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Abstract 

Hydrogels are biocompatible polymeric materials that are becoming increasingly 

important in biomedical applications, such as drug delivery and tissue engineering. 

Understanding of small-molecule diffusion in these systems is important in the contexts 

of controlled drug release; transport of nutrients (e.g., O2 and growth factors) into the 

gel; and transport of cellular waste out of the gel. In this work, the diffusion coefficient 

of the aromatic amino acid phenylalanine (Phe) in non-crosslinked and crosslinked 

poly(vinyl alcohol) (PVA) hydrogels was measured using two NMR diffusion methods, 

CONVEX and the standard pulsed-gradient spin-echo (PGSE). Pulsed field-gradient 

(PFG) NMR measurements provide the advantage of measuring the molecular self-

diffusion coefficient directly and without having to rely on the physical release of the 

solute, but are often difficult to perform in tissues and hydrated polymers due to a large 

water signal. CONVEX is a recently proposed diffusion method that alleviates this 

problem by means of NMR excitation-sculpting water suppression. In the measurements 

presented here, CONVEX results were superior to those from PGSE measurements with 

respect to every test applied, and enabled a reliable comparison of the diffusion 

coefficients of Phe in crosslinked and non-crosslinked hydrogels. The value of D(Phe) 

was smaller in the non-crosslinked hydrogel than in the crosslinked gel; this finding is 

discussed in the paper.  
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Introduction 

Hydrogels are insoluble, water-swellable networks that can be made from a variety of 

hydrophilic polymers. Poly(vinyl alcohol) (PVA) hydrogels are becoming increasingly 

important in a wide range of biomedical applications due to their “tissue-like” 

properties, high hydrophilicity, the ease of controlled crosslinking, and the absence of 

low molecular-weight post-production by-products [1-5]. An understanding of solute 

and water transport within these materials is crucial for the rational design of successful 

candidates for practical applications such as drug delivery and tissue engineering [6-8].  

NMR enables the non-invasive measurement of molecular diffusion over a wide range 

of time scales (from milliseconds to seconds) [9-11]. For heterogeneous materials, 

microstructural information can often be obtained by studying the dependence of the 

apparent diffusion coefficient on the observation time [12-14].  

Proton-based diffusion measurements are the most common, due to the natural 

abundance and high NMR receptivity of the 1H nucleus. However, in systems with high 

water content (such as hydrogels), a number of obstacles render 1H NMR diffusion 

measurements of low-concentration solutes technically complicated. The large water 

signal can produce baseline distortions or ghost images, can limit digitisation of the 

signal of interest, and can result in significant NMR radiation damping effects [15]. 

These factors can severely limit the ability to measure accurately diffusion coefficients 

of low-concentration solutes in non-deuterated aqueous systems. Substitution of H2O 

with D2O is a commonly used approach for reducing the adverse effects of the dominant 

water signal, but in biological or biocompatible systems, solvent replacement can be 

either expensive or undesirable. In this case, NMR solvent suppression is often required 
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for quantitative measurements of small solute peaks [15]. While crude techniques such 

as presaturation tend to cause baseline and phase distortions, a number of other 

techniques have been proposed that enable the suppression of the solvent peak without 

introducing artifacts in the acquired spectra [16-21]. CONVEX [20] (see Fig. 1) is a 

recently proposed NMR diffusion experiment incorporating double-echo excitation 

sculpting [22]. It is a particularly effective technique for solvent suppression that 

produces spectra with pure phase and undistorted baseline.  

 

Figure 1. CONVEX pulse sequence [20]. The two bracketed intervals represent two 
spin-echo blocks. Non-selective π pulses (open rectangles) are centered within the spin-
echo blocks. Selective π pulses (open curves) are applied at the resonance frequency of 
the water signal, and their power is calibrated for optimal water suppression at a small 
(but non-zero) gradient amplitude. The amplitudes of the gradient pulse pairs (hatched 
rectangles) are inversely related to the respective echo times: g2:g1 = ∆1:∆2 = C.   

