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Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease and thus a main reason for 
liver-related morbidities and mortality. NAFLD covers a wide range of diseases starting with steatosis 
and frequently progressing to non-alcoholic steatohepatitis (NASH), which is an independent predictor 
for the development of the hepatocellular carcinoma (HCC). Nicotinamide phosphoribosyltransferase 
(NAMPT), the key enzyme of the mammalian NAD salvage pathway, recycles nicotinamide to 
nicotinamide mononucleotide (NMN), which is further converted to nicotinamide adenine 
dinucleotide (NAD). NAD is not only an important redox partner but also a crucial co-substrate for 
NAD-dependent enzymes such as sirtuin 1 (SIRT1). Thus, NAD metabolism might be involved in the 
progression of NAFLD by regulating many cellular processes, such as apoptosis, de novo lipogenesis, 
glycolysis and gluconeogenesis, in the liver. Interestingly, tumor cells have a high NAD turnover due 
to their rapid proliferation and high activity of NAD-dependent enzymes. For these reasons, I 
hypothesized that the NAD salvage pathway is dysregulated during the progression of non-alcoholic 
fatty liver disease. 

Therefore, the first study of the present work deals with the role of the NAD salvage pathway 
in a diet-induced mouse model of hepatic steatosis. In mice fed a high-fat diet for 11 weeks hepatic 
NAMPT mRNA, protein abundance and activity as well as NAD levels were increased. Additionally, 
SIRT1 protein abundance was upregulated indicating a higher SIRT1 activity. This could be 
confirmed by detecting decreased acetylation or transcription of SIRT1 targets. For example, p53 and 
nuclear factor κB (NF-κB) were less acetylated demonstrating lower activity of key regulators of 
apoptosis and inflammation, respectively. 

In the second study of this thesis NAMPT activity was inhibited by applying its specific 
inhibitor FK866 in hepatocarcinoma cells to investigate whether or not NAMPT inhibition could be a 
potential novel therapeutic approach in HCC treatment. Hepatocarcinoma cells were more sensitive to 
NAMPT inhibition by FK866 than primary human hepatocytes, presenting a high number of apoptotic 
cells after FK866 treatment. FK866 induced NAD and ATP depletion which was associated with 
activation of the key regulator of energy metabolism 5’-AMP-activated protein kinase (AMPK) and 
decreased activity of its downstream target mammalian target of rapamycin (mTOR). 

This thesis shows that the NAD salvage pathway is involved in hepatic steatosis and HCC. 
During hepatic steatosis NAD metabolism is upregulated to potentially protect against adverse effects 
of the massive hepatic lipid accumulation. To repress the progression to NASH it might be useful to 
maintain the hepatic NAD levels during early disease stages by administration of NAD precursors, 
such as NMN. However, hepatocarcinoma cells have a higher activity of NAMPT and NAD-
dependent enzymes. NAMPT inhibition by FK866 could be a potential therapeutic approach in HCC, 
especially due to the fact that NAD depletion is selectively induced in hepatocarcinoma cells, but not 
in primary human hepatocytes. 
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Summary 

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in western countries and 

therefore a major cause for liver-related morbidities and mortality e.g. by progression to the 

hepatocellular carcinoma (HCC). About 15-20 % of female and 30-40 % of male population are 

affected by NAFLD with an increasing number in patients with type 2 diabetes (T2D) and obesity. 

Thus, NAFLD is closely associated with the metabolic syndrome and related diseases like 

cardiovascular disorders, T2D and chronic kidney diseases. While the risk factors for NAFLD are well 

established (age >50 years, obesity, insulin resistance, T2D, elevated ferritin levels, patatin-like 

phospholipase domain containing 3 (PNPLA3) 1148M polymorphism), the pathological mechanisms 

are not well understood.  

Hyperinsulinemia and hyperglycaemia, which occur with the development of insulin 

resistance, are involved in the initiation of NAFLD, the so called hepatic steatosis, which is defined by 

an increased accumulation of triacylglycerides (TAGs) in the liver. Several mechanisms underlie the 

development of steatosis. Insulin is no longer able to suppress the hormone-sensitive lipase in the 

insulin-resistant visceral adipose tissue (VAT) leading to an efflux of free fatty acids into the portal 

vein to the liver, a central organ in lipid metabolism. High serum insulin levels lead to an inhibition of 

hepatic β-oxidation and an increase of transcriptions factors for the de novo lipogenesis, for example 

sterol-regulatory binding protein 1c (SREBP-1c). In parallel, the excess blood glucose is absorbed by 

the liver and metabolized to acetyl-CoA which is important for the de novo lipogenesis. Lipolysis in 

VAT as well as decreased hepatic β-oxidation and increased de novo lipogenesis are major drivers in 

hepatic steatosis, which in 30-45 % of cases progresses to non-alcoholic steatohepatitis (NASH) due to 

inflammatory processes, increased apoptosis of hepatocytes and increased levels of reactive oxygen 

species (ROS). NASH can further progress to cirrhosis or HCC. 

A large number of studies deal with the association of nicotinamide phosphoribosyltransferase 

(NAMPT), also called visfatin or pre-B cell colony-enhancing factor (PBEF), and NAFLD. Human 

NAMPT consists of 491 amino acids, has a theoretical molecular mass of 55.5 kDA and is highly 

expressed in leucocytes, liver, skeletal muscle and adipose tissue. NAMPT is the key enzyme in the 

mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway starting from nicotinamide. 

There are several precursors of NAD such as vitamin B3 (nicotinic acid, nicotinamide riboside and 

nicotinic acid riboside) and tryptophan as the starting point for the de novo biosynthesis of NAD. 

NAMPT catalyzes the reaction of nicotinamide with 5’-phosphoribosyl-1-pyrophosphate (PRPP), 

generating nicotinamide mononucleotide (NMN) and releasing pyrophosphate (PPi). Subsequently, 

this 5’mononucleotide is converted to NAD by nicotinamide mononucleotide-      

adenylyltransferases 1-3 (NMNAT1-3) and concomitant cleavage of ATP to ADP (Figure 1). In 

animal studies it has been shown that NAMPT activation protects against steatosis, inflammation and 
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glucose intolerance. The review of Chapter 1 summarises, among other things, of how NAMPT and 

NAFLD are associated. As a key enzyme of NAD biosynthesis, NAMPT can act through NAD-

dependent biochemical reactions. NAD serves as a co-substrate for poly(ADP-ribose) polymerases 

(PARP), cyclic (ADP-ribose) hydrolases such as CD38 and class-III-NAD-dependent deacetylases 

(sirtuins (SIRT)) or as a redox partner in a wide range of metabolic pathways, for example glycolysis.  

 

Up to 70 % of the total cellular NAD pool is located in the mitochondria, the place of 

metabolic processes reducing NAD to NADH such as tricarboxylic acid cycle or β-oxidation. NADH 

is necessary in the mitochondria as an electron donor for oxidative phosphorylation producing ATP. 

As mentioned above, NAD is also an important co-substrate for protein modifications (e.g. 

deacetylation), which influences the activity, stability and localisation of proteins. Sirtuins (SIRT) are 

NAD-dependent deacetylases, which are located in the mitochondria (SIRT3, 4, 5), in the nucleus 

(SIRT1, 6, 7) and in the cytoplasm (SIRT2). For example, SIRT1 can deacetylate and thus, suppress 

the transcriptional activity of SREBP-1c. NAD is cleaved to ADP-ribose and nicotinamide, which can 

be recycled by NAMPT. SIRT1 transfers the acetyl-group from SREBP-1c to the 2’-OH group of 

ADP-ribose producing 2’-O-acetyl-ADP-riboside (2-OADDPR) (Figure 1). Constant NAD salvage is 

absolutely necessary especially for tumor cells due to their special characteristics, such as rapid cell 

growth and proliferation as well as a dysregulated cellular energy metabolism. Thus, tumor cells have 

an increased NAD turnover. A high rate of NAD consuming enzymatic reactions would lead to an 

Fig. 1 Mammalian NAD salvage pathway. 
Abbreviations: 2-OAADPR: 2’-O-acetyl-ADP-riboside; ac: acetyl-group; ATP: adenosine triphosphate; NA: 
nicotinic acid; NAM: nicotinamide; NAD: nicotinamide adenine dinucleotide; NAMPT: nicotinamide 
phosphoribosyltransferase; NMN: nicotinamide mononucleotide; NMNAT: nicotinamide mononucleotide 
adenylyltransferase; NR: nicotinamide riboside; PPi: pyrophosphate; PRPP: 5‘-phosphoribosyl-1-pyrophosphate; 
SIRT1: sirtuin 1  
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accumulation of nicotinamide, a natural feedback inhibitor of NAD-dependent enzymes. This makes a 

higher NAMPT activity essential for NAD replenishment and recycling of nicotinamide in cancer 

cells. It has already been shown that different malignant tumor cells have increased NAD levels and 

overexpress NAMPT. Increased NAMPT levels correlate with tumor growth, metastases, cellular 

dedifferentiation and a poor prognosis. 

By regulating intracellular NAD levels NAMPT is essential for many cellular processes. On 

the one hand, the NAD/NADH ratio represents the energy status of the cell; on the other hand NAD 

regulates NAD-dependent enzymes linking the metabolic status to signalling processes. Consequently, 

the NAD salvage pathway is involved in many processes associated with the progression of NAFLD. 

Therefore, I hypothesized that the NAD salvage pathway is dysregulated during the progression of 

non-alcoholic fatty liver disease. My hypothesis, aims and scientific questions are described in detail 

in Chapter 2. In Chapter 3, the role of NAD metabolism in a murine model of diet-induced hepatic 

steatosis was investigated. In Chapter 4 it was examined whether or not NAMPT inhibition could be a 

potential therapeutic approach for HCC.  

The role of the NAD salvage pathway in NAFLD was analysed in the animal study described 

in Chapter 3. Mice were fed with a high-fat diet (HFD) for 11 weeks. These mice gained weight due 

to an increase of fat body mass, showed an impaired oral glucose tolerance test and stored more TAGs 

in the liver without any indications for inflammation (interleukin-6 (IL-6), tumor necrosis factor α 

(TNFα)), macrophage infiltration (CD68), cirrhosis (α-smooth muscle actin (α-SMA)) and fibrosis 

(fibrinogen, collagen I) compared to control mice. Therefore, the HFD-fed mice were considered a 

model for hepatic steatosis, the initial stage of NAFLD. Surprisingly, NAMPT mRNA, protein 

abundance and activity as well as intracellular NAD levels were increased in the HFD-fed mice. In the 

literature it has been shown that NAD-dependent SIRTs contribute to the progression of NAFLD by 

regulating processes like hepatic gluconeogenesis, mitochondrial biogenesis and fatty acid synthesis. 

Liver-specific SIRT1 and whole-body SIRT3 knockout mice showed exacerbated hepatic steatosis and 

insulin resistance under a HFD while global transgenic SIRT1 overexpressing mice were protected 

against the negative impact of a HFD. In the present work, hepatic SIRT3 was unchanged and only 

SIRT1 protein levels were enhanced after 11 weeks on a HFD compared to the control group. 

Deacetylation and consequently inhibition of nuclear factor κB (NF-κB) at lysine 310 and p53 at 

lysine 382 indicated a higher activity of SIRT1 and a down regulation of the activity of two key 

enzymes of hepatic inflammation and apoptosis, respectively. The increased activity of SIRT1 was 

also represented by a decreased mRNA expression of its transcriptional target mitochondrial 

uncoupling protein 2 (UCP2) indicating that oxidative stress was not present in the liver samples of 

HFD-fed mice. Transcriptional activity of SRREBP-1c as a key regulator of the de novo lipogenesis 

can be also inhibited due to deacetylation by SIRT1. In this study, SREBP-1c mRNA expression was 

increased, but its acetylation status was unchanged in the HFD- and control group. However, its 

downstream targets fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and stearoyl-CoA 
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desaturase-1 (SCD1) were downregulated indicating a lower transcriptional activity of SREBP-1c. 

The increased SIRT1 activity could cause a decreased activity of the SIRT1 target forkhead box 

protein O1 (FOXO1). This is supported by measuring a reduced expression of its downstream targets 

glucose-6-phosphatase (G6Pc) and phosphoenolpyruvate carboxykinase (PEPCK), key regulators in 

gluconeogenesis. Taken together, it has been shown in Chapter 3 that the hepatic NAD salvage 

pathway is improved in mice with hepatic steatosis which could be a compensatory mechanism to 

protect against the negative impact of hepatic lipid accumulation. 

NASH is an independent predictor of HCC, which is the sixth most common cancer and the 

second cause of cancer-related mortality worldwide. Hepatocarcinoma cells have a higher activity of 

NAMPT and NAD-dependent enzymes. Thus, hepatoccarcinoma cells are expected to be more 

sensitive to NAD depletion. Since sorafenib is to date the only potential medication in HCC, the effect 

of the specific NAMPT inhibitor FK866 on hepatocarcinoma cells compared to non-cancerous 

hepatocytes was investigated in Chapter 4. FK866 decreased intracellular NAMPT activity and NAD 

levels in hepatocarcinoma cells. These cellular responses were not present in non-cancerous 

hepatocytes even after incubation with a 10-fold enhanced dose of FK866. In hepatocarcinoma cells, 

ATP levels were decreased after stimulation with FK866 which was associated with an induction of 

apoptosis. FK866-induced reduction of NAD and ATP indicates that NAMPT is involved in cellular 

energy metabolism. In further experiments the effect of NAMPT inhibition on the key regulator of 

energy metabolism, 5’-AMP-activated protein kinase (AMPK) and its downstream target mammalian 

target of rapamycin (mTOR), was investigated. In the literature it has been shown that AMPK is less 

active in HCC with a consequently upregulated activity of mTOR. This fact could be confirmed in the 

present study. Furthermore, inhibition of NAMPT by FK866 led to a higher phosphorylation and 

activation of AMPK with simultaneous dephosphorylation and deactivation of mTOR. This could be 

further confirmed due to decreased phosphorylation and inhibition of mTOR downstream targets 70S 

ribosomal protein S6 kinase (p70S6K) and 4E binding protein 1 (4E-BP1), key regulators of protein 

translation and cellular growth, respectively. To investigate whether or not the effects on NAD and 

ATP levels as well as on the AMPK/mTOR signalling pathway were NAMPT-dependent, 

hepatocarcinoma cells were co-stimulated with FK866 and NMN. This led to a normalisation of the 

cellular responses to control levels. These results suggest FK866 as a potential new therapy option for 

HCC by reducing NAMPT activity and NAD levels and thus disturbing energy homeostasis in 

hepatocarcinoma cells while not affecting non-cancerous cells. 

To sum up, this thesis demonstrates that the hepatic NAD salvage pathway is involved in 

NAFLD and HCC. It has been shown that in the phase of hepatic steatosis an enhanced NAD salvage 

pathway counteracts the negative impact of hepatic lipid accumulation. It could be assumed that 

during further disease progression the NAD salvage pathway is down regulated leading to a lower 

SIRT1 activity. This supports further pathogenic pathways like hepatic apoptosis, inflammation or 

increased ROS levels. In HCC, NAD turnover is massively increased to support tumor growth. Hence 
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inhibition of the NAD salvage pathway by FK866 induced apoptosis due to decreased NAD and ATP 

levels as well as downregulation of the AMPK/mTOR pathway (Figure 2). This works suggests the 

importance of the time point at which the NAD salvage pathway is enhanced or down regulated during 

disease progression. In early stages of hepatic steatosis it could be important to maintain NAD 

metabolism to delay disease progression e.g. by the administration of NAD precursors, such as NMN. 

Inhibition of NAMPT activity by FK866 could be useful to suppress tumor growth in HCC. Therefore, 

the NAD salvage pathway represents a novel potential target for both, hepatic steatosis and HCC 

(Figure 2). 

 

Fig. 2 Hypothetic scheme of alterations in the NAD salvage pathway during disease progression of non-alcoholic 
fatty liver disease. 
Abbreviations: AMPK: 5’-AMP-activated protein kinase; DNL: de novo lipogenesis; G6Pc: glucose-6-
phosphatase; HCC hepatocellular carcinoma; mTOR: mammalian target of rapamycin; NAD: nicotinamide 
adenine dinucleotide; NAMPT: nicotinamide phosphoribosyltransferase; NASH: non-alcoholic steatohepatitis; 
NF-κB: nuclear factor κB; PEPCK: phosphoenolpyruvate carboxykinase; SREBP-1c: sterol regulatory binding 
protein-1c; UCP2: mitochondrial uncoupling protein 2  
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Zusammenfassung 

In den westlichen Industriestaaten gehört die nicht-alkoholbedingte Fettlebererkrankung (NAFLD) zu 

einer der häufigsten hepatischen Erkrankungen. Da diese zur Progression des hepatozellulären 

Karzinoms (HCC) beiträgt, ist die NAFLD eine Hauptursache für erhöhte leberbedingte Morbiditäten 

und Mortalität. Etwa 15-20 % der weiblichen und 30-40 % der männlichen Bevölkerung sind 

gefährdet an der NAFLD zu erkranken. Dabei kommt es zu einer erhöhten Inzidenz bei Patienten mit 

Typ 2 Diabetes (T2D) und Adipositas. NAFLD ist stark assoziiert mit dem metabolischen Syndrom 

und Komorbiditäten, wie z.B. kardiovaskulären Erkrankungen, T2D und chronischen 

Nierenerkrankungen. Während die Risikofaktoren weitgehend bekannt sind (Alter >50 Jahre, 

Adipositas, Insulinresistenz, T2D, erhöhte Ferritin-Spiegel, patatin-like phospholipase domain 

containing 3 (PNPLA3) 1148M Polymorphismus), ist bis heute nicht vollständig geklärt, welche 

pathologischen Mechanismen an der Progression der NAFLD beteiligt sind.  

