converted to alternate cropping systems (Samson and Knopf 

1996).  Despite this there are a number of different grassland types that exist on the Canadian 

prairies (Figure 1.1).  The mixed grass prairie in Alberta and Saskatchewan consists of 6.5 

million hectares (Willms and Jefferson 1993).  These grasslands are considered some of the 

most diverse and from a cattle nutritional perspective, most valuable range types due to a 

variety of short, mid and tall grass species that combine the growth and forage quality 

characteristics of cool and warm season forages (Holechek et al. 2004).  In recent years, there 

have been federal and provincial government programs (i.e. Greencover Canada Land 

Conservation and Saskatchewan Conservation Cover Program) as well as initiatives by 

conservation organizations like Ducks Unlimited Canada (DUC) that have increased 

producer interest in reestablishing forage stands, especially species native to the western 

Canadian prairies.   

 
 Figure 1.1 Grassland types within the prairie provinces (Wiken 1986). 
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The benefits of growing forages include lower production costs, increased persistence 

and environmental benefits like reduced soil erosion and water pollution (Jung and Allen 

1995).  There are many reasons why native forages have been encouraged, including 

improved sustainability, improved persistence, superior wildlife habitat, lower input 

requirements and the ability to adapt to changing environmental conditions (Jefferson et al. 

2003; Smith and Whalley 2002).   

What makes native grasses appealing to beef producers is their ability to “cure-on-

the-stem” or maintain their physical form as they mature (Jefferson et al. 2003).  This is due 

to the fact that the rate at which their leaves and stems deteriorate in nutritional value is much 

slower than for many tame species (Jefferson et al. 2005).  It is for this reason that many 

producers stockpile native forages for grazing later in the season.  However, there has been 

little published research to show the extent that different native and tame forage species 

maintain their forage quality as they mature through the grazing season from June to October.   

The mixed prairie is home to about 15 % of all the beef cattle present in Alberta, 

Saskatchewan and Manitoba or approximately 1.3 million head (Willms and Jefferson 1993; 

Statistics Canada 2009).  Cow-calf producers and stocker operators are able to supply more 

than 90% of the nutrient requirements of cattle through forages (Cherney and Kallenbach 

2007).  By extending the grazing season through the use of stored forages, feeding costs can 

be cut in half compared to the use of mechanically harvested forages (Cherney and 

Kallenbach 2007).   

Forage quality can vary dramatically as plants mature or as environmental conditions 

change (Wallace et al. 1961).  Thus it is essential to know the nutrient characteristics of 

native pasture plants since forage quality affects animal performance throughout the season 

(Abouguendia 1998).  Proper grazing management and supplemental feeding programs may 

be required when the nutritional composition of the plants no longer meets the animal’s 

requirements (Abouguendia 1998).  Research is needed to examine how individual native 

forage species change in nutritive value as the plant matures.  

When it comes to reestablishing native grasslands, questions arise about biodiversity 

and ecosystem stability.  Biodiversity is directly related to an ecosystem’s productivity and 

stability but can result in lower individual species stability (Tilman et al 2006).  Diverse 

stands are more stable and productive because species mixtures are better able to adapt to 
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changing conditions and have increased root mass for energy and nutrient storage to buffer 

environmental variation (Tilman et al. 2006).  The ability of more diverse native mixtures to 

better cope with environmental extremes is understood but will it relate to higher plant 

production per hectare and improved animal performance, under the semi-arid conditions of 

southwestern Saskatchewan?  The objective of this literature review is to better understand 

native plant species and species mixtures that are better suited for reestablishing marginal 

land in southwestern Saskatchewan and provide a sustainable grazing resource that could be 

used to extend the grazing season later into the fall and early winter.   

 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Reestablishing Native Forage Species 

 Native forages are species that are found naturally in the ecosystem.  They have 

adapted to local environmental conditions and naturally function with other species in the 

community (Brown 1980).  Restored prairies will never completely resemble undisturbed 

native pasture because they lack diversity and original species composition.  They do 

however, offer a source of nutrients for grazing animals, a rich habitat for wildlife, reduce 

exotic species colonization and lead to improved soil qualities versus annual cropping 

systems (Buyanovsky and Wagner 1998; Minns et al. 2001; Kennedy et al. 2002; Tracy and 

Sanderson 2004; Sanderson et al. 2005).  Ideally, seed used for reestablishment should be 

collected from native pastures that have never been plowed and that closely resemble original 

prairie.  It is believed that extensive genetic differences or “ecotypes” among native 

populations are the result of natural selection (Knapp and Rice 1997).  These complex 

ecotypes consist of species that are adapted to local precipitation levels, soil types, 

temperature fluctuations and day length (Kilcher and Looman 1983).   

Seeding native species cultivars or other improved populations that have evolved in 

different regions under different soil types and climates is little different than seeding tame 

species.  This practice can also present problems with poor establishment and overall 

productivity of species, especially when imported from the southern United States and 

introduced into Saskatchewan (Kilcher and Looman 1983).  This also raises issues with seed 
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establishment, species persistence and the risk for genetic contamination of the local ecotypes 

that could be detrimental to the overall survival of the species (Knapp and Rice 1997).     

Seed prices have been one factor that has deterred many producers from seeding 

native species.  The high seed price is often associated with a shortage of available seed 

adapted to the Canadian prairies.  Limited development and research on Canadian cultivars 

has restricted the supply of seed for reclamation projects (Jefferson et al. 2002).  Native 

forage seed production is extremely variable and depends greatly on growing conditions and 

environment.  Even in ideal years, limited seed production occurs because these native 

species tend to partition energy into plant survival unlike annual crops that produce large 

volumes of seed (Smith and Smith 1997; Jefferson et al. 2002).  Native seed quality can also 

be extremely variable due to lower levels of germination, viability and vigor.  Seed dormancy 

of certain species can last for several years.  This is a quality that provided native species an 

adaptive advantage but is a clear disadvantage for seed producers (Smith and Smith 1997).  

Other natural adaptations like the slow rate of establishment enables native forage species to 

grow on low fertility soils where tame species could not survive.  Organizations like Ducks 

Unlimited Canada (DUC) and Agriculture and Agri-Food Canada (AAFC) have developed as 

many as 20 ecological varieties or ecovars™.  An ecovar refers to a variety selected for 

improved growth characteristics and genetic diversity (Smith and Whalley 2002).   

  

2.1.1 Advantages of Using Native Forages 

A major question that arises when reseeding forages is, “why use native species”?  

Native forage species tend to be more expensive to establish because of higher seed prices 

and lower seed availability.  Their use is encouraged and, in many cases required, for 

reclamation projects along roadsides, drilling sites, and utility lines (Roundy et al. 1997).  

The petroleum industry is now using native forage species for reclamation of right of ways 

and well sites throughout the ecologically sensitive Great Sandhills (Jefferson et al. 2005).  

Groups like DUC have encouraged the use of native instead of tame species for nesting water 

fowl habitat.  The greatest concern associated with tame species is that they will out compete 

and eliminate natural vegetation.  This risk is the greatest within the arid and semi-arid 

regions of North America. (D’Antonio and Vitousek 1992).   
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Tame forage species often seeded include crested wheatgrass (Agropyron desertorum 

(L.) Gaertn.), intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. 

Dewey), Russian wildrye (Psathyrostachys junaceus (Fisch.) Nevski), Altai wildrye (Elymus 

angustus Trin.) and meadow brome grass (Bromus riparius Rehm.) (Willms and Jefferson 

1993).  Research comparing native versus tame species has provided inconclusive 

comparisons of forage and animal production due in part to the difficulty in comparing the 

species.  Often newly established tame stands are compared to well established native stands 

which are not a valid comparison (Coupland 1979).  Forage biomass production is often 

overestimated in experimental trials where soil nutrients and weed control are often superior 

to those found under normal field conditions (Jefferson et al. 2005).   Tame forages often 

peak in forage production, two to three years after seeding, then yields begin to decline 

(Knowles 1987).  This has become more evident in the last few years with increasing 

fertilizer costs and the inconsistent responses to fertilizer in the semi-arid regions of western 

Canada where rainfall is variable (Jefferson et al. 2005).   

Native grass stands encourage better soil properties including lower soil bulk density, 

higher organic matter and higher root mass than certain monoculture tame grass stands 

(Smoliak et al. 1967; Lesica and DeLuca 1996).  The cultivation of land for annual crop 

production has resulted in soil organic matter reductions up to 75 % and nearly complete 

removal of soil carbon within 5 years of cultivation (Elliot 1986; Burke et al. 1995; 

Buyanovsky and Wagner 1998).  It also leads to increased atmospheric CO2 (Bazzac 1990), 

temperatures and evaporation levels (Mitchell et al. 1990).  The seeding of marginally 

cropped land to native species could ultimately remove enough carbon from the atmosphere 

and trap it as soil organic matter to help Canada meet its international commitment to 

reducing greenhouse gases (Jefferson et al. 2005).   

 

2.1.2 Pasture Biodiversity and Stability 

Diversity is a natural aspect to native rangelands that help maintain the stability of the 

ecological community.  Forage systems are a balance of plants, soils and environment and in 

most cases, animals.  Land managers need to implement systems that best match animal 

needs throughout the grazing season (Cherney and Kallenbach 2007; Redmon and 

Hendrickson 2007).  Different climatic zones result in the growth of different forage species 
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with distinct production curves.  Plant diversity not only increases primary production but 

improves the ecosystem’s ability to adapt to disturbances and improves nutrient cycling in 

the environment (Fridley 2001; Minns et al. 2001; Sanderson et al. 2005).  Diverse forage 

stands tend to be more resistant to weed invasion because of competition for resources 

(Kennedy et al. 2002; Tracy and Sanderson 2004).   

Diverse forage mixtures have the ability to adapt to changing environmental 

conditions.  The mixed grass prairie is dominated by cool season (C3) species but warm 

season (C4) species may be more favorable under certain environmental and soil conditions 

(Jefferson et al. 2002).  If conditions are adequate, both C3 and C4 forages can be found 

growing together.  However, it must be recognized that they initiate growth at different times 

throughout the growing season (Baron and Bélanger 2007).  Having a mixture of C3 and C4 

season grasses in a sward, ultimately ensures that a high quality and nutritious forage source 

is available throughout the grazing season (Figure 2.1) (Trlica 1999).  Warm season forages 

grow during the hot part of the summer when the yield and quality of C3 forages decline 

(Jefferson et al. 2005).  By having species with different growth periods it ultimately reduces 

interspecies competition and improves community production (Willms and Jefferson 1993).  

Cool season grasses and legumes provide the majority of available forage because they 

initiate growth early in the spring and produce about two thirds of their annual production 

before mid summer (Holechek et al. 2004; Jefferson et al. 2005; Cherney and Kallenbach 

2007).  General growth of legumes and C3 grasses starts early in the spring and then may be 

reinitiated later in the fall when temperatures drop and moisture becomes available (Figure 

2.2).  The C3 species begin growth in May and peak in production by July before going 

dormant in the summer, when high temperatures and low rainfall are not favorable for their 

growth (Baron and Bélanger 2007; Cherney and Kallenbach 2007).  As temperatures 

decrease and if moisture becomes available C3 species will reinitiate growth until the first 

killing frost.  Warm season species initiate growth in June and grow throughout the hot 

summer periods and peak production is achieved by September because they are adapted to 

high temperatures and drought conditions (Baron and Bélanger 2007; Cherney and 

Kallenbach 2007).  This growth during the hot part of the summer provides forage for the 

grazing animal after the spring grazing of C3 species (Jefferson et al. 2002).  Maximum 

above ground production on the mixed grass prairie is achieved during mid summer when the 
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C3 grasses and C4 grasses have both reached maximum production (Ehleringer and Monson 

1993).   

 

 
 
Figure 2.1 The typical availability of different forages throughout the growing season 

(Cherney and Kallenbach 2007) 
 

 

Figure 2.2 General growth pattern of forage grasses and forage legumes in the growing  
       season (Barnhart 1998) 
 
 
Warm season species have shown latitudinal adaptations that restrict the use of 

southern species in northern locations (Tober and Chamrad 1992).  The distribution of C4 

plants is affected by temperature, aridity, humidity, soil water, nutrient status and ability to 

allocate resources between the roots and shoots (Stowe and Teeri 1978; Vogel et al. 1986; 

Hattersley 1992; Larcher 2003). 
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Forages within the semiarid regions of southern Saskatchewan experience dry, cold 

winters and common drought conditions (Baron and Bélanger 2007).  It is evident from long 

term averages, that semi-arid regions of the prairie provinces have increased growing degree 

days and moisture deficits and in the future these trends are expected to continue (Nyirfa and 

Harron 2003).  These semi-arid regions of the Canadian prairies have experienced almost 

every major drought within the last 80 years (Wheaton et al. 2005).  Climate not only affects 

the length of the growing season and biomass production but has a major effect on species 

that grow within the area (Redmon and Hendrickson 2007).  Cool season grasses tend to be 

better suited to survive harsh winter conditions than legume species (Baron and Bélanger 

2007).  Plants have the ability to adapt, both physiologically and morphologically to 

changing climatic patterns, management stresses and short term weather extremes to ensure 

their survival (Allard 1999; Baron and Bélanger 2007).  Long term climate changes will alter 

species composition and ultimately change community dynamics (Willms and Jefferson 

1993). 

The majority of plant growth that is produced on the semi-arid prairies occurs early in 

the summer when the majority of moisture is received (Baron and Bélanger 2007).  

Precipitation throughout the growing season significantly affects production.  However fall 

soil moisture is important to enable species to initiate growth early in the spring (Willms and 

Jefferson 1993).  Greater diversity in forage stands leads to increased resistance to drought 

since different plant species utilize different photosynthetic pathways, initiate growth at 

different points within the growing season and distribute carbohydrates differently within the 

roots to the leaves (Glvnish 1994; Tilman and Downing 1994).   

 

2.1.3 Advantages of Legumes in Forage Stands 

The inclusion of native legumes in grass mixtures has been shown to increase forage 

yield and quality when compared to unfertilized grass pastures (Posler et al. 1993; Phillips 

and James 1998).  Pasture production is known to decline within a few years of seeding, a 

theory termed pasture rundown in Australia (Cadish et al. 1994).  Through the inclusion of 

persistent forage legumes, pasture sustainability can be improved because of nitrogen 

inputted into the system through N fixation (Cadish et al. 1994; Schellenberg and Banerjee 

2002).  This is a result of symbiotic relationships with Rhizobium bacteria that form nodules 
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on the root.  The bacteria utilize energy to reduce atmospheric N making it available to the 

plant (Metcalfe and Nelson 1985; Kopp 2003).  The extent to which N fixation occurs is 

dependant on herbage yield, nitrogen concentration in the plant and the percent of N derived 

from plant symbiosis with the bacteria (Cadish et al. 1994).  This can subsequently reduce the 

need for fertilizer (Kopp 2003).  Having legumes in forage stands can also improve the 

quality of the ruminant diet and ultimately animal performance (Jefferson et al. 2002; 

McGraw and Nelson 2003).  This is because the leaves of legumes tend to have higher crude 

protein (CP) levels and cell soluble carbohydrates than grasses at similar stages of maturity 

(Holechek et al. 2004).  However they also contain higher levels of lignin and undegraded 

neutral detergent fiber (NDF) than grass species (Hoffman et al. 2003).  The effective DM 

degradability is higher in legumes, most likely because they have thinner cell walls than 

grasses (Spalinger et al. 1986; Hoffman et al. 1993; Yu et al. 2004).  Nicholas and Johnson 

(1969) determined that by broadcasting biennial sweet clover on South Dakota native range, 

both forage yield and CP content improved.  In other cases, by seeding alfalfa or cicer 

milkvetch with crested wheatgrass, significant improvements in forage production and 

protein levels were observed in the grass (Rumbaugh et al. 1982).  Legume mixtures do 

require more management to ensure long term sustainability because they are less able to 

adapt to diverse environmental conditions (Metcalfe and Nelson 1985). 

A major concern with legumes is the risk that they will cause bloat.  Bloat occurs 

when the natural eructation of rumen fermentation gases is restricted and results in abnormal 

abdomen distention that restricts respiratory and circulatory systems (Berg et al. 2000; Popp 

et al. 2000).  Bacterial fermentation of many species of legumes produces a stable gas 

trapping foam (frothy bloat) which cannot be eructated from the rumen and ultimately can be 

lethal to the grazing animal (Knopp 2003).  This frothy bloat is believed to be caused by a 

number of factors like increased proportions of rapidly degraded chloroplast protein fractions 

(Coulman et al. 1999; Mayland et al. 2003) and the presence of saponins that disrupt rumen 

function and increase digestion in the small intestine (Lu and Jorgensen 1987).  The maturity 

of legume plants is a major factor that affects bloat potential.  Legumes in the pre-bud or 

vegetative stage have the highest potential to cause bloat.  Other factors that can increase the 

risk of bloat include grazing damp immature plants or stands that have recently experienced 

frost (Knopp 2003).  It is important to ensure that non-bloating legumes are used such as 
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sainfoin or the “bloat reduced” alfalfa cultivar, where the initial rate of digestion has been 

reduced through breeding (Berg 1997; McMahon et al. 2000; Berg et al. 2000; Coulman et al. 

2000).  Some research has shown increased levels of condensed tannins have been shown to 

bind plant proteins and prevent frothy bloat (Li et al. 1996; McMahon et al. 1999).  Other 

options to reduce the risk of bloat include the use of ionophores, pluronic detergents, or 

altered management techniques (Majak et al. 1995; Anderson, 1997; Berg et al. 2000). 

 

2.1.4 Grazing Mixed Native Swards 

There has been a perception that tame forage species have a higher production 

potential.  However, several studies have shown that there is no significant animal production 

differences between monoculture tame species versus improved native populations (Hanson 

et al. 1976; Hofmann et al. 1993; Jefferson et al. 1997).  Lawerance and Ratzlaff (1989) and 

Knowles (1987) both found that tame species had higher production potential than native 

swards only when fertilizer was applied.  Previous work in Swift Current, SK. showed that 

available crested wheatgrass forage production ranged from 1334 to 2307 kg ha-1 and peak 

production ranged from 3709 to 6302 kg ha-1 (Bruynooghe 1997).  In contrast, studies done 

on native mixed grass prairie produced 1519 kg ha-1 in Montana (Sims et al. 1978); 1865 to 

2199 kg ha-1 in Lethbridge, AB (Willms et al. 1986); and 1744 to 2271 kg ha-1 in western 

South Dakota (Johnson et al. 1951).  On crested wheatgrass pastures, ADG ranged from 0.77 

to 1.41 kg day-1 and total animal production ranged from 68 to 198 kg ha-1 (Bruynooghe 

1997).  Research by Jefferson et al. (2003) has shown that native grasses have the ability to 

“cure-on-the-stem.”  This means that native forages maintain their physical form and forage 

qualities as the plants mature because their leaves and stems drop in quality at a slower rate 

than many tame species (Jefferson et al. 2005).  The curing of these native species usually 

occurs in late July but timing can vary with the season (Pigden 1952).  This is important 

because as species mature, they become less palatable and animal production declines.  This 

was demonstrated by research in Kansas, where ADG on pasture grazed from May to July 

was 0.80 kg day-1 versus pastures grazed from July to October that averaged 0.45 kg day-1 

(Smith and Owensby 1978).  A nine year study at Manyberries, AB. showed that the ADG of 

calves was 0.76 kg day-1 on continuously grazed mixed grass prairie (Smoliak 1960).  Studies 
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have shown that increased forage production ultimately improves live weight gains ha-1 in 

cattle (Cook 1972; Ward 1988; Reid et al. 1990; Jackson 1999). 

 Having a diverse range of species ensures that the forage yield is distributed 

throughout the growing season and provides the opportunity to graze throughout the year 

(Cook, 1972; Cherney and Kallenbach 2007).  By matching forage nutrient supply with the 

grazing animal’s nutrient demand, input costs can be reduced and animal performance can be 

improved (Redmon and Hendrickson 2007).  Grazing earlier in the spring and later in the 

fall/ early winter can increase returns by $50 to $90 per cow (Adams et al. 1994).   

Each native species has evolved a characteristic seasonal growth curve that directly 

affects its nutritional quality and digestibility (Kamstra 1973; Abouguendia 1998).  Having a 

mixture of C3 and C4 forages can improve pasture production and forage quality throughout 

the grazing season (Cook 1972; Ward 1988; Reid et al. 1990; Jackson 1999).  Several studies 

have shown that complex forage mixtures produced had improved forage production when 

compared to simple mixtures (Deak et al. 2004; Tracy and Sanderson 2004a; Tracy and 

Sanderson 2004b).  A more diverse forage stand offers improved forage production and 

provides the grazing animal a more nutritious and palatable forage (Smoliak and Bezeau 

1967; Tilman et al. 1996; Ganskopp et al. 1997; Bargo et al. 2002).  Legumes have higher 

energy and protein levels than grasses but their persistence can be lower (Cherney and 

Kallenbach 2007).  Data from Utah, Texas and Wyoming show how grasses and forbs 

change in quality during the year (Cooke et al. 1959; Varner et al. 1979; Huston et al. 1981; 

Severson 1982; Krysl et al. 1984) but little information is available for the mixed grass 

prairie. Qualities like digestible energy (Figure 2.3), digestible protein (Figure 2.4) and 

phosphorus (Figure 2.5) are retained at different levels in grass, forbs and shrubs during the 

growing season and can compliment each other to meet the demands of ruminant animals.   
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Figure 2.3 The average digestible energy for three forage classes at four  
phenological stages (Cooke 1972) 
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Figure 2.4 The average digestible protein for three forage classes at four  
phenological stages (Cooke 1972) 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Vegetative Anthesis Fruiting Mature
Plant Stage

Ph
os

ph
or

us
 (%

)

Grass

Forb

Shrub

Gestation
requirement

Lactation
requirement

 
Figure 2.5 The average phosphorus level for three forage classes at four  
phenological stages (Cooke 1972) 
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A major concern arises with palatability differences between the C3 and C4 grasses 

which can alter the period of optimal pasture utilization or result in selective pressures on the 

sward composition.   Some studies have observed that cattle avoided C4 species and preferred 

forbs and C3 species (Caswell et al. 1973; Kautz and van Dyne 1978).  Cool season plants are 

often preferentially grazed over C4 plants as long as the species are at the same growth stage 

(Trlica 1999).  However, C3 grasses tend to enter their reproductive phase around the same 

period when C4 species initiate growth (Trlica 1999), at which point cattle are naturally 

attracted to the new growth of the C4 grasses.  Due to differences in species’ morphological 

development associated with year, moisture and cultivar (Smith 1972) and the effect of 

maturity on nutritive quality, it is important to stage plants for consistent comparisons and 

improved pasture management (Wallace et al. 1961; Abouguendia 1998).  

 

2.2 Plant Staging 

 Plant staging is important to compare different species and samples from different 

collection periods.  It can be used to make decisions on when to initiate grazing, harvest seed 

or apply herbicide.  Time of plant maturity will vary among years, locations and cultivars 

(Smith 1972).  Forage plants exhibit morphological changes that represent stages in their life 

cycle and thus can be used to compare samples (Skinner and Moore 2007).  Systems 

designed to stage plants not only have a defined structure to describe the morphological stage 

but have numerical indexes that correspond with a given stage (Skinner and Moore 2007).   

There are several methods that can be used to stage perennial grasses (Haun 1973; 

Zadoks et al. 1974; Simon and Park 1983; Moore et al. 1991; Sanderson 1992).  The 

methodology of Simon and Park (1983) was relatively complex and difficult to apply.  A 

newer and simpler method of determining the growth stage of perennial grasses was 

developed by Moore et al. (1991).  It used a universal set of morphological descriptors to 

apply numerical indices with phenological traits of C3 and C4 grasses (Skinner and Moore 

2007).  Moore et al. (1991) separated plant growth into five primary stages; germination, 

vegetative, elongation, reproductive and seed ripening (Table 2.1).   
 
 
 
 
 



 14

Table 2.1 Numerical indices and descriptors for staging perennial grass development______ 
Stage                    Index   Description 
Germination 
G0        0.0   Dry seed 
G1   0.1   Imbibitions 
G2   0.3   Radical emergence 
G3   0.5   Coleoptile emergence 
G4   0.7   Mesocotyl and coleoptile elongation 
G5   0.9   Coleoptile emergence from soil 
 

Vegetative Leaf Development 
V0   1.0   Emergence of first leaf 
V1        (1/N) + 0.9   First leaf collard 
V2        (2/N) + 0.9   Second leaf collard 
Vn        (n/N) + 0.9    Nth leaf collard 
 

Elongation-Stem Elongation 
E0   2.0   Onset of stem elongation 
E1        (1/N) + 1.9   First node visible 
E2        (2/N) + 1.9   Second node visible 
En        (n/N) + 1.9                         Nth node visible 
 

Reproductive-Floral development 
R0   3.0   Boot stage 
R1   3.1   Inflorescence emergence/ First spikelet visible 
R2   3.3   Spikelets fully emerged/ Peduncle not emerged 
R3   3.5   Inflorescence emerged/ Peduncle fully emerged 
R4    3.7   Anther emergence/ Anthesis 
R5    3.9   Post anthesis/ fertilization 
 

Seed Development and Ripening 
S0    4.0   Caryopsis visible 
S1    4.1   Milk 
S2   4.3   Soft dough 
S3   4.5   Hard dough 
S4   4.7   Endosperm hard/ Physiological maturity 
S5   4.9   Endosperm dry/ Seed ripe 
n = event number (number of leaves or nodes); N = number of events within the primary stage (total 
number of leaves or nodes developed); (Modified from Moore et al. 1991) 

 

The physiology of legume forages is completely different than perennial grasses.  

There are also many different procedures to stage legumes (Albert 1927; Dotzenko and 

Ahlgren 1950; Kalu and Fick 1981; Fick and Mueller 1989; Ohlsson and Wedin 1989).  

Many of these techniques tend to focus more on the development of the stem and not on the 

transitional stages of the plants.  Kalu and Fick (1981) modified the Gengenbach and Miller 

(1972) technique that uses ten categories to correspond with morphological development at 
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all growth stages (Table 2.2).  It was created to better stage alfalfa plants but not other types 

of legumes (Skinner and Moore 2007).   