 

An understanding of the diffusion behaviour of amino acids in hydrogels is important in 

a number of contexts. In solid state protein synthesis, for example, the diffusion of 

functionalised amino acids is often the rate-limiting step [23]. The swelling behaviour 

of hydrogels has been shown to be influenced, in a pH-dependent manner, by some 

aromatic amino acids including phenylalanine [24]. The effective diffusion coefficient 

of a wide range of amino acids has been used as a measure of the strength of interaction 

between polymer networks and the guest molecules [25]. The permeability of hydrogel 

membranes to small molecules, proteins and water has been measured in the context of 

artificial skin and corneal prostheses [26].  
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In this study we measure the diffusion of phenylalanine (Phe) in non-crosslinked and 

crosslinked PVA hydrogels. Phenylalanine was selected as it is an amino acid with an 

aromatic side-chain which gives rise to a well-resolved signal envelope in the NMR 

spectrum that is separated from that of the hydrogel (see Fig. 2). We show that 

CONVEX is effective for measuring small-molecule diffusion in hydrogels; it produces 

undistorted diffusion spectra and yields diffusion plots that are linear over a greater 

attenuation range than the standard pulsed-gradient spin-echo (PGSE) technique.  

 

Figure 2. Sample spectra and the results of data fitting for the non-crosslinked sample: 
(A) sample PGSE spectrum; (B) curvilinear fit and (inset) linearised Stejskal−Tanner fit 
of the PGSE data; (C) and (D), same as (A) and (B), but for the CONVEX data. The 
phenylalanine resonance envelope is centered at ~7.3 ppm, water is at 4.7 ppm, and the 
main PVA resonances are centered at ~3.9 (CH-OH) and 1.5 ppm (CH2). Other 
resonances are due to the photoinitiators, acrylate functional groups, and impurities. 
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Overview of PGSE and CONVEX   

PGSE has long been the standard NMR method for measuring molecular diffusion [27-

30]. The method is based on sensitising the sample to molecular translational 

displacement by the application of magnetic field-gradient pulses. Molecular diffusion 

results in the attenuation of the refocused echo signal whose relative amplitude in 

isotropic solution is given by [28]:  

 ( ) ( )
2

30
D g

S g S e
2 2 δ⎛ ⎞− γ δ ∆−⎜ ⎟

⎝ ⎠= ,                                     (1) 

where D is the diffusion coefficient, γ is the magnetogyric ratio, g is the applied 

magnetic field-gradient strength, ∆ is the time interval separating the gradient pulses 

(the effective diffusion interval) and δ is the gradient pulse duration. For isotropic 

diffusion, the self-diffusion coefficient can be obtained by non-linear fitting of Eq. (1) 

to the data, or by calculating the negative slope of the regression line of the Stejskal-

Tanner plot, which is obtained by plotting the natural logarithm of the relative signal 

intensities as a function of 2 2 2
PGSEb g ( / 3)δ δ= γ ∆ − . 

The CONVEX pulse sequence is shown in Fig. 1. Each bracketed interval is a spin-echo 

block that includes two gradient pulses (δ), a hard 180o pulse (πy), and a soft 180o pulse 

(π−y). The water peak is placed on-resonance and experiences both the hard and the soft 

180o pulses, with the net rotation angle being zero. Off-resonance peaks experience only 

the hard 180o pulses. The on-resonance water signal is therefore not refocused by the 

spin-echo block. As shown by Hwang and Shaka [22], a double application of this block 

(double-echo excitation sculpting) results in a suppression efficiency that is the square 

of that of a single spin-echo. Even more importantly, it produces a NMR spectrum that 
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is free of phase or baseline distortions. The duration of the soft 180o pulse is usually 

selected to minimize the spectral width of the suppressed region, and its power level is 

optimized to produce the largest attenuation of the suppressed signal.   

In CONVEX, double-echo excitation sculpting water suppression is combined with an 

NMR diffusion measurement. The two functions rely on the same spin-echoes; 

therefore, the same pulse sequence is used to provide water suppression and to measure 

the diffusion attenuation of off-resonance signals [20]. The amplitudes of the gradient 

pairs g1, g2 and the diffusion intervals ∆1, ∆2, which appear in Fig. 1, are related as g2:g1 

= ∆1:∆2 = C. In a multi-FID diffusion measurement, the time intervals and C are kept 

constant; g1 is incremented; and g2 is incremented as Cg1. The diffusion attenuation of 

off-resonance peaks is then given by  

 ( ) ( )
( )

2
2
1 1

11
30
CD g C

S g S e
2 2 ⎡ ⎤δ( + )

− γ δ ∆ + −⎢ ⎥
⎢ ⎥⎣ ⎦= .                                  (2)                             

The diffusion coefficient is determined from the non-linear fit of Eq. (2) to the data, or 

as the negative slope of the Stejskal-Tanner plot where 

2 2 2 2
CONVEX 1 1b g [ (1 ) (1 ) / 3]C Cδ δ= γ ∆ + − + .  

