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Abstract 
 
The year 2005 gave us, through two anniversaries (1855 Fick and 1905 Einstein), the wish to go 
back to these authors’ seminal papers, whose aftermath had been (and still is) prodigious. This 
essay describes the contents of these articles: the macroscopic approach with Fick equations and 
the microscopic one with the Einstein-Smoluchowski random walk (Brownian motion) 
equation, while considering them in their historical context. Some further developments are 
briefly discussed.  
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I - INTRODUCTION 
 

It always comes as a surprise, when one looks back at the genesis of concepts and models we 
are now so familiar with, to discover how prone we are to consider them as quite obvious. 
Reading old publications, we realise how these “evidences” required decades – perhaps 
centuries – of approximations, errors, intuitions, advances and recessions… We also realise how 
dangerous and counterproductive certain dogmas (and scholars!) are: the quarrel of energetists 
and atomists gives a perfect illustration of the danger of dogmatism. Diffusion was at the heart 
of these quarrels.  

Another surprise is worth to be underlined: understanding the elementary processes, i.e. the 
microscopic world, is not compulsory  for the derivation of reliable macroscopic laws. What did 
Fourier know about the nature of heat, Ohm about electricity, Fick about salt solutions, Darcy 
about structure of water in pores? The beauty of mathematics allowed them to derive predictive 
laws, which are the key to the possibility of quantitative experiments and engineering 
applications.  

In the case of diffusion, the bridge between the microscopic and macroscopic world was built 
by A. Einstein: his fundamental result expresses a macroscopic quantity – the coefficient of 
diffusion – in terms of microscopic data (elementary jumps of atoms or molecules). As an 
offspring of the kinetic theory of gases, Brownian motion was the key to decipher the 
microscopic world, first in gases and liquids, and later on – surely more difficult I admit – in 
crystalline solids. We are faced here with an incredible convergence: Brownian motion was 
actually modelled for the first time by a mathematician, Louis Bachelier, who did not consider 
physical events, but stock-market quotations! We are here facing again the beauty – and power – 
of mathematics: Brownian motion is a mathematical object, treated in many textbooks, as well 
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as a physical one allowing us to rationalize natural facts as varied as the flight of birds or 
mosquitoes, the propagation of diseases, the dissemination of pollutants, the properties of 
biological membranes, the brain imaging by NMR…  
 

With the benefit of hindsight, it seems rather surprising that scholars of the Enlightenment 
Century apparently did not question the mechanisms of many technical processes, which are, as 
we know, controlled by diffusion phenomena. Let us just mention a few ones: “cementation”, 
first used for gold or silver refining – a process attested since several centuries B.C. – , carbon 
diffusion to produce steel from iron – a process already known in medieval times and perhaps 
earlier –, diffusion soldering of gold artefacts, the colours of stained glasses or earthenware and 
china (have a look at the diffusion of copper (green colour) in the glaze of some earthenware 
artefacts). 
 
II - THOMAS GRAHAM 
 

The first systematic study of diffusion was due to a Scottish chemist, Thomas Graham (1805-
1869). He was born in Glasgow and considered as the “leading chemist of his generation”. Let 
us just mention that Graham was the inventor of dialysis, that he defined as a method of 
separation, by diffusion through a membrane (1854). His research work on diffusion in gases 
was performed from 1828 to 1833 and he presented his results to the Royal Society of 
Edinburgh in 1831. These were later published in the Philosophical Magazine in 1833 [1, 1b]. 
Let us quote the first lines of his first paper [2]: 
“Fruitful as the miscibility of the gases has been in interesting speculations, the experimental 
information we possess on the subject amounts to little more than the well established fact, that 
gases of different nature, when brought into contact, do not arrange themselves according to 
their density, the heaviest undermost, and the lighter uppermost, but they spontaneously diffuse, 
mutually and equally, through each other, and so remain in the intimate state of mixture for any 
length of time.” Graham’s law claims that the volumes of gas exchange are inversely 
proportional to the square root of their masses. Combined with Avogadro’s constant, this law 
allows the determination of the molar masses (in modern language). For this reason, an 
experimental set-up identical to Graham’s was later used by J. Loschmidt in 1863 for his 
classical measurements on diffusion in a handful of gas couples. 
Graham did not only perform the first quantitative experiment of diffusion, but moreover the 
first reliable measurement allowing the  determination of a coefficient of diffusion. The notion 
of coefficient of diffusion was not yet established at this time, not until 26 years later thanks to 
Fick. But time flowed until 1867, when Maxwell calculated the coefficients of diffusion in gases 
from the numerical results of Graham! His coefficient of diffusion of CO2 in air is accurate to ± 
5%. Isn’t it extraordinary?  

Later on, Graham performed a series of diffusion experiments in liquids and noticed that 
diffusion in liquids is by three orders of magnitude smaller than in gases and that the diffusion 
rate slowed down with increasing time. But application of his law to solutions of a series of salts 
appears as a wrong assumption – because of his wrong ideas about the nature of solutions (for a 
discussion of Graham’s ideas, see [1b] ).  
Graham also studied the uptake of hydrogen by palladium. 
 
III – ADOLF FICK 
 

Adolf Fick (1829-1901) was born in Kassel (Germany) and very early he intended to study 
mathematics and physics, so he enrolled at the university of Marburg, but after two years he 
changed his mind towards medicine. After graduating in medicine, in 1852 he accepted a 
position as an assistant of Carl Ludwig, a professor of anatomy and physiology in Zürich, where 
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he remained for 16 years. Later he got a chair of physiology in Würzburg, which he occupied for 
31 years.  

His contributions to physics are limited to a few years around 1855, – he was then 26 years 
old – when he published his famous papers on diffusion, establishing the now classical Fick’s 
equation of diffusion. His major field of research was later devoted to the physiology of 
muscular contraction, but he is also famous for his formula which allows the calculation of the 
cardiac output. Fick was the author of the first treatise of “Medical Physics”1, the first book of 
this kind, where he discussed biophysical problems, such as the mixing of air in the lungs, the 
work of the heart, the heat economy of the human body, the mechanics of muscular contraction, 
the hydrodynamics of  blood circulation, etc.. Fick’s name remains well known in the history of 
cardiology. He was also the author of three philosophical essays (cited in [5]). 

