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Abstract

The evolution of the Internet of things (IoT) has made a significant impact on our daily and professional

life. Home and office automation are now even easier with the implementation of IoT. Multiple sensors are

connected to monitor the production line, or to control an unmanned environment is now a reality. Sensors

are now smart enough to sense an environment and also communicate over the Internet. That is why,

implementing an IoT system within the production line, hospitals, office space, or at home could be beneficial

as a human can interact over the Internet at any time to know the environment. 61% of International Data

Corporation (IDC) surveyed organizations are actively pursuing IoT initiatives, and 6.8% of the average IT

budgets is also being allocated to IoT initiatives. However, the security risks are still unknown, and 34% of

respondents pointed out that data safety is their primary concern [1].

IoT sensors are being open to the users with portable/mobile devices. These mobile devices have enough

computational power and make it difficult to track down who is using the data or resources. That is why

this research focuses on proposing a dynamic access control system for portable devices in IoT environment.

The proposed architecture evaluates user context information from mobile devices and calculates trust value

by matching with defined policies to mitigate IoT risks. The cloud application acts as a trust module or

gatekeeper that provides the authorization access to READ, WRITE, and control the IoT sensor.

The goal of this thesis is to offer an access control system that is dynamic, flexible, and lightweight. This

proposed access control architecture can secure IoT sensors as well as protect sensor data. A prototype of the

working model of the cloud, mobile application, and sensors is developed to prove the concept and evaluated

against automated generated web requests to measure the response time and performance overhead. The

results show that the proposed system requires less interaction time than the state-of-the-art methods.
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Chapter 1

Introduction

The Internet of Things (IoT) is commonly used to name a set of connected objects (or things) that

are directly connected to each other or connected through a router or cloud service using the Internet [2].

International Telecommunication Union (ITU) first proposed the concept of IoT in 2005. Then the era of IoT

begun and the concept of IoT has evolved over time [3, 4]. The core idea is to create a network of connected

entities (see Figure 1.1). These entities could be human beings, computers, books, cars, home appliances,

Smartphones, etc., and have a locatable and readable address on the Internet. They can communicate by

opening a channel with any other entity, providing and receiving services at any time [3].

The primary function of IoT nodes is to collect environment knowledge for the authorized user. These

sensor nodes are reliable, portable, cheap and easy to integrate. It also has fewer computational complexi-

ties. These technologies are serving the building blocks of automotive, healthcare, logistics, environmental

monitoring, and many others. In a centralized approach, the application platform is responsible for gathering

information from entities within the network and provide support to other entities. The application platform

on the Internet controls the authentication, authorization and information flow [3, 4, 5]. In this thesis, only

the centralized approach has been considered.

Mobile phone technology has improved considerably over time [6]. Earlier days’ cell phones were used

only to make calls and send short text messages. But now, it has become more interactive and advanced

with the high internet bandwidth, CPU speed, memory, and storage capacity. These advancements are now

encouraging a user to use their mobile devices in their personal and professional environments. It adds

flexibility to the user doing their professional and household jobs and helps them to become more productive

as they are using their preferred and known technology in their daily life. But as Smartphone is more

powerful than IoT sensor nodes, it can track, read and control a sensor node with appropriate authorization.

A Smartphone can also participate in the IoT networks, and as it has more processing power compared to

other low-powered devices, the security can be at risk if the Smartphone does not have proper authority.

While a Smartphone is connecting to the IoT network, there is no way to confirm that the real user is using

the device. If the Smartphone gets connected to the patient monitoring system in the hospital or any house

security system, the security of that network could be breached.

An adaptive solution to IoT security risks is becoming essential as the IoT devices have a variety of compu-

tational complexity and memory. Such a solution can allow users to secure their data, and resources, as well
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Figure 1.1: IoT with Connected Entities

as, they can operate the whole network with their portable devices. A dynamic attribute-based authorization

system formed on the device’s contextual information is proposed to ensure a secured interaction between

user’s mobile device and IoT sensor nodes. The proposed approach collects device contextual information

and calculates two level trust value based on the policy set by the administrator of the network.

The rest of this paper is organized as follows: Chapter 2 introduces the research questions, challenges, and

goals. Chapter 3 discusses previous and related works. Chapter 4 provides explicit insight into the proposed

approach. Chapter 5 presents the experiments and discuss the results. Finally, Chapter 6 concludes with the

possible contributions and future directions.
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Chapter 2

Problem Definition

Smart connected devices introduce new opportunities to enable new services and merge new technologies

with modern life. Each device is interconnected and can be accessed through the standards of the web. As

these devices are individually accessible, any user can join the network through any of the devices and access

data from any endpoint, at any time, from any device as shown in figure 2.1.

From the recent studies discussed in Chapter 3 and figure 2.2, it is visible that how the key-based access

control process works. A user makes a request to access IoT resources through mobile devices. These

devices are called “Things” and these become the end nodes in the IoT environment. These end nodes can

communicate and create a new network by themselves. These IoT nodes can access data from other nodes or

monitor each other using TCP or UDP data package. At first, each node will register on a nearby trustworthy

access point denoted as Registration Authority or RA. Nodes are provided with a key that can be shared

with the other IoT nodes to have read, write or control privileges. After receiving a request, the recipient

node can authenticate this key from RA and validate the access authority of that node.

Users are now dependent on multiple devices that are connected to each other. Not only, these devices

have included Smartphones and tablets but also Smartwatch, Smart TV, and other devices with Smart

sensing power. Various IoT applications can be build using these devices such as home solutions and patient

monitoring system. Although these smart devices are highly constrained in memory and computational

power, these devices have the ability to monitor and collect environment data efficiently.

Apart from the benefits of IoTs, security is the main challenge in terms of implementing IoT solutions,

and privacy and inappropriate access are the top of the list. As these devices create an open network where

any device can join and interact with other devices, maintaining proper authorization becomes necessary.

Figure 2.1: IoT resource interaction with Mobile.
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Figure 2.2: Key-based access control in IoT environment. [7]

Traditional network solutions do not align well to develop IoT applications, and if any of the devices are

compromised, then the possibility of malicious attacks are also rising and the privacy will become vulnerable.

Hacking into cameras, violating privacy, and accessing contents (pictures and personal information) are some

of the security threats related to the IoT and can have dangerous outcome [8]. The IoT environment becomes

complex, and the privacy issues become complicated with the new technologies. These concerns are rising

because of the new network structure, scene, terminal equipment and other factors of IoT and cannot be

solved by the traditional firewall or key chain pair or authentication protocols [4].

Therefore, unauthorized access needs to be evaluated properly. As access control technologies are still an

essential element to address the security and privacy risks in computer networks, the IoT is still an immature

technology and the safety of the IoT especially access control of miniaturized “things” has become the most

challenging in aspects of security and privacy [9].

Although IoT has better prospects, few well-known security challenges (DDOS: Denial of Service At-

tacks on the Internet of Thing [10], Eavesdropping in the Internet of Things [11, 12], Privacy and access

control [7, 13, 14], and others) arise due to the introduction of IOT. In this thesis, access control issues are

considered. The recent development of IoT leads to a situation where privacy issue is becoming more and

more challenging and personal information such as health-related data, personal and official documents, etc.

are kept, monitored and controlled by the network of things.
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Figure 2.3: A lightweight attribute-based access control system in IoT environment.

2.1 Research Goals

The objective of this thesis is to establish a centralized access control system between the connected IoT

nodes. To achieve the proposed objective, a lightweight attribute-based access control system is developed

which can verify a request made by a Smartphone or any other powerful devices to READ, WRITE or control

other IoT nodes. Figure 2.3 illustrates the proposed solution. The proposed access control system also has

the following features:

1. Provide a lightweight solution to mitigate the privacy-related security threats associated with IoT [4, 15].

The cloud is responsible to handle heavy tasks where other low powered devices are only performing

light tasks.

2. Cost effective solution to overcome the violations of accessing unauthorized contents [5, 8, 9, 15].

3. Provide a scalable solution to protect privacy [9].

In this thesis, the primary research goal is to achieve a trust based on attributes that are collected from

the sender device, to provide an access control system implemented in the cloud to verify a request while

accessing sensitive IoT sensor resources.
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Chapter 3

Literature Review

The main objective of this research is to create a dynamic access control model to secure the interaction

between mobile and the IoT devices. The access control model considers mobile context information and the

defined policies to determine the validity of a request. To the user, the system should be flexible, reliable

and trustworthy. Previous inquiries have been conducted related to the access control, web access policies,

and recent courses.

This chapter focuses on the availability of security of the interaction of mobile devices and other smart

devices with sensors which has less memory and computing power in IoT space. It also provides a better

understanding of the interaction of mobile devices and other devices in IoT environment and discusses the

problems of having privacy and access control risks. To further establish a bi-directional trust that holds the

access control system of mobile customers and IoT devices, the following fields are examined in this thesis:

IoT, Access Control, IoT Access Control risks and solutions, Context-based security, Mobile device security,

cloud computing, and web services.

3.1 IoT in Practice

Internet of things (IoT) is the next biggest revolution in the Automation and IT world. IoT would transform

the existing Internet into a fully integrated form of Internet where it would deliver a smarter connectivity

among things or objects. With the growth of less powered Internet-enabled embedded systems, the number of

IoT applications is expanding rapidly. An Internet-connected weather-monitoring station, an Internet-enabled

air conditioner, an Internet-connected car, Smart watches, sensors and actuators to the Internet where the

devices are intelligently linked together enabling various ways to communicate are the good examples of IoT

applications [16, 17].

Mark [18] argued that the introduction of technology is evolving at a speedy rate. During the past

decades, the development and existence of IoT in our lives were silent. However with the rapid development

of wireless technologies (RFID, Wi-Fi, 4G, etc.), this technology is offering smart monitoring and control

applications in our daily life [19, 20, 21]. The concept of IoT is many-folded as it embraces many different

technologies, and services in the ICT market in next ten year [22].

A large number of low-cost sensors and wireless communication bring new demands for the communication
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technology. According to CISCO, there are approximate 6.3 billion people living on this planet and 500 million

devices connected to the Internet, and that means 0.08 devices per person. Now with the rapid expansion

of low powered devices and Smartphones, CISCO predicts that by 2020, 50 billion devices will be connected

to the Internet, which leads to 6.58 devices per person. The above discussion of this paragraph was inspired

from [23].

Evans [23] also mentioned that IoT had reached a certain point where disparate networks must need

to integrate and interoperate under common standards. Academia, Government, organization and business

people need to work on making the common standards together. He also suggests how IoT can gain acceptance

by the wider public by exploring the opportunities of services and delivering applications that add tangible

values to the lives of people.

In the era of IoT, low powered machines are getting smarter with computational power and can handle

more human tasks. Now smart car now can have the remote starter, engine check option, automated-locking,

driving the car with mobile and other essential features. With the advancement of wireless sensor networks,

real-time monitoring in healthcare application or an accelerometer for movement attached to the cow in

a farm environment is becoming more realistic. Thus, the interaction between humans and machines are

becoming complicated and introducing variations. However, humans are required to trust the machines and

feel safe [10, 24].

IoT has the capabilities to make homes, cars and our surroundings smarter. These innovative technologies

provide assistance to our everyday activities, health support, energy efficiency, security, and comfort. By

adding intelligence capabilities to our surroundings such as homes, cars, office, personal health monitoring

could provide increased life quality. It is expected that disable and elderly people will be much benefited

from this advancement. Most of the research in IoT are focused on wireless technologies that are supportive

of remote data controlling, sensing, and transferring as well as integrating RFID, Bluetooth, which have

been used to embed intelligence into the environment [25, 26]. In a similar note, Consumers are in thirst of

control of our daily life’s things and Gaglio and Lo [27] argued that this transformation process is making our

every day’s things into useful home applications, car applications, and many others that the consumers can

control. A lot of applications for smart TV, smart fridge, smart car, network energy monitors, and activity

tracking systems now exist in homes as well as at workplaces. These systems will collect detailed data and

information about the activities of concerning objects/ persons and share this information to the relevant or

authorize personnel.

The concept of IoT is now changing the current world to an entirely ubiquitous one. IoT is now changing

our perspective of the Internet radically by including all kinds of electronic devices into the network. Network

communication includes things, people and their environment with the help of near-field communications,

creating smart objects, embedded devices, the Internet, cloud computing, and GPS-enabled localization.

By including all of these physical objects, it becomes easier to understand and the reaction of the environ-

ment [28].
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Weber [29] describes IoT in the form of an Internet-based global architecture which will enable trade

of services and goods in the global chain of supply. However, in the same way, it might have an impact

on the privacy and security of all stakeholders. IoT has a significant impact on ubiquitous monitoring.

Control, Awareness, context, intrusion, trust, boundaries, and justification are the key factors of ubiquitous

monitoring [30].

Data collection, enabling real-time responses, improving access and control of devices, increasing efficiency

and productivity, and connecting technologies are the essential features that could benefit our personal life

as well as organizations. IoT creates the opportunity to collect data more frequently and allows transmitting

information to another device. It provides the opportunity to monitor and optimize outcome in real-time.

Another great benefit is the ability to access and control Internet-connected devices. For example, people

can control their electronic stove, microwave, smart TV or even check fire alarm system when they are away

from their home [31].

IoT gains significant productivity in a variety of areas including healthcare, home automation, equipment

effectiveness, inventory management, labor utilization, and customer service and delivery [32].

3.2 The Risks and Challenges of IoT

From the big picture of IoT applications, it is evident that the new technological opportunities have personal,

organizational, cultural and social implications. The IoT is now used to increase household and workplace

efficiency. The sensors can communicate and take action such as place an order for food when the fridge is

empty, notify Smartphone when the washing machine is done, turn off few lights if there is no one around

and so on. The possibilities are expanding day by day. However, the effects of malfunction of these devices

can be costly too as we depend much on IoT. The malfunction can create inaccurate data, and can cause

dangerous outcomes if that information is being used for the decision-making process in automated home or

production. The door can be left unlocked, or the entire production can be stopped. All of these IoT devices

are adding some values to make things easier for individuals as well as businesses; however, they also cause

risks [33].

Tony Bradley [34] defines IoT as most security concerns of five (5) security threats for 2015-16 and these

are: “

1. IoT: The Insecurity of Things.

2. Sophisticated DDoS Attacks.

3. Social Media attacks.

4. Mobile Malwares.

5. Third-party attacks.”
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Herath and Rao defined Risk as the “perceived severity of a threat” and the “perceived probability of

the occurrence” of the threat [35]. The IoT devices collect a large amount of data of individual behavior

and thus carry a high potential for privacy risks. The identification of a person and his behavioral patterns

with these data are now rising concerns in the field of IoT security. As these devices are increasingly used in

all areas of personal life and organizations. For example in health care sector, these devices can be used to

collect and store private information of patients and share via a router to a communication device (Wi-Fi or

cellular). This information could be used to identify disease correlations and support new treatment options

as well as the remote monitoring of the treatment process. If the data is misleading or collected improperly

or an illegal device captures data, then the privacy could be at risk [33].

Smith [36] discusses that the real cost of IoT is privacy. It is what the people cannot even imagine risking

yet. Most people still believe that the Antivirus can protect them from the potential threats of searching

web pages. Nowadays, a lot of free digital services such as Facebook, Twitter, LinkedIn, and Snapchat

are offering smartphone applications and a lot of personal information, are feeding into these applications.