 

Materials and Methods 

PVA preparation 

PVA with a weight-average MW of 14,000 g/mol and 83% hydrolysis was used as 

supplied by Clariant. Hydrochloric acid and sodium hydroxide (BDH Chemicals, 

Kilsyth, Victoria, Australia) were also used without further purification. The 

photoinitiator, 2-hydroxy-1-[4-(hydroxyethoxy) phenyl]-2-methyl-1-propanone, 
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(Irgacure 2959, Ciba Specialty Chemicals, Melbourne, Victoria, Australia) was used as 

supplied at a 0.1 wt% concentration in all formulations. N-(2,2-dimethoxyethyl) 

acrylamide was synthesised in house [31].  

An acrylamide-modified PVA was synthesized by the reaction of the pendant alcohol 

groups on the PVA with N-(2,2-dimethoxyethyl) acrylamide in an acidic aqueous 

environment [32]. A 40 wt% solution of N-(2,2-dimethoxyethyl) acrylamide in water 

(calculated to yield 7 acrylamides per PVA macromer) was added to a 20 wt% solution 

of PVA in water with stirring. Hydrochloric acid (37%) was added and the reaction 

allowed to proceed for 22 hours at room temperature. The solution was adjusted to pH 7 

with sodium hydroxide and the excess salts were removed by ultrafiltration (Millipore, 

Amicon 10,000 MW cutoff filter, Bedford, MA). The mixture was freeze-dried and 

stored at room temperature in the dried state. 

Sample preparation 

Lyophilised Phe (BDH Chemicals Ltd, Poole, England) was dissolved in  distilled H2O 

to yield a 1 wt% solution. Functionalized PVA was re-dissolved in this solution, at 80 

oC, to yield a 20 wt% PVA solution. Upon cooling, the photoinitiator, Irgacure 2959, 

was dissolved in the solution at a concentration of 0.1 wt%. 

The final solution was loaded into 5mm NMR tubes, with magnetic susceptibility 

matched to that of H2O (Shigemi, Allison Park, PA), to a sample height of 1 cm. 

Photopolymerisation (crosslinking) was achieved by exposing the sample-containing 

region of the tubes to an ultraviolet light source (Green Spot UV, UV Source, Torrance, 

CA) for 90 sec on two sides. 

© 2006, D. Regan
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NMR 

All experiments were conducted on a Bruker DRX-400 NMR spectrometer equipped 

with a single-axis (z) diffusion probe and gradient amplifier capable of delivering a 

maximum field-gradient of 9.8 T m-1. Experiments were conducted at 20 oC, calibrated 

using the chemical shift of the 1H ethylene-glycol doublet [33]. Gradients were 

calibrated using the known diffusion coefficient of water at 20 oC [34].  

Diffusion measurements were made using PGSE and CONVEX pulse sequences as 

previously described [20]. For PGSE experiments, trapezoidal gradient pulses with 

ramp times τ = 0.1 ms and duration δ = 1 ms were used. For CONVEX experiments, 

selective Gaussian soft-π pulses of 2 ms duration, with power optimised for maximum 

water suppression, were used. For all experiments, rf pulse separation was ∆ = 5 ms, 

and gradient strength was varied between 0 and 5 T m-1 in 32 steps with 4 transients per 

spectrum and a 15 ms repetition delay.  

Data analysis 

Integration of spectral peaks was performed using the Bruker-supplied XWin-NMR 

software. Data were plotted and diffusion coefficients calculated by both non-linear and 

linearised fitting according to Eq. (1) for PGSE and Eq. (2) for CONVEX. The fitting 

was done using Origin Pro software (OriginLab, Northampton, MA); the standard errors 

and the residuals were obtained from the fitting routines.  

For each set of results, the accuracy of integration of the NMR signal, ∆y, was assumed 

to be uniform, i.e., independent of the amplitude of the signal. This accuracy was 

determined for each data set from the respective histograms of the residuals of the 

curvilinear fits of the non-transformed data (signal vs gradient strength). For the 
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linearised Stejskal−Tanner plots, the error envelopes for the logarithmic data were 

calculated as ∆(lny) = ∆y/y, in accordance with the standard expression for the 

propagation of random errors [35].   