 

Table 2.2 Definition of morphological stages of development for individual alfalfa stems 

Stage                 Stage Name   Description 
0  Early Vegetative Stem length ≤ 15 cm; no buds, flowers or seed pods 
 
1  Mid Vegetative  Stem length 16 to 30 cm; no buds, flowers or seed pods 
 
2  Late Vegetative Stem length ≥ 31 cm; no buds, flowers or seed pods 
 
3  Early Bud  1 to 2 nodes with buds; no flowers or seed pods 
 
4  Late Bud  ≥ 3 nodes with buds; no flowers or seed pods 
 
5   Early Flower        One node with one open flower (standard open); no seed pods 
 
6  Late Flower  ≥ 2 nodes with open flowers; no seed pods 
 
7  Early Seed Pod 1 to 3 nodes with green seed pods 
 
8   Late Seed Pod  ≥ 4 nodes with green seed pods 
 
9   Ripe Seed Pod  Nodes with mostly brown mature seed pods 
* Modified from Kalu and Fick (1981) 

 

 

2.3  Photosynthetic Pathways  

There are three different photosynthetic pathways that have been distinguished in 

plants.  They include the Calvin Benson cycle (C3 pathway), Hatch Slack cycle (C4 pathway) 

and the Crassulacean acid metabolism (CAM) pathway.  Photosynthesis is the process of 

converting water and carbon dioxide into glucose and oxygen through the use of sunlight 

energy (Smith and Smith 2003).  The three pathways have resulted from plant adaptations to 

different environmental conditions.  C3 species grow optimally at temperatures ranging from 

20 to 25°C and generally growth slows when temperatures drop below 5 and 7°C (Baron and 

Bélanger 2007).  Whereas C4 species have higher optimal growing temperatures, ranging 

from 30 to 35°C and growth slows at temperatures below 15°C (Barbour et al. 1987; Baron 

and Bélanger 2007).  The CAM pathway is similar to the C4 pathway but what makes it 

unique is that the conversion of C02 to malate (4 carbon acid) and the reverse reaction occur 

only in the mesophyll (Smith and Smith 2003).  The CAM pathway is only found in the hot 
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deserts of the world and does not significantly contribute to the global carbon cycle 

(Ehleringer and Cerling 2002).  To better distinguish the differences between common 

species grown in southwestern Saskatchewan it is important to better understand the C3 and 

C4 pathways.  

  The C3 pathway (Calvin Benson cycle) is the oldest photosynthetic pathways from 

an evolutionary stand point (Ehleringer and Monson 1993).  It evolved under conditions of 

high carbon dioxide (CO2) and low oxygen (O2) (Moore et al. 2004).  The C3 photosynthetic 

pathway or photosynthetic carbon reduction cycle utilizes a single chloroplast type to convert 

sunlight energy into chemical energy to fix CO2 and produce important carbon compounds 

for plant growth.  The ATP and NADPH used as energy sources in the pathway originate 

from the light reactions of photosynthesis.  The dark reactions involve ribulose-1,5-

biphosphate carboxylase/ oxygenase (RUBISCO) an enzyme that can either bind CO2 

(carboxylate) or O2 (oxygenate) with ribulose-1,5-biphosphate (RuBP), a five carbon 

molecule (Figure 2.6) (Larcher 2003).  RUBISCO primarily catalyzes carbon fixation to 

produce two molecules of 3-phoshoglycerate (PGA), each contains three carbon atoms hence 

the C3 name.  PGA is then reduced with the enzyme phosphoglycerate kinase and ATP to 

form 1,3-bisphosphoglycerate which then produces glyceraldehyde-3-phosphate (GAP) using 

the enzyme glycerol dehyde-3-phosphate dehydrogenase and NADPH (Ehleringer and 

Monson 1993).   The GAP produced by the Calvin cycle is converted to fructose 6-phosphate 

and glucose 1-phosphate that react producing sucrose 6-phosphate that ultimately results in 

the production of sucrose, a disaccharide (Hames and Hooper 2005).  The sucrose can then 

be translocated throughout the plant or retained in the chloroplast for starch synthesis.  A 

portion of the GAP is then recycled through numerous reactions to produce RuBP which is 

required to reinitiate the Calvin Benson cycle. 
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Figure 2.6 The C3 plant photosynthetic pathway (Hames and Hooper 2005).
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An increase in leaf temperature can ultimately increase photorespiration and reduce 

the photosynthetic efficiency.  Environments with high light intensities, temperatures and 

arid conditions reduce the ability of RUBISCO to differentiate oxygen and carbon dioxide 

(Sheen, 1999; Ehleringer and Monson 1993).  Carbon dioxide naturally has a high affinity for 

the RuBP but when there is insufficient CO2 then O2 will ultimately bind with the RuBP.  

This reaction (photorespiration) can result in the formation of one PGA and one molecule of 

2-phosphoglycolate (2 carbon molecule) (Ehleringer and Monson 1993).  This reduces the 

efficiency of the C3 photosynthetic pathway because as atmospheric CO2 levels decrease and 

air temperatures increase O2 binds more of the RUBISCO.  These conditions likely led to the 

evolution of C4 species that were better adapted to such conditions (Hatterslley and Watson 

1992; Cerling 1999; Kellogg 1999) 

Warm season (C4) plants have developed a unique leaf structure that enables their 

growth under drier and hotter conditions than C3 species (Holechek et al. 2004).  The C4 

pathway (Hatch Slack cycle) evolved to maximize the carboxylase activity of RUBISCO 

(Hames and Hooper 2005).  The pathway increases the CO2 concentrations in the mesophyll 

and then moves it into the bundle sheath cells where the Calvin Benson cycle proceeds 

(Figure 2.7) (Ehleringer and Monson 1993; Sheen 1999).  The atmospheric CO2 initially 

binds with phosphoenolpyruvate (PEP) involving the enzyme phosphoenolpyruvate 

carboxylase to produce oxaloacetate, a four carbon acid (Larcher 2003).  Oxaloacetate is 

reduced to malate by malate dehydrogenase an NADPH2 dependant enzyme, which is then 

diffused into the bundle sheath from the mesophyll.  In the bundle sheath, malate is 

decarboxylated via enzymatic reactions including NADP-malic enzyme, NAD malic enzyme 

and PEP carboxykinase to produce pyruvate and higher concentrations of CO2 (Ehleringer 

and Monson 1993; Larcher 2003).  The CO2 in the bundle sheath is taken up by ribulose-1,5-

biphosphate (RuBP) and processed via C3 photosynthetic pathway (Calvin cycle) while the 

pyruvate returns to the mesophyll cells where PEP is regenerated using ATP and the 

Pyruvate-Pi dikinase enzyme (Larcher 2003).  With the bundle sheath cells being shielded 

from O2, there is less RuBP and oxygen binding which reduces photorespiration and the 

resulting energy loss.  Although the C4 pathway requires the hydrolysis of two additional 

phosphate bonds for each molecule of CO2 moved into the bundle sheath cell to reduce CO2 
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and regenerate phosphoenolpyruvate, it is still more efficient (Kocacinar and Sage 2003; 

Hames and Hooper 2005).   

 

 
Figure 2.7 The C4 photosynthetic pathway (Hames and Hooper 2005). 

 

Some advantages that C4 plants have over C3 plants include a reduction in 

photorespiration, enhanced photosynthetic ability in arid climates, and improved water, N 

and light use efficiency (Kocacinar and Sage 2003).  Warm season plants have the ability to 

photosynthesize even when there are low CO2 concentrations within leaves.  There continues 

to be transpiration water loss in C4 species, but water loss is less per unit of photosynthetic 

carbon gain versus C3 plants (Ehleringer and Monson 1993).  The increased water use 

efficiency has led to differing xylem characteristics and increased carbon gain (Kocacinar 

and Sage 2003).  Nitrogen efficiency is also improved because there is 3 to 6 times less 

RUBISCO in C4 plants compared to C3 plants where 25 to 30% of N is bound by the enzyme 

(Ehleringer and Monson 1993).  The low N requirements can also be related to the relatively 

small amounts of protein in the mesophyll chloroplasts (Larcher 2003).  

There are major differences in leaf anatomy and nutritive quality between C3 and C4 

species (Wilson and Hattersley 1989).  The C3 grasses generally have a higher proportion of 

mesophyll tissue, less parenchyma-bundle sheath connection, less sclerenchyma, reduced 
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vascular and epidermal tissue, lower cell wall content and higher dry matter digestibility than 

C4 species (Larche 2003).  Warm season species usually have lower quality than C3 species at 

the same stage due to higher proportions of structural tissue, lower protein levels and lower 

leaf to stem ratio (MacAdam and Nelson 2003).  It has been shown that as much as 20 to 

35% of the C4 plants’ cell wall remains undigested even after long rumen incubation periods 

(Reid et al. 1990; Hafley et al. 1993).  Some studies have shown that C4 plant palatability is 

lower than with C3 species (Caswell et al. 1973; Waller and Lewis 1979).  The CP 

concentration in C4 plants has been shown to rapidly decline likely due to the development of 

thick bundle sheath cells that make protein relatively unavailable to the ruminant animal 

(Caswell et al. 1973; Caswell and Reed 1976; Ku et al. 1979; Trlica 1999).     

 

2.4  Forage Species of Interest 

It is estimated that 250 species co-exist on the mixed grass prairie (Saskatchewan 

Wetland Conservation Corporation 1996).  Due to the often low availability of seed, 

difficulty in forage establishment and lower persistence in mixed swards the presence of 

many of these species can be variable.  The reestablishment of native forage mixtures for 

grazing requires just the opposite; accessible seed, good stand establishment and persistent 

species to ensure optimal forage and animal production.  The following sub-sections examine 

individual species commonly grown in the semi-arid region of southwestern Saskatchewan, 

including native C3 and C4 grasses, legume forages and common tame forage legume and 

grasses.     

 

2.4.1  Western wheatgrass (WWG) 

Western wheatgrass (Pascopyrum smithii Rydb.) is found in western Canada on the 

mixed grass prairie, the foothills region and in the parkland region.  The plants form a loosely 

clustered sod with coarse culms and extensive creeping rhizomatous stems (USDA 2002).  

The majority of the roots are shallow (25 cm or less) but there are usually some feeder roots 

that can descend 150 cm (Pahl and Smreciu 1999).  It begins growing when temperatures 

reach 12 °C, usually in May and flowering can occur between June and August.  Western 

wheatgrass will go dormant during the summer when moisture conditions become limited but 

can reinitiate growth in the fall with lower temperatures and the availability of moisture 
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(Toole, 1976).  Sedivec et al. (2007) found that WWG produced 36% of its total biomass by 

late May and 90% by mid June.  It peaked in production by late July, then as it matured into 

the fall, growth stopped and herbage mass declined by 15%, likely due to leaf loss (Sedivec 

et al. 2007).    

The role WWG plays in reclamation is important because it is a good soil binder that 

stabilizes moist, alkaline and saline soils which would otherwise face issues of erosion 

(Everson 1966; USDA 2002; Sedivec et al. 2007).  Stands of WWG are slow to establish and 

can take several years to fully establish.  However, following establishment its rhizomatous 

growth ensures reproductive success (USDA 2002; Sedivec et al. 2007).  The ability of 

WWG to tolerate a wide variety of soils ranging from heavy alkaline and lighter upland soils 

to its ability to survive spring flooding, cold temperatures and moderate droughts make it a 

suitable option for reclamation projects (USDA 2002; Sedivec et al. 2007).  Western 

wheatgrass does prefer heavier well drained soils that maintain moderate to high soil 

moisture (USDA 2002).  With annual precipitation greater than 508 mm, WWG will tend to 

act as an increaser in forage stands.  On heavy clay soils it can be found growing with Green 

needle grass (GNG) and on dry uplands it is found with Needle and thread grass (NTG) and 

Blue grama (BG) (Pahl and Smreciu 1999).  When growing with BG it will initiate growth 

two to three weeks earlier but matures earlier in the growing season (USDA 2002).   

Western wheatgrass has been a species recognized for its excellent curing ability and 

its ability to support winter grazing (Pahl and Smreciu 1999; Jefferson et al. 2005).  It is 

recognized as a species that is moderately palatable to livestock year round (USDA 2002).  

However, the optimal grazing period based on plant production, quality and palatability 

would be during the late spring into the summer period (Sedivec et al. 2007).  Knowles 

(1987) determined that WWG yields averaged 1925 kg ha-1 on western Canadian pastures 

and under optimal conditions could produce 4000 kg ha-1 depending on the cultivar.  The 

Saskatchewan Forage Council variety testing program found that WWG forage production in 

southwestern SK. was 2988 kg ha-1 (SAFRR 2003).  Previous work done at SPARC in Swift 

Current, SK. by Jefferson and Muri (unpublished) found that WWG production was 4704 kg 

ha-1 in the first year but production declined to 3069 kg ha-1 by the second year.  They found 

that monoculture WWG stands had a six year average production of 1931 kg ha-1.  Other 

trials have found that production can range from 1191 to 2427 kg ha-1 (Sedivec et al. 2007).  
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As WWG matures it becomes coarse and less palatable (Sedivec et al. 2007).  Western 

wheatgrass harvested in September had an organic matter digestibility 14% higher than 

northern wheatgrass (NWG) (Jefferson et al. 2004).  The CP content of WWG averages 18% 

in the spring but will decline to around 3 to 4 % by October (Pahl and Smreciu 1999).  

Sedivec et al. (2007) demonstrated that the CP at the vegetative stage was 18% then declined 

to 10% at the seed set stage, 7% at the end of mid summer and dropped to 3% when fully 

mature.  Acid detergent fiber content increased from 28% at the 2.5 leaf stage to 40% by 

early October when plants were fully matured and reached 46% by December (Sedivec et al. 

2007).  Toole (1976) determined that the digestible carbohydrate reserves (CHO) increased 

from 40% in the spring to 50% in the fall.  However, frequent defoliation can diminish CHO 

reserves (Day and Ludeke 1986).  The USDA (2002) recommendation is that 50 to 60% of 

the growth should remain after grazing to prevent the loss of carbohydrate reserves.   

 
2.4.2 Northern wheatgrass (NWG) 

Northern wheatgrass (Elymus lanceolatus Scribn & J.G. Sm.) is commonly found 

throughout the mixed grass prairie and into the parkland regions of the Canadian prairies.  It 

is most suited for the sandy loam and loam soils with slightly acidic to moderately saline 

conditions where the water table is more than one meter from the soil surface (Redmann and 

Qi 1992).  Northern wheatgrass requires between 203 and 508 mm of annual precipitation 

(Ogle and USDA 2006).  It is a sod forming grass that produces rhizomes but not as 

aggressively as WWG (Ogle and USDA 2006).  The majority of the roots are within 25 cm 

of the surface, although it does produce some deeper feeder roots that can reach 50 cm in 

depth (Pahl and Smreciu 1999).   

 Northern wheatgrass has long been recognized as a key species in the restoration of 

rangeland (Hardegree 1994).  Its rapid establishment and vigorous sod forming 

characteristics stabilize soil and its tolerance to drought and cold make it very persistent 

(Ogle and USDA 2006).  What makes NWG very appealing is its ability to maintain green 

biomass throughout drought conditions and its ability to rapidly reinitiate growth when 

moisture becomes available, even to a greater extent than WWG (Ogle and USDA 2006).  It 

has an extensive root system along with some deeper roots that provide moisture through 

times of drought, however, with prolonged drought conditions leaf growth will slow 
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(Redmann 1976).  Kowalenko and Romo (1998a) determined that only 50% of NWG plants 

could survive temperatures ranging from -29.5 to -36 °C.  If plants were not slowly adapted 

to these temperatures, tiller numbers and biomass production were reduced (Kowalenko and 

Romo 1998a; Kowalenko and Romo 1998b).  By retaining adequate litter levels on the soil 

surface, soil temperatures are increased by 4 to 5°C and cold stress is reduced (Kowalenko 

and Romo 1998a). 

 Northern wheatgrass can be found under natural range conditions with many native 

species ranging from indian ricegrass (Oryzopsis hymenoides), sand dropseed (Sporobolus 

cryptandrus), big sagebrush (Artemisia tridentata), prairie sandreed (Calamovilfa longifolia), 

bluebunch wheatgrass (Agropyron spicatum), fescue sp. (Festuca sp.), needlegrasses (Stipa 

sp.), WWG (Agropyron smithii), June grass (Koeleria cristata), and thread-leaved sedge 

(Carex eleocharis) (Redmann and Abouguedia 1978).  However, its short stature reduces its 

presence in native stands to less than 10%.  Previous work at SPARC in Swift Current, SK. 

by Jefferson and Muri (unpublished) found that NWG production was 3790 kg ha-1 in the 

first year but production declined to 2223 kg ha-1 by the second year.  They found that 

monoculture NWG stands had a six year average production of 1325 kg ha-1 (Jefferson and 

Muri unpublished).  Production values shown in the 2004 Saskatchewan Forage Crop 

Production Guide were 3694 kg ha-1 (SAFRR 2003).  Northern wheatgrass is recognized as 

one of the most palatable and productive grasses on the Northern Great Plains (Pahl and 

Smreciu 1999).  It is excellent forage for livestock with protein levels ranging from 16% in 

the spring and declining to 4% by October (Tannis 1997).  Northern wheatgrass will “green 

up” about three weeks earlier and “head out” earlier than WWG but the amount of total 

biomass is usually lower (Ogle and USDA 2006).  Pastures with NWG should only be grazed 

once per year, following the peak in forage production because it is slow to recover following 

defoliation (Zang and Romo 1994).   

 

2.4.3 Awned wheatgrass (AWG) 

Awned wheatgrass (Elymus trachycaulus ssp.  subsecundus (Link.) A.& D. Löve) 

begins growing early in the spring and sets seed in late July or August (Pahl and Smreciu 

1999).  In Canada AWG is most commonly found on the western and northern parts of the 

prairie provinces (Pahl and Smreciu 1999).  It can be found throughout the aspen parkland 



 24

and boreal forest in woodland openings and in moist locations on sandy soils.  Awned 

wheatgrass is best suited for the brown, dark brown and black soil zones with moist, well 

drained, loamy soils that are not saline (Abouguendia 1995).  It requires approximately 320 

mm of annual precipitation to survive (Pahl and Smreciu 1999).  It is often used in mixtures 

of grasses that are slower to establish because it establishes rapidly.  The stand longevity of 

AWG plants depends on environmental conditions but in the semi arid region it tends to 

persist similarly to slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners) 

which can disappear from the stand within five years (Wark et al. 1995).  It has been used for 

many reclamation projects in the United States (Abouguendia 1995).  

Awned wheatgrass tends to be less leafy than slender wheatgrass but maintains a 

similar nutritive value and is very palatable up until it initiates heading (Abouguendia 1995).  

It tends to produce large amounts of seed to ensure stand survival (Wark et al. 1995).  The 

basal leaves of the plant are very palatable but the opposite is true for the stems and seed 

heads (Pahl and Smreciu 1999).  Proper grazing management is important because it can be 

over utilized which can lead to a reduction in the stand.   

 

2.4.4 June grass (June) 

June grass (Koeleria macrantha Ledeb.; Schult.) is native not only to North America 

but also Europe and Northern Asia.  It is one of the most common native grasses because it 

can be found throughout the dry prairies, rocky hillsides, openings in the northern boreal 

forest and sandy soils.  It does however, prefer well drained silt, loam and sandy loam soils 

with a pH ranging from 6.5 to 8 (Ogle et al. 2006).  June grass is a shorter plant that can vary 

in appearance based on growing conditions.  Under dry prairie conditions the plants will be 

shorter and contain more basal leaves.  In mixed grass prairie, June grass only made up 3 to 

10% of the stand composition (Coupland 1950).  It grows in association with many different 

species, for example in the mixed grass prairie it is associated with BG (Bouteloua gracilis) 

and NTG (Stipa comata), on the fescue grassland it is found growing with rough fescue 

(Festuca hallii,) and in forest openings it can be found with hairy wildrye (Elymus innovatus) 

and reed grasses (Calamagrostis spp) (Pahl and Smreciu 1999).       

June grass is tolerant to a wide range of conditions including drought, cold and heat 

(Ogle et al. 2006).  It produces a fibrous root system in a 15 to 20 cm zone and descends 50 



 25

cm in depth with some feeder roots reaching 75 cm (Pahl and Smreciu 1999).  It is the 

shallow roots of June grass that allow it to take advantage of spring moisture and begin 

growth not only earlier in the spring but with late summer and fall rains (Coupland and 

Johnson 1965).  For the species to perform best it requires between 305 mm and 508 mm of 

annual precipitation (Ogle et al. 2006).  June grass is recognized as one of the first grasses to 

initiate vegetative growth in the spring, it flowers in early May and produces a seed head by 

July (Looman 1978).  Seed production is important for the longevity of June grass stands 

because that is the primary way it spreads (Ogle et al. 2006).  High seed production is 

common but viability tends to be low (Pahl and Smreciu 1999).   

Research at Swift Current, SK has shown June grass clipped once per year produced 

between 150 and 3300 kg ha-1 of forage yield (Jefferson et al. 2005).  This range in 

production was the result of moisture differences between years.  During the spring, CP 

levels can reach 20% but it decline to around 4% by November (Pahl and Smreciu 1999).  

June grass is highly palatable to livestock early in the spring and after it cures in the fall 

otherwise it is undesirable to the animal (Ogle et al. 2006; Pahl and Smreciu 1999).  When 

June grass is found in mixtures of wheatgrass and BG, grazing will decrease June grass 

persistence and production (Wilms et al. 1990; Wilms et al. 1993).  The damage to June grass 

plants is increased if grazing occurs early in the growing season (Coupland 1950).  It is 

recommended that grazing be deferred until plants are at least 10 cm in height (Ogle et al. 

2006).  

 

2.4.5 Green needle grass (GNG) 

Green needle grass (Stipa viridula Trin.) is an erect bunch grass that grows 

throughout the mixed grass prairie and aspen parkland from British Columbia to Manitoba 

and south into Kansas and Arizona.  It is one of the major species in the mixed grass prairie 

(Holechek et al. 2004).  On the mixed grass prairie, GNG accounts for approximately 1% of 

the basal cover but on sites dominated by wheatgrasses and side oat grama it can contribute 

9% of the plant cover (Coupland1950).  It can be found in regions that receive between 305 

to 457 mm of annual precipitation (Knudson and USDA 2005).  It prefers deep fertile clay 

soils that are moderately dry to moist (Agriculture Canada 1992).  It can also be found on 

loam, sandy loam, clay loam and even sandy soils where an underlying water source is 
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available (Sedivec et al. 2007; Pahl and Smreciu 1999).  Green needle grass is moderately 

tolerant to saline soils (Sedivec et al. 2007).  When growing on medium textured soils it 

tends to grow with WWG, NTG and BG but as the soil becomes finer, species like NTG and 

BG become less prominent (Knudson and USDA 2005).  Growth initiates in mid to late 

April, flowering occurs in late June and seed heads are mature by late July or early August 

with culms reaching 50 to 120 cm in height (Pahl and Smreciu 1999; Coupland 1950).  It has 

a fibrous root system that can descend 2 to 3 m (Pahl and Smreciu 1999; Coupland 1950).     

Green needle grass is considered excellent forage for late season grazing because it 

remains palatable (Sedivec et al. 2007).  It is one of the most desired grasses through all 

stages of growth (Pahl and Smreciu 1999).  Unlike other awned species, the awns on GNG 

are not a risk for livestock (Knudson and USDA 2005).  Its digestibility ranged from 70 to 

75% in May and declined to 40 to 50% by December (Bezeau and Johnson 1962; Johnson 

and Bezeau 1961; White et al. 1972).  Work done at Swift Current, SK determined that 

organic matter digestibility for GNG was 45% in August and 44% in September (Jefferson 

and Muri unpublished).  The ADF was lowest (29%) in the vegetative stage and increased 

linearly through the growing season peaking at 47% after the plant had senesced (Sedivec et 

al. 2007).  Jefferson and Muri (unpublished) found that over six year trial performed in Swift 

Current, SK, NDF was 69% and ADF was 37% in August and September. The CP levels 

started out at 20% in May and declined to 10% by the seed set stage and to 5% by mid 

August and 3% when the plant fully matured (Sedivec et al. 2007; Pahl and Smreciu 1999).  

Research from Hettinger, ND showed that CP levels were approximately 19% towards the 

end of April and declined to 5% by the end of August (Knudson and USDA 2005).  A six 

year project by Jefferson and Muri (unpublished) showed that CP declined from 5.5% in 

August to 4.9% in September.  By fertilizing GNG with N there can be increased vegetative 

production and CP values, provided there is adequate moisture.  White and Brown (1972) 

found that by applying N to GNG stands; only 22% is used in the first year, while 7% of the 

applied N is still being utilized by the plant in the third year.  Sedivec et al. (2007) found that 

GNG produced 32% of its total biomass by early June and 80% by mid June.  Peak 

production was reached in August; it then declined by 12% into the fall due to weathering 

and leaf loss (Sedivec et al. 2007).  Green needle grass communities grown in southern 

Saskatchewan yielded 1500 kg ha-1 (Heinrichs and Clark 1961).  Research at Swift Current, 
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SK showed that GNG clipped once per year in mid July, yielded from 1,120 to 5,400 kg ha-1 

(Jefferson et al. 2005).  This range in production was the result of moisture differences 

between years.  Other studies have shown that GNG production ranged from 785 kg ha-1 to 

2331 kg ha-1 depending on soil type, moisture and the cultivar (Knudson and USDA 2005; 

Sedivec et al. 2007).  Although it has vigorous seed growth and recovery after grazing, it is a 

species that decreases under grazing pressure (Knudson and USDA 2005; Kinch and Wiesner 

1963).  To optimize its nutritional qualities and forage DM production, it is best to allow 

GNG to mature before being grazed (Sedivec et al. 2007).        

 

2.4.6 Needle and thread grass (NTG) 

Needle and thread grass (Stipa comata Trin. & Rupr.) can be found from Ontario 

through to the Yukon and south into Texas and California (Ogle et al. 2006).  It grows on the 

open prairies mainly on the south and southwest facing slopes (Coupland 1950).  It prefers 

sandy to loamy soils and does not grow well on heavy clay soils (Coupland 1950; Pahl and 

Smreciu 1999).  Ideally NTG requires 180 to 410 mm of annual precipitation but has been 

found in environments receiving as little as 120 mm of precipitation (Ogle et al. 2006).  

Needle and thread grass is a dominant species on the mixed grass prairie where it can be 

found with BG, thread leaved sedge, WWG and June grass (Hubbard and Smoliak 1953).  On 

the mountain foothills it is often associated with bluebunch wheatgrass, Idaho fescue and 

bluegrass communities (Ogle et al. 2006).  It also dominates stabilized sand dunes along with 

pasture sage and June grass.   

 Needle and thread grass is considered an excellent option for rangeland restoration 

because it is drought tolerant and has an extensive lateral distribution of roots that binds soil, 

reducing erosion (Ogle et al. 2006).  Needle and thread grass contains a shallow root mass 

with 71% of roots within the first 15 cm of soil (Coupland and Brayshaw 1953).  There are 

some feeder roots that can reach 150 cm and spread horizontally up to 90 cm.  Needle and 

thread grass initiates growth in mid April, flowers in mid June and sets seeds by early July 

reaching heights up to 190 cm (Coupland 1950; Pahl and Smreciu 1999).  If fall moisture is 

available, the plants will reinitiate growth (Ogle et al. 2006).  One disadvantage of NTG is 

that it can take two growing seasons for the grass stands to fully develop (Pahl and Smreciu 

1999).  Heady (1952) found it could compete with many tame forages over the long term 
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once it was soundly established.  It does require seed set in order to produce new plants so 

ideally seed production should be allowed every couple of years (Ogle et al. 2006).  It 

initiates rapid spring growth to ensure a competitive advantage.  Needle and thread grass 

establishment can be slow because competition decreases root vigor (Ogle et al. 2006).  Wolf 

plants can develop because the old basal sheaths tend to cling to the crowns of older plants 

(Pahl and Smreciu 1999).   