People do not care about it but eventually; organizations make money from this personal information such

as advertisements.

Interactive advertisement is also having a new exposure as IoT is becoming an essential part of our lives.

People are enjoying the benefits of EZPass (faster and discounted road toll payment), supermarket apps (gives

discount and free food) and many other applications. Although these applications might not be interested in

our personal information, these applications can provide better service when they have some personal data.

For example, if an application has the data that a user is vegetarian, then it will guide them to a vegan stores

or restaurants. By providing a little information, the user might enjoy constructive suggestions about what

to buy or which stores to go with special deals [37]. But most of the users are unaware of that fact that

powerful corporation and government agencies track them as they interact with their environment. This way

exposure of unauthorized information becomes possible as the current web-advertisement framework allows

third-party cookies to track individual’s web browsing history [38].

Zettaset Inc. [39] identifies that distributed computing allows data to be processed anywhere when a

resource is available. That means it can create multiple copies of the data and process at different servers

which add more complexity. Besides, Butun et. al. [40] argued that whenever web service models and

unsecured communication channels are adopted, security risks grow significantly.

Butun et. al. [40] also argued that Anomaly detection has been widely adopted security measures, but

IoT has many sources generating data and cloud services that are offered at geographically remote places.

The sensor data may be noise, inaccuracy or distorted. That is why traditional anomaly detection techniques

do not work well in IoT.

An employee can try to connect to the corporate network to access its resources or information anytime and

unintentionally the device could spam into the cloud system. The IT Department of Financial Organizations

is in a more vulnerable situation. These organizations had to securely keep all the transaction and related
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Table 3.1: Threats and Attacks on Mobile Devices [42]

Threats and Attacks Description

Sniffing Tapping or eavesdropping, e.g., GSM A5/1 cracked

Spam Email spam and MMS message spam, e.g., unsolicited MMS

Spoofing Spoof “{Caller ID}” or MMS “{Sender ID}”, e.g., spoofed MMS messages from 611

Phishing Steal personal information using a spoofed target mobile application

Pharming Redirect web traffic to a malicious website and followed by more specific attacks

Vishing Voice phishing by utilizing VoIP technique

Data leakage Unauthorized transmission of data, e.g., mobile virus ZitMo

Vulnerabilities of

Webkit

engine

Vulnerability allowing attackers to crash user applications and execute code,

e.g., the Webkit

vulnerability revealed by CrowdStrike

DoS

Jamming Jamming radio channel

Flooding MMS message flooding attacks and incoming phone call flooding attacks

Exhausting Battery exhaustion attack

Blocking Use smartphone blocking functions to disable smartphone

communications, including transaction documents, voice and written messaging [41]. Moreover, many of

the tablets and Smartphones designed for consumer use lacked the capabilities to meet rigid compliance

requirements. Any information, when downloaded into the mobile, the organization does not have any clue

how and why it is being accessed. That leads to a severe security threat to all the organizations.

As the Internet of Things (IoT) is becoming common aspects of our lives by connecting technologies

together, this uncontrolled growth rate of connected smart devices represents yet another opportunity for

exploitation in the online world. In fact, enterprises cannot ignore the potential impact that this ecosystem

will take over information protection and privacy [18].

Recently, Wang et. al. [43] argued that introduction of cloud with smart devices integrates many functions

such as emails, notes, various documents, calendars which also includes the sensitive information referred to

organizations or staff office. The devices also may carry critical business information. This information may

also include sensitive personal data:

• Personal data such as home address, phone number, pictures, sin number, and contact lists, and so on.

• Correspondence, business information such as emails, text messages, MMS messages, call logs.

• Credit card info, secret credentials such as usernames and passwords.

• Business planning files on flash memory or memory card.

• Corporate documents such as word documents and spreadsheets.
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• Geographical location to detect user current location.

Unfortunately, the information is not limited to this list only. The central data storage is always attractive

to the hackers. These data could be an easy target leaving no trace behind. The cloud is still vulnerable

to the attacks. Wang et. al. [42] summarized a list of threats and attacks in Table 3.1. These threats and

attacks are usually carried out by malware. These malwares disguise itself while downloaded as usual mobile

applications such as games or simple applications and installed in the device. Virus, Trojan and Spyware

are the three top categories of mobile malware [44]. For the mobile platform, Trojan and Spyware are the

dominant malwares. The US Department of Homeland Security (DHS) warned law enforcement, security

and government workers against using outdated versions of Google Android, claiming that 79% of all mobile

malware targets the platform [45].

Romers [46] assessed the risks of the interaction of cloud computing and mobile devices in his research

and explained that organizations have to consider everything from data contamination to user habits to the

activities of criminal syndicates. The issues the author raised in his research field:

• Consumer devices are not designed to adapt with rigorous data security. These devices either lack

advanced security features or security features are disabled by default.

• Employee’s personal photos and files are stored on the device. However, that increases the chance to

mix up personal and official documents. The careless configuration of backups or file copies, personal

files could end up in corporate file servers and vice versa.

• Malware’s are acting like mobile applications and attacking mobile devices. IBM predicts malware will

grow by 15% per annum for next few years.

• Employees now check their emails or work during evenings and weekends. While they manage that,

they mainly use their personal smart devices by bypassing firewall inspection, so attackers are now

targeting phishing attacks during non-business hours.

• Peoples are losing devices in every 3.5 seconds in the US. Those devices could have the credential to

access organizations, resources and could contribute to a severe privacy issue.

• Sharing bunch of files and private cloud applications are practiced by peoples nowadays. These inspec-

tions and repairs are popular and inexpensive but do not provide enough security to be trusted with

corporate information.

Weinberg et. al. [31] stated that more data would be generated with the development and implementation

of IoT environment. Now the approximate data amount is four zettabytes (i.e., 1021 bytes) whereas it will

be 40 zettabytes in 2020 [47]. But the question is who will own the data? These data are stored in a free

storage and are being used by the third-party or providing trending results to the third-party organizations.
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Providers, organizations, and manufacturers need to make some standard policies as these data are personal

data.

In conclusion, the significant challenges in IoT include lack of awareness of people, unwillingness to

maintain proper policy, not having advanced security policies, lack of protection, unknown threats and hence

along.

3.3 IoT Protocols

In order to support the constrained application layer protocols, three (3) IoT standard protocols have been

proposed. The protocols are Data Distribution Service (DDS), Message Queue Telemetry Transport (MQTT),

and Constrained Application Protocol (CoAP). An overview of these protocols are discussed below:

• Data Distribution Service (DDS): Object Management Group (OMG) [48] develops Data Distribution

Service based on publish-subscribe protocol for real-time M2M communications. This architecture suits

well to the IoT and M2M communications and supports 23 Quality of Service policies including security,

urgency, priority, durability, and reliability.

DDS architecture consists of two layers: Data-Centric Publish-Subscribe (DCPS) and Data-Local

Reconstruction Layer (DLRL). DCPS is responsible for delivering the information to the subscriber

whereas DLRL, an optional layer, acts as the interface to the DCPS functionalities.

Figure 3.1 shows the conceptual model of DDS. Publisher spreads the data, and DataWriter is used

by the application to interact with the publisher to define the data and its type of the data. The

subscriber receives data from the publisher and delivers them to the application. Each subscriber has a

DataReader to access the received data, and a topic is identified by the data type and a name. Topics

relate DataWriters to DataReaders, and data transmission is only allowed within DDS domain [49].

• Message Queue Telemetry Transport (MQTT): MQTT is developed by IBM to connect embedded

devices and networks with applications and middlewares. The connection operation uses a peer-to-

peer routing mechanism (one-to-one, one-to-many, many-to-many) which enables MQTT protocol as

an optimal connection for the IoT and M2M.

MQTT also uses a publisher-subscriber pattern to provide both transition flexibility and simplicity.

MQTT is suitable for devices with low memory and bandwidth. It is built on TCP protocol, so it

is fast and reliable. Figure 3.2 shows the architecture of MQTT. A subscriber would be interested

in a device that registers for specific topics. The topics are published by the publisher and broker

are responsible for notifying the subscriber if the topic is in its interest area. The MQTT protocol

represents an ideal messaging protocol for the IoT and M2M communications and is able to provide

routing for small, cheap, low power and low memory devices in vulnerable and low bandwidth networks.
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Figure 3.1: The Conceptual Layer of DDS [49]
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Figure 3.2: The Conceptual Layer of MQTT [49]
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Figure 3.3: The Message format of MQTT [49]

Numerous applications such as health care, monitoring, energy meter, and Facebook notifications are

using MQTT.

Figure 3.3 shows the message format of MQTT protocol. The first two bytes are fixed header. The first

byte contains message type, DUP flag, QoS level and RETAIN. CONNECT, CONNACK, PUBLISH,

SUBSCRIBE are the main message types, and DUP indicates if this message is a duplicate. QoS flag

indicates the level of assurance of a PUBLISH message. The Retain message informs the server to

retain the last received PUBLISH message and submit it to the new subscriber as the first message.

Byte 2 contains the remaining length field which shows the remaining length of the message [49].

• Constrained Application Protocol (CoAP): The Constrained Application Protocol is an application-layer

specialized web transfer protocol designed to provide support with constrained nodes and constrained

networks in the Internet of Things. CoAP is designed in such a way that it would interface easily with

constrained nodes and provides support to integrate HTTP web requests. This integration considers

that the nodes are low powered, and the interaction model is similar to the client/server model. A re-

quest made by CoAP client is sent to the server using HTTP verbs (GET, POST, PUT, and DELETE).

The server then sends a response with a Response code including/excluding a resource representation.

CoAP follows the statelessness constraint as its architecture is on REST framework. However, CoAP

uses datagram-oriented transport such as UDP to deal with these interactions asynchronously. Although

UDP is unreliable, this is done logically using a layer of messages that support optional reliability. As

CoAP requests and responses are carried out in separate messages, to ensure reliability every message

has to have one message type. Each request has an additional bit to describe the message type. The
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Figure 3.4: The Abstract Layer of CoAP [50]

message types are:

– Confirmable message (CON): A confirmable message requires an acknowledgment. The client will

keep resending a CON message until it receives an ACK message with same message ID.

– Nonconfirmable message (NON): A nonconfirmable message does not require an acknowledgment

such as GET request.

– Acknowledgement message (ACK): An acknowledgment message confirms that the earlier message

was received and processed.

– Reset message (RST): Similar to the acknowledgment message but it also confirms that the recip-

ient could not process it due to network loss or other reasons.

The interaction between CoAP client and server are carried out in CoAP messages which include either

a Method Code (CON, NON) or Response Code (ACK, RST). A request is carried out to another

device or server with CON or NON message type and depending on the availability of the recipient,

and the response will be sent to the sender in the resulting ACK message. If the sender sends a CON

message and does not receive ACK from the receiver, then it is going to resend the same message until

it receives an acknowledgment message. That is the reason, if the receiver cannot send the desired

response, it will send an empty acknowledgment message so that the sender can stop resending the

request. Afterward, when the desired response is ready, the recipient sends a new CON message to the
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Figure 3.5: The Message Format of CoAP [50]

sender and then the sender has to send back an ACK message to the recipients. This process is known

as the separate response. If the request is sent with NON message type, then the response is sent using

a new NON message.

From figure 3.4, CoAP can be logically defined as a two-layer approach. One of the CoAP messaging

layers deals with UDP and the asynchronous nature of the interaction whereas the other one deals with

request/response interactions using the method and response code. As CoAP is based on the exchange

of compact messages, the messages are encoded in a simple binary format. Figure 3.5 represents the

binary structure of CoAP message format. The CoAP packet format has a maximum length of 1400

bytes whereas the header has a length of 32 bits (4 bytes). First 2 bits for version control, next 2

bits for message type and last 4 bits for token length. Shelby et. al. [50] provides the details of the

messaging format of CoAP.

3.3.1 Why CoAP

The traditional request/response model is not suitable where clients are interested in having a quick response

to the representation of a resource over a period of time of time. In these scenarios, MQTT works well as

it uses peer-to-peer communications. However, CoAP offers real-time solutions along with maintaining the

properties of REST to push resource representation from servers to the interested client. CoAP clients can

be initiated as Observers and register their interests using the GET request with a special ‘observe’ option

activated for one or multiple resources. CoAP is also popular because of the integration of 6LowPAN, easy

portability with HTTP, and UDP to support low connection overhead. Thangavel et. al. [51] compares the

performance of MQTT and CoAP in terms of end-to-end transmission delay and bandwidth usage. The

experiment shows that MQTT performs well when the data packet loss is low. However, CoAP outperforms

MQTT when

• Messages are small in size and data lose rate is under 25% [51].
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• In Smartphone environment, CoAP’s bandwidth usage and round trip time are smaller than MQTT [52].

CoAP is different than HTTP protocol, but it maintains REST architecture. HTTP protocol is not

compatible with small sensor devices. CoAP follows the statelessness constraint as the requests and responses

are separate. CoAP’s request and response semantics are similar but not identical to HTTP’s. It is a web

protocol that fulfills M2M requirements in constrained environments. CoAP also has some other features

which make it special to build any system for IoT. These are:

• Low header overhead and parsing complexity.

• Asynchronous message exchanges.

• URI and content-type support.

• simple proxy and caching capabilities.

A CoAP device can send multicast UDP message to its surroundings to observe who else is around. It can

start exploring and communicate with other devices following REST architecture and without any human

interaction. All of the things can be considered as the world of APIs. Home automation, controlling and

monitoring everything with the mobile device is possible with CoAP [15, 50, 53, 54].

3.4 Access Control System

Access control allows authorized users to access resources. After authentication, access control identifies the

user and controls access of that user. The access control depends on the role of that user and sharing a

key between multiple devices. At first, role-based access control models have been discussed. Some of the

role-based solutions also integrate key exchange mechanism. The descriptions of each type of role-based

access control are list below:

• Attribute-based access control (ABAC): access is granted based on attributes of the users or devices;

• Discretionary access control (DAC): object owners decide access policies;

• Mandatory access control (MAC): access policies are determined by the system; and

• Role-based access control (RBAC): users are assigned different roles, and each role has its operational

permissions.

3.4.1 IoT Solutions in Access Control System

In the IoT environment, access control is important to make sure that only trusted users can update device

software, access sensor data or command the sensors to perform an operation. Access control resolves data

ownership issues and enables new services such as Sensors As a Service, where sensors provided data to
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customers. Access control enables to share IoT device data with authorized users to allow both predictive

maintenance and protection of the sensitive data [55]. That is why access control in IoT context is becoming

more and more important security element and access control in IoT context is discussed below.

1. Usage Control(UCON): Park and Sandhu [56] developed the idea of encompasses traditional access

control that focused on authenticated users, trust management that covers authorization for unknown

users in the open network (Internet), and digital rights management to protect client-side resources.

UCON enables control over both centrally controllable environment and environments where central

authority is not available.

Zhang and Gong [57] argues that UCON is effective in IoT environment because it introduces mutability.

Traditional access control systems do not support run-time modification. The permission is made before

the access control, and it can not be changed during access control. The decision is made by comparing

the security levels between the subject(user) and the object. But, UCON provides the facility to change

the values of the attributes of the subjects and the objects on runtime which supports the flexibility

and security needed for IoT environment. The changes will be effected in the next transaction.

