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ABSTRACT 

The pathogenesis of the bovine environmental pathogen Streptococcus uberis 

has been extensively studied, but it remains incompletely understood. The organism 

produces a surface protein capable of binding lactoferrin (Lbp), originally identified as 

an M-like streptococcal protein. We hypothesized that Lbp may play a role as a 

virulence factor. Structural similarity and amino acid sequence homology of Lbp to M-

related proteins of Group A streptococci suggested a possible functional similarity 

between Lbp and M-like proteins, which are involved in evasion of host antibacterial 

defenses, adhesion to host epithelial cells and intracellular invasion by the bacteria. 

Alternatively, high-affinity binding of the abundant iron-chelating component of the 

host milk (lactoferrin) suggests that Lbp of S. uberis might play role in iron acquisition 

by the bacterium. Finally, Lbp might serve as a receptor for signal transduction in the 

bacterial cell or alter host cell signalling during infection, when the bacteria with 

surface-bound lactoferrin adhere to or invade the host epithelial cells.  

In order to test the hypothesis that Lbp is a virulence factor of S. uberis, a 

mutant strain of S. uberis unable to express the lactoferrin-binding protein was 

generated and the role of the protein was studied in comparative analyses of the mutant 

and the parent strains.  

The results of our study indicated that unlike many streptococcal M-like 

proteins, the lactoferrin-binding protein of S. uberis did not appear to play a role in 

overcoming host innate and acquired immune antibacterial responses. Both S. uberis 

and its lbp mutant were ingested by bovine blood neutrophils and were similar in their 
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ability to survive in fresh bovine blood regardless of the presence either of lactoferrin or 

of anti-Lbp antibodies.  

Lbp did not promote bacterial adhesion to host epithelial cells and it was not 

essential for the internalization of the bacteria by host epithelial cells, since both S. 

uberis and lbp mutant were found capable of adhering, invading, intracellular survival 

and intracellular growth when the bacteria were co-cultured with bovine mammary 

epithelial cells. No significant differences in numbers of adherent or internalized 

bacteria per host cell were found between wild type and lbp mutant cells.  

S. uberis requirements for iron were determined to be low and Lbp was not 

essential for iron acquisition by the organism from iron-saturated lactoferrin.  

To study the role of Lbp in bacterial virulence during infection of bovine 

mammary glands, dairy cows in the second half of their lactation periods were 

challenged with the wild type S. uberis and with the lbp mutant. The results of in vivo 

infection suggested that expression of Lbp by the bacteria was not essential for 

colonization of the host mammary gland and that expression of Lbp was not associated 

with differences in severity of mastitis or with different levels of shedding of the 

bacteria by infected animals.  

To study the role of Lbp in signal transduction, differential bacterial cellular 

protein phosphorylation in the presence of bovine lactoferrin was analyzed. Since no 

differences in protein phosphorylation profiles were detected between S. uberis and the 

lbp mutant, it was concluded that Lbp is probably not a part of a classical bacterial two-

component signalling pathway. However, we demonstrated that the expression of host 

genes potentially involved in cell morphogenesis, motility and signal transduction was 
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regulated depending on the expression of Lbp by S. uberis. Down-regulation of the 

expression of selected host genes was verified by quantitative reverse transcription 

PCR. Putative iron responsive elements were identified in mRNA of several of these 

genes. Down-regulation of these genes in the cells overloaded with ferric iron was 

demonstrated by RT PCR. These results indicate that Lbp of S. uberis may interfere 

with host cellular signalling pathways by inducing perturbations in the cell iron status. 

This suggests that Lbp of S. uberis may be a virulence factor, playing a role in signal 

transduction or in the regulation of gene expression in host cells.  
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1 LITERATURE REVIEW  

1.1 Streptococcal Virulence and Mastitis Manifestation  

The genus Streptococcus includes pathogens causing infections of various 

severities ranging from simple symptomless colonization to deadly necrotizing fasciitis 

and streptococcal toxic shock-like syndrome. For the purpose of classification, all 

known streptococci were organized into four divisions by their haemolytic reactions, 

serologic group carbohydrate antigens, and fermentation and tolerance tests. The 

divisions are known as pyogenic, viridans, lactic and enterococci. Within each division, 

Lancefield serological typing was used for further classification. For example, the 

pyogenic division includes the β-hemolytic strains with carbohydrate group antigens A, 

B, C, E, F, G and through to V. Within each group, further serologic division of 

clinically relevant isolates may take place. For example, group A streptococci are 

serologically separated into M protein types. This classification system underwent 

multiple revisions and the phylogenetic classification based on the 16S rRNA sequence 

similarities was offered (Facklam, 2002). However, the Lancefield serological 

classification (Group A, B, C, through to V) remains the most widely used system by 

clinical laboratories, researchers and taxonomists (Table 1.1.1).  

Among bacterial strains capable of causing disease in cattle, environmental 

streptococcal pathogens are becoming more prevalent, especially in herds that are free 

from contagious bacterial strains (Oliver, 1984). S. uberis is an important environmental  
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Table 1.1.1 Representatives of selected Lancefield serological groups of streptococci.  

Lancefield 
serogroup 

Strains Host species and disease 
(infection) 

Comments 

A (GAS) S. pyogenes Human: respiratory tract, 
skin infection 

Catalase-negative; 
β-haemolytic; 

CAMP-producing; 
Bacitracin sensitive 

B (GBS) S. agalactiae Human: urogenital 
infections; Bovine: mastitis 

CAMP-producing; 
β-haemolytic 

C S. equisimilis,  
 
 

S. equi 

Swine, horse, dog:  
suppurative infections 
Human: pharyngitis 

Horse: strangles 

α- or γ-hemolytic 
β-haemolytic 

D 
 

Enterococcus 
faecalis, E. 

faecium 
S. bovis, S. 
durans, S. 

avium 

Human: appendicitis 
 
 

Bovine: gastrointestinal 
infection; 

Bile tolerant; 
 high salt 

concentrations 
tolerant, 

α- or γ-haemolytic 

A, C, D, F S. anginosus Human: abscess β-haemolytic 
G S. canis Dog: suppurative infection, 

necrotizing fasciitis 
β-haemolytic 

Not 
specified, 
Viridans 

S. mutans; 
S. mitis; 

S. sanguis; 

Human: tooth decay α-haemolytic 

K S. salivarius; Human: tooth decay α- or γ-hemolytic 
R S. suis Swine: meningitis α-haemolytic 

E, P, U, V S. porcinus Swine: lymph node infection β-haemolytic 
Not 

specified 
S.pneumoniae Human: meningitis, 

pneumonia 
α-haemolytic; 

Non-typable S. uberis, 
S. parauberis 

Bovine: mastitis γ-haemolytic; 
CAMP-producing 
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veterinary pathogen responsible for a high proportion of bovine intramammary 

infections (Todhunter, 1995).  Although the biology of this organism has been 

investigated due to its significant role as a veterinary pathogen, the reasons for its 

virulence are not completely understood. Generally, mastitis can be defined as an 

inflammatory response to intramammary infection. S. uberis may be capable of 

inducing an acute inflammation of the mammary gland (Vaarst, 1997), which may 

manifest itself as clinical mastitis where the milk is grossly abnormal and the affected 

quarter is inflamed, hot, swollen and painful.  However, the majority of S. uberis 

intramammary infections are represented by the subclinical form of the disease (Zadoks, 

2003), with no visual abnormalities in milk appearance or signs of inflammation, 

although subclinical mastitis is accompanied by decreased milk production, altered milk 

composition, increased number of neutrophils and the presence of viable bacteria in 

milk.  

1.1.1 Inflammatory Response to Streptococcal Infection  

The onset of a clinical mastitis takes place once the bacteria enter the mammary 

gland and an inflammatory reaction occurs (Pedersen, 2003) that is characterized by 

neutrophil recruitment into the mammary gland. A variety of inflammatory mediators 

are released into the milk and into the mammary tissue, attracting more neutrophils and 

causing their degranulation in an attempt to control the infection. This results in tissue 

damage and the release of more pro-inflammatory mediators, cytokines and 

antibacterial substances (Rambeaud, 2003). The severity of bovine mastitis was 

demonstrated to be associated with the stage of lactation at which the infection occurs 

(Cousins, 1980; Jones, 1989; Hill, 1988), the genetic background of the host (Weller, 
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1992) and the host’s general health, which is defined by the nutritional status (Barkema, 

1999a) and the herd hygiene practices (Barkema, 1999b). Successful resolution of 

bacterial infection depends on the number of polymorphonuclear neutrophils (PMNs) 

(Sloth, 2003; Green, 2004) present both in milk and in circulation and on their 

functional activity i.e. the ability to ingest and kill the bacteria. Also, the course of 

infection and the severity of mastitis may be affected by previous exposure of the host 

to the pathogenic bacteria (Fang, 1998) and pathogen-specific immunity. For example, 

an elevated level of streptococcus-specific antibodies in vaccinated animals (Hill, 1994) 

was shown to be associated with reduced mastitis following challenge with S. uberis. 

Hence, both the host and bacterial factors (Casadevall, 1999) determine the course and 

the outcome of a bacterial infection. The dynamics of the intramammary production of 

tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-8 (IL-8) in 

response to challenge with S. uberis has been studied (Rambeaud, 2003). However, the 

increase in somatic cell counts in milk was observed prior to the increased production of 

these cytokines. This suggests that the details of cytokine-regulated development and 

resolution of inflammation during streptococcal mastitis remain to be fully elucidated.  

In subclinical mastitis, an elevated somatic cell count (SCC) was associated with 

decreased milk production (Banos, 1990; Simpson, 1995), indicating that the secretory 

epithelium may be partially damaged by the bacteria and/or recruited neutrophils. 

Compounds such as reactive oxygen species (ROS) (Bouhafs, 2000; Meli, 2003) and 

proteolytic enzymes (Prin-Mathieu, 2002) released from neutrophils can damage 

mammary secretory cells and reduce milk production. Some mechanisms of 

inflammation mediated by streptococci have been suggested from the study of GAS 
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infection in humans. For example, streptococcal M protein is able to form a complex 

with host fibrinogen and this complex activates host neutrophils upon binding to β-2-

integrins. This results in a release of heparin-binding protein from the neutrophils. This 

protein is an inflammatory mediator that induces vascular permeability (Herwald, 

2004), which is a key feature of inflammatory conditions.  

1.1.2 Streptococcal Virulence Factors  

Although the outcome of an infection is largely defined by host-specific factors 

(see above), the term “virulence” is usually attributed to the characteristics of a 

pathogen (Poulin, 1999). Streptococci express an array of virulence factors, usually cell 

surface or secreted components that may induce direct damage to the host, cause an 

adverse reaction or promote survival and dissemination of the organism.  

Generally, streptococci are known for producing toxins. Extracellular pyrogenic 

exotoxins A, B, and C, and also the mitogenic factor exotoxin F of GAS play a role in 

toxic streptococcal shock syndrome by cross-linking MHC class II molecules (Scholl, 

1989) with T-lymphocyte receptors (Tomai, 1992), resulting in non-specific activation 

of a massive number of T cells (Schlievert, 1979). T lymphocytes activated in an 

exotoxin-dependent manner produce large amounts of pro-inflammatory cytokines 

(Fast, 1989; Norrby-Teglund, 1994), which results in toxic shock. Exotoxin B of GAS 

is a cysteine protease (Kapur, 1993), which can exhibit pyrogenic properties by 

cleavage of the IL-1β precursor to release an active form of IL-1β – an inflammatory 

cytokine (Kapur, 1993). Superantigenic properties were also suggested for the M5 

protein of GAS (Tomai, 1992). Streptolysins S and O represent other streptococcal 

toxins, both exhibiting proteolytic activity (Duncan, 1983). The cytolytic activity of 
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streptolysin S was implicated in the development of a soft tissue necrotizing infections 

(Betschel, 1998), while streptolysin O, in addition to its cytolytic activity, exhibits an 

immunomodulatory effect on various cell types (Bremm, 1985; Ruiz, 1998). GAS cell 

surface-associated C5a peptidase also can be classified as a proteolytic streptococcal 

toxin that reduces C5a-dependent chemotaxis by cleaving the C5a complement 

component (Cleary, 1992). Additionally, GAS produce a secreted co-haemolytic toxin 

CAMP factor that, together with staphylococcal β-toxin, synergistically lyses 

erythrocytes (Gase, 1999). CAMP activity was also demonstrated in products secreted 

by S. uberis (Skalka, 1980; Lopes, 1995) and the expression of a protein highly 

homologous to the S. agalactiae CAMP factor by S. uberis was demonstrated (Jiang, 

1996a). It was suggested that a co-haemolytic toxin CAMP factor may be one of the S. 

uberis virulence factors (Jiang, 1996b).  

Mimicry of the host antigens by components of the streptococcal cell may be 

important for pathogenesis and can cause autoimmune reactions. Such molecular 

mimicry can aid in the replication and dissemination of the organism throughout the 

host. Antibodies developed against streptococcal M proteins were demonstrated to be 

protective in a murine challenge model (Wittner, 1977), but it was suggested that 

antibodies to conformational epitopes of the M protein repeats in the coiled-coil region 

of the molecule can cross-react with host coiled-coil proteins such as laminin and 

myosin (Vashishtha, 1993), resulting in autoimmune reactions such as rheumatic fever 

and arthritis. Cross-reaction between α-helical coiled-coil tropomyosin of heart tissue 

and streptococcal M protein was experimentally demonstrated by ELISA and Western 

blotting (Fenderson, 1989). Protective anti-streptococcal antibodies against unique 
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epitopes of M proteins have been raised using synthetic oligopeptides as antigens 

(Beachey, 1984).  

The survival of streptococci in non-immune fresh host blood is generally 

attributed to antiphagocytic properties of M or M-like proteins expressed on the surface 

of the streptococci. Inhibition of the internalization of the bacteria into host phagocytic 

cells has been studied and it was demonstrated that both strains expressing M protein 

and/or M-like protein H and mutant strains lacking expression of these proteins are 

effectively ingested by host neutrophils. Mutant strains lacking M protein were rapidly 

killed by host neutrophils, while the wild type strain was able to survive after being 

phagocytosed (Staali, 2003). It was suggested that bacterial evasion of host defenses 

may occur intracellularly and that survival inside human neutrophils may contribute to 

the pathogenesis of S. pyogenes and the recurrence of streptococcal infections.  

Streptococcus pyogenes also produces a cysteine protease, which is able to 

cleave two fibrinogen-binding fragments of M1 protein and an IgG-binding NH2-

terminal fragment of protein H off the surface of the bacterial cell (Berge, 1995). Since 

M protein was implicated in adherence to host cells, it was suggested that such cleavage 

might promote bacterial dissemination, whereas the generation of soluble complexes 

between immunoglobulins and immunoglobulin-binding streptococcal surface proteins 

could play a role in the development of adverse immunological reactions.  

It was also suggested that streptococcal C5a peptidase can digest a complement 

C5a component, blocking C5a-mediated migration of granulocytes to the site of 

streptococcal infection and in this way contributing to the streptococcal pathogenesis 

and virulence.  
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Although C5a peptidase may contribute to the streptococcal virulence, it was not 

required for exhibiting virulence by mucoid strains of GAS, as was demonstrated by 

studies of C5a knock-out mutants of a mucoid invasive strain in a murine infection 

model, where both acapsular and M protein-deficient mutants were partially attenuated 

(Ashbaugh, 1998).  

It was demonstrated that both protein F1 and M protein of S. pyogenes promote 

efficient internalization of the bacteria by non-phagocytic cells in the presence of 

fibronectin (Jadoun, 1998). Streptococcal cysteine protease SpeB can effectively 

degrade cell-wall-attached fibronectin binding protein F1 complexed with host 

fibronectin in the presence of host serum, reducing bacterial internalization by host cells 

(Nyberg, 2004b), while M1 protein and protein H, two additional surface proteins of S. 

pyogenes that bind human plasma proteins, are resistant to this type of proteolytic 

degradation in the presence of their respective ligands.  

The data described above indicate that it is streptococcal extracellular proteins 

that largely mediate virulence of streptococci. The present study is focused on the 

surface-associated lactoferrin-binding protein, which was suggested to be one of the 

virulence factors of S. uberis (Jiang, 1996b).  

1.2 The Relationship Between Lbp of S. uberis and Related Proteins of Gram- 

positive and Gram-negative Bacteria  

1.2.1 Cellular Localization and Membrane Topology of Lactoferrin-binding 

Proteins  

Lactoferrin-binding proteins are produced by a variety of Gram-negative 

organisms (Neisseria, Moraxella, Haemophilus) and appear to play a central role in the 
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acquisition of iron from host lactoferrin. These proteins are surface-exposed, similar to 

the Lbp of S. uberis and M-like proteins of Gram-positive cocci. The differences 

between lactoferrin receptors of Gram-negative organisms and the Lbp of S. uberis may 

be attributed to membrane topology and protein structure. While lactoferrin receptors of 

Gram-negative bacteria are integral outer membrane proteins, Gram-positive cocci 

anchor their surface proteins in the cellular membrane since they lack outer cellular 

membrane and periplasm.  

Lactoferrin- and transferrin-binding proteins of Gram-negative bacteria (LbpA, 

TbpA) form several hydrophilic loops extending outward from the outer membrane 

(Fig. 1.2.1.1), while hydrophobic regions of the proteins are integrated into the 

membrane lipid bilayer (Pajon, 1997). The amino terminal regions of the LbpA and 

TbpA of Neisseria meningitidis are oriented into the periplasm and they interact with 

the TonB complex required for ATP-dependent iron transport against the ion 

concentration gradient (Moeck, 1998; Larson, 2002). The outward-directed loops form 

the lactoferrin receptor, whose affinity to the ligand is significantly enhanced by the 

presence of a second protein LbpB (Bonnah, 1998; Biswas, 1999). According to 

existing models, the LbpB and TbpB are anchored in the outer membrane and are 

exposed to the extracellular environment. Unlike the LbpA of Gram-negative 

organisms, only relatively short amino acid sequences of Gram-positive M-like proteins 

and Lbp of S. uberis anchor the respective M-like proteins in the cell membrane. The 

Lbp of S. uberis resembles M-like proteins of Gram-positive bacteria. The common 

feature of these proteins is their coiled-coil structure (Fischetti, 1990; Navarre, 1999) 

and anchoring in the cellular membrane via a specific C-terminal 
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Figure 1.2.1.1 Membrane topology and structure of lactoferrin- and transferrin-binding 
proteins.  

I, Putative structure of the Lbp of S. uberis Su-1 as a cell surface-exposed M-like 
protein forming a coiled-coil dimer. The structure of M-like proteins as suggested by 
Fischetti, 1989. II, Transferrin receptor homologous to lactoferrin receptors of Gram 
negative bacteria: an integral outer membrane protein TbpA, as proposed for 
gonococcal TbpA (Yost-Daljev, 2004), and a surface-exposed accessory protein TbpB, 
as adapted from the review on organization of transferrin and lactoferrin receptors of 
Gram-negative bacteria (Gray-Owen, 1996). Putative numbered hydrophilic loops of 
TbpA are exposed outwards, while the N-terminal domain interacting with TonB is 
oriented into a periplasmic space.  
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sequence (Heden, 1993; Schnitzler, 1995b). Except for a short membrane-bound C-

terminal region and the adjacent cell wall spanning portion of the protein, M-like 

proteins, including the Lbp of S. uberis, are oriented outward from the bacterial cell 

surface, forming fibril-like structures composed of protein dimers due to coiled-coil 

interaction between two molecules (Fig. 1.2.1.1).    

1.2.2 The Role of Lactoferrin-binding Proteins in Iron Acquisition  

Iron, the fourth most abundant chemical element in the Earth’s crust, is vital for 

almost all living organisms with very rare exceptions. The role of iron in intracellular 

chemistry is versatile (Lill, 1999) and includes being a co-factor for enzymes of the 

tricarboxylic acid cycle (Oexle, 1999), DNA biosynthesis (Jordan, 1998), gene 

regulation (McHugh, 2003), electron transfer, respiration (Yoon, 2003), oxygen 

transport (Barnes, 1973), nitrogen fixation, hydrogen production and consumption. This 

variety of functions is due to the ability of iron to easily accept its two main oxygenized 

states, ferrous (2+) and ferric (3+). The redox potentials of these two states range from 

+800 for ferrous form, easily oxidized by molecular oxygen, to -300 for aqueous ferric 

form, which can be reduced by common reductases such as pyridine dinucleotides. This 

wide range of redox potentials acquired at physiological conditions makes iron effective 

in electron transfer reactions and determines its role as a co-factor for an array of 

enzymes. At the same time, in the presence of molecular oxygen, oxidation of ferrous 

iron can trigger the formation of reactive oxygen species (ROS) such as superoxide, 

hydrogen peroxide and hydroxyl radicals, which are potentially dangerous for living 

cells (Dunning, 1998). The damage incurred by ROS to the cell is commonly known as 

oxidative stress. Prevention of oxidative stress requires effective and sensitive 



 12 

regulatory mechanisms, allowing the cell to maintain the intracellular iron concentration 

at a level sufficient to support vital functions for which iron is important and, at the 

same time, preventing an intracellular iron overload, as well as maintaining an effective 

cellular repair system(s) to repair the damage resulting from oxidative stress. Of the two 

main oxygenized iron forms, ferrous iron is relatively soluble (1 mM) when its 

autoxidation is prevented by low oxygen tension while ferric iron has very low 

solubility (10-17  to 10-12 M at pH 7) (Rose, 2003), and the presence of molecular oxygen 

favors the prevalence of ferric iron. In mammals, approximately 0.1% of the entire 

organism's iron circulates in the plasma as an exchangeable pool (Ponka, 1999). 

Essentially all circulating plasma iron normally is bound to transferrin. In mucosal 

secretions, iron is also bound by lactoferrin, a protein related to and homologous to 

transferrins. However, in milk only approximately 30% of iron is bound by lactoferrin, 

and the rest can be found within lipoid granules and chelated by low molecular weight 

compounds such as citrate. This chelation potentially can serve to render iron soluble 

under physiologic conditions, to prevent iron-mediated free radical toxicity, and to 

facilitate iron transport into cells. Pathogenic bacteria have developed effective iron-

scavenging systems, regulated by an iron-responsive regulatory network that 

coordinates gene expression according to iron availability. These bacterial systems 

include synthesis, secretion and uptake of low molecular weight/high Fe3+ affinity 

compounds (siderophores); utilization of host iron protoporphyrins; direct use of host 

transferrin and/or lactoferrin as a source of iron (Charland, 1995; Moeck, 1998); as well 

as gaining an access to intracellular host iron content (Larson, 2002).  
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Production and uptake of siderophores has been studied mostly in Gram-

negative bacteria and there is no direct evidence of siderophore utilization by 

streptococci. Iron protoporphyrins can serve as a source of nutritional iron for 

Streptococcus pyogenes (Eichenbaum, 1996a), which expresses a haemolytic phenotype 

and is capable of intracellular invasion (both characteristics consistent with utilization 

of intracellular haemoproteins). Protoporphyrin-binding proteins of S. pyogenes were 

identified (Lei, 2002; Lei, 2003) and an operon involved in haem iron uptake was 

characterized (Bates, 2003). However, an additional route of iron acquisition by S. 

pyogenes was suggested, since the growth of the mutant strain lacking the surface 

haemoglobin receptor was not inhibited in the iron depleted medium supplemented with 

haemoglobin, whole blood, or ferric citrate. Utilization of haemin as an iron source was 

demonstrated for the human pathogen S. pneumoniae (Tai, 1993) and a mutant defective 

in haemin utilization was found to be attenuated in experimental animals.  

Although iron-saturated transferrin, lactoferrin or cytochrome c did not support 

the growth of S. pyogenes (Eichenbaum, 1996a) or S. pneumoniae (Tai, 1993) in an 

iron-depleted medium, host lactoferrin was found to be bound by human strain S. 

pneumoniae surface protein A (Hakansson, 2001). Binding of host lactoferrin by 

distinct protein(s) of bovine pathogen S. uberis strains UT888, UT366, UT754, UT102, 

ATCC 13387 (Fang, 1999) and Su-1 (Jiang, 1996b; Moshynskyy, 2003) has been  

demonstrated, although the role of these proteins in iron acquisition has not been 

studied.  

1.2.3 Secondary Structure of M-like Proteins  

The M-related streptococcal proteins share a number of structural 
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characteristics. Typically, these proteins contain a charged N-terminal domain, followed 

by a variable region composed of several repeats (Gubbe, 1997; Meehan, 2002). The 

repeat regions form an α-helix, and the α-helix regions assume a coiled-coil structure in 

a homodimer.  

One of the suggested classifications of M-related proteins, distinguishing true M 

proteins from M-like proteins, is based on the type of repeats present in the molecule 

(Cedervall, 1997). The M protein family can be divided into two classes, A and C, 

according to the type of repeat region found.  The types of known repeats are A, B, C 

and D (Fig. 1.2.3.1), which in some cases are separated by inter-repeat regions. Within 

these repeats, smaller 7 amino acid (heptad) repeats can be observed (Fischetti, 1988). It 

is thought that this heptad organization contributes to the α-helix formation and, on a 

higher level, to organization of coiled-coil dimers. If the heptad pattern is characterized 

by an amino acid distribution not optimal for coiled-coil formation, the M-like protein 

dimer may be unstable at elevated temperatures (Nilson, 1995). The stability of coiled-

coil dimers formed by M-related proteins depends on the type of repeat (A or C) in the 

central  repeated  region of  the  molecule. The differences in temperature stabilities  of 

coiled-coil structures, as well as in their abilities to bind respective ligands, were 

demonstrated for Mrp4 (class A) and Arp4 (class C) proteins, both of which are 

expressed  by Group A  Streptococcus  (Cedervall, 1997).  The coiled-coil conformation 

may also be stabilized by the bound ligand (Gubbe, 1997).  
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Figure 1.2.3.1 Structural relationship between streptococcal M proteins and Lbp of S. 

uberis.  
Coiled-coil structure formed by two α-helical molecules (I), a corresponding primary 
protein structure (II), as described for M6 protein of GAS (Fischetti, 1989); III, a 
predicted structure of the lactoferrin-binding protein of S. uberis (Jiang, 1996b).  
The C-terminal conserved region of M-related proteins consists of a membrane- 
anchoring region and a cell wall spanning domain. Cell wall-associated region may 
form a complex structure with the glycolipids of the cell wall, responsible for bacterial 
surface hydrophobicity and possibly mediating streptococcal adherence to the host 
epithelial cells (Okada, 1995). A, B, C and D types of repeats are determined as at 
http://blocks.fhcrc.org/blocks-bin/getblock.sh?IPB003345.    
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1.2.4 Genetic Organization and Regulation of the Gene Expression  

Regulation of M protein expression in GAS is attributed to the open reading 

frame located 72 base pairs upstream of its gene. As was observed, the region more than 

1000 base pairs upstream of the promoter region of the gene coding for M protein in 

group A streptococcus is required for full expression of M protein (Caparon, 1987; 

Robbins, 1987). This region was demonstrated to contain a gene designated mga, 

formerly known as mry (Perez-Casal, 1991) or vir. Later it was established that Mga is a 

common positive regulator of a range of streptococcal genes and is required for 

expression of several streptococcal virulence factors including C5a peptidase (McIver, 

1995; Kihlberg, 1995), M protein ( Caparon, 1987; Robbins, 1987; McIver, 1995), M-

like proteins (Kihlberg, 1995), streptococcal inhibitor of complement (SIC) (Kihlberg, 

1995) and itself (McIver, 1995). The set of genes regulated by Mga is commonly 

referred to as the Mga regulon. Several helix-turn-helix motifs normally associated with 

interactions with gene promoter regions were identified in the Mga protein (McIver, 

2002). A study of the mga mutants with altered helix-turn-helix motifs demonstrated 

that expression of the gene coding for M  protein correlated directly to the DNA-

binding capability of Mga. Expression of genes in the regulon is regulated in response 

to environmental stimuli (Caparon, 1992; McIver, 1995) and possibly depends on the 

growth stage of the bacterial culture (McIver, 1997). Consistent with this, M protein 

expression was upregulated in response to elevated CO2 concentration (Caparon, 1992) 

and both Mga and M protein underwent phase variation in S. pyogenes (Bormann, 

1997).  

The M proteins family of Streptococcus pyogenes contains three related 
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proteins: Emm (class I and II), Mrp (FcrA), and Enn. The genes coding for these 

proteins are located in a locus of the S. pyogenes chromosome between the genes mga 

and scpA. It was also noted, that the composition of these gene clusters generally 

parallels the ability of strains to express the serum opacity factor by human pathogens 

of Group A streptococci (Whatmore, 1994). Serum opacity factor-positive (OF+) strains 

of S. pyogenes usually contain all three genes in their Mga regulons, while OF- strains 

can contain from 1 to 3 M-like protein genes.  

The presence of an open reading frame homologous to mga of GAS has been 

demonstrated in the region upstream of the gene coding for the Lbp of S. uberis (Jiang, 

1996b). Such genetic organization is consistent with Lbp being a streptococcal M-like 

protein.  

1.3 Functional Studies of Streptococcal M-related Proteins  

Lbp of S. uberis, as well as lactoferrin-binding proteins of Gram-negative 

bacteria, bind their respective host lactoferrins in a species-specific manner. The 

difference seems to be in the biological function of these proteins. While LbpA and 

LbpB of Gram-negative bacteria are involved in the acquisition of ionic iron from 

ferrated host lactoferrin (Schryvers, 1998), the role of Lbp of S. uberis remains to be 

determined. Lbps of Gram-negative bacteria do not discriminate between apo- and holo-

forms of the host lactoferrin (Schryvers 1988). Therefore, binding of both forms of 

bovine lactoferrin with similar efficiency (Moshynskyy, 2003) by the Lbp of S. uberis 

does not exclude a possible role of the Lbp of S. uberis in iron acquisition.  