Grazing NTG in the spring and early summer is recommended because it not only 

allows plants to recover from the defoliation event but it avoids irritation to the animal 

caused by the awns (Ogle et al. 2006; Fiero 1941).  When grazed in short duration rotations 

there were no effects on tiller weights even though tiller numbers increased (Reece et al. 

1988).  Crude protein levels tended to be around 19% in late May but declined to 8% by mid 

July and 5% when NTG matured (Coupland 1950; Lodge 1954; Pigden 1952) (Table 2.3).  

The palatability of NTG is affected by the formation of awns so it is best grazed either prior 

to inflorescence or following seed drop (Pahl and Smreciu 1999; Ogle et al. 2006).  The 

digestibility of NTG was shown to decline at a relatively slow rate in the spring then more 

rapidly through the summer and fall (Ward 1971; Cogswell and Kamstra 1976).  When found 

on pristine mixed grass prairie it can account for 36% of the total production (Frank and 

Hoffman 1989; Murray 1971; VanRyswyk et al. 1966).  Its response to grazing depends not 

only to grazing pressure but also to the soil type.  Grazing NTG grown on brown and dark 

brown soils tends to cause it to decline within the stand composition but in the black soil 

zone NTG increases with grazing disturbances (Ogle et al. 2006; Hart and Ashby 1998; 

Smoliak 1965; Wikeem and Pitt 1991; Pahl and Smreciu 1999).      

 
 
Table 2.3 Fibre fractions (%), plant stage and protein composition of Needle and thread grass  

(modified from Cogswell and Kamstra, 1976) 
 Stage Protein  Hemicellulose Cellulose ADF ADL 

Jun-17 Vegetative 9.2 41.3 30.0 32.9 4.0
Jun-28 Early flowering 7.5 43.0 32.8 36.3 4.9
Jul-17 Seed ripe 6.0 44.5 33.2 38.8 6.9

Aug-16 Seed shatter 4.6 44.0 35.2 42.8 6.5
Sep-13 Some regrowth 4.9 40.1 36.3 43.2 6.4
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2.4.7 Canada wildrye (CWR) 

Canada wildrye (Elymus canadensis L.) can be found throughout most of North 

America except in the extreme southern and eastern states.  It requires high moisture 

conditions for optimal growth (Bush and USDA 2002).  For these reasons, it is most 

commonly found in the tall grass prairie or on sandy, porous soils near depressions, ponds 

and streams, and colonizes areas where disturbances have occurred.  It grows on moist sandy 

soils and in wooded regions where moisture is readily available (Bush and USDA 2002).  

Canada wildrye produces a fibrous root system and rhizomatous stems.  It is a poor 

competitor with other plants so it initiates growth early in the spring (Frischknecht and 

Plummer 1955).   

Canada wildrye is considered an excellent species for controlling erosion because of 

its rapid establishment, vigorous seed growth and early colonization of disturbed land.  

Although seed vigor is high, plants are not overly competitive, so stands can be out competed 

by other plants.  It initiates growth later in the spring and continues growing longer in the 

summer than most C3 grasses (Bush and USDA 2002).  McMillan (1959) found that in 

southern and western locations of the Great Plains, plants tended to mature sooner than 

comparable plants in northern and eastern locals.  It is typically seeded in mixtures of C3 and 

C4 grasses and native forbs to improve reclamation success and forage production (Bush and 

USDA 2002).  Canadian wildrye will produce seed in the first year of production but it will 

not be viable.  By the second or third year, the seed viability will improve and overall plant 

production peaks.  Following this, CWR rapidly disappears from the stand (Bush and USDA 

2002).  The plants are able to reproduce vegetatively but more commonly produce new 

growth through the distribution of large amounts of seed (Nieland and Curtis 1956).  

Canadian wildrye plants are moderately tolerant to drought, cold stress, saline soils and 

shading (Bush and USDA 2002).   

Canadian wildrye is best grazed in the spring before the culms elongate.  As plants 

mature they become more lignified and become less palatable to the grazing animal.  Canada 

wildrye plants are considered good sources of energy but poor in protein (Bush and USDA 

2002).  Due to its poor competitive nature, CWR is negatively affected by grazing 

disturbance (Nieland and Curtis 1956).  This is why grazing should be deferred until the 

plants are at least 12 cm in height (Bush and USDA 2002).  Plants are subject to leaf and 
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stem rust and ergot infection which can negatively impact animal performance (Bush and 

USDA 2002). 

 

2.4.8 Meadow brome grass (MBG) 

Meadow brome grass (Bromus riparius Rehm.) is a long lived bunch grass that is 

considered an excellent option for reestablishing tame grass pastures.  Originally from 

southwestern Asia, it was brought into the United States in 1949 (Sedivec et al. 2007).  It is a 

species well adapted to Canadian growing conditions.  It initiates growth early in the spring 

season when cool conditions are prevalent and can even survive spring frosts (Ogel et al. 

2006a).  It is considered very winter hardy and can survive when there is little or no snow to 

insulate the sword.  Meadow brome grass grows optimally on well drained, coarse to medium 

textured soils that are moderately acidic, saline or alkali with 35 to 40 cm of annual 

precipitation (Ogle et al. 2006a; Sedivec et al. 2007).  It will not grow on high saline or in 

areas with a high water table and frequent flooding.  Plants require full sun light to achieve 

optimal growth.  Production of MBG can be reduced with shading. It is a dual purpose grass 

that can be used as a forage source for grazing animals or used in hay production.  Meadow 

brome grass is one of the most widely recognized grasses for use under intensive rotational 

grazing because of its high palatability and excellent recovery (Ogle et al. 2006a).   

Although MBG forms dense rhizomatous stems, it is not as well suited for 

reclamation as other species.  When compared to Smooth brome grass (SBG) the rhizomes 

are shorter and less aggressive but produce a higher canopy when dormant (Ferdinandez and 

Coulman 2001; Sedivec et al. 2007).  This makes it less valuable than SBG for reclamation 

but a better option in seed mixtures, due to its less invasive nature and reduced potential to 

become sod bound, a condition where shoot density is reduced and nitrogen deficiency 

appears (Ogle et al. 2006a; Sedivec et al. 2007).      

Seed germination and vigor is good, producing excellent seed establishment (Sedivec 

et al. 2007).  For best production it is most commonly seeded with a legume species like 

alfalfa, cicer milkvetch, birdsfoot trefoil or sainfoin (Ogle et al. 2006a).   There can be 

problems with silvertop and head smut as well as some types of leaf rusts that can reduce 

seed production and quality.  It produces seed between mid July and early August (Ogle et al. 

2006a).        
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Meadow brome grass does produce good quality hay but because of the plants low 

basal growth it can be extremely difficult to cut.  If grown with alfalfa, the legume will 

provide support to the leaves (Sedivec et al 2007).  Meadow brome grass is best suited for 

grazing, however, grazing should be deferred for at least one year following establishment 

(Ogle et al. 2006a).  Plants are very slow to develop a root mass to resist grazing.  Grazing 

too early could result in the damage and pulling out of immature plants.  However, once 

established, MBG plant’s deep root and basal tillers result in excellent growth throughout the 

summer, even during times when moisture is limited and after defoliation events (Ogle et al. 

2006a; Sedivec et al. 2007).   

Sedivec et al. (2007) found that MBG produced 30% of its total biomass by mid May 

and 47% by early June.  It peaked in production by early July before loosing between 35 to 

40% of the standing crop due to deterioration in the litter (Sedivec et al. 2007).  A good rule 

of thumb is that plants should be at least 20 to 30 cm in height before utilization and no more 

than 50% of the annual growth should be grazed during the growing season (Ogle et al. 

2006a).  Sedivec et al. (2007) found that MBG produced between 1350 and 1489 kg ha-1 of 

dry matter at Hettinger, ND.  This was very similar to the production found with Hybrid 

brome stands but during drier years the production was slightly lower than for SBG (Sedivec 

et al. 2007).  The optimal time to graze MBG is from May through to the end of June because 

it is extremely palatable.  The CP content of MBG was as high as 20% in the vegetative stage 

then declined to 10% at the pre-boot stage, 7% at seed set and 4% when the plant had fully 

senesced (Sedivec et al. 2007).  Meadow brome grass in the vegetative stage tends to have 

higher fibre levels and slightly lower protein levels than SBG but these differences become 

less evident as plants mature (Knowles et al. 1993; Coulman 1998).  The ADF levels in 

meadow brome were lowest in the vegetative stage (29%) and increase to 38% at the boot 

stage and 47% as the plant senesced (Sedivec et al. 2007).   

 

2.4.9 Hybrid brome grass (HBG) 

 Hybrid brome grass (Bromus riparius Rehm X Bromus inermis Leyss) was first bred 

in the early 1980’s at the Agriculture and Agri-Food Research Center in Saskatoon (Coulman 

1998).  It was produced by crossing SBG and MBG followed by several cycles of recurrent 

selection for plant vigor, floret fertility, reduced rhizome production and good fall regrowth 
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(Ferdinandez and Coulman 2001).  The goal was to produce a multi-purpose grass that 

possessed intermediate characteristics such as faster regrowth and a higher canopy that could 

be used for both hay and pasture production (Coulman 1998).   

Coulman (1998) found that HBG produced lower ADF and NDF concentrations than 

either SBG or MBG at similar stages of maturity.  Ferdinandez and Coulman (2001) reported 

that the NDF and ADF values were higher for both MBG and SBG during the vegetative 

stage and CP was similar between MBG and HBG but lower than SBG.  As the plants 

reached the heading stage, NDF was lower for MBG than for either SBG or HBG and the CP 

was lower in the hybrid population than for either of the other two species (Ferdinandez and 

Coulman 2001).  Once the three types of brome reached the anthesis stage, there was no 

difference in NDF, ADF or CP (Ferdinandez and Coulman 2001).  The Agriculture and Agri-

Food Canada trials showed that HBG produced higher yields than SBG but less than MBG.  

Grazing data from Melfort and Swift Current, SK showed that HBG produced equal or better 

average daily gains, pasture yields and carrying capacity as MBG (Coulman 1998).   

  

2.4.10 Little bluestem (LBS) 

Little bluestem (Schizachyrium scoparium Michx.; Nash.) is a warm season (C4) 

bunch grass that is commonly found on native grasslands across North America.  It grows 

from Alberta to Nova Scotia and as far south as Mexico.  It initiates growth in late spring and 

continues growing throughout the hot summer season until the first killing frost.  Plants can 

tolerate between 250 to 1,020 mm of annual precipitation but for optimal growth 510 mm of 

annual moisture is required (Albertson 1937; USDA 2002a).  Plants can vary in height 

depending on moisture and soil fertility but under semi-arid conditions can reach 45 cm 

(USDA 2002a).  Under these conditions LBS tends to form sods 10 to 25 cm in diameter that 

are 13 to 25 cm away from other LBS plants (Albertson 1937; Weaver and Albertson 1944; 

Weaver 1958; USDA 2002a).  Although LBS is found on a diverse range of soil types, it 

prefers well drained, dry soils with low fertility and neutral soils.  In Saskatchewan it is 

primarily found in the brown and dark brown soils zones because of the higher temperature 

and lower availability of moisture (Pyle and Johnson 1990).  Little bluestem is very tolerant 

to drought conditions and relatively tolerant to shading but can not tolerate an overabundance 

of moisture (USDA 2002a).     
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 Little bluestem is considered an excellent species for the use in reclamation projects 

due to its ability to grow under a wide range of soil conditions especially on thin upland 

range sites.  Root production peaks by the third year as roots reach depths of 1.75 m before 

gradually declining (Weaver and Zink 1946a; Weaver and Zink 1946b).  In Montana, LBS 

initiates growth in late May and flowering occurs in July (McMillan 1959; McMillan 1965).    

Little bluestem reproduces either by rhizomes or seed production with seed heads that can be 

up to 7 cm in length (Weaver 1954; USDA 2002a).  Its development and growth is largely 

dependant on photoperiod (Larsen 1947).                

 Little bluestem is readily grazed by livestock (USDA 2002a).  The basal leaves are 

the most palatable part of the plant and seed heads tend to reduce palatability (Rogler 1944; 

Morris et al. 1950; Herbel and Anderson 1959).  It is important to use controlled grazing on 

native range and not to overgraze, however an adequate grazing intensity is important 

because ungrazed plants can become very coarse and unpalatable.  No more than 50% of the 

current year’s growth should be removed by grazing (USDA, 2002a).  Plants require at least 

one growing season to fully develop a root system so they will not be pulled out by the 

grazing animal.  Mullahey et al. (1990) determined that grazing LBS stands during the year 

of seeding reduced the DM yield and tiller weight but did not reduce tiller numbers.  One 

benefit of having LBS in the forage stand, is that its production remains consistent year after 

year even during drought (Gilbert et al. 1979).  Under normal grazing, LBS is considered an 

increaser, however continued heavy grazing will result in a decline in plant vigor and the 

number of  LBS plants but a concurrent increase in BG plants (Bukey and Weaver 1939; 

Tomanek and Albertson 1953; Gillen et al. 1998; Johnson and Nichols 1970).  To maintain 

LBS in a stand, it is ideal to graze native pastures later in the fall.  This reduces the 

composition of C3 plants in the stand and opens the canopy for LBS growth.  Ralston and Dix 

(1966) determined that LBS production ranged from 2,462 kg ha-1 in the Red River Valley to 

4,719 kg ha-1 in the southern United States.  During mid summer in vitro digestibility ranged 

from 52 to 58% and declined during the winter (Hobbs et al. 1945; Burzlaff 1967).  A 

National Academy of Sciences (1982) review showed that CP levels declined from 12.8% at 

the early vegetative stage to 5.8% when plants were mature.  This review also indicated that 

crude fibre levels increased from 24.9 to 34.2%, ash levels declined from 8.9 to 5.6%, Ca 
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dropped from 0.63 to 0.40%, P dropped from 0.20 to 0.12% and the ether extract levels 

declined from 2.8 to 2.4% (National Academy of Sciences 1982).  

 

2.4.11 Blue grama (BG) 

Blue grama (Bouteloua gracilis Willd. ex Kunth) is a warm season (C4) grass that can 

be found throughout Alberta, Saskatchewan and Manitoba and as far south as Mexico 

(Dormar et al. 1981; Wynia and USDA 2007; Barnes 2007; Pahl and Smreciu 1999).  It is 

less productive than the associated C3 grasses on the Canadian prairies (Barnes 2007).  It is 

recognized as one of the most naturally abundant species on harsh, dry, eroded and low 

fertility soils (Smith and Whalley 2002).  It grows on a wide variety of soil types from sandy 

to clay textured soils but vigor declines in pure sand and clays.  It can withstand severe 

drought conditions, moderate salinity and alkalinity levels but is unable to tolerate frequent 

flooding, shade or low pH soils (Wynia and USDA 2007).  Optimal production for BG is 

achieved when there is between 300 and 360 mm of annual precipitation (Wynia and USDA 

2007).  Blue grama initiates growth in mid May or early June and flowers from July until 

early September (Pahl and Smreciu 1999).  During drought conditions BG plants will 

become dormant until precipitation is received at which point they will reinitiate growth and 

even flower a second or third time (Rauzi et al. 1969).  In the short grass prairie, BG can be 

found growing with buffalograss, NTG, WWG, June grass and GNG (Pahl and Smreciu 

1999; Wynia and USDA 2007).  In sandier soils, it grows in combination with Prairie 

sandreed (PSR) and sand sagebrush (Wynia and USDA 2007).     

Blue grama is considered an excellent option for re-vegetating areas with poor soils 

that are prone to drought.  Blue grama seeds develop an adventitious root system (Hyder et 

al. 1971) with most of the root mass developing in the top 75 cm of soil, however, some 

seminal roots can reach depths of 1.8 m (Pahl and Smreciu 1999).  Established plants have a 

fine root system that can spread up to 46 cm in the upper soil horizons (Weaver 1926).   Blue 

grama plants in Saskatchewan appear to have 84% of root mass within the first 15 cm of soil 

and only 9% within 15 to 30 cm (Coupland and Johnson 1965).  If plants do not develop an 

adventitious root system within six to ten weeks after emergence, the seminal roots will no 

longer be sufficient to support further leaf expansion and plants will die (Briske and Wilson 

1980; Pahl and Smreciu 1999).  Well rooted plants will often appear thin in forage stands but 
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these plants will have extensive root systems (Coupland and Johnson 1965).  Root growth 

will vary with environmental conditions, however generally between 30 to 60% of the 

current root mass is replaced during the growing season (Ares 1976).  Depending on 

environmental conditions Blue grama is able to reproduce by rhizomes, seed production or 

tillering (Coupland and Johnson 1965; Trlica et al. 1977).  Plants produce a vegetative cover 

that is characteristically short, forming a dense mat of twisted leaves (Pahl and Smreciu 

1999).  Under normal growing conditions BG grows as a bunch grass but under heavy 

defoliation it will grow as a sod (Wynia and USDA, 2007).  Blue grama can alter its 

physiology to adapt to different environmental conditions and grazing intensities (Buwai and 

Trlica 1977).  There are three ways that BG survives drought depending on the stage of the 

plant and severity of the drought.  These include increased water uptake, optimization of leaf 

area and reduction in transpiration (Wilson et al. 1976).  Blue grama is a bunch grass that is 

comprised primarily of basal leaves and vegetative shoots (Wynia and USDA 2007; Barnes 

2007).  Plant survival declines as the plants get older.  A study in Nebraska showed that plant 

survival declined to 66% by the second year and dropped to 45% by the third year (Weaver 

and Zink 1946).   

From a forage production stand point BG is poor; however it is a species that is very 

palatable year around for livestock.  It is considered one of the most important forages on the 

short grass prairie (Wynia and USDA 2007).  Blue grama is a recognized forage for deferred 

grazing because of its ability to cure on the stem.  It is a species that is rarely grazed during 

the summer period but during the fall and winter periods animals will graze BG plants 

including the seed head (Pahl and Smreciu 1999).  However, because of its low growing 

nature, production is low so best forage production is achieved by grazing once every two to 

three years (Wynia and USDA 2007).  Average production on the Canadian prairies is only 

around 140 kg ha-1 (Tannas 2003).  Research at Swift Current, SK. showed that the average 

forage production for BG clipped in mid July ranged from 400 to 4690 kg ha-1 (Jefferson et 

al. 2005).  This range in production was the result of moisture differences between years.  

Blue grama has the ability to quickly recover from heavy defoliation and trampling due to its 

low growing nature which prevents the growing points from being removed and ensures 

some photosynthetic tissue remains on the plant (Weaver and Albertson 1944; Smoliak 1974; 
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Dormaar et al. 1981; Dormaar et al. 1994; Pahl and Smreciu 1999).   Blue grama tends to 

increase in native pastures with heavy grazing (Dormaar et al. 1994).  

The digestibility of BG increased until late June and early July where it peaked 

around 68% and then declined through the fall to about 50% (Cogswell and Kamstra 1976).  

Crude protein levels declined from 13.1% during the early vegetative stage to 6.5% as plants 

matured (National Academy of Sciences 1982).  Uresk and Sims (1975) found that CP levels 

started out as high as 18% but declined throughout the growing season as the plants matured 

and that summer moisture had little effect on CP values.  Cogswell and Kamstra (1976) 

determined that, as BG matured, there was an increase in the fibre constituents and a 

reduction in the amount of CP (Table 2.4).  Crude protein levels tend to stay around 5% 

during the fall period (Pahl and Smreciu 1999).  This research also showed that crude fibre 

increased from 27.2 to 32.7%, Ca dropped from 0.53 to 0.34%, P decreased from 0.19 to 

0.12% and ether extract levels declined from 2 to 1.7%.  Ash levels remained relatively 

consistent (Rauzi et al. 1969; Rauzi 1978; National Academy of Sciences 1982).       

 
 
 
Table 2.4 Effect of growth stage on fibre and protein composition in blue grama (modified 
from Cogswell and Kamstra, 1976) 

 Stage Protein  Hemicellulose Cellulose ADF ADL 
Jun-17 Early vegetative 12.1 38.1  29.1 32.5 3.2 
Jun-28 Vegetative 10.7 39.0     30.9 36.5 3.5 

Jul-17 Develop seed 
stalk 8.8 38.7  30.6 36.3 3.6 

Aug-16 Some seed stalk 6.7 40.7     30.0 37.0 3.5 

Sep-13 Several seed 
stalk 4.5 40.8  32.8 41.0 4.8 

   

 

2.4.12 Prairie sandreed (PSR) 

Prairie sandreed (Calamovilfa longifolia Hook.; Scribn.) is a tall coarse long lived 

warm season grass (C4) with rhizomatous growth.  During favourable years with a long 

growing season it can produce seeds (Vogel et al. 1996; Duckwitz et al. 2006).  It is a key 

species in the early colonization of sand dunes, stabilized blowouts, dune depressions, sandy 

ridges and dry valleys (Coupland 1950; Coupland and Johnson 1965; Hulett et al. 1966; 

Morrison and Yarranton 1974; Masters et al. 1990).  It can be found throughout sandhill 
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communities from southern British Columbia to western Ontario, including the Great Sand 

Hills of Saskatchewan and south to Mexico (Coupland 1950; Masters et al. 1990; Pahl and 

Smreciu 1999).  It requires between 250 and 500 mm of annual precipitation (Duckwitz et al. 

2006).  Plants tend to grow almost as a monoculture stand with a clear distinction between 

the surrounding vegetation (Aasa and Wight 1973). Growth initiates in early May (earlier 

than most C3 grasses), reaches the boot stage by mid May and the majority of plants will 

produce seed heads by late July or early August and plants can continue to flower into 

September (Weaver 1958b).  Although PSR colonies tend to have a water use efficiency 1.8 

times greater than range communities consisting of WWG, BG, June grass, NTG, threadleaf 

sedge, needleleaf sedge and fringed sage, it produced nearly twice as much biomass (Aase 

and Wight 1973).  The roots tend to be 2-3 mm thick and reach depths of 1.2 to 3.0 m before 

producing an enlarged 8 mm tip.  Prairie sandreed ranges in height from 50 to 180 cm (Pahl 

and Smreciu 1999; Duckwitz et al. 2006).   

 Prairie sandreed is considered an excellent species for recolonization of marginal 

land.  It has the ability to develop rhizomatous shoots and basal cover even on sandy or 

moderately alkaline soils but is not tolerant to salt (Mueller 1941; Coupland 1950; Masters et 

al. 1990; Abouguendia 1995; Duckwitz et al. 2006).  It is a species that is able to establish 

with low soil moisture and once established it is extremely drought tolerant (Duckwitz et al. 

2006).  Establishment on sand dunes can be difficult because high soil temperatures, low soil 

fertility and moisture can inhibit seed germination and establishment (Maun, 1981).  Kilcher 

and Looman (1983) were not able to get PSR established in south-western Saskatchewan 

likely due to poor soil moisture conditions.  By using larger seeds and removing the 

protective seed coat, stand establishment and biomass production are improved (Maun and 

Riach 1981; Maun 1996).  Grasshoppers, leaf rust and moulds, especially under irrigation, 

can reduce PSR production and reduce forage quality (Duckwitz et al. 2006; Pahl and 

Smreciu 1999).      

Prairie sandreed has tremendous yield potential and its production occurs throughout 

the growing season (Duckwitz et al. 2006) ranging from 2,200 to 5,600 kg ha-1 (Masters et al. 

1990).  Depending upon moisture, stands grown at Swift Current, SK had a forage production 

between 660 and 5,400 kg ha-1 when plants were clipped in mid July (Jefferson et al. 2005).  

It is most palatable during the first month of growth and once plants cure in the fall, but the 
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stems are avoided by grazing animals (Pahl and Smreciu 1999).  Its palatability seems to be 

lower than other native species largely because of higher silica levels (Clarke 1930).  This is 

likely why it is considered an increaser on Saskatchewan rangeland under intense grazing 

conditions (Abouguendia 1990); even though it may take two to three years for PSR to fully 

establish (Duckwitz et al. 2006). During the spring and mid summer it is susceptible to 

trampling but in the fall becomes resilient to compaction (Quinn and Hervey 1970).  It is an 

extremely important forage source during the late fall and winter because it cures in an 

upright position and can be accessed even after snowfall (Duckwitz et al. 2006).  Grazing 

PSR from early June to August can increase biomass production especially during 

subsequent years, by stimulating tiller growth (Mullahey et al. 1991; Reece et al. 1999).  

However, grazing while the plants are actively growing can deplete the carbohydrate reserves 

(Welch 1968).  Crude protein levels were as high as 16% in May but declined to 4% by 

November, available carbohydrate increased from 45 to 55%, ADF levels increased from 38 

to 44%, Ca levels ranged from 0.25 to 0.5% and P levels were between 0.1 to 0.25%, 

respectively (Table 2.5) (Craig 2002; Pahl and Smreciu 1999; Northup and Nichols 1998; 

Perry and Moser 1974; Burlaff 1971).  As PSR matured from June to September the in vitro 

DM digestibility declined from 67 to 52% (Mueller 1941; Cogswell and Kamstra, 1976).      

 
 
 
Table 2.5 Fibre fractions (%), plant stage and protein composition of Prairie sandreed  
(modified from Cogswell and Kamstra, 1976) 
 Stage Protein  Hemicellulose Cellulose ADF ADL 
Jun-17 Early vegetative 11.1 34.4 36.0 37.7 3.1 
Jun-28 Vegetative   9.0 36.7 37.8 41.5 4.2 
Jul-17 Developing seed   6.2 42.9 39.5 43.2 3.8 
Aug-16 Seed ripe   4.8 43.5 40.4 44.6 4.3 
Sep-13 Seed shatter   3.0 43.5 38.5 43.9 4.4 

 

 

2.4.13 Canadian milkvetch (CMV) 

 Canadian milkvetch (Astragalus canadensis L.) grows well on most types of soil.  It 

is a native legume species that can be found from British Columbia to Quebec and south into 

Colorado, Virginia and Texas where soil moisture is available and there is full or partial sun 

(Jensen and USDA 2002; Hilty 2007).  The plants form a large bushy structure that can range 
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in height from 30 and 102 cm (Jensen and USDA 2002).  Canadian milkvetch flowers during 

mid summer and will continue for up to 3 months when oval pods form.  Plants have a 

tendency to fall over unless supported by surrounding vegetation; however it does not have 

tendrils like other vetches (Hilty 2007).  It is not uncommon for CMV leaves to begin 

yellowing (senescing) early in the growing season (Hilty 2007).   

 Canadian milkvetch is considered a good species to include in native mixtures.  Its 

extensive rooting system will reduce erosion and it has the ability to fix N (Jensen and USDA 

2002; Hilty 2007).  It is a species that is adapted to a wide range of soil types and conditions 

but is not well suited to dry uplands or harsh winter conditions (Jensen and USDA, 2002).  