Hyperinsulinämie und Hyperglykämie, die einhergehen mit Insulinresistenz, führen zu Beginn 

der NAFLD zu einer verstärkten Einlagerung von Triacylglyceriden (TAGs) in der Leber, der 

sogenannten hepatischen Steatose. Dadurch kann Insulin die Lipasen des insulinresistenten 

Fettgewebes nicht mehr hemmen. Folglich kommt es zu einer verstärkten Freisetzung von freien 

Fettsäuren in die Portalvene, die zur Leber führt, dem zentralen Organ im Lipidmetabolismus. Hohe 

Insulinspiegel führen zu einer Inhibierung der hepatischen β-Oxidation und Aktivierung von 

Transkriptionsfaktoren der de novo Lipogenese, wie z.B. dem sterol regulatory element-binding 

protein 1c (SREBP-1c). Parallel dazu wird die überschüssige Blutglukose von der Leber 

aufgenommen und zu acetyl-CoA abgebaut, das essentiell für die de novo Lipogenese ist. Lipolyse im 

Fettgewebe sowie verringerte β-Oxidation und erhöhte de novo Lipogenese in der Leber sind 

entscheidende Prozesse in der Entstehung der hepatischen Steatose. In 30-45 % der Fälle entwickelt 

sich die Steatose durch inflammatorische Prozesse, verstärkter Apoptose der Hepatozyten und einem 

Anstieg der reaktiven Sauerstoffspezies (ROS) zur nicht-alkoholbedingten Steatohepatitis (NASH). 

Diese fördert die Entstehung der Zirrhose oder des HCCs.  

In den letzten Jahren hat sich eine Vielzahl an Studien mit der Assoziation von 

Nikotinamidphosphoribosyltransferase (NAMPT), auch Visfatin oder pre-B cell colony-enhancing 

factor (PBEF) genannt, und NAFLD beschäftigt. Humanes NAMPT besteht aus 491 Aminosäuren und 

ist 55,5 kDA groß. Es kommt hauptsächlich in der Leber, in den Leukozyten, im Skelettmuskel und 

Fettgewebe vor. NAMPT ist das Schlüsselenzym der Nikotinamidadenindinukleotid (NAD)-

Biosynthese aus Nikotinamid in Säugetieren, dem sogenannte NAD salvage pathway. Weitere 

Vorstufen von NAD sind u.a. Vitamin B3 (Nikotinsäure, Nikotinamidribosid, Nikotinsäureribosid) 

und Tryptophan, welches für die de novo Biosynthese von NAD benötigt wird. NAMPT katalysiert die 

Reaktion zwischen Nikotinamid und 5‘-Phosphoribosyl-1-Pyrophosphat (PRPP) zu 
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Nikotinamidmononukleotid (NMN) unter Freisetzung von Pyrophosphat (PPi). Die Umsetzung des  

5’-Mononukleotids zu NAD wird unter Spaltung von ATP durch die 

Nikotinamidmononukleotidadenylyltransferasen 1-3 (NMNAT1-3) katalysiert (Abbildung 1). In 

Tierstudien wurde bereits gezeigt, dass eine Aktivierung von NAMPT gegen hepatische Steatose, 

entzündliche Prozesse und Glukoseintoleranz schützt. In dem Review von Kapitel 1 wird u.a. ein 

detaillierter Überblick darüber gegeben, wie NAMPT und NAFLD assoziiert sind. Als 

Schlüsselenzym der NAD-Biosynthese kann NAMPT durch viele NAD-abhängige Stoffwechselwege 

auf den zellulären Metabolismus Einfluss nehmen. NAD ist sowohl ein wichtiges Co-Substrat für 

Poly-(ADP-Ribose)-Polymerasen (PARPs), zyklische ADP-Ribose-Hydrolasen, z.B. CD38, und 

Klasse III-NAD-abhängige Deacetylasen (Sirtuine (SIRT)), als auch ein wichtiger Redoxpartner in 

vielen Stoffwechselwegen, wie der Glykolyse.  

 

 

  

Abb 1. Der NAD salvage pathway in Säugetieren. 
Abkürzungen: 2-OAADPR: 2’-O-Acetyl-ADP-Ribosid; ac: acetyl-Gruppe; ATP: Adenosintriphosphat; NA: 
Nikotinsäure; NAM: Nikotinamid; NAD: Nikotinamidadenindinukleotid; NAMPT: Nikotinamid-
phosphoribosyltransferase; NMN: Nikotinamidmononukleotid; NMNAT: Nikotinamidmononukleotid-
adenylyltransferase; NR: Nikotinamidribosid; PPi: Pyrophosphat; PRPP: 5‘-Phosphoribosyl-1-Pyrophosphat; 
SIRT1: Sirtuin 1   
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Etwa 70 % des intrazellulären NAD-Reservoirs sind in den Mitochondrien lokalisiert, welche 

ein zentraler Ort vieler metabolischer Prozesse sind. Während des Citratzyklus oder der β-Oxidation 

wird NAD zu NADH reduziert, das für die Herstellung von ATP durch oxidative Phosphorylierung 

benötigt wird. Wie bereits oben erwähnt, ist NAD auch ein wichtiges Co-Substrat für 

Proteinmodifikationen, z.B. Deacetylierung, die die Aktivität, Stabilität und Lokalisation von 

Enzymen beeinflussen können. Sirtuine sind NAD-abhängige Deacetylasen, die im 

Mitochondrium (SIRT3, 4, 5), Zellkern (SIRT1, 6, 7) und im Zytosol (SIRT2) lokalisiert sind. SIRT1 

kann z.B. die transkriptionelle Aktivität von SREBP-1c durch Deacetylierung inhibieren. NAD wird 

dabei durch NAD in ADP-Ribose und Nikotinamid gespalten. Letzteres kann von NAMPT recycelt 

werden. Die Acetylgruppe von SREBP-1c wird durch SIRT1 auf die 2’-OH-Gruppe der ADP-Ribose 

übertragen, wobei 2’-O-Acetyl-ADP-Ribosid (2-OAADPR) entsteht (Abbildung 1). Das Regenerieren 

von NAD ist besonders in Tumorzellen essentiell, um deren kanzerogene Eigenschaften, z.B. ein 

rapides Zellwachstum, –proliferation und einen dysregulierteren Energiemetabolismus, 

aufrechtzuerhalten. Daher besitzen Tumorzellen einen deutlich erhöhten NAD-Verbrauch im 

Vergleich zu gesunden Zellen. Eine verstärkte Aktivität von NAD-abhängigen Enzymen würde zu 

einer Akkumulation von Nikotinamid führen, einem natürlichen feedback Inhibitor von NAD-

abhängigen Enzymen. Deswegen ist es für Tumorzellen essentiell, dass NAMPT verstärkt aktiv ist, 

um Nikotinamid zu recyceln und so das NAD-Reservoir der Zelle wieder aufzufüllen. In malignen 

Tumoren wurde bereits gezeigt, dass erhöhte NAMPT-Spiegel mit dem Tumorwachstum, der 

Metastasierung, der zellulären Entdifferenzierung und einer schlechteren Prognose korrelieren. 

NAMPT ist für die Zelle durch die Regulation des intrazellulären NAD-Spiegels und somit 

vieler zellulärer Stoffwechselwege von großer Bedeutung. Einerseits wird durch das NAD/NADH-

Verhältnis der Energiestatus der Zelle widergespiegelt, andererseits wird die Aktivität von NAD-

abhängigen Enzymen gesteuert. Es lässt sich schlussfolgern, dass der NAD-Metabolismus eine 

wichtige Rolle in der Pathogenese der NAFLD spielt. Dies führt mich zu der Hypothese meiner 

Doktorarbeit, dass der NAD salvage pathway in der Progression der nicht-alkoholbedingten 

Fettlebererkrankung dysreguliert ist. Die Hypothese, Ziele und Fragestellungen dieser Arbeit werden 

detailliert in Kapitel 2 beschrieben. In Kapitel 3 wurde der NAD-Metabolismus in einem Mausmodell 

für Diät-induzierte hepatische Steatose untersucht. In Kapitel 4 wurde geprüft, ob eine NAMPT-

Inhibierung in Hepatokarzinomzellen einen potentiellen neuen Ansatz in der Therapie des HCC 

darstellen könnte. 

In der Studie in Kapitel 3 wurden Mäuse für 11 Wochen mit einer Hochfett-Diät gefüttert, um 

die Rolle des NAD-Metabolismus in der NAFLD zu untersuchen. Die Mäuse nahmen an Gewicht zu, 

vor allem durch einen Anstieg der Fettkörpermasse, zeigten einen verschlechterten 

Glukosetoleranztest und lagerten im Vergleich zur Kontrollgruppe verstärkt TAGs in der Leber ein. 

Dabei konnte man keine Veränderungen in der Expression von Markergenen der Inflammation 

(Interleukin-6 (IL-6), Tumornekrosefaktor α (TNFα)), Makrophageninfiltration (CD68), und Fibrose 
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(α-smooth muscle actin (α-SMA), Fibrinogen, Kollagen I) erkennen. Interessanterweise kam es zu 

einem Anstieg der NAMPT mRNA-Expression, Proteinsynthese und Aktivität sowie zu erhöhten 

intrazellulären NAD-Spiegeln in den steatotischen Mauslebern. In der Literatur wurde gezeigt, dass es 

unter Fütterung einer Hochfett-Diät vor allem in leber-spezifischen SIRT1- und in Ganzkörper-SIRT3-

knockout-Mäusen zu einer Verstärkung der hepatischen Steatose und Insulinresistenz kommt. Eine 

SIRT1-Überexpression unter Fütterung einer Hochfett-Diät führte dagegen zu einer Verbesserung der 

hepatischen Steatose durch die Regulation der hepatischen Glukoneogenese, mitochondrialer 

Biogenese oder der Fettsäurebiosynthese. In der hier vorliegenden Studie war die hepatische SIRT3-

Proteinsynthese unverändert, während das SIRT1-Protein nach einer 11-wöchigen Hochfett-Diät 

anstieg. Zudem kam es zu einer Deacetylierung von nuclear factor κB (NF-κB) am Lysin 310 und 

vom Tumorsuppressorprotein p53 am Lysin 382 und damit zur Inhibierung der Aktivität von zwei 

Schlüsselenzymen der Inflammation und Apoptose. Der Nachweis der verringerten Acetylierung 

dieser Proteine deutet auf eine verstärkte SIRT1-Aktivität hin. Dies wurde auch durch die verringerte 

mRNA-Expression eines Zielgens von SIRT1, des mitochondrial uncoupling protein 2 (UCP2) 

gezeigt. Zudem ist eine verringerte UCP2 mRNA-Expression ein Hinweis darauf, dass zum 

untersuchten Zeitpunkt kein oxidativer Stress in den Zellen vorlag. Die SREBBP-1c mRNA-

Expression war in den steatotischen Lebern stark erhöht, während dessen Zielgene Fettsäuresynthase 

(FAS), Acetyl-CoA-Carboxylase (ACC) und Stearoyl-CoA-Desaturase-1 (SCD1) weniger stark 

exprimiert waren. Daraus könnte man schlussfolgern, dass SREBP-1c aufgrund einer verstärkten 

Deacetylierung durch SIRT1 weniger transkriptionell aktiv ist. Dies konnte in der vorliegenden Studie 

jedoch nicht bestätigt werden. Allerdings ist die Genexpression der Schlüsselenzyme der 

Glukoneogenese, Glukose-6-Phosphatase (G6Pc) und Phosphoenolpyruvat-Carboxykinase (PEPCK) 

verringert, was ebenfalls auf eine verstärkte SIRT1-Aktivität hindeutet. SIRT1 kann das forkhead box 

protein O1 (FOXO1) deacetylieren, welches gleichzeitig phosphoryliert wird und somit die 

Expression der G6Pc und PEPCK inhibiert. Zusammenfassend kann man sagen, dass in den 

steatotischen Mauslebern der NAD salvage pathway verbessert war. Dies könnte ein zeitiger 

kompensatorischer Mechanismus der Leber gegen die negativen Auswirkungen massiver hepatischer 

Fetteinlagerungen sein. 

NASH ist ein unabhängiger Prädiktor des HCCs, welches die sechsthäufigste Krebsart und 

zweithäufigste tumorbedingte Todesursache ist. In der Literatur wurde bereits gezeigt, dass in 

Hepatokarzinomazellen NAD-abhängige Enzyme und die NAMPT-Aktivität stark erhöht sind. 

Tumorzellen könnten deswegen sensibler auf eine Inhibierung von NAMPT reagieren. Sorafenib ist 

aktuell das einzig verfügbare Medikament gegen HCC. Deswegen wird in Kapitel 4 untersucht, 

welche Effekte der spezifische NAMPT-Inhibitor FK866 auf Hepatokarzinomzellen im Vergleich zu 

gesunden Hepatozyten hat. In der hier vorliegenden Studie reduzierte FK866 die intrazelluläre 

NAMPT-Aktivität und NAD-Spiegel in Hepatokarzinomzellen. In gesunden Hepatozyten kam es auch 

mit einer 10-fach erhöhten Dosis an FK866 nicht zu einer Verringerung der NAMPT-Aktivität und der 
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NAD-Spiegel. Zudem führte FK866 in Hepatokarzinomzellen zu einem verminderten ATP-Spiegel, 

der mit einer steigenden Anzahl an apoptotischen Zellen assoziiert war. Da FK866 die intrazelluläre 

NAD- und ATP-Spiegel reduzierte, konnte schlussgefolgert werden, dass eine Inhibierung von 

NAMPT den zellulären Energiemetabolismus entscheidend stört. In den folgenden Experimenten 

wurde deswegen der Fokus auf 5’-AMP-aktivierte Proteinkinase (AMPK), ein zentrales Enzym des 

Energiemetabolismus, und dessen Zielprotein mammalian target of rapamycin (mTor) gelegt. In der 

Literatur wurde bereits beschrieben, dass AMPK weniger und mTOR verstärkt aktiv im HCC-Gewebe 

ist. Das wurde in der hier vorliegenden Studie bestätigt. Zudem führte eine Inhibierung von NAMPT 

in Hepatokarzinomzellen zu einer verstärkten Phosphorylierung von AMPK, sowie 

Dephosphorylierung und damit Inhibierung von mTOR. Die Zielproteine von mTOR 70S ribosomales 

Protein S6-Kinase (p70S6K) und 4E-Bindeprotein 1 (4E-BP1), die eine entscheidende Aufgabe 

sowohl in der Proteintranslation wie auch im zellulären Wachstum haben, waren ebenfalls weniger 

phosphoryliert. Um sicher zu stellen, dass die zellulären Effekte von FK866 spezifisch auf einer 

NAMPT-Inhibierung beruhen, wurden die Hepatokarzinomzellen mit dessen Enzymprodukt NMN co-

stimuliert. NMN normalisierte alle FK866-induzierten Effekte. Diese Studie zeigt, dass FK866 eine 

potentielle neue Therapiemöglichkeit des HCC sein könnte, da die FK866-vermittelten Effekte 

spezifisch in Hepatokarzinomzellen auftraten, jedoch nicht in gesunden humanen Hepatozyten. 

Die hier vorliegende Arbeit zeigt, dass der NAD-Metabolismus in der hepatischen Steatose 

und des HCC involviert ist. Im frühen Stadium der hepatischen Steatose kann ein verbesserter NAD 

salvage pathway gegen den negativen Einfluss hepatischer Lipidakkumulation schützen. Während der 

weiteren Progression der hepatischen Steatose zur NASH wird eventuell der NAD salvage pathway 

und damit auch SIRT1 gehemmt. Dadurch werden u.a. inflammatorische und apoptotische Prozesse in 

der Leber weiter gefördert. Im HCC dagegen wird für das Tumorwachstum massiv NAD benötigt. 

Deswegen stellt eine Hemmung von NAMPT mit FK866 eine potentielle Therapieoption dar, da 

selektiv in Hepatokarzinomzellen Apoptose induziert wird (Abbildung 2). Diese Arbeit unterstützt die 

Theorie, dass es wichtig ist, zu welchem Zeitpunkt in der Progression der NAFLD der NAD-

Metabolismus verändert ist. Zu Beginn der NAFLD kann es durchaus förderlich sein, den NAD-

Metabolismus durch Gabe von NAD-Vorstufen, z.B. NMN, aufrecht zu erhalten. Dadurch könnte 

möglicherweise die Progression der hepatischen Steatose zu einer NASH entgegengewirkt werden. 

