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Abstract 
 

In over-mature trembling aspen (Populus tremuloides) forests, like those of the Duck 

Mountain Provincial Park (DMPP), mechanical harvesting has been shown to be an effective 

source of disturbance to re-establish a healthy and productive forest. However, harvesting 

operations can result in a degree of unwanted disturbance that could threaten the success of 

regeneration. The overall goal of this study was to assess, on a landscape scale, whether winter 

harvesting of the old growth aspen forests in the park is an ecologically sustainable practice for 

successful aspen regeneration. Skidder traffic intensity, slash coverage, and vegetation indices 

were calculated for six harvested blocks using Global Positioning Systems (GPS), Unoccupied 

Aerial Vehicles (UAVs) and Geographic Information Systems (GIS). Based on this information, 

soil bulk density and early sucker growth was measured to assess the effects of winter 

harvesting. Soil bulk density increased significantly following 1-5 skidder passes (1.39 g cm-3) 

compared to unharvested controls (1.29 g cm-3) but remained relatively constant as skidder 

traffic continued to increase. In areas of high skidder traffic (51-100 passes) aspen sucker density 

decreased by approximately 50% while sucker height decreased by over 20 cm compared to 

areas with less traffic. Soil bulk density, vegetation indices, and slash coverage (up to 60%) 

showed no relationship with the level of aspen regeneration in harvested blocks. To assess 

cumulative effects, principal component analysis, principal component regression, and fuzzy 

logic analysis were used to determine the regeneration suitability across harvested blocks. This 

analysis indicated that the majority of a harvested block (51-71% of the area) occurred with a 

rating of low to below average regeneration suitability. On average, low suitability areas had 

significantly more traffic and slash compared to the other levels of suitability, experiencing 27 

more skidder passes and 6% more slash cover compared to high suitability areas. Aspen sucker 

height, root collar diameter, and dry leaf biomass were also significantly higher in areas with 



 iv 

high regeneration suitability compared to areas with low suitability. Therefore, skidder traffic 

and slash must be properly managed and distributed throughout harvested blocks to ensure the 

sustainability of future aspen forests in the DMPP. 
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1 GENERAL INTRODUCTION 

The boreal forest (Taiga) is the world’s largest continuous terrestrial biome, stretching round 

the entire northern hemisphere. Canada’s boreal forest, which is composed of various cold-tolerant 

coniferous and deciduous tree species, accounts for roughly 55% (552 million ha) of the country’s 

total land mass and represents 70% of the country’s forested land (Brandt et al., 2013). A deciduous 

genus of particular importance is Populus, which belongs to the family Salicaceae and consists of 

several distinct species. Within Canada, nearly 80% (31.5 million ha) of all Populus forests are 

located in the boreal forest ecosystem and account for approximately 11.7% of the forested lands 

in that ecosystem (Government of Canada, 2013). Trembling aspen (Populus tremuloides) is one 

of the most common and widely distributed Populus species, spanning across the entire country.  

In the Prairie Provinces, trembling aspen is a relatively short-lived species with an average 

lifespan between 100 and 120 years (Navratil, 1991) and like the rest of the boreal forest, is 

dependent on sporadic disturbances such as forest fires to maintain its health and productivity  

(Brandt et al., 2013). As a pioneer species, trembling aspen is often one of the first major tree 

species to return following a disturbance and is most often taken over by more shade tolerant 

coniferous species such as white spruce (Piceae glauca), black spruce (Picea mariana), and 

balsam fir (Abies balsamea) until the next disturbance event. In pure aspen stands however, the 

lack of successional species or disturbance results in over-maturity and the rapid decline of the 

forest, as young trembling aspen are incapable of competing with the dense understory shrubs 

(Peterson and Peterson, 1992). Unfortunately, this rapid state of decline is the current situation for 

much of the forests in Duck Mountain Provincial Park, Saskatchewan. 

The Duck Mountain Provincial Park is located along the eastern border of Saskatchewan just 

to the northeast of Kamsack on highway 51 (Fig. 1.1). It was established in 1931 and encompasses 
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approximately 26,300 ha of forested upland.  This forest is predominantly trembling aspen with 

sporadic white spruce scattered throughout the park. The last major wildfires to affect the park 

occurred in the late 1880-90’s and consequently, the forest is in need of rejuvenation as the current 

cohort of aspen is reaching its maximum longevity and stand breakdown is accelerating. With this 

accelerating breakdown, park management is concerned that without the implementation of an 

immediate management strategy, the majority of the forest will subside to a shrub and grass 

dominated ecosystem. Therefore, the Saskatchewan Ministry of Parks, Culture and Sport is 

working with Weyerhaeuser Canada Ltd. and Louisiana Pacific to actively manage the decadent 

aspen forest through mechanical harvesting. Both companies are using a tree length harvesting 

operation, which involves cutting the tree at its base, then transporting it to a centralized landing 

location next to roads where the crown and branches are removed and the tree is cut to specific 

lengths before transportation to the mill. With this method, only the stem wood of the tree is taken, 

while the treetop and branches are redistributed throughout the harvested block as a sustainable 

way of maintaining the cycling of nutrients.  

Mechanical harvesting is both an economically and ecologically viable method to mimic the 

disturbance of fire and stimulate regeneration in aspen forests. Over the past decades, the 

commercial importance of trembling aspen has increased substantially and accounts for 

approximately 34% of the total annual allowable harvest in Saskatchewan (Government of 

Saskatchewan, n.d.; Peterson and Peterson, 1992). Harvesting aspen forests also creates an 

environment suitable for aspen regeneration by removing apical dominance, eliminating the 

competing understory shrubbery, and exposing the forest floor to increased solar energy to increase 

the soil temperature (Navratil, 1991; Peterson and Peterson, 1992).  However, improper harvesting  
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Fig. 1-1: Locator map for the Duck Mountain Provincial Park, Saskatchewan. 
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methods can result in unwanted disturbance to the site which can impede aspen’s ability to 

regenerate successfully (Navratil and Bella, 1988; Smidt and Blinn, 2002; Berger et al., 2004). In 

particular, machine traffic disturbance and slash redistribution represent the greatest risks to soil 

integrity and aspen regeneration caused by harvesting. Not only can heavy machine traffic compact 

the underlying soil and alter soil processes, the physical scarification to the forest floor from 

repetitive machine traffic can damage the shallow aspen roots responsible for aspen regeneration 

(Navratil, 1991; Frey et al., 2003; Renkema et al., 2009). While slash loading can drastically alter 

the soil temperature regime as well as act as a physical barrier to aspen suckers coming from the 

parental rooting system (Bella, 1986; Lieffers-Pritchard, 2004). These shallow roots are sensitive 

to surface soil compaction and slash loading, as both having been shown to reduce the density and 

growth of aspen suckers (Bella, 1986; Lieffers-Pritchard, 2004; Zenner et al., 2007). Therefore, to 

ensure sustainable forest management, minimizing soil disturbance and properly distributing slash 

across a harvested block are important considerations when harvesting in ecologically sensitive 

areas such as provincial parks. It is for this reason that winter harvesting is being used rather than 

summer harvesting, as it has been shown to cause the least damage to the soil and forest floor 

(Block et al., 2002; Berger et al., 2004; Kolka et al., 2012). Nevertheless, the question is raised as 

to whether it is possible to manage this forest through careful ecological winter harvesting to 

minimize disturbance and still obtain adequate aspen regeneration. 

To date, the majority of research examining the success of aspen regeneration following 

disturbance has been conducted using assessment plots placed throughout a harvested block 

(Sheppherd, 1993; Lieffers-Pritchard, 2004; Puettmann et al., 2008; Kabzems, 2012). However, 

the area covered by these assessment plots is small in comparison to the area of the entire harvested 

block. Consequently, important information regarding the success of aspen regeneration across the 

block may be overlooked or misconstrued due to the inadequate coverage of the small assessment 
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plots. In order to reduce this uncertainty, newly developed remote sensing and unoccupied aerial 

vehicle (UAV) technology may offer the solution. Over the past decade, the use of UAVs and high 

resolution optical remote sensing in the agricultural sector has been proven as a useful tool for 

assessing crop health (Barnes et al., 2000; Stanton et al., 2017) and this technology is slowly 

becoming more prevalent in the forestry sector. Several studies have looked at using UAV derived 

remote sensing data to measure and map forest inventory, composition, stand density, canopy 

height and pest infestation (Gamon et al., 1995; Lehmann et al., 2015; Tang and Guofan Shao, 

2015; Torresan et al., 2017; Hird et al., 2017). However, it is unknown if similar technology can 

be applied to successfully monitor the regeneration of aspen one year after harvesting at a 

harvested block scale.   

The following research examines the influence of machine traffic intensity and slash loading 

on the success of aspen forest regeneration one-year post winter harvest, and demonstrates the 

potential of unoccupied aerial vehicles (UAVs) and remote sensing technology as tools to access 

regeneration success on a landscape scale. The overall goal of this research was to assess whether 

winter harvesting used for these old growth aspen forests in Duck Mountain Provincial Park, SK 

is an ecologically sustainable practice for successful aspen regeneration. To obtain my goal, the 

research objectives were:  

1. To examine the relationship between the number of machine passes over an area, the 

severity of soil compaction, and its effects on aspen sucker density, height, root collar 

diameter (RCD), leaf area index (LAI), dry leaf biomass, total nitrogen (N), and total 

phosphorus (P) following one summer of growth.  

2. To examine the feasibility of UAV-based multispectral remote sensing as a tool for 

assessing the effects of machine traffic intensity on aspen regeneration.  
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3. To develop a method to estimate the level of slash coverage (%) in harvested areas 

using aerial imaging, remote sensing, and image processing. 

4. Assess the effects of the % slash coverage (determined during Objective 3) on the level 

of aspen regeneration (sucker density, height, root collar diameter (RCD), leaf area 

index (LAI)). 

5. To develop a method to assess cumulative effects on aspen regeneration for a winter 

harvest block using fuzzy logic suitability mapping. 

6. To determine which factors are responsible for controlling the level of aspen 

regeneration.  

7. To examine aspen regeneration intensities for varying degrees of regeneration 

suitability (determined during Objective 5)  

This thesis is written in a chapter format and contains six chapters: a general introduction to 

the project, a detailed literature review, three research chapters that cover the four objectives, and 

a general discussion and synthesis chapter of all the results and conclusions. Below is a brief 

outline of these chapters.  

Chapter 2 is a detailed literature review focusing on the factors that influence aspen 

regeneration following disturbance. In addition, this chapter will also examine the use of UAVs 

and multispectral remote sensing as new technical solutions for monitoring vegetation health.  

Chapter 3 examines the effects of machine traffic intensity on the level of soil compaction 

and aspen regeneration (Objective 1). This chapter also examines the relationship between 

regeneration levels and UAV multispectral derived vegetation indices (Objective 2). 
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Chapter 4 examines the assessment of slash loading through UAV captured aerial imagery 

and image analysis (Objective 3) and examines the effects of slash loading on the level of aspen 

regeneration (Objective 4).  

Chapter 5 examines the use of principal component analysis (PCA), principal component 

regression (PCR), and fuzzy logic to determine the potential cumulative effects on the level of 

aspen regeneration (Objective 5, 6, 7).  

Chapter 6 is a general synthesis and discussion of all results and conclusions from the project 

and their implications for the harvesting of aspen forests in ecologically sensitive locations such 

as those in the Duck Mountain Provincial Park. 
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2 LITERATURE REVIEW 

2.1 Aspen forest life cycle and succession 

Trembling aspen (Populus tremuloides) is a major broadleaf pioneer tree species found 

throughout Canada’s boreal forest, with approximately 80% of all aspen in the country found in 

this ecosystem (Government of Canada, 2013). Following a disturbance, trembling aspen is often 

the first tree species that dominants a site; however, it is a relatively short-lived species with an 

average lifespan of 100 -120 years in the Prairie Provinces before it begins to succeed to a more 

shade tolerant coniferous species (white spruce, black spruce, balsam fir) ecosystem (Navratil, 

1991; Peterson and Peterson, 1992). Trembling aspen, like most boreal forest species, are largely 

dependent on sporadic disturbances such as forest fire to maintain the health and productivity of 

the species (Brandt et al., 2013). Without fire or the presence of successional coniferous species, 

pure aspen forests often enter into a state of over-maturity and rapid stand breakdown, as 

regenerating aspen are incapable of competing with the dense understory and eventually succeed 

to a grassy shrub dominated ecosystem (Peterson and Peterson, 1992). As mentioned earlier, this 

is the reality for much of the aspen forests in the Saskatchewan Duck Mountain Provincial Park. 

Attempts at controlled burns to stimulate aspen regeneration in the park have failed primarily due 

to poor environmental conditions as well as the aspen forest’s inability to maintain a fire strong 

enough to eliminate the over-mature aspen cohort. Mechanical harvesting has been shown as an 

effective alternative to fire for creating optimal conditions for aspen regeneration (Navratil, 1991, 

1996; Frey et al., 2003) and the growing commercial importance of aspen over the past decades 

has made harvesting an economical viable management option to stimulate stand regeneration 

(Peterson and Peterson, 1992). 
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2.2 Aspen methods of regeneration 

Following disturbance such as fire or harvesting, aspen are commonly the first species to 

colonize a site due to their rapid growth and ability regenerate both sexually and asexually 

(Peterson and Peterson, 1992).  Once aspen achieve sexual maturity at approximately 10-20 years 

of age, they are able to produce upwards of 1 to 1.5 million light-weight seeds per tree per year, 

which can be dispersed by wind several kilometres to nearby disturbed sites (Maini, 1968; 

Navratil, 1991; Peterson and Peterson, 1992). Although seed production is intensive, high levels 

of regeneration through sexual reproduction is uncommon in the prairie region, as numerous site 

conditions required for regeneration are rarely met. Following seed dispersal, seeds must come in 

contact with a continuously moist mineral seedbed, be exposed to moderate temperatures, and have 

little competition from other vegetation in order to survive. However, due to their short viability 

period and growth inhibitors in seed hairs, the above conditions are rarely met (Navratil, 1991; 

Peterson and Peterson, 1992). Therefore, following disturbance the majority of aspen forest 

regeneration occurs through asexual reproduction. 

The asexual reproduction of aspen following a disturbance is driven by a vast interconnected 

rooting system belowground that can spread horizontally up to 30 m from a parent tree (Day, 1944; 

Stone and Kalisz, 1991). While the majority of these roots were found within a depth of 1.2 - 1.5 

m (Strong and La Roi, 1983; Van Rees, 1997), aspen roots have been found to extend downwards 

greater than 3 m depending on soil texture (Stone and Kalisz, 1991). Although aspen roots can 

extend to great depths within the soil profile, roots deeper in the soil profile are unlikely to be those 

primarily responsible for regeneration. Compared to root cuttings placed at 5 and 20 cm depth, 

aspen suckers from cuttings placed below 40 cm were unable to reach the soil surface before the 

roots energy reserves were exhausted (Wachowski et al., 2014). According to Peterson and 

Peterson (1992) and Navratil (1996), the roots responsible for the majority of suckering following 
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harvesting were generally found within the first 8-15 cm from the forest floor; however, Lieffers-

Pritchard (2004) found the majority of root suckering occurred even closer to the surface at around 

4.6 cm depth from the forest floor surface. This variation in depth could be the result of different 

site, climatic, or clonal properties; however, both studies indicate that the majority of suckering 

occurs within the forest floor (LFH) or just below the LFH - mineral interface and not deeper in 

the soil profile.  

To stimulate the asexual reproduction of aspen forest, natural disturbance or harvesting must 

first eliminate the aboveground tree. By removing the aboveground portion of the tree (breaking 

apical dominance), the flow and balance of hormones traveling throughout the tree are disrupted. 

The two hormones of particular importance for controlling regeneration are auxin and cytokinin, 

which suppress and stimulate sucker initiation, respectively (Eliasson, 1971; Navratil, 1991; 

Peterson and Peterson, 1992). Auxin production occurs primarily in the above-ground tissue and 

buds of the tree and is transported by phloem down into the root system, where it promotes root 

elongation and inhibits sucker initiation (Eliasson, 1971; Frey et al., 2003). When the aboveground 

tree is removed, the flow of auxin into the rooting system stops and the levels of cytokinin, which 

is produced by actively growing root tips, begins to accumulate in the rooting system. This 

accumulation of cytokinin activates suppressed buds, newly initiated meristems, and pre-existing 

primordium on the rooting system, signaling them to suckers (Schier, 1973; Schier et al., 1985; 

Frey et al., 2003).  It is not uncommon for this suckering process to generate over 100 000 suckers 

ha-1 in the first year following disturbance; however, a natural thinning process gradually decreases 

this stocking density down to less than 3000 suckers ha-1 by 20 years of age (Peterson and Peterson, 

1992). Because these suckers originate from the rooting system of the previous forest, they are 

genetically identical to their parent. As a result, aspen forests are often composed of even age 

stands of genetically identical clones (Day, 1944; DesRochers, 2000). These new suckers begin to 
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produce their own new rooting system; however, the initial interconnected parent rooting system 

remains of vital importance for the survival of the sucker as it supplies the young sucker with 

nutrients and water (Zahner and DeByle, 1965; DesRochers, 2000). Nevertheless, several factors 

can influence the initial production and growth of suckers following a disturbance and potentially 

cause under stocking of the subsequent forest. 

2.3 Factors affecting aspen regeneration and forest soils 

Following a natural disturbance, factors such as soil temperature, root carbohydrate reserves, 

severity of root damage, quantity of residual aspen remaining, and clonal abilities to sucker have 

been found to influence the initiation and growth of aspen suckers (Zahner and DeByle, 1965; 

Navratil and Bella, 1988; Navratil, 1991; Peterson and Peterson, 1992; Frey et al., 2003). The 

anthropogenic mechanical harvesting of aspen forests can also have a strong influence on these 

factors, resulting in further inhibition or stimulation of aspen regeneration depending in the level 

of disturbance to the site. 

2.3.1 Season of harvest 

As a way to minimize negative harvesting effects on aspen regeneration, harvesting during 

the winter months is a common practice in northern regions. The practice of winter harvesting is 

supported by several studies that have monitored not only its influence on soil properties, but 

carbohydrate and regeneration levels of aspen suckers as well (Schier and Zasada, 1973; Frey et 

al., 2003; Kolka et al., 2012). During the winter months, soils are generally frozen and covered 

with a protective layer of snow that increases the soil’s ability to resist compaction from harvesting 

machinery; however, depending on frost depth and snow cover, the risk of soil compaction is still 

present especially in areas with excessive traffic. Following winter harvesting, Berger et al. (2004), 

found that the level of soil disturbance on skidder trails was significantly higher compared to off 
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skidder trail areas. This same study also found that landings expressed higher levels of soil 

disturbance compared to off skidder trail areas; however, the two were not significantly different. 

Similarly, Holman et al. (1978) found that in the first growing season following winter harvesting, 

the average bulk density between 2.54-7.62 cm depth on skidder trails (1.42 g cm-3) was 

significantly higher than the adjacent unharvested stand (1.25 g cm-3). Although these and many 

other studies have found significant increases in soil bulk density or soil disturbance following a 

winter harvest, the severity of compaction/disturbance is often much less compared to sites 

harvested during the summer (Holman et al., 1978; Bella, 1986; Block et al., 2002; Berger et al., 

2004; Kolka et al., 2012). The reason these winter sites may still be experiencing significant 

increases in soil bulk density/disturbance is due to the fact that the soils may not have been 

completely frozen during the winter months. As Lieffers-Pritchard (2004) found, mineral soil at a 

depth of 10 cm from the forest floor and mineral interface expressed a mean daily soil temperature 

near 0 °C during the winter months (December-March). Therefore, air temperatures may be below 

0 °C during the winter months but the soil may not be frozen, leaving it susceptible to machine 

traffic compaction.  

Once a soil is compacted, there are several natural processes through which soil can de-

compact (Holman et al., 1978). Over time, soil freeze-thaw, wetting and drying, organism activity, 

and vegetation growth will restore the bulk density and soil strength back to their original state. 

