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ABSTRACT 

 

The weather environment has a significant impact on the reliability of a power system 

due to its effect on the system failure mechanisms of overhead circuits and on the 

operational ability of an electric power utility. The physical stresses created by weather 

increase the failure rates of transmission or distribution lines operating in adverse 

weather conditions, resulting in increased coincident failures of multiple circuits. 

Exceptionally severe weather can cause immense system damages and significantly 

impact the reliability performance. Recognition of the pertinent weather impacts clearly 

indicates the need to develop appropriate models and techniques that incorporate 

variable weather conditions for realistic estimation of reliability indices. 

 

This thesis illustrates a series of multi-state weather models that can be utilized for 

predictive reliability assessment incorporating adverse and extremely adverse weather 

conditions. The studies described in this thesis are mainly focused on the analyses using 

the three state weather model. A series of multi-state weather models are developed and 

utilized to assess reliability performance of parallel redundant configurations. The 

application of weather modeling in reliability evaluation is illustrated using a practical 

transmission system. The thesis presents an approach to identify weather specific 

contributions to system reliability indices and illustrates the technique by utilizing a test 

distribution system. The analysis of a range of reliability distributions with regard to 

major event day segmentation is presented.  

 

The research work illustrated in this thesis clearly illustrates that reliability indices 

estimated without recognition of weather situations are unrealistic and that at minimum 

the three state weather model should be applied in reliability evaluation of systems 

residing in varying weather environments. The conclusions, concepts and techniques 

presented in this thesis should prove useful in practical application. 
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Chapter 1 
 

INTRODUCTION 
 

 
1.1  Background 
 

Electric power transmission systems are among the most complex networks and the 

largest systems that exist in the world. The electrical power industry is undergoing 

considerable changes with respect to structure, operation, re-regulation and deregulation. 

Networking with neighbouring power systems is highly utilized in order to assure 

supply continuity and to achieve economic system operation. Transmission systems are 

highly interconnected and modern utilities purchase economic energy from sources 

outside their own systems. Transmission systems often traverse a long distance to 

transport the energy over various networks to load centres. Parallel redundancy of 

transmission lines is a common way of improving the reliability of power supply. 

Multiple transmission line outages can significantly alter the transmission system 

operating configuration and possibly result in supply interruptions to a large number of 

customers. One of the major causes of transmission line outages is extreme adverse 

weather conditions.  

 

Power supply interruptions to consumers are generally due to problems that arise in the 

distribution system or the bulk power system. Experience indicates that disturbances on 

the bulk system are rare but have a great impact when they do occur. On the other hand, 

problems occurring in the distribution system are relatively frequent and impact smaller 

numbers of customers. Distribution systems are usually concentrated in small 

geographic areas and therefore are directly affected by prevailing adverse weather 

situations.  
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In the past, electric utility customers have tended to tolerate service disturbances with 

relatively few complaints. In the current electricity market, consumers are using more 

sophisticated computerized processes and are becoming increasingly sensitive to power 

interruptions. Customers in a competitive energy market may require different levels of 

supply reliability at the lowest associated cost. The balance between the reliability and 

economic aspects can be achieved by integrating reliability evaluation into the planning, 

design and operating phases.   

 

 

1.2  Power system reliability evaluation 
 

Power system reliability refers to the ability of the system to satisfy the system load 

requirement as economically as possible and with a reasonable assurance of continuity 

and quality. It involves the two basic aspects of system adequacy and system security as 

shown in Figure 1.1. System adequacy relates to the existence of sufficient facilities 

within the system to meet the consumer demand, whereas system security refers to the 

ability of the system to respond to disturbances arising within the system [1].   

 

 

 

 

 

 

 

Figure 1.1  System adequacy and system security 

 

A complete power system is composed of the main three functional segments designated 

as generation, transmission and distribution. A reliability study can be done within an 

individual functional zone or the zones can be combined to form hierarchical levels. 

Hierarchical Level I (HLI) analyses are concerned only with generating capacity 

adequacy. The ability of the generation and transmission systems to perform their 

system reliability 

system adequacy system security 
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function is designated as HLII analysis. An overall assessment considering all three 

functional segments is known as HLIII analysis. Reliability evaluation in this thesis is 

limited to the domain of adequacy assessment within the transmission and distribution 

functional zones. 

 

Reliability analysis of a power system can be conducted using either deterministic or 

probabilistic techniques. The early techniques used in practical application were 

deterministic and some of them are still in use today. The basic weakness inherent in the 

deterministic methods is the inability to respond or recognize the stochastic or random 

nature of component failures, customer demands or the overall system behaviour. These 

limitations have led utilities to apply probabilistic approaches that overcome these 

problems. Probabilistic methods are now reasonably well developed and most modern 

power utilities extensively apply these techniques. The research described in this thesis 

extends the probabilistic evaluation of transmission and distribution systems by 

incorporating adverse weather considerations.   

 
 
 
1.3  Importance of weather considerations in reliability assessment 

 

Transmission and distribution systems are usually overhead facilities that operate in a 

wide range of weather conditions.  The failure rates of transmission and distribution 

lines are greatly enhanced in severe weather situations. Adverse weather conditions such 

as gales, lightning, snow, frost, icing, high wind, etc. can significantly increase the 

likelihood of multiple overlapping outages. The coincident failure of multiple circuits 

during these periods is generally known as failure bunching. Failure bunching in 

transmission or distribution systems can significantly impact the reliability performance. 

 

There is a number of reliability indices traditionally used to quantify reliability 

performance at different levels. The fundamental load point indices are the average 

failure rate, outage duration and annual outage time.  The most commonly used 

reliability indices to measure aggregate electric power utility performance are the 
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System Average Interruption Frequency Index (SAIFI), the System Average 

Interruption Duration Index (SAIDI), the Customer Average Interruption Duration Index 

(CAIDI), and the Index of Reliability (IOR) [2]. Additional system indices together with 

their definitions are presented in [1].  

 

The Canadian Electricity Association (CEA) classifies the causes of power interruptions 

into ten groups. These are designated as adverse weather, scheduled outage, loss of 

supply, tree contact, lightning, defective equipment, human element, foreign 

interference, and other/unknown [2]. Adverse weather is one of the major causes of 

power interruptions. The CEA publishes an annual Service Continuity Report on 

Distribution System Performance in Electrical Utilities. The individual utility data are 

confidential to the members. The overall Canadian performance is, however, provided in 

the annual report and includes details on outage causes and relevant indices. The report 

presents the annual reliability indices of SAIFI, SAIDI, CAIDI and IOR together with 

the interruption cause contributions for the participating utilities and for Canada as a 

whole. Figures 1.2-1.3 present the Canadian individual cause contributions to SAIFI, 

SAIDI and CAIDI for 2003 [2].  
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Figure 1.2  Contributions to SAIFI for 2003 
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Figure 1.2 shows the contributions to SAIFI for each of the ten cause codes. The values 

shown in the parentheses are the percentages of interruptions. The total SAIFI for the 

year was 2.67. Figure 1.2 shows that adverse weather caused approximately 15% of the 

total interruptions and contributed 0.35 to the total SAIFI.  

 

Figure 1.3 shows the contributions to SAIDI and CAIDI for 2003. The total SAIDI was 

10.65 hours per year, which represents a substantial increase of 61.9% over the 2002 

figure of 4.06 hours. This increase was primarily due to the August 14th blackout and 

Hurricane Juan. The contribution of adverse weather in 2003 was 13%. The average 

customer interruption duration per interruption (CAIDI) was 3.99 hours. The CAIDI 

associated with adverse weather conditions was 7.01 hours, and as shown in Figure 1.3, 

is the largest cause code contribution.  
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Figure 1.3  Contributions to SAIDI and SAIFI for 2003 

 

Figures 1.2-1.3 clearly illustrate that adverse weather has a significant impact on overall 

system reliability. The CEA 2000 Service Continuity Report [3] states that the SAIFI in 

1998 was 3.58 and was 2.40 with the ice storm excluded. The storm had an even greater 
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impact on the SAIDI, which was 30.31 hours in total and 3.32 hours excluding the ice 

storm. Extraordinary events such as “ Ice Storm 98”  are designated as major events and 

are normally excluded from an assessment of basic utility performance and reviewed 

separately. 

 

The above comments illustrate the impact of adverse weather on power system 

reliability as a whole. The British Electricity Board noted that virtually all the failures in 

their distribution systems occur in adverse weather conditions, such as lightning, wind, 

and ice storms [4].  A study of data (1986-1990) from Alberta Power Limited (APL) 

illustrates that, for 144kV transmission lines, about 33% of all interruptions were caused 

by adverse weather. In the case of 240kV lines, 45% of all outages were due to adverse 

weather situations. An analysis of APL’s bulk electric system for the period 1988-1991 

revealed that among the weather related outages, 61% were credited to lightning, 35% 

were due to wind and wet snow, and 4% were caused by frost and icing [5]. These data 

bases are insufficient to generalize the effects of a specific weather condition, but they 

clearly indicate that a large proportion of outages are attributable to abnormal weather 

periods.  

 

The number of customers interrupted, the extent of damage to plant and the duration of 

outages due to problems created by weather conditions vary considerably due to factors 

such as weather severity levels, density of customers, system infrastructures, topology 

etc. Extreme adverse weather situations and their implications for various utilities based 

on the 44 responses of six participating utilities in a survey conducted by the Edison 

Electric Institute (EEI) are shown in Tables A.1-A.3 [6] in Appendix A. This clearly 

shows the magnitude of physical destruction, the number of customers out of service 

and the periods of supply interruption.  

 

A great deal of experience indicates that most customer supply interruptions are due to 

failures that occur in the distribution system. It has been observed that in Canada, 

customer interruptions caused by generation and transmission system outages constitute 

approximately twenty percent of the total customer interruptions. The remaining eighty 
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percent of the interruptions are due to distribution system failures [7]. This is primarily 

due to the localized effect of the weather environments in which the distribution systems 

are situated. It is, therefore, important to incorporate the weather conditions in reliability 

evaluations of transmission and distribution systems and recognize the impact on the 

resulting reliability of the overall power systems. 

 
 
 
1.4  Historical development of weather effect considerations 
 

The basic concepts of incorporating weather-related failures were first introduced in [8] 

with an application to a two-component redundant system. This paper proposed a two 

state weather model to consider adverse weather in the calculation of the system failure 

rate. It was stated that the assessment of system failure rate without considering weather 

conditions could be quite optimistic. The techniques presented initiated considerable 

future research work in quantitative reliability assessment of transmission and 

distribution systems.  

 

The ideas presented in [8] can be applied to distribution or transmission systems 

residing in common weather environments. Failure bunching evaluation is difficult to 

conduct for transmission systems that occupy large geographic areas and traverse a wide 

range of weather conditions. This problem was addressed in [9] by incorporating 

regional weather effects on large-scale systems with transmission lines passing through 

different geographical regions having different weather conditions. 

 

References 8 and 10 provided the basic framework for the developments in [11, 12]. A 

three state weather model was postulated in [11] in order to incorporate the effect of 

severe storm disasters, which were not considered in [8]. Reference 11 also applied the 

technique to a three line parallel redundant system using a two weather state model. The 

effects of weather on common mode failures are illustrated in [13]. A previously 

published three state weather model [14] is extended to multi-state weather models in 
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[15] in which the continuously varying weather is incorporated more precisely and 

illustrated using a range of multi-state weather models. 

 
 
 
1.5  Evaluation method 
 

The application of probability techniques for transmission and distribution system 

reliability evaluation was introduced in [8, 16] using a series of approximate equations. 

These publications presented methods for calculating the failure frequency, the average 

outage duration and the unavailability of simple series and parallel systems. The 

application of Markov processes to transmission system reliability evaluation was 

introduced in [10]. This paper noted that the developed approximate equations did not 

provide consistent results.  These equations were modified in [11, 12] where the Markov 

method was used as the standard evaluation approach against which the accuracy of the 

approximate equations was assessed. The equations were further modified in [14] and 

results were shown to be more accurate than those presented in previous literature. The 

Monte Carlo Simulation technique was used in [9] in order to incorporate the regional 

weather effects. In this thesis the Markov approach [10, 17] which is regarded as a 

benchmark method in power system reliability, is utilized to develop and illustrate a 

series of weather models. 

 
 
 
1.6  Research objectives 
 

The primary objectives of the research work described in this thesis are to examine the 

existing weather models and extend them to reflect the effect of continuously changing 

stress created by weather in reliability assessment of transmission and distribution 

systems. The research in this area was initiated in the 1960s, and significant 

developments have been made since that time. The research described in this thesis can 

be regarded as a continuation of the work that was recently presented in [18] at the 

University of Saskatchewan. Previous studies have incorporated the effects of adverse 

and major adverse weather by developing two and three weather state models. These 
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models were explicitly examined using a two line parallel redundant system. This thesis 

examines these models using both two component and three component parallel 

configurations. It also examines the impact of incorporating weather considerations on 

the customer related reliability indices of a practical distribution system. The research 

described in this thesis extends the existing weather models to multi-state weather 

models in order to recognize the range of weather severity levels. An additional 

objective is to investigate the separate contributions of individual weather states to the 

unreliability of a system. The research also examines the underlying lognormal 

distribution assumptions used in IEEE Standard 1366 [19] to classify major event days 

associated with widespread customer outage situations. 

 

 

1.7  General overview of the thesis 
 

This thesis is divided into eight chapters. Following the introduction in Chapter 1, 

Chapter 2 introduces the basic concepts of weather modeling. Reliability evaluation of a 

two component redundant system and a three component redundant system 

incorporating normal and adverse weather is described using the Markov approach. The 

results are presented by the fundamental reliability indices of failure rate, outage 

duration and unavailability. 

 

Chapter 3 describes the consideration of extreme weather conditions. A two component 

parallel system and a three component parallel system are analysed to examine the effect 

of incorporating extreme weather conditions utilizing the Markov approach. A number 

of systems with different failure rates and repair times residing in the same weather 

environment are studied to examine the effects of weather considerations. The impact of 

the frequency of occurrence and duration of the extreme weather is discussed.  

 

Chapter 4 illustrates the application of weather modeling to a practical transmission or 

distribution system. The significance of using the two state and three state weather 

models over the conventional single state representation in evaluating load point indices 
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and system indices is presented. A comparative illustration of results obtained for 

different weather models is provided. 

 

Chapter 5 presents the concept of creating a multi-state weather model as a direct 

extension of the three weather state model described in Chapter 3. A series of multi-state 

weather models are developed and used to predict the basic reliability indices of the 

system failure rate, outage duration and unavailability. The influence of incorporating 

multi-state weather models is illustrated using Error Factor curves.  

 

Chapter 6 introduces an approach to segment the reliability indices into a series of 

weather specific indices. The system performance indicators SAIFI and SAIDI are 

divided into the three segments of normal weather, adverse weather and extreme 

weather indices. A test distribution system is used to illustrate the method introduced in 

this chapter. The impact of the time to repair following the system outage due to 

extreme weather is illustrated. The studies also discuss the effects of the frequency of 

occurrence of major adverse weather. The influence of coincident multiple circuit 

failures inherent in radially operated distribution systems is described. 

 

Chapter 7 briefly discusses the methods of classifying a Major Event Day [19]. A set of 

theoretical reliability distributions and a number of histograms associated with utility 

data are presented and the applicability of the lognormal distribution used in [19] is 

discussed.   

 

Chapter 8 presents the summary of the thesis and highlights the conclusions.  
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Chapter 2 
 

BASIC WEATHER MODELING CONCEPTS 

 

2.1  Introduction 
 

Electrical transmission and distribution networks exist in the two basic forms of 

underground facilities using cables and overhead facilities on appropriate tower 

structures. Cables normally operate in a relatively stable environment, while overhead 

circuits operate in a wide range of weather conditions and are subjected to varying 

degrees of physical stress due to continuously changing weather patterns. The variation 

in stress manifests itself in terms of highly variable overhead line failure rates. The 

stress created by severe weather is much higher than in fair weather and increases with 

the bad weather intensity level, leading to increases in line failure rates. The likelihood 

of coincident line failures during high stress periods increases significantly. The 

phenomenon of multiple line failures during these periods is generally referred to as 

failure bunching. It is important to appreciate that these overlapping failures are 

independent events and should not be misunderstood as common mode failures which 

are an entirely different failure process in parallel circuits on common tower structures. 

 

Parallel redundancy of transmission or distribution elements is a common way of 

improving the reliability of power supply. As noted earlier, overhead circuits are under 

the influence of the weather environment to which they are exposed; therefore, 

reliability assessments without recognizing weather conditions can be highly optimistic 

and erroneous. This chapter describes basic concepts of weather modeling and illustrates 

the inclusion of weather conditions in reliability analyses of parallel redundant systems. 
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2.2  Two state weather modeling 
 

The failure rate of a transmission or distribution line is a continuous function of the 

weather conditions. It is not realistic to attempt to model and collect data for all possible 

weather intensity levels. IEEE Standard 346 divides the weather environment into three 

classes designated as normal weather, adverse weather and major storm disaster [20].  

 

Normal weather: It includes all weather conditions not designated as adverse or 

major adverse weather. 

 

Adverse weather: Designates weather conditions which cause an abnormally 

high rate of forced outages for exposed components while such conditions 

persist, but do not qualify as major storm disasters. Adverse weather conditions 

can be defined for a particular system by selecting the proper values and 

combinations of conditions reported by the weather bureau: thunderstorms, 

tornadoes, wind velocities, precipitation, temperature etc. 

 

Major storm disaster: Designates weather which exceeds design limits of plant 

and which satisfies all of the following: 

� extensive mechanical damage to plant 

� more than a specified percentage of customers out of service 

� service restoration times longer than a specified time 

 

The utilization of a two state fluctuating weather model [8] was a major step in 

recognizing the failure bunching phenomenon and provided the basic framework to 

include multi-state weather conditions. The following describes the consideration of two 

weather conditions designated as normal and adverse weather. 

 

Randomly occurring weather conditions can be represented as shown in Figure 2.1. 
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Figure 2.1  Chronological weather pattern 

 

In Figure 2.1, 

  in = duration of the thi normal weather period 

  ia = duration of the thi adverse weather period 

 

The adverse weather periods are assumed to occur randomly and the probability 

distributions associated with the weather durations are assumed to be exponential. The 

randomly occurring normal and adverse weather periods can be modeled by the periodic 

weather pattern shown in Figure 2.2.  

 

In Figure 2.2,       

        N  = average duration of normal weather 

                 A  = average duration of adverse weather 

 

 

 
Figure 2.2  Average weather profile 
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Provided that the necessary conditions are valid, the fluctuating weather can be 

represented by the Markov model shown in Figure 2.3. The basic concepts of the 

Markov approach are given in [17]. The weather statistics required for the two state 

weather model are the average durations of normal weather and adverse weather. 

 

 

Figure 2.3  Two state weather model 

 

 

2.3  Failure rate considerations 
 

The normal and adverse weather failure rates are expressed in failures per year of time 

in the respective weather state, not in the number of failures per year.  The average 

failure rate and the weather specific failure rates are related as shown in Equation 2.1. 

avgλ = 'λλ an PP +       (2.1) 

     where,  

avgλ  = average component failure rate expressed in failures per year  

  )( ANNPn +=  = steady state probability of normal weather 

  )( ANAPa +=  = steady state probability of adverse weather 

  λ  = failure rate expressed in failures per year of normal weather 

 λ ′  = failure rate expressed in failures per year of adverse weather 

 

It is extremely difficult to determine the transmission line failure rates associated with a 

particular weather condition from available historical data. They can, however, be 

estimated using Equations 2.2 and 2.3 using the fraction of the total number of failures 

that can be attributed to adverse weather (F) and normal weather (1-F).  

   

na  = 1/A 

an  = 1/N 
Normal 
weather 

(N) 

Adverse 
weather 

(A) 
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navg PF )1( −= λλ       (2.2) 

  aavg PFλλ ='                     (2.3) 

 

Figure 2.4 shows the two state representation of the component failure rate. 

 

 

Figure 2.4  Failure rate representation in the two state weather model 

 

 

2.4  Evaluation techniques 
 

There are various techniques that can be employed to incorporate the failure bunching 

effect of the weather environment. The basic approximate equation approach was 

initially introduced to recognize weather effects. It is probably the most popular method 

in practical application. One of the reasons behind its popularity is that this two state 

weather representation can be easily included in existing software applications.  

 

The two state weather model has been used for many years [8, 10]. It has been realized, 

however, that the two state model does not fully reflect the actual weather severity. This 

led to the development of three or more state weather models. Three state weather 

modeling is illustrated in [14, 18]. An important conclusion drawn from these 

publications is that numerical results obtained using the approximate approach are 

inconsistent. In certain cases, relatively wide assumptions are made to simplify the 

equation derivation process and the representation of actual system behaviour may be 

lost.   
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On the other hand, the Markov approach reflects the stochastic system behaviour with 

relatively few assumptions. The most relevant assumptions are that the time duration of 

each system state is exponentially distributed, and the transition rates are constant. One 

disadvantage of this approach is that the number of system states increases significantly 

as the failure modes or the number of system components increase. In this thesis, only 

two or three components are considered in the failure bunching process and the system 

element is represented by the two operating states designated as up and down. When a 

system model contains a large number of states, it can be solved using a relatively 

simple computer program. The weather modeling studies in this chapter and in the 

subsequent chapters were analysed using the Markov approach.  

 
 
 
2.5  Markov analysis of a two component system  
 

Figure 2.5 shows the system state space diagram of a two component system with a two 

state weather model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  System state space diagram with a two state weather model 
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The letters U and D inside the rectangles in Figure 2.5 denote the component currently 

being in the up-state (operating) and down-state (failed) respectively. The parameters 

an and na are the transition rates between normal and adverse weather. The failure rates 

in normal and adverse weather areλ and 'λ  given by Equation 2.2 and Equation 2.3 

respectively and µ  is the repair rate in normal weather, which is the reciprocal of the 

component repair time. The repair activity is assumed to be carried out only in normal 

weather. The repair rate in the adverse weather state is therefore zero. 

 

The steady state probabilities can be determined using the frequency balance approach. 

The procedure is described in detail in [17]. 

 

0)( 53221121 =−−−++ PaPPPn na µµλλ      (2.4a) 

  0)( 64222111 =−−+++− PaPPnP na µλµλ      (2.4b) 

0)( 73214112 =−+++−− PaPnPP naµλµλ      (2.4c) 

 0)( 84213122 =−+++−− PaPnPP naµµλλ      (2.4d) 

0)( 5121 =′+′++− PaPn na λλ              (2.4e)                               

0)( 62512 =′++′−− PaPPn na λλ       (2.4f) 

0)( 71523 =′++′−− PaPPn na λλ       (2.4g) 

0871624 =+′−′−− PaPPPn na λλ       (2.4h) 

 

Equation 2.4 is a system of dependent simultaneous equations and therefore, to solve for 

the eight variables, an additional independent equation is needed. This additional 

equation is 

187654321 =+++++++ PPPPPPPP                    (2.5) 

The above linear equations can be expressed in the matrix form: 

 
[ ][ ] [ ]0=PbX                                          (2.6) 
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where,  

[ ]Pb = Transpose of [ ]87654321 PPPPPPPP  

 

[ ]X = 
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Equation 2.5 can be substituted for any Equation from 2.4a to 2.4h. If Equation 2.4h is 

replaced by Equation 2.5, each element in the last row of the matrix [X] becomes 1 and 

the system of equations is represented by Equation 2.7. 

 
[ ][ ] [ ]YPbX =        (2.7) 

where,  

[ ]Y  = Transpose of [ ]10000000  

 
 Now, [ ] [ ] [ ]YXPb 1−=        (2.8) 

 

The stochastic transitional probability matrix possesses a feature that can be employed 

in order to obtain matrix [X]. The stochastic transitional probability matrix constructed 

using the state space diagram shown in Figure 2.5 is as follows. 
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[ ]P =  























−
−−

−−
−−−

−−−
−−−

−−−
−−−

nn

nn

nn

nn

aa

aa

aa

aa

aa

aa

aa

aa

nn

nn

nn

nn

1000000

100000

010000

01000

00010

00010

00001

00001

'
1

'
1

'
2

'
2

'
2

'
1

'
2

'
1

2112

1212

2211

2121

λλ
λλ

λλλλ
µµµµ

λµλµ
λλµµ

λλλλ

 

 

The matrix [X] can be produced by subtracting the transpose of [P] from the identity 

matrix.  

[ ] [ ]−= IX Transpose of [ ]P       (2.9) 
 

The probabilities associated with each state can also be determined using limiting state 

probability analysis [17].  

 

The system failure rate can be obtained using the stochastic transitional probability 

matrix [17]. The system states 4 and 8 represent the down state for the two component 

parallel redundant system. If the rows and columns corresponding to the system down 

states are removed, the resulting matrix is [Q] as given below. 
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The truncated matrix [Q] is subtracted from the identity matrix and inverted. Equation 

2.10 gives the resulting matrix [N]. 

 [N] = 
1

][
−

− QI        (2.10) 

State 1 is considered to be the starting state. The total expected time before entering the 

absorbing state is the Mean Time To Failure (MTTF) and is obtained by summing the 

first row of the matrix [N]. 

MTTF = ∑ =

6

1 ,1i iN         (2.11) 

The average system failure rate, designated as Wλ , is the reciprocal of the MTTF as 

shown in Equation 2.12. 

 MTTFW 1=λ         (2.12)    

The average system outage duration )( Wr is the average time spent in the down state and 

is obtained by dividing the cumulative probability of the failed state by the frequency of 

encountering the failed state. It is shown in Equation 2.13. 

)( 214

84

µµ +
+

=
P

PP
rW                     (2.13) 

The average system unavailability )( WU  is the probability of the system being in the 

down state. Equation 2.14 gives the unavailability for the two component parallel 

redundant system. 

84 PPUW +=                  (2.14) 

The average system unavailability is usually expressed in hours per year by multiplying 

WU  by 8760 hours per year. 
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2.6  Markov analysis of a three component system 

 

The state space diagram for the three component system residing in two weather states is 

shown in Figure 2.6. The absence of a repair rate in the adverse weather state indicates 

that repair is not considered during adverse weather. The individual state connections 

between the two different weather conditions are not shown. The two thick arrows 

between the two weather states indicate these transitions. For example, consider state 1 

and state 9. States 1 and 9 represent the system states in which both components are in 

the up-state, but are in two different weather conditions. The parameter an indicates the 

transitions from state 1 in normal weather to state 9 in adverse weather. Similarly 

na demonstrates the transitions from state 9 to state 1. Likewise, states 2 and 10, 3 and 

11, 4 and 12 and so on form the set of similar operating states and are defined similar to 

that described for the set of states 1 and 9. 

 

The average system failure rate can be evaluated using the transitional probability 

matrix associated with the state space diagram in Figure 2.6. The procedure is similar to 

that described for the two component system in Section 2.5. The stochastic transitional 

probability matrix is given in Appendix B.1. The system MTTF is used to obtain the 

average system failure rate as shown in Equation 2.15. System states 8 and 16 are the 

down states for redundant operation of the three component system. The average system 

outage duration and unavailability are calculated as shown in Equation 2.15. 

 

MTTFW 1=λ         (2.15a) 

)( 3218

168

µµµ ++
+

=
P

PP
rW       (2.15b)      

168 PPUW +=       (2.15c) 
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Figure 2.6  State space diagram for a three component system 
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2.7  Sensitivity study 

 

The simple transmission system shown in Figure 2.7 is used to illustrate the application 

of two state weather modeling. In the following analysis, transmission lines 1 and 2 are 

used to form a two line parallel configuration, or a second order mincut. Line 3 is added 

to form a three line parallel system, or a third order mincut. A mincut can be defined as 

the assembly of system components in which all components must fail to cause the 

system to fail. 

