
On the Satisfiability of Temporal Logics
with Concrete Domains

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTATION

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

(Dr. rer. nat.)

im Fachgebiet

INFORMATIK

vorgelegt

von Claudia Carapelle

geboren am 15. Mai 1985 in Fiesole (Italien)

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. rer. nat. habil. Markus Lohrey, Universität Siegen

2. Prof. Dr. rer. nat. habil. Carsten Lutz, Universität Bremen

Die Verleihung des akademischen Grades erfolgt mit Bestehen der

Verteidigung am 04.11.2015 mit dem Gesamtprädikat magna cum laude.

First of all I would like to thank my supervisor, Markus Lohrey. I am ex-
tremely lucky to have had the opportunity to work with such an exceptional
scientist, who is at the same time always friendly and patient. Thank you for
your guidance.

Another big thanks goes to Alexander Kartzow, my unofficial co-supervisor,
who more than once gave me the right tip to get out of a dead end, who signif-
icantly improved my LATEXing style, but most of all, who was always ready to
spend some time discussing ideas with me and brainstorming at the white board.

I would also like to thank Prof. Carsten Lutz for reviewing this thesis and for
his kind words of appreciation.

I am also very grateful to Karin, Shiguang and Oliver. Working together I
learned from all of you, and had a lot of fun in the process.

Atefeh, Eric and Vitaly, it was a pleasure to share the office life with you.
Whether it was automata, German bureaucracy, or simply moral support, you
were always there for me.

Thank you Giovanni, for being my rock these past three years, for listening
about a thousand times to all of my talks, and for bringing the sunshine with you
wherever you go.

Thank you family for supporting me, encouraging me, and believing in me in
the pure and total way that just a family can.

This work is dedicated to my grandparents. Their memory is forever deeply
embedded in my heart, as are all the things they taught me and the way that
they always made me feel so loved and protected.

Contents

1 Introduction 5
Linear Time Temporal Logic with Constraints 5
Branching Time Temporal Logic with Constraints 7
Contributions of the Thesis . 8
Non Local Constraints . 10
Related Work . 11

2 Preliminary Notions 12
2.1 Structures . 12
2.2 Trees and Paths . 14
2.3 MSO and WMSO+B . 16
2.4 Bool(MSO,WMSO + B) and the k-Copy Operation 19
2.5 Temporal Logics . 22

3 ECTL∗ with constraints 24
3.1 Constraint Path MSO (CMSO) . 24
3.2 Constraint ECTL∗ (CECTL∗) . 26
3.3 CECTL∗ has the Tree Model Property 29

4 Satisfiability of CECTL∗ 34
4.1 The EHD-Property . 34
4.2 The EHD Method . 35

4.2.1 The EHD Method for Classes of Structures 45

5 Concrete domains over the integers 47
5.1 Z with Order-Constraints . 47
5.2 Z with Order- and Equality-Constraints 51
5.3 Adding Unary Predicates . 53
5.4 Expansions of Z that satisfy Conditions (C1) and (C2) 60
5.5 A Concrete Domain over Q . 62

3

6 “Tree-Like” Concrete Domains 63
6.1 “Tree-like” Structures . 65
6.2 The EHD-Property for Semi-Linear Orders 66
6.3 The EHD-Property for Ordinal Trees 71
6.4 The EHD-Property for Trees of Fixed Height 73
6.5 Trees do not have the EHD-Property 75

6.5.1 The WMSO+B-Ehrenfeucht-Fräıssé-Game 75
6.5.2 Two Structures that WMSO+B cannot Distinguish 78
6.5.3 Duplicators Strategies in the k-Round Game 81

7 Extensions 88
7.1 Existential Interpretation Preserves Satisfiability 88
7.2 Finite Satisfiability . 89
7.3 A generalization of the EHD-method 92

8 Adding Non-Local Constraints 94
8.1 Undecidability of LTL with Non-Local Constraints 95
8.2 Regaining Decidability by Restricting the Use of Non-Local Con-

straints . 101

9 Conclusion and Final Remarks 109

4

Chapter 1

Introduction

Temporal logics are a very popular family of logical languages, used to specify
properties of abstracted systems. Since the first appearance of linear temporal
logic, better known as LTL [36], temporal logics have been intensively studied,
and have become some of the most prominent specification languages used in
verification and model checking.

In the last few years, many extensions of temporal logics have been proposed
in order to address the need to express more than just abstract properties, see
for instance [2, 4, 19, 20, 46]. In some of these studies we can find languages
which allow to reason about time intervals, space regions, data values from dense
domains like the real numbers or discrete domains like the integers or natural
numbers.

Linear Time Temporal Logic with Constraints.
A general approach to creating such formalisms is described in [17] by Demri and
D’Souza. Here they show how to extend LTL with the ability to express properties
of data values from an arbitrary relational structure D = (D,R1, . . . , Rn), con-
sisting of a domain D and relations R1, . . . , Rn, and often called concrete domain.
An example of concrete domain can be (Z, <), where the integers are considered
as a relational structure over the binary order relation < = {(a, b) ∈ Z2 | a < b}.
The approach from [17] is also used in the field of description logics (DLs), where
Baader and Hanschke first described a way to integrate arbitrary concrete do-
mains into the knowledge-representation language ALC [3].

The logic defined in [17] is called Constraint-LTL, abbreviated to CLTL. The
idea behind this language is the following: For a fixed relational structure D =
(D,R1, . . . , Rn) one adds to standard LTL atomic formulas of the form

R(Xi1x1, . . . ,X
ikxk) (1.1)

called atomic constraints. Here, R is (a name of) one of the relations of the domain

5

D, i1, . . . , ik ≥ 0, and x1, . . . , xk are variables that range over D, the universe of
D. A CLTL-formula containing such constraints is interpreted over (generally
infinite) words, where in addition every position of the word associates with each
of the variables x1, . . . , xk an element of D (one can think of D-registers attached
to the system states). Such models are also known as multi-data words, and if
one ignores the atomic propositions (which can be most of the times simulated
using data values) and fixes a finite number of variables, they can be seen as
infinite sequences of vectors of values from D.

A constraint R(Xi1x1, . . . ,X
ikxk) holds in a multi-data word w = s0s1s2 . . . if

the tuple (a1, . . . , ak), where aj is the value of variable xj at state sij , belongs to
the D-relation R. In this way, the values of variables at different system states
can be compared. For example, one might choose as domain D the structure
(Z, <,≡, (≡a)a∈Z), where < is the order relation defined above, ≡ is the equality
relation1 and ≡a is the unary predicate that only holds for a. This structure
has infinitely many relations, which is not a problem with respect to satisfiability
because any formula can only use finitely many of those predicates. Then, one
might for instance write down a formula (x < X1y)U (y ≡ 100) which holds on a
multi-data word if and only if there is a position where variable y holds the value
100 and for all previous positions t, the value of x at time t is strictly smaller
than the value of y at time t+ 1.

Balbiani and Condotta [4] proved a general decidability result for CLTL with
constraints over all concrete domains D satisfying certain properties:

(i) the relations of D are binary, pairwise disjoint and their union covers D×D,
where D is the universe of D, and

(ii) for all finite and consistent sets of constraints, any partial solution (variable
valuation satisfying the constraints) can be extended to a global solution.

For these domains, the satisfiability problem for CLTL is proven to be PSPACE-
complete, that is, it has the same complexity of satisfiability for LTL without
constraints. Instances of domains with the above properties are (D,<,=, >)
with D = R or D = Q, and (R2, sw, s, se, w, e, nw, n, ne,=), where the nine
relations illustrate the mutual position of two points in the Cartesian plane (eg.
(a, b) sw (c, d) iff a < c and b < d). In these cases, the dense structure of the real
and rational numbers is fundamental to prove property (ii), and in fact the domain
(Z, <,=, >) does not satisfy such condition. This originated the question whether

1The reader might be surprised by the fact that we denote the equality relation with ≡. The
reason is that later we have to consider relational structures over the same signature, where ≡
is not necessarily interpreted as the equality relation. To avoid confusion, we have decided to
use the symbol ≡ for the equality relation as part of relational structures.

6

CLTL with constraints over the integers would still be decidable, a question which
was investigated in [16, 17, 19].

In [19], Demri and Gascon studied LTL extended with constraints from a
language IPC∗. If we disregard succinctness aspects, the logic is equivalent to
CLTL with constraints over the structure

Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b), (1.2)

where ≡a,b denotes the unary relation {a+xb | x ∈ Z} (expressing that an integer
is congruent to a modulo b). The main result from [19] states that satisfiability
of CLTL with constraints over Z is decidable and in fact also PSPACE-complete.
We should remark that the PSPACE upper bound from [19] even holds for the
succinct IPC∗-representation of constraints used in [19].

The study of temporal logics with constraints over the integers is partly
motivated by the idea of analyzing counter systems. To this end it would be
extremely useful to add successor constraints (y = x + 1) to Z. Unfortu-
nately this quickly leads to undecidability [17]. Nonetheless Z allows qualita-
tive representation of increment, for example x = y + 1 can be abstracted by

(y > x)∧
∨2k−1
i=−2k(≡i,2k(x)∧≡i+1,2k(y)) where k is a large natural number. This is

why temporal logics extended with constraints over Z seem to be a good compro-
mise between (inexpressive) total abstraction and (undecidable) high concretion.

Branching Time Temporal Logics with Constraints.
In the same way as outlined for LTL above, constraints can be also added to
branching-time logics as CTL∗ (computation tree logic) and even ECTL∗ (extended
computation tree logic), obtaining CCTL∗ and CECTL∗, respectively. In this
framework, formulas are interpreted over decorated Kripke structures, where each
node (state) carries a valuation for the register variables used in the atomic
constraints R(Xi1x1, . . . ,X

ikxk). The latter become then atomic path formulas,
interpreted on infinite paths of decorated Kripke structures.

A weak form of CCTL∗ with constraints from Z (where only integer variables
at the same state can be compared) was first introduced in [13], where it is used
to describe properties of infinite transition systems, represented by relational
automata. It is shown in [13] that the model checking problem for CCTL∗ over
relational automata is undecidable.

Demri and Gascon [19] asked whether satisfiability of CCTL∗ with constraints
from Z over decorated Kripke structures is decidable. This problem was inves-
tigated in [7, 25], where several partial results where shown: If we replace in Z
the binary predicate < by unary predicates <c = {x | x < c} for c ∈ Z, then
satisfiability of CCTL∗ has been shown decidable by [25]. For the full structure
Z satisfiability has been shown to be decidable for CEF+, a fragment of CCTL∗

which contains both the existential and universal fragment of CCTL∗, see [7].

7

Later in [8] Bozzelli and Pinchinat proved that satisfiability of the existential and
universal fragment of CCTL∗ over the domain (Z,≡, <) are PSPACE-complete.

Contributions of the Thesis.
In [11] we settle the question positively, and prove that CCTL∗ with constraints
over Z is decidable. We then lift this result to ECTL∗ [12], a proper extension of
CTL∗ (see [39, 41]) in which the CTL∗ path formulas are replaced by the set of
all regular properties of paths, represented by Büchi-automata or MSO-formulas.

The method that we use to obtain the results from [11, 12] is divided into
two steps: Firstly we individuate sufficient conditions on a relational structure D
which guarantee that satisfiability of CECTL∗ with constraints over D has a de-
cidable satisfiability problem. Secondly, we prove that Z enjoys these properties,
at which point our main result follows.

More specifically, we prove the following result, which will be explained in
detail in the sequel:

Result 1 (Thm. 4.7) Let σ be a countable relational signature, and let D be a
σ-structure which:

• is negation-closed, and

• has the property EHD(Bool(MSO,WMSO+B)).

Then satisfiability of CECTL∗ with constraints over D is decidable.

By negation-closed, we mean that the complement of any of the relations from
σ has to be definable in positive existential first-order logic over D. For instance
(Z,=, <) is negation-closed, because ¬x < y iff (x = y ∨ y < x) and ¬x = y iff
(x < y ∨ y < x). Negation closure is needed in order to achieve a strong kind of
negation normal form, in which the constraints only appear in a positive form.

The second condition, the EHD-property, expresses the fact that we can pro-
vide a characterization of all structures which allow a homomorphism into D
using a suitable logical language. More precisely, we say that D has the property
EHD(L) for some logic L if and only if there exists an L-sentence ϕD such that
for any σ-structure2 A

∃h : A → D homomorphism ⇐⇒ A |= ϕD .

In Result 1 we use L = Bool(MSO,WMSO+B) (in short BMW), which is formed
by all boolean combinations of MSO and WMSO+B sentences. WMSO+B is the
extension of weak monadic second-order logic (where only quantification over
finite subsets is allowed) with the bounding quantifier B: A formula BX ϕ holds

2For simplicity we are assuming here that σ is finite, we postpone the general definition to
Section 4.1.

8

in a structure A if and only if there exists a bound b ∈ N such that for every
finite subset B of the domain of A with A |= ϕ(B) we have |B| ≤ b. We use
this property to reduce the satisfiability problem of CECTL∗ to satisfiability of
BMW over infinite node-labeled trees. Recently, Bojańczyk and Toruńczyk have
shown that satisfiability of WMSO+B over infinite node-labeled trees is decidable
[5]. Fortunately, the decidability proof for WMSO+B can be extended to BMW
(cf. Section 2.3).

Using Result 1 we can prove:

Result 2 (Thm. 5.2) Satisfiability of CECTL∗ with constraints over the concrete
domain Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) is decidable.

To show this we only need to prove that Z is negation-closed (Ex. 4.6), and
has the property EHD(BMW) (Prop. 5.1). Our proof that Z has the property
EHD(BMW) actually only needs rather weak assumptions on the unary predicates
(which are satisfied for the unary relations ≡a and ≡a,b), see Section 5.3.

We call what we described above the EHD-method : Given any concrete do-
main D, it is enough to prove that it is negation-closed and that it enjoys the
property EHD(BMW) to obtain that satisfiability of CECTL∗ over D is decidable.
This is a rather general method, and the question comes naturally, whether we
can apply this result to other domains.

An interesting candidate in this context (as mentioned in [19]) is the infinite
order tree T∞ = (N∗, <,⊥,≡), where < denotes the prefix order on N∗ and ⊥
denotes the incomparability relation with respect to < (we add the incompara-
bility relation ⊥ in order to obtain a negation-closed structure). Unfortunately
we proved in [10] that T∞ does not satisfy the property EHD(BMW). Using an
Ehrenfeucht-Fräıssé-game for WMSO+B we obtain the following:

Result 3 (Thm. 6.1) There is no BMW-sentence ψ such that for every countable
structure A (over the signature {<,⊥,=}) we have: A |= ψ if and only if there
is a homomorphism from A to T∞.

In other words, BMW is not expressive enough to distinguish between those
{<,⊥,=}-structures which allow a homomorphism to the infinite order tree and
those who do not.

This shows that the EHD-method cannot be applied to the concrete domain
T∞ (equivalently, to the infinite binary tree), but it does not imply that satis-
fiability for CECTL∗ with constraints over T∞ is undecidable. In fact a recent
work from Demri and Deters established decidability of satisfiability for CCTL∗

with constraints over T∞ and PSPACE-completeness of the corresponding CLTL-
fragment [18]. The result is actually proved for a richer logic, which allows to
compare the length of the longest common prefix for pairs of elements from T∞.
Decidability is obtained by a reduction to the satisfiability problem of CLTL and

9

CCTL∗ over the domain (N,≡, <, (≡a)a∈N), which were proved decidable in [19]
and [11] respectively. We believe that their result can be extended to CECTL∗,
see Remark 6.2.

Despite the fact that the EHD-method fails on T∞, we discovered that it
can be applied to other tree-like structures, such as semi-linear orders, ordinal
trees, and infinitely branching trees of a fixed height. Semi-linear orders are
partial orders that are tree-like in the sense that for every element x the set of
all smaller elements ↓x forms a linear suborder. If this linear suborder ↓x is an
ordinal (for every x) then one has an ordinal tree. Ordinal trees are widely studied
in descriptive set theory and recursion theory. Note that a tree is a particular
instance of a semi-linear order which has a smallest element and where for every
x the set ↓x is finite.

In the integer-setting we investigated satisfiability for CECTL∗-formulas with
constraints over one fixed structure D. For semi-linear orders and ordinal trees
it is more natural to consider satisfiability with respect to a class of concrete
domains Γ (over a fixed signature σ): The question becomes, whether for a given
CECTL∗ formula ϕ there is a concrete domain C ∈ Γ such that ϕ is satisfiable by
some decorated Kripke structure with concrete values from C. If a class Γ has a
universal structure3 U , then satisfiability with respect to the class Γ is equivalent
to satisfiability with respect to U because obviously a formula ϕ has a model
with some concrete domain from Γ if and only if it has a model with concrete
domain U . A typical class with a universal model is the class of all countable
linear orders, for which (Q, <) is universal. Similarly, for the class of all countable
trees the tree T∞ as well as the binary infinite tree are universal.

Application of the EHD-method to semi-linear orders and ordinal trees gives
the following decidability results:

Result 4 (Thm. 6.3) Satisfiability of CECTL∗ with constraints over each of the
following classes is decidable:

(1) the class of all semi-linear orders,

(2) the class of all ordinal trees, and

(3) for each h ∈ N, the class of all order trees of height h.

Non Local Constraints.
Notice that the constraints of the form R(Xi1x1, . . . ,X

ikxk) which we consider in
our logic are local, in the sense that they can compare data-values in an n-sized
neighborhood of the state in which they are evaluated, where n = max{i1, . . . , ik}.

3A structure U is universal for the class Γ if (i) U ∈ Γ and (ii) there is a homomorphic
embedding of every structure from Γ into U .

10

Other proposed extensions of temporal logics have the ability to compare data-
values at arbitrary distance. Metric temporal logic (MTL), or FreezeLTL are
two prominent examples of such logics (see [2, 20]). In [17], Demri and D’Souza
ask whether satisfiability of CLTL with constraints over the integers is preserved
when adding non-local constraints of the form x = Fy, stating that there exists a
future state where the value of y matches the current value of x. We answer this
question negatively:

Result 5 (Thm. 8.2) Satisfiability for CLTL with constraints over (Z,=, <) and
non-local constraints of the form x = Fy is undecidable.

At the same time, we show that it is possible to add non-local constraints
involving the order relation, and maintain decidability:

Result 6 (Thm. 8.7) Satisfiability for CLTL with constraints over Z from (1.2)
on page 7 and non-local order constraints of the form x < Fy or Fx < y is
decidable and PSPACE-complete.

Related Work.
In the area of knowledge representation, extensions of description logics with con-
straints on different concrete domains have been intensively studied, see [31] for
a survey. In [32], it was shown that the extension of the description logic ALC
with constraints from (Q, <,≡) has a decidable (EXPTIME-complete) satisfiabil-
ity problem even in the presence of general TBoxes. A TBox can be seen as a
second ALC-formula that has to hold in all nodes of a model. Our decidabil-
ity proof is partly inspired by the construction from [32], which in contrast to
our proof is purely automata-theoretic. Further results for description logics and
concrete domains can be found in [33, 34].

There are other extensions of temporal logics that allow to reason about struc-
tures with data values, especially in the linear time setting. Logical languages like
MTL [29, 2] and TPTL [1] are extensions of LTL often used to specify properties
of timed words, i.e. data words over the real numbers in which the data sequence
is monotonically growing, or monotonic data words over the natural numbers.
These logics have however also received some attention on non-monotonic data
words [9, 24]. In general, as soon as one drops the monotonicity requirements,
satisfiability for these logics becomes undecidable and research has been con-
centrating on some decidable fragments. An example is freezeLTL, a syntactical
restriction of TPTL that has the ability to check data values only for equality.
Satisfiability for freezeLTL has been shown to be decidable over finite data words,
but undecidable over infinite data words [20]. In contrast to CLTL, the constraints
of freezeLTL are of the global kind.

11

Chapter 2

Preliminary Notions

We abbreviate the set {1, . . . , d} by [1, d]. For a function η : A→ B and elements
a ∈ A and b ∈ B, η[a 7→ b] indicates the function that maps a to b and otherwise
coincides with η.

2.1 Structures

Let us fix from now on a countably infinite sets of atomic propositions P and a
countably infinite set of register variables Reg = {r1, r2, . . . }.

Definition 2.1. A Kripke structure (KS) over P is a triple K = (S,→, ρ),
where:

(i) S is an arbitrary set of nodes,

(ii) → ⊆ S × S is a binary relation such that for each u ∈ S there is a v ∈ S
with u→ v, i.e., (S,→) is a directed graph without dead ends, and

(iii) ρ : S → 2Pfin is a labeling function that assigns to every node a finite set
of atomic propositions such that

⋃
v∈S ρ(v) is finite, i.e., only finitely many

propositions appear in K.

Example 2.2. In Figure 2.1 we draw two examples of Kripke structures. K1 =
(S,→, ρ) is a finite KS with domain S = {v1, v2, v3, v4}, the binary relation →
consisting of {(v1, v2), (v2, v3), (v2, v4), (v3, v4), (v4, v1)} and labeling function ρ
defined as ρ(v1) = {p}, ρ(v2) = {p, q}, ρ(v3) = {q} and ρ(v4) = ∅.
K2 has for domain the infinite set of finite binary words T = {0, 1}∗, while

the binary relation→ is defined as w1 → w2 if and only if w2 = w10 or w2 = w11.
The labeling function is defined as ρ(ε) = {p}, and ρ(0w) = {q0}, ρ(1w) = {q1}
for all w ∈ {0, 1}∗.

12

Figure 2.1: We draw here two examples of Kripke structures.

Definition 2.3. A (relational) signature σ is a countable (finite or infinite)
set of relation symbols. Every relation symbol R ∈ σ has an associated arity
ar(R) ≥ 1.

A σ-structure is a pair A = (A, I), where A is a non-empty set (the universe
of the structure) and I (the interpretation function) maps every R ∈ σ to an
ar(R)-ary relation over A.

Example 2.4. A simple example of {<}-structure is (Z, I), where I(<) is, as
expected, the set of pairs of elements of Z in which the first component is smaller
than the second, i.e. I(<) = {(a, b) ∈ Z2 | a < b}.

Quite often, we identify the relation I(R) with the relation symbol R, and we
specify a σ-structure as (A,R1, R2, . . .) where σ = {R1, R2, . . .}. In the example
above, then, we would simply write (Z, <).

Given A = (A,R1, R2, . . .) and given a subset B ⊆ A, for each Ri we define
Ri�B = Ri ∩ Bar(R) to be the restriction of Ri to Bar(Ri). We write A�B for the
induced substructure (B,R1�B, R2�B, . . .).

Example 2.5. Let A = (Z, <) be the structure from Example 2.4, then A�N =
(N, <�N), is the obvious {<}-structure on the natural numbers.

Definition 2.6. For a subsignature τ ⊆ σ, a τ -structure B = (B, J) and a σ-
structure A = (A, I), a homomorphism from B to A is a mapping h : B → A
such that for all R ∈ τ and all tuples (b1, . . . , bar(R)) ∈ Bar(R) we have

(b1, . . . , bar(R)) ∈ J(R)⇒ (h(b1), . . . , h(bar(R))) ∈ I(R) .

We write B � A if there is a homomorphism from B to A. Note that we do not
require this homomorphism to be injective.

13

Figure 2.2: A decorated Kripke structure K.

We now introduce decorated Kripke structures. These are two-sorted objects
where one part is a Kripke structure and the other part is some σ-structure called
the concrete domain. The two parts are connected by a valuation function.

Definition 2.7. AD-decorated Kripke structure K is a tuple (D,K, γ) where:

• D = (D, I) is a σ-structure (the concrete domain),

• K = (S,→, ρ) is a Kripke structure (called the underlying Kripke struc-
ture of K), and

• γ : S × Reg → D is a valuation function, assigning values from the
concrete domain to each variable from Reg in each node of the Kripke
structure.

We can imagine such objects as Kripke structures where each node v, in
addition to carrying atomic propositions, also holds a (possibly infinite) vector
(a1, a2, . . .) of values from the concrete domain D, namely (γ(v, r1), γ(v, r2), . . .),
the values assigned in v to all register variables r1, r2, . . .∈ Reg from the valuation
function γ. For brevity, we will usually call K a D-Kripke structure, or a D-KS.

Example 2.8. In Figure 2.2 we draw a D-Kripke Structure K, where D is some
relational structure over the set of integers. Here we suppose that the set of
register variables Reg is a finite set {r1, r2, r3}. The underlying KS is K1 from
Example 2.2, and the valuation function γ on the node v1, for instance, assigns
γ(v1, r1) = 1, γ(v1, r2) = 0 and γ(v1, r3) = −2.

2.2 Trees and Paths

Definition 2.9. A Kripke tree is a particular instance of a Kripke structure of
the form T = (S,→, ρ), where (S,→) is a rooted tree, that is:

14

• S ⊆ Σ∗ is a prefix-closed set of strings over some alphabet Σ, and

• u→ v if and only if v = ua for some a ∈ Σ.

If S = [1, n]∗ for n ∈ N, we say that T is a Kripke n-tree. If moreover n = 1
then we have a Kripke path (KP) P = (N,→, ρ) where → is the successor
relation on the natural numbers.

Definition 2.10. We call a D-Kripke structure T = (D, T , γ) a D-Kripke tree
(D-KT), a D-Kripke n-tree or a D-Kripke path (D-KP) if its underlying
Kripke structure T is a Kripke tree, a Kripke n-tree or a Kripke path, respectively

Remark 2.11. A Kripke path is nothing but a word over the alphabet 2Pfin, con-
sisting of all finite subsets of P. A word is more frequently represented by the
sequence of labels of its nodes, in this case ρ(1)ρ(2)ρ(3)

If the set of registers is finite, Reg = {r1, . . . , rn} , then a D-Kripke path is
exactly what we called a multi-data word in the introduction (page 6). We can
see it as a sequence of pairs:

(l0, ~v0)(l1, ~v1)(l2, ~v2) . . .

where for each i ∈ N, li = ρ(i) is the node-label at state i and ~vi is the n-
vector of data values from D assigned by γ to r1, . . . , rn at state i, namely ~vi =
(γ(i, r1), . . . , γ(i, rn)).

Definition 2.12. Given a Kripke structure K = (S,→, ρ), an infinite path is
an infinite sequence P = s0s1s2 · · · such that si ∈ S and si → si+1 for all i ≥ 0.
For i ≥ 0 we define the node P (i) = si. A finite path is a finite non-empty
prefix of an infinite path.

Definition 2.13. For s ∈ S, the unfolding of K from s, denoted by Unf(K, s),
is the Kripke tree T = (T,→′, ρ′) where

• T is the set of finite paths P with P (0) = s,

• →′ is defined to be the extension of paths by a single edge, i.e., for finite
paths P1 and P2 from T we have P1 →′ P2 iff P2 = P1s

′ for a node s′ ∈ S,
and

• ρ′ is given by “last-node semantics”, i.e., for every s0s1 · · · sn ∈ T we set
ρ′(s0s1 · · · sn) = ρ(sn).

The unfolding of a Kripke structure naturally lifts to decorated KSs.

15

Definition 2.14. Let K = (D,K, γ) be a D-Kripke structure with underlying KS
K = (S,→, ρ) and let s ∈ S. We denote by Unf(K, s) the D-Kripke tree (D,K′, γ′)
with underlying Kripke tree K′ = Unf(K, s), and valuation function γ′ defined
again by the last node semantics γ′(s0s1 · · · sn, r) = γ(sn, r) for all finite paths
s0s1 · · · sn with s0 = s and for all r ∈ Reg.

Remark 2.15. Given a Kripke Structure K and an infinite path P = s0s1s2 · · · ,
this identifies a substructure of Unf(K, s0) induced by the finite non-empty pre-
fixes of P . Thus, P naturally induces a Kripke path Unf(K, s0)�P , which we
usually denote by P.

For a D-Kripke structure K = (D,K, γ), P also induces a D-Kripke path
P = (D,P, γ′) in K, where γ′ is obtained by restricting γ to the elements of P.
We call it the D-Kripke path corresponding to P . Note that every D-KP in K is
an induced subgraph of the unfolding of K from some node s.

We lift the position notation for paths to Kripke paths and decorated Kripke
paths by setting P(i) = P(i) = si for all i ≥ 0.

2.3 MSO and WMSO+B

Throughout this work, we fix countably infinite sets Vel and Vset of element
variables and set variables, respectively.

Monadic second-order logic (MSO) is the extension of first-order logic
where also quantification over subsets of the underlying structure is allowed. Let
us fix a signature σ.

Definition 2.16 (MSO Syntax). MSO-formulas over the signature σ are defined
by the following grammar, where R ∈ σ, x, y, x1, . . . , xar(R) ∈ Vel and X ∈ Vset:

ϕ ::= R(x1, . . . , xar(R)) | x = y | x ∈ X | ¬ϕ | (ϕ ∧ ϕ) | ∃xϕ | ∃X ϕ . (2.1)

MSO-formulas are evaluated on σ-structures, where element and set variables
range respectively over elements and subsets of the domain.

Definition 2.17 (MSO Semantics). IfA = (A, I) is a σ-structure, the semantics
of MSO-formulas onA are defined inductively on the structure of the formula with
the help of a valuation function ν : Vel ∪ Vset → A ∪ 2A as follows:

• (A, ν) |= R(x1, . . . , xar(R)) iff (ν(x1), . . . , ν(xar(R))) ∈ I(R);

• (A, ν) |= x = y iff ν(x) = ν(y);

• (A, ν) |= x ∈ X iff ν(x) ∈ ν(X);

• (A, ν) |= ¬ϕ iff it is not the case that (A, ν) |= ϕ;

16

• (A, ν) |= (ϕ1 ∧ ϕ2) iff (A, ν) |= ϕ1 and (A, ν) |= ϕ2;

• (A, ν) |= ∃xϕ iff there exists b ∈ A such that (A, ν[x 7→ b]) |= ϕ;

• (A, ν) |= ∃X ϕ iff there exists B ⊆ A such that (A, ν[X 7→ B]) |= ϕ;

Remark 2.18. Introducing disjunction as

• (ϕ1 ∨ ϕ2) := ¬(¬ϕ1 ∧ ¬ϕ2),

and universal quantification over element and set variables

• ∀xϕ := ¬∃x¬ϕ,

• ∀X ϕ := ¬∃X ¬ϕ,

we can associate to each formula ϕ its semantically equivalent negation normal
form ϕ̂, where negation only appears in front of atomic formulas and relations.

Remark 2.19. Note that, if in a formula ϕ no variable occurs freely, i.e. all vari-
ables appear in the scope of a quantifier, the semantics of ϕ do not depend on
the choice of ν. We can therefore simply write A |= ϕ.

Weak monadic second-order logic (WMSO) has the same syntax as MSO
(2.1), but second-order variables are interpreted as finite subsets of the underlying
universe.

WMSO+B is the extension of WMSO by the bounding quantifier BX ϕ
for X ∈ Vset. The semantics of BX ϕ in the structure A = (A, I) are defined
as follows: (A, ν) |= BX ϕ(X) if and only if there is a bound b ∈ N such that
whenever (A, ν) |= ϕ(B) for some finite subset B ⊆ A, then |B| ≤ b. The
dual quantifier is denoted by U . It is called the unbounding quantifier and
UX ϕ = ¬BX ϕ expresses that there are arbitrarily large finite sets that satisfy
ϕ.

Example 2.20. For later use, we state some example formulas. Let ϕ(x, y) be
a WMSO-formula with two free first-order variables x and y. Let A = (A, I) be
a structure and let Eϕ = {(a, b) ∈ A × A | A |= ϕ(a, b)} be the binary relation
defined by ϕ(x, y). Consider Eϕ as the edge relation of the graph Gϕ = (A,Eϕ).
We define the WMSO-formula reachZϕ (x1, x2) to be

x1∈Z ∧ ∀Y ⊆Z
[(
x1∈Y ∧ ∀y ∀z (y∈Y ∧ z∈Z ∧ ϕ(y, z))→ z∈Y

)
→ x2∈Y

]
.

It is easy to see that for every finite subset B ⊆ A, we have A |= reachBϕ (a, b) if
and only if (a, b) ∈ (E∗ϕ ∩ B2), i.e., b is reachable from a in the subgraph Gϕ�B.