The streptococcal M and M-like proteins related to Lbp of S. uberis seem to 

perform multiple functions and are able to bind a variety of ligands. Bindings of these  
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         Table 1.3.1. Ligands and suggested functions of some streptococcal M-like proteins.   
Streptococcal 
M- or M-like 

protein 
identification 

Identified in 
strain 

Ligand Suggested role in 
pathogenesis 

Host 
species 

Reference 

M1 S. pyogenes 
(GAS) 

Not specified 
 

Invasion Human (Purushothaman, 2003) 

M1 S. pyogenes 
(GAS) 

Fibronectin Internalization Human (Cue, 2001) 

M6 S. pyogenes 
(GAS) 

Undetermined host 
cell surface protein 

Adherence Human (Wang, 1994) 

M6 S. pyogenes 
(GAS) 

CD46 Inhibition of 
complement activation 

Human (Giannakis, 2002) 

M6 S. pyogenes 
(GAS) 

Not specified Resistance to 
phagocytosis; 
autoimmunity 

Human (Perez-Casal, 1992; 
Quinn, 2001) 

M5, M6, 
M19, M24, 

M28 

S. pyogenes 
(GAS) 

Serum factor H Inhibition of 
complement activation 

Human (Horstmann, 1988) 

M5 S. pyogenes 
(GAS) 

Not specified Molecular mimicry Human (Dale, 1985) 

M24 S. pyogenes 
(GAS) 

Unknown Adherence; Resistance 
to bactericidal effect of 

host blood 

Human (Courtney, 1994) 

M3 S. pyogenes 
(GAS) 

Fibrinogen, albumin 
and fibronectin 

Resistance to 
phagocytosis; 

adherence; 
internalization 

Human (Schmidt, 1993; Eyal, 
2003) 

M3 S. pyogenes 
(GAS) 

Not specified Adherence; 
internalization 

Human (Ellen, 1972; Eyal, 
2003) 
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M protein S. pyogenes 
(GAS) 

Fibrinogen Activation of 
neutrophils 

Human (Herwald, 2004) 

M protein S. pyogenes 
(GAS) 

Glycosaminoglycan Adhesion Human (Frick, 2003) 

M protein S. pyogenes 
(GAS) 

Mucin Adhesion Human (Ryan, 2001) 

Unknown S. uberis Glycosaminoglycan Adhesion; invasion Bovine (Almeida, 1999a) 
Unknown S. uberis Lactoferrin Adhesion Bovine (Fang, 2000) 

Lbp S. uberis Lactoferrin Signal transduction Bovine This study 
MIG S. dysgalactiae IgG, α-2-

macroglobulin, IgA 
Resistance to 
phagocytosis; 
internalization 

Bovine (Song, 2001; Song, 
2004) 

Arp4 S. pyogenes 
(GAS) 

IgA Unknown Human (Husmann, 1995) 

Mrp S. pyogenes 
(GAS) 

IgG, IgA Resistance to 
phagocytosis 

Human (Podbielski, 1996b) 

M22 S. pyogenes 
(GAS) 

C4b-binding protein 
(C4BP), IgA 

Resistance to 
phagocytosis 

Human (Carlsson, 2003) 

C3 binding 
protein 

S. pneumoniae C3 complement 
component 

Resistance to 
complement-mediated 

immunity 

Human (Cheng, 2000) 

Choline-
binding 

protein A 

S. pneumoniae Immunoglobulins Adherence Human (Lu, 2003) 
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ligands were implicated in resistance to host immunity, molecular mimicry, adhesion 

and invasion of host cells (Table 1.3.1). 

Historically, streptococcal surface antigens conferring resistance of the bacteria 

to phagocytosis by peripheral blood polymorphonuclear leukocytes were defined as 

streptococcal M proteins (Bessen, 1992). Later, when surface molecules sharing 

structural characteristics and amino acid sequence homology with M proteins, but not 

directly responsible for antiphagocytic properties, were identified and characterized, 

they were designated as M-like proteins. Finally, some M-like proteins were described 

as components allowing streptococci to withstand complement attack or to survive 

within phagocytic cells after being ingested. In contrast, M proteins also were shown to 

play roles in other functions during streptococcal infection: they were implicated in 

adherence of streptococci to host cells (Courtney, 1992), in invasion of the host cells 

(Eyal, 2003) and in regulation of gene expression by the host cells in response to 

streptococcal infection (Herwald, 2004). Selected streptococcal M and M-like proteins, 

their respective ligands and suggested functions are summarized in Table 1.3.1. 

1.3.1 Resistance to Host Innate Immunity.  

Before a pathogen can establish infection in a nonimmune host, it must evade 

the host’s innate defenses. For extracellular bacterial pathogens it is often important to 

evade phagocytosis by neutrophils, which are rapidly recruited to the site of initial 

infection. In the case of the bovine mastitis pathogen S. uberis, the ability of a strain to 

resist host antimicrobial defense factors was correlated to ability to colonize the host 

and to cause clinical manifestation of mastitis (Leigh, 1990). Both ingestion and killing 

of the bacteria by phagocytic cells are promoted by activation of complement via either 
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the classical or the alternative pathway. Modulation of the process of ingestion of the 

bacteria by host phagocytes, resistance to killing after being internalized, as well as 

regulation of the serum complement represent important characteristics of streptococcal 

pathogenesis.      

1.3.2 Phagocytosis and Phagocytic Killing  

The antiphagocytic M protein of Streptococcus pyogenes was considered to be a 

key factor in its resistance to phagocytosis by leukocytes of the host peripheral blood 

(Morris, 1955). It was demonstrated by direct bactericidal assays of GAS emm and mrp 

mutants that, if present, both mrp and emm gene products contribute to resistance to 

phagocytosis of GAS by decreasing bacterial binding to granulocytes (Podbielski, 

1996b), while reintroduction of the gene coding for the wild type protein into a mutant 

strain could restore the ability of S. pyogenes to resist phagocytosis by host 

polymorphonuclear leukocytes (Perez-Casal, 1992).  

Antibodies directed against the hyper variable region (HVR) of M protein block 

its antiphagocytic property (Beachey, 1987), which means that this region may be 

important in conferring resistance to phagocytosis.  

Capsular polysaccharide provides resistance to opsonophagocytic killing of 

bacteria, as was demonstrated for Enterococcus faecalis (Hancock, 2002). Resistance to 

phagocytic killing in vitro of a mucoid strain of Group A Streptococcus associated with 

an outbreak of rheumatic fever depended on the ability to produce hyaluronic acid 

capsule if the level of expression of M protein remained unaltered (Wessels, 1991). 

Also, it was demonstrated that GAS could use M protein and hyaluronic acid capsule in 

evasion of opsonophagocytic killing in vivo in a murine subcutaneous infection model 
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(Ashbaugh, 1998). However, an ability to produce hyaluronic acid capsule did not 

affect infectivity or virulence of S. uberis (Field, 2003). For this reason, the role of M- 

or M-like protein(s) of S. uberis in resistance to the host antimicrobial defenses may be 

an interesting aspect of pathogenesis of this organism.  

Due to the presence of a thick cell wall, the bacterial membrane is poorly 

accessible to the membrane attack complex formed as a result of complement 

activation. However, deposition of complement on bacterial cells promotes their 

ingestion by professional host phagocytes. For this reason, inhibition of complement 

activation on the surface of the bacterial cell potentially might be beneficial for the 

bacteria during infection. As was demonstrated by mutagenesis of the gene coding for 

M6 protein of S. pyogenes, the C repeat region takes part in binding of human 

complement factor H to the streptococcal surface, although a factor distinct from the C-

repeat region of M6 protein was implicated in S. pyogenes ability to resist phagocytosis 

(Perez-Casal, 1995). Two distinct regions of M22 protein of S. pyogenes were 

implicated in binding of C4BP regulator of complement activation and host 

immunoglobulins, cooperating in providing resistance to opsonization by both immune 

and naïve host sera (Carlsson, 2003). C3-Binding protein from Streptococcus 

pneumoniae has been reported as a component of the pneumococcal cell wall, important 

for inhibition of host complement activation and enhancing resistance of the bacteria to 

the complement-mediated killing (Cheng, 2000).  

Tissue phagocytes represent an important component of the host innate 

immunity and link the innate and adaptive immune systems (Underhill, 2002). They 

ingest a broad range of microbial pathogens through recognition of specific structures 
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such as pathogen-associated molecular patterns (Janeway, 2002) and also receptors that 

recognize bacteria coated with serum opsonins. Phagocytosis of bacteria activates 

various cell-surface receptors on phagocytes and triggers corresponding signal 

transduction pathways (Greenberg, 1999). These pathways differ by activation of 

downstream events which include killing of the ingested microorganism(s) (Takahashi, 

1995), cytokine production (Albanyan, 2000), antigen presentation (von Delwig, 2002), 

and induction of apoptosis (Ali, 2003). Bacterial pathogens have evolved diverse 

mechanisms of defense to combat the innate immune system including resistance to the 

killing by phagocytic cells, which is an important component of the defense against 

bacterial infections in a nonimmune host. Although the details of the antiphagocytic 

resistance of Gram-positive bacteria remain to be elucidated, certain bacterial 

components related to such resistance have been identified. Production of streptolysin O 

(SLO) by GAS results in a cytotoxic effect and lysis of human keratinocytes and 

polymorphonuclear cells, which greatly impairs polymorphonuclear leukocyte killing of 

GAS in vitro, especially when SLO is expressed by an acapsular GAS mutant (Sierig, 

2003). Although tissue resident macrophages ingest opsonized GBS, intracellular 

bacteria are killed only if macrophages are activated by interferon γ (IFN-γ) or by 

granulocyte-macrophage colony-stimulating factor (Marodi, 2000). It was also 

suggested that GBS might impair microbiocidal systems in macrophages by inhibiting 

protein kinase C (PKC)-dependent signal transduction pathways, preventing IFN-γ− and 

LPS-dependent macrophage activation (Cornacchione, 1998). Comparison of the fate of 

opsonized and non-opsonized GBS ingested by a murine macrophage-like cell line J774 

demonstrated that human serum containing anti-GBS antibodies does not affect 
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bacterial entry but significantly reduces the intracellular survival of GBS, suggesting 

that GBS are able to enter and persist efficiently in macrophages by evading 

intracellular antibacterial activities commonly associated with opsonin-mediated uptake 

(Valenti-Weigand, 1996).  

For S. uberis, it was established that although resistance to phagocytosis and to 

killing by peripheral blood polymorphonuclear leukocytes can vary between strains 

(Leigh, 1990), this does not always correlate with resistance of S. uberis to phagocytosis 

by macrophages (Grant, 1997).  

A distinct strategy for avoidance of phagocytic killing was identified in Group B 

streptococcus (GBS): a product of the ponA gene, encoding the penicillin binding 

protein PBP1a, promotes resistance to phagocytic killing independent of capsular 

polysaccharide and does not affect C3 deposition on GBS (Jones, 2003).  

These diverse mechanisms of resistance to killing by host phagocytes represent 

an important aspect of streptococcal colonization of the host.  

1.3.3 Role of M Protein in Molecular Mimicry 

Molecular mimicry between a pathogen and its host has been proposed as a 

mechanism that may influence development of autoimmunity as well as host 

unresponsiveness to a bacterial infection.  

Immunologic cross-reactivity between streptococcal M protein and heart muscle 

myosin (Dale, 1985) was implicated in the development of myosin-specific antibodies 

in individuals with streptococcal throat infection (Cunningham, 1988). Seven amino 

acid residue repeats, extending through the M protein, are largely responsible for the 

formation of the α-helical coiled-coil structure (Fischetti, 1988) that resembles the 



 25 

structure of the heart myosin. The latter protein also contains heptapeptide repeats and 

forms α-helical coiled-coils (McLachlan, 1983). Being an α-helical coiled-coil protein, 

streptococcal M protein structurally and immunologically mimics the rod region of 

myosin (Cunningham, 1989). During streptococcal infection, such mimicry may result 

in production of anti-streptococcal antibodies that cross-react with host cardiac tissues 

(Cunningham, 1988; Dale and Beachey, 1986). The structural similarity between M 

protein and cardiac myosin is significant enough to produce inflammatory disease due 

to autoimmune mechanisms activated during streptococcal infection (Quinn, 2001). The 

cross-reacting antibodies may react to autoantigens such as cardiac myosin, inducing 

rheumatic-like inflammatory heart disease (Kodama, 1990). These and similar 

observations (Quinn, 1998) lead to the formulating of the hypothesis that a bacterial 

antigen can break immune tolerance in vivo and cause a disease of an autoimmune 

origin. This makes streptococcal M proteins central to the mimicking of host antigens 

and responsible for a significant proportion of adverse immunopathologic reactions to 

streptococcal infection.  

1.3.4 Role of M Proteins in Adhesion and Invasion of Host Epithelial Cells  

Bacterial adherence to host tissues is considered a key step in the establishment 

of infection by a successful pathogen (Frost, 1975; Reynolds, 1987; Rikitomi, 1997). 

Infection of a mammary gland by bacteria during lactation implies that the bacteria 

must be able either to effectively adhere to the gland tissue or to maintain a 

reproduction rate allowing the organism to perpetuate itself at the site of infection.  

Invasion of the host cells is often considered to be beneficial for a bacterial 

pathogen because it allows better access to the intracellular sources of nutrients and an 
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opportunity to evade host immune surveillance.  The question of whether streptococcal 

adherence is a process of two consecutive steps or of several independent adhesion 

events remains open. The adherence of Streptococcus faecium to the avian intestinal 

epithelium depends on two bacterial surface components (Fuller, 1981), suggesting that 

the adherence may occur in more than one step: first an initial contact between the 

bacterium and the host cell is made, resulting in weak adherence. Following that, a 

secondary, stronger attachment occurs, resulting in higher affinity adherence of the 

bacterium to the respective host cell (Hasty, 1996). The competitive inhibition of 

adhesion of S. pyogenes by lipoteichoic acid (weak inhibition) and by recombinant 

fibronectin binding protein (strong inhibition) is consistent with a two-step adherence 

process (Talay, 1992). The consensus model is that streptococci use multiple adhesins 

to attach to host cells and the types of adhesins expressed by a particular strain 

determines its tissue specificity (Courtney, 2002). It is now widely accepted that 

streptococci adhere to epithelial cells and colonize mucosal surfaces in a highly specific 

manner. However, in many cases the details of adhesion and invasion of many 

streptococcal strains, as well as of bacterial adhesins and their ligands, remain to be 

elucidated. Examples of streptococcal and host components implicated in adhesion and 

intracellular invasion are listed in Table 1.3.4.1.  

Bovine lactoferrin added to the culture medium was demonstrated to promote 

adhesion of three S. uberis strains to cultured bovine epithelial cells, while pre-

treatment of the bacteria with lactoferrin enhanced adherence of two strains and 

retarded adherence of the third (Fang, 2000).  This suggests that although bovine 

lactoferrin can potentially promote the adherence of S. uberis to host epithelial cells,  
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Table 1.3.4.1. Streptococcal factors implicated in adhesion to and invasion of host 
epithelial cells.  

Species Streptococcal 
factor 

Host’s component(s) Results of 
interaction 

Reference 

S. pyogenes Lipoteichoic 
acid 

Not specified Adhesion, 
invasion 

(Sela, 2000) 

S. pyogenes M protein 
 
 
 

Glycosaminoglycans 
CD46 

 

Adhesion (Frick, 2003; 
Okada, 1995) 

S. pyogenes R28 protein Not specified Adhesion, 
invasion 

(Stalhammar-
Carlemalm, 

1999) 
S. pyogenes Fibronectin-

binding protein; 
protein F1 

Fibronectin Adhesion, 
invasion 

(Courtney, 1996; 
Molinari, 1997) 

S. pyogenes Not specified Vitronectin Adhesion (Valentin-
Weigand, 1988) 

S. 
pneumoniae 

Choline-binding 
protein 

Polymeric 
immunoglobulin 

receptor 

Adhesion, 
invasion 

(Lu, 2003) 

S. 
pneumoniae 

PspA Serum complement, 
secretory IgA, 

polymeric 
immunoglobulin 

receptor 

Adhesion, 
invasion 

(Rosenow, 1997; 
Brock, 2002) 

S. agalactiae Laminin-
binding protein 

Laminin Adhesion (Spellerberg, 
1999) 

S. agalactiae Surface protein 
of group B 

Streptococcus 1 
(spb1) 

Not specified Invasion (Adderson, 2003) 

S. agalactiae C5a peptidase Fibronectin Adhesion, 
invasion 

(Cheng, 2002; 
Molinari, 1997) 

S. agalactiae FbsA 
(fibrinogen 
receptor) 

 

Not specified, 
possibly fibrinogen 

Adhesion (Schubert, 2004) 

S. uberis Not specified Lactoferrin Adhesion (Fang, 2000) 
S. uberis Not specified Glycosaminoglycans 

(heparin sulfate), 
milk proteins 

Adhesion (Almeida, 2003) 

S. uberis Not specified Laminin, fibrinogen, 
fibronectin, collagen 

Adhesion, 
invasion 

(Almeida, 1999b) 

S. 
dysgalactiae 

MIG Not specified Decreased 
internalization 

(Song, 2004) 
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other strain-specific bacterial factors may also be involved. The hypothesis that 

lactoferrin may serve as a bridging molecule between a host cell and a bacterial cell also 

implies that they both express their respective surface lactoferrin receptors. Therefore, 

effective streptococcal adhesion to the host epithelial cells depends not only on the 

expression of the required adhesin(s) by the bacterium but also on the expression of a 

proper receptor by the host cells. Affinity of the host cell receptor to the bacterial 

adhesin is likely to determine the host specificity and tissue tropism of the bacteria.  

The ability of bacteria to sense their surroundings and to rapidly respond to 

changes is crucial for bacterial survival and adaptation within the host (Finlay, 1997). 

Correspondingly, expression of the bacterial adhesins can be modulated in response to 

the environmental changes and regulated by bacterial two-component regulatory 

systems. For example, expression of the fibronectin-binding protein F2 in S. pyogenes is 

elevated in aerobic conditions (VanHeyningen, 1993) and regulated by a negative 

regulator nra (Podbielski, 1999). Examination by electron microscopy demonstrated 

that the nra mutant exhibited higher adherence and internalization rates than did the 

corresponding wild type strain.  

Overall, it can be concluded that streptococcal adherence to epithelial cells at the 

site of infection is a dynamic process determined by both host tissue and bacterial 

factors.  

Invasion of GBS involves intimate attachment of streptococcal chains, 

engulfment of the adherent bacteria, entry of the bacteria and formation of membrane-

bound vacuoles in which most of the intracellular streptococci reside. Streptococcal 

invasion of the host epithelial cells is mediated by specialized proteinaceous surface 
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components, which also may or may not play a role in adhesion. Among others, M 

proteins were suggested as streptococcal invasins (Table 1.3.4.1). Both M6 protein and 

protein F1, which act as adhesins of GAS, are required for an efficient invasion of host 

epithelial cells. It was demonstrated that entry of GAS into cultured cell requires the 

occupancy of protein F1 by fibronectin (Ozeri, 1998) and that expression of protein F1 

may result in invasiveness of a normally non-invasive strain of GAS (Jadoun, 1997).   

Invasiveness of Group B Streptococcus (GBS) is regulated by the growth rate of 

the culture (Malin, 2001) and may depend on the expression of a certain gene(s) that is 

expressed in a particular phase of bacterial growth.  

Although higher adherence to host epithelium potentially could lead to a higher 

rate of intracellular invasion, invasiveness does not necessary directly depend on the 

adhesiveness of streptococci (Adderson, 2003).  

There is no consensus as to how the internalization of a Streptococcus cell or 

chain occurs. For S. agalactiae (GBS) it was demonstrated that the host cell microvilli 

wrap around the bacterial cell or groups of cells, resulting in eventual entry of the 

bacterium into the cell (Tyrrell, 2002). In contrast, during internalization of S. pyogenes 

(GAS), small cavities in the host cell membrane are formed close to adherent 

streptococci and the following invagination of a host cell membrane results in 

internalization of the bacterium (Rohde, 2003).    

The ability of a Streptococcus to invade a host cell depends not only on the 

expression of proper invasins by the bacteria but also on the “competence” of a host cell 

and is probably defined by the cell lineage, its metabolic activity and a repertoire of the 

surface receptors. Invasion of GBS requires activation of the eukaryotic actin 
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microfilament system involving, at least partially, protein kinase signal transduction 

pathways. Invasion is inhibited in a dose-dependent manner by decreasing extracellular 

Ca2+ levels as well as by substances known to interfere with eukaryotic calcium 

regulatory systems (Valentin-Weigand, 1997). This suggests that GBS invade epithelial 

cells by triggering calcium-dependent phagocytosis-like internalization mechanisms.  

In experimental infection of cultured epithelial cells with GAS and GBS it was 

found that cytochalasin D almost completely inhibited internalization of bacteria, 

whereas colchicine had no effect, indicating that host microfilaments play a major role 

in bacterial internalization (Greco, 1995).  

Depending on the streptococcal strain and on the strategy the strain uses for its 

dissemination, the fate of the host cell and of the intracellular bacteria may vary.  

After 2 hours of infection of cultured A549 human respiratory epithelial cells 

with GBS strain COH-1, the invading bacteria were completely enclosed by the 

microvilli and were found deep in the cytoplasm (Rubens, 1992). Internalization of 

GBS by HEp-2 cells was observed within 20 minutes and live intracellular bacteria 

were detectable up to 48 hours post-infection (Valentin-Weigand, 1997) while other 

strains of GBS were able to destroy HeLa cells within 6 hours of co-incubation (Tyrrell, 

2002). As was demonstrated in the HEp-2 / S. pyogenes model of infection, after 

internalization, the S.  pyogenes continued to propagate intracellularly while the host 

cells underwent apoptosis (Marouni, 2004). This supports a hypothesis in which 

internalized bacteria can induce their own externalization into the medium by a process 

that requires both an intact host-cell cytoskeleton and de novo synthesis of bacterial 

proteins. Intracellular and, possibly, extracellular free bacteria induce apoptosis through 
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their cytotoxic activity, and a target host cell releases essential nutrients required for 

bacterial growth.  

It was suggested that once internalized, GBS does not replicate, since similar 

numbers of bacteria were isolated from infected cultured epithelial cells after 2 and 8 

hours of incubation of infected cells with antibiotics (Rubens, 1992). However, the 

reason for the similarity of numbers of CFU isolated from infected cells may be that 

streptococci tend to form chains upon replication and an increase in the number of cells 

may occur, but the number of CFU may remain constant. Electron micrographs 

presented by authors of that study show that the lines of division formed by internalized 

bacteria are clearly visible. The same study demonstrated that by up to 8 hours after 

internalization, GBS remained within the vacuole and did not escape into the cytoplasm.  

The consequences of streptococcal invasion probably depends on the strain of 

the invading bacteria and expression of the bacterial surface components responsible for 

invasion, as well as on the lineage and competence of the host cell, which together 

determine the pathway of internalization of the bacteria and the sequence of molecular 

events following the internalization.  

All of the above suggests that streptococcal adherence to and invasion of host 

epithelial cells is determined by the presence of one or more bacterial adhesins, by host 

cell receptors for the bacterial adhesins and, in some cases, by the presence of an 

intermediatory host secreted component that may serve as a bridging molecule in the 

interaction between bacterial adhesins and host epithelial cell receptors responsible for 

adhesion.  
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1.4 Streptococcal Infection and Intercellular Signalling 

1.4.1 Bacterial Signal Transduction Systems  

Bacterial signalling pathways are activated by an array of surface components 

that sense changes in environmental and intracellular parameters and transmit these 

signals to various cellular mechanisms to cause adaptive changes in metabolism and 

physiology.  

The existence of a eukaryotic-type serine/threonine kinase (Stk1) and its cognate 

phosphatase (Stp1) in GBS was demonstrated, suggesting the existence of signal 

transduction pathway(s) associated with protein phosphorylation. Mutants defective for 

Stk1 or both Stp1 and Stk1 expression exhibit affected growth, cell segregation, and 

virulence, suggesting a role for these enzymes in the regulation of various cellular 

processes (Rajagopal, 2003). This implies that a two-component transmembrane 

sensory kinase together with its response regulator may activate expression of the genes 

related to streptococcal virulence in response to changed environment following the 

entry of the Streptococcus into the site of infection.  

1.4.2 Streptococci and Signal Transduction in Host Cells   

Various signal transduction pathways are activated in different types of host 

cells upon contact with infectious agents (Fig. 1.4.2.1). Generally, activation of these 

pathways results in generation of the innate immune responses and elimination of the 

infecting bacteria [reviewed in (Moll, 2003; Li, 2003)]. Interference with induction of 

the pathways, leading to elimination of bacteria and activation of pathways allowing 

survival and perpetuation of the pathogen, would be beneficial for pathogenic  
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Figure 1.4.2.1. Intracellular signalling pathways affected by streptococcal factors.  
 
A, Streptococcal species and factors playing a role in the host cell signal transduction; 
B, Host cell membrane with suggested surface receptors; “?” indicates unknown or 
hypothetical host cell receptor. C, Cellular processes or pathways influenced; D, 
Consequences of streptococci-associated signalling. 1, (Cleveland, 1996); 2, (Albanyan, 
2000); 3, (von Hunolstein, 1997); 4, (Ali, 2003); 5, (Marodi, 2000); 6, (Cywes, 2001); 
7, (Singleton, 2004); 8, (Turley, 2002); 9, (Zysk, 2001); 10, (Brown, 2001); 11, 
(Kobayashi, 2003); 12, (Lozupone, 2004); 13, (Fettucciari, 2003).  
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Streptococci. The major intracellular signalling pathways that were demonstrated to be 

affected by streptococci are summarized in Fig. 1.4.2.1. Streptococcal M- and M-like 

proteins were suggested to interfere with host intracellular signal transduction. The 

signal transduction pathways influenced by M-like streptococcal proteins are 

summarized in Fig. 1.4.2.2. M-like streptococcal proteins were implicated in signal 

transduction, affecting actin rearrangement of the host cell and subsequent intracellular 

invasion by Streptococcus (Purushothaman, 2003). M5 protein of GAS, which 

interferes with the killing of the bacteria by host neutrophils, was demonstrated to 

inhibit an activation of Cdc42, a component of a phagocytosis-related signalling 

pathway activated by complement receptor 3 (CR3) (Weineisen, 2004). Protein tyrosine 

phosphorylation is essential in CR3-dependent signal transduction in host neutrophils. 

Streptococcal M protein (M5) was demonstrated to interfere with CR3 signalling in 

neutrophils. Additionally, phosphorylation of β-integrin CD11b/CD18 itself on the 

surface of neutrophils is required for neutrophil activation (Buyon, 1997). 

Integrin-linked kinase is associated with the contractile machinery and can 

phosphorylate myosin at the myosin light chain kinase sites. It was proposed that 

regulation of myosin phosphatase activity includes phosphorylation of the myosin 

phosphatase target subunit (Muranyi, 2002). 

As was demonstrated (Dombek, 1999), streptococcal invasion may be mediated 

by interactions with host cell microvilli, and streptococci undergoing endocytosis are 

associated with polymerized actin. It was suggested that M protein of GAS activates a 

lipid kinase signalling pathway that is required for GAS entry into epithelial cells 

(Purushothaman, 2003). Both M protein and fibronectin binding protein were suggested  
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Figure 1.4.2.2. Cellular signal transduction pathways affected by streptococcal M 
proteins.  

 

A, GAS M proteins, demonstrated to interfere with cell signalling pathways; B, Cellular 
membrane with host cell receptors implicated in M protein-associated signal 
transduction; C, Affected cellular pathways influenced by M proteins; D, Consequences 
of M protein-associated signalling. 1, (Weineisen, 2004); 2, (Buyon, 1997); 3, 
(Purushothaman, 2003); 4, (Cue, 1998); 5, (Molinari, 2000);  
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to initiate two different signalling pathways through the binding of the same ligand 

(fibronectin) and interaction with the same host cell receptor (α5β1 integrin, (Cue, 

1998)), initiating cytoskeletal changes required for internalization of bacteria. Purified 

M1 protein promoted actin polymerization by PI 3-K-dependent mechanisms and the 

authors suggested that the downstream effector molecule from PI 3-K is the Akt 

(Ser/Thr) kinase and that phosphorylation of Akt and activation can occur only at the 

plasma membrane by interaction with phosphoinositides generated by PI 3-K. It was 

suggested that upon interaction of the eukaryotic cell with the M protein/fibronectin 

complex, the small protein G Ras is activated and it recruits PI 3-K to the cell 

membrane (Mansell, 2001), where membrane lipids are then phosphorylated. 

Phosphorylated products of PI 3-K have been reported to activate Rac, which in turn 

coordinates actin polymerization (Cantrell, 2001) required for the uptake of 

streptococcal cells.  

Surprisingly, a GAS mutant lacking fibronectin binding protein and with 

reduced ability to bind fibronectin was more virulent in the murine infection model 

(Nyberg, 2004a), suggesting that streptococcal virulence and severity of the disease do 

not necessarily parallel the ability of the bacteria to adhere to and invade host epithelial 

cells. Activation of Akt and protein kinase C (PKC), which are downstream kinases of 

the phosphatidylinositol 3-kinase (PI-3K) pathway, was demonstrated in the interaction 

of an unencapsulated strain of Streptococcus suis with J774 macrophage-like cells  

(Segura, 2004) and the regulation of such activation was implicated in modulating a 

phagocytic activity of the host cells. Considering that PI-3K activation has been related 

to both receptors for the Fc portion of IgG- and CR3 (complement receptor 3, 
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CD11b/CD18)-mediated phagocytosis pathways (Cox, 2000), it is not surprising that 

bacteria may target PI-3K to modulate the bacteria-host interactions. Implicated in 

streptococcal adherence, lipoteichoic acid (LTA) was suggested to interact with actin 

upon host cell contact with bacterial cells (Sela, 2000), although no direct evidence of 

this was offered.  

These data indicate that streptococcal M-related proteins (Fig. 1.4.2.2) as well as 

other surface components involved in host-pathogen contact and interaction (Fig. 

1.4.2.1) play a role in activation of several distinct signal transduction pathways in the 

host cell, which potentially may affect a course and outcome of streptococcal infection.  
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2 HYPOTHESIS, OBJECTIVE AND SPECIFIC AIMS OF THIS STUDY  

2.1 Hypothesis  

We hypothesized that the lactoferrin-binding protein (Lbp) is a virulence factor 

of the environmental bovine pathogen Streptococcus uberis. This hypothesis was based 

on the structural similarity and amino acid sequence homology of Lbp to M-related 

proteins of Group A streptococci which suggested a possible functional similarity 

between Lbp and M-like proteins. The latter are involved in evasion of host 

antibacterial defenses, adhesion to host epithelial cells and intracellular invasion by the 

bacteria. High-affinity binding of milk lactoferrin in a species-specific manner 

suggested that Lbp might be involved in acquisition of iron by S. uberis. We also 

hypothesized that binding of lactoferrin (which is a major protein component in the host 

milk) to Lbp might trigger signal transduction in S. uberis during bovine intramammary 

infection.  

2.2 Rationale and Overall Objective  

The pathogenesis of bovine environmental intramammary infections is not 

completely understood. The overall objective of this project was to investigate the role 

of the lactoferrin-binding protein in the development of bovine intramammary infection 

with S. uberis.  
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2.3 Specific Aims  

Specific aims of this study included: (1) isolation of a defined lbp mutant of S. 

uberis; (2) comparison of the lbp mutant and wild type S. uberis in their abilities to 

resist host antibacterial factors, namely ingestion and killing by polymorphonuclear 

neutrophils and attack by serum complement; (3) comparison of the lbp mutant and 

wild type S. uberis in their abilities to adhere to and to invade host epithelial cells; (4) 

study of the capabilities of the two strains to acquire iron from bovine lactoferrin; (5) 

comparison of the pathogenicity of the two strains in vivo and of their abilities to 

colonize the host mammary gland in experimental infection; and (6) study of the signal 

transduction events and regulation of gene expression activated by the two strains.     
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3 MATERIALS AND METHODS  

3.1 Bacterial Strains and Culture Conditions  

Bacterial strains and plasmids used in this study are listed in Table 3.1.1. For all 

experiments involving plasmid construction and amplification, Escherichia coli DH5α 

(Table 3.1.1) was used. E. coli was cultured with aeration in liquid Luria Bertrani 

(GIBCO BRL., Grand Island, NY) medium at 37oC. A clinical isolate of Streptococcus 

uberis designated strain Su-1 was subcultured on sheep blood agar and stored in a 

frozen stock in BHI broth containing 50% glycerol at –70oC. For routine laboratory 

experiments, all strains of S. uberis were cultured in Brain-Heart Infusion (BHI) broth 

(GIBCO BRL.). When necessary, bacterial growth media were solidified by adding 

Bacto-agar (final concentration 1%). When appropriate for the selection of antibiotic-

resistant strains of either E. coli or S. uberis, antibiotics were used at the following 

concentrations: ampicillin, 100 µg/ml; spectinomycin, 100 µg/ml; erythromycin, 50 

µg/ml.  Selection of the temperature-sensitive antibiotic resistant strains was carried out 

at 28oC. 