 

 

 

Figure 2.7  A simple parallel transmission system 

 

The following data are used in the analysis:  

Average failure rate for each component = 1.0 f/yr 

Average repair time for each component = 7.5 hrs      

Average duration of normal weather = 200 hrs 

Average duration of adverse weather = 2 hrs 

The system failure rate of the two line system without considering weather conditions 

can be evaluated using the Markov approach or approximated by Equation 2.16 [17]. 

Similarly Equation 2.17 can be used to determine the average system failure rate of the 

three line parallel system.  

  

Two line parallel system:   ( )2121 rrsystem += λλλ     (2.16) 

Three line parallel system: ( )133221321 rrrrrrsystem ++= λλλλ  (2.17) 

2 

3 

1 

Supply 
Load 
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The ratio of the system failure rate considering weather effects )( Wλ  and the system 

failure rate without incorporating weather conditions ( systemλ ) is designated as the Error 

Factor as expressed by Equation 2.18  

Error Factor = 
system

W

λ
λ

       (2.18) 

Table 2.1 shows the weather specific failure rates, average system failure rate and Error 

Factor for the two component parallel redundant system. The percentage of line failures 

occurring in adverse weather is varied from 0 to 100% in 10% increments.  

  
 

Table 2.1 Failure rate and Error Factor for a second order mincut 

% of line 
failures in 
adverse 
weather 

Normal 
weather 

failure rate 
( λ ) 

Adverse 
weather 

failure rate 
( 'λ ) 

System failure rate 
( Wλ ) 

(failures/yr) 
Error Factor 

0 1.010 0.00 0.0017 1.01 
10 0.909 10.10 0.0022 1.27 
20 0.808 20.20 0.0035 2.06 
30 0.707 30.30 0.0058 3.37 
40 0.606 40.40 0.0089 5.18 
50 0.505 50.50 0.0128 7.48 
60 0.404 60.60 0.0176 10.27 
70 0.303 70.70 0.0232 13.52 
80 0.202 80.80 0.0295 17.25 
90 0.101 90.90 0.0367 21.42 

100 0.000 101.00 0.0446 26.05 
 

 

The Error Factor as a function of the percentage of line failure occurring in adverse 

weather is presented pictorially in Figure 2.8. It can be seen from Figure 2.8 that the 

system failure rate increases with the percentage of failures occurring in adverse weather 

and that disregarding adverse weather conditions can severely underestimate the 

predicted average system failure rate. 
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Figure 2.8  Error Factor for a second order mincut 

 

Table 2.2 shows the average system outage duration and unavailability of the two 

component system for varying failure percentages assigned to adverse weather. These 

indices are shown graphically in Figure 2.9. Figure 2.9 shows that the average outage 

duration initially increases sharply as more failures occur in adverse weather and then 

becomes relatively stable for further increases in adverse weather failures. The 

unavailability, however, increases gradually as more failures occur in adverse weather.  

 

Table 2.2 System outage duration and unavailability for a second order mincut 

% of line failures in 
adverse weather 

Average outage 
duration (hours) 

Unavailability 
(hours/year) 

0 3.79 0.0065 
10 4.36 0.0095 
20 5.01 0.0177 
30 5.37 0.0310 
40 5.56 0.0493 
50 5.65 0.0725 
60 5.71 0.1005 
70 5.74 0.1331 
80 5.76 0.1704 
90 5.78 0.2121 

100 5.79 0.2583 
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Figure 2.9  Unavailability and outage duration for a second order mincut 

 

Table 2.3 presents the average system failure rate and the Error Factor for a three 

component parallel redundant system with a two state weather model.  

 

Table 2.3 Average system failure rate for a third order mincut 

% of line 
failures in 
adverse 
weather 

Normal 
weather 

failure rate 
( λ ) 

Adverse 
weather 

failure rate 
( 'λ ) 

System failure 
rate ( Wλ ) 

(failures/yr) 
Error Factor 

0 1.010 0.00 0.000002 1.02 
10 0.909 10.10 0.000007 3.25 
20 0.808 20.20 0.000034 15.46 
30 0.707 30.30 0.000100 45.59 
40 0.606 40.40 0.000222 101.12 
50 0.505 50.50 0.000416 189.11 
60 0.404 60.60 0.000695 316.24 
70 0.303 70.70 0.001075 488.76 
80 0.202 80.80 0.001567 712.61 
90 0.101 90.90 0.002184 993.33 

100 0.000 101.00 0.002938 1336.16 
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The Error Factor is displayed in Figure 2.10. Figure 2.10 illustrates that the Error Factor 

increases sharply with the percentage of failures in adverse weather. The influence of 

adverse weather on the higher order mincut can be illustrated by comparing the Error 

Factor in Figure 2.10 with that in Figure 2.8.  
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Figure 2.10  Error Factor for a third order mincut 

 

The average system outage duration and unavailability are shown in Table 2.4. These 

indices are shown graphically in Figure 2.11.  

 

Table 2.4 System outage duration and unavailability for a third order mincut 

% of line failures in 
adverse weather 

Average outage 
duration (hours) 

Unavailability 
(hours/year) 

0 2.52 0.000006 
10 3.81 0.000027 
20 4.31 0.000147 
30 4.42 0.000443 
40 4.46 0.000993 
50 4.49 0.001866 
60 4.50 0.003130 
70 4.51 0.004848 
80 4.52 0.007079 
90 4.52 0.009880 
100 4.52 0.013302 
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Figure 2.11  Unavailability and average outage duration 

 
 

As shown in Figure 2.11, the unavailability increases as the percentage of failures 

occurring in adverse weather increases. The unavailability increases faster as more 

failures occur in adverse weather. The average system outage duration initially increases 

rapidly with adverse weather failures and then becomes almost constant with further 

increases in the percentage of failures in adverse weather.  

 
 
 
2.8  Summary 
 

The basic concepts used to incorporate the weather environment in a reliability study of 

outdoor transmission or distribution systems are introduced in this chapter. Weather 

conditions are divided into the two categories of normal and adverse weather to create a 

simple fluctuating two state weather model. Reliability models for systems containing 

two and three lines in parallel in two weather conditions are developed and utilized to 

compute the fundamental reliability indices using the Markov approach. The Error 

Factor is used to provide a comparative analysis of the system failure rates with and 

without considering the weather effects.  
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The application of the two state weather model is illustrated using two different 

redundant systems consisting of two and three lines. The reliability indices of the 

average system failure rate, outage duration and unavailability are evaluated 

incorporating adverse weather. The effect of failure bunching due to adverse weather on 

the average system failure rate is clearly demonstrated using the Error Factor. The 

studies show that failure bunching has even greater influence in a third order mincut. 

The impact on the average outage duration and unavailability are also described. The 

analysis in this chapter clearly shows the importance of incorporating adverse weather in 

the reliability assessment of multi-line systems exposed to a fluctuating weather 

environment. The influence of separately incorporating extremely adverse weather 

conditions is described in Chapter 3. 
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Chapter 3 
 

EXTREME WEATHER CONSIDERATIONS 
 

 

3.1  Introduction 
 

The previous chapter illustrates the concept that environmental stresses have great 

influence on transmission line forced outage rates and that the effect of failure bunching 

can be incorporated in a reliability assessment by utilizing a two state weather model 

including normal and adverse weather. It is important to note that disastrous weather 

conditions such as major hurricanes, high intensity tornadoes, heavy thunderstorms, ice 

storms etc. cannot be aggregated with other generally less destructive periods of adverse 

weather. These extreme conditions, while less probable, can have great impacts on 

power system operations. This dictates a need to examine the effect of violent weather 

events on the predicted reliability indices of transmission and distribution configurations 

operating in a wide range of randomly occurring weather conditions. In this chapter, a 

three state weather model is developed to include major adverse weather. This is a direct 

extension of the two state weather model incorporating normal and adverse weather. 

 
A three state weather model was introduced in [11] and further work was conducted in 

[14, 18]. The focus in these publications was on weather modeling using the basic 

approximate equations in the context of a second order mincut. This chapter examines 

the application of a three state weather model to second order mincuts and extends the 

analysis to incorporate third order mincuts, using the Markov method. The analyses 

described in this chapter illustrate the influence of incorporating major adverse weather 

conditions on the reliability performance of a parallel transmission system. The results 

are presented in terms of the system average failure rate, average outage duration and 

average annual unavailability. 
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3.2  Three state weather model  
 

As noted in Chapter 2, the weather environment can be divided into the three categories 

of normal, adverse and major storm disaster [20]. Failures that occur in extremely severe 

weather can be incorporated using the three state weather model shown in Figure 3.1. 

The terms extreme weather or major adverse weather are used to describe extremely 

adverse weather situations. Adverse and extreme weather conditions are collectively 

designated as bad weather in this thesis. 

 

 

 
                              Figure 3.1  Three state weather model 

 

The transition rates between the various weather states in Figure 3.1 are as follows: 

        an  =  adverse weather to normal weather  

              am =  adverse weather to major adverse weather 

           na = normal weather to adverse weather 

           nm =  normal weather to major adverse weather 

            ma =  major adverse weather to adverse weather        

      mn =  major adverse weather to normal weather 

 

The steady state probabilities associated with a specific weather state can be determined 

using the frequency balance approach in conjunction with the state space diagram shown 

in Figure 3.1. Unlike the case of the two state weather model, the steady state 

probabilities in the three state weather model cannot be simply obtained using the 

average durations of the weather states. It is possible, however, to estimate the steady 

state probabilities using the actual durations of each weather state. In this case, the 

  Bad weather 

Normal 
weather 

mn  

nm  
am  

an  

na  

ma Extreme 
weather 

Adverse 
weather 
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probability of a weather state is the ratio of the total time associated with that weather 

state and the total period of observation. The frequency balance approach or limiting 

state probability technique [17] can be used to determine the steady state probabilities 

when the transition rates between the different weather states in the Markov model 

shown in Figure 3.1 are known. The transition rates can also be used to compute the 

average weather durations and frequencies of occurrence [17]. The weather statistics 

required in the three state weather model are the weather transition rates. Detailed 

weather statistics are not available and the collection of such data is beyond the scope of 

this thesis work. 

 

The following transition rates were assumed in order to create a realistic and practical 

three state weather model.  

n a = 1/200 occ/hr   an = 1/2 occ/hr 

am = 1/8760 occ/hr    m a = 1/2 occ/hr           

 nm = 1/8760 occ/hr      m n = 1/2 occ/hr 

 
The steady state probabilities, average durations and frequencies of occurrence 

associated with the weather states are as follows. 

 

Steady state probability: 

Normal weather,   
321

1

DDD

D
Pn ++

=  

Adverse weather,  
321

2

DDD

D
Pa ++

=  

Extreme weather, 
321

3

DDD

D
Pm ++

=       

        where,  nnmnna amamamD ++=1  

anmaaa nmnmnmD ++=2   

mmnmma anananD ++=3  

Average duration:  

Normal weather,  ( )ma nnN += 1  
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Adverse weather, ( )mn aaA += 1  

Extreme weather, ( )na mmM += 1  

Frequency of occurrence: 

Normal weather,  )( manN nnPf +=   

Adverse weather,  )( mnaA aaPf +=    

Extreme weather,  )( namM mmPf +=  

 

Table 3.1 shows the steady state probability, frequency of encountering and average 

duration of the different weather states for the data shown above.    

 

Table 3.1 Weather statistics 

Weather state 
Steady state 
probability 

Frequency of 
occurrence 
(Occ/year) 

Average duration 
(hours) 

Normal weather 0.989875 44.346 195.54 

Adverse weather 0.010011 43.856 1.9995 

Extreme weather 0.000114 0.9999 1.0 

 

 

 
3.3  Failure rate representation 
 

The failure rate of a component is a continuous function of the weather conditions to 

which it is exposed [1]. In the three state weather model, continuously varying weather 

conditions are grouped into three weather categories. The three relevant failure rates are 

defined as follows: 

 
nλ   =  normal weather failure rate expressed in failures per year of normal weather 

aλ   =  adverse weather failure rate expressed in failures per year of adverse weather 

mλ =  major adverse weather failure rate expressed in failures per year of major  

         adverse weather 
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The average component failure rate as a function of the failure rates in the various 

weather states is given by Equation 3.1. 

m
m

a
a

n
navg PPP λλλλ ++=       (3.1) 

where, nP , aP  and mP  are the steady state probabilities of normal, adverse and major 

adverse weather respectively. 

 

The failure rates nλ , aλ and mλ are given by Equation 3.2. 

    nbavg
n PF )1( −= λλ       (3.2a) 

        ambavg
a PFF )1( −= λλ        (3.2b) 

   mmbavg
m PFFλλ =         (3.2c) 

where, bF is the fraction of total line failures occurring in bad weather and mF is the 

fraction of bad weather failures occurring in major adverse weather.  

 

The variation in the component failure rate as a result of considering the three state 

weather model can be represented in the general form shown in Figure 3.2 where the 

component failure rate increases significantly during adverse weather and extreme 

weather periods.  

 

 

Figure 3.2  Failure rate representation in the three state weather model 
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Assuming that the average annual failure rate is 1.0 f/yr, the failure rates for the three 

weather states under the condition that the percentage of line failures occurring in bad 

weather vary from 0% to 100% and that 20% of the bad weather failures are allocated to 

major adverse weather ( mF = 20%) are shown in Table 3.2. 

 

Table 3.2 Line failure rates in the three weather states  

% of total line 
failures that 
occur in bad 
weather ( bF ) 

Normal 
weather 

failure rate 
( nλ ) 

Adverse 
weather failure 

rate 
( aλ ) 

Extreme 
weather failure 

rate 
( mλ ) 

0 1.0102 0 0 
10 0.9092 7.992 175.22 
20 0.8082 15.983 350.44 
30 0.7072 23.975 525.66 
40 0.6061 31.966 700.88 
50 0.5051 39.958 876.10 
60 0.4041 47.949 1051.32 
70 0.3031 55.941 1226.54 
80 0.2020 63.932 1401.76 
90 0.1010 71.924 1576.98 

100 0 79.915 1752.20 
 

 

The magnitude of the failure rates in adverse weather and major adverse weather shown 

in Table 3.2 change according to the percentages of bad weather failures attributed to 

the major adverse weather period. The failure rate profile presented in Figure 3.2 

represents the values in one row of Table 3.2. 

 
 
 
3.4  Markov analysis of a two component system 
 

The Markov model for a two component system with a three state weather model is 

shown in Figure 3.3. It should be noted that in Figure 3.3, repair is not performed in bad 

weather i.e. in neither adverse weather nor major adverse weather.  
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Figure 3.3  State space diagram for a two component system 

                                         with a three state weather model 

 

There are a number of possible approaches to determine the steady state probabilities 

associated with each state of a Markov model. The stochastic transitional probability 

matrix for the system is shown in Equation 3.3. 
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The absorbing states in Figure 3.3 are states 4, 8, and 12.  The elimination of these states 

results in the [Q] matrix, which is subtracted from the identity matrix and inverted as 

shown in Equation 3.4.  

[N] = 
1

][
−

− QI        (3.4) 
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State 1 is considered to be the starting state. The MTTF is given by the summation of 

the elements of the first row of [N] as shown in Equation 3.5. The average system 

failure rate, outage duration and unavailability are given in Equations 3.6-3.8. 

   

 MTTF = 
ii

N
,1

9

1∑ =
       (3.5)                       

 MTTF

1=Wλ        (3.6) 

)( 214

1284

µµ +
++

=
P

PPP
rW        (3.7) 

1284 PPPUW ++=        (3.8) 

 
The average system unavailability is usually expressed in hours per year and is obtained 

by multiplying WU  by 8760.           

 
 
 
3.5  Markov analysis of a three component system 

 

Figure 3.4 shows the system state space model of a three component system with a three 

state weather model. Figure 3.4 is a simplified form of the complete state space diagram. 

The individual system state transitions between the different weather states are not 

shown. The system state transitions between the weather categories in Figure 3.4 are the 

various weather transition rates. This can be illustrated as follows. Consider the states 1, 

9 and 17. These states have similar operating modes with all the components in the up-

state in the three weather conditions. While the system is operating in this mode, a 

change in weather condition could occur. The system could transit from state 1 to state 9 

or state 17 depending on the variation in the weather environment. In this case, the 

arrow going downwards from normal weather to adverse weather originates at state 1 

and terminates at state 9, and that going to major adverse weather begins at state 1 and 

ends at state 17. The rest of the transitions can be described in a similar manner. 
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Figure 3.4  System state space diagram for a three component system 

                                  with a three state weather model 
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The stochastic transitional probability matrix in this case is given in Appendix B.2. The 

system states 8, 16 and 24 represent the system down states for the parallel redundant 

configuration. These states are removed from the stochastic transitional probability 

matrix, resulting in a truncated matrix which is subtracted from the identity matrix and 

inverted. The final matrix [N] is used to determine the MTTF using Equation 3.9. 

MTTF = 
ii

N
,1

21

1∑ =
      (3.9) 

The reciprocal of MTTF is the average system failure rate as shown in Equation 3.10. 

 MTTF

1=Wλ       (3.10)   

The average system outage duration and unavailability are given by Equations 3.11-

3.12.  

)( 3218

24168

µµµ ++
++

=
P

PPP
rW       (3.11)  

24128 PPPUW ++=        (3.12) 
 
 
 
3.6  Sensitivity analysis 
 

The analyses presented in this section are focused on the average system failure rate, 

average system outage duration and the system unavailability. In addition to these 

reliability indices, the Error Factor is presented to provide a comparative measure of the 

average system failure rates. The weather data shown in Table 3.1 is used in the 

following analysis. The percentage of failures in bad weather ( )bF  is varied from 0% to 

100% and the percentage of bad weather failures occurring in major adverse weather 

( )mF  is allowed to vary from 0% to 50% in 10% increments. 

 
Table 3.3 shows the average system failure rate obtained by varying the portion of 

failures in adverse weather and different percentages of bad weather failures attributed 

to major adverse weather. The condition that 0% of failures occur in major adverse 

weather is analogous to the two state weather model.  
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Table 3.3 Average system failure rate for a second order mincut (failures/year) 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 0.001725 0.001725 0.001725 0.001725 0.001725 0.001725 
10 0.002176 0.002304 0.002799 0.003631 0.004772 0.006195 
20 0.003516 0.004005 0.005839 0.008802 0.012713 0.017422 
30 0.005726 0.006782 0.010606 0.016562 0.024160 0.033018 
40 0.008790 0.010587 0.016898 0.026391 0.038124 0.051416 
50 0.012691 0.015381 0.024544 0.037883 0.053893 0.071567 
60 0.017410 0.021123 0.033399 0.050721 0.070949 0.092759 
70 0.022932 0.027777 0.043340 0.064652 0.088913 0.114508 
80 0.029241 0.035308 0.054260 0.079478 0.107503 0.136483 
90 0.036321 0.043684 0.066067 0.095039 0.126513 0.158456 
100 0.044156 0.052875 0.078682 0.111209 0.145787 0.180275 

  

 

The effect on the average system failure rate as a function of the percentages of failures 

occurring in bad weather is clearly shown in Figure 3.5.  
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Figure 3.5  System failure rate for a second order mincut 
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Profile 1 in Figure 3.5 represents the system failure rate obtained using the two state 

weather model. The rest of the profiles are for the three state weather model with 

varying percentages of bad weather failures in major adverse weather. The failure rate 

increases with increase in the percentage of bad weather failures attributed to major 

adverse weather. It can be seen that the predicted system failure rate calculated using the 

two state weather model is increasingly optimistic when the percentage of bad weather 

failures occurring in major adverse weather increases. Figure 3.6 further illustrates this 

effect in terms of the Error Factor. 
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Figure 3.6  Error Factor  for a second order mincut 

 

The average system outage duration and unavailability are shown in Tables 3.4-3.5 and 

are further illustrated in Figures 3.7-3.8. In Figure 3.7, the average system outage 

duration initially increases considerably with the utilization of the three state weather 

model and then eventually appears to be constant as more failures are assigned to bad 

weather. The effect on the average system unavailability can clearly be seen in Figure 
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3.8. The average system failure rate in Figure 3.5, the Error Factor in Figure 3.6, and the 

system unavailability in Figure 3.8 all vary in a similar manner. 

 

 

Table 3.4 Average system outage duration for a second order mincut (hours) 
 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 3.7884 3.7884 3.7884 3.7884 3.7884 3.7884 
10 4.3618 4.4411 4.6801 4.9348 5.1396 5.2894 
20 5.0046 5.1007 5.3176 5.4771 5.5738 5.6326 
30 5.3682 5.4340 5.5627 5.6448 5.6909 5.7178 
40 5.5545 5.5946 5.6678 5.7120 5.7363 5.7505 
50 5.6539 5.6778 5.7198 5.7447 5.7583 5.7663 
60 5.7103 5.7243 5.7485 5.7627 5.7706 5.7752 
70 5.7442 5.7521 5.7656 5.7735 5.7780 5.7807 
80 5.7654 5.7695 5.7764 5.7805 5.7828 5.7842 
90 5.7792 5.7808 5.7835 5.7851 5.7861 5.7867 

100 5.7884 5.7884 5.7884 5.7884 5.7884 5.7884 
 

 

 

Table 3.5 System unavailability for a second order mincut (hours/year) 
 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 
10 0.0095 0.0102 0.0131 0.0179 0.0245 0.0328 
20 0.0176 0.0204 0.0311 0.0482 0.0709 0.0982 
30 0.0308 0.0369 0.0590 0.0936 0.1376 0.1889 
40 0.0489 0.0593 0.0959 0.1509 0.2189 0.2959 
50 0.0718 0.0874 0.1405 0.2178 0.3106 0.4130 
60 0.0995 0.1210 0.1921 0.2925 0.4097 0.5361 
70 0.1318 0.1599 0.2501 0.3735 0.5141 0.6623 
80 0.1687 0.2039 0.3137 0.4597 0.6221 0.7899 
90 0.2101 0.2527 0.3824 0.5502 0.7324 0.9174 

100 0.2558 0.3063 0.4558 0.6441 0.8443 1.0440 
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Figure 3.7  Average system outage duration for a second order mincut 
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Figure 3.8  System unavailability for a second order mincut 
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The analysis can be extended to a third order mincut. Line 3, which is identical to lines 1 

and 2, is added in Figure 2.7 to form a three line parallel redundant system. Table 3.6 

shows the average system failure rate of the third order mincut for varying percentages 

of failures occurring in major adverse weather. The increase in the failure rate is clearly 

shown in Table 3.7 and Figure 3.9 using the Error Factor.  

 

 

Table 3.6 Average system failure rate for a third order mincut (failures/year) 
 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 
10 0.000007 0.000013 0.000053 0.000150 0.000324 0.000589 
20 0.000034 0.000077 0.000350 0.000986 0.002056 0.003591 
30 0.000100 0.000233 0.001047 0.002832 0.005674 0.009549 
40 0.000222 0.000517 0.002228 0.005787 0.011181 0.018215 
50 0.000416 0.000954 0.003938 0.009838 0.018389 0.029110 
60 0.000695 0.001568 0.006189 0.014911 0.027045 0.041736 
70 0.001075 0.002377 0.008980 0.020905 0.036893 0.055650 
80 0.001567 0.003396 0.012293 0.027714 0.047694 0.070483 
90 0.002184 0.004638 0.016106 0.035231 0.059242 0.085935 
100 0.002938 0.006113 0.020393 0.043355 0.071359 0.101770 

 

 

Table 3.7 Error Factor for a third order mincut  
 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 1.02 1.02 1.02 1.02 1.02 1.02 
10 3.21 5.94 23.96 68.32 147.52 267.99 
20 15.18 34.87 159.27 448.45 934.9 1632.97 
30 44.71 106.17 475.95 1287.60 2580.04 4342.47 
40 99.11 235.00 1013.2 2631.72 5084.45 8283.09 
50 185.32 433.85 1790.55 4473.88 8362.18 13237.30 
60 309.88 713.00 2814.55 6780.60 12298.52 18978.95 
70 478.93 1080.87 4083.4 9506.56 16776.56 25306.52 
80 698.29 1544.39 5590.01 12602.73 21688.52 32051.66 
90 973.42 2109.20 7324.1 16020.81 26939.89 39078.39 
100 1309.48 2779.88 9273.62 19715.53 32450.03 46279.00 
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Figure 3.9  Error Factor for a third order mincut 

 

Figure 3.9 illustrates that the Error Factor increases dramatically with increase in the 

percentage of failures occurring in bad weather. The profiles in Figure 3.9 can be 

compared with the corresponding profiles in Figure 3.6 for a second order mincut. In the 

case of a third order mincut, the Error Factor increases by a larger margin when the 

percentage of failures occurring in major adverse weather increases. This indicates that a 

third order mincut suffers more prominently from failure bunching than does a second 

order mincut. 

 

Table 3.8 presents the system unavailability for a third order mincut. It is clear from 

Table 3.8 that the system unavailability increases rapidly as a result of incorporating bad 

weather conditions and recognizing major adverse weather failures. The average system 

outage duration for the same system is shown in Table 3.9. It can be seen from Table 3.9 

that the average outage duration increases significantly as the fraction of bad weather 

failures increases but quickly becomes relatively constant. 
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Table 3.8 System unavailability for a third order mincut (hours/year) 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 
10 0.000027 0.000054 0.000232 0.000672 0.001458 0.002655 
20 0.000147 0.000339 0.001574 0.004448 0.009285 0.016227 
30 0.000443 0.001045 0.004721 0.012793 0.025651 0.043186 
40 0.000993 0.002324 0.010064 0.026167 0.050574 0.082407 
50 0.001866 0.004300 0.017799 0.044503 0.083202 0.131725 
60 0.003130 0.007078 0.027992 0.067467 0.122391 0.188887 
70 0.004848 0.010741 0.040627 0.094610 0.166979 0.251887 
80 0.007079 0.015359 0.055632 0.125444 0.215891 0.319049 
90 0.009880 0.02099 0.072907 0.159487 0.268187 0.389017 
100 0.013302 0.027678 0.092332 0.196290 0.323063 0.460718 

 

 

Table 3.9 Average system outage duration for a third order mincut (hours) 

bF (%) mF = 0% mF =10% mF =20% mF =30% mF =40% mF =50% 

0 2.5256 2.5256 2.5256 2.5256 2.5256 2.5256 
10 3.8068 4.1154 4.4030 4.4707 4.4928 4.5026 
20 4.3083 4.4185 4.4923 4.5084 4.5141 4.5169 
30 4.4209 4.4740 4.5084 4.5162 4.5190 4.5205 
40 4.4638 4.4947 4.5148 4.5195 4.5213 4.5222 
50 4.4860 4.5055 4.5183 4.5214 4.5226 4.5232 
60 4.4997 4.5123 4.5207 4.5227 4.5235 4.5240 
70 4.5091 4.5170 4.5223 4.5237 4.5242 4.5245 
80 4.5160 4.5205 4.5236 4.5244 4.5247 4.5249 
90 4.5213 4.5233 4.5247 4.5250 4.5252 4.5253 

100 4.5256 4.5256 4.5256 4.5256 4.5256 4.5256 
 

 

 
 
3.7  Effect of failure rate and repair time 
 

The forced outage rates and repair times of different transmission elements can vary 

from one utility to another depending on the transmission structures and available 

resources. It is of interest to analyse the effect when system elements with different 

reliability parameters operate in the same weather environment. The following analyses 

consider different combinations of the failure rates and repair times in a second order 
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mincut operating in three weather states. It is assumed that the percentage of bad 

weather failures in major adverse weather is 10%. The studies were conducted by 

varying the repair time using a constant component failure rate. Three cases are 

examined with the component failure rates held constant at 1.0, 0.5 and 5.0 f/yr. The 

repair times are assumed to be 3.75, 7.50 and 15.0 hours in each case. 