In the first half of the nineteenth century, the concept of diffusion in liquids was not clear, 
opinions were rather confused about the dissolution phenomena of salts. The distinction between 
physical mixture of  phases, solutions and compounds came out progressively. In other respects, 
physiologists became interested in membranes through which osmotic and diffusive processes 
take place. In 1752 “abbé” Nollet (1700-1770) described an astonishing experiment [3]: a tube 
full of “wine spirit” (ethanol) closed with a membrane made of pork bladder, was immersed in a 
vessel of pure water. With increasing time, Nollet observed a bulging of the membrane, water 
permeating through the membrane, as we understand,  to lower the alcohol concentration. Was 
this property specific of living organisms? – a subject of many discussions (the quarrel of 
vitalism). The problem of hydrodiffusion through membranes was, according to Fick’s German 
paper, at the origin of his studies on diffusion in solutions – a simple problem to begin with:  Let 
us quote the first sentence of his paper [6a]: “Hydrodiffusion through membranes should 
captivate the attention of physicists much more than it has been so far, because it is not only one 
of the basic factors of organic life, but also a process of the highest interest as such”. At the 
same time (1856), quite independently, a French engineer, Henry Darcy (1803-1858), 
established in a series of experiments the law of water flow through sand beds, i.e. porous 
media, as being proportional to the pressure difference [4]. 

Let us come back to diffusion by quoting the first lines of Fick’s paper published in the 
Philosophical Magazine (a paper “translated” from the original one in Poggendorff’s Annalen)2 
[6b]: “A few years ago, Graham published an extensive investigation on the diffusion of salts in 
water, in which he more especially compared the “diffusibility” of different salts. It appears to 
me a matter of regret, however, that in such an exceedingly valuable and extensive investigation, 
the development of a fundamental law, for the operation of diffusion in a single element of 
space, was neglected, and I have therefore endeavoured to supply this omission.” 

Let us be reminded that a year earlier, Fick published an article on the thermal dilatation of 
bodies [7], an interesting paper to understand the intellectual substrate of Fick’s understanding 
of the atomistic structure of matter (for a thorough discussion, see [5]). The seminal German 
paper of 1855 reveals some interesting ideas which do not appear in the English one. Fick made 
allusion to the atomic theory, as accepted by most of the physicists as an help to get “an insight, 
a description and a discovery”, allowing a mechanical account of the observed phenomena. But 
we are to be cautious, these ideas about atoms and molecules are very far from our modern 
concepts. Nevertheless, they were important to understand that dissolution and diffusion 
processes in water result from the movement of separate entities of salt and water. But Fick was 
unable on this basis to deduce a quantitative law. It took another fifty years for this ambitious 
purpose to be realised by A. Einstein. Fick had the idea of proceeding by analogy with heat 
diffusion  – which is nevertheless a marvellous intuition! 

                                           
1 Die medizinische Physik, Braunschweig, 1856. 
2 Not exactly a direct translation. Introductions for instance are different in the two papers. 
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Thinking about Graham results, Fick perceived the deep analogy between diffusion and 
conduction of heat or electricity, a premonitory intuition [6]: “It was quite natural to suppose 
that this law for diffusion of a salt in its solvent must be identical with that according to which 
the diffusion of heat in a conducting body takes place; upon this law Fourier founded his 
celebrated theory of heat, and it is the same that Ohm applied… to the conduction of electricity 
3… according to this law, the transfer of salt and water occurring in a unit of time between two 
elements of space filled with two different solutions of the same salt, must be, ceteris partibus, 
directly proportional to the difference of concentrations, and inversely proportional to the 
distance of the elements from one another”.  

Going along this analogy, he assumed that the flux of matter is proportional to its 
concentration gradient with a proportionality factor k, which he called “a constant dependent 
upon the nature of the substances”.  
Following Graham set-up, Fick considers in a vertical vessel – translating this model in terms of 
differentials – a layer of concentration y defined by two horizontal planes x and x+dx, and he 
writes the quantity of solvent diffusing during dt in the adjacent layer (x+dx, x+2dx), in which 
the concentration is y + (dy/dx)dx, as: 

– Q k (dy/dx)dt,  
where Q is the area through which diffusion occurs. According to Fick, “k is a constant 
dependent upon the nature of the substances”. Surprisingly, Fick was describing a flux – a new 
concept created by Fourier as the basis of his theory of heat diffusion – without using this word. 

The fundamental law of diffusion is then given by the differential equation (the so-called 
second Fick equation) which he derived “according to the model of Fourier’s mathematical 
development” [8]: 
 

δy
δt

= k δ2y
δx2 +

1
Q

dQ
dx

.δy
δx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

with the section Q as a function of the height x. In the case of a constant section, the equation 
simplifies to:  

δy
δt

= k δ2y
δx2  

 
following Fick’s notation4.  

Fick had a lot of difficulties to verify the validity of his equation. Let us point out how his 
approach is different from Graham’s. Instead of performing experiments on a series of different 
salts, he only used salt (kitchen salt) solutions, but he varied the geometrical conditions. The 
second derivative of a concentration versus distance is not an easy quantity to measure with the 
required accuracy. However, he was successful in performing a series of experiments under a 
stationary regime in two series of experiments. Fick considered only stationary states. With 
dy/dt=0, the fundamental equation simplifies. Fick gave the solution in two cases corresponding 
to his experiments. First for a cylinder (Q constant): 

 d2y
dx 2 = 0 

whose solution is linear: y = ax+b. In the case of a cone (in his experiment Fick used a funnel) 
whose section is proportional to x2  the fundamental equation becomes: 

                                           
3 Joseph Fourier , Théorie analytique de la Chaleur, 1822 ; Georg Simon Ohm, Die Galvanische Kette 
mathematisch bearbeitet, 1827.  
4 Actually a minus sign is present on the right hand side in the German original paper as well as in the further 
English one. Such a sign will give unstable solutions, as it is well known by metallurgists for the spinodal 
decomposition.  This obvious “error” was not a source of difficulty for Fick. Because of the available experimental 
conditions, he made his measurements and the subsequent analysis only in the case of stationary states. 
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 d2y
dx 2 +

2
x

dy
dx

= 0 

 
whose solution is easily found: y+a = -(c/x). 