 41 

Table 3.1.1 Bacterial strains and plasmids used in this study.  
Organism/

plasmid 
Strain Description Reference/source 

E. coli DH5α F-(φ80d lacZ ∆M15) 
∆(lacZYA-argF) U169 

recA1endA1hsdR17 (rk- 
mk+) supE44 thi1 gyrA 

relA1 

(Hanahan, 1983), Gibco 
BRL 

E. coli LBP5 Same as DH5α, carrying the 
plasmid pLBP5 with 

recombinant lbp 

(Jiang, 1996b) 

S. uberis Su-1 Bovine mastitis isolate; 
Lbp+, Mga+; Cfu+ 

ATCC 9927 (Jiang, 1996a; 
Jiang, 1996b) 

S. uberis Su113 Same as Su-1, carrying the 
plasmid pMF113a (ErmR+, 

SpecR+, Ts, Lbp+, lbp) 

(Moshynskyy, 2003), this 
study 

S. uberis Su3721 Same as Su113, with the 
pMF113a integrated into the 

chromosome; ErmR+, 
SpecR+, Ts, Lbp+ ∆lbp 

This study 

S. uberis SuM13 lbp mutant of Su-1 (SpecR+, 
lbp) 

(Moshynskyy, 2003), this 
study 

M. bovis 93-276 Bovine pinkeye isolate 
(LbpA+, LbpB+) 

VIDO culture collection 

pLBP5 DH5α Lbp+, Mga+, AmpR+ (Jiang, 1996b) 

pG+Host9 DH5α ErmR+, Ts (Maguin, 1995) 
pEU904 DH5α ErmR+, SpecR+, Ts, Kindly provided by June 

Scott, Department of 
Microbiology and 

Immunology, Emory 
University Health Sciences 

Center, Atlanta, Georgia 
30322, USA. See also 
(Podbielski, 1996a) 

pGh9∆K DH5α ErmR+, Ts, deleted KpnI site (Moshynskyy, 2003), this 
study 

pMF112a DH5α pGh9∆K with ∆lbp insertion (Moshynskyy, 2003), this 
study 

pMF113a DH5α, 
Su113 

pMF112a with aad9 
insertion; ErmR+, SpecR+, 

Ts, ∆lbp 

(Moshynskyy, 2003), this 
study 
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The relationship between the optical density of an S. uberis culture and the 

number of bacteria was determined as follows. S. uberis was cultured in BHI broth 

overnight without aeration. The overnight culture was diluted 1:100 and grown without 

shaking at 37oC. Red light (600 nm) optical density of the culture (OD600) was 

measured every hour and aliquots of the culture were serially diluted and plated on BHI 

agar for colony forming units (CFU) titration. A standard curve associating S. uberis 

culture optical density and number of CFU per ml was constructed to estimate the 

bacterial CFU titer of cultures used in the various experiments (Fig. 4.1.4.2) and to 

target the culture’s optical density to harvest bacteria at a desirable titer. Actual CFUs 

were measured for each individual experiment either by plating serial dilutions on agar 

plates or by counting bacterial chains using a haemocytometer. If the actual bacterial 

titer did not correspond to that predicted for the standard curve (Fig. 4.1.4.2), the results 

of the experiment were not analyzed further.  

3.2 Recombinant DNA Techniques  

Bacterial chromosomal DNA was extracted as described (Sambrook, 1989), 

using the phenol extraction method. Bacterial plasmid DNA was isolated using an 

alkaline mini scale plasmid extraction protocol (Birnboim, 1979). For extraction of 

large amounts of bacterial plasmid, the alkaline protocol was scaled up and the plasmid 

DNA was purified by CsCl gradient centrifugation (Sambrook, 1989). When necessary, 

DNA was purified using a plasmid isolation kit (QIAGEN Inc., Mississauga, Ontario) 

according to the manufacturer’s recommendations. Restriction endonucleases 

(Amersham Biosciences, Inc., Baie d'Urfé, Québec) were used according to the 

manufacturers’ recommendations. DNA fragments were separated by agarose gel 



 43 

electrophoresis or, for the separation of fragments smaller than 200 base pairs, by non-

denaturing polyacrylamide gel electrophoresis as described (Sambrook, 1989). To 

visualize DNA fragments, the gels were stained in 0.5mg/ml Ethidium Bromide 

(Sigma) and illuminated with 254 nm ultraviolet (UV) light. AlphaEase software (Alpha 

Innotech, San Leandro, CA) was used to analyze the gels. Restriction endonuclease 

cleavage maps were generated using Clone Manager Professional Suite (Scientific and 

Educational Software, Cary, NC) version 7.0 and adjusted manually.  

PCR oligonucleotide primers were designed using Primer3 web-based algorithm 

at http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi. Suggested primers were 

analyzed using Clone Manager Professional Suite for optimization of annealing 

temperature, GC content, exclusion of self-complementarity and primer dimers.  The 

specificity of the designed oligonucleotides was tested by BLAST searches for short 

nearly exact matches at http://www.ncbi.nlm.nih.gov/BLAST/. Custom PCR primers 

(Table 3.2.1) were synthesized by Sigma. PCR reactions were carried out using PCR 2X 

MasterMix (MBI Fermentas) in 50 µl volume using the Programmable Thermal 

Controller model PTC-100 (MJ Research, Watertown, MA).   

T4 ligase (Amersham Biosciences) was used for ligation of both cohesive and 

non-cohesive end DNA fragments in the OPA buffer (Amersham Biosciences) 

containing 10 mM ATP at room temperature over 18 hours.  

When required, overhanging nucleotides were removed from DNA fragments 

using the PCR Polishing Kit (Stratagene, Cedar Creek, TX) according to the 

manufacturer’s instructions.  
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Table 3.2.1. PCR oligonucleotide primers used in his study.  

Primer’s 

designated 

name 

5’ to 3’ nucleotide sequence Reference sequence / accession 

number 

lbp#1 AAAGTCGACCCTTAATATGG-
CCAAGAATCGGT 

pLBP5, (Jiang, 1996b) 

lbp#2 GAGGTCGACGGTATCGA-

AAGC 

pLBP5, (Jiang, 1996b) 

lbp#3 TTTTTGGTACCTTAAGCT-

TCCCTGC 

gbAY376838.1 (Moshynskyy, 

2003) 

lbp#4 AAAAAGGTACCCGCCGG-

AAACGCAAAAAA 

gbAY376838.1 (Moshynskyy, 

2003) 

aad9#1 TCGATAGCTTGCATGCC-

GCAG 

gbU50979.1 (Podbielski, 

1996a) 

aad9#2 GAGGTCGACGGTATCGA-

AAGC 

gbU50979.1 (Podbielski, 

1996a) 

ANX1F GATCAAAGCGGGCTATCTGC gbAW462573 

ANX1R GCTCTTCGGCATCAAACTGG gbAW462573 

VIL1F GAGAACAAGCGGACCCACAA gbBF045212 

VIL1R CCTTCACATGGCCTCGAACT gbBF045212 

STM1F AGACGCAAGTCCCATGAAGC gbBF042135 

STM1R TCAGCTTCTCTTCCGCCATC gbBF042135 

Elf1F AGCCTCTGAACCCCAAGAGG gbBF045376 

Elf1R AGGCCAGCTGGGTTGTTGTA gbBF045376 

IL13RF CCCTTACTCCCCCAAATGGT gbBF040232 

IL13RR GGGTGAGGATGGAGCCCTAA gbBF040232 

GAPbtF TGACCCCTTCATTGACCTTC AJ000039 

GAPbtR ATGGCCTTTCCATTGATGAC AJ000039 

 
Recognition sites for the restriction endonuclease KpnI are indicated in bold.   
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For Southern blot hybridization, DNA fragments were separated by agarose gel 

electrophoresis, transferred via capillary transfer to a nylon membrane (Bio-Rad 

Laboratories, Mississauga, Ontario) and hybridized as described (Southern, 1975). 

DNA probes for Southern blot hybridization were prepared by carrying out a PCR 

reaction into which an α 32[P]dCTP was added. 32P-labeled DNA probes were purified 

by gel filtration through a Sephadex G50 (Amersham Biosciences) mini-column.  

Probed membranes were exposed to Kodak Scientific Imaging film (Eastman Kodak 

Company, Rochester, NY) and processed as recommended by the manufacturer.  

Apoptosis in cultured epithelial cells was induced with either 2 µM of 

staurosporine or with live bacteria as described (Tsai, 1999). For assaying DNA 

laddering during MAC-T cell apoptosis, total cellular DNA was extracted as described 

(Tang, 1998) 24 hours after induction of apoptosis and separated by gel electrophoresis 

in 1.5 % agarose as described above.  

3.3 Bacterial Transformation 

All bacterial transformation experiments involved electroporation of competent 

bacterial cells. To prepare electrocompetent bacterial cells, a bacterial culture grown 

overnight was diluted 1:100 in fresh broth and grown to early logarithmic stage (OD600 

= ~ 0.2). Bacterial cells were collected by centrifugation, washed 3 times in ice-cold 

sterile deionized water, resuspended in cold water at approximately 109 CFU/ml, then 

stored in 100 µl aliquots at –70oC until use. Bacterial cells were transformed by 

electroporation in a 1 mm gap cuvette (Bio-Rad) at 12.5 kV/cm, 200 Ω in a GenePulser 

(Bio-Rad) using 100 µl of bacterial cells prepared as described above. Fifty ng of 
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ligated DNA (for transformation of E. coli), 500 ng of plasmid DNA (for transformation 

of S. uberis), or 10 pg of total DNA isolated from S. uberis carrying the plasmid 

pMF113a for re-transformation of E. coli were used for each electroporation.  

3.4 Allele Replacement  

Allele-replacement of the lbp gene was performed as described previously 

(Jones, 1991). Briefly, strain Su-1 transformed with pMF113a (ErmR+, SpecR+, Ts, 

∆lbp; Fig. 4.1.2.1), resistant to both erythromycin and spectinomycin at 28oC 

(permissive for replication temperature) and susceptible to both spectinomycin and 

erythromycin at 42oC (non permissive for pMF113a replication), was cultured at 28oC 

to stationary phase, diluted 1:1000 in fresh BHI broth, spread on a BHI agar in the 

presence of both antibiotics and incubated overnight at 42oC. Incubation at the non 

permissive temperature ensured that the pMF113a plasmid did not replicate 

independently, while the antibiotic in the medium allowed selection for the presence of 

plasmid-encoded resistance genes, presumably integrated into the S. uberis 

chromosome. Several clones resistant to both antibiotics were selected and likely 

contained pMF113a integrated into the chromosomal DNA, resulting in two copies of 

the lbp gene: one originally present in the Su-1 strain and the other one the altered in 

vitro. To stimulate the second recombination event resulting in excision of the wild type 

lbp gene along with the pMF113 backbone, the recombinant strain was grown in fresh 

BHI without antibiotics at 28oC for 18 hours. The culture was diluted 1:100,000, plated 

on antibiotic-free BHI agar and incubated at 42oC for 18 hours. Colonies were replica-

plated onto spectinomycin-containing and erythromycin-containing BHI agar. The 



 47 

colonies resistant to spectinomycin and susceptible to erythromycin were considered 

replacement mutants and were characterized as described below. 

3.5 Protein Techniques, Western Blot and ELISA 

SDS polyacrylamide gel electrophoresis of total bacterial proteins was carried 

out as described (Laemmli, 1970) in a mini polyacrylamide gel apparatus  model Mini-

PROTEAN II Cell (BioRad). Protein bands were visualized by staining the gel with 

Coomassie Brilliant Blue R250 (BioRad). For immunoblotting, proteins were separated 

by SDS polyacrylamide gel electrophoresis and transferred to a nitrocellulose 

membrane (BioRad) by electrotransfer using an Electroeluter model 422 (BioRad) in 

cold transfer buffer at a constant current of 300 mA. The membranes were blocked with 

0.3% casein at 4oC for 18 hours.  Primary polyclonal anti-Lbp rabbit antibodies were 

described previously (Jiang, 1996b). Alkaline phosphatase (AP)-conjugated goat anti-

rabbit IgG (Kirkegaard and Perry Laboratories) was used as a secondary antibody.  

Dilutions of 1:1000 of primary antibodies and 1:5000 of the secondary antibody were 

used consecutively (30 minutes each, each followed by 3 washings with TBS, all at 

room temperature) to probe protein blots. Immunoreactive protein bands were 

visualized using nitroblue tetrazolium salt (NBT) / 5 bromo-4-chloro-3-indolyl 

phosphate (BCIP) alkaline phosphatase chromogenic reaction as described (De Jong, 

1985). Bovine lactoferrin (Sigma) was labeled using the DIG-oxygenin Protein 

Labeling Kit (Roche Diagnostics, Laval, Quebec) as recommended by the 

manufacturer. Bound lactoferrin was detected using AP-conjugated Fab fragment of an 

anti-DIG monoclonal antibody (Roche) and the lactoferrin-binding protein bands were 

visualized as described above. DIG-labeled bovine lactoferrin was used for both 
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Western blot and ELISA (enzyme-linked immunosorbent assay)-based measurement of 

lactoferrin-binding. Developed nitrocellulose membranes were scanned with white 

fluorescent light and imaged using AlphaEase software as described above.  

For ELISA, exponentially growing bacterial cultures were diluted to 108 

CFU/ml in 50 mM sodium carbonate, pH 9.6, buffer and heat-inactivated (15 minutes at 

65oC). Whole bacterial cells were adsorbed to round-bottom High Binding 96-well 

polystyrene microtiter plates (Thermo Labsystems, Franklin, MA) in sodium carbonate 

buffer (50 µl, 108 CFU/ml) overnight. All incubations were performed at room 

temperature. Excess bacteria were removed by washing with tris-buffered saline (TBS, 

0.8% NaCl (w/v), pH7.0) containing 0.5% (v/v) of Tween 20. The plates were blocked 

with 100 µl/well of TBS-0.5% Tween 20 containing 0.3% (w/v) bovine serum albumin 

(BSA; Sigma, St. Louis, MO). The plates were washed once with TBS - 0.5% Tween 

20. Either 50 µl of anti-Lbp rabbit serum or 50 µl of DIG-labeled bovine lactoferrin was 

added to the wells, then the plates were incubated for at least 3 hours and extensively 

washed with TBS-0.5% Tween 20. Both the rabbit anti-Lbp serum and the DIG-labeled 

lactoferrin (1 mg/ml) were serially diluted in fourfold increments from 1:20 to 1:81,520 

in TBS-0.5% Tween 20-0.3 % BSA. The plates were washed as above and probed with 

either 50 µl of the 1:1000 diluted goat anti-rabbit IgG conjugated to alkaline 

phosphatase (Kirkegaard and Perry Laboratories, Gaithersburg, MD.) or 50 µl of 1:1000 

diluted Fab fragment of monoclonal anti-DIG antibodies conjugated to alkaline 

phosphatase (Roche), both diluted in TBS-0.5% Tween 20-0.5% BSA. The plates were 

incubated for 2 – 4 hours and washed 3 times as above. Para-nitrophenyl phosphate 

substrate (PNPP, 1 mg/ml; Sigma) in 50 µl of 1 M Tris-3 mM MgCl (pH 9.8) was 
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added. The optical densities were determined by a dual wavelength measurement, 

subtracting the OD550 from the OD405. ELISA titers were calculated as the reciprocal of 

the last positive dilution plus 2 standard deviations.  

Protein phosphorylation was detected by incubation of the bacteria or 

mammalian cells in the presence of 10 µCi/ml of γ32[P]ATP (Amersham) for 1 hour 

with subsequent separation of the proteins by polyacrylamide SDS gel electrophoresis. 

The gels were stained with Coomassie Brilliant Blue R250 to visualize the protein 

bands and air-dried at 37oC, after which the gels were exposed to Kodak Scientific 

Imaging film to identify phosphorylated bands.  

3.6 Bactericidal Assay and Phagocytosis  

The bactericidal effect of whole bovine peripheral blood was assayed as 

described (Kotarsky, 2000) in a direct bactericidal assay. An overnight culture of 

bacteria in BHI broth was diluted 1:50 in fresh BHI and grown at 37oC without 

agitation to an OD600 of ~ 0.2. The bacterial cultures were diluted 1:104 in BHI and 500 

µl of the suspension, containing ~5000 CFU, was added to 4.5 ml of fresh bovine 

peripheral blood supplemented with 20 U/ml sodium heparin and 4 µg/ml of bovine 

lactoferrin (Sigma) in 5 ml polypropylene tubes. The mixture was incubated with 

rotation at 37 o C for 3 hours. Bacterial numbers were determined every hour by plating 

serial 1:10 dilutions on BHI agar. The results are presented as a multiplication factor 

indicating a percentage of surviving bacteria in the mixture after each hour of 

incubation. The multiplication factor was calculated as described (Collin, 2002), by 



 50 

dividing the number of CFU after each hour of incubation by the number of CFU at the 

previous hour.  

To determine the opsonophagocytic killing of the bacteria in whole bovine 

peripheral blood, the mixtures above were supplemented with 0.5% of bovine anti-S. 

uberis serum. The incubation of the mixtures and the calculation of multiplication factor 

were performed as above.  

Resistance to killing by PMN. Neutrophils were isolated from fresh EDTA-

supplemented bovine peripheral blood as described (Tithof, 1997), washed once in 

DMEM, counted using a haemocytometer (Amersham) and diluted to 107 viable 

cells/ml in fresh DMEM (Sigma) in the presence of 0.5% (v/v) bovine anti-S. uberis 

serum and 4 µg/ml bovine lactoferrin. Exponentially growing bacteria (see above) were 

washed in fresh DMEM and added to the neutrophil suspension at a 1:1 ratio. The 

suspensions were incubated and multiplication indexes were determined as described 

above. After 3 hours of incubation, the suspensions were treated with 100 µg/ml of 

ampicillin and 50 µg/ml of gentamicin (both from Sigma)) for 3 hours at 37 o C with 

constant rotation in order to kill extracellular bacteria as described (Zlotkin, 2003).  

After each hour the bovine neutrophils were extensively washed and lysed with 0.1% 

(w/v) saponin (Sigma) 1% (w/v) trypsin (Sigma). Serial 1:10 dilutions of the lysates 

were plated on BHI agar and multiplication indices were calculated as above.  

Resistance to serum complement. Bovine serum was used for assaying the 

bactericidal effect of serum complement on S. uberis Su-1 and SuM13. Fresh bovine 

serum was centrifuged at 3000 g and, when required, heated at 56oC for 2 hours in order 

to completely inactivate complement enzymes. Exponentially growing bacteria were 
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mixed with bovine serum, incubated at 37oC with constant rotation, and bacterial 

multiplication factors were calculated as described above. Data are means ± standard 

deviations of at least three independent experiments.  

Phagocytosis assay. The association of the bacteria with host peripheral blood 

polymorphonuclear cells was assessed by flow cytometry as described (Song, 2001). 

Exponentially growing bacteria were fluorescently stained using the PKH-2 Fluorescent 

Cell Linker kit (Sigma) as recommended by the manufacturer. Stained bacteria were 

washed 4 times in antibiotic-free DMEM and mixed with bovine PMNs in the presence 

of 4 µg/ml of bovine lactoferrin (Sigma) and 0.5% (v/v) of bovine anti-S. uberis serum 

at the CFU/PMN ratios of 1:10, 1:100 or 1:1000. Mixtures were incubated at 37oC in 

the dark in a slowly rotating 5 ml tube. After 1 hour of incubation, the mixtures were 

fixed with 2% formaldehyde (Sigma). A flow cytometry assay was performed using a 

FACScan flow cytometer (Becton Dickinson, Mississauga, Ontario). Ten thousand 

PMNs were counted for each sample. Granulocyte cell populations were selected by 

gating according to their granularity and cell sizes as described (Jain, 1991).  The results 

are shown as representative dot plots of the particle size versus logarithm of the particle 

fluorescence as suggested previously (Song, 2001) for the gated cell population as 

determined in at least 3 independent experiments.  

3.7 Culturing of Bovine Mammary Epithelial Cells  

MAC-T bovine mammary epithelial cells (Huynh, 1991) ATCC CRL-10274 

were cultured as described (Calvinho, 1998) in 75 cm2 tissue culture flasks (Corning 

Inc., Corning, NY) to near confluence. Cells were treated with 0.5% (w/v) Trypsin 
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(GIBCO BRL.) in Versene Buffer (0.2 g/l sodium-EDTA, 8 g/l NaCl, 0.2 g/l KCl, 1.15 

g/l Na2HPO4, 0.2 g/l KH2PO4, 0.2 g/l glucose), resuspended in fresh DMEM medium 

containing 5% (v/v) of fetal bovine serum (FBS) (GIBCO BRL.) and diluted to 5x105 

cells/ml with DMEM. For adhesion and invasion experiments, 106 viable cells were 

placed in each well of 6 well tissue culture plates and incubated at 37oC in 5% CO2 

(v/v) atmosphere for 18 hours.  

3.8 Light Microscopy  

Counting of trypsinized bovine cultured epithelial cells was carried out in a 

haemocytometer (Amersham) according to the manufacturer’s guidelines. Viable cells 

were quantified using a trypan blue exclusion test as described (Sanchez, 1986). The 

trypsinized cells co-incubated with bacteria were fixed with 1% (v/v) formaldehyde 

25% (v/v) glycerol solution and photographed using a fluorescent microscope Zeiss 

model Axiovert 200M (Carl Zeiss Vision GmbH., Hallbergmoos, Germany). 

Monolayers of cultured epithelial cells were examined and photographed as described 

above.   

Bacterial cells were fluorescently labelled using a PHK-2 kit (Sigma) as 

recommended by the manufacturer. Prior to examination of infected cells by electron 

microscopy, both MAC-T cells and bacteria were stained with 2 µg/ml of Bis-Benzidine 

(Sigma) and analyzed by fluorescent microscopy.  

3.9 Bacterial Adhesion and Invasion Assays  

MAC-T cells were transferred to 6-well tissue culture plates at approximately 

106 cells per well and cultivated overnight in DMEM tissue culture medium, 
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supplemented with 5% of fetal bovine serum. After replacement of the medium with 2.5 

ml of fresh medium, the cells were infected with S. uberis at a multiplicity of infection 

(MOI) of 100:1 (approximately 108 CFU), and incubated for 3 hours at 37°C. Since S. 

uberis grows in tissue culture medium thereby influencing the number of bacteria that 

can adhere to and invade the host cells, the number of bacteria after growth for 3 hours 

in tissue culture medium was set as the input inoculum as described (Gutekunst, 2003). 

To determine the number of cell-adherent bacteria, the infected host cells were washed 

three times with Versene buffer, lysed with 1% (w/v) trypsin 0.025 % (w/v) saponin for 

1 hour on ice and appropriate dilutions were plated onto agar plates. The CFUs were 

counted after incubation of the plates for 18 hours at 37oC. The amount of bacteria 

adhering non-specifically to the wells was determined in a similar way, except that the 

6-well plates did not contain MAC-T cells. Due to the lysis of the eukaryotic cells, the 

calculation of cell-adherent bacteria also included bacteria that had invaded MAC-T 

cells. Therefore, the number of invasive bacteria (see below) was subtracted from the 

number of cell-adherent bacteria obtained to calculate the actual number of adherent 

bacteria. To determine the number of adherent bacteria per eukaryotic cell, the number 

of cell-adherent bacteria was divided by the number of MAC-T cells per assay. To 

determine the adhesion index, the number of viable adherent bacteria was divided by 

the total number of bacterial CFU in the well at the time of assay. All adhesion and 

invasion assays were performed in duplicate and the experiments were repeated at least 

4 times.  

The invasive bacteria were enumerated as described (Gutekunst, 2004). For 

invasion assays, the epithelial cells, grown in 6-well plates as described above, were 
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infected with 108 CFU of streptococci, incubated for 2 hours at 37°C, and washed three 

times with Versene buffer. Subsequently, the infected cells were incubated for 2 h in 

tissue culture medium supplemented with ampicillin (100 µg/ml) and gentamicin (50 

µg/ml) to kill extracellular bacteria. After three washes with Versene buffer, the 

epithelial cells were detached by the addition of trypsin-EDTA and lysed in 1 ml of 1% 

trypsin 0.025 % saponin for 1 hour on ice. The amount of invasive bacteria was 

determined by plating serial dilutions of the lysate onto BHI agar plates. The invasion 

index was calculated as follows: (number of invasive/total number of adherent bacteria 

immediately before addition of antibiotics) x 100%. To determine the number of 

intracellular bacteria per eukaryotic cell, the number of intracellular bacteria was 

divided by the number of MAC-T cells per assay and multiplied by 1000. The results 

are represented as the mean ± standard deviation.   

In order to demonstrate the Lbp-dependent adherence of particles to bovine 

mammary tissue, latex beads (diameter 3 µm, Sigma) were coated with recombinant 

Lbp as described (Kang, 1998). Mammary tissue (bovine udder pieces, ~ 5cm3) was 

aseptically taken and transported on ice from a slaughter facility to the laboratory within 

2 hours in DMEM containing 50 µg/ml of gentamicin. It was aseptically minced and 

incubated with 2000 U of collagenase type III  (Sigma) at 37oC in fresh DMEM 

containing 4 µg/ml of bovine lactoferrin for 2 hours. Approximately 0.1 ml of this 

suspension was mixed with 105 CFU of bacteria or with 104 latex microspheres coated 

with recombinant Lbp. The mixtures were microscopically examined every 10 minutes 

for a total period of 1 hour.  
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3.10 Transmission Electron Microscopy  

To study the effect of Su-1 and SuM13 on subcellular components of cultured 

bovine mammary epithelial cells, infected MAC-T cells were examined by electron 

microscopy. Monolayers of MAC-T cells were trypsinized as described above and 

resuspended in fresh DMEM containing 5% FBS and 4 µg/ml of bovine lactoferrin 

without antibiotics. Exponentially growing bacteria, harvested at an OD600 of 

approximately 0.2, were washed in fresh DMEM once and added to the MAC-T cell 

suspension in 5 ml polypropylene tubes. The tubes were rotated overnight at 37 o C. 

After 24 hours, MAC-T cells were centrifuged at 700 revolutions per minute (RPM) in 

a tabletop centrifuge (~45 g), washed with fresh DMEM and fixed in 0.2 M sodium 

cacodylate buffer containing 3% glutaraldehyde overnight at room temperature. Fixed 

samples were washed 3 times in 0.2 M sodium cacodylate buffer and post-fixed at room 

temperature for 1 hour in 1.25% sodium bicarbonate buffer pH 7.2 containing 1% OsO4. 

The samples were dehydrated by four consecutive washings with solutions containing 

progressively increasing ethanol concentrations as follows: ten minutes in 50% (v/v), 5 

minutes in 60% (v/v), 5 minutes in 70% (v/v), 1 hour in 70% (v/v), 5 minutes in 80% 

(v/v), 5 minutes in 96% (v/v), 5 minutes in 100% ethanol solutions. During the 

dehydration, the samples were enbloc stained with 2 % uranyl acetate solution in 70% 

ethanol for 1 hour at room temperature. After dehydration, the samples were rinsed in 

propylene oxide and infiltrated into Epon/araldite in three steps with progressively 

increasing concentrations of Epon/araldite in propylene oxide. Samples were 

polymerized in moldo forms with fresh Epon/araldite at 60 o C. The shaped samples 

were cut into 0.5 µm semi thick sections with a Jumdi diamond knife (Canemco Inc., 
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Montreal, Quebec) using a Reichert-Jung ultramicrotome model E (Reichert-Jung, 

Vienna, Austria), and the sections were placed on 90 nm thick copper grids, mesh 200, 

3mm in diameter. Sections were analyzed using a Phillips transmission electron 

microscope model 410LS at an electric field of 60-80 kV for electron beam 

acceleration. Images were taken on Kodak 4489 film.  

3.11 Study of Iron Acquisition  

           The concentration of total iron in the BHI medium was measured by colorimetric 

titration as described (http://www.sonoma.edu/users/b/brooks/115b/iron.html) using 

1:1000 diluted medium with 0.25% (w/v) 1,10-phenanthroline in the presence of 1% 

hydroquinone and 2.5% (w/v) of sodium citrate in water at a wavelength of 508 nm.  

To study the requirements of S. uberis for iron needed to support the bacterial 

growth, we depleted BHI broth of Fe(II) or Fe (III) by adding iron-chelating agents. 

Iron (III) restriction in BHI broth was achieved by supplementing the medium with 2,2-

dipyridyl (GIBCO BRL) to a final concentration of 5 mM or with deferoxamine 

mesylate (Sigma) to a final concentration of 5 mM.  

Divalent iron ions were chelated by either nitrilotriacetic acid (NTA, Sigma) or 

ethylenediamine di(o-hydroxyphenylacetic) acid (EDDA, Sigma), added to the BHI 

medium to a final concentration of 5 mM, after which MgCl2, ZnCl2, MnCl2 and CaCl2 

were added to a concentration of 1 mM each as described (Eichenbaum, 1996b).  

Bacterial cultures in the early exponential phase were split, with one part 

supplemented with an iron chelator and the other serving as a control (Fig. 3.11.1). Five 

hours after iron chelation, the culture supplemented with a chelator was again split and 

the iron source was added to one part of the culture (Fig. 3.11.1). Iron depleted medium 
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was supplemented with holo-lactoferrin to a final concentration of 4 µg/ml or with 

FeCl3 to a final concentration of 10 mM. Optical densities of bacterial cultures were 

measured at a wave length of 600 nm (OD600) using a spectrophotometer Ultraspec 

model 3000 (Pharmacia Biotech, Cambridge, England).  

To measure acquisition of iron by strains Su-1 and SuM13, iron depleted BHI 

was supplemented with 59Fe3+-saturated lactoferrin. Radioactive iron was obtained from 

Amersham Pharmacia Biotech as 100 mM FeCl3 in 0.1 M HCl at an activity of 6 to 25 

mCi/mg of Fe. For saturation of 8 mg of bovine apo-lactoferrin, 0.5 µl of 100 mM 

FeCl3 was used. This 0.5 µl of FeCl3 (3x1016 atoms of Fe3+) corresponded to 600,000 

counts per minute (CPM) as measured by β-counting at the background radioactivity of 

50 CPM. Unbound iron was separated from lactoferrin by gel filtration using G-25 

Sephadex prepacked columns. Total β-radioactivity of the protein fraction was 

determined as 200,000 CPM, which corresponded to approximately 1016 atoms of Fe3+. 

