

Effects of novel non-bloat legumes on C and N pools in pasture systems

Effects of grazing on SOC

- Grazing in pastures:
 - Increases SOC stock
 - stimulates aboveground production, root respiration and root exudation rates
 - increases tillering & rhizome production

(Schnabel et al., 2001; Schuman et al., 2002)

- Overgrazing
 - decreases SOC grasslands/pastures
 - decreased primary production and increased soil erosion

(Su et al., 2005)

Pasture rejuvenation mechanisms

- Degraded pastures can be rejuvenated by:
 - Fertilization at soil-test recommended rates
 - Mechanical aeration
 - Direct/sod-seeding
 - Including legumes

Conventional vs. sod-seeding

Potential implications:

- ✤ loss of wildlife habitat,
- erosion, N leaching,
- $\boldsymbol{\boldsymbol{\diamond}}$ decreased in microbial diversity, and
- re-salinization on marginal land

Ioss of SOC

Sod-seeding of different legumes may affect soil C and N stocks.

My PhD Research

Impacts of forage quality improvement strategies on GHG emissions and C sequestration.

Short-term C and N dynamics study

Research Objective

To determine the impacts of novel non-bloat legumes on C and N dynamics

(Modified from Rumpel et al., 2015)

Study Site Layout

Today's presentation

N₂-fixation study Methodology

- Phytotron study.
- RCBD study in pots with soil moisture maintained at 80% of field capacity.
 - ✤ Alfalfa (Algonquin)
 - Cicer Milkvetch (Veldt)
 - Cicer Milkvetch (Oxley II)
 - Sainfoin(Common)
 - Sainfoin(Mountainview)
 - Meadow bromegrass (Armada) reference sp.

- Two months following seeding, plants were thinned to six plants per pot.
 - ¹⁵N-enriched NH₄⁺NO₃⁻ (10-atom % excess) was applied at a rate of 5 kg N ha⁻¹.
- Four months after enrichment, plants were harvested from the soil level.
 - ✤ %Ndfa and total N-fixed were estimated.

$$\%Ndfa = 1 - \frac{(atom\%^{15}Nexcess_{fixingtree})}{(atom\%^{15}Nexcess_{nonfixingtree})} \times 100\%$$

All data were analyzed using ANOVA by the PROC MIXED procedure

N₂-fixation study Results

- Alfalfa fixed significantly more atmospheric N₂ than the other species in all the plant parts measured.
 - Alfalfa > Cicer Milkvetch > Sainfoin
 %Ndfa: 92% vs 87% vs 81%
 g N pot⁻¹: 5.3 vs 3.4 vs 1.7
 kg N ha⁻¹ fixed: 200 vs 128 vs 65
- No significant difference between cultivars of sainfoin.

C and **N** dynamics Methodology

- Soil sampling: 0-15 cm, 15-30 cm, 30-60 cm and 60-100 cm in 2017 and 2018.
 - ✤ Total soil organic carbon (SOC) using LECO C632 after acid pre-treatment.
 - Water extractable C and N (DOC and TDN) determined in 5mM CaCl₂ extract.

Soil Organic Carbon Results

- No significant effects of legume type or varieties on total SOC.
- ✤ As expected, slope and depth had significant effect on SOC.
 - upper >> Lower; Surface >> subsurface (70 % SOC within 0-30 cm)

Water-extractable Organic Matter

- Soil under alfalfa had highest water extractable C and N on upslopes, milkvetch higher on mid.
- Both slope position and soil depth had significant effects on DOC and TDN.
 - upper >> Lower; Surface >> subsurface

Discussion

- Introduction of legumes did not significantly affect total SOC:
 - C status of soil before sodseeding was high

* Short period of the experiment

detect management effects (WEOM/LFOM).

 N₂ fixation, easily decomposable organic matter (WEOM) higher under alfalfa than novel non-bloat legumes.

Similar C and N values compared to previous studies.

- efficiency of C and N cycling due perennial legumes.
- ✤ similar inputs and outputs.
- ✤ Reverse trend in SOC/WEOM
 - Upper slope >> Lower slope

Continued measurements over longer time would be useful to reveal any SOM changes.

Conclusion and Take Home Message

- ✤ Alfalfa fixed more atmospheric N than Cicer Milkvetch and Sainfoin.
- ✤ Cicer Milkvetch and Sainfoin are viable alternatives to alfalfa for pasture rejuvenation:
 - ✤ No adverse impact on C and N pools compared to alfalfa.
 - Efficient protein utilization (absence of frothy bloat).
 - Considering the whole system, the non-bloat legumes (milkvetch and sainfoin) may have lower GHG emission footprint due to:
 - Reduced enteric methane (CH_4) emission.
 - Lowered soil GHG (CO_2 , N_2O , and CH_4) emissions.
 - Efficient protein utilization.
 - ✤ No negative impact on soil C and N stores and cycling.
 - Preliminary ranking for pasture rejuvenation and lower GHG footprint:
 - Cicer Milkvetch > Sainfoin > Alfalfa

Future Studies

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Acknowledgements

Funding from Agriculture Greenhouse Gases Program (AGGP).