In Fick’s experiments the bottom of his tubes was in both cases in close contact with the salt 
in order to maintain at this level a saturated solution, while the top was in contact with a large 
reservoir of pure water. The concentration versus depth was measured thanks to a small bulb 
immerged in the solution and hanging to the arm of a balance, which allows the measurement of 
the “specific gravity” (i.e. the density).  
 

 
Fig.1: Experimental set-up, after Fick [9]. At the bottom, B is a reservoir of saturated salt 
solution, C a big vessel full of pure water, and the salt gradient is created in the 
cylindrical tube A. 

 
 It is sometimes difficult to understand all the details, because the author did not provide any 
drawing, nor any graph, just one table of results for both cases. However, there are more details 
about the experimental set-up in the third paper 5 [9] (fig.1) 
 

 
 

Figure 2: From Fick’s tables (cylindrical tube) [6] 

                                           
5 Fick published three papers on diffusion in 1855 [6,9] and, according to [5], a fourth one two years later [10]. 
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I could easily plot the results of the cylindrical tube, which gives a nice straight line (fig. 2) 
as predicted from his equation. For the funnel, it is not so easy, as Fick gave the distance as 
depths from the top, while the distance x in the solution was measured from the apex of the 
cone! I assumed the funnel set with the larger area at the top, but I had to guess the virtual 
position of the apex. Assuming the cone apex lying 250 mm below the upper surface (which 
Fick chose as the origin of distances), I obtained a nice verification of the expected relation 
(fig. 3) in spite of the fact the saturation was not attained, so that the stationary state remains 
doubtful in this case 6.  

 

                    
 

Figure 3: From Fick’s table [6], assuming that the apex of the funnel was 250 mm below 
the upper surface 

 
The results of these experiments (apparently a rather small number according to the few data 
given in the article, for a unique system (salt dissolved at saturation in water) made Fick 
confident in the validity of his equation for any combination of bodies. So he decided to 
determine the “diffusibility”7 k of salt in water. He proceeded with three cylindrical tubes of 
different lengths, and measured, when the stationary state was realised, the amounts of salt 
which in a given time diffused out of the upper section of the tube and diffused during the same 
time through any section of the tube according to the assumption of a stationary state. This 
quantity M is inversely proportional to the length, so that by multiplying this quantity by the 
time and dividing it by the tube lengths, the same value must be obtained for the three tubes, 
from which k (our D) is determined. 

ML/t = JL = k CS
I suppose Fick assumed the concentration of salt was zero at the top and equal to the saturation 
value CS at the bottom of the tubes. 

In a unique table, Fick gave a series of results at different temperatures between 15 and 22°C. 
The agreement between the three tubes was fine (better than 10%). The values are of the order 
of 11 mm2 per day, i.e. 1.2·10-6 cm2/s. Fick points out that k increases with increasing 

                                           
6 A very careful analysis of Fick’s experiments has been carried out by T.W. Patzak [11]. 
7 This word was probably coined by analogy with “conductibility” created by Fourier. 
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temperature, as already expected from Graham’s experiments. But according to his comments, 
“this dependence upon temperature is not a simple one”.   

Actually Fick’s theory did not lie on very strong basis, neither theoretical nor experimental. 
This weakness explains the criticisms it received. According to the chemist Fr. Beilstein (cited 
by [5]) the flux of diffusion could as well be proportional to the square root of the difference of 
concentration between two adjacent layers. In a last paper [10] Fick argued that in such a case a 
stationary state should not be possible. Actually this state lies at the basis of Fourier’s model: 
assuming a “permanent” regime of heat flow, Fourier shows that the temperature does vary 
linearly with distance in a rod and that the expression of the flux is a quantity equal in any 
section of the rod, which ipso facto is proportional to the gradient of temperature [12].  

Another criticism was related to the implicit assumption that k is independent of the 
concentration and of its gradient. This remains an actual problem, and we now know a number 
of cases where these two assumptions are not valid. However, one usually prefers to keep the 
diffusion equation in its primitive form with a variable D, this dependence being understood in 
the frame of theoretical models. 

At that time, diffusion measurements by Graham and Fick were confined to fluids, because 
such measurements were possible at temperatures around room temperature. Apparently 
diffusion in solids was not a subject of concern to scientists, because such a process was not 
credible, as, for instance, acknowledged by such famous scholars as Lavoisier or Gay-Lussac. 
This belief was founded on a common opinion among chemists, according to the well known 
old adage: “corpora non agunt nisi soluta”. According to common sense, if diffusion in fluids 
appears as a quite “natural” process, in solids on the contrary it could seem exceptional, if not 
impossible. However, solid state diffusion was active in many technical processes which should 
have been well known from scientists of that time8. Not only technical processes, but also some 
experiments could have been seen as a signature of diffusion. But most of the reported 
experiments in these old papers are rather obscure for a modern reader. Perhaps Robert Boyle 
(1627-1691) was, according to [13], the author of the first experimental demonstration of solid 
state diffusion in a series of experiments on “the Porosity of Bodies”. He observed the 
penetration of a “solid and heavy body” (probably zinc) in a farthing (a small copper coin), so 
that this side took a golden colour, while the other side kept its original one. Boyle was a wise 
experimentalist: he explained in his essay: “To convince the scrupulous, that the pigment really 
did sink… and did not merely colour the superficies, … By filing off a wide gap from the edge 
of the coin towards, it plainly appeared that the golden colour had penetrated a pretty way 
beneath the surface of the farthing” (quotation from [13]). Boyle successfully synthesized brass 
by means of interdiffusion!  

Other experiments were quite demonstrative, for instance “diffusion welding” between two 
pieces of two metals pressed against each other (Walthère Spring, a Belgian chemist, 1894) 
[13b]. Carbon diffusion in iron was measured in 1881 by Albert Colson [13c] who claims: “a 
given temperature corresponds to a constant coefficient of diffusion of carbon in iron”. Colson 
underlined the deep analogy of solid/solid diffusion with the liquid/liquid one. He also prepared 
platinum silicides by solid interdiffusion. 
 