There are some concerns with toxic compounds like 3-nitroproprionic acid, 3-nitropropanol 

and nitrotoxin that can reduce energy availability to the brain and result in death (Stermitz 

and Lowry 1972; Burrows and Tyrl 2006).  There are mixed findings about CMV toxicity. 

Some research with CMV has shown that unlike many milkvetches and locoweeds that are 

poisonous, it is non toxic (Hilty 2007).  However, work done with CMV at Brookings, SD 

and SPARC, showed that toxicity levels ranged from non-toxic to extremely toxic (M.P. 

Schellenberg, personal comm.; A. Boe, personal comm).  Toxicity levels are affected by 

genetics, plant maturity and environmental conditions (A. Boe, personal comm).  It is 

palatable and nutritious for livestock and wildlife during certain periods throughout the 

growing season (Stubbendiek and Conard 1989; Jensen and USDA 2002).  Plants can be 

extremely challenging to establish where rodents and wildlife can remove foliage from young 

plants.  Canadian milkvetch plants utilize both a taproot and creeping root system to best 

utilize moisture and for reproductive success (Hilty 2007).  A major concern with CMV is its 

short life expectancy of only three to four years (Jensen and USDA 2002).  Persistence of 

CMV can be improved with proper management such as grazing or mowing to prevent seed 

head formation (Jensen and USDA 2002).     

 

2.4.14 Purple prairie clover (PPC) 

Purple prairie clover (Dalea purpurea Vent.) is a common legume species that grows 

on native rangeland through Canada and the United States.  It is considered a climax species 

on the mixed grass prairie and a secondary species on the Fescue prairie (Coupland and 

Brayshaw 1953).  Optimal growth occurs with 400 to 500 mm of annual precipitation but it 



 40

can be found in areas with as little as 300 mm of annual precipitation (Wynia et al. 2008).  It 

grows from the Rocky Mountains east into Manitoba and south into Texas.  Within Canada, 

it is most abundant in south-eastern Alberta and southern Saskatchewan on xeric sites 

ranging from clay loam to loamy sands including dry plains, prairies and open woodlands but 

is considered rare in Manitoba and Ontario (Coupland 1950; Abouguendia 1995; Wynia et al. 

2008).  On the Saskatchewan prairies it grows in swards with NTG and BG and is a common 

species found stabilizing sand dunes in the Great Sand Hills (Hulett et al. 1966; Abouguendia 

1995).  Purple prairie clover is a C4 legume that grows in an upright form and can reach 

heights between 25 and 90 cm (Weaver and Fitzpatrick 1934; Lindgren 1992; Wynia et al. 

2008).  It prefers full sun but can tolerate moderate shade levels, is reasonably competitive 

with surrounding vegetation and is moderately drought tolerant (Hilty 2007; Wynia et al. 

2008).  Local ecotypes tend to be relatively well adapted to harsh winter conditions and will 

not winter kill (Wynia et al. 2008).   

Purple prairie clover is recommended for use in reclamation projects.  Seed is readily 

available and germination is reasonable with proper scarification (Wynia et al. 2008).  It is 

able to fix N from the air, which can improve production of mixed forage stands (Posler et al, 

1993; Hilty 2007; Wynia et al. 2008).  It is extremely slow to develop but once established it 

is easily maintained (Hilty 2007).  Weed control is essential to give PPC a competitive 

advantage.  It produces a taproot that can be one to two meters deep and three to seven lateral 

roots within the upper 30 cm of soil (Wynia et al. 2008; Abouguendia 1995).  The lateral 

roots can be up to 45 cm long and are usually pointed downward (Wynia et al. 2008).  Plants 

growing in the Northern Great Plains begin flowering in July and continue into August when 

a cone-like spike of flowers begins to appear followed by seed production in mid to late 

August (Hilty 2007; Wynia et al. 2008).   

Purple prairie clover produces between 1800 and 2100 kg ha-1 of production on 

rangeland in Nebraska, however if weed control was not performed, levels as low as 0 kg ha-1 

have been observed (Beran et al 1999).  The plant densities can range from 0.04 stems m-2 to 

60 stems m-2 (Weaver and Fitzpatrick 1934; Coupland 1950).  Purple prairie clover has been 

found to be very palatable, have a high nutritive value, is readily eaten by herbivores, but 

forage yields have been lower than other native legumes (Abouguendia 1995; McGraw et al. 

2004; Hilty 2007).  Having PPC improved the digestibility of mixed forage stands over pure 
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grass stands (Posler et al. 1993).  Under continuous grazing pressure, PPC will decrease and 

could ultimately be removed from the stand by overgrazing (Ehrenreich and Aikman 1963).  

Other concerns include bloat if the grazing animal consumes too much of the legume 

(Abouguendia 1995; Wynia et al. 2008).    

 

2.4.15 Alfalfa 

Alfalfa (Medicago sativa L.) has been used as a forage for more than 3300 years and 

is one of the only forage species that is grown worldwide (Bolton et al. 1972).  Alfalfa is a 

legume species that grows in one of two forms, either taproot or a creeping rooted.  Tap 

rooted alfalfa varieties are some of the oldest and most evolved varieties (Bolton et al. 1972).  

They have the ability to draw water from deeper levels in the soil horizon (Berdhal et al. 

1989) and produce large quantities of seed for natural reseeding (Rumbaugh and Johnson 

1983).  In recent years, creeping rooted varieties have been encouraged for grazing because 

plants are able to spread sideways using adventitious shoots.  This characteristic was 

originally derived from crossing a yellow flowered subspecies (falcata) with a taprooted 

species (sativa) to combine the characteristics of both species (Heinrichs 1963; Piano et al. 

1992).  These falcata crosses have important survival traits like lower crowns that protect 

plants from trampling and winter injury (Berdahl et al. 1989), dormancy during drought 

conditions (Heinrichs 1975) and the ability to produce horizontal roots that can send out new 

shoots (Heinrichs 1963).  This enables creeping rooted plants to persist better under grazing 

conditions (Berdahl and Frank 1998).  The improved persistence of creeping rooted varieties, 

relates to their ability to recover from crown damage through the production of underground 

adventitious shoots and the fact that they escape complete grazing due to the lateral spread of 

plants (Gdara et al. 1991).  Falcata varieties are recognized to have slower regrowth that 

increases root carbohydrate reserves (Smith 1972) and improves persistence under grazing 

conditions (Berdahl et al. 1986).    

Grazing alfalfa has many benefits including higher livestock and forage production 

and improved forage quality (Iwaasa et al. 2006).  Highest herbage yields and best stand 

persistence were obtained when cutting stage was delayed to the full bloom stage but protein 

was highest at the 10% bloom stage and the feeding value decreased as the alfalfa stand 

matured (Fulkerson et al. 1967; Smith 1972).  By delaying the cutting of alfalfa until the full 

http://journals.cambridge.org/abstract_S0960258500000477�
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bloom stage it allows the plants an opportunity to accumulate higher levels of carbohydrate 

root reserves and maintain plant vigor (Dotzenko and Ahlegren 1950; Reynolds and Smith 

1962; Cooper and Watson 1968; Nelson and Smith, 1969).  It also provides the plant an 

opportunity to recover from root and crown injuries caused by low winter temperatures 

(Grandfield 1934; Sprague and Graber 1944).  Forage DM production increases until plants 

bloom mostly due to the increase in fibrous constituents caused by the elongation and 

enlargement of the upper internodes (Figure 2.8) (Nelson and Smith 1968; Smith 1972).  This 

reduces the proportion of leaves and ultimately decreases the level of total digestible 

nutrients (TDN), protein and minerals.  Alfalfa at the full bloom stage has higher proportions 

of stem tissue and lower proportion of leaves, which reduces the feeding value (Smith 1972).  

Smith (1969) determined that leaves had higher TDN, protein, fat, starch, total nonstructural 

carbohydrates, and minerals.  Stems on the other hand were higher in total sugars, fiber and 

potassium.    As alfalfa matured its CP declined and fiber fractions increased making it less 

suitable as a fall grazed forage (Table 2.6).   The inclusion of alfalfa in grazing pastures is not 

widely accepted, as the bloat risk is high (Coulman et al. 2000; Smith and Singh 2000).   

 

 

                                
 
 

Figure 2.8 Trends in Alfalfa forage yield in relation to its forage quality (Alberta 
Agriculture, Food and Rural Development 2004) 
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Table 2.6 The composition of alfalfa at different stages and cured different ways (adapted                   
from Cullison and Lowrey, 1987) 

Stage Basis 
DM 
(%) 

CP 
(%) 

Hemicellulose 
(%) 

Cellulose 
(%) 

Lignin 
(%) 

ADF 
(%) 

TDN 
(%) 

Late vegetative (fresh) As fed   21   4.3   1   5 1   6 13 
 DM 100 20.0   7 22 7 29 63 
Midbloom (sun cured) As fed   90 15.3   9 23 8 32 52 
 DM 100 17.0 10 26 9 35 58 
 

 
2.5  Summary of Literature Review and Research Objectives 

Native forages have often been recognized for their ability to maintain their forage 

quality later into the fall.  Differences in maintenance of quality with maturity are important 

for producers who are looking to extend the grazing season and reduce the need for 

supplementation.  Comparing native and tame forage varieties can be difficult due to 

differences in establishment period, initial production and long term sustainability.  

Differences can even occur within species due to environmental, soil and moisture 

conditions.  These differences in plant maturity vary among years, locations and cultivars.  

There has been little research to compare differences in individual native and tame forages 

common to southwestern Saskatchewan in terms of production, forage quality and 

digestibility.    

Having a forage mixture that is sustainable is important to reduce fertilizer, seed and 

reestablishment costs.  There has been previous work recognizing the benefits of native 

forage mixtures like improved rooting ability, soil quality, carbon sequestration and long 

term sustainability.  Having a mixture of cool and warm season species ensures that forage 

yield and quality are distributed throughout the growing season.  The inclusion of legumes 

also is beneficial due to their ability to fix nitrogen, improve forage crude protein levels and 

ultimately improve forage production.  Little research is available comparing diverse pasture 

mixes to simpler cool season forage mixtures.  Even less work has been done comparing 

reestablished mixed native stands in the semi-arid region of Saskatchewan.      

The hypothesis of the research reported in this thesis was that mixtures of C3 and C4 

native forage species (complex forage mixtures) will provide superior nutritional quality 

throughout the grazing season compared to mixtures composed of C3 native species (simple 

forage mixtures).  The objectives of the three studies conducted were to determine: 
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1) the biomass production, chemical composition and in vitro dry matter  

digestibility of different warm and cool season forage species from June through 

October; 

2) the dry matter yield, neutral detergent fiber and crude protein degradability of 

selected species in terms of their suitability for fall grazing using the in situ 

digestion technique;   

3) determine if nutritive qualities of complex native mixtures were superior to simple 

forage mixtures by determining forage yield, chemical composition, forage 

utilization and animal production. 
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CHAPTER 3 

EVALUATION OF GROWTH AND NUTRITIVE VALUE OF INDIVIDUAL 

FORAGE SPECIES 

 

 

3.1 Introduction 

Forage quality and production are important variables that directly affect animal 

production.  Understanding nutritive constituents (ie. NDF, ADF, ADL, CP, Ca and P 

content) and digestibility of individual forage species helps to distinguish their contribution 

to the nutritive value of native forage mixtures.  Forage quality can vary with plant maturity 

and environmental conditions (Wallace et al. 1961).  It is essential to know the nutritive 

value of native pasture plants since forage quality affects animal performance throughout the 

season (Abouguendia 1998).  Knowledge of forage quality characteristics of specific plants 

allow range managers to better select forage species that compliment each other for improved 

animal production and reduced requirements for nutrient supplementation.  Such knowledge 

can also help managers extend the grazing season thus reducing feeding costs (Cherney and 

Kallenbach 2007).  

Forage species can be segregated by their photosynthetic pathway.  Distinctive 

metabolic pathways produce different forage production growth curves for C3 and C4 plants 

resulting in differing abilities of plants to survive changing environmental conditions.  These 

differing growth curves for C3 and C4 forages allow for species combinations that better meet 

the animal’s nutrient requirements throughout the growing season (Waller et al. 1985).  Cool 

season (C3) forages produce the majority of their production early in the growing season 

when temperatures are 25°C or lower and soil moisture is readily available.  They can 

reinitiate growth in the fall if temperatures and moisture levels become favourable.  Warm 

season (C4) species have improved water use efficiency and an optimal growing temperature 

between 30 and 35°C.  They initiate growth during the summer when C3 species have 

produced their inflorescence.  At this point, the growing C4 forages have a higher nutritive 

value than the mature C3 plants as the relatively young C4 plants are actively capturing and 

storing energy and synthesizing protein (Redmon and Hendrickson 2007).  As plants mature, 

photosynthesis and plant growth slow but cell wall and fibre levels increase.  Initially, forage 
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plants lay down higher levels of hemicellulose than other fibre fractions but as plants mature, 

lignin production increases at a faster rate (Cherney et al. 1997).   

The inclusion of legumes into forage stands has many benefits including higher 

forage quality and reduced fertilizer costs.  By including persistent forage legumes, pasture 

sustainability is improved because of nitrogen fixation (Cadish et al. 1994; Schellenberg and 

Banerjee 2002).  This is the result of bacteria utilizing plant carbohydrates to reduce 

atmospheric N into a form that is available for plant growth (Metcalfe and Nelson 1985; 

Kopp 2003).  The level of N fixation depends on herbage yield, plant nitrogen concentration 

and the amount of N derived from the symbiosis (Cadish et al. 1994).  Legumes are not only 

desirable for their ability to symbiotically fix N but also for their ability to improve ruminant 

diet quality and improve animal performance (Jefferson et al. 2002; McGraw and Nelson 

2003).  The inclusion of native legumes in grass mixtures has been shown to increase forage 

yield and quality when compared to unfertilized grass pastures (Posler et al. 1993; Phillips 

and James 1998).  Legumes tend to have higher energy and protein levels than grasses but 

their persistence is lower (Cherney and Kallenbach 2007).  Their leaves tend to have thinner 

cell walls than that of grass species which means they break down and pass through the 

rumen faster (Spalinger et al. 1986).   The leaves of legumes tend to have higher CP and cell 

soluble carbohydrate levels than grasses at similar stages of maturity (Holechek et al. 2004).   

Different forage species respond differently to changing growing conditions.  Their 

quality and production can be extremely variable depending on moisture, temperature, soil 

type and the forage species.  The comparison of species is difficult because growing 

conditions and stress can directly affect forage production and quality.  These conditions 

directly affect the morphological development of individual species that ultimately affect 

their nutritive value (Mitchell et al. 1997; Smart et al. 2001).  There has been little work to 

compare native and tame forages under the same establishment, environmental and fertility 

conditions, especially in south western Saskatchewan.  The objectives of this study were to 

determine the biomass production, chemical composition and in vitro dry matter digestibility 

of different warm and cool season forage species. 
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3.2 Materials and Methods 

3.2.1 Plot Establishment and Maintenance 

Trial plots were located at the Agriculture and Agri-Food Canada (AAFC) Semiarid 

Prairie Agricultural Research Center (SPARC) near Swift Current Saskatchewan (NW ¼ 16-

15-13   W of 3rd) on a Chernozemic orthic brown Swinton loam soil (Ayres et al. 1985).  The 

land had been previously cropped with barley in 2000, 2002 and 2004 and was fallow during 

2001, 2003 and 2005.  The whole plot area was fertilized with 9.2 kg of nitrogen ha-1 and 

14.7 kg of phosphorus ha-1 on May 6, 2006.  Trial plots consisted of twelve native species 

and three common tame species which are all grown in western Canada (Table 3.1).  The 

certified seed was supplied by Viterra/Proven Seeds .  Pure live seed (PLS) count values 

were supplied with each seed lot and ranged from 55% in June grass to as high as 99% in 

Awned wheatgrass (AWG).  On June 2, 2006 forage treatments were seeded in plots 6.0 m 

by 1.53 m.  The seeding rate was 98 PLS m-2 and seeding depth was 1.3 cm.  Canadian 

milkvetch (CMV) seed was pretreated with liquid nitrogen to crack the outer seed coat and 

increase seed germination (Acharya, personal communication).  Purple prairie clover (PPC) 

came scarified and inoculated from the seed distributor.  Each plot consisted of five seeded 

rows with a 30.5 cm row spacing.  The trial was a randomized complete block design where 

plots were replicated four times (Figure A1 in Appendix).  

On September 7, 2006 all plots received 1.3 cm of artificial moisture using a manual 

irrigation system to ensure adequate soil moisture for the next spring’s growth.  On October 

10, 2006 it was determined that all species had gone dormant and growth had ceased due to 

killing frosts.  At this point, all treatments were clipped to a 5 cm stubble height to 

correspond with heavy grazing (Carman 1985; Olson and Richards 1988; Felker and East 

1993).  This ensured all plots were at the same height to avoid potential snow trap especially 

in taller species.  This was done with a flail plot harvester (Swift Machine and Welding Ltd., 

Swift Current, SK.)    

Purple prairie clover germination was poor and much of the above ground growth that 

was produced was scavenged by Richardson ground squirrels.  Thus it was removed from the 

trial.    
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Table 3.1 Forage species used in trial plots grouped by native habitat (NH) and 
photosynthetic pathway (PSP)  

NH and PSP Species 
WR Poole Western wheatgrass - (Pascopyrum smithii Rydb.) 
Polar Northern wheatgrass - (Elymus lanceolatus Scribn & J.G. Sm.) 
AC Mallard Green needle grass - (Stipa viridula Trin.) 
Sprig Awned wheatgrass - (Agropyron subsecundum Link.; Hitchc) 
Mandan Canada wildrye - (Elymus canadensis L.) 
AC Sharptail Needle and thread grass - (Stipa comata Trin. &Rupr.) 
Keystone June grass - (Koeleria macrantha Ledeb.; Schult.) 
AC Larmour Purple prairie clover - (Dalea purpurea Vent.) 

Native Cool Season 

Great Plains Canadian milkvetch - (Astragalus canadensis L.) 
  

Taylor Little bluestem - (Schizachyrium scoparium Michx.; Nash.) 
Butte Blue grama - (Bouteloua gracilis Willd. ex Kunth) Native Warm Season 
Co1 Prairie sandreed - (Calamovilfa longifolia Hook.; Scribn.) 

  
AC Knowles Hybrid brome grass - 
(Bromus riparius Rehm X Bromus inermis Leyss) 
Montana Meadow brome grass - (Bromus riparius Rehm.) 

Introduced (Tame) 
Cool Season 

Spreder 4 Creeping rooted alfalfa - (Medicago sativa L.) 
 

 

3.2.1.1 Weed Control  

All plots were sprayed with Basagran, a group 6 herbicide (SAFRR 2006) on July 11.  

Little weed control was achieved from spraying since weeds were too advanced.  All plots 

were hand weeded on July 26 and 27 and weed material was removed from the site to avoid 

reseeding.  All plots were hand weeded again from May 16 to 18, 2007 and as required. 

 

3.2.2 Small Plot Sample Collection 

Forage samples were clipped each month from June through October of 2007.  The 

first collection period took place June 20 and then every 28 days, through October 10.  Plots 

were split into five 1.2 m subplots.  Harvest dates were randomly assigned to each subplot 

and clippings were taken from randomly placed ¼ m2 quadrates within each subplot.  Only 

center rows of the plots were sampled to avoid micro environmental affects associated with 

the outer rows.  Hand clippings were performed at a 5 cm stubble height to account for all 

new growth for that year.   

Samples were weighed then dried to a constant weight in a forced air oven at 50° C.  

Dry material was weighed to determine dry matter yield.  Dried samples were ground using a 

http://journals.cambridge.org/abstract_S0960258500000477�


 49

Willey Mill (Model no. 4; Arthur H. Thomas Co., Philadelphia, PA) fitted with a 1mm 

screen.     

 

3.2.3 Laboratory Analysis 

Animals used in this experiment were cared for under the guidelines put forward by 

the Canadian Council of Animal Care (2008) and local AAFC-SPARC requirements.  Two 

Hereford/Angus steers were surgically fitted with 10.2 cm cannulas during the winter of 

2006-2007.  Animals were housed outdoors in a corral bedded with straw, fed ad libitum 

brome grass hay and had free access to water.  Rumen fluid was collected according to the 

protocol established by Iwaasa et al. (2001).  In vitro organic matter digestibility (OMD) was 

determined according to the procedure established by Tilley and Terry (1963) as modified by 

Troelsen and Hanel (1966).  Dry weights were recorded after drying over night at 105°C.  

Ash was determined by weighing a one gram of sample into porcelain crucibles.  Samples 

were heated at 600°C for two hours to determine the ash content (AOAC method 923.03; 

AOAC, 2005).  Calcium (Ca) was determined using the methodology adapted from Steckel 

and Flannery (1965).  Phosphorus (P) levels were determined using the protocol adapted 

from Varley (1966) and Milbury et al. (1970).  Standards were analyzed daily and consisted 

of L-cystine (General Biochemicals, Chagrin Falls, OH), crested wheatgrass and wheat 

(AAFC, 1998).  Crude protein (CP) was determined using the protocol of the Methods 

Manual Scientific Support Section (AAFC 1998) that was adapted from Varley (1966) and 

Noel and Hambleton (1976).  The total Kjeldahl N was multiplied by 6.25 to determine the 

level of crude protein (AOAC 1984).  Neutral detergent fibre (NDF) was determined using 

the ANKOM200 fiber analyzer (Model 200; ANKOM; Fairport, New York).  Acid detergent 

fibre (ADF) was performed using the procedure of Goering and Van Soest (1970).  Acid 

detergent lignin (ADL) was determined using the ANKOM Technology-08/05, Method for 

Determining ADL in Beakers using the ANKOM200 fiber analyzer (Model 200; ANKOM; 

Fairport, New York; 14450).   

 

3.2.4 Meteorological Data 

 All weather data was recorded at the AAFC SPARC at Swift Current, Saskatchewan.  

The weather station was located approximately 1 km from the plot site.  The daily maximum 
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temperature, precipitation, monthly mean precipitation and temperature were recorded 

(Figure A2, A3 and A4 in Appendix).   

 

3.2.5 Statistical Analysis 

 The data was analyzed as a five (harvest date) by fourteen (forage species) factorial 

using the Mixed Model procedure of SAS (SAS Institute, Inc. 2003).  The plot was the 

experimental unit.  Replicates were treated as a random blocking factor and harvest date was 

considered a repeated measure.  Dependant variables included forage production (kg ha-1), 

OMD, NDF, ADF, ADL, CP, Ca and P levels.  The following covariance structures were 

tested for each variable; unstructured, ante-dependence, autoregressive, heterogeneous 

autoregressive, compound symmetry and heterogeneous compound symmetry.  The final 

covariance structure was selected on the basis of the lowest AIC, AICC and BIC values.  To 

explore the nature of any species by harvest date interactions, linear and polynomial 

regression analysis were carried out for each species.  For presentation purposes, C3, C4 and 

legumes were grouped and regressions were run on the pooled analysis.  Best fitted 

regressions (linear, quadratic, cubic and quartic) were selected based on the highest order 

polynomial that was significant (P≤0.05). 

            

3.3 Results and Discussion 

Understanding forage quality of individual native species is important to better 

distinguish their role in native mixtures for grazing.  Forages contain much of their OM (35 

to 80%) in the cell wall structure (Jung and Allen 1995).  This can result in lower 

digestibility and ultimately limits the energy that animals can gain from forage diets.  The 

literature is limited comparisons of native versus tame forage plants.  The comparison of 

species is difficult because growing conditions and stress can directly affect forage 

production and nutritive value.  In this study to properly compare individual species and 

ensure proper species identification, monoculture stands were grown under weed free 

conditions.   

A significant (P<0.01) species by harvest date interaction was observed for forage 

DM production (kg ha-1) (Table 3.2).  This interaction is the result of C3 and C4 grasses and 

legumes having different growth patterns and responding differently to changing 

environmental conditions (Barnhart 1998; Baron and Bélanger 2007).  Cool season grasses 
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and legumes initiate growth early in the season and produce around two thirds of their annual 

production before mid summer (Holechek et al. 2004; Jefferson et al. 2005); then they go 

dormant when moisture and high temperatures do not favour their growth (Baron and 

Bélanger 2007; Cherney and Kallenbach 2007).  Warm season grasses produce the majority 

of their growth during the hot summer period when optimal growing temperatures are 

experienced (Jefferson et al. 2005; Baron and Bélanger 2007).  The R2 and standard error of 

predicted equations for DM production are shown in Table 3.3.  The majority of C3 grasses 

could not be fitted with any regression curve; instead they were compared by a simple mean 

value throughout the five harvest periods.  This was an unexpected trend because plant 

production naturally increases through the spring before peaking and then slowing as plants 

senesce during the hot summer period until the fall when regrowth can occur if moisture is 

available (Baron and Bélanger 2007; Cherney and Kallenbach 2007).  Cool season grasses 

produce the majority of their growth early in the spring (Holechek et al. 2004; Jefferson et al. 

2005) so it is possible that our first sample period was not early enough to observe the rise 

and peak.  There should also be a decline in forage production as leaves senesce and drop 

from the plants.  However, the decline may have been too gradual to determine, with the 

number of harvest dates used in this trial.  The lack of any significant regression could also 

have resulted from variation within the replicates (harvest date and plots) as a result of 

sampling only one year.   