Zhang and Gong [57] also propose an access control architecture that applies usage control model for

the IoT. The UCON integrates authorization, obligations, conditions, continuity, and mutability to

provide support to control usage of resources in IoT environment. Based on fuzzy theory, this approach

proposes access control policies and process based on the abstraction of UCON model and assessment

model. However, there is only a few experiments present that does not provide enough evidence or

confidence of using this approach in IoT nodes.

2. Capability Based Access Control(CapBAC): In CapBAC, the access control provides user an unforget-

table access token to access a resource. As long as a user’s access rights are updated, the resources

rights do not need to be updated. This is a benefit in the IoT context. In a decentralized environment,

the majority of the published IoT systems include a server that grants access token. A user presents

this access token while they are connecting directly to the IoT devices [56].

Gusmeroli et. al. [58] provides a detail description of the Capability Based Access Control (CapBAC)

system for managing access control within the European FP7 IoT@Work project.The CapBAC model

works as follows: a device (Device 1) receives the token with its capability written. Then it (Device 1)

presents this token to another device (Device 2) that it wants to access. The device (Device 2) provides

a service presented to the token through verifying the token. This CapBAC system has some features

such as validity period, assigned rights, delegation depth and flexibility. However, this access control

model does not support on mobile devices yet.

3. Distributed Capability Based Access Control(DCapBAC): Ramos et. al. [7] analyzes that the centralize

access control has a separate PDP (Policy Decision Point) server that helps to update the security
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policies any time. But it is hard to consider the context of IoT and ensure end-to-end security as PDP

makes the decision. To overcome this problem, they proposed an access control method considering

the context of the IoT device. This access control solution supports the management of certificates,

authentication, and authorization process. The access token is provided with ECC digital signature in

JSON format. That token contains information about the resource to access and action that can be

executed. Although this model may require additional control logic to transmit context values and also

to suffer from transmission delays, end-to-end access control validation has been achieved.

Zhang et. al. [59] propose a solution for distributed access control system to ensure privacy preserving.

The device owner provides the client with only one token, and sensor nodes will validate this token

before reply to any of the query. Their approach does not allow reuse of tokens by multiple clients.

However, this access token verification is based on verification of digital signature using RSA algorithm

that is time and resource consuming for low powered devices.

4. Role-Based Access Control(RBAC): Discretionary Access Control (DAC) and Mandatory Access Con-

trol (MAC) are traditional security models that apply to different applications and are usually based

on user-group. So these models are not suitable for open network [60]. In RBAC, users are associated

with roles and these roles are associated with a set of permissions. Each resource is also associated

with permissions and RBAC decides whether user’s permission is matching with resource’s permission.

Adding access rights to users is easy as long as existing roles are used [56].

Zhang and Tian [60] proposes an extended role-based access control model for the IoT using the context

information. The main goal is to enhance the security for web services’ applications and produce a

perfect mechanism to control accessing of data in IoT environment. It uses the conjunction, disjunction,

and negation operations to express context constraints.

5. Attribute-Based Access Control(ABAC): Attribute-based access control provides a different approach

to authorization and access is based on a user having specific attributes. This approach provides a

better access control system by combining not only user attributes but also other data (IP Address,

Mac Address, Location). Rather than using the role of an authorized user, ABAC combines multiple

attributes to make a context-aware decision for a sensor at run-time.

Adaptive access control [61] is designed by ISSA End-to-End Trust Working Group and is based on

ABAC (Attribute Based Access Control). It takes access decisions based on attributes of the request.

Access control policies are defined to trust the request and minimize the risks. The access policy varies

depending on the trust of the requesting user and device. However, it is not always possible to compile

the trust policies with all of the nodes instantly. It is based on ABAC but can be extended to capability

access control and role-based access control.

YE et. al. [2] aims to establish a mutual authentication by using an efficient Elliptic Curve Cryptography

(ECC)-based authentication and the attribute-based access control policy. As this process ensures a
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secure communication between user and nodes and uses low storage and communication overhead, the

resource-constrained problem of IoT application layer can be solved.

Various key-based access control solutions also have been proposed for different IoT application scenarios.

The following researches have been done to improve key-based access control protocol in IoT.

1. Zhao [62] presents smart business security IOT Application Protocol intelligent Service Security Appli-

cation Protocol (ISSAP). It reduces the overhead of data resources and uses a data packet encapsulation

mechanism which combines cross-platform communications with encryption, signature and authentica-

tion algorithm to establish a secure communication system in IoT.

2. Kothmayr [63] designs a standard and RSA-based security architecture with two-way authentication

for the IoT. It is based on existing Internet standards, and Datagram Transport Layer Security (DTLS)

protocol, which is placed between transport and application layer. This authentication is performed

during DTLS handshake and exchange of 2048-bit RSA keys. The extensive evaluation shows that this

architecture provides message integrity, confidentiality, and authenticity with enough affordable energy,

end-to-end latency, and memory overhead.

3. Roman [64] classifies key management system into four categories: key pool framework, mathematical

framework, negotiation framework, and public key framework. Most of the key management system do

not comply with IoT. The reasons are:

• Key pool framework suffers from insufficient connectivity. Most key chains are constructed by

randomly extracting a subset of keys from a key pool. The size of the key chain is usually much

smaller than the size of the key pool. So there is always a chance that two different key chains will

not share a common key, and that is not acceptable, as the server needs to accept any connections

from the clients it knows.

• Mathematical key pool protocols make use of the deployment knowledge to optimize the construc-

tion of their data structures. Deployment regions can be partitioned into small areas. Key chains

of the small areas can be constructed in a deterministic way rather than selecting a random set

from the key pool. However, this methodology cannot be used in IoT context as client and servers

are usually located in different physical locations.

• Negotiation key pool uses the wireless channel, and it has a feature to negotiate effectively for

a common key. As some protocols increase the power of transceivers to send information to its

nearest neighbors or limited range of transceiver to negotiate in the same cluster, client and server

nodes might belong to different networks in IoT, and that is why it cannot be used in IoT context.

• Combinatorics key pool cannot be used as it suffers from connectivity and scalability authentication

issues.
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However, The Blom [65] and the polynomial schema [66] are few of the other which can incorporate

key pool management protocols. The computational overhead is quite small for these IoT scenarios in

comparison to a Public Key Cryptography (PKC) operation [14].

4. Both Pranata et. al. [67] and Ning [68] presents frameworks using Public Key Infrastructure (PKI) to

authenticate, authorize and access control in IoT environment. The objectives were to overcome the

lacking of traditional Internet network security and ensure minimal computing resources.

5. Zhen-Qiang et. al. [69] proposes a transmission model with signature-encryption schemes. A security

architecture along with security protocols in the ONS (Object Naming Service) has been designed to

address the IoT security requirements. A local ONS server can have a temporary certificate from

trusted authentication server (TAS) after Root-ONS validates its capability from TAS. Then with that

certificate, Local-ONS are able to inquire as many times as it wants within the time frame. In this

protocol, the Remote Information Server uses multiple encryption layers with routing node’s public

key and encrypted data is decrypted in each node until it reaches to the local-ONS. Its hop-by-hop

encryption/decryption behavior is fragile in terms of security [14].

6. Lee et. al. [70] enhanced the existing RFID system security and proposed a lightweight encryption

based authentication protocol for IoT environment. Instead of using encryption method such as hash

function, they have chosen encryption method based on XOR manipulation for anti-counterfeiting and

privacy protection.

7. Wang et. al. [71] proposes an ECC-based access control scheme for the wireless network based on

public key cryptography. Yeh et. al. [72] also proposes a secure authentication protocol based on the

intractability of ECC logarithm problem.

Although there has been a lot of researches in the area of the access control system in IoT environment,

these specifically target the problem of lightweight cyphering in pervasive environments and improving stan-

dard protocols. The key-based access control is secured and popular because it aligns well with low-level

sensor devices. These sensor devices share keys to communicate and recognize each other.

However, all of these devices are connected to create more services, and these services produce a huge

amount of data. The data can not be monitored or stored using these low-level sensors, and that is why it

has become essential to incorporate cloud-based platform into IoT environment. Cloud has the capacity to

compute, store, provide services, and software that could be easily provision as Infrastructure-As-A-Service

and Software-As-A-Service. Applications that are accessing IoT sensors might need to store massive data,

process data in real time, and high-speed network to stream audio or video and using cloud services these

requirements could be fulfilled [73]. That is why a centralized cloud-based system is proposed in this thesis.

From the recent studies, it has been observed that different access control systems have different capabil-

ities. MAC and DAC based access control are not suitable for open networks, and the benefits of key-based
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access control system are constrained to the decentralized system. There have been new access control sys-

tems proposed such as CapBAC, DCapBAC but these still under development [7, 58]. In Role-based access

control system, the roles are developed with permissions and users are assigned with one or multiple permis-

sions. But in IoT context, each resource might have different access rule, and it is expected that by 2020,

there will be 50 billion devices [74]. Rather than creating a single permission set for each resource, the best

way is to define a set of policy or configuration file for each resource. That is why attribute-based access

control system is considered in this thesis as an access control model. The benefits are significant:

• Access rules are easy to implement and lightweight [56].

• The policies can be changed on run-time [56].

• While accessing a sensor device, the cloud does not need to look into all roles. It can only concentrate

on the specific configuration file.

• Access decisions are managed centrally [75].

• Implementation is simplified by the incorporation of “policy enforcement point” [75].

There are already some similar architectures available. ISSA End-to-End Trust Working Group proposed

an Adaptive access control in February 2012 [61]. Adaptive access control enables the power of ABAC and

overcomes the fixed mechanism of traditional access control system. This framework is composed with Policy

administration point(PAP), policy enforcement point(PEP), policy decision point(PDP), policy information

point(PIP) and other features. The request from the device is coming with two kinds of attributes and the

service forwards this request to the PDP for further processing. Now PDP processes Front end attributes

using policies defined in the policy repository and also sends the 3rd party attributes to the PIP. Now PIP

processes 3rd party attributes and sends back to the PDP. Then PDP grants access if the criteria are met and

PEP let the device to access resources. In adaptive access framework, the request is coming from the device

directly, and the evaluation started later. As PEP is responsible for initiating the evaluation procedure and

the services are low-level devices, the security could be breached easily by using any powerful devices. Also,

there are two places (PDP, PIP) where the policies are evaluated which increases the chance of high latency.

However, in this thesis, the request is first received by the cloud and cloud is solely responsible for evaluating

the request. The request reaches to the services after the cloud permits. Also, the low-level devices are only

responsible for communicating with the gateway server and implements simple CoAP messaging protocol.

YE et. al. [2] uses an attribute-based access control system to enable flexible, and fine-grained access

control. They have used an ECC-based mutual authentication system as it requires less memory to occupy

and strong ability against the attack. This mutual authentication system has three phases: Initialization,

Mutual Authentication, and Key Establishment Phase. In the initialization phase, the Base station generates

the private key, public key, hash function, elliptic curve and its parameters. In the next stage, the user selects

a base point and generates a public and private key for authentication and the node verifies these keys and
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generate a secret key for that particular user. Later on, the user again generates a secret key and shares that

key with the node. If the hash value of the user secret key is matched with the secret node key, then the

user gains authorization. After authentication, the attribute-based access control system is implemented to

restrict the resource access. Mutual authentication is still requiring four steps to authorize which increases the

chance of high latency and the device only gets partial access to the network. The mobile device is connecting

to the resource node directly which also has a risk factor. However, in this thesis, the authentication is done

by third party and authorization is only focused. The device needs to authorize from the cloud at first and

then the cloud access the sensor nodes. This procedure ensures security because the gateway server can only

send connection request to the cloud. After establishing a secure connection, the gateway sends the data

packets.

The proposed system overcomes the limitations of existing systems and can provide more secure system

architecture to establish an IoT network. The proposed system can be implemented in different applications

of IoT systems. Home automation solutions and Healthcare solutions are discussed in below.

3.4.2 Trust Models in IoT

Building and gaining trust in embedded sensors has become one of the interesting research topics. A trust

value can be established by the interaction with other entities, context values, recommendations and other

factors. A well-built trust system allows internet users to share information and sensitive data without

worrying about security issues.

IoT is largely dependent on WSN and ATRM [76], an agent-based trust and reputation management

scheme for WSNs. In ATRM, the mobile agents are designed to travel and run over the entire network,

and the trust and reputation management carried out locally with minimal overhead in terms of additional

messages and time delay. Another agent-based trust model is presented in [77] a watchdog scheme. This

scheme is used to observe and analyze the behavior of nodes and broadcast their trust ratings among sensor

nodes. The agent nodes are responsible for monitoring, computing, and broadcasting the trust ratings. Most

of the recent studies are based on similar trust relationships and routing decisions [78, 79]. Chen et al. [80]

proposed a trust management model based on fuzzy reputation for IoT environments. The tasks were done

in three steps. At first, the identity of nodes is evaluated against trustworthy authority. The second step

includes data processing and routing. Lastly, evaluation combines component forms the new trust degree

from old trust value and the indirect information of the third party node. However, these trust models are

not effective when there is a high sensor activity because the trust has to generate for each level whenever a

new node is joining or removing from the topology.

Sicari et. al [14] argues that the trust concept is a complex notion and has different meanings in different

contexts. A variety of definition exists, and the biggest problem with many approaches is that they do not

grant on the certain method to the establishment of metrics and evaluation methodology. The satisfaction

of trust requirements is related to the identity management and access control issues.
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Several works [81, 82] focus on trust level assessment of IoT environment and smart objects. These

smart objects have heterogeneous features and build social relationships such as friendship, ownership, and

community. The authors assume that most of these objects are exposed to public areas and public networks,

hence vulnerable to malicious attacks. The malicious nodes aim to break the core functionality of IoT by

self-promoting, bad-mouthing and good-mouthing.

Bao and Chen [81] proposed a distributed, encounter-based, and activity-based trust management proto-

col. Two nodes can rate each other whenever they are interacting and also can provide a recommendation

about other nodes. Honesty, cooperativeness, and community-interest are used as reference parameters. A

similar approach is followed [83] where the authors integrated social networking concepts into IoT. The

objects are capable of establishing social relationships in an autonomous way and a build a reputation-based

trust mechanism for the SIoT, which can deal with particular types of malicious behaviors. Lacuesta [84] also

proposed a secure distributed ad hoc network based on social network context. Each node has an identity

in the peer-to-peer interactions and modifies the trust of other nodes from their behavior to create a trust

chain among users.

The fuzzy approach is also considered in several research works [85, 86] to build and evaluate trust

models. Mahalle et. al [85] considered that the traditional access control models are not suitable for the

decentralized and dynamic IoT scenarios. They proposed a Fuzzy approach to the Trust Based Access Control

(FTBAC). The trust scores are calculated from the FTBAC factors such as experience, knowledge, and

recommendation. FTBAC framework includes device layer (includes all devices), request layer (responsible

for collecting FTBAC factors), and access control layer (decision-making process) and the simulation results

guarantee flexibility, scalability, and energy-efficiency. Wang et. al [86] presented trust evaluation based

on three layers: sensor layer (physical devices), the core layer (access network and the Internet) and the

application layer (includes p2p, cloud, etc.). The authors used fuzzy set theory and formal semantics-based

language to perform trust evaluation.