IV - W.C. ROBERTS-AUSTEN 
 

In the second part of the nineteenth century, metallurgical studies on steels opened the way to 
the investigation of diffusion in metals. But quantitative measurements were not performed 
before the very last years of the nineteenth century, thanks to William Chandler Roberts-Austen 
(1843-1905), a well-known British metallurgist celebrated for his study of the phase diagram 

                                           
8 A review of processes and experiments involving solid state diffusion is given by Roberts-Austen in the 
introduction of his paper [14, part II]. 
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Fe-C (one of the main steel component has been named ‘austenite’). The excellent micrographs 
of specimens of carburised iron, due to his French friend Floris Osmond (1849-1912), clearly 
showed the penetration of carbon inside the bulk of iron.  

The interest of Roberts-Austen in diffusion is not a surprise, as he began as an assistant of 
Thomas Graham and later on succeeded him as Master of the Mint in London. When he was 
‘chemist and essayer” in this institution, he had at his disposal good analytical tools, useful to 
investigate systems based on precious metals. The limitations were essentially the range of 
temperatures he could manage, but he was lucky since the Pt/RhPt thermocouple was just  
invented at that time by the French physico-chemist Henry LeChatelier (1850-1936).  

Stationary states are not the most common ones, except for the permeation of gases. The 
large majority of experiments correspond to time dependent processes, such as the interdiffusion 
between two bodies, liquids or solids. This was the case in the remarkable series of experiments 
Roberts-Austen carried out in liquid (and solid) metals. As underlined by this author [14] “the 
difficulty was obvious” (specially in the case of liquids because of convection movements), “but 
my long connection with Graham’s research made it almost a duty to attempt to extend his work 
on liquid diffusion to metals” – in spite of Ostwald’s warning : “To make accurate experiments 
on diffusion is one of the most difficult problem in physics”. Roberts-Austen’s analysis of his 
measurements is based on Fick’s law: “It appears probable that the law of diffusion of salts, 
framed by Fick, would also apply to the diffusion of one metal with another”. The diffusion 
equation (the now so-called second Fick’s equation) is expressed by Roberts-Austen according 
to Lord Kelvin: “The rate of augmentation of the “quality” per unit of time, is equal to the 
diffusivity multiplied by the rate of augmentation per unit of space of the rate of augmentation 
per unit of space of the “quality”. Here, “quality” means the concentration of the matter which 
had diffused.  And Roberts-Austen writes this long sentence9 in a shorter formula: 
  

dv
dt

= k d2v
dx 2   

 
 for one dimensional diffusion. It follows that the diffusion coefficient k may be expressed in 

square centimetres per day (or per second). Roberts-Austen performed experiments on the 
diffusion of precious metals (Au, Pt, Rh) in liquid lead, of Au and Ag in liquid tin, and Au in 
liquid bismuth [14]. The specimens were cut in thin sections which were analysed by weight 
measurements (with a balance of maximum load 0.5 g and a sensitivity of 2 μg). Finally he 
made an attempt of solid interdiffusion, gold into lead [14]. On the basis of 6 or 7 sections of the 
lead substrate, he analysed the diffusion profiles after heat treatments at 4 different 
temperatures. 

To determine k from the diffusion profiles (concentration versus distance), Roberts-Austen 
used the tables calculated by J. Stefan10 for the diffusion of salts, formerly studied by Graham. 
Stefan (1835-1893) [15] gave the solution of the diffusion equation in two forms: either as a 
trigonometric series or as the complementary error function  erfc(h/2√kt).  In the case of  
specimens of finite length, Stefan recommended to apply the principle of reflection plus 
superposition11.  Thanks to these analytical solutions, he calculated a set of numerical tables 
giving the concentration profiles for tubes, with h/2(kt)1/2 as a parameter, where h is the 

                                           
9 The way to tell in words the second derivative was rather heavy… 
10 Josef Stefan (1815-1893), an Austrian theoretician physicist is well known for his expression of the emission 
power of a black body as being proportional to the fourth power of temperature ( Stefan-Boltzmann law). His 
contributions to transport phenomena in fluids were of great importance in the context illustrated by Maxwell, 
Nernst, etc [16]. In his celebrated 1867 paper “ On the Dynamical Theory of Gases” , Maxwell gave a theoretical 
derivation of the diffusion equation, written in terms of gas pressure [17]. 
11 The concentration profile is first calculated for a semi-infinite medium, and that part of the curve which lies 
beyond the surface is reflected through this interface and added to the inside part of the curve. 
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thickness of the successive layers defined for chemical analysis through the diffusion zone. 
Roberts-Austen used these tables to analyse his results [14]. 

Roberts-Austen’s results on solid systems are quite comparable to modern tracer 
measurements, with a right value of the activation energy, if the lower temperature coefficient is 
discarded. Roberts-Austen was specially lucky in choosing for his investigations the system 
Au/Pb, since it is now known that gold is a “fast” diffuser in lead - an imperative condition for 
measurements with the space resolution he could manage in his experiments.  
 
 

                     
 

Fig 4: Roberts-Austin data Au/Pb [14] 
 
The Arrhenius graph (figure 4) is not Roberts-Austen’s, it is mine. Apparently, he did not 
discuss the temperature dependence of the coefficient of diffusion in his “Bakerian Lecture” on 
the Diffusion in Metals published in 1896 [14]. The Arrhenius graph, so familiar to everybody 
with its pervasive use – and abuses – is based on the Arrhenius equation, that Svante Arrhenius 
(1859-1927) proposed in his 1889 paper [18] – in the course of his investigations on the reaction 
rate of cane sugar (i.e. saccharose) inversion by means of polarised light rotation – to describe 
quantitatively his experimental results as well as a collection of published temperature 
dependences of several chemical reaction rates. This proposal was completed by a theoretical 
assumption on the “active” state of the concerned substances, an assumption which allowed him 
to derive  theoretically the temperature dependence of the reaction rates. It  came as a surprise to 
me, when I found  that the exp(-Q/RT) variation with temperature of the coefficient of diffusion 
was only invoked 30 years later (1922-1923) by Saul Dushman and Irving Langmuir (1881-
1957) [19] and independently by H. Braune (1924) [20] and that Langmuir considered this T-
dependence as an empirical relation, without mentioning Arrhenius name! 