Exceptions to this included GNG, MBG and the pooled C3 grasses where forage DM 

production (kg ha-1) for all three declined in a linear (P<0.05) fashion.  This linear decline in 

DM production can be explained if peak production had been reached prior to the first 

harvest date.  The decline in forage production would then have been similar to that observed 

by Sedivec et al. (2007) for MBG.  The decline in forage production could relate to leaf loss 

(Wilson 1981), losses associated with the leaching of soluble non-structural carbohydrates 

(Collins 1982)   and the loss of minerals due to weathering (Koelling and Kucera 1965).   
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             Table 3.2 Least square means for species by harvest date interactions (P<0.01) for forage dry matter production (kg ha-1)       
              throughout 2007*   

 Date Pooled P-Values 

Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass           
AWG 4306 5322 4155 4828 4618 535.1 0.94 0.76 0.45 0.15 
CWR 3802 5874 4803 5490 4667 535.1 0.55 0.14 0.47 0.18 
GNG 3580 3230 2214 2535 2311 535.1 0.02 0.30 0.92 0.26 
HBG 4416 4641 3932 3433 3311 535.1 0.15 0.86 0.57 0.87 
Jun 671 1146 893 1223 1112 535.1 0.15 0.45 0.66 0.19 
MBG 5023 5484 3198 3295 3071 535.1 0.04 0.76 0.39 0.30 
NTG 5342 3907 4244 3727 3768 535.1 0.15 0.43 0.59 0.50 
NWG 3908 5058 3731 4119 3069 535.1 0.28 0.35 0.66 0.25 
WWG 2764 3653 3234 3478 3291 535.1 0.46 0.29 0.46 0.33 
Pooled C3** 3769 4252 3378 3570 3234 376.5 0.06 0.57 0.32 0.08 
           
C4 Grass           
LBS 75 297 573 437 256 535.1 0.17 0.03 0.89 0.43 
BG 175 789 951 759 632 535.1 0.07    < 0.01 0.27 0.79 
PSR 300 921 982 1487 1181 535.1 0.22 0.52 0.89 0.64 
Pooled C4** 184 666 832 885 708 475.4 0.05 0.05 0.91 0.84 
           
Legumes           
CMV 4062 4798 3704 3912 3425 535.1 0.10 0.44 0.37 0.14 
Alf 3101 3268 2348 1973 1956 535.1 < 0.01 0.89 0.18 0.51 
Pooled legume** 3609 4039 3034 2946 2655 541.6 0.02 0.73 0.27 0.26 

            *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction 
 (P<0.01)  
** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction 

            (P = 0.04) 
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                    Table 3.3 Best fitted regressions for species by harvest date interaction (P<0.01) for dry matter forage  
                      production (kg ha-1) throughout 2007 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
                                 * Sxy  = Root mean square error 

 Mean or Intercept Linear term Quadratic term 
Species 

Adjusted 
R2 Sxy* Estimate SE  Estimate SE Estimate SE

C3 Grass          
AWG N/A N/A 4645.8 231.5  
CWR N/A N/A 4927.2 320.0  
GNG 0.23 787.22 3420.6 304.9 -11.5 4.4
HBG N/A N/A 3946.6 309.3  
Jun N/A N/A 1009.0 92.7  
MBG 0.18 1695.21 5232.8 656.6 -21.8 9.6
NTG N/A N/A 4197.6 307.1  
NWG N/A N/A 3977.0 328.1  
WWG N/A N/A 3284.0 159.6  
Pooled C3 N/A N/A 3641.7 123.3  
      
C4 Grass      
LBS 0.25 247.62   57.0 116.5 13.6 4.9 -0.1 0.04
BG 0.43 279.32 222.1 131.4 21.9 5.6 -0.2 0.05
PSR N/A N/A 974.2 244.6  
Pooled C4 0.09 690.89    195.4 187.7     19.4 7.9 -0.1 0.06
      
Legumes      
CMV N/A N/A 3980.2 187.3  
Alf 0.38 636.80 3246.2 246.6 -12.8 3.6
Pooled legume 0.12 1028.91 3829.2 281.8 -10.3 4.1   
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In this study, C4 grasses exhibited a quadratic response in terms of DM production, 

peaking during the hottest part of the summer then declining into the fall as temperatures 

declined.  This response with C4 plants was similar to other studies (Baron and Bélanger 

2007; Cherney and Kallenbach 2007) that demonstrated optimal growth during the summer 

before peaking in production by early fall.  The exception was PSR which could not be fitted 

with a suitable regression to explain production trends.  Pooled over all C4 grasses, DM 

production showed a quadratic response (P = 0.05) during the growing season.    

Within the legume species, Alf declined (P<0.01) in DM production linearly with 

harvest date while CMV showed a trend (P=0.10) towards a linear decline.  Pooled data 

exhibited a linear decline (P<0.01) in DM production with time.  These results correspond 

with work by Fuess and Tesar (1968) that found as legume plants mature, leaf loss becomes a 

concern.  The fact that CMV could not be fitted to an appropriate regression equation could 

indicate that it retained its leaves later into the fall and would be better suited for fall grazing.        

Organic matter digestibility values for all the species at each of the five collection periods are 

reported in (Table 3.4).  As with DM production, a species by harvest date interaction (P < 

0.01) was observed.  This interaction is again likely the result of differences in how each 

species matured.  Best fitted linear and polynomial regression equations, the R2 and standard 

errors are given in Table 3.5.   

Organic matter digestibility for most of the C3 grasses was best fitted with a cubic 

regression equation that declined from June until July then increased until September where 

OMD again declined.  This was also the case for the pooled value for C3 grasses where OMD 

declined (P<0.05) in a cubic fashion with advancing maturity.  The decline in OMD is 

common in forages because increasing maturity normally results in a decrease in nutritive 

quality (Kilcher and Troelsen 1973; Buxton and Fales 1994; Karn et al. 2006).  The 

improvement in OMD later in the growing season can be associated with later plant growth 

with cooler temperatures and available moisture (Wilkinson et al. 1970).  Several C3 grasses 

(AWG, GNG, HBG and MBG) differed in that OMD declined linearly (P<0.05) throughout 

the summer.   

The OMD of the C4 grasses were best fitted (P<0.05) with a quadratic regression 

equation, the only exception was BG which showed a linear (P<0.05) decline.  Organic 

matter digestibility of the C4 grasses was low during the June sample period, peaked in July  
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                Table 3.4 Least square means for species by harvest date interactions (P<0.01) for organic matter digestibility (%)  
                  throughout 2007*   

 Date Pooled            P-Values  
Species** Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass         
AWG 61.63 53.40 52.82 49.72 44.29 1.550 < 0.01    0.71    0.17 0.58 
CWR 62.69 52.21 52.72 47.84 42.78 1.550 < 0.01    0.36    0.04 0.12 
GNG 56.98 54.31 54.30 53.13 47.80 1.550 < 0.01    0.30    0.20 0.95 
HBG 59.67 52.89 55.45 49.77 44.55 1.550 < 0.01    0.35    0.07 0.05 
Jun 67.91 63.28 65.11 64.84 60.02 1.550    0.01    0.68    0.04 0.64 
MBG 60.29 53.08 55.34 52.29 48.57 1.550 < 0.01    0.81    0.10 0.23 
NTG 55.15 48.34 49.94 48.85 43.50 1.550 < 0.01    0.96 < 0.01 0.36 
NWG 53.81 46.90 50.13 46.73 40.99 1.550 < 0.01    0.46    0.02 0.11 
WWG 60.76 52.33 54.61 52.63 45.95 1.550 < 0.01    0.87 < 0.01 0.18 
Pooled C3** 59.88 52.97 54.49 51.76 46.49 0.892 < 0.01    0.78 < 0.01 0.06 
           
C4 Grass           
LBS 61.41 62.72 60.39 53.01 46.44 1.550 < 0.01 < 0.01    0.28 0.51 
BG 67.08 63.88 64.56 58.65 57.11 1.550 < 0.01    0.60    0.93 0.14 
PSR 60.16 56.98 58.52 55.66 48.04 1.550 < 0.01    0.04    0.06 0.49 
Pooled C4** 62.88 61.18 61.17 55.77 50.56 1.542 < 0.01    0.01    0.70 0.23 
           
Legumes           
CMV 81.37 73.46 70.12 64.78 52.67 1.550 < 0.01    0.12    0.06 0.90 
Alf 72.65 64.25 59.42 54.38 45.44 1.550 < 0.01    0.79    0.08 1.00 
Pooled legume** 79.96 68.84 64.77 59.60 49.11 1.883 < 0.01    0.44    0.15 0.96 

                  *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
                  ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
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       Table 3.5 Best fitted regressions for species by harvest date interactions (P<0.01) for organic matter digestibility (%) throughout  
         2007 

  Intercept Linear term Quadratic term Cubic term 
Species 

Adjusted 
R2 Sxy* Estimate SE Estimate SE Estimate SE Estimate SE 

C3 Grass           
AWG 0.62 4.30 60.04 1.67 -0.14 0.02     
CWR 0.80 3.29 62.38 1.63 -0.50 0.15 7.62 x 10-3 3.36 x 10-3 -4.24 x 10-5  1.97 x 10-5 
GNG 0.42 3.19 57.21 1.24 -0.07 0.02     
HBG 0.67 3.34 59.14 1.30 -0.12 0.02     
Jun 0.37 3.02 67.82 1.50 -0.31 0.14 6.79 x 10-3  3.09 x 10-3  -4.18 x 10-5  1.82 x 10-5 
MBG 0.44 3.87 58.76 1.50 -0.09 0.02     
NTG 0.69 2.43 55.02 1.20  -0.41 0.11  8.11 x 10-3 2.48 x 10-3  -4.81 x 10-5  1.46 x 10-5 
NWG 0.61 3.18 53.51 1.58  -0.37 0.14  7.56 x 10-3 3.25 x 10-3  -4.73 x 10-5  1.91 x 10-5 
WWG 0.78 2.53 60.55 1.25  -0.49 0.11   9.75 x 10-3  2.58 x 10-3  -5.85 x 10-5  1.52 x 10-5 
Pooled   0.37       5.48     59.67   0.91     -0.37 0.08  6.90 x 10-3 1.87 x 10-3     -4.16 x 10-5 1.10 x 10-5 
           

C4 Grass           
LBS   0.86 2.51 61.75 1.18  0.07 0.05 -1.89 x 10-3 4.28 x 10-4   
BG   0.55 3.23 67.29 1.25 -0.09 0.02     
PSR   0.61 3.17 59.09 1.49  0.04 0.06 -1.21 x 10-3 5.41 x 10-4   
Pooled   0.52 4.27 62.56 1.16  0.02 0.05 -1.13 x 10-3 4.20 x 10-4   

          
Legumes           
CMV   0.87 3.73 81.70 1.44 -0.24 0.02     
Alf   0.93 2.55 72.09 0.99 -0.23 0.01     
Pooled   0.73 5.68 76.89 1.55 -0.23 0.02     

         * Sxy  = Root mean square error 
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and then declined into the fall.  This type of equation corresponds with warm season growth 

curves and is likely associated with increased proportion of leaf sheath, stem and flowering 

head (Minson 1990).  This will result in higher levels of hemicellulose, cellulose and lignin.  

The OMD levels of the legume species were best fitted (P<0.05) with linear regressions.  The 

% OMD declined as the levels of ADF and ADL increased linearly.  It is well recognized 

that, as plants mature, quality declines due to increased indigestible fibre fractions (Cherney 

et al. 1997; Karn et al. 2006).   

The decline in OMD of all species over the growing season can be explained by 

changes observed in chemical composition of the individual species.  As the C3 grasses 

matured there was a linear increase in NDF (Tables 3.6 and 3.7) and ADF (Tables 3.8 and 

3.9).   Exceptions were June grass which could not be fitted with any regression equation for 

NDF content, while NDF content was found to increase in a quadratic fashion for CWR and 

in a quartic fashion for NTG (Table 3.7).  For the C3 grasses, OMD declined (P<0.01) in a 

cubic fashion as NDF and ADF levels increased.  Increased NDF and ADF content indicate 

that cellulose, hemi-cellulose and lignin levels in the plant are increasing with maturity.  This 

has been well documented by other researchers (Mueller 1941;Cherney et al. 1997; Minson 

1990; Ferdinandez and Coulman 2001).  Higher NDF and ADF levels are related to increased 

proportions of leaf sheath, stem and flowering head as plants mature (Minson 1990; 

Ferdinandez and Coulman 2001).  ADL values for cool season grasses (Table 3.10) were best 

fitted with a quadratic regression (Table 3.11). The peak in ADL was reached between 

August and September as plants fully matured then declined likely due to fall moisture that 

may have re-initiated growth.  Species that could not be fitted with a quadratic regression for 

% ADL included June grass (no suitable regression) and AWG and HBG that linearly 

increased in ADL.  Increasing lignin concentration associated with maturity could be due to 

higher proportions of stem to leaf tissue in mature plants and the higher lignin in stem tissue 

(Sosulski et al. 1960; Kilcher and Troelsen 1973; Jung and Allen, 1995; Buxton and 

Redfearn 1997).  The quadratic increase in lignin corresponds with the cubic decline in 

OMD.  Lignin acts as a physical barrier that restricts microbial degradation (Jung and Deetz 

1993; Buxton and Redfearn 1997) and can form cross-linkages to polysaccharides (Jung and 

Allen 1995).  
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                Table 3.6 Least square means for species by harvest date interactions (P<0.01) for neutral detergent fibre (%)  
                  throughout 2007*   

 Date Pooled            P-Values  
Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass        
AWG 57.68 64.02 68.14 68.92 72.66 1.611 < 0.01    0.41    0.55    0.74 
CWR 51.93 62.39 68.24 71.92 76.35 1.611 < 0.01 < 0.01    0.09    0.95 
GNG 61.11 64.10 67.44 68.04 70.63 1.611 < 0.01    0.56    0.75    0.56 
HBG 55.27 64.29 66.30 67.30 73.48 1.611 < 0.01    0.43    0.10    0.99 
Jun 56.60 57.04 58.25 56.88 58.03 1.611    0.57    0.84    0.71    0.50 
MBG 56.68 64.92 68.84 68.70 73.51 1.611 < 0.01    0.18    0.18    0.62 
NTG 69.00 72.49 77.61 75.74 79.67 1.611 < 0.01    0.07    0.14    0.01 
NWG 63.19 68.03 71.07 71.01 75.39 1.611 < 0.01    0.61    0.35    0.62 
WWG 55.72 62.78 63.74 65.64 71.11 1.611 < 0.01    0.50 < 0.01    0.55 
Pooled C3** 56.66 63.63 67.47 68.46 74.80 0.852 < 0.01    0.08    0.06    0.42 
           
C4 Grass           
LBS N/A 59.04 60.33 56.88 65.79 1.483 < 0.01 < 0.01 < 0.01 N/A 
BG 62.82 61.53 62.48 60.71 65.71 1.611    0.23    0.05    0.27    0.18 
PSR 64.22 65.91 63.48 64.10 68.52 1.611    0.03    0.02    0.02    0.40 
Pooled C4** 63.19 61.64 63.27 62.43 67.00 0.970    0.03 < 0.01    0.05    0.07 
           
Legumes           
CMV 24.97 35.62 48.03 49.64 59.80 1.611 < 0.01     0.06    0.18    0.03 
Alf 27.75 39.68 53.47 53.15 63.46 1.611 < 0.01     0.01    0.12    0.01 
Pooled legume** 25.56 38.30 50.60 51.86 60.17 1.503 < 0.01     0.01    0.06 < 0.01 

                 *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
                 ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
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Table 3.7 Best fitted regressions for species by harvest date interactions (P<0.01) for neutral detergent fibre (%) throughout 2007 
 Intercept Linear term Quadratic term Cubic term Quartic term 
Species Adj R2 Sxy* Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE 
C3 Grass             
AWG 0.49 5.06 59.31 1.96  0.12 0.03    
CWR 0.95 1.96 52.46 0.92  0.35 0.04 -1.30 x 10-3 3.34 x 10-4     
GNG 0.55 2.96 61.67 1.15  0.08 0.02       
HBG 0.61 4.50 57.44 1.74  0.14 0.03       
Jun N/A N/A 57.36 0.61         
MBG  0.61 4.27 59.04 1.65  0.13 0.02       
NTG  0.84 1.68 69.00 0.84 -0.20 0.17 1.91 x 10-2 7.51 x 10-3 -3.09 x 10-4 1.07 x 10-4 1.45 x 10-6 4.76 x 10-7 
NWG 0.49 3.95 64.26 1.53  0.10 0.02       
WWG 0.90 1.69 55.78 0.84  0.39 0.08 -6.36 x 10-3 1.73 x 10-3 3.67 x 10-5 1.02 x 10-5   
Pooled 0.36 5.90 60.01 0.76  0.11 0.01       
            
C4 Grass            
LBS 0.72 2.03 35.90 8.44  1.42 0.46 -2.48 x 10-2 7.28 x 10-3 1.30 x 10-4 3.45 x 10-5   
BG 0.16 2.57 63.07 1.21 -0.08 0.05  9.01 x 10-4 4.39 x 10-4     
PSR 0.48 1.80 64.31 0.89  0.14 0.09 -4.23 x 10-3 1.96 x 10-3 2.98 x 10-5 1.14 x 10-5   
Pooled 0.25 3.07 64.06 1.00 -0.13 0.04 1.29 x 10-3 3.22 x 10-4  0.25   0.31   
            
Legume            
CMV 0.94 3.05 24.97 1.52 -0.09 0.30 2.78 x 10-2 1.36 x 10-2 -4.59 x 10-4 1.95 x 10-4 2.16 x 10-6 8.65 x 10-7 
Alf 0.94 3.33 27.75 1.67 -0.16 0.33 3.52 x 10-2 1.49 x 10-2 -5.85 x 10-4 2.13 x 10-4 2.76 x 10-6 9.45 x 10-7 
Pooled 0.92 3.65 26.36 1.29 -0.12 0.26 3.15 x 10-2 1.15 x 10-2 -5.22 x 10-4 1.65 x 10-4 2.46 x 10-6 7.31 x 10-7 
* Sxy  = Root mean square error 
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               Table 3.8 Least square means for species by harvest date interactions (P<0.01) for acid detergent fibre (%)  
                 throughout 2007*   

 Date Pooled            P-Values  
Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass         
AWG 29.46 33.55 36.79 37.66 40.01 1.328 < 0.01    0.48 0.74 0.77 
CWR 26.39 33.66 37.25 40.66 42.81 1.328 < 0.01 < 0.01 0.27 0.43 
GNG 28.87 31.24 33.76 35.45 37.63 1.328 < 0.01    0.81 0.94 0.84 
HBG 29.60 35.33 37.37 38.62 41.84 1.328 < 0.01    0.45 0.39 0.99 
Jun 31.76 32.47 33.61 33.65 35.28 1.328 < 0.01    0.79 0.62 0.50 
MBG 30.50 36.21 38.22 39.17 42.07 1.328 < 0.01    0.31 0.30 0.98 
NTG 35.87 39.12 43.57 41.98 45.15 1.328 < 0.01    0.03 0.11 0.01 
NWG 35.01 38.40 40.80 41.00 43.94 1.328 < 0.01    0.65 0.52 0.69 
WWG 27.64 32.07 32.82 34.39 37.80 1.328 < 0.01    0.64 0.02 0.55 
Pooled C3** 30.54 34.67 37.12 38.07 40.73 0.666 < 0.01    0.07 0.11 0.57 
           
C4 Grass           
LBS N/A 27.98 29.50 28.58 33.29 1.271 < 0.01    0.05 0.03 N/A 
BG 24.69 27.51 27.82 28.25 30.56 1.328 < 0.01    0.79 0.13 0.91 
PSR 30.84 33.36 32.06 32.72 37.55 1.328 < 0.01    0.02 0.01 0.53 
Pooled C4** 27.87 29.64 29.74 29.92 33.72 1.159 < 0.01    0.18 0.04 0.73 
           
Legumes           
CMV 20.88 28.40 36.49 38.99 47.56 1.328 < 0.01    0.50 0.22 0.14 
Alf 21.14 30.65 40.77 41.21 50.23 1.328 < 0.01    0.09 0.13 0.06 
Pooled legume** 21.07 29.62 38.63 40.06 48.83 1.353 < 0.01    0.09 0.06 0.07 

                 *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
                 ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
 
 
 
 
 



 

61

 
Table 3.9 Best fitted regressions for species by harvest date interactions (P<0.01) for acid detergent fibre (%) throughout 2007 

  Intercept Linear term Quadratic term Cubic term Quartic term 
Species Adj R2 Sxy* Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE 
C3 Grass                    
AWG 0.43 4.04 30.45 1.56 0.09 0.02       
CWR 0.95 1.34 26.70 0.63 0.25 0.03 -9.50 x 10-4 2.28 x 10-4     
GNG 0.61 2.46 29.04 0.95 0.08 0.01       
HBG 0.51 3.83 31.00 1.48 0.10 0.02       
Jun 0.41 1.38 31.71 0.53 0.03 0.01       
MBG 0.56 3.29 32.01 1.27 0.09 0.02       
NTG 0.86 1.33 35.87 0.67 -0.15 0.13 1.60 x 10-2 5.96 x 10-3 -2.61 x 10-4 8.50 x 10-5 1.23 x 10-6 3.78 x 10-7 
NWG 0.42 3.36 35.73 1.30 0.07 0.02       
WWG 0.86 1.34 27.69 0.66 0.23 0.06 -3.63 x 10-3 1.37 x 10-3 2.10 x 10-5 8.04 x 10-6    
Pooled  0.42 3.96 31.49 0.51 0.08 0.01       
                 
C4 Grass                 
LBS 0.66 1.46 15.93 6.07 0.71 0.33 -1.19 x 10-2 5.23 x 10-3 6.14 x 10-5 2.48 x 10-5    
BG 0.51 1.72 25.27 0.67 0.04 0.01       
PSR 0.75 1.30 30.89 0.65 0.18 0.06 -4.49 x 10-3 1.33 x 10-3 3.03 x 10-5 7.81 x 10-6    
Pooled  0.28 2.92 27.72 1.02 0.15 0.08 -3.19 x 10-3 1.79 x 10-3 2.12 x 10-5 1.04 x 10-5    
                 
Legumes                 
CMV 0.91 2.84 21.67 1.10 0.23 0.02       
Alf 0.87 3.78 23.06 1.46 0.25 0.02       
Pooled  0.88 3.48 22.36 0.95 0.24 0.01          

* Sxy  = Root mean square error 
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                 Table 3.10 Least square means for species by harvest date interactions (P<0.01) for acid detergent lignin (%)  
                   throughout 2007*   

 Date Pooled            P-Values  
Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass        
AWG 2.86 4.25 4.71 5.08 5.44 0.261 < 0.01    0.13    0.43 0.80 
CWR 1.91 4.00 5.11 5.42 5.52 0.261 < 0.01 < 0.01    0.36 0.86 
GNG 3.17 3.99 4.10 4.58 4.48 0.261 < 0.01    0.02    0.79 0.13 
HBG 3.28 4.41 4.77 4.55 5.15 0.261 < 0.01    0.18    0.13 0.65 
Jun 2.47 2.82 2.85 2.52 2.53 0.261    0.75    0.14    0.28 0.63 
MBG 3.09 4.03 4.33 4.38 4.60 0.261 < 0.01    0.04    0.23 0.99 
NTG 4.00 5.36 5.94 5.53 5.74 0.261 < 0.01 < 0.01    0.07 0.36 
NWG 3.68 4.35 5.05 5.18 5.13 0.261 < 0.01    0.04    0.79 0.63 
WWG 2.01 3.51 3.92 3.78 4.22 0.261 < 0.01 < 0.01 < 0.01 0.60 
Pooled C3** 2.96 4.07 4.54 4.56 4.74 0.139 < 0.01 < 0.01    0.08 0.80 
           
C4 Grass           
LBS N/A 2.19 2.44 2.32 2.87 0.268    0.04    0.42    0.23 N/A 
BG 2.09 2.36 2.45 2.65 3.14 0.261 < 0.01    0.36    0.36 0.91 
PSR 1.88 2.51 2.30 2.39 2.87 0.261 < 0.01    0.99 < 0.01 0.25 
Pooled C4** 1.98 2.34 2.41 2.45 2.95 0.261 < 0.01    0.30    0.01 0.91 
           
Legumes           
CMV 3.78 6.35 9.07 9.23 11.29 0.261 < 0.01    0.69    0.86 0.77 
Alf 2.64 4.02 5.59 6.97 8.75 0.261 < 0.01    0.06    0.18 0.07 
Pooled legume** 3.14 5.11 7.33 8.13 10.09 0.300 < 0.01    0.46    0.56 0.37 

                  *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
                  ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
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         Table 3.11 Best fitted regressions for species by harvest date interactions (P<0.01) for acid detergent lignin (%) throughout 2007 

  Intercept Linear term Quadratic term Cubic term 
Species 

Adjusted 
R2 Sxy* Estimate SE Estimate SE Estimate SE Estimate SE 

C3 Grass                 
AWG 0.58 0.72 3.27 0.28 2.14 x 10-2 4.07 x 10-3   
CWR 0.88 0.50 1.99 0.23 7.96 x 10-2 9.92 x 10-3 -4.35 x 10-4 8.50 x 10-5  
GNG 0.72 0.30 3.21 0.14 2.65 x 10-2 6.07 x 10-3 -1.34 x 10-4 5.20 x 10-5  
HBG 0.42 0.65 3.65 0.25 1.39 x 10-2 3.65 x 10-3   
Jun N/A N/A 2.64 0.08     
MBG 0.63 0.63 3.17 0.18 2.92 x 10-2 7.76 x 10-3 -1.53 x 10-4 6.65 x 10-5  
NTG 0.64 0.49 4.11 0.23 4.67 x 10-2 9.76 x 10-3 -3.00 x 10-4 8.36 x 10-5  
NWG 0.61 0.46 3.64 0.21 3.38 x 10-2 9.09 x 10-3 -1.83 x 10-4 7.79 x 10-5  
WWG 0.91 0.25 2.01 0.12 8.68 x 10-2 1.13 x 10-2 -1.31 x 10-3 2.56 x 10-4 6.36 x 10-6 1.50 x 10-6

Pooled  0.33 0.91 3.02 0.14 3.81 x 10-2 6.07 x 10-3 -2.10 x 10-4 5.20 x 10-5  
          
C4 Grass          
LBS 0.22 0.37 1.98 0.23 6.78 x 10-3 2.97 x 10-3   
BG 0.56 0.30 2.06 0.12 8.60 x 10-3 1.72 x 10-3   
PSR 0.68 0.21 1.90 0.11 3.81 x 10-2 9.68 x 10-3 -7.83 x 10-4 2.19 x 10-4 4.66 x 10-6 1.29 x 10-6

Pooled  0.49 0.30 1.98 0.10 2.43 x 10-2 8.37 x 10-3 -4.70 x 10-4 1.82 x 10-4 2.96 x 10-6 1.05 x 10-6

          
Legumes          
CMV 0.90 0.73 2.56 0.28 5.42 x 10-2 4.12 x 10-3   
Alf 0.88 0.97 4.36 0.37 6.40 x 10-2 5.45 x 10-3   
Pooled  0.72 1.48 3.46 0.40 5.91 x 10-2 5.90 x 10-3     

         * Sxy  = Root mean square error 
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In contrast to C3 grasses, the NDF levels in the warm season grasses were best fitted 

with a cubic regression curve (Table 3.6 and 3.7).  The only exception to this was BG which 

showed a quadratic (P=0.05) increase in NDF content.  For the C4 grasses, ADF 

concentration was fitted with a cubic regression except BG which was linear (Table 3.8 and 

3.9).  The ADL was best fitted with a cubic equation except for BG and LBS (Table 3.10 and 

3.11).  The OMD of C4 grasses declined in a quadratic fashion while cubic increases in NDF, 

ADF and ADL were experienced.  Again this is expected due to increased lignin 

concentrations associated with maturity (Sosulski et al. 1960; Kilcher and Troelsen 1973; 

Jung and Allen, 1995; Buxton and Redfearn 1997) that restrict microbial degradation (Jung 

and Deetz 1993; Buxton and Redfearn 1997) due to cross-linkages with polysaccharides 

(Jung and Allen 1995).   