 

Table 3.10 shows the average system failure rate and the Error Factor for the three 

different repair times. Table 3.10 was calculated using the average line failure rate of 1.0 

f/yr. The average outage duration and unavailability are presented in Table 3.11. It can 

be seen from Table 3.10 that the failure rate initially increases proportionately as the 

repair time increases, but the difference decreases as the percentage of failures occurring 

in bad weather increases. This difference becomes insignificant when the most of the 

failures occur in bad weather. It is interesting to note that the Error Factor decreases 

significantly when the repair time increases and the percentage of failures in bad 

weather increases. In this case, the Error Factor does not clearly reflect the impacts of 

repair time on the average system failure rate.   

 
Table 3.10 Average system failure rate and Error Factor, ( =λ 1.0 f/yr) 

Average system failure rate (f/yr) Error Factor 

bF (%) r = 3.75 
hours 

r = 7.5  
hours 

r = 15 
hours 

r = 3.75 
hours 

r = 7.5 
hours 

r = 15  
hours 

0 0.00086 0.00173 0.00344 1.01 1.01 1.01 
10 0.00144 0.00230 0.00402 1.69 1.35 1.17 
20 0.00315 0.00401 0.00571 3.68 2.34 1.67 
30 0.00593 0.00678 0.00847 6.93 3.96 2.47 
40 0.00975 0.01059 0.01226 11.39 6.18 3.58 
50 0.01455 0.01538 0.01703 17.00 8.98 4.97 
60 0.02031 0.02112 0.02274 23.72 12.34 6.64 
70 0.02698 0.02778 0.02936 31.52 16.22 8.57 
80 0.03453 0.03531 0.03685 40.33 20.62 10.76 
90 0.04293 0.04368 0.04518 50.14 25.51 13.19 
100 0.05214 0.05287 0.05433 60.91 30.88 15.86 

 

Table 3.11 clearly shows how average outage duration and unavailability are impacted 

as a result of increase in the component repair time. It is obvious that both the average 

outage duration and unavailability will increase if service restoration is delayed. 



 49 

Table 3.12 provides the average system failure rate and the Error Factor when the 

average failure rate is 0.5 f/yr. The average system unavailability and average outage 

duration in this case are shown in Table 3.13. The reliability indices when the average 

component failure rate is 5.0 f/yr are shown in Tables 3.14-3.15. 

 

Table 3.11 Average system outage duration and unavailability, ( =λ 1.0 f/yr) 

Average outage duration (hours) Average unavailability (hours/yr) 

bF (%) r = 3.75 
hours 

r = 7.5  
hours 

r = 15 
hours 

r = 3.75 
hours 

r = 7.5 
hours 

r = 15  
hours 

0 1.89 3.79 7.58 0.002 0.007 0.026 
10 2.82 4.44 8.04 0.004 0.010 0.032 
20 3.46 5.10 8.61 0.011 0.020 0.049 
30 3.69 5.43 9.01 0.022 0.037 0.076 
40 3.79 5.59 9.24 0.037 0.059 0.113 
50 3.84 5.68 9.38 0.056 0.087 0.16 
60 3.86 5.72 9.46 0.078 0.121 0.215 
70 3.88 5.75 9.51 0.105 0.160 0.280 
80 3.88 5.77 9.54 0.134 0.204 0.352 
90 3.89 5.78 9.56 0.167 0.253 0.433 
100 3.89 5.79 9.58 0.203 0.306 0.521 

 

 

Table 3.12 Average system failure rate and Error Factor, ( =λ 0.5 f/yr) 

Average system failure rate (f/yr) Error Factor 

bF (%) r = 3.75 
hours 

r = 7.5 
 hours 

r = 15 
hours 

r = 3.75 
hours 

r = 7.5 
hours 

r = 15 
hours 

0 0.00022 0.00043 0.00086 1.01 1.01 1.01 
10 0.00036 0.00058 0.00101 1.69 1.35 1.18 
20 0.00080 0.00101 0.00144 3.72 2.36 1.68 
30 0.00151 0.00173 0.00215 7.07 4.03 2.52 
40 0.00251 0.00272 0.00314 11.70 6.35 3.67 
50 0.00377 0.00398 0.00440 17.60 9.29 5.14 
60 0.00529 0.00550 0.00592 24.72 12.85 6.91 
70 0.00708 0.00728 0.00770 33.06 17.01 8.99 
80 0.00911 0.00932 0.00973 42.58 21.76 11.36 
90 0.01140 0.01160 0.01200 53.25 27.10 14.02 
100 0.01393 0.01412 0.01452 65.06 32.99 16.96 
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The results shown in Table 3.10 can be compared with those in Table 3.12 and Table 

3.14. It can be observed that the failure rate in Table 3.10 is larger than that in Table 

3.12 and smaller than that in Table 3.14. The Error Factor is smaller for the large 

component failure rate. The average outage durations in Tables 3.11, 3.13 and 3.15 are 

very similar. This implies that the component failure rate does not affect the average 

outage duration. On the other hand, the system unavailability changes in accordance 

with the change in average system failure rate. The effect on the Error Factor for the 

three case studies is further illustrated in Figure 3.10. 

 
Table 3.13 Average system outage duration and unavailability, ( =λ 0.5 f/yr) 

Average outage duration (hours) Average unavailability (hours/yr) 
bF (%) r = 3.75 

hours 
r = 7.5 
hours 

r = 15 
hours 

r = 3.75 
hours 

r = 7.5 
hours 

r = 15 
hours 

0 1.89 3.79 7.58 small  0.002 0.007 
10 2.82 4.44 8.04 0.001 0.003 0.008 
20 3.46 5.11 8.62 0.003 0.005 0.012 
30 3.69 5.44 9.02 0.006 0.009 0.019 
40 3.79 5.60 9.25 0.009 0.015 0.029 
50 3.84 5.68 9.38 0.014 0.023 0.041 
60 3.86 5.73 9.46 0.020 0.032 0.056 
70 3.88 5.75 9.51 0.027 0.042 0.073 
80 3.88 5.77 9.54 0.035 0.054 0.093 
90 3.89 5.78 9.56 0.044 0.067 0.115 
100 3.89 5.79 9.58 0.054 0.082 0.139 

 
 

Table 3.14 Average system failure rate and Error Factor, ( =λ 5.0 f/yr) 

Average system failure rate (f/yr) Error Factor 
bF (%) r = 3.75 

hours 
r = 7.5 
hours 

r = 15 
hours 

r = 3.75 
hours 

r = 7.5 
hours 

r = 15 
hours 

0 0.02148 0.04269 0.08430 1.00 1.00 0.98 
10 0.03503 0.05606 0.09733 1.64 1.31 1.14 
20 0.07222 0.09276 0.13308 3.37 2.17 1.55 
30 0.12896 0.14876 0.18762 6.03 3.48 2.19 
40 0.20222 0.22105 0.25803 9.45 5.16 3.01 
50 0.28964 0.30733 0.34209 13.53 7.18 4.00 
60 0.38935 0.40576 0.43803 18.19 9.48 5.12 
70 0.49984 0.51488 0.54445 23.35 12.03 6.36 
80 0.61984 0.63343 0.66017 28.96 14.8 7.71 
90 0.74829 0.76039 0.78421 34.96 17.76 9.16 
100 0.88426 0.89486 0.91574 41.31 20.90 10.70 
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Table 3.15 Average system outage duration and unavailability, ( =λ 5.0 f/yr) 

Average outage duration (hours) Average unavailability (hours/yr) 
bF (%) r = 3.75 

hours 
r = 7.5 
hours 

r = 15 
hours 

r = 3.75 
hours 

r = 7.5 
hours 

r = 15 
hours 

0 1.89 3.79 7.58 0.041 0.162 0.644 
10 2.79 4.42 8.02 0.098 0.249 0.787 
20 3.42 5.06 8.57 0.248 0.471 1.150 
30 3.67 5.40 8.96 0.474 0.806 1.695 
40 3.77 5.57 9.20 0.764 1.235 2.392 
50 3.82 5.66 9.34 1.110 1.745 3.220 
60 3.85 5.71 9.44 1.503 2.326 4.162 
70 3.87 5.74 9.49 1.938 2.967 5.203 
80 3.88 5.77 9.53 2.410 3.663 6.331 
90 3.89 5.78 9.56 2.914 4.406 7.538 
100 3.89 5.79 9.58 3.447 5.192 8.814 
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Figure 3.10  Variation of Error Factor with component reliability parameters 
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The Error Factor moves in the opposite direction to the system failure rate when the 

repair time increases. As discussed earlier, the average system failure rate increases with 

increase in the repair time, but the Error Factor decreases. The Error Factor is lower for 

systems having large component failure rates. This implies that the worst performing 

systems experience lower impacts compared to those with better reliability parameters. 

 
 
 
 
3.8  Extreme weather severity analysis 
 

Continuous exposure of a system element to unfavourable weather conditions for a 

prolonged duration can create different system failure mechanisms. On the other hand, 

the number of interruptions tends to increase as bad weather hits the system more 

frequently. It is evident that the number of storms varies from one place to another. 

Table 3.16 shows statistical data for storms that took place in the provinces of Canada 

between 1950─2003 [21].  

 
 

Table 3.16 Number of severe weather events by province between 1950─2003 

Provinces of Canada 
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Alberta, AB 18 0 2 2 5 3 30 
British Columbia, BC 2 0 7 0 4 0 15 
Manitoba, MB 5 0 0 0 2 2 9 
New Brunswick, NB 0 5 0 1 (‘98) 4 0 10 
Newfoundland, NF 0 3 1 (‘59) 3 8 0 15 
Nova Scotia, NS 0 7 0 0 5 1 (‘54) 13 
Ontario, ON 2 1 (‘54) 0 2 7 11 23 
Prince Ed Island, PE 0 1 (‘90) 0 0 5 0 6 
Quebec, QC 3 4 2 1 (‘98) 8 7 25 
Saskatchewan, SK 5 0 0 2 1 (‘64) 2 10 
Total 35 21 12 11 49 26  
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In Table 3.16, the figure in the brackets indicates the year in which the weather event 

was experienced. These are not complete statistics, but they do provide a means of 

comparison. It is important to note that the impacts of disturbances caused by different 

storms are not the same and that they cannot be compared between different systems. 

Table 3.16 indicates that the number of stormy weather events and the types of storms in 

the various provinces vary significantly. 

 

It is interesting to note that the territories NT, NU and YK did not receive any major 

storms in the categories given in Table 3.16 during the period 1950─2003. These 

provinces were excluded in the calculation of the frequencies of storm occurrence. Table 

3.17 presents the frequencies of storms in the rest of the provinces. These data clearly 

show that Alberta, Quebec and Ontario are the most impacted provinces. The variation 

in the number of weather events indicates a need to examine the effect of the frequency 

of encountering major adverse weather. 

    

Table 3.17 Frequencies of major storms in the Provinces of Canada 

Statistics 
BC, MB, NB, 

NF, PE, SK, NS 
All (except NT, 

NU, YK) 
Only AB, ON, QC  

Average number by 
province 

11 15.6 26 

Average frequency 
(events/yr) 

0.203 
(once in 5 yrs) 

0.289 
(once in 3.46 

yrs) 

0.481 
(once in 2 yrs) 

 

 
The following analysis of a second order mincut considers the frequency of occurrence 

to vary in the range from 0.2 to 1.0 occurrence per year. The durations of normal and 

adverse weather are held constant at 200 hours and 2 hours respectively and the duration 

of major adverse weather changes in accordance with the variation in its frequency such 

that the steady state probability remains unchanged. Under the assumption that extreme 

weather occurs once per year with an average duration of one hour, the probability of 

extreme weather is 0.000114. The frequency of occurrence of major adverse weather is 

given by Equation 3.13.   

)()( mamnm aPnPf +=     (3.13) 
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         Assume, mm an =  

  manm nPPf )( +=  

)( anmm PPfn +=   

Since, 0.1)( ≈+ an PP   

 mm fn ≈  

 

The duration of major adverse weather (M) can be simply obtained by dividing the 

probability by the frequency of encountering the extreme weather. The resulting 

transition rates are as follows: 

 

== mm an  0.2 to 1.0 occ/yr  

ma nn −= 200/8760  occ/yr 

mn aa −= 2/8760  occ/yr     

Mmm an 2/1==  occ/yr 

 
The weather state characteristics are given in Table 3.18. Table 3.19 shows the Error 

Factor when the frequency of encountering major adverse weather varies from 0.2 to 1.0 

occ/yr in 0.2 occ/yr increments for the case when 10% of bad weather failures occur in 

major adverse weather. The Error Factor appears to be quite stable over the range in 

frequency of occurrence of extreme weather. 

 

Table 3.18 Weather characteristics for variable frequency of extreme weather 

Steady state probability Frequency of 
extreme 
weather 
(Occ/yr) 

Duration of 
extreme 

weather (hr) 
Normal 
weather 

(Pn) 

Adverse 
weather 

(Pa) 

Extreme 
weather 

(Pm) 
0.2 5.00 0.990008 0.009878 0.000114 
0.4 2.50 0.990030 0.009856 0.000114 
0.6 1.67 0.990052 0.009833 0.000114 
0.8 1.25 0.990075 0.009811 0.000114 
1.0 1.00 0.990097 0.009789 0.000114 
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Table 3.19 Error Factor for variable frequency of extreme weather 

Frequency of occurrence 
 bF (%) 

0.2 Occ/yr 0.4 Occ/yr 0.6 Occ/yr 0.8 Occ/yr 1.0 Occ/yr 
0 1.01 1.01 1.01 1.01 1.01 
10 1.34 1.35 1.35 1.35 1.35 
20 2.34 2.34 2.35 2.35 2.36 
30 3.97 3.97 3.98 3.99 4.00 
40 6.19 6.21 6.23 6.24 6.26 
50 9.00 9.03 9.05 9.08 9.10 
60 12.36 12.40 12.43 12.47 12.51 
70 16.26 16.31 16.35 16.40 16.45 
80 20.67 20.73 20.79 20.85 20.92 
90 25.57 25.65 25.73 25.80 25.88 

100 30.95 31.04 31.14 31.23 31.33 
 

 
The results shown in Table 3.19 indicate that less often occurring weather events with 

longer durations and more often encountering weather events but with relatively short 

durations have similar impacts on the average system failure rate. In other words, the 

probability of normal weather which is very close to 1.0 increases by a small amount 

while that of adverse weather decreases by the same value, resulting in a small change in 

component failure rates in normal and adverse weather conditions. This change causes 

little or no effect on the predicted average system failure rate because the average 

system failure rate is largely dominated by the component failure rate in major adverse 

weather.  

 
 
 
3.9  Summary 
 

This chapter describes the importance of incorporating extreme adverse weather 

conditions in the reliability evaluation of transmission and distribution systems. A three 

state weather model is developed and illustrated by application to two line and three line 

parallel redundant systems. The studies described in this chapter reveal that estimated 

reliability indices can be quite optimistic if extreme weather conditions are not included 

in the analysis. This is clearly shown using a number of graphical illustrations.  
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A series of studies using a range of reliability parameters are presented for varying 

percentages of the total line failures occurring in bad weather. The portion of bad 

weather failures attributed to major adverse weather is 10% in these studies. The 

analyses show that the average system failure rate increases significantly with the repair 

time when the percentage of failures in bad weather is small. It, however, increases only 

marginally when relatively more failures occur in bad weather. On the contrary, the 

impact as a result of increase in the average component failure rate is small when the 

percentages of failures that are attributed to bad weather are small, but is significant 

when large percentages of the failures occur in bad weather. It should be noted that the 

impacts on the average system failure rate are not clearly reflected by a simple 

comparative study of Error Factors for different systems with different repair times. In 

these cases, the actual system failure rates should also be considered.  

 

The influence on the reliability parameters due to varying the number of extreme 

weather events is also illustrated. The results obtained for a higher frequency of weather 

events occurring per year with short durations are compared with those for a lower 

frequency of weather events with longer durations. It is shown that the two cases have 

similar effects on the estimated average system failure rate. The analysis conducted in 

this chapter indicates that major storms have a significant influence on predicted 

reliability indices. 
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Chapter 4 
 

PRACTICAL SYSTEM RELIABILITY ASSESSMENT 

 

 

4.1  Introduction 

 

The application of the two state weather model to two line and three line parallel 

redundant circuits is illustrated in Chapter 2. Chapter 3 describes the technique for 

incorporating extreme adverse weather conditions and applications to two line and three 

line parallel redundant configurations. Chapters 2 and 3 clearly demonstrate that the 

predicted reliability indices increase significantly when weather conditions are 

incorporated in the analysis. These chapters focus mainly on computation of the average 

system failure rate, the average outage duration and the unavailability of second order 

and third order mincuts using the two different weather models.  

 

A transmission or distribution system is composed of a number of components that in 

different combinations contribute to supply interruptions. Although the basic indices are 

important elements, they do not in themselves reflect the significance and severity of 

customer outages. It is essential to evaluate customer oriented system indices that can be 

used to assess the overall system performance in decision making, design and planning. 

This chapter illustrates the application of weather modeling to a simple practical system. 

Two types of indices designated as load point indices and system indices are described 

and evaluated to illustrate the impacts due to the inclusion of weather conditions in the 

analysis.  
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4.2  Example system 
 

The single line diagram of a simple transmission or distribution system is shown in 

Figure 4.1. This system consists of four lines, three buses and two load points. Bus 1 is 

the supply bus whereas Bus 2 and Bus 3 are the load buses to which load points L1 and 

L2 are connected respectively. The following analyses assume that the power supply is 

constantly available and the unavailability of the bus bars is not considered. 

 

 

Figure 4.1  Simple transmission or distribution system 

 
 
The minimal cut set approach can be used to identify the set of elements contributing to 

the failure of a load point. The minimal cuts identified for load points L1 and L2 are as 

follows: 

Load point L1:  1-2-3,  1-2-4 

Load point L2:     3-4,  1-2-4    

 
The following data are used in the analysis: 

Average line failure rate for component 1: 5.11 =λ  f/yr 

Average line failure rate for component 2: 5.12 =λ  f/yr 

Average line failure rate for component 3: 0.13 =λ  f/yr  

Average line failure rate for component 4: 0.24 =λ  f/yr 

Average repair time for each line = 10 hours 

 

The hypothetical system load data are shown in Table 4.1.  

Bus 2 Bus 3 Bus 1 
1 

2 

4 

3 

L2 L1 Supply 



 59 

 

Table 4.1 System load data 

Load point L1 Load point L2 
User sector 

% Load 
Load 
(kW) 

Number of 
customers 

% Load 
Load 
(kW) 

Number of 
customers 

Agricultural 10 2000 50 5 800 20 
Commercial 30 6000 150 25 4000 100 
Industrial 20 4000 5 30 4800 6 
Residential 40 8000 3200 40 6400 2560 
Total 100 20000 3405 100 16000 2686 

 

The customer types are agricultural, commercial, industrial and residential. The 

distribution of consumer load and the number of customers at each load point are shown 

in Table 4.1. The total system load of 36 MW is distributed over 5091 customers. 

 

Table 4.2 presents the sector interruption costs, also known as customer damage 

functions (CDF), for typical outage durations of 1 hr, 4 hrs and 8 hrs [1]. The actual 

outage durations depending on the failure events may vary and the interruption cost 

relevant to the specific outage period should be evaluated. In this situation, an 

interpolation technique can be applied to determine this cost using Equation 4.1 [22].  

 

Table 4.2 Sector customer damage function (CDF) 

Interruption cost ($/kW) 
User sector 

1 hr 4 hrs 8 hrs 
Agricultural 0.649 2.064 4.120 
Commercial 8.552 31.317 83.008 
Industrial 9.085 25.163 55.808 
Residential 0.482 4.914 15.690 

 

[ ] )log/(log1}log{ loglog}log{ logloglog xyyrCxrCC xyr −×−−−=       (4.1)                                           

where,    

   r  = duration of an outage event in hours 

   x  = outage durations less than r hours 

               y  = outage durations greater than r hours 
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rC = interruption cost for an outage duration of r hours  

xC  = interruption cost for an outage duration of x hours  

yC  = interruption cost for an outage duration of y hours  

 

The parameters x and y are 4 hrs and 8 hrs respectively for an outage duration falling 

between 4-8 hrs. For durations between 1-4 hrs, interpolation between 1 hr and 4 hours 

is required. The outage costs associated with various interruption durations for the 

different user sectors are given in Table C.17 in Appendix C. 

 

The customer costs associated with an interruption at any load point involves the 

combination of costs associated with all customer types affected by that outage. This 

combined cost is referred to as a composite customer damage function (CCDF). The 

particular customer costs together with the percentage of load allocated to the respective 

classes of consumers results in the composite cost functions given by Equation 4.2. 

  

SS FCDPCCDF ∑=         (4.2) 

where,  

SP  = percentage of total load at that load point  

SCDF  = sector customer damage function  

 
CCDF for L1 = resindcomagr CDFCDFCDFCDF 4.02.03.01.0 +++    (4.3) 

CCDF for L2 = resindcomagr CDFCDFCDFCDF 4.03.025.005.0 +++   (4.4) 

  
where,  

agrCDF  =  interruption cost for the agricultural sector 

comCDF =  interruption cost for the commercial sector 

indCDF  =  interruption cost for the industrial sector 

resCDF  =  interruption cost for the residential sector 
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4.3 Reliability indices 
 

Reliability indices are important elements in the quantitative adequacy assessment of a 

system. Load point indices in conjunction with system indices can be used to measure 

distribution system adequacy. Load point indices provide the reliability at the individual 

load buses while system indices are indicators of total system reliability. Although the 

two sets of indices function differently, they complement each other. Load point indices 

are usually evaluated when the adequacy assessment is intended to identify and 

reinforce poorly performing buses in the system. On the other hand, system indices are 

used when the purpose of study is to assess global system adequacy and to provide a 

comparative analysis of different alternatives. Both sets of indices computed in this 

chapter are mainly focused on comparing the effects of various weather conditions. This 

section briefly describes the load point and system indices.   

 
 
 
 
4.3.1  Load point indices 
 

The traditional load point indices are the average failure rate, the average annual outage 

time or unavailability, and the average outage duration. The load point failure rate and 

unavailability are simply the sum of the failure rates and the unavailability of the 

individual failure events respectively. These indices are given by Equations 4.5-4.7.  

 

Average failure rate, ∑= kλλ      (4.5) 

Average annual outage time,  ∑= kUU     (4.6) 

Average outage time, ∑
∑=

k

kU
r

λ
      (4.7) 

where, 

  k denotes an outage event, or minimal cut 
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4.3.2  System indices 

 

The load point indices provide an indication of the average performance at each 

individual load point in the system. These values can be aggregated to provide a set of 

overall system indices [1]. The system indices utilized in Canada and compiled by the 

Canadian Electricity Association (CEA) are noted in Chapter 1 of this thesis. These 

indices together with some other useful indicators [1] are defined as follows. 

 

 
SAIFI: System Average Interruption Frequency Index 

      
servedcustomersofnumbertotal

sterruptionincustomerofnumbertotal
SAIFI =        

            ∑
∑=

i

ii

N

Nλ
(interruptions/customer-yr)          (4.8) 

    where iλ is the failure rate and iN is the number of customers at load point i  

 

SAIDI: System Average Interruption Duration Index 

    
servedcustomersofnumbertotal

durationsterruptionincustomerofsum
SAIDI =  

            ∑
∑=

i

ii

N

NU
     (hr/customer-yr)         (4.9) 

   where iU is the annual outage time and iN is the number of customers at load point i   

 

CAIDI: Customer Average Interruption Duration Index: 

             
sterruptionincustomerofnumbertotal

durationsterruptionincustomerofsum
CAIDI =     

∑
∑=

ii

ii

N

NU

λ
= 

SAIFI

SAIDI
   (hrs/interruption)     (4.10) 
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ASAI: Average Service Availability Index 
 

         
demandedhourscustomer

serviceavailableofhourscustomer
ASAI =         

∑
∑∑

×
−×

=
8760

8760

i

iii

N

NUN
= 

8760
1

SAIDI−    (4.11) 

 
         ASUI = 1 – ASAI, where 8760 is the number of hours in a year 
 
 
EENS: Expected Energy Not Supplied 
 
       ∑= iiavg ULEENS )(      (MWh/yr)            (4.12) 

        where )(iavgL  is the average load connected to load point i   

 

AENS: Average Energy Not Supplied 

 

   ∑∑
∑ ==

ii

iiavg

N

EENS

N

UL
AENS )(         (MWh/Cust-yr)     (4.13) 

 

ECOST:  Expected Customer Cost                          
  

krkiavg

NE

k

NL

i

CLECOST λ)(
11
∑∑

==

=       ($/yr)                           (4.14)                                                           

where, 

    k     =  minimal cut or an outage event      

        kλ     =  failure rate for the kth minimal cut or an outage event  (f/yr) 

        rkC    =  CDF for an outage duration of r hours due to failure event k  ($/kW) 

        NE    =  total number of outage events or minimal cuts of load point i  

        NL    =  total number of load points 

 

It should be noted that the above indices can be evaluated at different levels in a system 

and can be used to assess the performance of a single feeder, a zone in the system or the 
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entire system. The energy and cost indices such as EENS, ECOST etc. can also be 

calculated for each outage event at the system lowest level. 

 
 
 
4.4  Reliability assessment 
 

The reliability indices described in the previous section are evaluated using the classical 

single weather state method and then by incorporating the weather conditions using the 

models developed in the previous chapters. In the classical approach, the component 

failure rate is assumed to be constant throughout the year. As described in the previous 

chapters, the component failure rate increases with weather severity. The impact of 

adverse weather is recognized using a two state weather model. The effects of extreme 

adverse weather conditions are incorporated in the analysis using the three state weather 

model. 

 

 

4.4.1  Incorporating a single state weather model  
 

The system and data described in Section 4.2 are used to calculate the various indices. 

Table 4.3 shows the reliability indices of average system failure rate, average outage 

duration and unavailability together with ECOST and EENS for the individual outage 

events (minimal cuts) at load point L1. The EENS was calculated using Equation 4.15 

and ECOST using Equation 4.16.  

 

kavgULEENS =        (4.15) 

kravg CLECOST λ=       (4.16) 

where,  

kλ    =  failure rate of minimal cut k 

kU   =  unavailability of minimal cut k  

rC    = composite customer damage function for outage duration r  

avgL  = average load at the load point  
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The sector composite interruption costs associated with various outage durations are 

given in Table C.17 in Appendix C. The indices associated with load point L2 are given 

in Table 4.4. This table clearly shows that the second order minimal cut largely 

dominates the indices. It is obvious that load point L1 is more reliable than load point 

L2. This effect is directly related to the degree of redundancy. 