Other proposals [87, 88, 89, 90] exist to build and evaluate trust model in IoT environments. In this

thesis, the trust model is straightforward (linear matching), and the proposed architecture is designed in a

way that any suitable trust model can be integrated later.

3.4.3 IoT Applications

There are other various challenges when it comes to implementing solutions for the risks of IoT. The primary

requirements of building and running an IoT environment are having an access code of conduct, establishing

security programs and requiring management rules [91]. A solution may not be suitable for every person,

industry or even for every employee in the company. Smartphones could be distracting because of the

notifications from all the IoT devices. Smartphones are now more powerful and could control all of the

low-powered connected IoT devices. So the private data could be in danger if somehow an unauthorized

Smartphone connects to the network.

25



Researchers are working on to supply a more beneficial answer to mitigating threats for IoT. Different

IoT access control solutions along with guidelines have been discussed in this section.

Home Appliances Solutions

Sivaraman et. al. [92] proposed that device-level protections need to be augmented with network-level security

solutions to minimize the privacy and security issues of automated smart home appliances. Network level

security can be implemented across the entire range of IoT devices where device level security is for a particular

device. The security implementation and practice is highly variable depending on the device capabilities,

and manufacturers. They have proposed the use of software-defined networking (SDN) using context values

(time-of-day or occupancy of the house) to implement dynamic security rules. They have focused on network

level security whereas this thesis focuses more on system architecture level.

Godha et. al. [8] also discusses that there are not many ways to identify home automation devices. Al-

though there are existing standard security protocols yet, this field still has room for improvement. Scalability

and low memory are the significant problems to store keys which make private key cryptographic solutions

inefficient. They have proposed an access control system which does not focus on authentication. It mainly

focuses on how much access a device should get. Whenever a new device is given access to the internet net-

works should have a particular tag by the centralized router. That tag defines the access level of the device.

The device that has the highest level of privileges can perform READ/WRITE and other operations on that

device or their data. However, it does not include dynamic access so that any device will have similar access

level all of the time. In this thesis, the access is defined and evaluated in the cloud and includes dynamic

access control system.

Health-Care Solutions

Savola et. al. [93] discusses that security and privacy for e-health in IoT environment is a challenge. The

number of chronic-disease patients is increasing worldwide, and the cost is relatively high. The most effective

treatment is self-care which includes IoT devices. Sensor devices and well-managed data collection are central

to self-care which makes security and privacy requirements high in health care system. The main contributions

of their work are analyzing security risks of an e-health self-care system that contains medical IoT sensors,

communication and storage solutions, processing and presentation of the data, and the appropriate interfaces

in between. They have also proposed a heuristic to measure the risk impacts of threats on the security

controls. The proposed architecture can also be integrated with e-health services too. If monitoring devices

are set up for a patient and these devices are only capable of access by the authorized personal then the

proposed architecture is suitable for this scenario. Being on the same network will not help the attacker to

gain control of the monitoring machines as the access control only allows the attributes from the authorized

machines.
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Table 3.2: Suggested Safeguards against the threats [94]

1. Use encryption for database backups.

2. Encrypt the on-line production database information.

3. Avoid vulnerable OSs on server.

4. Grant access privileges that are specific to job requirements.

5.
Maintain a record of employees who work longer

than the allocated shift time.

6.
Make a provision of taking digital signature or

other biometric signature of employee as per the importance of transaction.

7. Providing guidance to staff against the possible risk of information leakage.

8. By applying data leak prevention techniques.

9. Use of data-centric security approaches instead of secure perimeter approach.

10.
Details of career and psychological profiles of persons

hired for information security purposes.

Guidelines and Safeguards

A list of safeguards against the threats is defined by Kumar and Singh in Table 3.2. They proposed a proactive

security management system that integrates patches, assets, and configuration management systems. The

treats could be worms, virus, criminal insiders, threats from internal sources, and a discontent employee or

partner and so on. They keep the MAC address of every registered device with an employee and create a

tuple of the form (Ei, Dij, MACij). Ei means an employee, Dij means the employee Ei can save multiple

devices from 1, 2, 3, ...j and that is why each employee may have multiple Mac addresses MACij. Each

Mac addresses MACij belongs to a device Dij. Then create a provision to store every login entry for every

transaction made and manually checks if it falls into any of the case studies they mentioned. They have also

done an empirical study on a company and collected data for seven days to validate their research [94].

Smith [36] addresses that the balancing act is needed to balance the vast volume of data. These data

generated by IoT devices are like a double-edged sword of value and risk. People need to balance the benefit

of using IoT and protect their privacy in a hyper-connected world. The FIPP declares several guidelines to

protect privacy as well as enjoy the benefits of IoT. The guidelines are:

• Collect limited and specific data: There should be a limit to the collection of personal data, and

the purpose of collecting data need to be specified. IoT devices should obtain data or data collection

from IoT devices should be legal.

• Data Quality: Personal data should be relevant, accurate, complete and up-to-date.

• Security Safeguards: Personal data should not be disclosed, made available or otherwise used for
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any purpose. Reasonable safeguards should protect data.

• Openness and Individual Participation: The data should be used in constructive ways, and any

individual has the right to obtain personal data from a controller.

• Accountability: A data controller should be accountable for protecting users data.

There are a few more solutions exist that include both enterprise and mobile device components. Titze

et. al. [95] proposed a Security Service Architecture (SSA) that copies user’s smartphone on the enterprise

side and checks for the security. Chung et. al. [96] produced a novel architecture called 2-Tier Access Control

(2TAC), which uses double layer access control (one in the device and another one is in the cloud) along with

device security profiles, anti-virus/malware scanners, and social networking. Ekberg et. al. [97] also proposed

a secure environment named as Trusted Execution Environments (TEEs). It separates the implementation

of an application into secure and insecure parts by using a protected area in the central processing unit.

TEE provides space isolation. But it does not offer policy enforcement. However, data are stacked away in

the mobile devices. TrustDroid, an Android application developed by Zhao and Osono [98], analyzes other

applications to prevent illegal access to corporate information.

Establishing a secure IoT environment is still under the investigation. The proposed architecture in

this thesis includes dynamic attribute-based access control, cloud, REST framework for HTTPS interaction,

CoAP for device level interaction, and two layer trust calculation to create a bi-directional secure environment

for IoT.

3.5 Smartphones

Smartphones are one of the most recent trends in the new era of IT. Smartphones are characterized by having

two essential features; being multi-modal, spatially aware, along with having a development platform [99].

Multi-modality serves the key purpose of keeping the device continuously connected through a combination

of different connections. These capabilities allow the device to switch between 4G, Wi-Fi, and Bluetooth

depends on the context and situation.

Smartphones are also becoming more powerful compared to the previous cell phones. The latest Smart-

phones are using a high tech processor such as A8 for iPhone 6+, Snapdragon, 805 for Samsung Note 4 with

at least 3GB ram [100]. Due to that high powered computing facility, the field of mobile computing can

focus more on issues about the implication of software running on these nomadic computers. Users are more

probable to be performing tasks and also doing other things. Whenever any data is downloaded into that

mobile, the mobile itself can process this information in the background. This data could send to other web

address without slowing down the Smartphone. Thus, Smartphones have the ability to simplify our work as

well as perform operations that could bring threats to our data, including privacy.

In IoT, Smartphones can play a vital role. Smartphones has the computing power and memory which
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most of the IoT connected devices do not have. With Smartphones, it is possible to control cars, home

automation [8], Smart TVs, etc. There are several apps also to monitor and control these smart sensors.

Now, these devices have less computing power and memory to validate or store records of accessing data,

and that is why compromised Smartphones or gaining illegal authority with a Smartphone can put sensitive

information and privacy at risk [101, 102].

3.5.1 Mobile Device Security Issues

As it is already discussed that mobile device technology is changing rapidly, business mobility capabilities

are also becoming more popular and critical. “Business Mobility” is defined by Nokia as giving employees

the desired “freedom” to collaborate and transact business outside traditional workplace and work-time.

Employees spend more time interacting and communicating with customers or clients and less time at their

desk. They do not have to wait to go to their workplace to do the work. Also, instant communications now

enabling the option to response instantly to any requests and real-time customer supports [103].

Over the year, many solutions for mobile device security has been proposed and used. Some of the

approaches are described below:

• The addition of trust hardware for distributed mobile devices. The Root Trust Model is proposed to

improve the trust between mobile users and mobile devices to authenticated booting, platform integrity,

and data access through a set of hardware and software mechanism [104].

• IT security policies in the mobile devices can be editable. It can be loaded into when the device booted

up. The organization can build a structure of the policies and force the user to use it.

Marsh [105] also explains a mechanism to make a valid judgment by three components such as user,

location, and task. Marsh describes users’ perspective by explaining the following trust level phases. The

phases are:

• Imprinting: an initial state where devices build a robust model of trust and behavior using users’

identifiers.

• Nurturing: The trust between user and devices are enforced in this phase.

• Growth: The trust grows as the user use the device properly.

• Repair: The relationship between user and device needs to restore if something goes wrong.

• Use: While accessing sensitive information, device’s comfort level is also an important factor along

with user’s credentials.

From a location perspective, the location affects device’s comfort depending upon whether it is in the

comfortable zone or discomfort zone. From tasks perspective, a routine task increases device’s comfort level

and any tasks that are never seen before or executed before is considered as a discomfort task.
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Figure 3.6: Number of apps in July 2015 [107, 108]

Harris and Patten [106] also discussed that security specialists of Information systems are familiar and

knowledgeable with a desktop computer and firewall systems. However, the primary concern is now with

the increasing popularity of bringing Smartphones into the workplace. Instead of using Windows operating

system and related applications, these devices use different OS and applications that are made and control

by the operating system’s parent such as Apple and Google. Security experts are well known of traditional

security threats, but the introduction of IoT raises new concern about safety and security of enterprise’s

business, customer and employee data and information. The primary concern regarding device security

is when user or employee downloads information into the device or connects to the cloud service from a

compromised device.

In 2015, the number of mobile applications available in app stores is shown in figure 3.6. It is estimated

that 179, 628 million application will be downloaded in 2015 and will reach to 268, 692 million in 2017 [108].

However, the rise of mobile apps comes with the increase of malware. Wessel et. al describes malware as

eavesdropping and modification of remote communication, installation of malicious applications on the device,

and exploiting (known) vulnerabilities to gain access to higher privilege levels, typically root access [109].

99% of malware detected in 2012 was written for Android [110]. Malware for Android increased by 350

percent in 2012 [111].

The transition from personal to professional use of mobile devices is driving more stringent security

requirements. F-Secure Lab’s [112] 2014 H2 Mobile Threat Report pointed out that malware is the primary

threat facing mobile devices. Malicious applications can be found in the app store, and employees can install

30



these applications if not careful enough. These malware exploit vulnerabilities in other target applications or

even in the operating system too. It may steal sensitive data, corrupt the integrity of data and transaction

and overall usability of a device while executing. This execution is done in hidden mode. Recent studies [113]

have shown that it is not particularly difficult for a programmer or hacker to implement a distribute malware

using app store or using other distribution channels. Although few countermeasures at the market-side

mitigate adverse effects, it does not eliminate malicious applications completely [114, 115, 116, 117]. Cisco

2014 [118] reports that 98% of malware written to target text messaging. These type of malware can send

text messages in the background without notifying the user. 78% of malware detections fall into this category

and cost the average user $9.99 a month [119].

Another major issue affecting all platforms are fake applications [120]. It looks and behaves like a “real

application”. The user does not have any idea that it contains malicious code that might use to steal or

track user’s activities. Arxan Technologies, a security firm to provide application protection and anti-tamper

solutions for a variety of defense and commercial software, reports that top 100 of Android applications

and 92 of the top 100 iOS applications have fake malware versions on third-party application sites. These

third-party distribution channels are easy to access for Android users to download and install the free version

of paid applications. For Android, users do not need to jailbreak their phones but for iOS, the device has to

be jailbroken. However, there are not many third-party distributions for iOS, so it is quite difficult for iOS

users to find such applications but not impossible [121].

Olga Gadyatskaya, Fabio Massacci, and Yury Zhauniarovich introduces two emerging operating systems,

The Firefox OS and Tizen Mobile Platforms. The native integration of web applications is the distinguish

features of these OSs compared to the mainstream mobile OSs. As these two systems are Linux based, the

authors discussed their security designs and features in details and compared the differences between these

systems and Android as well [122].

3.6 Context Information

3.6.1 Context Information Definition

Context information is defined as any information that can be used to characterize the situation of an

entity [123]. A situation can be a time, a location, a heading direction or a social context. Schilit [124]

divided context into three categories. These are:

• Computing Context: It can be current network type, bandwidth, mobile devices memory and storage.

• User context: It can be current location, a user profile, etc.

• Physical Context: It can be current temperature, wind direction, etc.
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A good number of built-in sensors such as Cameras, GPS receivers, acceleration sensors, light sensors,

ambient sensors, orientation, proximity sensors, level sensors and much more are available in Smartphones

these days. This Smartphones hardware meets the requirement for implementing a context-aware application

to support the trend towards a highly mobile workforce. Mark Weiser [125] was the first person who conveys

the idea of context-aware computing. Abowd et. al. [126] categorized context-aware applications into three

types. These are:

• Presentation of information and services to a user.

• Automatic execution of a service.

• Tagging of context to information for later retrieval.

The recent growth of context-enabled applications, researchers now proposing context provisioning sys-

tems that help to build context-aware applications more efficient. Context Toolkit [127] is a context GUI

widget, a context provisioning architecture that provides a platform to discover and provision context in-

formation to different entities [128], and middleware that allows for providing context information between

consumers, and providers [129] are some of the examples of context provisioning systems.

3.6.2 Security Solution Based on Context Information

Sheng et. al. [130] compared context information with real life scenario. Context information has been used

to identify whether somebody tells a lie. For example, when someone wants to affirm nationality of a refugee,

the most commonly used method is to ask that person to speak or write claimed native language. Context

information can also be used to identify the inappropriate activity of an authorized user.

TaintDroid [131], an extension of the Android mobile-phone platform that tracks the flow of privacy

sensitive data through third-party applications, assumes that download and installed from third-party appli-

cations are not trust-able and monitors during execution and when accessing private and personal data. It

is important because mobile phone operating systems currently provide general control of accessing private

information but provide a little insight into how data is being used. For example, if a user permits an appli-

cation to access GPS data, the user has no way of knowing if the application will send the location data to

a location information- based service, to advertisers or any third party entity. Thus, the user needs to trust

blindly that the application will handle their sensor data properly.

Context information is also using to implement Cyber Security Defense. Sheng et. al. [130] proposed

a method to build a protection system for cyber security defense using context information. Initially, they

have simulated different faulty scenarios to know fault data. Afterward, based on that knowledge, possible

fake data is generated that can cause malfunction. These data is utilized as training sample to set up a

probabilistic neural network (PNN). The protection system detects faults in the communication network

according to the measurements of a single or couple of instrument transformers. All of these calculated
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measurements of the substation will be collected and feed to the constructed PNN to detect vicious fault

induced with bad data.