Note that reachZϕ is the standard MSO-formula for reachability but restricted to

the subgraph induced by Z. If we define reachϕ := ∃Z reachZϕ , the semantics of

17

reachϕ seen as an MSO-formula or a WMSO-formula are the same because b is
reachable from a in the graph Gϕ if and only if it is in some finite subgraph of
Gϕ.

Let ECycleϕ = ∃x ∃y (reachϕ(x, y)∧ϕ(y, x)) be the WMSO-formula expressing
that there is a cycle in Gϕ. We now restrict our attention to the case that the
graph Gϕ defined by ϕ(x, y) is acyclic. Hence, the reflexive transitive closure E∗ϕ
is a partial order on A. Note that a finite set F ⊆ A is an Eϕ-path from a ∈ F
to b ∈ F if and only if (F, (Eϕ ∩ (F × F))∗) is a finite linear order with minimal
element a and maximal element b. Define the WMSO-formula Pathϕ(x, y, Z) as

∀w∈Z ∀z∈Z [(reachZϕ (w, z) ∨ reachZϕ (z, w)) ∧ reachZϕ (x,w) ∧ reachZϕ (w, y)] .

For every structure A such that Gϕ is acyclic, we have A |= Pathϕ(a, b, P) if and
only if P contains exactly the nodes that form an Eϕ-path from a to b.

We finally define the WMSO+B-formula

BPathsϕ(x, y) = BZ Pathϕ(x, y, Z) . (2.2)

Under the assumption that Gϕ is acyclic, A |= BPathsϕ(a, b) if and only if there
is a bound k ∈ N on the length of any Eϕ-path from a to b.

Next, let Bool(MSO,WMSO+B) be the set of all Boolean combinations of
MSO-formulas and (WMSO+B)-formulas. We use the following result:

Theorem 2.21 (cf. [5]). One can decide whether for a given n ∈ N and a formula
ϕ ∈ Bool(MSO,WMSO+B) there is a Kripke n-tree K such that K |= ϕ.

This theorem follows from results of Bojańczyk and Toruńczyk [5, 6]. They
introduced puzzles which can be seen as pairs P = (A,C), where A is a parity
tree automaton and C is an unboundedness condition C which specifies a certain
set of infinite paths labeled by states of A. A puzzle accepts a tree T if there is
an accepting run ρ of A on T such that for each infinite path π occurring in ρ,
π ∈ C holds. In particular, ordinary parity tree automata can be seen as puzzles
with the trivial unboundedness condition. The proof of Theorem 2.21 combines
the following results.

Lemma 2.22 ([5]). From a given (WMSO+B)-formula ϕ and n ∈ N one can
construct a puzzle Pϕ such that ϕ is satisfied by some Kripke n-tree iff Pϕ is
nonempty.

Lemma 2.23 ([5]). Emptiness of puzzles is decidable.

Lemma 2.24 (Lemma 17 of [6]). Puzzles are effectively closed under intersection.

Using these results, it is easy to prove Theorem 2.21:

18

Proof. Let ϕ ∈ Bool(MSO,WMSO+B). First, ϕ can be effectively transformed
into a disjunction

∨n
i=1(ϕi ∧ ψi) where ϕi ∈ MSO and ψi ∈ WMSO+B for all i.

By Lemma 2.22, we can construct a puzzle Pi for ψi. The MSO-formula ϕi can be
translated into a parity tree automaton Ai [37]. Using Lemma 2.24 we compute
a puzzle P ′i recognizing the intersection of Pi and Ai. Clearly, ϕ is satisfiable
over Kripke n-trees if and only if there is an i such that ϕi ∧ ψi is satisfiable
over Kripke n-trees, if and only if there is an i such that P ′i is nonempty. By
Lemma 2.23, the latter condition is decidable which concludes the proof of the
theorem.

2.4 Bool(MSO,WMSO+ B) and the k-Copy Operation

In this section we show a technical result stating that Bool(MSO,WMSO+B)
(BMW) is compatible with the k-copy operation. The proof basically copies
the known proofs for MSO and WMSO extended by a translation of bounding
quantifiers. Readers that are not interested in the proof details can safely skip
them. We will need this result later in Section 4.2

We first define the k-copy operation:

Definition 2.25. Let k ∈ N and letA = (A, I) be a structure over the signature σ
that does not contain relation symbols ∼, P1, P2, . . . , Pk (∼ is binary and all Pi are
unary). The k-copy of A, denoted by copyk(A), is the (σ∪{∼, P1, P2, . . . , Pk})-
structure (A× {1, 2, . . . , k}, J) where

• for all R ∈ σ of arity m,

J(R) = {((a1, i), (a2, i), . . . , (am, i)) | (a1, a2, . . . , am) ∈ I(R), 1 ≤ i ≤ k} ,

• J(∼) = {((a, i1), (a, i2)) | a ∈ A, 1 ≤ i1, i2 ≤ k}, and

• for each 1 ≤ m ≤ k, J(Pm) = {(a,m) | a ∈ A}.

Given a structure A, the k-copy operation creates a new structure, copyk(A),
which contains k many copies of A: there are k disjoint substructures of copyk(A)
(identifiable through the predicates P1, . . . , Pk) which, seen as σ-structures, are
isomorphic to A. The additional binary predicate ∼ relates all those members of
copyk(A) which are a duplicate of the same element in A.

In the following proposition we prove that Bool(MSO,WMSO+B) is compatible
with the k-copy operation, i.e., whatever property we can specify on a structure
A using BMW can also be expressed about its k-copy.

19

Proposition 2.26. Let k ∈ N be some number, A = (A, I) some infinite struc-
ture over the signature σ, and τ = σ ∪ {∼, P1, P2, . . . , Pk} an extension of σ by
one fresh binary relation symbol ∼ and k fresh unary relation symbols P1, . . . , Pk.
Given a BMW-sentence ϕ over τ , we can compute a BMW-sentence ϕk over σ
such that copyk(A) |= ϕ if and only if A |= ϕk.

Proof. The proof is in 3 steps. We only do it for WMSO+B in order to avoid
handling a finite and an infinite version of existential set quantification. The ex-
tension to Bool(MSO,WMSO+B) is straightforward. Instead of dealing with the
bounding quantifier B directly, we deal with the unbounding quantifier U . This
suffices since a bounding quantifier is equivalent to a negated unbounding quan-
tifier. First we define a formula ϕ̂. It uses element variables x, x′ (respectively,
set variables X1, . . . , Xk) for every element variable x (respectively, set variable
X) used in ϕ. In addition, ϕ̂ uses element variables y1, . . . , yk that identify the k
different copies of A from the k-copy of A (for this purpose y1, . . . , yk are always
assigned pairwise different values). Then we prove a strong connection between
evaluations of ϕ on copyk(A) and of ϕ̂ on A. Finally, we create ϕk from ϕ̂ by
quantification over the parameters y1, y2, . . . , yk and show that ϕk has the desired
property.

Step 1. We define ϕ̂ from ϕ by case distinction on the structure of ϕ.

1. If ϕ = Pi(x) for some 1 ≤ i ≤ k, then ϕ̂ := (x′ = yi).

2. If ϕ = x1 ∼ x2 then ϕ̂ := (x1 = x2).

3. If ϕ = R(x1, . . . , xr) for R ∈ σ, then ϕ̂ := R(x1, . . . , xr) ∧ (x′1 = · · · = x′r).

4. If ϕ = x ∈ X, then ϕ̂ :=
∨k
i=1(x′ = yi ∧ x ∈ Xi).

5. If ϕ = ψ ∧ χ, then ϕ̂ := ψ̂ ∧ χ̂.

6. If ϕ = ¬ψ then ϕ̂ := ¬ψ̂.

7. If ϕ = ∃xψ then ϕ̂ = ∃x ∃x′ (
∨k
i=1 x

′ = yi ∧ ψ̂).

8. If ϕ = ∃X ψ then ϕ̂ = ∃X1 ∃X2 · · · ∃Xk ψ̂.

9. If ϕ = UX ψ then ϕ̂ =
∨k
i=1 UX

i ∃X1 . . . ∃Xi−1 ∃Xi+1 · · · ∃Xk ψ̂.

Step 2. Let ϕ(x1, . . . , xn, X1, . . . , Xm) be a WMSO+B formula. Fix some values
â1, . . . , âk ∈ A such that âi 6= âj for i 6= j (recall that we assume A to be
infinite), a1, . . . , an ∈ A, k1, . . . , kn ∈ {1, . . . , k}, and finite subsets A1

1, . . . , A
k
m ⊆

A. Fix a variable assignment ηk (in copyk(A)) such that ηk(xi) = (ai, ki) and

20

ηk(Xi) =
⋃k
j=1A

j
i × {j}. Fix another variable assignment η (in A) such that

η(yi) = âi, η(xi) = ai, η(x′i) = âki and η(Xj
i) = Aji . We claim that

(copyk(A), ηk) |= ϕ if and only if (A, η) |= ϕ̂ .

The proof is by structural induction. Most cases are straightforward and can
be copied from compatibility proofs of (W)MSO with the k-copy operation (see
[14]). The new case is the unbounding quantifier. For this case assume that
ϕ = UX ψ. By definition (copyk(A), ηk) |= ϕ if and only if for all n ∈ N there is a
finite set S ⊆ A× {1, . . . , k} such that |S| ≥ n and (copyk(A), ηk[X 7→ S]) |= ψ.
By induction hypothesis this is the case if and only if for all n ∈ N there are finite
sets S1, . . . , Sk ⊆ A such that |S1|+ · · ·+ |Sk| ≥ n and

(A, η[X1 7→ S1, . . . , Xk 7→ Sk]) |= ψ̂ .

Noting that this means that one of the sets has size at least n
k , this statement is

equivalent to the statement that for all n′ ∈ N there are a 1 ≤ j ≤ k and finite
sets S1, . . . , Sk such that |Sj | ≥ n′ and

(A, η[X1 7→ S1, . . . , Xk 7→ Sk]) |= ψ̂ .

By the pigeon hole principle, we can rewrite this to the statement that there is a
1 ≤ j ≤ k such that

(A, η) |= UXj ∃X1 . . . ∃Xj−1 ∃Xj+1 . . . ∃Xk ψ̂ .

This is evidently equivalent to

(A, η) |=
k∨
i=1

UXi ∃X1 ∃X2 . . . ∃Xi−1 ∃Xi+1 . . . ∃Xk ψ̂ ,

i.e., (A, η) |= ϕ̂.

Step 3. Finally, for a sentence ϕ set

ϕk = ∃y 1∃y 2 · · · ∃y k
∧

1≤i<j≤k
yi 6= yj ∧ ϕ̂ .

Using the claim from Step 2, it is clear that for all structures A with at least k
elements we have

copyk(A) |= ϕ if and only if A |= ϕk .

This concludes the proof.

21

2.5 Temporal Logics

Throughout this work we will often refer to LTL (linear temporal logic) and CTL∗

(computation tree logic). We define here their syntax and semantics, above all
to fix notation. The reader familiar with these logics can safely skip this section.

Definition 2.27. LTL formulas over P are defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | ϕUϕ ,

where p ∈ P.

LTL formulas are interpreted over a Kripke path P = (N,→, ρ), or equiva-
lently, the infinite word over the alphabet 2Pfin given by the sequence of labels of
the nodes of P: w = ρ(0)ρ(1)ρ(2) The semantics for each position i ∈ N of
P is defined inductively as follows:

• (P, i) |= p iff p ∈ ρ(i),

• (P, i) |= ¬ϕ iff it is not the case that (P, i) |= ϕ,

• (P, i) |= (ϕ1 ∧ ϕ2) iff (P, i) |= ϕ1 and (P, i) |= ϕ2,

• (P, i) |= Xϕ iff (P, i+ 1) |= ϕ, and

• (P, i) |= ϕ1 Uϕ2 iff there exists a position j ≥ i such that (P, j) |= ϕ2 and
for all i ≤ k < j we have (P, k) |= ϕ1.

Definition 2.28. We define CTL∗-state formulas ϕ and CTL∗-path formulas ψ
by the following grammar, where p ∈ P:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Eψ
ψ ::= ϕ | ¬ψ | (ψ ∧ ψ) | Xψ | ψUψ

CTL∗ state and path formulas are interpreted respectively on nodes and paths
of Kripke structures. So, given a KS K = (S,→, ρ), a node v ∈ S and an infinite
path P = p0p1p2 . . . in K, we define the satisfaction relation as follows (we omit
the cases which are analogous to LTL):

• (K, v) |= p iff p ∈ ρ(v),

• (K, v) |= Eψ iff there is a path P = p0p1p2 . . . with p0 = v and (K, P) |= ψ,

• (K, P) |= ϕ iff (K, p0) |= ϕ.

For both LTL and CTL∗ we define the usual abbreviations:

22

- > := p ∨ ¬p,

- ϑ1 ∨ ϑ2 := ¬(¬ϑ1 ∧ ¬ϑ2) (for both state and path formulas),

- Fϕ := >Uϕ (finally operator),

- Gϕ := ¬F¬ϕ (globally operator),

- Aψ := ¬E¬ψ (universal path quantifier),

- ψ1 Relψ2 := ¬(¬ψ1 U¬ψ2) (the release operator).

Example 2.29. LTL and CTL∗ can express all sorts of interesting specifications,
for instance the LTL formula FGp interpreted on a path P states that starting
in some future position of P , the atomic proposition p always holds. The CTL∗

formula EFGp asks for the existence of at least one path on which the above
LTL specification holds. This can be seen as asking that at least one of the
possible computations described from the paths of the Kripke structures satisfies
the required specification.

23

Chapter 3

ECTL∗ with constraints

Extended computation tree logic (ECTL∗) is a branching time temporal
logic first introduced in [39, 41] as an extension of CTL∗. As the latter, ECTL∗

is interpreted on Kripke structures, has both state- and path-formulas and al-
lows existential and universal quantifications on infinite paths. But while CTL∗

path-formulas allow to specify LTL properties, ECTL∗ can describe regular (i.e.,
MSO-definable) properties of paths. In its original formulation, ECTL∗ uses Büchi
automata to replace the classical CTL∗ path formulas. In this work, instead of
automata, we use MSO-formulas. Given the famous result of Büchi that MSO and
Büchi automata are equi-expressive on paths, we obtain an expressively equiva-
lent logic. We choose the formulation using MSO because it provides a simpler
framework to add constraints.

What we present in this chapter is an enhanced version of ECTL∗, which
we call Constraint-ECTL∗, or in short CECTL∗. In CECTL∗ path-formulas come
from Constraint-Path-MSO which we define below. Suppose we are interested in
a particular concrete domain D over a relational structure τ and let us fix such
signature for the rest of this section.

3.1 Constraint Path MSO (CMSO)

To build ECTL∗ with constraints we use a constraint version of MSO, interpreted
on decorated Kripke paths, which we call Constraint-Path-MSO, denoted as
CMSO. To define it, we start from MSO for infinite paths (words) with the suc-
cessor function S. This is simply MSO as in Definition 2.16, where the signature
σ is set to {S}∪P. Here the atomic propositions from P are seen as unary predi-
cates and S is the binary predicate for the successor relation. Writing x1 = S(x2)
instead of S(x1, x2) to improve readability, we have that MSO over σ = {S} ∪ P

24

is defined by the following grammar:

ψ ::= p(x) | x1 = x2 | x1 = S(x2) | x ∈ X | ¬ψ | (ψ ∧ ψ) | ∃xψ | ∃X ψ , (3.1)

where p ∈ P, x, x1, x2 ∈ Vel are element variables and X ∈ Vset is a set variable.
We interpret MSO on Kripke paths P = (N,→, ρ), where → is the successor
function on N (the interpretation for S), and the labeling function ρ gives the
interpretation of the unary predicate p ∈ P as {n ∈ N | p ∈ ρ(n)}. This logic is
also known as the monadic second-order theory of S1S (see [40]).

To obtain CMSO (over the signature τ) we extend S1S MSO by atomic formu-
las that describe local constraints over the concrete domain, that we call atomic
constraints. These are built using the relations of the signature τ and the
register variables from Reg. Atomic constraints have the following shape:

R(Si1r1, . . . , S
ikrk)(x) , (3.2)

where R ∈ τ has arity k, r1, . . . , rk ∈ Reg, i1, . . . , ik ∈ N and x ∈ Vel. Here the
successor function S, with exponent i, is used to indicate that we are referring to
the value of a register variable r in the i-th successor positions of the current one.
Atomic constraints (an the whole CMSO) are interpreted on D-decorated Kripke
paths, for some τ -structure D. The idea is that for a D-KP P and a position n
of such path, R(Si1r1, . . . , S

ikrk)(n) will hold if the k-tuple formed by the values
assigned to the register variables rj at position n + ij belongs to the relation R
in D.

Remark 3.1. The constraints which we introduce in (3.2) are the exact analogous
of the ones from (1.1) on page 5 presented in the introduction in the context of
LTL, only transported to the realm of MSO. Here we use the successor function
(S) instead of the next operator (X) to point to a register variable in the next
position. We also have a free variable x which represents the position at which
we want to apply the constraint. We don’t need this in LTL, as only the temporal
operators X and U are used to navigate the models.

The constraints that we have just introduced are local in the sense that we can
only compare concrete values assigned to registers variables at a fixed distance.
In fact, given ϑ = R(Si1r1, . . . , S

ikrk), we can define d(ϑ) = max{i1, . . . , ik} to
be the depth of ϑ.

As already mentioned, CMSO-formulas are interpreted over D-Kripke paths
for some τ -structure D = (D, I). Let P be a D-KP with underlying Kripke path
P = (N,→, ρ).

So let η : (Vel ∪ Vset) → (N ∪ 2N) be a valuation function mapping element
variables to positions and set variables to sets of positions respectively. The
satisfaction relation |=CMSO is mostly defined as expected, and we only present
the most interesting cases below:

25

• (P, η) |=CMSO p(x) iff p ∈ ρ(η(x)).

• (P, η) |=CMSO x1 = S(x2) iff η(x1) = η(x2) + 1.

• (P, η) |=CMSO x ∈ X iff η(x) ∈ η(X).

• (P, η) |=CMSO R(Si1r1, . . . , S
ikrk)(x) iff

(γ(η(x) + i1, r1), . . . , γ(η(x) + ik, rk)) ∈ I(R).

For a CMSO-formula ψ the satisfaction relation only depends on the variables oc-
curring freely in ψ. This motivates the following notation. If ψ(X1, X2, . . . , Xm)
is an CMSO-formula where X1, . . . , Xm are the only free variables, we write
P |=CMSO ψ(A1, . . . , Am) if and only if, for every valuation function η such that
η(Xi) = Ai, we have (P, η) |=CMSO ψ. Moreover, we write |= instead of |=CMSO if
no confusion arises.

We use some abbreviations in CMSO with the obvious semantics. In partic-
ular, we write formulas like p(x + 1) for p ∈ P, to replace ∃y (y = S(x) ∧ p(y)),
stating that the node p is satisfied in the position following x, or its generalization
p(x+ i) for i ∈ N.

Example 3.2. Consider the following CMSO-formula over the signature {≡, <}
(we use the infix notation for ≡ and <):

∀x [p(x) ∧ (r ≡ Sr)(x)] ∨ [q(x) ∧ (r < Sr)(x)] .

This formula states that in all positions of a possible model, either p holds
and the value of register variable r is kept equal in the next state (r ≡ Sr), or
q holds and the value of r is increased in the next state (r < Sr). Interpreted
over (Z, <)-decorated Kripke paths, this formula satisfied, for instance, by the
following model:

(p, 2)(p, 2)(q, 2)(q, 3)(p, 5)(q, 5)

3.2 Constraint ECTL∗ (CECTL∗)

We define CECTL∗ (over the signature τ) by the following grammar:

ϕ ::= Eψ(ϕ, . . . , ϕ︸ ︷︷ ︸
m times

) | (ϕ ∧ ϕ) | ¬ϕ (3.3)

where ψ(X1, . . . , Xm) is a CMSO-formula over the signature τ in which only the
set variables X1, . . . , Xm ∈ Vset are allowed to occur freely.

26

CECTL∗-formulas are evaluated over some node of aD-decorated Kripke struc-
ture where D is some τ -structure . Let K be such a D-KS with underlying Kripke
structure K = (S,→, ρ). Given s ∈ S, for a CECTL∗-formula ϕ, we define the
semantics for the existential quantification as follows (the other cases are trivial):

Definition 3.3. (K, s) |= Eψ(ϕ1, . . . , ϕm) if and only if there exists an infinite
path P = s0s1s2 . . . with s0 = s, whose corresponding D-Kripke Path P satisfies
P |=CMSO ψ(A1, . . . , Am) where Ai = {n ∈ N | (K, sn) |= ϕi} for 1 ≤ i ≤ m.

The intuition behind this, is that the sets A1, . . . , Am collect all the posi-
tions of the path P in which the formulas ϕ1, . . . , ϕm hold. The free variables
X1, . . . , Xm from ψ are then interpreted as A1, . . . , Am, so that the formula x ∈ Xi

stands to mean that x should belong to the sets of positions which satisfy ϕi.
Note that for checking (K, s) |= ϕ we may ignore all propositions p ∈ P and

all registers r ∈ Reg that do not occur in ϕ.

Remark 3.4. The reader might miss atomic propositions p ∈ P in (3.3). They
can be obtained using CMSO. More precisely, MSO can express the fact that a
position x is the initial position of a path using the formula pos0(x) = ∀y (x 6=
S(y)), then the CECTL∗-formula E[∃x (pos0(x)∧p(x))] states that from the current
node originates a path whose first node satisfies p, i.e., the current node satisfies
p.

Note that the role of the concrete domain D and of the valuation function γ,
for both CMSO and CECTL∗ are restricted to the semantics of atomic constraints.
Ordinary ECTL∗-formulas are defined as in (3.3), with the exception that in
Eψ(ϕ, . . . , ϕ), the formula ψ(X1, . . . , Xm) is a classical MSO formula, i.e., without
atomic constraints.

ECTL∗ is interpreted over a pair (K, s), where K is a Kripke structure and s
an element of its domain, and the rules are the same as above (just ignoring the
concrete domain and γ).

We define the usual abbreviations:

ϑ1 ∨ ϑ2 := ¬(¬ϑ1 ∧ ¬ϑ2) ,

ϑ1 → ϑ2 := ¬ϑ1 ∨ ϑ2 ,

Aψ := ¬E¬ψ (universal path quantifier) ,

∀xψ := ¬∃x¬ψ ,
∀X ψ := ¬∃X ¬ψ .

Note that (K, s) |= Aψ(ϕ1, . . . , ϕm) if and only if for all infinite paths in K
P = s0s1s2 · · · with s0 = s, we have for the corresponding decorated KP P:
P |=CMSO ψ(A1, . . . , Am) where Ai = {n ∈ N | (K, sn) |= ϕi} for 1 ≤ i ≤ m.

27

Using this extended set of operators we can put every formula into a semanti-
cally equivalent negation normal form, where ¬ only occurs in front of atomic
CMSO-formulas (i.e., formulas of the form p(x), x = S(y), x ∈ X or atomic
constraints).

Remark 3.5. If ψ(X1, . . . , Xm) is a CMSO-subformula which occurs after a path
quantifier in a CECTL∗-formula, as for instance Eψ(ϕ1, . . . , ϕm), to obtain the
negation normal form we additionally eliminate negated subformulas as ¬(x ∈ Xi)
where Xi is one of the set variables X1, . . . , Xm that occurs freely in ϕ as follows:
we replace ϑ with the equivalent formula Eψ′(ϕ1, . . . , ϕm,¬ϕ1, . . . ,¬ϕm), where
ψ′(X1, . . . , Xm, Y1, . . . , Ym) is obtained from ψ by replacing all occurrences of
¬(x ∈ Xi) by x ∈ Yi for 1 ≤ i ≤ m.

We give in the following some examples of classical CTL∗ expressible spec-
ifications formulated in ECTL∗. Recall that in monadic second-order logic the
binary predicate < can be derived from the successor function.

Example 3.6. Response to an impulse: In all computations, every occurrence
of p is eventually followed by an occurrence of q.

CTL∗ : AG(p→ Fq) ECTL∗ : A[∀x (p(x)→ ∃y (x < y ∧ q(y)))].

Absence of unsolicited responses: In all computations q does not occur unless
preceded by p.

CTL∗ : A(Fq → (¬q)Up) ECTL∗ : A[∀x (q(x)→ ∃y (y ≤ x ∧ p(y)))].

Existence of a stabilizing computation: There is a computation where eventually
p holds in every state.

CTL∗ : EFGp ECTL∗ : E[∃x ∀y (x < y → p(y))].

We illustrate in the following example that the nesting of path quantifiers in
a CTL∗-formula results in the nesting of MSO-formulas inside the corresponding
ECTL∗-formula.

Example 3.7. The CTL∗-formula EG(p → AXq) expresses the existence of a
path P such that every successor of a p-labeled node on P is labeled with q.
Let ϕ be the ECTL∗-formula stating that on all paths q holds in the next state:
ϕ = A∃x (pos0(x) ∧ q(x+ 1)), where we use pos0 to denote the first position of a
path (see Remark 3.4). Then the required property is expressed by the formula
Eψ(ϕ), where ψ(X) = ∀z (p(z)→ z ∈ X). All together we obtain the formula

E∀z
(
p(z)→ z ∈

[
A∃x (pos0(x) ∧ q(x+ 1))

])
.

28

In the following example we exploit the higher expressive power of ECTL∗ to
express a system requirement which cannot be formulated in CTL∗.

Example 3.8. There is a computation path where p holds in all even positions.
The following MSO-formula describes the set X of even positions of a path:

even(X) := ∃x (pos0(x) ∧ x ∈ X) ∧ ∀x (S(x) ∈ X ↔ ¬x ∈ X) .

The following ECTL∗-formula describes the required property:

E[∃X even(X) ∧ ∀z (z ∈ X → p(z))].

Wolper [45] proved that no CTL∗-formula expresses this property.

Example 3.9. We show that it is possible, using constraints over (Z, <), to
write a CECTL∗-formula which can only be satisfied by an infinite (Z, <)-Kripke
structure (we use the infix notation for <):

ϕ = E[∀x (r < Sr)(x)]. (3.4)

We are forcing the existence of a (Z, <)-Kripke path P along which the value of
the register variable r monotonically decreases, and this ensures that the domain
of P is infinite.

We remark that the last example shows that CECTL∗ is strictly more expres-
sive than ECTL∗ in the following sense: Let us denote with L(ϕ) the set of all
underlying Kripke structures of (Z, <)-KSs which satisfy ϕ. Then L(ϕ) for ϕ
from (3.4) is not empty and it does not contain any finite Kripke structure. On
the other hand it is well known that ECTL∗ enjoys the finite model property, and
therefore cannot define L(ϕ).

3.3 CECTL∗ has the Tree Model Property

In the following we show that every satisfiable CECTL∗-formula always has a nice
model, namely a tree-model where the branching degree is bounded by a constant
that can be computed from the formula. The proof of this property is similar to
the proof of the tree model property for ECTL∗ or CTL∗. One has to additionally
deal with the constraints, but this does not create particular problems.

Lemma 3.10. Let K = (D,K, γ) be a D-Kripke structure, s0 a node of K and ϕ a
CECTL∗-formula. If P = s0s1 · · · sn is an element of Unf(K, s0), then (K, sn) |= ϕ
if and only if (Unf(K, s0), P) |= ϕ.

29

Proof. The proof is an easy induction on the structure of the formula using the
fact that any D-Kripke path in K starting at a node reachable from s0 corresponds
to a D-Kripke path in Unf(K, s0) and vice versa.

For similar reasons, we can duplicate subtrees of a D-Kripke tree T without
affecting the set of satisfied formulas which allows to increase the branching degree
of the model arbitrarily.

Lemma 3.11. Let T be a D-Kripke tree. There exists another D-KT Tω such
that

• every node of Tω has infinitely many successors,

• T and Tω satisfy the same CECTL∗-formulas at their roots, and

• if s is a node and ϕ = Eψ(ϕ1, . . . , ϕk) is a formula such that (Tω, s) |= ϕ,
then there are infinitely many paths starting in s which witness the path
quantifier, i.e., there are infinitely many paths P = s0s1s2 · · · in Tω with
s0 = s and P |= ψ(A1, . . . , Ak) for Ai = {n ∈ N | (Tω, sn) |= ϕi} (1 ≤ i ≤
k).

Proof. Let T = (D, T , γ) be some D-Kripke tree where T = (T,→, ρ). Without
loss of generality we assume that T ⊆ S∗ for some set S such that → is the
extension of words over S by one letter.

We define a Kripke tree Tω = (Tω,→ω, ρω) and a D-Kripke tree Tω =
(D, Tω, γω) where

• Tω ⊆ (S × N)∗ such that s = (s1, n1)(s2, n2) . . . (si, ni) ∈ Tω if and only
if π(s) = s1s2 . . . si ∈ T (π is the projection to the first component on
(S × N)∗),

• →ω is extension by one element from S × N,

• ρω(s) = ρ(π(s)), and

• γω(s, r) = γ(π(s), r) for all r ∈ Reg.

Since Tω is basically an infinite copy of T everywhere, where projection to the
first component translates between the two structures, rather simple inductions
prove the following facts.

1. Let Pω be an infinite path in Tω, A1, A2, . . . , Ak sets of positions of Pω and
ϕ ∈ CMSO. Let Pω be the D-KP corresponding to Pω and let P = π(Pω)
be the path in T obtained by element-wise projection of Pω to the first
component. Finally, let P be the D-KP corresponding to P . Then we have

Pω |=CMSO ϕ(A1, . . . , Ak) ⇐⇒ P |=CMSO ϕ(π(A1), . . . , π(Ak)) .

30

2. For s = (s1, n1)(s2, n2) . . . (sk, nk) ∈ Tω and ϕ some CECTL∗-formula we
have

(Tω, s) |= ϕ ⇐⇒ (T, π(s)) |= ϕ .

The second part implies that every path quantifier that is satisfied at some node
in Tω is witnessed by infinitely many paths in Tω starting at this node.

From now on, let #E(ϕ) denote the number of different subformulas of the
form Eψ in the CECTL∗-formula ϕ. We can state the following strong tree model
property:

Theorem 3.12. Let ϕ be a CECTL∗-formula in negation normal form and let
D = (D, I) be a τ -structure. Then ϕ is satisfiable by a D-Kripke Structure if and
only if there is a D-Kripke (#E(ϕ) + 1)-tree T with root r and (T, r) |= ϕ.

Proof. Let e = #E(ϕ) + 1. Due to the previous lemmas, we can assume that
K = (D,K, γ) is a D-Kripke tree with K = (S,→, ρ) a KT with root r where
every node s ∈ S has infinitely many successors such that for every formula Eψ
with (K, s) |= Eψ there are infinitely many pairwise disjoint (except for node s)
paths starting at s that witness this path quantifier. We prune K such that it is
isomorphic to a D-Kripke e-tree model of ϕ.

We inductively define the domain S′ of our new tree. For the initial step,
choose a D-KP P of K arbitrarily and add its domain to S′.

For the inductive step we repeat the following procedure until every node
has exactly e successors. Let s ∈ S′ be a node with less than e successors (in
S′). Our inductive definition ensures that s then has exactly 1 successor. Let
Eψ1(ϕ1

1, . . . , ϕ
1
m1

), . . . ,Eψk(ϕ
k
1, . . . , ϕ

k
mk

) be the existential subformulas of ϕ which
hold true in (K, s). Then for each 1 ≤ j ≤ k there is a D-Kripke path Pj in K with

Pj(0) = s and disjoint from S′ \ {s} such that Pj |=CMSO ψ(Aj1, . . . , A
j
mj), where

Aji = {n ∈ N | (K,Pj(n)) |= ϕji}. For each j ∈ {k + 1, k + 2, . . . , e − 1} choose
further D-Kripke paths Pj of K with Pj(0) = s that are disjoint from S′ \ {s} and
the other paths (except for their origin s). Add the domains of P1,P2, . . . ,Pe−1

to S′ and continue the construction with the next node of the resulting S′ that
has only one successor.

The limit of this process results in a subset S′ ⊆ S such that S′ induces
a Kripke e-subtree T = K�S′ and a D-Kripke subtree T = (D, T , γ′), where
γ′ = γ�(S′×Reg). We prove (T, r) |= ϕ by showing the following stronger claim
using structural induction on the formula ϕ.