Because winter harvested areas do not express as severe of soil disturbance compared to summer 

harvesting, the length of time required to restore these soils back to their natural state may be 

reduced. Holman et al. (1978) found that three years post-harvest, the bulk density (2.54-7.62 cm 

depth) of skidder trails on summer harvested sites (1.42 g cm-3) were still significantly higher 

compared to the adjacent undisturbed soil (1.23 g cm-3), while the bulk density (2.54-7.62 cm 

depth) of skidder trails on winter harvested sites (1.32 g cm-3) were no longer significantly different 
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than undisturbed soil (1.26 g cm-3). However, a study by Page-Dumroese et al. (2006) found that 

the level of bulk density recovery five-years post-harvest ranged from full recovery to no recovery 

depending on the soil properties. Sites with coarser textured soils often saw significant recovery 

five years post-harvest, while most finer textured soils experienced very little recovery with one 

site actually seeing an increase in bulk density over the five years post-harvest (Page-Dumroese et 

al., 2006). Therefore, the rate of soil bulk density recovery is not a fixed rate and varies between 

sites and although season of harvest may influence the level of site disturbance, it can also have 

significant effects on the level of regeneration. 

Though Bella (1986) found that sucker density was greatest following summer harvest; 

studies by Peterson and Peterson, 1992; Bates et al., 1993; Berger et al., 2004; Puettmann et al., 

2008 all indicated that aspen density was greatest following winter harvesting rather than summer 

harvesting. However, Steneker (1976) states that in the prairie provinces the effects of season of 

harvest on aspen density are insignificant, as aspen density was similar on winter and summer 

harvested sites two-three years post-harvest due to the natural thinning process. Bella (1986) also 

found that aspen density in winter and summer harvested sites to be virtually the same 5 to 6 years 

post-harvest. Nevertheless, sucker density is not the only factor to be considered when assessing 

the effects of season of harvest on regeneration levels.  

Aspen height, crown closure, total sucker volume, etc. are also important indicators of aspen 

regeneration. In the study by Bella (1986), aspen height was consistently highest in winter 

harvested sites compared to summer harvested sites. Likewise, the results in Lieffers-Pritchard 

(2004) show that at the end of the second growing season aspen sucker height in winter harvested 

sites with no slash had nearly double (81.8 cm) the growth compared to sucker found in 

comparable areas harvested during the summer (45.4 cm). In this same study, total sucker volume 

(cm3 m-2) was also nearly five time higher in winter harvested sites even though sucker density 
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showed no difference between winter and summer sites. Lastly, Bates et al. (1993) not only found 

an increase in sucker density following winter harvesting, but also an increase in sucker height and 

crown closure when compared to similar areas harvested during the summer.  This increased vigor 

of aspen suckers on winter sites could be attributed to the lower degree of soil disturbance; 

however, it is likely that there are a combination of several factors. 

Following a disturbance, carbohydrate reserves in roots are essential for aspen sucker growth 

as they provide the only source of energy for the plant until suckers emerge and begin to produce 

their own energy through photosynthesis. The levels of carbohydrates in aspen roots are known to 

fluctuate seasonally; therefore, harvesting at different times of the year may influence aspen’s 

ability to regenerate to its fullest potential. Carbohydrate levels are generally lowest during the 

spring, increasing over the summer months until they peak during the fall, and then slowly 

decreases over the winter (Schier and Zasada, 1973). Therefore, it is expected that the greatest 

levels of regeneration would occur when aspen are harvested during the fall or early winter when 

root carbohydrate levels are at their highest. Yet studies by Tew (1968) and Schier and Zasada 

(1973) concluded that carbohydrate levels were not significantly correlated with the number of 

sucker produced. Though carbohydrate levels did not affect the number of suckers produced, this 

does not mean carbohydrates are not an important factor for the successful regeneration of aspen 

forests. Roots containing higher levels of carbohydrates, particularly starch, produced taller 

suckers with increased biomass, leaf dry mass, and leaf area (Schier and Zasada, 1973; 

Landhäusser and Lieffers, 2002; Wachowski et al., 2014). Thus, as the above illustrates, season of 

harvest plays a major role in ensuring optimal regeneration following the harvesting of aspen 

forests. 
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2.3.2 Harvesting Methods 

In aspen forests, the method that is used for harvesting has a direct role in the success of 

aspen regeneration. As mentioned earlier, the breaking of apical dominance is an important factor 

for ensuring vigorous regeneration as it disrupts the flow of auxin, a sucker inhibiting hormone, 

into the root system and allows cytokinin to stimulate suckering (Eliasson, 1971). Due to the 

interconnected root systems, if there are residual aspen left standing following harvest they will 

continue to supply auxin to the rooting system and therefore inhibit the level of suckering 

(Steneker, 1974; Navratil, 1991, 1996; Frey et al., 2003). According to Navratil (1991), there is a 

clear inverse relationship between the level of aspen suckers and the amount of residuals left 

standing. Therefore, to achieve successful aspen regeneration clearcutting with a low residual 

retention rate is considered a more suitable method compared to partial cutting as it ensures apical 

dominance is broken and the flow of auxin into the rooting system ceases (Navratil, 1991; Peterson 

and Peterson, 1992). However, clearcutting is also more suitable for achieving successful aspen 

regeneration as it ensures the maximum amount of incoming solar radiation to the forest floor to 

increase the soil temperature. By only partially cutting and leaving a high level of residuals, the 

shade that is created by the canopy blocks solar energy from reaching the forest floor and therefore 

decreases soil temperature (Navratil, 1991).  

2.3.3 Soil temperature 

Soil temperature is one of the major driving factors that influences aspen regeneration and 

several studies have examined the relationship between soil temperature and aspen development 

(Maini and Horton, 1966; Steneker, 1976; Fraser et al., 2002). As Maini and Horton (1966) 

illustrated in their controlled study, aspen suckering is optimal when soil temperatures were kept 

between 23 and 30 °C and temperatures above or below this range resulted in a decrease in the 

level of suckering. However, in northern regions, soil temperatures normally do not reach these 
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levels, yet prolific suckering still occurs. As Fraser et al. (2002) observed, when root cuttings were 

grown with soil temperatures below optimal conditions (12 and 20 °C), temperature did not have 

a significant effect on the number of suckers produced but did affect the length of time required 

for sucker initiation. In soils with a maximum temperature of 20 °C, roots required approximately 

11 days to initiate suckering while aspen roots grown under a maximum temperature of 12 °C took 

approximately 23 days before suckering was initiated. Although temperature may not have an 

influence on the number of suckers produced, it has been shown to influence the early growth rate 

of suckers. Maini and Horton (1966), found suckers were tallest when soil temperature was near 

23 °C and temperatures above or below this temperature experienced decreased shoot growth. 

Similarly, Fraser et al. (2002) found that aspen grown at 20 °C had a higher biomass compared to 

aspen grown at 12 °C. These results suggest that at higher soil temperatures, aspen suckers may 

gain an advantage over competing vegetation and aid in the successful regeneration of the forest. 

Increased soil temperature is also an important factor for driving chemical processes within 

the rooting system, which in turn stimulate sucker production. Higher soil temperatures have been 

shown to increase the rate of auxin breakdown in roots as well as increase the rate of cytokinin 

production thereby stimulating sucker growth (Schier et al., 1985; Navratil, 1991; Frey et al., 

2003).  

Lastly, harvesting operations can have great influence on the natural soil temperature regime. 

As a way to maintain the cycling of nutrients following forest harvesting, harvest operations leave 

non-profitable material such as branches and stems, commonly referred to as slash, throughout the 

harvested area. Depending on the thickness of this slash layer, it can act as an isolative barrier to 

the soil and as a result shorten the growing season (Steneker, 1976; Lieffers-Pritchard, 2004). The 

effects of slash on soil temperature were most notable during the spring as soils under moderate 

(5 – 20 kg m-2) and heavy slash (20 – 110 kg m-2) took longer to reach 15qC and mean daily 
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temperature decreased significantly compared to areas with no slash coverage (<5 kg m-2) 

(Lieffers-Pritchard, 2004). This effect of slash on soil temperature may also have an influence on 

the level of aspen regeneration. In winter harvested blocks, as the level of slash loading increased, 

the number of aspen suckers decreased significantly from 15 to 1.4 suckers per m2 while aspen 

height saw a significant decreased from 81.8 to 49.3 cm (Lieffers-Pritchard, 2004). The study by 

Bella (1986) also illustrated this inverse relationship between slash loading and aspen sucker 

density and height; however, concluded that under heavy slash loading the level of regeneration 

would be more than adequate for successful regeneration. Nonetheless, proper distribution of slash 

across the site may be an important factor for ensuring optimal regeneration is achieved.  

2.3.4 Harvesting compaction of soils 

Soil compaction from harvesting machinery is a serious concern in forests and many best 

management practices are implemented during a harvesting operation to mitigate the risk of 

increasing the soil compaction. Soil compaction occurs when the pressure exerted by tires/tracks 

of heavy machinery exceed the soil’s ability to resist the additional pressure. As a result, soil 

particles are rearranged, soil pore space in reduced, and soil density increases (Greacen and Sands, 

1980; Brady and Weil, 2004). This reduction in soil pore space can have serious effects on water 

infiltration rates, gas exchange, root growth, and much more; however, the susceptibility of soil to 

compaction is largely dependent on its texture and moisture content (Greacen and Sands, 1980; 

McNabb et al., 2001; Kolka et al., 2012). Soils with fine texture do not require a large increase in 

soil strength or bulk density to limit root growth and as a result, they are at a higher risk of 

experiencing negative effects in relation to machine traffic (Greacen and Sands, 1980; Daddow 

and Warrington, 1983). Regardless of texture, moisture is a dominant factor when determining a 

soil’s susceptibility to compaction. Liquid water acts as a lubricant between soil particles, allowing 

them to be rearranged and easily compressed (Greacen and Sands, 1980; McNabb et al., 2001; 
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Brady and Weil, 2004). Therefore, winter harvesting is a common practice on sites with higher 

soil moisture content, as frozen water does not lubricate the soil particles and acts as an additional 

level of support to resist compaction.  

During a harvesting operation, compaction can occur with as little as one pass (Brais and 

Camiré, 1998); however, much of a harvested block will experience several passes throughout the 

harvesting event. In a study looking at the effects of machine traffic on soils,  Zenner et al. (2007) 

found that the number of passes across a harvested area ranged anywhere from 1 to over 600 passes 

and as a result, would expect to see an increasing level of disturbance to the soil as the number of 

passes increased. Several studies have illustrated that with an increasing number of machine 

passes, the soil strength and soil bulk density generally increase in a logarithmic fashion (Brais 

and Camiré, 1998; McNabb et al., 2001; Zenner et al., 2007); however, the level at which soil 

strength and bulk density ceases to increase with the increasing number of passes is disputable. 

Brais and Camiré (1998) found soil strength and bulk density increased sharply following 1 to 3 

cycles (2 - 6 passes) but showed minimal to no increase after 15 cycles (30 passes). Zenner et al. 

(2007) also found a sharp increase in soil strength after the first pass; however, soil strength 

continued to increase well after the 35th pass. This discrepancy between studies is most likely due 

to differences between site properties (soil texture, soil moisture, etc.), thus making comparisons 

between study sites rather difficult as the number of passes required to compact a soil may vary 

drastically from one area to the next.   

2.4 Unoccupied Aerial Vehicles (UAVs) in Forestry 

Traditionally, studies looking at the effects of harvesting on forest properties and forest 

regeneration are conducted using a variety of assessment plot techniques. However, with the 

increasing technological developments of UAVs and remote sensing, studies are beginning to 

approach their research in this new direction.     
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Aerial imagery has been around since the mid 1800’s and every year new technological 

development has not only improved the quality of this information but the feasibility of using aerial 

imagery in our day-to-day lives. In the past, airplanes and satellite were often used as a means of 

obtaining an aerial view of the earth; however, these methods often gave low spatial resolution 

data that was expensive to acquire and did not allow for site-specific information to be gathered 

(Jensen, 2007; Lehmann et al., 2015). This is where the development of UAVs have proven useful 

in terms of remote sensing. Fixed wing and rotary wing UAVs are a cost-effective tool that allows 

a user to collect high spatial resolution site-specific data in a time independent manner, which 

makes them a practical tool in much of the natural resource sector.  

In particular, UAV’s are becoming more important in the forestry sector as a new method 

for improving the monitoring and managing of forest resources. Zhang et al. (2016) found that, 

UAVs equipped with a high-resolution camera or sensor can be used to measure tree stand 

information such as, canopy height, canopy closure, species composition, stocking density, which 

can be used in decision making processes about harvesting operations. More advanced measuring 

technology such as Light Detecting and Ranging (LiDAR) can also be used in forestry as an 

accurate way to generate point clouds for 3D measurements of forest structure. Wallace et al. 

(2012) were able to measure tree height, tree location, and canopy width within an accuracy of 

0.05 m, 0.44 m, 0.25 m standard deviations, respectively. UAV technology has also been shown 

as an effective tool in monitoring pest and disease movement through a forest stand. As Lehmann 

et al. (2015) found, through the use of multispectral remote sensing imagery, they were able to 

detect branches on oak trees that were infested with oak splendour beetle versus branches that were 

still healthy. Recently, a study by Franklin and Ahmed (2017) illustrated how multispectral 

imagery collected using a UAV and advanced GIS image analysis and classification techniques 

could be used to classify the canopy of different tree species (Populus tremuloides, Betula 
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papyrifera, Acer saccharum, Acer rubrum) with an approximate 78% accuracy. Such abilities are 

useful for the development of site specific forest inventories and vegetation monitoring. However, 

little to no information is currently available on the use of UAVs and multispectral remote sensing 

for the assessment of aspen forest regeneration and cumulative effects at a harvest block scale.  

2.5 Remote sensing of vegetation 

Remote sensing is defined as the acquisition of information regarding an object or 

phenomenon without making physical contact with the object (Jensen, 2007). This is achieved by 

using a specialized sensor attached to a platform such as a satellite, aircraft, UAV, or simply a 

handheld instrument. There are two major forms of remote sensing, active or passive. Active 

remote sensing involves a sensor that generates its own source of energy which it measures once 

it has come in contact with the object of interest. Alternatively, passive remote sensing collects 

information about a surface based on its reflectance (optical) or emittance (thermal) of energy that 

originates from the sun (Jensen, 2007). Of these two forms, passive remote sensing that focuses 

on measuring the reflectance of energy off the earth’s surface are the most commonly used to 

assess vegetation. To be more specific, optical/reflectance remote sensing involves capturing 

specific portions (bands) of the electromagnetic spectrum in the visible (VIS), near infrared (NIR), 

and short wave infrared (SWIR) regions once they are reflected from the earth’s surface (Shaw 

and Burke, 2003; Jensen, 2007). Based on the level of reflectance, it is possible to build a 

reflectance curve or signature for different types of land cover and use this information to better 

understand the environment.  

2.5.1 Remote Sensing Resolutions 

There are four types of resolutions that are used to describe a remote sensing sensor: spatial, 

radiometric, temporal, and spectral. Each of these resolutions are important as they control the 
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properties and quality of the data being collected by the sensor. Spatial resolution refers to the field 

of view (area captured in an image) as well as the size of each individual pixel within an image. 

Radiometric resolution refers to the sensitivity of the sensor to differentiate changes in the 

magnitude of reflectance from the earth’s surface. Temporal resolution refers to how often an 

image is captured for a particular area. Lastly, spectral resolution refers to the number of individual 

bands a sensor can measure as well as the size/wavelength interval being recorded by each band 

(Jensen, 2007). Many remote sensing systems are classified based on their spectral resolution or 

the number of bands the sensor captures. There are three major categories: panchromatic, 

multispectral, or hyperspectral and of these three, multispectral remote sensing is commonly used 

for studying vegetation properties and characteristics.  

For the assessment of vegetation there are four bands of particular interest: BLUE (0.4 – 0.5 

Pm), GREEN (0.5–0.6 Pm), RED (0.6–0.7Pm), and NIR (near infrared) (0.7–1.2 Pm) due to their 

unique reflectance properties that can be used as indicators of plant health. Healthy vegetation 

absorbs the majority of blue and red light as it used by chlorophyll during photosynthesis, leaving 

the green light to reflect causing the vegetation to appear green. Conversely, healthy vegetation 

will reflect virtually all the NIR light to prevent overheating and protein denaturation (Jensen, 

2007). This large difference in reflectance between the visible and NIR bands allows for the 

calculation of many vegetation indices that can be used to further assess vegetation health and 

discriminate vegetation for other surfaces. 

2.5.2 Vegetation Indices 

Vegetation indices are calculated using two or more spectral bands to extract specific 

information about an area and the most common index used to assess vegetation health is the 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974). This index is calculated 



 22 

using the red and near infrared bands NDVI = (NIR-RED)/(NIR+RED) and ranges from -1 to +1 

with +1 indicating an area of high vegetation cover while values approaching or below 0 contain 

little to no vegetation. This index along with many others are heavily used in the agricultural sector 

as they can be used to assess such things water stress, plant nitrogen status, canopy density within 

a crop and grain yield (Barnes et al., 2000; Henik, 2012). Similarly when looking at forest 

vegetation, NDVI showed a high correlation with increasing tree diameter, seed production, 

standardized tree ring width, LAI and chlorophyll content (Wang et al., 2004; 2005, Eitel et al., 

2010; 2011). Wang et al. (2005) found a strong linear regression between NDVI and LAI; however, 

this relationship varied depending on the phenology stage of the deciduous forest (leaf production, 

full canopy, and senescence). When NDVI was calculated using the NIR and Red bands, it is 

known that in multilayer vegetation areas with LAI  near 4 m2 m-2, it becomes difficult to predict 

LAI from NDVI measurements (Wang et al., 2005; Jensen, 2007; Mašková et al. 2008; Gamon et 

al., 1995). The reason is NDVI values asymptotically approach a saturation level in relation to LAI 

and do not allow for accurate measurements to be made (Baret and Guyot, 1991; Mašková et al., 

2008). Monitoring of multi-layer vegetation such as aspen and surrounding forest vegetation may 

prove difficult by late summer when vegetation growth is at its maximum; therefore, caution must 

be taken when analyzing multispectral data to ensure measurements are correct and accurate. To 

address this issue, several other vegetation indices (Table 1-1) are often calculated from different 

combinations of spectral bands to ensure a better and more accurate assessment of vegetation 

properties.   
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3 SKIDDER TRAFFIC INTENSITY EFFECTS ON SOIL BULK DENSITY, ASPEN 

REGENERATION, AND VEGETATION INDICES1 

3.1 Preface 

Winter harvesting is a common practice used in ecologically sensitive forests to protect the 

underlying soil and forest floor from compaction and physical disturbance. However with a 

changing climate, it is uncertain whether winter harvesting offers the same level of protection it 

once did. Due to the weight and repetitive movements of harvesting machinery, it is important to 

monitor how these processes influence soil compaction and aspen regeneration. This chapter 

examines how skidder traffic intensity influences the level of soil compaction as well as the level 

of aspen regeneration. In addition, this chapter examines the potential of using multispectral 

remote sensing to assess the level of aspen regeneration across entire harvested blocks. 

