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Abstract
We study the conditions for reactivity enhancement of catalytic processes in porous solids by use

of molecular traffic control (MTC) as a function of grain size. We extend a recently introduced

two dimensional model system to three dimensions. With dynamic Monte-Carlo simulations and

analytical solution of the associated Master equation we obtain a quantitative description of the

MTC effect in the limit of fast reactivity. The efficiency ratio (compared with a topologically and

structurally similar reference system without MTC) is inversely proportional to the grain diameter.
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I. INTRODUCTION

Zeolites are used for catalytic processes in a variety of applications, e.g. cracking of large

hydrocarbon molecules. In a number of zeolites diffusive transport occurs along quasi-one-

dimensional channels which do not allow guest molecules to pass each other [1]. Due to

mutual blockage of reactands A and product molecules B under such single-file conditions

[2] the effective reactivity of a catalytic process A → B – determined by the residence time

of molecules in the zeolite – may be considerably reduced as compared to the reactivity in

the absence of single-file behaviour. It has been suggested that the single-file effect may be

circumvented by the so far controversial concept of molecular traffic control (MTC) [3, 4].

This notion rests on the assumption that reactands and product molecules resp. may prefer

spatially separated diffusion pathways and thus avoid mutual suppression of self-diffusion

inside the grain channels.

The necessary (but not sufficient) requirement for the MTC effect, a channel selectivity

of two different species of molecules, has been verified by means of molecular dynamic (MD)

simulations of two-component mixtures in the zeolite ZSM-5 [5] and relaxation simulations

of a mixture of differently sized molecules (Xe and SF6) in a bimodal structure possessing

dual-sized pores (Boggsite with 10-ring and 12-ring pores) [6]. Also equilibrium Monte-Carlo

simulations demonstrate that the residence probability in different areas of the intracrys-

talline pore space may be notably different for the two components of a binary mixture [7]

and thus provide further support for the notion of channel selectivity in suitable bimodal

channel topologies.

Whether a MTC effect leading to reactivity enhancement actually takes place was ad-

dressed by a series of dynamic Monte Carlo simulations (DMCS) of a stochastic model sys-

tem with a network of perpendicular sets of bimodal intersecting channels and with catalytic

sites located at the intersecting pores (NBK model) [9–11]. The authors of these studies

found numerically the occurrence of the MTC effect by comparing the outflow of reaction

products in the MTC system with the outflow from a reference system with equal internal

and external system parameters, but no channel selectivity (Fig. 1). The dependency of

the MTC effect as a function of the system size has been investigated in [12]. The MTC

effect is favored by a small number of channels and occurs only for long channels between

intersections, which by themselves lead to a very low absolute outflow compared to a similar
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FIG. 1: REF system (left) with N = 3 channels and MTC system (right) of the the same

size. In contrast to the REF case, where we allow both types of particles (A and B

particles) to enter any channel, in the MTC system A particles are carried through the

vertical α channels whereas the B particles diffuse along the horizontal β channels. Black

squares indicate catalytic sites where a catalytic transformation A → B is allowed.

system with shorter channels. A recent analytical treatment of the master equation for this

stochastic many-particle model revealed the origin of this effect at high reactivities [13].

It results from an interplay of the long residence time of guest molecules under single-file

conditions with a saturation effect that leads to a depletion of the bulk of the crystallite.

Thus the MTC effect is firmly established, but the question of its relevance for applications

remains open.

Here we address this question by an analytical study of the MTC system in three di-

mensions as a function of grain size. This may be of interest as since the first successful

synthesis of mesoporous MCM-41 nanoparticles [14], there has been intense research activ-

ity in the design and synthesis of structured mesoporous solids with a controlled pore size.

In particular, synthesis of bimodal nanostructures with independently controlled small and

large mesopore sizes has become feasible [15].

II. NBK MODEL

Similar to [9, 12, 13] we consider the NBK lattice model as an array of N×N×N channels

(Fig. 2 left) which is a measure of the grain size of the crystallite. Each channel has L sites

between the intersection points where the irreversible catalytic process A → B takes place.
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FIG. 2: (left) 3D MTC system. (right) part of the first y/z plane of β channels, view from

top.

We assume the boundary channels of the grain to be connected to the surrounding gas

phase, modelled by reservoirs of constant densities such that the entrances of the respective

channels (extra reservoir sites) have a fixed A particle density ρ. We assume the reaction

products B which leave the crystallite to be removed immediately from the gas phase such

that the density of B particles in the reservoir is always 0. Short-range interaction between

particles inside the narrow pores is described by an idealized hard core repulsion which

forbids double-occupancy of lattice sites.

The underlying dynamics are stochastic. We work in a continuous time description where

the transition probabilities become transition rates and no multiple transitions occur at the

same infinitesimal time unit. Each elementary transition between microscopic configurations

of the system takes place randomly with an exponential waiting-time distribution. Diffu-

sion is modelled by jump processes between neighbouring lattice sites. D is the elementary

(attempt) rate of hopping and is assumed to be the same for both species A, B of particles.