Bei HCC-Patienten dagegen könnte eine Therapie mit FK866 dazu führen, dass der zelluläre NAD-

Spiegel gesenkt wird und somit nicht ausreichend Energie für das Wachstum und die Proliferation der 

Krebszellen zur Verfügung steht. Damit stellt der NAD salvage pathway einen neuen potentiellen 

Ansatzpunkt in der Therapie von hepatischer Steatose und HCC dar (Abbildung 2). 
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Abb. 2 Hypothetische Veränderungen des NAD salvage pathway während der Progression der nicht-
alkoholbedingten Fettlebererkrankung.  
Abkürzungen: AMPK: 5’-AMP-aktivierte Proteinkinase; DNL: de novo Lipogenese; G6Pc: Glukose-6-
Phosphatase; HCC hepatozelluläres Karzinom; mTOR: mammalian target of rapamycin; NAD: 
Nikotinamidadenindinukleotid; NAMPT: Nikotinamidphosphoribosyltransferase; NASH: Nicht-alkoholbedingte 
Steatohepatitis; NF-κB: nuclear factor κB; PEPCK: Phosphoenolpyruvat-Carboxylase; SREBP-1c: sterol 
regulatory binding protein 1; UCP2: mitochondrial uncoupling protein 2  
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1.1 Abstract 

Nicotinamide phosphoribosyltransferase (NAMPT) is a regulator of the intracellular nicotinamide 

adenine dinucleotide (NAD) pool. NAD is an essential coenzyme involved in cellular redox reactions 

and a substrate for NAD-dependent enzymes. NAD concentrations are decreased in various metabolic 

disorders and during ageing. Through its NAD-biosynthetic activity, NAMPT influences the activity 

of NAD-dependent enzymes, thereby regulating cellular metabolism. In addition to its enzymatic 

function, extracellular NAMPT (eNAMPT) possesses cytokine-like activity. Abnormal levels of 

eNAMPT are associated with various metabolic disorders. NAMPT is able to modulate processes in 

the pathogenesis of obesity and related disorders, such as non-alcoholic fatty liver disease (NAFLD) 

and type 2 diabetes mellitus (T2DM) by influencing the oxidative stress response, apoptosis, lipid and 

glucose metabolism, inflammation and insulin resistance. NAMPT also has a crucial role in cancer cell 

metabolism, is often overexpressed in tumour tissues and an experimental target for antitumor 

therapies. In this review, we discuss current understanding of the functions of NAMPT and highlight 

progress made in identifying the physiological role of NAMPT and its relevance in various human 

diseases and conditions, such as obesity, NAFLD, T2DM, cancer and ageing. 

1.2 Physiological role of NAMPT  

1.2.1. Mechanism of action 

NAD metabolism and NAMPT enzyme activity  

NAD is an essential coenzyme involved in cellular redox reactions and a substrate for NAD-dependent 

enzymes. In mammals, NAD can be synthesized de novo from tryptophan or NAD precursors such as 

nicotinamide (NAM), nicotinic acid, nicotinamide mononucleotide (NMN) and nicotinamide riboside 

(NR) (Figure 1). NAM rather than nicotinic acid is thought to be the predominant NAD precursor in 

mammals [1–3]. NAM is also a product of deacetylation and ADP-ribosylation reactions, which are 

catalysed by NAD-dependent enzymes [4–6]. NAMPT activity generates NMN from NAM and 5′-

phosphoribosyl-1-pyrophosphate (PRPP), catalysing the rate-limiting step in the mammalian NAD 

salvage pathway from NAM [7,8]. NMN, together with ATP, is then converted into NAD by 

nicotinamide/nicotinic acid mononucleotide adenylyltransferases 1-3 (NMNAT1-3). NR is converted 

into NMN by nicotinamide riboside kinase (NRK) [9], which enters the NAD salvage pathway. 

Evidence of extracellular conversion of NAD and NMN to NR by the ectocellular enzymes CD38 and 

CD73 also exists (Figure 2) [10–12].  

By analysing tissue sources of 719 cDNA clones, NAMPT was found to be expressed in 

nearly all organs, tissues, and cells examined [13,14]. This ubiquitous expression of NAMPT suggests 

pleiotropic functions of the protein in human physiology. NAMPT occurs intracellularly (mainly in the 

cytoplasm and nucleus) [15], and extracellularly [16]; NAMPT has also been reproted to reside in 

mitochondria [17], although this finding has been disputed [18]. Significant sequence homology exists 
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in NAMPT among prokaryotic organisms, primitive metazoans such as marine sponges, and humans 

[19], which suggests a crucial role for NAMPT in cellular metabolism and survival. Several groups 

have characterized the structural and enzymological features of mammalian NAMPT [20–27]. 

Structural and mutagenesis studies have shown that mutations in NAMPT which impair dimerization, 

attenuate enzymatic activity [22]; furthermore, Asp219 is important in defining the substrate 

specificity of NAMPT [25], which does not include nicotinic acid [8,28]. Autophosphorylation of 

NAMPT (using ATP) at H247 [20,22] creates a reaction intermediate that is hydrolysed during each 

catalytic cycle, which increases the affinity of NAMPT for NAM and its enzymatic activity up to 

1000-fold [20]. 

 

  

Fig.1. Mammalian NAD metabolism. The NAD de novo kynurenine pathway is comprised of several steps. The 
first rate-limiting step is catalysed by TDOs (mainly in the liver) or IDOs. By multiple reactions, L-tryptophan is 
converted to NAMN. At this stage, NA enters the pathway and is phosphoribosylated by NAPRT. NAMN is 
then converted to NAAD by NMNAT1-3. Finally, NAAD is amidated by NADS to yield NAD. NAM is another 
NAD precursor and a product of deacetylation and ADP-ribosylation reactions, which are catalysed by NAD-
dependent enzymes such as SIRTs, PARPs, MARTs and ADP-ribosyl cyclases such as CD38. NAMPT catalyses 
the formation of NMN from NAM and 5′-phosphoribosyl-1-pyrophosphate (PRPP), which is the rate-limiting 
step in the NAD salvage pathway from NAM. NMN is then converted into NAD by NMNAT1-3. NR enters the 
NAD biosynthesis pathway by phosphorylation to NMN, which is catalysed by NRKs. Abbreviations: IDOs, 
indoleamine 2,3-dioxygenases; MART, mono(ADP-ribosyl) transferase; NA, nicotinic acid; NAAD, nicotinic 
acid adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; NADS, nicotinamide adenine dinucleotide 
synthase; NAM, nicotinamide; NAMN, nicotinic acid mononucleotide; NAMPT, nicotinamide 
phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; NMN, nicotinamide mononucleotide; 
NMNAT, nicotinamide/nicotinic acid mononucleotide adenylyltransferase; NR, nicotinamide riboside; NRKs, 
nicotinamide riboside kinases; PARP, poly(ADP-ribose) polymerase; SIRT, sirtuin; TDOs, tryptophan 2,3-
dioxygenases. 
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NAMPT is one of the regulators of the intracellular NAD pool [7,8]. Through its NAD-

biosynthetic activity, NAMPT influences the activity of NAD-dependent enzymes, such as sirtuins 

(SIRTs) [8,17,29–32] and poly (ADP-ribose) polymerase (PARP)-1 [33], and thereby regulates 

cellular metabolism, mitochondrial biogenesis [34–36] and adaptive stress responses, which include 

inflammatory, oxidative, proteotoxic, and genotoxic stress [37]. Further information on the roles of 

NAD-dependent enzymes in cellular metabolism can be found elsewhere [38–42]. Mono-ADP-ribosyl 

transferases [43] and ADP-ribosyl cyclases [44] are involved in several physiological processes, which 

include calcium signalling and DNA repair. As these enzymes also use NAD as substrate and are also 

inhibited by the product NAM, NAMPT activity probably influences their functions. Interestingly, 

the NAMPT gene is regulated by the circadian locomoter output cycles protein kaput (CLOCK)- aryl 

hydrocarbon receptor translocator-like protein 1 (BMAL1, also known as ARNTL) core clock 

machinery, which is responsible for circadian rhythmicity and leads to a circadian oscillation of NAD 

levels in vivo [45,46]. SIRT1 is recruited to the NAMPT promoter and contributes to the circadian 

synthesis of NAMPT. This completes a transcriptional-enzymatic feedback loop that connects cellular 

metabolism and circadian rhythms [45,46]. 

Extracellular NAMPT  

eNAMPT has been reported in the human [47] and the mouse [16] circulation, in human cerebrospinal 

fluid [48] and seminal plasma [49], and in the supernatant of numerous cell types including 

differentiated adipocytes [16,50,51], hepatocytes [52,53], leukocytes [14], cardiomyocytes [54], 

neurons [55,56], amniotic epithelial cells [57], pancreatic β cells [58] and LPS-activated monocytes 

[59,60] as well as spermatozoa (S. Thomas, personal communication). Several studies indicated that 

eNAMPT might function as a growth factor [13,61–65], however, the mechanism of NAMPT 

secretion and its physiological function in the extracellular space is far from certain. Another 

uncertainty is whether NAMPT occurs in the same form and configuration inside the cell as it does in 

the extracellular space. Some investigations of the action of eNAMPT have used recombinant 

NAMPT expressed from bacterial sources, which might not accurately represent the endogenous form 

of mammalian eNAMPT. A 2015 study reported that SIRT1 deacetylates intracellular NAMPT 

(iNAMPT), thereby predisposing NAMPT to secretion from adipocytes [51]. Several studies have 

measured enzymatic activity of eNAMPT [14,16,52,58,66] or detected the enzyme product (NMN) in 

the extracellular space [11,16,67]; however, it has been reported that eNAMPT is not enzymatically 

active in mouse plasma owing to the low concentration of PRPP and ATP [68]. This observation raises 

the question as to whether enzymatic activity of eNAMPT is linked to pathophysiological conditions 

in which plasma PRPP and ATP levels increase due to cell death. Interestingly, the presence of a 

significant nicotinate phosphoribosyltransferase activity has been reported in human plasma, which 

suggests the existence of nicotinic acid mononucleotide (NAMN) in the human circulation [66]. As a 

receptor for eNAMPT has not been discovered yet, the mechanism of eNAMPT signal transduction 

continues to be the subject of research (Figure 2), owing to its importance in targeting eNAMPT in 
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various pathological conditions. Improved understanding of the mechanism of action of eNAMPT is a 

prerequisite for exploitation of eNAMPT-related pathways as a therapeutic approach in relevant 

diseases.  

Figure 2 Physiological actions of NAMPT. iNAMPT is found in the cytoplasm, nucleus and mitochondria. 
NAMPT exerts its effects by maintaining intracellular levels of NAD and recycling NAM, which is produced by 
the action of NAD-dependent enzymes such as SIRT1,6,7 and PARP-1 in the nucleus, SIRT1,2 in the cytoplasm 
and SIRT3,4,5 in mitochondria. The ectoenzyme CD38 produces cADPR and regulates intracellular Ca2+ 

signalling. NAMPT expression is induced by the circadian regulators CLOCK and BMAL1 in complex with 
SIRT1. Other stimulators of NAMPT expression include mechanical stress and pro-inflammatory cytokines 
(such as TNFα, IL-1β and IFNγ). NAMPT is secreted from different cell types and is probably released from 
dying cells together with ATP and PRPP. Extracellular production of NMN therefore, potentially, occurs and 
NMN might subsequently enter the cell, possibly after conversion to NR by the ectocellular enzymes CD38 and 
CD73. Apart from enzymatic activity, eNAMPT acts as a pro-inflammatory or anti-inflammatory cytokine in 
multiple signalling pathways, such as ERK1,2, IL-6–STAT3, PI3K–AKT, p38 MAPK and NF-κB, which 
influence the expression of several cytokines (such as TNFα, IL-1β and TGFβ). A receptor for eNAMPT has not 
yet been identified. Abbreviations: AKT, protein kinase B; BMAL1, aryl hydrocarbon receptor translocator-like 
protein 1; cADPR, cyclic ADP-ribose; CLOCK, circadian locomoter output cycles protein kaput; eNAMPT, 
extracellular nicotinamide phosphoribosyltransferase; ERK, extracellular signal-regulated kinase; iNAMPT, 
intracellular nicotinamide phosphoribosyltransferase; NAD, nicotinamide adenine dinucleotide; NAM, 
nicotinamide; NF-κB, nuclear factor κB; NMN, nicotinamide mononucleotide; NMNAT, nicotinamide/nicotinic 
acid mononucleotide adenylyltransferase; NR, nicotinamide riboside; NRKs, nicotinamide riboside kinases; P38 
MAPK, mitogen-activated protein kinase P38; PARP, poly(ADP-ribose) polymerase; PI3K, phosphatidylinositol 
3-kinase; PRPP, 5′-phosphoribosyl-1-pyrophosphate; SIRT, sirtuin; STAT, signal transducer and activator of 

transcription; TGFβ, transforming growth factor β; TNFα, tumour necrosis factor α. 
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1.3 Pathophysiological role of NAMPT 

1.3.1. NAMPT and obesity 

White adipose tissue (WAT) operates as a functional endocrine unit [69]. Ever since eNAMPT was 

first described as an adipocytokine (more commonly known as adipokine) with insulin-mimetic effects 

[70], the role of NAMPT in obesity and obesity-related disorders has been the subject of debate. 

Different adipocyte models including preadipocyte cell lines 3T3-L1 and SGBS as well as primary 

human adipocytes have been shown to secrete NAMPT into the supernatant via a non-classical 

pathway [16,50,71], thereby identifying adipose tissue as one of the major sources of eNAMPT. A 

number of SNPs in NAMPT are associated with obesity [72] and obesity-related co-morbidities such as 

coronary artery disease [73] as well as glucose and lipid parameters [74]. However, several studies 

have reported that genetic variation in NAMPT does not have a major role in the development of 

obesity or T2DM [75–77]. The relevance of genetic variations in NAMPT in disease development 

might depend on whether the active site, assembly of the active NAMPT dimer or gene expression of 

NAMPT is affected.  

A meta-analysis, which included human studies on the association between eNAMPT and 

obesity parameters, reportedthat levels of eNAMPT were generally increased in individuals with 

obesity [78]. Several human studies investigating the association of NAMPT with parameters of 

obesity have been published during the past five years (Table 1). Discrepancies between these studies, 

which have reported either a positive association or no association between circulation levels of 

eNAMPT and obesity-related parameters, might be due to differences in study populations, sample 

handling or systems to detect NAMPT [47]. Several metabolic factors whose levels are increased in 

individuals with obesity have been shown to modulate NAMPT gene and protein expression and/or 

release (Table 2). Both glucose and oxidized low density lipoprotein stimulate NAMPT gene and 

protein expression and release in human adipocytes via the PI3-kinase/AKT pathway [79–81]. In 

addition, glucose administration in humans led to increased levels of eNAMPT [14]. In vitro studies 

have shown that expression of NAMPT mRNA increases during adipogenesis [82] and is stimulated by 

insulin resistance-inducing factors such as IL-6, dexamethasone, growth hormone, tumor necrosis 

factor (TNF)α and isoproterenol [83–85]. NAMPT is also upregulated in adipocytes under hypoxic 

conditions [86]. The macrophage population in visceral WAT in individuals with obesity is another 

source of eNAMPT [87]. Whether eNAMPT exhibits pro-inflammatory or anti-inflammatory activity 

is still the subject of debate [16,54–56,88,89]. However, several studies have reported pro-

inflammatory effects of eNAMPT on different cell types, which include iNOS induction [90], ERK1,2 

activation [62], NF-κB activation [90,91] and production of cytokines, such as TNFα, IL-6, IL-1β 

[91,92],transforming growth factor β [93] and monocyte chemoattractant protein 1 [94]. Production of 

inflammatory cytokines and NAMPT gene expression in adipocytes, thus, seem to be regulated by a 

positive feedback activation loop. Furthermore, incubation with eNAMPT increased expression of 

lipoprotein lipase and peroxisome proliferator-activated receptor γin preadipocytes and fatty acid 
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synthase in differentiated adipocytes, which suggests that eNAMPT is a regulator of lipid metabolism 

[95]. 