Oliver [132] conducted a study on 17, 300 BlackBerry devices and observed an average interaction time

per day of 101 minutes. 80% of the usage sessions take 90 seconds or less. This high percentage of short

communication is explained as checking habits: limited but repetitive access of dynamic content providing

some form of informational “reward” such as: checking email or Facebook [133]. Verkasalo [134] examined

324 Smartphones users’ contextual usage patterns. They found that the device usage was diverse in office

and home context.

Soikkeli et. al. [135] studied the relation between mobile device usage and end user context using 140

Smartphones. While not distinguishing locked and unlocked usage, they found that usage sessions are longer

in home context while more frequent in an office context.

Context information could play a vital role to implement security system in IoT environment where the

cloud has minimum knowledge of its clients, and one client with powerful processing capability can gain

control of other low powered devices.

3.7 Cloud

Cloud Computing, the long-held dream of computing as a utility [136], refers to both the applications delivered

as services over the Internet and the hardware and systems software in the datacenters that provide those

services. It is massively scalable to provide easy and quick support around the world. Secondly, it can be

delivered as an abstract entity to the clients, while at the same time offering them many different services.

Ultimately, it is driven by the economics of scale. Services are provided on demand and revolve around a

clear for profit business model. It is not surprising that the largest developers of cloud computing technology

are Microsoft, Amazon, and Google. For example Azure from Microsoft and Google App Engine [137] from

Google are some of their products offered today.

3.7.1 Security in the Cloud

The recent research work shows that cloud computing security issues can be divided into two categories:

cloud storage security and cloud computing security [138].

Cloud environment has several risks associated with it such as (Injection Attacks, Cross Site Scripting,

Broken Authentication and Session Management, Failure to Restrict URL Access, etc.). Access to the re-

sources of the cloud is often provided through a website interface. Thus, attacks to the interface include

cross-site scripting. Risks that are more generally applicable to cloud connection include broken authentica-

tion and session management [139]. Smartphones can be dangerous due to broken authentication. We always

have a tendency to keep ourselves always logged in.

A survey done by Ahuja and Komathukattil [140] presented some common threats and associated risks to
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the clouds. They have also proposed that Intrusion Detection System (IDSs) can be applied to detect attack

patterns and heighten security measures by looking into and monitoring user actions, web traffic, transaction

logs and access logs.

Xiao and Xiao [141] presented an organized review of security issues in the clouds. They have taken

the survey based on attribute-driven methodology. Confidentiality, integrity, availability, accountability and

privacy-preservability are the primary attributes. Threats are categorized into each attribute, and each

category is reviewed along with the corresponding defense mechanisms.

Aguiar et. al. [142] focused on the cloud computing security. The study includes several issues such as

authentication and authorization, virtualization, web services, accountability and availability regarding server

storage and data computation security. They have also discussed the possible techniques and the mechanism

for achieving proper accounting, storage privacy and public verifiability of outsourced data and computation.

Pearson [143] also focused on privacy, security and trust properties of cloud computing. They have

discussed the current security state of cloud systems. They have also considered the countermeasures such

as Responsible Management and Privacy Protection to build the trust between cloud and users.

Zhou et. al. [144] provided a survey on the security and privacy issues of many cloud computing providers.

Security is studied with focuses on availability, confidentiality, integrity, control and auditing characteristics

and privacy by listing out-of-date privacy acts.

Vaquero et. al. [145] provided profound insight into IaaS clouds security and Rodero-Merino et. al. [146]

have also presented a survey of the security state in PaaS cloud environments. Armbrust et. al. [136] have

proposed Anything-as-a-Service (XaaS) by joining IaaS and PaaS. By XaaS, they have referred to the fact

that cloud systems can support and offer anything and everything in the form of services.

3.7.2 Security between Mobile and Cloud

The adaptation of the IoT in the enterprise and personal life is not only to an increase in productivity but

also to increase in vulnerability and security threats. The use of Smartphones is growing to access cloud

backend or data storage. A report, Cyber Risk Report, done by HP in 2012 states that mobile platforms

represent a major growth area for vulnerabilities [147].

Grispos et. al. [148] demonstrated a vulnerability in iCloud syncing mobile applications, such as cloud,

Dropbox and so on. Hackers can extract logs and retrieve deleted files from these applications because they

act as a mirror for what is in the cloud. As these applications can contain proxy view, an attacker can access

the files without accessing the cloud directly. Info security [149] shows the fact that data leakage can be

possible even after deletion of the files/applications or a factory reset.

Jailbroken smartphones are common nowadays, and it enhances the security threats because malware

can now reach into the kernel parts more quickly. Jailbroken smartphones allow users to install less secure

applications by accessing other parts of the operating system that, in general, is not accessible. By jailbreaking

the phone, users can download applications from underground distribution channels. So it becomes easier for
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a malicious application to reach sensitive components of the operating system, including previously protected

decrypted data [150].

Li and Clark [150] also discussed an attack based on Short Message Service (SMS). They have discussed

two types of attacks. The first one has the objective of sending premium-rate SMS to offshore accounts or

mass SMS spam advertisements with the intent for phishing. The second one has the intention of using the

Smartphones to be part of a highly efficient and stealthy botnet.

There is a possibility that Phone recycling could also leak not only private data but also company-owned

data. From YouGov/Blackbelt survey results, it is found that approximately 59% of mobile phone recyclers

are not concerned about private data left on their recycled mobiles [151]. Therefore, organizations cannot

overstate the continued increase of having company-owned data in mobile devices or accessing data from

mobile devices [147].

In this section, the state-of-the-art on cloud security issues is discussed briefly.

3.8 Web Services

Web services are now becoming the dominant paradigm for e-business. Due to the advanced mobile internet

(4G, LTE) and open WIFI connection, e-business and other cloud applications now provide web services that

could establish a connection between mobile devices and cloud.

Web services mainly expose their functionality via Extensible Markup Language (XML) or JavaScript

Object Notation (JSON) and APIs. The HTTP request fails to guarantee data integrity and security. Most

SaaS vendors deliver their web services APIs without transaction support that makes it complicated to

manage the data integrity across multiple SaaS applications. On the other hand, WSDL is a language

standard for describing the functionality of a Web service, such as how it can be called, what parameters are

expected for the input and the return values. However, WSDL permits invoking other operations and thus

metadata spoofing attacks are becoming common. Metadata spoofing attacks are easily detectable if sound

methods are used.

Service-orientated architecture (SOA) and web services are one of the most significant enabling tech-

nologies for cloud computing in the sense that resources (e.g., software, infrastructures, and platforms) are

exposed to the clouds as service [152]. According to a recent study in Europe [153], the web approximately

contains 30 billion web pages. Another 10 million new pages are being added every day. But only 12, 000

web services exist on the Internet. Among these web services, most of the web services are deployed with

dependency problems [154, 155, 156]. According to Sheng et. al. [157], web services can be divided into two

categories: operational behavior and control behavior. The operational behavior is application dependent

and illustrates the business logic that supports the functionality of a web service. The control behavior

is application independent and acts as a controller over the operational behavior and guides its execution

progress. Recently, verification of web services has become an active and an interesting research topic.
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The next generation of web service is heading towards highly collaborative application and introduces

questions about traditional security mechanism, such as access control and cryptographic protocols. Tra-

ditional security mechanism fails to address new evolving security challenges (uncertainty, openness, and

fraudulence). Based on that, Liu et. al. [158] propose a novel evaluation model of a web service by improving

the SOA framework by incorporating a trust management module. Then they propose the trust evaluation

model based on a compelling subjective logic by viewing trust relationships of service entities.

3.8.1 REST Framework

REST, a popular and modern web service mechanism introduced by Roy Thomas in 2000. It is lightweight,

has a practical implementation of web services compared to WSDL/SOAP-based implementation. REST

is an alternative solution for Smartphones or in a web browser, for which it would be too cumbersome to

integrate heavyweight web services. When REST framework is applied to a web service, it brings beneficial

properties, such as performance, scalability, and modifiability.

Mobile Devices use REST framework to access Cloud services. Instead of a device having to formulate

complex XML tree structures, which are expensive in terms of memory and processing power. Simple HTTP

verbs (HEAD, POST, PUT, GET, and DELETE) can be used as an alternative method. The response is

also memory friendly and the standard and minimal HTTP error codes found in the header.

The REST architectural style describes six constraints. The constraints are:

• Client-Server: Separates clients from servers. The client does not know about the storage and server is

not concerned about the GUI.

• Uniform Interface: Defines the interface between clients and servers. It simplifies and decouples the

architecture and enable each party to evolve independently.

• Stateless: Every request from the server holds within it as all the information needed to service the

request. Statelessness allows greater scalability since the server does not have to maintain, update or

communicate through a session.

• Cacheable: Cache constraints require that the data within a response to a request be implicitly or

explicitly labeled as cacheable or non-cacheable. If a response is cacheable, then a client cache is given

the right to reuse that response data for later.

• Layered System: Refers to different layers when it comes to the back-end servers and architecture.

Servers can be put in places that are in-between clients and other servers, to improve scalability, and

enforce security policies more easily.

• Code-On-Demand: REST allows client functionality to be extended by downloading and executing

code in the form of applets or scripts.
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These constraints, applied to the architecture, define the basis of RESTful-style [159].

Most importantly the stateless interaction, uniform interface, identification of resources through URI and

using self-descriptive message are the popular characteristics of REST, and that is why CoAP also uses REST

framework to interact between the server and the clients.

3.9 Summary

There are some existing approaches from the mobile device’s perspective. Those are:

• Adding trust hardware for distributed mobile devices and trusted components for mobile OS.

• IT policies for mobile devices are editable. Security policies can be loaded into devices when the OS’s

starts up.

But those approaches are ineffective due to multiple devices held by a single user. Each device cannot

comply with policies. And these policies are also static and cannot be modified later on dynamically.

In this literature review, researchers have shown that although IoT has a high potential to facilitate our

life but still is a threat, and in coming days’ organizations’ and personal life will be under threat. They

have also discussed how to provide the solutions, but most of the results are based on Key-based encryption.

Equally, it is already noted that users might not feel safe to secure their mobile with MDM or MAM because

they do not require to be monitored; whereas the proposed approach does not monitor or control the users’

other activity and collects sensor data like any other apps such as Facebook, Twitter, etc.

This literature review also covered cloud security, mobile device security issues, web services secured

interaction. Those solutions are working for a specific part such as web services can handle the security

of data transfer, but that does not validate the trust level of the web services. If the application itself is

tampered or compromised, cloud and web services do not have any way to see that. But the proposed system

has to establish a trust module that can verify the authenticity of the web requests and can tell the cloud that

if the request is made by the user so cloud can send the response back to the device. Also, these solutions

do not consider IoT as a test case.

In an open environment where there is no central administration, building a secure model is the key to

let low powered devices rely on the system. A successful access control system will be constructed on an

initial trust value, updating the trust value based on interactions, context, and recommendations, and risk

considerations.
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Chapter 4

Proposed Architectural Design

In the previous chapter 2, it has already been stated that the question trying to be answered in this thesis

is “How to trust a device while accessing IoT nodes in a connected network”. A dynamic and bi-directional

trust communication between mobile users, cloud, and sensor resources would be a beneficial method to

satisfy the research goal. A dynamic attribute-based web authorization system is proposed to establish a

trustful communication that can filter out bad requests by itself in IoT environment. That means it receives

the web authorization requests from the mobile users to access sensor data and validate the users’ request

by evaluating context information in the cloud to ensure security and privacy of the sensor data. WebSocket

protocol provides a secure connection from gateway server to the cloud application. The context information

from users’ devices helps the cloud to identify if the current user is the real user, which is the prime focus of

this thesis.

In this process, the malicious requests are filtered out which means IT departments or System Administra-

tors do not have to monitor the requests made from mobile devices as well as granting access to each mobile

device. Cloud can avoid malicious requests without notifying the System Administrator. These requests will

be kept in the spam requests to review later by System Administrator. In this proposed solution, the mobile

interactions do not have to be monitored all times, and the interactions with the sensor devices will be safe.

The overview, architecture, data flow, system functionalities, and data model of this proposed system are

described in the following sections.

Figure 4.1: The Interaction between Mobile and IoT node.
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Figure 4.2: The proposed solution of the scenario.

4.1 Overview

Let us consider a scenario where a person has smart TV, Smartwatch, microwave oven, car, and many

other devices connected to the Internet as described in [8]. The owner can control these devices with the

Smartphone or get notification from those devices. Camera in a refrigerator can inform us what is missing,

dryer can send notification after finishing drying, car can inform if it senses anything in the engine, safe box

can send authentication code to our Smartphone to verify, notification from the security camera if someone

is in a restricted room in the house, set the temperature of the house as shown in figure 4.1, and many more.

Home automation has gradually led into a virtual dimension of augmented reality. But if somehow someone

else gets into the system, the security of the home and personal belongings might be at risk. That is why a

proper authorization system is recommended in home automation scenario.

In this thesis, a dynamic attribute-based access control system is proposed to strengthen the interaction

in the IoT environment considering the above scenario. Figure 6.1 shows abstract view of the proposed

solution. Each web authorization request is evaluated with corresponding policies and context information.

The mobile device collects the context information using its sensors and calculates a trust value locally

based on this contextual information. If the local trust value can gain minimum threshold trust defined by

the administrator, then the web request transfers the query parameters along with the necessary context

information to the cloud for further investigation. The cloud calculates the final trust value with the defined

company policies. The cloud accepts the request based on the calculated final trust value. If the request is

approved by gaining minimum threshold value, then cloud authorizes the mobile device to interact with the

sensors for a particular time period. The interaction will happen between the mobile device and gateway

server of the IoT nodes. If the final trust value does not meet the requirements, the cloud may ask for a

secret question to verify the user. Figure 4.3 illustrates a high-level outline of the proposed architecture.
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Figure 4.3: High Level Outline of Our Proposed System.

4.1.1 Overall Workflow

In this thesis, the goal is to control access by calculating an initial trust value in mobile/portable devices

and then calculate the final trust value in the cloud. This two layer validation system is proposed to provide

more powerful authorization between the mobile/portable devices and IoT resources through the cloud.

In figure 4.3, the mobile client sends a request to the cloud system for authorization purpose. The

device collects location data, internet connectivity type, mac address and few other information as contextual

information and calculates an initial trust value in the local device using these context values. The calculation

of initial trust value is required to confirm that the device is not using any predetermined or static data to

hack the system and the required data in the cloud is being sent from the mobile device. This will reduce the

number of unnecessary requests and minimize load on the cloud. After calculating the local trust value, if it

does not meet the minimum threshold value, then the mobile application shows an error message to the user

and stops the request from being processed further. If the local trust value gains sufficient trust compared

to the minimum threshold value, then the mobile client sends the request to the cloud for further processing.

Though the request is forwarded to the cloud server, mobile devices do not get access to the sensor

information immediately. First, the cloud receives the request to validate these context information with

defined policies and then decides if the mobile device can access those sensor devices. Here this cloud

application is a separate application that holds the program/code to calculate final trust value and verify a

request. For simplicity, proxy servers have been avoided in this thesis work.
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Figure 4.4: Gateway Server and Cloud connection.

The gateway server of IoT nodes is connected to the cloud as shown in figure 4.4. The gateway itself

needs permission to join in the cloud. The cloud has the necessary credential to verify this connection and

accepts if the gateway is valid. The connection between gateway and cloud is secured, and whenever cloud

accepts a request, it sends the request back to the gateway. The gateway then creates a CoAP message and

sends it to the destination IoT node. CoAP is a messaging platform in IoT environment. The IoT node

sends back the response to the gateway, and the gateway sends the response back to the cloud as shown in

figure 4.5. The reason to use the gateway server is to provide a secure channel between IoT nodes and cloud.