In the absence of other particles D is the self-diffusion coefficient for the mean-square dis-

placement along a channel. If a neighboring site is occupied by a particle then a hopping

attempt is rejected (single-file effect). The dynamics inside a channel are thus given by

the symmetric exclusion process [16–19] which is well-studied in the probabilistic [20] and

statistical mechanics literature [21]. The self-diffusion along a channel is anomalous, the

effective diffusion rate between intersection points decays asymptotically as 1/L, see [18]
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and references therein.

At the intersections the reaction A → B occurs with a reaction rate c. This reaction rate

influences, but is distinct from, the effective grain reactivity which is largely determined

by the residence time of guest molecules inside the grain which under single-file conditions

grows in the reference system with the third power of the channel length L [18, 22]. At the

boundary sites particles jump into the reservoir with a rate D(1 − ρA − ρB) in the general

case. Correspondingly particles are injected into the grain with rates DρA,B respectively.

As discussed above here we consider only ρA = ρ, ρB = 0.

For the REF system A and B particles are allowed to enter and leave both types of

channels, the blue (α) and red (β) ones (Fig. 2 left). In case of MTC A(B) particles

will enter α(β)-channels only, mimicking complete channel selectivity. Therefore all channel

segments carry only one type of particles in the MTC case. For the boundary channels

complete selectivity implies that α-channels are effectively described by connection with an

A-reservoir of density ρA = ρ (B-particles do not block the boundary sites of α-channels)

and β-channels are effectively described by connection with a B-reservoir of density ρB = 0,

respectively. (A-particles do not block the boundary sites of β-channels.) This stochastic

dynamics, which is a Markov process, fully defines the NBK model.

In both cases, MTC and REF system, the external concentration gradient between A and

B reservoir densities induces a particle current inside the grain which drives the system into

a stationary nonequilibrium state. For this reason there is no Gibbs measure and equilibrium

Monte-Carlo algorithms cannot be applied for determining steady state properties. Instead

we use dynamic Monte-Carlo simulation (DMCS) with random sequential update. This

ensures that the simulation algorithm yields the correct stationary distribution of the model.

III. MTC IN 3D WITH LARGE REACTIVITY

Anticipating concentration gradients between intersection points we expect due to the

exclusion dynamics linear density profiles within the channel segments [13, 17, 21], the slope

and hence the current being inversely proportional to the number of lattice sites L. The

total output current j of B particles, defined as the number of B-particles leaving the grain

per time unit in the stationary state, is the main quantity of interest. It determines the

effective reactivity of the grain.
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We are particularly interested in studying the system in its maximal current state for

given reactivity c and size constants N , L, which are intrinsic material properties of a given

grain. The A particle reservoir density ρ, determined by the density in the gas phase, can be

tuned in a possible experimental setting. Let us therefore denote the reservoir density which

maximizes the output current by ρ∗ and the maximal current by j∗. For MTC systems as

defined above we always expect ρ∗
MTC = 1, since the highly charged entrances of α-channels

do not block the exit of B-particles and hence do not prevent them from leaving the system.

In order to measure the efficiency of a MTC system over the associated REF system we

define the efficiency ratio

R(c, N, L) =
j∗MTC

j∗REF

(1)

which is a function of the system size N , L and reactivity c.

Let us now discuss the fast reactivity case. The penetration of A particles is controlled

by c and in the limit of c → ∞ A particles entering the system will be converted as soon as

they reach the first intersection. Therefore, only the first and the last plane of β-channels

contribute to the B particle output. The profile as well as the B particle output is fully

determined by the intersection densities ρ(x,y). Fig. 2 (right) shows the top view of the first

plane indicating our notation of the densities and currents. α-channels point into the plane

and are not displayed. The current of an α-channel segment connecting the reservoir with

intersection ρ(x,y) is denoted by jA
(x,y). For an analysis of the Master equation for this process

we neglegt correlations between the occupancy of a catalytic site and its five neighbours.

This mean field approximation is motivated by exact results for the correlations in the

stationary state of the symmetric exclusion process from which it is known [21] that nearest

neighbour correlations in the vicinity of the boundary of a system of size L are of order

1/L2. Within mean field we replace joint probabilities 〈xy〉 by the product 〈x〉 〈y〉. For the

stationary state we identify the following currents,

jA
(x,y) = D

ρ
(
ρ(x,y) − 1

)
L

(
ρ(x,y) − 1

) − 1
(2)

j−(x,y) = D
ρ(x+1,y) − ρ(x,y)

L + 1
(3)

j
|
(x,y) = D

ρ(x,y+1) − ρ(x,y)

L + 1
(4)
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where ρ is the reservoir density of A particles. Using conservation of currents

jA
(x,y) + j−(x+1,y) + j

|
(x,y+1) = j−(x,y) + j

|
(x,y) (5)

leads to a set of quadratic equations for the intersection densities ρ(x,y). For large L one of

the two solutions reduces to a discrete Poisson equation.