  

                                                           
1 This chapter, co-authored with Dr. Ken Van Rees, has been submitted for publication to Forest Ecology and 
Management. Data collection, data analyses, GIS-analysis, and initial writing of the manuscript were completed by 
the lead author (Landon Lee Sealey), while editing and review of manuscript was done by the co-author.  
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3.2 Abstract 

Following a disturbance, extensive aspen (Populus tremuloides) suckering is crucial for 

ensuring the continued productivity of the future forest. The aim of this study was to assesses the 

suitability of using winter harvesting in a provincial park as a way to mitigate severe soil 

compaction and ensure sufficient aspen regeneration to rejuvenate the over-mature forest. Six 

harvested blocks were selected for this study based on a skidder traffic intensity map which was 

generated using GPS data collected throughout the duration of the harvesting event. Soil bulk 

density, aspen regeneration, and vegetation indices were measured across the different levels of 

skidder traffic intensity. Soil bulk density increased significantly following as little as 1-5 skidder 

passes (1.39 g cm-3) compared to the unharvested control (1.29 g cm-3); however, bulk density 

remained relatively constant as the level of skidder traffic intensity continued to increase. No 

relationship was found between soil bulk density and the level of aspen regeneration; however, the 

level of skidder traffic intensity significantly influenced the level of aspen regeneration. Aspen 

root collar diameter, leaf area index, dry leaf biomass, total N, and total P all decreased as the level 

of skidder traffic intensity increased; however, none of these factors were significant. Conversely, 

aspen sucker density and height both were significantly decreased as the level of skidder traffic 

intensity increased, decreasing nearly 50% and 28%, respectively, in areas with 51-100 skidder 

passes. Multispectral remote sensing using UAV to assess the level of aspen regeneration across 

an entire harvested block proved ineffective. Although several vegetation indices showed 

significant relationships with aspen properties, none of these relationships had a coefficient of 

determination greater than approximately 0.2. Overall, winter harvesting appeared to have 

mitigated ecologically damaging increases in soil compaction and provided conditions suitable for 

healthy aspen regeneration.  
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3.3 Introduction 

Mechanical harvesting has been proven as an efficient method for the rejuvenation of over-

mature aspen forests (Navratil, 1991; Frey et al., 2003). However, in ecologically sensitive areas 

such as those in provincial parks, successive machine traffic may pose a risk to the integrity of the 

soil as well as regeneration success. Repeated heavy machinery movement over forest soils has 

the potential to increase the soil bulk density resulting in severe compaction (Brais and Camiré, 

1998; Zenner et al., 2007). Compaction not only alters soil processes (aeration, infiltration, etc.), 

it can also impede plant root growth resulting in an overall decrease in the level of regeneration 

and growth.  

Traditionally, regeneration studies involved using small measurement plots to assess 

regeneration across entire harvested blocks, leaving a high potential for error. Rather than using 

sample plots to assess regeneration, remote sensing may offer a solution that can accurately assess 

the level and health of aspen regeneration across entire blocks. Similar research in the agricultural 

sector has proven the feasibility of using remote sensing to monitor vegetation health and growth 

(Barnes et al., 2000; Henik, 2012); however, no studies have examined whether these same 

methods can be applied in a regenerating forest setting with the same level of success.   

This chapter assesses whether the use of winter harvesting is a suitable practice to mitigate 

significant increases in soil bulk density and ensure sufficient aspen regeneration. In addition, this 

chapter will assess whether unoccupied aerial vehicle (UAV) based remote sensing can be used in 

a similar way as the agricultural sector to assess aspen regeneration.  

The objectives for this study were:  

1. To examine the relationship between the number of machine passes over an area, the 

severity of soil compaction, and its effects on aspen sucker density, height, root collar 
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diameter (RCD), leaf area index (LAI), dry leaf biomass, total nitrogen (N), and total 

phosphorus (P) following one summer of growth.  

2. To examine the feasibility of UAV based multispectral remote sensing as a tool for 

assessing the effects of machine traffic intensity on aspen regeneration.  

Null hypotheses for this study were:  

1. Increasing the number of skidder passes over an area does not significantly increase the 

bulk density of the underlying soil at a depth of 10 cm following winter harvesting.  

2. Increasing the number of skidder passes does not significantly lower a) sucker density, 

b) height, c) RCD, d) aspen sucker LAI, e) plot LAI, f) dry leaf biomass, g) total N, h) 

total P of regenerating aspen measured following one summer of growth after winter 

harvesting.  

3. Areas with high aspen regeneration do not have significantly higher vegetation index 

values (Normalized Difference Vegetation Index (NDVI), Green Normalized 

Difference Vegetation Index (GNDVI), Normalized Difference Red-Edge (NDRE), 

Simple RED-NIR Ratio (SR), Chlorophyll Index Green (CIG)) compared to areas with 

lower levels of regeneration. 

3.4 Materials & Methods 

3.4.1 Study area 

The harvesting operation took place in the northwest corner of Duck Mountain Provincial 

Park (Universal Transverse Mercator coordinates system, Zone 14U, 0307591 Easting and 

5735089 Northing) (Fig. 3-1) where a 10-year forest management plan has been developed 

between the Government of Saskatchewan and Hudson Bay Weyerhaeuser to harvest  
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Fig. 3-1: Location of Weyerhaeuser harvesting operation within Duck Mountain Provincial Park, 

Saskatchewan. 
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approximately 10,000 hectares. In this areas, the forest was largely composed of over mature 

trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera) (|120-130 years 

old) most of which originated after the last wildfires in the late 1880-90s (Government of 

Saskatchewan, 2015). White spruce (Picea glauca) were also present; however, they are sparse 

and often only found around lower lying areas. The understory was a mixture of beaked hazelnut 

(Corylus cornata), mountain maple (Acer spicatum), and several other shrub, grass and forb 

species. A detailed list of native species found throughout the harvested area can be found in 

Appendix A.  

The landscape in the north end of Duck Mountain Provincial Park is a hummocky terrain 

with slopes ranging between 5-30% (Saskatchewan Institute of Pedology, 1994). This hummocky 

terrain also gives rise to several scattered shallow marshes and emergent deep marshes, which 

range in size between 0.4 and 2 hectares and cover approximately 20-40% of the landscape 

(Saskatchewan Institute of Pedology, 1994). The soils in the northwest section of the park belong 

to the Waitville and Northern Light soil associations, which consist mainly of Gray and Dark Gray 

Luvisols with a loam/clay loam texture (Saskatchewan Institute of Pedology, 1994). A detailed 

summary of the soils found across the research sites can be found in Appendix B.  

In terms of climate (based on 1981-2010 climate normal calculation), the Duck Mountain 

Provincial Park has a mean annual temperature of 0.7 °C and receives a total of 572.6 mm of 

precipitation each year. The mean annual maximum air temperature is 6.5 °C and the mean annual 

minimum air temperature is -5.1 °C. For precipitation, 405.7 mm are in the form of rain while 

166.9 mm  are in the form of snow (Government of Canada, 2018). A detailed summary of weather 

data during the winter harvesting operations can be found in Appendix C. 
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3.4.2 Sampling Area and Time 

Harvesting in Duck Mountain Provincial Park first began in the winter of 2014-15; however, 

the areas used for this study were harvested during the winter (December-March) of 2015-16 and 

2016-17. Following the winter harvesting of 2015-16, three harvested blocks (1, 2, and 3) were 

selected based on the range of skidder traffic intensity (described in section 3.2.3) within each 

block. Soil samples and vegetation measurements for these three blocks were collected between 

May and August of 2016. Following the winter harvesting of 2016-17, an additional three blocks 

(A, B, and C) were again selected based on the range of skidder traffic intensity (described in 

section 3.2.3) within each block. Soil samples and vegetation measurements for these three blocks 

were collected between May and August of 2017.   

3.4.3 Calculating Skidder Traffic Intensity and Harvest Block Selection  

Prior to the commencement of the winter harvesting in the Duck Mountain Provincial Park, 

iPads equipped with Avenza PDFmaps (Avenza Systems Inc., Toronto, ON, Canada) were 

installed on the harvesting equipment (feller-buncher, delimber, and skidder). During the 

harvesting operation, Avenza PDFmaps continuously recorded machine location and movement 

(±8 m horizontal accuracy) throughout the harvested blocks; unfortunately, there was an error with 

the feller-buncher and delimber data collection and therefore were excluded from the analysis of 

traffic intensity. Therefore, the analysis of traffic intensity was only associated with skidder traffic. 

After the data was collected, a series of ArcGIS tools and processes were used for the calculation 

of traffic intensity following the flowchart in Fig. 3-2. Skidder GPS data was imported to ArcGIS 

(version 10.3.1, Environmental Systems Research Institute, Redlands, CA, USA) where it was 

used to calculate skidder traffic intensity based on the number of skidder passes over a 0.87 x 0.87 

m area. A spatial resolution of 0.87 x 0.87 m was used because GPS units where installed in the  
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Fig. 3-2: Detailed flowchart outlining ArcGIS tool and processes used for the calculation of 
number of skidder passes across the harvested block. 
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middle of the skidder and additional calculations based on the width of the skidder were needed in 

order to calculate the number of passes under each tire.  

Once the number of passes across a harvested block was calculated, they were classified into 

seven intensity classes (unharvested, harvested with 0 skidder passes, 1-5 passes, 6-10 passes, 11-

25 passes, 26-50 passes, and 51-100 passes). The decision to classify skidder traffic into seven 

disturbance classes was based on the literature, which suggested that compaction increased in a 

logarithmic manner with the largest increase in soil compaction occurring within the first few 

passes and then diminishing as the number of passes increased (Brais and Camiré, 1998; Zenner 

et al., 2007). Determining areas that were harvested but did not have any skidder traffic were 

difficult to define without the feller-buncher data. Thus, it was impossible to know exactly where 

harvesting occurred; therefore, aerial image interpretation was used to identify areas within the 

harvested blocks that were harvested but showed no skidder traffic (0 skidder traffic). Following 

the calculation of the number of skidder passes, six harvested blocks containing all seven 

disturbance classes were chosen as study blocks (Fig. 3-3) (See Appendix D for detailed traffic 

maps of each harvested block). As mentioned earlier, three harvested blocks were selected from 

both the 2015-16 (Blocks 1, 2 and 3) and 2016-17 (Blocks A, B and C) winter harvesting 

operations that took place between late December and early March.  

3.4.4 Measuring Bulk Density  

Within each of the six harvested blocks, 10 bulk density sample locations per skidder 

intensity class were chosen at random for a total of 420 bulk density samples (60 samples per 

intensity class). Soil bulk density was determined using the soil core method (Hao et al., 2008) 

with a core volume of 68.71 cm3 at a depth of 10 cm from the mineral soil surface. Back in the 

lab, soil bulk density samples were oven-dried for 24 hours at 105 °C before being weighed for 

total dry mass using a top loading balance. As coarse fragments (particles >2 mm) are very 
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Fig. 3-3: Map illustrating the distribution of harvested blocks used for the study across the entire 
harvested region in the Duck Mountain Provincial Park. 
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common in the glacial till soils found in the Duck Mountain Provincial Park, each sample 

underwent a coarse fragment correction process. First, the dried samples were passed through a 2 

mm sieve to remove the coarse fragments. These coarse particles were then weighed using a top 

loading balance before being submerged in a graduated cylinder to determine their volume. The 

mass and volume of coarse fragments was then removed from the total dry mass of the sample and 

core volume, respectively (Vincent and Chadwick, 1994; Page-Dumroese et al., 1999; Hao et al., 

2008). Samples containing large roots or pieces of forest floor (LFH) were also noted at this time 

and these samples were removed from the data set prior to statistical analysis.   

3.4.5 Aspen Regeneration Measuring 

In order to assess aspen regeneration and its relation to soil bulk density and skidder 

intensity, regeneration plots (1 x 1 m quadrat using PVC pipe) were selected based on the sampling 

locations used for bulk density. In each of the harvested blocks, four regeneration assessment plots 

were selected at random from the 10 bulk density locations per skidder intensity class, excluding 

areas that were unharvested. This approach resulted in 24 regeneration assessment plots in each of 

the harvested blocks for a total of 144 regeneration plots (24 plots per skidder intensity class).   

Aspen sucker density (# of sucker m-2) was determined by counting all aspen suckers within 

the boundary of the 1 m2 quadrat. Aspen sucker height and RCD were recorded for each sucker 

within the plot using a metre stick and a digital caliper, respectively. Next, two measurements of 

LAI (m m-2) were taken for each plot. The first LAI measurements were taken in the field using 

an AccuPAR LP80 ceptometer (METER Group Inc., Pullman, WA, USA) which converts 

measures of canopy photosynthetically active radiation (PAR) interception into leaf area for the 

entire plot along an 84 cm bar (Duursma et al., 2003). To obtain an average LAI measurement of 

the 1 x 1m quadrat, four ceptometer readings were collected for each quadrat, one measurement 

reading per quadrat side. Following the ceptometer readings, all aspen leaves within the plot were 
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picked and placed in a paper bag and transported back to the lab where the second LAI 

measurement was taken using a Li-COR LI3050A area meter (LI-COR Biosciences, Lincoln, NE, 

USA) to obtain an aspen only LAI. After both LAI measurements were complete, leaves were 

oven-dried at 75°C for 48 hours then weighed to obtain a measure of total oven-dry leaf biomass 

(g m-2). Leaves were then ground using a high-speed blade grinder in preparation for nutrient 

analysis. From each plot, 0.25 g of homogenized dry ground leaf was acid digested with 5 ml of 

H2SO4 and 2.5 ml (spread over 5 additions) of H2O2 (Thomas et al., 1967).  Following the digest, 

the extract was analyzed for total nitrogen (N) and total phosphorus (P) using a Technicon 

AutoAnalyzer (Technicon Industrial Systems, Tarrytown, N.Y., USA). 

Due to time constraints, LAI measurements, biomass samples, and nutrient concentration 

measurements were not collected or determined for the three harvested blocks measurement 

following the 2015-16 winter harvest (Sites 1, 2, and 3). Therefore, LAI, biomass, and nutrient 

concentration from the three harvested blocks measured following the 2016-17 winter harvest 

(Sites A, B, and C) were used for statistical analysis.  

3.4.6 UAV Remote Sensing of Aspen Regeneration 

3.4.6.1 Flight Parameters & Image Processing 

A DJI Phantom 4 (Dà-Jiãng Innovations Science and Technology Co. Ltd., Shenzhen, 

Guangdong Province, China) UAV was used to capture RED-GREEN-BLUE (RGB) imagery of 

the harvested blocks as well as carry an additional multispectral sensor. The multispectral sensor 

was a Parrot Sequoia (Parrot SA, Paris, Îles-de-France, France), which captured four individual 

wavelengths: GREEN, RED, RED-EDGE, and NIR (near-infrared). Prior to any flights, white 

circular ground control points were placed throughout the harvested blocks and their locations 

were recorded using a Trimble GeoXT 2005 series GPS (Trimble Inc., Sunnyvale, CA, USA). 
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These control points were used for geo-correction of both RGB and multispectral imagery during 

the image processing stage.  

This study involved two flight periods over the course of the summer months (May-August) 

immediately following the harvesting event. The first set of flights occurred at the start of May 

once all the snow had melted but before any vegetation began to regenerate in the harvested blocks. 

The data collected from these flights was used for terrain analysis and determination of slope 

position, as well as calculation of % slash coverage which is discussed in Chapter 4. The second 

set of flights occurred at the end of August, which allowed a full summer of growth, but was prior 

to the beginning of senescence. The data collected from these flights was used to assess the levels 

of regeneration through regression analysis with aspen regeneration measurements made on the 

ground. Unfortunately, due to technical malfunctions with the multispectral sensor, we were 

unable to capture imagery from blocks 1, 2, and 3 in August of 2016. Therefore, multispectral data 

used for the regression analysis and assessment of aspen regeneration after 1 year of growth was 

only from blocks A, B, and C, which was captured in August of 2017.  

All flights were controlled by Drone Deploy (DroneDeploy, San Francisco, CA, USA) to 

ensure that flight parameters would be consistent between each flight. All flights were conducted 

between 10 am and 2 pm to reduce the effect of shadow and obtain the best multispectral data 

possible. All flights were conducted at 60 m elevation above ground level (AGL) which gave a 

spatial resolution of approximately 1.8 cm pixel-1 for the RGB imagery and 7.4 cm pixel-1 for the 

multispectral imagery. Both RGB and multispectral image capturing had approximately 75 % 

overlap side-to-side and 60 % overlap front to back.   

Following flights, all RGB images were uploaded to Pix4D (Pix4D SA, Lausanna, Vaud, 

Switzerland) where they were stitched (consolidation of overlapping images) to create an 

orthomosaic of each of the six harvested blocks. The RGB orthomosaics were then exported to 
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ArcGIS (version 10.3.1, Environmental Systems Research Institute, Redlands, CA, USA) where a 

geo-correction using the ground control points mentioned earlier was performed. Multispectral 

imagery was also uploaded to Pix4D in order to create an orthomosaic of harvested blocks A, B, 

and C. The multispectral imagery also underwent a radiometric correction processing in Pix4D 

using images of a calibration panel that were collected immediately before and after each flight. 

The multispectral orthomosaics for the three blocks were also exported to ArcGIS for geo-

correction using the ground control points established prior to flight. 

3.4.6.2 Terrain Analysis and Slope Position Classification  

Due to the hummocky topography found in the Duck Mountain Provincial Park, the soil 

moisture regime is likely quite variable. As soil moisture can have a major influence on a soils 

susceptibility to compaction (Greacen and Sands, 1980; McNabb et al., 2001), it was important to 

determine where in relation to the landscape soil bulk density samples were collected. As different 

landscape positions are often associated with different moisture regimes, UAV derived data was 

used to classify the landscape into four slope positions: topslope, shoulder, backslope, and 

depression based on works by Pennock et al. (1987), Pennock (2003), and  Miller and Schaetzl 

(2014). To begin, Pix4D was used to create a point-cloud of the harvested blocks, which was used 

to generate a 2 m resolution digital terrain model (DTM). This DTM was then exported to SAGA 

GIS (Conrad et al., 2015) where the “Relative height and slope position” tool was used to calculate 

a normalized height output. From this normalized height output, the landscape was classified into 

upper slope areas (>0.5) and lower slope areas (<0.5). Next, ArcGIS software was used to calculate 

slope degree (q) of the landscape from the DTM with the built-in slope tool. Based on the studies 

by Pennock et al. (1987) and Miller and Schaetzl (2014), slope was then classified into three 

categories, 0 – 1.1q, 1.1 – 3q, >3q which were associated with summit/depression, 

shoulder/footslope, and backslope positions, respectively. Lastly, the classified normalized height 
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and classified slope outputs were combined and based on the degree slope and whether an area 

was classified as upper or lower slope, the landscape was classified into four slope positions. As 

slope position is a qualitative measure, each position was given an arbitrary numerical value 

/dummy variable (i.e., 1 = depression, 2 = backslope, 3 = shoulder, 4 = summit) so it could be 

included in the fuzzy logic analysis in Chapter 5. 

3.4.6.3 Vegetation Indices Calculation and Extraction 

Once the multispectral images were stitched, radiometrically calibrated and geo-corrected, 

the orthomosaic image of each harvested block were ready for vegetation indices calculation. 

These vegetation indices were calculated using the raster calculator tool in ArcGIS. Five 

commonly used indices were selected to assess aspen regeneration: NDVI, GNDVI, NDRE, SR, 

and CIG (See Chapter 2, Section 2.5.2 for vegetation index equations).  

To extract vegetation index values for each regeneration assessment plot, the regeneration 

assessment sampling points were overlaid on top of each index layer and a digital 1 x 1 m quadrat 

was created around each sampling point. This digital quadrat acted as a surrogate for the one used 

during field measurements. The pixels within this digital quadrat were then combined to obtain an 

average index value for that quadrat and this value was used for regression analysis with the aspen 

regeneration measurements made on the ground.  

3.4.7 Statistical Analysis 

All statistical analysis for this study were conducted using SAS (version 9.4, SAS Institute 

Inc., Cary, NC, USA). To evaluate the effects of skidder traffic intensity on soil bulk density, a 

complete randomized design (CRD) experiment was used. Samples that were collected from the 

six different harvested blocks were grouped together based on the level of skidder traffic intensity 

and PROC GLIMMIX procedure was used to perform an analysis of variance. As bulk density 
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samples were collected after two separate winter harvesting events, the year the sample was 

collected was considered a random effect in the analysis. Slope position was also treated as a 

random effect in the analysis as samples were chosen at random across the harvested block with 

no consideration for topographical influence.  

To assess the relationship between soil bulk density and the level of aspen regeneration 

(density, height, diameter, LAI, biomass, total N, total P), simple linear regression was performed 

(PROC REG procedure). The data used to assess the relationship between soil bulk density and 

aspen sucker density, height, and diameter was from all six harvested blocks, while data for LAI, 

dry leaf biomass, total N, and total P data was only from harvested block A,B, and C. For 

regression analysis, all aspen regeneration measurements for assessment plots where no aspen 

present were labelled as a zero to indicate no aspen regeneration rather than exclude the point from 

the analysis. Prior to regression analysis, the dataset was examined for outliers as part of the 

assumptions for regression using studentized residuals. Data with studentized residual values 

greater than or equal to 2 were removed from the dataset. Following linear regression analysis, 

residual normality was assessed with the Shapiro-Wilk test using PROC UNIVARIATE 

procedure. If residuals were not normally distributed, the data were transformed to achieve 

normality and the data were re-run.    