It is worth to mention here another important contribution by Josef Stefan in the case of 
multiphase diffusion, when the interface between two contiguous phases is moving with time (as 
the square root of time as derived by Stefan). Stefan actually was working on the formation of 
ice under a thermal gradient [21]. As the heat and diffusion equations are identical, Stefan 
conditions at the interface are now classical: the latent heat (or the solute difference) is balanced 
by the gradient of heat (or of solute concentration).   

Let me conclude this paragraph with a quotation from Roberts-Austen [14]: “The evidence 
gathered by the metallurgist of active atomic movement in fluid and solid metals may sustain the 
hope of the physiologist that he will ultimately be able to measure the atomic movements upon 
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which vitality and thought depend”. This audacious sentence should take us back to Adolph 
Fick, a physiologist. Is life and consciousness purely a matter of chemistry? I leave it to the 
reader to choose! 
 
V - ALBERT EINSTEIN 
   

If you decide to teach basic diffusion, there are two ways to begin with either a 
phenomenological approach starting with Fick’s laws and their mathematical solutions, or a 
physical and atomistic one, by considering the “random walk” of the diffusing particles. While 
this last approach was rather straightforward in gases thanks to Maxwell’s kinetic theory of 
gases, the first one follows the historical development of diffusion studies in solid materials 
under a gradient of chemical potential as in Roberts-Austen experiments. People began to be 
concerned with an atomic scale approach first of all with the electrical conductivity of ionic 
crystals, and later with the Kirkendall effect which was observed in several interdiffusion 
systems. As diffusion processes depend on atom (ion) jumps whose occurrence is dictated by 
atomic defects (vacancies or interstitials), a description based on atom movements became 
compulsory12. 

The never-ending movement of particles in suspension in a fluid was discovered by a 
Scottish botanist, Robert Brown (1773-1858), who was observing with his microscope the  
“swarming” motion in the fluid of small particles extracted from living pollen grains13. He 
noticed that this motion was quite general in fresh pollen grains, as well as in dried ones. 
Brown’s experiments with organic and inorganic substances, reduced to a fine powder and 
suspended in water, revealed such motion to be a general property of matter in this state. He 
published these results in a paper “A brief Account of Microscopic Observations” in 1828 [22]. 
The name “Brownian motion” has been coined in honour of Brown to qualify the random walk 
of microscopic particles in suspension in a fluid. This was probably one of the origins of 
Maxwell’s kinetic theory of gases. It is pleasant to describe it in popular books (e.g. George 
Gamow’s renowned book [23]) as the wanderings of a “drunk sailor” (fig. 5)! 
 
 

   
                      Figure 5: Random walk according to Gamow [23] 
 
A careful investigation of Brownian motion was performed by Georges Gouy (1854-1926) [24] 
in a series of experiments with different kinds of particles in different kinds of fluids. He could 
demonstrate that this motion is independent of external forces (such as vibrations, light, 
magnetism, temperature gradient) and is more intense in less viscous fluids. Let us quote his 

                                           
12 For a history of the Kirkendall effect, see [41]. 
13 Brown was interested in the fecundation process of plants. 
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conclusion: “Brownian motion, unique among physical processes, makes visible the constant 
state of internal restlessness of bodies, in the absence of any external cause…. It is a weakened 
and remote testimony of thermal molecular motions”. 

The mathematical form of Brownian motion was derived a little bit later (in 1905) by Albert 
Einstein (1879-1955)14 [25]. He was the first to understand, contrarily to many scientists of his 
time, that the basic quantity was not the average velocity of the particles, but their mean square 
displacement in a given time <R2(t)>. Trajectories are such (see fig.3) that velocity is 
meaningless.  

Investigations on the Brownian movement was the subject of five papers by Einstein (1905-
1908)15. Einstein – at that time employed as an engineer at the Patent Office in Bern – got 
interested in the motion of small particles suspended in a liquid, as a “visible” testimony of the 
molecular kinetic theory of heat. At that time “atomic theory” was still an object of 
controversies: in 1895 the famous physico-chemist Wilhelm Ostwald (1853-1932) published an 
article16: “La déroute de l’atomisme contemporain”. Several other papers due to famous 
scientists of this time were discussing these topics (e.g. is Brownian motion violating Carnot 
principle?). These discussions will deserve a special paper. 

Einstein was studying the fluctuations of a thermodynamical system, which on the basis of  
the Boltzmann relation for entropy, could allow the experimental determination of the 
Boltzmann constant k  and therefore of the Avogadro constant. Some discussion of the black 
body radiation convinced Einstein of this possibility and, with his doctor thesis, he became 
interested in suspensions of particles in a fluid, which should give a “zoom” image of molecular 
movements. The “magic” idea was to apply the laws of solute molecules to bigger particles in 
suspension in a liquid. Einstein’s derivation is probably not a model of rigor: as a main 
assumption he balances the osmotic pressure due to solutes by the drag force due to the solvent 
viscosity. Whence for the steady state the relation for the diffusivity of solute molecules and, by 
extension, of suspended particles is:  
 

πηρ6
1

N
RTD =      (1) 

 
Here R and N are, respectively, the ideal gas constant and the Avogadro constant, η and ρ the 
solvent viscosity and the particle radius. 