 

Table 1. Reported associations between levels of NAMPT and obesity or NAFLD 

NAMPT in human studies NAMPT correlation with References 
↑ levels of NAMPT in serum* 
and liver‡ of women with 
obesity vs normal-weight 
women 

↑ levels of NAMPT in serum* 
and liver‡ of women with 
obesity and NAFLD vs women 
with obesity without NAFLD 

Levels of IL-6*, CRP*, resistin‡ 
and TNFα‡ 

Auguet et al. (2013) [96] 

No change in serum levels of 
NAMPT in patients with 
NAFLD vs health individuals 

TNFα levels Genc et al. (2013) [97] 

↓ levels of NAMPT in serum 
after 6-week weight reduction 

None Hosseinzadeh-Attar et al. 
(2013) [98] 

No change in serum levels of 
NAMPT in healthy women 
with obesity vs normal-weight 
women 

Carbohydrate intake Saboori et al. (2013) [99] 

↑ serum levels of NAMPT in 
children with obesity vs 
normal-weight children 

BMI and levels of IL-6 (boys) Li et al. (2013) [100] 

↑ serum levels of NAMPT in 
children and adolescents with 
obesity vs normal-weight 
children and adolescents 

None Jaleel et al. (2013) [101] 

↑ serum levels of NAMPT in 
patients with NAFLD vs 
individuals without NAFLD 

None Akbal et al. (2012) [102] 

↑ serum levels of NAMPT in 
women with morbid obesity vs 
lean women* 
↓ serum levels of NAMPT 
after bariatric surgery‡ 
↑ levels of NAMPT in 
subcutaneous and visceral 
adipose tissue§ in women with 
morbid obesity vs lean women 

Levels of IL-6*‡§, CRP* and 

TNFα‡§ 

Terra et al. (2012) [103] 

↑ serum levels of NAMPT in 
adolescents with exogenous 
pubertal obesity vs healthy 
adolescents 

Body weight, BMI, WHR, levels 
of serum triglycerides, LDL 
cholesterol, insulin and C-peptide, 
insulin resistance as defined by 
HOMA and glucosose:insulin 
ratio 

Taskesen et al. (2012) [104] 
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↑ levels of NAMPT in serum 
and peripheral blood cells‡ in 
individuals with obesity vs 
lean individuals 

BMI* ‡, WHR*‡, % body fat‡, 
levels of ALT*, AST*, γ-GT* and 

levels of HIF1α mRNA‡ 

Catalan et al. (2011) [105] 

↑ serum levels of NAMPT in 
children with obesity vs lean 
children 

Leucocyte counts Friebe et al. (2011) [14] 

↑ serum levels of NAMPT in 
adult individuals with obesity 
vs normal-weight adult 
individuals 

BMI, waist circumference, hip 
circumference and insulin 
resistance as defined by HOMA 

Reda et al. (2011) [106] 

↑ serum levels of NAMPT in 
children and adolescents with 
obesity vs lean children and 
adolescents 

Waist circumference, BMI, whole 
body insulin sensitivity and levels 
of IL-6 and thiobarbituric-acid-
reactive substances (boys) 

Krzystek-Korpacka et al. 
(2011) [107] 

↑ serum levels of NAMPT in 
prepubertal children with 
obesity vs prepubertal lean 
children 

Levels of resistin and IL-6 Martos-Moreno et al. (2011) 
[108] 

↓ levels of NAMPT in serum 
and liver in patients with 
NAFLD vs healthy controls 

None Dahl et al. (2010) [109] 

↓ levels of NAMPT in visceral 
adipose tissue in patients with 
NAFLD vs individuals without 
NAFLD 

None Gaddipati et al. (2010)[110] 

↑ levels of NAMPT in liver in 
patients with fibrosis vs 
individuals with NAFLD 
without fibrosis 

Stage of fibrosis Kukla et al. (2010) [111]187 

No change in serum levels of 
NAMPT in women with 
obesity vs lean women 

None Ersoy et al. (2010)[112] 

↑ serum levels of NAMPT in 
individuals with obesity vs 
healthy, normal-weight 
individuals 

Age, WHR and HbA1c levels Kaminska et al. (2010)[113] 

↓ levels of NAMPT in 
subcutaneous tissue in 
individuals with obesity vs 
normal-weight individuals 

None Barth et al. (2010) [114] 

Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; CRP, C-reactive protein; γ-

GT, γ-glutamyltransferase; HIF1α, hypoxia inducible factor 1α; HOMA, homeostatic model 

assessment; NAMPT, nicotinamide phosphoribosyltransferase; TNFα, tumour necrosis factor α; 
WHR, waist–hip ratio. 
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Table 2. Metabolic factors that influence levels of NAMPT 

Factor Effect References 
Glucose restriction ↑ NAMPT levels in skeletal 

muscle 
↑ NAMPT levels in hepatocytes 

↑ NAMPT levels in human 
preadipocytes and adipocytes 

Costford et al. (2010) [115] 
Dahl et al. (2010) [109] 
Friebe et al. (2011) [84]85 

Glucose ↑ NAMPT levels in human 
adipocytes 

Haider et al. (2006) [79] 

Fructose ↑ NAMPT levels in BAT and 
WAT of FRD-fed mice 

↓ NAMPT levels in circulation 
of FRD-fed mice 

Caton et al. (2011) [116] 
 

Oxidized LDL ↑ NAMPT levels in 3T3-L1 
adipocytes 

Chen et al. (2013) [81] 

Growth hormone ↓ NAMPT levels in 3T3-L1 
adipocytes 

Kralisch et al. (2005) [82] 

IL-6 ↑ NAMPT levels in rheumatoid 
arthritis 

↓ NAMPT levels in 3T3-L1 
adipocytes 

Nowell et al. (2006) [117] 
Kralisch et al. (2005) [82] 

TNFα ↑ NAMPT levels in adipose 
tissue 

↓ NAMPT levels in 3T3-L1 
adipocytes 

Hector et al. (2007) [92] 
Kralisch et al. (2005) [82] 

Palmitate ↑ NAMPT levels in HepG2 
cells 

Choi et al. (2011) [118] 

Leucine ↑ NAMPT levels in HFD-fed 
mice 

Li et al. (2012) [119] 

Dexamethasone ↑ NAMPT levels in human 
preadipocytes and adipocytes 

↑ NAMPT levels in 3T3-L1 
adipocytes 

Friebe et al. (2011) [84]85 
 
Kralisch et al. (2005) [82] 

Isoproterenol ↑ NAMPT levels in human 
preadipocytes 
↓ NAMPT levels in 3T3-L1 
adipocytes 

Friebe et al. (2011) [84] 
Kralisch et al. (2005) [82] 

Hypoxia ↑ NAMPT levels in 3T3-L1 
adipocytes 
↑ NAMPT levels in MCF-7 
breast cancer cells 

Segawa et al. (2006) [86] 
Bae et al. (2006)[120] 

Abbreviations: BAT, brown adipose tissue; FRD, fructose-rich diet; HFD, high-fat diet; NAMPT, 
nicotinamide phosphoribosyltransferase; TNFα, tumour necrosis factor α; WAT, white adipose tissue. 
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1.3.2. NAMPT and non-alcoholic fatty liver disease  

NAFLD, which is the most common liver disorder in the West, encompasses a wide range of 

pathophysiological conditions, ranging from simple steatosis (hepatic lipid accumulation) to 

inflammation (non-alcoholic steatohepatitis), which frequently leads to fibrosis and cirrhosis 

accompanied by a higher risk for hepatocellular carcinoma and eventually the need for liver 

transplantation [121]. Hepatocytes have been identified as a source of eNAMPT [52]. Furthermore, 

plasma concentrations of eNAMPT correlate with portal inflammation in individuals with NAFLD 

[122]. Several, partly conflicting, studies investigating the association of NAMPT with severity of 

NAFLD in humans have been published during the past few years (Table 1), with upregulation and 

downregulation of NAMPT both observed in animal models or patients with NAFLD 

[96,109,111,123–125]. In mouse models of diet-induced obesity, upregulation of NAMPT by different 

strategies has proven beneficial in protecting against steatosis, inflammation, and glucose intolerance 

[126–128]. Both supplementation with troxerutin, a trihydroxyethylated derivative of the natural 

bioflavonoid rutin [126], and leucine [127] enhanced levels of NAMPT protein and NAD and, 

consequently, SIRT1 activity. In another mouse model of hepatic triglyceride accumulation induced 

by combined liver specific knockout of Foxo1, Foxo3 and Foxo4, levels of NAMPT were 

downregulated, which indicates that NAMPT expression is regulated by Foxo transcription factors in 

the mouse liver [128]. In the same study, overexpression of NAMPT markedly reduced hepatic 

triglycerides in vivo [128]. Another regulator of NAMPT is miRNA-34a which has been shown to be 

increased in individuals with obesity and to substantially reduce NAD levels and SIRT1 activity in the 

liver by directly targeting NAMPT mRNA expression [129]. In diet-induced obese mice inhibition of 

miR-34 restored levels of NAMPT and NAD and improved steatosis, inflammation, and glucose 

intolerance [130]. In patients with NAFLD, hepatic NAMPT expression was shown to be down 

regulated, possibly via activation of peroxisome proliferator-activated receptor α [109]. Conversely, 

overexpression of NAMPT improved apoptosis in stress-exposed rat hepatocytes, which suggests an 

anti-apoptotic effect of NAMPT in NAFLD [109]. In contrast to the beneficial effects of NAMPT 

overexpression in the liver, NAMPT overexpression in mouse skeletal muscle did not improve 

mitochondrial biogenesis or function [131]. Furthermore, no change in hepatic NAD levels and 

NAMPT gene expression was found in mice fed a HFD for 4 weeks, even though SIRT1 activity was 

attenuated [132]. These findings implicate factors besides NAD levels in contributing to the regulation 

of sirtuin activity.  

A pro-inflammatory action of NAMPT has been reported in HepG2 cells [118]. When treated 

with palmitate, a time-and dose-dependent increase in NAMPT gene and protein expression as well as 

in levels of of IL-6 and TNFα was found, whereas down regulation of NAMPT counteracted the 

inflammatory response [118]. By inhibition of NF-κB, iNAMPT protein levels were normalized after 

stimulation with palmitate, which indicates that NAMPT might have a role in palmitate-induced 

inflammation in hepatocytes through the NF-κB pathway [118]. Another in vitro study using HepG2 
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cells showed that incubation with eNAMPT activated gluconeogenesis via activation of 

phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, independent of SIRT1 activation 

[61]. 

Taken together, NAMPT is able to modulate processes that are involved in the pathogenesis of 

NAFLD by regulating oxidative stress (or mitochondrial biogenesis), apoptosis, lipid and glucose 

metabolism, inflammation and insulin resistance. 

1.3.3. NAMPT and type 2 diabetes mellitus 

Increased abdominal adiposity is associated with low-grade inflammation, abnormal hormone 

secretion and various metabolic disturbances that contribute to the genesis of insulin resistance 

[133,134]. Of late, interest has grown about the role of different adipokines in the pathogenesis of 

metabolic complications related to obesity [135,136]. In particular, in the large spectrum of 

adipokines, eNAMPT represents one of the most promising and interesting molecules that seems 

directly implicated in the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β 

cells [16]. Accumulating evidence shows a possible association between levels of eNAMPT and 

T2DM in individuals with and without obesity [137–139]. Several studies have reported that patients 

with T2DM present with significantly higher levels of eNAMPT than healthy controls, independent of 

BMI [140–142]. In addition, all these studies confirmed, by use of multiple logistic regression 

analysis, that eNAMPT can be considered as an independent factor for T2DM, even after adjustment 

for other risk factors [138,140,141]. Subsequent studies showed that eNAMPT is not only associated 

with T2DM but also with diabetes complications [135], such as endothelial dysfunction [143], diabetic 

nephropathy and impairment of lipid metabolism [139]. A possible association between different 

NAMPT polymorphisms and T2DM or T2DM-related complications has been reported [73,144]. Many 

human studies have reported an association between eNAMPT and T2DM (Table 3). Although some 

animal and in vitro studies have attributed the effects of NAMPT on glucose metabolism to the, still 

controversial, insulin-mimetic actions of NAMPT [70,145], other studies attribute the effects to 

NAMPTs role as a NAD biosynthetic enzyme. In particular, a mouse model with β-cell-specific 

overexpression of Sirt1 (BESTO) had improved glucose tolerance that disappeared with age [146]. 

Circulating levels of the NAMPT product NMN and consequently NAD levels in pancreatic β cells 

and islets were significantly lower in old BESTO mice than in young BESTO mice [146]. 

Furthermore, administration of NMN restored the positive effect of Sirt1 on glucose tolerance and 

GSIS in aged BESTO female mice [146]. In heterozygous NAMPT knock out (Nampt+/-) mice, a 

defect in NAD biosynthesis and GSIS was found in pancreatic islets [16]. Female Nampt+/- mice had 

impaired glucose tolerance which was ameliorated by administration of the Nampt enzyme product 

NMN [16]. Moreover, administration of FK866, a potent NAMPT inhibitor, significantly inhibited 

NAD biosynthesis and GSIS in wild type mice [16]. Overall, these findings strongly suggest that 

NAMPT is able to control the regulation of insulin secretion by enhancing NAD concentrations in 

pancreatic β cells [16]. In confirmation of this hypothesis, NAMPT and NMN were shown to induce 
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increased insulin secretion compared to glucose alone in human islets after 1 h incubation with high 

glucose concentrations [147]. In a HFD-induced mouse model of obesity, a direct effect of Nampt not 

only on glucose metabolism but also on the pathogenesis of T2DM was found [148]. Nampt mediated 

NAD biosynthesis was impaired in HFD-fed mice with T2DM compared with that in regular chow-fed 

controls, whereas administration of NMN ameliorated glucose intolerance by restoring NAD levels 

[148]. In addition, NMN augmented hepatic insulin sensitivity and other biological pathways 

associated with oxidative stress, inflammation and lipid metabolism [148]. Mice fed a fructose-rich 

diet had increased levels of NAMPT in brown and WAT, yet significantly lower levels of eNAMPT 

[116]. Administration of NMN abolished the suppressive effects of the fructose-rich diet on insulin 

secretion [116]. NMN also demonstrated protective effects against pro-inflammatory cytokine-

mediated islet dysfunction [116]. Furthermore, insulin secretion in islets cultured with pro-

inflammatory cytokines was restored by NMN; the anti-inflammatory effects of NMN were partially 

blocked by inhibition of Sirt1 [116].  

 

Table 3. Reported associations between levels of NAMPT and diabetes mellitus  

NAMPT in human studies NAMPT correlation with References 
↑ NAMPT levels in patients with obesity and 
T2DM vs normal-weight patients with T2DM 
vs healthy individuals 

BMI, WHR, FPG, insulin 
resistance as defibed by HOMA, 
and levels of triglycerides, total 
cholesterol, IL-6 and vaspin 

El-Mesallamy et 
al. (2011) [140] 

↑ NAMPT levels in patients with obesity and 
T2DM vs healthy individuals 

T2DM (after controlling for 
anthropometric variables such as 
blood pressure, lipid profile and 
smoking status) 

Chen et al. 
(2006) [141] 

↑ NAMPT levels in patients with long-
standing T1DM* and in patients with T2DM‡ 
vs healthy individuals§ 
↑ NAMPT levels in patients with long-
standing T1DM vs patients with T2DM 

*Age, no correlation with HbA1c 
levels 
‡HbA1c levels 
§AIRg, fasting insulin levels, 
insulin sensitivity and 30-min 
OGTT (insulin secretion) 

López-Bermejo 
et al. (2006) 
[142] 

↑ NAMPT levels in patients with T2DM and 
minor or severe proteinuria vs healthy 
individuals 

↑ NAMPT levels in patients with T2DM and 
severe proteinuria vs patients with T2DM and 
minor proteinuria 

Proteinuria, flow-mediated 
dilatation 

Yilmaz et al. 
(2008) [143] 

↑ NAMPT levels in patients with T2DM and 
CAD vs patients with T2DM without CAD 
(No change in NAMPT levels in individuals 
with CAD vs healthy individuals) 
↑ frequency of T allele of NAMPT 
polymorphism rs9770242 in Brazilian cohort 
vs North-American, non-Hispanic white 
cohort 

CAD Saddi-Rosa et al. 
(2013) [73] 
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Considering all the evidence from in vitro and in vivo studies, NAMPT seems to be involved 

in the pathogenesis of T2DM and in the development of diabetes-related complications. More 

interestingly, in vitro studies indicate a possible role for the NAD intermediates, NMN and NR, in 

amelioration of β-cell function and cellular homeostasis, glucose metabolism and stress responses. 

1.3.4. NAMPT and ageing 

Sirtuins have been comprehensively investigated as mediators of longevity [149]. NAMPT as a 

regulator of sirtuin function has been shown to delay cellular senescence by increasing resistance to 

oxidative stress in human vascular smooth muscle cells [150]. By contrast, eNAMPT induces telomere 

damage and premature senescence in human endothelial cells by activation of NADPH oxidase [151]. 

Reduced levels of NAMPT and NAD have been detected in peripheral tissue of ageing mice, such as 

pancreas, WAT, and skeletal muscle [148]. In this study administration of the NAMPT enzyme 

product, NMN, was shown to be an effective intervention to treat the pathophysiology of age-induced 

T2DM [148]. In line with these results, rats treated with the NAMPT enzyme inhibitor FK866 failed to 

exhibit increased Sirt1 and Sirt3 activity in response to caloric restriction - a widely-used strategy to 

ameliorate age-associated diseases in animal models. Consequently, NAMPT inhibition abolished 

caloric-restriction-induced mitochondrial biogenesis and enhanced insulin sensitivity [152]. 

Interestingly, NAMPT is involved in the molecular mechanisms that lead to declining neuronal stem 

and/or progenitor cell (NSPC) numbers during aging [153]. NSPCs possess the ability to proliferate 

and differentiate into major cells of the brain, such as neurons, oligodendrocytes, and astrocytes. 