A CRD experimental design was used to assess the effects of skidder traffic intensity on 

aspen regeneration. Aspen sucker density, height, and diameter were measured across all six 

harvested blocks; however, LAI, biomass, total N, and total P were only measured for the three 

harvested blocked sampled in the summer of 2017 (A,B,C). For regeneration assessment plots 

where no aspen suckers were present, aspen density was recorded as zero while all other aspen 

measurements (height, RCD, LAI, biomass, total N, total P) were labelled as a missing value. 

Therefore, this assessment of the effects of skidder traffic on the aspen only accounts for aspen 
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suckers that were present within treatments. Regeneration data across all harvested blocks was 

compiled based on the level of skidder traffic and an analysis of variance was performed using the 

PROC GLIMMIX procedure. Sampling year and slope position were again considered random 

effects in the model.  

Lastly, simple linear regression was used to evaluate the relationship between vegetation 

indices values (NDVI, GNDVI, NDRE, SR, CIG) and the level of aspen regeneration measured 

within the assessment plots. For regression analysis, all aspen regeneration measurements for 

assessment plots that had no aspen present were treated as a zero to indicate no aspen regeneration 

rather than excluding the data point. Prior to regression analysis, the dataset was examined for 

outliers as part of the assumptions for regression using studentized residuals. Data with studentized 

residual values greater than or equal to 2 were removed from the dataset. Following linear 

regression analysis, residual normality was assessed with the Shapiro-Wilk test using PROC 

UNIVARIATE procedure. If residuals were not normally distributed, the data was transformed 

and re-run until residual normality was achieved.    

3.5 Results 

3.5.1 Distribution of Skidder Traffic Intensity across Harvested Blocks 

The size of skidder traffic classes derived from the GPS data ranged between 0.5 to 43.5% 

of the harvested area when observed across all six blocks (Table 3-1). On average, areas with 1-5 

passes encompassed a significantly larger portion of harvested blocks (|37%), compared to all 

other levels of skidder traffic. Areas with 6-10 and 11-25 passes were the second largest skidder 

traffic disturbance class, accounting for approximately 19 and 24% of the harvested blocks, 

respectively. No skidder traffic areas and areas with 26-50 passes were the third largest contributor 

to overall harvested area, accounting for approximately 10 and 8% of harvested blocks, 
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respectively. Areas  with 51-100 passes consistently attributed the lowest amount of skidder 

disturbance to harvested blocks, accounting for just over 1% of all skidder traffic. Areas with more 

than 26 passes were often associated with landings and major skidder trails used to access secluded 

portions of the harvested block. The values represented in Table 3-1 do not include the inblock 

roads that were built as part of the harvesting operation to haul the harvested wood; as they 

represent an area of higher disturbance from road construction and logging trucks. 

3.5.2 Effects of Skidder Traffic Intensity on Soil Bulk Density 

Although harvesting was conducted during the winter months, the level of skidder traffic 

intensity had a significant effect on the soil bulk density at the 10 cm depth (Fig. 3-4). With the 

exception of the intensity classes harvested with 0 passes and 11-25 skidder passes, all other 

skidder traffic intensity levels indicated a significant increase (p < 0.05) in soil bulk density 

compared to the unharvested control (1.29 g cm-3). Areas with as little as 1-5 passes (1.39 g cm-3) 

were significantly higher than the unharvested control; however, the highest average bulk density 

occurred in areas with 26-50 passes (1.41 g cm-3). The change in soil bulk density with increasing 

number of passes had an asymptotical trend, where following 1-5 skidder passes there was an 

initial 7% increase in bulk density but then only increased an additional 2% by the time an area 

had between 26-50 and 51-100 skidder passes. 
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Fig. 3-4: Mean soil bulk density at 10 cm depth across skidder traffic intensity classes one year 
post winter harvest in Duck Mountain Provincial Park, Saskatchewan. Bars with the same letter 
are not significantly different from each other at p = 0.05 using Tukey-Kramer. Error bars represent 
standard deviation. 
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3.5.3 Effects of Skidder Traffic Intensity on Aspen Regeneration 

Increasing the level of machine traffic intensity had significant effects on the density and 

height of aspen suckers one-year post-harvest (Table 3-2). The average number of aspen suckers 

decreased significantly from 9.5 suckers m-2 (95,000 suckers ha-1) for areas with 6-25 skidder 

passes to 4.7 suckers m-2 (47,000 suckers ha-1) for areas with 51-100 skidder passes. Although 

areas with less than six passes had decreased aspen density compared to areas with slightly more 

skidder traffic, this decrease was not significant. Average aspen sucker height, however, was 

highest for areas that had 0 skidder passes (85.8 cm) and significantly decreased by approximately 

22-25 cm in areas with 11-25, 26-50 and 51-100 skidder passes, 63.9 cm, 62.9 cm, 61.0 cm, 

respectively. The level of skidder traffic intensity did not appear to have any significant effects on 

aspen sucker RCD, LAI, Plot LAI, dry leaf biomass, total N, and total P, although the majority of 

these properties tended to decrease as the level of skidder traffic intensity increased. 

3.5.4 Effects of Soil Bulk Density on Aspen Regeneration 

Although increasing skidder traffic intensity resulted in a significant increase in bulk density 

compared to the unharvested control, the increase in soil bulk density did not have a negative effect 

on aspen regeneration properties one year post-harvest (Fig. 3-5). None of the eight aspen 

regeneration properties (density, height, RCD, LAI, plot LAI, dry leaf biomass, total N, total P) 

indicated a significant linear relationship with increasing soil bulk density. In addition, none of the 

coefficients of determination for any of the eight aspen properties was greater than 0.1, further 

illustrating the lack of any relationship.  
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Fig. 3-5: Relationship between soil bulk density at a 10 cm depth and aspen sucker regeneration 
after one summer of growth. A) density, B) height, C) RCD, D) aspen sucker LAI, E) plot LAI, F) 
dry leaf biomass, G) total N, H) total P. All regeneration measurements, except sucker height (B), 
are square root transformed.   
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3.5.5 Relationship between Aspen Regeneration and Vegetation Indices 

Vegetation indices as calculated using multispectral imagery from a Parrot Sequoia showed 

that none of the five indices used in this study had a strong relationship with the aspen 

measurements and therefore could not be used to effectively predict the level of aspen regeneration 

across the harvested block (Table 3-3). Of the five indices measured, GNDVI and NDVI showed 

the strongest relationship with many of the aspen regeneration properties and although many of 

these properties showed highly significant linear regression with the vegetation indices (p<0.01), 

the strength of these relationships was poor. The highest coefficient of determination measured 

was between NDVI and aspen height with an R2 of 0.2094. These low coefficient of determination 

values made it impossible to accurately predict aspen regeneration based on any of the vegetation 

indices.  Of all the indices, NDRE was the least sensitive to changes in aspen regeneration as it 

failed to show a significant relationship with any of the aspen measurement properties.  
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3.6 Discussion 

Overall, assessment of aspen regeneration following winter harvesting in the Duck Mountain 

Provincial Park indicated that winter harvesting events stimulate vigorous aspen regeneration 

similar to that found following a natural disturbance such as a forest fire (Brown and DeByle, 

1987; Peterson and Peterson, 1992). However, as a result of the mechanical harvesting, small areas 

(| 1% of blocks) experienced an excessive level of disturbance, which lead to significant increases 

in soil bulk density and significant decreases in both aspen sucker density and height. It should be 

noted that the level of disturbance for an area was only based on skidder machine traffic due to 

technical issues; therefore, it was assumed that the feller-buncher or de-limber had limited effect 

within a harvested block.  

Winter harvesting is a common practice used to minimize soil disturbance in ecologically 

sensitive areas. Several studies have examined the effects of season of harvest and while all have 

found some degree of soil disturbance associated winter harvesting, it was often significantly less 

compared to the disturbance experienced during summer harvesting operations (Stone and Elioff, 

1998; Block et al., 2002; Kolka et al., 2012). Similarly, the forest in the Duck Mountain Provincial 

Park were winter harvested, yet certain areas still experienced a significant level of soil 

disturbance. Compared to unharvested controls, there was a significant increase in soil bulk density 

at the 10 cm depth with as little as 1-5 skidder passes. However, following the initial 1-5 passes, 

soil bulk density did not continue to increase significantly as the level of skidder traffic continued 

to increase, indicating that during the winter harvest, 1-5 skidder passes increased soil bulk density 

to a level where it was able to resist any further change to bulk density from repetitive skidder 

traffic. As a result, a typical asymptotic relationship was found between soil bulk density and the 

level of skidder traffic like those found in many studies (Brais and Camiré, 1998; Williamson and 

Neilsen, 2000; McNabb et al., 2001; Zenner et al., 2007). Results from this study in the Duck 
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Mountain Provincial Park further support the findings by Brais and Camiré (1998), Williamson 

and Neilsen (2000), and McNabb et al. (2001), who found that the majority of the bulk density 

increase occurred within the first few passes of machine traffic and then remained relatively 

constant as traffic intensity continued to increase. In terms of forest regeneration following winter 

harvesting, it was unclear how this slight increase in average bulk density to 1.41 g cm-3 in high 

skidder traffic areas would influence aspen regeneration. Initial thoughts were that increases in 

soil bulk density would decrease suckering and root growth; however, based on our results it is 

unlikely that the change to the soil’s physical properties were responsible for the decreased aspen 

regeneration found with increasing skidder traffic.       

The highest average soil bulk density found in this study was 1.41 g cm-3, however, this is 

below the growth limiting bulk density of 1.45-1.65 g cm-3 stated by Daddow and Warrington 

(1983) for clay loam to sandy loam textured soils; which are found throughout Duck Mountain 

Provincial Park. Therefore, the slight increase in soil bulk density should not have influenced the 

level of aspen regeneration as it was below the growth limiting bulk density. This notion is 

supported by the results from our study that found no relationship between soil bulk density and 

the level of aspen regeneration (density, height, RCD, LAI, dry leaf biomass, total N, and total P) 

one year post-harvest. This same trend was also observed by Zenner et al. (2007), who found no 

relationship between increasing soil resistance penetration and the level of aspen regeneration 

(density, height, basal diameter) three years post-harvest. However, as the forest continues to 

mature, the slight increase in bulk density may have significant effects on the level of aspen 

regeneration. The study by Kabzems (2012), which had compaction treatments below growth 

limiting bulk density for the texture of the soil, found no influence of compaction on the initial 

regeneration level of aspen; however, from four years to ten years post-harvest, aspen sucker height 

in areas with no compaction were significantly taller compared to areas with intermediate and 
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heavy compaction treatments. Hence, assessing the effects of soil bulk density on the initial level 

of aspen regeneration may be irrelevant until the suckers begin naturally thinning out and mature. 

In the Duck Mountains, the highest average bulk density was already below a growth limiting level 

and the soils are coarser compared to those in Kabzems (2012); therefore, bulk density may not 

have an effect on the continued growth of aspen as the freeze thaw cycle should de-compact and 

return the soil to a level similar to their original state over time. The length of time required for 

de-compaction to occur is debatable, but due to the presence of coarser materials (sand and stones) 

in these soils, a decrease in soil bulk density within five years would be expected (Page-Dumroese 

et al., 2006). However, depending on the type of clay and the amount of soil moisture when they 

freeze, de-compaction can take decades as reported by Corns (1988) in western Alberta. 

Nonetheless, our study found that increasing the level of skidder traffic resulted in a decrease in 

aspen sucker density and aspen height one year post-harvest, but if there were no relationships 

between increasing soil bulk density and regeneration, what other factor(s) could be affecting the 

initial decrease in regeneration success?  

One possibility is the increasing level of physical surface disturbance and scarification of the 

forest floor associated with increasing skidder traffic. The majority of aspen sucker regeneration 

occurs on the shallow rooting system found within or just below the forest floor (Navratil, 1991; 

Peterson and Peterson, 1992; Lieffers-Pritchard, 2004) and are therefore vulnerable to damage 

caused by the repetitive movement of the skidder. Lieffers-Pritchard (2004) study found that mean 

suckering depth was only 4.6 cm from the forest floor surface and that only 7% of suckers were 

initiated from within the mineral soil/below the forest floor. Therefore, any damage to the forest 

floor may have drastic implications on the level of aspen regeneration. Regions with higher levels 

of skidder traffic were often associated with landings and major skidder trails used to access 

harvested trees furthest from the processing area. Although this harvesting operation took place 
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during the winter months when the soil was supposedly frozen and a protective layer of snow 

likely covered the forest floor, the repetitive traffic in these areas would slowly remove and mix 

the snow leaving the underlying forest floor susceptible to physical disturbance as seen in Fig. 3-

6. There were also several warming periods throughout the harvesting event where air temperature 

was near or above 0°C (Appendix C), which would have even further reduced the amount the snow 

cover in these areas.  As a result, there would be areas within the harvested block where skidder 

tires would be in direct contact with the forest floor. In addition to the increased force exerted by 

skidders when pulling a full load, the hummocky terrain in the Duck Mountain Provincial Park 

would increase the potential for slippage. Skidder tire slippage on direct forest floor would result 

in the physical churning or ripping of the forest floor as well as the rooting system within it.  

Several studies have examined the effects of aspen root disturbance on the level of aspen 

regeneration; however, the results are not consistent. Fraser et al. (2004) found that wounding 

 

 

 

 

 

 

 

 

 

 

Fig. 3-6: High skidder traffic landing area where the forest floor and ground has been exposed due 
to the repeated traffic churning the snow and increasing snow melt during periods of increased 
temperature (photo provided by Mike Andersen, Ministry of Environment, Government of 
Saskatchewan) 
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aspen roots nearly doubled aspen suckering as well as increased the height and leaf area of the 

sucker. However, Renkeman (2009) mentions that the Fraser et al. (2004) study used shovels to 

inflict their wounding treatments which would not be as representative of the crushing and 

wounding of aspen roots caused by skidder traffic. Using a tractor to mimic the disturbance of a 

skidder on aspen roots, Renkeman (2009) found that following winter harvesting, wounding aspen 

roots decreased sucker density, height, and dry biomass as well as caused a decrease in the % 

living root and total non-structured carbohydrate concentration within the root. Similarly, a field 

study by Sheppherd (1993) found that root density, root volume, and sucker density were all lower 

on skidder trails compared to un-trafficked areas. Therefore, although winter harvesting in the 

Duck Mountain Provincial Park prevented severe soil disturbance in terms of compaction, 

excessive levels of skidder traffic may still have disturbed the forest floor and aspen rooting system 

causing a decrease in the level of aspen regeneration. Though, in our study, it is important to note 

that the amount of area with significantly lower regeneration levels accounted for < 2% of the 

entire harvested block (Table 3-1), making it a relatively small area in comparison to the rest of 

the harvested area.  

In addition, areas with significantly lower regeneration still contained on average 4.7 suckers 

m-2 (47,000 suckers ha-1) after one year of growth and while this is lower than the 9.5 suckers m-2 

(95,000 sucker ha-1) found in areas with less skidder traffic, this level of early regeneration should 

be sufficient to obtain a healthy mature forest. During the first five to eight years following a 

disturbance, there is a rapid decrease in aspen sucker density as competition for resources 

increases, allowing only the strongest suckers to survive (Perala, 1974; Steneker, 1976; Bella, 

1986). However, as Steneker (1976) illustrates, the rate of decrease is much faster in areas with 

higher initial sucker density compared to an area with low initial density. An area with |80,000 

suckers ha-1 after the first year (similar to high regeneration in Duck Mountain) decreased to 
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|40,000 suckers ha-1 by the fifth year, while an area starting with only |45,000 suckers ha-1 after 

one year (similar to low regeneration in Duck Mountain) decreased to |37,000 suckers ha-1 by the 

fifth year (Steneker, 1976). Therefore, higher skidder traffic areas may have a lower initial 

regeneration level, but as suckers mature and competition begins to reduce sucker density, these 

areas will likely not decrease at the same rate and over time reach a stocking density similar to 

each other and the rest of the harvested block. 

Accurately assessing any changes in aspen regeneration levels using multispectral remote 

sensing techniques similar to those used in an agricultural setting were not successful. By simply 

extracting an average index value for each of our monitoring plots, we were unable to obtain a 

strong relationship with the level of aspen regeneration (density, height, RCD, LAI, dry leaf 

biomass, total N, and total P). This lack of relationship is most likely caused by the presence of 

other vegetation within the monitoring plot. High levels of beaked hazelnut (Corylus cornuta), 

mountain maple (Acer spicatum), and other shrubs that were present within the monitoring plots 

created background noise that overshadowed the amount of aspen and made it impossible to 

predict changes in the level of aspen regeneration. The best example of this phenomenon occurred 

in areas where little to no aspen regeneration was recorded. Though no aspen were present, the 

indices values for these areas were often quite elevated due to the presence of the other vegetation 

and as a result, no relationships between vegetation indices and aspen regeneration were observed. 

Therefore, using whole plot multispectral data to assess the regenerative growth and health of 

aspen forest is not as successful and accurate compared to when it is used in a monoculture 

agriculture setting (Barnes et al., 2000; Henik, 2012; Van Der Meij et al., 2017). However, in this 

multi-species setting, additional image analysis processes may be able to increase the accuracy 

and usability of multispectral data to assess the level of aspen regeneration. Using multitemporal 

multispectral imagery, a supervised image analysis or object based image analysis could be used 
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to discriminate aspen from the different shrub species (Lisein et al., 2015; Torresan et al., 2017). 

This would allow for the assessment of aspen regeneration by itself and could be used to determine 

areas with insufficient regeneration.           

3.7 Conclusion 

 Soil bulk density at a 10 cm depth increased significantly with as little as 1-5 skidder passes 

compared to the unharvested control in the year following the winter harvest of aspen forests in 

Duck Mountain Provincial Park; however, after the initial increase it remained relatively constant 

as the number of skidder passes increased. The highest average bulk density was 1.41 g cm-3 (26-

50 passes), which is below the growth limiting bulk density for the sandy clay loam to clay loam 

texture of the soil. Following regression analysis, it does not appear that the increase in bulk density 

is responsible for the decrease in aspen density and height recorded in higher skidder traffic areas, 

as there was no relationship between bulk density and regeneration. Although not directly 

measured, the decreased level of aspen regeneration in areas of higher skidder traffic is likely the 

result of increased damage to the aspen rooting system within the forest floor. While, sucker 

density dropped over 50% under areas with high skidder traffic, there was still a moderate level of 

regeneration (47,000 suckers ha-1) one year after harvest. Due to competition, sucker density will 

decrease over the first decade; however, the rate at which mortality occurs is largely dependent on 

the initial density and as a result, sucker density across skidder traffic intensity levels will likely 

equalize during this time. In terms of assessing the level of aspen regeneration using UAV based 

multispectral remote sensing, no strong relationship between vegetation indices and regeneration 

could be found. This fact was likely due to the interference or background noise from the other 

vegetation that was present within monitoring plots. In future studies when dealing with a multi-

species system, additional image analysis to discriminate between species may prove beneficial in 

order to assess the level of aspen regeneration.  
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 In terms of harvesting operations and management practices, these findings would suggest 

that winter harvesting was a feasible solution to stimulate aspen regeneration without causing 

severe damage to the majority of the harvested block at this site. Visually, landings and skidder 

trails were identified as areas of potential concern as these areas experienced the most disturbance 

and had lower regeneration levels compared to areas with minimal disturbance. Winter harvesting 

appears to have limited the increase in soil bulk density to a level that is below the root growth 

limiting thresholds stated in the literature. Based on literature, a degree of soil de-compaction 

should also occur within the first five years post-harvest and therefore, the slight increase in bulk 

density should not result in decreased aspen regeneration as the forest matures. In order to 

maximize aspen regeneration across the entire harvested block, our finding would suggest trying 

to minimize the amount of landings and skidder trails present throughout a harvested block, as 

these areas were associated with the highest amount of skidder traffic and expressed a lower level 

of regeneration compared to the surrounding areas.    
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4 RESIDUAL SLASH COVERAGE EFFECTS ON ASPEN REGENERATION AND 

VEGETATION INDICES2 

4.1 Preface 

As a means to supply nutrients to the regenerating forest, residual slash (non-merchantable 

timber/woody debris) is often left and spread across the harvested block; however, improper 

distribution of slash can lead to a decrease in the level and success of aspen regeneration. Currently, 

slash loading intensity is determined manually through a time consuming and tedious process, only 

to obtain information for a very small area within the much larger harvested block. This chapter 

examines the potential of using unoccupied aerial vehicles (UAV) obtained imagery and image 

analysis software as a method for mapping slash coverage across entire harvested blocks. 