Department of Soil Science & College of Agriculture and Bioresources.

Scholarships and Bursaries.

Supervisors: Diane J. Knight and Jeff Schoenau.

Committee members: Derek Peak, Melissa Arcand, Bart Lardner and Kate Congreves.

Lab groups 5E19, 5C21 and AGGP II project group members.

Cuestions?

Carbon sequestration in progress

Mid

Bulk density

Lower

Table 1: ANOVA on the effects of Slope position (SLP), Legume varieties (LEG) and their combined interactions on bulk density and short-term C and N changes in the 2017 and 2018 growing seasons in a pasture system sod-seeded with novel non-bloat legumes.

¹ Analysis of variance								
			Water-extractable OM		Light Fraction			
	Bulk density	SOC	DOC	DTN	С	Ν		
	Mg m ⁻³	Mg C ha ⁻¹	mg kg ⁻¹		Mg ha ⁻¹			
² SLP	NS	NS	NS	*	NS	NS		
³ LEG	NS	***	****	****	NS	NS		
SLP x LEG	NS	NS	NS	NS	NS	NS		

¹Asterisk indicates significant difference between treatment means according to Tukey's HSD (P < 0.10; *P<0.10, **P<0.01, ***P<0.001, ****P<.0001; NS, not significant at P<0.10). ²Slope position refers to upper, mid and lower slope positions. ³Legume refers to the annual non-bloat cultivars and alfalfa seeded in the paddocks. Data were pooled across slope position (n = 9) and for each individual treatment (slope position; n = 9 and legume; n = 3).

Table 2: ANOVA on the effects of Soil depth (DEP), Legume varieties (LEG) and their combined interactions on bulk density and short-term C and N changes in the 2017 and 2018 growing seasons in a pasture system sod-seeded with novel non-bloat legumes.

¹ Analysis of variance								
			Water-extractable OM		Light Fraction			
	Bulk density	SOC	DOC	DTN	С	Ν		
	Mg m ⁻³	Mg C ha ⁻¹	mg kg ⁻¹		Mg ha ⁻¹			
² DEP	NS	NS	**	****	-	-		
³ LEG	****	****	****	****	NS	NS		
DEP x LEG	NS	NS	NS	NS	-	-		

¹Asterisk indicates significant difference between treatment means according to Tukey's HSD (P < 0.10; *P<0.10, **P<0.01, ***P<0.001, ***P<.0001; NS, not significant at P<0.10). ²Soil depth refers to 0-15 cm, 15-30 cm, 30-60 cm and 60-100 cm, based on the parameter. ³Legume refers to the annual non-bloat cultivars and alfalfa seeded in the paddocks. Data were pooled across soil depth (n = 9) and for each individual treatment (soil depth; n = 9 and legume; n = 3).

Table 3: ANOVA on the effects of Slope position (SLP), Legume varieties (LEG) and their combined interactions on bulk density and short-term C and N changes in the 2017 and 2018 growing seasons in a pasture system sod-seeded with novel non-bloat legumes.

¹ Analysis of variance								
			Water-extractable OM		Light Fraction			
	Bulk density	SOC	DOC	DTN	С	Ν		
	Mg m ⁻³	Mg C ha ⁻¹	mg kg ⁻¹		Mg ha ⁻¹			
² SLP	NS	NS	NS	0.0402	NS	NS		
³ LEG	NS	0.0017	<.0001	<.0001	NS	NS		
SLP x LEG	NS	NS	NS	NS	NS	NS		

¹Asterisk indicates significant difference between treatment means according to Tukey's HSD (P < 0.10; *P<0.10, **P<0.01, ***P<0.001, ****P<.0001; NS, not significant at P<0.10). ²Slope position refers to upper, mid and lower slope positions. ³Legume refers to the annual non-bloat cultivars and alfalfa seeded in the paddocks. Data were pooled across slope position (n = 9) and for each individual treatment (slope position; n = 9 and legume; n = 3).

Table 4: ANOVA on the effects of Soil depth (DEP), Legume varieties (LEG) and their combined interactions on bulk density and short-term C and N changes in the 2017 and 2018 growing seasons in a pasture system sod-seeded with novel non-bloat legumes.

¹ Analysis of variance								
-			Water-extractable OM		Light Fraction			
	Bulk density	SOC	DOC	DTN	С	Ν		
	Mg m⁻³	Mg C ha ⁻¹	mg kg ⁻¹		Mg ha ⁻¹			
² DEP	NS	NS	0.0159	<.0001	-	-		
³ LEG	<.0001	<.0001	<.0001	<.0001	NS	NS		
DEP x LEG	NS	NS	NS	NS	-	-		

¹Asterisk indicates significant difference between treatment means according to Tukey's HSD (P < 0.10; *P<0.10, **P<0.01, ***P<0.001, ****P<.0001; NS, not significant at P<0.10). ²Soil depth refers to 0-15 cm, 15-30 cm, 30-60 cm and 60-100 cm, based on the parameter. ³Legume refers to the annual non-bloat cultivars and alfalfa seeded in the paddocks. Data were pooled across soil depth (n = 9) and for each individual treatment (soil depth; n = 9 and legume; n = 3).