In this thesis, the proposed system is developed by extending the traditional authorization system in IoT

environment. The traditional authentication system (username/email and password) is what we used to log

into different social networking and web portals. In the beginning, the proposed approach verifies the request

send by a user based on context information collected from the device. It calculates an initial trust value

based on these context values (Network, Internet connectivity, and Location) in the device. If the measured

trust value meets the minimum threshold value, mobile client sends the request to the cloud application to

access these sensor devices. Now before allowing the request to access sensor data, the request made by

the user is going to evaluate based on the calculated trust value, and policies defined by the company. The

purpose of this evaluation is to compute a new trust value by considering context values, trust value, policies

and allowing the device to access these sensors for a time period. The device can perform only the tasks that

are authorized by the cloud. If a device has only READ permission, then it will not be able to WRITE or

CONTROL those sensors. On the other hand, if the device has WRITE or CONTROL permission, a user

will be able to control the sensor devices by their Smartphone. If the final trust value does not meet the

minimum threshold value, then the cloud declines the request, and the user needs to depend on the further

validation. For the further validation, the user might have to answer a secret question.

To describe the figure 4.3 more precisely, the proposed architectural model is classified into three tiers

namely: the mobile client extracting sensor data and initial trust value calculation, the cloud application

41



Figure 4.5: Gateway Server and Sensor Interactions.

to calculate the final trust value, and retrieving data from sensors. The contextual information is device’s

information that generates trust value, and the policy defined by System Administrator restricts the usage

of application’s resource. Before describing how these three components communicate, a discussion about

using policies, and context values are shown below.

• Context Values: Due to various security risks, protecting information has become a challenging factor

for many organizations. In this thesis, a plan is developed to integrate contextual information from the

mobile clients to reduce risks. So that the proposed system can have an idea not only who and when

but also how, where and why they are accessing the cloud applications.

Context means surrounding conditions and the circumstances or events that form the environment

within which something exists or takes place. Context has been used to identify or evaluate a situation

approximately. Context information can simply answer the “W5H” question. The context information

provides an answer to the cloud application that is interested to know during the authorization process.

The importance of using context information to minimize IoT risks are significant. A detailed discussion

has been covered in the literature review. The traditional authorization system is quite unacceptable

in IoT environment. The traditional systems are more dependent on boundary or key based security

control, and this boundary is not available now due to the introduction of IoT. IoT breaks the barrier

and opens the IoT resources to control via Smartphone. That is why it is important to know how, why,
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when, where, who and what the request is trying to access, so a preventive solution can be designed.

The access control system extracts contextual information from mobile devices. Mobile devices have

multiple sensors that can collect the necessary contextual information periodically. The application

receives this information from the sensors when needed and calculates the initial trust value using these

context information. In this thesis, the following sensor information is considered:

– Internet information: Which Internet provider the user is using? Usually, a user engages with one

provider. Does this account receive a simultaneous request from a different internet provider?

– Time: What is the time of accessing the resource?

– Location: What is the current location of that device? The location is the most important aspect

because the device and the authorized user have to be in the same location. Is it locating the user

in a different location where they do not have any access?

The internet, location, and time are the three items of information that help to design the system and

later determine the common pattern of using the sensor resources of a user.

• Policy: Policies can be defined in various ways. Suppose if someone has access to all of the sensor

devices and makes the request, but the system does not find enough evidence, then it might restrict

the access. It may decline the request completely, or it may allow a limited access control depending

on the company’s policy.

Nowadays, with rising IoT risks, having some static policies or traditional authorization system is not

going to ensure privacy of the data. The policies need to be well defined and dynamic. The owner

might have access to many sensitive data but based on current context; the access should be approved.

If a user is trying to access the camera in the bedroom from a Smartphone or any secured information

from an unusual location or time or network, then the system should restrict the access immediately.

The user’s device could be stolen or used by a different person and thus could lead to the violation of

the integrity and privacy.

That is why in the attribute-based access control, the users need to define their policies carefully and

precisely. The more comprehensive policies the user is going to define, IoT resources are going to be

more secured and well maintained.

In this thesis, the focus is on authorization policies.

Figure 4.3 shows how the three components are linked together and have their tasks. Figure 4.6 shows

how the mobile/portable devices perform actions. The steps are defined below:

• At first the mobile registers the sensors to collect context values. The background services notify the

application whenever the sensor receives an update. By this way, the application keeps its sensor values
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up to date. In this way, whenever the user is making a request, rather than putting the application on

hold to collect the sensor data, the application can start processing these context values at an instant.

• At the second step, the application gathers context values by using background services. The context

values are stored in the mobile application. The application does not need to store the values in the

database. The proposed system does not hold the previous data because the mobile application is not

planning to use the previously used data to calculate the trust value at the initial level. It only depends

on the current context values.

• At last, the mobile application calculates trust value based on the collected context values. Location,

Internet Access, and Internet type are the main criteria to calculate the initial trust value. An HTTPS

request is then sent to the cloud if the locally calculated trust value has met the minimum threshold

value.

Figure 4.7 shows how the cloud application performs its actions. At first, the web request comes to

the cloud application from a mobile client. The mobile client sends the package in JSON format as the

proposed system follows the REST framework. Instead of accessing the sensors, the authorization takes part

in the cloud. The cloud receives userID, password, necessary context information and the initial trust value

calculated from the mobile device. Although the context values have been used to derive initial trust value,

still the system requires few of the context values to match with the defined policies. Policies related to the

context values are only considered for simplicity. The cloud application loads all the policies, and all of the

policies are sorted out with the corresponding sensor key. Each sensor might be associated with a different

level of policies. Then the cloud calculates the trust value and the user can access these sensor data according

to the access control.

Now after the final trust value is calculated in the cloud, the cloud creates a session with a session key.

Mobile client can access the sensor data until the session expires. After the expiration, the mobile client

needs to authorize the device again. If the final trust value does not meet the threshold value, then the cloud

will send a message for further validation. The User will be asked to answer predefined questions to verify

himself. The threshold values and questions are customizable which make the architecture more dynamic.

Figure 4.8 shows the interaction between cloud, gateway, and the registered sensors. After accepting the

Figure 4.6: mobile Component
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Figure 4.7: Interaction of Mobile and Cloud Application

web request, Cloud sends the request to the connected gateway which contains that IoT node. Now gateway

accepts this request from the cloud and converts it into a CoAP message and transfers this message to the IoT

node. The gateway has all information of all of the registered sensors, and this gateway is solely responsible

for message transferring. The IoT node sends the response to the gateway and gateway sends the response

back to the cloud.

In the proposed approach, the cloud application is applied to act as a dynamic shield to protect sensor

devices from being misused. The objective is to neutralize the risks arises due to IoT and overcome the

problems of traditional authorization and firewall system in IoT environment.

4.2 Architecture

The proposed architecture is explained through both physical and logical perspectives.

4.2.1 Physical Architecture

The proposed system is divided into four components from the physical architecture perspective: the mobile

clients, the cloud, the gateway server, and IoT nodes.

• Mobile Clients: As a physical entity the mobile clients perform the following tasks:

1. Register with the sensor as soon as the application launches.
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Figure 4.8: Cloud Application Interaction with the Gateway

2. Gather sensor data periodically.

3. Initiate web authorization requests.

4. Send the request along with context values using network packages.

5. Receive the web response and show it to the user as the data suggests. That means if it is an error

report, it will show that in a dialog or if it is valid data, the device will show as it is supposed to

show.

• Cloud: Cloud acts as a server and server receives requests from mobile clients with the calculated trust

value and context values. They provide direct services to the mobile clients as well as forwarding the

web requests to the IoT nodes. Rather than the requests going through the firewall or the enterprise

server bus (ESB) which normally has authorization and authentication process for users to identify

themselves, they are authorized by the cloud itself. The requests are rejected if the trust value is lower

than the trust threshold that is initially set in the cloud. The request might not be rejected all the

time. It has the capability to ask for further verification.

• Gateway: The gateway sends the connection request along with the list of available sensors to the

cloud. So the cloud knows which gateway to pick if any request comes for that sensor. Cloud forwards

the request to that gateway. The gateway receives the request from the cloud and creates a CoAP

message with that request for the requested IoT node. The gateway is the CoAP server, and it sends the

message to the IoT node. Whenever the response reaches from the IoT node, the gateway immediately

sends it back to the cloud.
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• IoT Nodes: Each IoT node has its functionality and also acts as a CoAP client. The nodes will be

only connected to the gateway as the nodes only trust the gateway server. So whenever they receive

a CoAP message from the gateway, it performs the action and sends an appropriate CoAP response

(ACK, NON, RST) to the gateway.

4.2.2 Logical Architecture

From the logical perspective, the architectural structure is divided into four components based on function-

ality: the mobile devices, the cloud application, and the end nodes or sensors.

• The Mobile/Portable Devices: This component can be Smartphones, tablets, and PDAs, are the

same as the mobile device component in the physical aspect. Portable devices are small, and that is

why vulnerable to the open environment and can be compromised quickly. That is why it has more

priority than others.

• The Cloud Application: The cloud application does not provide direct services. First, it analyzes

the web request for authorization with contextual information and calculates trust value according to

the trust policies. Based on the trust value and the trust threshold of this type of requests, the cloud ap-

plication either accepts the request or rejects the request primarily and asks for further validation. The

cloud application also saves the bad requests. This information will help administrators to understand

the trends of the threats and how to define policies more effectively.

• Gateway: The Gateway acts as the doorkeeper for the IoT nodes. The gateway will have the infor-

mation of all of the connected IoT nodes and then it sends a connection request to the cloud. The

connection is secured as web socket is used. The gateway connects to the cloud and later sends the list

of all available sensors. Whenever a request comes from the cloud, it converts the request to a CoAP

message as the gateway is connected to all of the sensors via CoAP server-client protocol. So Gateway,

as a server, sends the CoAP message to the specific IoT node and sends back the response received

from the IoT node to the cloud.

• The End Nodes (Sensors): The low powered Internet-enabled devices can accept CoAP requests

from the gateway and can respond back to the gateway. The nodes are only allowed to communicate

if the request is coming from the gateway. The IoT nodes interpret GET method as READ, POST

method as WRITE, PUT method as CONTROL and RST as RESET configuration file.

4.3 Data Format and Flow

The Smartphone initiates the task by sending HTTPS requests in the cloud application. The content of

the web request contains query parameters and context information in JSON (JavaScript Object Notation)

47



Figure 4.9: Data Format POST From Mobile to Cloud Application

Figure 4.10: Data Format POST From Cloud Application to the Gateway
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Figure 4.11: Data Format RESPONSE From Gateway to Cloud and then the Mobile Application

Figure 4.12: Data Format of further Query

format. The proposed architecture uses REST Framework to interchange data. Figure 4.9 shows the data

in JSON format that transfers from the mobile to the cloud application. After receiving this request for

authorization, the cloud application calculates the final trust value of the incoming request and either passes

it to the mobile client with a session key or asks for further validation.

After approving the request, cloud sends a POST request to the the gateway in JSON format as shown

in figure 4.10. Also as this is the session key that is just initiated, cloud also sends a response (similar to

figure 4.10) back to the mobile device acknowledging that the request has been processed. Cloud application

saves session ID in the database for later transactions. Each time the client sends any request with this

session ID, the cloud application checks for validity. If the session is expired, the mobile client needs to verify

again.

The gateway receives the JSON formatted web request from the cloud. The gateway parses and converts

the request into a CoAP message. As the gateway uses CoAP architecture to communicate with the low-level

sensors, it just converts same HTTPS request to the CoAP request with same data format (CoAP also uses

REST Framework).

The IoT sensors reply back to the Gateway with the appropriate CoAP response (CON, ACK, NON,

RST). Then the CoAP server converts that message back to web format and sends it back to the cloud as

shown in figure 4.11. The same response sends back to the mobile application as well. The cloud application

sends the stored session key to the mobile client. So for next transactions, the mobile application can use

the session key while making requests as shown in figure 4.12.

49



4.4 System Functionalities

The system has the following step by step functionalities:

• The gateway device discovers and connects to the Sensors: The gateway device creates a CoAP server

and initiates a broadcast request to all the clients to know about their status. These sensors can only

accept requests from the gateway and send an ACK response to the gateway device. From the reply,

the gateway will have information of all sensor devices.

• The gateway device connects with the Cloud: The gateway connects to the cloud by initiating a web

socket response. The gateway has cloud’s identity information and it sends the connection request to

the cloud. The cloud accepts the request if the web socket request matches with the known gateway’s

identity information (MAC Address and IP Address). By applying this architecture, the system will

provide a secure connection so that no external malware can break into the gateway [160]. The gateway

will also send the information of active sensors. Each sensor will have a specific key.

These two steps must happen anytime before the cloud tries to send the request to the cloud.

• Gather Mobile Context Values: An Android tablet is used as a portable client in the implementa-

tion. Whenever a user wants to know any sensor information, the mobile device or tablet also catches

the device location, network configuration, and Internet connection information. A background service

is to collect all the necessary information so that it can avoid delay in gathering device’s context values.

Table 4.1 represents data collected from Geolocation, Internet connectivity, and Mobile Network.

Table 4.1: Collected Context Information

Geolocation Internet Information Time

Latitude Mac Address DateTime

Longitude Network Type

• Calculating Local Trust Value: The proposed system is now able to calculate its initial trust value

based on the context information collected. The process starts with trust value-initialize to zero (0).

Now at the very beginning, if the device location is not found, the whole process fails, and the request

does not proceed. If the device’s current location is found, the current trust value will be 50. After

that, the background service will look for internet connectivity of the device and system date time. The

background service tries to collect all the necessary information mentioned in Table 4.1.

When collecting all the information is completed, then the application enters into the trust calculation

part. Each context has its associated values and in this thesis, we only incorporate them together. So

the local trust value will be the summation of retrieved context values. The minimum threshold value
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will be defined by the administrator while setting up the system. Also, this threshold value can be

modified.

• Invoking Web Services: After computing the local trust value, the mobile application sends a request

to the cloud. By sending the request, the application will wait for the response from the cloud. The

location information, MAC and IP address, time, local trust value and the query string is sent to the

cloud. The proposed architecture sends a web request along with query data in JSON (JavaScript

Object Notation) format.

• Analyzing Context Information and Policies: The cloud receives all parameters from mobile

clients. A set of defined policies needs to be in the configuration or policy file. Before starting calculation

of final trust value, the cloud application retrieves those policies and matches with context information.

The authentication can also be done in this phase or before sending to the cloud application. Those

policies can be defined as precisely as they want.

The mobile client is sending three (3) kinds of context information to the cloud as well as authentication

information too. For the thesis, a simple set of policies of each kind is only considered. All of the trust

policies will be stored in the policy file.

The context values of a portable device to reveal the device’s situation in many aspects, and those

context values can be found through mobile sensors. For example, Motion sensors can indicate whether

the users is driving, or walking or staying still. Also, it can show the rotation of the three axes.