Ageing is one of the strongest negative regulators of adult NSPC proliferation [153]. One study raised 

the possibility that long-term administration of NMN might counteract age-related declines in NSPC 

functionality [154]. A study on young and old Wistar rats demonstrated that Nampt levels were lower 

in the aged group than in the young group [31]. Interestingly, the age-associated decreases in Nampt 

and NAD levels were reversed with regular exercise, which increased the specific activity of SIRT1 

[31]. A clinical study on a large population of elderly people investigated the relationships between 

↑ NAMPT levels in patients with T2DM vs 
healthy individuals 
↑ NAMPT levels in patients with T2DM, 
CVD and T allele of NAMPT polymorphism 
rs9770242 vs patients with T2DM and CVD 
without NAMPT polymorphism rs9770242 
NAMPT –948G/G genotypes and G alleles in 
patients with T2DM 

T2DM 
 
 
 
 
 
 
 
CVD 

Motawi et al. 
(2014) [144] 

Abbreviations: AIRg, acute insulin response to glucose; CAD, coronary artery disease; CVD, 
cardiovascular disease; FPG, fasting plasm glucose; HOMA, homeostatic model assessment; NAMPT, 
nicotinamide phosphoribosyltransferase; OGTT, oral glucose tolerance test; T1DM, type 1 diabetes 
mellitus; T2DM, type 2 diabetes mellitus; WHR, waist–hip ratio. 
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levels of eNAMPT, nutritional status, and insulin resistance. Levels of eNAMPT declined with age 

and were associated with nutritional status, visceral obesity, and inflammation [155]. Several theories 

have been postulated to explain the decline in levels of NAMPT and NAD with ageing. As discussed 

earlier, NAMPT is a major product of the action of the circadian transcription factors BMAL1 and 

CLOCK [45]. One hypothesis is that a decline in central and peripheral circadian function during 

ageing results in a deficit in the production of NAMPT and NAD. Furthermore, ageing is accompanied 

by a state of chronic, low-grade inflammation [156], which is a major contributor to the development 

of many age-related chronic disorders. In this context, TNFα, one of the major inflammatory 

cytokines, and oxidative stress markedly reduced levels of NAMPT and NAD levels in primary 

hepatocytes [148]. TNFα also suppresses CLOCK-BMAL1-mediated functions in mice [157], which 

might also contribute to a reduction in NAMPT-mediated NAD biosynthesis during ageing. As 

mentioned earlier, chronic inflammation, oxidative stress and DNA damage are crucial factors 

associated with ageing. Activation of NAD-dependent PARPs is induced immediately after DNA 

damage to facilitate repair and maintenance of genomic integrity. Thus, acute DNA damage can 

induce a sudden depletion of NAD levels owing to PARP activation. During ageing, damaged DNA 

accumulates in the nucleus, which causes activation of PARP and might be another possible 

explanation for age-induced reduction in NAD levels.  

1.3.5. NAMPT in cancer 

Cancer cells possess a high glucose uptake and an increased rate of glycolysis even in the presence of 

oxygen (the so-called Warburg effect [158]). The metabolic alterations leading to this phenotype 

require increased amounts of the redox co-factor NAD. NAD functions in many critical cellular 

processes that are necessary for cancer cell growth, including transcriptional regulation, cell-cycle 

progression, anti-apoptosis, DNA repair, regulation of chromatin dynamics and telomerase activity 

[38,159]. NAMPT is essential for the replenishment of the intracellular NAD pool, as NAD is rapidly 

consumed by NAD-dependent enzymes in cancer cells and converted to NAM [28,160–162]. The 

development of many cancers including colorectal, ovarian, breast, gastric, prostrate, well-

differentiated thyroid, and endometrial carcinomas, myeloma, melanoma and astrocytomas is, thus, 

associated with increased NAMPT gene expression [163]. NAMPT is differentially expressed in 

hepatocarcinoma cell lines compared to non-cancerous primary human hepatocytes, and can be 

regulated by resveratrol [53]. In a meta-analysis of genome-wide expression data, which identified 

genes influenced by NAMPT, a reduced NAMPT gene expression was found to be strongly associated 

with dysregulation of cancer signalling pathways [164]. Cancer cells are more susceptible to NAMPT 

inhibition than normal cells [165,166].  

Clinical studies have also demonstrated that serum or blood levels of eNAMPT are increased 

in patients with cancer and a positive correlation exists between either tissue or eNAMPT levels and 

the stage of cancer progression [167–171]. However, the molecular pathways of eNAMPT signaling in 

carcinogenesis are far from clear. eNAMPT affects redox adaptive responses and promotes tumour 
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proliferation in human malignant melanoma cells [172], and influences resting monocytes, polarizing 

them toward a tumour-supporting M2 macrophage phenotype [171]. By this latter mechanism, 

eNAMPT induces an immunosuppressive and tumour-promoting microenvironment in chronic 

lymphocytic leukemia [171]. Furthermore, eNAMPT stimulates vascular endothelial growth factor by 

activating the MAPK/ERK pathway and promote angiogenesis, which is a crucial process during 

tumour growth and expansion [173]. Cell lines overexpressing NAMPT are considerablymore resistant 

to chemotherapeutic agents than control cells [174]. By contrast, stable knock-down of NAMPT 

renders cells more sensitive to such treatment than controls [17]. Targeting NAMPT activity, thus, 

represents a novel therapeutic strategy for treating human cancers. For example, the specific NAMPT 

inhibitor FK866 has been evaluated in a broad variety of tumours, including solid tumours and 

leukemias [161,175,176], both in vitro and in nude mouse xenografts [27,175,177–179], in which 

FK866 was able to reduce or attenuate tumour growth. NAMPT inhibition also attenuates glycolysis in 

conjunction with reduced NAD levels, which leads to blockade of the pentose phosphate pathway, 

serine biosynthesis, and the tricarboxylic acid cycle [179]. FK866 has been shown to induce delayed 

energy stress in hepatocarcinoma cells that triggers the activation of AMPKα and downregulation of 

mTOR signalling which was associated with increased cancer cell death. Non-cancerous human 

hepatocytes were less sensitive to FK866 [160]. In contrast to the strategy of NAD depletion by 

inhibition of NAD-producing enzymes, restoration of the pool of NAD with NR prevented DNA 

damage and tumour formation in a mouse model of hepatocarcinoma [180]. Clinical trials using 

NAMPT inhibitors as monotherapy for the treatment of solid tumours (for example melanoma), 

lymphomas and leukaemias have so far not been promising [181–188]. One possible explanation could 

be the action of CD38 or CD73 reversing cell death induced by NAMPT inhibition through the supply 

of ectocellular NAD precursors [12]. However, combining FK866 or other NAMPT inhibitors with 

antineoplastic agents, chemotherapy or radiotherapy might enhance their therapeutic efficacy [189]. 

1.4 Conclusion 

Levels of NAD are decreased in various metabolic disorders and during ageing. By recycling NAM to 

NAD, NAMPT is involved in regulating cellular energy metabolism by providing substrate for NAD-

dependent enzymes. The role of NAMPT in various metabolic disorders is not completely known. One 

reason might be the difficulty in differentiating between the intracellular NMN-producing action of 

NAMPT and the extracellular NMN-producing and/or cytokine-like action of eNAMPT. Several in 

vitro and in vivo studies have shown that NAD precursors are successful in augmenting NAD levels 

and ameliorating the negative effects of pathophysiological conditions and ageing. 

In the circulation, abnormal levels of eNAMPT are associated with metabolic disorders and 

cancer progression. However, association studies on eNAMPT levels in NAFLD are still 

controversial. This may, in part, be explained by the wide range of disease phenotypes in NAFLD and 

perhaps a dependency of eNAMPT levels on liver disease progression. In addition, NAMPT has a 

crucial role in cancer cell metabolism and is often overexpressed in tumour tissues. NAMPT inhibition 
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and NAD depletion have been applied in in vitro studies and in animal studies to reduce tumour 

growth. However, clinical trials on NAMPT inhibitors as monotherapy have so far failed to show 

significant antitumour action. 

Several questions, therefore, remain unanswered. Firstly, does NAMPT expression and 

function depend on disease progression and severity in metabolic disorders? Secondly, is NAMPT a 

pathogenetic factor in the development of NAFLD? Thirdly, how s NAMPT secretion regulated in 

different cell types and what is the role of eNAMPT? Fourthly, does the secreting cell type influence 

eNAMPT function? Fifthly, under which conditions is eNAMPT enzymatically active in vivo? Sixthly, 

what are the molecular differences between eNAMPT and iNAMPT besides differential acetylation? 

Seventhly, are there any adverse effects of long-term NAD precursor treatment? Eighthly, why does 

NAMPT inhibition lead to tumour cell death in vitro and tumour remission in animal models, but not 

in clinical trials? Finally, is a combination therapy with chemotherapeutics useful for patients? 

Answers to these questions are eagerly awaited. 
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2.Hypothesis, aims and scientific questions 



 

 

 



Chapter 2         47 

Non-alcoholic fatty liver disease (NAFLD) is an increasing public health problem with limited 

treatment options and incomplete characterisation of pathogenic factors. Therefore it is crucial to 

understand the pathological mechanisms to find novel targets for the treatment of NAFLD. It has been 

already shown that the NAD salvage pathway and NAD-dependent enzymes, e.g. sirtuin 1, are 

regulators of a majority of processes during the progression of NAFLD such as mitochondrial 

biogenesis, apoptosis, inflammation or de novo lipogenesis. Consequentially the hypothesis of my 

doctoral thesis is that the NAD salvage pathway is dysregulated during the progression of non-

alcoholic fatty liver disease. 

The aim of the study described in Chapter 3 was to investigate the NAD salvage pathway in 

the early stage of NAFLD in a diet-induced mouse model of hepatic steatosis. The following questions 

were aimed to be answered:  

 

1. Does hepatic steatosis caused by high-fat diet affect hepatic NAMPT expression and activity 

as well as NAD levels?  

2.  Are the NAD-dependent enzymes SIRT1 and SIRT3 dysregulated in hepatic steatosis? 

3. How are downstream targets of SIRT1 and SIRT3 and thus central metabolic pathways in 

NAFLD regulated? 

 

Contrary some other studies, NAMPT mRNA, protein abundance and activity as well as hepatic NAD 

levels were increased in murine steatotic livers. While SIRT3 protein abundance was unchanged in the 

present study, SIRT1 protein levels and activity were up regulated which was further demonstrated by 

altered acetylation and transcription of SIRT1 downstream targets. This study suggests that the hepatic 

NAD salvage pathway is enhanced during hepatic lipid accumulation indicating that the maintenance 

of NAD levels could be a useful therapy option to suppress progression from steatosis to NASH. 

NASH is a high risk factor for the development of the hepatocellular carcinoma (HCC), a 

malignant disease with currently only one treatment option. Chapter 4 of this thesis was focused on 

whether or not inhibition of NAMPT by its specific inhibitor FK866 could be a potential therapeutic 

approach in HCC. That implied the following scientific questions: 

 

1. Are hepatocarcinoma cells and primary human hepatocytes differentially affected by FK866? 

2. Can NAMPT inhibition induce energy depletion and apoptosis in hepatocarcinoma cells? 

3. Which molecular mechanisms underlie the effect of FK866? 

 

It was found that primary human hepatocytes are less sensitive to FK866 than hepatocarcinoma cells. 

FK866 treatment led to decreased NAD and ATP levels as well as to induction of apoptosis. The 

effects of FK866 were mediated by the AMPK/mTOR signalling pathway. This study points out that 

inhibition of NAD biosynthesis by FK866 could be a new approach in the therapy of HCC. 
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3.1 Abstract 

Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the 

abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, 

unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed 

a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired 

glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, 

protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were 

associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite 

impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was 

significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism protect 

against negative impact of hepatic lipid accumulation. 

3.2 Introduction 

More than 30 % of Western adult population is affected by non-alcoholic fatty liver diseases 

(NAFLD) with a rapidly increasing number in obese and diabetic people. NAFLD covers a wide range 

of conditions from simple steatosis caused by accumulation of triglycerides to non-alcoholic 

steatohepatitis (NASH) which is associated with inflammatory processes. NASH is a risk factor for 

fibrosis and cirrhosis which are associated with a significant liver-related mortality and a median 

survival of 6 years [1].  

The pathological pathways leading to NASH are not yet fully understood. Interestingly, 

specific sirtuins (Sirts) seem to affect the development of NAFLD by regulating processes like hepatic 

gluconeogenesis, mitochondrial biogenesis and fatty acid synthesis. Liver-specific Sirt1 knockout 

mice develop hepatic steatosis and show impaired insulin signaling on a high-fat diet (HFD) [2], while 

global transgenic mice overexpressing Sirt1 are protected against the negative effects of a HFD such 

as inflammation, impaired glucose tolerance and hepatic steatosis [3]. Additionally, whole-body Sirt3 

knockout mice show enhanced storage of hepatic triglycerides and insulin resistance [4] although 

liver-specific Sirt3 knockout mice do not display an overt phenotype [5].  

Sirtuins are nicotinamide adenine dinucleotide (NAD) dependent in respect to their 

deacetylase activity. The key enzyme in the mammalian NAD salvage pathway starting from 

nicotinamide is nicotinamide phosphoribosyltransferase (Nampt) which converts nicotinamide to 

nicotinamide mononucleotide (NMN), an intermediate in NAD biosynthesis [6]. Additionally, Nampt 

is secreted from adipocytes [7], hepatocytes [8], and leucocytes [9]. Nampt circulates in the blood 

where it acts as a NMN biosynthetic enzyme [10] and/or cytokine [11]. Several human studies have 

investigated how Nampt protein levels in biopsies and blood are affected in individuals with steatosis 

and NASH, however, results are conflicting [12–14].  

It has been shown that rats fed a HFD develop fatty liver and hepatic insulin resistance already 

after 3 days of HFD feeding [15]. Moreover, another study in mice showed that hepatic insulin 



52 Chapter 3 

resistance is present already after 3 days on a HFD before insulin resistance develops in muscle and 

adipose tissue [16]. Thus, hepatic insulin resistance develops very rapidly, but whether NAD 

metabolism is also affected in the early stages of the development of NAFLD is unknown. We 

hypothesize a link between the development of NAFLD and the ability to maintain NAD levels. To 

define the effect of lipid accumulation on hepatic NAD metabolism, we fed mice a HFD for 11 weeks 

and examined the effect on hepatic NAD metabolism. Despite hepatic lipid accumulation and impaired 

whole body glucose tolerance in mice fed a HFD, we found an improved hepatic NAD metabolism 

suggesting that this may be a compensatory mechanism to protect against the negative impact of 

hepatic lipid accumulation on inflammation and apoptosis. 

3.3 Methods and Procedures 

Mice and Ethical approval 

All experiments were approved by the Danish Animal Experimental Inspectorate and complied with 

the EU convention for protection of vertebra animals used for scientific purposes (Council of Europe 

123, Strasbourg, France, 1985). Twenty-four male mice were obtained from Taconic when they were 

10 weeks of age (C57BL/6Ntac, #DIO-B6). At the time of arrival in the laboratory, mice had been on 

a HFD (Research Diets Industry, D12492) or corresponding chow diet (Ctl) for 4 weeks. Mice were 

kept in a 12:12-h light:dark cycle and kept on the diet for additional 7 weeks. Water was given ad 

libitum. Mice were either single- (s) or group-housed (gr). To confirm that housing conditions (i.e., 

single- vs. group-housing) did not affect NAD metabolism, we measured Nampt protein abundance 

and NAD levels in a separate cohort of mice. In this cohort we applied 26 carefully weight matched 

male mice (C57BL/6JBomTac) at 7 weeks of age. Upon arrival, the mice were acclimatized on a 

standard chow diet for 10 days before they were randomly assigned to the experimental groups and fed 

either a HFD (D12492) or a corresponding low fat diet (D12450J) for 11 weeks. The mice were either 

single-housed (5 mice per group per diet) or group-housed (8 mice per group per diet, 4 mice per cage) 

from the point of arrival to the day of termination. Housing conditions did not affect hepatic Nampt 

protein and NAD levels (Figure S1A,B). After 11 weeks on their respective diets, mice were 

anesthetized (Pentobarbital, 100 mg/kg body weight) and livers were carefully dissected, frozen in 

liquid nitrogen, and stored at -80°C until further analysis. Mice were all sacrificed at the same time 

point. 

Metabolic characterization 

Animals were weighed and body composition was assessed by MR scanning (EchoMRITM, USA). At 

the age of 14 and 15 weeks an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT) 

were performed, respectively. Both tests were performed after a 6-hour fast and blood glucose 

measurements were done from the tail vein. For the OGTT a bolus of glucose (25 % glucose/saline 

solution, 2 g glucose/kg lean body mass) was delivered by oral gavage, and tail vein blood glucose 
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was measured just before and at 20, 40, 60, 90 and 120-minutes after the glucose bolus. The ITT was 

performed following 8 days of recovery after the OGTT. Insulin (100U/ml) was diluted in gelofusine 

(B. Braun, Denmark) for a working solution of 0.333U/ml, and administered by intraperitoneal 

injection (0.75 U/kg lean body mass). Blood glucose in the tail blood was measured before and at 15, 

30, 45, 60, 90 and 120-minutes after the injection. The mice were conscious, and placed in their cages 

during both tests. A week before collecting tissues, 200 µl of blood was drawn from the mandible into 

EDTA coated tubes, left to clot at room temperature for 30-minutes and spun down at 2000xg at 4 C° 

for 10-minutes. Supernatants were transferred to clean tubes and stored at -80 C°. 

Triacylglycerol measurement of liver tissue 

The triacylglycerol (TAG) content of the liver tissue was quantified by 1H-high resolution magic-angle 

spinning-nuclear magnetic resonance spectroscopy. Five to fifteen milligrams of intact liver tissue was 

transferred into a 4mm zirconia HR-MAS rotor with a volume of 15 µl. Additionally, 5 µl of a 

100 µM solution of trisodium phosphate was added as reference. The NMR spectra were recorded 

using a 600MHz Bruker Avance III NMR spectrometer (Bruker, Rheinstetten, Germany). All 

measurements were conducted under MAS at a frequency of 9kHz and a temperature of 25°C. The 

water signal was suppressed by presaturation (1mW power for 3s). NMR spectra were excited by a π/2 

pulse of 4 µs duration. To allow for complete relaxation, the delay time between successive scans was 

30 s. The amount of TAG was determined by comparing the integrals of the trisodium phosphate 

signal with the glycerol backbone signal at 4.29 ppm which is exclusively found in TAG. All spectra 

were corrected for baseline and phase distortions using Spinworks (University of Manitoba). 