 

Results 

Diffusion coefficients of Phe were measured in non-crosslinked and crosslinked PVA 

hydrogel samples using both standard spin-echo (PGSE) and CONVEX techniques. 

Representative results are shown graphically in Figs. 2 and 3; a comprehensive 

quantitative summary is presented in Table 1. 

 

 

 

 

 

 

 

 

 

Figure 3.  Fitting residuals and 
error envelopes for the linearised 
fit of the PGSE data (A) and 
CONVEX data (B). 
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Table 1. Measured diffusion coefficients of phenylalanine in non-crosslinked (NCL) 
and crosslinked (CL) PVA, calculated from untransformed (DU) and linearised (DL) 
data, together with the standard error (SE) and sum of squared residuals (SSR) 
associated with the fits.  

 
Sample Pulse 

Sequence 

DU × 1010 

m2 s-1 

SE × 1012 SSR DL × 1010 

m2 s-1 

SE × 1012 SSR 

PGSE 2.00 4.0 0.015 2.20 2.3 0.13 
NCL 

CONVEX 2.27 0.8 4.2×10−4 2.28 1.0 0.026 

PGSE 2.13 3.9 0.012 2.30 1.6 0.064 
CL 

CONVEX 2.45 1.1 7.4×10−4 2.44 0.7 0.013 

 

 

The diffusion coefficient of Phe in pure water at a concentration of 1 wt % was 

measured using CONVEX, and a value of (5.70 ± 0.02) × 10-10 m2 s-1 was obtained.  

The diffusion coefficient of water was measured in the non-crosslinked and crosslinked 

hydrogels using PGSE, and values of (1.23 ± 0.01) × 10-9 m2 s-1 and (1.16 ± 0.01) × 10-9 

m2 s-1 were obtained, respectively. 

Figure 2 shows representative NMR spectra and the fits of the echo attenuation for Phe, 

from both untransformed and linearised data, for the non-crosslinked hydrogel. Figure 3 

shows the distribution of the linearised fit residuals of the PGSE and CONVEX results 

for the non-crosslinked sample.  

Table 1 shows the measured diffusion coefficients of Phe, their respective standard 

errors, and the sums of squared residuals obtained for the non-crosslinked and 

crosslinked hydrogel samples using both standard PGSE and CONVEX. From the Table 

it is evident that: 1) there was a closer agreement between diffusion coefficients of Phe 
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obtained using non-linear and linear fitting from CONVEX than from PGSE, in both 

non-crosslinked and crosslinked samples; 2) the standard errors were more than a factor 

of 2 (linear fit) and 3 (non-linear fit) larger for PGSE than for CONVEX, in both 

samples; 3) the sums of the squared residuals for the PGSE data were larger by a factor 

of approximately 5 (linear fit) and 20 (non-linear fit) than for CONVEX, in both 

samples. 

It can also be seen from Table 1 that the diffusion coefficients obtained using CONVEX 

were approximately 5% (linear fit) and 15 % (non-linear) larger than those obtained 

using spin-echo, for both samples. However, independent of the measuring method, the 

diffusion coefficients of Phe were 5-10% larger in the crosslinked sample than in the 

non-crosslinked sample. 

Longitudinal relaxation of hydrogel protons was measured in both samples from the 

peaks at 3.9 ppm (assigned as tertiary PVA protons adjacent to hydroxyl/ester oxygens); 

2 ppm (assigned as methyl groups of the acetate); and 1.5 ppm (assigned as secondary 

protons of the PVA chains) [36,37]. In both samples, the longitudinal relaxation of each 

of the three signals deviated markedly from single-exponential behaviour, but there was 

no significant dependence on the crosslinking state of the hydrogel.  

 

Discussion 

Figure 2 provides a qualitative comparison of the results obtained from PGSE and 

CONVEX. Table 1 provides a direct comparison of the values obtained for the diffusion 

coefficients and the errors associated with the fits used to calculate these values. 