In a second step Einstein describes the successive positions of a particle at time intervals τ, 
assuming that its movement is independent of the movement of all other articles and that τ is 
sufficiently small, but such that the movements of a single particle in two consecutive intervals 
of time τ can be considered as mutually independent. We here identify the two basic 
assumptions of the “Brownian motion”. Assuming that the displacement Δ of particles in a 
given time along a given direction obeys a symmetrical distribution function f(Δ) (actually a 
Gaussian, for sufficiently long times, as it is easily derived without new assumptions), Einstein 

                                           
14 According to the title of his paper “On the movement of small particles suspended in a stationary liquid…” 
Einstein was not aware of the details of the “Brownian motion” He explains:“It is probable that the movements to 
be discussed here are identical to the so-called “Brownian molecular motion”. However the information available to 
me regarding the latter is so lacking in precision, that I can form no judgment in the matter”. .After the publication 
of his paper, several scientists, specially Georges Gouy, informed him of their experimental observations of the 
Brownian motion, as he explains in the introduction of his second paper “On the theory of Brownian motion” 
published the next year. 
15 The 1905 paper is the most cited in the literature among the famous papers Einstein published in 1905. 
16 Ostwald’s speech “Die Überwindung des wissenschaftlichen Materialismus” was delivered in Lübeck , published 
in 1895, and shortly after translated in French (Revue générale des sciences pures et appliquées (15 Nov. 1895) 
pp.952-958 (O. Hardouin Duparc, private communication). 
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derives an equation for the space distribution of the particles that is just the second Fick’s law, 
with the diffusivity defined on a microscopic basis: 
  

∫
+∞

∞−

>Δ<=ΔΔΔ= 22

2
1)(

2
1

ττ
dfD .    (2) 

 
The mean displacement <R(t)> of a large number of particles is nil in the case of a truly random 
walk, in the absence of external “forces”. So it is the mean square which is the meaningful 
quantity. The fundamental relation above links a macroscopic quantity, i.e. the coefficient of 
diffusion, and a microscopic one, the mean square displacement. We can rewrite it in 3-D as: 
   

D = <R2>/6t.      (3) 
 

Eliminating the coefficient of diffusion between equations (2) and (3), Einstein obtains a 
relation for the “mean displacement” in a time t: L = √(2Dt), which should allow the 
experimental determination of Avogadro’s constant. A simple numerical calculation convinced 
Einstein that the order of magnitude should make the experimental verification quite possible.  

Relation (3) is frequently quoted as Einstein-Smoluchowski relation, as this last author 
published independently a year later a theory of the Brownian motion, based on a kinetic 
approach of the interactions and collisions between particles – quite different from the 
thermodynamic approach of Einstein [26]17. M. Smoluchowski (1872-1917) claims his “method 
allows a better understanding of the intimate mechanism of the phenomenon” – actually a true 
assertion! Nevertheless, Einstein was finally obliged to look at the details of the kinetics in order 
to derive the dependence of the viscosity on the volume fraction of particles. 
 
This first paper was followed a few months later by a more theoretical one, where Einstein 
studied not only the translational movement of suspended particles, but also the rotational one of 
spherical particles. Let us just quote the first lines of this paper: “Soon after the appearance of 
my paper on the movement of particles suspended in liquids, demanded by the theory of heat, 
Siedentopf … informed me that he and other physicists – in the first instance Prof. Gouy (from 
Lyon) – had been convinced by direct observations that the so-called Brownian motion is caused 
by the irregular thermal movements of the molecules of the liquid” [25].  
Later on (1908) Einstein published “a simple theory of this phenomenon” (Brownian motion), 
which “would be welcomed by … chemists”! In this paper, Einstein proposed, thanks to 
“simplified assumptions”, a straightforward derivation of his equation, the one which was later 
given in most elementary textbooks18.  
I shall mention the very elegant approach due to Paul Langevin (1872-1946) [32], which as he 
claimed is more direct than Einstein’s and simpler than Smoluchowski’s. He describes the 
motion of free (i.e. in the absence of external force) particles of mass m in the x direction, on the 
basis of the law of dynamics, with two force terms: a viscous resistance according to Stokes 
formula plus a fluctuating force F(t) independent of the velocity, which results from the 
molecular impacts on the Brownian particles,  such that its time average <F(t)> = 0:  
  
  m (dv/dt) = - 6 πηρ v + F(t). 
 

                                           
17 Smoluchowski arrived at the same formula as Einstein (eq. 1 and 4), with a numerical factor larger by √(64/27). 
Following Smoluchowski’s approach, Langevin [32] arrived at the Einstein formula without this factor. Moreover 
experimental results did not confirm this factor. 
18 The five Einstein papers on Brownian movement have been published in an English translation with several notes 
and comments in a book [25]. 
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By integration and taking the time average [with (1/2) m<v2> = (1/2)kBT], he ends up with: 
 
  <X2 (t)>  = (RT/N) (1/3πηρ) t,   (4) 
 
i.e. exactly Einstein’s formula for the steady state regime, which is realized after a very short 
time M/6πηρ. For shorter times, i.e. between two impacts, the motion would become ballistic 
with <X2> ~ t2 . Actually this time can be longer because of a kind of memory effect in the 
exchange of momentum between the molecules and the impacted particle.  

It was the privilege of Jean Perrin (1870-1942) to fully exploit Einstein’s theory, probably – I 
guess – following a suggestion of Langevin, definitively establishing the reality of atoms and 
molecules, a work for which he was granted the Nobel Prize in 1926 19. In a series of clever 
experiments, Jean Perrin and his students Chaudesaigues, Dabrowski, Bjerrum, Costantin [29] 
could verify Einstein’s relations, beautifully described in two chapters of his book “Les 
Atomes” [29], published in 1913, a book whose reading can still be warmly recommended. 
Perrin experiments just require a microscope, and a suspension in a liquid of small spherical 
particles (a few tenths of micron in diameter). From the observation of the distribution of 
particles in a vertical tube, J. Perrin concluded that “an emulsion is an atmosphere in miniature”, 
which verifies Einstein’s assumption. 

To check the Einstein-Smoluchowski formula, you just have to observe under the microscope 
the motion of a given particle and to mark its positions at regular time intervals. Jean Perrin 
describes enthusiastically “le prodigieux enchevêtrement de la trajectoire réelle” (fig. 6), “the 
prodigious entanglement of the real trajectory”. If we could plot the particle positions at time 
intervals hundred times smaller, every linear segment of the trajectory would take a polygonal 
shape as complicated as the whole trajectory, and so forth… We can see how in such a case the 
notion of a tangent to a trajectory vanishes”. What a premonitory description of a fractal line, 
fifty years before Benoît Mandelbrot’s work [30]! 
Jean Perrin checked that the particle displacements did exactly follow random laws. In two 
dimensions, i.e. in the plane of the observations under the microscope, the values of R(t) are 
distributed according to a Gaussian law with a well-defined standard deviation around the 
square root of <R2(t)> (fig. 6). According to J. Perrin again, “the randomness of the particle 
motion is definitely established”. 