(i) Given a subformula ϑ ∈ CECTL∗ of ϕ and s ∈ S′ such that (K, s) |= ϑ, then
(T, s) |= ϑ.

31

(ii) For all CMSO-formulas ψ(X1, . . . , Xm) that are subformulas of ϕ, all D-
Kripke paths P in T and all sets A1, . . . , Am, B1, . . . , Bm of positions of P
such that Aj ⊆ Bj for all 1 ≤ j ≤ m, and all valuation functions η,

(P, η) |=CMSO ψ(A1, . . . , Am) =⇒ (P, η) |=CMSO ψ(B1, . . . , Bm) , (3.5)

where we assume that Xi only occurs freely in ψ (we can rename bounded
occurrences).

Recall that ϕ is in negation normal form. Hence, the proof only needs to consider
the following cases, starting from (i):

• The cases ϑ = ϕ1 ∧ ϕ2 and ϑ = ϕ1 ∨ ϕ2 are straightforward by induction.

• Let ϑ = Eψ(ϕ1, . . . , ϕm). Note that only X1, . . . , Xm are allowed to occur
freely in ψ. Let s ∈ S′ be such that (K, s) |= Eψ(ϕ1, . . . , ϕm). By construc-
tion of T, there is a D-Kripke path P in T (which is simultaneously in K)
with P(0) = s such that P |=CMSO ψ(A1, . . . , Am), where Ai = {n ∈ N |
(K,P(n)) |= ϕi}. Let Bi = {P(n) | n ≥ 0, (T,P(n)) |= ϕi}. Applying the
inductive hypothesis from (i) to each ϕi, we have Ai ⊆ Bi. Thus, using the
inductive hypothesis from (ii) for ψ, we obtain P |=CMSO ψ(B1, . . . , Bm).
Hence, (T, s) |= Eψ(ϕ1, . . . , ϕm) as desired.

• Let ϑ = Aψ(ϕ1, . . . , ϕm). In order to get (T, s) |= ϑ, we need to show that
everyD-Kripke path P inT that starts in s satisfies P |=CMSO ψ(B1, . . . , Bm),
where Bi = {n ∈ N | (T,P(n)) |= ϕi}. So let P be a D-Kripke path in T
(and hence in K as well) with P(0) = s. Since (K, s) |= ϑ, we can deduce
that P |=CMSO ψ(A1, . . . , Am), where Ai = {n ∈ N | (K,P(n)) |= ϕi}. By
inductive hypothesis for point (i), we conclude that Ai ⊆ Bi and by the in-
ductive hypothesis for point (ii) we conclude that P |=CMSO ψ(B1, . . . , Bm).
Hence, we get (T, s) |= ϑ.

This completes the inductive step for point (i). We continue with the inductive
step for point (ii), i.e., for CMSO-subformulas ψ of ϕ. To simplify notation we
write ηA for η[(Xj → Aj)1≤j≤m]] and ηB for η[(Xj → Bj)1≤j≤m]].

• If ψ = p(x) (¬p(x), respectively) for some atomic proposition p ∈ P, then
by definition we have: (P, ηA) |=CMSO p(x) if and only if p ∈ ρ(ηA(x)) if and
only if p ∈ ρ(ηB(x)) if and only if (P, ηB) |=CMSO p(x).

• Similarly, if ψ is of the form x = S(y), x 6= S(y), x ∈ X, or x 6∈ X
for X ∈ Vset \ {X1, . . . , Xm}, we have (P, ηA) |=CMSO ψ if and only if
(P, ηB) |=CMSO ψ because ψ does not depend on the interpretations of
X1, . . . , Xm.

32

• Let ψ = (x ∈ Xi) for some 1 ≤ i ≤ m. Then (P, ηA) |=CMSO x ∈ Xi implies
ηA(x) ∈ Ai and whence (using Ai ⊆ Bi) ηB(x) ∈ Bi, i.e., (P, ηB) |=CMSO

x ∈ Xi.

• The cases ψ = ψ1 ∨ ψ2 and ψ = ψ1 ∧ ψ2 follow from inductive hypothesis.

• Assume that ψ = ∃xψ1 and that (P, ηA) |= ψ. Then there is a position n
of P such that (P, ηA[x 7→ n]) |=CMSO ψ1. By the inductive hypothesis this
implies (P, ηB[x 7→ n]) |=CMSO ψ1 and therefore (P, ηB) |= ∃xψ1.

• The cases ψ = ∀xψ1, ψ = ∃X ψ1 and ψ = ∀X ψ1 (note that X must
be different from X1, . . . , Xm since X only occurs freely in ψ) are proven
analogously to the previous case.

• Let ψ = R(Si1r1, . . . , S
ikrk)(x) or its negation. Since ηA and ηB agree on

x, this case is trivial.

This concludes the proof of the theorem.

33

Chapter 4

Satisfiability of CECTL∗

Let us now formally define the notion of satisfiability. Chosen a domain D we ask,
given a CECTL∗-formula, whether it has a model having D as concrete domain
(i.e. a D-Kripke structure).

Definition 4.1. We say that a CECTL∗-formula ϕ is D-satisfiable if there is a
D-Kripke structure K with underlying KS K = (S,→, ρ) and a node v ∈ S such
that (K, v) |= ϕ.

With D-SAT we denote the following computational problem: Is a given for-
mula ϕ ∈ CECTL∗ D-satisfiable?

In this section we will show that the above problem is decidable, provided
that the domain D satisfies certain properties.

4.1 The EHD-Property

We now introduce one of the central notions of this work: the EHD-property.
EHD stands for “the existence of a homomorphism is definable”. This is a prop-
erty of a relational structure A, expressing the ability of a logic L to distinguish
between those structures B which can be mapped to A by a homomorphism
(B � A) and those who cannot. Recall the definition of homomorphism (Defini-
tion 2.6).

Definition 4.2. Let L be a logic (e.g. MSO). A σ-structure A has the property
EHD(L) if there is a computable function that maps every finite subsignature
τ ⊆ σ to an L-sentence ϕτ such that for every countable τ -structure B we have:

B � A ⇔ B |= ϕτ .

34

Example 4.3. The structure Q = (Q, <,≡), where ≡ is equality1, has the prop-
erty EHD(WMSO) (and EHD(MSO)). In fact we can show that, for any count-
able {<,≡}-structure B = (B, J), B � Q if and only if there does not exist
(a, b) ∈ J(<) such that (b, a) ∈ (J(<) ∪ J(≡) ∪ J(≡)−1)∗.

If we look at B as a graph with two kinds of edges, <-edges and ≡-edges,
we are ultimately excluding the presence of cycles with at least one <-edge.
It is clear why the presence of such cycles would make it impossible to build
a homomorphism into Q. It is not hard to show that the converse holds: it is
enough to know that B does not present such cycles to guarantee the existence of a
homomorphism intoQ (see [32]). This particular acyclicity condition can be easily
expressed in WMSO or MSO using the reach-construction from Example 2.20.

Notation 4.4. Throughout this work, we will mostly make use of the property
EHD(L) where L is Bool(MSO,WMSO+B) or one of its fragments. In this case,
we will sometimes refer to it simply as to the EHD-property.

4.2 The EHD Method

The main result of this section gives a criterion on the concrete domain D that im-
plies decidability of D-SAT. To state this criterion, we need one further technical
condition:

Definition 4.5. A σ-structureA = (A, I) is negation-closed if, for everyR ∈ σ,
the complement of I(R) is effectively definable by a positive existential first-
order formula, i.e., if there is a computable function that maps each relation
symbol R ∈ σ to a positive existential first-order formula ϕR(x1, . . . , xar(R)) (i.e.,
a formula that is built up from atomic formulas using ∧, ∨, and ∃) such that

Aar(R) \ I(R) = {(a1, . . . , aar(R)) | A |= ϕR(a1, . . . , aar(R))}.

Example 4.6. The structure Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) from (1.2) on
page 7 is negation-closed (to improve readability we write x ≡ a instead of ≡a(x)
and similarly for ≡a,b). We have in fact:

• ¬x ≡ y if and only if x < y ∨ y < x.

• ¬x < y if and only if x ≡ y ∨ y < x.

1A remark concerning the equality relation should be made at this point. In the structure
Q, we mean with ≡ the equality relation, whereas in B, the relation J(≡) can be any binary
relation. Nevertheless, in MSO we have a built-in equality, see the MSO-syntax (2.1) on page 16.
This is one more reason to denote the equality relation as part of a structure with ≡ instead of
=. In the structure B the MSO-formulas x = y and x ≡ y have, in general, different semantics.

35

• ¬x ≡ a if and only if ∃y ∈ Z (y = a ∧ (x < y ∨ y < x)).

• ¬x ≡ a mod b if and only if x ≡ c mod b for some 0 ≤ c < b with a 6= c :∨
0≤c<b
a6=c

x ≡ c mod b .

We are now ready to present the first main result of our work:

Theorem 4.7. Let σ be a countable signature and let D be a σ-structure which:

• is negation-closed, and

• has the property EHD(Bool(MSO,WMSO+B)).

Then the problem D-SAT is decidable.

This is a very broad and general result: It is enough, given any concrete
domain D, to prove that it enjoys these two properties, to guarantee decidability
of the D-SAT problem for CECTL∗. In the following, we refer to this criterion as
the EHD method.

Let us fix an CECTL∗-formula ϕ in negation normal form and a negation-
closed σ-structure D for the rest of this section. We want to check whether ϕ is
D-satisfiable. First, we reduce our problem to formulas in strong negation normal
form:

Definition 4.8. We say that a CECTL∗-formula ϕ is in strong negation nor-
mal form if it is in negation normal form and additionally there is no subformula
¬ϑ(x) where ϑ(x) is an atomic constraint.

Lemma 4.9. If D = (D, I) is negation-closed, given a CECTL∗-formula ϕ one
can compute a CECTL∗-formula ϕ̂ in strong negation normal form such that ϕ is
D-satisfiable if and only if ϕ̂ is D-satisfiable.

Proof. We can assume that ϕ is in negation normal form. Using induction, it suf-
fices to eliminate one negated atomic constraint ϑ(x) = ¬R(Si1r1, . . . , S

ikrk)(x)
in ϕ, where k = ar(R). Let d = max{i1, . . . , ik} be the depth of the constraint ϑ.
Since D is negation-closed, we can compute a positive quantifier-free first-order
formula ψ(y1, y2, . . . , yk, z1, z2, . . . , zm) such that

(a1, . . . , ak) /∈ I(R)⇐⇒ D |= ∃z1 · · · ∃zm ψ(a1, . . . , ak, z1, . . . , zm) .

36

Let s1, . . . , sm ∈ Reg be fresh register variables not occurring in ϕ. We define the
CECTL∗-formula ϕ̂ by replacing in ϕ every occurrence of the negated constraint
ϑ by the formula

ψ(Si1r1, . . . , S
ikrk, S

ds1, . . . , S
dsm)2 ,

i.e., we replace in the positive quantifier-free formula ψ(y1, . . . , yk, z1, . . . , zm)
every occurrence of a variable yj (respectively, zj) by Sijrj (respectively, Sdsj).

The idea is the following: Given a negated constraint ϑ, we substitute it with
a boolean combination of positive ones, involving the same registers appearing
in ϑ (Sijrj) and new - existentially quantified - ones. We have then to “install”
new registers (s1, . . . , sm) which we place at the deepest node involved in the
constraint (depth d) to use as these existentially quantified variables.

Now we have to prove that

ϕ is D-satisfiable ⇐⇒ ϕ̂ is D-satisfiable .

Proof of =⇒. If ϕ isD-satisfiable, then by Theorem 3.12 there is aD-Kripke e-tree
T = (D, T , γ) with (T, ε) |= ϕ and underlying Kripke e-tree T = ([1, e]∗,→, ρ).
We modify T and obtain a new D-Kripke tree S = (D, T , γ′) by defining the
interpretation function γ′ on the fresh register variables s1, . . . , sm (and leaving
otherwise γ′ = γ) as follows: Consider w, v ∈ [1, e]∗ such that |v| = d and let vp
be the prefix of v of length ip for 1 ≤ p ≤ k,

• If (γ(wv1, r1) . . . , γ(wvk, rk)) /∈ I(R), we can fix values b1, . . . , bm ∈ D such
that

D |= ψ(γ(wv1, r1) . . . , γ(wvk, rk), b1, . . . , bm) .

In this case we set γ′(wv, sq) = bq for all 1 ≤ q ≤ m.

• If (γ(wv1, r1) . . . , γ(wvk, rk)) ∈ I(R), we choose γ′(wv, sq) ∈ D arbitrarily
for all 1 ≤ q ≤ m.

• Finally, for all w ∈ [1, e]∗ such that |w| < d we choose γ′(wv, sq) ∈ D
arbitrarily for all 1 ≤ q ≤ m.

By induction on the structure of ϕ we prove that (S, ε) |= ϕ̂. All steps are trivial
except for the case that the subformula is precisely ϑ(x) = ¬R(Si1r1, . . . , S

ikrk)(x).
In this case let P = p0p1p2, . . . be a path in T inducing the D-Kripke path P in
T and the D-Kripke path R in S (which only differ for the values of γ and γ′

on s1, . . . , sm) and let η be a valuation function such that (P, η) |=CMSO ϑ(x).
Thus, setting pj = η(x), we get (γ(pj+i1 , r1), . . . , γ(pj+ik , rk)) /∈ I(R). According

2In case ψ is a conjunction or disjunction of atomic constraints, they all apply to the same
element variable x. For instance if ψ(y1, y2) = y1 < y2 ∨ y2 < y1, we substitute ϑ(x) by
(r1 < r2)(x) ∨ (r2 < r1)(x).

37

to our definition of γ′, we have set γ(pj+d, sq) = bq for all 1 ≤ q ≤ m, where
b1, . . . , bm ∈ D such that

D |= ψ(γ(pj+1, r1) . . . , γ(pj+k, rk), b1, . . . , bm) .

Thus, it follows that

(R, η) |=CMSO ψ(Si1r1, . . . , S
ikrk, S

ds1, . . . , S
dsm)(x) ,

which concludes the first direction.

Proof of ⇐=. In order to prove that ϕ is D-satisfiable if ϕ̂ is D-satisfiable, let us
assume that K is a D-Kripke Structure such that (K, d) |= ϕ̂ for some node d. In
order to show (K, d) |= ϕ by induction on the structure of ϕ, we end up (after
several trivial steps) with the following claim: For every path P = p0p1p2 . . . in
K (inducing the D-Kripke path P) and valuation function η,

(P, η) |=CMSO ψ(Si1r1, . . . , S
ikrk, S

ds1, . . . , S
dsm)(x) (4.1)

implies (P, η) |=CMSO ϑ(x). Assuming (4.1) and η(x) = pt, there are values,
namely γ(pt+d, ri) (1 ≤ i ≤ m) witnessing

D |= ∃z1 · · · ∃zm ψ(a1, . . . , ak, z1, . . . , zm),

where aj = γ(pt+ij , ri). By choice of ψ this implies that D |= ¬R(a1, . . . , ak).
Hence, we have (P, η) |=CMSO ¬R(Si1r1, . . . , S

ikrk)(x), i.e., (P, η) |=CMSO ϑ(x).

Example 4.10. Consider the domain Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b).
Let ϕ = E[∀x¬(r = 3)(x)] be the CECTL∗-formula expressing the fact that

there exists a path on which r never assumes value 3 (we write r = 3 instead of
≡3 (r)).

As we saw in Example 4.6, Z is negation-closed, and we can find an existen-
tially quantified positive first order formula, namely

ψ(a) = ∃z (z = 3 ∧ (a < z ∨ z < a)) ,

such that ¬r = 3 if and only if ψ(r) holds.
The strong negation normal form of ϕ is

ϕ̂ = E
[
∀x
(
s = 3 ∧ (r < s ∨ s < r)

)
(x)
]
.

As you can see we have introduced a new register variable s and used it to replace
the existentially quantified variable z.

38

Before we start with technical details, let us briefly sketch how we relate sat-
isfiability for formulas in strong negation normal form with the property EHD(L)
where L is some logic like Bool(MSO,WMSO+B) (in short BMW). The leading
idea for solving satisfiability for CECTL∗ formulas is to split the search for a model
into two steps.

The first step is to describe all the Kripke trees that satisfy the structural
requirements of a given CECTL∗ formula ϕ over the signature σ. With structural
requirements we mean, roughly speaking, all those parts of ϕ that can also be
expressed in pure ECTL∗. The second step is to assign a value to all register
variables r ∈ Reg in each node of the model, such that also the constraints from
ϕ are satisfied by the resulting decorated Kripke tree.

In order to accomplish the first step, we define from ϕ a pure ECTL∗-formula
ϕa which we call “the abstraction of ϕ”. This formula ϕa results from ϕ by
replacing each atomic constraint with a fresh atomic proposition not occurring in
ϕ. Every Kripke tree T that satisfies ϕa satisfies all the structural requirements
of ϕ and is marked by new propositions at those positions where a model of
ϕ would have to satisfy certain requirements on the values held by the register
variables.

For the second step we can use the new propositions to extract from every
tree model T of ϕa a σ-structure B the constraint graph that encodes all the
constraints imposed by ϕ on the register variables in the following sense: If there
is a homomorphism from B to D then we can equip T with a valuation function
γ such that the resulting D-Kripke tree satisfies ϕ (and vice-versa).

If D has property EHD(BMW) we can compile our two steps into the question
whether a certain BMW-formula has a tree model. This BMW-formula requires
that all its models encode the Kripke tree T satisfying ϕa as well as the the
corresponding σ-structure B allowing a homomorphism to D.

For the following definitions let us fix a CECTL∗-formula ϕ in which only the
atomic constraints ϑ1, . . . , ϑn occur. Let di be the depth of ϑi. Moreover, let
Regϕ be the set of register variables from Reg appearing in ϕ.

Definition 4.11. We define ϕa, the abstraction of ϕ, as the ordinary ECTL∗-
formula that is obtained from ϕ by replacing every occurrence of a constraint
ϑi(x) by the MSO-formula pi(x+ di), for some fresh atomic proposition pi which
does not appear in ϕ. The same definition is also used for a CMSO-subformula
of ϕ.

Notice how we use the fact that the constraints from CECTL∗ are local to
individuate the “lower” node involved in the constraint (the one at depth di) and
mark it with the fresh propositional variable pi. This way, when navigating a tree-
model of the abstracted formula ϕa, we know that all paths which go through a

39

node marked with pi should satisfy the constraint ϑi. This would not work if the
constraints were non-local.

Example 4.12. Given the CECTL∗-formula over the signature {<,≡}

ϕ = E[∀x q1(x)→ (r1 < S2r2)(x)] ∧ A[∃x q2(x) ∧ (Sr1 ≡ r2)(x)]

we replace the atomic constraints with the propositional variables p1 and p2 to
obtain the abstracted ECTL∗-formula

ϕa = E[∀x q1(x)→ p1(x+ 2)] ∧ A[∃x q2(x) ∧ p2(x+ 1)].

Definition 4.13. Given a decorated Kripke e-tree T with underlying Kripke
e-tree T = ([1, e]∗,→, ρ) and ρ(u) ∩ {p1, . . . , pn} = ∅ for all u ∈ [1, e]∗, we define
the Kripke e-tree Ta = ([1, e]∗,→, ρa), where ρa(u) contains

• all propositions from ρ(u) and

• all propositions pj (1 ≤ j ≤ n) such that, if ϑj = R(Si1r1, . . . , S
ikrk) and

dj = max{i1, . . . , ik}, we have:

– u = wv with |v| = dj , and

– (γ(wv1, r1), . . . , γ(wvk, rk)) ∈ I(R), where vl denotes the prefix of v of
length il.

Hence, the fact that proposition pj labels node wv with |v| = dj means that
the constraint ϑj holds along every path that starts in node w and descends in
the tree down via node wv.

Definition 4.14. Given a Kripke e-tree T = ([1, e]∗,→, ρ) where the new propo-
sitions p1, . . . , pn are allowed to occur in T , we define a countable σ-structure
GT = ([1, e]∗ × Regϕ, J) (the constraint graph) as follows: The interpretation
J(R) of the relation symbol R ∈ σ contains all k-tuples ((wv1, r1), . . . , (wvk, rk))
(where k = ar(R)) for which there are 1 ≤ j ≤ n and v ∈ [1, e]dj such that
pj ∈ ρ(wv), and ϑj = R(Si1r1, . . . , S

ikrk), where vl still denotes the prefix of v of
length il.

A constraint graph is in charge of “remembering” the relations connecting
the register variables that we “forgot” when we abstracted the constraints using
propositional variables. The domain of GT has one element for each register pair
(v, r) where v is a node of the tree T and r is a register variable appearing in
ϕ, and the relations of GT are the ones which should hold between the register
variables in order to build a model for ϕ. It is called a constraint graph because
(when all relations are binary) it is just like a graph with different kinds of edges
(one for each relation) representing all the constraints from ϕ, and we will use
this view of it in the following chapters.

40

Remark 4.15. Recall the k-copy operation from Definition 2.25 and consider the
Kripke tree T = ([1, e]∗,→, ρ) from Definition 4.14 as a relational structure over
the signature P∪ {→, p1, . . . , pn}, where → is seen as a binary predicate and the
atomic propositions from P and {p1, . . . , pn} as unary predicates. We see that
copyk(T) defines a structure with domain ([1, e]∗×{1, . . . , k}) over the signature
τ = P ∪ {→,∼, p1, . . . , pn, P1, . . . , Pk}. Then setting k = |Regϕ| one can easily
write down a one-dimensional first-order interpretation which interprets GT in
copyk(T). This means that we can find a substructure S = (D, I) of copyk(T)
which is isomorphic to GT , and which is definable inside copyk(T) using one-
dimensional first order formulas.

In particular, the domain of GT is trivially in a bijection with the domain of
copyk(T) via the mapping (w, ri) 7→ (w, i) for all w ∈ [1, e]∗ and all i = 1 . . . k.
We can therefore choose D = {x ∈ copyk(T) | copyk(T) |= true}.

Successively for each relation R of arity t which appears in some constraint ϑ
we can find a first order formula ϕR on the signature τ such that defining

I(R) = {(x1, . . . , xt) ∈ Dt | copyk(T) |= ϕR(x1, . . . , xt)}

one obtains that S = (D, I) is isomorphic to GT . Let us see how: Suppose that
ϑ = Rs(S

i1r1, . . . , S
itrt) is a constraint of depth h = max{i1, . . . , it}, then we

define

ϕϑ(x1, . . . , xt) = ∃y ∃y1 . . . ∃yt ps(y + h)
∧

j=1,...,t

[
yj ∼ y ∧ Pj(xj) ∧ yj →ij xj

]
,

where y →i x stands for ∃a1 . . . ai−1 (y → a1∧a1 → a2∧· · ·∧ai−1 → x). Then, if
the relation R appears in the constraints ϑ1 . . . ϑm, we define ϕR = ϕϑ1∨· · ·∨ϕϑm .

It is then simple to verify that GT is isomorphic to S. Since BMW is a superset
of first order logic, this implies that given a BMW-formula ϕ, one can compute
a formula ϕ′ such that GT |= ϕ if and only if copyk(T) |= ϕ′. For more on this
subject we refer the reader to [23, Section 12.3]

Example 4.16. Figure 4.1 shows an example, where we assume that e = 2 and
n = 2, ϑ1 = (r1 < Sr2), and ϑ2 = (Sr1 ≡ Sr2). The figure shows a portion of
an (N, <,≡)-Kripke 2-tree T = ((N, <,≡), T , γ). The edges of the Kripke 2-tree
T are dotted. We assume that T is defined over the empty set of propositions.
The node to the left (respectively, right) of a tree node w is labeled by the value
γ(w, r1) (respectively, γ(w, r2)). The figure shows the labeling of tree nodes with
the two new propositions p1 and p2 (corresponding to ϑ1 and ϑ2) as well as the
{<,≡}-structure GTa .

Lemma 4.17. Let ϕ be a CECTL∗-formula in strong negation normal form. Then
ϕ is D-satisfiable if and only if there is a Kripke (#E(ϕ) + 1)-tree T such that
(T , ε) |= ϕa and GT � D.

41

Figure 4.1: The (N, <,≡)-decorated Kripke 2-tree T from Example 4.16, the
Kripke 2-tree Ta, and the constraint graph GTa .

Proof. Let D = (D, I), e = (#E(ϕ) + 1), and let Regϕ, n, ϑj , and dj (1 ≤ j ≤ n)
be defined as above.

Proof of ⇒. Assume that ϕ is D-satisfiable. By Theorem 3.12 there is a D-
Kripke e-tree T = (D, T , γ) with T = ([1, e]∗,→, ρ) such that (T, ε) |= ϕ. Take
the Kripke e-tree T a = ([1, e]∗,→, ρa).

We claim that γ : [1, e]∗×Regϕ → D is a homomorphism from GT a to D. For
this, assume that the tuple ((wv1, r1), . . . , (wvk, fk)) belongs to the interpretation
of R in GT a . By Definition 4.14 there are 1 ≤ j ≤ n and v ∈ [1, e]dj such that
pj ∈ ρa(wv), ϑj = R(Si1r1, . . . , S

ikrk), and vl is the prefix of v of length jl for
each 1 ≤ l ≤ k. Since pj ∈ ρa(wv), Definition 4.13 implies

(γ(wv1, r1), . . . , γ(wvk, rk)) ∈ I(R) .

Hence, γ is indeed a homomorphism.
In order to show (T a, ε) |= ϕa we prove simultaneously by structural induction

on the formula that

(1) For all CECTL∗-subformulas χ of ϕ and v ∈ [1, e]∗, if (T, v) |= χ, then
(T a, v) |= χa, and

(2) for all CMSO-subformulas ψ(X1, . . . , Xm) of ϕ (we assume that X1, . . . , Xm

only appear freely), all paths P in T , all valuation functions η, and all sets
A1, . . . , Am, B1, . . . , Bm ⊆ N of positions of P such that Ai ⊆ Bi for all
1 ≤ i ≤ m,

if (P, η) |=CMSO ψ(A1, . . . , Am) then (Pa, η) |=CMSO ψa(B1, . . . , Bm) ,

42

where P is the D-Kripke path induced by P in T and Pa is the Kripke path
induced by P in T a.

We have to consider the following cases, where we write ηA and ηB for the valu-
ations η[(Xj → Aj)1≤j≤m]] and η[(Xj → Bj)1≤j≤m]], respectively.

• Assume that χ = Eψ(ϕ1, . . . , ϕm), whence χa = Eψa(ϕa1, . . . , ϕ
a
m). Since

(T, v) |= χ, we know that there is an infinite D-Kripke path P with P(0) = v
such that P |= ψ(A1, . . . , Am), where Ai = {n ∈ N | (T,P(n)) |= ϕi}. We
can use the induction hypothesis (point (1)) on ϕ1, . . . , ϕm to obtain that,
for all n ∈ N and 1 ≤ i ≤ m, if (T,P(n)) |= ϕi then (T a,P(n)) |= ϕai .
So, if we define Bi = {n ∈ N | (T a,P(n)) |= ϕai }, we can deduce that
Ai ⊆ Bi. Applying point (2) of the induction hypothesis we conclude
that Pa |= ψa(B1, . . . , Bm), where Pa denotes the Kripke path in T a that
corresponds to P.

• The case χ = Aψ(ϕ1, . . . , ϕm) is treated analogously to the previous one
replacing “there is” by “for all”.

• Assume that ψ = ϑj(x) for some atomic constraint ϑj = R(Si1r1, . . . , S
ikrk)

of depth dj = max{i1, . . . , ik}. We want to show that (P, ηA) |=CMSO

ϑj(x) implies (Pa, ηB) |=CMSO pj(x + dj). Let n = η(x). Note that
ηA(x) = ηB(x) = n. If (P, ηA) |=CMSO R(Si1r1, . . . , S

ikrk)(x), then (γ(n +
i1, r1), . . . , γ(n + ik, rk)) ∈ I(R), and this, by Definition 4.13 implies that
pj ∈ ρa(n+ dj) which implies (Pa, ηB) |=MSO(σ) pj(x+ dj).

• All other steps are trivial.

Proof of ⇐. For the other direction, assume that there are a Kripke e-tree T =
([1, e]∗,→, ρT) such that (T , ε) |= ϕa, and a homomorphism h : [1, e]∗×Regϕ → A
from GT to D = (D, I). Define the D-Kripke structure T = (D, T ′, γ), where

• T ′ is obtained from T by removing the propositions corresponding to atomic
constraints, i.e., T ′ = ([1, e]∗,→, ρ) with ρ(v) = ρT (v) \ {p1, . . . , pn} for all
v ∈ [1, e]∗,

• γ(v, r) = h(v, r) for all r ∈ Reg, and

• γ is defined arbitrarily on all r ∈ Reg \ Regϕ.

We claim that (T, ε) |= ϕ. Again by structural induction, we prove the following
claim.

1. For all CECTL∗-subformulas χ of ϕ and v ∈ [1, e]∗, if (T , v) |= χa, then
(T, v) |= χ, and

43

2. for all CMSO-subformulas ψ of ϕ, all paths P in T , all valuation functions
η, and all sets A1, . . . , Am, B1, . . . , Bm ⊆ N of positions of P such that
Ai ⊆ Bi for all 1 ≤ i ≤ m,

if (P, η) |=CMSO ψa(B1, . . . , Bm) then (P, η) |=CMSO ψ(A1, . . . , Am) ,

where P is the Kripke path induced by P in T , P is the D-KP induced by
P in T, and we assume that X1, . . . , Xm only appear freely in ϕ.

All steps are trivial except for the case that χ is the atomic constraint ϑj =
R(Si1r1, . . . , S

ikrk) of depth dj . In this case, we have χa = pj(x + dj). Assume
that (P, η[(Xi → Bi)1≤i≤k]) |=CMSO pj(x + dj) and let n = η(x). By definition
of GT (Definition 4.14), this implies that the tuple ((P(n + i1), f1), . . . , (P(n +
ik), fk)) belongs to the interpretation ofR in GT . Now, since h is a homomorphism
and γ�Regϕ = h, we conclude that

(γ(P(n+ i1), r1), . . . , γ(P(n+ ik), rk)) ∈ I(R) ,

and thus
(P, η[(Xi → Ai)1≤i≤k]) |=CMSO R(Si1r1, . . . , S

ikrk)(x)

as desired.

We can now piece everything together to conclude the proof of Theorem 4.7:
D-SAT is decidable, provided that D is negation-closed and has the property
EHD(Bool(MSO,WMSO+B)).

Proof (Theorem 4.7). Let ϕ be a CECTL∗-formula. Thanks to Lemma 4.9 we can
assume without loss of generality, that ϕ is in strong negation normal form. Let
ϑ = ϕa be the abstraction of ϕ for the further discussion. Hence, ϑ is an ordinary
ECTL∗-formula, where negation only occur in front of formulas of the form p(x)
where p ∈ P \ {p1, . . . , pn} or atomic MSO-formulas, and e = #E(ϑ) + 1. By
Lemma 4.17, we have to check, whether there is a Kripke e-tree T such that

(T , ε) |= ϑ and GT � D .

Let τ ⊆ σ be the finite subsignature consisting of all relation symbols that occur in
our initial CECTL∗-formula ϕ. Note that GT is actually a countable τ -structure.
Since the concrete domain D has the property EHD(BMW), one can compute
from τ a BMW-sentence α such that for every countable τ -structure B we have
B |= α if and only if B � D. Our new goal is to decide whether there is a Kripke
e-tree T such that

(T , ε) |= ϑ and GT |= α .

44

Given the fact that every ECTL∗-formula can be effectively transformed into an
equivalent MSO-formula with a single free first-order variable [15, 27], and since
the root ε of a tree is first-order definable, we get an MSO-sentence ψ such that
(T , ε) |= ϑ if and only if T |= ψ. Hence, we have to check whether there is a
Kripke e-tree T such that

T |= ψ and GT |= α .

Since BMW is compatible with first-order interpretations (Remark 4.15) and with
the k-copy operation (Proposition 2.26), we can compute from α a BMW-sentence
α′ and from α′ another BMW-sentence β such that for k = |Regϕ| we have:

GT |= α
Rmk. 4.15⇐====⇒ copyk(T) |= α′

Prop. 2.26⇐=====⇒ T |= β .