  

                                                           
2 This chapter, co-authored with Dr. Ken Van Rees, has been submitted for publication to Journal of Unmanned 
Vehicle Systems. Data collection, data analysis, and initial writing of the manuscript were completed by the lead 
author (Landon Lee Sealey), while editing and review of the manuscript was done by the co-author.  
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4.2 Abstract 

Proper redistribution of residual slash following harvesting events is crucial for ensuring 

successful regeneration and continued health in trembling aspen (Populus tremuloides) forests. 

While traditional methods of measuring residual slash loading are a strenuous and tedious process, 

the objective of this study was to develop a new, faster and more detailed method to assess residual 

slash distribution for entire harvested blocks. In addition, this study also aimed to assess the 

influence that residual slash coverage had on the success of aspen regeneration one year after 

winter harvesting. Using high resolution UAV imagery, maximum likelihood supervised image 

classification, and confusion matrix analysis, residual slash was differentiated from the underlying 

forest floor. Overall, classification accuracy ranged between 85 and 96 % with the highest accuracy 

occurring when aerial imagery was collected at the beginning of the second spring following 

winter harvesting. The lower overall accuracy for sites with aerial imagery collected during the 

first spring following winter harvesting was the result of misclassified slash pixels due to their 

similarity to the forest floor, which caused the producer and user accuracy for these sites to be 

much lower. Slash distribution was quite consistent across harvested blocks, with 92 % of 

harvested blocks experiencing less than 33 % coverage. There was no relationship between the 

level of aspen regeneration following one year of growth and % slash coverage up to 60 %. No 

vegetation plots occurred in areas with > 60% slash coverage and therefore it is unknown whether 

aspen regeneration will be affected in areas with higher slash coverage. 
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4.3 Introduction 

Tree length harvesting is a common forestry practice throughout much of western Canada. 

This harvesting practice involves felling the trees then consolidating them near a road where 

branches and treetops are delimbed from the rest of the trunk. These treetops, branches, and non-

merchantable timber, also referred to as slash,  are then scattered back across the harvested block 

area, piled and burnt, or a combination of both as stated in the standards and guidelines legislation 

(Government of Saskatchewan, 2011). Priority is placed on spreading the slash back into the 

harvested block as it is an important nutrient source for the growth of regenerating forests; 

however, the amount of slash being returned must be carefully managed. High amounts of slash 

loading can act as an insulative barrier to the soil surface, as well as act as a physical barrier that 

impedes aspen suckering (Steneker, 1976; Bella, 1986; Frey et al., 2003; Lieffers-Pritchard, 2004); 

therefore, caution is required by forest operators to ensure that this slash is evenly distributed 

across the harvested block. In addition to the several other factors needed to stimulate aspen 

suckering, a soil temperature of approximately 15 °C is required before the suckering process is 

initiated (Maini and Horton, 1966; Navratil, 1991). Thus, increasing levels of slash cover on the 

soil surface can decrease the level of solar radiation at the soil surface, resulting in a delayed spring 

thaw warm-up, a lower average soil temperature, and a decrease in aspen suckering  (Steneker, 

1976; Schier et al., 1985; Lieffers-Pritchard, 2004).    

Several methods have been developed to estimate the level of slash loading, downed coarse 

woody debris, or slash fuel loading in a forest environment (Newman, 1966; McRae et al., 1979; 

Brown et al., 1982). These mathematical based methods are derived from the line-intercept theory 

(Newman, 1966), which assumes that the longer an object (piece of slash), the more times that 

object will cross a series of straight vertical and horizontal lines. To calculate slash loading (kg m-

2) from the Newman method, each piece of slash within a sampling area is categorized into a 
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diameter class and then multiplied by a multiplication factor; calculated from the mass, length, and 

diameter of pre-examined pieces. Unfortunately, these methods are very time consuming and labor 

intensive making it difficult to assess the level of slash loading for an entire harvested block. 

However, with the continued development of unoccupied aerial vehicles (UAVs) and 

Geographical Information Systems (GIS) technology, is it possible to develop faster and a more 

efficient method for measuring the amount of slash left throughout the harvested blocks? Inoue et 

al. (2014) demonstrated that high resolution UAV imagery can be used to manually map fallen 

trees in a deciduous forest; but, rather than relying on manual image interpretation, computer based 

image classification could provide a faster more detailed analysis of slash loading across an entire 

harvested block. The main difference between a traditional slash loading method and a GIS based 

analysis of slash will be the unit of measure. Traditional measure of slash loading are calculated 

as kg m-2 while a GIS based analysis of slash will be calculated as percent coverage.  

The following chapter examines the feasibility of using UAV and GIS technology as a new 

method for estimating the level of slash loading across a harvested block.   

The objectives for this study were: 

1. To develop a method to estimate the level of slash coverage (%) in harvested areas using 

aerial imaging, remote sensing, and image processing. 

2. Assess the effects of the percent slash coverage calculated in objective 1 on the level of 

aspen regeneration (sucker density, height, root collar diameter (RCD), leaf area index 

(LAI)). 

Null hypothesis for this study was: 
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1. In winter harvested blocks, increasing the percent slash coverage over an area does not 

significantly lower sucker density, height, RCD or LAI of regenerating aspen after one 

summer of growth. 

4.4 Materials and Methods 

4.4.1  Study Area 

The harvested blocks used for this study were located in the Northwest corner of Duck 

Mountain Provincial Park (described in Chapter 3, section 3.2.1). Regeneration assessment data 

for this study was collected across all six harvested block, while multispectral data was only 

obtained from blocks A, B, and C.  

4.4.2 Data Collection and Image Analysis 

4.4.2.1 UAV Imagery Collection and Image Processing 

For this study, a DJI Phantom 4 (Dà-Jiãng Innovations Science and Technology Co. Ltd., 

Shenzhen, Guangdong Province, China)  UAV was used to capture high resolution RED-GREEN-

BLUE (RGB) imagery of the harvested blocks. Images were captured in the spring (May) 

immediately following winter harvest once all the snow had melted, but before any vegetation 

began to regenerate in the harvest block. This timing allowed for an unobstructed view of the slash 

that was left behind following the winter harvest operation. Due to technical issues, we were unable 

to capture images of slash for blocks 1, 2, and 3 in the spring immediately following the winter 

harvesting of 2015-2016. However, images for blocks 1, 2, and 3 were collected at the beginning 

of the second growing season (May 2017) along with blocks A, B, and C.  

Drone Deploy (DroneDeploy, San Francisco, CA, USA) was used to plan and control all 

flights to ensure that flight parameters (i.e. altitude, speed, overlap) were consistent between each 

flight. All flights were flown between 10:00 am and 2:00 pm to reduce the effect of shadow. Flight 
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elevation was set to 60 m above ground level (AGL), which gave a spatial resolution of 

approximately 1.8 cm pixel-1 for the RGB imagery. Image capturing was set to have approximately 

75 % overlap side to side and 60 % overlap front to back. After the flights, all images were 

uploaded to Pix4D (Pix4D SA, Lausanna, Vaud, Switzerland) where they were stitched to create 

an orthomosaic of each harvested block. These orthomosaic images were then imported into 

ArcMap (version 10.3.1, Environmental Systems Research Institute, Redlands, CA, USA) where 

a geo-correction was performed using ground reference points that had been taken prior to flights 

using a Trimble GeoXT 2005 series GPS (Trimble Inc., Sunnyvale , CA, USA).  

4.4.2.2 Image Analysis and Calculation of Percent Slash Cover 

A detailed flowchart of the method developed for the calculation of percent slash cover and 

the ArcGIS tools and processes can be found Fig. 4-1. First, the orthomosaic for each harvested 

block underwent a maximum likelihood supervised image classification (Franklin et al., 1994). 

During this analysis, each pixel within the image was classified as either slash or forest floor based 

on how spectrally similar it was to one of the two cover types. Spectral properties for the two cover 

types were determined prior to the classification using a series of training polygons place over 

areas with a known cover type. Once classified, an imaginary grid with a cell resolution of 0.87 m 

x 0.87 m, based on the cell resolution for traffic intensity, was placed over top of the classified 

image and the number of slash pixels and number of forest floor pixels within each cell was 

determined. This information was used to calculate % slash coverage for the entire harvested block. 

Lastly, using the slash loading visual guide developed by Lieffers-Pritchard (2004) as a base, we 

categorized percent slash coverage into three slash loading levels: low (0-33%), moderate (33-

66%) and high (66-99%) to assess slash distribution across the harvested block.   
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Fig. 4-1: Detailed flowchart outlining ArcGIS tools and processes used for the classification 
and calculation of % slash cover across harvested blocks 
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4.4.3 Aspen Regeneration Measurements:   

The aspen regeneration data collected in Chapter 3 was used to examine the relationship 

between the level of slash coverage and aspen regeneration. Vegetation data from all six harvested 

blocks were used for this analysis. Refer to Chapter 3, section 3.2.4 for details on how the aspen 

regeneration measurements were collected. 

4.4.4 Statistical Analysis 

4.4.4.1 Slash Classification Accuracy Assessment 

To assess the accuracy of the maximum likelihood supervised image analysis, a confusion 

matrix (error matrix) was constructed using 50 ground truthing points for both slash and forest 

floor (Cohen, 1960; Congalton, 1991). A confusion matrix examined the number of pixels that 

were classified to a category in relation to the category that they were assigned based on ground-

truth identification. This matrix was used to calculate several measures of classification accuracy 

(Table 4-1).  

 

Table 4-1: Example of the confusion matrix used for the assessment of slash classification 
accuracy and the equations used for the calculation of classification accuracy (Congalton, 1991). 

 

Accuracy Equation
Slash Forest Floor Total Overall  (A+E)/I

Slash A B C Producer (Omission) A/G or E/H

Forest Floor D E F User (Comission) A/C or E/F

Total G H I Expected ((C*G)/I) + ((F*H)/I)/I/100

Kappa Coefficient (Overall-Expected)/(1-Expected)

Ground Truth

C
la

ss
ifi

ed
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4.4.4.2 Slash Coverage and Aspen Regeneration 

All statistical analysis for this study were conducted using SAS (version 9.4, SAS Institute 

Inc., Cary, NC, USA). To examine the relationship between percent slash coverage and the level 

of aspen regeneration (density, height, RCD), simple linear regression analysis was performed 

using PROC REG procedure. For this analysis, aspen height and RCD were recorded as zero if the 

assessment plots contained no aspen. Before analysis, the dataset was examined for possible 

outliers using studentized residuals. Data points with studentized residuals greater than or equal to 

2 were removed from the dataset. Following regression analysis, residual normality was checked 

using PROC UNIVARIATE procedure and the Shapiro-Wilk test. If residuals were not normally 

distributed (p<0.05), the data was transformed and re-run until normality was achieved.    

4.5 Results 

4.5.1 Slash Classification and Distribution 

Aspen slash was easily distinguishable from the forest floor due to its lighter whitish bark 

(Fig. 4-2). As a result, a maximum likelihood supervised image classification was able to identify 

which pixels were slash and which were forest floor (Fig. 4-3); however, slight errors in the 

classification process reduced the accuracy of the method. Aspen bark is not a solid whitish colour 

and as a result, several individual pixels along a piece of slash were misclassified as forest floor. 

A similar phenomenon occurred when classifying the forest floor, as small randomly scattered 

wood chips were classified as slash and caused a salt and pepper effect across the forest floor. To 

reduce the severity and influence of these errors on percent slash calculation, a majority filter was 

used to smooth the image and eliminate individual pixels that were classified differently from the 

majority of the four orthogonal neighboring pixels. Once converted into a percent slash coverage 

value (Fig. 4-4), the majority of this example area illustrates having less than 66% slash coverage 
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with only a few isolated areas with over 66% slash coverage (See Appendix E for a complete set 

of slash classification maps for all harvested blocks). 

The percent slash distribution, calculated using this methodology, for all the harvested 

blocks is presented in Table 4-2. On average, 92% of a harvested block’s area was classified as 

having less than 33% slash coverage, while areas with 33-66% coverage and 66-99% coverage 

made up approximately 7 and 0.4% of a harvested block’s area, respectively.  

 

Fig. 4-2: RGB image of slash coverage from a portion of harvested block 2 showing 
visibility of slash in contrast to the forest floor. 
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Fig. 4-3: Output of maximum likelihood supervised image classification analysis on 
RGB image shown in Fig.4-2 

Fig. 4-4: The % slash coverage output based on the classified slash displayed in Fig 4-3. 
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Table 4-2: The percent slash coverage distribution for each harvested block. 

  Year of Harvest   
  2015-2016 2016-2017   

  Block 1 Block 2 Block 3 Block A Block B Block C Mean 
Slash Coverage  % of the Harvested Block 

0-33%  92.07 92.85 84.13 92.50 95.06 97.76 92.40 ± 4.17 
33-66% 7.57 6.99 13.95 7.35 4.76 2.15 7.13 ± 3.59 
66-99% 0.36 0.17 1.91 0.15 0.18 0.09 0.48 ± 0.65 

 

4.5.2 Slash Classification Confusion Matrix 

The accuracy of using supervised image analysis to assess the level of slash loading across 

harvested blocks was overall quite good, with the lowest overall accuracy being 85% (Table 4-3 

and Table 4-4). Overall, classification accuracy was higher in harvested blocks 1, 2, and 3 

compared to harvested blocks A, B, and C. Producer and user accuracy for harvested blocks 1, 2 

and 3 were both consistently higher than 90%, indicating a high portion of the ground truthing 

pixels for both slash and forest were classified correctly. A couple pixels of slash and forest floor 

were misclassified; however, there was not one cover type being misclassified more than the other.  

Conversely, the producer and user accuracy for harvested blocks A, B, and C were far more 

variable. The producer accuracy for forest floor pixels remained near perfect, indicating that the 

ground truthing pixels of forest floor were rarely misclassified as slash. However, the producer 

accuracy for slash was between 72% and 82% due to several slash ground truthing pixels being 

misclassified for forest floor. These misclassifications of slash for forest floor lowered the user 

accuracy of forest floor (78-84%) because of the higher degree of uncertainty as to whether a pixel 

labeled forest floor was actually forest floor.  Due to these misclassifications, the overall accuracy 

of classification for harvested blocks A, B, and C was between 82 and 90%.   
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Table 4-3: Confusion matrix and accuracy results for harvested blocks 1, 2, and 3. 

 

 

 

 

 

 

 

Site 1 Slash Forest Floor Total User Accuracy 

Slash 46 1 47 98% 
Forest Floor 4 49 53 92% 

Total 50 50 100   
Producer Accuracy  92% 98%     

Overall Accuracy = 95%  Expected Accuracy = 50%  Kappa = 90% 

Site 2 Slash Forest Floor Total User Accuracy 

Slash 48 2 50 96% 
Forest Floor 2 48 50 96% 

Total 50 50 100   
Producer Accuracy 96% 96%     

Overall Accuracy = 96%  Expected Accuracy = 50%  Kappa = 92% 

Site 3 Slash Forest Floor Total User Accuracy 

Slash 45 5 50 90% 
Forest Floor 5 45 50 90% 

Total 50 50 100   
Producer Accuracy 90% 90%     

Overall Accuracy = 90%  Expected Accuracy = 50%  Kappa = 80% 
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Table 4-4: Confusion matrix and accuracy results for harvested blocks A,B, and C. 

 

4.5.3 Percent Slash Cover and Aspen Regeneration 

The estimated percent slash coverage calculated using the maximum likelihood supervised 

image analysis method showed no relationship with the plot data of aspen regeneration collected 

in Chapter 3 (Fig. 4-5). Aspen sucker density, height, or RCD did not show a significant linear 

relationship with increasing slash coverage up to 60%. There also does not appear to be any other 

form of relationship between the level of slash coverage and aspen regeneration. 

  

Site A Slash Forest Floor Total User Accuracy 

Slash 36 1 37 97% 
Forest Floor 14 49 63 78% 

Total 50 50 100   
Producer Accuracy  72% 98%     

Overall Accuracy = 85%  Expected Accuracy = 50%  Kappa = 70% 

Site B Slash Forest Floor Total User Accuracy 

Slash 41 1 42 98% 
Forest Floor 9 49 58 84% 

Total 50 50 100   
Producer Accuracy 82% 98%     

Overall Accuracy = 90%  Expected Accuracy = 50%  Kappa = 80% 

Site C Slash Forest Floor Total User Accuracy 

Slash 36 0 36 100% 
Forest Floor 14 50 64 78% 

Total 50 50 100   
Producer Accuracy 72% 100%     

Overall Accuracy = 86%  Expected Accuracy = 50%  Kappa = 72% 



 

71 
 

R² = 3E-06
p = 0.9928

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

A
sp

en
 su

ck
er

 h
ei

gh
t (

cm
)

Slash Coverage (%)

B)

R² = 0.0037
p = 0.5107

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

√A
sp

en
 su

ck
er

 d
en

si
ty

 (#
 m

-2
)

Slash Coverage (%)

A)

R² = 0.0031
p = 0.5451

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

A
sp

en
 ro

ot
 c

ol
la

r d
ia

m
et

er
 (m

m
)

Slash Coverage (%)

C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-5: Relationship between percent slash coverage and aspen sucker A) density, B) height, 
C) root collar diameter.   
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4.6 Discussion 

As evident through visual examination of the aerial RGB imagery, it is clear that the level 

and distribution of slash coverage is quite consistent across entire harvested blocks. The vast 

majority (92%) of a harvested block was covered under low slash levels (0-33%), while only 7% 

and <1% was covered under a moderate (33-66%) and high (66-99%) slash level, respectively. 

Therefore, if the effects of heavy slash described in literature (Bella, 1986; Lieffers-Pritchard, 

2004; Renkeman, 2009) do have a negative effect on the level of aspen regeneration in the Duck 

Mountain Provincial Park, the amount of area that would experience a decrease in the level of 

aspen regeneration and future growth is likely minimal. Areas with moderate or high levels of 

slash coverage were often associated with landing zones where a portion of treetops, branches, and 

sawdust would be left following on site processing of the trees. However, a reason why more areas 

with excess amounts of slash were not prevalent throughout the harvested blocks may be attributed 

to the presence of slash piles. These slash piles consisted mainly of large tree pieces that were 

deemed unusable by the operator and rather than spread this material back across the harvested 

area, it was simply amalgamated into large piles and burnt once dry.  

While the practice of slash piling does reduce the amount of slash that would otherwise be 

scattered throughout the harvested block, these piles create an environment under which conditions 

are not suitable for aspen regeneration. While the remainder of the harvested block begins to 

regenerate following the harvesting event, aspen roots underneath these large slash piles will 

exhaust their carbohydrate reserves in the attempt to produce suckers and eventually will die as no 

new energy supplies are being returned to the rooting system (Peterson and Peterson, 1992; 

DesRochers, 2000). Following the burning of the slash pile, it is unlikely that the rooting system 

will be capable of producing suckers to regenerate this area and will therefore need to rely on seeds 

to blow in from the surrounding forest in order to regenerate. However, it is unlikely that seedlings 



 

73 
 

will germinate and survive in these burnt slash pile areas due to the harsh growing conditions. A 

recent study by Rhoades and Fornwalt (2015) found that in lodgepole pine forests, the effects of 

slash pile burning on regeneration density and soil properties were still evident even after 50 years. 

Unfortunately, no literature could be found looking at the effects of slash pile burning on the 

regeneration of aspen.        