In the same series of experiments, easy to reproduce with a simple experimental set-up, Jean 
Perrin succeeded in obtaining a quite remarkable result: the measurement of Avogadro’s 
constant according to another relation given in Einstein’s first paper (eq.4). The result, with N 
being some 1023 mol-1, is quite remarkable as it is an absolute determination, thanks to so simple 
an experimental tool – so far from our modern and sophisticated investigation machines! These 
simple experiments bore the definite proof of the existence of atoms against ambient scepticism. 
Let us quote Einstein: 
“The agreement of these considerations with experience together with Planck’s determination of 
the true molecular size from the law of radiation (for high temperatures) convinced the sceptics, 
who were quite numerous at that time (W.Ostwald, E.Mach, …) of the reality of atoms. The 
antipathy of these scholars towards atomic theory can indubitably be traced back to their 
positivistic philosophical attitude. This is an interesting example of the fact that even scholars of 
audacious spirit and fine instinct can be obstructed in the interpretation of facts by philosophical 
prejudices.” [31]. 
   

                                           
19 A biography of Jean Perrin is available in English: Marie Jo Nye: “Molecular Reality: a Perspective on the 
Scientific Work of Jean Perrin” (McDonald, London, 1972). 
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Fig. 6: Brownian motion, after Jean Perrin [29]: (above) an example of a trajectory and (below) 
statistical distribution of displacements (the circles correspond to fractions and multiples of the 
square root of the mean square displacement <R2 (t)>. 

 
Let us come back to Einstein’s papers. Unknowingly, Einstein was answering a question 

expressed the same year (1905) by the genetician-statistitian Karl Pearson (1857-1936) in a 
letter published in Nature, entitled “The problem of the Random Walk” – a question arising 
perhaps from the contagion due to mosquitoes [27]: 
“Can any of your readers refer me to a work wherein I should find a solution of the following 
problem, or failing the knowledge of any existing solution, provide me with an original one? 
…A man starts from the point O and walks z yards in a straight line, he then turns to any angle 
whatever and walks another x yards in a second straight line. He repeats this process n times. 
Inquire the probability that after n stretches he is at a distance between r and r + δr from his 
starting point O.” Pearson’s thought trajectory is perfectly illustrated by Jean Perrin’s ones (fig. 
6). The expression “random walk” was probably coined at that time, from the exact words 
Pearson used.  

Quite remarkably, the answer had been given five years before, by the young French 
mathematician Louis Bachelier (1870-1946) in his doctor dissertation [28]. But concerns of 
Bachelier were very far from Pearson’s; in his thesis entitled “Théorie de la Spéculation”, he 
was studying the fluctuations of stock-market prices as they vary up and/or down. Let us just 
translate the daily quotations in particle positions at equal time intervals: we are faced with a 
series of random numbers. Applying the central limit theorem, Bachelier describes these values 
through a Gaussian dispersion law. Calculating the probability P that the price be equal or larger 
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than a given value on a given day, he showed that P obeys  Fourier  equation. He describes the 
elementary process  as  a law of  diffusion of probability. As a fine mathematician, the second 
part of his derivation relates to the limit case where the variable is a continuous one and still 
obeys the same equation20. Later on this first model received considerable developments, as 
random walk is just the sum of random variables. A famous theorem on random walks on an 
integer lattice was derived in 1921 by G. Pólya (1887-1985)21 – a renowned mathematician who 
coined the name of the “central limit theorem” – giving a strong basis to the classical model. 

But let us remember that the movement of material particles in suspension in a liquid were 
the starting point of our speculations. It is interesting at this stage to mention some later 
developments of the theory of the random walk. Starting with the stricto sensu Brownian motion 
of a particle in suspension in a fluid, people got interested in the random walk of … anything. 
For mathematicians the expression “Brownian motion” is rather devoted to a mathematical 
object defined by extrapolation at the zero limit of the space and time increments: the trajectory 
becomes a “monster curve” with two paradoxical properties: continuous everywhere and 
nowhere derivable in a n-D space. Let us quote specially the mathematical theory of Norbert 
Wiener (1926) and the discussion of dispersion functions more realistic than the Gaussian one 
(Black, Scholes, Merton, 1973) [33].  
 

Physicists, busy in another world, wish to understand the basis of diffusion in solids, i.e. the 
movement of an atom (ion, molecule) on a lattice or in a disordered network). Just assuming a 
symmetrical probability distribution function (pdf) f(X,τ) of distances X that a particle walked in 
a given time τ, it easy to derive, as Einstein actually did in his last paper, the relation between 
the diffusivity D and <X2(τ)> or <R2(τ)>, (see eq. 3). Statistical basis of this assumption lies in 
the central limit theorem, which predicts that the pdf is a Gaussian with a standard deviation 
equal to 2<X2> as we underlined above. In crystals the situation is rather simple, since the jump 
lengths are fixed, randomness is due to jump directions. 
  

Further important developments of random walk models were due to physicists, statisticians 
and mathematicians. Let us mention the CTRW model (Continuous Time Random Walk) [33b, 
34]: in this model the time intervals between two jumps are no more fixed; they instead obey a 
probability distribution function (pdf). A complete model assumes two pdf’s, one for time 
intervals (or “waiting” times between two consecutive jumps), another one for jump lengths. 
When these pdf’s are Gaussian, Einstein’s formula remains valid: the square root of time law is 
obeyed. Further developments rely on other kinds of pdf’s: a power law distribution for time 
intervals leads to “subdiffusion”, i.e <X2> ~ tn, with n<1. Inversely a power law for lengths can 
lead to “superdiffusion” (the so called “Lévy flights”, fig.7) with n>1 [34]; in this case one can 
define a mean length but not an average, as the pdf does not have an upper limit. 
 