Environmental sensors can grab the temperature that helps to determine whether the device is currently

outdoor or indoor. By having more context values, a more accurate situation can be determined. In

future, the proposed architecture will be considered with more context values. Different sensors might

need to have different level of security requirements. So threshold values and policies for each sensor

can be set differently.

When the cloud server receives the web requests along with the mobile device context information, they

look up each corresponding trust policy. For instance, if the location is not home, but within the city

of Saskatoon or near home, a trust value is given; if the location is not in Saskatoon, the trust value

is given based on the policies declared. Trust values for each context category are summed up as the

requests current trust value.

The system administrator can set a list of allowed locations, Mac address lists, etc. If the current

context falls on the approved list, the request gains more trust. If it falls on the rejected list, it loses all

the trust value. If the context value does not fit into accepted or rejected list, still it will have a trust

value. Whenever a context value does not fall into either accepted or rejected list, the trust module

keeps track of this kind of suspicions. If the number of suspicions increases and crosses threshold level

defined by the administrator, the request is sent to the user for the verification code.
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• Calculating Final Trust Value in the Cloud: Different approaches can be followed to measure

trust value of a mobile device. In this thesis, the values are matched with policies and each value is

assigned based on the matching result. If it matches, then the trust value adds the highest value. If

it does not match and does not fall into restricted list, then it has some value. The context values are

matched in this way, and if the final value exceeds the minimum threshold, then the device has the

permission to access IoT end nodes. However, if it fails to gain enough trust, then it will be asked for

further validation. Each policy might have different weight factor. However, in this thesis, all policies

were considered as of same importance.

• Forward Web requests to the Gateway: Cloud application forwards this web request to the

gateway. The gateway is already connected to the cloud through a web socket. The gateway server

receives the request from the cloud and creates an appropriate CoAP message for the sensors. The

sensors are working as CoAP client, so it receives the message from the gateway server and acts

accordingly. After that, it also sends an appropriate response(CON if the task is completed successfully,

NON if the task is not completed successfully) to the gateway server. The gateway will transform the

CoAP message to an HTTPS request and sends it back to the cloud.

• Response back to the mobile client: After receiving the response back from the gateway server,

the cloud sends the response back to the mobile client. The cloud application saves the session key to

verify further transactions.

• Mobile Client makes further requests: After receiving the response from the cloud application

with session key the mobile application can understand that the authorization part is done and the

IoT sensors are ready to interact. Now the mobile application can make the necessary request to

READ/WRITE or CONTROL these IoT sensors. The cloud application at first checks whether the

request contains a valid session ID. If yes, then it sends the request to the desired IoT node through

the gateway server and the node then can deliver the response. If the session ID is no longer valid such

as session expired, then the cloud application rejects the request and send back to the mobile client for

re-authorization. The proposed architecture works as mentioned above.

4.5 Summary

A bi-directional authorization system is described with physical and logical architecture as well as a data

format. This authorization system can explain all of the features that have been stated in the research goal

section 2.1. During authorization, Dynamism feature of attribute based access control has been applied to

protect users from known and unknown threats. Unwanted requests are validated with users’ contextual

information. The proposed system cuts off untrusted requests initially from the mobile application and later

on compares with the defined policies. This two state cut off approach gives the resources a huge security
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comfort.
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Chapter 5

Performance Evaluation

This chapter describes the proposed experiments to measure the response time of the proposed architec-

ture. Chapter 4 discusses the proposed system to minimize the unauthorized web requests, and this chapter

focuses on measuring the performance of accessing cloud-centric IoT services and resources. As these inter-

actions are happening among multiple hardware devices, the importance of calculating and comparing the

communication cost, and system overhead become the necessity. The evaluation is performed separately for

each step and then the overall interaction of the proposed architecture.

5.1 Implementation Details and Experimental Setup

The experiments are simulated to provide the observer a reliable, and fast control over the IoT environment.

The experiments are designed to prove that the proposed architecture is implementable, flexible, and uses

low system overhead and takes less interaction time. The details of implementation and experimental setup

is defined below:

5.1.1 Mobile Clients

An Android application is developed using Java 1.7 SDK and Android API 22 Platform to perform as a

mobile client. The Android application collects context information from sensors and evaluates the initial

trust value. It also generates a request and sends the requests to the cloud using the Java Restlet 2.0 client

package.An Asus Google Nexus 7 tablet, running Android OS 6.0.1, is used to deploy the Android application

The detailed device specifications of Android tablet are listed below:

• CPU: Quad-core 1.5 GHz Krait.

• Memory: 2 GB.

• Storage: 16 GB.

• Sensors: GPS, Accelerometer, Gyro, Barometer, Compass, and Others.
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Figure 5.1: The scenario of Experiment 1

5.1.2 The Gateway Server

In this thesis, Raspberry PI 3, Intel Edison, and MACBOOK Pro are used as gateway servers. Raspberry

PI 3 is used for most of the experiments. The same gateway server is implemented on both Intel Edison

and MACBOOK Pro to compare the scalability and reliability of Raspberry PI. The detailed specification

of these devices are given below:

• CanaKit Raspberry PI 3 is used to simulate IoT environment and deploy gateway server. This Rasp-

berry PI 3 includes an ARMv8 quad-core Cortex-A53 CPU with 1.2 GHz processing speed and 1GB

RAM. It also has built-in Bluetooth and WIFI port as well as 10/100 Ethernet port. The gateway

server and both CoAP server and client applications are implemented in Go programming language.

Go binary distribution 1.6.3 is used to setup Go environment. Both the gateway server and the CoAP

server are deployed in one Raspberry PI 3. The sensor nodes are referred as the CoAP clients which are

implemented in different applications and also deployed in another Raspberry PI 3. The CoAP server

and gateway server listen to different ports for incoming requests.

• Intel Edison is a similar Internet-enabled low powered device as Raspberry PI. It combines with sensors

and provides both hardware and software platform to enable the opportunity to invent new IoT products

and solutions. The Intel Edison Board has the following specifications:
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1. CPU: Intel Atom dual-core processor at 500 MHz.

2. Memory: 1 GB DDR3 RAM

3. Open source software development environment.

4. Cloud Adaptability.

• MACBOOK Pro is used as the gateway server to test how well the gateway server performs when a

high powered device is used. The MACBOOK Pro has the following specifications:

1. OS: OS X Yosemite.

2. CPU: 2.7 GHz Intel Core i7.

3. Memory: 16 GB 1600 MHz DDR3.

4. Wide range of development environment.

5.1.3 The Cloud

Lastly, A cloud-based web application is developed to evaluate context information and to make access

decisions. The cloud application holds the logic to evaluate a web request. Whenever the cloud receives

a GET request from a mobile client, it evaluates the request based on the context information with the

predefined policies and sends an appropriate response back to that mobile client. However, if it gets a

POST/PUT/DELETE request, then it analyzes and later forwards the request to the gateway server. The

cloud application is hosted on Google App Engine. Google App Engine is highly scalable, easy to implement,

and cost effective. Java Restlet API 2.0 is used to develop the cloud application. Java Restlet API follows

REST architecture style and is helpful to develop lightweight solutions.

5.2 Performance Matices

The total response time, as well as mobile-cloud interaction time and CoAP-cloud interaction time for varying

number of policy entities, are measured and compared with the results of the existing architecture [5] to

evaluate the robustness of the proposed system in a real environment. The performance matrices for the

evaluation are

• Mobile-Cloud Interaction Time: It is the communication time between the Android application and

Google cloud service.

• CoAP-Cloud Interaction Time: It defines the communication time between the cloud service and the

sensor nodes which are referred as the CoAP clients.

• CPU Usage: The CPU usage occurred during the request processing in the gateway server is measured

for Raspberry PI 3, Intel Edison, and MACBOOK Pro. Both Synchronous and asynchronous requests
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Figure 5.2: Top command to measure CPU Usage.

Figure 5.3: Top command to measure Memory Usage.
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are generated, and CPU usage is measured for both cases. To compute the CPU usage, top command

is used. The top command runs on all devices and provides a dynamic real-time view of the running

system. The CoAP-server is highlighted in the figure 5.2. This top command works on all three

platforms. Later, the CPU usage in the cloud is also measured by varying both number of requests and

number of policy entities.

• Memory Usage: The memory usage in all three systems are measured when these devices act as a

Gateway server. Both Synchronous and asynchronous requests are generated, and memory usage is

measured for both cases. To compute the memory usage, top command is used in here also. The top

command runs on all devices and provides a dynamic real-time view of the used memory of all the

running system (see figure 5.3). The top command in MACBOOK Pro gives memory in KB metrics.

The top command in both Intel Edison and Raspberry PI give memory in percentile format. However,

the free -k command helps to figure out the memory metrics used in the system (see figure 5.4). Later,

the Memory overhead of cloud application in the cloud is also measured by varying both number of

requests and number of policy entities.

• System Response Time: It is the total round trip time(RTT) of the system which is the total commu-

nication time from the mobile client to CoAP client and again from CoAP client to mobile client.

• System Response Time: It is the total round trip time(RTT) of the system which is the total commu-

nication time from the mobile client to CoAP client and again from CoAP client to mobile client for

different types of requests (GET, POST, and PUT).

5.3 Experiment Results

First three matrices are evaluated for varying policy entities. The policy entities are expressed as rules. Each

sensor has its individual characteristics and can have own policies to approve the access. Suppose to turn

off a light bulb, and the time needs to be after 8 PM and location need to be inside the building. Now

System Administrator can build the rules based on that, and that is considered as one of the policy entity.

Each sensor may have multiple rules to define the access privilege. The later experiments are conducted to

proof the benefit of using Raspberry PI. Lastly, the overall system responses for different request types are

recorded.

5.3.1 Mobile-Cloud Interaction Time:

In the first experiment, the communication time between the Android application and Google cloud service is

measured. The communication time is calculated by measuring the response time against the policy entities.

The cloud application holds a configuration file with 10, 100, 1000, 10000 policy entities. These policy entities

58



Figure 5.4: Free command

Figure 5.5: Calculate Mobile Cloud Interaction Response Time (Synchronize Requests).
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Figure 5.6: Calculate Mobile Cloud Interaction Response Time (Asynchronous Requests).

Figure 5.7: The experiment scenario of CoAP-cloud Interaction
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Figure 5.8: Calculate CoAP and Cloud Interaction Response Time. The red line represents the
response time of CoAP interaction described in [5]
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represent the values that are permitted to access the sensor. Each sensor might have multiple entities. The

Android application sends the context values to evaluate against these policy entities. The mobile-cloud

interaction time of the proposed architecture is measured against the Username-Password authentication

system. The figure 5.1 shows the scenario of the first experiment.

1. Synchronize Requests: Figure 5.5 shows the comparison between the proposed architecture and

the Username-Password authentication system in terms of mobile-cloud interaction time for varying

sets (10,100,1000,10000) of policy entities. The X-axis represents the number of policy entity, and the

Y-axis represents the interaction time in milliseconds. The main focus is to understand the increased

delay due to the added trust value calculation in the cloud. For each request, the mobile application is

restarted to include the system overload. The time is computed from the start of calculation of local

trust value to receive the response from the cloud. In the cloud, the number of policies is increased

to observe how that affects the response time. The results show that the time of reply does not vary

much for 10 to 100 policy entities. Although the response time does not vary much till 1000, for a large

number of entities (10000), the response time increases by 39% as the cloud needs more time to search

through the entities and find out the exact matching. Also, it is highly unlikely that the system might

have that many rules (10000) for a small office or home automation system.

2. Asynchronous Requests: Figure 5.6 shows the comparison of number of requests in terms of mobile-

cloud interaction time for varying sets (10,100,1000,10000) of policy entities. The X-axis represents the

number of requests sent, and the Y-axis represents the interaction time in milliseconds. The requests

are sent asynchronously at a varying rate of 10, 100, 1000, and 10000 with a random interval. The start

time begins the moment the first request is started and the time ends when the last request is processed

and then divided by the number of requests to get the average interaction time. In this experiment, the

time of reply does not vary much for 10 to 1000 policy entities for 10 to 1000 requests. When the policy

entity reaches 10000, irrespective of the number of requests, the interaction time takes more time to

complete.

5.3.2 CoAP-Cloud Interaction Time:

In the second experiment, the communication time between the cloud service and sensor nodes (CoAP clients)

is measured. The Raspberry PI initiates HTTP server and CoAP server and then listens to different ports for

incoming requests. The CoAP-Cloud interaction time is measured from when CoAP client sends a request

to get back the response from the CoAP server. The CoAP server receives incoming CoAP request from

CoAP client and converts the message to HTTP request. Afterward, the CoAP server sends the message to

the cloud and replies back to the client CoAP application.

The figure 5.7 shows the experiment scenario of CoAP-Cloud interaction. The main focus is to understand

the increased communication cost due to the addition of cloud interaction from Raspberry PI. Figure 5.8
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showed CoAP-Client interaction time of the proposed IoT environment from 1st to the tenth request and

compared with the existing proposed architecture [5]. The interaction time includes Raspberry PI and sensor

interaction. The CoAP client sends a CoAP message to the gateway server. The gateway server receives

the CoAP message and sends to the cloud through HTTP POST protocol. The HTTP server receives the

response from the cloud and replies back to the CoAP client for confirmation. The time needs to complete

an aforementioned full task is considered as CoAP-Cloud interaction time. In this experiment, ten requests

have been sent to predict the average duration. The average time required to complete the task proposed in

this architecture is 74 : 12ms. 38.64 is required to complete the existing approach proposed in [5], and that is

why only a straight line is drawn for this graph to compare with the proposed architecture. The results show

that the CoAP interaction time is not time-consuming compared to the existing proposed architecture [5] and

is reliable. The existing proposed architecture [5] calculates only the CoAP interaction whereas the proposed

architecture in this thesis includes HTTP request-response as well.

5.3.3 CPU Usage:

The CPU overhead means the processing power is needed to perform a particular task. In the fifth experiment,

the CPU usage is measured in all of the three platforms. These platforms have different specifications but

same code, and same development environment is used. The requests are sent from CoAP client, and these

requests are both synchronous and asynchronous. Later, the CPU overhead of cloud is also measured.

1. CoAP-Cloud Interaction CPU Usage: At first, the CoAP client sends 10, 100, 1000, and 10000 syn-

chronize POST requests to the gateway server. The CoAP server running in the gateway server listens

to these requests, transforms into an HTTP request, and sends to the cloud. The cloud replies back,

and the gateway server answers back to the CoAP client. The CPU usage of whole interaction time is

measured. Then the whole procedure is completed again with Intel Edison and MACBOOK Pro. Also,

the same process is repeated with 10, 100, 1000, and 10000 asynchronous POST request.

Figure 5.9 shows the CPU usage of gateway server application for synchronized requests. For 10

requests, the CPU usage value is too small for all devices, and that is why it has been omitted from the

graph. The result shows that the CPU usage increases as the number of requests increases. For 1000

requests, the CPU usage of Raspberry PI increases 180% than MACBOOK Pro whereas Raspberry PI

takes 31% less CPU usage compared to Intel Edison. So for synchronized requests, Raspberry PI has

less CPU overhead than Intel Edison.