In terms of aspen regeneration in relation to the level of slash loading, we found that slash 

coverage up to 66% had no discernable effect of the aspen sucker density, height, or root collar 

diameter. This would suggest that even in areas with up to 66% coverage, soils were able to obtain 

a sufficient temperature to stimulate suckering and that slash at this level did not act as a physical 

barrier to these newly developed suckers. Unfortunately, none of our aspen regeneration plots were 

located in areas with high levels of slash cover (>66%); therefore, we were unable to obtain a full 

understanding of how percent slash coverage influenced regeneration in the Duck Mountain 

Provincial Park and whether high slash coverage would lead to significant changes in the level of 

aspen regeneration. Based on previous research by Bella (1986) and Lieffers-Pritchard (2004), we 

expected to see a decrease in aspen sucker density as the level of slash coverage increased. The 

study by Lieffers-Pritchard (2004) in the Duck Mountains found that aspen sucker density was 

significantly reduced under moderate slash loading (200-400 t ha-1 or 20-60% coverage), while 

aspen sucker height or root collar diameter were unaffected. The reason our study failed to see a 

strong relationship between percent slash coverage and aspen regeneration may be the result of the 

different methods used. While our study measured the level of slash coverage based on aerial 

imagery, Lieffers-Pritchard (2004) manually measured slash loading using a modified line-

intercept method (Newman, 1966).  

Our method developed using UAV based RGB imagery measured slash coverage in a two 

dimensional framework (length and diameter), while traditional field methods for assessing slash 
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loading (Newman, 1966; McRae et al., 1979; Brown et al., 1982) incorporate a third dimension, 

depth of slash. Although our method is capable of detecting slash lying across the forest floor to 

create a % coverage estimate, it does not take into consideration slash depth which drastically 

alters the level of insulation to the soil. For example, an area with a layer of slash covering the soil 

would not have the same level of insulation compared to an area with three or four layers of slash; 

however, by only measuring the % coverage, these two areas would be considered equal in terms 

of the level of slash loading. Therefore, in future studies looking at using UAV based imagery as 

a method to measure the level of slash loading, it would be advised to incorporate a measure of 

slash depth to increase the quality of the method.   

The presence of sawdust and wood chips from the harvesting operation also made it difficult 

to get an accurate measure of slash coverage. Due to their bright reflectance, they were often 

classified as slash and would occur in small clusters of a couple pixels. This created a salt and 

pepper effect across parts of the forest floor and amplified % slash coverage estimates in certain 

areas. To address this issue, raster filters were used to smooth the classified image by removing 

isolated pixels (anomalies) based on the surrounding pixels in the immediate area; however, some 

areas still contained isolated clusters of sawdust and wood chips. Again, this issue could be aided 

by incorporating a measure of slash depth as sawdust and wood chips would not be large enough 

to classify as slash.   

The type of forest may also have an influence on the success and accuracy of slash loading 

estimates made through UAV imagery. The high spectral contrast between aspen and the forest 

floor made it easy to distinguish between the two covers; however, in a mixed wood or coniferous 

forest this spectral difference may not be as prevalent. Coniferous species such as spruce (Picea 

spp) and jack pine (Pinus banksiana) have a much darker bark, which could make it more difficult 

for simple colour spectral analysis to detect differences from the forest floor. Future studies could 
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look into the use of an object based image analysis (Blaschke, 2010), rather than simply relying 

on the spectral differences between land covers to classify the image as it is a more detailed and 

complex method of classification.            

4.7 Conclusion 

This study illustrated that UAV based RGB imagery could be used to map and measure the 

distribution of slash left throughout a block following a harvesting event. Although simple 

maximum likelihood supervised image analysis was capable of accurately discriminating between 

aspen slash and forest floor, additional research is still needed to improve this method. A method 

that incorporates slash depth would improve the accuracy of UAV-based slash loading 

measurements and would make it more comparable to the traditional manual field methods. More 

detailed and advanced methods of image classification such as object based image analysis could 

be done in an attempt to better detect pieces of slash rather than simply relying on their spectral 

signature. In terms of the effects of % slash coverage on aspen regeneration, no significant 

relationship was observed between any of the aspen measurements (density, height, RCD) and 

slash coverage. However, it should be noted that our analysis only contained areas with slash 

coverage up to 60%; therefore, it is unknown whether higher levels of slash loading would result 

in a decrease of aspen regeneration.   
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5 A CUMULATIVE EFFECTS APPROACH TO ASSESSING ASPEN 

REGENERATION SUCCESS THROUGH FUZZY LOGIC DERIVED 

SUITABILITY MAPPING3 

5.1 Preface 

Following a harvesting event, aspen regeneration is not controlled by one single factor; 

however, no studies could be found that assessed cumulative effects at a landscape scale. With the 

advances in unoccupied aerial vehicle (UAV), remote sensing, and geographic information system 

(GIS) technology, landscape scale data can now be obtained in an efficient and cost effective 

manner.  This chapter describes the creation of the fuzzy logic suitability mapping method that 

was used to assess cumulative effects across entire harvested blocks. In addition, this chapter 

assesses how regeneration varied across suitability levels and attempts to understand which factors 

were most influential in determining the success of aspen regeneration.   

  

                                                           
3 This chapter, co-authored with Dr. Beyhan Amichev and Dr. Ken Van Rees, has been submitted to Soil Science 
Society of America Journal. Data collection, data analyses, and initial writing of the manuscript were completed by 
the lead author (Landon Lee Sealey) while the fuzzy logic method was developed by Dr. Beyhan Amichev. Editing 
and review of the manuscript was done by the co-authors.  
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5.2 Abstract 

Vigorous aspen (Populus tremuloides) regeneration immediately following a harvesting 

event is important to ensuring the continued health and productivity of the future forest. This study 

aimed to examine the potential of using unoccupied aerial vehicle, multispectral remote sensing, 

and GIS mapping techniques to develop a comprehensive approach for predicting aspen 

regeneration success at the harvest block scale. Three winter harvested blocks were studied at Duck 

Mountain Provincial Park in east-central Saskatchewan, Canada. Ten regeneration predictor 

variables (number of skidder passes, percent slash coverage, topographic wetness index, slope, 

aspect, slope position, and four vegetation indices: green normalized vegetation index (GNDVI), 

normalized red-edge index (NDRE), simple RED/NIR ratio (SR), and chlorophyll index green 

(CIG)) were determined for 168 measurement plots one year after harvest. Principal component 

analysis, principal component regression, fuzzy logic analysis, and GIS mapping techniques, were 

combined for the first time in this study to determine cumulative effects on aspen regeneration. On 

average, low suitability areas had significantly more skidder traffic (34 passes) compared to below-

average (17), above-average (10), and high (7) suitability areas. Low suitability areas also had 

significantly more slash coverage (13.1%) compared to below-average (8.49%) or high suitability 

land (7.18%). High suitability areas had significantly higher GNDVI, NDRE, SR, and CIG indices, 

compared to low and below-average suitability land. Not only does this method of analysis help 

to assess how a combination of factors may influence aspen regeneration, it can also act as a 

decision support system tool for industry, or government, to improve aspen regeneration 

assessments. 
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5.3 Introduction 

Following a disturbance event in an aspen forest, vigorous aspen regeneration in the first two 

years is important to ensuring the continued health and productivity of the future forest. It is well 

documented that several naturally occurring factors such as clonal ability to sucker, soil 

temperature, root carbohydrate reserve, and hormonal/chemical imbalances are the driving forces 

behind the level and success of asexual regeneration in an aspen forest (Maini and Horton, 1966; 

Schier et al., 1985; Fraser et al., 2002; Frey et al., 2003; Mundell et al., 2008). However, 

mechanical harvesting events can also influence aspen regeneration through the alteration of soil 

physical properties (bulk density, aeration, water movement, etc.), soil temperature regime, and 

disturbance of the shallow rooting system of aspen found in the forest floor that is responsible for 

the majority of regeneration (Lieffers-Pritchard, 2004; Zenner et al., 2007; Puettmann et al., 2008; 

Renkema et al., 2009).  While these studies are important for establishing our understanding of 

how these individual factors influence aspen regeneration, they often fail to emulate the natural 

environment in which several of these factors are acting together to govern the level and success 

of aspen regeneration.  

Mechanical harvesting was shown an effective method for stimulating the regeneration of 

over-mature aspen forests (Navratil, 1991; Peterson and Peterson, 1992), whereas improper 

harvesting methods have caused negative effects to site/soil properties and, as a result, reduced 

regeneration levels (Bates et al., 1993; Lieffers-Pritchard, 2004; Renkeman, 2009). However, most 

of the studies examining the level of aspen regeneration following harvesting were done at a small 

scale and fail to consider the significance of the effects at the harvested block scale. In addition, 

most of these studies only focus on one or two factors and fail to assess the potential of cumulative 

effects between natural and anthropogenic sources. The lack of past research looking at 

regeneration levels at a harvest block scale, accounting for the combination of natural and 
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anthropogenic factors, is likely due to the lack of harvest block scale data and methods to analyze 

said data. However, developing unoccupied aerial vehicles (UAVs), multispectral remote sensing, 

and geographic information systems (GIS) make the acquisition of useful harvested block scale 

data possible in both a time and cost effective manner.  

The following chapter examines the potential of using UAVs, multispectral remote sensing, 

and GIS technology to develop a holistic approach for predicting aspen regeneration success across 

a landscape in relation to several natural and anthropogenic factors, and investigate which factor(s) 

is/are controlling the level of regeneration following a winter harvesting event. Additionally, using 

the PCA, PCR and fuzzy logic techniques, several regeneration predictors and influencing factors 

were amalgamated to generate an overall regeneration suitability map that could ultimately be used 

to predict the level and success of aspen regeneration at a landscape scale. 

The objectives for this study were: 

1. To develop a method to assess cumulative effects on aspen regeneration for a winter 

harvest block using fuzzy logic suitability mapping. 

2. To determine which factors are responsible for controlling the level of aspen regeneration.  

3. To examine aspen regeneration intensities for varying degrees of regeneration suitability 

calculated in objective 1.  

Null hypotheses for this study were: 

1. Increasing aspen regeneration suitability does not significantly increase a) sucker density, 

b) height, c) root collar diameter (RCD), d) leaf area index (LAI), and e) dry leaf biomass 

of regenerating aspen measured following one summer of growth after winter harvesting. 

2. Skidder traffic intensity, % slash coverage, topographic wetness index (TWI), slope, 

aspect, slope position, Green Normalized Difference Vegetation Index (GDNVI), 
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Normalized Difference Red-Edge (NDRE), Simple RED/NIR Ratio (SR), and Chlorophyll 

Index Green (CIG) are not significantly different between aspen regeneration suitability 

levels.  

5.4 Materials and Methods 

5.4.1 Study Area 

The harvested blocks used for this study were located in the Northwest corner of the Duck 

Mountain Provincial Park (described in Chapter 3, section 3.2.1). All data collected for suitability 

assessment was gathered from blocks A, B, C.  

5.4.2 Suitability Predictor Variable Data Collection 

5.4.2.1 Skidder Traffic Intensity Calculation 

A detailed description of how skidder traffic intensity was calculated can be found in Chapter 

3, section 3.2.3.  

5.4.2.2 UAV Multispectral Remote Sensing and Indices Calculations 

This study used a DJI Phantom 4 UAV (Dà-Jiãng Innovations Science and Technology Co. 

Ltd., Shenzhen, Guangdong Province, China) to capture red-green-blue (RGB) imagery of the 

harvested blocks, as well as to carry an additional multispectral sensor. The multispectral sensor 

was a Parrot Sequoia (Parrot SA, Paris, Îles-de-France, France), which captured GREEN, RED, 

RED-EDGE, and NIR (near-infrared) bands simultaneously. In May 2017, white circular ground 

control points were placed throughout the harvested blocks and their locations were recorded using 

a Trimble GeoXT 2005 series GPS unit (Trimble Inc., Sunnyvale, CA, USA). These control points 

were used for geo-correction of both RGB and multispectral imagery during the image processing 

stage.  
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Two flight events were conducted at each of the three harvested blocks during the summer 

months (May-August). The first flight event was conducted in early May, before any vegetation 

began to regenerate, to collect RGB imagery of the harvested blocks and overlying slash. From 

the RGB imagery, % slash coverage and distribution was calculated for each of the three harvested 

blocks. In addition, the data collected from these early summer flights was used to generate a 

digital terrain model (DTM) of the harvested blocks, which was then used to calculate different 

site characteristics and topographic wetness indices for the blocks. The second flight event 

occurred in mid-August near the end of the first growing season to capture multispectral imagery 

of the forest following one summer of growth. Based on the multispectral data, several vegetation 

indices (described in Chapter 2, section 2.5.2) were calculated as a measure of vegetation presence 

and health.   

Drone Deploy (DroneDeploy, San Francisco, CA, USA) was used as the planning software 

to ensure that flight parameters would be consistent between each flight. Flights were conducted 

at 60 m above ground level between 10 am and 2 pm local time to reduce the effect of shadow and 

ensure proper stitching (i.e., combining of overlapping images) of the overall mosaicked image. 

Image overlap was set to approximately 75 % overlap side-to-side and 60 % overlap front-to-back.   

5.4.2.3 Percent Slash Coverage Calculation 

A detailed description of how percent slash coverage was calculated can be found in Chapter 

4 section 4.2.2.2. 

5.4.2.4 Slope, Aspect, and Slope Position Calculations 

The slope and aspect of the harvested blocks was generated based on the Pix4D DTM derived 

from UAV imagery collected in May before any vegetation began to regenerate. Both slope and 

aspect were calculated with ArcGIS using the slope spatial analyst tool and aspect spatial analyst 
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tool, respectively. A detailed description of how slope position was calculated can be found in 

Chapter 3, section 3.2.6.2.  

5.4.2.5 Topographic Wetness Index Calculation 

A wetness index was developed for each of the harvested blocks because the level of 

moisture in the soil often has a major influence on not only the amount of plant growth but also 

the susceptibility of a soil to compaction (McNabb et al., 2001). Using the Pix4D digital terrain 

model derived from the UAV imagery, a topographic wetness index was generated using a series 

of functions developed for SAGA GIS (System for Automated Geoscientific Analyses, Hamburg, 

DE, Germany) (Conrad et al., 2015). First, the slope of the landscape was calculated from the DTM 

using the Slope, Aspect, Curvature tool. Next, the DTM was run through a fill sink algorithm 

(Wang and Liu, 2006) to smooth the DTM and remove anomalies before it was run through a 

multi-flow direction algorithm (Quinn et al., 1991) to calculate catchment area. From the 

catchment area output, a specific catchment area was derived using the Flow Width and Specific 

Catchment Area tool. Lastly, the specific catchment area and slope outputs were used together to 

generate a TWI index with the topographic wetness index tool (Moore et al., 1991; Kopecký and 

Čížková, 2010).  

5.4.3 Aspen Regeneration Indicator Data Collection 

As an indicator of regeneration, 1 x 1 m aspen regeneration assessment quadrats were used 

to measure aspen sucker density, height, RCD, LAI, and dry leaf biomass. In addition to the 72 

assessment plots that were collected across blocks A, B, and C to assess the effects of machine 

traffic on regeneration (Chapter 3), another 96 assessment plots were randomly selected based on 

skidder intensity across the three harvested blocks. Sucker density was measured by counting the 

number of aspen suckers present within the 1 x 1 m quadrat. Sucker height (cm) and root collar 

diameter (mm) were measured using a measuring stick and digital calipers, respectively. Aspen 



 

83 
 

LAI (m m-2) was determined by collecting all aspen leaves within the assessment plot and running 

them through a LI-COR LI3050A area meter (LI-COR Biosciences, Lincoln, NE, USA). Lastly, 

aspen leaves were oven-dried at 80 °C for 48 hours then weighed to obtain a measure of total oven-

dry leaf biomass (g m-2). 

5.4.4 Fuzzy Logic Mapping of Aspen Regeneration Suitability  

Fig. 5-1 is an illustration of the new fuzzy logic cumulative effects assessment method, 

which used PCA and PCR analysis (Lopes et al., 2011) along with fuzzy logic suitability mapping 

(Akumu et al., 2016; Caniani et al., 2016) to calculate aspen regeneration suitability. This figure 

depicts in sequence the ArcGIS tools and processes that were used in this method to determine a 

harvested block’s suitability for aspen regeneration.  

This method is highly reliant on the combination of PCA and PCR, which are two 

multivariate statistical analyses commonly used when dealing with large sets of variables and 

trying to determine which variables are most influential to a process. Principal Component 

Analysis involves the transformation of variables into a series of uncorrelated principal 

components (PC), each explaining a different level of variance within the data (eigenvalue). Each 

PC is also composed of the combination of the variables; however, not all variables exert the same 

level of importance (eigenvector) within the PC. As a result, PCA is traditionally used not only as 

a way of identifying  which variables are most influential to a process but also as a way simplify 

data into a few PC which account for majority of variance within data (Pennsylvania State 

University, 2018). For this study, PCA was used as a way to determine the influence of each 

suitability predictor and was not used to simplify the data as each PC, no matter how little variance 

it explained, was important for understanding how the predictor variables related to the level of 

aspen regeneration. Rather, simplify the number of PCs used to assess regeneration suitability was  
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Fig. 5-1: Detailed illustration of the PCA, PCR, and fuzzy logic method that was used to 
calculate aspen regeneration suitability across the harvested landscape. 
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done using PCR. Principal Component Regression is a method of analysis in which a linear 

regression model is used with principal components acting as the explanatory variable.  

For the analysis of regeneration suitability, the following ten suitability predictors were used: 

skidder traffic, slash coverage, TWI, slope, slope aspect, slope position, GNDVI, NDRE, SR, CIG. 

In ArcGIS, these predictor variables were in a raster format and were standardized prior to PCA 

in order to have a mean of zero and a standard deviation of one. This standardization of variables 

is a common technique used in PCA analysis when the input variables have different scales as this 

ensures that each variable receives the same weight during the analysis (Pennsylvania State 

University, 2018). Following PCA, PCR was used to determine the number of PCs used in 

calculating regeneration suitability. Principal Component Regression was conducted using the 

Ordinary Least Square Regression function in ArcGIS where five aspen regeneration indicators 

were regressed against the ten PCs. Only PCs that showed a significant (p<0.1) relationship with 

the aspen regeneration indicators were kept for future calculations. The coefficient values 

generated from the ordinary least square regression were used to assess the type (positive or 

negative) of relationship that the significant (p<0.1) PCs had with the aspen regeneration 

indicators. Depending on the relationship type, the eigenvectors associated with a PC were 

adjusted by multiplying them with a 1 or -1 to account for a positive or negative relationship, 

respectively. 

As each predictor variable did not contribute the same level of influence when determining 

regeneration suitability, the weight (i.e., percent relative effect on aspen regeneration) of each 

predictor variable was calculated. These calculations were also used to determine which 

fuzzification method/algorithm would be used for each predictor variable. Fuzzification analysis 

refers to the processing steps of the fuzzy logic approach in which the values of the predictor 

variables, in their original measurement scales, are transformed to a fuzzy membership scale of 0 
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to 1, where values close to 0 indicate low membership, and those close to 1, indicate high 

membership. Predictor variable weight was calculated using Eq. 5-1, Eq. 5-2, and Eq. 5-3 in 

sequence.  

 

where Z is the weight of a predictor variable belonging to one of the principal components, x is the 

relationship type adjusted eigenvector, and y is percent of explained variance by the principal 

component that was determined during the PCA.  

The overall predictor variable weight (Eq. 5-2) is simply the sum of a predictor variable’s 

weights across all significant (p<0.1) principal components.  

Lastly, Eq. 5-3 was used to convert the overall predictor variable weight into a percent value. 

This was done by squaring the overall predictor variable weights to remove any negative values 

and then dividing that value by the sum of the squared predictor variables’ weights, and 

multiplying by 100. 

 Z =
x2(y)(x)

|x|
 (Eq. 5-1) 

  Overall Predictor Variable Weight =∑ Zk

  n 

k=1
 (Eq. 5-2) 

 Predictor Variable Weight (%) =
∑ (Zk)2 n  

k=1

∑ (∑ (Zk)2  n
k=1 )𝑖

  n
i=1

×100 (Eq. 5-3) 
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Fig. 5-3: Example of a fuzzy small 
transformation algorithm with raw data. 

Fig. 5-2: Example of a fuzzy large 
transformation algorithm with raw data. 

5.4.4.1 Fuzzification and Regeneration Suitability Map Calculation 

Unlike a traditional binary classification system that would simply classify a landscape into 

one of two categories (not suitable or suitable) based on whether or not the predictor variables met 

a set threshold value, a fuzzy logic theory based classification system classifies the landscape 

across a spectrum of regeneration suitability that ranges from 0 (not suitable) to 1 (highly suitable). 