 
Table 4.3 Reliability indices for load point L1  

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS  
(kWh/yr) 

1-2-3 0.000009 3.33 0.00003 2.51 0.6 
1-2-4 0.000018 3.33 0.00006 5.01 1.2 
Total 0.000027 3.33 0.00009 7.52 1.8 

      
 

Table 4.4 Reliability indices for load point L2  

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.004566 5.00 0.022831 1713.89 365.29 
1-2-4 0.000018 3.33 0.000060 4.24 0.94 
Total 0.004584 4.99 0.022891 1718.13 366.23 

 
 
It is interesting to note that the failure rate and unavailability of mincut 1-2-4 are double 

those of mincut 1-2-3. This is because the failure rate of component 4 is double that of 

component 3. This shows the impact of this reliability parameter on the failure rate and 

unavailability. The system indices are listed below. The IEAR (Interruption Energy 

Assessment Rate) is given by the ratio of the ECOST and the EENS. 

 
SAIFI  =  0.002037 (intr/cust-yr) 

SAIDI  =  0.010143  (hrs/cust-yr) 

EENS  =  367.99 (kWh/yr) 

ECOST =  1725.65 ($/yr) 

IEAR  =  4.67  ($/kWh) 

ASAI  =  0.999999 
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4.4.2  Incorporating a two state weather model 

 

This section illustrates the effects of incorporating the two state weather model in the 

analysis. It, therefore, implies that the system can reside in normal or adverse weather 

conditions. The studies assume that component repair is performed only in normal 

weather. The failure events in the form of the minimal cuts are analysed using the 

Markov approach and the fundamental reliability indices of average system failure rate, 

outage duration and unavailability associated with each mincut are determined. 

Additional indices such as ECOST and EENS are also computed. The percentages of 

line failures in adverse weather are held at 50% and 90%, which are designated as Cases 

I and II respectively. Tables 4.5-4.8 show the results for the two cases. 

 
 
 
Case I: 50% of failures occur in adverse weather 
 
 
 

Table 4.5 Reliability indices for load point L1 (50% of failures in adverse weather) 

 

Minimal cut 
Failure rate 

(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.000948 5.31 0.0050 462.62 100.00 
1-2-4 0.001854 5.31 0.0099 904.75 198.00 
Total 0.002802 5.31 0.01490 1367.37 298.00 

  
 
 

Table 4.6 Reliability indices for load point L2 (50% of failures in adverse weather) 

 

Minimal cut 
Failure rate 

(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.026270 6.88 0.1810 15097.89 2896.00 
1-2-4 0.001854 5.31 0.0099 753.76 158.40 
Total 0.028124 6.79 0.1909 15851.65 3054.40 
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Case II:  90% of failures occur in adverse weather 

 

 
Table 4.7 Reliability indices for load point L1 (90% of failures in adverse weather) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.004812 5.36 0.0258 2378.09 516.00 
1-2-4 0.009248 5.36 0.0496 4570.36 992.00 
Total 0.014060 5.36 0.0754 6948.45 1508.00 

 
 

Table 4.8 Reliability indices for load point L2 (90% of failures in adverse weather) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.07212 7.04 0.5083 42741.20 8132.80 
1-2-4 0.00925 5.36 0.0496 3808.04 793.60 
Total 0.08137 6.85 0.5579 46549.24 8926.40 

 
 
The results presented in Tables 4.5-4.8 show that the load point indices increase 

considerably by incorporating the two state weather model. The increase in the 

percentage of failures in adverse weather has a significant effect on the load point 

indices.  

 

The system indices obtained without considering the weather conditions together with 

those obtained using the two weather state model are shown in Table 4.9.  

 

Table 4.9 System indices for the single and two state weather models 

Condition 
SAIFI 

(intr/cust-
yr) 

SAIDI 
(hrs/cust-

yr) 
ASAI 

EENS 
(kWh/yr) 

ECOST 
($/yr) 

IEAR 
($/kWh) 

Single 
state  

0.002037  0.010143  0.999999 367.99 1725.65  4.67  

2-state, 
Case I 

0.013968  0.092512  0.999989 3352.4  17219.02 5.14 

2-state, 
Case II 

0.043742 0.288172 0.999967 10434.4  53497.69 5.13 
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It can be seen from Table 4.9 that there are quite large differences between the indices 

obtained using the basic formulae and those obtained using the two state weather model. 

The effect of adverse weather on these indices becomes more severe for larger 

percentages of failures occurring in adverse weather. The ASAI differs only marginally 

from that obtained using the single state weather model. It is evident that the system 

indices are dominated by the indices of load point L2 which is relatively unreliable.  

 
 
 

4.4.3  Incorporating a three state weather model 

 

The previous section illustrates the application of the two state weather model. It is clear 

that the load point indices are greatly influenced by the adverse weather conditions. 

Similar studies have been conducted to illustrate the effect of major adverse weather. 

The weather statistics are 200 hrs, 2hrs and 1 hr. The percentages of failures occurring 

in bad weather are held at 50% and 90% and the percentage of failures attributed to 

major adverse weather is varied from 10% to 50%. Tables 4.10-4.13 show the load point 

indices, energy indices and cost indices under the condition that 20% of bad weather 

failures occur in major adverse weather. The results for the cases when 10%, 30%, 40% 

and 50% of bad weather failures occur in extreme weather are presented in Tables C.1-

C.16 in Appendix C. 

 

 

Case I: 50% of line failures occurring in bad weather ( bF  = 50%) 

 
 

Table 4.10 Reliability indices for load point L1 ( bF = 50% and mF = 20%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage duration 

(hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.007683 5.36 0.0412 3796.94 824 
1-2-4 0.013351 5.36 0.0716 6598.06 1432 
Total 0.021034 5.36 0.1128 10395.00 2256 
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Table 4.11 Reliability indices for load point L2 ( bF = 50% and mF = 20%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage duration 

(hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.046157 6.96 0.3215 26940.91 5145.60 
1-2-4 0.013351 5.36 0.0716 5496.34 1145.60 
Total 0.059508 6.61 0.3931 32437.25 6291.20 

 
 
 
Case II:  90% of line failures occurring in bad weather ( bF  = 90%) 
 
 

Table 4.12 Reliability indices for load point L1 ( bF = 90% and mF = 20%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.029009 5.37 0.1558 14371.06 3116.00 
1-2-4 0.047159 5.37 0.2533 23362.57 5066.00 
Total 0.076168 5.37 0.4091 37733.63 8232.00 

 
 
 

Table 4.13 Reliability indices for load point L2 ( bF = 90% and mF = 20%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.116821 7.04 0.8240 69232.79 13184.00 
1-2-4 0.047159 5.37 0.2533 19459.69 4052.80 
Total 0.163980 6.57 1.0773 88692.48 17236.80 

 
 

Table 4.14 shows the system indices for varying percentages of bad weather failures 

occurring in major adverse weather for 50% and 90% of the failures occurring in bad 

weather. The system indices shown in Table 4.14 can be compared with those in Table 

4.9 where the indices were computed using the single and two state weather models. The 

differences are illustrated graphically in the next section. 
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Table 4.14 System indices obtained using the three state weather model 

 

Failure condition 
SAIFI 
(intr/ 

cust-yr) 

SAIDI 
(hrs/ 

cust-yr) 
ASAI EENS 

(kWh/yr) 
ECOST 
($/kW) 

IEAR 
($/kWh) 

mF = 10% 0.0186 0.1207 0.999986 4373.76 22311.48 5.1012 

mF = 20% 0.0380 0.2364 0.999973 8547.20 42832.25 5.0112 

mF = 30% 0.0692 0.4191 0.999952 15135.2 74965.72 4.9532 

mF = 40% 0.1081 0.6460 0.999926 23312.8 114597.90 4.9157 

 F
or

 F
b 

=
 5

0%
 

mF = 50% 0.1518 0.8990 0.999897 32430.8 158870.39 4.8987 

mF = 10% 0.0559 0.3625 0.999959 13111.4 66625.80 5.0815 

mF = 20% 0.1149 0.7037 0.999920 25468.8 126426.11 4.9639 

mF = 30% 0.1898 1.1348 0.999870 40951.2 201672.80 4.9247 

mF = 40% 0.2709 1.5993 0.999817 57683.6 282424.69 4.8961 

F
or

 F
b 

=
 9

0%
 

mF = 50% 0.3518 2.0612 0.999765 74320.4 362621.88 4.8792 

 
 

 
 
 
 
4.5  Significance of using the two and three state weather models  

 

The variations in SAIFI, SAIDI, EENS and ECOST with changing percentages of bad 

weather failures in extreme weather are illustrated pictorially in Figures 4.2-4.5. The 

system indices for the two cases when the system resides in two weather states are also 

shown. Figure 4.2 illustrates that the SAIFI increases significantly when a large number 

of failures occur in extreme weather. The effect is more acute when the failure 

percentages in bad weather increase from 50% to 90%. Figure 4.2 clearly shows that the 

two state weather model severely underestimates the predicted SAIFI. Similar variations 

in SAIDI, EENS and ECOST are illustrated in Figures 4.3, 4.4 and 4.5 respectively.  
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Figure 4.2  SAIFI using the two and three state weather models 
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Figure 4.3  SAIDI using the two and three state weather models 
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Figure 4.4  EENS using the two and three state weather models  
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Figure 4.5  ECOST using the two and three state weather models 
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4.6 Summary 
 

A simple practical system comprised of second order and third order minimal cuts was 

examined using the two different approaches. The first approach determines the system 

performance in a conventional way without considering the weather conditions, while 

the second approach employs the two different weather models to incorporate the effects 

of adverse and major adverse weather in the analysis. The load point indices and system 

indices were evaluated for varying percentages of line failures occurring in adverse 

weather and extreme weather periods. Load point indices show the actual adequacy at 

the customer connection points and the system indices provide an overall appraisal of 

the system adequacy. The significance of recognising the environmental stresses in the 

analysis is illustrated by comparing the estimated reliability indices in the different 

cases.  

 

The load point adequacy studies clearly show the reliability benefits associated with 

increasing the level of redundancy in the system. This benefit, however, is severely 

affected when a large proportion of failures are attributable to extreme adverse weather. 

The analyses conducted in this chapter show that the reliability indices obtained using 

the two state weather model are significantly larger than those calculated using the 

conventional single weather state approach. The system indices increase further as a 

result of incorporating three weather states. A pictorial illustration of the differences 

between SAIIFI, SAIDI, EENS and ECOST determined using the two and three state 

weather models is presented in Figures 4.2-4.5. The influence of increasing the number 

of failures in major adverse weather is shown. These studies reveal that the application 

of the three weather state model becomes increasingly important as more failures occur 

in extreme weather periods.  
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Chapter 5 
 

CONSIDERATION OF MULTI STATE WEATHER MODELS 
 
 

5.1  Introduction 

The influence of failure bunching due to fluctuating weather is illustrated in Chapter 2 

using a two state weather model applied to two line and three line parallel systems. The 

three state weather model is developed and utilized in Chapter 3 in order to recognize 

the impacts of extreme weather periods. Weather is a continuous phenomenon that 

creates continuously varying stress on an associated system element. The failure rate of 

a component varies in accordance with the stress placed on that component. 

Transmission/distribution line failure rates are functions of weather conditions and 

increase with the weather intensity level.  

In the three state weather model, a wide range of adverse weather conditions falling 

between normal and extreme weather is aggregated and generally termed as adverse 

weather. If the adverse weather state includes many relatively mild and non-destructive 

adverse weather periods, the failure bunching effect of more severe periods will be 

diluted. This suggests that only the weather periods that create a certain range of stress 

levels should be aggregated to form relevant weather states. This can be achieved by 

using a number of substates with different severity levels instead of using a single 

adverse weather state. A series of multi-state weather models are developed in this 

chapter and used to examine a two line parallel redundant configuration. The effects are 

illustrated using the basic reliability indices and the Error Factor. The basic techniques 

and processes underlying multi-state weather modeling are similar to those applied to a 

three state weather model. The number of actual states required to model the weather 

environment should be sufficient to represent the variable weather conditions and
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minimize the potential error in the results. The objective of the work described in this 

chapter is to identify the number of weather states required to provide a reasonably 

accurate representation of the weather environment in a distribution system reliability 

study. 

 
 
 
5.2  General methodology 
 

The state space diagram for a general multi-state weather model is shown in Figure 5.1. 

In this model, the traditional classification [20] of the weather environment into three 

basic categories is maintained but the adverse weather state is represented by a number 

of substates in order to incorporate the variability in stress levels that occur due to the 

wide range of adverse weather. It can be seen in Figure 5.1 that the adverse weather is 

divided into S substates while the normal and extreme weather states retain their basic 

characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1  State space diagram for a general multi-state weather model 

 
 
The weather statistics required in the multi-state weather modeling approach described 

in this chapter are not generally available. The following assumptions were made to 

illustrate the proposed approach. The average durations of normal, adverse and major 

adverse weather designated as N, A and M are approximately 200 hrs, 2 hrs, and 1 hr 
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respectively. The average duration of adverse weather substate A1 is approximately 2 

hours and that of A2, A3, …, AS is 1 hour.  

 
The assumed transition rates between the different weather states in occurrences per 

hour are as follows: 

 
Any substate of adverse weather to normal weather, na = 1/A 

Normal to major adverse weather, mn = 1/8760 

Major adverse to normal weather, nm =1/2M  

Any substate of adverse weather to major adverse weather, ma  = 1/8760  

Major adverse to any substate of adverse weather, am = 1/(2SxM)   

 
It is assumed that the frequency of encountering the less severe substates is higher than 

that of the more severe substates and that the occurrences of these periods are more 

likely following normal weather periods. 

 

The transition rate from normal weather to the ith adverse weather substate,  

          
NSS

iS
nai

1

2/)1(

)1( ×
+

−+=     (where, Si ....3,2,1= ) 

The transition rate from a more severe adverse weather substate k to a less severe 

adverse weather substate i  ( ki < ),    

Ak
u k

1

)1(

1 ×
−

=  

The transition rate from a less severe adverse weather substate to a more severe adverse 

weather substate,   

8760/1=d  

 
The frequency balance approach can be used to determine the steady state probabilities 

of each weather state. 
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5.3  Markov analysis 
 

The complete system state space diagram becomes large and unmanageable with 

increase in the system states. Increasing the number of adverse weather substates can 

create a considerable number of system states. An n -component system with a m -state 

weather model results in mn ×2  system states. A two component system with a ten state 

weather model generates 40 states and this increases to 80 states for a three component 

system. The stochastic transitional probability matrix can, however, be obtained without 

creating an exhaustive state space diagram, using the same concepts involved in creating 

the transitional probability matrix for a three state weather model. Equation 5.1 shows 

the generalized transitional probability matrix for the multi-state weather model with a 

two component system. The off-diagonal sub-matrices and their elements are easier to 

manipulate. Each of the diagonal sub-matrices is different in that the appropriate failure 

and repair rates are associated with the respective weather state.  
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where, [I] is the identity matrix. 

 
The matrix NM  is associated with normal weather. The failure rates and repair rates in 

this matrix are the component parameters in normal weather.  
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is the sum of the departure rates from normal weather. 
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The matrix AiM is associated with the thi  adverse weather substate and aiX is the sum of 

the departure rates from the  thi  adverse weather substate. The component failure rates 

in this case are those for the corresponding weather state. It should be noted that all the 

elements below the diagonal are zero when no repair is performed in adverse weather.  

 
 

















−
−−

−−
−−−

=

1

1
21

1
2

1
11

1
1

1
2

1
11

1
2

1
1

1

1000

100

010

01

a

a
a

a

a
a

a

aa
a

aa

A

X

X

X

X

M
λλ
λλ

λλλλ

 

 

where, mna adsaX +−+= )1(1  

 
 

















−
−−

−−
−−−

=

2

2
22

2
2

2
12

2
1

2
2

2
12

2
2

2
1

2

1000

100

010

01

a

a
a

a

a
a

a

aa
a

aa

A

X

X

X

X

M
λλ
λλ

λλλλ

 

 
where, mna adsuaX +−++= )2(22  

 
 

















−
−−

−−
−−−

=

as

as
as

as

as
as

as

asas
as

asas

AS

X

X

X

X

M

1000

100

010

01

22

11

2121

λλ
λλ

λλλλ

 

 
where, mSnas ausaX +−+= )1(  

 
 

















−
−−

−−
−−−

=

m

m
m

m

m
m

m

mm
m

mm

M

X

X

X

X

M

1000

100

010

01

22

11

2121

λλ
λλ

λλλλ

 

 

where, smmX anm +=   



 79 

The matrix MM  represents the condition when the system resides in major adverse 

weather. The term mX which is subtracted from each diagonal element is the sum of the 

departure rates from the major adverse or extreme weather. 

 

The stochastic transitional probability matrix can be used to calculate the steady state 

probabilities of each system state. The system failure rate is obtained using the process 

described in Chapter 2. Equation 5.2 is a generalized form of Equation 2.11.  

 

  MTTF = 
i

D

i
N

,11∑ =
      (5.2)      

where, D is the dimension of the square matrix [N].    

 
The average system failure rate is the reciprocal of the MTTF. The average system 

outage duration can be obtained by dividing the sum of the failure state probabilities by 

the frequency of occurrence of the combined failure state. Equation 5.3 is used to 

evaluate the outage duration and Equation 5.4 gives the average system unavailability. 

 

)( 214

)(

µµ +
= ∑

P

P
r idn
W        (5.3) 

 

∑= )(idnW PU        (5.4) 

where,  

)(idnP  is the probability of the thi failure state. 

 
 
 
5.4  Failure rate considerations 
 

As noted in Chapters 2 and 3, there are virtually no available historical data on weather 

related failure rates. The average component failure rate can, however, be utilized to 

estimate the required parameters. Equation 5.5 is an extension of Equations 2.1 and 3.1 

and indicates the contributions of the individual weather related failure rates to the total 
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average failure rate. The individual weather related failure rates can be estimated using 

Equation 5.6. 

∑ =
= WS

k kkavg P
1
λλ               (5.5)    

kkavgk PFλλ =         (5.6)   

where,  

avgλ = average component failure rate per calendar year 

   kλ   =  average component failure rate per year of the kth weather state 

WS  = total number of weather states  

kF  = fraction of total failures occurring in the kth  weather state  

 kP = steady state probability of the kth weather state 

 
Figure 5.2 shows the variation of the component failure rates in the multi-state weather 

representation. The parameters on the x-axis represent the normal weather, the adverse 

weather substates, and major adverse weather conditions.  

 

 
(a)      (b) 

 
Figure 5.2  Component failure rates as a function of the weather condition: 

                             (a) four-state weather model, (b) six-state weather model 
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Tables 5.1-5.5 show the component weather related failure rates and the weather state 

probabilities, durations and frequencies for selected weather state models obtained using 

the data assumed in the previous section. The total average component failure rate 

)( avgλ is 1.0f/yr. The weather specific failure rates assume that 80% of the component 

failures are caused by bad weather and 20% of bad weather failures occur in major 

adverse weather.  

 
 

Table 5.1 Weather parameters and component failure rates with a 3-state model 

Weather state 
Steady state 
probability 

Average 
duration 
(hours) 

Frequency of 
occurrence 

(occ/yr) 

Component 
failure rate 

(f/yr) 
Normal weather 0.989875 195.5357 44.35 0.202 
Adverse weather 0.010011 1.9995 43.86 63.93 
Extreme weather 0.000114 1 1 1401.76 

 
 
 

Table 5.2 Weather parameters and component failure rates with a 4-state model 

Weather state 
Steady state 
probability 

Average 
duration 
(hours) 

Frequency of 
occurrence 

(occ/yr) 

Component 
failure rate 

(f/yr) 
Normal weather 0.989875 195.5357 44.35 0.202 
Adverse weather, A1 0.008332 1.9991 36.51 38.41 
Adverse weather, A2 0.001679 0.9999 14.71 190.58 
Extreme weather 0.000114 1 1 1401.76 

 
     

Table 5.3 Weather parameters and component failure rates with a 5-state model 

Weather state 
Steady state 
probability 

Average 
duration 
(hours) 

Frequency of 
occurrence 

(occ/yr) 

Component 
failure rate 

(f/yr) 
Normal weather 0.989875 195.5357 44.35 0.202 
Adverse weather, A1 0.007285 1.9986 31.93 29.28 
Adverse weather, A2 0.001880 0.9998 16.48 113.45 
Adverse weather, A3 0.000845 0.9999 7.40 252.50 
Extreme weather 0.000114 1 1 1401.76 
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Table 5.4 Weather parameters and component failure rates with a 6-state model 

Weather state 
Steady state 
probability 

Average 
duration 
(hours) 

Frequency of 
occurrence 

(occ/yr) 

Component 
failure rate 

(f/yr) 
Normal weather 0.989875 195.5357 44.35 0.202 
Adverse weather, A1 0.006554 1.9982 28.73 24.41 
Adverse weather, A2 0.001857 0.9997 16.27 86.17 
Adverse weather, A3 0.001090 0.9998 9.55 146.80 
Adverse weather, A4 0.000510 0.9999 4.47 313.58 
Extreme weather 0.000114 1 1 1401.76 

 
       

Table 5.5 Weather parameters and component failure rates with a 10-state model 

Weather state 
Steady state 
probability 

Average 
duration 
(hours) 

Frequency of 
occurrence 
(occ/yr) 

Component 
failure rate 
(f/yr) 

Normal weather 0.989875 195.5357 44.35 0.202 
Adverse weather, A1 0.004933 1.9964 21.65 16.22 
Adverse weather, A2 0.001555 0.9992 13.63 51.44 
Adverse weather, A3 0.001135 0.9993 9.95 70.50 
Adverse weather, A4 0.000855 0.9994 7.49 93.56 
Adverse weather, A5 0.000638 0.9995 5.59 125.36 
Adverse weather, A6 0.000455 0.9997 3.99 175.69 
Adverse weather, A7 0.000294 0.9998 2.57 272.54 
Adverse weather, A8 0.000146 0.9999 1.28 548.97 
Extreme weather 0.000114 1 1 1401.76 

 
 
 
The parameters presented in Table 5.1 can be compared with those shown in Tables 5.2-

5.5 where adverse weather is divided into a number of substates. In each case, the sum 

of the probabilities of the adverse weather substates is equal to the probability of the 

aggregated adverse weather state in the three state weather model. The expected number 

of adverse weather occurrences are distributed among its substates. The last columns in 

Tables 5.1-5.5 are the component failure rates in the different weather states. The failure 

rate increases more rapidly as the adverse weather severity increases. 
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5.5  Sensitivity analysis 
 

As noted earlier, the state space diagram expands rapidly as the number of weather 

states increases. The following analysis was done using a computer program “RETADS 

– Reliability Evaluation of Transmission and Distribution Systems” developed in Visual 

C++ during this research work. This is a general program that can consider two line and 

three line parallel redundant systems. The number of weather states in these studies is 

limited to 10, which is sufficient for reasonable accuracy. It can be upgraded relatively 

easily, however, if needed. The data required are the intended number of weather states 

to be included; the average durations of normal, adverse and extreme weather; and the 

average component failure rates and repair times. This program effectively generates the 

stochastic transitional probability matrix and successively computes the average system 

failure rate, outage duration, unavailability and the Error Factor. The results are directly 

exported to an Excel output file.  

 

In the following sensitivity studies, four cases are considered in which 10%, 20%, 30% 

and 40% of bad weather failures are attributed to major adverse weather. The percentage 

of failures credited to bad weather is allowed to vary from 0% to 100% in steps of 10%. 

The percentage of failures attributed to adverse weather is assumed to be equally 

divided between the adverse weather substates. The notations bF and mF  stand for the 

percentage of failures assigned to bad weather and the percentage of bad weather 

failures occurring in major adverse weather respectively. The basic system reliability 

indices and the Error Factor are evaluated and compared to examine the applicability of 

the weather models. It is assumed that repair cannot be performed during bad weather 

situations. 

 

 

Case I: 10% of bad weather failures occurring in major adverse weather 

 

Table 5.6 shows the Error Factor for the weather models created by varying the number 

of states from 3-10 assuming that 10% of bad weather failures occur in extreme weather. 
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The Error Factor obtained using the two weather state model is also shown in the second 

column of Table 5.6 for comparison purposes. Table 5.6 shows that the Error Factor 

increases as the number of adverse weather substates increases. The increase becomes 

smaller as the number of states in the weather model increases. This is illustrated 

pictorially in Figure 5.3. 

 
Table 5.6 Error Factor using the different weather models, ( mF = 10%) 

bF (%)  Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
10 1.27 1.35 1.39 1.42 1.43 1.45 1.46 1.47 1.48 
20 2.06 2.34 2.51 2.61 2.69 2.75 2.80 2.84 2.88 
30 3.37 3.96 4.34 4.56 4.72 4.85 4.96 5.05 5.13 
40 5.18 6.18 6.84 7.22 7.50 7.73 7.91 8.06 8.20 
50 7.48 8.98 9.99 10.57 11.00 11.33 11.60 11.83 12.03 
60 10.27 12.34 13.75 14.57 15.17 15.63 16.00 16.32 16.59 
70 13.52 16.22 18.11 19.20 19.98 20.58 21.08 21.48 21.83 
80 17.25 20.62 23.04 24.42 25.41 26.17 26.78 27.29 27.72 
90 21.42 25.51 28.51 30.22 31.43 32.35 33.10 33.71 34.23 
100 26.05 30.88 34.51 36.56 38.01 39.11 39.99 40.71 41.32 
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Figure 5.3  Error Factor for Case I 
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Figure 5.3 illustrates that the Error Factor increases with the recognition of the three 

state weather model and that the influence of using more weather states is considerable. 

The two state and three state weather models underestimate the predicted system failure 

rate and higher state weather models provide better estimates.  

 

Table 5.7 shows the system unavailability and Table 5.8 shows the average outage 

duration for Case I.  

 
 

Table 5.7 System unavailability, ( mF  = 10%) 

bF (%)  Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
state 

Eight 
state 

Nine 
state 

Ten 
state 

0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 
10 0.009 0.010 0.011 0.011 0.011 0.011 0.011 0.012 0.012 
20 0.018 0.020 0.022 0.023 0.024 0.024 0.025 0.025 0.026 
30 0.031 0.037 0.041 0.043 0.044 0.046 0.047 0.048 0.048 
40 0.049 0.059 0.066 0.070 0.072 0.075 0.076 0.078 0.079 
50 0.072 0.087 0.097 0.103 0.107 0.111 0.113 0.116 0.118 
60 0.100 0.121 0.135 0.143 0.149 0.154 0.157 0.161 0.163 
70 0.132 0.160 0.179 0.189 0.197 0.203 0.208 0.212 0.216 
80 0.169 0.204 0.228 0.242 0.251 0.259 0.265 0.270 0.274 
90 0.210 0.253 0.282 0.299 0.311 0.321 0.328 0.334 0.339 
100 0.256 0.306 0.342 0.363 0.377 0.388 0.397 0.404 0.410 

 
 
 

Table 5.8 Average system outage duration, ( mF = 10%) 

bF (%)  
Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 
10 4.36 4.44 4.48 4.51 4.53 4.54 4.55 4.56 4.57 
20 5.00 5.10 5.15 5.17 5.19 5.20 5.21 5.22 5.23 
30 5.37 5.43 5.46 5.48 5.49 5.50 5.51 5.51 5.52 
40 5.55 5.59 5.61 5.62 5.63 5.63 5.64 5.64 5.64 
50 5.65 5.68 5.69 5.69 5.70 5.70 5.70 5.70 5.71 
60 5.71 5.72 5.73 5.73 5.74 5.74 5.74 5.74 5.74 
70 5.74 5.75 5.76 5.76 5.76 5.76 5.76 5.76 5.76 
80 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 
90 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 
100 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 
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As shown in Table 5.7, the unavailability increases with the percentage of failures 

occurring in bad weather. The utilization of a three state weather model increases the 

estimated system unavailability when a large portion of failures are attributed to bad 

weather. The unavailability increases further as the weather model includes more states, 

but the difference reduces with utilization of an increasing number of states. Table 5.8 

shows that the average outage duration increases initially but does not progress in the 

same manner, as the percentage of failures in bad weather increases. The change in 

average outage duration as a result of incorporating multi-state weather models is 

negligible.  