                                           
20 To get a doctor degree, it was compulsory to write a small dissertation on another topic proposed by the 
examination board. Quite remarkably, this “second dissertation”  discussed the small translational movements of a 
solid sphere immerged in a fluid, – a premonitory view [40]. 
21 In 1- and 2-D lattices, the probability that the particle will never reach any given point is nil. In a 3-D lattice, 
according to Pólya, this is no more true ( this probability has a finite value).  

Page 15 of 19 © 2006, J. Philibert
Diffusion Fundamentals 4 (2006) 6.1 - 6.19



  
Fig.7: One thousand steps: random (left) and Levy flights (right) 

 
 
VI - … AND LATER ON 
 

With these strong bases, Fick’s and Einstein’s equations, the way was open to new 
experiments in order to determine diffusion coefficients in solids and identify the atomic 
mechanisms in the frame of theoretical developments, specially in connection with models of 
random walks and departures from purely random movements (cf. the so-called “correlation 
factors”). Their study was specially suited for numerical simulations by the Monte-Carlo 
methods. But this history could be the subject of another paper. 

On the other hand there was still the need for better experimental techniques. I would just 
select two of them, for the sake of limiting the length of this paper: radioactive tracers for self 
(and hetero-) diffusion, and electron microprobe for interdiffusion.  

A critical stage in diffusion measurements was accomplished by György von Hevesy (1885-
1966), a Hungarian born and European personage, who worked in several famous places with 
celebrated scientists such as A. Rutherford, Henry Moseley or Niels Bohr. He was probably the 
first one to understand the usefulness of radioactive tracers as a tool in physics and chemistry. In 
1912, when he was working in Vienna at the Radium Institute, he used radioactive lead as a 
“radioindicator” – “radiotracer” in modern language – (210Pb, also called Radium D, 212Pb or 
Thorium B) in several studies, including Pb self-diffusion. Later on, in Vienna, Budapest or 
Copenhagen, he was using these radiotracers to study diffusion in salts, in liquid and solid lead, 
and even in vegetables. After the discoveries in 1934 of artificial radioactivity by Irene and 
Frederic Joliot-Curie and neutron activation by E. Fermi, he prepared several artificial radio-
elements to study the assimilation of phosphorus by plants or the metabolism of this element in 
rats. These studies are a little far away from our field, but because of this large range of 
applications, the Nobel Prize in Chemistry was awarded to Hevesy in 1943. An account of these 
studies was the object of a book “Radioactive Indicators” he published in 1946 [35]22. 
Radiotracers were largely used after World War in many various ways developed by a lot of 
scientists in several countries, because this technique allowed very accurate measurements of 

                                           
22 Hevesy’s works are not limited to radiotracer applications. He was the initiator of chemical analysis by X-ray 
fluorescence (the subject of a book published in 1932), and with Coster in 1923 he discovered the element hafnium 
(see also [35b]).  
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diffusion coefficients in most solids. Their importance is even underlined by their absence or 
rarity (and high price!) in a few important cases: aluminium, silicon and oxygen, to cite the 
more important. There was no good remedy to this lack until the mass spectroscopy analysis of 
stable isotopes (specially oxygen thanks to 18O) became available. 

Finally, I would like to mention another important tool which appeared in 1950-51, the 
electron probe microanalyser, built by the French physicist R. Castaing (1921-1998), an 
instrument in which a very fine beam of electrons excites characteristic X-rays. Chemical 
analysis on a micron scale was made possible by X-ray emission spectroscopy and showed its 
powerful applications with the diffusion profile through the multiphase couple Cu/Zn. [36].  A 
new way of investigating interdiffusion processes became rapidly available to a large number of 
laboratories thanks to the commercial production of the instrument.  

Later on other analytical tools were available allowing new diffusivity measurements [37-
39], specially secondary ion emission coupled with mass spectrometry and nuclear methods 
(NMR, Mössbauer spectroscopy, Rutherford back scattering, …), but the history of their 
development lies outside of the scope of the present paper. 
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NOTES 
 

1 – Fick’s publications have been collected in four volumes : Gesammelte Schriften (Würzburg, 
Stahel’sche VerlagAnstalt, (1903-1904) with an introduction by F. Schenk, an assistant of Fick: 
Zum Andenken an A. Fick, after [10]. 
A detailed biography of Fick, written by K.E. Rothschuh, was published in the “Dictionary of 
Scientific Biography”, Dir. Charles C. Gillispie, Scribners, New-York, 1970-1980. 

 
2 – Ref. [23] gives English translations of five papers  

- 1- Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung 
von in ruhenden Flüssigkeiten suspendierten Teilchen 

- On the movement of small particles suspended in a stationary liquid demanded by the 
kinetic molecular theory of heat.  

- Annalen. der Physik, 4. Folge, 17 (1905), 549-560 
- 2- Zur Theorie der Brownschen Bewegung,  
- On the theory of Brownian movement 
- Annalen der Physik, 19 (1906), 371-381. 
- 3- Eine neue Bestimmung der Moleküldimensionen 
- A new determination of molecular dimensions 
- Annalen der Physik, 4. Folge , 19 (1906), 289-306 
- Corrections, ibid. 34 (1911), 591-592 
- 4- Theoretische Bemerkungen über die Brownsche Bewegung, 
- Theoretical observations on the Brownian motion 
- Zeit. f. Elektrochemie, 13 (1907) 41-42 
- 5- Elementare Theorie der brownschen Bewegung 
- The elementary theory of the Brownian motion 
- Zeit. f. Elektrochemie, 14 (1908), 235-239. 

 
3 – Original German Einstein and Smoluchowski papers are published in 
Untersuchungen über die Theorie der Brownsche Bewegung .Abhandlung über die Brownsche 
Bewegung und verwandte Erscheinungen 
Von A. Einstein und M.von Smoluchowski 
Ostwalds  Klassiker der exakten Wissenschaften, Band 199. 
Verlag Harri Deutsch, 1997 
– Smoluchowski’s papers were also published in French: Librairie Académique Perrin, 3 vol.  
(1924-1928). 
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