The ADF and ADL levels of the legume species over time were best fitted with a 

linear regression.  The % OMD declined as the levels of ADF and ADL increased linearly.  It 

is recognized that as plants mature NDF, ADF and ADL concentrations increase (Cherney et 

al. 1997).  However, there are lower cell wall concentrations in legume species versus 

grasses that ultimately improves their digestibility (Elizalde et al. 1999).  However, legumes 

do contain more lignin which results in relatively lower degradability (Buxton and Redfearn 

1997).  The NDF levels were best fitted with a quartic regression curve.  Based on the 

regression curve it would appear that % NDF peaked prior to our first sampling period likely 

due to the dry spring that caused plant dormancy that delayed the vegetative growth.  As 

moisture became available in early June, growth was initiated and NDF levels gradually 

increased into August as plants matured.  These linear increases in ADF and ADL and 

quartic increase in NDF help explain the linear decrease in OMD levels.   

The different fibre fractions (NDF, ADF and ADL) in C3 and C4 grasses and legumes 

ultimately affect forage digestibility.  There appeared to be differences in regression 

equations between C3 and C4 grasses and legumes, although all OMD values declined and 

NDF, ADF and ADL increased over time.  Previous work has shown no consistent 

correlation between a single structural component and forage digestibility (Van Soest 1994).  

However, it is believed that structural characteristics of plant tissue affect digestibility (Lee 

and Pearce 1984; Mosely and Jones 1984).  Lignin has been shown to negatively affect 

digestibility due to its ability to prevent enzymatic hydrolysis of polysaccharides (Jung and 

Allen 1995).  Although other studies have found some type of relationship, these relations 
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can vary with forage species and sampling number (Barton et al. 1976; Burritt et al. 1985a; 

Burritt et al. 1985b).  The anatomical features (sclerenchyma, parenchyma bundle sheaths 

and lignified tissue) of C4 species often make them less digestible than C3 species (Akin and 

Barton 1983; Akin 1989).  In our study it appeared that the C4 grasses were more digestible 

than C3 grasses (Table 3.4), likely due to the vegetative nature of the C4 grasses later into the 

growing season (Smart et al. 2001).  There also appeared to be higher digestibility of 

legumes than grass species.  Differences in OMD between grass and legume species could be 

explained by anatomical differences in the arrangement of vascular cells (McLeod and 

Minson 1988; Kelly and Sinclair 1989; Kennedy and Doyle 1993), the lower concentration of 

lignin-carbohydrate bonds in legumes (Grenet 1988) or the lower NDF concentration in 

legumes.  Physical differences like the shorter and more cubical shape of legume digesta 

compared to the longer, thinner and more fibre like grass digesta could explain the slightly 

higher digestibility observed in legumes (Troelson and Campbell 1968; Moseley and Jones 

1984; Emanuele and Staples 1988).   

Crude protein values for all the species at each of the five collection periods are 

reported in Table 3.12.  A significant (P < 0.01) species by harvest date interaction was 

observed.  This interaction is again the result of differences in the rate of maturity of different 

species (Barnhart 1998; Baron and Bélanger 2007).  Best fitted regression equations with the 

R2 and standard errors are given in Table 3.13.  The majority of the C3 and C4 grasses and all 

of the legume species were best fitted with a quadratic regression curve.  In our trial the % 

CP tended to decline during the growing season.  Other research has shown that CP values 

are highest in young plant tissue and then decline as plants mature (Coyne et al. 1995).  This 

type of curve is likely the result of the plants fully maturing by August or September and the 

CP concentrations being diluted within the plant (Coyne et al. 1995).  With the availability of 

fall moisture, plant growth likely reinitiated resulting in a slight improvement in CP values.  

Exceptions were AWG, GNG, NWG and PSR where values were better fitted with linear 

regressions that declined through the growing season.  It has been well recognized that CP 

levels decline as forages mature (Hoffman et al. 1993; Elizalde et al. 1999).  This decline in 

CP has been shown to be related to ADF and NDF concentrations.  Early in the growing 

season, CP fractions consist mainly of soluble protein but as plants mature it becomes less 

degradable due to the tight association with ADF and NDF (Janicki et al. 1988; Elizalde et al.  
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               Table 3.12 Least square means for species by harvest date interaction (P<0.01) for crude protein (%) throughout 2007*   
 Date Pooled            P-Values  
Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass         
AWG 12.84 9.03 7.91 6.48 5.75 0.800 < 0.01    0.23 0.67 0.75 
CWR 10.97 7.27 5.41 3.75 3.38 0.800 < 0.01    0.02 0.80 0.64 
GNG 13.06 9.92 9.06 7.55 7.17 0.800 < 0.01    0.11 0.64 0.47 
HBG 12.25 4.98 4.92 4.00 4.50 0.800 < 0.01    0.01 0.19 0.37 
Jun 14.42 10.47 9.81 8.98 8.78 0.800 < 0.01 < 0.01 0.06 0.16 
MBG 10.56 5.86 5.66 4.80 4.91 0.800 < 0.01    0.02 0.24 0.39 
NTG 9.17 6.48 4.42 4.69 3.91 0.800 < 0.01 < 0.01 0.17 0.12 
NWG 9.64 6.09 4.77 4.22 3.64 0.800 < 0.01    0.07 0.44 0.94 
WWG 12.20 8.58 7.22 5.67 4.69 0.800 < 0.01    0.02 0.30 0.46 
Pooled C3** 11.67 7.62 6.57 5.57 5.19 0.311 < 0.01 < 0.01 0.06 0.29 
           
C4 Grass           
LBS N/A 12.14   7.80 6.66 6.22 0.805 < 0.01 < 0.01 0.28 N/A 
BG 18.56 12.77 11.17 9.28 8.77 0.800 < 0.01 < 0.01 0.17 0.25 
PSR 14.13 11.38   8.61 6.34 3.67 0.800 < 0.01    0.78 0.85 0.79 
Pooled C4** 16.37 12.08   9.18 7.49 6.19 0.615 < 0.01 < 0.01 0.67 0.94 
           
Legumes           
CMV 19.84 15.66 13.42 11.52 10.45 0.800 < 0.01    0.03 0.63 0.73 
Alf 18.28 12.38  9.58 8.16 6.28 0.800 < 0.01 < 0.01 0.07 0.98 
Pooled legume** 19.18 14.10 11.49 9.86 8.26 0.707 < 0.01    0.01 0.34 0.87 

                 *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
                 ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
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                                Table 3.13 Best fitted regressions for species by harvest date interactions (P<0.01) for crude  
                                 protein (%) throughout 2007 

  Mean or Intercept Linear term Quadratic term 
Species Adjusted R2 Sxy* Estimate SE Estimate SE Estimate SE 
C3 Grass              
AWG 0.41 2.79 11.75 1.08 -0.06 0.02  
CWR 0.83 1.28 10.87 0.60 -0.14 0.03 6.25 x 10-4 2.18 x 10-4

GNG 0.63 1.56 12.18 0.60 -0.05 0.01  
HBG 0.53 2.71 11.52 1.28 -0.21 0.05 1.34 x 10-3 4.62 x 10-4

Jun 0.86 0.81 14.09 0.38 -0.12 0.02 6.68 x 10-4 1.38 x 10-4

MBG 0.54 1.86 10.11 0.87 -0.14 0.04 8.17 x 10-4 3.16 x 10-4

NTG 0.85 0.80 9.08 0.37 -0.11 0.02 5.59 x 10-4 1.36 x 10-4

NWG 0.52 1.89 8.45 0.73 -0.05 0.01  
WWG 0.88 0.99 11.99 0.47 -0.12 0.02 4.64 x 10-4 1.69 x 10-4

Pooled 0.48 2.37 11.39 0.37 -0.13 0.02 6.73 x 10-4 1.35 x 10-4

            
C4 Grass            
LBS 0.85 0.99 17.81 1.38 -0.24 0.04 1.25 x 10-3 3.15 x 10-4

BG 0.88 1.30 18.19 0.61 -0.19 0.03 9.35 x 10-4 2.21 x 10-4

PSR 0.91 1.15 14.01 0.44 -0.09 0.01  
Pooled  0.75 1.94 16.24 0.63 -0.16 0.02 6.51 x 10-4 2.04 x 10-4

            
Legumes            
CMV 0.86 1.37 19.70 0.64 -0.15 0.03 5.99 x 10-4 2.33 x 10-4

Alf 0.93 1.20 17.93 0.56 -0.20 0.02 8.60 x 10-4 2.04 x 10-4

Pooled 0.76 2.13 18.81 0.71 -0.17 0.03 7.30 x 10-4 2.57 x 10-4

                                  * Sxy  = Root mean square error 
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1999).  The decline in crude protein coincides with an increase in the proportion of stem, 

flowers and seed in mature forages (Minson, 1990).  Crude protein levels are usually higher 

in the leaves than stems (Bunderson 1986). 

The NRC (2000) requirements for a 381kg animal gaining 0.33 kg day-1 indicate that 

the animal requires around 6.8% CP on a dry matter basis.  We could conclude from our 

results that CP supplementation would be required from August through the fall with C3 

grasses and in October with C4 grasses but legumes should be suitable to meet these NRC 

requirements.  To improve gain in the same animal to 0.91 kg d-1, the CP requirement 

increases to 8.8% on a DM basis (NRC 2000).  Cows require 6 – 8% CP for maintenance but 

during lactation CP requirements can increase up to 12% (Holechek and Herbel 1986).  From 

our results we could conclude that CP would be adequate in C4 and legume species 

throughout the growing season to meet the maintenance requirements of range cows.  Work 

by Abouguendia (1998) showed that CP in legumes increased from 6.6% in April to 29.5% 

in June before declining to 13.1% by October while CP levels in C3 grasses increased from 

4.8% in April to 10.9% in May and then declined to 5.6% by October.  Warm season grasses 

followed a similar trend increasing from 4.7% in April to 9.9% in June and declining to 5.3% 

in October (Abouguendia 1998).  In the present study similar trends were found where CP 

declined from June through to October; however legume values were consistently lower and 

the values for C3 and C4 grasses were higher in June but by October our values were lower 

than those shown by Abouguendia (1998).   

Calcium (Table 3.14) values were reported for each species at each of the five 

collection periods.  A significant (P < 0.01) species by harvest date interaction was observed 

for Ca (%).  This interaction could have been the result of C3, C4 and legume species 

exhibiting different growth characteristics and environmental responses (Barnhart 1998; 

Baron and Bélanger 2007).  As plants mature, it is common for Ca content to decline (George 

et al. 2001).  Best fitted regression equations with R2 and standard errors are given in Table 

3.15.  Throughout the growing season Ca levels were the highest in legumes followed by C4 

and C3 grasses.  This is expected and agrees with other research in Saskatchewan 

(Abouguendia 1998).  Although within C3 grasses there were minimal changes in Ca levels 

as the plants matured, statistically, Ca levels decreased (P<0.01) in a quartic fashion in most 

C3 grasses.  The range of the C3 grasses in Ca content during the growing season was 0.25 to 

0.30%.  Similar comments can be made for C4 grasses where a 



 

69 

 

                Table 3.14 Least square means for species by harvest date interactions (P<0.01) for calcium (%) throughout 2007*    
 Date Pooled            P-Values  
Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass        
AWG 0.28 0.29 0.23 0.27 0.23 0.041    0.10    0.94 0.96    0.09 
CWR 0.29 0.25 0.21 0.26 0.25 0.041    0.22    0.06 0.44    0.17 
GNG 0.29 0.34 0.29 0.27 0.27 0.041    0.08    0.38 0.04    0.51 
HBG 0.30 0.27 0.21 0.28 0.31 0.041    0.88    0.09 0.89    0.22 
Jun 0.29 0.39 0.38 0.43 0.33 0.041    0.03 < 0.01 0.52    0.01 
MBG 0.28 0.32 0.28 0.31 0.27 0.041    0.77    0.15 0.67    0.08 
NTG 0.20 0.30 0.24 0.26 0.23 0.041    0.64    0.01 0.05    0.01 
NWG 0.22 0.25 0.23 0.25 0.24 0.041    0.48    0.24 0.57    0.16 
WWG 0.33 0.31 0.27 0.28 0.25 0.041    0.01    0.72 0.81    0.41 
Pooled C3** 0.27 0.29 0.25 0.27 0.24 0.013    0.22    0.33 0.52 < 0.01 
           
C4 Grass           
LBS N/A 0.44 0.44 0.53 0.38 0.043    0.39    0.01 0.01 N/A 
BG 0.47 0.49 0.38 0.39 0.27 0.041 < 0.01    0.05 0.94    0.01 
PSR 0.35 0.50 0.48 0.54 0.43 0.041    0.32    0.10 0.97    0.39 
Pooled C4** 0.45 0.48 0.41 0.50 0.36 0.031    0.23    0.01 0.47    0.07 
           
Legumes           
CMV 1.35 1.26 0.83 0.88 0.57 0.041 < 0.01    0.88 0.90    0.04 
Alf 2.18 1.83 1.19 1.30 0.99 0.041 < 0.01    0.01 0.65    0.01 
Pooled legume** 1.40 1.74 1.06 0.97 0.85 0.044 < 0.01    0.32 0.84    0.06 

                 *Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
                 ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
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Table 3.15 Best fitted regressions for species by harvest date interactions (P<0.01) for calcium (%) throughout 2007 

  Intercept Linear term Quadratic term Cubic term Quartic term 
Species 

Adj 
R2 Sxy* Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE 

C3 Grass                    
AWG N/A N/A 0.26 0.01             
CWR N/A N/A 0.25 0.01             
GNG 0.26 0.04 0.29 0.02 3.64 x10-3 1.65 x10-3 -9.00 x10-5 3.73 x10-5  5.02 x10-7 2.19 x10-7    
HBG N/A N/A 0.28 0.02              
Jun 0.72 0.03 0.29 0.01 1.15 x10-2 2.94 x10-3 -4.21 x10-4 1.32 x10-4  5.87 x10-6 1.88 x10-6 -2.67 x 10-8 8.37 x 10-9 
MBG N/A N/A 0.29 0.01            
NTG 0.50 0.03 0.20 0.02 1.26 x10-2 3.06 x10-3 -4.79 x10-4 1.37 x10-4  6.18 x10-6 1.96 x10-6 -2.59 x 10-8 8.70 x 10-9 
NWG N/A N/A 0.24 0.00            
WWG 0.35 0.04 0.33 0.01 -6.66 x10-4 1.99 x10-4         
Pooled 0.05 0.06 0.28 0.01 6.19 x10-3 1.87 x10-3 -2.83 x10-4 8.38 x10-5  3.98 x10-6 1.20 x10-6 -1.75 x 10-8 5.32 x 10-9 
                   
C4 Grass                   
LBS 0.54 0.05 0.88 0.20 -2.76 x10-2 1.07 x10-2 4.96 x10-4 1.70 x10-4 -2.58 x10-6 8.04 x10-7   
BG 0.80 0.04 0.47 0.02 1.03 x10-2 3.86 x10-3 -5.27 x10-4 1.73 x10-4 7.47 x10-6 2.47 x10-6 -3.33 x 10-8 1.10 x 10-8 
PSR N/A N/A 0.46 0.03            
Pooled 0.09 0.10 0.41 0.03 2.66 x10-3 1.29 x10-3 -2.64 x10-5 1.06 x10-5      
                   
Legume                   
CMV 0.72 0.18 1.35 0.09 2.71 x10-2 1.76 x10-2 -1.71 x10-3 7.88 x10-4 2.52 x10-5 1.12 x10-5 -1.13 x 10-7 5.00 x 10-8 
Alf 0.88 0.16 2.18 0.08 2.48 x10-2 1.61 x10-2 -2.14 x10-3 7.20 x10-4 3.29 x10-5 1.03 x10-5 -1.49 x 10-7 4.57 x 10-8 
Pooled 0.51 0.34 1.73 0.09 -8.68 x10-3 1.36 x10-3             

* Sxy  = Root mean square error
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quartic (P=0.05) decline in Ca concentration was seen with increasing maturity for BG and 

pooled results.  The Ca peak for the C4 grasses between July and September corresponds with 

research by Poland and Manske (2004).  Again, the range of Ca content in the C4 grasses 

during the growing season was 0.31 to 0.45%.  Other research has shown that the Ca content 

in C3 and C4 grasses ranged from 0.3 to 0.4% from May to October (Abouguendia 1998).     

In legumes the decline in Ca concentration was more drastic.  With the pooled 

legume values, the initial Ca concentration was 1.42% while in late fall it had declined to 

0.85% (P=0.05) (Table 3.14).  Legume species % Ca over time was best fitted with a quartic 

regression that likely peaked prior to the initial harvest date.  The Ca levels then gradually 

declined until just after our August harvest date at which time they increased slightly into 

September before declining into the fall.  This quartic type regression observed in the C3, C4 

and legume species could be explained by the plants senescing during the hot part of the 

summer, loosing leaves and then as fall moisture becomes available there is a slight increase 

in Ca due to regrowth but not to the same extent as the peak seen earlier in the growing 

season.  The Ca levels observed in the C3, C4 and legume species would appear to meet the 

grazing animal’s requirements.  However, calcium supplementation may be required because 

Ca requirements can vary with the animal’s age, weight and stage of production (NRC 2000).  

Steers weighing 381 kg that gain between 0.33 kg day-1 and 0.91 kg day-1 require 0.20% and 

0.30% Ca, respectively on a dry matter basis (NRC 2000).  Previous studies have shown that 

the Ca concentration of native range is adequate to ensure season long maintenance, growth 

and lactation in the grazing animal (Abouguendia 1998; Poland and Manske 2004).  The 

availability of calcium to the grazing animal can be reduced due to the presence of 

compounds like calcium oxalate or calcium phytate that can bind Ca making it less available 

to the ruminant animal (Fahey et al. 1994; NRC 2000).   

Phosphorus (Table 3.16) values were reported for each species at each of the five 

collection periods.  A significant (P < 0.01) species by harvest date interaction was also 

observed for P (%).  Best fitted regression equations with R2 and standard errors for % P are 

given in Table 3.17.  Throughout the growing season P levels were the highest in C4 grasses 

followed by legumes and C3 grasses.  The results of this trial differed from those of 

(Abouguendia 1998) who found that legumes had P levels of 0.42% in June and declined to 

0.15% in October while C3 and C4 grasses peaked at 0.18% in June and declined to 0.1% in  
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             Table 3.16 Least square means for species by harvest date interactions (P<0.01) for phosphorus (%) throughout 2007*   

 Date Pooled            P-Values  
Species Jun-20 Jul-18 Aug-16 Sep-12 Oct-10 SE Linear Quadratic Cubic Quartic
C3 Grass        
AWG 0.18 0.12 0.10 0.08 0.07 0.010 < 0.01    0.13  0.48   0.68 
CWR 0.17 0.12 0.08 0.05 0.04 0.010 < 0.01 < 0.01  0.84   0.88 
GNG 0.14 0.09 0.08 0.08 0.08 0.010 0.01    0.07  0.60   0.84 
HBG 0.18 0.07 0.07 0.05 0.05 0.010 < 0.01  < 0.01   0.09 0.21 
Jun 0.22 0.14 0.11 0.11 0.11 0.010 < 0.01  < 0.01   0.06 0.87 
MBG 0.15 0.07 0.06 0.05 0.06 0.010 < 0.01  < 0.01   0.07 0.31 
NTG 0.11 0.08 0.05 0.05 0.04 0.010 < 0.01     0.06    0.63 0.19 
NWG 0.14 0.07 0.05 0.05 0.05 0.010 < 0.01  < 0.01   0.14 0.57 
WWG 0.16 0.10 0.08 0.06 0.05 0.010 < 0.01  < 0.01   0.24 0.77 
Pooled C3** 0.15 0.11 0.08 0.06 0.06 0.005 < 0.01  < 0.01   0.06 0.47 
           
C4 Grass           
LBS N/A 0.20 0.14 0.12 0.09 0.009 < 0.01    0.02    0.03 N/A 
BG 0.25 0.18 0.16 0.14 0.13 0.010 < 0.01 < 0.01    0.08 0.18 
PSR 0.19 0.17 0.12 0.08 0.05 0.010 < 0.01    0.66 < 0.01 0.43 
Pooled C4** 0.20 0.18 0.14 0.11 0.09 0.009 < 0.01    0.19    0.59 0.63 
           
Legumes           
CMV 0.21 0.16 0.15 0.12 0.11 0.010 < 0.01   0.06    0.47 0.26 
Alf 0.16 0.10 0.08 0.06 0.04 0.010 < 0.01   0.05    0.28 0.63 
Pooled legume** 0.18 0.14 0.09 0.08 0.07 0.010 < 0.01   0.16    0.58 0.64 

              * Overall model exhibited species effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01)  
              ** Pooled samples exhibited a group effect (P<0.01), harvest date effect (P<0.01) and species by harvest date interaction (P<0.01) 
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     Table 3.17 Best fitted regressions for species by harvest date interactions (P<0.01) for phosphorus (%) throughout 2007 

  Intercept Linear term Quadratic term Cubic term 
Species 

Adj 
R2 Sxy* Estimate SE Estimate SE Estimate SE Estimate SE 

C3 Grass                 
AWG 0.51 0.03 0.16 1.27 x 10-2 -8.48 x 10-4 1.85 x 10-4   
CWR 0.92 0.01 0.17 6.74 x 10-3 -2.20 x 10-3 2.85 x 10-4 9.34 x 10-6 2.44 x 10-6  
GNG 0.31 0.03 0.12 1.05 x 10-2 -4.73 x 10-4 1.53 x 10-4   
HBG 0.71 0.03 0.17 1.46 x 10-2 -3.18 x 10-3 6.19 x 10-4 1.91 x 10-5 5.30 x 10-6  
Jun 0.90 0.01 0.22 6.93 x 10-3 -3.02 x 10-3 2.93 x 10-4 1.89 x 10-5 2.51 x 10-6  
MBG 0.76 0.02 0.15 9.92 x 10-3 -2.65 x 10-3 4.20 x 10-4 1.71 x 10-5 3.59 x 10-6  
NTG 0.68 0.02 0.10 6.73 x 10-3 -6.25 x 10-4 9.81 x 10-5    
NWG 0.76 0.02 0.13 8.82 x 10-3 -2.18 x 10-3 3.73 x 10-4 1.30 x 10-5 3.20 x 10-6  
WWG 0.89 0.01 0.15 6.55 x 10-3 -1.98 x 10-3 2.77 x 10-4 9.57 x 10-6 2.37 x 10-6  
Pooled 0.59 0.03 0.16 4.79 x 10-3 -2.20 x 10-3 2.03 x 10-4 1.23 x 10-5 1.73 x 10-6  
           
C4 Grass           
LBS 0.93 0.01 0.38 4.83 x 10-2 -8.96 x 10-3 2.64 x 10-3 1.10 x 10-4 4.17 x 10-5 -4.75 x 10-7 1.98 x 10-7

BG 0.87 0.02 0.24 7.91 x 10-3 -2.16 x 10-3 3.34 x 10-4 1.00 x 10-5 2.86 x 10-6  
PSR 0.98 0.01 0.19 4.35 x 10-3 1.36 x 10-4 3.95 x 10-4 -3.58 x 10-5 8.95 x 10-6 2.09 x 10-7 5.26 x 10-8

Pooled 0.74 0.03 0.22 6.85 x 10-3 -1.20 x 10-3 9.65 x 10-5    
          
Legumes          
CMV 0.80 0.02 0.19 6.25 x 10-3 -7.95 x 10-4 9.12 x 10-5   
Alf 0.80 0.02 0.14 7.63 x 10-3 -9.73 x 10-4 1.11 x 10-4   
Pooled 0.46 0.04 0.17 1.04 x 10-2 -8.84 x 10-4 1.51 x 10-4     

     * Sxy  = Root mean square error
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October.  In this study within the C3 grasses, P levels were relatively low and declined 

(P<0.01) in a quadratic fashion, with minimal changes in the September and October 

harvest dates.  The pooled C4 grass values decline in P with increasing maturity was best 

fitted with a linear regression (P<0.01).  Research by Abouguendia (1998) also 

demonstrated that the declining level of P in grasses tended to be small.  In legumes the 

decline was also linear (P<0.01) through the growing season dropping from 0.18 to 

0.07% (Table 3.16).  Phosphorus requirement for steers weighing 381 kg that are gaining 

between 0.33 and 0.91 kg day-1 is between 0.13% and 0.16% (NRC, 2000).  The values 

observed in this trial for C3, C4 and legume species would only meet those requirements 

in June but C4  

grasses would be adequate for the grazing animal up to August.  Previous studies have 

shown that there is only a short time during the grazing season when there are adequate 

plant P levels to maintain animal growth or lactation (Jefferson et al. 2005).  Phosphorus 

deficiency in grazing animals is one of the most common mineral deficiencies 

(McDowell, 1992).  The P deficiency in forages can result from phosphorus deficient 

soils, drought conditions and forage maturity (Poland and Manske, 2004).   

 

3.4 Summary and Conclusion 

 Results from this trial showed that there were species by harvest date interactions 

occurring for DM production as well as for all measured nutritive value traits.  Such 

differences are not unexpected due to the nature of C3, C4 and legume growth.  The 

nature of the interaction for dry matter production ranged from simple means (i.e. no 

regression response) for the majority of C3 grasses and linear declines in production for 

legume species to quadratic increases that declined in the fall for C4 grasses.  These 

differences in DM production are due to variation in growth patterns related to their 

physiological pathways and adaptation to different environmental conditions.  The C3 

grasses and legume species produce the majority of their DM production early in the 

season whereas C4 grasses experience optimal growth during the warm summer 

conditions.  The decline in DM production is normal and likely due to leaf loss and 

leaching of soluble non-structural carbohydrates due to weathering.  
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 As the species matured, the OMD declined due to increases in NDF, ADF and 

ADL.  There were differences in the pattern of OMD decline between C3 and C4 grasses 

and legume species due to the nature of their growth. The OMD for C3 grasses typically 

declined (P<0.01) in a cubic fashion with advancing maturity as NDF and ADF fractions 

increased linearly (P<0.01) and ADL increased (P<0.01) in a quadratic fashion.   The 

OMD declined (P<0.01) in a cubic fashion for most of the C4 grasses with advancing 

maturity as NDF and ADF fractions increased linearly (P<0.01) and ADL increased 

(P<0.01) in a quadratic fashion.  The OMD for the legume species declined (P<0.01) in a 

linear fashion due to the linear increases in ADF and ADL.  These decreases in OMD 

appear to be the result of increasing NDF, ADF and ADL concentrations likely as a result 

of increasing proportions of leaf sheath, stem and flower head and the loss of leaves as 

the plants senesce.   

 As forages matured CP and P declined.  Both the CP and P concentrations in C3 

grasses declined (P<0.01) in a quadratic fashion.  The CP concentration in C4 grasses and 

legumes declined (P<0.01) in a quadratic fashion as species matured and P levels 

declined (P<0.01) in a linear fashion.  The decline in CP and P is extremely important 

because they can negatively influence growth and are common deficiencies.  However, 

calcium concentrations did not change a great deal during the growing season although 

statistically a quartic regression was fitted (P=0.05) for the C3, C4 and legume species.  