 

 
Case II: 20% of bad weather failures occurring in major adverse weather 

 

The Error Factor for Case II is shown in Table 5.9. Figure 5.4 provides a pictorial 

illustration of the effects on the Error Factor of using a multi-state weather model.  

 

Table 5.9 Error Factor using the different weather models, ( mF  = 20%) 

bF (%) Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
10 1.27 1.63 1.67 1.69 1.71 1.72 1.73 1.74 1.75 
20 2.06 3.41 3.55 3.64 3.70 3.75 3.79 3.83 3.86 
30 3.37 6.19 6.51 6.70 6.83 6.94 7.03 7.11 7.17 
40 5.18 9.87 10.41 10.74 10.97 11.16 11.31 11.44 11.56 
50 7.48 14.33 15.17 15.66 16.02 16.30 16.53 16.72 16.89 
60 10.27 19.51 20.68 21.37 21.87 22.26 22.58 22.84 23.07 
70 13.52 25.31 26.88 27.79 28.45 28.96 29.37 29.72 30.02 
80 17.25 31.69 33.70 34.86 35.69 36.33 36.85 37.28 37.65 
90 21.42 38.58 41.08 42.50 43.52 44.31 44.94 45.46 45.90 
100 26.05 45.95 48.97 50.68 51.90 52.83 53.58 54.20 54.72 

 
 
It can be seen from Figure 5.4 that the Error Factor increases significantly with the 

utilization of a three state weather model when 20% of the bad weather failures are 

attributed to major adverse weather. The Error Factor increases further with increase in 

the number of weather states until the change becomes relatively insignificant. The two 

state weather model severely underestimates the expected failure rate. The use of a three 
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state weather model significantly reduces the potential error in the estimated failure rate. 

In this case, a four state weather model may provide a reasonably accurate assessment.  
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Figure 5.4  Error Factor for Case II 

 
The system unavailability and average outage duration for this case are shown in Tables 

5.10-5.11. 

 
Table 5.10 System unavailability, ( mF = 20%) 

bF (%)  Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 
10 0.009 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014 
20 0.018 0.031 0.032 0.033 0.034 0.034 0.035 0.035 0.036 
30 0.031 0.059 0.062 0.064 0.065 0.066 0.067 0.068 0.069 
40 0.049 0.096 0.101 0.104 0.107 0.109 0.110 0.111 0.113 
50 0.072 0.141 0.149 0.154 0.157 0.160 0.162 0.164 0.166 
60 0.100 0.192 0.204 0.211 0.216 0.219 0.223 0.225 0.228 
70 0.132 0.250 0.266 0.275 0.281 0.286 0.290 0.294 0.297 
80 0.169 0.314 0.334 0.345 0.353 0.360 0.365 0.369 0.373 
90 0.210 0.382 0.407 0.421 0.431 0.439 0.445 0.451 0.455 
100 0.256 0.456 0.486 0.503 0.515 0.524 0.531 0.538 0.543 
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Table 5.11 Average system outage duration, ( mF = 20%) 

bF (%)  
Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 
10 4.36 4.68 4.70 4.72 4.73 4.74 4.74 4.75 4.75 
20 5.00 5.32 5.34 5.35 5.35 5.36 5.37 5.37 5.37 
30 5.37 5.56 5.57 5.58 5.58 5.59 5.59 5.59 5.59 
40 5.55 5.67 5.67 5.68 5.68 5.68 5.68 5.68 5.69 
50 5.65 5.72 5.72 5.73 5.73 5.73 5.73 5.73 5.73 
60 5.71 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 
70 5.74 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 
80 5.77 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 
90 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 
100 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 

 
 
 

Case III: 30% of bad weather failures occurring in major adverse weather 

 

Table 5.12 shows the Error Factor for Case III. As in Case II, the largest increase in 

Error Factor occurs when going from a two state to a three state weather model. The 

variation in Error Factor is presented graphically in Figure 5.5. It can be seen from 

Figure 5.5 that the difference between the Error Factors obtained using the two state and 

three state weather models is more than that in Figures 5.3 and 5.4. 

 

Table 5.12 Error Factor using the different weather models, ( mF = 30%) 

bF (%) 
Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
10 1.27 2.12 2.15 2.17 2.18 2.19 2.20 2.21 2.22 
20 2.06 5.14 5.26 5.33 5.38 5.42 5.45 5.48 5.51 
30 3.37 9.67 9.93 10.08 10.19 10.28 10.36 10.42 10.47 
40 5.18 15.41 15.86 16.12 16.31 16.46 16.59 16.69 16.79 
50 7.48 22.12 22.80 23.20 23.49 23.72 23.90 24.06 24.20 
60 10.27 29.62 30.57 31.13 31.53 31.85 32.11 32.33 32.51 
70 13.52 37.76 39.02 39.76 40.29 40.71 41.04 41.33 41.57 
80 17.25 46.42 48.03 48.97 49.64 50.16 50.59 50.94 51.25 
90 21.42 55.50 57.50 58.66 59.48 60.12 60.64 61.07 61.44 
100 26.05 64.95 67.36 68.75 69.74 70.50 71.12 71.63 72.06 
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Figure 5.5  Error Factor for Case III 
 

 

Table 5.13 and Table 5.14 present the system unavailability and average outage duration 

for Case III respectively. 

 
Table 5.13 System unavailability, ( mF = 30%) 

bF (%)  Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 
10 0.009 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 
20 0.018 0.048 0.049 0.050 0.051 0.051 0.051 0.052 0.052 
30 0.031 0.094 0.096 0.098 0.099 0.100 0.100 0.101 0.102 
40 0.049 0.151 0.155 0.158 0.160 0.161 0.163 0.164 0.165 
50 0.072 0.218 0.225 0.228 0.231 0.234 0.235 0.237 0.238 
60 0.100 0.293 0.302 0.307 0.311 0.315 0.317 0.319 0.321 
70 0.132 0.374 0.386 0.393 0.399 0.403 0.406 0.409 0.411 
80 0.169 0.460 0.476 0.485 0.492 0.497 0.501 0.505 0.508 
90 0.210 0.550 0.570 0.581 0.590 0.596 0.601 0.605 0.609 
100 0.256 0.644 0.668 0.682 0.692 0.699 0.705 0.710 0.715 
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Table 5.14 Average system outage duration, ( mF = 30%) 

bF (%)  Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 
10 4.36 4.93 4.95 4.95 4.96 4.96 4.97 4.97 4.97 
20 5.00 5.48 5.48 5.49 5.49 5.49 5.50 5.50 5.50 
30 5.37 5.64 5.65 5.65 5.65 5.65 5.65 5.66 5.66 
40 5.55 5.71 5.71 5.72 5.72 5.72 5.72 5.72 5.72 
50 5.65 5.74 5.75 5.75 5.75 5.75 5.75 5.75 5.75 
60 5.71 5.76 5.76 5.76 5.76 5.76 5.76 5.77 5.77 
70 5.74 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.78 
80 5.77 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 
90 5.78 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 
100 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 

 

 

 

Case IV: 40% of bad weather failures occurring in major adverse weather 

 

The results for Case IV are shown in Tables 5.15-5.17. Table 5.15 shows that the 

increase in Error Factor when the three state weather model is applied is even greater 

than that in the previous cases and this effect diminishes with the utilization of higher 

state weather models. The variation in the Error Factor is shown in Figure 5.6. 

 

Table 5.15 Error Factor using the different weather models, ( mF = 40%) 

bF (%) 
Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
10 1.27 2.79 2.81 2.83 2.84 2.84 2.85 2.86 2.86 
20 2.06 7.42 7.52 7.57 7.61 7.65 7.67 7.70 7.72 
30 3.37 14.11 14.31 14.43 14.52 14.59 14.65 14.70 14.74 
40 5.18 22.26 22.61 22.82 22.97 23.09 23.19 23.27 23.34 
50 7.48 31.47 32.00 32.31 32.54 32.72 32.86 32.99 33.10 
60 10.27 41.43 42.17 42.60 42.92 43.17 43.37 43.55 43.69 
70 13.52 51.93 52.90 53.47 53.89 54.22 54.48 54.71 54.90 
80 17.25 62.78 64.03 64.75 65.28 65.69 66.02 66.30 66.54 
90 21.42 73.88 75.42 76.32 76.96 77.46 77.87 78.21 78.50 

100 26.05 85.14 87.00 88.08 88.85 89.44 89.93 90.33 90.67 
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Table 5.16 System unavailability, ( mF = 40%) 

bF (%)  
Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 
10 0.009 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 
20 0.018 0.071 0.072 0.072 0.073 0.073 0.073 0.074 0.074 
30 0.031 0.138 0.140 0.141 0.142 0.142 0.143 0.143 0.144 
40 0.049 0.219 0.222 0.224 0.226 0.227 0.228 0.229 0.230 
50 0.072 0.311 0.316 0.319 0.321 0.323 0.324 0.326 0.327 
60 0.100 0.410 0.417 0.421 0.424 0.427 0.429 0.431 0.432 
70 0.132 0.514 0.524 0.529 0.534 0.537 0.539 0.542 0.544 
80 0.169 0.622 0.634 0.642 0.647 0.651 0.654 0.657 0.659 
90 0.210 0.732 0.748 0.757 0.763 0.768 0.772 0.775 0.778 
100 0.256 0.844 0.863 0.873 0.881 0.887 0.892 0.896 0.899 

 

 

Table 5.17 Average system outage duration, ( mF = 40%) 

bF (%)  
Two 
state 

Three 
state 

Four 
State 

Five 
state 

Six 
state 

Seven 
State 

Eight 
state 

Nine 
state 

Ten 
state 

0 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 
10 4.36 5.14 5.15 5.15 5.15 5.15 5.15 5.16 5.16 
20 5.00 5.57 5.58 5.58 5.58 5.58 5.58 5.58 5.58 
30 5.37 5.69 5.69 5.69 5.69 5.69 5.69 5.69 5.70 
40 5.55 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74 
50 5.65 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 
60 5.71 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77 
70 5.74 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 
80 5.77 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78 
90 5.78 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 
100 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 

 

 
Figure 5.6 clearly shows that the influence of using the three state weather model in this 

case is even higher than that in Figures 5.4 and 5.5. In this case, the effects of utilizing 

an increasing number of weather states diminish. The profiles associated with some of 

the weather models are not shown in Figures 5.5 and 5.6 to avoid overlapping profiles. It 

becomes clear that a three state representation is sufficient to achieve reasonably 

accurate results when a considerably large portion of failures are caused by extreme 

weather. 
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Figure 5.6  Error Factor for Case IV 

 

Figures 5.3-5.6 illustrate that the inclusion of extreme weather conditions dominates the 

effect of considering multiple adverse weather substates. The influence on the predicted 

indices of incorporating multiple substates can be considerable when small percentages 

of bad weather failures are attributed to major adverse weather and the percentages of 

line failures in bad weather are relatively large.  

 

The analysis indicates that the number of states in a weather model have different 

impacts when the percentage of failures occurring in major adverse weather varies. The 

profiles shown in Figure 5.3 are quite different from those in Figure 5.6 and the number 

of states selected depends on the percentage of failures occurring in extreme weather. 

All the Error Factor profiles, however, clearly show that at least three weather states 

should be utilized in a reliability assessment. 
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5.6  Summary 
 

This chapter introduces the concept of multi-state weather modeling in the reliability 

assessment of a system exposed to a great deal of weather variation. A series of weather 

models are developed and examined by application to a two line parallel redundant 

system. The basic reliability indices of average system failure rate, average outage 

duration and unavailability are presented. The effects of using a particular weather 

model are illustrated by comparisons of the Error Factor obtained using the various 

weather models.  

 

The studies show that the three state weather model can be used to accurately predict the 

system indices in some situations and that in other situations additional states should be 

included in the weather model to improve the accuracy. The analysis shows that the 

three state weather model provides acceptable results when the percentage of bad 

weather failures is significant and the percentage of failures caused by extreme weather 

is relatively high. The results also show that in virtually all situations a three state 

weather model provides a substantial improvement in reliability estimation than the 

utilization of a single or two state weather model. 

 

It should be appreciated that it is much easier to collect the required weather and failure 

statistics for the three state weather model than for the higher state weather models. The 

calculations in this chapter are based on the assumption that the component failures are 

uniformly distributed in the whole adverse weather period regardless of the severity 

level in the individual substate. There are virtually no available data on specific weather 

related failures. The results shown, however, clearly indicate that the effects of 

incorporating adverse weather in reliability prediction are important and that data should 

be collected for at least one or more adverse weather severity levels. 



 94 

Chapter 6 
 

SEGMENTED RELIABILITY INDICES 
 
 
 
6.1  Introduction 
 

The weather environment is a vital element that severely impacts an electric utility’s 

operational ability and system reliability in overhead transmission and distribution 

systems. Outdoor electrical networks are vulnerable to extreme weather conditions such 

as ice storms, hurricanes, lightning etc. Although extreme events have relatively low 

probabilities of occurring, when they do occur, they can cause considerable physical 

destruction resulting in large numbers of customers being interrupted for long periods of 

time. The impacts can vary depending on the nature of the weather event and the system 

topology. It is important to identify the weather specific contribution to the total system 

indices. This can provide a quantitative insight into the potential risk due to failures in 

the various weather conditions. The recognition of the risk contributed by a particular 

weather category can be valuable information in working to minimize the anticipated 

impact.  

 

A distribution system usually occupies a small geographic area and therefore it is liable 

to be affected by prevailing weather situations. It is noted in Chapter 1, that the majority 

of power supply outages occur mainly in distribution systems and that most of these 

interruptions are due to bad weather conditions. The adequacy performance of a utility is 

measured using a wide range of reliability indices. The System Average Interruption 

Frequency Index (SAIFI) and the System Average Interruption Duration Index (SAIDI) 

are commonly used reliability indices throughout the world. Canadian statistics on 

outage causes are published annually by the Canadian Electricity Association (CEA). 

Figure 1.2 and Figure 1.3 in Chapter 1 show the individual cause contributions to the 
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SAIFI and SAIDI respectively. It is relatively easy to quantify such contributions from 

past performance. There has, however, been relatively little work done in estimating the 

reliability indices associated with weather specific failures in predictive assessment. 

 

The studies described in this chapter focus on dividing the system risk indices into the 

three main segments related to the weather conditions.  An approach to determine the 

weather specific indices is proposed and illustrated using a practical test distribution 

system. The effect of utilizing more repair resources is examined using a series of 

sensitivity studies. The analyses also illustrate the impact of more frequently occurring 

weather events. The load point indices are provided in the form of expected failure rate, 

average outage duration and unavailability. The feeder indices and the system indices of 

SAIFI and SAIDI are presented as index segments attributable to the three weather 

states. 

 

 

6.2  RBTS distribution system analysis 

 

The example system shown in Figure 6.1 is used to illustrate the proposed methodology. 

It is a part of the Roy Billinton Test System (RBTS) [23] and represents a typical urban 

distribution system. Detailed reliability data associated with this system are presented in 

[23]. Tables 6.1-6.3 show the data used in the subsequent analyses. The customer types 

include residential, commercial, institution/government and small users. The 

transformers on Feeders 1, 3 and 4 are utility property and are included in the analysis. 

The transformers that supply the small users on Feeder 2 are customer owned and are 

not incorporated in the study. Although the feeders can be meshed through normally 

open points, they are normally operated as radial feeders. The feeder is sectionalized by 

disconnect switches. This permits isolation of the faulted sections and service to be 

restored to the customers on the healthy feeder sections. 
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Symbols :  T – Transformer, D – Distributor, S – Section, F – Feeder, Lp – Load point 

 

Figure 6.1  Representative urban distribution system 

 
 
The reliability parameters are as follows: 
 

Average failure rate for each section and distributor = 0.065 failures/yr-km 

Average repair time for each section and distributor = 5 hours 

Average failure rate for a transformer = 0.015 failures/year 

Average replacement time for a transformer = 10 hours 

Average switching time = 1 hour 

 
The fuses located on the lateral distributors are not shown in Figure 6.1. The circuit 

breakers and fuses are assumed to be 100% reliable. The failure rate of a transformer is 
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considered to be unaffected by the weather conditions. A faulted transformer is replaced 

by a mobile transformer rather than repairing it. 

 

Table 6.1 Feeder section and lateral distributor lengths 

Length Feeder sections Lateral distributors 

0.60 km S4, S6, S9, S14 D1, D4, D10, D15, D17, D18 

0.75 km S1, S2, S3, S5, S7, S10, S12, S13 D6, D11, D13, D16, D21 

0.80 km S8, S11 D2, D3, D5, D7, D8, D9, 
D12,D14, D19, D20, D22 

 

 

Table 6.2 Load point data 

Load point 
Average 

load (MW) 
Peak load 

(MW) 
Number of 
customers 

Customer type 

1, 2, 3, 10, 11 0.535 0.8668 210 Residential 
12, 17, 18, 19 0.450 0.7291 200 Residential 

8 1.000 1.6279 1 Small user 
9 1.150 1.8721 1 Small user 

4,  5, 13, 14, 20, 21 0.566 0.9167 1 Institutional 
6, 7, 15, 16, 22 0.454 0.7500 10 Commercial 

 

 

Table 6.3 Feeder data 

Feeder Load points 
Average load 

(MW) 
Peak load 

(MW) 
Number of 
customers 

F1 1−7 3.645 5.934 652 
F2 8−9 2.150 3.500 2 
F3 10−15 3.106 5.057 632 
F4 16−22 3.390 5.509 622 

Total 22 12.291 20.00 1908 
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6.2.1  Conventional approach 

 

Failure events at the specified load point can be identified by a visual inspection of the 

system topology. A faulted distributor is isolated automatically by a 100% reliable fuse; 

therefore, the fault on any distributor does not interrupt other loads on the same feeder. 

A load point on a feeder experiences an outage due to failure of the transformer on the 

load point, the distributor and any segment of the feeder. The approximate equation 

method [17] is used to calculate the primary indices. The fundamental reliability indices 

of load point k are given by Equation 6.1.  For load points 8 and 9, the parameters Tλ  

and Tr are not applicable. The outage duration depends on the applicable restoration 

process. The value of Sir is 5 hours when it is necessary to repair the faulted line element 

to restore the service and 1 hour if the supply can be simply restored by switching 

action. 

   ∑++= SiDkTk λλλλ           (6.1a) 

∑++= SiSiDkDkTTk rrrU λλλ          (6.1b)  

kkk UR λ=         (6.1c) 

where, Tλ  =  average failure rate of a transformer  

Dkλ =  average failure rate of distributor k 

 Siλ =  average failure rate of feeder section i  

  Tr =  average repair time of a transformer 

Dkr =  average repair time of distributor k 

 Sir =  average repair time of feeder section i  

 
The load point indices ( )kk U,λ  computed using Equation 6.1 are used to obtain the 

feeder or system indices (SAIFI, SAIDI) given by Equation 6.2.  

NNSAIFI
lp

k kk∑ =
=

1
λ      (6.2a)   

NNUSAIDI
lp

k kk∑ =
=

1
     (6.2b)   
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where, lp denotes the number of load points connected to the feeder/system and Nk is the 

number of customers at load point k, and N is the total number of customers in the 

system. 

 

The load point indices of average failure rate, average annual outage time 

(unavailability) and average outage duration obtained without considering weather 

conditions using Equation 6.1 are shown in Table 6.4.  

 

Table 6.4 Load point indices for conventional approach 

Load point 
Failure rate 

(failures/year) 
Unavailability 
(hours/year) 

Outage duration 
(hours) 

1 0.239 0.73 3.03 
2 0.252 0.79 3.13 
3 0.252 0.79 3.13 
4 0.239 0.73 3.03 
5 0.252 0.79 3.13 
6 0.249 0.77 3.11 
7 0.252 0.75 2.98 
8 0.140 0.54 3.88 
9 0.140 0.50 3.60 
10 0.243 0.73 3.00 
11 0.252 0.79 3.13 
12 0.256 0.81 3.16 
13 0.252 0.74 2.93 
14 0.256 0.75 2.95 
15 0.243 0.73 3.00 
16 0.252 0.79 3.13 
17 0.242 0.74 3.06 
18 0.242 0.73 3.00 
19 0.256 0.79 3.11 
20 0.256 0.79 3.11 
21 0.252 0.74 2.93 
22 0.256 0.75 2.95 

 
 
 

The primary indices for the different load points given in Table 6.4 differ marginally 

from each other. A significant difference can be seen in the case of load points 8 and 9. 

These load points are inherently more reliable as Feeder 2 is a relatively short feeder and 

the transformers are not included. 
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The indices, SAIFI and SAIDI, can be determined for different levels in the system. A 

single feeder or the combination of feeders can be considered. The load points 

connected to the common feeder are aggregated to determine the system indices at the 

feeder level. The indices for the four feeders are denoted by F1-F4. The evaluation of 

indices for the whole system considers all 22 load points and is designated as SYSTEM 

in Table 6.5 and in the subsequent analyses. The system indices for the feeders and the 

whole system are given in Table 6.5.  

 
Table 6.5 SAIFI and SAIDI for conventional method 

Feeder SAIFI  SAIDI  
F1 0.248 0.770 
F2 0.140 0.540 
F3 0.250 0.770 
F4 0.247 0.760 

SYSTEM 0.248 0.770 
 
 
It can be seen from Table 6.5 that Feeder 2 has better indices. It should be noted that the 

indices for the entire system cannot be obtained by simply summing the indices of the 

four feeders. Table 6.5 shows that the overall system indices are dominated by the less 

reliable feeders.  

 
 
 
6.2.2  Weather considerations 
 

The following studies incorporate the effects of weather on the component failure rates 

and repair times. The process used to determine the component failure rates in various 

weather conditions is the same as that illustrated in Chapter 3. In this process, the 

weather steady state probabilities are first evaluated and the failure rate in each 

individual weather state is calculated by allocating a portion of the total line failures to 

each weather state. The average annual failure rate and weather related failure rates are 

related to each other. For convenience, Equation 3.1 from Chapter 3 is shown as 

Equation 6.3.  

  m
m

a
a

n
navg PPP λλλλ ++=       (6.3) 
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The nP , aP , mP  are the steady state probabilities of normal, adverse and major adverse 

weather, respectively, and nλ , aλ , mλ are the failure rates in normal, adverse and major 

adverse weather expressed in failures per year of the respective weather state. As 

discussed in Chapter 3, these failure rates can be deduced using Equation 3.2 by 

assigning the percentage of failures occurring in bad weather )( bF , and the portion of 

bad weather failures that occur in major adverse weather )( mF . 

 

Using the line failure rates and repair times for normal weather, the load point indices of 

failure rate, average outage duration and unavailability in the normal weather condition 

can be obtained. The fundamental reliability indices of load point k in normal weather 

are given by Equation 6.4. 

    ∑++= n
Si

n
DkT

n
k λλλλ         (6.4a)   

∑++= n
Si

n
Si

n
Dk

n
Dk

n
TT

n
k rrrU λλλ          (6.4b)   

n
k

n
k

n
k UR λ=         (6.4c)   

 

The indices for the feeders and for the entire system in the normal weather condition, i.e. 

nSAIFI and nSAIDI , can be evaluated using the load point indices given in Equation 6.5. 

NNSAIFI
lp

k k
n
k

n ∑ =
=

1
λ      (6.5a)   

NNUSAIDI
lp

k k
n
k

n ∑ =
=

1
     (6.5b)   

 

The line failure rates and repair times in adverse weather can be used to find the load 

point indices in the adverse weather state. The load point indices obtained in adverse 

weather subsequently provide the feeder and system indices. The indices corresponding 

to major adverse weather can be determined in a similar manner. 

 

The equations for the calculation of adverse and major adverse weather related indices 

are shown in Equations 6.6-6.9. 
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Adverse weather: 

∑++= a
Si

a
DkT

a
k λλλλ           (6.6a) 

∑++= a
Si

a
Si

a
Dk

a
Dk

a
TT

a
k rrrU λλλ           (6.6b) 

a
k

a
k

a
k UR λ=        (6.6c) 

NNSAIFI
lp

k k
a
k

a ∑ =
=

1
λ      (6.7a) 

NNUSAIDI
lp

k k
a
k

a ∑ =
=

1
     (6.7b) 

 
Major adverse weather: 
 

∑++= m
Si

m
DkT

m
k λλλλ          (6.8a) 

∑++= m
Si

m
Si

m
Dk

m
Dk

m
TT

m
k rrrU λλλ           (6.8b) 

m
k

m
k

m
k UR λ=        (6.8c) 

NNSAIFI
lp

k k
m
k

m ∑ =
=

1
λ      (6.9a) 

NNUSAIDI
lp

k k
m
k

m ∑ =
=

1
     (6.9b) 

 

The load point and feeder/system indices in the different weather conditions obtained 

using Equations 6.4-6.9 are not actual values. These indices can, however, be weighted 

by the respective weather probability and summed to obtain the expected values. 

 

The expected indices of the kth load point are given by Equation 6.10. 

 

 m
km

a
ka

n
knk PPP λλλλ ++=      (6.10a) 

 m
km

a
ka

n
knk UPUPUPU ++=       (6.10b) 

 kkk UR λ=        (6.10c) 

 

The expected values of SAIFI and SAIDI considering the weather effects are obtained 

using Equation 6.11. 
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m
m

a
a

n
nW SAIFIPSAIFIPSAIFIPSAIFI ++=    (6.11a) 

m
m

a
a

n
nW SAIDIPSAIDIPSAIDIPSAIDI ++=    (6.11b) 

 
In order to illustrate the procedure described above, consider the line and transformer 

data shown in Table 6.6 and Feeder 2 of the system shown in Figure 6.1. The analysis 

assumes that the unavailability of the breakers and fuses is negligible.  

 

Table 6.6 Basic reliability data 

Average restoration time (hours) 
Circuit 
element 

Failure rate 
(failures/year) Normal 

weather 
Adverse 
weather 

Extreme 
weather 

Line 0.065 per km 5 10 100 

Transformer 0.015 10 20 100 

 

The repair times for failures that occur in adverse and extreme weather are extended in 

Table 6.6. Difficulties due to adverse weather can delay component repair or 

replacement activities and extreme weather can create considerable damage and require 

a long time to restore service. 

 

The resulting steady state weather probabilities using the three state weather model and 

weather statistics shown in Section 3.2 are given below. The average durations of 

normal, adverse and major adverse weather are approximately 200 hours, 2 hours and 1 

hour, respectively, and major adverse weather occurs once per year.  

=nP 0.989875  =aP 0.010011  =mP 0.000114 

The line failure rates under the various weather conditions can be illustrated using 

distributor D8, which is 0.8km long. The average failure rate for this line is 0.052 f/yr. 