To do so, the raw predictor variable data is transformed using a fuzzification algorithm (ESRI, 

2016), which assigns new fuzzy membership values (0-1) based on a set of rules outlined in the 

algorithm. This data transformation step can be done using one of many fuzzification algorithms; 

however, for this study two algorithms were selected, fuzzy large (Fig. 5-2) and fuzzy small (Fig. 

5-3). A fuzzy large transformation algorithm was used when a predictor variable had a positive 

overall predictor variable weight (Eq. 5-2); therefore, the higher the raw predictor variable value, 

the more suitable the area was for regeneration. Conversely, the fuzzy small algorithm was used 

when a predictor variable had a negative overall predictor variable weight (Eq. 5-2), indicating 

lower raw predictor variable values were more suitable for regeneration. These algorithms were 
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calculated with the Fuzzy Membership tool in ArcGIS, with the midpoint (0.5 suitability) set as 

the mean value from the original predictor variable data. All other tool setting were left as default.  

Once each predictor variable was run through the Fuzzy Membership tool in ArcGIS, these 

new fuzzified layers (i.e., layers with transformed values, ranging from 0-1) were run through the 

Weighted Sum Overlay function in ArcGIS with the weight for each predictor variable being set 

as the % weight calculated using Eq. 5-3. Through the weighted sum overlay calculation, five 

aspen regeneration indicator suitability maps (density, height, RCD, LAI, dry leaf biomass) were 

generated that ranged in value from 0 to 1, where values close to 0 indicate areas not suitable and 

those close to 1 indicate highly suitable areas for aspen regeneration. These map values were then 

categorized into four levels of suitability using the Reclassify function in ArcGIS and given the 

following suitability score (reclassified values from 0-0.25= 1 suitability score, and 0.25-0.5=2, 

0.5-0.75=3, 0.75-1=4) before all five maps were summed into one overall aspen regeneration 

suitability map using the Combine tool in ArcGIS. Once combined, the final map was run through 

a 3 x 3 cell low pass filter in ArcGIS, to smooth the final raster and remove any anomalies. Based 

on the sum of the suitability scores from the individual aspen indication suitability maps, the final 

map ranged in value between 5 and 20; values close to 5 represented an overall low suitability 

whereas those close to 20 were for high suitability areas. Lastly, the minimum, 1st quartile, mean, 

3rd quartile, and maximum values for the final raster were calculated and used to reclassify the 

final raster into four levels of overall suitability (i.e., reclassified values from 5-11 = Low 

suitability, 11-13 = Below Average, 14 = Above Average, 15-20 = High).   

5.4.4.2 Fuzzy Logic Cumulative Effects Assessment Method Validation and Statistical 

Analysis 

 To validate whether this new method of assessing cumulative effects through suitability 

mapping was capable of accurately predicting areas with higher regeneration rates, the suitability 
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level for each of the 168 aspen regeneration measurement plots was extracted from the final map. 

An analysis of variance (PROC GLIMMIX procedure) was performed using SAS to assess the 

differences in aspen sucker density, height, RCD, LAI, dry leaf biomass between the four different 

suitability levels. 

 In addition to assessing the differences in the level of aspen regeneration across the four 

levels of suitability, the predictor variable values (# of skidder passes, % slash coverage, TWI, 

slope, aspect, slope position, GNDVI, NDRE, SR, CIG) were also extracted for each of the 168 

measurement plots. An analysis of variance (PROC GLIMMIX procedure) was performed using 

SAS to determine whether there were differences in these predictor variables across the four levels 

of regeneration suitability.  

5.5 Results 

5.5.1 Principal Component Analysis and Regression 

The level of correlation each predictor variable had on a PC was quite variable (Table 5-1). 

Overall, the predictor variables with the highest eigenvectors (i.e., correlation) in the first PC (34% 

of total variance explained) were the NDRE, CIG, SR, GNDVI predictor variables, all with 

positive relationship, cumulatively representing the overall capability of the area to support 

vegetative growth, in terms of total green biomass, which was detected via multispectral sensors. 

High total green biomass in a given area would be highly indicative of soil and climatic conditions 

that are optimal for plant and tree growth. Therefore, the first PC could be regarded as a surrogate 

measure of the soil-tree-atmosphere interactions that promote tree growth.  

The second PC (16 % of total variance explained) was highly related to slope of the site 

(positive) followed by TWI and traffic (negative), cumulatively representing the overall site 

productivity – harvesting interactions of the land. As slope steepness increases, both the TWI and 

traffic predictor variables will decrease, since the amount of water infiltrating the soil will decrease 
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as more flows downhill (Brady and Weil, 2004) and the machine operators will likely avoid steep 

slopes during harvesting operations due to the increased risk.  

The third PC (12% of total variance explained) was highly related to the slope position and 

slash predictor variables (positive), cumulatively representing the harvesting effects across the 

blocks. As slope position (analyzed as dummy variables) moved from a depression to a summit, 

slash increased as well.  

The fourth PC (10% of total variance explained) was dominated by a single variable – slope 

aspect (negative relationship), depicting contrasting effects of north- versus south-facing slopes, 

in terms of site productivity. The remaining PCs explained <8% (individually) of the total variance. 

However, not all PC showed a significant (p < 0.1) relationship with the aspen regeneration 

indicators (density, height, RCD, LAI, dry leaf biomass) as shown in Table 5-2. Aspen sucker 

density, LAI, and dry leaf biomass only showed a significant relationship with PC1 and PC7, while 

aspen sucker height and RCD show a significant relationship with PC1, PC2, PC3, and PC5. 

When calculating regeneration suitability across the harvested block for each of the five 

aspen regeneration indicators, the level of influence (% weight) for each predictor variable was 

not equal (Table 5-3). The results displayed in this table were calculated through equations #1 – 

#3, mentioned earlier. Through these calculations it was determined that the predictor variables 

shared the same level of influence when determining an areas regeneration suitability for aspen 

sucker density, LAI, and dry leaf biomass, while the influence of the predictor variables on area 

suitability for aspen height and root collar diameter were slightly different. However, area 

suitability for all aspen regeneration indicators was largely controlled by the four vegetation 

indices included in the analysis. Cumulatively, vegetation indices were responsible for 

approximately 62% - 95% of the decision when determining area suitability and all expressed a  
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positive relationship with the five aspen regeneration indicators. Therefore, as a vegetation index 

increased, so did the regeneration suitability of that area. Conversely, skidder traffic expressed a 

negative relationship with all aspen regeneration, indicating that as the level of skidder traffic 

increased, the regeneration suitability of that area decreased. While skidder traffic had little 

influence (1.63%) on determining an area’s suitability for aspen density, LAI, and dry leaf 

biomass, it held a weight of 11.65% when determining area suitability for aspen height and root 

collar diameter. The other predictor variables (slash coverage, TWI, slope position, aspect, and 

slope) had minimal influence on determining regeneration suitability as each only held a weight 

ranging between 0-10%. While the relationship of TWI and aspect with all regeneration indicators 

was negative, the other three predictor variables were not consistent in their relationship with the 

regeneration indicators. Slash and slope position indicated a positive relationship with aspen 

sucker density, LAI, and dry leaf biomass; however, displayed a negative relationship with height 

and root collar diameter. Lastly, slope had a negative relationship with aspen density, LAI, and 

dry leaf biomass, but a positive relationship with aspen height and root collar diameter. 

5.5.2 Fuzzy Logic-Derived Regeneration Suitability Maps 

An example of the maps created in ArcGIS, using the predictor variables’ weights calculated 

through PCA and PCR analysis, to derive the overall regeneration suitability map for harvest block 

C is presented in Fig. 5-4 (see Appendix F for the complete set of fuzzy logic suitability maps). In 

this example, skidder traffic is transformed using a fuzzy small transformation because of the 

negative relationship it had with all regeneration indicators (Table 5-3). This same process was 

carried out for the remaining predictor variables based on their relationship with the regeneration 

indicators. Once fuzzified, the 10 predictor variables for each regeneration indicator were summed 

together, taking into account the weight of each predictor variable (Table 5-3), to generate five  
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Fig. 5-4: Example of the fuzzy logic calculation process through ArcGIS to determine regeneration 
suitability for harvested block C. 
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individual suitability maps. Finally, these five individual suitability maps are combined into one 

suitability map depicting overall regeneration suitability. 

From the individual regeneration indicator suitability maps, it is clear that the amount of area 

categorized as low suitability is much higher for aspen density, LAI, and dry leaf biomass 

compared to aspen height and root collar diameter. These maps also illustrate how areas of low 

and high regeneration suitability appear in small clusters scattered throughout the harvested block 

rather than as large sections. However, once the five individual aspen regeneration indicators 

suitability maps were combined and smoothed to generate a final overall regeneration suitability 

map for the harvested blocks, these small clusters were concentrated into large patches that span 

several meters in size. 

The percent area of a harvested block classified under a regeneration suitability level was 

calculated from the overall regeneration suitability map (Fig. 5-5). For all three of the harvested 

blocks, low and below average regeneration suitability accounted for over 50% of the harvested 

area. Harvested block C showed the largest % area being classified as low or below average 

suitability (71%), while harvested block A showed the largest % area being classified as high or 

above average suitability (49%). 

5.5.3 Aspen Regeneration By Suitability Level 

The level of aspen regeneration, based on collected field data, found across the overall 

regeneration suitability maps for all three harvest blocks were compared for statistical differences 

and presented in Figs. 5-6 to 5-10.  Aspen sucker density was not significantly different between 

regeneration suitability levels (p = 0.1495) (Fig 5-6). Aspen sucker height was significantly higher 

for high regeneration suitability areas (76 cm), compared to low regeneration suitability areas (52 

cm). Sucker height in below-average and above-average regeneration suitability areas were not 

significantly different from either low or high regeneration suitability areas (Fig 5-7). The same  
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trend was observed for RCD. Aspen root collar diameter in high regeneration suitability areas was 

significantly greater (7.4 mm) compared to low regeneration suitability areas (5.6 mm), while 

differences in below- and above-average suitability areas were not significantly different from 

either low or high suitability areas (Fig. 5-8).  Leaf area index was not significantly different 

between regeneration suitability levels (Fig. 5-9).  Lastly, dry leaf biomass was significantly higher 

in high regeneration suitability areas (56.6 g m-2) compared to low regeneration suitability areas 

(34.7 g m-2) (Fig. 5-10). Dry leaf biomass in below- and above-average regeneration suitability 

areas was not significantly different from either low or high regeneration suitability areas.  

 

 

 

 

 

Fig. 5-5: Area breakdown (%) of regeneration suitability for harvested blocks A, B, and C. 
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Fig. 5-6: Mean aspen sucker density across overall regeneration suitability levels. Bars with the 
same letter are not significantly different from each other p = 0.1 using Tukey-Kramer. Error 
bars represent standard deviation.  

Fig. 5-7: Mean aspen sucker height across overall regeneration suitability levels. Bars with the 
same letter are not significantly different from each other p = 0.1 using Tukey-Kramer. Error 
bars represent standard deviation. 
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Fig. 5-8: Mean aspen sucker root collar diameter across overall regeneration suitability levels. 
Bars with the same letter are not significantly different from each other p = 0.1 using Tukey-
Kramer. Error bars represent standard deviation. 

Fig. 5-9: Mean aspen leaf area index (LAI) across overall regeneration suitability levels. Bars 
with the same letter are not significantly different from each other p = 0.1 using Tukey-Kramer. 
Error bars represent standard deviation. 
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Fig. 5-10: Mean aspen sucker dry leaf biomass across overall regeneration suitability levels. 
Bars with the same letter are not significantly different from each other p = 0.1 using Tukey-
Kramer. Error bars represent standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.4 Regeneration Predictors by Suitability Level 

On average, low regeneration suitability areas had significantly more skidder traffic (|34 

passes) compared to areas with below-average (|17 passes), above-average (|10 passes), and high 

(|7 passes) regeneration suitability (Table 5-4). Areas with low regeneration suitability also had 

significantly more slash coverage (13.1%) compared to areas with below-average or high 

regeneration suitability, 8.49% and 7.18%, respectively. No significant differences were found 

between slope, aspect, and TWI across the four regeneration suitability levels. Low regeneration 

areas had significantly lower GNDVI values (0.6) compared to below-average (0.67), above-

average (0.69), and high (0.7) regeneration suitability areas. Areas with high regeneration 
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suitability had significantly higher NDRE, SR, and CIG values (0.27, 17.46, and 5.59, 

respectively) compared to low and below-average regeneration. Normalized Difference Red-Edge, 

SR, and CIG values for areas classified as having above-average regeneration suitability were only 

significantly different from areas with low regeneration suitability. In areas of above average 

regeneration suitability, NDRE, SR, and CIG values were only significantly different from areas 

with low regeneration suitability, while the indices values in areas between low and below average 

regeneration suitability were not significantly different. As slope position is a qualitative measure, 

no statistical analysis was performed on this variable; however, sampling locations used to assess 

areas with low, above-average, and high suitability were primarily located in shoulder positions, 

while areas with below-average suitability were located on backslope positions.  
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5.6 Discussion 

In the natural environment, the level and success of regeneration following a harvesting 

event would never be controlled by just one factor. Through the combination of PCA, PCR, and 

fuzzy logic analysis, it was possible to develop a method that could account for potential 

cumulative effects associated with harvesting practices on the success of aspen regeneration. Using 

PCA, 10 predictor variables could be transformed into 10 PCs, which measured cumulatively the 

importance of the regeneration predictor variables. Then using PCR analysis, it was possible to 

assess how these components related to indicators of aspen regeneration success and ultimately 

determine which factors were most influential in deciding regeneration suitability across the 

harvested block. Based on our search of the literature, this is the first study of the factors 

influencing forest regeneration that utilized the combination of PCA and PCR analysis, in 

combination with fuzzy logic analysis and mapping. 

The PCA-PCR combined method has been used recently in other research fields. For 

example, Lopes et al. (2011) used PCA and PCR analysis together to better understand which 

variables were most important in the formation of beach cusps along coast lines. However, by 

taking the knowledge gained through PCA and PCR analysis, our study was able to incorporate 

fuzzy logic predictability mapping (Akumu et al., 2016; Caniani et al., 2016) to assess the effects 

of regeneration predictor variables on aspen regeneration across the harvested block. By 

incorporating fuzzy logic into our model, it allowed for the creation of regeneration suitability 

levels, which were used to delineate the harvested blocks, and better understand the differences in 

the regeneration predictor variables between the suitability levels. Although this combination of 

PCA, PCR, and fuzzy logic was able to successfully account for cumulative effects from the 10 

factors through the creation of the suitability levels, it was not as successful in determining which 
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individual predictor variables were interacting and causing a cumulative effect on the level of 

aspen regeneration.  

Using the fuzzy logic approach to the data from the Duck Mountain Provincial Park, a large 

portion of the harvested area contains conditions that are not favorable for optimal aspen 

regeneration and future growth. On average 30% of harvested blocks were classified as having 

low regeneration suitability, while an additional 33% were classified as having below-average 

regeneration suitability. The overall level of aspen regeneration in areas with low regeneration 

suitability was generally worse than areas with above-average or high regeneration suitability. This 

decrease in regeneration success is likely the result of an increased level of disturbance experienced 

in these areas during the harvesting event, in combination with soil and site factors that may be 

impeding aspen regeneration. Areas with low regeneration suitability did have significantly higher 

levels of skidder traffic and slash coverage, which are two factors known to have a major influence 

on soil properties and aspen regeneration success (Bella, 1986; Lieffers-Pritchard, 2004; Zenner 

et al., 2007; Renkeman, 2009). However, the high level of variability of skidder traffic and slash 

loading within each suitability level (Table 5-4) suggested that these may not be the only factors 

determining the success and vigor of aspen regeneration at a harvest block scale, following a winter 

harvest. Yet the other site properties that were measured (slope, aspect, slope position, and TWI) 

only contributed a small weight when determining regeneration suitability, and they showed no 

significant difference between suitability levels, suggesting they had little to no control over aspen 

regeneration success. However, it is possible that the effects of the factors mentioned above were 

all accounted for through vegetation indices (NDRE, GNDVI, SR, and CIG) in some way. 

As these vegetation indices are highly dependent on the amount and health of vegetation, if 

site conditions are not suitable for vegetation growth it is likely that the level of regeneration would 

be lower causing a decrease in the vegetation indices. Hence, these indices act as an indirect 
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measure for many anthropogenic (i.e., forest floor disturbance and severe compaction) and 

environmental factors (chemical/physical soil properties and climate) that were not, or could not, 

be directly measured cost-effectively for the entire harvested blocks. To date, several studies have 

examined the use of vegetation indices as predictors, or surrogate measures, for a specific 

vegetation property (Wang et al., 2005; Xie et al., 2008; Huete, 2012); however, none have 

considered using the relationship between vegetation indices and vegetation properties as 

surrogates for site properties or estimating site suitability. These vegetation indices encompass soil 

properties that may influence regeneration (i.e., soil nutrient content, soil compaction, soil 

moisture availability, etc.), environmental conditions during the summer growing season (i.e., 

temperature, precipitation, etc.), and any disturbance that occurred on the area (i.e., root 

disturbance, slash loading, etc.). If an area does not have conditions that are favorable for 

regeneration, it would be expected that the vegetation index for that area would also be lower, as 

vegetation growth would likely be reduced compared to areas with optimal growth conditions. 

This is reinforced by the results, which found vegetation indices and the level of regeneration were 

consistently higher in areas of high regeneration suitability compared to low regeneration 

suitability, suggesting conditions were more favorable in high suitability area and therefore 

capable of supporting more regeneration.  

There are a few limitations associated with using vegetation indices as predictors of 

regeneration suitability. The inclusion of vegetation indices into the fuzzy logic model makes it 

rather difficult to determine which factor(s) are controlling regeneration and trying to assess the 

potential of cumulative effects between factors. As mentioned above, vegetation indices were a 

dominant factor in determining the regeneration suitability in this study, which could have 

overshadowed the effects of the other factors that were measured. Nevertheless, among the four 

vegetation indices, significantly higher index values were consistently associated with higher 



 

106 
 
 

regeneration suitability, which justified their use in this study, and warrant their use in future 

regeneration studies. 

Another limitation associated with using vegetation indices in our calculation of 

regeneration suitability was our inability to differentiate between species; therefore, these indices 

were not a species-specific measure. Instead, they were a measure of overall vegetation regrowth 

for all species following the harvesting event. In the Duck Mountain Provincial Park, beaked 

hazelnut (Corylus cornuta) and mountain maple (Acer spicatum) are two major understory shrubs 

that also experience prolific regeneration following a harvesting event and, therefore, created areas 

with high vegetation indices due to their high reflectance and absorption properties. To resolve 

this issue, an attempt at differentiating between vegetation species was done using image 

classification of the multispectral images; however, it was unsuccessful as pixel resolution was not 

high enough to distinguish individual aspen suckers from the surrounding vegetation. In future 

studies, higher resolution multispectral images and/or more advanced image classification 

techniques will be needed in order to differentiate between species and generate species specific 

indices layers (Lisein et al., 2015; Nevalainen et al., 2017). These new species classified layers 

could also be used to generate a measure of competition based on species density and distribution 

across the harvested block. This measure of competition would add an additional predictor of 

regeneration suitability and could potentially increase the accuracy of regeneration suitability 

estimations.  

It is important to emphasize that the field data available for this study were collected after 

the first growing season, following harvesting. Despite the data being limited to just one summer 

of growth, differences in the level of aspen regeneration were found between the different 

suitability levels, which was the main goal of this study. However, the applicability of these aspen 

regeneration suitability maps is uncertain for older stands, and was beyond the scope of this study. 
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Aspen regeneration success across different growing conditions may become less variable in older 

stands, but this study did not address whether these differences will persist once the forest reaches 

maturity. As the forest matures, and a natural thinning process begins to remove inferior aspen 

suckers, thinning rates may differ across growing conditions. Studies by both Steneker (1976) and 

Bella (1986) found that sucker density decreased at a faster rate in areas with a higher initial density 

compared to areas with lower initial density, with sucker density reaching a similar level after just 

five or six years. Nevertheless, this study demonstrated that a holistic approach to determining 

aspen regeneration suitability can be implemented successfully using the data collection approach 

and subsequent analyses. This method illustrated how a harvested block can be subdivided into 

regions of varying suitability and can allow for the identification of factors that threaten the 

sustainability of the forest. In order to identify which determining factors will persist over time, as 

the aspen stands reaches maturity, long-term aspen regeneration monitoring studies will be 

warranted. 