The Ca concentrations in the C3, C4 and legume species was adequate to meet the 

nutritional requirements of yearling steers.  The decline in OMD and increasing NDF, 

ADF and ADL fractions is problematic because it can reduce intake and ultimately 

animal gains.  The consequence of these changes is that grazing animals may require 

strategic nutrient supplementation (i.e. energy, protein, minerals) to maintain body 

condition and improve weight gain.      

 From this trial it appears that having mixed swards of C3, C4 and legume species 

would complement each other in forage stands based on production and nutritional 

quality.  However, because this is only one year of research and the high variability 

associated with climate and individual species more research is required.  Further 

research is needed to determine if having more diverse forage mixtures will improve 

animal performance and increase forage yield.  
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CHAPTER 4 

COMPARISON OF IN SITU DRY MATTER AND NEUTRAL DETERGENT 

FIBER DEGRADABILITY OF SIX FORAGE SPECIES COMMON TO 

WESTERN CANADA 

 

4.1 Introduction 

Extending the grazing season by grazing native forage mixtures later into the fall 

can reduce costs relative to feeding stored forages (Cherney and Kallenbach 2007).  

However, as determined from the results of chapter 3, the nutritive quality of forages 

declines as plants mature into the fall and supplemental feeding may be required to meet 

the animal’s nutrient demands (Abouguendia, 1998).  There has however, been little 

work to demonstrate how plant maturity affects forages grown in the northern USA and 

Canada (Lawrence and Warder, 1979).  It has been recognized that increasing maturity 

ultimately decreases rumen degradation of grasses and alfalfa (Balde et al. 1993).  

However, the extent different forages maintain their nutritive value into the fall is not 

well known (Cooke 1972).   

Forages looked at in this trial can be segregated into cool season grasses (C3), 

warm season grasses (C4), and legumes.  The C3 grasses produce the majority of their 

growth early in the summer and can reinitiate growth in the fall if temperatures and 

moisture levels become favourable.  The C4 grasses initiate growth during the summer 

when higher temperatures inhibit C3 growth.  At this point, the growing C4 forages have a 

higher nutritive value than the mature C3 plants as the young C4 plants are actively 

capturing and storing energy and synthesizing protein and carbohydrates (Redmon and 

Hendrickson 2007).  As plants mature, photosynthesis and plant growth slow but cell 

wall and fibre levels increase.  Legumes are not only desirable for their ability to 

symbiotically fix N but also for their ability to improve ruminant diet quality and improve 

animal performance (Posler et al. 1993; Phillips and James 1998; Jefferson et al. 2002; 

McGraw and Nelson 2003).  Legumes tend to have higher energy and protein levels than 

grasses but their persistence in the stand is lower (Cherney and Kallenbach 2007).  The 

leaves of legumes tend to have thinner cell walls than grass leaves and stems which mean 

they break down and pass through the rumen faster (Spalinger et al. 1986).   Legumes 
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tend to have higher CP levels and cell soluble carbohydrates than grasses at similar stages 

of maturity (Holechek et al. 2004) and ultimately higher CP and NDF degradation values 

than grasses due to higher sugar, starch, pectin and organic acid levels (Canale et al. 

1992; NRC 2001).  

From a livestock nutrition perspective, the biggest concern with stockpiled 

forages is their crude protein and energy content.  The concern is that as plants mature, 

they become less digestible, have higher fiber levels and are lower in CP.  As plants 

mature, the soluble and degradable CP fractions become tightly associated with ADF and 

NDF (Janicki and Stallings 1988).  This results in reduced CP availability (Janicki and 

Stallings 1988).  These tight associations with fiber limit bacterial access to forage cell 

constituents and ultimately restrict nutrient availability.  The degree of lignification 

reduces the rate and extent of digestion in the rumen, ultimately decreasing forage intake 

(Forbes 1996; Cherney et al. 1997).  This was demonstrated by Krysl et al. (1987) who 

found that voluntary DM intake of grazing steers dropped from 2.2% of body weight 

when plants were actively growing to approximately 1.5% at dormancy.  The decrease in 

dry matter digestibility of forages can be associated with an increase in the proportion of 

leaf sheath, stem, flowering head, cellulose, hemicellulose and lignin as they mature 

(Minson 1990; Ferdinandez and Coulman 2001).  Although initial forage qualities may 

appear adequate nutrients must be accessible by the animal throughout the grazing 

season, otherwise supplementation will be required.      

The in situ digestion procedure enables one to determine forage nutrient 

digestibility characteristics (Vanzant et al. 1998).  It provides a means of comparison of 

species and helps to explain the availability of a forage to the ruminant animal.  There are 

many variables that can affect digestibility including stage of maturity, forage species, 

cultivar, soil type, climatic conditions, growing conditions and preservation method 

(Varga and Hoover 1983; Cherney et al. 1992; Hoffman et al. 1993; Ruess 2001; Yu et 

al. 2004).   

The objective of this study was to determine the in situ DM, NDF and CP 

degradability of five forage species (WWG, NWG, MBG, GNG, CMV) and one 

composite group of warm season grasses (Warm).  The goal was to identify which 

species would be better suited for late fall grazing. 
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4.2 Materials and Methods 

4.2.1 Selected Species  

Forage samples used in this trial were obtained by combining the September and 

October small plot clippings from 2007 (Chapter 3 of this thesis).  Samples included four 

C3 grasses (WWG, NWG, MBG, and GNG), one legume species (CMV) and one 

composite sample of C4 grasses (Warm).  Species comprising the Warm composite 

sample included 11.5% LBS, 28.8% BG and 59.7% PSR.  The in situ trial was restricted 

to these six species due to limitations in the number of samples that could be incubated, 

as well as the amount of sample available.  Priority was also given to species common to 

western Canada.  Western wheatgrass and Green needlegrass were selected because seed 

is readily available and they are commonly recognized for their ability to maintain their 

nutritive value into the fall.  Northern wheatgrass seed is also readily accessible for 

reclamation projects and is one of the most common species found growing on the semi-

arid prairie in Saskatchewan.  Meadow brome grass is a tame species that is commonly 

grown for grazing production and has been considered a reasonable forage for fall 

grazing.  Canadian milkvetch is a native legume in which little research has been done, 

however it is able to fix N and maintains high protein levels into the fall.  The Warm was 

a combination of C4 grasses grown in the small plot trial that are common in the drier 

southern corner of Saskatchewan.   

 

4.2.2 Sample Preparation 

Forage samples used in the small plot trial project were dried then ground using a 

Willey Mill fitted with a 1mm screen.  To ensure adequate sample was available for the 

entire in situ trial, samples were combined across replicates and across the September and 

October 2007 collection periods.  Pooling of samples was done in equal proportions.  The 

only exception was the C4 grasses, where all available samples had to be used to ensure 

enough forage material for analysis. 

 

4.2.3 Rumen In situ Trial 

The rumen in situ trial followed the procedure of Vanzant et al. (1998).  Three 

Red Angus cross steers (575 ± 39 kg) fitted with a 10.2 cm rumen cannula (Bar Diamond 
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Inc., Parma, ID, USA) were used (Iwaasa et al. 2001).  The animals were cared for under 

the guidelines of the Canadian Council of Animal Care (2007).  They were kept outdoors 

in individual pens (6m X 30m) that were bedded with wood chips.  Steers were fed 

meadow brome grass hay that was harvested in 2007 (89% DM) at 1.5% of body weight 

(DM basis).  Each animal had free access to water and a salt block containing trace levels 

of cobalt and iodine.   

Five gram samples were weighed into number coded dakron bags (10 X 20 cm) 

with a 50 micron (±15) pore size (ANKOM Company, Fairport, NY).  Bags were heat 

sealed 2 cm from the top to produce a sample size to surface area ratio of 13.9 mg cm-2.  

Treatments were randomly allocated between steers within the incubation period.  The 

samples were placed in weighted lingerie bags to keep them in the ventral sac of the 

rumen.  The lingerie bags were attached to a 50 cm cord to assist with retrieval from the 

rumen (Hoffman et al. 1993b).   

Incubations were performed using the “gradual addition/ all out” schedule (Yu et 

al. 2004).  The incubations were performed for 0, 2, 4, 8, 12, 24, 48, 72 h starting at 1900 

h.  Bags were inserted at 1900 (day 1), 1900 (day 2), 1900 (day 3), 0700 (day 4), 1100 

(day 4), 1500 (day 4), 1700 (day 4) and all bags were removed at 1900 (day 4).  During 

each run 17 bags were incubated in each animal.  Duplicate samples were run for each 

time period resulting in a total of 38 bags for each treatment (2 bags for incubation times 

0 – 24 h and 3 and 4 bags for 48 and 72 h, respectively).    

All samples, including the 0 h samples were placed in cold water upon removal to 

stop digestion (Hoffman et al. 1993).  Then bags were rinsed using the delicate cycle in a 

domestic washer (Kenmore; model 4226090).  The samples were rinsed five times with 

55 L of cold water allowing a 1 minute agitation and a 2 minute spin per rinse cycle.  The 

samples were then dried to a constant weight in a forced air oven at 50°C.  Dry matter 

content was determined by vacuum drying according to AOAC Official Method 925.09 

(AOAC 2005).  The duplicate bags were then combined within the run and analyzed for 

CP and NDF.  
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4.2.4 Laboratory Analysis  

Total N was determined using a Technicon Autoanalyzer II® after undergoing a 

Kjeldahl digest (Varley 1966).  The CP content was determined by multiplying N content 

by 6.25 (AOAC 1984).  The NDF was determined using an ANKOM200 fibre analyzer 

(Model 200; ANKOM; Fairport, New York).   

 

4.2.5 Rumen Degradation Models and Statistical Analysis 

The in situ rumen degradation kinetic parameters were estimated using the NLIN 

(non linear) procedure of SAS 9.1.3 statistical software (SAS Institute, Inc.  2003) and 

the iterative least square regression (Gauss-Newton method) procedure via the modified 

first order kinetics equation with a lag time (Ørskov and McDonald 1979): 

R(t) = c + b*exp-kd*(T - T0) 

where R(t) is the residue (%) of incubated material remaining after t (hours) of rumen 

incubation.  The effective rumen degradable fraction (EDDM) and the undegradable 

rumen dry matter (RUDM) were calculated based on a rumen passage rate (Kp) of 6% h-1    

(Holden et al. 1994; Elizalde et al. 1999).  They were calculated as follows: 

  EDDM (%) = a + b*Kd/(Kd+Kp) 

   

RUDM (%) = c + b*Kp/(Kd+Kp) 

 

The analysis of variance was performed for a completely randomized design 

using the Proc GLM on the SAS program (SAS Institute, Inc.  2003): 

 Y = mean + feed + error 

The treatment means were carried out using the F test.  Standard errors (SE) were 

determined and the treatment effects were considered significant if P<0.05 using the 

Tukey’s test (Steel and Torrie 1980).   

 

4.3 Results and Discussion 

Fall grazing is becoming more popular to reduce production costs but declining 

forage quality associated with maturing forages can negatively affect animal performance 

to the extent that supplementation may be required (Abouguendia, 1998; Cherney and 
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Kallenbach 2007).  Chemical compositions of the six forage samples used in this trial are 

given in Table 4.1.  Due to sample limitations it was not possible to have replicates and 

statistically analyze this data.  However it can be seen that CMV, a native legume had the 

highest CP and lowest NDF values.  Higher CP and lower cell wall fiber content is 

expected when comparing legumes to grass species (Spalinger et al. 1986; Shaver et al. 

1988; Elizalde et al. 1999; Yu et al. 2004; Holechek et al. 2004).  There appeared to be 

differences in CP and NDF between the grass species this differed from findings by 

Elizalde et al. (1999) that showed grasses were relatively similar.  The NDF values of the 

samples in this study were noticeably higher than previous reports that showed alfalfa 

hay normally has an NDF content of 35 to 40% (DM basis) and grass hays are as high as 

60% NDF at similar stages of maturity (Robinson, 1998).  Crude protein requirements for 

a 381kg animal gaining 0.33 kg day-1 are around 6.8% CP on a dry matter basis (NRC 

2000).  From Table 4.1 it appears that CP levels are adequate only in CMV and GNG.   

However the CP maintenance requirements for beef cows is between 6 and 8% so warm 

season grasses could also be suitable to meet their requirements (Holechek and Herbel 

1986).  However, the availability of CP can be reduced due to tight connections with 

fibre, which make it inaccessible to the rumen microbes (Janicki et al. 1988).  

 

 Table 4.1 Crude protein and NDF content of samples collected during the 2007 harvest    
 period and used in the In situ digestion trial 

Species    CP (%) NDF (%)
Canadian Milkvetch      11.75 56.05
Western Wheat grass  5.44 69.12
Meadow Brome Grass        4.47 73.16
Green Needle grass  7.56 71.55
Warm Season Grass  6.31 68.18
Northern Wheatgrass  4.03 74.12

 

 

 The rate of degradation (Kd) for DM (Table 4.2) and NDF (Table 4.3) were 

similar for all the grass species but was greater (P<0.05) for CMV.  These findings were 

similar to previous studies that compared legumes and grass digestibility (Hoffman et al. 

1993b).  The DM Kd value for CMV was 10.85 % h-1 which was similar to the 11.4% Kd 
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value observed in alfalfa at the late flowering stage (Elizalde et al. 1999) and 9 % Kd at 

the full bloom stage (Shaver et al. 1988).  The DM Kd values observed for our five grass 

species ranged from 2.82 % h-1 in NWG up to 4.62 % h-1 in MBG, which also 

corresponded to values observed in previous studies for tall fescue, perennial ryegrass, 

timothy and bromegrass (Shaver et al. 1988; Hoffman et al. 1993a; Elizalde et al. 1999).   

No significant differences were noted in the DM Kd for the grass species, a finding that 

was observed by other researchers (Elizalde et al. 1999).  The NDF Kd value observed in 

our trial for CMV were similar to values observed by Canale et al. (1992) in alfalfa.  The 

NDF Kd values observed for the grass species correspond with values reported for 

Smooth bromegrass (Shaver et al. 1988).   

 

 
Table 4.2 Effects of species on in situ dry matter disappearance (degradation rate of D 
(Kd), soluble fraction (S), slowly degradable fraction (D), undegradable fraction (U), 
effective dry matter degradability (EDDM) and rumen undegradable fraction (RUDM)) 
Feed  Kd (% h-1) S (%) D (%) U (%) % EDDM % RUDM 
 -----------------------------------------  g kg-1 DM -------------------------------------- 
CMV 10.85    b 20.72   b 40.35   a 38.93   c 46.65   c 53.35   a 
WWG   3.25    a 19.51   b 58.73   bc 21.76   b 40.08   ab 59.92   bc 
MBG   4.62    a 16.22   a 52.67   b 31.11   bc 38.93   ab 61.07   bc 
GNG   3.19    a 17.07   a 59.87   b c 23.06   b 37.81   a 62.19   c 
Warm   3.28    a 21.07   b 67.58   c 11.35   a 44.81   bc 55.19   ab 
NWG   2.82    a 16.27   a 59.37   bc 24.36   b 35.01   a 64.99   c 
       
SE   0.39   0.63   2.30   2.15   1.52   1.52 
a - c  Within the column, numbers followed by a different letter (a-c) are statistically significant 

(P<0.05) as determined by Tukey’s test.  SE represents standard error  
 
 
 
 
 
 
 
 
 
 
 
 
 



 83

Table 4.3 Effects of species on in situ neutral detergent fibre disappearance (degradation 
rate of D (Kd), soluble fraction (S), slowly degradable fraction (D), undegradable fraction 
(U), effective neutral detergent degradability (EDNDF) and rumen undegradable fraction 
(RUNDF)) 

Feed  Kd (% h-1) S (%) D (%) U (%) % EDNDF % RUNDF 
 -----------------------------------  g kg-1 NDF -------------------------------- 
CMV 7.73   b 1.16   a 40.95   a 57.89   c 23.65   a 76.35   c 
WWG 3.50   a 2.19   ab 73.40   bc 24.42   ab 29.11   abc 70.89   abc 
MBG 4.11   ab 2.55   ab 65.27   b 32.17   b 28.72   abc 71.28   abc 
GNG 3.33   a 3.86   b 71.89   bc 24.25   ab 29.48   bc 70.52   ab 
Warm 3.39   a 4.35   b 78.60   c 17.05   a 32.48   c 67.52   a 
NWG 2.73   a 2.98   ab 74.88   bc 22.14   a 26.02   ab 73.98   bc 
       

SE 0.69 0.75 2.44 1.94 1.35 1.35 
a - c  Within the column, numbers followed by a different letter (a-c) are statistically significant 

(P<0.05) as determined by Tukey’s test.  SE represents standard error  
 

The soluble DM fraction (S) was higher (P<0.05) for WWG, Warm and CMV 

compared to MBG, GNG and NWG.  However, the soluble fraction of NDF was lower 

(P<0.05) in CMV than GNG and Warm but no differences (P>0.05) were observed for 

WWG, MBG and NWG.  Canadian milkvetch had the lowest (P<0.05) D fraction and 

highest (P<0.05) U fraction for both DM and NDF. Previous studies have shown that Red 

clover also has a higher DM U fraction than grass species (Hoffman et al. 1993).  The U 

values observed in this study for CMV were higher and the D values were lower than 

values for alfalfa observed by Yu et al. (2004) due to the advanced maturity of our stand 

and inherent differences between alfalfa and CMV.  The Warm mixture had the highest 

(P<0.05) D fraction and lowest U fraction for both DM and NDF.     

Effective dry matter degradability (EDDM) was highest in CMV but similar to 

Warm.  Previous studies have shown that EDDM is higher in legumes than grasses 

(Elizade et al. 1999).  It had lower NDF and ADF concentrations than the grasses which 

could explain the improved microbial degradation (Elizade et al. 1999).  It is believed 

that structural characteristics of plant tissue affect digestibility (Lee and Pearce 1984; 

Mosely and Jones 1984).  However, the EDDM observed in CMV was lower than values 

observed for mature alfalfa stands likely due to phenological growth differences between 

these species (Hoffman et al. 1993; Elizade et al. 1999).  Results in chapter 3 showed that 

CMV had higher lignin levels than other species.  Lignin has been shown to negatively 
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affect digestibility (Erdman et al. 1987) due to its ability to prevent enzymatic hydrolysis 

of polysaccharides (Jung and Allen, 1995).  Previous work has shown no consistent 

correlation between a single structural component and forage digestibility (Van Soest 

1994).  Differences in EDDM between grass and legume species could be explained by 

anatomical differences in the arrangement of vascular cells (McLeod and Minson 1988; 

Kelly and Sinclair 1989; Kennedy and Doyle 1993) and the lower concentration of 

lignin-carbohydrate bonds in legumes (Grenet 1989).  Physical differences like the 

shorter and more cubical shape of legume digesta versus longer, thinner and more fibre 

like grass digesta could explain the slightly higher digestibility observed in legumes 

(Troelson and Campbell 1968; Moseley and Jones 1984; Emanuele and Staples 1988). 

The leaves of legumes tend to have thinner cell walls than grasses that allow them to 

break down and pass through the rumen faster (Spalinger et al. 1986) and they contain 

more sugars, starch, pectin and organic acids (NRC 2001).  Studies have shown that 

degradability is more related to the chemical composition of lignin than the amount of 

lignin present (Reeves 1985; Buxton and Russell 1988).  Warm was also similar (P>0.05) 

to WWG and MBG in EDDM (Table 4.2).  The lowest (P<0.05) EDDMs were found in 

NWG and GNG but they were similar to WWG and MBG.  The higher EDDM in Warm 

was unexpected because C4 species normally have higher lignin levels that would reduce 

digestion.  Our results are likely due to vegetative nature of the C4 grasses later into the 

growing season due to the shortage of heat units to advance C4 grasses into later stages 

(Smart et al. 2001).  The anatomical features (sclerenchyma, parenchyma bundle sheaths 

and lignified tissue) of C4 species often make them less digestible than C3 species (Akin 

and Barton 1983; Akin 1989).  Previous analysis of ADL showed that the pooled Warm 

values were lower in ADL than most of the C3 species and legume species which could 

explain the better than expected EDDM.  There is no doubt that increasing NDF, ADF 

and ADL associated with mature forages ultimately reduces EDDM (Elizade et al. 1999).   

The effective neutral detergent fiber digestibility (EDNDF) was higher (P<0.05) 

in Warm than NWG and CMV.  There were no differences in EDNDF among Warm, 

GNG, MBG or WWG.  Green needle grass had a higher (P<0.05) EDNDF than CMV.  

The EDNDF of WWG and MBG were not different than any of the other species.  The 

lower EDNDF values observed in legumes has been documented in previous research 
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(Varga and Hoover 1983; Shaver et al. 1988; Hoffman et al. 1993b; Yu et al. 2004).  This 

could be due to higher ADF concentrations and lower NDF concentration in legumes 

(shown in Chapter 3) that negatively affect rumen degradable NDF (Hoffman et al. 

1993a; Yu et al. 2004).  The low EDNDF in CMV could also be the result of differences 

in phenolic acids (Jung and Allen 1995).  The EDNDF can be affected by variables like 

the type of forage species, cultivar, soil type, climate conditions, growing conditions, 

stage of maturity and preservation method (Varga and Hoover 1983; Cherney et al. 1992; 

Hoffman et al. 1993b; Yu et al. 2004). 

It was not possible in this trial to evaluate in situ CP digestive kinetics.  After 

running the least square regression (Gauss-Newton method) using the modified first order 

kinetics equation with a lag time (Ørskov and McDonald 1979) it was evident that due to 

bacterial contamination, N had been reintroduced into the samples during rumen 

incubation.  This resulted in some cases of more N in the residues after rumen incubation 

than was present in the original forage sample prior to incubation (Table A1 in appendix).  

The mean CP disappearance values for each of the incubation periods are shown in 

Appendix Table A1.   

The increase in CP associated with many of theses forages after rumen incubation 

is the result of microbial contamination of the in situ residue due to the samples’ low 

initial CP and degradability characteristics (Madsen and Hvelplund 1985; Canale et al. 

1992; Dixon and Chanchai 2000; Kamoun et al. 2007).  Bacterial contamination is a clear 

possibility because there are many types of bacteria that bind to the plant cell wall via the 

glycoprotein matrix (Akin 1976; Akin and Amos 1975).  The strength of these bonds can 

vary with the surface area of the plant material and the types of plant structure (Akin 

1976; Nocek 1988).  The effect of microbial contamination on CP in forages tends to be 

higher in forages than concentrates, likely because initial protein levels are lower (Nocek 

and Grant 1987; Beckers et al. 1995).  Previous studies have shown that CP degradation 

is related to CP and NDF concentrations in the forage (Janicki and Stallings 1988; 

Elizalde et al. 1999).  Bacterial contamination has been shown to increase curvilinearly 

with incubation time at which point attachment sites become limited (Nocek 1988; 

Kamoun et al. 2007).  The time it takes for a peak in N from microbial contamination 

varies from one feed to another; it can range from 6 to 96 hrs for forages and 10 to 20 hrs 
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for concentrates (Nocek and Grant 1987; Nocek 1987; Michalet-Doreau and Ould-Bah 

1992).  There is also increased microbial contamination with smaller particle size and 

increased bag pore size (Nocek 1988).  To accurately predict N digestion using the in situ 

technique under such conditions it is necessary to use a reliable measure to quantify 

microbial contamination on undigested residues.  There are several types of bacterial 

nitrogen markers that can be used to distinguish microbial contamination including 

internal markers like diaminopimelic acid, nucleic acids or external isotopic markers like 
15N or 35S (Michalet-Doreau and Ould-Bah 1992; Broderick and Merchen 1992).   

 

4.4 Conclusion 

 There were differences in DM and NDF degradation associated with mature 

legume, C4 and C3 grasses.  The values observed for NDF and DM degradation in the C3 

grass species were relatively similar.   Effective dry matter degradability was highest in 

CMV and Warm and the EDNDF was highest in Warm but lowest in CMV.  There 

appears to be soluble fractions in CMV other than NDF that are being removed, possibly 

compounds such as protein, minerals, fat, pectin and soluble carbohydrates that are more 

digestible in legumes than in grasses.  The lower EDNDF in CMV is probably associated 

with the low initial NDF concentrations.  To properly determine CP digestion it would 

require the use of microbial protein markers to determine levels of microbial 

contamination.  All the C3 grasses were similar in EDDM and EDNDF but differed from 

the legume and C4 grasses.  By including legumes in mixtures EDDM and CP availability 

improved but EDNDF declines due the solubility of other fractions.  Warm season 

grasses were high in EDDM and EDNDF, however, D fractions were higher showing that 

they degraded at a slower rate and depended on rumen retention to be fully degraded.  

Digestive characteristics during the fall grazing period could be improved by including 

legumes and C4 grasses in forage mixtures along with C3 grasses.     
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CHAPTER 5 

NUTRITIVE QUALITIES OF SIMPLE VERSUS COMPLEX NATIVE FORAGE 

MIXTURES FOR GRAZING CATTLE 

 
5.1 Introduction 

There are many advantages with diverse forage stands.  With a more diverse forage 

species mixture, stands are better able to adapt to changing environmental conditions.  More 

diverse forage mixtures tend to be more resistant to drought (Glvnish 1994; Tilman and 

Downing 1994).  This is due to their larger root mass that ensures energy and nutrient stores 

are available to buffer against environmental variation (Tilman et al. 2006).  Mixed swards 

consist of species with different rooting depths that ultimately increase moisture utilization at 

different levels in the soil.  Diverse swards improve the ecosystem’s ability to adapt to 

disturbances and improve nutrient cycling in the environment (Fridley 2001; Minns et al. 

2001; Sanderson et al. 2005).  Weed pressure and invasion is reduced in complex forage 

mixtures because of competition for resources (Kennedy et al. 2002; Tracy and Sanderson 

2004b).   

Although they are more stable and better adapted to environmental change, there is 

varying data about production benefits associated with complex forage mixtures.  Some 

studies have shown that diverse forage mixtures are more productive and have more 

consistent biomass production over time (McNaughton 1993; Tilman et al. 1996; Chapin et 

al. 2000).  Biodiversity is directly related to an ecosystem’s productivity and stability 

(Tilman et al 2006).  Some studies have shown that plant diversity increases primary 

production (Fridley 2001; Minns et al. 2001; Sanderson et al. 2005). This is understandable 

because a mixture of C3 and C4 forages utilize different photosynthetic pathways that initiate 

growth at different times within the growing season and distribute carbohydrates differently 

within the roots and leaves (Glvnish 1994).  Cool season grasses tend to enter their 

reproductive phase around the same period when C4 species begin growth (Trlica 1999).  

Cattle are naturally attracted to the new growth, so the C4 grasses are grazed.  Having a 

diverse range of species ensures that forage yields and nutrient supplies are distributed 

throughout the grazing season and the grazing animal’s nutrient requirements are met (Cook 

1972; Waller et al. 1985; Cherney and Kallenbach 2007; Redmon and Hendrickson 2007).  