Thus, we have to check whether there is a Kripke e-tree T such that T |= ψ ∧ β,
where ψ ∧ β is a BMW-sentence. By Theorem 2.21 this is decidable, which
completes the proof.

4.2.1 The EHD Method for Classes of Structures

In a variant of the notion of D-satisfiability (introduced in Definition 4.1) we are
given a class of structures ∆, and we look for an A-Kripke structure, for some
A ∈ ∆, satisfying our formula.

Definition 4.18. We say that ϕ ∈ CECTL∗ is ∆-satisfiable if and only if there
exists a member A of ∆ such that ϕ is A-satisfiable.

Clearly, choosing ∆ = {D} gives us back the original problem. Suppose
now ∆ has a Universal Structure (some U ∈ ∆ such that every A ∈ ∆ ad-
mits an injective homomorphism into U), then ∆-satisfiability is equivalent to
U-satisfiability. In fact it is easy to see that a formula ϕ has a model with some
concrete domain from ∆ if and only if it has a model with concrete domain U :
Suppose K = (A,K, γ) is a model for ϕ, and let h be the injective homomorphism
from A to U . Then define γ′ = h ◦ γ. It is easy to show that U = (U ,K, γ′) is a
model for ϕ as well.

A typical class with a universal model is the class of all countable linear orders,
for which (Q, <) is universal.

In order to approach the problem of satisfiability with respect to a class of
structures, we need to adapt some of the notions that we introduced in the
previous sections. First of all we need to extend the definition of the EHD-
property to this setting: Given a countable signature σ and a class ∆ of σ-
structures, we say that ∆ has the property EHD(L) if there is a computable

45

function that maps every finite subsignature τ ⊆ σ to an L-sentence ϕτ such that
for every countable τ -structure B we have:

there exists A ∈ ∆ such that B � A ⇐⇒ B |= ϕτ .

Analogously, we need to give a suitable definition of negation closure: ∆ is
negation-closed if and only if for every R ∈ σ, there exists a positive existential
first-order formula ϕR, defining for all A = (A, I) ∈ ∆ the complement of I(R).
Note that the formula ϕR does not depend on the particular structure A, but
only on the relation R.

One can then retrace all the steps of Theorem 4.7 and prove that

Theorem 4.19. Given a class ∆ of σ-structures, ∆-satisfiability is decidable for
CECTL∗, provided that ∆ has the EHD-property and is negation-closed.

46

Chapter 5

Concrete domains over the
integers

Having introduced the EHD method, we now apply it successfully to several
concrete domains over the integers. The final goal of this section is to show:

Proposition 5.1. The concrete domain Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b) has
the property EHD(Bool(MSO,WMSO+B)).

Since Z is also negation-closed (see Example 4.6), the following result is an
immediate consequence of Theorem 4.7:

Theorem 5.2. Z-SAT is decidable.

We prove Proposition 5.1 in three steps. First, we show that (Z, <) has the
property EHD(WMSO+B). In a second step we extend this result to the structure
(Z, <,≡). Finally we add a countable set of unary predicates satisfying certain
computability requirements, and show that Z is an instance of this case.

5.1 Z with Order-Constraints

Our first goal is to prove:

Proposition 5.3. The structures (Z, <), (N, <) and (Z\N, <) have the property
EHD(WMSO+B).

As a preparation of the proof, we first define some terminology and succes-
sively we characterize all {<}-structures that allow a homomorphism to (Z, <)
in terms of their paths. Let A = (A, I) be a countable {<}-structure. Setting
E = I(<), we can see (A,E) as a directed graph. When talking about paths,

47

we always refer to finite directed E-paths inside (A,E). The length of a path
(a0, a1, . . . , an) is n. For S ⊆ A and x ∈ A \S, a path from x to S is a path from
x to some node y ∈ S. A path from S to x is defined symmetrically.

Lemma 5.4. Given a {<}-structure A, we have A � (Z, <) if and only if

(H1) A does not contain cycles, and

(H2) for all a, b ∈ A there is an n ∈ N such that the length of each path from a
to b is bounded by n.

Proof.

(⇒) Let us first show the “only if” direction of the lemma. Suppose h is a
homomorphism from A to (Z, <). Heading for a contradiction, suppose
that there is a cycle (a0, . . . , ak) in A, i.e., (a0, . . . , ak) is a path such that
(ak, a0) ∈ E. Setting zi = h(ai), this implies zi < zi+1 for 0 ≤ i ≤ k − 1
and zk < z0 which is a contradiction. Hence, (H1) holds.

Suppose now that a, b ∈ A are such that for every n ∈ N there is a path
of length at least n from a to b. If d = h(b) − h(a), we can find a path
(a0, a1 . . . , ak) with a0 = a, ak = b and k > d. Since h is a homomorphism,
this path is mapped to an increasing sequence of integers h(a) = h(a0) <
h(a1) < · · · < h(ak) = h(b). But this contradicts h(b) − h(a) = d < k.
Hence, (H2) holds.

(⇐) For the “if” direction of the lemma assume that A is acyclic (property (H1))
and that (H2) holds. Fix an enumeration a0, a1, a2, . . . of the countable set
A. For n ≥ 0 let

Sn = {a ∈ A | ∃i, j ≤ n : (ai, a), (a, aj) ∈ E∗}.

We claim that Sn has the following properties.

(P1) Sn is convex w.r.t. the partial order E∗: If a, c ∈ Sn and (a, b), (b, c) ∈
E∗, then b ∈ Sn.

(P2) For a ∈ A \ Sn all paths between a and Sn are “one-way”, i.e., there
are not b, c ∈ Sn such that (b, a), (a, c) ∈ E∗.

(P3) For all a ∈ A\Sn there is a bound c ∈ N such that all paths between a
and Sn have length at most c. Let can ∈ N be the smallest such bound
(hence, we have can = 0 if there is no path between a and Sn).

(P1) is obvious and moreover implies (P2). To see (P3), assume that there
are only paths from Sn to a but not the other way round (see (P2)); the

48

other case is symmetric. If there is no bound on the length of paths from Sn
to a, then by definition of Sn, there is no bound on the length of paths from
{a0, . . . , an} to a. By the pigeon principle, there is a 0 ≤ i ≤ n such that
there is no bound on the length of paths from ai to a. But this contradicts
property (H2).

We build the homomorphism h inductively. For every n ≥ 0 we define
functions hn : Sn → Z such that the following invariants hold for all n ≥ 0.

(I1) If n > 0 then hn(a) = hn−1(a) for all a ∈ Sn−1.

(I2) hn(Sn) is bounded in Z, i.e., there are z1, z2 ∈ Z such that hn(Sn) ⊆
[z1, z2].

(I3) hn is a homomorphism from the induced subgraph A�Sn to (Z, <).

For n = 0 we have S0 = {a0}. We set h0(a0) = 0 (any other integer would
be also fine). Properties (I1)–(I3) are easily verified. For n > 0, there are
four cases.

1. an ∈ Sn−1, thus Sn = Sn−1. We set hn = hn−1. Clearly, (I1)–(I3) hold
for n.

2. an /∈ Sn−1 and there is no path from an to Sn−1 or vice versa. We set
hn(an) := 0. Since Sn = Sn−1 ∪ {an}, (I1)–(I3) follow easily from the
induction hypothesis.

3. an /∈ Sn−1 and there is a path from an to Sn−1. Then, by (P2) there
are no paths from Sn−1 to an. Hence, we have

Sn = Sn−1 ∪ {a ∈ A | ∃b ∈ Sn−1 : (an, a), (a, b) ∈ E∗}.

We have to define the value hn(a) for all a ∈ A \ Sn−1 that lie along a
path from an to Sn−1. By (I2) there are z1, z2 ∈ Z with hn−1(Sn−1) ⊆
[z1, z2]. Recall the definition of can−1 from (P3). For all a ∈ A \ Sn−1

that lie on a path from an to Sn−1, we set hn(a) = z1 − can−1. Since
there are paths from a to Sn−1, we have can−1 > 0. Hence, for all
a ∈ Sn \ Sn−1, hn(a) < z1. Let us check that hn : Sn → Z satisfy
(I1)– (I3): Invariant (I1) holds by definition of hn. For (I2) note that
hn(Sn) ⊆ [z1 − cann−1, z2].

It remains to show (I3), i.e., that hn is a homomorphism from A� Sn
to (Z, <). Hence, we have to show that h(b1) < h(b2) for all (b1, b2) ∈
E ∩ (Sn × Sn).

– If b1, b2 ∈ Sn−1, then hn(b1) = hn−1(b1) < hn−1(b2) = hn(b2) by
the induction hypothesis.

49

– If b1 ∈ Sn\Sn−1 and b2 ∈ Sn−1, we know that hn(b2) = hn−1(b2) ≥
z1 while hn(b1) < z1 by construction. Hence, we have hn(b1) <
hn(b2).

– If b2 ∈ Sn \Sn−1 and b1 ∈ Sn−1, then (b1, b2) ∈ E contradicts (P2)
because b2 is on a path from an to Sn−1 and (b1, b2) is a path in
the opposite direction.

– If both b1 and b2 belong to Sn \ Sn−1 then hn(bi) = z1 − cbin−1 for

i ∈ {1, 2}. Since (b1, b2) ∈ E, we have cb1n−1 > cb2n−1. This implies
hn(b1) < hn(b2).

4. an /∈ Sn−1 and there is a path from Sn−1 to an. For all

a ∈ Sn\Sn−1 = {a ∈ A\Sn−1 | a belongs to a path from Sn−1 to an},

set hn(a) = z2 + can−1. The rest of the argument is analogous to the
previous case.

This concludes the construction of hn. Thanks to (I1), the limit function
h =

⋃
i∈N hi exists. By (I3) and A =

⋃
i∈N Si, h is a homomorphism from

A to (Z, <).

A result similar to Lemma 5.4 holds for (N, <). Here the characterization of
homomorphisms relies on the fact that if some element a is mapped to n ∈ N by
some homomorphism, then a path leading to a is at most of length n.

Lemma 5.5. We have A � (N, <) if and only if

(H1) A does not contain cycles, and

(H2) for all a ∈ A there is an n ∈ N such that the length of each path ending in
a is bounded by n.

Proof. If h : A → N is a homomorphism and a ∈ A then every path ending
in a can be of length at most h(a). Moreover, A must be acyclic by the same
argument that we used for (Z, <).

For the other direction assume that A is acyclic and for each a ∈ A there
is some ca ∈ N such that the longest path leading to a has length ca. Define
h(a) = ca. It is rather straightforward to show that h is a homomorphism.

To prove Proposition 5.3, stating that (Z, <), (N, <) and (Z \ N, <) have
the property EHD(WMSO+B), we need to show that we can use WMSO+B to
distinguish between all those {<}-structures which allow a homomorphism to
(Z, <) and those which do not. Thanks to the above results, we just need to
express in WMSO+B the easy hypothesis of Lemma 5.4 and Lemma 5.5.

50

Proof (Proposition 5.3). For (Z, <), we translate the conditions (H1) and (H2)
from Lemma 5.4 into WMSO+B. Cycles are excluded by the sentence ¬ECycle<
(see Example 2.20). Moreover, for an acyclic {<}-structure A we have A |=
∀x ∀y BPaths<(x, y) (see also Example 2.20) if and only if for all a, b ∈ A there is
a bound n ∈ N on the length of paths from a to b. Thus,

A � (Z, <) if and only if A |= ¬ECycle< ∧ ∀x ∀y BPaths<(x, y) .

Similarly, using Lemma 5.5, we obtain that

A � (N, <) if and only if A |= ¬ECycle< ∧ ∀y BZ ∃xPath<(x, y, Z) .

Since (Z \ N, <) is (N, <) with reversed order, one proves analogously that

A � (Z \N,<) if and only if A |= ¬ECycle< ∧ ∀xBZ ∃y Path<(x, y, Z) .

5.2 Z with Order- and Equality-Constraints

In this section, we extend Proposition 5.3 to the negation-closed structure (Z, <
,≡), where ≡ is the equality relation on Z. For this purpose, given a structure
A = (A, I) over the signature {≡}] σ we define the quotient of A, obtained by
contracting all the ≡-paths (note that I(≡) is usually not the identity relation
on A).

Definition 5.6. Let ∼ = (I(≡) ∪ I(≡)−1)∗ be the smallest equivalence relation
on A that contains I(≡). We denote the ∼-quotient of A by Ã = (Ã, Ĩ): It is a
σ-structure with domain Ã = {[a] | a ∈ A} the set of all ∼-equivalence classes.
For all R ∈ σ of arity k, we define Ĩ(R) as the set of k-tuples ([a1], . . . , [ak]) for
which there are b1 ∈ [a1], . . . , bk ∈ [ak] such that (b1, . . . , bk) ∈ I(R).

Remark 5.7. Let A = (A, I) be a {<,≡}-structure and Ã = (Ã, Ĩ) its quotient.
In this case we have that ([a], [b]) ∈ Ĩ(<) iff there are a′ ∼ a and b′ ∼ b such
that (a′, b′) ∈ I(<). Since ∼ is the reflexive and transitive closure of the first-
order definable relation I(≡)∪I(≡)−1, we can construct a WMSO-formula ϕ̃(x, y)
(using the reach-construction from Example 2.20) that defines ∼. That is, ∼ is
WMSO-definable (and MSO-definable as well).

Let C = (C, J) be a structure over the signature {≡} ∪ σ where J(≡) is real
equality, i.e., J(≡) = {(c, c) | c ∈ C}. In this case the quotient C̃ = (C̃, J̃) is
isomorphic to the reduct of C with signature σ. Whenever ≡ is interpreted as real
equality in the target structure, taking the quotient of a structure is compatible
with the existence of homomorphisms in the following sense.

51

Lemma 5.8. Let C = (C, J) be a concrete domain over {≡}] σ where J(≡) is
real equality. Then, for every τ ⊆ σ, and every ({≡} ∪ τ)-structure A = (A, I),

1. A � C if and only if Ã � C̃.

2. C has the property EHD(Bool(MSO,WMSO+B)) if and only if C̃ does.

Proof.

1. For the direction (⇒) let h : A → C be a homomorphism. We show that
g : Ã → C̃, defined by g([a]) = h(a), is a homomorphism as well. Notice that
the mapping g is well defined: [a] = [b] implies (a, b) ∈ (I(≡) ∪ I(≡)−1)∗.
Since h is a homomorphism, (h(a), h(b)) ∈ J(≡), i.e., h(a) = h(b).

Then let ([a1], . . . , [ak]) ∈ Ĩ(R) for some R ∈ τ . By definition of Ĩ,
there are b1 ∈ [a1], . . . , bk ∈ [ak] such that (b1, . . . , bk) ∈ I(R). Therefore
(g([a1]), . . . , g([ak])) = (h(b1), . . . , h(bk)), and since h is a homomorphism,
(h(b1), . . . , h(bk)) ∈ J(R) = J̃(R) as wanted.

For the direction (⇐) let h : Ã → C̃ be a homomorphism. We define
g : A → C by g(a) = h([a]). Then let R ∈ τ and b1, . . . , bk ∈ A such that
(b1, . . . , bk) ∈ I(R). This implies that ([b1], . . . , [bk]) ∈ Ĩ(R) and therefore
(h([b1]), . . . , h([bk])) = (g(b1), . . . , g(bk)) ∈ J(R).

Finally, if a, b ∈ A are such that (a, b) ∈ I(≡), then [a] = [b]. Therefore
g(a) = h([a]) = h([b]) = g(b), i.e., (g(a), g(b)) ∈ J(≡). This proves that g
is a homomorphism.

2. Let L = Bool(MSO,WMSO+B)) in the following arguments. Since C̃ is a
reduct of C, it is clear that property EHD(L) for C implies property EHD(L)
for C̃. For the other direction, assume that C̃ has the property EHD(L). Let
τ ⊆ σ] {≡} be a finite subsignature. If τ does not contain ≡ then, by the
property EHD(L) for C̃, there exists an L-sentence ψτ such that for every
τ -structure A we have A |= ψτ if and only if A � C̃. But the latter is
equivalent to A � C (since τ does not contain ≡).

Hence, we can assume that τ contains ≡. Let τ ′ = τ \ {≡}. Since C̃
has property EHD(L), we can find an L-sentence ψτ ′ , such that every τ ′-
structure A,

A |= ψτ ′ ⇐⇒ A � C̃. (5.1)

By Remark 5.7 there is an L-formula ϕ̃(x, y) that defines the equivalence
relation ∼. Let ϑ̃τ be the L-sentence obtained by replacing in ψτ ′ every
occurrence of an atomic formula R(x1, . . . , xk) for R ∈ τ ′ by

R̃(x1, . . . , xk) := ∃z1 · · · ∃zk (ϕ̃(z1, x1) ∧ · · · ∧ ϕ̃(zk, xk) ∧R(z1, . . . , zk)).

52

We claim that for every τ -structure B = (B, I),

B |= ϑ̃τ ⇐⇒ B̃ |= ψτ ′ . (5.2)

Using this claim, we obtain

B |= ϑ̃τ ⇐⇒ B̃ |= ψτ ′
(5.1)⇐=⇒ B̃ � C̃ 1.⇐⇒ B � C,

which implies that B has the property EHD(L), as wanted.

The proof of (5.2) is by induction on the structure of the formula, the only
non-trivial case being B |= R̃(a1, . . . , ak) if and only if B̃ |= R([a1], . . . , [ak]).
Note that B̃ |= R([a1], . . . , [ak]) if and only if there are b1, . . . , bk ∈ B such
that bj ∼ aj and B |= R(b1, . . . , bk), which is exactly what R̃(a1, . . . , ak)
expresses.

An application of the previous lemma to Proposition 5.3 directly yields the
following results.

Proposition 5.9. (Z, <,≡), (N, <,≡), and (Z \ N, <,≡) satisfy the property
EHD(WMSO+B).

5.3 Adding Unary Predicates

We extend now our result to expansions of (Z, <,≡) by unary predicates that
satisfy some computability assumptions. For the rest of this section, we fix a
signature σ of unary predicates (not containing the symbols ≡ and <) and a (σ∪
{≡, <})-structure Zσ = (Z, I) where I(≡) and I(<) are interpreted as expected.

Definition 5.10. We call a finite subset P̄ ⊆ σ bounded below (bounded above,
respectively) if

⋂
P∈P̄ I(P) is bounded below (bounded above, respectively).

We next define two conditions, (C1) and (C2), that imply the property
EHD(Bool(MSO,WMSO+B)) for Zσ.

(C1) The bounds of P̄ ⊆ σ are effectively computable in the following sense:
We can decide, given a finite subset P̄ ⊆ σ, whether P̄ is bounded below
(above, respectively). Additionally we can compute, given a finite subset
P̄ ⊆ σ that is bounded below (above, respectively), a bound `(P̄) ∈ Z
(u(P̄) ∈ Z, respectively) such that `(P̄) ≤ z (u(P̄) ≥ z, respectively) for all
z ∈

⋂
P∈P̄ I(P).

53

(C2) For all finite subsets P̄1, P̄2 ⊆ σ and all predicates P ∈ σ, if P̄1 is bounded
below and P̄2 is bounded above, then we can effectively compute the finite
set I(P) ∩ [`(P̄1), u(P̄2)].

The main result of this section is the following proposition.

Proposition 5.11. If σ and I are chosen in such a way that Zσ satisfies con-
ditions (C1) and (C2), then Zσ has property EHD(BMW). The analogous result
holds for Nσ = Zσ�N.

We fix a finite subsignature τ ⊆ σ. Due to (C1), we can compute m < M ∈ Z
such that m is a lower bound for all P̄ ⊆ τ that are bounded below and M is an
upper bound for all P̄ ⊆ τ that are bounded above. We fix the numbers m and
M for the rest of this section.

Let A = (A, J) be a (τ ∪ {<,≡})-structure. The proof of Proposition 5.11
uses a decomposition of A into four parts, called “the bounded part”, “the greater
part”, “the smaller part” and “the rest”.

Intuitively, an element a ∈ A belongs to the bounded part if we know a priori
that any homomorphism h from A to Zτ (we write Zτ for the reduct of Zσ with
signature τ ∪ {≡, <}) maps a to an element in the interval [m,M]. Similarly,
the greater part consists of all elements a ∈ A that do not belong the bounded
part but any homomorphism to Zτ must map a above m, and the smaller part
consists of all elements a ∈ A that do not belong to the bounded part but any
homomorphism to Zτ must map a below M .

We then reduce the question whether A can be embedded into Zτ to the
questions whether the bounded part satisfies a certain MSO-formula and whether
the {<,≡}-reducts of “the greater part”, “the smaller part” and “the rest”, allow
a homomorphism to (N, <,≡), (Z \ N, <,≡), and (Z, <,≡) respectively.

Definition 5.12. Let A = (A, J) be a (τ ∪ {<,≡})-structure. We denote by
Ã = (Ã, J̃) the ∼-quotient of A (cf. Definition 5.6).

We call a ∈ A bounded below if there is some b ∈ A, a <-path in Ã from [b]
to [a], and a subset P̄ ⊆ τ which is bounded below such that [b] ∈ J̃(P) for all
P ∈ P̄ .

We call a ∈ A bounded above if there is some b ∈ A, a <-path in Ã from [a]
to [b], and a subset P̄ ⊆ τ which is bounded above such that [b] ∈ J̃(P) for all
P ∈ P̄ .

An example will help clarify the meaning of this definition.

Example 5.13. Suppose τ = {≡0} and Zτ = (Z, I) is the (τ ∪{<,≡})-structure
where I(≡0) = {0}, as expected. In Figure 5.1, we show a (τ ∪{<,≡})-structure
A, where by definition 5.12, a0, a1, a2 are bounded above, while a3, a4, a5 are

54

Figure 5.1: We represent here a {<,≡,≡0}-structure A = (A, I). Labeled
directed edges are used to depict the binary relations while the interpretation of
the unary predicate ≡0 is shown as a set.

bounded below. Notice that, by the fact that b ∈ I(≡0), any homomorphism h
from A to Zτ should satisfy h(b) = 0. Being there a <-path from a1 to b, then
we know that h(a1) < h(b) = 0. This is the reason behind calling a1 bounded
above. The same kind of reasoning can be applied to the other elements.

With these preparations, we can easily define the four substructures men-
tioned above.

Definition 5.14. For a (τ ∪ {<,≡})-structure A = (A, J) we define

• the bounded part B = {a ∈ A | a is bounded below and bounded above},

• the greater partG = {a ∈ A | a is bounded below but not bounded above},

• the smaller part S = {a ∈ A | a is bounded above but not bounded below},
and

• the rest R = {a ∈ A | a is neither bounded above nor bounded below}.

Let us start with two simple lemmas.

Lemma 5.15. Let h : A → Zτ be a homomorphism. Then the following holds:

• If a ∈ B then m ≤ h(a) ≤M .

• If a ∈ S then h(a) ≤M .

• If a ∈ G then m ≤ h(a)

Proof. It suffices to show that if a is bounded below (bounded above, respec-
tively), then m ≤ h(a) (h(a) ≤ M , respectively). If a is bounded below, then if
there is some b ∈ A, a <-path in Ã from [b] to [a], and a subset P̄ ⊆ τ which is
bounded below such that [b] ∈ J̃(P) for all P ∈ P̄ . We get m ≤ h(b) ≤ h(a). If
a is bounded above, we can argue in the same way.

Lemma 5.16. The following relations are disjoint from J(<): B × S, B × R,
G×B, R×B, G× S, G×R, R× S.

55

Proof. Assume for instance (b, s) ∈ J(<) for some b ∈ B and s ∈ S. Since b ∈ B,
b is bounded from below. Hence, there is some c ∈ A, a <-path in Ã from [c]
to [b], and a subset P̄ ⊆ τ which is bounded below such that [b] ∈ J̃(P) for all
P ∈ P̄ . Hence, there is also a <-path in Ã from [c] to [s], i.e., s is bounded below,
which contradicts s ∈ S. The other cases can be proved analogously.

Remark 5.17. The parts B,G, S, and R are all MSO- and WMSO-definable in
the sense that there are MSO-formulas χi(x) for i ∈ {B,G, S,R} with one free
first-order variable x such that A |= χi(a) for each a ∈ A if and only if a belongs
to the part i (and the same holds if we interpret χi(x) as a WMSO-formula).

We next state three lemmas that allow to prove Proposition 5.11.

Lemma 5.18. We have A � Zτ if and only if A�B � Zτ �[m,M] and A�G∪S∪R �
Zτ .

Lemma 5.19. Given a finite τ ⊆ σ we can compute an MSO-sentence ψB such
that A�B � Zτ �[m,M] if and only if A�B |= ψB.

Lemma 5.20. The following four conditions are equivalent:

1. There is a homomorphism h : A�G∪S∪R → Zτ �Z\[m,M] with h(G) ⊆ [M +
1,∞), h(S) ⊆ (−∞,m− 1].

2. A�G∪S∪R � Zτ

3. (G ∪ S ∪ R, J(<), J(≡)) � (Z, <,≡), (G, J(<), J(≡)) � (N, <,≡), and
(S, J(<), J(≡)) � (Z \ N, <,≡)

4. There is a homomorphism h : (G ∪ S ∪ R, J(<), J(≡)) → (Z, <,≡) with
h(G) ⊆ N, h(S) ⊆ Z \ N.

Before we prove these lemmas, we show how they imply Proposition 5.11.

Proof (Proposition 5.11). Fix a finite subsignature τ ⊆ σ. By Lemma 5.18 we
have A � Zτ if and only if A�B � Zτ �[m,M] and A�G∪S∪R � Zτ . By Lemma 5.19
we can compute from τ an MSO-sentence ψB such that A�B |= ψB if and only if
A�B � Zτ �[m,M]. Moreover, from Lemma 5.20 we know that A� G ∪ S ∪R � Zτ
if and only if

• (G ∪ S ∪R, J(<), J(≡)) � (Z, <,≡),

• (G, J(<), J(≡)) � (N, <,≡), and

• (S, J(<), J(≡)) � (Z \ N, <,≡).

56

The structures (Z, <,≡), (N, <,≡), (Z \N, <,≡) have the property EHD(BMW).
Hence, there are BMW-sentences ψG, ψS , and ψR such that A�G∪S∪R � Zτ if and
only if

• (G ∪ S ∪R, J(<), J(≡)) |= ψR,

• (G, J(<), J(≡)) |= ψG, and

• (S, J(<), J(≡)) |= ψS .

Since the subsets B, G, S and R of A are MSO-definable as well as WMSO-
definable (cf. Remark 5.17), we can compute relativizations of ψi to part i for
i ∈ {B,G, S,R} and obtain BMW-sentences ϕB, ϕR, ϕG and ϕS such that

• A |= ϕB if and only if A�B |= ψB,

• A |= ϕR if and only if (G ∪ S ∪R, J(<), J(≡)) |= ψR,

• A |= ϕG if and only if (G, J(<), J(≡)) |= ψG, and

• A |= ϕS if and only if (S, J(<), J(≡)) |= ψS .

Putting everything together, we haveA � Zτ if and only ifA |= ϕB∧ϕG∧ϕS∧ϕR.

We now prove the auxiliary lemmas (in a different order).

Proof (Lemma 5.20). The direction (1 ⇒ 2) is trivial. Let us prove (2 ⇒ 3), (3
⇒ 4), and (4 ⇒ 1).

(2 ⇒ 3) Let h : A�G∪S∪R → Zτ be a homomorphism. It follows immediately that h
is also a homomorphism from the reduct (G∪S∪R, J(<), J(≡)) to (Z, <,≡).

Let a ∈ G. Then h(a) ≥ m by Lemma 5.15. Setting h′ : G → N with
h′(a) = h(a)−m yields a homomorphism from (G, J(<), J(≡)) to (N, <,≡).

The proof for (S, J(<), J(≡)) � (Z \ N, <,≡) is analogous.

(3 ⇒ 4) Assume that there are homomorphisms

h : (G ∪ S ∪R, J(<), J(≡))→ (Z, <,≡),

hG : (G, J(<), J(≡))→ (N, <,≡), and

hS : (S, J(<), J(≡))→ (Z \ N, <,≡).

Define the mapping h′ : G ∪ S ∪R→ Z by

h′(a) =

h(a) if a ∈ R,
max(h(a), hG(a)) if a ∈ G,
min(h(a), hS(a)) if a ∈ S.

57

With Lemma 5.16 one easily concludes that this is the desired homomor-
phism.

(4 ⇒ 1) Let h : (G∪ S ∪R, J(<), J(≡))→ (Z, <,≡) be the homomorphism from 4.
Let P+ be the set of subsets of τ that are not bounded above and let P− be
the set of subsets of τ that are not bounded below. We define a sequence
(ηi)i∈Z of integers as follows:

– η0 = M + 1,

– η−1 is the maximal number such that for each P̄ ∈ P− there is a
η−1 ≤ z < m with z ∈ I(P) for all P ∈ P̄ (we set η−1 = m − 1 if
P− = ∅),

– for i > 0 let ηi be minimal such that for each P̄ ∈ P+ there is a
ηi−1 ≤ z < ηi with z ∈ I(P) for all P ∈ P̄ (we set ηi = ηi−1 + 1 if
P+ = ∅),

– for i < −1 let ηi be maximal such that for each P̄ ∈ P− there is a
ηi ≤ z < ηi+1 with z ∈ I(P) for all P ∈ P̄ (we set ηi = ηi+1 − 1 if
P− = ∅).

For all a ∈ G ∪ S ∪ R let P̄a = {P ∈ τ | [a] ∈ J̃(P)}. Note that for all
r ∈ R, P̄r is neither bounded above or below (otherwise r would be bounded
above or below, respectively), for all g ∈ G, P̄g is not bounded above and
for all s ∈ S, P̄s is not bounded below. We conclude that the following map
h′ : G ∪ S ∪R→ Z is well defined:

h′(a) = min{z ∈ Z | ηh(a) ≤ z < ηh(a)+1 and z ∈ I(P) for all P ∈ P̄a}.

Since h preserves < and ≡, h′ does the same. Moreover, h′ is defined in
such a way that it preserves all unary predicates from τ .

Next we show that the image of h′ has empty intersection with the interval
[m,M]. By definition of η−1, η0 and h′, h′(a) ∈ [m,M] would imply h(a) =
−1 Note that by by our assumptions on h, this implies a ∈ R ∪ S. In
particular, P̄a cannot be bounded below, i.e., P̄a ∈ P−. Thus, there is a
minimal η−1 ≤ z < m such that z ∈ I(P) for all P ∈ P̄a. This implies
h′(a) = z < m which completes our claim. Thus, h′ is a homomorphism
from A�G∪S∪R to Zτ �Z\[m,M].

To show that h′(G) ⊆ [M + 1,∞) and h(S) ⊆ (−∞,m − 1] note that
h(G) ⊆ N and h(S) ⊆ Z \ N. This implies h′(G) ⊆ [M + 1,∞) and
h′(S) ⊆ (−∞,M]. Hence, h′(S) ⊆ (−∞,m− 1] by the previous paragraph.

58

Proof (Lemma 5.18). If h : A → Zτ is a homomorphism, then the restrictions of
h to B and G ∪ S ∪ R witness A�B � Zτ �[m,M] (here we use Lemma 5.15) and
A�G∪S∪R � Zτ .

Now assume that h1 : A�B → Zτ �B and h2 : A�G∪S∪R → Zτ are homo-
morphisms. By Lemma 5.20 there exists a homomorphism h′2 : A�G∪S∪R → Zτ
such that h(G) ⊆ [M + 1,∞) and h(S) ⊆ (−∞,m− 1]. We define the mapping
h : A→ Z by h(b) = h1(b) ∈ [m,M] for b ∈ B and h(a) = h′2(a) for a ∈ G∪S∪R.
This mapping preserves ≡ and all unary predicated. Moreover, using Lemma 5.16
it follows easily that it preserves also the relation <.

Proof (Lemma 5.19). A homomorphism h : A�B → Zτ �[m,M] can be identified
with a partition of B into M − m + 1 sets Bm, . . . , BM , where Bi = {a ∈ B |
h(a) = i}. Hence, the MSO-sentence ψB from Lemma 5.19 states that there is
a partition of B into M −m + 1 sets Bm, . . . , BM such that the corresponding
mapping h : B → [m,M] preserves all relations from τ . Fixing a tuple ofM−m+1
many set variables X = (Xm, . . . , XM), we want to define formulas with the
following properties:

• ψpart(X) expresses that X forms a finite partition.