Deconvolution of the signals was performed using an in-house written SciPy script. The peaks were 

fitted to a Voigt-Profile applying a constrained least-squares approach based on the L-BGFGS 

optimization algorithm [17]. The TAG content is expressed per gram liver tissue. 

Protein extraction, Western blot analyses and immunoprecipitation 

Approximately ten milligrams liver tissue was lysed in modified RIPA buffer as previously described 

[18]. Protein concentration was determined using Pierce BCA protein assay (Thermo Scientific) and 

equal amounts of protein were separated by SDS-PAGE and transferred using a semi-dry transfer 

apparatus to nitrocellulose membranes. Next, membranes were blocked in 5 % non-fat dry milk in 

TBS buffer containing 0.1 % Tween 20. Applied antibodies are listed in Supplementary Table S1. 

Detection of proteins was carried out using Luminata Classico Western HRP Substrate (Merck 

Millipore) or Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare). Gapdh 

immunoblotting was performed as a loading control. For immunoprecipitation livers were incubated 

with anti-acetyl lysine antibody conjugated to µMACS Protein A Micro Beads (Miltenyi Biotec) 

overnight and eluted with 1x SDS sample buffer. After 5 min heating, samples were analyzed by 

Western blotting with an anti-Srebp1 antibody (H-160, Santa Cruz Biotechnology). 
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Total RNA extraction and realtime qPCR  

Total RNA of liver tissue was extracted by TRIzol® Reagent (Life Technologies) according to 

manufacturer’s protocol. One microgram of total RNA was transcribed into cDNA by M-MLV 

Reverse Transcriptase (Invitrogen). Quantitative PCR analyses were performed using the qPCR 

Master Mix Plus Low ROX (Eurogentec) or Absolute qPCR SYBR Green Low ROX Mix (Thermo 

Scientific) and the Applied Biosystems 7500 Real Time PCR System. Primer sequences are 

summarized in Supplementary Table S2. 

NAD measurement 

NAD was measured by EnzyChrom™ NAD+/NADH Assay Kit (E2ND-100, Biotrend) according to 

manufacturer’s protocol or reversed-phase HPLC using the Chromaster Purospher STAR RP-18 

endcapped 3 µm Hibar RT 150-3 HPLC column (Merck). Ten milligram of frozen liver tissue was 

sonicated in 100 µl 1 M perchloric acid. After a 10-minute incubation period on ice samples were 

centrifuged and the supernatant was neutralized with 3 M potassium carbonate. After repeated 

centrifugation samples were loaded onto the column as previously described [18]. 

Nampt enzyme activity 

For determination of Nampt activity ten milligrams of liver tissue was lysed in 100 µl Nampt enzyme 

assay buffer (0.1 M sodium phosphate, pH 7.4) and protein concentration was determined using BCA 

protein assay. Thirty micrograms of protein was added to the reaction buffer and incubated at 37°C for 

1h. Afterwards the assay using radiolabeled 14C-nicotinamide was performed as previously described 

[8].  

Serum Nampt measurement 

Nampt in mouse serum was measured by the Nampt (Visfatin/PBEF) (mouse/rat) Dual ELISA Kit 

(AdipoGen Inc., Seoul, South Korea), according to manufacturer’s instructions.  

Statistical analysis 

Statistical analyses were performed with the open source language R in version 3.0.2 for 

triacylglycerol measurements or with GraphPad Prism® software (5.03) for all other statistical 

comparisons. Significance levels were calculated by unpaired, two-tailed t-tests or by repeated two-

way ANOVA with subsequent Bonferroni post-test where appropriate. For TAG measurement of liver 

tissue a two-tailed Kruskal-Wallis test was conducted to determine significant differences between Ctl 

and HFD groups, because data were not normally distributed. Data represent mean ± SEM. p<0.05 

was considered significant. *p<0.05; **p<0.01; ***p<0.001 compared to Ctl mice.  
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3.4 Results 

Mice fed a high-fat diet have impaired glucose tolerance and increased hepatic lipid 
content while markers for fibrosis and inflammation are not altered 

To determine how a HFD affects hepatic NAD metabolism, a cohort of mice were put on a HFD 

(60 % of total energy from fat) or Ctl diet for 11 weeks at 6 weeks of age. After 11 weeks on HFD, 

mice were significantly heavier (39.0±4.2 vs. 29.9±2.5 g) (Figure 1A) and had significantly increased 

amounts of body fat (13.3±1.1 vs. 3.3±0.6 g) (Figure 1B) compared to Ctl mice. Lean body mass was 

significantly higher in Ctl vs. HFD mice (25.5±0.5 vs. 23.0±0.3 g) (Figure 1C). HFD mice showed a 

significantly impaired oral glucose tolerance (p<0.0001). Significant differences in fasting blood 

glucose as well as at 20, 40, 60 and 90 min were found between the Ctl and HFD groups (Figure 1D). 

In the insulin tolerance test a main effect of diet (p=0.0018) and a borderline significant interaction 

effect were observed (p=0.055; observed power,P=0.78) (Figure 1E). Hepatic TAG content was 2.1-

fold increased compared to Ctl mice (93.2 ± 12.6 vs. 44.1 ± 3.8 mg/g tissue) (Figure 1F). To further 

evaluate the state of NAFLD we measured a marker for macrophage infiltration, CD68, which was not 

different between both groups. α-smooth muscle actin (α-Sma) was decreased in HFD mice while 

other markers for fibrosis (fibrinogen, collagen I) were not different. Interleukin-6 (Il-6) and tumor 

necrosis factor alpha (Tnfα) as markers for inflammation were not changed in HFD mice (Figure 1G). 

mRNA expression of the cytokines chemokine (C-X-C motif) ligand 16 (Cxcl16), monocyte 

chemoattractant protein 1 (Mcp-I) and transforming growth factor β (Tgfβ) were not different in the 

livers of mice fed a HFD compared to Ctl. mRNA expression of the co receptor of the T cell receptor 

CD8 and the fatty acid translocase CD36 were not changed in the livers of the HFD mice 

(Supplementary Fig. S2A). Carnitine palmitoyltransferase (Cpt)-Iα and-II  are two mitochondrial 

enzymes which are important for β oxidation of long-chain fatty acids. Both stayed stable in mice fed 

a HFD (Supplementary Fig. S2B). Furthermore, we detected less endoplasmic reticulum stress in 

livers of HFD mice indicated by lower levels of phosphorylated eIF2α compared to Ctl mice 

(Supplementary Fig. S2C). 

High-fat diet up regulates hepatic Nampt mRNA expression, protein levels, activity, 
and NAD levels 

Nampt levels have been shown to be either up or down regulated in different studies on insulin 

resistance and glucose intolerance [19–21]. Interestingly, both mRNA and protein levels of Nampt 

were increased in HFD mice compared with Ctl mice by 1.9-fold and 1.7-fold, respectively (Figure 

2A,B). This was in line with a significant 1.5-fold increase in Nampt enzyme activity (41.4±4.2 vs 

65.8±5.8  cpm/µg protein x h) in the HFD fed mice (Figure 2C). Because Nampt is the key regulator 

of the mammalian NAD salvage pathway we measured hepatic NAD levels and found that NAD was 

significantly increased by 1.6-fold in the HFD mice compared to Ctl mice (4.2±0.3 vs. 

6.7±0.5 nmol/ mg protein) (Figure 2D). Since hepatocytes are able to secrete Nampt [8], we measured 
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Nampt in mouse serum samples from the mice. However, no differences between HFD and Ctl group 

were observed (19.8±4.9 vs. 14.6±1.3 ng/ml) (Figure 2E). 

 

 

Fig. 1. Mice fed a high fat diet have impaired glucose tolerance and increased hepatic lipid content while 
markers for fibrosis and inflammation are not altered. Mice fed a high fat diet (HFD) for 11 weeks gained weight 
(A) and fat body mass (B) while lean body mass (C) was decreased compared to controls (Ctl). The HFD mice 
showed an impaired oral glucose tolerance (D) and insulin tolerance (E) compared to Ctl. Livers of HFD mice 
showed higher levels of triglycerides (F) but no indication for macrophage infiltration as measured by CD68 
expression. α-Sma was significantly down regulated in livers of mice fed a HFD while fibrinogen and collagen I 
expression as markers for fibrosis stayed stable. mRNA expressions of markers for inflammation (TNFα and, 
Il-6) were unchanged in both groups (G). Data are shown as means ± SEM. n.s., not significant, *p < 0.05, **p < 
0.01 and ***p < 0.001 compared to Ctl mice. 
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Fig. 2. HFD up regulates hepatic Nampt expression and activity as well as NAD levels. After a HFD for 11 
weeks murine livers showed an increased Nampt mRNA (A) and protein amount (B) measured by qPCR or 
western blot analyses, respectively, compared to Ctl mice. Nampt activity (C) and intracellular NAD levels (D) 
measured by HPLC were enhanced. Serum Nampt levels were unchanged between both groups (E). Data are 
shown as means ± SEM (n = 12). One representative Western Blot is shown. **p < 0.01 and ***p < 0.001 
compared to Ctl mice. 

Acetylation of Nfκb and p53 is decreased while Sirt1 protein is increased in HFD mice  

Since NAD is a required substrate for deacetylases and since total hepatic acetylation of the HFD mice 

was down regulated (Supplementary Fig. S3A), we measured the acetylation state of Nfκb (ac-Nfκb) 

and p53 (ac-p53), which are involved in the regulation of inflammation and apoptosis, respectively 

[22]. Total NfκB protein was up regulated in livers of HFD mice compared to Ctl mice while the 

acetylation of NfκB stayed stable resulting in 2.1-fold less acetylated NfκB (Figure 3A). We found 

that total and phosphorylated p53 protein was not changed (Supplementary Fig. S2D), while 

acetylated p53 was significantly reduced by 1.8-fold (Figure 3A), implicating that p53 was less active 

in murine livers of HFD mice compared to Ctl mice. In support of this finding, Bax, a downstream 

target of p53, was decreased by 1.6-fold (Figure 3A).  

As NAD levels were up regulated resulting in lower levels of acetylated p53 and NfκB, we 

further investigated protein and mRNA levels of Sirt1 and Sirt3 which are proteins known to be 

regulated during NAFLD development [2,4]. No differences in Sirt1 and Sirt3 mRNA levels were 

detected between groups (Figure 3B). However, Sirt1 protein was significantly increased by 1.4-fold 

in the HFD group compared to Ctl while Sirt3 protein amount stayed stable (Figure 3C). 
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Expression of sirtuin downstream targets is altered in mice fed a HFD 

The expression of further sirtuin targets that are associated with the pathogenesis of NAFLD was 

analyzed. Mitochondrial uncoupling protein 2 (Ucp2) was significantly reduced by 1.4-fold in HFD 

mice compared to Ctl mice while peroxisome proliferator-activated receptor gamma coactivator 1 α 

(Pgc-1α) and mitochondrial superoxide dismutase (MnSOD), markers of the mitochondrial biogenesis, 

were unchanged (Figure 4A). Sirt3 deacetylates MnSOD at K122 resulting in increased MnSOD 

activity [23]. Using an antibody targeting acetylated MnSOD K122 (kindly provided by Prof. David 

Gius, North Westwestern University) we measured the acetylation state of MnSOD and found no 

differences on total protein and acetylation level (Supplementary Fig. S3B). Sirt1 is a transcriptional 

regulator of sterol regulatory element-binding protein 1 (Srebp-1c) [24], a key regulator of de novo 

lipogenesis in the liver. Srebp-1c was enhanced by 1.9-fold while its downstream targets fatty acid 

synthase (Fas), stearoyl-CoA-desaturase 1 (Scd1) and acetyl-coA-carboxylase (Acc) were significantly 

declined (Figure 4B). Acetylation of Srebp-1 was not significantly different in both groups 

(Supplementary Fig. S3C). Glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 

(Pepck), key enzymes of gluconeogenesis, were both downregulated by 1.8-fold and 2.2-fold, 

respectively, in the livers of the HFD mice compared to control chow (Figure 4C).  

 

Fig.3. Acetylation state of Nfκb and p53 are down regulated in HFD mice which is associated with increased 
Sirt1 protein expression. The acetylation status of Nfκb (ac-Nfκb), acetylated p53 (ac-p53) and total Bax protein 
were decreased in livers of mice fed a HFD compared to Ctl mice as shown by densitometric analysis of Western 
blots (A). Sirt1 and Sirt3 mRNA (B) and protein levels (C) in liver tissues were measured by qPCR andWestern 
blot analyses, respectively. Hepatic Sirt1 protein was up regulated in mice fed a HFD for 11 weeks compared to 
Ctl mice. Data are shown as means ± SEM (n = 12). One representativeWestern blot is shown. Acetylated 
protein is normalized to the corresponding total protein. Gapdh is used as loading control. n.s., not significant, 
*p<0.05, **p<0.01 and ***p<0.001 compared to Ctl mice. 
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Fig. 4. Sirt1 downstream targets were altered in mice fed a HFD. HFD mice showed a reduced expression of 
Ucp2 while Pgc1α and MnSOD were unchanged (A) as analysed by qPCR. Srebp-1c mRNA expression was up 
regulated while Fas, Acc and Scd1 mRNA expression was declined compared to Ctl mice (B). G6pc and Pepck 
were both decreased in mice fed a HFD (C). n.s., not significant, *p < 0.05, **p < 0.01 and ***p < 0.001 
compared to Ctl mice. 

3.5 Discussion 

The impact of hepatic lipid accumulation on NAD metabolism in the liver is incompletely known. To 

this end we evaluated the effect of a HFD intervention in mice on the hepatic NAD salvage pathway. 

The HFD mouse model employed in this study represents the human phenotype of hepatosteatosis 

with increased hepatic TAG accumulation, but without any indications of macrophage infiltration or 

fibrosis. Our data are also in accordance with data from other studies using HFD mice [25]. Mice on 

HFD had impaired glucose tolerance, higher fasting blood glucose levels as well as a borderline 

significant reduction in insulin tolerance compared to mice on normal chow. Collectively, this 

indicates that HFD-fed mice had decreased peripheral insulin sensitivity. 

Interestingly, we found an up regulation in the capacity for NAD salvage in the livers of the 

HFD-fed mice, indicated by up regulated expression and activity of the NAD salvage enzyme Nampt 

and increased NAD levels. The enhanced NAD salvage we observed could be a prerequisite for the up 

regulation of mitochondrial metabolism as an adaptive mechanism in response to chronic fat overload 

as described in other studies [26], since an increase in β-oxidation and tricarboxylic acid cycle flux 

would require increased levels of NAD. In general, it has been shown that mice fed a HFD exhibit 

decreased hepatic Nampt levels, while an up regulation of Nampt ameliorated the negative impact of 

HFD in the liver and augmented glucose tolerance [27,28]. In contrast, and in accordance with our 

study, another study showed an up regulation of Nampt mRNA in a rat model of NAFLD [29]. 

Reasons for the discrepant results of animal studies could be the composition and duration of the HFD 

as well as mouse strain-dependent differences [30]. Conflicting data about the role of hepatic Nampt in 

humans have been reported. In obese women hepatic NAMPT mRNA levels in the liver were shown to 

be higher compared to lean women and were even further increased in obese women with NAFLD, 

which is in line with our data [14]. A different human studyfound higher NAMPT mRNA expression 

level in fibrotic livers [13]. Opposite, it has also been reported that patients with NAFLD showed 

lower levels of NAMPT mRNA expression in the liver [12]. The reason for the discrepancies between 

these studies is unknown but it could be due to variations in the progression of NAFLD.  
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As a result of increased NAD levels an enhanced Sirt1 deacetylase activity in the livers of the 

HFD-fed mice was detected as shown by less acetylation of Nfκb on lysine 310 [22] and p53 on lysine 

382 [31]. By deacetylating p53 at lysine 382 Sirt1 is able to repress the activity of p53, a master 

regulator of apoptosis and cell cycle progression [31]. In liver biopsies from subjects with NAFLD 

Sirt1 was shown to be decreased leading to increased acetylation of p53 compared to Ctl patients [32]. 

The lower activity of p53 in the present study was confirmed by the observed down regulation of the 

p53 downstream target Bax in HFD murine livers [33]. Nfκb is a critical factor in the innate immunity 

response and is directly affected by Sirt1 which deacetylates the ReIA/p65 component of Nfκb leading 

to a down regulation of its activity and degradation [22]. A global over expression of Sirt1 in mice 

subjected to HFD has been shown to improve hepatic inflammation by decreasing activity of Nfκb [3].  

The increased Sirt1 activity in HFD-fed mice was confirmed by detecting a down regulation of 

Ucp2. This mitochondrial inner membrane protein negatively regulates reactive oxygen species (ROS) 

production and has been demonstrated by others to be up regulated in NAFLD [34]. Sirt1 is known to 

regulate Ucp2 by binding to its promoter resulting in down regulation of Ucp2 mRNA expression [35]. 