This amount of iron was chelated by 8 mg of lactoferrin, as determined by the protein 

colorimetric titration. This amount corresponds to 15 - 30 % of saturation capacity of 

3x1016 molecules (8 mg) of lactoferrin in the protein fraction. Four mg of such 

lactoferrin (1.5x1016 molecules of lactoferrin; 100 000 CPM; 5x1015 atoms of Fe3+) 

were added to the exponentially growing bacterial cultures pretreated with 10 mM of 

deferoxamine mesylate for 1 hour and containing 109 CFU. After 1 hour of incubation, 

the total amount of intracellular iron proportional to cell radioactivity for each bacterial 

culture was determined. 
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Figure 3.11.1 Study of S. uberis requirements for iron and effect of iron depletion on 
growth of cultured bacteria.   
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Apo-lactoferrin and holo-lactoferrin were prepared as described (Mazurier, 

1980). Measurement of β radioactivity of the protein fraction and the protein 

concentration in holo-lactoferrin samples indicated that the holo-lactoferrin was 15% 

saturated with iron (Lf:Fe ratio approximately 3). Bovine lactoferrin (Sigma) saturated 

with 59Fe3+was added to the bacterial suspension to a final concentration of 4 mg/ml and 

the suspension was incubated for 1 hour at 37oC. Bacteria were centrifuged, then 

washed 4 times with PBS to remove unbound iron and lactoferrin. Surface proteins, 

including iron-loaded lactoferrin, were removed by trypsin digestion (5% (w/v) trypsin, 

15 min. at 30oC) of bacterial cells. Trypsinized cells were centrifuged and the 

radioactivity of the supernatant was measured using a β- liquid scintillation counter 

Beckman Coulter model LS1701 (Beckman RIIC Ltd, Glenrothes, Scotland). This 

corresponded to the amount of the surface-bound iron-saturated lactoferrin. The 

radioactivity of the cell pellets was measured as above and corresponded to the amount 

of intracellular iron in the bacteria. Moraxella bovis, which expresses two iron-

repressible lactoferrin-binding proteins (Yu, 2002), requires iron for growth and is 

capable of iron acquisition from bovine lactoferrin, was used as a positive control. The 

data presented is the result of 6 independent experiments.   

3.12 Experimental Infection  

To study the role of the lactoferrin-binding protein of S. uberis in colonization of 

the bovine mammary gland and in order to determine the significance of expression of 

the Lbp in pathogenesis of S. uberis bovine mastitis, 6 lactating cows were infected with 

either Su-1 or SuM13.  
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Healthy Holstein cows, with no previous history of infection with S. uberis, in 

their 4th quarter of lactation were screened for the presence of bacteria in milk by 

plating of serial dilutions of the milk on BHI agar plates. Titers of anti-S. uberis IgG in 

milk were determined by ELISA. The presence of high background levels of anti-S. 

uberis antibodies in both milk and serum was possibly due to a previous likely 

exposure(s) to other streptococcal and/or staphylococcal species since there is 

considerable cross-reactivity between antigens of these pathogens. A total of 6 animals 

with bacteriologically negative milk and with the lowest anti-S. uberis IgG titers were 

selected and were divided into two groups of 3 animals each. The left hind and left front 

quarters of each animal were inoculated with sterile 0.8 % NaCl and served as internal 

negative controls. The right hind and right front quarters of the group 1 animals each 

were inoculated with 4.5 x 10 6 CFU of S. uberis Su-1 harvested in the exponential 

phase of growth (OD600 = 0.24), while the right hind and right front quarters of group 2 

animals each were inoculated with 4.8 x 10 6 CFU of S. uberis SuM13 also harvested in 

the exponential phase of growth (OD600 = 0.25). Milk samples from each individual 

quarter were collected immediately before the challenge and then twice a day during 

milking for 10 days. Colonization of a mammary gland was assayed by plating serial 

dilutions of milk on BHI agar plates and on BHI agar plates supplemented with 100 

µg/ml of spectinomycin, both in triplicate. For determination of somatic cell counts 

(SCC), milk was analyzed using a Beckman Coulter counter according to the 

International Dairy Federation guidelines (IDF, 1995). Briefly, milk samples were fixed 

in 0.3 % formaldehyde and the fat particles were dispersed in 2 % (v/v) TritonX100, 

10% ethanol emulsifier solution at 80oC for 2 hours. Emulsified milk (0.3 ml) was 
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analyzed in a Beckman Coulter counter according to the manufacturer’s instructions.  

Development of clinical mastitis and rectal temperature were monitored daily.  

Colonies grown out of milk samples were randomly picked from BHI agar 

plates and examined microscopically for the presence of streptococcal chains. 

Additionally, several colonies representing milk samples from all challenged quarters 

were analyzed using API strep20 strips (Biomerieux Inc., Quebec) as recommended by 

the manufacturer for identification of the bacterial strains.  

3.13 cDNA Microarray Hybridization  

To study the transcriptional response in cultured bovine mammary epithelial 

cells infected with S. uberis Su-1 as opposed to that of the cells infected with SuM13, 

microarray hybridization was carried out. Bovine mammary epithelial MAC-T cells 

were maintained in DMEM culture medium containing 10% fetal bovine serum in 75-

cm2 tissue culture flasks as described above. At approximately 60 % confluence, cells 

were trypsinized, counted in a haemocytometer and resuspended in fresh DMEM at a 

concentration of 106 cells/ml in antibiotic-free medium. Cells were allowed a 2 hour 

period of recovery after trypsinization. Cells were then co-incubated with 4 µg/ml of 

bovine lactoferrin and with either S. uberis Su-1 or the isogenic lbp mutant SuM13 for 3 

hours at 37°C in 5% CO2 at a bacteria-to-cell ratio of 100:1. Total RNA was isolated 

from infected MAC-T cells using the Trizol reagent (Sigma) and subsequent extraction 

with chloroform as described (Baelde, 2001). RNA was treated with RNAse-free 

DNAse (Qiagen) and purified using disposable RNeasy mini columns (Qiagen) 

according to the manufacturer’s instructions. The integrity and purity of the RNA was 

analyzed by agarose gel electrophoresis and using an Agilent BioAnalyser, model 2100 
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(Agilent Technologies Canada Inc., Mississauga, Ontario) with RNA 6000 Nano kits 

(Agilent). To control for the presence of minor quantities of DNA contamination in the 

RNA samples, after synthesis of cDNA, PCR was carried out using a pair of 

oligonucleotides specific for bovine GAPDH (Table 3.2.1) and either initial RNA or 

cDNA samples as a template for the PCR. The products of the PCR amplification were 

analyzed by agarose gel electrophoresis.  

Complementary DNA (cDNA) was synthesized by a reverse transcription 

reaction using a LabelStar Array Kit (Qiagen) as recommended by the manufacturer for 

direct cDNA labeling. RNA isolated from Su-1-infected MAC-T cells was used to 

synthesize biotin-labeled cDNA, while RNA isolated from SuM13-infected MAC-T 

cells was used to synthesize fluorescein-labeled cDNA. Labeling was carried out by 

incorporation of either Bio-11-dUTP or Fluorescein-12-dUTP (both from Enzo Life 

Sciences, Inc., Farmingdale, NY) into cDNA during the reverse transcription reaction. 

The cDNA was purified using a MinElute Reaction Cleanup Kit (Qiagen) and 

hybridized to bovine microarray glass slides containing individual spots for 7884 

bovine open reading frames (ORF) (Pyxis Genomics, Inc., Chicago, IL) and probed 

with anti-biotin- and anti-fluorescein-coated resonance light scattering (RLS) particles 

using a Two-Color Nucleic Acid Microarray Toolkit (Genicon Sciences Corporation, 

San Diego, CA) as described (Aich, In Press). Next, the glass slides were scanned using 

a GSD-501 RLS Detection and Imaging instrument using ArrayVision software 

(Imaging Research Inc, St. Catharines, Ontario), and 16 bit tiff images were generated. 

Individual spots were identified and their intensities were determined using 

ArrayVision. Text files in the form of spreadsheets were generated from analyzed data 
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consisting of spot IDs, signal intensities and background. Relative spot intensities were 

normalized for each individual spot using GeneSpring Expression Analysis software 

(Agilent) and the relative amount of mRNA was calculated as described (Aich, 2005). 

The data presented is the result of three independent experiments. The series of obtained 

normalized spot intensities of silver RLS were compared to the series of normalized 

spot intensities of gold RLS by t-test. Open reading frames with consistently altered 

mRNA levels in all three experiments at a 95 % confidence interval were selected for 

further analysis.  

3.14 Quantitative RT PCR  

To verify the microarray data, quantitative RT PCR was performed. Quantitative 

PCR was carried out using cDNA (synthesized as described above) as a template. A 

reaction was carried out in the volume of 15 µl in a 96 well plate using an iCycler qPCR 

instrument (Bio-Rad). The reaction was performed using Platinum SYBR Green qPCR 

SuperMix UDG (Invitrogen Canada Inc., Burlington, Ontario) according to the 

manufacturer’s guidelines using a 3-step amplification cycle (95oC 15 s, 55oC 30 s, 

72oC 30 s). The amplification of the PCR product was detected by measuring the 

amount of SYBR Green I dye incorporated in the PCR product and plotted as 

fluorescence versus cycle number. Accumulation of fluorescence was considered 

proportional to accumulation of a PCR product. The detection threshold was set at the 

average background fluorescence plus two standard deviations. A reaction mixture 

containing the oligonucleotide pair specific for bovine GAPDH was used as a positive 

control. The difference in expression of the gene was calculated as 2 ∆∆Ct. The parameter 

Ct was defined as the cycle number at which the first detectable increase above the 
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threshold in fluorescence was observed. ∆Ct was calculated as a difference between the 

cycle number for the positive control and the tested gene at a fluorescence detection 

threshold of (∆Ct = Ct[target gene] – Ct[GAPDH]). ∆∆Ct was calculated as the 

difference between the ∆Cts of the control and the test samples. Quantitative RT PCR 

was carried out in triplicate using mRNA from each of the 3 microarray experiments. 

The data represent fold change in mRNA content ± standard deviation.  

3.15 Statistical Analyses  

In order to determine the role of Lbp in the studies comparing Su-1 and SuM13, 

two sets of data were compared. In each experiment, one set of data was generated in an 

assay involving S. ubseris Su-1; the other set was generated in an assay involving the 

isogenic lbp mutant SuM13. Positive or negative controls were included as indicated for 

each experiment. Differences between each of the two sets of data were calculated by 

the t test, with significance postulated as a P of <0.05.  
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4 EXPERIMENTAL RESULTS  

4.1 Construction of a Defined lbp Mutant of S. uberis  

4.1.1 Introduction  

Random insertional inactivation of the streptococcal genes has been successfully 

carried out previously in S. uberis (Ward, 2001; Smith, 2002) and in the other 

streptococcal species (Nida, 1983; McDaniel, 1987; Jadoun, 2000). However, in an 

insertion mutant there is always a possibility of a reverse mutation occurring by 

excision of the mobile insertion sequence from the target gene, leading to the restoration 

of the gene and to the reversing to the phenotype of a parent strain. Isolation of the 

desirable mutants requires screening of a large number of individual bacterial strains. 

Additionally, more than one gene may be inactivated during random insertional 

mutagenesis and this approach is not always suitable for the bacterial strains with low 

transformation efficiency. An insertion-duplication site-directed mutagenesis, when the 

gene is disrupted by an internal coding region of the gene (Berry, 1996) subcloned into 

a non-replicating or conditionally replicating plasmid construct, allows specific 

targeting of a designated gene. However, this does not solve the problem of instability 

of the generated mutants, since insertion mutants remain prone to reversion-mutation by 

homologous recombination and excision of an insert. Stability of the lbp mutant was 

considered an important issue for the present study, since one of the objectives was to 
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determine whether Lbp is required for colonization of the host and for virulence of S. 

uberis in vivo.  

Non-selectivity of the mutation, possible alterations in several genes in the same 

cell, and the necessity to screen large number of mutant strains, as well as instability of 

the generated mutants, also represent drawbacks of chemical and radiation-induced 

mutagenesis. For these reasons we carried out an allele replacement mutagenesis, which 

allows generating of stable irreversible mutants. Homologous recombination between 

wild type and mutant alleles specifically targets the designated gene, while screening 

for the antibiotic resistance and temperature sensitivity (as is described in the Materials 

and Methods) ensures the efficiency and specificity of this approach.  

To study the role of the lactoferrin-binding protein (Lbp) in S. uberis 

pathogenesis, we used a genetic approach in order to construct an isogenic mutant of the 

wild type strain that would be unable to express this protein. A comparison of the 

biological properties of the isogenic lbp mutant versus the parent strain should allow an 

analysis of the role of this surface component both in vivo during infection of the host 

and in vitro using specific biological assays.   

4.1.2 Construction of the Temperature-sensitive Plasmid  

A conditionally replicating plasmid construct carrying an altered allele of the lbp 

gene of S. uberis was used for the allele replacement mutagenesis. The construct was 

based on the thermosensitive pG+Host9 (Maguin, 1995) derivative of the pWV01 broad 

host range replicon (Kok, 1984). The use of a conditionally replicating plasmid bearing 

an antibiotic resistance genetic marker allows selecting for the insertion (primary) 

recombinants in the bacterial strain transformed with such a plasmid. Changing the 
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culture condition to those permissive for plasmid replication allows stimulating of the 

excision (secondary) recombination (Moshynskyy, 2003) from the chromosome of a 

primary recombinant. For this reason, we constructed a temperature-sensitive plasmid 

pMF113a (Table 3.1.1) bearing the altered lbp gene in which its central portion was 

replaced by a spectinomycin-resistance cassette aad9 (Fig. 4.1.2.1). This plasmid was 

used to carry out an allele replacement in S. uberis Su-1.  A deletion of the central 

portion of the lbp gene was constructed by PCR-amplification of the upstream portion 

and 5’-coding region and the 3’-coding sequence plus downstream region, in two 

separate reactions using the primers lbp#01 and lbp#03, and lbp#02 and lbp#04 (Table 

3.2.1), respectively (Fig. 4.1.2.1).  A stop codon was included in the amplified 5’ 

region.  PCR fragments were digested with KpnI (bold type in primer sequences above), 

ligated and reamplified with lbp#01 and lbp#02.  Extended bases were removed from 

the PCR product using the PCR Polishing Kit (Stratagene, Cedar Creek, TX) and cloned 

into SmaI digested pGh9∆K, a derivative of pG+host 9 lacking the KpnI restriction 

endonuclease site.  The resulting construct was designated pMF112a.  The aad9 

spectinomycin resistance gene ( LeBlanc, 1991; Podbielski, 1996a) was amplified from 

the pEU904 plasmid with the primers aad9#01 and aad9#02 (Table 3.2.1). Extended 

bases were removed from the PCR-amplified aad9 product and from KpnI-digested 

pMF112a. These were ligated and electroporated into E. coli DH5α, and transformants 

were selected at 28oC in the presence of spectinomycin and erythromycin.  The 

resulting plasmid was designated pMF113a (Fig. 4.1.2.1.). The insertion of the aad9 

cassette and its orientation were verified by sequencing of the pMF113a plasmid with 
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Figure 4.1.2.1. Construction of the temperature sensitive plasmid pMF113a used for 
allele replacement of the lbp gene of S. uberis.  

A, two regions adjacent to the central coding region of the lbp gene were amplified 
using lbp#01/lbp#03 and lbp#04/lbp#02 PCR primers pairs (Table 3.2.1), respectively; 
B, PCR products were digested with restriction endonuclease KpnI (K) and ligated 
together; C, the  product of ligation was amplified using primers lbp#01 and lbp#02; 
extending nucleotides were removed from the PCR product; D, temperature-sensitive 
plasmid pGh9∆K was digested with SmaI restriction endonuclease (S); E, PCR product 
generated in the step C was cloned into a linearized pGh9∆K, which resulted in 
generation of the pMF112a plasmid; F, a spectinomycin-resistance cassette aad9 was 
PCR-amplified from pEU904 plasmid using aad9#1 and aad9#2 primers and extending 
nucleotides were removed from the PCR product; G,  aad9 cassette was cloned into 
KpnI site of pMF112a, containing temperature-sensitive replication factor (Ts) and the 
gene coding for resistance to erythromycin (ErmR), resulting construct pMF113a was 
used for transformation of S. uberis Su-1 followed by allele replacement of its lbp gene. 
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lbp#01 or lbp#02 oligonucleotide primers using an ABI 373 stretch DNA sequencer 

(Applied Biosystems, Foster City, CA), the service kindly provided by Ingeborg A. 

(Inge) Roewer, DNA Technologies, Plant Biotechnology Institute (PBI), National 

Research Council (NRC), Canada.  

4.1.3 Two-step Homologous Recombination 

S. uberis Su-1 was transformed with the plasmid pMF113a as described in 

Materials and Methods. The presence of the independently replicating plasmid 

pMF113a in S. uberis cultured at 28oC (temperature permissive for the plasmid 

replication) was verified by Southern blot hybridization using an aad9-specific probe 

(Fig. 4.1.3.2). Probe-specific bands corresponding to different forms of the pMF113a 

plasmid were found in both E. coli DH5α and S. uberis that were transformed with 

pMF113a, while the corresponding bands were not present in the Su-1 strain of S. 

uberis (Fig. 4.1.3.2). Additionally, the total DNA extracted from erythromycin- and 

spectinomycin-resistant transformants of S. uberis Su-1 was electroporated into E. coli 

DH5α as described in Materials and Methods. Plasmids isolated from randomly picked 

E. coli transformants were verified as pMF113 by agarose gel electrophoresis of uncut 

plasmids and by restriction endonuclease digestion analysis (data not shown). Allele-

replacement of the lbp gene was performed as described in Materials and Methods and 

illustrated in Fig. 4.1.3.3. Integration of the plasmid into the S. uberis chromosome was 

selected for by isolation of erythromycin- and spectinomycin-resistant colonies at 42oC, 

a non-permissive temperature for replication of the plasmid.  Subculturing of the 

integrated  recombinants at  28oC  allowed  subsequent  excision  of  the  plasmid  
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Figure 4.1.3.2. Southern blot hybridization of plasmid DNA samples isolated from S. 

uberis.  
Lane 1, total DNA from S. uberis Su-1; Lane 2, DNA from Su-1 transformed with 
pMF113a; Lane 3,  E. coli DH5α used for cloning and amplification of pMF113a.  
M: linear DNA molecular weight standards. Different forms of the pMF113a plasmid 
are present in lanes 2 and 3. Arrow indicates the linear (A) and the circular covalently 
closed (B) forms of the plasmid. The aad9-specific probe was used for hybridization.  
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Figure 4.1.3.3 Replacement of the wild type lbp allele with the in vitro altered allele by 
two step homologous recombination.  

I, at permissive temperatures, when the plasmid replication factor encoded by the Ts is 
active, and at applied spectinomycin and erythromycin selection, the pMF113a plasmid 
in S. uberis cells is capable of replicating independently of the chromosome since it 
carries sequences coding for erythromycin (ErmR) and spectinomycin (aad9) 
resistance; II, at non-permissive temperatures the plasmid is not capable of replicating 
independently and at continuing antibiotics selection only colonies with the plasmid 
integrated into the chromosome would grow. Integration occurs due to the homologous 
recombination between identical regions (A or B) in the plasmid and in the bacterial 
chromosome. III, Su3721 (Table 3.1.1), the primary recombinant strain with the 
pMF113a incorporated into the chromosome. Su3721 is capable of growing at 
temperatures non-permissive for the plasmid replication and in presence of both 
antibiotics. IV, culturing of the primary recombinant at permissive temperatures 
stimulates the secondary homologous recombination event of an excision of the plasmid 
elements from the S. uberis chromosome. The secondary homologous recombination 
takes place at identical regions A or B, resulting in either reversion to the wild type or in 
the mutant with the replaced lbp allele (V). 
 

 



 72 

 

by homologous recombination. Phenotypic screening for the spectinomycin-resistant 

erythromycin-sensitive phenotype allowed selection for the secondary recombinant 

strains with the wild type lbp replaced by the deleted lbp allele. These mutants were 

characterized for the presence of the altered lbp allele by Southern blot hybridization, 

for expression of the Lbp by immunoblotting and for the ability to bind bovine 

lactoferrin by ELISA as described below.   

 

4.1.4 Characterization of the lbp Mutant of S. uberis  

Both Su-1 and SuM13, when cultured either in TH or in BHI broth, 

demonstrated the same rates of growth (Fig. 4.1.4.1) and numbers of colony forming 

units (CFU) per millilitre of culture (Fig. 4.1.4.2). Microscopic examination 

demonstrated their similar morphology and the length of chains (5-30 cells per chain in 

exponentially growing culture and 15-150 cells per chain in overnight culture). The 

only differences detected between the two strains included alterations in the bacterial 

genome within the lbp gene, inability of SuM13 to express Lbp, significantly reduced 

binding of bovine lactoferrin by SuM13, and resistance of SuM13 to high 

concentrations of spectinomycin.   

One of the allele replacement mutants was designated SuM13 and the deletion 

of the internal lbp coding sequence was confirmed by Southern blotting. Chromosomal 

DNA samples isolated from S. uberis strain Su-1, from the recombinant strain with 

pMF113a integrated into the chromosome and from the strain with replaced lbp allele  
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Figure 4.1.4.1. Kinetic of growth of Su-1 and SuM13 in BHI broth.  
 
The overnight cultures were diluted 1:100 in fresh BHI and incubated at 37oC without 
aeration. The OD600 of the cultures was measured every hour for a total of 13 hours. The 
data is representative growth curves of 3 independent experiments.  
 
 
   :   S. uberis Su-1,       :    lbp mutant SuM13  
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 Figure 4.1.4.2. Relation between OD600 and CFU/ml for S. uberis Su-1 and SuM13 in 
BHI broth at 37oC.  

 
BHI broth was inoculated with approximately 107 CFU/ml of an overnight bacterial 
culture and incubated without aeration at 37oC. Culture OD600 was measured every hour 
and the corresponding bacterial titers were determined by plating of serial dilutions of 
the culture on BHI agar.  
 
     ,      :  S. uberis Su-1 ;      ,     : lbp mutant SuM13: Each type of symbol represents an 
individual experiment.  
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were digested with HindIII restriction endonuclease. The fragments of the digested 

DNA were separated by agarose gel electrophoresis as described in Materials and 

Methods, transferred to a hybridization membrane and hybridized with an lbp-specific 

32P labelled probe. Analysis of the autoradiograph demonstrated that integration of 

pMF113a into the S. uberis chromosome occurred at the region upstream of the lbp 

gene. Digestion of the S. uberis chromosomal DNA with HindIII endonuclease 

generated two fragments (B, 3.7 kbp and E, 0.965 kbp, Fig. 4.1.4.3, lane 1) homologous 

to the lbp probe. HindIII digestion of the independently replicating pMF113a plasmid 

resulted in two fragments of 4.038 and 1.123 kbp (data not shown) containing regions 

homologous to the lbp coding sequence. No such combination of the HindIII fragments 

was detected in the digests of S. uberis DNA with pMF113a integrated into the 

chromosome (Fig. 4.1.4.3, lane 2), indicating that there was no independently 

replicating pMF113a in the integration (primary) recombinant. The size of the HindIII 

fragments suggested that the integration event took place at the region upstream to the 

lbp, in which case fragment B remained unchanged in the primary recombinant and 

corresponds to fragment B in the wild type strain. The excision (secondary) 

recombination event occurred at the region downstream of the lbp, since fragment D 

after the secondary recombination event (Fig. 4.1.4.3, lane 3) remained corresponding 

to fragment D of the primary recombinant (Fig. 4.1.4.3, lane 2). The size of the HindIII 

fragments of the secondary recombinant strain (Fig. 4.1.4.3, lane 3) suggested that the 

wild type lbp gene in S. uberis SuM13 was replaced by the altered in vitro allele 

containing a spectinomycin resistance cassette.  
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Figure 4.1.4.3  Southern blot hybridization of chromosomal DNA from S. uberis.  

Su-1 (1), S. uberis with pMF113a integrated into the chromosome (2) and SuM13 
mutant (3) digested with HindIII (left) and restriction map of the corresponding 
chromosomal loci (right). 
H: position of the HindIII recognition site; Size of each HindIII DNA fragment (arrows, 
A through F) is indicated in brackets in kilobase pairs (kbp); M: DNA molecular weight 
standards with size of the fragments indicated on the left.  
         ,  Region homologous to the coding sequence of the lbp and used as a probe;  
         , aad9 gene;  
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The Lbp- phenotype of SuM13 was confirmed by immunoblotting (Fig. 4.1.4.4). 

Total cellular streptococcal proteins were separated by SDS polyacrylamide gel 

electrophoresis as described in Materials and Methods, transferred to the nitrocellulose 

membrane, probed with rabbit anti-Lbp polyclonal serum (primary antibodies) and then 

with the goat-anti-rabbit Alkaline Phosphatase conjugated IgG (secondary antibodies) 

as described in Materials and Methods, (Fig 4.1.4.4, panel B). An identical 

polyacrylamide gel was stained with Coomassie Brilliant blue R-250 to ensure that the 

samples contained equal amounts of streptococcal proteins and that no degradation of 

protein occurred (Fig. 4.1.4.4, panel A). Analysis of immunoblots suggested that 

SuM13 did not express Lbp, since no protein band corresponding to Lbp and reactive to 

anti-Lbp serum (Fig. 4.1.4.4, panel B, lane 3) was found.   Alternatively, bovine 

lactoferrin (Sigma) was labelled with digoxigenin as described in Materials and 

Methods and was used in place of the primary rabbit anti-Lbp serum as described 

above.  Bound lactoferrin was detected using AP-conjugated anti-DIG monoclonal 

antibodies (Roche). The absence of the lactoferrin-binding band(s) among SuM13 

proteins (Fig. 4.1.4.4, panel C, lane 3) suggests that bovine lactoferrin is not bound by 

SuM13 protein(s) specifically, which is consistent with Lbp being not expressed.  

Binding of the DIG-labelled bovine lactoferrin by Su-1 and SuM13 was assayed 

by ELISA, as described in Materials and Methods. It was demonstrated that 

immobilized whole cells of SuM13 had significantly reduced ability to bind bovine 

lactoferrin compared to the parental Su-1 strain and to E. coli pLBP5, which expresses 

recombinant Lbp (Fig. 4.1.4.5). This is consistent with the absence of the protein band  
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Figure 4.1.4.4 Immunoblotting demonstrating that the Lbp is not expressed in the lbp 

mutant.  
 
Lbp expression by S. uberis Su-1 (lane 1), by Su-1 containing pMF113a integrated into 
the chromosome (lane 2) and by lbp mutant SuM13 (lane 3).  
A: Polyacrylamide gel stained with Coomassie blue R-250; B: Blot of the gel identical 
to that shown on the panel A, probed with anti-Lbp polyclonal serum; C: Blot of the gel 
identical to that shown on the panel A, probed with DIG-labelled bovine lactoferrin. 
The arrow indicates the position of Lbp protein band. Protein molecular standard sizes 
are indicated to the left of each gel.  
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Figure 4.1.4.5  Reduced binding of DIG-labelled bovine lactoferrin by the lbp mutant.   

 
The binding of bLf was determined by ELISA using titration of the DIG-labeled bovine 
lactoferrin against 96-well plates coated with heat-inactivated whole bacterial cells. 
Lactoferrin-binding by E. coli LBP5 expressing a recombinant secreted Lbp was used 
as a positive control (bar 1) and was considered 100%.  Bar 2, Su-1;. Bar 3, SuM13. 
The data is the mean of 3 experiments; Error bars represent standard deviations.  
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corresponding to the Lbp on the Western blot, probed with DIG-labeled bovine 

lactoferrin and anti-DIG labelled antibodies (Fig. 4.1.4.4, C). 

4.1.5 Discussion  

The prevalence of mastitis caused by environmental pathogens is growing in 

well-managed herds. For this reason, virulence of environmental pathogens is studied in 

greater detail. One classical approach to the study of virulence determinant function is 

the isolation of mutant strains with defined alterations in the gene coding for the 

determinant. The possibility of generating mutants of environmental streptococci allows 

one to study the role of each individual putative virulence factor in these bacteria. 

Several mutant strains of S. uberis were isolated, including those generated by 

insertional inactivation of the mtuA lipoprotein receptor (Smith, 2002), hasA hyaluronic 

acid synthesis (Field, 2003), oppF oligopermease (Smith, 2002) and other genes. Allele 

replacement has also been carried out to inactivate the mig gene coding for the 

immunoglobulin receptor of S. dysgalactiae (Song, 2001). We reported isolation of the 

isogenic lbp allele replacement mutant of S. uberis Su-1 (Moshynskyy, 2003). Allele 

replacement using conditionally replicating constructs allowed us to overcome the 

drawbacks of other mutagenesis approaches since it relies on a naturally occurring 

homologous DNA recombination in bacterial cells (Fig. 4.1.3.3). Reliable phenotypic 

selection procedure and easy verification of the gene replacement event by conventional 

methods (Southern and Western blotting) makes allele replacement a valuable tool in 

the study of individual bacterial genes and their roles in bacterial physiology. The 

generation of the isogenic lbp mutant of S. uberis Su-1 suggests that neither the lbp 

gene itself nor its protein product are required for normal in vitro growth of S. uberis 
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(Fig. 4.1.4.1). A dramatic reduction of the lactoferrin binding ability of the lbp mutant 

as compared to the parent Su-1 strain (Fig. 4.1.4.5), suggests that Lbp is the only 

surface protein of S. uberis Su-1 responsible for binding of bovine lactoferrin. All these 

make the isogenic lbp mutant SuM13 a potentially valuable tool for studying the role of 

Lbp in S. uberis physiology and in pathogenesis of bovine mastitis by comparative 

analyses of the lbp mutant and parent Su-1 strain. Irreversibility of the lbp mutant 

suggests that the comparison of the two strains can be carried out both in vivo and in 

vitro.   

4.2 Study of the Role of Lbp of S. uberis in Evasion of the Host Immune 

Response  

4.2.1 Introduction  

The lactoferrin-binding protein of S. uberis is homologous to M protein of GAS 

in terms of both amino acid sequence and putative structure. M proteins were implicated 

in evasion of host immune defenses, allowing the bacteria to survive and multiply in 

host blood (Courtney, 1997; Poirier, 1989). Surface-associated M proteins have been 

shown to be members of a family of structurally related M-like proteins that includes 

several subtypes known as Mrp, Emm, and Enn. M-like proteins, as well as M proteins, 

have been demonstrated to contribute to streptococcal resistance to phagocytosis 

(Podbielski, 1996b; Thern, 1998; Kihlberg, 1999). However, not all M-like proteins 

have antiphagocytic activity, as has been demonstrated for the Arp4 protein (Husmann, 

1995) of S. pyogenes. Analysis of the predicted secondary structure and genetic 
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organization of the Lbp of S. uberis (Jiang, 1996b) demonstrated a similarity between 

Lbp and M-like streptococcal proteins (Fig. 1.2.3.1).   