• ψ<(X) expresses that the partition preserves the relation I(<).

• ψ=(X) expresses that the partition preserves the relation I(≡).

• ψτ (X) expresses that the partition preserves every unary relation P ∈ τ .

These formulas can be defined as follows:

ψpart = ∀x
∨

i∈[m,M]

(
x ∈ Xi ∧

∧
j∈[m,M]
i 6=j

x 6∈ Xj

)
,

ψ< = ∀x ∀y
(
x < y →

∨
i,j∈[m,M]

i<j

(x ∈ Xi ∧ y ∈ Xj)

)
,

ψ= = ∀x ∀y
(
x ≡ y →

∨
i∈[m,M]

(x ∈ Xi ∧ y ∈ Xi)

)
,

ψτ =
∧
P∈τ
∀x
(
x ∈ P →

∨
i∈I(P)∩[m,M]

x ∈ Xi

)
.

Note that the formulas of the last form are all computable due to condition (C2).
Now we can define ψB = ψpart ∧ ψ< ∧ ψ= ∧ ψτ .

59

5.4 Expansions of Z that satisfy Conditions (C1) and
(C2)

In this section, we will present concrete examples of unary relations that satisfy
the conditions (C1) and (C2) from the previous section.

Definition 5.21. Define the signature

σ = {FS , CS | S ⊆ Z finite} ∪ {≡a,b| a, b ∈ N, a < b},

where all symbols are unary. We define the structure Zσ = (Z, I) where I(FS) =
S, I(CS) = Z \ S, and ≡a,b holds at all z ∈ Z such that z = a mod b.

Note that the Zσ (which is defined over the signature σ∪{<,≡}, see the first
paragraph of Section 5.3) is an expansion of Z = (Z, <,≡, (≡a)a∈Z, (≡a,b)0≤a<b)
from (1.2) because ≡a is the same relation as F{a}.

Lemma 5.22. Zσ satisfies the conditions (C1) and (C2).

Proof. The condition (C2) holds trivially because all set I(P) for P ∈ σ are
computable sets and the map P 7→ I(P) is computable.

It remain to show (C1). Let P̄ = F̄ ∪ C̄ ∪ M̄ be a finite set where F̄ ⊆ {FS |
S ⊆ Z finite}, C̄ ⊆ {CS | S ⊆ Z finite}, and M̄ ⊆ {≡a,b| a, b ∈ N, a < b}.

Note that F̄ 6= ∅ implies that P̄ is bounded above and below. Otherwise
P̄ is bounded above (below) if and only if M̄ is bounded above (below). Let
M̄ = {≡a1,b1 , . . . ,≡ak,bk} and

S =

k⋂
i=1

{ai + zbi | z ∈ Z}.

The set S is either empty or of the form {y + z · lcm(b1, b2, . . . , bk) | z ∈ Z}
for some y ∈ Z (and hence neither bounded below nor bounded above), where
lcm(b1, b2, . . . , bk) is the least common multiple of the numbers b1, b2, . . . , bk . The
latter holds if and only if ai = aj mod gcd(bi, bj) for all i 6= j (see [21, Theorem
2.4.2]).

For those P̄ that are bounded above (bounded below), it is easy to compute
an upper bound (a lower bound). If F̄ is nonempty, take an FS ∈ F̄ and use
min(S) and max(S) as bounds. If P̄ is bounded and F̄ is empty, then 0 is a lower
and upper bound.

We can add further unary predicates and still have conditions (C1) and (C2).
Let Prim be the set of prime numbers. Consider the expansion Zσ∪{π,π} of the
structure Zσ from Definition 5.21, where I(π) = Prim and I(π) = Z \ Prim. The

60

following result of Dirichlet relates prime numbers to modulo constraints. Recall
that two natural numbers n1, n2 are coprime if there is no prime p such that p |n1

and p |n2.

Theorem 5.23 (Dirichlet’s Theorem). Let a < b ∈ N. The equation x = a mod b
has infinitely many solutions that are prime if and only if a and b are coprime.

If a and b are not coprime, let p 6= 1 be a common divisor of both. Every
solution of x = a mod b is a multiple of p whence there is at most 1 solution that
is a prime which can be computed from a and b.

There is an easy observation relating the complement of the primes with the
modulo predicates.

Lemma 5.24. For all numbers a < b ∈ N there are infinitely many solutions of
x = a mod b that are not prime numbers.

Proof. There are three cases:

• If a = 0, all solutions above b are not prime.

• If a = 1, assume that n ∈ N is a solution of x = 1 mod b. Then nk =
1 mod b for all k ≥ 2 and we obtain infinitely many non-prime solutions.

• If a > 1, then for all n ∈ N we have a+ bna = a mod b and a+ bna is not
a prime because it is a multiple of a.

Corollary 5.25. The structure Zσ∪{π,π} has the property EHD(BMW).

Proof. Take a subset P̄ of the unary relations from σ ∪ {π, π}, where σ is from
Definition 5.21. Then, we first determine whether the intersection of all unary
relations from σ ∩ P̄ is finite or not, as in the proof of Lemma 5.22. If the
intersection is infinite then it is of the form S = {c + z · b | z ∈ Z} \ F for
c < b ∈ Z and a finite set F \ Z, which can be computed. Clearly, Prim ∩ S is
bounded below by 0 and by Dirichlet’s Theorem it is bounded above if and only
if c and b are not coprime, in which case an upper bound can be computed from
b and c. The set (Z \Prim)∩ S is neither bounded below nor bounded above (by
Lemma 5.24). Since Prim and Z\Prim are computable, properties (C1) and (C2)
hold.

Since Zσ∪{π,π} is also negation-closed, we get:

Corollary 5.26. The problem Zσ∪{π,π}-SAT is decidable.

61

At the end of this section, we want to briefly mention that the expansion
of Z under consideration may contain undecidable unary predicates. Take some
undecidable set H ⊆ N, e.g., the halting problem. Consider the structure Z ′ =
(Z, <,≡, H, H̄), where H̄ = Z \ H. Then {H, H̄} satisfies conditions (C1) and
(C2). Just note that H is bounded below but not above, H̄ is neither bounded
below nor above and H ∩ H̄ = ∅. Thus, the bounds m and M for the bounded
part can be chosen to be m = 0,M = −1. The conditions on the bounded part
reduce to the fact that it has to be empty. Since Z ′ is also negation-closed, we
conclude that Z ′-SAT is decidable.

5.5 A Concrete Domain over Q

A simple adaptation of our proof for the concrete domain Z shows that the
negation-closed structure Q = (Q, <,≡, (≡q)q∈Q) has the property EHD(MSO):
It can easily be shown that for any {<,≡, (≡q)q∈Q}-structure A, A = (A, I) � Q
if and only if

• (A,E) is acyclic, where E = Id◦I(<)◦Id and Id is the symmetric transitive
closure of the equality relation, i.e. (I(≡) ∪ I(≡)−1)∗,

• there is no (a, b) ∈ E+ with a ∈ I(≡p), b ∈ I(≡q) and q ≤ p, and

• there is no (a, b) ∈ Id with a ∈ I(≡p), b ∈ I(≡q), and q 6= p.

Since these conditions are easily expressible in MSO, it follows that Q-SAT is
decidable.

Thanks to the density of the rational numbers there is no need to use the
bounding quantifier to bound the number of elements between any two given
rational numbers.

62

Chapter 6

“Tree-Like” Concrete Domains

We have developed the EHD-method with the initial intention to solve the sat-
isfiability problem of CECTL∗ (and CCTL∗) with constraints over the integers.
But the general nature of this method raised the question whether this could be
successfully applied to other interesting concrete domains. The complete infinite
binary tree T2, i.e. the set of finite words over the alphabet {0, 1}, or the infinitely
branching infinite tree T∞, equipped with the prefix relation < seemed to be good
candidates for domains, and the problem was also mentioned in [19]. Imagine to
want to describe all those {<}-structures which allow a homomorphism into T∞.
At first glance it would seem to be enough to avoid cycles and bound the number
of predecessors of each element to obtain our purpose, and both these properties
can be expressed using boolean combinations of MSO and WMSO+B sentences.
But recall that, aside the EHD-property, a second condition is necessary to apply
the EHD-method: negation closure. To obtain this, we need to consider both
T∞ and T2 as structures over the extended signature {<,≡,⊥}, where ≡ is the
equality relation and ⊥ contains all pairs of incomparable nodes. Difficulties
arise once we add the “incomparability” relation: It turns out that MSO and
WMSO+B are not sufficient to distinguish between those {<,≡,⊥}-structures
which allow homomorphism to T∞ and those which do not.

Nevertheless, the study of this case gave rise to two results. Firstly, we
prove that the infinitely branching infinite tree T∞ does not enjoy the property
EHD(BMW) and, since both T∞ � T2 and T2 � T∞, this implies that the binary
tree does not either.

Theorem 6.1. There is no Bool(MSO,WMSO+B)-sentence ψ such that for every
countable structure A (over the signature {<,⊥,≡}) we have: A |= ψ if and only
if there is a homomorphism from A to T∞.

To obtain this result we develop an Ehrenfeucht-Fräıssé-game for WMSO+B

63

and use it to show that the logic BMW cannot distinguish between two structures,
one which allows homomorphism into T∞ and one which does not.

Remark 6.2. We want to remark that the fact that the EHD-method is not ap-
plicable to the case of the binary tree does not imply the undecidability of the
satisfiability problem for temporal logics with constraints over such structure. In
fact there have been some interesting developments in recent work.

In [28], Kartzow and Weidner prove PSPACE-completeness of the satisfiabil-
ity problem for CLTL with constraints over trees, enriched with lexicographic
ordering, using an automata-theoretic approach.

At the same time Demri and Deters prove decidability of both CLTL and
CCTL∗ with constraints over the tree, enriched with the ability to compare lengths
of longest common prefixes [18]. They also establish PSPACE-completeness in the
linear time case.

The result is obtained by a reduction to satisfiability of CLTL and CCTL∗

with constraints over the domain (N,≡, <, (≡a)a∈N), where the linear time case
is decidable by [19], and the corresponding result for the branching time setting
is established in [11], using the EHD-method.

The idea behind the reduction is to express a prefix constraint x < y (where x
and y are interpreted as words from N∗) using the equivalent formula clen(x, y) =
clen(x, x), which states that the length of the longest common prefix of x and
y is the same as the length of x. One can successively translate these formulas
using constraints on the natural numbers by associating to each term clen(x, y) a
register variable rx,y and asking that rx,y = rx,x. In [18] the authors individuate
conditions which ensure that a valuation for the register variables rx,y can be
compiled into a correct assignment for the string variables x and y, and are able
to express such conditions in CLTL and CCTL∗. In the branching time case,
one has to additionally take care of the correct propagation of the values from
the register variables in the different branches of the T -Kripke Structures. It is
essential here that CCTL∗ has the bounded tree-model property ([25]): From a
given formula ϕ we can compute a number d such that ϕ is satisfiable if and
only if it admits a d-tree model. Then the issue is solved by creating d copies
of each rx,y and regulating their behavior with CCTL∗ formulas (see Lemma 10
from [18]). Since also CECTL∗ has the bounded tree-model property, the same
idea should work for this logic. Being CCTL∗ a fragment of CECTL∗, the formulas
from Lemma 10 in [18] would guarantee a correct reduction also in this case.

As a second main result of this chapter, we identify three classes of “tree-like”
structures which do enjoy the EHD-property, namely semi-linear orders, ordinal
trees and infinitely branching trees of height h for each fixed h. In the following
section we introduce such classes and prove that they are negation-closed and
enjoy the property EHD(L) in the sense of Section 4.2.1, where L is either MSO

64

or WMSO, depending on the class. This implies:

Theorem 6.3. ∆-satisfiability (see Def. 4.18) of CECTL∗-formulas is decidable
when ∆ is one of the following:

(1) the class of all semi-linear orders,

(2) the class of all ordinal trees, and

(3) for each h ∈ N, the class of all order trees of height h.

We would like to remark that for this result (in particular to establish the
EHD-property), we do not need to assume that the domain of the considered
structures is countable. For example, in the case of semi-linear orders, we can
find a WMSO-sentence ϕ such that for all {<,⊥}-structures A, may they be
countable or not, A � B for some B ∈ Γ if and only if A |= ϕ. This does not in
fact have any effect on the decidability procedure, as the constraint graphs that
we obtain through the EHD-method (for which we need to check whether they
satisfy ϕ) have countable domain. Nonetheless what we present here is a more
general result.

6.1 “Tree-like” Structures

We now introduce the structures we will be dealing with in this chapter.

Definition 6.4. A semi-linear order (in Wolk’s work [43] simply a tree) is
a partial order P = (P,<) with the additional property that for all p ∈ P the
suborder induced by {p′ ∈ P | p′ ≤ p} forms a linear order.

This property is equivalent to the one formulated by Wolk [43]: Given incom-
parable elements p1, p2 ∈ P , there is no q ∈ P such that p1 < q and p2 < q, i.e.,
two incomparable elements cannot have a common descendant. Clearly all trees
(in the usual sense) satisfy this property, but not vice-versa.

Definition 6.5. We call a semi-linear order P = (P,<) an ordinal forest if for
all p ∈ P the linear suborder induced by {p′ ∈ P | p′ ≤ p} is an ordinal.

We call P a forest if if for all p ∈ P the linear suborder induced by {p′ ∈ P |
p′ ≤ p} is finite.

A forest (ordinal forest) is a tree (ordinal tree) if it has a unique minimal
element.

A forest F of height h (for h ∈ N) is a forest that contains a linear suborder
with h + 1 many elements but no linear suborder with h + 2 elements. We say
that an element x ∈ P is at level i if |{y ∈ P | y < x}| = i. Thus, every minimal
element is at level 0.

65

Given a partial order (P,<), we denote by ⊥< the incomparability relation
defined by p ⊥< q iff p 6= q and neither p < q nor q < p hold. Given a {<,⊥,≡}-
structure P = (P,<,⊥,≡) such that (P,<) is a semi-linear order (resp., ordinal
tree, tree of height h), ≡ is the equality relation on P , and ⊥ = ⊥<, then we also
say that P is a semi-linear order (resp. ordinal tree, tree of height h).

Proposition 6.6. For any class ∆ of {<,⊥,≡}-structures such that in every
A ∈ ∆

(i) < is interpreted as a strict partial order,

(ii) ⊥ is interpreted as the incomparability with respect to < (i.e., ⊥=⊥<), and

(iii) ≡ is the equality relation,

∆ is negation-closed. In particular, the class of all semi-linear orders and all its
subclasses are negation-closed.

Proof. For every A ∈ ∆ the following equalities hold, where A is the universe of
A:

(A2 \<) = {(x, y) | A |= y < x ∨ y ≡ x ∨ x ⊥ y} ,
(A2 \ ⊥) = {(x, y) | A |= x < y ∨ x ≡ y ∨ y < x} ,
(A2 \ ≡) = {(x, y) | A |= x < y ∨ x ⊥ y ∨ y < x} .

Note that for this it is crucial that we add the incomparability relation ⊥.

Remark 6.7. Recall the definition of the ∼-quotient Ã of a structure A (Def. 5.6)
and the results of Lemma 5.8, establishing a connection between the EHD-property
of a structure and the EHD-property of its ∼-quotient. It is not hard to see that
this result applies also in the setting of ∆-satisfiability, where ∆ is the class of
semi-linear orders (ordinal trees, trees of fixed height). Therefore, in order to
prove Theorem 6.3 it is enough to show that the class of all semi-linear orders
(and its subclasses) seen as {<,⊥}-structures have the property EHD(L) for a
suitable L.

6.2 The EHD-Property for Semi-Linear Orders

Let Γ denote the class of all semi-linear orders (over {<,⊥}). The aim of this
section is to prove that Γ has the property EHD(WMSO). For this purpose, we
characterize all those structures that admit a homomorphism to some member

66

of Γ. The resulting criterion can be easily translated into WMSO. Hence, we do
not need the bounding quantifier from WMSO+B (the same will be true in the
following Sections 6.3 and 6.4).

Let us prove one first reduction: It turns out that, in the case of semi-linear
orders (and also ordinal forests) the existence of a homomorphism to a semi-linear
order is in fact equivalent to the existence of a compatible extension. We say
that a graph1 (A,<,⊥) can be extended to a semi-linear order (an ordinal forest)
if there is a partial order C such that (A,C,⊥C) is a semi-linear order (an ordinal
forest) compatible with (A,<,⊥), i.e.,

x < y ⇒ xC y and x ⊥ y ⇒ x ⊥C y . (6.1)

We prove that, in this setting, restricting our attention to such compatible ex-
pansions is not a loss of generality:

Lemma 6.8. The following are equivalent for every structure A = (A,<,⊥):

1. A can be extended to a semi-linear order (to an ordinal forest, respectively);

2. A � B for some semi-linear order (ordinal tree, respectively) B.

Proof. We start with the implication (1 ⇒ 2). Assume that A can be extended
to a compatible semi-linear order (ordinal forest, resp.) A′ = (A,C,⊥C). Thanks
to compatibility, the identity is a homomorphism from A to A′. In the case of
an ordinal forest, one can add one common minimal element to obtain an ordinal
tree.

Let us now prove (2⇒ 1). Suppose h is a homomorphism from A = (A,<,⊥)
to some semi-linear order B = (B,≺,⊥≺). We extend A to a compatible semi-
linear order (A,C,⊥C). Let us fix an arbitrary well-order <wo on the set A (which
exists by the axiom of choice). We define the binary relation C on A as follows:

xC y if and only if h(x) ≺ h(y) or (h(x) = h(y) and x <wo y),

As usual, we denote with ⊥C the incomparability relation for C, i.e., x ⊥C y if
and only if neither xC y nor y C x nor x = y holds. We show that (A,C,⊥C) is
a semi-linear order. In fact, irreflexivity and transitivity are easy consequences
of the definition of C and of the fact that ≺ is a partial order. To show that
C is semi-linear, assume that x1 C x and x2 C x. By definition h(x1) ≺ h(x)
or h(x1) = h(x) and h(x2) ≺ h(x) or h(x2) = h(x). By semi-linearity of B, we

1We call (A,<,⊥) a graph to emphasize that here the binary relation symbols < and ⊥
can have arbitrary interpretations and they need not be a partial order and its incomparability
relation. We can instead see them as two different kinds of edges in an arbitrary graph (as they
are in a constraint graph).

67

deduce that h(x1) and h(x2) are comparable and, by definition of C, so are x1 and
x2. It remains to show that (A,C,⊥C) is compatible with A. Let x < y. Then,
by the fact that h is a homomorphism, h(x) ≺ h(y) which guarantees that xC y.
If x ⊥ y, then h(x) ⊥≺ h(y). Since B is a semi-linear order, this implies that
neither h(x) ≺ h(y) nor h(y) ≺ h(x) nor h(x) = h(y) holds. As a consequence
none of xC y, y C x and x = y holds. Therefore we have x ⊥C y.

The case in which B is an ordinal tree is dealt with similarly. It is enough
to notice that C does not contain any infinite decreasing chains, since ≺ is well-
founded and <wo is a well-order.

Inspired by Wolk’s work on comparability graphs [43, 44] we use Rado’s se-
lection lemma [38] in order to obtain the compactness result that a graph can be
extended to a semi-linear order iff every one of its finite subgraphs is. Recall that
a choice function for a family of sets X = {Xi | i ∈ I} is a function f with
domain I such that f(i) ∈ Xi for all i ∈ I, i.e., it chooses one element from each
set Xi.

Lemma 6.9 (Rado’s selection lemma, cf. [26, 38]). Let I be an arbitrary index
set and let X = {Xi | i ∈ I} be a family of finite sets. For each finite subset A of
I, let fA be a choice function for the family {Xi | i ∈ A}. Then there is a choice
function f for X such that, for all finite A ⊆ I, there is a finite set B such that
A ⊆ B ⊆ I with f(i) = fB(i) for all i ∈ A.

Lemma 6.10 (extension of Theorem 2 in [44]). A structure A = (A,<,⊥) can
be extended to a semi-linear order if and only if every finite substructure of A
can be extended to a semi-linear order.

Proof. The direction (⇒) is trivial. For the direction (⇐), let

I = {{x, y} ⊆ A | x 6= y}

be the set of pairs of distinct elements of A. For all i = {x, y} ∈ I we define
Zi = {(x, y), (y, x),#}. We want to find a choice function for the family of sets
{Zi | i ∈ I} which is in some sense compatible with the relations ⊥ and <. In
fact, choosing for each i ∈ I one element of Zi corresponds intuitively to deciding
whether the two elements x and y are comparable, and in which order, or if they
are incomparable.

Each finite subset J of I defines a set J̄ = {x ∈ j | j ∈ J} and a substructure
A�J̄ = (A�J̄ , <�J̄ ,⊥�J̄). Since A�J̄ is finite, by hypothesis it can be extended
to a semi-linear order. Hence, we can find a partial order CJ on J̄ such that
(A�J̄ ,CJ ,⊥CJ) is a semi-linear order compatible with A�J̄ as in (6.1) on page 67.

68

Figure 6.1: A <-cycle of three elements and an “incomparable triple-u”, where
dashed lines are ⊥-edges.

Let fJ be the choice function for {Zj | j ∈ J} defined as follows:

fJ({x, y}) =

(y, x) iff y CJ x,
(x, y) iff xCJ y,

otherwise.

By Lemma 6.9 we can find a choice function f for {Zi | i ∈ I} such that for all
finite J ⊆ I there is a finite set K such that

J ⊆ K ⊆ I and f(j) = fK(j) for all j ∈ J.

Define xCy iff (x, y) ∈ f(I). We need to prove that (A,C,⊥C) is an extension of
A to a semi-linear order. But all the properties that we need to check are local,
and thanks to Rado’s selection lemma, C always coincides, on every finite subset
of A, with some CJ , which is a semi-linear order compatible with < and ⊥.

Thanks to Lemma 6.10, given a {<,⊥}-structure A we now only need to find
necessary and sufficient conditions which guarantee that every finite substructure
of A admits a homomorphism into a semi-linear order.

Definition 6.11. Let A = (A,<,⊥) be a graph. Given A′ ⊆ A, we say A′ is
connected (with respect to <) if and only if, for all a, a′ ∈ A′ , there are
a1, . . . , an ∈ A′ such that a = a1, a′ = an and ai < ai+1 or ai+1 < ai for all
1 ≤ i ≤ n − 1. A connected component of A is a maximal (with respect to
inclusion) connected subset of A. Given a subset A′ ⊆ A and c ∈ A′, we say that
c is a central point of A′ if and only if for every a ∈ A′ neither a ⊥ c nor c ⊥ a
nor a < c holds.

In other words, a central point of a subset A′ ⊆ A is a node of the structure
A = (A,<,⊥) which has no incoming or outgoing ⊥-edges, and no incoming
<-edges within A′.

Example 6.12. A <-cycle (of any number of elements) does not have a central
point, nor does an incomparable triple-u, see Figure 6.1. Both structures do not
admit homomorphism into a semi-linear order. While this statement is obvious
for the cycle, we leave the proof for the incomparable triple-u as an exercise.

69

Lemma 6.13. A finite structure A = (A,<,⊥) can be extended to a semi-linear
order if and only if every non-empty connected B ⊆ A has a central point.

Let us extract the main argument for the (⇒)-part of the proof for later reuse.
It establishes a connection between minimal elements of connected subsets of A
and central points:

Lemma 6.14. Let (A,C,⊥C) be a semi-linear order extending A = (A,<,⊥).
If a connected subset B ⊆ A (with respect to <) contains a minimal element m
with respect to C, then m is central in B (again with respect to A).

Proof. Let b ∈ B. Since B is connected, there are b1, . . . , bn ∈ B such that
b1 = m, bn = b and bi < bi+1 or bi+1 < bi for all 1 ≤ i ≤ n − 1. As C is
compatible with <, this implies that bi C bi+1 or bi+1 C bi for all 1 ≤ i ≤ n − 1.
Given that m is minimal, applying semi-linearity of C, we obtain that m = bi or
mC bi for all 1 ≤ i ≤ n. In particular, we have m = b or mC b. Since (A,C,⊥C)
is a semi-linear order, compatible with (A,<,⊥), we cannot have b < m, m ⊥ b
or b ⊥ m (since this would imply bCm or m ⊥C b). Hence, m is central.

Proof of Lemma 6.13. For the direction (⇒) let B be any non-empty connected
subset of A. Since B is finite, there is a minimal element m. Using the previous
lemma we conclude that m is central in B.

We prove the direction (⇐) by induction on n = |A|. Suppose n = 1 and let
A = {a}. The fact that {a} has a central point implies that neither a < a nor
a ⊥ a holds. Hence, A is a semi-linear order.

Suppose n > 1 and assume the statement to be true for all i < n. If A is not
connected with respect to <, then we apply the induction hypothesis to every
connected component. The union of the resulting semi-linear orders extends A.
Now assume that A is connected and let c be a central point of A. By the
inductive hypothesis we can find C′ such that (A \ {c},C′,⊥C′) is a semi-linear
order extending A \ {c}. We define C := C′ ∪ {(c, x) | x ∈ A \ {c}} (i.e., we add
c as a smallest element), which is obviously a partial order on A.

To prove that C is semi-linear, let a1, a2, a ∈ A such that a1 C a and a2 C a.
If a1 = c or a2 = c, then a1 and a2 are comparable by definition. Otherwise, we
conclude that a1, a2, a ∈ A \ {c}. Hence, a1 C′ a and a2 C′ a, and semi-linearity
of C′ settles the claim.

We finally show compatibility. Suppose that a < b. If a = c, then aC b. The
case b = c cannot occur, because c is central in A. The remaining possibility
a 6= c 6= b implies that a C′ b and hence a C b as desired. Finally, suppose that
a ⊥ b. Then a 6= c 6= b, because c is central. We conclude that a ⊥C′ b and also
a ⊥C b.

70

We are finally ready to state the main result of this section which (together
with Theorem 4.19) completes the proof of the first part of Theorem 6.3:

Proposition 6.15. The class of all semi-linear orders Γ enjoys the property
EHD(WMSO).

Proof. Take A = (A,<,⊥). Thanks to Lemmas 6.8, 6.10 and 6.13, it is enough
to show that WMSO can express the condition that every finite and non-empty
connected substructure of A has a central point. Using the the WMSO-formula
reachXϕ (x, y), as defined in Example 2.20, where ϕ(z, w) := z < w ∨ w < z, we

can see that A |= reachBϕ (a, b) if and only if a and b are in the same connected
component of A�B. Then, we define the following WMSO-formulas:

connected(X) := ∀x ∈ X ∀y ∈ X reachXϕ (x, y) ,

central(x,X) := x ∈ X ∧ ∀y ∈ X ¬(x ⊥ y ∨ y ⊥ x ∨ y < x) , and

ψ := ∀X (connected(X) ∧X 6= ∅ → ∃x central(x,X)) .

It is straightforward to verify that A |= ψ if and only if every finite non-empty
connected subset of A has a central point.

6.3 The EHD-Property for Ordinal Trees

Let Ω denote the class of all ordinal trees (over the signature {<,⊥}). The aim
of this section is to prove that Ω has the property EHD(MSO). We use again the
notions of a connected subset and a central point as introduced in Definition 6.11
to characterize those structures which admit a homomorphism into an ordinal
tree. Here, in contrast with the case of semi-linear orders, the final condition will
be that all connected sets (not just the finite ones) have a central point.

Lemma 6.16. Let A = (A,<,⊥) be a structure. There exists O ∈ Ω such that
A � O if and only if every non-empty and connected B ⊆ A has a central point.

Proof. We start with the direction (⇒). Due to Lemma 6.8 we can assume that
there is a relation C that extends (A,<,⊥) to an ordinal forest. Let B ⊆ A be a
non-empty connected set. Since (A,C,⊥C) is an ordinal forest, B has a minimal
element c with respect to C. By Lemma 6.14, c is a central point of B.

For the direction (⇐) we first define a partition of the domain of A into
subsets Cβ for β @ χ, where χ is an ordinal (whose cardinality is bounded by the
cardinality of A). Here @ denotes the natural order on ordinals. Assume that
the pairwise disjoint subsets Cβ have been defined for all β @ α (which is true for
α = 0 in the beginning). Then we define Cα as follows. Let C@α =

⋃
β@αCβ ⊆ A.

71

If A \C@α is not empty, then we define Cα as the set of connected components of
A \ C@α. Let

Cα = {c ∈ A \ C@α | c is a central point of some B ∈ Cα}.

Clearly, Cα is not empty. Hence, there must exist a smallest ordinal χ such that
A = C@χ.

For every ordinal α @ χ and each element c ∈ Cα we define the sequence of
connected components road(c) = (Bβ)(βvα), where Bβ ∈ Cβ is the unique con-
nected component with c ∈ Bβ. This ordinal-indexed sequence keeps record of the
road we took to reach c by storing information about the connected components
to which c belongs at each stage of our process.

Given road(c) = (Bβ)(βvα) and road(c′) = (B′β)(βvα′) for some c ∈ Cα and
c′ ∈ Cα′ , let us define road(c)C road(c′) if and only if α @ α′ and Bβ = B′β for all
β v α. Basically this is the prefix order for ordinal-sized sequences of connected
components.

Now let O = {road(c) | c ∈ A}. Note that O = (O,C,⊥C) is an ordinal forest,
because for each c ∈ Cα the order ({road(c′) | road(c′) E road(c)},E) forms the
ordinal α (for each β @ α it contains exactly one road of length β).

Now we show that the mapping h with h(c) = road(c) is a homomorphism
from A to O. Take elements a, a′ ∈ A with a ∈ Cα, and a′ ∈ Cα′ for some
α, α′ @ χ. Let road(a) = (Bβ)(βvα) and road(a′) = (B′β)(βvα′).

• If a < a′, then (i) α @ α′, because a′ cannot be central point of a set which
contains a, and (ii) Bβ = B′β for all β v α because a and a′ belong to the
same connected component of A \C@β for all β v α. By these observations
we deduce that road(a)C road(a′).

• If a ⊥ a′, then, without loss of generality, suppose that α v α′. At stage α,
a is a central point of Bα ∈ Cα. Since α v α′, the connected component B′α
exists. We must have Bα 6= B′α, since otherwise we would have a ⊥ a′ ∈ Bα
contradicting the fact that a is central for Bα. Therefore, road(a) ⊥C
road(a′).

We finally add one extra element road0 and make this the minimal element of O,
thus finding a homomorphism from A into an ordinal tree.

We can now complete the proof of the second part of Theorem 6.3

Proposition 6.17. The class Ω of all ordinal trees has the EHD-property.

Proof. Given a {<,⊥}-structure A, it suffices by Lemma 6.16 to find an MSO-
formula expressing the fact that every non-empty connected subset of A has a
central point. Recall the WMSO-formula ψ from Theorem 6.15. Seen as an
MSO-formula, ψ clearly does the job.

72

Remark 6.18. The procedure described in the proof of Lemma 6.16 can be also
used to embed a structure A = (A,<,⊥) into an ordinary tree. Note that, in
fact, a tree in the classical sense is just an ordinal tree where, for every x, the
set of all elements smaller than x forms a finite linear order. To satisfy this extra
condition, the ordinal χ has to satisfy χ ≤ ω, i.e., every element a ∈ A has to
belong to a set Cn for some finite n. We use this observation in Section 6.5.
Unfortunately, our results from Section 6.5 imply that such condition cannot be
expressed in Bool(MSO,WMSO+B).

6.4 The EHD-Property for Trees of Fixed Height

Fix h ∈ N. The aim of this section is to show that the class Θh of all trees of
height h (over {<,⊥}) has the property EHD(MSO). The proof relies on the fact
that we can unfold the fix-point procedure on the central points from the ordinal
tree setting for h steps in MSO.