Assume that 40% of the line failures occur in bad weather and 40% of the bad weather 

failures occur in major adverse weather. In this case, the failure rates under the various 

weather conditions are as follows: 
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 nλ = 0.032 f/yr of normal weather  

 aλ = 1.247 f/yr of adverse weather 

mλ = 72.98 f/yr of major adverse weather 

 
The unweighted load point indices for Feeder 2 in the three different weather states are 

shown in Table 6.7 for the purpose of illustration. The unadjusted system indices for 

Feeder 2 are shown in Table 6.8. These results represent the intermediate stage of the 

calculation procedure. 

 

         Table 6.7 Unadjusted load point indices in the three different weather conditions 

Load point 8 Load point 9 

Load point index Normal 
weather 

Adverse 
weather 

Extreme 
weather 

Normal 
weather 

Adverse 
weather  

Extreme 
weather 

Failure rate 0.085 3.350 195.89 0.085 3.350 195.89 
Unavailability 0.330 25.09 14177.4 0.310 22.99 12824.4 
Outage duration 3.88 7.49 72.37 3.60 6.86 65.47 

 
 

Table 6.8 Unadjusted system indices for Feeder 2 in the three weather conditions 

Index Normal weather Adverse weather Extreme weather 

SAIFI 0.085 3.35 195.89 
SAIDI 0.330 25.09 14177.4 

 
 
In order to obtain the actual reliability indices, the results shown in Tables 6.7-6.8 are 

weighted by the appropriate weather probabilities using Equation 6.10 and Equation 

6.11. The resulting load point indices are shown in Table 6.9 and the system indices are 

shown in Table 6.10. Table 6.10 also shows the individual weather state contributions to 

the total system indices. 

 

Table 6.9 Load point indices for Feeder 2 

Load 
point 

Failure rate 
(failure/year)  

Unavailability 
(hours/yr) 

Average outage 
duration (hours) 

8 0.140 2.194 15.671 
9 0.140 1.999 14.278 
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Table 6.10 System indices for Feeder 2 

Index 
Normal 
weather 

Adverse 
weather 

Extreme 
weather 

Expected value 
Sum(C2:C4*) 

SAIFI 0.084 0.034 0.022 0.140 

SAIDI 0.327 0.251 0.811 1.389 

*C2, C4 – Column 2, Column 4 
 

As expected, the load point failure rate and the SAIFI shown in Tables 6.9-6.10 are the 

initial values shown in Tables 6.4-6.5 calculated using the conventional approach. The 

unavailability and SAIDI differ from the values obtained using the conventional method 

because of the changes in the restoration time for failures in the various weather states. 

 

The analysis can be extended to examine a larger system. The next section presents a 

series of case studies for the test distribution system. 

 
 

 

6.3  Case studies 
 

The following analyses examine the distribution system shown in Figure 6.1 in order to 

illustrate the influence of weather conditions on the basic reliability indices and on the 

system indices of SAIFI and SAIDI. The alternative supply available through a normally 

open point is assumed to be 100% reliable and the switching time is 1.0 hour regardless 

of the weather condition.  

 

The cases considered involve different combinations of the percentages of failures 

occurring in bad weather and in major adverse weather and are designated as Case I-

Case IV as follows: 

 

� Case I: 40% of line failures in bad weather and 10% of bad weather 

failures in extreme weather, i.e. bF = 40% and mF = 10% 
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� Case II: 40% of line failures in bad weather and 40% of bad weather 

failures in extreme weather, i.e. bF = 40% and mF = 40% 

� Case III: 80% of line failures in bad weather and 10% of bad weather 

failures in extreme weather, i.e. bF = 80% and mF = 10% 

� Case IV: 80% of line failures in bad weather and 40% of bad weather 

failures in extreme weather, i.e. bF = 80% and mF = 40% 

 
Table 6.11 shows the load point indices for Case I obtained using Equation 6.11. It can 

be seen from Table 6.11 that the average load point failure rates are equal to those 

shown in Table 6.4 obtained using the conventional approach. Unlike the failure rates, 

the unavailabilities and the average outage durations increase significantly when 

weather is included in the calculation.  

 
 

Table 6.11 Load point indices considering weather effects, Case I 

Load point 
Failure rate 

(failures/year) 
Unavailability 
(hours/year) 

Outage duration 
(hours) 

1 0.239 1.219 5.095 
2 0.252 1.358 5.378 
3 0.252 1.358 5.378 
4 0.239 1.219 5.095 
5 0.252 1.358 5.378 
6 0.249 1.323 5.310 
7 0.252 1.258 4.982 
8 0.140 1.107 7.908 
9 0.140 1.018 7.266 
10 0.243 1.220 5.031 
11 0.252 1.358 5.378 
12 0.256 1.392 5.444 
13 0.252 1.234 4.889 
14 0.256 1.269 4.962 
15 0.243 1.220 5.031 
16 0.252 1.358 5.378 
17 0.243 1.254 5.168 
18 0.243 1.220 5.031 
19 0.256 1.359 5.314 
20 0.256 1.359 5.314 
21 0.252 1.234 4.889 
22 0.256 1.269 4.962 
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The load point unavailabilities for all the cases are collectively shown in Table 6.12. 

Table 6.13 presents the load point average outage durations for the cases considered. 

Figures 6.2-6.3 further illustrate these indices. It is clear from Figure 6.2 that the load 

point unavailabilities increase significantly when going from Case I to Case II. The 

difference is even larger when going from Case III to Case IV. The unavailability for 

Case III is smaller than that for Case II because the percentage of bad weather failures 

assigned to major adverse weather is smaller in Case III than in Case II. The failures that 

occur in extreme weather drive these changes. The variations in the load point average 

outage durations for the various cases are shown in Figure 6.3.  

 
 

Table 6.12 Load point unavailabilities for Cases I-IV 

Load 
point 

Conventional Case I Case II Case III Case IV 

1 0.725 1.219 2.166 1.713 3.605 
2 0.790 1.358 2.444 1.920 4.093 
3 0.790 1.358 2.444 1.920 4.093 
4 0.725 1.219 2.166 1.713 3.605 
5 0.790 1.358 2.444 1.920 4.093 
6 0.774 1.323 2.374 1.871 3.974 
7 0.751 1.258 2.239 1.770 3.733 
8 0.543 1.107 2.194 1.671 3.844 
9 0.504 1.018 1.999 1.520 3.483 

10 0.729 1.220 2.167 1.715 3.608 
11 0.790 1.358 2.444 1.920 4.093 
12 0.806 1.392 2.514 1.969 4.213 
13 0.738 1.234 2.181 1.723 3.616 
14 0.755 1.269 2.250 1.772 3.735 
15 0.729 1.220 2.167 1.715 3.608 
16 0.790 1.358 2.444 1.920 4.093 
17 0.742 1.254 2.235 1.762 3.725 
18 0.729 1.220 2.167 1.715 3.608 
19 0.794 1.359 2.445 1.923 4.096 
20 0.794 1.359 2.445 1.923 4.096 
21 0.738 1.234 2.181 1.723 3.616 
22 0.755 1.269 2.250 1.772 3.735 
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Table 6.13 Load point average outage durations for Cases I-IV 

Load 
point 

Conventional Case I Case II Case III Case IV 

1 3.031 5.095 9.050 7.168 15.094 
2 3.133 5.378 9.684 7.610 16.228 
3 3.133 5.378 9.684 7.610 16.228 
4 3.031 5.095 9.050 7.168 15.094 
5 3.133 5.378 9.684 7.610 16.228 
6 3.108 5.310 9.532 7.521 15.982 
7 2.978 4.982 8.871 7.015 14.799 
8 3.884 7.908 15.671 11.975 27.560 
9 3.605 7.266 14.278 10.898 24.975 

10 3.004 5.031 8.933 7.072 14.882 
11 3.133 5.378 9.684 7.610 16.228 
12 3.157 5.444 9.832 7.696 16.467 
13 2.927 4.889 8.640 6.829 14.335 
14 2.953 4.962 8.801 6.926 14.601 
15 3.004 5.031 8.933 7.072 14.882 
16 3.133 5.378 9.684 7.610 16.228 
17 3.058 5.168 9.215 7.265 15.364 
18 3.004 5.031 8.933 7.072 14.882 
19 3.106 5.314 9.564 7.513 16.010 
20 3.106 5.314 9.564 7.513 16.010 
21 2.927 4.889 8.640 6.829 14.335 
22 2.953 4.962 8.801 6.926 14.601 
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Figure 6.2  Load point unavailabilities for Cases I-IV 
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Figure 6.3  Load point average outage durations for Cases I-IV 

 

The segmented SAIFI and SAIDI and the total values (SAIFIw and SAIDIw) are shown 

in Tables 6.14-6.21. The last columns are evaluated using Equation 6.11. Tables 6.14-

6.15 present the system SAIFI and SAIDI for Case I. The results for Case II are shown 

in Tables 6.16-6.17. Tables 6.18-6.19 apply to Case III.  Tables 6.20-6.21 show the 

results for Case IV. 

 

The study shows that the expected SAIFI, i.e SAIFIw, obtained from weather related 

failures and the SAIFI from a conventional calculation are the same. A large 

contribution to the expected SAIFI, however, comes from bad weather situations. The 

SAIFI in normal weather in Cases I and II are the same because the portion of failures in 

normal weather is constant. The contribution of adverse weather decreases and that of 

major adverse weather increases when going from Case I to Case II. The SAIFI in 

extreme weather is even higher in Case III and Case IV. 
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The expected SAIDI, i.e. SAIDIw, however, is largely influenced by the bad weather 

conditions. Table 6.15 shows that the SAIDI incorporating weather effects differs 

significantly from that obtained using the conventional method shown in Table 6.5 and 

that the pronounced effect is dictated by the adverse and major adverse weather. The 

results shown in Tables 6.14-6.21 indicate that the extreme weather contribution to the 

system indices increases significantly as more failures are assigned to extreme weather. 

                 

 

Table 6.14 SAIFI, Case I, ( bF = 40% and mF = 10%) 

Feeder n
n SAIFIP ×  a

a SAIFIP ×  m
m SAIFIP ×  WSAIFI  

F1 0.154 0.084 0.009 0.248 
F2 0.084 0.050 0.006 0.140 
F3 0.155 0.085 0.009 0.250 
F4 0.154 0.084 0.009 0.247 

SYSTEM 0.154 0.084 0.009 0.248 
 

 

 
Table 6.15 SAIDI, Case I, ( bF = 40% and mF = 10%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.515 0.399 0.391 1.305 
F2 0.327 0.377 0.405 1.108 
F3 0.525 0.403 0.395 1.322 
F4 0.515 0.389 0.379 1.282 

SYSTEM 0.515 0.397 0.388 1.300 
 

        
 
 

Table 6.16 SAIFI, Case II, ( bF = 40% and mF = 40%) 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.154 0.056 0.037 0.248 
F2 0.084 0.034 0.022 0.140 
F3 0.155 0.057 0.038 0.250 
F4 0.154 0.056 0.037 0.247 

SYSTEM 0.154 0.056 0.037 0.248 
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Table 6.17 SAIDI, Case II, ( bF = 40% and mF = 40%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.515 0.267 1.564 2.345 
F2 0.327 0.251 1.618 2.196 
F3 0.525 0.269 1.578 2.372 
F4 0.515 0.260 1.514 2.289 

SYSTEM 0.515 0.265 1.552 2.332 
 

 
 
 

Table 6.18 SAIFI, Case III, ( bF = 80% and mF = 10%) 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.061 0.168 0.019 0.248 
F2 0.028 0.101 0.011 0.140 
F3 0.061 0.169 0.019 0.249 
F4 0.061 0.167 0.019 0.247 

SYSTEM 0.061 0.168 0.019 0.248 
          

      
 
 

Table 6.19 SAIDI, Case III, ( bF = 80% and mF = 10%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.267 0.795 0.782 1.844 
F2 0.109 0.753 0.809 1.671 
F3 0.277 0.802 0.789 1.868 
F4 0.267 0.774 0.757 1.799 

SYSTEM 0.267 0.791 0.776 1.834 
 

 
 
 

Table 6.20 SAIFI, Case IV, ( bF = 80% and mF = 40%) 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.061 0.112 0.075 0.248 
F2 0.028 0.067 0.045 0.140 
F3 0.061 0.113 0.075 0.249 
F4 0.061 0.112 0.074 0.247 

SYSTEM 0.061 0.112 0.075 0.248 
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Table 6.21 SAIDI, Case IV, ( bF = 80% and mF = 40%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.267 0.531 3.127 3.925 
F2 0.109 0.502 3.236 3.848 
F3 0.277 0.536 3.155 3.968 
F4 0.267 0.517 3.029 3.813 

SYSTEM 0.267 0.528 3.104 3.900 
 

 

6.4  The effect of restoration time  

 

Major storms can cause lengthy customer interruptions, resulting in huge monetary 

losses. The EEI’s survey on Utility Storm Restoration Response [6] found that the 

average time required to restore service after a major storm strikes the system is 5.6 

days. This statistic is based on the survey results of 44 responses from six participating 

utilities over a period of 14 years. Outage durations increase considerably when more 

damage occurs due to exceeding the system design level. A system with a low design 

level suffers more damage than a system that can tolerate more severe stress when 

exposed to the same storm. In order to examine the effects, the repair time is reduced 

from the 100 hours considered in the previous section to 50 hours following system 

failures due to storms.  

 

Table 6.22 and Table 6.23 show the load point unavailabilities and average outage 

durations respectively for the four cases studied. The load point failure rates are found to 

be the same as for the repair time of 100 hours.  

      

The variation in unavailabilities for the different percentages of failures occurring in bad 

weather and major adverse weather is shown in Figure 6.4. This figure can be compared 

with Figure 6.2. The quantitative differences between the various cases in Figure 6.2 and 

in Figure 6.4 are similar. It is important to note that the unavailability values in Figure 

6.4 are considerably smaller. The load point average outage durations are illustrated in 

Figure 6.5. 
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Table 6.22 Load point unavailabilities for restoration time = 50 hours (hours/year) 

Load 
point 

Conventional Case I Case II Case III Case IV 

1 0.725 1.044 1.464 1.362 2.203 
2 0.790 1.156 1.639 1.517 2.483 
3 0.790 1.156 1.639 1.517 2.483 
4 0.725 1.044 1.464 1.362 2.203 
5 0.790 1.156 1.639 1.517 2.483 
6 0.774 1.128 1.595 1.481 2.416 
7 0.751 1.076 1.512 1.406 2.278 
8 0.543 0.906 1.389 1.268 2.234 
9 0.504 0.836 1.272 1.157 2.029 

10 0.729 1.045 1.466 1.364 2.206 
11 0.790 1.156 1.639 1.517 2.483 
12 0.806 1.184 1.683 1.554 2.551 
13 0.738 1.059 1.479 1.372 2.213 
14 0.755 1.087 1.523 1.409 2.281 
15 0.729 1.045 1.466 1.364 2.206 
16 0.790 1.156 1.639 1.517 2.483 
17 0.742 1.072 1.508 1.398 2.271 
18 0.729 1.045 1.466 1.364 2.206 
19 0.794 1.158 1.640 1.520 2.486 
20 0.794 1.158 1.640 1.520 2.486 
21 0.738 1.059 1.479 1.372 2.213 
22 0.755 1.087 1.523 1.409 2.281 
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Figure 6.4  Load point unavailabilities for restoration time = 50 hours 
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Table 6.23 Load point average outage durations for restoration time = 50 hours (hours) 

Load 
point 

Conventional Case I Case II Case III Case IV 

1 3.031 4.362 6.120 5.700 9.223 
2 3.133 4.580 6.494 6.014 9.844 
3 3.133 4.580 6.494 6.014 9.844 
4 3.031 4.362 6.120 5.700 9.223 
5 3.133 4.580 6.494 6.014 9.844 
6 3.108 4.528 6.404 5.955 9.715 
7 2.978 4.262 5.990 5.573 9.033 
8 3.884 6.471 9.921 9.090 16.016 
9 3.605 5.968 9.084 8.292 14.548 
10 3.004 4.308 6.042 5.626 9.097 
11 3.133 4.580 6.494 6.014 9.844 
12 3.157 4.631 6.581 6.072 9.970 
13 2.927 4.195 5.861 5.439 8.775 
14 2.953 4.251 5.957 5.505 8.916 
15 3.004 4.308 6.042 5.626 9.097 
16 3.133 4.580 6.494 6.014 9.844 
17 3.058 4.418 6.217 5.766 9.365 
18 3.004 4.308 6.042 5.626 9.097 
19 3.106 4.527 6.415 5.940 9.716 
20 3.106 4.527 6.415 5.940 9.716 
21 2.927 4.195 5.861 5.439 8.775 
22 2.953 4.251 5.957 5.505 8.916 
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Figure 6.5  Load point average outage durations for restoration time = 50 hours 
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The average outage durations shown in Figure 6.3 where the repair time is 100 hours 

and those in Figure 6.5 where the repair time is 50 hours can be compared. The 

variations in the average outage durations are similar and the effect of a fast repair 

strategy can be seen. 

 

The SAIFI contributions for three different weather classes and the total SAIFI under 

the conditions that 40% of the total line failures occur in bad weather and 10% of the 

bad weather failures are attributed to major adverse weather are given in Table 6.24. The 

SAIDI for this case is given in Table 6.25. The results for the rest of the case studies are 

shown in Tables 6.26-6.31.  

 

Table 6.24 SAIFI, Case I, ( bF = 40% and mF = 10%) 

Feeder n
n SAIFIP ×  a

a SAIFIP ×  m
m SAIFIP ×  WSAIFI  

F1 0.154 0.084 0.009 0.248 
F2 0.084 0.050 0.006 0.140 
F3 0.155 0.085 0.009 0.250 
F4 0.154 0.084 0.009 0.247 

SYSTEM 0.154 0.084 0.009 0.248 
       

Table 6.25 SAIDI, Case I, ( bF = 40% and mF = 10%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.515 0.399 0.198 1.112 
F2 0.327 0.377 0.203 0.906 
F3 0.525 0.403 0.200 1.127 
F4 0.515 0.389 0.192 1.095 

SYSTEM 0.515 0.397 0.197 1.108 
 

       
Table 6.26 SAIFI, Case II, ( bF = 40% and mF = 40%) 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.154 0.056 0.037 0.248 
F2 0.084 0.034 0.022 0.140 
F3 0.155 0.057 0.038 0.249 
F4 0.154 0.056 0.037 0.247 

SYSTEM 0.154 0.056 0.037 0.248 
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Table 6.27 SAIDI, Case II, ( bF = 40% and mF = 40%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.515 0.267 0.792 1.573 
F2 0.327 0.251 0.811 1.389 
F3 0.525 0.269 0.799 1.593 
F4 0.515 0.260 0.767 1.542 

SYSTEM 0.515 0.265 0.786 1.566 
 
 

 

Table 6.28 SAIFI, Case III, ( bF = 80% and mF = 10%) 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.061 0.168 0.019 0.248 
F2 0.028 0.101 0.011 0.140 
F3 0.061 0.169 0.019 0.249 
F4 0.061 0.167 0.019 0.247 

SYSTEM 0.061 0.168 0.019 0.248 
          

 
      

Table 6.29 SAIDI, Case III, ( bF = 80% and mF = 10%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.267 0.795 0.396 1.458 
F2 0.109 0.754 0.406 1.268 
F3 0.277 0.802 0.399 1.479 
F4 0.267 0.774 0.384 1.425 

SYSTEM 0.267 0.791 0.393 1.451 
 

                  
 

Table 6.30 SAIFI, Case IV, ( bF = 80% and mF = 40%) 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.061 0.112 0.074 0.248 
F2 0.028 0.067 0.045 0.139 
F3 0.061 0.113 0.075 0.249 
F4 0.061 0.112 0.074 0.247 

SYSTEM 0.061 0.112 0.075 0.248 
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Table 6.31 SAIDI, Case IV, ( bF = 80% and mF = 40%) 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.267 0.531 1.583 2.382 
F2 0.109 0.502 1.622 2.234 
F3 0.277 0.536 1.598 2.411 
F4 0.267 0.517 1.535 2.319 

SYSTEM 0.267 0.528 1.572 2.368 
 

 
The SAIFI values calculated in this section compare with those of the preceding section, 

regardless of the variation in repair time. The case-to-case comparisons show that the 

variation in the percentage of failures assigned to bad weather or major adverse weather 

does not have any influence on the total SAIFI. 

 

The ability to conduct repairs in a short period when failures occur in extreme weather 

has a very positive effect on SAIDI. The contributions due to extreme weather failures 

decrease proportionately as the repair time is reduced. This reduction is more 

pronounced when a large percentage of failures occur in major adverse weather than 

when the percentage of failures in this weather is small. In the former case, the major 

adverse weather contribution dominates the total effect while in the latter case the 

contribution of major adverse weather is relatively close to that of adverse weather.  

 
 
 

6.5  Extreme weather severity analysis 
 

The occurrence of major storms can vary from region to region and from year to year. 

Weather scientists claim that extreme weather conditions are becoming more frequent 

and severe. This section considers the impact of increases in the frequency of major 

adverse or extreme weather. It is assumed that the number of major storms varies from 

one event per year to three events per year. The case of a major adverse weather event 

occurring once a year was illustrated in the previous section. The following analysis is 

performed under the conditions that the major adverse weather occurs two and three 

times per year.  
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The line failure rates under the various weather conditions are held constant for the 

different frequencies of encountering major adverse weather. As an example, for a total 

average failure rate of 1.0 f/yr, the weather related failure rates for 40% of the line 

failures occurring in bad weather and 10% of the bad weather failures occurring in 

major adverse weather are as follows. 

 

 nλ = 0.606 failures per year of normal weather  

aλ = 35.96 failures per year of adverse weather  

mλ  = 350.88 failures per year of major adverse weather 

 

The steady state probabilities of normal, adverse and major adverse weather are 

0.989875, 0.010011 and 0.000114 respectively for major adverse weather occurring 

once a year. These probabilities change when the frequency of major adverse weather 

changes. The steady state probabilities of the three weather states are determined using 

the state space diagram shown in Figure 3.1 in Chapter 3 and the following weather 

transition rates: 

 

ma = 8760mf  occ/hr    mn = 8760mf  occ/hr 

ma nn −= 54.195/1 occ/hr  mn aa −= 2/1  occ/hr 

m a = 21  occ/hr       m n = 1/2 occ/hr 

The parameter mf  is the frequency of occurrence of major adverse weather. The normal 

weather average duration using the transition rates shown in Section 3.2 is 195.54 hours. 

 

The resulting steady state probabilities for major adverse weather occurring two times 

per year are Pn = 0.989871, Pa = 0.009901 and Pm = 0.000228 and for three times per 

year are Pn = 0.989869, Pa = 0.009789 and Pm = 0.000342. 

 

The two cases, designated as Case (a) and Case (b), are examined to investigate the 

impact of the variation in the frequency of extreme weather occurrence. 
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Case (a): 40% of failures occur in bad weather and 10% of bad weather failures in 

extreme weather 

 

The load point indices are shown in Tables D.1-D.3 in Appendix D. The system indices 

SAIFI and SAIDI are presented in Tables 6.24-6.35.  

 

• Major adverse weather occurring two times per year 

 
Table 6.32 SAIFI, Case (a), ( bF = 40% and mF = 10%), mf = 2 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.154 0.083 0.019 0.256 
F2 0.084 0.050 0.011 0.145 
F3 0.155 0.084 0.019 0.258 
F4 0.154 0.083 0.019 0.256 

SYSTEM 0.154 0.083 0.019 0.256 
  

 
Table 6.33 SAIDI, Case (a), ( bF = 40% and mF = 10%), mf = 2 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.515 0.395 0.781 1.690 
F2 0.327 0.373 0.808 1.507 
F3 0.525 0.398 0.788 1.711 
F4 0.515 0.384 0.757 1.656 

SYSTEM 0.515 0.392 0.775 1.683 
 

 

• Major adverse weather occurring three times per year 

 
Table 6.34 SAIFI, Case (a), ( bF = 40% and mF = 10%), mf = 3 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.154 0.082 0.028 0.265 
F2 0.084 0.049 0.017 0.150 
F3 0.155 0.083 0.028 0.266 
F4 0.154 0.082 0.028 0.264 

SYSTEM 0.154 0.082 0.028 0.265 
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Table 6.35 SAIDI, Case (a), ( bF = 40% and mF = 10%), mf = 3 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.515 0.390 1.172 2.076 
F2 0.327 0.368 1.212 1.907 
F3 0.525 0.394 1.182 2.100 
F4 0.515 0.380 1.135 2.030 

SYSTEM 0.515 0.388 1.163 2.066 
 

 

It can be seen from Tables 6.32-6.35 that both the SAIFI and SAIDI increase when 

extreme weather hits the system more frequently and that the increase is basically due to 

the increase in the index segment associated with extreme weather. 

 

The effect on the failure rate is illustrated in Figure 6.6. The label ‘Fr’  represents the 

frequency of extreme weather occurrence. 
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Figure 6.6  Load point failure rates, Case (a) 
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Case (b): 80% of failures occur in bad weather and 40% of bad weather failures in 

extreme weather 

 

Tables D.1-D.3 in Appendix D show the load point indices in Case (b). The system 

indices SAIFI and SAIDI are shown in Table 6.36-6.39. The system indices increase 

more in Case (b) than in Case (a) when the frequency increases. This relatively large 

increase arises due to the fact that the contribution of extreme weather increases 

considerably when more failures occur during extreme weather.  

 

The failure rate is shown graphically in Figure 6.7. This figure, when compared with 

Figure 6.5, clearly illustrates that the increase in failure rate with the frequency of 

extreme weather in Case (b) is larger than that in Case (a).  

 

• Major adverse weather occurring two times per year   

      
 

Table 6.36 SAIFI, Case (b), ( bF = 80% and mF = 40%), mf = 2 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.061 0.111 0.149 0.321 
F2 0.028 0.066 0.089 0.183 
F3 0.061 0.112 0.150 0.323 
F4 0.061 0.110 0.148 0.320 

SYSTEM 0.061 0.111 0.149 0.321 
 
 

Table 6.37 SAIDI, Case (b), ( bF = 80% and mF = 40%), mf = 2 

Feeder n
n SAIDIP ×  

a
a SAIDIP ×  

m
m SAIDIP ×  WSAIDI  

F1 0.267 0.525 6.246 7.039 
F2 0.109 0.497 6.465 7.071 
F3 0.277 0.530 6.302 7.110 
F4 0.267 0.512 6.050 6.829 

SYSTEM 0.267 0.522 6.201 6.990 
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• Major adverse weather occurring three times per year 

 

Table 6.38 SAIFI, Case (b), ( bF = 80% and mF = 40%), mf = 3 

Feeder n
n SAIFIP ×  

a
a SAIFIP ×  

m
m SAIFIP ×  WSAIFI  

F1 0.061 0.110 0.223 0.394 
F2 0.028 0.066 0.134 0.227 
F3 0.061 0.110 0.225 0.397 
F4 0.061 0.109 0.223 0.393 

SYSTEM 0.061 0.110 0.224 0.395 
  

 

Table 6.39 SAIDI, Case (b), ( bF = 80% and mF = 40%), mf = 3 

Feeder n
n SAIDIP ×  a

a SAIDIP ×  m
m SAIDIP ×  WSAIDI  

F1 0.267 0.519 9.369 10.156 
F2 0.109 0.491 9.697 10.297 
F3 0.277 0.524 9.454 10.255 
F4 0.267 0.506 9.075 9.848 

SYSTEM 0.267 0.516 9.301 10.085 
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Figure 6.7  Load point failure rates, Case (b) 
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The load point unavailabilities and average outage durations for both Cases (a) and (b) 

are shown in Figure 6.8 and Figure 6.9 respectively. 
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Figure 6.8  Load point unavailabilities, Case (a) and Case (b) 
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Figure 6.9  Load point average outage durations, Case (a) and Case (b) 
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It is clear from Figures 6.8-6.9 that the influence on the unavailability and the average 

outage duration as a result of an increasing number of extreme weather events is 

significant. The impact increases further when the percentage of failures in extreme 

weather increases. The unavailabilities and average outage durations in Case (b) 

increase more rapidly than in Case (a) when extreme weather occurs more frequently.  