The structural similarity of M-like proteins and Lbp of S. uberis suggests a 

possible functional similarity. Therefore, we hypothesized that Lbp might be involved 

in resistance of the bacteria to antimicrobial defenses of the bovine mammary gland 

during intramammary infection. Indeed, during such infection, S. uberis is exposed to 

bovine milk neutrophils, milk complement and antibodies present in the milk of the 

lactating animal. Expression of surface-associated antiphagocytic factors would provide 

an advantage for the infecting bacteria and promote the survival of S. uberis in the 

presence of bovine neutrophils, lactoferrin and complement, while an lbp mutant should 

be more susceptible to the host antimicrobial defenses. In order to determine the role of 

Lbp of S. uberis in overcoming the bactericidal effect of host neutrophils and 

complement, we compared the ability of S. uberis Su-1 and lbp mutant SuM13 to 

survive and multiply in host serum and blood.  

4.2.2 Role of Lbp in Survival of S. uberis in Whole Bovine Peripheral Blood  

Peripheral bovine blood contains both major components of the host innate 

antibacterial machinery – polymorphonuclear neutrophils and serum complement, 

which represent factors to which pathogenic bacteria may be exposed. Although S. 

uberis normally does not spread systemically and rarely can be found in the host blood, 

it can be exposed to complement and neutrophils present in the milk during infection. 

We used peripheral bovine blood as the source for complement and neutrophils to 

model bactericidal conditions for S. uberis Su-1 and its lbp mutant. The role of  
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Table 4.2.2.1. Multiplication indices of S. uberis Su-1 and lbp mutant SuM13 during 
first 3 hours of incubation in fresh nonimmune bovine peripheral blood.  
 

Multiplication index1, %, Time of 
incubation, 

hours S. uberis Su-1 lbp mutant SuM13 

p value 

(t Test) 

1 107.4  ± 31.6 
 

97 ± 14.9 
 

0.265173 
 

2 100.4 ± 17.3 
 

109  ± 22.5 
 

0.276785 
 

3 81.23  ± 15.1 
 

85.4 ± 20.1 
 

0.257056 
 

 

1Multiplication index was determined as the number of bacterial CFU isolated from the 
mixture of the bacteria with immune blood divided by the number of bacterial CFU 
isolated an hour earlier and multiplied by 100%. The data is presented as average 
multiplication index ± standard deviation, the result of three experiments, each 
performed in triplicate.  
 
Bacteria were harvested at the exponential phase of growth, diluted in PBS, mixed with 
fresh heparinized bovine blood and incubated at 37oC. Bacterial numbers in the mix 
were determined every hour by plating serial 1:10 dilutions on BHI agar. The results are 
presented as multiplication indices indicating a percentage of survival bacteria in the 
mixture after each hour of incubation. 
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Table 4.2.2.2. Multiplication indices of S. uberis Su-1 and lbp mutant SuM13 during 
first 3 hours of incubation in fresh bovine peripheral blood supplemented with anti-Su-1 
antibodies.  
 

Multiplication index1, %, Time of 
incubation, 

hours S. uberis Su-1 lbp mutant SuM13 

p value 
(t Test) 

1 84.5  ± 9.5 
 

113.8 ± 31.7 
 

0.146655 
  

2 103 ± 5.4 
 

96.7  ± 17.4 
 

0.291 
  

3 130.1  ± 17.3 
 

120.8 ± 15.2 
 

0.334251 
  

 
 

1Multiplication index was determined as the number of bacterial CFU isolated from the 
mixture of the bacteria with immune blood divided by the number of bacterial CFU 
isolated an hour earlier and multiplied by 100%. The data is presented as average 
multiplication index ± standard deviation, the result of three independent experiments, 
each performed in triplicate.  
 
Bacteria were harvested at the exponential phase of growth, diluted in PBS, mixed with 
fresh heparinized bovine blood supplemented with anti-Su-1 antibodies and incubated at 
37oC. Bacterial numbers in the mix were determined every hour by plating serial 1:10 
dilutions on BHI agar. The results are presented as multiplication indices indicating a 
percentage of survival bacteria in the mixture after each hour of incubation. 
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lactoferrin-binding protein in the resistance of S. uberis Su-1 to host antibacterial 

defense was analyzed in the bactericidal tests as described in Materials and Methods. 

The results of the bactericidal test indicated that the SuM13 mutant strain survived in 

whole bovine blood as well as did Su-1 (Table 4.2.2.1).  

Both strains appeared to be relatively resistant to the bactericidal properties of 

bovine peripheral blood since the numbers of bacteria in the bactericidal mix did not 

decrease significantly during the first 3 hours of incubation, indicating that there was no 

killing by blood bactericidal components. The presence of anti-S. uberis antibodies in 

the mixture of Su-1 or SuM13 with bovine blood did not have a bactericidal effect on 

the survival of either Su-1 or SuM13 (Table 4.2.2.2), suggesting that expression of the 

Lbp on the surface of the bacteria does not affect the resistance of S. uberis to the 

antibacterial properties of blood from an immune host.   

4.2.3 Lbp and Resistance to Killing of the S. uberis by Serum Complement 

Resistance of bacteria to serum bactericidal activity is determined at the surface 

of the bacterial cell. Antibodies and complement cooperate to kill serum-sensitive 

bacteria and very small concentrations of antibodies confer a high degree of killing 

activity of complement (Taylor, 1983). Although it is possible that the cell wall and 

hyaluronic acid capsule protect streptococcal cells from lysis by the membrane attack 

complex that is formed on the cell surface by activated serum complement, there is no 

direct data concerning the bactericidal effect of fresh serum on S. uberis. To study the 

susceptibility of S. uberis to lysis by host serum complement and the possible role of 

Lbp in resistance to complement-mediated lysis, we compared multiplication indices of 

S. uberis Su-1 and SuM13 in fresh non-immune bovine serum and in heated serum in  
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Table 4.2.3.1.  Multiplication indices of S. uberis Su-1 and lbp mutant SuM13 during 
first 3 hours of incubation in heated bovine serum.  
 

1Multiplication index, %, Time of 
incubation, 
hours S. uberis Su-1 lbp mutant SuM13 

p value 
(t Test) 

1 100.8 ± 10.4 109.8 ± 16.6 
 

0.191303 
 

2 107.2 ± 7.8 102.7 ± 10.0 
 

0.225227 
 

3 107.1 ± 5.4 111.4± 4.6 
 

0.105658 
 

 

1Multiplication index was determined as the number of bacterial CFU isolated from the 
mixture of the bacteria with heated bovine serum divided by the number of bacterial 
CFU isolated an hour earlier and multiplied by 100%. The data is presented as average 
value ± standard deviation, the results of three independent experiments, each 
performed in triplicate.  
 
Bacteria were harvested at the exponential phase of growth, diluted in PBS, mixed with 
heat-inactivated bovine serum and incubated at 37oC. Bacterial numbers in the mix 
were determined every hour by plating serial 1:10 dilutions on BHI agar. The results are 
presented as multiplication indices indicating a percentage of survival bacteria in the 
mixture after each hour of incubation. 
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Table 4.2.3.2. Multiplication indices of S. uberis Su-1 and lbp mutant SuM13 during 
first 3 hours of incubation in fresh bovine serum.  
 

1Multiplication index, %, Time of 
incubation, 

hours S. uberis Su-1 lbp mutant SuM13 

p value 
(t Test) 

1 90.3 ±4.7 
 

88.5 ± 1.3 0.375214 
 

2 105.6 ± 12.6 96.6 ± 8.7 0.33112 
 

3 99.8 ± 9.5 97.5 ± 8.1 0.440487 
 

 

 

1Multiplication index was determined as the number of bacterial CFU isolated from the 
mixture of the bacteria with heated bovine serum divided by the number of bacterial 
CFU isolated an hour earlier and multiplied by 100%. The data is presented as average 
value ± standard deviation, the results of three independent experiments, each 
performed in triplicate. 
 
Bacteria were harvested at the exponential phase of growth, diluted in PBS, mixed with 
fresh bovine serum and incubated at 37oC. Bacterial numbers in the mix were 
determined every hour by plating serial 1:10 dilutions on BHI agar. The results are 
presented as multiplication indices indicating a percentage of survival of the bacteria in 
the mixture after each hour of incubation. 
 

 

 

 

 

 

 

 



 88 

which complement enzymes were inactivated. Both strains were capable of surviving in 

heat-inactivated and in fresh bovine serum (Table 4.2.3.1).  

The initial inhibition of growth of the bacterial cultures transferred into blood or 

bovine serum may be explained simply by adaptation of the cells to a new environment, 

including new sources of nutrients requiring expression of a new set of genes. The 

effects of these putative factors on multiplication of Su-1 and SuM13 were similar, 

suggesting that susceptibility of S. uberis to antimicrobial properties of host blood is not 

affected by the presence of Lbp on the surface of the bacteria.  

The major blood bactericidal factors are represented by serum complement and 

phagocytic polymorphonuclear leukocytes. Streptococci are protected by a thick 

peptidoglycan cell wall and hyaluronic acid capsule and are therefore not readily 

susceptible to lysis by serum complement with or without anti-streptococcal antibodies 

present. This is consistent with observed similarities in survival of both S. uberis and 

lbp mutant in heated host serum (Table 4.2.3.1), as well as in fresh naïve serum (Table 

4.2.3.2).  

4.2.4 Role of Lbp in Resistance of S. uberis to Killing by Phagocytes 

In order to determine the possible role of Lbp in resistance of S. uberis to killing 

by host polymorphonuclear leukocytes (PMN), the two S. uberis strains were incubated 

with isolated bovine peripheral blood PMN and the bactericidal effect on both strains 

was assessed in direct bactericidal assays. The results indicated that in the presence of 

anti-streptococcal antibodies, lbp mutant was as resistant to killing by PMNs as S. 

uberis Su-1 (Table 4.2.4.1).    
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Table 4.2.4.1. Multiplication indices of S. uberis Su-1 and lbp mutant SuM13 during 
first 3 hours of incubation with bovine peripheral blood PMNs in the presence of anti-
Su-1 polyclonal serum.  
 

1Multiplication index, %, Time of 
incubation, 

hours S. uberis Su-1 lbp mutant SuM13 

p value 
(t Test) 

1 105.2  ± 13.6 
 

106 ± 15.7 
 

0.454291 
 

2 103.9 ± 11.7 
 

125.7 ± 17.9 
 

0.07642 
 

3 110.1  ± 16.5 
 

109 ± 27.2 
 

0.467138 
 

 
 

1Multiplication index was determined as the number of bacterial CFU isolated from the 
corresponding mixture of PMNs with bacteria divided by the number of bacterial CFU 
isolated an hour earlier and multiplied by 100%. The data is presented as average value 
± standard deviation, the results of three independent experiments.  
 
Bacteria were harvested at the exponential phase of growth, diluted in PBS, mixed with 
bovine peripheral blood PMNs and incubated at 37oC. Bacterial numbers in the mix 
were determined every hour by plating serial 1:10 dilutions on BHI agar. The results are 
presented as multiplication indices indicating a percentage of survival bacteria in the 
mixture after each hour of incubation. 
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Table 4.2.4.2. Multiplication indices of S. uberis Su-1 and lbp mutant SuM13 inside 
bovine peripheral blood PMNs.  
 

1Multiplication index, %, Time of 
incubation, 

hours S. uberis Su-1 lbp mutant SuM13 

p value 
(t Test) 

2 97.6  ± 10.1 
 

94.3 ± 8.5 
 

0.305419 
 

3 82.8 ± 9.9 
 

89  ± 8.8 
 

0.177037 
 

 

1Multiplication index was determined as the number of bacterial CFU isolated from the 
corresponding mixture of PMNs with bacteria divided by the number of bacterial CFU 
isolated an hour earlier and multiplied by 100%. The data is presented as average value 
± standard deviation, the results of three independent experiments.  
 
Bacteria were harvested at the exponential phase of growth, diluted in PBS, mixed with 
bovine peripheral blood PMNs and incubated at 37oC. Extracellular bacteria were killed 
by added antibiotics. PMNs were washed, lysed and numbers of viable ingested bacteria 
were determined by plating serial 1:10 dilutions of the lysate on BHI agar. The results 
are presented as multiplication indices indicating a percentage of survival of bacteria 
inside PMNs after each hour of incubation. 
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To assess the ability of S. uberis to survive within phagocytic cells and to 

determine whether Lbp is required for survival, Su-1 and SuM13 were ingested by 

PMNs, after which the extracellular bacteria were killed with antibiotics as described in 

Materials and Methods. PMNs were thoroughly washed and lysed, and viable bacteria 

released from lysed PMNs were scored.  

The results indicate that both Su-1 and SuM13 strains have similar levels of 

resistance to intracellular killing by host peripheral blood neutrophils in the presence of 

immune serum.  

4.2.5 Resistance to Phagocytosis by Peripheral Blood Polymorphonuclear 

Leukocytes 

The abilities of Su-1 and SuM13 to resist phagocytosis by host blood 

polymorphonuclear leukocytes were analyzed by flow cytometry as described in 

Materials and Methods. The scatter plots of the bovine blood neutrophils co-incubated 

with fluorescently-labeled bacteria demonstrated that as the neutrophil/CFU ratio 

decreased tenfold, the percent of gated neutrophils on the plot also decreased one order 

of magnitude (Fig. 4.2.5.1).  

The results imply that at CFU/PMN ratios ranging from 1:10 to 1:1000, 

essentially 100% of the bacteria (both Su-1 and SuM13) were being ingested by bovine 

blood neutrophils. This indicates that Su-1 did not differ from SuM13 in the ability to 

resist ingestion by host neutrophils.  
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Figure 4.2.5.1  Scatter plot of the fluorescence of bovine peripheral blood neutrophils 

after 1 hour of co-incubation with fluorescently-labelled S. uberis.  
 
A, neutrophils prior to incubation with bacteria; B, neutrophils incubated with 
fluorescently-labelled Su-1; C, neutrophils incubated with fluorescently labelled SuM13 
*R, targeted CFU/neutrophil ratio;  
**Gated, %, the portion of neutrophils fluorescent due to phagocytosis of or association 
with fluorescently labelled bacterial cells (upper right corner of each plot).  
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4.2.6 Discussion  

It has been suggested that both true M proteins and M-like proteins of 

streptococci might be important in overcoming host innate immune mechanisms (Staali, 

2003). The ability of GAS to survive and to multiply in whole host blood was correlated 

to the ability of the bacteria to resist phagocytosis by host neutrophils (Schnitzler, 

1995a). The role of the streptococcal M- and M-like proteins in evasion of phagocytosis 

has been demonstrated (Dominigue, 1965; Thern, 1998) and several molecular models 

were proposed to describe the details of the process and the possible mechanisms 

involved. One mechanism involves binding of host regulators of complement activators. 

Acquisition of such regulatory proteins as serum factor H, factor H-like protein or C4-

binding protein can inhibit complement-mediated killing of the bacteria or can limit 

deposition of opsonins on the surface of the bacterial cell, decreasing the pathogen’s 

susceptibility to phagocytosis. However, expression of the M-like streptococcal protein 

Lbp on the surface of S. uberis Su-1 apparently does not affect resistance of the bacteria 

to phagocytosis by host neutrophils (Fig. 4.2.5.1). Since fresh bovine serum and heat 

inactivated serum exhibit similar effects on the survival of both Su-1 and SuM13 

(Tables 4.2.3.1 and 4.2.3.2), it is unlikely that Lbp is important in the resistance of S. 

uberis against serum complement attack. Both FH- and FHL-1 binding activity were 

reported for the Fba protein of S. pyogenes, which does not require the presence of M 

protein to contribute to the survival of the organism incubated with human blood or to 

inhibit C3 deposition on bacterial cells (Pandiripally, 2002). Similarly, Lbp is not 

required by S. uberis for resistance to the host serum complement. Because Su-1 and 

SuM13 exhibited similar sensitivity to bactericidal effects of the whole bovine blood in 



 94 

the presence of an active serum complement and intact neutrophils (Table 4.2.2.1), it is 

unlikely that Lbp of S. uberis plays a role in inhibiting the alternative pathway of 

activation of serum complement. This is consistent with similar resistance to the 

antibacterial properties of fresh naïve bovine serum (Table 4.2.3.2) exhibited by Su-1 

and SuM13.  

It was also demonstrated that streptococcal M and M-like proteins can bind the 

Fc regions of immunoglobulins, thereby inhibiting activation of the classical 

complement pathway (Berge, 1997). Both Su-1 and SuM13 were similarly resistant to 

bactericidal effects of bovine blood in the presence of anti-S. uberis antibodies (Table 

4.2.2.2) and ingested by peripheral blood neutrophils in the presence of anti-S. uberis 

antibodies with similar efficiency (Fig. 4.2.5.1), suggesting that expression of Lbp did 

not affect the resistance of S. uberis to opsonophagocytosis and to the bactericidal effect 

of the serum complement activated by the classical pathway.  

The ability of virulent streptococci to survive and multiply in whole host blood 

might be explained not only by an antiphagocytic effect of bacterial surface 

components. As was suggested (Staali, 2003), the evasion of host defenses by 

streptococci may occur intracellularly and the survival inside neutrophils may 

contribute to the pathogenesis of streptococci. Both S. uberis Su-1 and its lbp mutant 

SuM13 are ingested by host blood neutrophils with the same efficiency (Fig. 4.2.5.1) 

and have the same ability to survive within neutrophils (Table 4.2.4.2) or in the 

presence of neutrophils (Table 4.2.4.1), suggesting that Lbp does not provide resistance 

to killing by neutrophils intracellularly after ingestion of the bacteria.  
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It is possible that the immune serum resistance observed with S. uberis (Table 

4.2.2.2) was not the result of blocking the activation of complement, but rather of 

impaired insertion of the membrane attack complex into the bacterial membrane. This 

impairment may be caused by the hyaluronic acid capsule (Almeida, 1993) and thick 

peptidoglycan layer on the surface of S. uberis.  

Although the concentration of all complement components in normal bovine 

milk is not well described, it is known that the C3 opsonic fragment is relatively 

abundant and can be deposited on the surface of bacteria as was demonstrated for the 

bovine pathogen Streptococcus agalactiae (Rainard, 1995). During mastitis, deposition 

of both C3 and C4 on bacteria is more effective, reflecting higher amounts of 

complement and its contribution to the classical pathway of activation (Rainard, 1995). 

In the presence of antibodies, both alternative and classical pathways of complement 

activation can occur in bovine milk (Rainard, 1992), suggesting that an ability of 

bacteria to inhibit or avoid activation of complement may be beneficial during 

intramammary infection. The data presented here indicate that Lbp is not essential for 

conferring resistance of S. uberis to serum complement activation (Table 4.2.3.2) or its 

bactericidal effect in the presence of anti-S. uberis antibodies (Table 4.2.2.2).  

The results of flow cytometry suggest that essentially 100% of both S. uberis 

and lbp mutants were ingested by bovine blood neutrophils in our in vitro phagocytosis 

model during 1 hour of incubation. At the same time, it is known that in normal bovine 

milk, PMNs are less effective phagocytes compared to the blood PMNs used in our 

study, partially because they contain less glycogen (Newbould, 1973) and hence have  
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Figure 4.2.6.1 Host bactericidal pathways, in which the role of Lbp of S. uberis was 
addressed in this study.  
 
A, antibody-dependent phagocytosis of the bacteria by peripheral blood neutrophils 
(Fig. 4.2.5.1); B, killing of the bacteria by host serum complement (Table 4.2.3.1 and 
Table 4.2.3.2); C followed by D, opsonophagocytic killing of the bacteria by host blood 
neutrophils (Table 4.2.4.1); E, killing of ingested bacteria by bovine blood neutrophils 
(Table 4.2.4.2); B, C, D and E combined, killing of the bacteria by host fresh non-
immune blood (Table 4.2.2.1). A, B, C, D and E combined, killing of the bacteria by 
fresh immune bovine blood (Table 4.2.2.2). 
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lower energy reserves. Additionally, for efficient phagocytosis, PMNs require large 

quantities of plasma membrane to form pseudopodia for engulfing bacteria, but many 

milk PMNs phagocytose casein micelles and/or fat globules (Paape, 2003), reducing the 

amount of plasma membrane available for phagocytosis of bacteria and formation of 

phagosomes. In this respect, the model presented is more relevant to mastitic milk 

neutrophil phagocytosis and the results suggest that Lbp is not essential for resistance of 

S. uberis to phagocytosis by bovine neutrophils.  

Apparently, Lbp of S. uberis does not play a significant role in any of the 

processes related to host’s antibacterial defense suggested above and summarized in 

Fig. 4.2.6.1. The data presented here implies that, unlike M-like proteins of many 

streptococcal strains, Lbp of S. uberis is not essential for inhibition of complement 

activation and opsonization of the bacteria in the presence of immune serum whether 

due to the binding of the Fc regions of immunoglobulins, the regulators of complement 

activation or other serum component(s).  

4.3 Role of Lbp in Adhesion of S. uberis to and Internalization by Host Epithelial 

Cells   

4.3.1 Introduction  

Bacterial adhesion to host tissue is considered a critical initial step in 

colonization and establishment of infection by pathogenic microorganisms. Because M 

proteins as well as M-like proteins have been implicated in adhesion of human 

streptococci to host epithelial cells (Caparon, 1991; Courtney, 1992; Wang, 1994; Frick, 

2003), we hypothesized that Lbp of S. uberis may take part in colonization of bovine 
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mammary epithelium by promoting adhesion of the organism, since Lbp combines the 

characteristic structural features of M-like protein with the binding of bovine lactoferrin 

(Jiang, 1996b). Binding of milk protein(s) (Almeida, 2003), notably lactoferrin (Fang, 

2000), was demonstrated to promote adhesion of bovine streptococci, including some 

strains of S. uberis, to cultured mammary gland cells. We addressed the question of 

whether lactoferrin-binding protein of S. uberis Su-1 promotes bacterial adhesion to and 

invasion of host epithelial cells.  

Cell invasion might be an important virulence trait of S. uberis that enables the 

pathogen to enter deeper tissues, to avoid immune surveillance and effector mechanisms 

at the site of colonization and to gain access to intracellularly located nutrients. Both M 

and M-like proteins of GAS are associated with the ability of streptococci to invade 

cultured host epithelial cells (Jadoun, 1997). Therefore, we compared the adherence and 

invasiveness of the lbp mutant SuM13 to those of the wild type strain Su-1.  

4.3.2 Adhesion of S. uberis Su-1 and SuM13 to and Invasion of the Host 

Epithelial Cells  

To determine the potential role of Lbp in adhesion of S. uberis to host epithelial 

cells, we studied the adherence of S. uberis strains Su-1 and SuM13 to cultured MAC-T 

bovine mammary epithelial cells and to fragments of bovine mammary tissue. 

Adherence of the bacteria to mammary gland tissue obtained from farm animals post 

mortem should accurately reflect the processes occurring in vivo, since besides 

epithelial cells, all the other cell types and extracellular matrix proteins of the gland are 

present. However, the accurate quantification of bacterial adherence to such tissue 

samples poses certain challenges: streptococcal chains can be easily entrapped in  
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  C      D 

Figure 4.3.2.1.  Adhesion of Streptococcus uberis Su-1 and lbp mutant SuM13 to 
bovine mammary cells.   

A, Adhesion of S. uberis Su-1 to trypsinized MAC-T cells; B, Adhesion of S. uberis 
SuM13 to trypsinized MAC-T cells. MAC-T cells were grown in monolayer, 
trypsinized and resuspended in fresh DMEM containing 4 µg/ml of bovine lactoferrin 
without antibiotics. Exponentially growing bacteria were added to the MAC-T cell 
suspension at a cell/bacteria ratio of 1/100 and rotated at 37 o C. The suspension was 
examined every 10 minutes for the total period of 1 hour. C, Adhesion of S. uberis Su-1 
to bovine mammary gland explants tissue; D, Adhesion of S. uberis SuM13 to bovine 
mammary gland explants tissue. Mammary tissue was taken and transported from a 
slaughter facility to the laboratory. It was aseptically minced and incubated with 2000 U 
of collagenase type III at 37oC in fresh DMEM containing 4 µg/ml of bovine 
lactoferrin. Approximately 0.1 ml of this suspension was mixed with 106 CFU of either 
strain of S. uberis harvested in exponential phase of growth. The suspension was 
examined every 10 minutes for the total period of 1 hour. Arrows indicate streptococcal 
chains adherent to bovine mammary cells. Magnification bar: 10 µm.  
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collagen fibrils, and the viability and integrity of the epithelium can be compromised 

depending on the method of tissue sampling and on the time elapsed after the animal’s 

death. Also, deeper tissues with different bacterial adhesion properties can be exposed. 

For these reasons, we limited the study of S. uberis adhesion ex vivo to direct 

microscopic examination of tissue samples incubated with either S. uberis (Fig. 4.3.2.1, 

C; D) or with latex beads coated with partially purified recombinant Lbp (Fig. 4.3.2.2, 

B).  

The results of microscopic examination of trypsinized MAC-T cells co-

incubated with either Su-1 or SuM13 suggest that both strains are able to adhere to 

trypsinized MAC-T cells (Fig. 4.3.2.1, A, B). Both strains also adhered to cells 

extracted from a bovine mammary gland (Fig. 4.3.2.1, C, D) in the presence of 4 µg/ml 

of bovine lactoferrin. Adhesion of both strains was also observed microscopically when 

no lactoferrin was added with identical results (data not shown).  

If Lbp promoted adhesion of S. uberis to host epithelial cells, adhesion of 

particles coated with recombinant Lbp to host cells would be easily observed. Latex 

microspheres, 3 µm in diameter and coated with partially purified recombinant Lbp as 

described (Kang, 1998), did not adhere to cultured trypsinized MAC-T cells or to the 

cells extracted from a bovine mammary gland (Fig. 4.3.2.2) in the presence of bovine 

lactoferrin.  

In order to determine if attachment of S. uberis to cultured mammary epithelial 

cells could be inhibited by anti-Lbp antibodies, the bacteria were labelled fluorescently  
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Figure 4.3.2.2  Adhesion of latex beads coated with recombinant Lbp to bovine 
mammary cells.   

 
A, Adhesion of latex beads to trypsinized MAC-T cells; MAC-T cells were grown in 
monolayer, trypsinized and resuspended in fresh DMEM containing 4 µg/ml of bovine 
lactoferrin. This suspension was mixed with latex microspheres coated with 
recombinant Lbp at the cell/microsphere ratio of 1/10 and examined microscopically 
every 10 minutes for the total period of 1 hour. B, Adhesion of latex beads to bovine 
mammary tissue explants. Mammary tissue was aseptically minced and incubated with 
collagenase type III in fresh DMEM containing bovine lactoferrin for 2 hours. 
Approximately 0.1 ml of this suspension was mixed with 104 latex microspheres coated 
with recombinant Lbp. The mixture was microscopically examined every 10 minutes 
for a total period of 1 hour. Arrows indicate latex beads. Magnification bar: 10 µm.  
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Figure 4.3.2.3  Adhesion of fluorescently-labelled bacteria to trypsinized cultured 
bovine mammary epithelial cells in the presence of polyclonal anti-Lbp rabbit 
serum.  

 
A, Adhesion of S. uberis Su-1 to MAC-T cells; B, adhesion of SuM13 to MAC-T cells. 
Trypsinized MAC-T cells were allowed to recover for 90 minutes in fresh DMEM 
without antibiotics, mixed with fluorescently labelled bacteria pretreated with anti-Lbp 
rabbit serum. The cell/bacteria ratio used was approximately 1/100. The mixture was 
incubated for 1 hour at 37oC in the presence of 5% rabbit anti-Lbp serum. 
Magnification bar, 10 µm.  
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as described in Materials and Methods, incubated with trypsinized MAC-T cells in the 

presence of anti-Lbp serum and examined microscopically. The results of this 

fluorescent microscopy indicated that both Su-1 and SuM13 strains were capable of 

adhering to mammary epithelial cells (Fig. 4.3.2.3), suggesting that since the presence 

of anti-Lbp antibodies did not inhibit adhesion of S. uberis to MAC-T cells, Lbp 

probably does not play a role in promoting of adhesion of S. uberis to host epithelial 

cells.    

The multiplicity of infection used in adherence assays can influence 

streptococcal invasion (Calvinho, 1998) and thus may potentially affect the 

experimental results. We determined that the MOI which allowed saturation of the 

monolayer surface during 3 hours of infection was approximately 50 CFU per cell (Fig. 

4.3.2.4). Later in infection, higher numbers of bacterial CFU per cell could be isolated 

from infected MAC-T cell monolayers (data not shown), but at that time (6-8 hours) 

damage to MAC-T cells becomes apparent and non-specific bacterial adherence may 

have taken place.  

Although the results of microscopic examination of infected bovine mammary 

cells suggest that both Su-1 and SuM13 were capable of adherence to host epithelial 

cells, binding of the host lactoferrin and expression of a lactoferrin-binding protein 

other than Lbp by S. uberis can potentially affect the efficiency of bacterial adherence 

and the number of adherent bacteria (Fang, 2000). In order to determine whether the 

Lbp of S. uberis Su-1 promoted adhesion of the bacteria to host cells, adhesion of Su-1 

and SuM13 to cultured monolayers of MAC-T cells was assayed. Quantitation of the 

adherent bacteria of the two strains to the monolayers of cultured MAC-T cells  
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Figure 4.3.2.4  Adherence of S. uberis to MAC-T cell monolayers at different 
multiplicities of infection.  

 
Monolayers containing 5 x 105 – 8 x 105 MAC-T cells per well were infected at 
different multiplicities of infection in 6-well plates in antibiotic-free DMEM with S. 
uberis harvested during the exponential phase of growth. After 3 hours of co-culturing 
with bacteria, monolayers were washed and lysed with a trypsin/saponin solution. The 
number of bacteria in the lysate was determined by plating of 1/10 serial dilutions on 
BHI agar.  
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Table 4.3.2.1. Adherence of S. uberis Su-1 and lbp mutant SuM13 to cultured bovine 
mammary epithelial cells.   
 

Strain of S. uberis Adherent CFU/host cell Adherence index1 (%) 

Su-1 24.9±5.18 6.6±2.8 

SuM13 29.7±10.6 8.7±4.8 

p value 
(t Test) 

0.172 0.128 

 

1Adherence index was calculated as the number of bacteria adhering to the host cell 
monolayer divided by the number of bacteria in the culture medium at the time of assay 
and multiplied by 100.  
 
Monolayers containing 5 x 105 – 8 x 105 MAC-T cells per well were infected with S. 
uberis at an MOI approximately 100 in 6-well plates in antibiotic-free DMEM. After 3 
hours of co-culturing with the bacteria, monolayers were washed and lysed with a 
trypsin/saponin solution. The number of bacteria in the lysate was determined by 
plating of 1/10 serial dilutions on BHI agar in duplicate. The result is the average of 
four independent experiments ± standard deviation.  
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demonstrated that there was no statistically significant difference between two strains in 

either the number of adherent CFU per host cell or adherence index (Table 4.3.2.1). 

These results indicate that the Lbp of S. uberis Su-1 does not play a role in adhesion of 

the bacteria to host epithelial cells.  

S. uberis is internalized by epithelial cells (Matthews, 1994) and we 

hypothesized that Lbp may play a role in this process. In order to study the possible role 

of Lbp in internalization of S. uberis by host mammary epithelial cells, we compared 

the abilities of Su-1 and SuM13 to invade cultured bovine epithelial cells and studied 

the consequences of co-incubation of these two streptococcal strains with cultured 

mammary epithelial cells.   