For this section, we fix an arbitrary structure A = (A,<,⊥). We first define
subsets A0, A1, . . . , Ah ⊆ A that are pairwise disjoint. The elements of A0 are the
central points of A (this set is possibly empty) and, for each i ≥ 1, Ai contains the
central points of each connected component of A\ (A0∪· · ·∪Ai−1). Note that A0

contains exactly those nodes of A that a homomorphism from A to some tree can
map to the root of the tree because elements from A0 are neither incomparable to
any other element nor below any other element, while all element outside of A0

have to be incomparable to some other element or have to be below some other
element. Hence they cannot be mapped to the root by any homomorphism. Thus,
there is a homomorphism from A to some element of Θh if and only if A \ A0

can be embedded into some forest of height h− 1. Now the sets Ai for 1 ≤ i ≤ h
collect exactly those elements which are chosen in the i-th step of the fix-point
procedure from the proof of Lemma 6.16 (where this set is called Ci). Thus, if
A0, A1, . . . , Ah form a partition of A, then A allows a homomorphism to some
T ∈ Θh. It turns out that the converse is also true. If A � T for some T ∈ Θh

then A0, A1, . . . , Ah form a partition of A. Thus, it suffices to show that each Ai
is MSO-definable. To do this, we define for all i ∈ N the formulas

ψ0(x) := ∀y ¬(y < x ∨ y ⊥ x ∨ x ⊥ y) ,

coni+1(x, y) := ∃Z ∀z (z ∈ Z →
i∧

j=0

¬ψj(z)) ∧ reachZϕ (x, y) ,

ψi+1(x) := ∀y (coni+1(x, y)→ ¬(y < x ∨ y ⊥ x ∨ x ⊥ y)) ,

where reachXϕ (x, y) is as defined in Example 2.20, with ϕ(z, w) := z < w∨w < z.

73

Let A0 be the set of nodes a ∈ A such that A |= ψ0(a) and let Ai+1 be the
set of nodes a ∈ A such that A |= ψi+1(a).

Clearly A0 is the set of central points of A. Inductively, one shows that
coni+1(x, y) expresses the fact that x and y are connected through a path that
does not intersect any Aj for j ≤ i, and that Ai+1 is the set of central points of
the connected components of A \ (A0 ∪ · · · ∪Ai).

Lemma 6.19. There exists T ∈ Θh such that A � T if and only if A0, . . . , Ah
is a partition of A.

Proof. For the direction (⇒) take a homomorphism g from A to a tree T =
(T,C,⊥C) ∈ Θh. By induction we prove that if g maps a to the i-th level of T
then a ∈ Aj for some j ≤ i. For i = 0 assume that g(a) is the root of the tree.
Then a cannot be incomparable or greater than any other element. Thus, it is a
central point of A, i.e., a ∈ A0.

For the inductive step, assume that g(a) is on the i-th level for i > 0. Heading
for a contradiction, assume that a is neither in A0∪ · · ·∪Ai−1 nor a central point
of some connected component of A \ (A0 ∪ · · · ∪ Ai−1). Then there is some
a′ ∈ A\ (A0∪· · ·∪Ai−1) such that a and a′ are in the same connected component
of A \ (A0 ∪ · · · ∪ Ai−1) and one of a′ < a, a′ ⊥ a or a ⊥ a′ holds. Since g is
a homomorphism, we get g(a′) C g(a) or g(a′) ⊥C g(a). If g(a′) C g(a), then a′

has to be mapped by g to some level j < i, whence a′ ∈ A0 ∪ · · · ∪ Aj by the
inductive hypothesis. This contradicts our assumption on a′. Now, assume that
g(a′) ⊥C g(a). Let a = a0, a1, . . . , am = a′ be a path connecting a and a′ in
A \ (A0 ∪ · · · ∪Ai−1). Since ai /∈ A0 ∪ · · · ∪Ai−1, the inductive hypothesis shows
that all g(ai) are on level i or larger. But then, since a0, a1, . . . , am is a path, all
g(ai) must belong to the subtree rooted at g(a). This leads to the contradictions
that g(am) = g(a′) is in the subtree rooted at g(a) and hence is not incomparable
to g(a). Thus, we can conclude that a ∈ A0 ∪ · · · ∪Ai.

For the direction (⇐) assume that A0 ∪ · · · ∪ Ah = A. Applying the same
construction described in the proof of Lemma 6.16 for ordinal trees, it is not hard
to see that we find a homomorphism g from A to some tree of height h which
maps the elements of Ai to elements on level i. Should A0 be empty, then A
would not be connected, and we would have a forest of height h − 1. Adding a
minimal element we still get a tree of height h.

Theorem 6.20. Θh has the EHD-property.

Proof. Let A be any {<,⊥}-structure. Then, by Lemma 6.19, A � T for some
T ∈ Θh if and only if

A |= ∀x
h∨
i=0

ψi(x).

74

6.5 Trees do not have the EHD-Property

Let Θ be the class of all countable trees (over {<,⊥}). In this section, we prove
that the logic Bool(MSO,WMSO+B) (the most expressive logic for which the
EHD-technique currently works) cannot distinguish between {<,⊥}-structures
that admit a homomorphism to some element of Θ and those that do not. Heading
for a contradiction, assume that ϕ is a sentence such that a countable structure
A = (A,<,⊥) satisfies ϕ if and only if there is a homomorphism from A to some
T ∈ Θ. Let k be the quantifier rank of ϕ. We construct two graphs Ek and Uk
such that Ek admits a homomorphism into a tree while Uk does not. We then use
an Ehrenfeucht-Fräıssé game for Bool(MSO,WMSO+B) to show that ϕ cannot
separate these two structures, contradicting our assumption. This contradiction
shows that Θ does not have EHD, proving Theorem 6.1.

6.5.1 The WMSO+B-Ehrenfeucht-Fräıssé-Game

The k-round WMSO+B-EF-game on a pair of structures (A,B) over the same
finite relational signature σ is played by Spoiler and Duplicator as follows.2 In
the following, A denotes the domain of A and B the domain of B.

The game starts in position

p0 := (A, ∅, ∅,B, ∅, ∅).

In general, before playing the i-th round (for 1 ≤ i ≤ k) the game is in a position

p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2),

where

1. i1, i2 ∈ N satisfy i1 + i2 = i− 1,

2. aj ∈ A for all 1 ≤ j ≤ i1,

3. bj ∈ B for all 1 ≤ j ≤ i1,

4. Aj ⊆ A is a finite set for all 1 ≤ j ≤ i2, and

5. Bj ⊆ B is a finite set for all 1 ≤ j ≤ i2.

In the i-th round Spoiler and Duplicator produce the next position as follows.
Spoiler chooses to play one of the following three possibilities:

2For the ease of presentation we assume that A and B are infinite structures.

75

1. Spoiler can play an element move. For this he chooses either some ai1+1 ∈ A
or bi1+1 ∈ B. Duplicator then responds with an element from the other
structure, i.e., with bi1+1 ∈ B or ai1+1 ∈ A. The position in the next round
is

(A, a1, . . . , ai1 , ai1+1, A1, . . . , Ai2 ,B, b1, . . . , bi1 , bi1+1, B1, . . . , Bi2).

2. Spoiler can play a set move. For this he chooses either some finite Ai2+1 ⊆ A
or some finite Bi2+1 ⊆ B. Duplicator then responds with a finite set from
the other structure, i.e., with Bi2+1 ⊆ B or Ai2+1 ⊆ A. The position in the
next round is

(A, a1, . . . , ai1 , A1, . . . , Ai2 , Ai2+1,B, b1, . . . , bi1 , B1, . . . , bi2 , Bi2+1).

3. Spoiler can play a bound move. For this he chooses one of the structures
A or B and chooses a natural number l ∈ N. Duplicator responds with
another number m ∈ N. Then the rest of the round is played as in the
case of a set move with the restrictions that Spoiler has to choose a subset
of size at least m from his chosen structure and Duplicator has to respond
with a set of size at least l.

After k rounds, the game ends in a position

p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2),

where i1 + i2 = k. Duplicator wins the game if

1. aj ∈ At ⇔ bj ∈ Bt for all 1 ≤ j ≤ i1 and all 1 ≤ t ≤ i2,

2. aj = at ⇔ bj = bt for all 1 ≤ j < t ≤ i1, and

3. for all relation symbols R ∈ σ (of arity n) (aj1 , aj2 , . . . , ajn) ∈ RA ⇔
(bj1 , bj2 , . . . , bjn) ∈ RB for all j1, j2, . . . , jn ∈ {1, . . . , i1}.

As one would expect, the WMSO+B-EF-game can be used to show undefinability
results for WMSO+B due to the relationship between winning strategies in the
k-round game and equivalence with respect to formulas up to quantifier rank k.

Proposition 6.21. For given σ-structures A and B, elements a1, . . . , ai1 ∈ A,
b1, . . . , bi1 ∈ B and finite sets A1, . . . , Ai2 ⊆ A, B1, . . . , Bi2 ⊆ B, define the
position

p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2) .

Then, (A, a1, . . . , ai1 , A1, . . . , Ai2) and (B, b1, . . . , bi1 , B1, . . . , Bi2) are indistingui-
shable by any WMSO+B-formula ϕ(x1, . . . , xi1 , X1, . . . , Xi2) of quantifier rank k
if and only if Duplicator has a winning strategy in the k-round WMSO+B-EF-
game started in p.

76

Proof. First of all note that, since we are considering a finite relational signature,
up to logical equivalence there are only finitely many different WMSO+B-formulas
ϕ(x1, . . . , xi1 , X1, . . . , Xi2) of quantifier rank k. This fact is proved in a completely
analogous way to the case of first-order or monadic second-order logic.

The proof is by induction on k. The base case k = 0 is trivial. Assume now
that the proposition holds for k − 1. We use the abbreviations ā = (a1, . . . , ai1),
Ā = (A1, . . . , Ai2), b̄ = (b1, . . . , bi1), and B̄ = (B1, . . . , Bi2) in the following. First
assume that there is a WMSO+B-formula ϕ(x1, . . . , xi1 , X1, . . . , Xi2) of quantifier
rank k such that

A |= ϕ(ā, Ā) (6.2)

and
B 6|= ϕ(b̄, B̄) . (6.3)

We show that Spoiler has a winning strategy in the k-round game by a case
distinction on the structure of ϕ. We only consider the case ϕ = BX ψ (all other
cases can be handled exactly as in the WMSO-EF-game, see e.g. [23]). Let l ∈ N
be a strict bound witnessing (6.2), in the sense that there is no set Ai2+1 of size
at least l such that A |= ϕ(ā, Ā, Ai2+1). Then Spoiler chooses structure B and
bound l. Duplicator responds with some bound m ∈ N. Due to (6.3)

B |= ¬BX ψ(b̄, B̄,X) .

Hence, there is a set Bi2+1 of size at least m such that

B |= ψ(b̄, B̄, Bi2+1) .

Spoiler chooses this set Bi2+1. Duplicator must answer with a set Ai2+1 of size
at least l. By the choice of l we conclude that

A 6|= ψ(ā, Ā, Ai2+1) .

By the inductive hypothesis, Spoiler has a winning strategy in the resulting po-
sition for the (k − 1)-round game.

For the other direction, assume that (A, ā, Ā) and (B, b̄, B̄) are indistinguish-
able by WMSO+B-formulas of quantifier rank k. Duplicator’s strategy is as
follows.

• If Spoiler plays an element move choosing without loss of generality ai1+1 ∈
A, let Φ be the set of all WMSO+B-formulas ϕ of quantifier rank k−1 such
that A |= ϕ(ā, ai1+1, Ā). Since Φ is finite up to logical equivalence, there is
a WMSO+B-formula ψ of quantifier rank k − 1 such that ψ ≡

∧
ϕ∈Φ ϕ. By

the assumption (indistinguishableness up to quantifier rank k) and the fact
that A |= ∃xψ(ā, x, Ā) we conclude that B |= ∃xψ(b̄, x, B̄). Hence, there

77

is an element bi1+1 ∈ B such that B |= ψ(b̄, bi1+1, B̄). Thus, Duplicator
can respond with bi1+1 and obtain a position for which he has a winning
strategy by the induction hypothesis.

• If Spoiler plays a set move, we use the same strategy as in the element
move. We only have to replace the element ai1+1 by Spoiler’s set Ai1+1 and
the first-order quantifier by a set quantifier.

• Assume that Spoiler plays a bound move, choosing B and bound l ∈ N. Let

ΦA =
{
ϕ
∣∣ rank(ϕ) = k − 1, ∀M ⊆ A

(
|M | ≥ l⇒ A 6|= ϕ(ā, Ā,M)

) }
.

Note that A |= BX ϕ(ā, Ā,X) for all ϕ ∈ ΦA. Thus, B |= BX ϕ(b̄, B̄,X)
for all ϕ ∈ ΦA. Since ΦA is finite up to equivalence we can fix a number
m ∈ N that serves as a bound in (B, b̄, B̄) for all ϕ ∈ ΦA. Thus, for the set

ΦB =
{
ϕ
∣∣ rank(ϕ) = k − 1, ∀M ⊆ B

(
|M | ≥ m⇒ B 6|= ϕ(b̄, B̄,M)

) }
we have ΦA ⊆ ΦB. Duplicator answers Spoiler’s challenge with this number
m. Then Spoiler has to choose a set Bi2+1 ⊆ B of size at least m. Let

ΨB = {ϕ | rank(ϕ) = k − 1,B |= ϕ(b̄, B̄, Bi2+1)} .

Note that ΦB ∩ ΨB = ∅. Since ΨB is finite up to equivalence, there is a
WMSO+B-formula ψ ∈ ΨB of quantifier rank k−1 such that ψ ≡

∧
ϕ∈ΨB

ϕ.
In particular, ψ /∈ ΦB. Hence, ψ /∈ ΦA (since ΦA ⊆ ΦB). By the definition
of ΦA this means that there is a subset Ai2+1 ⊆ A such that |Ai2+1| ≥ l
and A |= ψ(ā, Ā, Ai2+1). Duplicator chooses this set Ai2+1. The resulting
position allows a winning strategy for Duplicator by the induction hypoth-
esis.

6.5.2 Two Structures that WMSO+B cannot Distinguish

In this section we define a class of finite structures Gn,m for n,m ∈ N. Using these
structures, we define for every k ≥ 0 structures Ek and Uk. We show that for
every k ≥ 0, Ek can be mapped homomorphically into a tree, whereas Uk cannot.
In the next section, we will show that Duplicator wins the k-round EF-game for
both WMSO+B and MSO.

The standard plain triple-u is the structure P = (P,<P ,⊥P), where

P = {l, r, a1, a2, b1, b2, b3},
<P = {(l, b1), (a1, b1), (a1, b2), (a2, b2), (a2, b3), (r, b3)}, and

⊥P = {(l, r), (r, l)}.

78

l

b1

a1

b2

a2

b3

r

Figure 6.2: The standard (5, 3)-triple-u, where we only draw the Hasse diagram
for <D, and where dashed edges are ⊥-edges.

We call a structure (V,<,⊥) a plain triple-u if it is isomorphic to the standard
plain triple-u. For n,m ∈ N, the standard (n,m)-triple-u is the structure Gn,m =
(D,<D,⊥D), where

D = {l, r, a1, a2, b1, b2, b3} ∪ ({1, 2, . . . , n} × {a1}) ∪ ({1, 2, . . . ,m} × {a2}),

and <D,⊥D are the minimal relations such that

• Gn,m restricted to {l, r, a1, a2, b1, b2, b3} is the standard plain triple-u,

• (a1, 1) < (a1, 2) < · · · < (a1, n) < a1, and

• (a2, 1) < (a2, 2) < · · · < (a2,m) < a2.

We call a graph (V,<,⊥) an (n,m)-triple-u if it is isomorphic to the standard
(n,m)-triple-u. Figure 6.2 depicts a (5, 3)-triple-u.

Remark 6.22. For all n,m ∈ N and each (n,m)-triple-uW we fix an isomorphism
ψW between W and the standard (n,m)-triple-u. Note that this isomorphism is
unique if n 6= m. If n = m, then there is an automorphism of Gn,n exchanging
the nodes l and r. Thus, choosing an isomorphism means to choose the left node
of the triple-u. For x ∈ {l, r, a1, a2, b1, b2, b3} we denote by W.x the unique node
w ∈ W such that ψW(w) = x. Furthermore, we call the linear order of size n
(resp., m) that consists of all proper ancestors of ψ−1

W (a1) (resp., ψ−1
W (a2)) the

left order (resp., right order) of W.

Let k ∈ N be a natural number. Fix a strictly increasing sequence (nk,i)i∈N
such that the linear order of length nk,i and the linear order of length nk,j are
equivalent with respect to WMSO+B-formulas of quantifier rank up to k for all
i, j ∈ N. Such a sequence exists because there are (up to equivalence) only
finitely many WMSO+B-formulas of quantifier rank k. Since the linear orders of
length nk,i are finite, they are equivalent with respect to both MSO-formulas and
WMSO-formulas of quantifier rank up to k.

79

Definition 6.23 (The embeddable triple-u). Let Ek be the structure that consists
of

1. the disjoint union of infinitely many (nk,1, nk,j)-triple-u’s and infinitely
many (nk,j , nk,1)-triple-u’s for all j ≥ 2,

2. one additional node d, and

3. for each triple-u W an <-edge from W.l to d.

In the following we call d the final node of Ek

Lemma 6.24. For all k ∈ N, Ek admits a homomorphism to a tree.

Proof. Using the procedure on the central points from the ordinal tree setting
described in the proof of Lemma 6.16, we first start adding the chains of each
triple-u to the tree. In step nk,1 we finally have placed all the chains of length
nk,1. Thus, for each triple-u W either W.a1 or W.a2 becomes central. Thus, in
step nk,1 + 1 all the triple-u’s split into two disconnected components and the
incomparability edges, which were avoiding that W.l became central, now cease
having such an effect. We can therefore map W.l at stage nk,1 + 2 and the final
node d in step nk,1 + 3. Thus, it is easy to prove that the fix-point procedure
from the proof of Lemma 6.16 terminates at stage ω. Whenever this happens,
the given structure admits a homomorphism to a tree, see Remark 6.18.

Definition 6.25 (The unembeddable triple-u). Let Uk be the structure that
consists of

1. the disjoint union of infinitely many (nk,j , nk,j)-triple-u’s for all j ≥ 2,

2. one additional node d, and

3. for each triple-u W an <-edge from W.l to d.

In the following we call d the final node of Uk

Lemma 6.26. For all k ∈ N, Uk does not admit a homomorphism to a tree.

Proof. Again, we consider the fix-point procedure from the proof of Lemma 6.16.
Assume that Uk admits a homomorphism to a tree. Then, the final node d has
to be placed at some stage i into the tree, i.e., in the notation of the proof of
Lemma 6.16, d belongs to some set Ci for i < ω. But there is a (nk,i, nk,i)-triple-u
W and W.l < d. Hence, W.l has to be placed into the tree in one of the first
i−1 stages. ButW.a1 andW.a2 are the target nodes of chains of length nk,i ≥ i.
Hence, after i stages they are still not mapped into the tree. Therefore, after i

80

stages, W.l and W.r are in the same connected component and they are linked
by an ⊥-edge. This contradicts the fact that W.l was placed into the tree in one
of the first i− 1 stages.

6.5.3 Duplicators Strategies in the k-Round Game

We show that Θ does not have the EHD-property by showing that Duplicator has
a winning strategy for the k-round MSO-EF-game and WMSO+B-EF-game on
the pair (Ek,Uk) for each k ∈ N. Hence, the two structures are not distinguishable
by Bool(MSO,WMSO+B)-formulas of quantifier rank k.

For MSO this is rather simple. Since the linear orders of length nk,i and nk,j
are indistinguishable up to quantifier rank k, it is straightforward to compile the
strategies on these pairs of paths into a strategy on the whole structures for the
k-round game. It is basically the same proof as the one showing that a strategy
on a pair (

⊎
i∈I Ai,

⊎
i∈I Bi) of disjoint unions can be compiled from strategies on

the pairs (Ai,Bi). In our situation there is an i ∈ I such that Ai = Bi consists of
infinitely many plain triple-u’s together with the final node, and the other pairs
(Aj ,Bj) for j ∈ I \ {i} consist of two linear orders that are indistinguishable by
MSO-formulas of quantifier rank k.

Compiling local strategies to a global strategy in the WMSO+B-EF-game
is much more difficult because strategies are not closed under infinite disjoint
unions. For instance, let A be the disjoint union of infinitely many copies of the
linear order of size nk,1 and B be the disjoint union of all linear orders of size
nk,j for all j ∈ N. Clearly, Duplicator has a winning strategy in the k-round
game starting on the pair that consists of the linear order of size nk,1 and the
linear order of size nk,j . But in A every linear suborder has size bounded by nk,1,
while B has linear suborders of arbitrary finite size. This difference is of course
expressible in WMSO+B.

Even though strategies in WMSO+B-games are not closed under disjoint
unions, we can obtain a composition result for disjoint unions on certain re-
stricted structures as follows. Let A =

⊎
i∈NAi and B =

⊎
i∈N Bi be disjoint

unions of structures Ai and Bi satisfying the following conditions:

1. All Ai and Bi are finite structures.

2. For every i ∈ N, Duplicator has a winning strategy in the k-round MSO-
EF-game on Ai and Bi.

3. There is a constant c ∈ N \ {0} such that whenever Spoiler starts the MSO-
EF-game on (Ai,Bi) with a set move choosing a set of size n in Ai or Bi,
then Duplicator’s strategy answers with a set of size at least n

c .

81

In this case Duplicator has a winning strategy in the k-round WMSO+B-EF-game
on A and B. To substantiate this claim, we sketch his strategy. For an element
or set move, Duplicator just uses the local strategies from the MSO-game to give
an answer to any challenge. For a bound move, Duplicator does the following.
If Spoiler’s chooses the bound l ∈ N, then Duplicator chooses the number m,
which is the total number of elements in all substructures Ai or Bi in which some
elements have been chosen in one of the previous rounds plus c · l. This forces
Spoiler to choose c · l elements in fresh substructures. Then Duplicator uses his
strategy in each local pair of structures to give an answer to Spoiler’s challenge.
Since Spoiler choses c · l elements in fresh substructures, Duplicator answers with
at least c·l

c = l many elements in fresh substructures. This is a valid move and it
preserves the existence of local winning strategies between each pair (Ai,Bi) for
the rounds yet to play.

From now on, we consider a fixed number k ∈ N and the game on the struc-
tures Ek and Uk. We use a variant of the closure under restricted disjoint unions,
sketched above, to provide a winning strategy for Duplicator. In order to reduce
notational complexity we just write E for Ek, U for Uk and ni for nk,i (for all
i ∈ N). With Ē (resp. Ū) we denote the set of all maximal subgraphs that are
(n,m)-triple-u’s occurring in E (resp., U) where n and m range over N. Note that
E is the disjoint union of all W ∈ Ē together with the final node, and similarly
of U . Unfortunately, we cannot apply the result on restricted disjoint unions
directly because of the following problems.

• Due to the final nodes of E and U , the structures are not disjoint unions of
triple-u’s. But since the additional structure in both structures is added in
a uniform way this does not pose a problem for the proof.

• The greater cause for trouble is that there is no constant c as in condition
3 that applies uniformly to all MSO-EF-games on an (nj , n1)-triple-u of E
and an (nj , nj)-triple-u of U for all j ∈ N. The problem is that if Spoiler
chooses in his first move all elements of the right order of the (nj , nj)-
triple-u, then the only possible answer of Duplicator is to choose the set of
the n1 many elements of the right order of the (nj , n1)-triple-u. But since
the numbers nj grow unboundedly, there is not constant c such that the
inequation n1 ≥ cnj holds for all j. This problem does not exist for moves
where Spoiler chooses many elements in the left order of the (nj , nj)-triple-
u. Duplicator’s strategy allows to exactly choose the same subset of the
left order of the (nj , n1)-triple-u. This allows to overcome the problem that
Duplicator should answer challenges where Spoiler chooses a large set with
an equally large set (up to some constant factor): Instead of assigning each
triple-u in Ē a fixed corresponding triple-u in Ū , we do this dynamically.

82

If Spoiler chooses a lot of elements from the left order of a fresh (nj , nj)-
triple-u, then Duplicator answers this challenge in a (nj , n1)-triple-u and we
consider these two structures as forming one pair of the disjoint unions. On
the other hand, if Spoiler chooses a lot of elements from the right order of a
fresh (nj , nj)-triple-u, then Duplicators corresponding structure is chosen to
be a fresh (n1, nj)-triple-u. In any case Duplicator’s local winning strategy
may copy most of Spoiler’s choice (i.e., all elements chosen from the plain
triple-u and from the order of length nj from which Spoiler has chosen more
elements), thus producing a set which is at least half as big as Spoiler’s
challenge.

In our prove we encode this dynamic choice of corresponding structures as a
partial map ϕ : Ē → Ū . The following definition of a locally-i-winning position
describes the requirements on a position obtained after playing some rounds that
allow to further use local winning strategies in order to compile a winning strategy
for the next i-rounds. It basically requires that the map ϕ is such that for each
triple-u W ∈ dom(ϕ) the restriction of the current position to W and ϕ(W) is a
valid position in the i-round WMSO+B-EF-game on (W,ϕ(W)) which is winning
for Duplicator and that dom(ϕ) and im(ϕ) covers all elements that have been
chosen so far (in an element move or as a member of some set).

Definition 6.27. A position

p = (E , e1, . . . , ei1 , E1, . . . , Ei2 ,U , u1, . . . , ui1 , U1, . . . , Ui2)

in the WMSO+B-EF-game on (E ,U) is called locally-i-winning (for Duplicator)
if there is a partial bijection ϕ : Ē → Ū such that

• dom(ϕ) is finite,

• for all W ∈ Ē, W ′ ∈ Ū , and 1 ≤ j ≤ i1,

1. if ej ∈W then W ∈ dom(ϕ) and uj ∈ ϕ(W), and

2. if uj ∈W ′ then W ′ ∈ im(ϕ) and ej ∈ ϕ−1(W ′),

• for all W ∈ Ē, W ′ ∈ Ū , and 1 ≤ j ≤ i2,

1. if Ej ∩W 6= ∅ then W ∈ dom(ϕ) and

2. if Uj ∩W ′ 6= ∅ then W ′ ∈ im(ϕ), and

• ϕ is compatible with local strategies in the following sense:

1. For all W ∈ dom(ϕ), x ∈ {l, r, a1, a2, b1, b2, b3}, 1 ≤ j ≤ i1 and 1 ≤
k ≤ i2 we have

83

– ej = W.x⇔ uj = ϕ(W).x, and

– W.x ∈ Ek ⇔ ϕ(W).x ∈ Uk.
2. For all W ∈ dom(ϕ) and 1 ≤ j ≤ i1, ej belongs to the left (resp., right)

order of W if and only if uj belongs to the left (resp., right) order of
ϕ(W).

3. For each W ∈ dom(ϕ), the restriction of the position p to the left
(resp., right) order of W and the left (resp., right) order of ϕ(W) is a
winning position for Duplicator in the i-round WMSO-EF-game.

4. For all 1 ≤ j ≤ i1, ej is the final node of E if and only if uj is the final
node of U .

5. For all 1 ≤ j ≤ i2, Ej contains the final node of E if and only if Uj
contains the final node of U .

Remark 6.28. Note that the WMSO+B-EF-game on (E ,U) starts in a locally-
k-winning position where the partial map ϕ is the map with empty domain.
Moreover, for all i ∈ N, every locally-i-winning position is a winning position for
Duplicator in the 0-round WMSO+B-EF-game.

Proposition 6.29. Duplicator has a winning strategy in the k-round WMSO+B-
EF-game on (Ek,Uk).

Due to the previous remark, the proposition follows directly form the following
lemma.

Lemma 6.30. Let 1 ≤ i ≤ k be a natural number and p a locally-i-winning
position. Duplicator can respond any challenge of Spoiler so that the next position
is locally-(i− 1)-winning.

Proof. Let ϕ : Ē → Ū be the partial bijection for the locally-i-winning position
p. In the following, we say that an (n,m)-triple-u is fresh if it does not belong to
dom(ϕ) ∪ im(ϕ). We consider the three possible types of moves for Spoiler.

1. If Spoiler plays an element move, there are the following possibilities.

• If Spoiler chooses the final node of one of the structures, Duplicator
answers with the final node of the other.

• If Spoiler chooses some node from an (n,m)-triple-u W ∈ dom(ϕ),
then the local strategies allow Duplicator to answer this move with a
node from ϕ(W).

• Analogously, if Spoiler chooses some node from an (n,m)- triple-u
W ∈ im(ϕ), then the local strategies allow Duplicator to answer this
move with a node from ϕ−1(W).

84

• If Spoiler chooses a node from a fresh (n,m)-triple-u W then Duplica-
tor can choose some fresh (n′,m′)-triple-u W ′ from the other structure
and can use the WMSO-equivalence up to quantifier rank k of the left
and right orders of W and W ′ to find a response to Spoilers challenge
such that adding (W,W ′) (or (W ′,W) depending on whether W ∈ Ē)
to ϕ leads to a locally-(i− 1)-winning position.

2. If Spoiler plays a set move, then he chooses a finite set containing elements
from some of the triple-u’s from dom(ϕ) or im(ϕ) and from l many fresh
triple-u’s. Choosing l fresh triple-u’s from the other structure, we can find a
response on each of the triple-u’s corresponding to the local strategy similar
to the case of the element move. The union of all these local responses is a
response for Duplicator that leads to a locally-(i− 1)-winning position.

3. If Spoiler plays a bound move, we distinguish which structure he chooses.

• If he chooses structure U and the bound l ∈ N, let Zn be the (finite)
set of all (n, n)-triple-u’s occurring in im(ϕ) and set

m1 =
∑
n∈N

∑
W∈Zn

(2n+ 7).

Duplicator responds with the bound m = m1 + 2l. Note that 2n+ 7 is
the size of an (n, n)-triple-u. Hence m1 is the number of nodes in non-
fresh triple-u’s of U . Assume that Spoiler chooses some finite subset
S of U with |S| ≥ m. We construct a subset S′ in E such that the
resulting position is locally-(i − 1)-winning. Moreover, we guarantee
that for any fresh triple-u W ∈ Ū such that S ∩W 6= ∅, Duplicator’s
response S′ ∩W ′ in a corresponding fresh triple-u W ′ ∈ Ē contains
at least 1

2 |S ∩W | many elements. If W1, . . . ,Wz ∈ Ū are all the fresh
triple-u’s that intersect S non trivially, then we already argued that
|
⋃z
i=1(Wi ∩ S)| ≥ m − m1 = 2l. Hence, Duplicator’s response S′

contains at least l many elements as desired. The concrete choice of
S′ is done as follows.

(a) For all W ∈ im(ϕ), Duplicator chooses a set S′W ⊆ ϕ−1(W) such
that S′W is the answer to Spoiler’s challenge S ∩W according to a
winning strategy in the i-round WMSO-EF-game on the restriction
of p to ϕ−1(W) and W . This winning strategy exists because
position p is locally i-winning.

(b) Now consider a fresh (n, n)-triple-u W ∈ Ū with W ∩ S 6= ∅. Let
L (resp., R) be the nodes in the left (resp., right) order of W . If
|L ∩ S| ≥ |R ∩ S|, then take a fresh (n, n1)-triple-u W ′ ∈ Ē (note

85

that n ≥ n1) and extend the partial bijection ϕ by ϕ(W ′) = W .
Duplicator chooses the subset S′W = ψ(S ∩W \ R) ∪ T , where ψ
is the obvious isomorphism between the (n, 0)-sub-triple-u of W
(i.e., W \R) and the (n, 0)-sub-triple-u of W ′, and T is an answer
to Spoilers move S ∩ R according to a winning strategy in the
i-round WMSO-EF-game between the right order of W ′ and the
right order of W . Note that |S′W | ≥

1
2 |S ∩W |.

If |L∩S| < |R∩S|, then let W ′ be an (n1, n) triple-u and use the
same strategy but reverse the roles of the left and the right order
of the chosen triple-u’s.

(c) If the final node of U is in S, let S′d be the singleton containing
the final node of E , otherwise let S′d = ∅.

Finally, let S′ be the union of S′d and all sets S′W defined in (a) and
(b) above. Since Spoiler has chosen at least 2l−1 many elements from
fresh triple-u’s, we directly conclude that |S′| ≥ l. Moreover, since all
the parts of S′ were defined using local strategies, we easily conclude
that the position reached by choosing S′ is locally-(i− 1)-winning.