 
 
 

6.6  Failure bunching analysis of radial feeders 

 

Although many distribution systems are designed and constructed as loop or mesh 

circuits, they are operated as single radial feeders using normally open points. As noted 

earlier, a normally open point basically reduces the amount of component exposed to 

failure. In the event of a system failure, a normally open point can be closed and another 

opened in order to minimize the total disconnected load. Most studies do not consider 

the overlapping failure of two radial feeders based on the reasoning that the likelihood 

of multiple failures is negligible. This may not be the case when a severe storm occurs, 

as a storm can impact two or more radial feeders in the same area. The storm can create 

failure bunching of the radial feeders. Under these conditions, no alternative supply will 

be available and service restoration will involve repair rather than switching actions.  

 

In order to illustrate the failure bunching of two radial feeders, consider the system 

shown in Figure 6.10. The system has been simplified to make the problem amenable by 

avoiding a large possible combination of failure events and therefore there are no 

sectionalizing points on the feeder. The lateral distributors and transformers are not 

included in this analysis. The attention in this study is on failure bunching of multiple 

feeders. In Figure 6.10, when both Feeder 3 and Feeder 4 are on outage, the entire 

system experiences failure. This is a second order failure event and can be considered as 

a second order mincut. The system shown in Figure 6.11 is used to investigate failure 

bunching of three feeders. The basic reliability data for the feeders are shown in Table 

6.40. 
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Figure 6.10  Distribution system with two feeders 

 

 

 

 
Figure 6.11  Distribution system with three feeders 

 

Table 6.40 Basic feeder reliability data 

Feeder Length (km) 
Average failure 

rate (f/yr) 
Average repair 

time (hrs) 
F1 2.85 0.18525 5 
F3 2.90 0.18850 5 
F4 2.90 0.18850 5 
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The Markov approach described in Section 3.4 and Section 3.5 can be used to determine 

the basic reliability indices of the second order mincut (Figure 6.10) and the third order 

mincut (Figure 6.11), respectively. Repair is conducted only in normal weather. 

 

The overlapping failure of both primary circuits will impact all the load points on Feeder 

3 and Feeder 4 in Figure 3.10. The load point failure rates are therefore equal. The 

SAIFI can be deduced from Equation 6.2a. Since the load point failure rate( )λ in 

Equation 6.2a is equal for each load point, the SAIFI is equal to the load point failure 

rate. The SAIDI is determined using Equation 6.2b and is equal to the unavailability.  

 

Table 6.41 shows the reliability indices for coincident failures of the radial feeders. The 

two cases of 40% and 80% of failures occurring in bad weather are considered. The 

percentage of bad weather failures occurring in major adverse weather is held at 40%.   

 

Table 6.41 Reliability indices for the second order and the third order failures 

System in Figure 6.10 System in Figure 6.11 
Reliability 

indices bF = 40% 

mF = 40% 
bF = 80% 

mF = 40% 
bF = 40% 

mF = 40% 
bF = 80% 

mF = 40% 

Failure rate (f/yr) 0.00183 0.0066 0.00014 0.00094 
Unavailability(hrs/yr) 0.00820 0.0300 0.00514 0.00348 
Outage duration (hrs) 4.48 4.54 3.67 3.70 
SAIFI (int/cust-yr) 0.00183 0.0066 0.00014 0.00094 
SAIDI (hrs/cust-yr) 0.00820 0.0300 0.00514 0.00348 

 

 
The results shown in Table 6.41 indicate that the concurrent failure of multiple feeders 

is relatively rare and its expected contribution to the average reliability indices over a 

long period is small. It should be appreciated, however, that when the actual event does 

occur it will have a major impact on the system indices during that year. The method 

applied in this study has some limitations as it deals with probability and expected 

values. It does not provide a simulation of actual outage events. Other rigorous methods 

such as sequential Monte Carlo simulation can be used if this information is desired.   
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6.7  Summary  

 

This chapter introduces an approach to divide the overall reliability index into segments 

relevant to the weather conditions. The approach is illustrated using a practical 

distribution configuration representing an urban system. A series of case studies are 

performed to examine the effect of failures that occur in bad weather. This chapter also 

illustrates how reliability is affected when repair can be performed in a relatively short 

period following a major storm. Sensitivity studies are conducted to quantify the 

implication of more frequently occurring extreme weather conditions and a failure 

bunching effect analysis of multiple radial feeders is presented. 

 

The numerical results show that the major portion of the system indices comes from the 

bad weather failures. The load point failure rates are immune to variations in the 

percentages of failures occurring in bad weather. The load point unavailabilites and 

average outage durations, however, are directly influenced. The SAIFI therefore remains 

constant but the SAIDI is largely affected. Sensitivity analysis shows that the major 

adverse weather contribution increases significantly when a majority of failures are 

attributed to major adverse weather. 

 

The reduction in repair time following the system damage caused by storms has a 

positive impact on the SAIDI. The SAIFI, however, does not change. On the other hand, 

the variation in the frequency of major adverse weather significantly impacts both SAIFI 

and SAIDI. Extreme weather events occur relatively infrequently but when they do 

occur,   they can have a big impact on the system reliability indices as the likelihood of 

multiple feeder failures increases significantly.  

 

The weather specific reliability evaluation procedure described in this chapter gives 

considerably more information than is provided by a single aggregated index. This 

knowledge can be useful in deducing those areas in which investment may provide the 

greatest reliability improvement.  
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Chapter 7 

 
MAJOR EVENT DAY ANALYSIS 

 

 

7.1  Introduction 
 

Electric power systems are designed to withstand a certain level of stress. They cannot, 

however, be constructed to resist excessive physical disturbances. It is not feasible for 

utilities to build power systems that provide their customers with reliable and 

economical power under all possible conditions. The system reliability should reflect the 

ability of the system to meet the stress levels for which it was planned, designed, 

maintained and operated. Electric utilities have significant control over internal causes 

such as switching procedures, maintenance schedules, etc., but their control over 

external factors is limited. Severe weather conditions such as high winds, extreme 

precipitation, hurricanes, etc., often exceed the system design and operational limits. 

The occurrence of these events significantly affects the overall performance of a power 

system.  

 

The utilization of a range of reliability indices to measure the performance of a utility is 

a common practice throughout the world. Many utilities use reliability indices to track 

the performance of a utility, region or a part of a circuit. Reliability indices are also used 

for quantitative comparison of the performance between various utilities. The regulatory 

trend appears to be moving to performance-based rates, where performance is rewarded 

or penalized based on service continuity quantified by reliability indices. In the modern 

electricity market, customers have options to purchase electricity from their suppliers. 

Some commercial and industrial customers ask utilities for their reliability indices 

before locating a facility within the utility’s service territory.  
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In some circumstances, external interferences significantly impact the daily operational 

ability of a utility and the reliability indices increase dramatically. The extraordinary 

days in which such events occur are generally referred to as “major event days”  [19]. It 

is important that utilities evaluate their actual performance for normal day operations 

that exclude the significant abnormal days. This policy seems to favour the utility and 

some people believe that if utilities are allowed to exclude major events, the utility may 

diminish its ability to assure reliable service. The argument of whether or not utilities 

should be permitted to exclude major events is not within the scope of this research. The 

attention in this chapter is on major event day identification. 

 

There is no completely uniform method that is equitable to all utilities for separating a 

particular abnormal event from normal day operations. In the past, relatively simple 

methods have been used to define a major event day [19]. An IEEE Working Group has 

recently [19] developed a statistically based approach called the “Beta Method” based 

on using the log-normal distribution. This chapter briefly discusses the traditional and 

the new statistical ways to classify a major event. A wide range of possible reliability 

distributions are presented for randomly generated data samples. The histograms and 

corresponding correlation between utility performance data and lognormal distributions 

are examined. 

 
 
 
7.2  Major Event Day classification 

 
As noted earlier, there are two general approaches to classify a major event, or major 

event day. These approaches are described in the following sections. 

 
 
 
7.2.1  Traditional approach 
 

A major event was classified in IEEE Standard 1366-1998 [24] as follows:  
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“Designates a catastrophic event which exceeds reasonable design or operational limits 

of the electric power system and during which at least 10% of the customers within an 

operational area experience a sustained interruption during a 24-hour period” .  

 

The magnitude of physical destruction and the number of customers on outage depends 

largely on the intensity of the disastrous events and the service territory. Storms, 

hurricanes, earthquakes, etc. are intuitively declared as disasters. There are no physical 

measures that permit a comparison of the severity associated with a catastrophic event 

with the system design and operational limits. No two ice storms are the same; no two 

hurricanes are the same; nor are two earthquakes. The “outage of 10% of the customers”  

criterion is easy to understand, but the number of customers interrupted can vary widely 

due to the utility service area. For instance, a storm striking an area causes relatively 

fewer customers on outage in a rural distribution system than in an urban distribution 

system. The traditional classification of a major event is therefore inconsistent when 

applied to distribution utilities with different sizes and operating in various geographic 

areas.  

 
 
7.2.2  New statistical approach 
 

A statistically based approach designated as the “Beta Method” has been developed by 

the IEEE Working Group on System Design. This approach is anticipated to be fair to 

all utilities regardless of their size, and facilitates removal of abnormal events from 

normal days [25]. The blanket assumption made in creating the Beta Method is that the 

natural logarithm of the daily reliability index, preferably the SAIDI, is normally 

distributed.  

 

The following is the basic procedure used to segment the major event days in the Beta 

Method [25]: 

• Sort the SAIDI/day in descending order 

• Calculate the natural log of each value, ignore zero values if any 

• Evaluate the mean ( )α and standard deviation )(β of the log values 
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• Determine the threshold using Equation 7.1  

βα 5.2+= eTMED         (7.1) 

• Each day which exceeds the threshold is designated as a Major Event Day 

 

The total SAIDI after removing the major event days represents the SAIDI over only the 

period of normal days. This index should be adjusted to account for the disregarded 

days. Theoretically, a major event day that is omitted would have had an average normal 

index if the major event had not occurred. Equation 7.2 [26], can be used to determine 

the adjusted SAIDI. 

 

raw
MEDTotal

Total
adj SAIDI

DD

D
SAIDI

−
=      (7.2) 

where, 

adjSAIDI = adjusted index  

rawSAIDI  = the index over the period omitting the major events 

TotalD  =  the total days including major event days (days) 

MEDD  =  the major event days over the reporting period (days) 

 

The beta methodology has been approved in IEEE Standard 1366-2003 and many 

utilities are implementing it. There are, however, two major problems in regard to 

approximating the index (SAIDI) by a log normal distribution. If the reliability index is 

not really log normally distributed, the process will be inconsistent. The lognormal 

distribution also does not account for the days which experience no interruptions 

because the natural log of zero is undefined. This will distort the reliability distribution. 

It has been reported by a number of small utilities that they have a significantly large 

number of days without any outages [25]. The IEEE Working Group has proposed 

several alternatives to address this problem, but there is no unique conclusion as yet. 

 

The applicability of the lognormal distribution is examined in the following studies. 
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7.3  Reliability distributions 

 

As discussed in the previous section, the Beta Method depends entirely on the log 

normality of the reliability index. Recent research shows that reliability indices can have 

a wide variety of distributions [27]. The reliability distributions differ due to topological 

changes, operational policies, maintenance practices and sizes of systems. For instance, 

rural and urban electric distribution systems can have quite different reliability index 

distributions, including normal, log-normal, exponential, etc.  

 

The focus in this section is on the possible shapes of reliability index distributions. A 

range of probability distributions including lognormal, and Weibull distributions with 

different shape and scale parameters are illustrated. The resulting distributions when 

Weibull samples are subjected to a natural logarithm transformation are displayed. 

 

 
 
7.3.1  The lognormal distribution 
 

The lognormal distribution is an important tool in reliability studies. A random variable 

X is said to be log-normally distributed if lnX is normally distributed. The probability 

density function of the lognormal distribution can be defined by Equation 7.3 [17]. 
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where,  X >0  

  β  = standard deviation of lnX  

 α = mean of lnX 

 

One million log-normally distributed samples were randomly generated using the 

MATLAB function lognrnd ( )V,,σµ , where, µ  and σ  are the mean and standard 

deviation of the random variable X, respectively, and V is the row vector. The resulting 

relative frequency distribution is shown in Figure 7.1. The number of bins is considered 
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to be equal to the nearest integer of the square root of the number of samples [28]. The 

distribution of the natural log of the log-normal samples is shown in Figure 7.2.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1  A typical lognormal distribution 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2  Distribution of the natural-log of the lognormal samples 
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It can be seen from Figure 7.2 that the distribution is a good fit to the normal 

distribution. This process was used to examine other possible reliability index 

distributions. 

 

 
 
7.3.2  The Weibull distribution  

 

The Weibull distribution is an important distribution in general statistical analysis and 

reliability evaluation due to its flexible nature. It has one very special feature; the 

distribution has no fixed shape. The shape is characterised by the values of the 

parameters in the function. The general Weibull probability density function is given by 

Equation 7.4 [17]. 
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where,  

  µ≥x    

  0, >αγ       

               γ = shape parameter 

 µ  = location parameter  

 ω = scale parameter 

 

The resulting distribution whenµ = 0 and ω  = 1 is known as the standard Weibull 

distribution, and the case where 0=µ  is called the two parameter Weibull distribution.  

 

The MATLAB function ( )Vwblrnd ,,γω  can be used to produce the Weibull random 

samples. The parameter V is the row vector of random numbers. Table 7.1 presents the 

basic parameter values associated with one million randomly generated samples.  
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Table 7.1 Parameter values for the random samples 

Statistic γ  = 0.5 γ  = 1.0 γ  = 1.5 γ  = 2.0 γ  = 3.0 

Sample mean 0.502109 0.500053 0.496362 0.496523 0.517766 
Standard deviation 1.129639 0.49934 0.337376 0.259152 0.188028 
Minimum value 0 0 0.00003 0.00064 0.0059 
Maximum value 46.34944 6.74502 3.11945 2.05546 1.38162 
Log mean,α  -2.53959 -1.26993 -0.98354 -0.86742 -0.73719 
Log standard dev., β  2.56792 1.28243 0.85635 0.63994 0.42654 

 
 
Figure 7.3 shows the probability distributions for various shape parameters( )γ . The 

number of bins is the closest integer of the square root of the number of samples. The 

distributions of the natural-log of the same samples are displayed in Figure 7.4. The 

shapes of the distributions are similar to that of the standard normal distribution, but are 

not completely symmetrical. This is illustrated by comparing the cumulative 

probabilities of each distribution with that of the standard normal distribution.   
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Figure 7.3  Distribution of the Weibull samples 
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Figure 7.4  Distribution of natural-log of the Weibull samples 
 

Table 7.2 shows the respective cumulative probability values associated with each 

distribution shown in Figure 7.4. The parametersµ and σ  given in the first column refer 

to the mean and standard deviation of the corresponding distributions. Table 7.2 shows 

that the probability of a value exceeding a specified level i.e. σµ 5.0+ , is different for 

each distribution and that all the Weibull generated values are different from the 

normally distributed values. 

 
Table 7.2  Comparison of the cumulative probabilities for the different distributions 

Weibull data distributions Sample 
value being 
greater than 

Standard 
normal 

distribution γ  = 0.5 γ  = 1.0 γ  = 1.5 γ  = 2.0 γ  = 3.0 

σµ 0.0+  0.5000 0.5702 0.5703 0.5704 0.5706 0.5706 
σµ 5.0+  0.3085 0.3442 0.3445 0.3440 0.3446 0.3444 
σµ 0.1+  0.1587 0.1324 0.1323 0.1322 0.1324 0.1321 
σµ 5.1+  0.0668 0.0214 0.0213 0.0212 0.0215 0.0216 
σµ 0.2+  0.0227 0.0007 0.0007 0.0007 0.0007 0.0007 
σµ 5.2+  0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 7.3 shows the number of standard deviations that yield the same probability value 

for all the associated distributions. This factor has the same meaning as the β  

coefficient in Equation 7.1. 

 
Table 7.3 Number of standard deviation from the mean of the respective distribution 

Multiplying factor for the other distributions Multiplier of 
the standard 
deviation for 

a normal 
distribution 

Probability 
from the 
normal 

distribution 
γ  = 0.5 γ  = 1.0 γ  = 1.5 γ  = 2.0 γ  = 3.0 

0.0 0.5000 0.1631 0.1644 0.1645 0.1650 0.1648 
0.5 0.3085 0.5776 0.5767 0.5762 0.5765 0.5763 
1.0 0.1587 0.9267 0.9264 0.9267 0.9266 0.9255 
1.5 0.0668 1.2261 1.2259 1.2258 1.2260 1.2262 
2.0 0.0228 1.4887 1.4872 1.4892 1.4863 1.4864 
2.5 0.0062 1.7200 1.7248 1.7169 1.7180 1.7210 

 
 
The coefficients given in the first column give the probabilities in the second column for 

the pure normal distribution. The remaining columns show the multiplying factors, or 

the coefficients of β , in order to provide the same probability. 

 

The results shown in Table 7.3 indicate that the utilization of the same multiplying 

factor for different kinds of distributions will result in different numbers of major event 

days. In other words, the number of segmented major event days will be more in the 

case of a normal distribution than for the rest of the distributions if the same β  

coefficient is implemented. In conclusion, the beta methodology will allot different 

numbers of major event days for utilities operating under the same conditions but having 

different performance index distributions.  

 
 
 
7.4  Utility performance index distributions 
 

The probability plot method can be used to provide a visual inspection as to whether a 

given random variable belongs to a particular distribution. The normal probability plot 

of the natural-log of the reliability index provides the visual indication for the fitness of 
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the data to the log normal distribution. If the log values do come from the normal 

distribution, the plot will appear linear.  

 

The following analysis examines the data for an unknown utility over different numbers 

of years [29]. The histograms and the corresponding probability plots are presented. The 

number of bins in the following analyses is approximately the square root of the sample 

size. Figure 7.5 shows the histogram of the one year (1998) of data and its probability 

plot is shown in Figure 7.6. Figures 7.7-7.8 show the histogram and probability plot for 

two years of data respectively. The histograms for three years (1998-2000), four years 

(unknown) and seven years (1995-2001) of data are shown in Figures 7.9, 7.11 and 7.13, 

respectively. Their respective probability plots are illustrated in Figures 7.10, 7.12 and 

7.14.  
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Figure 7.5  Histogram of one year data 
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Figure 7.6  Normal probability plot of one year data 
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Figure 7.7  Histogram of two year data 
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Figure 7.8  Normal probability plot of two year data 
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Figure 7.9  Histogram of three year data 
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Figure 7.10  Normal probability plot of three year data 
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Figure 7.11  Histogram of four year data 

 



 142 

-6 -4 -2 0 2 4

0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997
0.999

LN(SAIDI/Day)

P
ro

ba
bi

lit
y

 

 

 

Figure 7.12  Normal probability plot of four year data 
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Figure 7.13  Histogram of seven year data 
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Figure 7.14  Normal probability plot of seven year data 

 

It can be seen from the displays on the preceding pages that the distribution shapes are 

dissimilar for different amounts of data used. For example, the histogram in Figure 7.5 

obtained for one year of data shows a scooped left tail and a relatively short right tail 

whereas Figure 7.11 shows a comparatively peaky histogram with a relatively long tail 

to the right, when four years of data is employed. It is clear from the displays that the 

right tail tends to be longer when more data are used in the analysis.  

 

Normal probability plots in conjunction with histograms can be used to examine the 

historical data. Figure 7.6 illustrates that a large number of observations fall in the linear 

zone, but the data on the two extreme ends depart from the extrapolated line. It is clear 

from Figures 7.8 and 7.10 that the highest values of the given samples reasonably reside 

in a straight line. This indicates the upper end extreme values fit a log normal 

distribution. There are, however, some outliers associated with the left tail of these 

histograms. This is not the case with the plot of the four year data shown in Figure 7.12. 
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The upper end extreme values of the given samples do not reasonably fit a lognormal 

distribution. This is even more pronounced in Figure 7.14 for the seven year data. It is 

important to appreciate that decisions regarding major event day determination are 

based on the probabilities associated with the tail of the assumed distribution. 

 

The analysis shows that the shape of the distribution is sensitive to the number of years 

during which the performance data is collected. It appears from the data set that the 

reliability index can be represented by a log normal distribution in some cases but not in 

others. In some cases, the transformed histogram of the performance data differs 

significantly from a normal distribution. The peak values, which are the candidate major 

event days, do not satisfy the log normal distribution and in this case the log normal 

distribution may not be a valid representation of the reliability index. As a consequence, 

a major day will be classified improperly.  The study of a relatively small amount of 

historical data from one utility, however, makes it difficult to reach specific conclusions 

regarding the inconsistencies that may exist between utilities of different sizes, in 

various environments and with dissimilar operating philosophies. 

 

 
 
7.5  Summary 
 

Exceptional abnormal events that cause a significantly large number of customers on 

outage for an extended time are generally categorised as major events. Some of the 

reliability data reported to regulators by electric power utilities exclude storm or major 

event interruptions. Major events considerably impact the reliability indices. Many 

regulators allow exclusions based on the reasoning that the capability of a utility during 

storms does not reflect the true everyday performance. There is, however, no specific 

boundary value which segments a major event day from the normal days. 

 

This chapter describes approaches for segmenting major event days. The recently 

published statistically based “Beta Method” and the more traditional classification for 

the definition of a major event day are briefly reviewed. A series of reliability 
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distributions including the lognormal distribution and a number of Weibull distributions 

with varying shape parameters are observed. The differences in shape are illustrated 

using the cumulative probability values of the distribution function. This chapter 

graphically presents some performance data, in the form of SAIDI/day, for an unknown 

utility and illustrates the inconsistency associated with the automatic assumption that the 

reliability index is log-normally distributed.  

 

The analysis of different candidate reliability distributions shows that the variations in 

the shapes of distributions affect the resulting probabilities of a major event days. This 

can create inconsistencies between utility applications when the same metric is enforced. 

The study of normal probability plots reveal that the lognormal distribution does not 

always provide the best representation of the reliability performance index.  
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Chapter 8 
 

SUMMARY AND CONCLUSIONS 

 
 
Electric power delivery systems usually exist in open weather environments. The 

weather creates varying degrees of physical stresses on the system elements, sometimes 

to the extent that the stress exceeds the system design and operational limits. The failure 

rate of a component is greatly enhanced by bad weather situations. The likelihood of 

multiple line failures is much higher in bad weather than in normal weather. The 

phenomenon of coincident failures of two or more circuits as a result of excessive stress 

imposed by weather conditions is designated as failure bunching. The reliability of 

electrical transmission or distribution systems is normally improved by parallel 

operation of lines and therefore multiple circuit failures severely deteriorate the system 

reliability. As noted in Chapter 1, problems that arise in distribution systems are 

responsible for most customer interruptions and a large number of supply outages occur 

during unfavourable weather situations.  

 

The research described in this thesis is focused on weather modeling in the reliability 

evaluation of parallel redundant systems. A series of weather models are developed and 

used to illustrate the impacts on the predicted reliability indices. An approach to divide 

the reliability indices into normal, adverse and extreme weather conditions is introduced 

and illustrated using a practical distribution system. The methods associated with 

classifying extraordinary events that can have immense impacts on the overall system 

performance are discussed. 

 

The fundamental concepts of weather modeling in reliability evaluation of transmission 

and distribution systems are introduced in Chapter 2 where the weather environment is 

divided into the two states of normal and adverse weather. The application of the two 

state weather model is illustrated using two simple systems, a second order mincut and a 
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third order mincut. The Error Factor curves and the basic reliability indices of average 

system failure rate, average outage duration and unavailability clearly show the 

importance of incorporating adverse weather in reliability assessments. The results show 

that the recognition of failure bunching effects becomes more significant as the level of 

redundancy increases. The creation of a two state weather model [8,10] was a significant 

improvement over the single state weather representation. The basic weakness of the 

two state model, however, is that it aggregates extreme weather periods with other 

relatively mild adverse weather periods and consequently results in incorrect appraisals. 

 
A three state weather model is introduced in Chapter 3 in order to incorporate extremely 

adverse weather conditions. The systems studied in Chapter 2, using the two state 

weather model, are re-examined to investigate the impacts due to including extreme 

weather in the analysis. The results show that the reliability estimates obtained using the 

two state weather model are highly optimistic and the error increases as more failures 

occur in major adverse weather. The three state weather model should therefore be 

applied in these assessments. The Error Factor curves presented in Figure 3.10 with the 

variation in component parameters illustrate that systems with relatively low reliability 

experience lower impacts compared to those with better reliability. The studies show 

that higher frequency weather events with short durations and lower frequency weather 

events with longer durations have similar impacts on the average system failure rates.  

 
The significance of weather modeling in transmission and distribution system reliability 

evaluation is illustrated in Chapter 4, using a simple practical system consisting of 

second order and third order mincuts. The load point and system indices are evaluated 

with varying percentages of failures occurring in bad weather and in extreme weather. 

Three line parallel systems are relatively more reliable than two line parallel systems. 

The reliability benefits, however, diminish when more failures occur in bad weather. 

Figures 4.2-4.5 accentuate the differences between the system indices of SAIFI, SAIDI, 

AENS and ECOST obtained utilizing the two state and three state weather models. This 

illustrates how the two state weather model underestimates the potential risk when more 

failures occur in extreme weather. The utilization of a three state weather model 

provides better appraisals in practical situations. 
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The stress created by weather is a continuous function of the weather intensity which 

directly correlates with the failure rate of an overhead circuit. Chapter 5 attempts to 

reflect the continuous phenomenon of weather conditions by using a large number of 

discrete states to represent the weather severity. The applicability of various multi-state 

weather models is illustrated in Figures 5.3-5.6 by a comparison of the respective Error 

Factor curves. It is clearly shown that a particular weather model does not provide 

accurate results in all conditions. The number of weather states used should be in 

accordance with the relative combinations of line failures occurring in adverse and 

major adverse weather. A three state weather model can provide acceptable results when 

a large percentage of line failures occur in bad weather and more than 20% of the bad 

weather failures occur in major adverse weather. Additional states should be included in 

the weather model in other situations. 

 

The reliability index segmenting approach introduced in Chapter 6 emphasizes the 

contribution of different weather conditions to the system indices of SAIFI and SAIDI. 

The analysis of a practical distribution configuration shows that bad weather conditions 

make significant contributions to the system indices when relatively more outages occur 

in bad weather and that the reliability index segment due to extreme weather increases 

sharply when more failures occur in this weather. The study shows that the SAIDI can 

be significantly improved by reducing the restoration time due to the damage caused by 

major storms. Sensitivity studies on the frequency of storm occurrence illustrate that the 

system reliability degrades with increase in the frequency of storms. The approach 

proposed in this research work permits these factors to be quantified and examined in 

attempts to optimize customer service reliability. 