Both S. uberis Su-1 and the lbp mutant SuM13 were found intracellularly after 

incubation with bovine epithelial cells for a total period of 4 hours. The number of 

bacteria recovered from infected MAC-T cell monolayers did not significantly differ 

between the two strains (Table 4.3.2.2).  

 Transmission electron microscopy performed on trypsinized MAC-T cells 

infected with either S. uberis Su-1 or SuM13 confirmed that both strains could be found 

inside host cells. Bacterial cells of both strains were found within membrane-bound 

vacuoles and some bacteria were dividing since the line of division between two cells 

was visible in some of the cocci (Fig. 4.3.2.5). This indicated that both Su-1 and SuM13 

strains are capable of invasion of host epithelial cells and of intracellular growth. 

Prolonged (24 hours) co-culturing of S. uberis with host epithelial cells resulted in 

extensive cell injury, expressed as cytoplasm vacuolization, loss of microvilli, loss of  
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Table 4.3.2.2 The numbers of viable intracellular bacteria recovered from monolayers 
of MAC-T cells co-incubated with the respective strain of S. uberis.  
 
 

S. uberis strain Intracellular CFU/cell, x10-3 Invasion index1 (%) 

Su-1 35±14 0.7±0.3 

SuM13 39±24 0.9±0.7 

 

1Invasion index was calculated as the number of bacteria recovered from infected host 
cell monolayer treated with ampicillin and gentamicin divided by the sum of the 
numbers of adherent and intracellular bacteria at the time of addition of ampicillin and 
gentamicin to the medium multiplied by 100 %.  
 
Monolayers containing 5 x 105 – 8 x 105 MAC-T cells per well were infected at MOI 
approximately 100 in 6-well plates in antibiotic-free DMEM with S. uberis harvested 
during the exponential phase of growth. After 2 hours of co-culturing with the bacteria, 
monolayers were treated with antibiotics for 2 hours to kill extracellular bacteria. MAC-
T cells were washed with fresh DMEM and lysed with a trypsin/saponin solution. The 
number of bacteria in the lysate was determined by plating of 1/10 serial dilutions on 
BHI agar in duplicate. The data is the average of four independent experiments ± 
standard deviation. 
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cellular membrane integrity and destructurizing of the cytoplasm and nucleus (Fig. 

4.3.2.5). We do not have an indication whether these morphological changes are the 

result of the activity of S. uberis cells (external or internal).  

4.3.3 Discussion  

The abilities of S. uberis Su-1 and SuM13 to adhere to and invade host epithelial 

cells were studied to determine whether the Lbp plays a role in these processes. Two 

different in vitro approaches were used to compare the adherence of S. uberis Su-1 and 

SuM13 to the host epithelium: co-incubation of the bacteria with cultured bovine 

mammary epithelial cells and with mammary gland tissue explants from uninfected 

dairy cows. The use of trypsinized cultured cells has certain drawbacks. Trypsinization 

of mammalian cells can damage required adhesion receptors or accessory protein(s) on 

the surface of the cells due to proteolytic activity of trypsin. In addition, trypsin can 

disturb the surface membrane integrity of cells, affecting their viability, transmembrane 

electric potential, ion channel functioning and distribution of phosphate moieties. To 

minimize the potential effect of these on adherence of S. uberis and its lbp mutant, we 

harvested cultured MAC-T cells in their exponential stage of growth (60-80% 

confluence) and allowed cells to recover for 60-90 minutes after trypsinization in fresh 

DMEM. Su-1 and SuM13 were attached to trypsinized MAC-T cells (Fig. 4.3.2.1) 

within 10 minutes, suggesting that the factors described above did not affect any 

proteinaceous components of the host cells responsible for adherence of S. uberis. The 

results of microscopic examination of suspensions of MAC-T cells demonstrated that 

the Lbp is not required for adhesion of S. uberis Su-1, since SuM13, which does not 

express Lbp, still was able to adhere as efficiently as the parent strain.  
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The results of the adhesion assay indicate that both S. uberis Su-1 and SuM13 

could adhere to bovine epithelial cells at a multiplicity of approximately 25 - 30 

CFU/cell (Table 4.3.2.1). The presence of the lactoferrin-binding protein, and, 

consequently, the ability to bind bovine lactoferrin on the bacterial cell surface do not 

affect the number of bacteria attached to host epithelial cells. This seems contradictory 

to the results obtained for other S. uberis strains (Fang, 2000). Other studies suggest that 

S. uberis is capable of binding to laminin and collagen (Almeida, 1996) and may use 

these extracellular matrix proteins (Almeida, 1999b) for adherence to cultured bovine 

mammary epithelial cells, indicating that adherence of S. uberis to host epithelium is a 

multifactorial and possibly strain-dependent process (Calvinho, 1996). Additionally, 

streptococcal adherence may depend on the characteristics of the host tissue or infection 

model. The results of an ex vivo study of S. uberis adherence (Thomas, 1992) suggested 

that it does not adhere to healthy explanted epithelial tissues. This is in agreement with 

similar findings (Ditcham, 1996) which demonstrated that S. uberis adhered more 

readily to non-microvillated host cells than to cells with abundant microvilli. Because 

the presence and abundance of microvilli may serve as an indicator of epithelial cell 

viability, its membrane integrity and metabolic activity, these findings support the 

hypothesis (Thomas, 1992) that S. uberis adheres primarily to injured host tissue or 

cells and not to healthy mammary epithelium. This is consistent with our findings that 

the number of adherent cells of S. uberis and its lbp mutant per host cell increases with 

time of incubation (data not shown), possibly because of the increase in the number of 

injured cultured cells in monolayers co-incubated with the bacteria. Injury to epithelial 

cells may be due to the secretion of proteolytic or cytotoxic products by streptococcal 
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cells. For example, S. uberis Su-1 has been demonstrated to produce cytotoxin CAMP 

factor (Jiang, 1996a).  

Because anti-Lbp polyclonal serum (Fig. 4.3.2.3) could not prevent attachment 

of Su-1 and SuM13 to mammary epithelial tissue and because Su-1 adheres to MAC-T 

cells as efficiently as does SuM13 (Table 4.3.2.1), we conclude that Lbp of S. uberis 

does not play a role in adherence of the organism to host epithelial cells.  

Our results also suggest that Lbp is not essential for effective uptake of S. uberis 

by non-phagocytic cells, since the number of Su-1 CFU recovered per ampicillin- and 

gentamicin-treated MAC-T cells did not differ from that of the isogenic lbp mutant  

(Table 4.3.2.2). Our results also indicate that lactoferrin binding capacity did not affect 

the invasiveness of S. uberis because although SuM13 binds significantly less bovine 

lactoferrin, cultured bovine mammary cells can internalize the SuM13 strain with the 

same efficiency. Although preincubation of S. uberis with bovine milk was 

demonstrated to promote bacterial invasion of mammary epithelial cells (Almeida, 

2003), our results suggest that bovine lactoferrin was not the component responsible for 

this enhanced uptake. Overall, S. uberis Su-1 may be characterized as a strain with a 

very low potential for intracellular invasion since only ~1% of adherent bacteria were 

found intracellularly 3 hours post infection (Table 4.3.2.2) at an MOI of 100 CFU/host 

cell.  

In contrast, the mastitis-causing pathogen S. dysgalactiae has a much higher 

ability to invade mammary epithelial cells (Calvinho, 1998) at the same MOI as was 

used in our study, although this ability also greatly varies between strains (Almeida, 

1995). Like S. dysgalactiae, S. uberis and its lbp mutant SuM13 damage host epithelial 
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cells, as apparent from morphological changes of MAC-T cells co-cultured with either 

Su-1 or SuM13 (Fig. 4.3.2.5). Examination of MAC-T cells co-cultured with S. uberis 

for 24 hours by electron microscopy demonstrated that intracellular S. uberis remains 

viable and possibly propagates since lines of cell division were observed in some 

intracellular as well as in remaining extracellular bacteria. As shown on the 

transmission electron micrographs (Fig. 4.3.2.5), after 24 hours of co-incubation with 

either strain, MAC-T cells show a pronounced necrotic phenotype: liquidified enlarged 

nucleus, vacuolated cytoplasm, absent or scarce microvilli and destructurized cytosol 

with a reduced number of membrane-containing organelles. This cell-damaging 

property may also be a strain-specific trait, since it was previously observed that 24 

hours of co-culturing of MAC-T cells with a different strain of a mastitis-causing S. 

uberis isolate did not reveal apparent epithelial cell injury (Matthews, 1994). This may 

be due to an accumulation of toxic components such as the CAMP factor or other 

proteolytic enzymes.  

Our findings suggest that Lbp is not essential for adherence of S. uberis to host 

epithelial cells. Lbp of S. uberis also is not required for internalization of the bacterium 

by host epithelial cells.  

4.4 The role of Lbp in Iron Acquisition  

4.4.1 Introduction  

Iron is required in most organisms for growth and for crucial metabolic 

pathways. The redox potential of Fe2+/Fe3+ favours its use in a number of protein 

complexes, especially those involved in electron transfer. A number of proteins require 
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iron for their activity in the form of haem or iron-sulfur clusters in order to transfer 

electrons. For this reason, iron is abundant in mammals. However, because of its 

potential toxicity, iron is normally complexed with chelating molecules, which makes it 

unavailable to infecting bacteria. Bacteria have evolved several mechanisms for 

acquisition of iron in the host, including production and uptake of ferric iron chelator 

siderophores, decreasing pH to make ferric iron more soluble, and reducing ferric iron 

to its more soluble ferrous state, as well as acquisition of ferric iron from host haem, 

transferrin, lactoferrin or possibly intracellular iron-containing proteins and iron storage 

components (ferritins). For iron acquisition from host lactoferrin or transferrin, some 

organisms express lactoferrin- and transferrin-binding proteins. Thus, a plausible role 

for Lbp of S. uberis would be acquisition of iron from lactoferrin. We investigated the 

possibility that Lbp is a receptor involved in iron acquisition from bovine milk 

lactoferrin during streptococcal mastitis.  

In order to test this hypothesis, we analyzed the dynamics of bacterial growth 

using four different iron chelators: deferoxamine mesylate, 2,2-dipyridyl, sodium 

nitrylotriacetate (NTA) and sodium salt of ethylenediamine-di(o-hydroxyphenylacetic) 

acid (EDDA). Additionally, we cultured S. uberis strains Su-1 and SuM13 in the 

presence of bovine lactoferrin saturated with 59Fe3+ and assayed the amount of 

radioactivity acquired by the two strains either on the cell surface or intracellularly.   

4.4.2 Iron Acquisition by S. uberis Su-1 and SuM13  

As a first step in determining whether Lbp plays a role in iron acquisition by S. 

uberis, we compared the growth of S. uberis Su-1 and SuM13 in a rich complex media  
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Figure 4.4.2.1. Growth of S. uberis Su-1 and SuM13 in presence of 2,2-dipyridyl.   
(A), A representative plot of a growth of S. uberis Su-1 in BHI broth supplemented with 
5 mM of 2,2-dipyridyl; (B), A representative plot of growth of S. uberis SuM13 in BHI 
broth supplemented with 5 mM of 2,2-dipyridyl. The arrow (I) indicates the point of 
addition of the iron chelator; The arrow (II) indicates addition of 10 mM of FeCl3 for 
reconstitution of ferric iron.  
        
      : Control culture in iron-replete medium;      : Culture growth after addition of 2,2-
dipyridyl;         :  Growth after reconstitution of ferric iron.    
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Figure 4.4.2.2. Growth of S. uberis Su-1 and SuM13 in presence of deferoxamine 

mesylate.   
(A), A representative plot of growth of S. uberis Su-1 in BHI broth supplemented with 5 
mM of deferoxamine mesylate; (B), A representative plot of growth of S. uberis SuM13 
in BHI broth supplemented with 5 mM of deferoxamine mesylate. The arrow (I) 
indicates the point of addition of the chelator; the arrow (II) indicates the point of 
addition of 10 mM of FeCl3 for reconstitution of ferric iron.   
      :Control culture in iron-replete medium;  : Culture growth after addition of 
deferoxamine mesylate;         :  Growth after reconstitution of ferric iron.    
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Figure 4.4.2.3.  Dynamics of the growth of S. uberis Su-1 in the medium depleted of 

divalent ions.  
 
A, Representative growth curves of the cultures in the medium supplemented with 5 
mM EDDA; B, Representative growth curves of the cultures in the medium 
supplemented with 5 mM NTA. The point of addition of the chelator is indicated with 
the arrow (I); the point of addition of FeCl3 for the iron reconstitution is indicated with 
the arrow (II).  
      :  Control culture;        :  Culture after supplementation with a divalent ion chelator;   
      :  Iron-depleted culture after supplementation it with 10 mM FeCl3.  
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in which free iron had been bound by iron chelators. The BHI broth was determined to 

have a total iron concentration of 80±10 µM and the iron chelators were used at 

concentrations of 5 mM. Depletion of BHI broth of iron with chelators which 

specifically remove iron ions from their soluble form did not inhibit the growth of S. 

uberis. Supplementation of the culture medium with 5 mM of 2,2-dipyridyl (Fig. 

4.4.2.1) or with 5 mM of deferoxamine mesylate (Fig. 4.4.2.2) at an early exponential 

phase of growth of S. uberis did not inhibit the growth of the culture. Addition of 

EDDA or NTA to the culture medium at a concentration of 5 mM effectively inhibited 

growth of S. uberis (Fig. 4.4.2.3), but supplementation of the medium with 10 mM of 

FeCl3 did not reconstitute bacterial growth, similar to results obtained with S. mutans 

(Martin, 1984).   

In order to determine if S. uberis could acquire iron directly from bovine 

lactoferrin, we measured the uptake of 59Fe from the 59Fe-saturated lactoferrin by Su-1 

and SuM13. For assay control we used Moraxella bovis, which was demonstrated to 

express a lactoferrin receptor that is used for iron acquisition (Yu, 2002).  Measurement 

of the amount of intracellular 59Fe3+ acquired from bovine lactoferrin demonstrated a 

low level of iron acquisition from bovine lactoferrin by both wild type S. uberis and its 

lbp mutant.  

In 1 hour, less than 200 CPM (approximately 1013 atoms of Fe3+) were found 

intracellularly in 109 CFU of S. uberis, (Fig. 4.4.2.4). M. bovis was used for a positive 

control as an organism capable of iron acquisition from bovine lactoferrin.  After 1 hour 

of incubation with 59Fe3+ lactoferrin, its average total intracellular radioactivity was 
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Figure 4.4.2.4  Acquisition of 59Fe from bovine lactoferrin by S. uberis Su-1, lbp mutant 
SuM13 and Gram negative bovine pathogen Moraxella bovis.  

 
Bacteria were incubated with 59Fe-saturated bLf for 1 hour and the surface-associated 
proteins were removed by trypsin treatment. Intracellular 59Fe was determined as 
proportional to the total cell radioactivity. The data is the mean of 6 experiments; Error 
bars represent standard deviation. 
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determined as approximately 500 CPM per 109 CFU. The bovine pathogen M. bovis 

accumulated approximately 4-5 times more radioactivity than S. uberis Su-1 in 1 hour. 

This corresponds to approximately 5 x 104 – 105 Fe atoms per colony forming unit, 

which is 5 - 20 times less than the amount typically required by Gram-negative bacteria 

(McIntosh, 1977). These results indicate that S. uberis Su-1 accumulated a significantly 

higher amount of 59Fe from iron-saturated lactoferrin than did the lbp mutant. However, 

since growth of both strains was not inhibited in iron-depleted media, and since the total 

amount of iron accumulated by both bacterial strains was exceedingly low, we suggest 

that Lbp of S. uberis is not required for iron acquisition by the organism.  

4.4.3 Discussion  

It was demonstrated previously that expression of Lbp of S. uberis is not 

regulated by the concentration of iron in the growth medium (Jiang, 1996b). However, 

the dynamics of S. uberis growth in iron-depleted media was not addressed, nor was the 

Su-1 requirement for iron studied. Our finding that S. uberis needs very little iron to 

support its metabolism is not surprising and is consistent with similar results obtained 

for porcine pathogen S. suis (Niven, 1999) and for the human oral pathogen S. mutans 

(Martin, 1984). However, acquisition of significant amounts of iron has been 

demonstrated for other streptococcal species such as human pathogens S. pyogenes 

(GAS) (Janulczyk, 2003) and S. pneumoniae (Brown, 2001), suggesting that 

requirements of streptococci for iron may vary between species. Addition of up to 5 

mM of dipyridyl (Fig. 4.4.2.1) or 5 mM of deferoxamine mesylate (Fig. 4.4.2.2) was not 

able to inhibit growth of either S. uberis or its lbp mutant, suggesting that iron can be 



 120 

specifically chelated in the medium without an apparent effect on growth of the 

bacteria. Growth of both Su-1 and SuM13 strains was effectively inhibited by 5 mM of 

NTA or EDDA, but supplementing the medium with 10 mM FeCl3 did not reverse this 

inhibitory effect (Fig. 4.4.2.3). It is likely that NTA and EDDA chelated some divalent 

ions other than iron essential for growth of S. uberis. These may be essential for growth 

of S. uberis and cannot be reconstituted by addition of ferric chloride (Fig. 4.4.2.3). This 

is in agreement with observations that often iron can be replaced by other metals to 

support streptococcal metabolism. One example might be manganese, as was shown in 

the case of S. mutans (Martin, 1984).  

Although according to one series of data, S. mutans requires only Mg for aerobic 

growth and either Mn or Fe in anaerobic conditions (Paik and Kitten, 2003), other 

experimental studies suggest that this organism needs iron for optimal growth. 

Culturing of S. mutans in the presence of 55Fe results in a significant uptake of 

radioactivity - up to 7 cpm/CFU (Spatafora, 2001) - and the amount of iron acquired by 

S. mutans reaches 1 - 3 x 106 of iron atoms per cell (Paik and Kitten, 2003).  This 

amount of intracellular iron is similar to that required by E. coli cells for optimal growth 

(Hantke, 1997). The amount of radioactivity acquired intracellularly by S. uberis Su-1 

corresponds to approximately 104 atoms of 59Fe3+ per CFU. Considering that cultured S. 

uberis forms chains and thus that 1 CFU potentially represents several individual 

bacterial cells, this suggests that the requirement of S. uberis for iron is approximately 3 

orders of magnitude lower than that of E. coli. A possible in vivo source of metabolic 

iron and putative components of iron acquisition and metabolism were identified in 

other streptococcal strains (Lei, 2002; Ricci, 2002). The dynamics of 55Fe accumulation 
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by S. pyogenes cells suggested that only 103 - 104 atoms of iron per bacterial cell are 

accumulated during the exponential phase of growth of the culture in an iron-depleted 

culture medium supplemented with ferric chloride (Janulczyk, 2003). This amount of 

intracellular iron corresponds to that determined above for S. uberis.  

S. pneumoniae was suggested to require either Mn or Zn, but not iron, for 

reconstitution of the growth in a medium supplemented with a divalent ion chelator 

(Dintilhac, 1997). The requirement for a yet unspecified divalent ion(s) may be the case 

with S. uberis Su-1, since its growth in a metal-depleted (EDDA- of NTA-containing) 

media could not be reconstituted with ferric chloride. Because both NTA- and EDDA-

supplemented media were reconstituted with Ca, Mg, Mn and Zn salts as described in 

Materials and Methods, we suggest that concentrations of these ions are not growth-

limiting factors in the used metal-depleted media.  

The very low amount of accumulated radioactive iron by both S. uberis strains 

supports the hypothesis that Lbp is not involved in iron acquisition by the organism. 

The indication that S. uberis Su-1 accumulated significantly more radioactivity from 

59Fe-saturated bovine lactoferrin may be explained by higher local concentration of the 

lactoferrin bound to the surface of the bacterial cells. Acidification of the growth 

medium can decrease the affinity of lactoferrin to ferric ion (Brochu, 1998), causing a 

dissociation of Fe-Lf complex and a passive diffusion of iron released from the 

lactoferrin molecules into streptococcal cells along the gradient of Fe concentration.  

Similar affinities of binding of both apo- and holo-lactoferrin by Lbp of S. 

uberis (Jiang, 1996b); (Moshynskyy, 2003) indirectly support the data above, 

suggesting that Lbp is not essential for iron acquisition by S. uberis. As was 
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demonstrated for other microorganisms that use host lactoferrin and/or transferrin for 

iron acquisition, the respective receptors are able to distinguish, at least partially, 

between apo- and holo- forms of their ligands (Powell, 1998; Retzer, 1998) and bind 

iron-loaded ligands with higher affinity than the apo- forms.  

M. bovis has been demonstrated to bind bovine lactoferrin specifically using a 

two-component lactoferrin receptor typical for Gram-negative bacteria. Although in our 

study M. bovis acquired a significantly higher amount of radioactive iron than any of 

the Streptococcus strains (Fig. 4.4.2.4) representing a positive control of iron 

acquisition from bovine lactoferrin, the total amount of iron acquired by M. bovis was 

determined as 5 - 20 times less than that required by Gram-negative bacteria in 

exponentially growing culture. This may be explained by two main reasons. First, in our 

assay we used iron-starved bacteria pre-incubated with deferoxamine mesylate; 

therefore, the culture of M. bovis was no longer in the optimal conditions of growth. 

Secondly, in iron-depleted conditions Gram-negative pathogens may use multiple 

mechanisms of iron acquisition, in which case uptake of iron from bovine lactoferrin 

would account for only a portion of the total amount of iron internalized by M. bovis.  

Considering an observed uninhibited growth of S. uberis in an iron depleted 

medium, as well as an exceedingly low amount of radioactive iron acquired from 

bovine lactoferrin, we conclude that lactoferrin-binding protein is not essential for iron 

acquisition by S. uberis from host lactoferrin.  
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4.5 Role of the Lbp in S. uberis Infection in vivo  

4.5.1 Introduction  

Inflammation of the udder, commonly known as mastitis, arises as a result of 

intra-mammary gland infection by various microorganisms. Infection of the mammary 

gland can be caused by either contagious pathogens such as Staphylococcus aureus and 

Streptococcus agalactiae or by organisms such as S. uberis, S. dysgalactiae, E. coli and 

others found in the cow's environment. Clinical signs of mastitis include abnormal milk 

appearance and composition, swollen quarters, pain, high fever, depressed appetite and 

elevated body temperature. In subclinical infections, no visible changes occur in the 

appearance of the milk or the udder but milk production decreases, bacteria are present 

in secretions, and milk composition is altered.  

The origin and mechanisms of development of the inflammatory reaction during 

streptococcal mastitis differ from those caused by E. coli and other Gram-negative 

infections. For the latter, endotoxin (lipopolysaccharide) triggers an inflammatory 

reaction and neutrophils attracted to the site of infection effectively control and quickly 

resolve the infection (Hill, 1979). The role of neutrophils in resolving streptococcal 

infection is unclear at present. A massive influx of neutrophils during S. uberis mastitis 

(Thomas, 1994) is usually associated with a variable degree of inflammatory reaction 

(Vaarst, 1997). Immunization of experimental animals with heat-killed S. uberis was 

demonstrated to elicit at least partial protection from challenge with the identical strain 

(Hill, 1994), suggesting it is possible to develop protective immunity against 

environmental streptococci, although the molecular basis for such resistance remains 

obscure. An observation that quarters that had recovered from S. uberis in the past are at 
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higher risk of being infected with a different strain of S. uberis (Zadoks, 2001) suggests 

that besides the possible development of protective immunity, other host-related factors 

may be responsible for the outcome of an infection.  

Lactoferrin receptors, as well as receptors for the related serum metalloprotein 

transferrin, were suggested as important components of colonization and infection by 

members of the Neisseriaceae and Pasteurellaceae families of Gram-negative bacteria 

(Gray-Owen, 1996).   

To study the role of Lbp in virulence during an infection of the mammary gland 

by S. uberis and the role of this protein in the development of clinical signs of mastitis, 

we carried out an experimental infection of lactating animals with S. uberis strain Su-1 

and with lbp mutant SuM13.  

If the lactoferrin-binding protein of S. uberis is necessary for the colonization of 

bovine mammary gland (important for adhesion at the site of infection or for allowing 

the organism to invade host epithelial tissue more effectively), or if it plays a role in 

nutrient(s) acquisition or in evasion of the host innate immune response, then it would 

be expected that lbp mutant SuM13 would be less virulent and would be cleared more 

rapidly.  

4.5.2 Characterization of Experimental Animals  

A total of six Holstein dairy cows in the third quarter of the fifth lactation were 

used for challenge with live S. uberis Su-1 and SuM13. All cows were free from 

intramammary infection as was determined by microbiological examination of their 

milk. Anti-S. uberis serum IgG titers were measured prior to infection and did not 

change significantly by day 9 of infection (Table 4.5.2.1). Animals were divided in two  
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Table 4.5.2.1 Titers of anti-S. uberis antibodies in experimental animals.  

Serum IgG titer Milk IgG titer Animal No Strain used for 
challenge Prior to 

infection 
Post 

infection 
Prior to 

infection 
Post 

infection 
1 Su-1 7181 4733 1670 1120 

2 Su-1 25960 7989 1618 1030 

3 Su-1 7772 6755 1950 1565 

4 SuM13 6459 6685 1730 6755 

5 SuM13 24650 5570 1749 1465 

6 SuM13 28726 24919 1994 1979 

 

Antibodies were titrated in 96-well round bottom plates coated with whole S. uberis Su-
1 cells using 1:10 serial dilutions of the serum or milk of the respective animal.  This 
was followed by a titration using 1:2 serial dilutions to determine antibody titers, which 
were calculated as reciprocal of the last positive plus 2 standard deviations.  
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groups, one of which was challenged with S. uberis Su-1 and the other with SuM13. 

Live bacteria harvested at the early exponential phase of growth at an OD600~0.2 were 

resuspended in sterile PBS to approximately 1.5 x 106 CFU/ml. Three ml of the 

bacterial suspension were inoculated into the right front and right hind quarters of the 

animals immediately after the morning milking (Day 0). The left quarters were used as 

internal controls. Somatic cell count (SCC) in milk prior to infection (Day 0) averaged 

1.8 x 107 per ml. Quarters that were inoculated with bacteria and from which either 

strain of S. uberis was isolated after day 3 post infection, were defined as “challenged 

and infected”. Those quarters that were inoculated with bacteria but from which neither 

strain of S. uberis was isolated after day 3 post infection, were designated “challenged 

but not infected”. No significant changes in SCC of challenged but not infected quarters 

were observed (data not shown).  

4.5.3 Colonization of Bovine Mammary Gland  

Out of 6 quarters, each challenged with 4.5x106 CFU of S. uberis Su-1, 3 were 

considered colonized by the bacteria, since it was detected in milk samples during the 

entire experiment. Of the 6 quarters challenged with 4.8x106 CFU of the lbp mutant 

SuM13, bacteria were recovered from 3 quarters for the duration of the experiment. 

Bacteria were detected in all challenged quarters 12 hours after challenge, but none 

were isolated for the next 24 hours. From day 3 of the trial until the end, low numbers 

of S. uberis were isolated from milk samples (Fig. 4.5.3.1).  Organisms were 

occasionally isolated from non-challenged quarters, but these were identified as non-

streptococcal species. Bacterial colonies isolated from the challenged quarters were 

randomly selected and microscopically examined. Those from infected quarters were  
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Figure 4.5.3.1.  Numbers of bacteria isolated from challenged infected bovine 

mammary glands.  
 
A, quarters infected with S. uberis Su-1; B, quarters infected with lbp mutant. The limit 
of detection was 10 CFU/ml. Bars represent average bacterial titers in milk from 
challenged and infected quarters.  
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identified as Streptococcus species based on the results of microscopic examination. 

Three randomly picked colonies isolated on day 7 from each quarter were analyzed 

using an Api20Strep strip test (see Materials and Methods) and all organisms from 

challenged infected quarters were identified as S. uberis. None of the randomly picked 

colonies from the “challenged but not infected” or from the control quarters were 

identified as S. uberis. All of the streptococcal colonies isolated from SuM13-infected 

quarters were resistant to 100 µg/ml of spectinomycin, which is consistent with the 

SuM13 phenotype. None of the bacteria isolated from Su-1-infected quarters were 

resistant to spectinomycin, suggesting that there was no cross-infection between 

challenged quarters during the experiment.    

No clinical manifestation of mastitis was observed in any of the experimental or 

control quarters. The milk samples did not present any visual abnormalities such as 

protein aggregates or clots in the milk. No redness or swelling of mammary glands was 

observed and rectal temperature remained normal in all animals. All of the above 

suggest that the infection of the challenged lactating mammary glands with both Su-1 

and SuM13 resulted in subclinical infection, a common occurance with S. uberis 

(Zadoks, 2003).  

4.5.4 Somatic Cell Count  

The number of somatic cells detected in the milk of infected animals was high 

throughout the trial (Fig. 4.5.3.2). It should be noted that the somatic cell count in the 

milk prior to the infection was already relatively high due to the state of lactation of the 

animals. However, that in itself cannot account for the high levels of SCC observed in 

experimental animals. Since the animals were not screened for mycoplasma, fungal or  
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Figure 4.5.3.2.  Somatic cell count in milk from challenged infected quarters of bovine 

mammary glands.  
 
A, quarters infected with S. uberis Su-1; B, quarters infected with lbp mutant. Bars 
represent average SCC in milk from challenged and infected quarters.  
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viral infections, this might account for the high cell counts. Their SCC ranged from 

5x106/ml to 2x108/ml. There was no statistically significant difference in SCC between 

quarters through the duration of the experiment. The average somatic cell count from 

the quarters infected with Su-1 was slightly higher than that from the quarters infected 

with SuM13 (Fig. 4.5.3.2), but since the difference was not statistically significant, it 

was not considered indicative of a higher virulence of the Su-1 strain.  

4.5.5 Discussion  

M-like protein(s) have been suggested as one of the virulence factors of S.uberis 

(Oliver, 1998). Binding of bovine lactoferrin by S. uberis was suggested to promote 

adherence of the bacteria to the host epithelial cells, aiding in colonization of the host 

(Fang, 2000). Since Lbp of S. uberis is structurally related to M-like proteins and binds 

bovine lactoferrin, we hypothesized that during infection, Lbp might play a role in 

colonization of the host or in pathogenicity of infection. However, no dramatic 

difference in virulence between S. uberis Su-1 and lbp mutant SuM13 was observed 

during in vivo experimental infection. From the pattern of bacterial shedding, it may be 

suggested that a substantial amount of time (up to 72 hours) is required for the 

establishment of a productive infection by S. uberis Su-1 (Fig. 4.5.3.1, A). The presence 

of the bacteria in the first post-challenge milking samples indicates that a large portion 

of inoculated bacteria were washed out of the gland as expected and as reported by 

others (Rambeaud, 2003). In contrast to the infections with Su-1 and SuM13, a 

progressive inflammation of mammary tissues has been reported following 

experimental S. uberis infection as early as 8 hours, with bacteria detected in 

macrophages and neutrophils and within alveoli (Pedersen, 2003). It is possible that the 
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length of lag in shedding of S. uberis is a strain-dependent feature (Doane, 1987).  