Not only does this method of analysis help to assess how a combination of different factors 

may influence aspen regeneration, it can also be used as a decision support system (DSS) tool for 

industry, or government, to improve regeneration assessments. Currently, government legislation 

dictates that regeneration assessments using a ground survey methodology are to be conducted 

using a transect design, with the beginning of the transect randomly selected, circular plots having 

a radius of 1.78 m, and the number of plots determined based on the size of the harvested block 

(Government of Saskatchewan, 2012). As a result, a large portion of the harvested block is left 

unexamined, and important information about how the entire harvested block is regenerating may 

be missed, causing the regeneration assessment to potentially over/under estimate actual 

regeneration. By tracking skidder traffic across the entire harvested block, and the calculation of 

other site properties based on UAV derived imagery, the harvested block can be run through a 
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fuzzy logic cumulative effects assessment method, similar to the one developed in this study, and 

generate a regeneration suitability map for the entire harvested block. This measure of regeneration 

suitability can then be used to delineate the harvested block into smaller assessment areas, which 

would help to achieve a more comprehensive assessment of regeneration across the entire 

harvested block. In turn, using the percent distribution of each regeneration suitability level across 

the harvested block, a weighted average for aspen regeneration (density, height, etc.) could be 

calculated. This calculation of aspen regeneration based on delineated regeneration suitability 

regions could help ensure that our current harvesting processes and practices are being conducted 

in a sustainable manner, as it offers a more in depth analysis of aspen regeneration across an entire 

harvested block rather than only assessing a small portion of the harvested block. 

5.7 Conclusion 

By combining PCA, PCR, fuzzy logic analysis, and GIS mapping, this is the first study to 

demonstrate a new and effective method that accounts for cumulative effects between a number of 

tree growth factors, which was developed and applied to assess regeneration of an aspen forest 

following winter harvest. This fuzzy logic cumulative effects assessment method offers industry 

and government agencies a new DSS tool with which they could adjust current regeneration 

assessment standards to assess aspen regeneration success across harvested blocks in a more 

detailed and comprehensive manner. 

The determination of regeneration suitability was highly dependent on the inclusion of 

vegetation indices as a predictor variable. These indices were important as they act as a surrogate 

measurement for the combined effects of several tree growth factors, including soil and climatic 

properties that cannot be measured cost-effectively across the entire harvested block. Through this 

new method, entire harvested blocks were able to be delineated into regions based on their 

regeneration suitability potential which allowed for a more targeted assessment of aspen 
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regeneration. It is unknown, however, as the forest matures whether the difference in aspen 

regeneration between suitability regions will remain the same and thus will require long-term 

monitoring to answer this question. Nevertheless, the successful demonstration of this 

comprehensive approach for aspen regeneration assessment holds great promise for improved 

forest sustainability monitoring that could be implemented across Canada. 
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6 GENERAL DISCUSSION AND SYNTHESIS 

The overall goal of this research project was to assess whether winter harvesting operations 

used for the old growth aspen forests in the Duck Mountain Provincial Park, SK is an ecologically 

sustainable practice to ensure successful aspen regeneration. Examination of skidder traffic, slash 

coverage, and their cumulative effects across the harvested landscape indicated that although 

certain areas within the harvested block experienced significantly more disturbance and less 

regeneration than others, the overall level of aspen regeneration across the harvested block was 

likely sufficient to ensure the continued health and productivity of the aspen forest.  The following 

discussion and synthesis will focus on exploring the key findings from the three research chapters 

and their implications on the ecological sustainability of these harvesting practices as well as 

explore how the forestry industry and government could use these findings to improve harvesting 

practices and regeneration assessment surveys.  

Machine traffic is one of the greatest sources of potential disturbance to forest soils and 

shallow rooting systems due to the size, weight, and repetitive movement of harvesting machinery. 

To mitigate this source of disturbance, especially on sensitive sites, forest companies often harvest 

during the winter as the soils are less prone to disturbance and compaction when they are frozen 

and covered by a protective layer of snow. However, examination of the effects of skidder traffic 

on soil bulk density in our study and others (Berger et al., 2004; Kolka et al., 2012) indicate that 

soils are still susceptible to a certain degree of disturbance. In our study, after 1 to 5 passes soil 

bulk density increased significantly compared to the unharvested control; however, bulk density 

ceased to increase as the level of skidder traffic intensity increased. Even under areas with the 

highest level of skidder traffic intensity, average soil bulk density was still well below a root 

growth-limiting threshold (Daddow and Warrington, 1983) and showed no relationship with the 
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level of aspen regeneration one year after harvest. These findings would suggest that winter 

harvesting was successful in mitigating potential adverse effects to soil bulk density caused by 

excessive machine traffic at this site; however, physical scarification and disturbance of the forest 

floor during harvest by machinery is still an issue of concern as damage to the aspen rooting system 

within the forest floor can lead to a decrease in regeneration (Lieffers-Pritchard, 2004; Renkeman, 

2009). 

Examination of aspen regeneration levels in relation to skidder traffic intensity indicates that 

winter harvesting was unable to mitigate the effects of skidder traffic intensity on aspen sucker 

density or height. Aspen sucker density was decreased by over 50% under areas with 51-100 passes 

compared to areas with 6-10 and 11-25 passes, while aspen height gradually decreased 

approximately 25 cm as the level of skidder traffic intensity increased from no passes to >100 

passes. As soil bulk density was found not to have an influence on the level of aspen regeneration, 

this suggested that the repetitive skidder traffic may have caused damage to the forest floor and 

aspen rooting system; therefore, resulting in the decreased level of aspen regeneration. As areas 

with high levels of skidder traffic and lower aspen regeneration were often associated with 

landings and skidder trails, harvesting operations should attempt to minimize these pockets of high 

traffic intensity to ensure the greatest level of regeneration. Although these areas with the highest 

level of skidder traffic (51-100 passes) had the lowest aspen sucker density, they still contained 

approximately 47,000 sucker ha-1 and only accounted for approximately 1% of the entire harvested 

block; therefore, it is unlikely that this reduction in first-year aspen regeneration will affect the 

sustainability of the future forest.  

Our examination of % slash coverage following winter harvesting indicated that the majority 

of the harvested blocks were covered with light slash (0-33% slash coverage) and therefore should 

not experience negative effects associated with heavy slash coverage. Areas with higher % slash 
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coverage (66-99%) only accounted for a very small portion of the overall harvested block and 

occurred mainly in clusters throughout the landing areas where trees were de-limbed and cut to 

length. As trees were de-limbed at centralized landing locations, this decreased the amount of slash 

being left in the harvested block but resulted in excess amounts of slash left in the processing areas. 

To deal with this excess slash, a portion of the slash is re-spread back into the harvested block 

while most is simply piled and burnt once dried. While the method of pile and burn helps to control 

the amount of slash being returned to the harvested block, Rhoades and Fornwalt (2015) found 

that in a lodgepole pine forest the effects of slash pile burning on the soil and vegetation not only 

drastically reduced the level of regeneration but the effects persisted for several decades. In aspen 

forests, it is likely that slash pile burning will have similar effects on the level of regeneration as 

the intense disturbance and heat will kill the underlying aspen rooting system. Without a valid 

rooting system for asexual regeneration, these areas then rely on seeds from the surrounding forest 

to be blown in; however, the large amounts of ash covering the soil is not a suitable environment 

for seedling germination and growth. As such, harvesting operations should focus on returning as 

much slash as possible back into the block and reducing the number of slash piles. Forest 

operations could also look at moving towards a method where delimbing occurs at the stump rather 

than at centralized landings, which would reduce the traffic at landings and reduce soil disturbance. 

Lastly, government and industry could examine the potential of finding alternative uses (i.e. 

bioenergy) for piled slash that does not meet the utilization standards for forest products as a means 

of reducing the amount of fibre being left in landing areas.  

No significant relationships were observed between slash coverage and the level of aspen 

regeneration. The increasing level of slash coverage did not have any negative effects on aspen 

sucker density, height, or root collar diameter. Although, it is important to note that the highest 

level of slash coverage observed at the monitoring plots was only 60%; it is unknown if aspen 
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regeneration would be adversely affected at higher slash levels. While several studies have 

developed or modified methods for assessing slash loading (Newman, 1966; McRae et al., 1979; 

Brown et al., 1982; Lieffers-Pritchard, 2004), little to no work has been done examining the 

potential of using UAV technology to assess slash across harvested blocks. This study was able to 

develop a method to estimate % slash coverage across a harvested block; however, further research 

is  needed to improve measurements of slash coverage/slash loading from UAV based aerial 

imagery. Future research should examine the potential of using high-resolution digital elevation 

models from imagery to measure the depth of slash loadings in addition to slash coverage as the 

depth of slash will greatly influence soil temperature regimes as well as act as a physical barrier to 

suckers growth.   

The use of vegetation indices to measure aspen density, height, root collar diameter, and LAI 

proved ineffective in this study. Unlike agroecosystems where multispectral remote sensing can 

easily be applied to assess the health and productivity of a monoculture crop, a forest ecosystem 

can be comprised of several species making it difficult to assess the regeneration of one species of 

interest such as aspen with multispectral remote sensing. Non-target species generate interference 

by amplifying reflectance signals making it impossible to accurately detect a single species and 

correlate the regeneration levels to vegetation index readings. However, vegetation indices are a 

useful tool for identifying which areas within the harvested blocks are experiencing regeneration 

and those that lack regeneration of any kind, allowing for the identification of potentially 

problematic locations within a block. Future research should examine the potential of using 

advanced image analysis techniques to discriminate between vegetation species in order to obtain 

species-specific reflectance information. If individual species-specific reflectance information 

could be obtained through multispectral analysis of UAV imagery and validated through field 

measurements,  then the development of relationships between aspen regeneration and vegetation 
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indices readings might be visible on a harvest block level that could be used as a tool for assessment 

of regeneration standards with aspen.  

Lastly, this research demonstrated how a method for the examination of cumulative effects 

from both environmental factors (climate, soil, slope, etc.) and anthropogenic factors associated 

with harvesting operations (traffic, slash, etc.) on a landscape scale could be developed. The 

method developed for this study is the first to use fuzzy logic analysis in combination with PCA 

and PCR analysis to assess regeneration suitability across harvested blocks. This new method 

allows us to not only examine which factors are most influential for determining the level of aspen 

regeneration success across a harvested block, but can also be used as a decision support system 

for industry or government to improve current planning, management, and regeneration 

assessment procedures.  

Examination of the regeneration predictor variables (traffic, slash, topographic wetness 

index (TWI), slope, etc.) across the four levels of aspen regeneration suitability indicated that areas 

with low regeneration suitability had significantly more skidder traffic and higher slash coverage 

compared to areas with high regeneration suitability. For winter harvesting operations, these 

findings re-enforce the importance of proper traffic distribution within the harvested block to 

minimize high traffic areas as well as ensure that slash is evenly distributed in order to ensure the 

highest level of aspen regeneration possible. The other factors (TWI, slope, aspect, and slope 

position) did not appear to have any significant effect on determining regeneration suitability.  

As vegetation indices are sensitive to not only the abundance of vegetation but the health of 

the vegetation as well, they are an important factor to include in the analysis of regeneration 

suitability. Across the landscape, changes to soil properties, environmental conditions, and the 

level of disturbance from harvesting will have an influence on the abundance and health of 

vegetation; therefore, in essence these vegetation indices act as a surrogate for factors that were 
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not or could not be measured for the entire harvested block. Thus, areas with higher vegetation 

index reading likely contain conditions that are more favorable for regeneration and growth 

compared to areas with low index readings. This notion was observed during the PCR analysis 

phase of our study as the first PC, which was largely influenced by the four vegetation indices, 

demonstrated a positive relationship with all aspen regeneration indicators (density, height, root 

collar diameter, LAI, and dry leaf biomass). Therefore, this phase of the analysis confirmed that 

areas with a higher vegetation index reading contained higher levels of aspen regeneration.  

Although, the examination of regeneration across suitability levels indicated that there were 

no significant differences in aspen suckering density or LAI, there were however significant 

reductions in sucker height, RCD, and dry leaf biomass in areas of low regeneration suitability 

compared to high suitability. This significant decrease in the size of aspen suckers may be the 

result of increased forest floor disturbance under areas of low regeneration suitability. The majority 

of aspen suckering occurs within the forest floor (Lieffers-Pritchard, 2004) and disturbance to the 

rooting system could result in suckering from roots deeper in the soil profile; therefore, shortening 

the first growing season as the length of time required for suckers to reach the soil surface in 

increased compared to suckers originating from within the forest floor. The increased amount of 

slash found in areas of low regeneration suitability may also be delaying soil warm up in the spring 

as Lieffers-Pritchard (2004) found that high slash loading on aspen sites in the Duck Mountains 

delayed spring thaw by 21-26 days which would therefore further reduce the growing season.  

Although harvesting during the summer and fall can lead to increased levels of disturbance 

to a site compared to winter harvesting (Bates et al., 1993; Berger et al., 2004), minimizing soil 

disturbance and ensuring proper slash distribution are still important for ensuring the sustainability 

of aspen forests following a winter harvesting event. Though increasing skidder traffic resulted in 

significantly higher soil bulk density and reduced levels of aspen regeneration after one summer 
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of growth following winter harvesting, it is uncertain whether this will lead to long-term effects as 

the forest matures. As areas that experienced the highest level of disturbance and a reduced level 

of regeneration only account for a very small portion (1-2%) of the harvest block, it is unlikely 

that these changes will have a drastic influence on the health and sustainability of the future forest. 

The soil bulk density in these areas remained below a root growth limiting level and still had a 

moderate level of aspen regeneration. Although slash coverage up to 60% did not have an effect 

on aspen regeneration, further research is needed to improve the use of UAVs and remote sensing 

as a method for the calculation of slash loading. Finally, the assessment of cumulative effects 

across a harvested block using PCA, PCR analysis, and fuzzy logic analysis is a new method for 

trying to better understand how different factors (natural and anthropogenic) interact and influence 

the level of regeneration following a harvesting event. This new method could offer industry and 

government an effective decision support system from which they will be able to gain a new level 

of knowledge from current harvesting operations to influence the planning and management of 

future harvesting operations and ensure the least unwanted disturbance occurs. This new method 

also offers forest industry and government a new strategy for delineating harvested blocks into 

smaller management regions to achieve a more detailed and holistic assessment of regeneration 

across entire harvested blocks. In conclusion, the information and knowledge gained through this 

research suggests that tree length winter harvesting is an ecologically sustainable practice for 

harvesting mature aspen stands in the Duck Mountain Provincial Park to ensure that aspen 

regeneration is adequate to maintain a healthy and productive aspen forest into the future.   
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Appendix A:  
Common names and Latin names of major early successional species 
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Table A-1: Common names and Latin names of major early successional species found across 
the harvested blocks in the Duck Mountain Provincial Park, SK. 

Common Name Latin Name 
Canopy Species 

Balsam Poplar Populus balsamifera 
Paper Birch Betula papyrifera 

Trembling Aspen Populus tremuloides 
Understory Species 

Aster Aster spp. 
Beaked Hazelnut Corylus cornuta 

Bunchberry Cornus canadensis 
Canadian Goldenrod Solidago canadensis 

Choke Cherry Prunus virginiana 
Dewberry Rubus pubescens 
Fairybells Prosartes trachycarpum 
Milkvetch Astragalus spp. 

Mountain Maple Acer spicatum 
Pin Cherry Prunus pensylvanica 

Prickly Rose Rosa acicularis 
Saskatoon Amelanchier alnifolia 

Spreading Dogbane Apocynum androseamifolium 
Sweet-Scented Bedstraw Galium triflorum 
Western Canada Violet Viola canadensis 

Wild Raspberry Rubus idaeus 
Wild Sarsparilla Aralia nudicaulis 
Wild Strawberry Fragaria virginiana 

Wood's Rose Rosa woodsi 
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Appendix B:  
Soil characteristics of the harvest blocks in the Duck Mountain Provincial Park
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Prior to analysis, all samples were air dried and sieved (2 mm) to remove any coarse 

fragments. Soil texture was determined using the modified pipette procedure developed by 

Indorante et al. (1990). Soil EC and soil pH were both determined using a 1:2 soil to water ratio 

(20 g soil: 40 ml distilled water) following the methods developed by Miller and Curtin (2008) 

and Hendershot et al. (2008), respectively. For the analysis of total soil carbon and nitrogen, a 

subsample was ball ground prior to analysis. Total soil carbon and total nitrogen was determined 

using a furnace combustion method with 0.25 g of soil and furnace temperature set to 1100 °C 

(Skjemstad and Baldock, 2008).  
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Hendershot, W.H., H. Lalande, M. Duquette. 2008. Soil reaction and exchangeable acidity. p. 
173-178. In Carter, M.R., Gregorich, E.G. (eds.), Soil sampling and methods of analysis. 2nd 
ed. Taylor & Francis Group. 

Indorante, S.J., R.D., Hammer, P.G., Koenig, L.R., Follmer. 1990. Particle-size analysis by a 
modified pipette procedure. Soil Sci. Soc. Am. J. 54. 560-563.  

Miller, J.J., D. Curtin, 2008. Electrical conductivity and soluble ions. p. 161-171. In Carter, 
M.R., Gregorich, E.G. (eds.), Soil sampling and methods of analysis. 2nd ed. Taylor & 
Francis Group. 

Skjemstad, J.O., J.A., Baldock. 2008. Total and Organic Carbon. p. 225-237. In Carter, M.R., 
Gregorich, E.G. (eds.), Soil sampling and methods of analysis. 2nd ed. Taylor & Francis 
Group. 
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Appendix C:  
Weather during winter and summer 
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All weather data was collected using Environment Canada Historical Weather Data from 

both the Pelly 2 (Climate ID # 4086001) and Swan River RCS (Climate ID # 504K80K) weather 

stations. All values represented below are an average between the two weather stations. 

 

Environment Canada, 2018. Historical Climate Data [Online]. Available at 
http://climate.weather.gc.ca/ (accessed January 2018). Government of Canada, Ottawa, ON. 
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Fig. C-3: Total precipitation (rain and snow) by month between November 1, 2015 and October 
31, 2016 in the Duck Mountain Provincial Park area based on data collected from Environment 
Canada (Pelly 2 Climate ID #4086001 and Swan River RCS Climate ID # 504K80K). 
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Fig. C-4: Total precipitation (rain and snow) by month between November 1, 2016 and October 
31, 2017 in the Duck Mountain Provincial Park area based on data collected from Environment 
Canada (Pelly 2 Climate ID #4086001 and Swan River RCS Climate ID # 504K80K). 
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Fig. C-5: Depth of snow on the ground between November 1, 2015 and April 30, 2016 in the 
Duck Mountain Provincial Park area based on data collected from Environment Canada (Pelly 2 
Climate ID #4086001 and Swan River RCS Climate ID # 504K80K). 

Fig. C-6: Depth of snow on the ground between November 1, 2016 and April 30, 2017 in the 
Duck Mountain Provincial Park area based on data collected from Environment Canada (Pelly 2 
Climate ID #4086001 and Swan River RCS Climate ID # 504K80K). 
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Appendix D:  
Traffic Intensity Maps 
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Fig. D-1: Skidder traffic intensity distribution across harvested block 1. 
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Fig. D-2: Skidder traffic intensity distribution across harvested block 2. 
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Fig. D-4: Skidder traffic intensity distribution across harvested block A. 
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Fig. D-5: Skidder traffic intensity distribution across harvested block B. 
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Appendix E:  
Slash Coverage
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Fig. E-1: Percent slash coverage across harvested block 1. 
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Fig. E-2: Percent slash coverage across harvested block 2. 
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Fig. E-4: Percent slash coverage across harvested block A. 
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Fig. E-5: Percent slash coverage across harvested block B. 
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Appendix F:  
Fuzzy Logic Suitability Outputs
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Fig. F-1: Regeneration suitability across harvested block A. 
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Fig. F-2: Regeneration suitability across harvested block B. 
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