Our data indicate that a higher activity of Sirt1 led to a down regulation of Ucp2 in HFD mouse livers 

suggesting that oxidative stress was not present in our murine model at the analysed time point. The 

absence of oxidative stress was supported by the fact that MnSod, a key ROS scavenging enzyme [23], 

was not different on mRNA level as well as on total and acetylated protein level in our murine model.  

Srebp-1c can be inhibited by Sirt1 and is a key regulator of de novo lipogenesis, which plays a 

crucial role in the pathogenesis of NAFLD. Srebp-1c is mainly activated by saturated fatty acids and 

elevated insulin levels [36,37]. In line with these studies, we found higher Srebp-1c mRNA expression 

in livers of HFD-fed mice. Despite increased TAG accumulation in the liver of HFD-fed mice it might 

however be reasonably assumed that Srebp-1c was less active due to deacetylation by Sirt1 [38], 

emphasized by lower mRNA levels of its downstream targets Fas, Acc and Scd1. However, in our 

study acetylation of Srebp-1 was not significantly altered in mice fed a HFD compared to Ctl. 

Transcriptional activity of Srebp-1c is also regulated by phosphorylation due to activation of AMPK 

which suppresses Srebp-1c cleavage and nuclear translocation in insulin resistant LDL receptor 

deficient mice and therefore represses de novo lipogenesis [39]. Interestingly we could also find a 

decreased expression of the two key enzymes of gluconeogenesis G6pc and Pepck which might be due 

to higher activity of Sirt1 leading to an increased phosphorylation [40] and decreased acetylation of 

FoxO1 [41] and thus inhibiting its transcription of G6pc and Pepck.  

Besides elevated Sirt1 activity, we found increased hepatic Sirt1 protein expression in HFD-

fed mice. There are several contradictory studies on Sirt1 expression in the livers of NAFLD animal 

models. Rats on a HFD for 3 months were reported to develop hepatic steatosis accompanied by 

decreased Sirt1 protein levels [42], while in other studies Sirt1 over expression was found to be 

protective against the negative impact of a HFD [2,3]. In contrast, it has been shown that liver-specific 

Sirt1 knockout mice stored less fat in white adipose tissue and liver under HFD conditions [43]. In 
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addition, liver-specific Sirt1 knockout mice were more glucose tolerant and had lower levels of blood 

glucose and insulin than wild type controls [43]. Taken together, the association between Sirt1 protein 

and activity levels, hepatic lipid accumulation and resulting metabolic disturbances is not yet clarified 

and may be associated with disease progression and inflammatory conditions.  

In summary, we detected an up regulation of the NAD salvage pathway and concomitantly 

increased Sirt1 deacetylase activity in the livers of mice fed a HFD diet for 11 weeks. One could 

suppose that up regulation of Nampt activity and NAD levels are an early compensatory mechanism to 

protect the liver against the negative consequences of lipid accumulation. The negative impact of an 

11-week HFD was being counteracted via higher Nampt and Sirt1 activities. It is possible that a more 

prolonged HFD exposure would lead to impaired regulation of hepatic Nampt and NAD levels, thus 

contributing to the development of steatohepatitis.  
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3.9 Appendix: Supplementary Data 

 

Supplementary Fig.1 Hepatic Nampt protein level (A) and NAD levels (B) were not significantly different 
between single- and group-housed mice. One representative Western blot is shown (n=5). *p<0.05 Ctl-group vs. 
HFD-single mice. #p<0.05, ##p<0.01 Ctl mice vs. equivalent housed HFD mice. gr: group-housed; s: single-
housed. 
 

 

Supplementary Fig. 2 A) The cytokines Cxcl16, Tgfβ and Mcp-I, as well as the the T-cell co-receptor CD8 
and the fatty acid translocase CD36 were unchanged. B) Cpt-Iα and Cpt-II mRNA as enzymes for the β 
oxidation of long chain fatty acids were not different between both groups. C) ph-eIf2α was decreased in HFD 
mice to (Ctl) while Bip stayed stable as markers for ER stress. D) phospho p53 (ph-p53) was not different 
between both groups. One representative Western Blot is shown (n=12).  
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Supplementary Fig.3 Total acetylated protein was down regulated in liver tissue of mice fed a high fat diet (A) 
while specific acetylation of MnSOD (B) was not altered in mice fed a HFD compared to Ctl. Acetylated 
Srebp-1 (C) was immunoprecipitated with acetyl lysine antibody and blotted for Srebp-1 but no differences were 
detected. One representative Western blot is shown (n=12).  

 
Supplementary Table 1 Antibodies used for Western blot analyses 

antibody dilution manufacturer 
Visfatin Antibody (#NP_005737.1) 1:1000 Bethyl Laboratories 
Acetyl-NF-κB p65 (Lys310) (#3045) 1:1000 Cell Signaling 
Acetyl-p53 (Lys379) Antibody 
(#2570) 

1:1000 Cell Signaling 

Bax Antibody (#2772) 1:1000 Cell Signaling 

Bip Antibody (#3183) 1:1000 Cell Signaling 

eIF2α Antibody (#9722) 1:1000 Cell Signaling 

NF-κB p65 (#8242) 1:1000 Cell Signaling 
Phospho-eIF2α (Ser51) 
Antibody (#9721) 

1:1000 Cell Signaling 

Phospho-p53 (Ser15) Antibody 
(#9284) 

1:1000 Cell Signaling 

SirT1 Antibody (Mouse Specific) 
(#2028) 

1:1000 Cell Signaling 

SirT3 (D22A3) Rabbit mAb (#5490) 1:1000 Cell Signaling 
Acetylated-Lysine Antibody (#9441) 1:1000 Cell Signaling 
Anti-p53, C-Terminal antibody 
(#SAB4503021) 

1:500 Sigma Aldrich 

Anti-Glyceraldehyde-3-Phosphate 
Dehydrogenase Antibody, clone 6C5 
(#MAB374) 

1:100000 Millipore 

Anti-MnSOD (#06-984) 1:4000 Millipore 

MnSOD K122 1:4000 
Friendly provided by 
David Gius 
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Supplementary Table 2 Sequences of primer and probes used for Taqmen or SYBR Green analyses 

Target Forward Primer Reverse Primer Probe 

α-smooth muscle actin  
CTG ACA GAG GCA 
CCA CTG AA 

CAT CTC CAG AGT 
CCA GCA CA 

  

Carnitine 
palmitoyltransferase Iα  

CTT CAA TAC TTC CCG 
CAT CC 

CTG CTG TCC TTG 
ACG TGT TG 

  

Carnitine 
palmitoyltransferase II  

GCT CCG AGG CAT 
TTG TC 

CAT CGC TGC TTC 
TTT GGT 

  

CD8 
CAA AGA AAA TGG 
ACG CCG AAC TTG G 

TGG CAC GAC 
AGA ACT GAA 
GTA CAT C 

  

CD36 
AACTCTGCAGGTTTGC
AGCTCT 

AGCTTCCACTCTT
GCTGTAGG 

  

CD68 
CTT AAA GAG GGC 
TTG GGG CA 

ACT CGG GCT CTG 
ATG TAG GT   

Collagen I 
TGG CCT TGG AGG 
AAA CTT TG 

CTT GGA AAC CTT 
GTG GAC CAG 

  

Cyclophillin 
ATG TGG TTT TCG 
GCA AAG TT 

TGA CAT CCT TCA 
GTG GCT TG 

  

Fatty acid synthase  
CCC TTG ATG AAG 
AGG GAT CA 

GAA CAA GGC 
GTT AGG GTT GA 

  

Fibronectin 
TGC AGT GAC CAA 
CAT TGA TCG C 

AAA AGC TCC 
CGG ATT CCAT CC 

  

Glucose 6-phosphatase  
CCT GTG AGA CCG 
GAC CAG 

AAA GAT AGC 
AAG AGT AGA 
AGT GAC CAT 

  

Interleukin-6  
ACC AGA GGA AAT 
TTT CAA TAG GC 

TGA TGC ACT TGC 
AGA AAA CA 

  

mitochondrial uncoupling 
protein 2  

CAG CTA CTG TCA 
GTT CCG CC 

CCC GAT CCC CTC 
GAT TTT CC 

  

monocyte chemotactic 
protein 1  

AGGAGCCATACCTGT
AAATGCC 

ATGCCGTGGATGA
ACTGAGG 

  

Nicotinamide 
phosphoribosyltransferase  

GAT GGT CTG GAA 
TAC AAG TTA CAT 
GAC T 

ATG AGC AGA 
TGC CCC TAT GC 

AGG AGT CTC 
TTC GCA AGA 
GAC TGC T 

Peroxisome proliferator-
activated receptor gamma 
coactivator 1α 

ATG TGT CGC CTT CTT 
GCT CT 

ATC TAC TGC CTG 
GGG ACC TT 

  

Phosphoenolpyruvate 
carboxykinase  

GTG CAT GAA AGG 
CCG CACCA 

GAT CCG CAT GCT 
GGC CAC C 

  

Sirtuin 1 
CGG CTA CCG AGG 
TCC ATA TAC 

CCG CAA GGC 
GAG CAT AGA TA 

  

Sirtuin 3 
AGG TGG AGG AAG 
CAG TGA GA 

GCT TGG GGT TGT 
GAA AGA AA 

  

Sterol regulatory element-
binding protein-1  

GGA GCC ATG GAT 
TGC ACA TTT G 

CAA ATA GGC 
CAG GGA AGT 
CAC 
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Superoxide dismutases 
GTG TCT GTG GGA 
GTC CAA GG 

AGC GGA ATA 
AGG CCT GTT GT 

  

Transforming growth  
factor β  

AAG TTG GCA TGG 
TAG CCC TT  

GCC CTG GAT 
ACCAAC TAT TGC 

  

Tumor necrosis factor α  
ATG GGC TTT CCG 
AAT TCA C 

GAG GCA ACC 
TGA CCA CTC TC 
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4.1 Abstract 

Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD 

salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to 

their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target 

for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and 

mammalian target of rapamycin (mTOR) become dysregulated during the development of 

hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its 

specific inhibitor FK866 on the viability of hepatocarcinoma cells and analysed the effects of FK866 

on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signalling.  

Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma 

cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased 

cell death. These effects could be abrogated by administration of nicotinamide mononucleotide 

(NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the 

AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a 

higher expression of mTOR and a lower AMPK activation in hepatocarcinoma cells. We found that 

NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR 

and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous 

hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signalling after 

FK866 treatment.  

Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated 

NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT 

inhibition as a potential treatment option for HCC.  

4.2 Introduction 

The co-factor nicotinamide adenine dinucleotide (NAD) plays a crucial role in multiple cellular 

processes and is substrate for a variety of enzymes and regulatory proteins [1]. In humans a main 

portion of NAD is generated via the nicotinamide (NAM) salvage pathway, in which nicotinamide 

phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in the biosynthesis of NAD 

yielding nicotinamide mononucleotide (NMN) [2,3]. As NAD is rapidly consumed in cells (1h) and 

converted to NAM [4], NAMPT is essential for the replenishment of the intracellular NAD pool. The 

development of many cancers is associated with increased NAMPT expression [5]. Cancer cells have 

a high rate of NAD turnover due to their increased energy demand and a high activity of NAD-

dependent enzymes, such as poly (ADP-ribose) polymerases (PARPs), mono-ADP ribosyltransferases 

(MARTs) and sirtuins, required for DNA repair, genome stability and proliferation [1,6]. Therefore, 

cancer cells are more susceptible to NAMPT inhibition than normal cells [7,8]. In previous studies, we 

found that NAMPT is released from hepatocytes [9] as well as differentially expressed and more 

enzymatically active in hepatocarcinoma cells compared to non-cancerous human hepatocytes [10]. 
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Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths [11]. The only 

available proven systemic therapy for HCC is the multi-targeting kinase inhibitor sorafenib [12]. An 

effective second-line agent for patients with sorafenib failure or intolerance has yet to be identified. 

This has led to an intensive search for molecular pathways and novel compounds for the treatment and 

prevention of HCC. Targeting NAMPT activity and intracellular NAD content represents a novel 

therapeutic concept for HCC. The specific NAMPT inhibitor FK866 is a competitive inhibitor that 

was selected by an anticancer screening system differentiating acute cytotoxicity from growth 

inhibition [13,14]. FK866 has been evaluated in a broad variety of tumors, including solid tumors and 

leukemia [5,15,16] in vitro and in nude mouse xenografts [17–19], where FK866 was able to reduce or 

attenuate tumor growth. 

In HCC tissue, AMP-activated protein kinase (AMPK), a major regulator of cellular energy 

homeostasis that coordinates multiple metabolic pathways, has been shown to be dysregulated 

compared to normal tissue [20,21]. AMPK activity opposes tumor development and negatively 

regulates the Warburg effect (aerobic glycolysis) leading to suppression of tumor growth in vivo [20–

22]. AMPK translates changes in glucose availability and fluctuation of energy to mammalian target 

of rapamycin (mTOR) and thereby acts as a master energy sensor to modulate cellular activities in 

response to energy stress [23,24]. mTOR, a serine/threonine protein kinase, has been observed to be 

increased in multiple human cancers, including HCC, where it is associated with less differentiated 

tumors, earlier tumor recurrence, and worse survival outcomes [25,26]. Inhibition of mTOR has 

proven efficacious in clinical trials [26,27]. Recently, there is great scientific interest in finding 

molecular pathways and novel compounds that target AMPK/mTOR signalling as a new treatment 

option for HCC.  

Little is known about the interaction of NAMPT and AMPK/mTOR signalling during the 

development of HCC. In this study, we investigated the effects of the NAMPT inhibitor FK866 on 

hepatocarcinoma cells and non-cancerous human hepatocytes. We asked whether or not FK866-

induced energy stress might activate AMPK and modify the mTOR signalling pathway and whether 

the observed effects could be rescued by the NAMPT enzyme product NMN. 

4.3 Material and Methods  

Material 

Cell culture media, supplements and antibiotics were obtained from PAA (Cölbe, Germany) or 

Invitrogen (Karlsruhe, Germany). FK866, nicotinamide mononucleotide (NMN) and camptothecin 

were purchased from Sigma-Aldrich (Munich, Germany). Etoposide was purchased from Merck 

Millipore (Darmstadt, Germany).  
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Hepatocarcinoma cell lines  

Huh7 cells (p53-mutated) and Hep3B cells (p53-deficient) were maintained in DMEM medium with 

high glucose or MEM medium, repectively. Media were supplemented with 10 % fetal bovine serum 

(FBS), 2 mM glutamine, 100 IU penicillin and 100 µg/mL streptomycin. All cells were grown at 37°C 

in a humidified atmosphere of 95 % air and 5 % CO2.  

Primary human hepatocytes 

Tissue samples from patients undergoing liver surgery at the University Medical Center Regensburg 

were used. Primary human hepatocytes (PHH) were isolated and cultivated as described recently [28]. 

Briefly, non-neoplastic tissue samples from liver resections were obtained from patients undergoing 

partial hepatectomy for metastatic liver tumors of colorectal cancer. PHHs were isolated using a 

modified two-step EGTA/collagenase perfusion procedure and plated on collagen coated dishes. 

Experimental procedures were performed according to the guidelines of the charitable state controlled 

foundation HTCR (Human Tissue and Cell Research, Regensburg, Germany), with the informed 

patient's consent approved by the local ethical committee of the University of Regensburg. All 

experiments involving human tissues and cells have been carried out in accordance to The Code of 

Ethics of the World Medical Association (Declaration of Helsinki). Cells were seeded in Williams' 

Medium E containing 2 mM glutamine, 10-7mol/L dexamethasone, 100 IU penicillin, 100 µg/mL 

streptomycin and 10 %FBS. All cells were grown at 37°C in a humidified atmosphere of 95 % air and 

5 % CO2.  

Cell treatments 

FK866 was dissolved in DMSO to create a stock solution of 10 mM. NMN was dissolved in the 

appropriate medium for a stock solution of 100 mM. After 16h serum starvation, cells were treated 

with the indicated concentration of FK866 alone or in combination with NMN [500 µM] for 24, 48 

and 72 h. 

Cell viability and apoptosis 

Cell viability analysis was conducted using the cell proliferation reagent WST-1 (Roche, Grenzach-

Wyhlen, Germany) according to manufacturer´s instructions. To examine the effects of FK866 on cell 

death, the number of dead cells was measured by FACS analysis at different time points (48 h, 72 h) 

using the AnnexinV-FITC Apoptosis Detection Kit (BD Pharmingen™, Franklin Lakes, USA). 

Adherent and floating cells were analysed according to manufacturer´s protocol. Samples were 

analysed using a Beckton-Dickinson FACS LSRII. As positive control, apoptosis was induced via 

camptothecin [2 µM] and etoposide [85 µM] for 24 h. Annexin+ (An+)and double-stained 

An+/propidium iodide (PI+) cells were considered as dead cells.   
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ATP measurement 

ATP levels were measured with the luminescent-based CellTiter-Glo® Luminescent Cell Viability 

Assay (Promega, Madison, USA) according to the manufacturer’s protocol.  