 

The metric established in IEEE Standard 1366 [19] for separating the major event days, 

i.e. the days in which exceptional events occur that are beyond the control of a utility, is 

discussed in Chapter 7. The statistical approach designated as the Beta Method is based 

on the assumption that the SAIDI/day statistic is log-normally distributed. This method 

is being increasingly adopted by many utilities. The analysis of candidate reliability 

distributions indicates that the utilization of a lognormal distribution does not 
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consistently classify a major event. Electric distribution systems of different sizes and 

operating in different environments can have a variety of reliability index distributions. 

The Beta Method is not consistent in this situation. In a purely statistical approach, some 

situations that are not major events may be designated as major events in the numerical 

evaluation. For example, a tree falling on a transmission circuit may cause a lengthy 

power interruption. The increased daily SAIDI in this case could result in this situation 

being classified as a major event.  

 

The reliability models developed in this thesis by incorporating the continuously varying 

weather become physically compatible with actual weather situations and can provide 

reasonably accurate appraisals. A two state weather model is easy to implement and 

requires relatively fewer data. It should, however, be appreciated that disregarding 

extreme weather conditions and varying weather phenomenon results in highly 

inaccurate assessments. It therefore becomes important to include sufficient weather 

states in the analysis. Future work in multi-state weather modeling could represent a 

particular weather situation such as lightning, hurricane, tornadoes, ice storms, wind 

velocities etc. by relevant individual states and each state accompanied by 

corresponding weather and line failure statistics. 

 

The recognition of different weather contributions to the system indices pinpoints the 

situations where maximum reliability improvement can be achieved. The discussions 

associated with major event day classification should provide valuable information to 

utilities/regulators that are increasingly scrutinising the exclusion of major events from 

reliability performance evaluation. 

 

The research described in this thesis illustrates the increasing concerns regarding 

weather effects on power system reliability. The concepts presented are a step forward 

in the continuing development of accurate transmission and distribution system 

reliability evaluation techniques and clearly illustrate the need to collect data associated 

with weather conditions and line failures.  



 150 

REFERENCES 

  
 
 
[1] R. Billinton and R. N. Allan, “Reliability Evaluation of Power Systems”  

      Second Edition, Plenum Press, New York, 1996. 

 

[2] Canadian Electricity Association, “2003 Annual Service Continuity Report on 

      Distribution System Performance in Electrical Utilities,”  June 2004. 

 

[3] Canadian Electricity Association, “2000 Annual Service Continuity Report on 

      Distribution System Performance in Electrical Utilities,”  2001. 

 

[4] D. V. Ford, “The British Electricity Board National Fault and Interruption  

      Reporting Scheme- Objectives, Development and Operating Experience,”  IEEE  

     Winter Power Meeting, 1972. 

 

[5] A. A. Chowdhury and D. O. Koval, “Deregulated Transmission System Reliability 

      Planning Criteria Based on Historical Equipment Performance Data,”  IEEE Trans. 

      on Industry Applications, Vol. 37, No. 1, Jan/Feb. 2001. 

 

[6] Edition Electric Institute (EEI), “Utility Storm Restoration Response,”  Jan 2004. 

 

[7] R. Billinton and J. E. Billinton, “Distribution System Reliability Indices,”  IEEE  

      Trans. on Power Delivery, Vol. 4, No.1, Jan.1989, pp. 561-568. 

 
[8] D. P. Gaver, F. E. Montmeat, and A.D. Patton, “Power System Reliability I-  

      Measures of Reliability and Methods of Calculation,”  IEEE Trans. on Power  

      Apparatus and Systems, Vol. 83, No. 7, pp. 727-737, July 1964. 



 151 

 

[9] R. Billinton and W. Li, “A Novel Method for Incorporating Weather Effects in 

     Composite System Adequacy Evaluation,”  IEEE Trans. on Power Systems,  

      Vol. 6, No. 3, 1991, pp. 1154-1160. 

 

[10] R. Billinton and K.E. Bollinger, “Transmission System Reliability Evaluation 

       Using Markov Processes,”  IEEE Trans. on Power Apparatus and Systems, Vol.  

       PAS-87, No. 2, pp. 538-547, Feb. 1968.    

 

[11] R. Billinton and M. S. Grover, “Reliability Assessment of Transmission and  

       Distribution Systems,”  IEEE Trans. on PAS-94, No.3, pp. 724-732, May/June 1975.    

 

[12] R. Billinton and M.S. Grover, “Quantitative Evaluation of Permanent Outages in  

        Distribution Systems,”  IEEE Trans. on PAS-94, No.3, pp.733-741, May/June 1975.  

 

[13] R. Billinton, G. Singh and J. Acharya, “Failure Bunching Phenomena in Electrical 

        Power Transmission Systems,”  16th Advances in Reliability Technology  

        Symposium, UK, April 14-16, 2005. 

 

[14] R. Billinton, C. Wu, and G. Singh, “Extreme Adverse Weather Modeling in  

        Transmission and Distribution System Reliability Evaluation,”  Proceedings of  

        Power Systems Computation Conference, Spain, June 2002. 

 

[15] R. Billinton, and J. Acharya, “Consideration of Multi-state Weather Models in 

        Reliability Evaluation of Transmission and Distribution Systems,”  Proceedings of 

        CCECE, pp. 601-604, May 2005. 

 

[16] Z. G. Todd, “A Probability Method for Transmission and Distribution Outage   

        Calculations,”  IEEE Trans. on Power Apparatus and Systems, Vol. 33, No. 7,   

         pp. 696-701, July 1964.          

 



 152 

[17] R. Billinton and R.N. Allan, “Reliability Evaluation of Engineering Systems: 

        Concepts and Techniques,”  Second Edition, Plenum Press, 1992. 

 

[18] G. D. Singh, “Extreme Weather Modeling in Transmission and 

        Distribution System Reliability Modeling Incorporating Extreme Adverse 

       Weather Considerations,”  M. Sc. Thesis, University of Saskatchewan, 2003. 

 

[19] IEEE Standard 1366-2003, “ IEEE Guide for Electric Power Distribution System  

       Reliability Indices,”  May 2004. 

 

[20] IEEE Standard 346:1973, “Terms For Reporting and Analyzing Outages of  

       Electrical Transmission and Distribution Facilities and Interruptions to Customer  

       Service,”  1973. 

 

[21] Critical Infrastructure Protection and Emergency Preparedness Canada. [Online] 

        Available: http://www.ocipep.gc.ca/disaster/default.asp 

 

[22] S. A. Ali, “Application of Customer Interruption Costs in Distribution System 

        Reliability Worth Evaluation,”  M.Sc. Thesis, University of Saskatchewan, 2000. 

 

[23] R. N. Allan, R. Billinton, I. Sarief, L. Goel and K. S. So, “A Reliability Test 

       System for Educational Purposes – Basic Distribution System Data and Results,”  

       IEEE Trans. on Power Systems, Vol. 6, No. 2, May 1991. 

 

[24] IEEE Standards 1366-1998, “ IEEE Guide for Electric Power Distribution System  

       Reliability Indices,”  1998. 

 

[25] C. A. Warren and R. Saint, “ IEEE Reliability Indices Standards, Major Event Day 

        Calculations and How They Relate to Small Utilities,”  IEEE Industry Applications 

        Magazine, Vol. 11, Issue 1, pp. 16-22, Jan/Feb. 2005. 

 



 153 

[26] R. Christie, J. Bouford, J. McDaniel, D. Schepers and C. Warren, “P1366 Major 

       Event Day Language Draft,”  [Online], Downloaded in March 2005,  

       http://grouper.ieee.org/groups/td/dist/sd/doc/ 

 

[27] Z. Pan, “Distribution System Risk Assessment using Reliability Distributions,”   

        M. Sc. Thesis, University of Saskatchewan, Canada, 2003. 

 

[28] N. T. Kottegoda and R. Rosso, “Statistics, Probability and Reliability for Civil and  

        Environmental Engineers,”  McGraw-Hill, New York, 1997. 

 

[29] IEEE Working Group on System Design, [Online], Downloaded in March, 

        2005, http://grouper.ieee.org/groups/td/dist/sd/doc/ 



 154 

 
 
 

Appendix A 
 

STORM DATA 

 

The following data are taken from Utility Storm Restoration Response report of the 

Edison Electric Institute (EEI) [6]. 

 

Table A.1 Effect of Ice Storms 

Estimated physical damage 

 
Date 

(mm-yy) 

Peak 
number of 
customers 
on outage 

Outage 
duration 
(days) 

Number 
of poles 
replaced 

Number 
of 

transfor-
mers 

replaced 

Wire 
replaced 
(miles) 

Comment 

Feb-94 
224,000 16 15,565 828 1,037 

Major ice 
storm 

Jan-96 61,000 4 NA NA NA  
Feb-96 650,000 8 NA NA 100  
Mar-97 160,000 5 420 420 100  
Oct-97 213,000 4 670 610 170 Snow & wind 
Jan-98 83,400 2 NA NA NA  
Dec-98 167,700 5 525 276 NA Christmas-98 
Nov-98 160,000 3 860 780 130 Snow & wind 
Jan-99 120,000 4 100 100 NA  
Jan-99 109,685 5 153 62 NA New year-99 
Jan-99 220,000 4 NA 250 38  
Jan-00 17,3000 5 NA NA NA  
Dec-00 226,139 8 1,917 174 547 Storm #1 
Dec-00 212,508 8 1,383 123 772 Storm #2 
Oct-01 99,000 3 580 620 120 Snow & wind 
Mar-02 93,000 2 620 270 70 Snow & wind 
Dec-02 464,000 6 1,322 2,196 85  
Dec-02 1,375,000 9 3,200 2,300 549  
Dec-02 41,951 5 463 64 NA  
Feb-03 350,000 5 NA NA NA  
Apr-03 196,000 6 600 580 160  
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Table A.2 Effect of Hurricanes 

Estimated physical damage Date 
(mm-
yr) 

Peak #of 
customers 
on outage 

Outage 
duration 
(days) 

Poles 
replaced 

Transformer 
replaced 

Wire 
replaced 

Name of 
Hurricane 

Sep-89 696,000 18 8,800 6,308 700 Hugo 
Sep-89 180,000 12 NA 2,300 286 Hugo 
Aug-96 225,000 4 NA NA NA Bertha 
Sep-96 790,000 10 5,500 2,800 3,000 Fran 
Sep-96 450,000 9 1,400 921 217 Fran 
Sep-98 244,500 4 NA NA NA Bonnie 
Sep-98 260,000 3 644 328 118 Georges 
Sep-99 537,000 6 1,160 586 680 Floyd 
Sep-02 95,000 2 310 520 85 Isadora 
Oct-02 243,000 2 1,800 920 202 Lily 
Sep-03 320,000 2 212 307 70 Isabel 

 

 

Table A.3 Effect of other weather conditions 

Estimated physical damage 

Date 
(mm-yr) 

Peak # of 
Customers 
on outage 

Outage 
duration 
(days) 

Poles 
replace

d  

Tranfor-
mers 

replaced 

Wire 
replaced 
(miles) 

Storm event 

May-89 228,000 8 NA NA NA Tornadoes 
Mar-93 170,000 7 NA NA NA Snow blizzard 
Apr-97 80,000 2 790 340 80 Wind storm 

May-98 442,000 8 1,540 1,210 470 
Lightning & 
wind storm 

July-98 106,000 2 570 820 90 
Lightning & 
wind storm 

May-99 99,000 2 680 570 110 
Lightning & 
wind storm 

Sep-99 322,494 8 350 210 85 
Tropical storm 
Floyd 

May-00 155,000 4 NA NA NA Thunderstorm 
May-03 142,000 1.5 NA NA NA Thunderstorm 
May-03 218,000 6 1,100 200 NA Tornadoes 
Jun-03 350,000 3 NA NA NA Thunderstorm 

Sep-03 480,883 8 444 306 103 
Tropical storm 
Isabel 

 
   NA �  data not available
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Appendix B 
 

STOCHASTIC TRANSITIONAL PROBABILITY MATRICES 

 
 
B.1 Three component system with a two state weather model 

 

The stochastic transitional probability matrix for the state space diagram shown in 

Figure 2.6 is given by Equation B.1. 

 





=

DC

BA
P][          (B.1) 

where,  [ ] 88][ xa InB =   

 [ ] 88][ xn IaD =  
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B.2 Three component system with a three state weather model 

 

Equation B.2 gives the stochastic transitional probability matrix associated with the state 

space diagram shown in Figure 3.4. 

 

[ ]
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  where, 
   [ ] 88][ xa InB =    [ ] 88][ xm InC =    

[ ] 88][ xn IaD =   [ ] 88][ xm IaF =    

[ ] 88][ xn ImG =    [ ] 88][ xa ImH =  

 
[ ]I  is the identity matrix and matrices [A], [E] and [J] are given as follows. 
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Appendix C 
 

LOAD POINT INDICES AND INTERRUPTION COSTS 

 
 
Table C.1-C.16 show the reliability indices for the system shown in Figure 4.1 when the 

percentage of failures occurring in bad weather and major adverse (extreme) weather is 

varied. Table C.17 provides the individual user sector interruption costs and the 

composite customer damage functions (CCDF) for the different outage durations. 

 
 
Case I:  Percentage of line failures occurring in bad weather = 50% 
 
 
(a) 10% of bad weather failures occurring in major adverse weather 
 

 

Table C.1 Reliability indices for load point L1 ( bF = 50% and mF = 10%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage duration 

(hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.002047 5.34 0.0109 1006.31 218.78 
1-2-4 0.003843 5.34 0.0205 1889.22 410.68 
Total 0.005890 5.34 0.0314 2895.53 629.46 

 
 

Table C.2 Reliability indices for load point L2 ( bF = 50% and mF = 10%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.030864 6.91 0.2135 17841.86 3415.76 
1-2-4 0.003843 5.34 0.0205 1574.09 328.54 
Total 0.034707 6.74 0.2340 19415.95 3744.30 
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(b) 30% of line failures in bad weather occurring in major adverse weather 
 

 
Table C.3 Reliability indices for load point L1 ( bF = 50% and mF = 30%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average outage 
duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/kW) 

EENS 
(kWh/yr) 

1-2-3 0.018005 5.36 0.0966 8898.07 1932 
1-2-4 0.029600 5.36 0.1588 14628.32 3176 
Total 0.047605 5.36 0.2554 23526.39 5108 

 

 
Table C.4 Reliability indices for load point L2 ( bF = 50% and mF = 30%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/kW) 

EENS 
(kWh/yr) 

3-4 0.066867 6.99 0.4679 39253.60 7486.40 
1-2-4 0.029600 5.36 0.1588 12185.73 2540.80 
Total 0.096467 6.50 0.6267 51439.33 10027.20 

 
 
 
(c) 40% bad weather failures occurring in major adverse weather 
 

 

Table C.5 Reliability indices for load point L1 ( bF = 50% and mF = 40%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average outage 
duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/kW) 

EENS 
(kWh/yr) 

1-2-3 0.032020 5.36 0.1719 15824.28 3438 
1-2-4 0.050435 5.36 0.2707 24924.98 5414 
Total 0.082455 5.36 0.4426 40749.26 8852 

 
 

Table C.6 Reliability indices for load point L2 ( bF = 50% and mF = 40%) 

Minimal 
cut 

Failure 
rate(f/yr)  

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/kW) 

EENS 
(kWh/yr) 

3-4 0.090257 7.00 0.6331 53085.56 10129.60 
1-2-4 0.050435 5.36 0.2707 20763.08 4331.20 
Total 0.140692 6.42 0.9038 73848.64 14460.80 
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(d) 50% of bad weather failures occurring in major adverse weather 
 

Table C.7 Reliability indices for load point L1, ( bF = 50% and mF = 50%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/kW) 

EENS 
(kWh/yr) 

1-2-3 0.048655 5.36 0.2612 24045.3 5224 
1-2-4 0.074012 5.36 0.3973 36576.73 7946 
Total 0.122667 5.37 0.6585 60622.03 13170 

 

 
Table C.8 Reliability indices for load point L2, ( bF = 50% and mF = 50%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/kW) 

EENS 
(kWh/yr) 

3-4 0.114802 7.02 0.8065 67779.10 129040 
1-2-4 0.074012 5.36 0.3973 30469.26 6356.80 
Total 0.188814 6.38 1.2038 98248.36 19260.8 

 
 
 
Case II:  Percentage of line failures occurring in bad weather = 90% 
 
 
(a) 10% bad weather failures occurring in major adverse weather 
 

 
Table C.9 Reliability indices for load point L1 ( bF = 90% and mF = 10%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.009477 5.36 0.0509 4683.53 1017.60 
1-2-4 0.017158 5.36 0.0921 8479.48 1842.56 
Total 0.026635 5.36 0.1430 13163.01 2860.16 

 
 

Table C.10 Reliability indices for load point L2 ( bF = 90% and mF = 10%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.083628 7.04 0.5898 49561.30 9436.80 
1-2-4 0.009477 5.36 0.0509 3901.49 814.40 
Total 0.093105 6.88 0.6407 53462.79 10251.20 
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(b) 30% bad weather failures occurring in major adverse weather 
 

 
Table C.11 Reliability indices for load point L1 ( bF = 90% and mF = 30%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.058448 5.37 0.3139 28955.14 6278 
1-2-4 0.088518 5.37 0.4755 43851.82 9510 
Total 0.146966 5.37 0.7894 72806.96 15788 

 
 

Table C.12 Reliability indices for load point L2 ( bF = 90% and mF = 30%) 

Minimal 
Cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.155517 7.05 1.0972 92339.77 17555.20 
1-2-4 0.088518 5.37 0.4755 36526.07    7608.00 
Total 0.244035 6.44 1.5727 128865.84 25163.20 

 
 
 
(c) 40% bad weather failures occurring in major adverse weather 

 
 

Table C.13 Reliability indices for load point L1 ( bF = 90% and mF = 40%) 

 
 

Table C.14 Reliability indices for load point L2 ( bF = 90% and mF = 40%) 

Minimal 
cut 

Failure 
rate (f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.194327 7.05 1.3710 115383.60 21936.00 
1-2-4 0.13342 5.37 0.7166   55054.43 11465.60 
Total 0.327747 6.37 2.0876 170438.03 33401.60 

 

Minimal 
cut 

Failure rate 
(f/yr) 

Average outage 
duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.092633 5.37 0.4975 45890.39 9950 
1-2-4 0.13342 5.37 0.7166 66096.27 14332 
Total 0.226053 5.370864 1.2141 111986.66 24282 
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(d) 50% bad weather failures occurring in major adverse weather 
 

Table C.15 Reliability indices for load point L1 ( bF = 90% and mF = 50%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average outage 
duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

1-2-3 0.128379 5.37 0.6894 63598.96 13788 
1-2-4 0.177994 5.37 0.9559 88178.23 19118 
Total 0.306373 5.37 1.6453 151777.19 32906 

 

Table C.16 Reliability indices for load point L2 ( bF = 90% and mF = 50%) 

Minimal 
cut 

Failure rate 
(f/yr) 

Average 
outage 

duration (hrs) 

Unavailability 
(hrs/yr) 

ECOST 
($/yr) 

EENS 
(kWh/yr) 

3-4 0.231402 7.05 1.6325 137397.25 26120.00 
1-2-4 0.177994 5.37 0.9559    73447.44 15294.40 
Total 0.409396 6.32 2.5884 210844.69 41414.40 

 
 
Table C.17 Sector interruption costs and composite customer damage functions (CCDF) 

User sector interruption cost ($/kW) CCDF ($/kW) 
Duration 

(hr) Agricultural 
Cag 

Commercial 
Ccm 

Industrial 
Cin 

Residential 
Crs 

Load 
Point L1  

Load 
Point L2 

1.00 0.649 8.552 9.085 0.482 4.64 5.09 
3.33 1.77 26.38 21.99 3.61 13.93 14.73 
4.00 2.064 31.317 25.163 4.914 16.60 17.45 
5.00 2.58 42.86 32.52 7.14 22.48 23.46 
5.31 2.74 46.64 34.85 7.90 24.40 25.41 
5.34 2.75 47.02 35.07 7.97 24.58 25.60 
5.36 2.76 47.26 35.22 8.02 24.71 25.73 
5.37 2.77 47.39 35.30 8.05 24.77 25.79 
6.32 3.26 59.59 42.57 10.57 30.94 32.06 
6.37 3.28 60.25 42.95 10.71 31.28 32.38 
6.38 3.29 60.38 42.03 10.74 31.35 32.47 
6.42 3.31 60.92 43.34 10.85 31.62 32.74 
6.44 3.32 61.18 43.50 10.91 31.75 32.87 
6.50 3.35 61.99 43.96 11.08 32.16 33.29 
6.88 3.54 67.14 46.93 12.19 34.76 35.92 
6.91 3.56 67.56 47.16 12.28 34.97 36.13 
6.96 3.59 68.24 47.55 12.43 35.31 36.48 
6.99 3.60 68.67 47.79 12.52 35.52 36.69 
7.00 3.61 68.80 47.87 12.54 35.59 36.76 
7.02 3.62 69.07 48.03 12.61 35.73 36.90 
7.04 3.63 69.35 48.18 12.67 35.87 37.04 
7.05 3.63 69.49 48.26 12.70 35.94 37.11 
8.00 4.12 83.008 55.808 15.69 42.75 43.98 
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Appendix D  
 

LOAD POINT INDICES FOR EXTREME WEATHER SEVERITY ANALYSIS 

 

Tables D.1-D.6 present the load point indices associated with the distribution system 

shown in Figure 6.1 for various extreme weather frequencies. 

 

Case (a): 40% of the total failures occurring in bad weather and 10% of the bad 

weather failures in extreme weather 

 

• Load point failure rates 

 
Table D.1 Load point failure rates (failures/year), Case (a) 

Number of extreme weather events 
Load point 

One per year Two per year Three per year 

1 0.239 0.247 0.255 
2 0.252 0.261 0.269 
3 0.252 0.261 0.269 
4 0.239 0.247 0.255 
5 0.252 0.261 0.269 
6 0.249 0.258 0.266 
7 0.252 0.261 0.269 
8 0.140 0.145 0.150 
9 0.140 0.145 0.150 
10 0.243 0.251 0.259 
11 0.252 0.261 0.269 
12 0.256 0.264 0.273 
13 0.252 0.261 0.269 
14 0.256 0.264 0.273 
15 0.243 0.251 0.259 
16 0.252 0.261 0.269 
17 0.243 0.251 0.259 
18 0.243 0.251 0.259 
19 0.256 0.264 0.273 
20 0.256 0.264 0.273 
21 0.252 0.261 0.269 
22 0.256 0.264 0.273 
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• Load point unavailabilities 

 
Table D.2 Load point unavailabilities (hours/year), Case (a) 

Number of extreme weather events 
Load point 

One per year Two per year Three per year 

1 1.219 1.571 1.923 
2 1.358 1.761 2.165 
3 1.358 1.761 2.165 
4 1.219 1.571 1.923 
5 1.358 1.761 2.165 
6 1.323 1.714 2.104 
7 1.258 1.623 1.988 
8 1.107 1.507 1.907 
9 1.018 1.379 1.741 
10 1.220 1.573 1.925 
11 1.358 1.761 2.165 
12 1.392 1.809 2.225 
13 1.234 1.587 1.939 
14 1.269 1.634 2.000 
15 1.220 1.573 1.925 
16 1.358 1.761 2.165 
17 1.254 1.619 1.984 
18 1.220 1.573 1.925 
19 1.359 1.763 2.166 
20 1.359 1.763 2.166 
21 1.234 1.587 1.939 
22 1.269 1.634 2.000 

 
 

• Load point average outage durations 

 
Table D.3 Load point average outage durations (hours), Case (a) 

Number of extreme weather events 
Load point 

One per year Two per year Three per year 

1 5.095 6.352 7.530 
2 5.378 6.748 8.032 
3 5.378 6.748 8.032 
4 5.095 6.352 7.530 
5 5.378 6.748 8.032 
6 5.310 6.653 7.911 
7 4.982 6.219 7.378 
8 7.908 10.391 12.707 
9 7.266 9.508 11.599 
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Table D.3 Continued… 
Number of extreme weather events Load point 

One per year Two per year Three per year 
10 5.031 6.271 7.433 
11 5.378 6.748 8.032 
12 5.444 6.841 8.149 
13 4.889 6.081 7.196 
14 4.962 6.182 7.325 
15 5.031 6.271 7.433 
16 5.378 6.748 8.032 
17 5.168 6.455 7.660 
18 5.031 6.271 7.433 
19 5.314 6.667 7.934 
20 5.314 6.667 7.934 
21 4.889 6.081 7.196 
22 4.962 6.182 7.325 

 
 
Case (b): 80% of the total failures occurring in bad weather and 40% of the bad 

weather failures in extreme weather 

 

Table D.4 Load point failure rates (failures/year), Case (b) 

Number of extreme weather events Load point 
One per year Two per year Three per year 

1 0.239 0.309 0.380 
2 0.252 0.327 0.401 
3 0.252 0.327 0.401 
4 0.239 0.309 0.380 
5 0.252 0.327 0.401 
6 0.249 0.322 0.396 
7 0.252 0.327 0.401 
8 0.139 0.183 0.227 
9 0.139 0.183 0.227 
10 0.242 0.314 0.385 
11 0.252 0.327 0.401 
12 0.256 0.331 0.407 
13 0.252 0.327 0.401 
14 0.256 0.331 0.407 
15 0.242 0.314 0.385 
16 0.252 0.327 0.401 
17 0.242 0.314 0.385 
18 0.242 0.314 0.385 
19 0.256 0.331 0.407 
20 0.256 0.331 0.407 
21 0.252 0.327 0.401 
22 0.256 0.331 0.407 
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• Load point unavailabilities 
 
 

 
Table D.5 Load point unavailabilities (hours/year), Case (b) 

Number of extreme weather events 
Load point 

One per year Two per year Three per year 

1 3.605 6.448 9.291 
2 4.093 7.351 10.608 
3 4.093 7.351 10.608 
4 3.605 6.448 9.291 
5 4.093 7.351 10.608 
6 3.974 7.128 10.282 
7 3.733 6.682 9.632 
8 3.844 7.071 10.297 
9 3.483 6.402 9.321 
10 3.608 6.452 9.296 
11 4.093 7.351 10.608 
12 4.213 7.574 10.935 
13 3.616 6.463 9.310 
14 3.735 6.686 9.636 
15 3.608 6.452 9.296 
16 4.093 7.351 10.608 
17 3.725 6.671 9.618 
18 3.608 6.452 9.296 
19 4.096 7.354 10.613 
20 4.096 7.354 10.613 
21 3.616 6.463 9.310 
22 3.735 6.686 9.636 
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• Load point average outage duration 
 
 

 
Table D.6 Load point average outage durations (hours), Case (b) 

Number of extreme weather events 
Load point 

One per year Two per year Three per year 

1 15.094 20.844 24.462 
2 16.228 22.493 26.432 
3 16.228 22.493 26.432 
4 15.094 20.844 24.462 
5 16.228 22.493 26.432 
6 15.982 22.123 25.982 
7 14.799 20.448 23.999 
8 27.560 38.555 45.302 
9 24.975 34.909 41.006 
10 14.882 20.550 24.117 
11 16.228 22.493 26.432 
12 16.467 22.854 26.869 
13 14.335 19.776 23.196 
14 14.601 20.174 23.678 
15 14.882 20.550 24.117 
16 16.228 22.493 26.432 
17 15.364 21.250 24.953 
18 14.882 20.550 24.117 
19 16.010 22.191 26.077 
20 16.010 22.191 26.077 
21 14.335 19.776 23.196 
22 14.601 20.174 23.678 

 
 