CONVEX spectra (Fig. 2C) had flatter baselines and less phase distortion than PGSE 
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spectra (Fig. 2A). The improvement afforded by CONVEX is also qualitatively 

apparent from the non-linear and linear regression plots; in the latter, the linearised 

CONVEX data display visual linearity over a greater attenuation range than the PGSE 

data. It should be noted, however, that CONVEX solvent suppression is frequency-

selective and has the capacity to suppress peaks lying very close to, or overlapping with, 

the solvent peak. In systems where this is the case, alternative water suppression 

approaches in diffusion measurements include frequency-independent techniques such 

as double-quantum filtering [21].  

Table 1 shows that while diffusion coefficients calculated from CONVEX data were 

independent of the fitting method (non-linear or linear), those calculated from PGSE 

data differed significantly. The errors associated with the fits were also significantly 

larger for PGSE than for CONVEX. Several observations can be made from the plots of 

residuals of linearised fits shown in Fig. 3. The normalized standard error of signal 

integration, determined as the standard deviation of the histogram of the residuals of the 

curvilinear fit, was 0.021 for the PGSE data and 0.0037 for the CONVEX data. (These 

errors are given relative to the amplitude of the signal at g → 0.) Therefore, the standard 

error associated with the integration of Phe peaks was approximately a factor of 5 

smaller in CONVEX spectra than in those from PGSE. This is reflected in the relative 

spread of the error envelopes shown in panels A and B. 

Secondly, the magnitudes of the residuals of the linearised PGSE fit are markedly non-

random, and their magnitudes do not behave as predicted by the respective calculated 

error envelope. The Wald-Wolfowitz runs test [35] placed the observed number of 

positive/negative runs (r = 3) at 4.8 standard deviations from the expected number of 

runs if the errors were random. Therefore, the linearized PGSE plot systematically 
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deviates from a straight line. The residuals in the CONVEX plot appear to be less 

strongly correlated; the magnitudes of their residuals are in good agreement with the 

calculated error envelope; and the observed number of runs (r = 12) is only 1.3 standard 

deviations away from that expected for randomly distributed errors. The distribution of 

errors was similar for the crosslinked hydrogel sample. Therefore, it can be concluded 

that the CONVEX diffusion decay curves were subject to significantly smaller 

systematic deviations than the PGSE decay curves. It can be inferred from this analysis 

that PGSE provided underestimated values of the diffusion coefficients of Phe in non-

crosslinked and crosslinked hydrogels. 

Diffusion coefficients obtained by both PGSE and CONVEX were higher in the 

crosslinked sample than in the non-crosslinked sample. From geometric considerations 

alone this results appears counterintuitive. Moreover, the apparent macroscopic 

viscosity of the crosslinked hydrogel was greater than that of the non-crosslinked 

sample. In particular, the non-crosslinked hydrogel flowed as a viscous liquid, while the 

crosslinked hydrogel possessed some degree of elasticity. Contrary to the results 

observed for Phe, the diffusion coefficient of water was smaller in the crosslinked 

sample than in the non-crosslinked one. This phenomenon could be due to a stacking 

interaction between the phenyl ring of the amino acid and the aromatic acetophenone 

groups of the photoinitiator. Another mechanism could be a hydrophobic association 

between the carboxyl groups of phenylalanine and the side-chain acrylamide groups. In 

the crosslinked polymer, the carbon−carbon double bonds of the acrylamide groups are 

replaced with single bonds, which would result in the acrylamide−phenylalanine 

association being diminished. However, these explanations should be treated as working 
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hypotheses, and further experiments will be necessary in order to determine 

conclusively the physical mechanism.  

 

Conclusions 

The ability to measure accurately the diffusion coefficients of small molecules in 

hydrogels is important for many practical applications of these materials. We have 

applied two diffusion techniques, CONVEX and PGSE, to the measurement of the 

diffusion coefficient of the aromatic amino acid phenylalanine in non-crosslinked and 

crosslinked PVA hydrogels. CONVEX addresses several of the shortcomings of 

standard PGSE methods and provides a flatter baseline, less phase distortion, and more 

linear Stejskal-Tanner plots than PGSE. This enables the determination of the diffusion 

coefficient of phenylalanine with relative accuracy better than 1%, yielding a simple, 

rapid and accurate method for measuring small-molecule diffusion in hydrogels. In the 

context of biomedically relevant hydrogels, this method is particularly applicable to 

aromatic low molecular-weight compounds but could also be used for measuring 

diffusion of large, aromatic-rich molecules. 
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