Milk from the mammary gland contains leukocytes, including macrophages, 

neutrophils, and lymphocytes, typically at <150,000 cells/ml or 200,000 - 300,000 

cells/ml (Zadoks, 2001). According to published survey results, herds with low bulk 

SCC counts are at a higher risk of contracting mastitis caused by Gram-negative 

bacteria (Suriyasathaporn, 2000), while herds with higher somatic cell counts tend to be 

more prone to clinical mastitis caused by Staphylococcus aureus and streptococci 

(Barkema, 1999b). Experimental infection of the mammary gland with virulent strains 

of S. uberis results in the appearance of large numbers of neutrophils in the interstitial 

tissues and secretions (Smits, 1998). Infection usually results in an inflammatory 

response, which leads to an increase in the number of cells, primarily due to the influx 

of neutrophils from the peripheral circulation. Milk from clinically infected quarters 

usually contains more than 2,000,000 cells/ml, over 90% of these being neutrophils 

(Field, 2003). As suggested by the results of our experiment, somatic cell counts in the 

milk of animals late in lactation may increase without other apparent inflammatory 

responses independent of colonization of the mammary gland by S. uberis, although as 

was mentioned above, the SCC were extremely high, perhaps due to viral, mycoplasma 

or fungal infection. However, the data are consistent with higher rates of clinical S. 

uberis mastitis during early lactation (Hockett, 2000).  

The duration of S. uberis Su-1 and SuM13 experimental intramammary 

infections (>9 days) was consistent with the duration of subclinical mastitis reported for 

environmental Gram-positive cocci (12.5 days) (Todhunter, 1995), indicating that a lack 

of Lbp expression on the bacterial surface does not result in elimination of S. uberis by 
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the host and does not abolish the ability of S. uberis to survive within the mammary 

gland for an extended period of time.  

The dynamics of bacterial concentration in milk from infected quarters differed 

from that of previously reported data. While both Su-1 and SuM13 were detectable in 

the milk at low concentrations through the whole period of experiment, infections with 

more virulent strains resulted in higher bacterial counts (104 to 107 CFU/ml) in the milk 

during a period between 24 and 60 hours post infection, after which time the bacterial 

counts decreased significantly (Smits, 1998). The appearance of clinical signs of 

mastitis coincided with the presence of large numbers of S. uberis in the milk 

(Rambeaud, 2003), suggesting that in the experimental Su-1 and SuM13 infections, low 

bacterial concentrations in milk may be responsible for development of mainly 

subclinical mastitis in infected animals. The relativly high number of somatic cells in 

the milk prior to inoculation of bacteria also might have contributed to the limited 

number of viable S. uberis Su-1 and SuM13 in the mammary glands of experimental 

animals. As was demonstrated earlier (Finch, 1994), the presence of specific anti-

streptococcal antibodies in the serum and in the milk of experimental animals prior to 

challenge with S. uberis may prevent the development of clinical symptoms of mastitis 

and keep milk bacterial titers at a very low level (often under 500 CFU/ml). The exact 

mechanism underlying such apparent partial immunity is not clear since no increased 

opsonic activity of serum or milk was detected with increased levels of S. uberis-

specific IgGs (Hill, 1994; Finch, 1994). We did not find an association between the 

ability of S. uberis to colonize bovine mammary glands and antibodies titers in either 

milk or serum (Table 4.5.2.1).  
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Titers of S. uberis in the lactating mammary gland may reach 107 CFU/ml of 

milk (Rambeaud, 2003), provided the bacteria resist the bactericidal action of 

neutrophils. The results of the Su-1 and SuM13 experimental infection indicate that 

somatic cell counts were generally inversely proportional to bacterial titers in milk (Fig. 

4.5.3.1 and Fig. 4.5.3.2), suggesting that the bacterial population in milk was at least to 

some extent controlled by host cells, possibly neutrophils. Despite significant 

fluctuations in all quarters studied, average SCC in quarters infected with Su-1 was 

higher than in quarters infected with SuM13. We did not consider this indicative of 

more severe mastitis development since the difference in SCC values between quarters 

infected with Su-1 and SuM13 was not statistically significant.  

The absence of cross-infection between quarters agrees with a previous 

suggestion that intramammary infections caused by environmental organisms are 

predominantly transmitted between cows but not between quarters of the same animal 

(Baxter, 1992).  

Both Su-1 and SuM13 were able to colonize experimental animals and to persist 

in the mammary glands for the whole period of experiment (10 days). We suggest that 

Lbp of S. uberis is not essential for colonization of the host, whether its function is 

related to adherence, intracellular invasion, resistance to host antibacterial immunity, 

nutrient acquisition, or other function(s).  

4.6 Role of Lbp in Regulation of Gene Expression  

4.6.1 Introduction  

We hypothesized that Lbp of S. uberis may be involved in signal transduction as 
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a part of a two-component sensor-effector bacterial system as a sensor surface 

component that binds lactoferrin, a ligand abundant at the site of infection. Prokaryotic 

signal-transduction systems as well as many eukaryotic pathways use phospho transfer 

schemes involving two conserved components: a protein kinase and a response 

regulator protein (Stock, 2000). For example, several key virulence determinants in 

GAS are controlled by the two-component sensor-regulator system CsrS/CsrR, 

depending on phosphorylation of its regulator component CsrR (Gryllos, 2003). For 

Group B streptococcus (GBS), it was reported that tyrosine phosphorylation by CpsD 

regulates capsular polysaccharide production (Cieslewicz, 2001) in response to 

environmental stimuli.  

It was suggested that the presence of certain surface bacterial proteins or a 

combination of such proteins may influence transcription of various host genes 

potentially involved in the host-pathogen relationship during streptococcal infection. 

When exposed to bacterial products, host cells can initiate the activation of genes 

encoding proteins that modulate the innate immune response (Strieter, 2002). For 

example, the local and systemic inflammatory response is orchestrated by a complex 

cytokine network. Cytokines are mainly synthesized de novo (Taniguchi, 1988) 

following stimulation by the bacterial cellular and secreted products and are secreted by 

the cells present at the site of infection. Although the transcriptional response to 

streptococcal infection of phagocytic cells was studied earlier (Kobayashi, 2003), 

professional phagocytes are not the only type of host cells encountering the bacteria and 

potentially capable of mediating inflammation in the mammary gland. The other cell 

types that eventually encounter pathogens include T- and B-lymphocytes, natural killer 
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(NK) cells and secretory epithelial cells. The interaction of the host epithelial cells with 

Streptococcus uberis was studied previously (Matthews, 1994), although an altered 

expression of host genes was not demonstrated. To date, several streptococcal 

components have been implicated in regulation of a host cell gene expression. One such 

component is the pneumococcal choline-binding protein CbpA, capable of binding 

secretory IgA (Hammerschmidt, 1997), the third component of complement (C3) 

(Cheng, 2000) and human complement factor H (Dave, 2001). The secondary structure 

of CbpA (NCBI protein accession number NP_357715) predicted by COIL algorithm 

(http://www.ch.embnet.org/software/COILS_form.html) suggests that a large portion of 

this protein may form a coiled-coil structure similar to the Lbp of S. uberis. This protein 

also was implicated in adherence (Rosenow, 1997) and invasion (Zhang, 2000) of S. 

pneumoniae. The spectrum of the ligands the Cbp binds, a predicted secondary structure 

and the suggested role in adherence and invasion are consistent with CbpA of S. 

pneumoniae being related to M-like streptococcal proteins. The choline binding protein 

was demonstrated to increase the intracellular content of mRNA for chemokines and for 

the intercellular adhesion molecule 1 (ICAM-1, CD54) by human alveolar epithelial 

cells upon infection with S. pneumoniae in vitro (Murdoch, 2002), and chemokines and 

ICAM1 are considered important for the regulation of inflammation and leukocyte 

trafficking, respectively. This suggests that Cbp of S. pneumoniae may play a role in the 

host response to streptococcal infection, by regulation of host gene expression.  

Importantly, this protein has a homology to the Lbp of S. uberis. This allowed us to 

hypothesize that Lbp of S. uberis may play a role in the host cell transcriptional 

response, possibly affecting the course and outcome of mastitis infection.  
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One of the results of Streptococcus-host cell interaction was shown to be host 

cell apoptotic death (Braun, 2001; Fettucciari, 2000; Marouni, 2004). Transcriptional 

activation of a set of growth factors has been demonstrated in bovine mammary tissues 

of animals infected with S. agalactiae (Sheffield, 1997). These were implicated in cell 

cycle regulation and included apoptosis markers.  

Human mononuclear cells stimulated with GBS were demonstrated to produce a 

soluble factor(s), affecting reactive oxygen  production and expression of inducible 

nitric oxide (NO) synthase by cultured epithelial cells (Goodrum, 2002), which 

suggested a role of streptococci-induced signalling in free-radical tissue injury or 

antibacterial tissue defense. This implies that infection of host epithelial cells with live 

streptococci may result in upregulation or downregulation of the expression of host 

genes, affecting the consequences of the infection for both the bacterial and the host 

cells. Indeed, GBS induce synthesis and secretion of TNF-α, IL-1, IL-6, IL-8, IFN-γ 

and IL-12 by host mononuclear cells (Kwak, 2000). Streptococcus bovis increases 

production and secretion of adrenomedulin, which belongs to cationic antimicrobial 

peptides (Allaker, 1999). Antimicrobial peptides are synthesized at mucosal surfaces as 

effectors of innate host defenses in response to the presence of microorganisms, as was 

demonstrated in vitro for gastric adenocarcinoma cells (Allaker, 2003). Pneumolysin of 

S. pneumoniae up-regulates expression of interleukin 2 receptor β, interleukin 15 

receptor α, down-regulates complement receptor 2 and affects expression of other 

inflammatory mediators and antibacterial components by human mononuclear cells 

(Rogers, 2003).  

An example of signal transduction triggered by streptococcal M protein is the 
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activation of phosphatidylinositol 3-kinase (PI 3-K) leading to epithelial cell 

cytoskeleton rearrangement and promoting internalization of the bacterium by host 

epithelial cells (Purushothaman, 2003). Although the transcriptional response of 

epithelial cells to the presence of M protein has not been studied, PI 3-K is considered 

one of the key components of intracellular signalling pathways, regulating transcription 

of an array of eukaryotic genes (Wang, 1999), some of them crucial for cell 

differentiation and regulation of inflammation (Klein, 2002). Activation of PI 3-K is 

also important for the transcriptional regulation of the inducible nitric oxide synthase 

(Pahan, 1999), an enzyme responsible for production of NO (a reactive oxygen species 

playing a role both in killing of intracellular bacteria by phagocytic cells and in tissue 

damage during inflammation). In order to determine if the Lbp of S. uberis plays a role 

in signal transduction as a part of a bacterial two-component signal transduction system, 

we analysed differential protein phosphorylation of Su-1 and SuM13 treated with 

bovine lactoferrin. To study the role of Lbp in bacteria-host interaction, we analyzed 

differential protein phosphorylation of MAC-T cells infected with Su-1 and with 

SuM13. For analysys of host cell transcriptional response affected by Lbp of S. uberis, 

we carried out a cDNA microarray hybridization of the cells infected with Su-1 and 

with SuM13.  

4.6.2 Role of Lbp in Differential Phosphorylation of Proteins and Host Cell 

Morphological Changes    

Since the M-like protein genes may be central to streptococcal virulence and 

because regulatory elements must respond to environmental signals and control the 

expression of virulence genes in streptococci, we hypothesized that M protein may play 
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a role in the control of expression of virulence genes. We hypothesized that binding of 

bovine lactoferrin resulting from S. uberis entering into the mammary gland may serve 

as a signalling event for the streptococcal cell, which includes a protein phosphorylation 

event.  

In order to detect a phosphorylated protein product(s) formed in S. uberis cells 

upon interaction of the bacterial surface Lbp with host lactoferrin, we incubated S. 

uberis Su-1 and its lbp  mutant SuM13 with bovine lactoferrin in the presence of 

γ32[P]ATP and analysed the protein phosphorylation profiles. Similarly, we analyzed 

the host cell protein phosphorylation profiles after exposing MAC-T cells to S. uberis 

Su-1 and SuM13 in the presence of γ32[P]ATP. The amount of total protein loaded on 

the gel per lane was verified by staining of the protein gels with coomassie brilliant 

blue. Following autoradiography, only one band of total cellular streptococcal proteins 

(Fig. 4.6.2.1, A) was detected in the Su-1 strain. The electrophoretic mobility of this 

protein coincided with that of bovine lactoferrin present in the cultures (Fig. 4.6.2.1, B, 

lane Lf) and was much more faint in Su-1 protein samples with no lactoferrin added 

(Fig. 4.6.2.1, A, lane 2) and in SuM13 protein extracts (Fig. 4.6.2.1, lanes 3 and 4). 

Similar amounts of phosphorylated bovine lactoferrin were detected in the culture 

medium protein samples (Fig. 4.6.2.2, B) of both strains. Higher amounts of lactoferrin 

in Su-1 protein extracts (Fig. 4.6.2.1, A) can be explained by the capability of Su-1 cells 

to bind significantly larger amounts of bovine lactoferrin. Phosphorylation of the bovine 

lactoferrin was detected in the absence of bacterial cells (Fig. 4.6.2.1, B, lane Lf), albeit 

to a lesser degree.  
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When bacterial cells were treated with trypsin prior to extraction of cellular 

proteins, there was an additional phosphorylated protein, distinct from bovine 

lactoferrin, present in both Su-1 and SuM13 cells, with electrophoretic mobility similar 

to that of bovine lactoferrin (Fig. 4.6.2.1, B, the band is indicated by the arrow).  

These results did not support the hypothesis that Lbp of S. uberis is involved in 

bacterial signal transduction as a part of a two-component bacterial regulatory system 

that employs an event of protein phosphorylation.   

To check the hypothesis that Lbp of S. uberis is involved in the regulation of 

those host cell signal transduction pathways that include protein phosphorylation, we 

analysed protein phosphorylation profiles of the cultured MAC-T epithelial cells 

infected with S. uberis Su-1 and SuM13. No differential protein phosphorylation was 

observed in cells infected with the two strains (Fig. 4.6.2.3, lanes 3 and 5; lanes  4 and 

6). However, protein bands were detected in the extracts from the cells infected with S. 

uberis (Fig. 4.6.2.3 lanes 3, 4, 5 and 6) but not in those treated with lactoferrin alone 

(Fig. 4.6.2.3 lane 2) or in untreated cells (Fig. 4.6.2.3 lane 1). Additionally, distinct 

bands of phosphorylated proteins were present in protein extracts from the cells infected 

with S. dysgalactiae (Fig. 4.6.2.3, lanes 7 and 8), indicating that differential protein 

phosphorylation can be detected using this approach. This indicates that infection with 

S. uberis Su-1 and SuM13 induced protein phosphorylation-associated events in host 

epithelial cells. There also was no indication of whether these protein bands are of 

bacterial or of host cell origin. However, comparing the autoradiographs of the protein 

profiles of streptococcal cells (Fig. 4.6.2.1, A) with those of the MAC-T cells proteins 

(Fig. 4.6.2.3, B) suggests that at least some bands of phosphorylated proteins are host  
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Figure 4.6.2.1  Autoradiographs of total phosphorylated cellular proteins of S. uberis.  
 
A, Total cellular proteins of the bacteria; B, Cellular proteins of the bacteria treated with 
1% trypsin; Lane 1, Su-1 in the presence of bLf; lane 2, Su-1 without bLf; lane 3, 
SuM13 in the presence of bLf; lane 4, SuM13 without bLf; lane Lf, bovine lactoferrin 
incubated with γ32[P]ATP without bacteria. The arrow indicates the position of the 
major bLf protein band in SDS PAGE.  
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Figure 4.6.2.2 Phosphorylated proteins detected in the growth media of Streptococcus 
uberis.  

 
Proteins present in the growth media of bacteria treated with bovine lactoferrin in the 
presence of γ 32[P]ATP were separated by SDS polyacrylamide gel electrophoresis. The 
gel was stained with Coomassie brilliant blue R-250 (A) and exposed to X-ray film (B);  
Lanes 1, 2 and 3, protein extracts from the Su-1 culture media; Lanes 4, 5 and 6, protein 
extracts from the SuM13 culture media; Lanes 1 and 4, protein extracts from the culture 
media with no lactoferrin added. H, high molecular weight protein standards; L, low 
molecular weight protein standards, both from Bio-Rad; Molecular weight of the 
proteins indicated in kDa. The arrow indicates the position of the major protein band of 
bovine lactoferrin. 
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Figure 4.6.2.3 Protein phosphorylation in Streptococcus-infected bovine mammary 
epithelial cells (MAC-T).  

 
Cultured bovine mammary epithelial cell were infected with S. uberis in the presence of 
bovine lactoferrin and γ 32[P]ATP. Cells were lysed and proteins were separated by SDS 
polyacrylamide gel electrophoresis. The gel was stained with Coomassie R-250 (A) and 
exposed to the X-ray film (B); Lanes: 1, MAC-T cells alone; 2, MAC-T cells with 4 
µg/ml of bovine lactoferrin; 3, MAC-T cells infected with Su-1; 4, MAC-T cells 
infected with Su-1 in presence of 4 µg/ml of bovine lactoferrin; 5, MAC-T cells 
infected with SuM13; 6, MAC-T cells infected with SuM13 in presence of 4 µg/ml of 
bovine lactoferrin; 7 and 8, MAC-T cells infected with S. dysgalactiae. H, high 
molecular weight protein standards; L, low molecular weight protein standards; both 
from Bio-Rad.  
 

 

 

 

    H      1     2    3    4   5     6    7   8   L                        1      2     3     4     5    6    7    8 

A B 

114 
 88 

50 

 28 
 33 

 18 



 143 

cell proteins differentially phosphorylated during infection with S. uberis. Since no 

differences in protein phosphorylation profiles were detected between cells infected 

with Su-1 and SuM13, there was no evidence that Lbp of S. uberis was responsible for 

the protein phosphorylation-associated signalling in the host cells.  

The consequences of the host cell interaction with streptococci have been 

demonstrated to have no effect (Matthews, 1994), to result in complete cell lysis by 

streptococcal proteolytic enzymes (Sierig, 2003), or to result in apoptotic death 

(Marouni, 2004). To address the question of whether Lbp of S. uberis promotes 

apoptosis of host epithelial cells, we studied changes that occurred in cultured bovine 

mammary epithelial cells exposed to either S. uberis Su-1 or SuM13. These included 

both morphological changes as well as chromosomal DNA fragmentation, the latter 

being a characteristic marker of apoptosis. Cells grown in monolayers and co-incubated 

with either strain exhibited a necrotic phenotype, including enlarged, rounded, non-

detached cells with enlarged nuclei, often appearing to possess several nuclei per cell 

(Fig. 4.6.2.4, B and C). This morphology was independent of the presence of lactoferrin 

in the culture medium, suggesting that neither binding of lactoferrin nor expression of 

the Lbp by the bacteria was required for induction of the described morphological 

changes in epithelial cells. Infection of the monolayers with heat-inactivated or with 

formalin-fixed Su-1 or SuM13 did not produce obvious morphological changes in 

cultured epithelial cells (Fig. 4.6.2.4, D and E), regardless of the presence of lactoferrin.  

Cultured MAC-T cells were infected with either Su-1 or SuM13 harvested in the 

exponential phase of growth. After co-incubation with bacteria for 24 hours, cells were 

examined by light microscopy. Trypsinized cells infected with either strain also  
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D      E 

Figure 4.6.2.4  Morphological changes in cultured epithelial cells co-incubated with S. 
uberis in the presence of bovine lactoferrin. 

 
A: uninfected MAC-T epithelial cells; B, MAC-T cells coincubated with live Su-1; C, 
MAC-T cells coincubated with live lbp mutant SuM13; D, MAC-T cells co-incubated 
with formaldehyde-fixed Su-1; E, MAC-T cells co-incubated with formaldehyde-fixed 
SuM13. Arrows indicate enlarged MAC-T cells, some of them with more than one 
nucleus; Magnification X 300.  
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exhibited a necrotic phenotype (Fig. 4.6.2.5, B), which included enlarged cells with 

swollen nuclei. The presence of lactoferrin had no effect on this phenotype. Electron 

microscopy of bovine epithelial cells co-cultured with live Su-1 or with live SuM13 

demonstrated that in infected MAC-T cells, the cytoplasm became liquidified, the 

number of vacuoles increased, cell membrane integrity was lost, most subcellular 

structures disappeared and infected cells no longer possessed microvilli. Cells infected 

with live bacteria of both strains had enlarged nuclei, decreased electron density of both 

nuclei and cytoplasm and breaches in the nuclear membrane (Fig. 4.6.2.5). All these  

features are characteristics of the necrotic cell death phenotype, suggesting that neither 

Su-1 nor SuM13 induced apoptosis in MAC-T cells.  

Although no morphological changes consistent with an apoptotic phenotype 

were detected in MAC-T cells infected with either strain of S. uberis, cell enlargement 

occurring as a result of the damage to the cellular membrane might mask ongoing 

apoptosis. Such damage may be caused by the CAMP factor or by non-specific 

proteolytic enzymes expressed by S. uberis. For this reason, MAC-T cells infected with 

Su-1 and SuM13 were analyzed for their DNA fragmentation, which is a distinctive 

feature of cells undergoing apoptosis. As a positive control for DNA fragmentation, 

MAC-T cells were treated with 20 µM of staurosporin, which induces apoptosis in all 

known cell types and is a non-specific inhibitor of protein phosphorylation. 

Characteristic DNA fragmentation was detected in MAC-T cells treated with 

staurosporin (Fig. 4.6.2.6, lanes 1 – 4). No DNA fragmentation, which occurs when a 

significant proportion of tested cells undergo apoptosis, was detected in the cells co-

cultured with either live Su-1, live SuM13, heat-inactivated Su-1 or heat-inactivated  
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                         M         1          2        3         4       5        6         7       8 

 

Figure 4.6.2.6  Analysis of DNA “laddering” in MAC-T cells infected with S. uberis. 
 
Total DNA from the cells treated with staurosporin (Lanes 1-4), from cells co-incubated 
with live S. uberis Su-1 (lane 5), with heat-inactivated S. uberis (lane 6), with live lbp 
mutant (lane 7) and with heat inactivated lbp mutant SuM13 (lane 8), all in presence of 
lactoferrin;  
M, 100 base pair ladder DNA marker.  
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SuM13, all in the presence of bovine lactoferrin (Fig. 4.6.2.6). This result is consistent 

with the data obtained by studying the morphology of infected MAC-T cells. It 

indicates that neither S. uberis Su-1 nor lbp mutant SuM13 induced apoptosis in 

cultured host epithelial cells. This suggests that Lbp of S. uberis does not play a role in 

induction of apoptsis in host cells.   

4.6.3 Transcriptional Response to S. uberis Infection  

The reaction of the host tissue to bacterial infection can determine the outcome 

of infection. We studied the transcriptional response of cultured bovine mammary 

epithelial cells following infection with Su-1 and SuM13 in order to determine the role 

of Lbp in regulation of host gene expression.  To study the transcriptional response of 

host epithelial cells to the presence of Lbp of S. uberis during infection in vitro, a cDNA 

microarray hybridization of MAC-T cells infected with each strain was carried out. 

Microarray hybridization of Su-1-infected versus SuM13-infected cells was selected in 

order to limit the number of analyzed host genes to those specifically regulated by Lbp.  

Twenty eight individual bovine genes were identified as repressed in the 

presence of S. uberis relative to the lbp mutant (Table 4.6.4.1).  The expression of these 

genes was significantly altered (p<0.05) in all 3 hybridization experiments. None of the 

genes on the array were found to be consistently up-regulated. The results of 3 

independent experiments demonstrated that genes that play roles in cell cycle regulation 

and/or cell motility and plasticity were consistently down-regulated in the presence of 

Lbp of S. uberis. Human ortholog open reading frames were identified for all probe 

sequences (Table 4.6.4.1).  
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Table 4.6.3.1. Genes significantly down-regulated in cultured mammary epithelial cells 
infected with S. uberis Su-1, as determined by microarray hybridization, compared to 
the cells infected with lbp mutant SuM13.  
 

Microarray slide IDs in bold were selected for further analysis.   

 
Microarray 

Slide ID 

 
Name, synonyms 

 
Description 

 
AW462573 

 
Lipocortin; phospholipase 
a2 inhibitor; annexin I. 

 
Mimics the effect of steroids; mediates 
anti-inflammatory activity; inhibits cell 
replication, forces entering 
differentiation; inhibits phospholipids 
generation; affects cytoskeleton 
arrangement  
 

 
AW462679 

 
ATPase, Na+/K+ 
transporting, β 3 
polypeptide 

 
Takes part in IFN-γ, IL-2, IL-4 and IL-
10 production, influences T and B 
lymphocyte activation 
 

 
BF039948 

 
IK cytokine, down-
regulator of HLA II 

 
IK factor almost completely abolishes 
HLA class II expression; associated 
with cancer. 

 
BM362648 

 
Ribosomal protein L5 

 
Regulator of activity or subcellular 
localization of Casein KinaseII; 
shuttling protein (nucleocytoplasmic 
transport), affecting thyroid hormone 
receptor dependent regulation of 
transcription; 

 
BF041596 

 
Hypoxanthine 
phosphoribosyltransferase 
1(HPRT) 

 
Transcription activator, initiates of 
DNA replication 

 
BF042536 

 
Sin3-associated 
polypeptide 

 
Transcriptional repressor 
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BM365597 

 
ATP synthase, H+ 
transporting, mitochondrial 
F1 complex, α subunit 

 
Its expression is being regulated by 
transcriptional factors Sp1, AP-2 and 
GCF. 

 
BF045212 

 
Villin 2 (ezrin) (VIL2) 

 
Invasive phenotype formation in 
malignantly transformed esophageal 
epithelial cells; elongation of 
microvillus-type parallel actin bundles; 
when associated with 
phosphatidylinositol 4,5-bisphosphate, 
regulates the actin cytoskeleton 

 
BF042064 

 
MKI67 (FHA domain) 
interacting nucleolar 
phosphoprotein (MKI67IP) 

 
Cell cycle regulation 

 
BF042135 

 
Stathmin 1/oncoprotein 18 
(STMN1) 

 
Polyploidisation; regulation of the 
microtubule (MT) filament system; a 
substrate for extracellular signal-
regulated kinase (ERK) 

 
BF042903 

 
Ribosomal protein L27 
(RPL27) 

 
Unknown function; In E. coli - 
assembly and activity of 50S ribosomal 
unit 

 
AW462218 

 
RAB11A, member of the 
RAS oncogene family 
(RAB11A) 
 

 
Associated with both constitutive and 
regulated secretory pathways 

 
BF045376 

 
PDZ and LIM domain 1 
(elfin); CLIM1, CLP36, 
ELFIN, CLP-36, hCLIM1 

 
CLP-36 PDZ-LIM protein is an 
adapter, recruiting the Clik1 kinase to 
actin stress fibers in nonmuscle cells. 
Clik1 is a regulator of actin stress 
fibers. : CLP-36 contains a PDZ- and 
LIM domain interacts with actinin-1, 
actinin-2 and actinin-4, and localizes to 
actin stress fibers  
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BF043378 High-mobility group box 2 
(HMGB2) 

This locus controls region regulation of 
the β-globin gene cluster; HMG2 
facilitates the nucleosome assembly, 
transcriptional activation, and DNA 
repair functions of SET (nucleosome 
assembly protein)  and/or APE (base 
excision repair enzyme); down-
regulates the p53- and p73-dependent 
sequence-specific transactivation from 
the human Bax gene promoter  
 

 
BF041607 

 
T-cell activation protein 

 
Mode of action unknown 
 

 
BF044056 

 
Transcriptional adaptor 3 

 
Interacts with p-53, required for p-53 
mediated apoptosis 

 
AW465140 

 
Moesin-like 1 (MSNL1) 
pseudogene, related to 
ezrin (see row 9) 

 
Function unknown; suggested as a 
substrate for tyrosine phosphorylation 
in receptor-mediated cytoskeletal 
reorganization; cell shape control, 
linking the cytoskeleton to the 
membrane; its expression is stimulated 
by lipopolysaccharide  

 
AW463190 

 
Hypothetical protein H41 

 
Overexpressed in human breast cancer 

 
AW465027 

 
Myosin regulatory light 
chain MRCL3 

 
Regulates actin filament assembly and 
reorganization in nonmuscle cells;  

 
AW464991 

 
Decorin (DCN) 

 
A key regulator of tumor growth by 
acting as an antagonist of the epidermal 
growth factor; supports adhesion and 
activation of human platelets 

 
BF041950 

 
Heat shock 90kDa protein 
1 

 
Cellular response to stress 
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BF045606 

 
PPAR binding protein  

 
Transcriptional coactivator  

 
BF046046 

 
Mitochondrial translational 
release factor  

 
Strong anti-apoptotic endogenous 
factor 

 
AW463135 

 
Solute carrier family 25 
(mitochondrial carrier, 
adenine nucleotide 
translocator) 

 
Expression of ANT2 is activated by 
cell growth stimulation  

 
BF043205 

 
Retinoblastoma binding 
protein 4 (RBBP4) 

 
Chromatin remodelling; transcriptional 
repression; histone deacetylation; cell 
cycle regulation 

 
BF040232 

 
Interleukin 13 receptor α 1 
(IL13RA1) 

 
Binds tyrosine kinase TYK2,  mediates 
the signalling processes that leads to 
the activation of JAK1, STAT3 and 
STAT6 induced by IL13 and IL4. 

 
BF039701 

 
Protein AHNAK  

 
Function unknown. Resides in nucleus 

 
BF041471 

 
Heterogeneous nuclear 
ribonucleoprotein H3 
(2H9) (HNRPH3) 

 
mRNA splicing; shock-induced 
splicing arrest  
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The interaction of streptococci with either host epithelial or professional 

phagocytic cells is probably a strain-specific process (Segura, 1998) activating 

severaldifferent signalling pathways. Signal transduction in host cells during bacterial 

infection is often associated with internalization of bacterial particles. Internalization of 

a particle by a cell depends on its ability to rearrange its cytoskeleton, in which process 

actin is a central component (May and Machesky, 2001). This suggestion is 

corroborated by the results of the study of streptococcal M1 protein involvement in 

signal transduction resulting in host cell actin rearrangement in host epithelial cells 

(Purushothaman, 2003). It is also consistent with our results from the cDNA microarray 

hybridization experiment (Table 4.6.3.1), suggesting a role for Lbp of S. uberis in the 

regulation of annexin1, ezrin, stathmin and elfin expression. The products of these 

genes were demonstrated to play roles in regulation of cellular plasticity and 

morphogenesis through interaction with actin and microtubules, and thus affecting 

organization of the cytoskeleton.   

From the list of those genes which are down-regulated in the presence of Lbp 

during S. uberis infection (Table 4.6.3.1), we selected genes whose functions were 

associated with cytoskeleton organization for verification of the results of microarray 

hybridization by RT PCR. We also quantitated the content of mRNA for IL-13 receptor 

to test the possibility that Lbp may play a role as an immunomodulatory component.  

