
The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

Current fluctuations in boundary driven diffusive systems 
 

T. Becker1*, K. Nelissen2,1, B. Cleuren1 

1Hasselt University, Hasselt, Belgium 
2Universiteit Antwerpen, Antwerpen, Belgium 

*thijsbecker@gmail.com 
 

We consider diffusive systems whose boundaries are connected to particle reservoirs at different 
densities. The object of interest is the net number of particles that have passed through the system in 
the steady state, during a time interval [0,t] , denoted by Qt . Because the dynamics is stochastic, the 

particle flow is a fluctuating quantity described by a probability distributionP(Qt ) . This distribution is 

studied in the thermodynamic limit, i.e., for large system sizes and for large times t . There has 
recently been a strong interest in the study of current fluctuations in the field of nonequilibrium 
statistical mechanics. A proper understanding of these fluctuations could allow one to define 
nonequilibrium thermodynamic potentials, in a conceptually similar way as for equilibrium potentials 
[1]. 

If one knows the transport diffusionD(ρ)and the mobilityσ (ρ) , one can calculate the full current 

distribution in a one-dimensional system. The transport diffusionD(ρ)is defined as 

Qt 
t

= −D(ρ)
∂ρ
∂x

, (1)

with ⋅ the average over P(Qt ) , and the concentration gradient small enough so that linear response is 

valid. The mobility quantifies equilibrium fluctuations of the current 
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L
σ (ρ),    ρA = ρB = ρ , (2)

with ρAand ρB the densities of the two reservoirs, and L the length of the system. All the moments of 

the current distribution can be calculated from the integral [2] 

Im = D(ρ)σ (ρ)m−1dρ
ρB

ρA

 . (3)

For example, the variance of the particle flow is equal to 
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Akkermans and co-workers performed a theoretical calculation that showed that the above result can 
also be used to predict current fluctuations in higher-dimensional systems [3]. This result is valid for 
arbitrary shapes of the system and of the contacts between the reservoirs and the system, as long as 
both are of macroscopic size. 

We present numerical results, obtained from kinetic Monte Carlo (kMC) simulations, for the current 
fluctuations in a stochastic lattice gas model that was introduced in [4]. Our results [5] are in full 
agreement with the analytical predictions from [3]. Converge of the Fano factor, 

F = (Qt
2 − Qt 

2 ) / Qt  , to the analytical prediction for a two-dimensional lattice gas with a non-

trivial coupling to the reservoirs is shown in Figure 1. 
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Figure 1: (left) A square lattice with sides of length L  connected on its left and right to particle reservoirs A and 
B (black dots). Each site can contain maximally one particle. The reservoirs have densities ρA =1 and ρB = 0 . 

The lower left half and the upper right half of the system is connected to the reservoirs. (right) The Fano factor 
as a function of the length L , with one-sigma error bars. Convergence to the analytical prediction F =1/ 3 is 

found for L ≥ 40. 

For a general diffusive system, the transport diffusion depends on the dimension, and the current 
statistics changes for different dimensions. However, the one-dimensional theory can still be used to 
predict the full current distribution. This is shown in Figure 2 for a stochastic lattice gas where each 
site can contain maximally two particles.  

 

Figure 2: (left) Numerically obtained transport diffusion in one, two, and three dimensions. The limiting case of 
infinite dimensions is shown as a line. Error bars are smaller than the symbol sizes. (right) The variance of the 

current L(Qt
2 − Qt 

2 ) / t  in different dimensions, obtained from kMC simulations (black diamonds) and the 

prediction from equations (3) and (4) (blue error bars). The limiting case of infinite dimensions is shown as a 
line. All symbols have one-sigma error bars.  
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