Nutritional qualities such as digestible energy content, digestible protein and phosphorus 
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content vary in grass, forbs and shrubs during the growing season.  A balanced mix of these 

plant species will compliment each other from a nutrient perspective and better meet the 

ruminant animal’s demands (Cooke 1972).  Research has shown that more diverse forage 

mixtures had higher production and provided a more nutritious and palatable forage source 

than less diverse mixtures (Smoliak and Bezeau 1967; Tilamn et al. 1996; Ganskopp et al. 

1997; Bargo et al. 2002; Deak et al. 2007; Tracy and Sanderson 2004a; Tracy and Sanderson 

2004b).  Other studies comparing monoculture tame forage stands to improved native 

ecovars or natural mixed grass prairie have shown no differences in animal production or 

grazing capacity (Hanson et al. 1976; Hofmann et al. 1993b; Jefferson et al. 1997).  If 

fertilizer is applied tame forages are more productive than native grasslands but with 

increased costs (Knowles 1987; Lawerance and Ratzlaff 1989).  The objective of this study 

was to compare simple (native C3 grasses and legume) and versus complex (native C3 and C4 

grasses with legume) mixtures of native forage species in terms of forage yield, chemical 

composition, and animal grazing potential. 

 

5.2 Materials and Methods  

5.2.1 Pasture Design 

There were four (two-hectare) paddocks that were seeded in 2001 to a simple or 

complex native seed mixture at a rate of 9.5 kg ha-1.  The experiment utilized a completely 

randomized design.  There were two treatments (simple and complex) and two replicates 

(Table 5.1) for a total of 4 pastures.  The study was performed over three years starting 2005 

and continuing through 2007.   

 
5.2.2 Livestock 

5.2.2.1 Grouping and Randomization 

Eight, cross bred yearling steers (Hereford x Angus) (360 ± 30 kg) were randomly 

assigned to one of the four season long continuously grazed pastures (two steers per pasture).  

Stocking rates for the pastures were based on estimated carrying capacity (Smoliak et al. 

1982; Wroe et al. 1988) to achieve approximately two months of grazing.  Pastures were 

grazed at a 40 to 50% utilization rate.  All cattle were treated for fly control with CyLence 

Pour-On (Bayer Animal Health) at the beginning of the grazing season and as required 

throughout the summer.  All livestock had free access to water and salt blocks containing  
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Table 5.1  Native species composition of complex and simple forage mixtures seeded to 
pastures that were continuously grazed  
 
Complex Mixture                           % of Mix*              Simple Mixture                         % of Mix*.  
Cool season      Cool season 

Western wheatgrass   15   Western wheatgrass  31 
Northern wheatgrass               9   Northern wheatgrass  12 
Green needle grass  26   Green needle grass  36 
Awned wheatgrass    5   Awned wheatgrass  15 
June Grass     2   June Grass     2 
Canada wildrye     2   Slender wheatgrass            3 
Needle and thread grass  10 

Legume      Legume 
 Purple prairie clover                     2                                   Purple prairie clover    1 
Warm season 

Prairie Sandreed   3             
Little bluestem   23 

             Blue grama                                   3                                                                                               

* by seed weight  

 

trace levels of cobalt and iodine. Animals used in this experiment were cared for under the 

guidelines put forward by the Canadian Council on Animal Care (2007).   

 

5.2.2.2 Animal Production and Grazing Days 

 Steers were weighed after being fasted for 24 hours without feed or water to obtain a 

shrunk body weight.  Each year, grazing was initiated at the end of June (June 24, 2005; June 

27, 2006 and June 29, 2007) and ended in August (Aug. 23, 2005; Aug. 21, 2006 and Aug. 

24, 2007 for the complex pastures and Aug. 12, 2005; Aug. 15, 2006 and Aug. 17, 2007 for 

the simple pastures).  The following equations were used to calculate the season long average 

daily gain (SLADG), total live animal production per hectare (TLP), grazing days per hectare 

(GRD) and animal unit day per hectare (AUD ha-1); 

  

SLADG (kg d-1) = (Shrunk end weights – Shrunk start weights) / # of days grazing 

 GRD (d ha-1) = ( # of animals X  # of days grazing )/ Hectare 

 TLP (kg ha-1) = SLADG  X  GRD  

 AUD ha-1 = ( # of animals X (average body wt/1000) X  # of days grazing )/ Hectare 

 

 



 90

 

 

5.2.3 Sampling Procedure 

5.2.3.1 Sampling Dates 

All clippings were performed at a 5 cm stubble height (Carman 1985; Olson and 

Richards 1988).  Clippings were taken prior to grazing, following the completion of grazing, 

and within graze free cages.  These were used to calculate available (AYLD), residual 

(RYLD) and cage (CYLD) yields, respectively.  Ten randomly collected ¼ m-2 pasture 

clippings were taken to determine the available and residual yields.  There were six cages 

randomly placed throughout the pasture to determine total pasture production or cage yield. 

Clipped material was placed in brown paper bags and dried to a constant weight in a 

forced air oven at 50° C.  Dried forage yields were recorded and samples from the same 

period were pooled within pasture.  These samples were ground using a Willey Mill (Model 

no. 4; Arthur H. Thomas Co., Philadelphia, PA) fitted with a 1mm screen.  Ground samples 

were put in marked resealable glass jars.  Dry matter content on ground samples was 

determined by using the Association of Official Analytical Chemists Official Method 925.09 

(AOAC 2005).  This data was used to determine the forage yield, level of utilization (UT) 

and the chemical composition. 

 

UT = ((Available yield – Residual yield)/ Available yield) X 100 

  

5.2.4 Laboratory Analysis 

The in vitro organic matter digestibility was determined using the procedures outlined 

by Tilley and Terry (1963) as modified by Troelson and Hanel (1966).  Dry matter was 

determined using a vacuum oven according to the AOAC Method 925.09 (AOAC 2005).  

Calcium concentration was analyzed using flame atomic absorption spectroscopy (Hitatchi 

Polarized Zeeman Z8200 flame/furnace atomic absorption spectrometer) following a nitric-

perchloric acid digestion.  Total Kjeldahl N and P were determined using a Technicon 

Autoanalyzer II® after undergoing a Kjeldahl digest (Varley 1966).  Crude protein was 

calculated by multiplying the level of nitrogen by 6.25 (AOAC, 1984).  Acid detergent fibre 

was determined using a Velp Raw Fibre Extractor (Velp Scientifica 6 place Raw Fibre 

Extractor; Model FIWE; Stazione, Italia; 20040) and Goering and Van Soest (1970) 
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procedure.  The NDF and the ADL were determined using an ANKOM200 (Model 200; 

ANKOM; Fairport, New York; 14450) according to Ankom (2005).   

 

5.2.5 Meteorological Data 

 All weather data was recorded at the Semiarid Prairie Agricultural Research Center 

(SPARC), Agriculture and Agri-Food Canada (AAFC), at Swift Current, Saskatchewan.  The 

weather station was located approximately 1 km away and recorded the average monthly 

temperature for 2005, 2006 and 2007 and the monthly average precipitation for 2005, 2006, 

and 2007 (Figure A5 and A6 in Appendix).   

 
5.2.6 Statistical Analysis 

 Data was analyzed as a two (seedmix) by three (year) factorial using the Mixed 

Model procedure (Proc Mixed) in the SAS 9.1.3 statistical program (SAS Institute, Inc.  

2003).   It was a completely randomized desin where pasture was the experimental unit.  

Year was treated as a repeated measure and the covariance structure for each variable was 

selected from the following; unstructured, ante-dependence, autoregressive, heterogeneous 

autoregressive, compound symmetry and heterogeneous compound symmetry.  The final 

covariance structure was selected on the basis of the lowest AIC, AICC and BIC values.  

Standard errors (SE) were determined and if there were significant year or seedmix effects 

(P<0.05), protected least significant difference was used for mean separation (Steel and 

Torrie 1980).   If seedmix by year interactions (P<0.05) were observed, column graphs were 

used to explain the interaction.  

 

5.3 Results and Discussion 

This project utilized season long continuous grazed pastures to distinguish nutritional 

differences between simple and complex forage mixtures.  Forage production and utilization 

values are given in Table 5.2.  These parameters are important because animal production is 

directly related to forage production.  A seedmix by year interaction (P<0.05) was found for 

AYLD (Figure 5.1).  This interaction was caused by the higher (P<0.05) production from the 

complex pastures observed in 2007 versus other years.  The higher AYLD observed for 

complex seedmix in 2007 can be related to warm dry spring conditions in 2007 that reduced 

C3 growth and summer moisture that improved C4 plant growth.  These results are in 
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agreement with theories that plant diversity improves the swards’ ability to adapt to 

disturbances and drought while improving forage production (Glvnish 1994; Tilman and 

Downing 1994; Fridley 2001; Minns et al. 2001; Kennedy et al. 2002; Tracy and Sanderson 

2004; Sanderson et al. 2005).  Stand composition and biomass production is affected by 

climate and the length of the growing season (Allard 1999; Redmon and Hendrickson 2007; 

Baron and Bélanger 2007).  Several studies have shown that complex forage mixtures 

produced higher levels of forage than simple mixtures (Deak et al. 2004; Tracy and 

Sanderson 2004a; Tracy and Sanderson 2004b).  Cool season grasses and legumes provide 

the majority of available forage because they initiate growth early in the spring and produce 

about two thirds of their annual production before mid summer (Jefferson et al. 2005; 

Cherney and Kallenbach, 2007).  Warm season species initiate growth in June throughout the 

hot summer periods and peak production is achieved by September because they are adapted 

to high temperatures and drought conditions (Baron and Bélanger, 2007; Cherney and 

Kallenbach, 2007).  This growth during the hot part of the summer provides forage for the 

grazing animal after the spring grazing of C3 species (Jefferson et al. 2002). There was a year 

effect (P<0.05) exhibited with the CYLD because production is directly related to growing 

conditions that varies from year to year.  The year effect is only evident in CYLD because it 

measures plant growth over the entire period of the grazing experiment.  Residual yields 

(RYLD) exhibited a significant seedmix effect (P<0.05) with more forage material being 

removed on the complex pastures.  There was a seedmix by year interaction (P<0.05) noted 

for pasture utilization (Figure 5.2).  This interaction occurred in 2007 when simple pasture 

utilization was lower (P<0.05) than simple and complex utilization values in 2005 and 2006.  

The lower utilization of the simple seedmix observed in 2007 was likely caused by the hot 

and dry summer conditions that reduced the simple seedmix  production and caused the C3 

species to mature earlier in the growing season.  Utilization has been shown to decline with 

decreased production (Arnold 1987).  The higher utilization of complex mixtures could be 

related to the higher quality forage associated with the initiation of C3 and C4 grasses at 

different times throughout the growing season (Trlica 1999; Baron and Bélanger 2007).  

Previous studies have shown that more diverse pastures tend to be utilized more uniformly 

even under changing conditions (Webb 2008).



 

93

 

            Table 5.2  Dry matter yield (Kg ha-1) prior to grazing (AYLD), following grazing (RYLD) and in non grazed enclosures  
             (CYLD) along with the estimated utilization (%) by seedmix and time for the grass mixtures 

____Seedmix_(SM)___ _________Year_(Yr)________ _______P-Value______ Analysis 
Simple Complex 2005 2006 2007 

 
SE SM Yr SM * Yr 

AYLD (Kg ha-1) 1069.0  1013.1   988.5   1025.5 1109.2   90.40 0.57 0.39 0.04* 
RYLD (Kg ha-1)  598.2 a       390.8 b   466.5 472.5   544.5    63.95 0.02 * 0.26 0.38 
CYLD (Kg ha-1) 1526.4  1506.0 1865.4 a   1210.5 b 1472.8 b 114.43 0.65 0.03 * 0.41 
Utilization (%)     43.6      61.2  53.1    54.0      50.7     3.80 0.07 0.11  0.02* 

            * signifies a statistically significant value (P<0.05) 
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Figure 5.1 Seedmix by year interactions (P = 0.04) for available forage yield  
(Kg/ha)  
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Figure 5.2 Seedmix by year interactions (P = 0.02) for utilization (%) 

 

 

In this study animal production was measured by calculating ADG, TLP and AUD  

ha-1 (Table 5.3).  Nutritive qualities of the forage mixtures including OMD, ADF, NDF, CP 

and P content were determined prior to the initiation of grazing (AYLD) (Table 5.4) and 



 95

following grazing in grazing free cages (CYLD) (Table 5.5).  There was no significant effect 

of seedmix or year (P>0.05) for ADG or total live production (TLP).  Forage quality was not 

affected by seedmix however there was a significant (P<0.05) year effect for certain forage 

qualities (ie. OMD,ADF and NDF).  These results correspond with other studies that have 

shown no significant animal production differences (animal production or grazing capacity) 

between monoculture introduced species versus re-established native species or natural 

mixed grass prairie (Hanson et al. 1976; Hofmann et al. 1993; Jefferson et al. 1997).  The 

reason no statistical differences in animal production were recorded could be the result of 

high animal variability, seasonal differences or the need for more replicates.  The year effect 

on forage quality is directly related to the growing conditions.  It has been shown by other 

researchers that forage quality can vary not only as plants mature but with changing 

environmental conditions (Wallace et al. 1961; Kilcher and Looman 1983; Abouguendia 

1998).  During drought conditions forage yield is reduced, the leaf to stem ratio increases, 

maturity is delayed and forage quality is higher (Peterson and Sheaffer 1992; Scheaffer et al. 

1992).  There were significant (P<0.05) seedmix and year effects shown for AUD ha-1 (Table 

5.3).  Levels were significantly higher (P<0.05) for complex mixtures.  This is expected 

because studies (Cooke 1972; Ward 1988; Reid et al. 1990; Jackson 1999) have shown that 

live cattle weight gains per hectare can improve as pasture condition and diversity increases.  

Having a diverse forage stand results in yield distribution throughout the growing season and 

allows the opportunity to graze longer in the year (Cooke 1972; Cherney and Kallenbach 

2007).  The complimentary growth pattern of C3 and C4 forages could allow cattle to graze 

C3 species early in the season and then new C4 growth later in the summer (Trlica 1999).  

Other studies showed that cattle avoided C4 species in preference for forbs and cool season 

species (Caswell et al. 1973; Kautz and van Dyne 1978).  However, in these studies the C4 

species fully matured which was not the case in my study where the growing season is too 

short.  Having a more diverse forage stand offers improved forage production and provides 

the grazing animal more nutritious and palatable forage choices (Smoliak and Bezeau 1967; 

Tilamn et al. 1996; Ganskopp et al. 1997; Bargo et al. 2002).  The inclusion of native 

legumes in grass mixtures has been shown to increase forage yield and quality (energy and 

protein) because of nitrogen inputted into the system through N2 fixation (Posler et al. 1993; 

Cadish et al. 1994; Phillips and James 1998; Schellenberg and Banerjee 2002; Cherney and 

Kallenbach 2007).
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         Table 5.3  Performance of yearling steers (average daily gains (ADG), total live production (TLP) and animal unit days  
            per hectare (AUD ha-1)) by seedmix and year grazing the grass mixtures 

____Seedmix (SM)____ _________Year_(Yr)________ _______P-Value______ Analysis 
Simple Complex 2005 2006 2007 

 
SE SM Yr SM * Yr 

ADG   0.82   0.75 0.85    0.85    0.66  0.11 0.46   0.25     0.08 
TLP 34.27 36.91  32.06   42.16   32.54    5.52 0.61   0.18    0.14 
AUD ha-1   40.89a   46.95b  43.83c  45.94d  42.00c  0.69    0.02 *   0.01 *    0.21 

          * signifies a statistically significant value (P<0.05) 
 

 

 

 

 

 

          Table 5.4  Pasture quality (i.e. organic matter digestibility (OMD), acid detergent fiber (ADF), neutral detergent fiber (NDF),  
            crude protein (CP) and phosphorus (TP)) by seedmix and year at start of grazing period (AYLD) 

____Seedmix_(SM)___ ________Year (Yr)______ _______P-Value______ Analysis Simple Complex 2005 2006 2007 
 

SE SM Yr SM * Yr 
AYLD OMD (%) 51.800 51.844 48.550 a 50.987 b 55.929 c 0.4764 0.93 < 0.01 *    0.52 
AYLD ADF (%) 33.450 33.743 35.248 a  33.868 a  31.673 b 0.5530 0.59    0.02 *    0.32 
AYLD NDF (%) 59.877 61.567 63.201 b  60.347 a  58.618 a 0.8759 0.17    0.02 *    0.64 
AYLD CP (%)   6.359   6.255   6.671    6.196    6.055 0.3984 0.75    0.08    0.13 
AYLD TP (%)   0.176   0.176   0.187 0.168    0.173 0.0090 0.95    0.08    0.11 

          * signifies a statistically significant value (P<0.05) 
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           Table 5.5  Pasture quality (i.e. organic matter digestibility (OMD), acid detergent fiber (ADF), neutral detergent fiber (NDF),  
crude protein (CP) and phosphorus (TP)) by seedmix and year at the end of grazing season in grazing free enclosures (CYLD) 

____Seedmix (SM)___ ________Year_(Yr)______ _______P-Value______ Analysis 
Simple Complex 2005 2006 2007 

SE 
SM Yr SM * Yr 

CYLD OMD (%) 50.184 49.356 47.543 a 48.328 b 53.439 c 0.3973  0.07 < 0.01* 0.19 
CYLD ADF (%) 34.199 35.070 36.297 b 34.436 b  33.172 a 0.5797 0.30  0.01 * 0.81 
CYLD NDF (%) 60.396 61.947 62.864 b 61.370 b  59.280 a 0.9245 0.22  0.03 * 1.00 
CYLD CP (%)   5.185   4.476   5.573 b   4.387 a  4.532 a 0.2270 0.07   0.01 * 0.35 
CYLD TP (%)   0.167   0.141    0.168    0.150    0.144 0.0071 0.06    0.20 0.87 

           * signifies a statistically significant value (P<0.05) 
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The OMD values were approximately 2 % lower, ADF was 1 % higher, NDF was 

similar and CP values were approximately 1.5 % lower in the CYLD than in AYLD.  The 

lower qualities in CYLD samples related to the maturity of the plants.  The CYLD samples 

were fully matured.  Any mature seeds had been dropped and leaf loss was likely occurring 

by this clip period whereas AYLD forages were in vegetative to early seed set and plants 

were still actively growing.  Crude protein levels were slightly lower and fiber levels were 

higher in complex mixtures versus the simple seedmix, especially in CYLD.  The CP of the 

samples collected for AYLD would be adequate to meet maintenance requirements but by 

late summer levels are low enough supplementation will be required especially if animal 

performance becomes impacted.  Phosphorus levels would appear to be high enough to meet 

the animal’s maintenance requirements.  NRC (2000) states that 381 kg animals gaining 

between 0.33 and 0.91 kg day-1 require 0.13% and 0.16% P (NRC 2000).  Previous research 

has shown that C3 and C4 native grasses remained relatively stable in P content throughout 

the season (Poland and Manske 2004) but work by Jefferson et al. (2005) contradicted our 

findings by claiming there is only a short time during the grazing season when phosphorus 

levels are adequate to maintain animal growth.  It is important to remember that these levels 

are whole plant measures and actual levels being consumed by the animal would be higher 

because of selective grazing.  

 

5.4 Conclusion 

 There were no clear advantages to using more diverse mixtures of native forages 

containing warm season grass species.  It is evident that these mixtures are beneficial some 

years depending on environmental and growing conditions.  Year is a major variable that 

directly affects forage and animal production and forage quality.  Temperature and moisture 

conditions can fluctuate greatly with year which can encourage or restrict the growth of some 

forages.  The C3 and legume species produce most of their biomass early in the growing 

season when cooler temperatures and moisture are available.  Warm season grasses on the 

other hand prefer warmer and drier growing conditions making them more favourable during 

drought years when C3 and legume growth is inhibited.  Although we never observed 

significant differences in forage quality associated with complex forage mixtures, the 

benefits of C3 and C4 grasses along with legumes in mixtures was still evident with higher 

animal production (AUD ha-1) and pasture utilization.  Differences between complex and 
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simple forage mixtures could be occurring due to the effects of animal preference.  It is 

possible that larger fields, more repetition and more years would likely strengthen the 

seedmix effect.  
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CHAPTER 6 

CONCLUSION 

 
 Using native forages for stockpiled grazing is considered an excellent option to 

reduce winter feeding costs.  Native forages are recognized for their ability to hold their 

forage nutritional qualities because of greater leaf retention.  This research project compared 

forage production potentials, nutritive values and in vitro digestibility of native and tame 

species commonly grown in southwestern Saskatchewan.   

 This study was able to show changes in forage characteristics over the growing 

season among different forage species.  Generally the forages showed a similar trend where 

OMD, CP, P and Ca values declined over time while NDF, ADF and ADL concentrations 

increased.  From this trial it appears that having mixed swards of C3 and C4 grasses and 

legume species would complement each other in forage stands based on production and 

nutritional quality differences of the individual species.  The physiological differences 

between C3 and C4 grasses and legumes resulted in forage production and quality differences 

during the growing season.  This study demonstrated that C3 grasses provide optimal forage 

for early summer grazing while C4 grasses and legumes provide better quality forage for later 

summer and early fall grazing.  This could explain why pasture production is improved on 

diverse forage mixtures and how pasture quality could be maintained at or above the animal’s 

maintenance requirements longer into the fall.   

 Nutrient accessibility in forages is important because as species become more fibrous, 

important nutrients like CP and energy can be tightly bound with fiber making these 

important components inaccessible to the rumen microbial population.  Our findings showed 

that CMV had the highest EDDM and CP availability versus the grass species.  Warm 

species had high digestibility, slightly different than expected however it was likely because 

they were less mature than the C3 species.  Species like WWG and GNG are recognized as 

suitable forages for extending fall grazing and this was shown in this study where their 

EDDM and EDNDF values were relatively high.  Values observed for CP disappearance 

indicate that microbial contamination was occurring due to the low initial CP values and the 

tight association with fiber fractions.  Further testing is required to determine environmental 

effects on the species of interest and better quantify CP digestion through the use of N 
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markers to distinguish microbial contamination.  Our results would demonstrate that rumen 

fermentation conditions can be enhanced by strategic mixing of these forages in reestablished 

pastures.           

This project set out to determine if there were advantages associated with complex 

native forage mixture versus simple swards.  There were no clear advantages in nutritive 

values associated with the complex mixture, however, AUD ha-1 was significantly higher.  

From our grazing trial it was observed that complex mixtures of forages were better able to 

adapt to drier environmental conditions and provide a longer grazing season.  This appeared 

to be the result of having C4 grasses present in the mixture that grow better during drought 

conditions.  It is evident that year is a major variable in forage and animal production and the 

quality of the forages.  Having larger fields, more repetition and more years would likely 

strengthen the seedmix effect.   

Our results would indicate by having a more diverse pasture mixture containing cool 

and warm forage species could improve the pasture nutritional profile, forage yield and 

animal performance throughout the grazing season due to the biological differences in plant 

growth.     
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APPENDIX 
 

      North Side      
          
  Co1   AC Knowles   Great Plains  AC Sharptail   
  Prairie Sandreed  Hybrid Brome Grass  Canadian Milkvetch  Needle and Thread  
  Mandan   Mandan   Montana   Taylor   
  Canada Wildrye  Canada Wildrye  Meadow Brome Grass  Little Bluestem  
  Spredor 4   Montana   AC Larmour   Butte   
  Creeping Rooted Alfalfa  Meadow Brome Grass  Purple Prairie Clover  Blue Grama  
  Butte   AC Sharptail   Polar  WR Poole   
  Blue Grama  Needle and Thread  Northern Wheatgrass  Western Wheatgrass  
  Sprig   AC Larmour   Butte   AC Knowles   
  Awned Wheatgrass  Purple Prairie Clover  Blue Grama  Hybrid Brome Grass  
  AC Sharptail   Sprig   Taylor   AC Larmour   
  Needle and Thread  Awned Wheatgrass  Little Bluestem  Purple Prairie Clover  
  Taylor   Taylor   AC Sharptail   AC Mallard   
  Little Bluestem  Little Bluestem  Needle and Thread  Green Needle Grass  
  Keystone   Great Plains  AC Mallard   Montana   
  June Grass  Canadian Milkvetch  Green Needle Grass  Meadow Brome Grass  
  Montana   Co1   Spredor 4   Co1   
  Meadow Brome Grass  Prairie Sandreed  Creeping Rooted Alfalfa  Prairie Sandreed  
  AC Larmour  AC Mallard  Sprig   Keystone  
  Purple Prairie Clover  Green Needle Grass  Awned Wheatgrass  June Grass  
  AC Mallard   Spredor 4   Keystone   Great Plains  
  Green Needle Grass Creeping Rooted Alfalfa June Grass  Canadian Milkvetch 
  WR Poole   Keystone   Mandan   Sprig   
  Western Wheatgrass  June Grass  Canada Wildrye  Awned Wheatgrass  
  AC Knowles   WR Poole   WR Poole   Spredor 4    

  Hybrid Brome Grass  Western Wheatgrass  Western Wheatgrass  Creeping Rooted Alfalfa  
  Polar  Polar  AC Knowles   Polar  
  Northern Wheatgrass Northern Wheatgrass Hybrid Brome Grass  Northern Wheatgrass 
  Great Plains  Butte   Co1   Mandan   
  Canadian Milkvetch  Blue Grama  Prairie Sandreed  Canada Wildrye  
  Rep 4  Rep 3  Rep 2  Rep 1  

Figure A1.  Plot map of the 15 randomized species within four replicates   
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Figure A2.  Max daily temperature (°C) (pink lines) and precipitation (bars) received during 

the growing season at Swift Current, Sask.  
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Figure A3  Monthly average precipitation received in 2007 and the long term average at 

Swift Current, Sask.  
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Figure A4 Monthly recorded average temperature received in 2007 and the long term 

average at Swift Current, Sask.  
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Table A1  Effect of species on in situ crude protein disappearance as a percent  
 Species 

Rumen Incubation 
Time   CMV   WWG   MBG   GNG   Warm   NWG 

0 26.86  44.34  35.94      35.48  38.66  41.80  
2 28.38  42.24  33.60  39.72  41.63  39.89  
4 35.70  42.34  28.91  39.55  40.23  36.16  
8 46.99  42.56  30.81  39.94  44.50  32.03  
12 56.60   42.12  35.05  42.13  44.60  27.09  
24 68.46  43.88  36.25  48.03  51.26  27.62  
48 70.37  51.93  35.09  55.31  61.69  25.38  
72 71.04   56.31  39.82  60.22  66.24  30.98  
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Figure A5  The average monthly temperature for 2005 (red), 2006 (blue), 2007 (yellow) ,  

2008 (pink) versus the long term average (green) for Swift Current, Sask. 
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Figure A6  The average monthly precipitation for 2005 (red), 2006 (blue), 2007 (yellow),  

2008 (pink) versus the long term average (green) for Swift Current, Sask. 
 
 