RNA samples quality control was performed using Agilent Bio-analyser as 

described in Materials and Methods. Additionally, polymerase chain reactions were 

carried out on each total RNA sample and on synthesized cDNA using oligonucleotide  
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                             M        1        2         3         4        5          6       7       8 

 

 

Figure 4.6.3.1  RNA quality control assessed by PCR.  
 
PCR of 4 different RNA samples was carried out using a pair of primers specific for the 
bovine gene coding for GAPDH before (1, 3, 5 and 7) and after (2, 4, 6 and 8) synthesis 
of cDNA.  
The arrow indicates the position of the GAPDH-specific PCR product; M, DNA 
molecular weight standards.  
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Table 4.6.3.2. Changes in expression levels of selected genes following incubation of 
MAC-T cells with S. uberis Su-1 relative to the lbp mutant SuM13.  
 
 

Fold change in relative amount of mRNA  
Probe ID and ortholog’s 
name 

Microarray hybridization Quantitative RT PCR 

 
AW462573, Lipocortin; 
phospholipase a2 inhibitor; 
annexin I. 

 
1.68 ± 0.5 

 
1.33±0.29 

 
BF045212, Villin 2 (ezrin) 
(VIL2) 

 
1.45 ± 0.2 

 
3.27±0.02 

 
BF042135, Stathmin 
1/oncoprotein 18 (STMN1) 

 
1.45 ± 0.25 

 
1.6±0.7 

 
BF045376, PDZ and LIM 
domain 1 (elfin); CLIM1, 
CLP36, ELFIN, CLP-36, 
hCLIM1 

 
1.63 ± 0.48 

 
1.02±0.3 

 
BF040232, Interleukin 13 
receptor α 1 (IL13RA1) 

 
1.37 ± 0.16 

 
3.01±1.4 

 

The data is the result of 3 independent experiments each performed in duplicate and 
presented as an average fold change ± standard deviation. 
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Figure 4.6.3.2  A representative plot of fluorescence versus cycle number for the RT 
PCR of the IL-13 receptor specific cDNA, which was synthesized from the total 
RNA of mammary epithelial cells infected with S. uberis Su-1 or with lbp mutant 
SuM13  

Fluorescence of the PCR product specific for the gene coding for bovine GAPDH as a 
positive control is shown for both cDNA samples; total RNA from Su-1 infected cells 
used as a PCR substrate without cDNA synthesis for a negative control. Threshold 
value determined as 807 units of fluorescence.  
      : IL-13R in the cells infected with S. uberis Su-1;    :   GAPDH in the cells infected 
with S. uberis SuM13;     : GAPDH in the cells infected with S. uberis Su-1;      : IL-
13R in the cells infected with S. uberis SuM13;    : No PCR template.  
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primers specific for bovine glyceraldehyde phosphate dehydrogenase (GAPDH) to 

confirm the absence of DNA contamination in RNA preparations (Fig. 4.6.3.1). 

The results of RNA quality control suggested that the samples were free from 

host DNA contaminations since no PCR product could be amplified from the RNA 

samples prior to the synthesis of cDNA (Fig. 4.6.3.1).  

SYBR Green-based quantitative RT PCR was carried out on the cDNA samples 

using oligonucleotide primers specific for annexin I, villin 2, stathmin 1, elfin, GAPDH 

and IL-13 receptor α (Table 3.2.1) as described in Materials and Methods. The amount 

of mRNA coding for annexin I, villin 2, stathmin 1, elfin and the IL-13 receptor α 

relative to the GAPDH mRNA in mammary epithelial cells infected with S. uberis Su-1 

was compared to the amount of respective mRNA content in the cells infected with lbp 

mutant SuM13 (Table 4.6.3.2).  

The plot of CYBR Green fluorescence versus RT PCR cycle number suggested 

that relative amounts of the tested transcripts in the mRNA samples (Fig. 4.6.3.2) was 

consistent with the results of cDNA hybridization, indicating that annexin I, villin 2, 

stathmin 1, elfin and the IL-13 receptor α were down-regulated in MAC-T cells infected 

with Su-1 relative to that of MAC-T cells infected with SuM13.  

Although the results of quantitative RT PCR confirmed the results obtained by 

cDNA microarray hybridization, discrepancies in the fold change of transcripts were 

noted. The discrepancies between fold change in the genes expression determined by 

two different methods using same RNA samples (Table 4.6.3.2) may be explained by 

the semi-quantitative nature of cDNA hybridization approach, while RT PCR offers 

more accurate quantitation of an mRNA content.  
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4.6.4 A Possible Mechanism for the Regulation of Host Genes by Lbp of S. uberis   

Lactoferrin is homologous and is related to serum transferrin, a major 

metalloprotein important for iron transport and cellular iron metabolism (Metz-

Boutigue, 1984). Although it has been suggested that lactoferrin is not crucial in the 

maintenance of intracellular iron homeostasis in mammals (Ward, 2003), it potentially 

can serve as a source of iron for a cell. In order to search for possible post-

transcriptional mechanisms of iron-associated regulation of the genes we identified as 

down-regulated by the Lbp of S. uberis Su-1 in the presence of bovine lactoferrin, we 

analyzed the predicted secondary structure of the mRNA for the genes used for 

verification of the microarray data (Table 4.6.4.2) and studied how the overload of Fe3+ 

influenced the expression of these genes.  

Putative stem-loop structures containing an IRE motif CAGUG were predicted 

for annexin 1 (sequence accession number X56649, position 107), ezrin (accession 

number X51521, position 2427) and stathmin 1/oncoprotein 18 (accession number 

NM_203401, position 1253) mRNAs (Fig. 4.6.4.1) using Software for Statistical 

Folding and Rational Design of Nucleic Acids algorithm as described in Materials and 

Methods. The free energy for each structure was predicted as -13.4 kJ/M, -30.2 kJ/M 

and -18.8 kJ/M, respectively, at the folding temperature of 37oC and the ionic strength 

corresponding to 1M NaCl, with no divalent ions.  

Quantitative RT PCR was carried out on total RNA extracts from the MAC-T 

cells treated with bovine lactoferrin and with 10 mM of FeCl3 in order to model iron 

overload. One of each primer pair specific for annexin 1, villin 2 and stathmin1 (Table 

3.2.1) were used. The amplification profiles obtained (Fig. 4.6.4.2) suggest that both 

iron and bovine lactoferrin can reduce the content of mRNA for annexin 1, stathmin 1 

and villin 2 in bovine mammary epithelial cells, although this reduction is more obvious 

and probably more effective when cells are treated with an excess of ferric chloride than   
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A; ∆G = -13.4 kJ/M      B; ∆G = -30.2 kJ/M 

 

C; ∆G = - 18.8 kJ/M 
 

Figure 4.6.4.1  Putative IRE-like structures with CAGUG motif in the stem-loop 
regions of mRNA.  

  
A, mRNA for human annexin 1; B, mRNA for human villin 2; C, mRNA for human 
stathmin 1. ∆G, estimated free energy of folding of the fragment of the mRNA molecule 
spanning approximately 60 nucleotides in both directions from CAGUG motif (boxed).  
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Figure 4.6.4.2  A representative plot of accumulation of the fluorescence in RT PCR 

reaction using oligonucleotide pair specific for bovine villin 2.  
 
     : Villin2 in the cells treated with 4 mg/ml of bovine lactoferrin;      : GAPDH in the 
cells treated with 10mM FeCl3;     : Villin2 in untreated cells;    :  Villin2 in the cells 
treated with FeCl3;     : No template.  
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when they are treated with lactoferrin. Representative RT PCR amplification curves are 

shown in Fig. 4.6.4.2. 

4.6.5 Discussion 

Two-component signal transduction pathways of bacteria involve events of 

phosphorylation of a cytoplasmic response regulator following recognition of an 

environmental signal by a sensor surface molecule (Stock, 2000). Therefore the 

possibility that Lbp of S. uberis plays a role in the functioning of this type of hypothetic 

two-component signal transduction pathway was addressed by examining differential 

protein phosphorylation of bacterial proteins following incubation with bovine 

lactoferrin. Although no differential phosphorylation of streptococcal proteins was 

detected following binding of lactoferrin, the presence of such proteins cannot be ruled 

out based on these results. One reason is that the direct detection of incorporated 

radioactive phosphorus may not be sensitive enough to detect minor changes in 

phosphorylation. For example, the half-life of mRNAs of the proteins of two-

component signal transduction systems in bacteria can be as short as 1.5 - 3 minutes, as 

was demonstrated for the histidine kinase genes (Aiso, 2003). Secondly, the 

phosphorylated intermediates are often short-lived or transiently phosphorylated 

proteins.  

Our results indicated that bovine lactoferrin was phosphorylated in the presence 

of both Su-1 and SuM13 strains of live S. uberis (Fig.4.6.2.2). The significance or 

mechanisms of such phosphorylation are not clear, although S. uberis Su-1 is capable of 

binding significantly larger amounts of phosphorylated lactoferrin (Fig. 4.6.2.1). Since 

equal amounts of lactoferrin with similar intensities of the protein bands on 
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autoradiograph were detected in culture media of both strains, it is unlikely that Lbp 

plays a role in lactoferrin phosphorylation.  

Alternatively, environmental signalling can result in phosphorylation of an 

effector protein (enzyme, DNA-binding components), which may affect its activity. 

This may result in the altering of one or several cell metabolic pathways. None of such 

phosphorylated effector proteins was detected in either Su-1 or SuM13 strains of S. 

uberis upon stimulation with bovine lactoferrin, suggesting that the mere presence of 

bovine lactoferrin in an environment and its binding by the S. uberis cells is not 

sufficient for altering signal transduction pathways.  

Infection of bovine mammary cells with Su-1 and SuM13 in the presence of 

γ32[P]ATP revealed that several host proteins are modified (phosphorylated) upon 

infection (Fig. 4.6.2.3). The presence of unique differentially phosphorylated protein 

bands in the Streptococcus uberis-infected host suggests that these products might 

represent components of the host cell signalling pathways specific for infection with S. 

uberis.  

Several major protein bands were identified as host cell proteins differentially 

phosphorylated during infection with S. uberis (Fig. 4.6.2.3, B), suggesting that 

infection with either Su-1 or SuM13 possibly altered phosphorylation-related pathways 

in MAC-T epithelial cells. However, no differences in protein phosphorylation profiles 

were detected between cells infected with S. uberis Su-1 and those with SuM13, 

indicating that Lbp of S. uberis does not play a role in a phosphorylation-dependent 

signal transduction in host cells.  

Examination of the morphologic changes in cultured bovine epithelial cells co-
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incubated with viable S. uberis indicated that the bacteria exhibited a cytotoxic effect on 

cultured host cells and no indication of ongoing apoptosis was found. This cytotoxic 

effect is expressed as a marked necrotic phenotype of cultured bovine epithelial cells 

co-incubated with live S. uberis and suggests severe cytotoxicity associated with the 

bacteria, possibly due to the activity of proteolytic enzymes of streptococcal origin 

and/or expression of CAMP cytotoxin. However, certain proteolytic secreted products, 

e.g., pneumolysin of S. pneumoniae (Zysk, 2001), can also cause host cell apoptosis, as 

characterized by cell shrinking, nuclear condensation, endonuclease-mediated DNA 

fragmentation and preservation of cell membrane integrity. In contrast, S. uberis caused 

cell enlargement (Fig. 4.6.2.4, B, C; Fig. 4.6.3.2, B), nucleus swelling and disruption of 

the cellular membrane (Fig. 4.6.2.5, D). Additionally, no DNA laddering was detected 

in cultured epithelial cells infected with either strain of S. uberis (Fig. 4.6.2.6). These 

features are consistent with necrosis rather than with apoptosis, indicating that S. uberis 

either does not promote apoptosis in host epithelial cell or that death by necrosis masks 

the apoptotic phenotype. The presence of bovine or human lactoferrin at physiological 

concentrations has been demonstrated to have an anti-apoptotic effect on some types of 

cells and also to stimulate cell proliferation and differentiation (Cornish, 2004). Thus, 

the absence of typical features of cell apoptosis in the presence of lactoferrin bound by 

Lbp of S. uberis is not surprising. Both Su-1 and SuM13 have similar cytopathic effects 

on cultured epithelial cells, suggesting that Lbp of S. uberis does not promote or inhibit 

apoptosis in host epithelial cells.  

Analysis of the transcriptional response of infected MAC-T cells dependent on 

the expression of Lbp by S. uberis was assayed by cDNA microarray hybridization. The 
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analysis of the microarray spot intensities suggests that a total of 28 bovine genes were 

consistently downregulated in cells infected with S. uberis Su-1 as compared to cells 

infected with lbp mutant SuM13 (Table 4.6.4.1). These changes in expression were 

confirmed by quantitative RT PCR for the genes coding for annexin I, villin 2, stathmin 

1, elfin and IL-13 receptor α (Table 4.6.4.2). The results of microarray hybridization 

may be affected by several variables, depending on the design of the experiment such as 

multiplicity of infection, phase of growth of the bacterial culture and time point of host 

RNA sampling, as well as by the design of the microarray slides. Since only 

approximately 8 % of S. uberis CFU present in the bacteria/host cell mixture adhere to 

MAC-T cells (Table 4.3.2.1) and only approximately 1 % of adherent bacteria are 

internalized by host cells at an MOI of 100 (Table 4.3.2.2), it is probably mainly 

extracellular bacteria and bacterial secreted products that influence host cell gene 

expression. Since we intended to study regulation of host gene expression in response to 

infection with live bacteria, we limited the time of incubation to 3 hours, a period that 

should allow for detection of changes in transcription but is not long enough for the 

bacteria to induce extensive damage to the cell by proteolytic enzymes.  

A reduced amount of annexin I in membranes of the phagosome has been 

demonstrated to be associated with an impaired maturation of the phagolysosome 

during phagocytosis of Mycobacterium avium (Pittis, 2003), suggesting a possible 

bacteria-induced redistribution of the host intracellular annexin or a down-regulation of 

its synthesis. In this respect, the down-regulation of expression of annexin 1 by host 

cells in the presence of an M-like protein Lbp of S. uberis is consistent with the 

functions of M and M-like proteins, which were demonstrated as antiphagocytic or as 
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favouring survival of phagocytosed streptococci factors. Although we did not 

demonstrate either enhanced phagocytosis (Fig. 4.2.5.1) or reduced survival of the lbp 

mutant in the presence of bovine blood neutrophils (Table 4.2.4.1), the reduced content 

of mRNA for annexin I may indicate that phagocytosis and/or phagosome maturation 

and, consequently, intracellular survival of S. uberis may be associated with expression 

of Lbp. Considering the demonstrated role of annexins in intracellular redistribution of 

endosomes with transferrin receptor during transferrin uptake and recycling (Zobiack, 

2003), down-regulation of annexin I in the presence of the adherent S. uberis with 

lactoferrin-loaded Lbp on its surface may indirectly indicate a possible process of an 

iron-dependent redistribution of endosomes that contain lactoferrin receptor, analogous 

to the altered transferrin receptor recycling in iron-overloaded cells (Malorni, 1998).  

Annexin I also functions as an inhibitor of phospholipase A2 (Oh, 2000), which 

has been implicated in the adherence of GAS. Group A Streptococcus secretes a 

prophage-encoded phospholipase A2 implicated in host-pathogen interactions, 

increasing its synthesis when co-cultured with host pharyngeal epithelial cells (Nagiec, 

2004). Host cellular phospholipase A is also rapidly activated by pneumolysin of S. 

pneumoniae in host artery endothelial cells (Rubins, 1994). Down-regulation of 

expression of the phospholipase inhibitor annexin I by S. uberis Su-1 may be a way to 

reduce the presence of one of the cellular components that interfere with Streptococcus-

host cell interaction.   

The synthesis of annexin I increases when cells are stimulated by IL-1-β 

(Miyachi, 2001) or by tumor necrosis factor (TNF) (Wu, 2000), inhibiting TNF-

mediated cytotoxicity (Beyaert, 1990) and inflammation-related cell damage. Annexin I 
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is essential for hepatocyte growth factor-induced proliferation of epithelial cells 

(Skouteris, 1996) and can abolish phospholipase A2 induction of the Rac-dependent 

nuclear signalling pathway (Kim, 1997). Interference with host cytokine signalling by 

down-regulation of expression of annexin I potentially may be beneficial for S. uberis 

and may aid survival of the bacteria. Hence three major consequences of the reducing of 

the presence of annexin I in cells co-incubated with S. uberis may be outlined: (1) it 

may be essential for altering cell plasticity and motility, possibly affecting 

internalization of the bacterial cell; (2) a reduced quantity of phospholipase A2 inhibitor 

may increase the background activity of phospholipase and affect bacterial adherence to 

the host cell; and (3) decreasing of the intracellular content of annexin I may interfere 

with cytokine signalling pathways.  

Ezrin is a protein that belongs to the ezrin-radixin-moesin (ERM) family of 

homologous membrane/cytoskeleton linker proteins involved in the organization of 

cytoskeleton, especially in the formation of microvilli (Franck, 1990), (Yonemura, 

1999). Simultaneous inactivation of all three ERM in epithelial cells by antisense 

oligonucleotides caused disappearance of microvilli and altered cell-cell adhesion 

(Takeuchi, 1994), while overexpression of full-length ezrin enhanced cell adhesion 

(Martin, 1995) and formation of microvilli and pseudopodia (Lamb, 1997). Upon 

infection with S. uberis, the number of microvilli on the surface of MAC-T cells was 

greatly reduced (Fig. 4.6.2.5, B), which is consistent with down-regulation of 

expression of ezrin. However, a similar effect was observed in cells infected with 

SuM13, suggesting that Lbp may not be involved in regulation of microvilli formation. 

This apparent contradiction may be explained by the length of time (24 hours) of co-
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incubation of MAC-T cells and bacteria prior to examination by electron microscopy .  

This suggests that the reason for the disapearance of microvilli on the surface of 

infected cells 24 hours after infection is rather general cytotoxicity of both S. uberis 

strains, while at 3 hours of co-incubation of MAC-T cells with bacteria, a differential 

expression of ezrin mRNA could still be detected.  

A high level of expression of ezrin was associated with the development of 

metastatic cancer (Chen, 2001) and is necessary for metastasis in the murine 

osteosarcoma model (Khanna, 2004). Members of the ERM family of proteins were 

demonstrated to mediate contact between a Na+/H+ cell membrane pump and cell actin 

cytoskeleton to regulate cell shape, adhesion and motility, factors that are probably 

related to metastases formation and spread. Aggregation of Su-1- and SuM13-infected 

MAC-T cells was observed during prolonged (24 hours) co-culturing with bacteria (Fig. 

4.6.2.5, B); however, we did not address the role of regulation of the expression of ezrin 

in this process.  

Aside from a cell shape formation due to cross-linking of actin and outer cellular 

membrane proteins, ezrin was implicated in signal transduction and in regulation of the 

cell cycle. It was suggested that ezrin transduces a survival signal through the activation 

of the PI3K/Akt pathway (Gautreau, 1999). When apoptotic stress is applied to the 

cells, a Na+/H+ pump physically associates with phosphorylated ERM and the actin 

cytoskeleton, which results in activation of the antiapoptotic kinase Akt and in cell 

survival (Wu, 2004). Reduced activity of Akt was observed when expression of ezrin 

protein was suppressed (Khanna, 2004). Treatment of ovarian epithelial carcinoma cells 

with endothelial growth factor (EGF) or IL-1-α increased ezrin tyrosine 
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phosphorylation, ezrin translocation and cell growth and also induced an invasive 

phenotype (Chen, 2001). This is consistent with the data indicating that no apoptosis 

was induced in MAC-T cells infected with S. uberis (Fig. 4.6.2.4, 4.6.2.5 and 4.6.2.6). 

In contrast to the above data, which suggests an antiapoptotic function of ezrin, it was 

demonstrated that CD95-mediated apoptosis depends on direct binding of ezrin to 

CD95, connecting it to actin (Lozupone, 2004), while the other two proteins of the 

ERM family, radixin and moesin, do not bind to CD95. In MAC-T cells infected with S. 

uberis Su-1, along with ezrin, the other host cell genes related to the regulation of 

cytoskeleton organization were down-regulated (Table 4.6.4.1). This suggests a possible 

compensation for a pro-apoptocic activity of ezrin by regulation of other components 

potentially involved in inducing of apoptosis.  

All three members of the ERM family can also localize to the nucleus 

(Batchelor, 2004). Although the significance of the ERM proteins binding to the 

nucleus is unknown, it was suggested that cytoskeletal components can directly link the 

plasma membrane with nuclear events. This indicates that down-regulation of ezrin by 

S. uberis expressing Lbp might be involved in interfering with the host cell signal 

transduction.  

The above data suggest that the decrease in villin 2 (ezrin) expression, as well as 

the decrease in annexin I expression, interfere with host cell morphogenesis and 

membrane-to-nucleus signalling. The downregulation of villin2 by Lbp may be related 

to modifying host cell plasticity. Indeed, S. dysgalactiae surface protein MIG, also an 

M-related protein, reduced the invasion of the bacteria into cultured epithelial cells 

(Song, 2004). Invasion of S. dysgalactiae is inhibited by cytochalasin D (Almeida, 
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1995) and villin-induced growth of microvilli can be inhibited by cytochalasin D 

(Friederich, 1993), suggesting a possible involvement of the villin-dependent cell 

morphogenesis in internalization of streptococci.  

Initially, stathmin was identified as a regulatory phosphoprotein present in 

almost all cell types and as being involved in cytoplasmic signal transduction from a 

specific membrane receptor and in the generation of a secondary messenger of a 

signalling pathway (Sobel, 1989). In leukemia, the increase in the cellular amount of 

stathmin was associated with an increase of the stathmin mRNA content, suggesting 

transcriptional regulation of the gene expression (Melhem, 1991), although the activity 

of various present isoforms of the protein may be regulated by its post-translational 

differential phosphorylation (Marklund, 1993). Since no differential protein 

phosphorylation was detected in MAC-T cells infected with S. uberis Su-1 as compared 

to the cells infected with SuM13, Lbp of S. uberis probably does not regulate the 

activity of stathmin through protein modification (Fig. 4.6.2.3, B).  Intracellularly, at 

least some phosphoisoforms of stathmin are associated with Golgi apparatus and with 

microtubules (Gavet, 1998), suggesting that it may play a possible role in mitosis and in 

the synthetic phase of a cell cycle. Direct interaction of tubulin with stathmin has been 

demonstrated (Redeker, 2000) and it was observed that in the cells expressing the 

mutant forms of stathmin the transition to mitosis is inhibited, while the cell 

polyploidization is induced (Chang, 2001).  Although we do not have data on 

polyploidisation of bovine epithelial cells infected with S. uberis, multiple nuclei in 

infected MAC-T cells were commonly observed (Fig. 4.6.2.4, B and C).  Although the 

microtubule-regulatory function of stathmin is regulated predominantly by the 
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differential phosphorylation of this protein (Larsson, 1995), an induced polyploidization 

and disruption of a normal mitotic microtubule spindle formation during mitosis was 

also observed in cells with reduced stathmin mRNA and protein content (Rubin, 2003). 

The data above indicate that stathmin plays a role in intracellular signal transduction 

and in cell cycle regulation. The significance of the decreased content of stathmin 

mRNA in the mammary epithelial cells infected with S. uberis Su-1 expressing Lbp 

versus cells infected with SuM13 mutant with no Lbp expressed is not clear. However, 

cells containing more than one nucleus were observed both among cells infected with 

Su-1 and among cells infected with SuM13 (Fig. 4.6.2.4, B and C).  

This data is consistent with the down-regulation of the stathmin mRNA by S. 

uberis expressing Lbp (Table 4.6.4.1) and observed polynucleated infected MAC-T 

cells (Fig. 4.6.2.4, B and C), suggesting that Lbp may play a role in altering host cell 

signalling pathways, including those regulating cell cycle.  

Elfin was identified as a 36 kilodalton protein, containing LIM motiff(s) at its 

carboxy terminus and PDZ domain at the aminoterminal region (Kotaka, 1999), 

characteristics of the enigma family of proteins. LIM domains, named for the three 

proteins in which they were first recognized (lin-11, isl-1, and mec-3), are cysteine-rich 

domains that contain two coordinated Zn2+ atoms (Perez-Alvarado, 1994). Several PDZ 

domain-containing proteins serve as scaffolds for assembling components of large 

protein complexes at cell-cell junctions and for assembling proteins involved in signal 

transduction (Tsunoda, 1997). Therefore, the down-regulation of the expression of elfin 

may have contributed to the polynucleation of infected MAC-T cells (Fig. 4.6.2.4, B, C) 

by disrupting cell-cell junctions and interfering with the host cell signal transduction 
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pathways. Elfin mRNA was detected in various types of cells, including epithelial 

(Vallenius, 2000), but displayed the highest levels of expression in the skeletal and 

heart muscle cells (Kotaka, 1999). By using the yeast two-hybrid screening system, it 

was demonstrated that elfin binds α-actinin 2 (Kotaka, 2000) and it was suggested that 

elfin functions as an adapter, bringing other proteins to the cytoskeleton. For example, it 

was shown that the Clik1 kinase, normally located in the cell nucleus, may be recruited 

to actin stress fibers upon binding to elfin (Vallenius, 2002) and that such recruitment 

may affect the regulation of stress fiber formation. Subsequent studies showed that elfin 

also associates with α-actinin-1 filaments and with stress fibers that are formed during 

cellular shape change, contraction and spreading (Bauer, 2000), indicating the role of 

elfin in cell shape formation and morphogenesis. This suggests that insufficient amounts 

of elfin also may have contributed to the morphological changes of infected cells.  

The processes that require substantial rearrangements of the host cell’s 

cytoskeleton appear to be influenced by M-like protein Lbp of S. uberis. Streptococcal 

M-like proteins were implicated in influencing phagocytosis and the invasion of non-

phagocytic cells, which also involve the reorganization of the host cell’s cytoskeleton. It 

is tempting to conclude that down-regulation of the genes involved in cell shaping 

might contribute to the internalization of streptococci by non-phagocytic cells and 

resistance to phagocytosis by polymorphonuclear leukocytes.  

Lbp appears to play a role in the down-regulation of expression of IL-13 

receptor α (Table 4.6.4.1) by bovine epithelial cells, suggesting interference with 

cytokine signalling pathways. The role of bovine mammary gland cells in streptococcal 

infection has been studied and the dynamics of the selected crucial cytokines produced 
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in the early stages of bovine S. uberis mastitis have been determined (Rambeaud, 2003; 

Hockett, 2000). However, the role that individual cytokines play in development of 

intramammary infection with Gram-positive microorganisms is still not fully 

understood. Both IL-4 and IL-13 induce protein tyrosine phosphorylation (Smerz-

Bertling, 1995), leading to the activation of the Janus kinase/signal transducer and 

activator of transcription (JAK/STAT) signalling cascades in cells expressing both the 

IL-4 receptor α and the IL-13receptor α 1 (Wang, 2004; Kelly-Welch, 2003), as well as 

phosphorylation of STAT6 and STAT3 (Wery-Zennaro, 1999). This suggests a role for 

IL-13 receptor α 1 in signal transduction and JAK/STAT-dependent (Murata, 1998) 

modulation of gene transcription. We cannot determine the role of Lbp in the regulation 

of the JAK/STAT pathways in MAC-T cells since no differential phosphorylation was 

detected in MAC-T cells infected with S. uberis Su-1 in comparison to those infected 

with SuM13. However, there was no IL-13 added to the medium to bind the IL-13 

receptor α and to trigger a phosphorylation cascade of a JAK/STAT pathway.  

Alteration or inhibition of cytokine signalling during S. uberis infection may 

potentially interfere with the host’s response to bacterial infection, preventing the 

clearance of the bacteria by both innate and adaptive host immunity effectors. This 

alteration may also modulate the severity of an inflammatory response to the 

streptococcal infection, preventing the manifestation of the clinical signs of mastitis in 

infected animals.  

The release of proinflammatory cytokines (tumor necrosis factor α and 

interleukin-6) by phagocytes upon adhesion of heat-killed S. suis (Segura, 2004) 

suggests a transcriptional response by the host cell to stimulation with killed bacteria, 
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since cytokines are not stored as pre-synthesized intracellular products and secretion of 

a cytokine requires transcriptional activation of the gene coding for it. We demonstrated 

regulation of expression of a receptor component in the host cytokine signalling 

network. The significance of such regulation is not clear and might be a subject of 

future studies. There was no observed relationship between cytokine production by the 

cells stimulated with bacteria and the origin or virulence of the bacterial strain, as was 

demonstrated for S. suis (Vadeboncoeur, 2003). Similarly, Lbp of S. uberis may be an 

important component interfering with mammary gland cytokine signalling, but deletion 

of the lbp gene may not affect bacterial virulence (see section 4.5).   

As was demonstrated by cDNA microarray hybridization, the content of mRNA 

coding for several host proteins is down-regulated by S. uberis Su-1, which expresses 

Lbp on the surface. The down-regulation of villin 2, stathmin 1, the IL-13 receptor α 

and annexin I was verified by real time PCR, demonstrating a 1.5- to 3-fold decrease in 

the content of corresponding transcripts. The consistent decrease of the mRNA content 

in the presence of Lbp is not accompanied by a high level of protein phosphorylation or 

a detectable level of phosphorylated transcriptional regulator in host cells. Interestingly, 

stathmin 1, villin 2 and annexin I mRNAs contain putative iron responsive elements 

with CAGUG motifs in the stem-loop secondary structures predicted by Software for 

Statistical Folding and Rational Design of Nucleic Acids algorithm at 

http://sfold.wadsworth.org/srna.pl (Fig. 4.6.4.1). Iron, brought by the bacteria to the 

epithelial cell surface along with lactoferrin, if acquired by the epithelial cell may affect 

post-transcriptional regulation of mRNA containing IREs.  

1,25-Dihydroxyvitamin D3, for the synthesis of which the Fe-S cluster-
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containing mitochondrial cytochrome P450 is required (Guryev, 2003), down-regulates 

the expression of the transferrin receptor but does not affect the plasma membrane 

endocytosis rate (Tanaka, 1990). 1,25-Dihydroxyvitamin D3, however, up-regulates the 

expression of stathmin (Kumar, 1994), an oncoprotein p18 whose mRNA cellular 

content is down-regulated by Lbp and iron.  

A detected altered expression of bovine genes in response to the presence of Lbp 

on the bacterial cell surface (Table 4.6.3.2) indicates the possibility that Lbp may play a 

role in regulation of the host gene expression.  
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CONCLUSIONS 
 

1. A defined mutant of the S. uberis strain Su-1 unable to express the lactoferrin-

binding protein has been isolated and characterized; 

2. Lbp did not play role in the resistance of S. uberis to ingestion by bovine 

neutrophils or in the inhibition of host serum complement;  

3. Both wild type S. uberis and its lbp mutant had similar abilities to adhere to and 

invade cultured host epithelial cells;  

4.  Lbp of S. uberis did not play a role of iron acquisition from bovine lactoferrin;  

5. Lack of expression of the Lbp by S. uberis Su-1 did not abolish the ability of the 

bacteria to colonize mammary glands of lactating cows and did not significantly 

affect the virulence of S. uberis;  

6. Lbp of S. uberis may play a role in regulation of the expression of host genes 

potentially involved in pathogenesis of bacterial infection. 
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