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1. Introduction 
Single file diffusion (SFD) is a one dimensional process, in which no mutual passage 

of the diffusing particles is allowed. In a recent paper [1] an interpretation of the SFD of 
water in the narrow straight channels of two different zeolites, as simulated by Molecular 
Dynamics calculations, was attempted within the fractional diffusion theory, which stems 
from the Continuous Time Random Walk (CTRW) scheme [2]. It was shown that, 
although some features of SFD, such as the dependence of the Mean Square 
Displacement (MSD) of a tagged particle on the square root of time was reasonably well 
reproduced, the functional form of the propagator expected from fractional diffusion 
equations did not correspond to that derived from the simulations, but agreed (only for 
long times) with the asymptotic behaviour resulting from statistical considerations [3].  

In the present contribution the theoretical models proposed to describe SFD are 
considered and compared with the simulation data in more detail. Some suggestions are 
put forward, which could be useful in order to develop a satisfactory theory for SFD.  

2. Experiments, numerical simulations and theoretical models 
In the modelling of diffusive processes, the propagator (i.e., the probability ( )t,rW  of 

finding a particle in the position r at the time t) contains all the relevant information about 
the process itself. A satisfactory theory of diffusion should yield a mathematical method 
(possibly an equation or an equation system) for evaluating the propagator of a system 
given its characteristics and the applied boundary conditions. For normal diffusion the 
propagator is represented by a Gaussian function with second momentum proportional to 
time. For SFD, from statistical theories the following form of time asymptotic propagator 
for an infinite system of fixed density ρ results: [3] 
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where D0 is the diffusion coefficient the particle would have if it were the only particle in 
the infinite one-dimensional system. In order to fit experimental MSDs of silica colloid 
spheres suspended in water and confined in straight and narrow grooves, Lin et al. [4] 
proposed a general Gaussian form of the propagator and an ansatz was to describe the 
MSD over the entire time range (F is the single file mobility factor): 
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Although Eq. (2) fitted reasonably the experimental MSDs reported in Ref. [4], it was not 
able to fit satisfactorily the propagators derived from our simulations. The fractional 
diffusion theory, as well as the CTRW models, does not take into account correlation of 
noise that, instead, appears to be the responsible for the achievement of the subdiffusivity 
in SF systems [6]. Such slow decaying power-law correlations can be introduced in the 
dynamics of a SF system through the Generalized Langevin Equation [5]  
  ( ) ( ) ( )t'tx'tt'dtx

t
ξ=−β+ ∫0 ,                (3) 

setting the memory kernel ( ) ( )[ ]2121 tt d Γγ=β , being 231 dd τ=γ , where τd is the 
average time needed for a pair of particle to collide against its neighbours [8]. Thus the 
motion of a particle can be ruled by two different Langevin equations each one pertaining 
to different diffusional stages it exhibites during its motion: 
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where γ is a damping constant. The second of (4) is often called Fractional Langevin 
Equation [9]. Both noises in (4) satisfy the Generalized Fluctuation-Dissipation Theorem: 
( ) ( ) ( )τβ=ξτ+ξ kTtt  and the velocity autocorrelation function ( )tCv turns out to 

reproduce exactly the numerical and analytical results given in [6]. From the dynamical 
representation of the motion given by (4) it is easy to pass to a probabilistic picture in 
terms of the diffusion equation for the propagator: 
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It is easy to recognize in the second of (5) the diffusion equation for Fractional Brownian 
Motion (FBM) [7], whose solution is a Gaussian as Eq. (1) with variance tF2 . 

3. Conclusion 
In conclusion we showed how the single file diffusion can be understood by means of 

the GLE and the related diffusion equation for FBM. However, the connection between 
the two diffusive regimes has to be still demonstrated, as a change in the time dependence 
of ( )tCv  corresponds to a change of timescales and noise amplitudes appearing in (4).  
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