Figure 5.10 shows the CPU usage of gateway server application for asynchronous requests. The CPU

usage value is too small for ten requests, and that is why it has also been omitted from the graph. The

result shows that the CPU usage increases as the number of requests increases. For 1000 requests, the

CPU usage of Raspberry PI increases 157% than MACBOOK Pro whereas Raspberry PI takes 55%

less CPU usage compared to Intel Edison. So for synchronized requests, Raspberry PI has less CPU
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Figure 5.9: CPU Usage of Synchronize Requests between Gateway Server and Cloud.

Figure 5.10: CPU Usage of Asynchronous Requests between Gateway Server and Cloud.
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overhead than Intel Edison. Also, for asynchronous requests, the Raspberry PI is performing better

than synchronized requests. For 10000 asynchronous requests, MACBOOK takes 2.1% CPU whereas

Raspberry PI and Intel Edison needs more CPU cycles.

2. Mobile-Cloud Interaction CPU Usage: Figure 5.11 shows the CPU usage of the cloud application for

the asynchronous requests. The X-axis represents the number of asynchronous requests send over the

time, and the Y-axis represents the CPU time in (Cycles/sec). The primary focus is to understand the

usage of the cloud CPU cycles due to the increase in the number of requests and policy entities. For 10

and 100 policy entities, the results show that the CPU usage is low for each set of requests. For 1000

policy entities, the CPU usage increases higher along with the number of requests. For 10000 policy

entities and 10000 requests, the CPU usage increases much higher than other sets of requests.

5.3.4 Memory Usage:

The memory overhead means the memory is needed to perform a particular task. In the sixth experiment, the

memory usage is measured in all of the three platforms. Similar to the measurement of CPU overhead, the

requests are sent from CoAP client, and these requests are sent in separate batches using both synchronous

and asynchronous manner.

1. CoAP-Cloud Interaction Memory Usage: At first, the CoAP client sends 10, 100, 1000, and 10000

synchronize POST requests to the gateway server. The CoAP server running in the gateway server

listens to these requests, transforms into an HTTP request, and sends to the cloud. The cloud replies

back, and the gateway server replies back to the CoAP client. The CPU usage of whole interaction

time is measured. Then the whole procedure is completed again with Intel Edison and MACBOOK

Pro. The same process is repeated with 10, 100, 1000, and 10000 asynchronous POST request.

Figure 5.12 shows the memory usage of gateway server application for synchronized requests. For 10

requests, the memory usage is low for all of the devices. Approx 5 MB used by Intel Edison and this is

the highest among three. The result shows that the memory usage increases as the number of requests

increases. For 1000 requests, the memory usage of Raspberry PI increases by 17% than MACBOOK

Pro whereas Raspberry PI takes 18% less memory usage compared to Intel Edison. The result also

shows that the percentile difference (172% to 17%) of memory usage of MACBOOK Pro and Raspberry

PI decreases rapidly when the number of requests increases from 100 to 1000. But from 1000 to 10000,

the memory usage reaches up to 47%. So around 1000 synchronize requests, the optimum memory

usage can be found. For 10000 synchronize requests, approx. 10 MB memory usage is needed for Intel

Edison whereas 8.5 MB is needed for Raspberry PI.

Figure 5.13 shows the memory usage of gateway server application for asynchronous requests. The

memory usage value shows a bit different results in here. For a small number of requests such as 10, the
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Figure 5.11: CPU Usage of Asynchronous Requests between Mobile Client and Cloud.

Figure 5.12: Memory Usage of Synchronize Requests between Gateway Server and Cloud.
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Figure 5.13: Memory Usage of Asynchronous Requests between Gateway Server and Cloud.

Figure 5.14: Memory Usage of Asynchronous Requests between Mobile Client and Cloud.
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Intel Edison takes less memory to execute the gateway server than the other two. For 100, Intel Edison

rises above all and Raspberry PI performs better. However, for 1000 requests, the memory usage of

Raspberry PI increases only 14% than MACBOOK Pro whereas Raspberry PI takes 19% less memory

usage compared to Intel Edison. So for the asynchronous requests, Raspberry PI has less memory

overhead than Intel Edison when the number of asynchronous requests reaches minimum 100.

2. Mobile-Cloud Interaction Memory Usage: Figure 5.14 shows the memory usage of the cloud application

for asynchronous requests. The X-axis represents the number of asynchronous requests sent over the

time, and the Y-axis represents the Memory usage in (MB/sec). The primary focus is to understand

the usage of cloud memory due to the increase in the number of requests and policy entities. For 10 and

100 policy entities and 10 and 100 requests, the results show that the memory usage is low compared

to other greater sets of requests and policies. For 1000 policy entities and 1000 requests at a time, the

memory usage increases by 3.74% and 4.45% respectively for 10 and 100 requests while the number

of policy entities is same. For higher (10000) policy entities and 10000 requests, the memory usage

increases much higher than other sets of requests.

5.3.5 System Response Time:

The system response time is the total round trip time (RTT) of the whole architecture. In the fourth

experiment, the mobile client sends a POST request to the cloud, cloud verifies it and forwards the message

to the gateway server which has a running HTTP server. The HTTP server receives the message and converts

it to the CoAP message and sends to the CoAP client. The CoAP clients send the response back, and it

goes all the way to the mobile client through the cloud. The total interaction time is estimated as system

response time. The whole procedure is completed with 10 POST requests with varying policy entity sets of

10, 100, 1000 and 10000. The result is later compared with an existing access control system in IoT [5] as

shown in figure 5.15. The existing architecture does not vary due to any policy entities, and that is why the

value is always constant.

Figure 5.15 also shows that the proposed architecture is having a better response time than the existing

system [5] in each case expect when the policy entities reach to 10000 because it takes much time to find the

optimal matching rule from a large number of policy entities. The overall system comparison shows that the

proposed architecture does not introduce any delay due to the introduction of cloud services.

5.3.6 System Response Time for Different Request Type:

In this experiment, the system response time is of the whole architecture is measured for GET, POST, and

PUT requests. The mobile client sends a request to the cloud and based on the request type the cloud either

forwards it to the gateway server or instantly replies back to the mobile client. The whole procedure is
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Figure 5.15: Calculate Overall System Response Time. The red column represents the overall system
interaction time in [5]

Figure 5.16: Calculate Overall System Response Time for GET, POST, and PUT Request.
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completed with 10 requests with varying policy entity sets of 10, 100, 1000 and 10000. The interaction time

is compared with each other to analyze the time required to complete each type of requests.

Figure 5.16 shows that the GET request requires less time than other two as the cloud can reply back to

the mobile client as soon as the authorization is completed. The POST and PUT request go all the way to

the sensors, so these requests take a longer time to complete the whole task. However, these requests still

take less time than the existing system [5] unless the number of policy entities reaches to 10000.

5.3.7 Scalability

The cloud plays a vital role managing the interaction between mobile and IoT resources. Each mobile client

differs from others by their device IDs. Each IoT resource also varies from each other, and CoAP server

connects to the cloud. So the cloud needs to handle a good number of requests to maintain the availability of

the service. In recent years, the cloud has become a powerful machine and capable of handling large datasets

and IO requests. In this thesis, Google App Engine is used to host cloud application. Google App Engine

is capable of automatic scaling which is more than enough to support a home automation [161]. Google

App Engine has no restrictions on incoming bandwidths (approx. 660,000 calls/minute). Also, the size of

a single request and response can be up to 32 MB, which can reduce the number of round trips from the

client application, which is especially useful for environments, such as mobile devices with high latency [162].

Google App Engine has the option to create multiple entities to divide the workload to support the large

industry or corporate. The support of scalability is one of the main reason to choose cloud to host the access

control application.

5.4 Discussion

This Chapter described the various experiments that were conducted to evaluate our system’s solutions, the

challenges of interaction time of each component and the overall system, CPU usage, and memory usage

of asynchronous and synchronize requests. The first part of the evaluation focused on the measurement of

interaction time due to the addition of a cloud service. The communication time employed simulation in a

laboratory to determine how long it takes for data to be accessed on sensors. The requester is the mobile

client, middleware is the cloud, and the provider is the gateway server. The evaluation focused mainly on

requester-middleware, middleware-provider, and requester-middleware-provider interactions. Besides, since

the performance of systems slows down under heavy workloads, resulting in high latency, scalability analysis

of cloud was also conducted.

The summary of the experiments is listed below based on the goals. Although different sets of policy

entity are used, the discussion is focused on the results of 1000 policy entity.
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5.4.1 Testing Interaction Time to Access Sensor’s Data

Mobile-Cloud Interaction Time: Evaluated interaction time between an Android mobile application

(mobile client/requester) and Google App Engine (middleware). Although the proposed system adds

additional verification in the cloud, the result shows that the proposed system does not take much time

than the Username-Password authentication system for policy entity 10, 100 and 1000. The result also

shows that if multiple requests are sent together after a random delay (asynchronously), the interaction

time difference between different policy entities(100,1000) do not vary greater than 13%.

CoAP-Cloud Interaction Time: Evaluated interaction time between the Google App Engine (middle-

ware) and sensor devices (providers). The CoAP system includes cloud interaction, and that is why it

takes more time to complete the task than the existing solution [5].

5.4.2 Testing CPU Usage to Access Sensor’s Data

Requester-Middleware CPU Usage: Evaluated CPU Usage of middleware (Google App Engine) when

the requests are being processed. The requests in this experiment are sent together after a random

interval, and the CPU usage of cloud is measured. For 1000, the result shows that the cloud uses 143

cycles in a second when the policy entity increases from 100 to 1000.

Middleware-Provider CPU Usage: Evaluated CPU Usage of Gateway servers (Raspberry PI, Intel

Edison, MACBOOK Pro). The requests are sent in two categories: Synchronize and Asynchronous.

For both 1000 requests, Intel Edison uses more CPU to complete the tasks. It is also visible that,

Raspberry PI uses less CPU when the requests are made asynchronously.

5.4.3 Testing Memory Usage to Access Sensor’s Data

Requester-Middleware Memory Usage: Evaluated memory Usage of middleware (Google App Engine)

when the requests are being processed. The requests in this experiment are sent together after a random

interval, and the memory usage of cloud is measured. For 1000 requests, the result shows that the cloud

uses 4 MB in a second when the policy entity increases from 100 to 1000.

Middleware-Provider Memory Usage: Evaluated Memory Usage of Gateway servers (Raspberry PI,

Intel Edison, MACBOOK Pro). The requests are sent in two categories: Synchronize and Asynchronous.

For both 1000 requests, Intel Edison takes more memory to complete the tasks (approx 8151 KB)

whereas Raspberry PI uses 6636 KB memory for 1000 requests. It is also visible that, Raspberry PI

uses similar memory irrespective of the request processing types.
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5.4.4 Testing System Interaction Time to Access Sensor’s Data

Evaluated total system interaction time and compared with the existing solution [5]. For 1000 policy entity,

the proposed solution takes approx 22% less time than the existing solution [5].

5.4.5 Testing System Interaction Time to Access Sensor’s Data for Different

Request Types

Evaluated total system interaction time for different request types. GET requests always take less time

because these kinds of requests do not need to go to the gateway servers or sensors. The cloud delivers the

value directly to the requester. For POST and PUT request types, the interaction time is similar to both

types of requests to go to the gateway server to insert or update a value.

5.5 Summary

This chapter focuses on various experiments that were conducted to evaluate the proposed architecture for

factors such as interaction time and scalability of the system. Section 5.1 describes the implementation details

and experimental setup for conducting proposed experiments. Section 5.2 describes the performance matrices

for the experiments. Section 5.3 includes the list of experiments that are conducted to test the proposed

architecture. Section 5.4 discusses about the experimental results. The proposed architecture is expected to

answer our research question and minimize the threats on the sensors.
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Chapter 6

Conclusion and Future Work

6.1 Summary

This research has shown that dynamic access control system can implement in IoT environment. Using REST

as architectural design, IoT services can be efficiently built and deployed to control an IoT environment.

However, there are challenges such as trust, authentication, delay, and system overhead due to incorporating

mobile devices, cloud, and sensors. Sensors are a low-powered device with memory constraints, and that is

why it is hard to implement existing network security solutions in the sensors. The focus of this work is to

ensure proper authorization system for IoT by introducing Cloud and attribute-based access control.

This research proposes an architecture that introduced a dynamic access control system that can give a

user access to the IoT resources considering the context information from the user’s mobile device (as shown

in Figure 6.1). The proposed method approves an access for a session, and the resources can be obtained

based on the permission level implied by the System Administrator. The contribution of this work is to

ensure the sufficient security of the IoT resources as well as keeping the user experience at a high level by

allowing the device for personal and professional use.

Initially, this architecture examines the authorization requests at the device level and later in the cloud.

Adding two layers of security to access IoT’s resources make the approach more reliable and without adding

delay. Also in future, keeping the user’s request history will give the user a chance to get the access even if

the request does not match well enough with the organization’s policies.

Existing solutions in IoT access controls are analyzed before improvements are offered. The protocol

was implemented and evaluated on Raspberry PI 3, Google App Engine and Android mobile devices. These

hardware configurations are commonly used in IoT applications. Evaluation results show that for a standard

number of rules, the interaction time of this proposed architecture took 23% less time to complete the whole

interaction. Although cloud is included, the result shows that it does not introduce any latency. The CPU

usage and memory usage is also at a minimal level. Moreover, this approach becomes useful when storing

and analyzing the sensor data for further researches.

The solution offers feasible, fast, and reliable IoT environment. This approach is recommended where the

application requires dynamic centralize access, storing and computing power and engaging portable devices.

It is possible to replace Google Cloud with any other options as the cloud application is independent in the
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Figure 6.1: The proposed solution of the scenario.

scenario. Also, any other protocol can be used in sensor level as long as it offers same security level as CoAP

does.

The contribution of this research work are summarized below:

• It is feasible to implement an attribute-based dynamic access control system for IoT environment.

• The mobile context values are used to ensure the validity of user in IoT environment.

• The architecture completes a request with less interaction time and by using less CPU and memory

usage.

• The use of CoAP protocol enhances the possibility of using any low-powered devices as a gateway

server.

• The use of REST framework ensures the data security between the mobile device and the cloud.

• The configuration file is easy to maintain and does not require to compile in order to update.

6.2 Future Works

The primary focus was the scenario when one mobile client interacts with a sensor device. In this thesis, the

implementation was done to provide a proof-of-concept. The interaction time, CPU usage, and memory usage

was measured to proof that the system is fast and reliable. The interaction time and the system overhead

were only measured. The future plans mostly involve designing more experiments with real-life malicious

data and integrating user behavioral pattern.

• Introduction of Behavior: By storing users requests and applying machine learning algorithm, the

system can be extended to evaluate the requests against user behavioral pattern as shown in Figure 6.2.
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Figure 6.2: The Extended Architecture.

The requests will be stored and later pattern matching or machine learning algorithm can be used to

identify a user.

• Weighted Context Values: Further experiments can be designed to understand the important con-

text values by weighting them individually. By varying the weights, we can have a better understanding

of which context values are needed and which are redundant.

• Real life Malware: The experiments do not provide substantial proof of security. It will be interesting

to see how the system behaves if we send malicious data to the cloud. These experiments will help us

to understand how well the proposed architecture works regarding security.

• Different types of Access Control: Experiments can be designed to compare between ABAC,

RBAC, and different other access control systems in terms of security and reliability.

• Compare Between Trust Models: There are a lot of existing trust models available right now, and

these trust models can be implemented in this system to evaluate which model performs best.
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