ρ(x,y) =
1

4

(
ρ(x+1,y) + ρ(x−1,y) + ρ(x,y+1) + ρ(x,y−1) + ρ

)
. (6)

The other solution ρ(x,y) = 1 demonstrates the fact that due to exclusion only one

particle per site is allowed. (6) can be solved by use of the discrete sine transform

ρ̃(q,p) =
∑N

x=1

∑N
y=1 ρ(x,y) sin qπx

N+1
sin pπy

N+1
. We express (6) in terms of the transformed density

ρ̃(q,p). Taking into account the boundary conditions ρ0,y = ρx,0 = ρx,N+1 = ρN+1,y = 0 with

0 ≤ x, y ≤ N + 1 we find

ρ̃(q,p) =
2ρ

cos qπ
N+1

+ cos pπ
N+1

− 2

N∑
n=1

N∑
m=1

sin
qπn

N + 1
sin

pπm

N + 1
. (7)

The non zero contributions of the double sum can be expressed as a product of two Cotan-

gens. Transforming back finally yields

ρ(x,y) ≡ ρM(x,y) = − 2ρ

(N + 1)2

N∑
n=1

N∑
m=1

B(n,m)

(cos nπ
N+1

+ cos mπ
N+1

− 2)
sin

nπx

N + 1
sin

nπy

N + 1
(8)

B(n,m) =




0 if n or m even

cot mπ
2(N+1)

cot nπ
2(N+1)

else
(9)

However, similar to MTC in 2D [13], increasing the boundary density ρ eventually leads

intersections to saturate starting from the most inner one. Thus, (8) is true only for small

ρ. To be more precise (8) is a solution for 0 ≤ ρ ≤ 1
M([N+1]/2,[N+1]/2)

. A further increase

of ρ eventually leads other intersection to saturate. Fig. 3 shows the theoretical densities

(system with N = 5-channels) as a function of ρ. We identify different regimes of saturating

intersections. We observe a grouping {(1, 1)}, {(1, 2), (1, 3)} and {(2, 2), (2, 3), (3, 3)} which

is also supported by simulations (Fig. 4 same system size and slightly different model rates),

where only intersections of the last group saturate. The smoothness of the simulated curves

is due to finite-size effects which are not captured within mean field theory.

The situation is similar to the case in two dimensions. The main constrained of the MTC

system becomes apparent as we consider large reactivities. The output is mainly determined
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FIG. 3: Theoretical intersection densities for a lattice of N = 5. The regimes of saturating

intersections are indicated.

FIG. 4: Simulated intersection densities for a lattice of N = 5 and L = 10.
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by two planes of β-channels. B particles leave the system through 8N channel segments. In

the reference system the output is proportional to N2. Therefore a MTC effect is expected

only for systems with small number of channels. Increasing the distance L would in principle

favor MTC systems but reduces the absolute output. Simulations also show no evidence for

a qualitative different picture compared to MTC in 2D.

For fixed moderate c this extreme situation is not realized, but nevertheless with increas-

ing N one expects that the bulk gets increasingly depleted, since in each layer a fraction of

A particles is converted into B particles. Thus fo lage N the total A-density in each layer

may be described in a continuum desciption by the form

d

dx
NA(x) = −γNA(x) (10)

for the number NA(x) of A-particles in layer x predicts an exponential decrease of the A

density, leaving only an active boundary layer of finite thickness

ξ = 1/γ ∝ 1/c (11)

at the top and bottom respectively of the (in our simulation three-dimensional) grain. Hence,

as a function of N , j∗MTC saturates at some constant

lim
N →∞

j∗MTC(c, N, L) = C∗
MTC(c, L). (12)

On the other hand, in the REF system the output current scales linearly with increasing

N for all, even large, c. This is because even though again the bulk depletes with increasing

N the active boundary layer is a surface scaling linearly with N . Thus

lim
N →∞

j∗REF (c, N, L) = NC∗
REF (c, L) (13)

Hence

R(c, N, L) ∝ 1/N (14)

and the MTC effect vanishes at some N for fixed reactivity c and channel length L.

IV. CONCLUSION

We have generalized the two-dimensional NBK-model for molecular traffic control to

three space dimensions. We have focussed our attention on the case of short intersecting
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channels between catalytic centers which is the relevant setting from an applied perspective.

Inspired by large deviation theory for nonequilibrium steady states and using exact results

for the SEP we reduce the large number of freedom to a system of equations for the effective

densities at the reaction sites. Our analytical treatment for large reactivities yields stationary

density profiles which are suppoted by simulations. As in two dimensions [13] a sequence of

surface induced saturations of the reaction sites inside the crystallite sets in. This leads to

nonanalytical changes of the output of product molecules as a function of the input rate of

reactands.

For moderate reactivities we obtain an exponentially decreasing loading as one probes

the system further away from the boundary where reactands are adsorbed. The localization

length is inversely proportional to the local reaction rate. As a consequence, the effective

reactivity of crystallites with a diameter larger than the localization length does not scale

with the surface area of the crystallite, but only with the diameter. Therefore, for moderate

and high local reactivities and grain sizes currently used in industrial processes one expects

no reaction enhancement through the MTC effect. However, as proposed in [23], nano-sized

grains do exhibit this phenomenon and are thus potential candidates for exploiting MTC.
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