• If Spoiler chooses structure E and bound l ∈ N, we use a similar
strategy. Let Yn be the set of all (n1, n)-triple-u’s and all (n, n1)-
triple-u’s occurring in dom(ϕ), and define

m1 =
∑
n∈N

∑
W∈Yn

n1 + n+ 7,

and m2 = l · n1. Note that m1 is the number of nodes from non-fresh
triple-u’s from E . Duplicator responds with m = m1 + m2 + l. Let
S ⊆ E be Spoiler’s set with |S| ≥ m. There are at least m2 +l elements
in S chosen from fresh triple-u’s W1,W2, . . . ,Wz ∈ Ē. Either z > l or
Spoiler has chosen at least l elements from W1 ∪W2 ∪ · · · ∪Wz that
do not belong to the orders of length n1 (which in total contain only
z · n1 ≤ l · n1 = m2 many elements). Duplicator chooses his response
S′ in U as follows:

(a) For all W ∈ dom(ϕ), Duplicator chooses a set S′W ⊆ ϕ(W) such
that S′W is the answer to Spoiler’s challenge S ∩W according to a
winning strategy in the i-round WMSO-EF-game on the restriction
of p toW and ϕ(W). This winning strategy exists because position
p is locally i-winning.

(b) Now consider a fresh triple-u W ∈ Ē with W ∩ S 6= ∅. If W is an
(n1, n)-triple-u or an (n, n1)-triple-u, let W ′ ∈ Ū be a fresh (n, n)-
triple-u of U , and extend the partial bijection ϕ by ϕ(W) = W ′.

86

Let us consider the case that W is an (n, n1)-triple-u (for the other
case one can argue analogously) and let R be the right order (of
size n1) of W . Duplicator chooses the subset S′W = ψ(S ∩W \
R) ∪ T , where ψ is the obvious isomorphism between the (n, 0)-
sub-triple-u of W (i.e., W \ R) and the (n, 0)-sub-triple-u of W ′,
and T is an answer to Spoiler’s move S∩R according to a winning
strategy in the i-round WMSO-EF-game between the right order
of W and the right order of W ′. We can assume that S′W 6= ∅.
because we have S ∩W \ R 6= ∅ or S ∩ R 6= ∅ and in the latter
case T can be chosen to be non-empty.

(c) If the final node of E is in S, let S′d be the singleton containing
the final node of U , otherwise let S′d = ∅.

Finally, let Duplicator’s response S′ be the union of S′d and all sets S′W
defined in (a) and (b) above. By the argument before (a), Duplicator
selects in (b) in total at least l elements. Moreover, since all the parts
of S′ where defined using local strategies, we easily conclude that the
position reached by choosing S′ is locally-(i− 1)-winning.

87

Chapter 7

Extensions

7.1 Existential Interpretation Preserves Satisfiability

Let us state a simple preservation theorem for A-SAT. Assume that A = (A, I)
and B = (B, J) are structures over countable signatures σA and σB, respectively.
We say that A is existentially interpretable in B if there exist n ≥ 1, a
quantifier-free first-order formula ϕ(y1, . . . , yl, x1, . . . , xn), and for each R ∈ σA
with k = ar(R) a quantifier-free first order formula

ϕR(z1, . . . , zlR , x1,1, . . . , x1,n, . . . , xk,1, . . . , xk,n)

over the signature σB, where the mapping R 7→ ϕR has to be computable, such
that A is isomorphic to the structure (A′, I ′), where

A′ = {b ∈ Bn | ∃c ∈ Bl : B |= ϕ(c, b)} and

I ′(R) = {(b1, . . . , bk) ∈ Bkn | ∃c ∈ BlR : B |= ϕR(c, b1, . . . , bk)}

for each R ∈ σA.

Proposition 7.1. If B-SAT is decidable and A is existentially interpretable in
B, then A-SAT is decidable too.

Proof. Let ψ be an CECTL∗-formula over σA. Let Regψ be the set of register
variables that occur in ψ. Let us choose new register variables sr,j , and tR,m for
all r ∈ Regψ, 1 ≤ j ≤ l, R ∈ σA, and 1 ≤ m ≤ lR. Furthermore we need n copies
of each r ∈ Regψ: ri for 1 ≤ i ≤ n. Define the CECTL∗-formula on σB

ϑ = ψ′ ∧ A
[
∀x

∧
r∈Regψ

ϕ
(
sr,1, . . . , sr,l, r

1, . . . , rn
)
(x)
]
,

88

where ψ′ is obtained from ψ by replacing every constraint R(Si1r1, . . . , S
ikrk) in

ψ (where k = ar(R)) by the boolean formula

ϕR(SdtR,1, . . . , S
dtR,lR , S

i1r1
1, . . . , S

i1rn1 , . . . , S
ikr1

k, . . . , S
ikrnk),

where d = max{i1, . . . , iar(R)}. Using arguments similar to those from the proof
of Lemma 4.9, one can show that ψ is A-satisfiable if and only if ϑ is B-satisfiable.

Examples of structures A that are existentially interpretable in (Z, <,≡), and
hence have a decidable A-SAT-problem are:

• (Zn, <lex,≡) (for n ≥ 1), where <lex denotes the strict lexicographic order
on n-tuples of integers, and

• the structure AllenZ, which consists of all Z-intervals together with Allen’s
relations b (before), a (after), m (meets), mi (met-by), o (overlaps), oi
(overlapped by), d (during), di (contains), s (starts), si (started by), f
(ends), fi (ended by). In artificial intelligence, Allen’s relations are a popular
tool for representing temporal knowledge.

7.2 Finite Satisfiability

Fix a signature σ and a negation-closed σ-structure as concrete domain D =
(D, I). We say that a CECTL∗-formula ϕ is finitely D-satisfiable if there is a
D-Kripke structure K, whose underlying Kripke structure K is finite, and a node v
of K such that (K, v) |= ϕ. We denote as FINSAT(D) the following computational
problem: Is a given formula ϕ ∈ CECTL∗ finitely D-satisfiable? The main result
of this section is the following.

Proposition 7.2. A CECTL∗-formula ψ is finitely D-satisfiable if and only if
there is a D-Kripke structure K = (D,K, γ), where K has domain S, and a node
v ∈ S such that

1. (K, v) |= ψ and

2. im(γ�Regψ) is finite, where Regψ is the set of register variables occurring in
ψ,

i.e., there exists a model for ψ where the valuation function γ assigns only finitely
many elements of D.

89

Proof. The “only-if” part is trivial because every finite model of ϕ satisfies con-
ditions 1. and 2. For the “if” part let us start with a D-Kripke structure K with
underlying Kripke structure K = (S,→, ρ) satisfying conditions 1. and 2. We
have to find a finite model of ψ. W.l.o.g. we can assume that every node of S is
reachable from v.

We now define an abstracted CECTL∗-formula ψa (without constraints) as
follows: First take for all r ∈ Regψ and all a ∈ im(γ) a fresh proposition pr,a,
which has the following intuitive meaning: “register variable r is mapped to the
value a”. Then we construct from ψ the formula ψ0 by replacing every occurrence
of an atomic constraint R(Si1r1, . . . , S

ikrk)(x) by the CECTL∗-path formula

∨
(a1,...,ak)∈B

k∧
j=1

prj ,aj (x+ ij) ,

where B = I(R)∩ im(γ)k. Finally, we define ψa = ψ0∧ψ1, where ψ1 is defined as

ψ1 = A∀x
(∧
r∈Regψ

∨
a∈im(γ)

(pr,a(x) ∧
∧

b∈im(γ)\{a}

¬pr,b(x))
)
.

It states that for every node x that is reachable from the current node and every
r ∈ Regψ there is exactly one a ∈ im(γ) such that x is labeled with pr,a. In the
intuitive sense, we are making sure that each register variable is assigned only
one value from im(γ).

In a first step, we construct from the D-KS K, which is a model for ψ, a Kripke
structure Ka, which is a model of ψa. For this, we extend the Kripke structure
K = (S,→, ρ) to the Kripke structure Ka = (S,→, ρa), where

ρa(e) = ρ(e) ∪ {pr,a | γ(e, r) = a}.

We clearly have (Ka, v) |= ψ1. Moreover, a simple induction over the structure of
formulas shows that (Ka, v) |= ψ0.

Now, ECTL∗ has the finite model property. This follows from the facts that (i)
ECTL∗-formulas can be translated into equivalent modal µ-calculus formulas [15],
and (ii) that the modal µ-calculus has the finite model property [30]. Therefore,
there exists a finite Kripke structure K′ = (S′,→′, ρ′) and v′ ∈ S′ such that
(K′, v′) |= ψa. W.l.o.g. we can assume that every node of S′ is reachable from
the node v′.

We finally construct from K′ a finite model K′ for our original formula ψ. The
underlying Kripke structure is K′, where we can remove the new propositions
pr,a. We define the valuation function γ as follows: Let e ∈ S′ and r ∈ Regψ.
Since e is reachable from v′ and (K′, v′) |= ψ1 there must exist a unique a ∈ im(γ)
such that pr,a ∈ ρ′(e). We set γ(e, r) = a.

90

We also have (K′, v′) |= ψ0. A simple induction finally shows that this implies
(K′, v′) |= ψ.

Given this characterization we can prove the following result:

Corollary 7.3. Let Z be the σ-structure defined in (1.2) on page 7 (or one of
its expansions from the previous chapters). Then FINSAT(Z) is decidable.

Proof. Let Regϕ be the set of register variables appearing in ϕ, and choose two
fresh variables s, t. Let ψ be defined as the conjunction of the following two
formulas:

ψ1 = A∀x (s = Ss)(x) ∧ (t = St)(x)

ψ2 = A∀x
∧

r∈Regϕ

(s ≤ r ≤ t)(x)

It is not hard to see that ϕ is finitely Z-satisfiable if and only if (ϕ ∧ ψ) is Z-
satisfiable: Suppose that (K, v) |= ϕ ∧ ψ for a Z-Kripke structure K = (Z,K, γ),
where w.l.o.g. every node is reachable from v. Then ψ1 enforces that γ assigns s
and t a constant value, i.e. γ(w, s) = a and γ(w, t) = b for all w nodes of K. At the
same time ψ2 requires that every other register variable r which appears in ϕ has
assigned some value z ∈ Z that belongs to the interval [a, b]. By Proposition 7.2,
ϕ ∧ ψ has a finite model, which is also a model of ϕ.

Vice versa, if ϕ has a finite model K, then there are integers c, d ∈ Z such that
im(γ�Regϕ) ⊆ [c, d]. We can extend K to a model for ϕ∧ψ by defining γ(w, s) = c
and γ(w, t) = d for every node w of K.

Since Z-SAT is decidable (Theorem 5.2) so is FINSAT(Z).

We can use Corollary 7.3 to show that for every linear order L (extended with
the equality relation), FINSAT(L) is decidable:

Corollary 7.4. Let (L,<) be a linear order and define L = (L,<,≡) where ≡ is
the equality relation on L. Then FINSAT(L) can be reduced to FINSAT(Z), and
is therefore decidable.

Proof. First assume that L is infinite. Let ϕ be a CECTL∗-formula over the
signature {<,≡} and let K = (Z,K, γ) be a finite Z-KS in which ϕ holds. Choose
a, b ∈ Z such that im(γ�Regϕ) ⊆ [a, b]. Let n = b−a. Since L is infinite, there exists
elements l0, . . . , ln ∈ L such that l0 < l1 < · · · < ln in (L,<). Let K′ = (L,K, γ′)
be the L-KS with the same underlying Kripke structure as K and γ′(d, r) = li
if γ(d, r) = a + i. This is clearly a finite model of ϕ over the domain L. By

91

reversing the role of L and Z, we can show that ϕ is finitely Z-satisfiable if ϕ is
finitely L-satisfiable.

If L is a finite set with c = |L|, then we can reduce FINSAT(L) again to
FINSAT(Z) by mapping a formula ϕ ∈ ECTL∗({<,≡}) to ϕ ∧ ψ, where ψ is a
variant of the formula from the proof of Corollary 7.3. Using the relations ≡1

and ≡c we have to bound the value taken by each register variable r ∈ Reg that
appears in ϕ to the interval [1, c].

It is open whether there is a linear order for which L-SAT is undecidable.

Remark 7.5. Instead of using a reduction to the satisfiability problem, one can
prove all decidability results of this section with the following approach: Analo-
gously to the definition of EHD(L) (for a logic L), say that a σ-structure A has
the property EHDfin(L) if there is a computable function that maps every finite
subsignature τ ⊆ σ to an L-sentence ϕτ such that for every countable τ -structure
B we have the following: There exists a homomorphism h : B → A with finite
image if and only if B |= ϕτ .

Then we can follow exactly all the steps relating the EHD-property of a struc-
ture D with decidability of D-SAT and obtain a proof that FINSAT(D) is de-
cidable for every negation-closed domain D with property EHDfin(BMW). The
results stated above then follow from the fact that every infinite linear order has
property EHDfin(BMW): A constraint graph allows a homomorphism with finite
image to an infinite linear order if and only if there is a bound on the length of
the longest <-chain (after contraction of ≡-edges as usual).

7.3 A generalization of the EHD-method

In Theorem 4.7, connecting the notion of EHD-property to the satisfiability
problem for CECTL∗, we state our result for domains which enjoy the property
EHD(BMW), where BMW is short for the logical language formed by all Boolean
combinations of MSO and WMSO+B sentences.

This result can be generalized. Given a negation-closed concrete domain D,
all we need for our method to work, is that D has the property EHD(L) for some
logic L which satisfies the following three properties:

P1 Satisfiability of a given L-sentence over the class of infinite node-labeled
trees is decidable.

P2 L is closed under boolean combinations with MSO-formulas.

P3 L is compatible with one dimensional first-order interpretations and with
the k-copy operation.

92

For instance, MSO itself satisfies all the above properties. By Rabin’s seminal
tree theorem [37], satisfiability of MSO-sentences over infinite node-labeled trees
is decidable and Muchnik’s theorem (cf. [42]) implies compatibility of MSO with
k-copying.

It is not clear, though, whether the structure that we are most interested
in, (Z, <,≡), satisfies the property EHD(MSO), and we actually conjecture that
it does not. Thus the need to use the logic WMSO+B, or actually its Boolean
closure with MSO, BMW, in order to satisfy P2. This logic, on top of having
the above properties, can in fact naturally express the condition which we have
found to characterize all those constraint graphs which allow a homomorphism
to (Z, <,≡): given any two elements, there is a bound on the length of all paths
which connect them.

93

Chapter 8

Adding Non-Local Constraints

CECTL∗ extends ECTL∗ with constraints which allow to reason about concrete
numerical values. We have remarked before that one characteristic of these con-
straints is that they have a fixed depth: we can compare the values assigned to
the register variables at fixed positions, e.g., we can express equality between the
value of r1 at the current position and the value of r2 at the ith next position
along a path using the formula r1 ≡ Sir2.

Different logics like metric temporal logic (MTL), timed propositional tem-
poral logic (TPTL) or freezeLTL are all extensions of linear temporal logic (LTL)
which allow to specify properties of data words. As mentioned in the introduction,
data words are basically A-Kripke paths with only one register variable, where
A is typically the set of natural numbers or real numbers, see [2]. In these logics,
one can compare the current data value with future values at arbitrary distance
from the current position. For instance, we can express the property that there
is a future data value which is equal to the current one with the TPTL-formula
x.F(x = 0)1. It is interesting whether we can add this feature to CLTL, CCTL∗ or
CECTL∗ and preserve decidability. This question was also asked in [17].

To this end, we substitute the atomic constraints from (3.2) on page 25 with
non-local ones of the form:

R(O1r1, . . . , Okrk)(x) (8.1)

where Oi = Sj for some j ∈ N or Oi = F. Intuitively, Oi = F would refer to
the ri-value at some (existentially quantified) future position of the path. On the
concrete domain (Z, <,≡), this would allow to express, for instance, the above

1TPTL and freezeLTL are allowed to store the data value of the current position using the
freeze quantifier x.ϕ, and to later compare it with the data value at some other position: x = k
means that d − v(x) = k, where v(x) is the value of x which is currently stored, and d is the
data value at the current position.

94

mentioned property that there is a future position in which the value of the
register variable r matches the one in the current position: (r ≡ Fr)(x).

Unfortunately we can show that this leads to undecidability of the satisfiability
problem, also in very restricted settings: Even if we consider as the starting point
logic LTL instead of ECTL∗, adding these new constraints causes undecidability
of the satisfiability problem on very simple concrete domains, like (N, <,≡) and
(Z, <,≡) (Section 8.1).

On the positive side, we can regain decidability on these concrete domains by
disallowing the use of non-local equality constraints (Section 8.2).

Definition 8.1. CLTL[F] on the signature σ is the extension of CLTL defined by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | R(O1r1, . . . , Okrk)

where p ∈ P, R ∈ σ, k = ar(R), and for all 1 ≤ j ≤ k, rj ∈ Reg and Oj = Xij for
some ij ∈ N or Oj = F.

CLTL[F] is nothing but LTL extended by non-local constraints as those from
(8.1). Since we now add constraints to a temporal logic (instead of MSO on paths)
we go back to the syntax from (1.1) on page 5: As usual in temporal logics, we
don’t need variables to point to nodes of the Kripke structure, which can only
be navigated using the temporal operators, and use X instead of the symbol for
the successor function, i.e., in our new constraints the term Xjrj replaces the
CECTL∗-term Sjrj . We also use the classical abbreviations, in particular Gϕ (ϕ
holds globally in the future) and Fϕ (ϕ holds finally in the future).

The semantics of CLTL[F] is mostly inherited from that of LTL, but while LTL-
formulas are evaluated over words (Kripke paths), we evaluate a CLTL[F]-formula
on a D-decorated Kripke path P = (D,P, γ), where P is a Kripke path. Note
that the valuation function γ and the concrete domain D = (D, I) only play a
role in evaluating constraints: We define (P, n) |= R(O1r1, . . . , Okrk) if and only
if there are i1, . . . , ik such that

(γ(n+ i1, r1), . . . , γ(n+ ik, rk)) ∈ I(R)

where il = j if Ol = Xj and il > 0 if Ol = F for all 1 ≤ l ≤ k and j ∈ N.

8.1 Undecidability of LTL with Non-Local Constraints

As anticipated, the main result of this section is the following:

Theorem 8.2. Satisfiability for CLTL[F] of the concrete domains (Z, <,≡) and
(N, <,≡) is undecidable.

95

To obtain this result we use incrementing counter automata, in short ICAs,
first introduced in [20]. In contrast to their definition in [20], we use input-
free ICAs, but this does not change things, since we are only interested in the
emptiness problem.

Definition 8.3. An incrementing counter automaton (ICA) with ε-transitions
and zero testing is a tuple C = (Q, qI , n, δ, F), where:

• Q is a finite set of states,

• qI ∈ Q is the initial state,

• n ∈ N is the number of counters,

• δ ⊆ Q × L × Q is the transition relation over the instruction set L =
{inci, deci, ifzi | 1 ≤ i ≤ n}, and

• F ⊆ Q is the set of accepting states.

A configuration of C is a pair (q, v) where q ∈ Q and v : {1, . . . , n} → N is a
counter valuation. For configurations (q, v), (q′, v′), and an instruction l ∈ L
there is an exact transition (q, v)

l−→† (q′, v′) of C if and only if (q, l, q′) ∈ δ
and one of the following cases holds:

• l = inci for some i, v(j) = v′(j) for j 6= i, and v′(i) = v(i) + 1

• l = deci for some i, v(j) = v′(j) for j 6= i, v(i) > 0, and v′(i) = v(i)− 1

• l = ifzi for some i, v(i) = 0, and v′(j) = v(j) for all j.

We define a partial order ≤ on counter valuations as follows: v ≤ w if and
only if v(i) ≤ w(i) for all 1 ≤ i ≤ n.

The transitions of C are of the form (q, w)
l−→ (q′, w′) such that there are

v, v′ with an exact transition (q, v)
l−→† (q′, v′), w ≤ v, and v′ ≤ w′.

An infinite run of C is an infinite sequence of transitions

(q0, v0)
l0−→ (q1, v1)

l1−→ · · · such that q0 = qI .

An infinite run is accepting if and only if some accepting state occurs infinitely
often.

Essentially, ICAs relax the conditions on transitions, by letting faulty incre-
ments occur at any time. The problem whether an ICA admits an accepting
run is deeply connected to that of the halting problem (for finite runs) and of
the recurring state problem (for infinite runs) of insertion channel machines with

96

emptiness testing, see [35]. Their computational power is strictly weaker than
that of perfect channel machines, but emptiness is still undecidable on infinite
words, which makes them a useful tool for undecidability proofs.

Theorem 8.4 (see Theorem 2.9b of [20]). The existence of an infinite accepting
run for ICAs is undecidable and Π0

1-complete.

To prove undecidability of the satisfiability problem for CLTL[F] over the
concrete domain (Z, <,≡), we use a reduction from the infinite accepting run
problem for ICAs (for the method we drew inspiration from [20]) .

Proof (Theorem 8.2). Let C = (Q, qI , n, δ, F) be an ICA. We define an CLTL[F]-
formula ϕC on the atomic proposition set P = Q ∪ L where Q are the states of
C and L = {inci, deci, ifzi | 1 ≤ i ≤ n}. We build ϕC so to be satisfiable over the
concrete domain D = (Z, <,≡) (or D = (N, <,≡)) if and only if C has an infinite
accepting run.

To encode a successful run of C, we require that a D-Kripke path P satisfies
the properties below:

• In each position of the path P, one and only one state from Q occurs, and
one and only one operation from L occurs:

ϕstruct := G
(∨
q∈Q

q ∧
∨
l∈L

l ∧
∧

q,q′∈Q
q 6=q′

(q → ¬q′) ∧
∧
l,l′∈L
l 6=l′

(l→ ¬l′)
)
.

• The computation starts with the initial state and reaches a final state in-
finitely often:

ϕBüchi := qI ∧
∨
q∈F

GFq .

• The transition relations of C are encoded in the following way:

ϕtrans := G
∧
q∈Q

(
q →

∨
(q,l,q′)∈δ

(l ∧ Xq′)
)
.

• We fix 2n pairwise different register variables ri, si ∈ Reg for 1 ≤ i ≤ n. We
use their interpretations to identify each inci-operation and deci-operation,
respectively. While the identifiers are assigned univocally for the increment
instructions, more than one decrement can have the same identifier value.
To make sure that each inc-operation on counter i is assigned a unique
value, we require that at every position of the path P, which corresponds to
an inci-operation, ri is assigned a strictly greater value than in the previous
position, and otherwise remains constant.

97

For the sequence of values of si we only require that it stays constant when-
ever the instruction deci does not occur, and it is otherwise non-decreasing:

ϕinc := G
n∧
i=1

(
(inci → ri < Xri) ∧ (¬inci → ri ≡ Xri)

)
ϕdec := G

n∧
i=1

(
(si ≤ Xsi) ∧ (¬deci → si ≡ Xsi)

)
.

• Whenever a zero test on counter i occurs, the counter should be empty.
To make sure that a run respects this property, we should check that, for
each increase on counter i, we can find at least a corresponding decrease.
It is not necessary that this correspondence is exact, since a faulty increase
can occur at any time, making additional decreases possible. We use the
identifier values ri and si to match each inci, which is eventually followed
by a zero test ifzi, to a deci with the same identifier:

ϕifz1 := G
n∧
i=1

(
(inci ∧ Fifzi)→ X(ri ≡ Fsi)

)
. (8.2)

We should also enforce the fact that, for each inci, the correspondent deci
occurs after inci and before ifzi. For this we require that si is never assigned
a higher value than ri, and that they coincide in the occurrence of a zero
test instruction on counter i. Since si cannot decrease, this means that any
deci with the same value of an inci-instruction should happen before the
zero test:

ϕifz2 := G
n∧
i=1

(ri ≥ si ∧ (ifzi → ri ≡ si)) .

Let ϕC be the conjunction of all the above formulas. We prove the following
equivalence:

C has an accepting run ⇐⇒ ϕC is satisfiable .

Proof of =⇒. Let run = (q0, v0)
l0−→ (q1, v1)

l1−→ · · · be a successful run of C.
Starting from this we define a D-Kripke path P = (D,P, γ) which satisfies ϕC ,
where D can be (N, <,≡) or (Z, <,≡).

First of all we define P = (N,→, ρ), where → is the successor relation on the
natural numbers, and ρ(i) = {qi, li} for all i ∈ N. Since the run is successful, this
ensures that ϕstruct ∧ ϕBüchi ∧ ϕtrans is satisfied.

98

Now we define the interpretations of ri and si. For all 1 ≤ i ≤ n, we define
γ(0, ri) = γ(0, si) = 0. For all other nodes j ≥ 1 we define

γ(j, ri) =

{
γ(j − 1, ri) + 1 iff lj−1 = inci

γ(j − 1, ri) otherwise

γ(j, si) =

{
γ(j − 1, si) + 1 iff lj−1 = deci and γ(j − 1, si) < γ(j − 1, ri)

γ(j − 1, si) otherwise

Clearly this definition of γ makes ϕinc and ϕdec true. To prove that also ϕifz1

and ϕifz2 hold, we note that, since run is a successful run of C, a transition with
operation ifzi can only occur if counter i is empty. Therefore, the number of
increase instructions on counter i, between any two ifzi, should be matched by an
equal or greater number of decrease instructions. By definition of the functions,
for each increase on the value of ri which is eventually followed by a zero test
on counter i, there is a corresponding increase on the value of si. Furthermore,
whenever si reaches the value of ri, the value of si is no longer increased until ri
grows again, thus ensuring that ϕifz1 ∧ ϕifz2 holds.

Proof of ⇐=. Let P = (D,P, γ) be a D-Kripke path such that P |= ϕC . D can
be (N, <,≡) or (Z, <,≡), this does not change the proof. We define a run

run = (q0, v0)
l0−→ (q1, v1)

l1−→ · · ·

of C and prove that it is accepting. By ϕstruct ∧ϕBüchi the label ρ(P(i)) of every
node of the path P contains one and only one symbol q from Q and l from L.
We set qi = q and li = l. Since ϕBüchi holds, q0 is the initial state qI , and
an accepting state is visited infinitely often. Since ϕtrans holds, for every i ∈ N
we have that (qi, li, qi+1) ∈ δ. We set to zero the initial value of every counter
1 ≤ j ≤ n: v0(j) = 0. For all later positions i ≥ 1 we define:

vi(j) =

vi−1(j) + 1 iff li−1 = incj

vi−1(j)− 1 iff li−1 = decj and vi−1(j) > 0

vi−1(j) otherwise.

Note that vi(j) is always positive. It remains to show that

(qi, vi)
li−→ (qi+1, vi+1) (8.3)

according to Definition 8.3. We only discuss the non trivial cases.

• If li = decj and vi(j) = 0, then also vi+1(j) = 0. Let v′ be the counter
valuation that assigns v′(j) = 1 and coincides with vi on all other counters.

Then, (qi, v
′)

decj−→† (qi+1, vi+1) is an exact transition. Since vi ≤ v′, we get
(8.3).

99

• If li = ifzj , then we need to show vi(j) = 0 in order to get (8.3). For this
to hold, it is enough to notice that ϕifz1 and ϕifz2 ensure that for every
incj followed by a ifzj there is a decj , and this occurs before ifzj . Hence,
every time we increase vk(j) by one for some k < i, we also decrease it by
one before the zero test. All other decreases do not alter the value of the
counter.

We conclude that, since the infinite accepting run problem for ICAs is undecidable
and Π0

1-complete, satisfiability for CLTL[F] over (N, <,≡) and (Z, <,≡) is also
undecidable and Π0

1-hard.

Remark 8.5. In the formula ϕC we only use unary temporal operators, i.e., the
until modality U never appears. This is a strict fragment of LTL, sometimes
referred to as unaryLTL in the literature. Note also that constraints of the form r <
Fs or Fr < s never appear in ϕC , we only use a non-local equality constraint r ≡
Fs in (8.2). We can then state a more precise result: Satisfiability for unaryLTL
with local constraints over the signature {<,≡} and non-local constraints over the
signature {≡} is undecidable for the concrete domains (Z, <,≡) and (N, <,≡)

Remark 8.6. Going in a different direction, we could instead substitute all local
constraints with non-local constraints, and obtain a formula equivalent to ϕC in
the following way: Using the formula

ϕmon := G
n∧
i=1

[¬(Fri < ri) ∧ ¬(Fsi < si)] ,

we make sure that the sequence of values assigned to the registers variables is
non decreasing. We substitute the formulas ϕinc and ϕdec by the following:

ϕ′inc := G
n∧
i=1

(
(inci → ¬ri ≡ Fri) ∧ (¬inci → ri ≡ Fri)

)
,

ϕ′dec := G
n∧
i=1

(¬deci → si ≡ Fsi) .

Note that, given a non-decreasing sequence (aj)j∈N, asking that the value of some
aj is the same of a later member of the sequence aj+k implies that the sequence is
constant in that interval, in particular aj = aj+1 holds. At the same time, asking
that aj = aj+k does not hold for any k > 0, implies in particular that it does not
hold for k = 1 and therefore aj < aj+1.

Using these new formulas we can show that: Satisfiability for unaryLTL with
only non-local constraints of the form r∗Fs, or Fr∗s, for ∗ ∈ {<,≡} is undecidable
for the concrete domains (Z, <,≡) and (N, <,≡).

Since LTL can be seen as a fragment of CTL∗ and ECTL∗, the above undecid-
ability results also apply to such logics extended with this new kind of constraints.

100

8.2 Regaining Decidability by Restricting the Use of
Non-Local Constraints

Looking at the proof of Theorem 8.2, one can see how the use of non-local equality
constraints is essential for the reduction: The correctness of the zero tests of
the ICAs needs to be guaranteed and we do it by matching the identifiers of
increase and decrease instructions using constraints of the form r ≡ Fs. Since we
cannot predict how many computation steps separate an increase to its matching
decrease, we necessarily need to use a non-local constraint.

In this section we show that, if this matching is not possible, i.e., if we limit
the use of non-local constraints to the order relation <, decidability is regained.
From now on we refer to constraints of the form

r < Fs , Fr < s , and Fr < Fs ,

with r, s ∈ Reg as to non-local order constraints. Let Z be the structure over
the signature σ = {<,≡, (≡a)a∈Z, (≡a,b)0≤a<b} from (1.2) on page 7. We show
the following:

Theorem 8.7. Given a CLTL formula ϕ with local constraints over σ and non-
local order constraints, one can compute an CLTL formula ϕ̂, with only local
constraints over σ, such that ϕ is Z-satisfiable if and only if ϕ̂ is Z-satisfiable.

The idea is the following: by using some auxiliary register variables and extra
atomic propositions, it is possible to replace the non-local order constraints by
local constraints without changing the set of Kripke paths satisfying the original
formula. Suppose that ϑ = (r < Fs) appears in ϕ. On a potential model P of ϕ,
whenever ϑ holds, the current value of r can be matched with a larger value of s
in some future node. What we want to do, is store the current value of r in some
auxiliary variable, and propagate it until we find a match. Of course ϑ could
hold infinitely often, think for instance of the formula GF(r < Fs), and we cannot
store infinitely many values of r. Nonetheless there is a solution, which allows,
using only two auxiliary variables, to check that the constraint is satisfied. The
first step is to replace any occurrence of ϑ in ϕ by a fresh atomic proposition p.
Then we use two fresh register variables: ac which stores the value of r which we
are currently trying to match to some future value of s, and am, which stores the
maximal values of r which we have encountered so far that needs to be matched to
some future s. Then we use two additional atomic propositions, qc and qm, to keep
track of whether the checking processes for ac and am are active. So whenever
p occurs, we initialize the checking processes and keep checking whether we find
a match for ac, and updating am whenever a larger value of r occurs in a node
marked by p. If ac is matched to a larger value of s, then we can transfer the

101

P(0) P(1) P(2) P(3) P(4) P(5) P(6)

prop p, qc, qm p, qc, qm qc, qm qc p, qc, qm
r 3 5 6 6 4 3 5

s 2 2 2 5 7 2 4

ac 3 3 3 5 ? 3 ?

am 3 5 5 ? ? 3 ?

Table 8.1: We have replaced every occurrence of the constraint (r < Fs) by the
fresh propositional variable p. When the value of ac or am is circled, it is matched
to a larger value of s in the next position. When the value of am is inside a square,
it means that we transfer the value of am to the following position of ac. The
star signifies that the value of that variable at that position is irrelevant. Notice
how, whenever both qc and qm do not hold anymore, all the previous values of r
in positions marked by p have been matched to future values of s.

value of am to ac and stop the checking process for am, until p holds again. See
Table 8.1 for an example.