Western Blot 

Protein extraction and Western Blot analysis were performed as described previously [10]. Primary 

antibodies used for immunoblotting included anti-phospho-AMPKα (Thr172), anti-AMPKα, anti-

phospho-mTOR (Ser2448), anti-mTOR, anti-tubulin, anti-phospho p70S6 kinase (Thr389), anti-p70S6 

kinase, anti-phospho-4E-BP1 (Ser65), anti-4E-BP1, anti-acetylated lysine (Cell Signaling, Beverly, 

MA, USA) and anti-GAPDH (MerckMillipore, Schwalbach, Germany). Appropriate secondary 

antibodies were purchased from DAKO (Hamburg, Germany). Immunoblotting for GAPDH or tubulin 

was performed to verify equivalent amounts of loaded protein. Densitometric analysis was performed 

using ImageJ 1.41 Software (NIH, USA). 

NAMPT enzymatic activity  

NAMPT activity was measured by the conversion of 14C- labelled nicotinamide to 14C-NMN using a 

method previously described [10,29]. Radioactivity of 14C-NMN was quantified in a liquid 

scintillation counter in counts per minute (cpm) (Wallac 1409 DSA, PerkinElmer). NAMPT activity 

(cpm) was normalized to total protein concentration as measured by the BCA protein assay.  

NAD measurement 

Concentrations of NAD from whole-cell extracts were quantified by HPLC analysis using a 

SUPELCOSIL™ LC-18-T HPLC column (Sigma Aldrich) at a flow rate of 0,8ml/min with 100 % 

buffer A (potassium phosphate buffer pH 6.0) from 0–2min, a linear gradient to 85 % Buffer A/15 % 

Buffer B (100 % methanol) from 2-5min, 85 % Buffer A/15 % Buffer B from 5-10min, a linear 

gradient to 100 % Buffer A from 10–12min and 100 % Buffer A from 12–15min. NAD was eluted as 

a sharp peak at 8min and quantitated based on the peak area compared to a standard curve and 

normalized to total protein concentration as measured by the BCA protein assay. 

4.4 Results 

FK866-induced NAMPT inhibition significantly decreased NAD levels in human 
hepatocarcinoma cells which could be ameliorated by NMN 
administration 

We stimulated hepatocarcinoma cells with FK866 [10nM] and found significantly reduced NAMPT 

activity (-74.9±8.1 % in Huh7 cells, -38.1±3.7 % in Hep3B cells) (Fig.1A) which caused a sharp 

decline of NAD levels (Huh7 cells 3.3± 0.3 µmol/g protein [con] vs. 0.3± 0.2 µmol/g protein [10nM 

FK866]; Hep3B cells 2.2± 0.7 µmol/g protein [con] vs. 0.2± 0.08 µmol/g protein [10nM FK866]) 

(Fig.1B). Co-treatment with NMN restored intracellular NAD levels in all tested cell lines (Fig.1B). 
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To investigate the sensitivity of non-cancerous human hepatocytes towards FK866, we used the same 

treatment conditions as for hepatocarcinoma cells and found that non-cancerous hepatocytes showed 

no significant reduction in NAMPT activity and NAD levels at 10nM FK866 after 48 h (Supplement 

Fig.1A,B). Emerging evidence suggests that the cellular acetylation state is associated with the energy 

state of a cell [30]. We could show that FK866-induced NAD depletion led to a decreased activity of 

NAD-dependent lysine deacetylases as measured by an increased global acetylation of lysine residues 

(+1.9-fold, p<0.001) (Fig.1C). The administration of NMN abrogated the FK866-induced 

hyperacetylation of lysine residues (p<0.001) (Fig.1C). 

NAMPT inhibition by FK866 reduced cell viability, induced energy stress and led to 
delayed cell death in human hepatocarcinoma cells 

We could detect a decreased cell viability in hepatocarcinoma cells (-49.4±4.6 % in Huh7 cells, -

20.6±2.8 % in Hep3B cells) (Fig.2A) after 24 h of FK866 treatment. We wanted to investigate whether 

FK866-induced NAD depletion would result in a reduction of ATP generation and therefore would 

induce cellular energy stress in hepatocarcinoma cells. Time course studies revealed that ATP levels 

were lowered in Huh7 cells (-49.6±9.5 %, p<0.01) and Hep3B cells (-61.1±6.8 %, p<0.001) after 48 h 

of treatment with 10nM FK866 (Fig.2B). The ATP levels further declined after 72 h in Huh7 cells (-

90.2±2.5 %, p<0.001) and Hep3B cells (-91.1±1.5 %, p<0.001) (Fig.2C). The co-administration of 

NMN could ameliorate ATP levels in Huh7 and Hep3B cells after 48 and 72 h (Fig.2B,C). After 72 h, 

subsequent to the drop of NAD levels, the effects of FK866 on cell death became evident when 

measuring An+/PI+-stained cells. Hep3B cells, a p53-deficient cell line, already displayed an increase 

in An+/PI+ cells after 48 h of FK866 treatment (+1.8-fold, p<0.01) (Supplement Fig.2A) indicating that 

FK866-induced cell death did not depend on p53 function. Huh7 cells treated with FK866 [10nM] for 

72 h showed a 1.5-fold increase in An+/PI+ cells compared to control cells (p<0.05) (Fig.2D) whereas 

the number of An+/PI+ Hep3B cells increased further (+3.0-fold, p<0.01). Co-stimulation with NMN 

ameliorated the induction of cell death in Huh7 cells (p=0.09) and completely rescued FK866-induced 

cell death in Hep3B cells (p<0.01) (Fig.2D).  
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Fig.1 FK866 reduced NAMPT activity and NAD content and increased global acetylation of lysine residues. A) 
NAMPT activity and B) NAD content were measured after 24 h and were normalized to total protein amount in 
each sample (n=3). C) Western Blot analysis of acetylated lysine residues in lysates of Hep3B cells treated with 
FK866 [10nM], a combination of FK866+NMN or NMN alone for 48 h. GAPDH was used as loading control. 
Densitometric analysis of each lane was performed in four independent Western Blots (n=4). Cells stimulated 
with serum-free medium were used as control [con] and were set 1. Data are represented as mean± SEM and 
statistical analysis was performed using one-way ANOVA and the Bonferroni post hoc test (*p<0.05, **p<0.01, 
***p<0.001 compared to serum-free medium control; #p<0.05, ##p<0.01, ###p<0.001 compared to FK866 
[10nM]). 

Dysregulation of the AMPK/mTOR signalling pathway in hepatocarcinoma cells 
compared to non-cancerous hepatocytes 

Growing evidence suggests that mTOR and AMPK dysregulation play an important role in 

hepatocellular carcinogenesis [20,30]. Therefore, we compared the protein amount of mTOR and its 

downstream target p70S6 kinase and also AMPKα activation in non-cancerous primary human 

hepatocytes and hepatocarcinoma cells. An increased protein level of total mTOR and p70S6 kinase 

was found in hepatocarcinoma cells compared to non-cancerous hepatocytes (Fig.3A). In contrast, 

AMPK activation was enhanced in non-cancerous primary human hepatocytes (PHH) compared to 

Huh7 and Hep3B cells despite equal AMPKα total protein amount (Fig.3A). This suggests that mTOR 

signalling and AMPK activation are involved in metabolic adaptation of hepatocarcinoma cells and 

might be interesting targets for prevention of cancer cell growth.  
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Fig.2 FK866-induced NAMPT inhibition reduced cell viability and ATP content and induced delayed cell death 
in hepatocarcinoma cells. A) Cell viability of Huh7 and Hep3B cells after 24 h was measured using WST1-
reagent (n=4). ATP content after B) 48 h and C) 72 h treatment with 10nM FK866 (n=3). Cells stimulated with 
serum-free medium were used as control [con] and were set 100 %. D) AnnexinV-FITC/PI assay of Huh7 and 
Hep3B cells treated with FK866, FK866+NMN or NMN alone for 72 h (n=3). Cells stimulated with serum-free 
medium were used as control [con] and were set 1. Representative dot plots of the AnnexinV-FITC/PI staining in 
Huh7 and Hep3B cells are shown including the percentage of viable, An+ and An+/PI+ -cells. Data are 
represented as mean± SEM and statistical analysis was performed using one-way ANOVA and the Bonferroni 
post hoc test (*p<0.05, **p<0.01, ***p<0.001 compared to serum-free medium control; #p<0.05, ##p<0.01, 
###p<0.001 compared to FK866 [10nM]). 
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Fig.3 Expression of mTOR and AMPK in hepatocarcinoma cells and non-cancerous human hepatocyes and its 
regulation by FK866. A) Western blot analysis of AMPK and mTOR expression in lysates of non-cancerous, 
primary human hepatocytes (PHH), Huh7 and Hep3B cells (n=3). B) Western blot analysis of the 
AMPK/mTORC1 signalling pathway in lysates of Huh7 cells treated with FK866 [10nM], a combination of 
FK866 [10nM]+NMN [500 µM] or NMN [500 µM] alone for 48 h (n=3). GAPDH was used as loading control. 
One representative blot out of 3 independent experiments is shown. Background-corrected densitometric values 
were normalized to control (serum-free medium). Data are represented as mean± SEM and statistical analysis 
was performed using one-way ANOVA and the Bonferroni post hoc test (*p<0.05, **p<0.01, ***p<0.001 
compared to serum-free medium control; #p<0.05, ##p<0.01, ###p<0.001 compared to FK866 [10nM]. 

FK866-induced energy stress activated AMPKα and led to inhibition of mTOR 
complex1 signalling in hepatocarcinoma cells 

To test the efficacy of FK866-induced NAD depletion to activate AMPK and inhibit the mTOR 

signalling pathway, we measured the phosphorylation state of different members of the AMPK/mTOR 

complex1 cascade. FK866 treatment increased the phosphorylation of AMPKα at Thr172 (+3.3-fold, 

p<0.01) in hepatocarcinoma cells (Fig.3B). This was associated with a significant down regulation of 

phosphorylated mTOR (Ser2448) by -50.7±0.1 % (p<0.05) and the phosphorylation of its down-

stream target p70S6 kinase (by -94.7±2.4 %, p<0.001) and 4E-BP1 (by -30.0±.0.1 %, p<0.05) 

indicating reduced protein synthesis and cell growth (Fig.3B). Co-treatment with NMN [500 µM] 

completely reversed the FK866-induced effects on AMPK activation and mTOR complex1 signalling 

inhibition suggesting that the NMN biosynthetic activity of NAMPT is relevant in mediating the 

effects of FK866. NMN alone had no impact on AMPK activation and mTORC1 signalling in 
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hepatocarcinoma cells (Fig.3B). Non-cancerous human hepatocytes treated with equal amounts of 

FK866 for 48 h did not show significant changes in AMPK activation and mTOR phosphorylation 

(Supplement Fig.1C) verifying their lower sensitivity to FK866.  

4.5 Discussion 

During malignant transformation the cellular metabolism undergoes multiple molecular and metabolic 

adaptations to support cell growth and survival. NAD is a key determinant in cancer cell biology as it 

is essential for redox reactions and key component of signalling pathways that regulate transcription, 

DNA repair, apoptosis and metabolism [1]. In mammals, NAMPT is a main regulator of the 

intracellular NAD pool [2,3]. Here, we investigated whether or not the NAMPT inhibitor, FK866, 

would affect intracellular NAD and ATP concentrations in hepatocarcinoma cells and consequently 

would be able to regulate the activity of the metabolic sensors AMPK and mTOR. Our study showed 

that FK866 rapidly reduced NAD levels in hepatocarcinoma cells and led to delayed ATP depletion 

which could be ameliorated by administration of NMN. Break down of ATP levels was associated 

with increased cell death. In contrast to another study [31], we demonstrated that FK866 reduced 

NAMPT activity, depleted NAD and ATP content and induced cell death in p53-deficient Hep3B cells 

suggesting that FK866-mediated cell death does not depend on functional p53. Our results are in line 

with a study performed in chronic lymphocytic leukemia cells [15]. In our study, especially Hep3B 

cells showed a high sensitivity to FK866 and an increased number of dead cells occurred already after 

48 h of FK866 treatment. Interestingly, non-cancerous human hepatocytes subjected to the same 

FK866 treatment as hepatocarcinoma cells did not display reduced NAMPT activity and NAD content 

even at a FK866 concentration 10-fold of the EC50 (EC50 8.2 nM) indicating a lower sensitivity of non-

cancerous cells to FK866. This has also been described for normal blood cells [8,31]. Therefore, 

FK866 represents an interesting compound in cancer cell therapy as it progressively exhausts NAD 

content in cells with a high NAD turnover that mainly rely on nicotinamide and the NAMPT-mediated 

NAD salvage pathway as source of NAD. Cancer cells have a significantly higher NAD turnover than 

normal cells to sustain their rapid proliferation, relative genomic instability, permanently ongoing 

DNA repair, increased aerobic glycolysis and increased activity of NAD-dependent deacetylases 

[1,13,14]. This is in line with results of our previous study showing that the expression of SIRT1, a 

NAD-dependent deacetylase, was significantly higher in hepatocarcinoma cells than in non-cancerous 

hepatocytes [10]. 

In this study we could demonstrate that NAMPT inhibition by FK866 led to a sharp decline of 

intracellular ATP levels and therefore induced energy stress. As a key physiological energy sensor, 

AMPK is a major regulator of cellular energy homeostasis that coordinates multiple metabolic 

pathways to balance energy supply [24]. Several studies have shown that AMPK activators exhibit 

inhibitory effects on cancer cell growth [32,33]. AMPK is known to phosphorylate and activate 

tuberous sclerosis complex (TSC)2, a negative regulator of mTOR [34]. Therefore, the AMPK/mTOR 

pathway serves as a signalling nexus for regulating cellular metabolism, energy homeostasis, and cell 
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growth, and dysregulation of each pathway may contribute to the development of HCC [20,26]. Since 

the discovery that the mTOR pathway is hyperactivated in many cancers including HCC 

[25,26,30,35], there is a great interest in finding molecular pathways and novel compounds that target 

AMPK/mTOR signalling as novel treatment option for HCC. We could show that components of the 

mTORC1 cascade were significantly higher expressed in hepatocarcinoma cells than in non-cancerous 

hepatocytes. Additionally, our data revealed that the activation of AMPK was significantly decreased 

in hepatocarcinoma cells. Reduced AMPK activity has also been detected in primary human breast 

cancer [36] and lymphoma [21] cells. Thus, a dysregulated AMPK activity may represent an important 

regulatory step during tumor initiation and progression, allowing cancer cells to gain a metabolic 

growth advantage by enhancing aerobic glycolysis (Warburg effect) [21]. We made the intriguing 

discovery that FK866 acts as an AMPK activator in cancer cells potentially through its ability to 

induce cellular energy stress. Activation of AMPK was associated with a down regulation of the 

mTORC1 pathway. All FK866 induced effects could be completely reversed by NMN suggesting that 

these effects were mediated by NAD. mTORC1 inhibition led to decreased activation of its two 

downstream targets, 70S ribosomal protein S6 kinase (p70S6K) and the eukaryotic initiation factor 4E 

binding protein 1 (4E-BP1). p70S6K and 4E-BP1 are major regulators of protein translation and 

cellular growth [35]. This contradicts a study performed in neuronal cells where FK866 or a NAMPT 

knock down was shown to reduce AMPK activation [37]. However, this can be explained by the use 

of non-cancerous neuronal cells compared to cancer cells in our study.  

In summary, our study showed the importance of the NAMPT-mediated NAD salvage 

pathway for energy homeostasis in hepatocarcinoma cells. Furthermore, FK866-induced NAMPT 

inhibition led to activation of AMPK and inhibition of mTOR signalling suggesting a putative use of 

FK866 alone or as a chemotherapeutic sensitizing drug to reduce cancer cell growth. In every case of 

potential therapeutic use, administration of NMN as antidote may be useful to modulate or counteract 

FK866 toxicity. Only early stages of HCC are curable with today's treatment protocols, therefore new 

therapeutic strategies are urgently needed and NAMPT inhibition represents a potential novel 

treatment approach. 
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4.8 Appendix: Supplementary Data 

 

Supplementary Fig.1 Effects of FK866 on NAMPT activity, NAD content and AMPKα/mTOR activity in non-
cancerous human hepatocytes. Non-cancerous primary human hepatocytes were stimulated with different doses 
of FK866 [1, 10, 100 nM] in serum-free medium for 48 h. A) NAMPT activity and B) NAD content were 
measured and normalized to total protein amount in each sample. C) Western blot analysis of mTOR expression 
and AMPKα activation were performed using specific antibodies against phospho-mTOR (Ser2448), total 
mTOR and phospho-AMPKα (Thr172). Background-corrected densitometric values were normalized to control 
(serum-free medium). Data are represented as mean± SEM of two independent experiments (n=2) and statistical 
analysis was performed using one-way ANOVA and the Bonferroni post hoc test. 

 

Supplementary Fig.2 FK866 induced cell death in Hep3B cells after 48 h. A) AnnexinV-FITC/PI assay of 
Hep3B cells treated with FK866 [10 nM], FK866 [10 nM] + NMN [500 µM] or NMN alone for 48 h (n=3). An+ 
and An+/PI+- stained cells were considered as dead cells and are depicted in the graph. Cells stimulated with 
serum-free medium were used as control [con] and were set 1. Data are represented as mean± SEM and 
statistical analysis was performed using one-way ANOVA and the Bonferroni post hoc test. **p<0.01 compared 
to serum-free medium control; ##p<0.01 compared to FK866 [10 nM].  
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