Remark 8.8. One might think that a simpler approach is possible: using a single
auxiliary variable a one could store the value of r at the first occurrence of r < Fs
and update it whenever the constraint r < Fs appears again by setting a to the
maximum between the current value of r and the previous value of a. Then
one could simply set G[p → F(a < Xs)] as a final condition (where again, we
use the fresh propositional variable p to mark the nodes where the non-local
constraint holds). This method would indeed fail if the value of a were to be
always increased before we were able to match it to a larger value of s. Take for
instance the sequence of values:

P(0) P(1) P(2) P(3) P(4) . . .

r 3 4 5 6 7 . . .

s 1 2 3 4 5 . . .

This sequence clearly satisfies G(r < Fs). Using only one auxiliary variable a as
explained above one would obtain the following valuation:

P(0) P(1) P(2) P(3) P(4) . . .

a 3 4 5 6 7 . . .

which would not satisfy the final condition GF(a < Xs). Using two auxiliary
variables, instead, a first one can be constantly updated to new larger values of r,
while the second one is used to check whether a match happens infinitely often.

Let us now show this construction in detail:

102

Proof of Theorem 8.7. We can assume that ϕ is in negation normal form. First
of all notice that we can substitute in ϕ any constraint of the form Fr < Fs with
the following formula

XF[(r < s) ∨ (r < Fs) ∨ (Fr < s)]

without changing the semantics. We can then assume that the non-local con-
straints in ϕ are of the kind (r < Fs), (Fr < s), or their negations.

It is enough to show that we can remove one of such constraints ϑ to obtain
our result.

Case 1. Suppose ϑ = (r < Fs). Then let ac, am ∈ Reg be two auxiliary register
variables not appearing in ϕ, and p, qc, qm ∈ P be fresh atomic propositions. We
define ϕ̂ = ϕ[ϑ 7→ p] ∧ ψ, where ϕ[ϑ 7→ p] is obtained from ϕ by substituting any
positive occurrence of ϑ with p, and ψ is the conjunction of ψ0 to ψ9 defined in
the following. Note that, the values of ac and am are always kept so to satisfy
ac ≤ am. Requirements for the initial position:

ψ0 = [¬p→ ¬(qc ∨ qm)] ∧ [p→ (ac = r ∧ am = r)] .

Whenever p occurs, start (or continue) checking ac and am:

ψ1 = G[p→ (qc ∧ qm)] .

Do not start checking ac unless solicited by p:

ψ2 = G[(¬qc ∧ ¬Xp)→ ¬Xqc] .

Do not start checking am unless solicited by p:

ψ3 = G[(¬qm ∧ ¬Xp)→ ¬Xqm] .

If the checking process is initiated, set ac and am to the value of r:

ψ4 = G[(¬qc ∧ ¬qm ∧ Xp)→ (X(ac ≡ r) ∧ X(am ≡ r))] .

If we are checking ac, and ac < Xs is not satisfied, propagate the value of ac and
keep checking. Since ac ≮ Xs implies am ≮ Xs, if the checking process is active
on am it should be kept active: If p does not hold in the following state we simply
propagate am, if p does hold, then we set Xam to the maximal value2 between the
current value of am, and the value of r in the following position. If the checking

2Note that a = max{b, c} can be expressed as (b ≤ c ∧ a ≡ c) ∨ a ≡ b.

103

process for am was not active, but p holds in the next state, we set the value of
am to max{ac, r}, to keep ac ≤ am true.

ψ5 = G[(qc ∧ ¬(ac < Xs))→ Xqc ∧ (ac ≡ Xac)

∧ (qm ∧ Xp)→ (Xam ≡ max{am,Xr})
∧ (qm ∧ ¬Xp)→ (Xqm ∧ (Xam ≡ am))

∧ (¬qm ∧ Xp)→ X(am ≡ max{ac, r})] .

In case we are checking ac but not am, and the constraint is satisfied, we either
stop checking if Xp does not hold, or we re-initialize both checking process if Xp
holds:

ψ6 = G[(qc ∧ ¬qm ∧ ac < Xs) → (X(¬p ∧ ¬qc) ∨ X(p ∧ ac ≡ r ∧ am ≡ r))] .

If both checking processes are active, and ac < Xs but am ≮ Xs, then we
transfer the value of am to ac. If Xp does not hold we stop checking am, while, if
Xp holds, we keep the checking process on am active and set Xam ≡ max{am,Xr}
in order to keep ac ≤ am:

ψ7 = G[(qc ∧ qm ∧ ac < Xs ∧ ¬am < Xs)→ (Xac ≡ am) ∧ Xqc

∧ ¬Xp→ ¬Xqm
∧ Xp→ Xam ≡ max{am,Xr}] .

If both am and ac are smaller than the next value of s, we can stop all checking
processes, unless p holds again in the next position, in which case we set ac and
am to the value of r and re-initialize the checking procedure:

ψ8 = G[(qc ∧ qm ∧ ac < Xs ∧ am < Xs)→ ¬Xp→ X(¬qm ∧ ¬qc)
∧ Xp→ X(am ≡ r ∧ ac = r)] .

We add the acceptance condition: either ac < Xs holds infinitely often (all (r <
Fs) are eventually satisfied) or at some point we stop checking and qc never holds
again (the last constraint is satisfied).

ψ9 = GF(ac < Xs) ∨ FG¬qc .

Note that ψ5∧ψ9 implies G[qc → (qc U (ac < Xs))], a perhaps more intuitive final
condition.

To complete the proof of Case 1, we have to show that there exists a Z-Kripke
path P such that P |= ϕ if and only if there exists a Z-Kripke path P̂ such that
P̂ |= ϕ[ϑ 7→ p] ∧

∧9
i=0 ψi.

104

First we prove the direction (⇒). Suppose P = (Z,P, γ) |= ϕ, where P =
(N,→, ρ) is a Kripke-path. To build P̂ we recursively define two extensions of
the labeling and valuation function respectively: ρ̂ and γ̂. In the following let us
write γi(r) instead of γ(i, r). As basic step we set ρ̂(0) = ρ(0) ∪ {p, qc, qm} and
γ̂0(ac) = γ̂0(am) = γ0(, r) if (P, 0) |= ϑ. Otherwise ρ̂(0) = ρ(0) and γ̂0(ac) and
γ̂0(am) are chosen arbitrarily.

Suppose now we have defined γ̂ and ρ̂ up to i− 1, we set

(a) ρ̂(i) = ρ(i) ∪ {p, qc, qm} if (P, i) |= ϑ,

while, if (P, i) 2 ϑ, then

(b) ρ̂(i) = ρ(i) ∪ {qc, qm} if qc, qm ∈ ρ̂(i− 1) and γ̂i−1(ac) ≮ γi(s),

(c) ρ̂(i) = ρ(i) ∪ {qc} if qc ∈ ρ̂(i − 1), qm /∈ ρ̂(i − 1) and γ̂i−1(ac) ≮ γi(s) or if
qc, qm ∈ ρ̂(i− 1) and γ̂i−1(ac) < γi(s) but γ̂i−1(am) ≮ γi(s),

(d) ρ̂(i) = ρ(i) otherwise.

We define γ̂(t) = γ(t) for all t ∈ Regϕ, and according to the following table for
t ∈ {ac, am}.

ρ̂(i−1) (P, i) |=ϑ γ̂i−1(ac)<γi(s) γ̂i−1(am)<γi(s) γ̂i(ac) γ̂i(am)

1 qc, qm yes no ? γ̂i−1(ac) max{γ̂i−1(am), γi(r)}

2 qc, qm no no ? γ̂i−1(ac) γ̂i−1(am)

3 qc, qm ? yes no γ̂i−1(am) max{γ̂i−1(am), γi(r)}

4 qc, qm ? yes yes γi(r) γi(r)

5 qc no ? ? γ̂i−1(ac) γ̂i−1(ac)

6 qc yes no ? γ̂i−1(ac) max{γ̂i−1(ac), γi(r)}

7 qc yes yes ? γi(r) γi(r)

8 ∅ ? ? ? γi(r) γi(r)

Table 8.2: In the first column we write whether qc and qm belong to ρ̂(i− 1) and
? means that the value is non influential.

Note the following facts from Table 8.2:

(P, i) |= ϑ implies γi(r) ∈ [γ̂i(ac), γ̂i(am)] , (8.4)

105

(P, i) |= (qc ∧ ¬ac < Xs) implies γ̂i−1(ac) = γ̂i(ac) . (8.5)

Now, let P̂ be the Z-Kripke path having P̂ = (N,→, ρ̂) as underlying KP and
γ̂ as valuation function. It is easy to see that P |= ϕ implies P̂ |= ϕ[ϑ 7→ p].
This can be done by induction, using the fact that by definition of ρ̂ in point (a),
(P, i) |= ϑ implies (P̂, i) |= p. The two formulas are otherwise identical, and ρ̂
and γ̂ coincide with ρ and γ except on the fresh atomic propositions and register
variables which do not appear in ϕ.

The fact that P̂ |= ψi for all i = 0, . . . , 9 can be derived from the definitions
of ρ̂ and γ̂ as follows:

• ψ0 is satisfied by the definition of γ̂0 and ρ̂0.

• ψ1, ψ2 and ψ3 are easily verified from points (a)-(d) of the definition of ρ̂.
In fact, p is only added to ρ̂(i) together with qc and qm, furthermore qc and
qm are only added to ρ̂(i) if they also belong to ρ̂(i− 1) or if p ∈ ρ̂(i).

• ψ4 is directly implied by the last row of Table 8.2.

• To prove that ψ5 to ψ8 are satisfied, one needs to check that ρ̂ and γ̂ have
been defined appropriately. Let us do it, as an example, for ψ5.

Assume that α = (qc∧¬(ac < Xs)) holds, then Xqc is true as a consequence
of points (b) and (c). To satisfy ac ≡ Xac, we should have γ̂i(ac) = γ̂i−1(ac),
as guaranteed by rows 1,2,5,6 of Table 8.2.

The third conjunct assumes (qm ∧Xp), additionally to the original assump-
tion α. Since p ∈ ρ̂(i) holds if and only if (P, i) |= ϑ, these circumstances
are described by line 1 of Table 8.2, where the value for γ̂i(am) is chosen
appropriately.

The forth conjunct assumes (qm∧¬Xp) in addition to α. Xqm is guaranteed
by (b), and the constraint on am holds by the second line of Table 8.2.

In the fifth conjunct, with α and ¬qm ∧ Xp as assumptions, we are in the
situation described by line 6 of Table 8.2, which again sets the value for
γ̂i(am) correctly.

The fact that ψ6 to ψ8 are satisfied can be proved analogously.

• Let us now take a look at the final condition, we want to show that P̂ |= ψ9.
Suppose (P, i) |= ϑ. Then, by (a), qc ∈ ρ̂(i). Points (b) and (c) imply that
qc ∈ ρ̂(j) for all i ≤ j ≤ k where k is a (possibly non existing) later position
such that (P̂, k) |= ac < Xs. Using (8.5) we can deduce that the value γ̂j(ac)
is kept constant until such position k, that is

γ̂i(ac) = γ̂i+1(ac) = · · · = γ̂k(ac) .

106

Now, because (P, i) |= ϑ, by (8.4), γ̂i(ac) ≤ γi(r). Since ϑ = r < Fs, we
know that there exists a position k ≥ i such that γi(r) < γk+1(s). Using all
the above facts we deduce that there exists k such that

γ̂k(ac) ≤ γ̂i(r) < γ̂k+1(s) ,

that is (ac < Xs) holds at position k. Therefore, if (P, i) |= ϑ is true for
infinitely many i ∈ N, the fist disjunct of ψ9 will be satisfied.

A similar reasoning can be applied to the case where there exists i ∈ N
such that (P, i) |= ϑ but (P, j) 2 ϑ for all j > i, to obtain that from some
position on ¬qc always holds, satisfying the second disjunct of ψ9.

Let us now show the other direction (⇐) of the implication. Suppose there
exists some Z-KP P which is a model for ϕ̂ = ϕ[ϑ 7→ p]∧

∧
ψi. We claim P |= ϕ.

To show this it is enough to prove that (P, i) |= p ⇒ (P, i) |= ϑ. If p holds on
some node i of P, then qc and qm also hold. Additionally we can deduce from
ψ0 and ψ4 to ψ8, that γi(r) ∈ [γi(ac), γi(am)]. Then, according to ψ5, both qc
and qm are kept true until at some position j (ac < Xs) holds (such node exists
by ψ9). Until then, ac is kept constant and am can only increase or stay the
same, so γi(r) ∈ [γj(ac), γj(am)] also holds. At this point, either both ac < Xs
and am < Xs hold, in which case (P, i) |= (r < Fs) and we have concluded our
proof, or only ac < Xs holds. If this is the case, ψ7 insures that the value of am is
transfered to ac and that the checking process qc is kept active. Again, using ψ5

and ψ9, we can guarantee that there exists a later node k, where ac < Xs holds,
and until then γi(r) < γk(ac). Therefore, also in this case, we have found that
(P, i) |= (r < Fs).

Case 2. The case where ϑ = (Fs < r) can be dealt with very similarly as
Case 1. The only difference is that we have to match the current value of r with
a smaller future value of s. And this can be easily done by slightly modifying ψ5

to ψ9 to fit this situation.
Case 3. Suppose ϑ = ¬(r < Fs). The semantics of this constraint are the

following: Given a Z-Kripke path P = (Z,P, γ), (P, i) |= ϑ if and only if for all
j ≥ i, γ(i, r) ≥ γ(j, s). This is the same as saying that γ(i, r) should be greater
or equal than the maximum value of γ(j, s) for j ≥ i. The global nature of this
constraint allows us to use only one auxiliary variable am which will store the
minimum value of r for which the constraint needs to be satisfied, and one fresh
propositional variable q that will record whether the checking process has started.
Again we define ϕ′ = ϕ[ϑ 7→ p]∧ψ. Here ψ is the conjunction of the formulas ψ0

to ψ5.
In the initial position, if p holds, we set the value of ac to r:

ψ0 = p→ ac ≡ r .

107

If p holds, we start the checking process, which never ends. If p never holds, then
the process q is never initiated:

ψ1 = G(p→ Gq) ∧ (¬qU p) .

Whenever p holds for the first time (checking process q has not been activated
before), we set ac equal to r:

ψ2 = G(¬q ∧ Xp→ Xac ≡ Xr) .

Whenever p holds, if the checking process q had already started, we update the
value of ac to r, if this is smaller, and otherwise keep it constant:

ψ3 = G(q ∧ Xp→ Xac ≡ min{ac,Xr}) .

If p does not hold we simply propagate the value of ac:

ψ4 = G(X¬p→ Xac ≡ ac) .

Whenever the checking process q is ongoing, we make sure that ac is greater or
equal than the value of s in the following position:

ψ5 = G(q → ac ≥ Xs) .

Using a similar but simpler procedure than the one in Case 1, we can show that
ϕ is Z-satisfiable if and only if so is ϕ′.

Case 4. The last case, ϑ = ¬(Fs < r) can be dealt with in the same way as
for Case 3. This concludes the proof.

Remark 8.9. The translation we just presented from CLTL[F] with only non-local
order constraints to CLTL is in LOGSPACE. Since satisfiability for CLTL with local
constraints over Z is a PSPACE complete problem ([19]), then so is satisfiability
for CLTL[F] with only non-local order constraints.

108

Chapter 9

Conclusion and Final Remarks

In this work we have extended the notion of temporal logic with local constraints
as introduced in [17, 7] from CLTL and CCTL∗ to CECTL∗. We have proved a gen-
eral result stating that satisfiability of CECTL∗ with constraints over any domain
D which (i) is negation-closed and (ii) satisfies the EHD-property is decidable.

We have shown that the domains (Z,≡, <) and (N,≡, <) satisfy these prop-
erties, even if extended with constant- and periodicity-constraints, proving de-
cidability of CECTL∗ with constraints over such structures. This implies the
same results for CCTL∗, whose satisfiability over integer domains with order- and
equality-constraints had been open since it was first asked in [19].

We have also successfully applied this result to other domains, concentrating
on classes of “tree-like” structures as semi-linear orders, ordinal trees and trees
of a fixed height.

At the same time we have explored the limits of this method, showing that it
cannot be applied to the infinite binary tree with the prefix and incomparability
relation T = ([0, 1]∗, <,⊥): Despite the fact that both CLTL and CCTL∗ with
constraints over T have a decidable satisfiability problem (as shown very recently
in [18]), T does not have the EHD-property.

Successively, we have considered the idea (proposed in [17, 8]) to allow the
use of non-local constraints into the logic, and discovered that this leads to unde-
cidability of CLTL (and therefore CCTL∗ and CECTL∗) with constraints over the
domains (Z,≡, <) and (N,≡, <). On the positive side, we showed that restricting
the use of non local constraints, allowing the ones involving order and discarding
the ones involving equality, permits to regain decidability. We have established
the result for CLTL, answering only partially the question in [8], which was stated
for certain fragments of CCTL∗. We leave decidability for CCTL∗ over (Z,≡, <)
with non-local order constraints as an open problem, that we would like to explore

109

in the future.

The other - most evident - question which we leave open, is the one con-
cerning the complexity of the satisfiability problem for CECTL∗, or perhaps more
interestingly, for CCTL∗, with constraints over the integers.

The lack of complexity bounds is due to the fact that we rely on the decidabil-
ity result established in [5] for satisfiability of WMSO+B over infinite node-labeled
trees, in which the authors make no statements regarding the complexity of their
procedure.

At the same time, we believe that our decidability result, whose upside is
its generalized nature, may not be the most effective way to devise an efficient
decidability procedure for the specific case of the domain (Z,≡, <).

The reason behind this statement is that, to establish whether a given CECTL∗-
formula is satisfiable using our method, we have to check whether a constraint
graph satisfies a WMSO+B-formula. This constraint graph is generated from an
ECTL∗ formula, and given this fact, one could assume that it has certain regular
properties. Instead of doing this, we simply check that this graph allows a ho-
momorphism to (Z,≡, <), making no assumptions on its structure. We believe
that it might be more efficient to factor in these assumptions and devise another
procedure, which perhaps could avoid the use of WMSO+B and allow us to derive
some complexity bounds.

Finally, we would like to remark that our results show once more the deep
connection between the constraint satisfaction problem (CSP) for a structure D
and the satisfiability problem for logics with constraints over D.

The completion property from [4] to show decidability of CLTL, or the ω-
admissibility criterion from [34] used for the description logic ALC, relate local
satisfiability of a constraint satisfaction problem to global satisfiability. In some
sense this is the same idea behind Lemma 6.10, in which we establish a compact-
ness result for the CSP for semi-linear orders.

In our work, instead, the connection is established through logic: A domain
D has the property EHD(L) if the logic L is able to “solve” its CSP problem by
distinguishing those constraint systems which admit a satisfying assignment, and
those who do not.

110

Bibliography

[1] R. Alur and T. A. Henzinger. A really temporal logic. In Proc. FOCS 1989,
pages 164–169. IEEE Computer Society, 1989.

[2] R. Alur and T. Henzinger. Real-time logics: complexity and expressiveness.
In Information and Computation, vol. 104, 390–401, 1993.

[3] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains
into Concept Languages. In Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence, Volume 1, pages 452–457, 1991.

[4] P. Balbiani and J. Condotta. Computational Complexity of Propositional
Linear Temporal Logics Based on Qualitative Spatial or Temporal Reason-
ing. In Proceedings of the 4th International Workshop on Frontiers of Com-
bining Systems (FroCoS ’02), pages 162–176. Springer-Verlag, 2002.

[5] M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In
Proc. STACS 2012, vol. 14 of LIPIcs, 648–660. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2012.

[6] M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees
(long version). Available at http://www.mimuw.edu.pl/~bojan/papers/

wmsou-trees.pdf.

[7] L. Bozzelli and R. Gascon. Branching-time temporal logic extended with
qualitative Presburger constraints. In Proc. LPAR 2006, LNCS 4246, 197–
211. Springer, 2006.

[8] L. Bozzelli and S. Pinchinat. Verification of Gap-order Constraint Abstrac-
tions of Counter Systems. In Theor. Comput. Sci., Vol. 523, pages 1–36.
Elsevier, 2014

[9] C. Carapelle, S. Feng, O. Fernández and K. Quaas. Satisfiability for MTL
and TPTL over Non-monotonic Data Words. In Proceedings of Language

111

http://www.mimuw.edu.pl/~bojan/papers/wmsou-trees.pdf
http://www.mimuw.edu.pl/~bojan/papers/wmsou-trees.pdf

and Automata Theory and Applications 2014, LNCS 8370, pages 248–259.
Springer, 2014.

[10] C. Carapelle, S. Feng, A. Kartzow, and M. Lohrey. Satisfiability of ECTL*
with tree constraints. In Computer Science – Theory and Applications,
LNCS 9139, pages 94–108. Springer, 2015. http://dx.doi.org/10.1007/
978-3-319-20297-6_7.

[11] C. Carapelle, A. Kartzow, and M. Lohrey. Satisfiability of CTL* with con-
straints. In Proc. CONCUR 2013, LNCS 8052, pages 455–469. Springer,
2013.

[12] C. Carapelle, A. Kartzow and M. Lohrey. Satisfiability of ECTL* with
constraints. Accepted for publication in Journal of Computer and Sys-
tem Sciences, currently available at http://www.eti.uni-siegen.de/ti/

veroeffentlichungen/ectl-with-constraints.pdf.

[13] K. Čerāns. Deciding properties of integral relational automata. In
Proc. ICALP 1994, LNCS 820, pages 35–46. Springer, 1994.

[14] B. Courcelle. Monadic second-order definable graph transductions: a survey
Theor. Comput. Sci., 126:53–75, 1994.

[15] M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. Theor.
Comput. Sci., 126(1):77–96, 1994.

[16] S. Demri. LTL over Integer Periodicity Constraints. Foundations of Software
Science and Computation Structures, 2987, pages 121–135. Springer, 2004.

[17] S. Demri and D. D’Souza. An automata-theoretic approach to Constraint
LTL. In Information and Computation vol. 205, 3, pages 380–415. Academic
press, 2007.

[18] S. Demri and M. Deters. Temporal logics on strings with prefix relation. In
Journal of Logic and Computation, 2015. http://logcom.oxfordjournals.
org/content/early/2015/06/04/logcom.exv028.abstract.

[19] S. Demri and R. Gascon. Verification of qualitative Z constraints. Theor.
Comput. Sci., 409(1):24–40, 2008.

[20] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Logic, 10(3), 16:1–16:30, 2009.

[21] C. Ding, D. Pei and A. Salomaa, Chinese Remainder Theorem: Ap-
plications in Computing, Coding, Cryptography. Word Scientific, 1996.
https://books.google.com/books?id=RQLtCgAAQBAJ,

112

http://dx.doi.org/10.1007/978-3-319-20297-6_7
http://dx.doi.org/10.1007/978-3-319-20297-6_7
http://www.eti.uni-siegen.de/ti/veroeffentlichungen/ectl-with-constraints.pdf
http://www.eti.uni-siegen.de/ti/veroeffentlichungen/ectl-with-constraints.pdf
http://logcom.oxfordjournals.org/content/early/2015/06/04/logcom.exv028.abstract
http://logcom.oxfordjournals.org/content/early/2015/06/04/logcom.exv028.abstract
https://books.google.com/books?id=RQLtCgAAQBAJ

[22] M. Droste Structure of partially ordered sets with transitive automorphism
groups. Memoirs of the American Mathematical Society, 334, 1985

[23] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Math-
ematical Logic Series, Springer, 1995.

[24] S. Feng, M. Lohrey and Karin Quaas. Path-Checking for MTL and TPTL
over Data Words. Accepted for publication in Proceedings of DLT 2015.
Currently available at http://arxiv.org/abs/1412.3644.

[25] R. Gascon. An automata-based approach for CTL∗ with constraints. Electr.
Notes Theor. Comput. Sci., 239:193–211, 2009.

[26] W. H. Gottschalk Choice functions and Tychonoff’s theorem. Proceedings
of the American Mathematical Society, 2:172, 1951.

[27] D. Janin and I. Walukiewicz On the Expressive Completeness of the Propo-
sitional mu-Calculus with Respect to Monadic Second Order Logic. In
Proc. CONCUR 1996, LNCS 1119, 263–277. Springer, 1996.

[28] A. Kartzow and T. Weidner Model checking Constraint LTL over Trees.
aivalable at http://arxiv.org/abs/1504.06105

[29] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[30] D. Kozen A finite model theorem for the propositional µ-calculus. Studia
Logica 47(3):233–241, 1988.

[31] C. Lutz. Description logics with concrete domains-a survey. In Advances in
Modal Logic 4, pages 265–296. King’s College Publications, 2003.

[32] C. Lutz. Combining interval-based temporal reasoning with general TBoxes.
Artificial Intelligence, 152(2):235 – 274, 2004.

[33] C. Lutz. NEXPTIME-complete description logics with concrete domains.
ACM Trans. Comput. Log., 5(4):669–705, 2004.

[34] C. Lutz and M. Milicic. A tableau algorithm for description logics with
concrete domains and general TBoxes. J. Autom. Reasoning, 38(1-3):227–
259, 2007.

[35] J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing
machines. Proc. FOSSACS 2006, LNCS 3921, pages 217–230. Springer, 2006.

113

http://arxiv.org/abs/1412.3644
http://arxiv.org/abs/1504.06105

[36] A. Pnueli. The Temporal Logic of Programs. Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57.
IEEE Computer Society, 1977.

[37] M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[38] R. Rado. Axiomatic treatment of rank in infinite sets. Canadian Journal of
Mathematics 1:337–343, 1949.

[39] W. Thomas. Computation tree logic and regular omega-languages. In
Proc. REX Workshop 1988, LNCS 354, 690–713. Springer, 1988.

[40] W. Thomas. Languages, Automata, and Logic. Handbook of Formal Lan-
guages, 389–455, Springer 1996.

[41] M. Y. Vardi and P. Wolper. Yet another process logic (preliminary version).
In Proc. Logic of Programs 1983, LNCS 164, 501–512. Springer, 1983.

[42] I. Walukiewicz. Monadic second-order logic on tree-like structures Theor.
Comput. Sci., 275(1-2):311–346, 2002.

[43] E. S. Wolk. The Comparability Graph of a Tree. In Proceedings of the
American Mathematical Society, 13(5):789–795, 1962.

[44] E. S. Wolk. A Note on “The Comparability Graph of a Tree”. In Proceedings
of the American Mathematical Society, 16(1):17–20, 1965.

[45] P. Wolper. Temporal logic can be more expressive. In Information and
Control, 56, 72–99, 1983.

[46] F. Wolter and M. Zakharyaschev. Spatio-temporal representation and rea-
soning based on RCC-8. In Proceedings of the seventh Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages 3–14, 2000.

114

Scientific Career

October 2015 - Present Research assistant at the Chair for Automata Theory
at the Institute for Theoretical Computer Science of the TU-
Dresden. Part of the Collaborative Research Center HAEC

October 2012 - September 2015 PhD Student at Universität Leipzig - Institut für Informatik
Scholarship holder for the DFG Research Training Group
1763 QuantLA (Quantitative Logics and Automata)
Advisor: Prof. Dr. Markus Lohrey

April 2012 Master’s degree in Mathematics
Pure Mathematics Curriculum
Facoltà di Scienze Matematiche Fisiche Naturali
Università degli Studi di Firenze, (Italy)
Final grade: 110/110 with honors

December 2008 Bachelor’s degree in Mathematics
Pure Mathematics Curriculum
Facoltà di Scienze Matematiche Fisiche Naturali
Università degli Studi di Firenze, (Italy)
Final grade: 110/110

Academic Year 2007-2008 Participated to the Erasmus/LLP project
attended two semesters at
Universidad Autonoma de Madrid (Spain)

School Year 2002-2003 Scientific High School Diploma
Bilingual Curriculum (English and French)
Liceo Scientifico Antonio Gramsci
Firenze (Italy)
Final grade: 100/100

115

List of Publications

- Satisfiability of CTL* with constraints.
In Proc. CONCUR 2013, LNCS 8052, pages 455-469. Springer, 2013.
(with A. Kartzow and M. Lohrey)

- Satisfiability for MTL and TPTL over Non-monotonic Data Words.
In Proceedings of Language and Automata Theory and Applications 2014, LNCS
8370, pages 248-259. Springer, 2014.
(with S. Feng, O. Fernández and K. Quaas)

- On the Expressiveness of TPTL and MTL over omega-Data Words.
In Proceedings of Automata and Formal Languages 2014, EPTCS 151, pages 174-
187. 2014
(with S. Feng, O. Fernández and K. Quaas)

- Satisfiability of ECTL* with Tree Constraints.
In Computer Science - Theory and Applications. LNCS 9139, pages 94-108, 2015.
(with S. Feng, A. Kartzow, and M. Lohrey)

- Temporal Logics with Local Constraints (Invited Contribution).
In 24th EACSL Annual Conference on Computer Science Logic. CSL 2015, pages
2-13.
(with Markus Lohrey)

- Satisfiability of ECTL* with constraints.
Accepted for publication in Journal of Computer and System Sciences. Available at
http://www.eti.uni-siegen.de/ti/veroeffentlichungen/ectl-with-constraints.
(with A. Kartzow and M. Lohrey)

116

http://www.eti.uni-siegen.de/ti/veroeffentlichungen/ectl-with-constraints

Talks

29.08.2013 Concur 2013 - Buenos Aires.
Satisfiability of CTL∗ with constraints

21.09.2013 Highlights of Logic, Games and Automata 2013 - Paris.
Satisfiability of CTL∗ with constraints

21.02.2014 Almoth 2014 - Kassel.
Satisfiability of CTL∗ with constraints

14.03.2014 LATA 2014 - Madrid.
Satisfiability for MTL and TPTL over Non-Monotonic Data Words

06.05.2014 WATA 2014 - Leipzig.
Metric Temporal Logic and Timed Propositional Temporal Logic for Rea-
soning about Weighted Words over the Integers

05.09.2014 Highlights of Logic, Games and Automata 2014 - Paris
Which Comparability Graphs are Embeddable into Trees?

25.02.2015 Frontiers of Formal Methods - Aachen
Satisfiability of ECTL∗ with constraints

15.06.2015 GT-Verif, Journes annuelles 2015 - Paris
Satisfiability of CTL∗ with local constraints

117

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich have keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäßig aus veröffentlichten oder unveröffentlichten Schriften entnommen wur-
den, und alle Angaben, die auf mündlichen Auskünften beruhen, als solche ken-
ntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Mate-
rialen oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, 29. Juni 2015

Claudia Carapelle

118

	Introduction
	Linear Time Temporal Logic with Constraints
	Branching Time Temporal Logic with Constraints
	Contributions of the Thesis
	Non Local Constraints
	Related Work

	Preliminary Notions
	Structures
	Trees and Paths
	MSO and WMSO+B
	Bool(MSO, WMSO+B) and the k-Copy Operation
	Temporal Logics

	ECTL* with constraints
	Constraint Path MSO (CMSO)
	Constraint ECTL* (CECTL*)
	CECTL* has the Tree Model Property

	Satisfiability of CECTL*
	The EHD-Property
	The EHD Method
	The EHD Method for Classes of Structures

	Concrete domains over the integers
	Z with Order-Constraints
	Z with Order- and Equality-Constraints
	Adding Unary Predicates
	Expansions of Z that satisfy Conditions (C1) and (C2)
	A Concrete Domain over Q

	``Tree-Like'' Concrete Domains
	``Tree-like'' Structures
	The EHD-Property for Semi-Linear Orders
	The EHD-Property for Ordinal Trees
	The EHD-Property for Trees of Fixed Height
	Trees do not have the EHD-Property
	The WMSO+B-Ehrenfeucht-Fraïssé-Game
	Two Structures that WMSO+B cannot Distinguish
	Duplicators Strategies in the k-Round Game

	Extensions
	Existential Interpretation Preserves Satisfiability
	Finite Satisfiability
	A generalization of the EHD-method

	Adding Non-Local Constraints
	Undecidability of LTL with Non-Local Constraints
	Regaining Decidability by Restricting the Use of Non-Local Constraints

	Conclusion and Final Remarks

