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ABSTRACT 
 

Data obtained from longitudinal surveys using complex multi-stage sampling 

designs contain cross-sectional dependencies among units caused by inherent 

hierarchies in the data, and within subject correlation arising due to repeated 

measurements.  The statistical methods used for analyzing such data should account for 

stratification, clustering and unequal probability of selection as well as within-subject 

correlations due to repeated measurements.  

The complex multi-stage design approach has been used in the longitudinal 

National Population Health Survey (NPHS). This on-going survey collects information 

on health determinants and outcomes in a sample of the general Canadian population.  

This dissertation compares the model-based and design-based approaches used 

to determine the risk factors of asthma prevalence in the Canadian female population of 

the NPHS (marginal model). Weighted, unweighted and robust statistical methods were 

used to examine the risk factors of the incidence of asthma (event history analysis) and 

of recurrent asthma episodes (recurrent survival analysis). Missing data analysis was 

used to study the bias associated with incomplete data. To determine the risk factors of 

asthma prevalence, the Generalized Estimating Equations (GEE) approach was used for 

marginal modeling (model-based approach) followed by Taylor Linearization and 

bootstrap estimation of standard errors (design-based approach). The incidence of 

asthma (event history analysis) was estimated using weighted, unweighted and robust 

methods. Recurrent event history analysis was conducted using Anderson and Gill, Wei, 

Lin and Weissfeld (WLW) and Prentice, Williams and Peterson (PWP) approaches. To 
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assess the presence of bias associated with missing data, the weighted GEE and pattern-

mixture models were used. 

The prevalence of asthma in the Canadian female population was 6.9% (6.1-7.7) 

at the end of Cycle 5.  When comparing model-based and design- based approaches for 

asthma prevalence, design-based method provided unbiased estimates of standard 

errors. The overall incidence of asthma in this population, excluding those with asthma 

at baseline, was 10.5/1000/year (9.2-12.1). For the event history analysis, the robust 

method provided the most stable estimates and standard errors.  

For recurrent event history, the WLW method provided stable standard error 

estimates. Finally, for the missing data approach, the pattern-mixture model produced 

the most stable standard errors  

To conclude, design-based approaches should be preferred over model-based 

approaches for analyzing complex survey data, as the former provides the most 

unbiased parameter estimates and standard errors.  
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CHAPTER 1 - INTRODUCTION 
 

1.1 Rationale 

Large national health surveys are an invaluable source of information on the 

incidence and prevalence of disease and associated risk factors. Such surveys require 

the use of multi-stage sampling designs to collect information. Multi-stage sampling 

procedures involve a number of steps including stratification, clustering, random 

sampling of households within clusters with unequal inclusion probabilities, and 

selecting individuals within responding households.  Hence, the three features of multi-

stage design are: stratification, clustering and unequal inclusion probabilities. To obtain 

consistent estimates of parameters and their variances, the analysis of survey data 

should account for the sampling design.  

The first feature of multi-stage sampling, stratification, is achieved by creating 

homogeneous subgroups or strata. These homogeneous subgroups created by stratifying 

the probability samples assist in minimizing sampling error [4], reducing the variance of 

parameter estimates, and making the population subgroups more adequately  

representative of the overall population [5]. Stratification also aids in increasing 

statistical efficiency [4]. 
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The second feature of multi-stage design is clustering. Compared to data 

collected using a simple random sampling approach, data collected by a multi-stage 

design incorporating a clustering effect produces more stable parameter estimates [5]. 

However, due to a clustering effect, the multi-stage method of data collection results in 

larger standard errors and variances. [5] Hence, clustering underestimates the true 

population variance and results in loss of statistical efficiency [5].  

The third feature, weighting, accounts for unequal inclusion probabilities and 

non-response. The sampling weights assists in reducing bias in the parameter estimates, 

and can result in large standard errors if the variance of the weights is large [4]. 

Statistical methods for cross-sectional survey designs are well developed and 

can be easily applied through commercial software such as SAS1, SUDAAN2, STATA3 

and WESVAR4. The software can handle the complexities of both design-based and 

model-based statistical approaches used with data from cross-sectional surveys. 

Contrary to the analysis of data from cross-sectional survey designs, the analysis of data 

from longitudinal survey designs can be more complicated. The analysis of longitudinal 

survey data should not only account for stratification, clustering and an unequal 

inclusion probability, but must also  take into account the within-subject correlation 

arising from repeated observations or missing data on the same individual over time. 

Ignoring the sampling design may result in severely biased estimates, leading to false 

inferences, especially when the outcome variable is correlated with design variables not 

included in the model [6].  

                                                
1 SAS Institute, Inc. Cary, NC, version 9.1.3 (http://www.sas.com/) 
2 SUDAAN, Research Triangle Institute, 2005 (http://www.rti.org/) 
3 STATA, Stata Corp LP, 1996-2006 (http://www.stata.com) 
4 WESVAR, Westat Inc., 2006 (http://www.westat.com/) 
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There is limited work conducted with complex survey data sets that are 

longitudinal in nature and with binary outcomes. Some recent work in the area of 

longitudinal survey data analysis has been conducted by Skinner and Holmes [7] and 

Feder et al. [6], who have used the random effects modeling approach for continuous 

outcomes. Rao [3] proposed the use of a marginal modeling approach with binary 

outcomes, while Lawless [8] proposed the use of event history analysis for binary 

outcomes. These methods focused on design-based approaches. Model-based methods 

have also been used and have been compared to design-based methods for cross-

sectional survey data [9], but their use is limited with longitudinal survey data.  There is 

ongoing debate as to which of these approaches is best for the analysis of survey data 

[10].  

Results from complex survey analyses that have used the appropriate statistical 

methods can be generalized to the specific target population of interest. In this thesis, 

the National Population Health Survey (NPHS), a multi-stage complex longitudinal 

survey dataset, was used. The primary purpose of this study was to examine the 

prevalence and incidence of asthma and associated risk factors among adult women 

using different statistical approaches, ultimately evaluating the statistical efficiency of 

these different approaches. Asthma is a chronic respiratory disease and its symptoms 

include wheezing, shortness of breath, tightness of chest and coughing [11]. Research 

conducted in Canada and other countries has shown that asthma prevalence among the 

adult population is rising and is more predominant in western and developed countries 

[12]. During adulthood, asthma prevalence appears to decrease with age, however, there 

is a change in the gender distribution of asthma from childhood to adulthood with more 
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[12]  females affected than males during adulthood [11]. These finding are supported by 

several studies of adult populations which clearly show the higher prevalence and 

incidence  of asthma among females compared to males [13-19]. Research has focused 

on rural/urban differences in the prevalence and incidence of asthma among adults [20-

22]. While researchers have reported results adjusted for gender, they have not 

specifically examined the role of gender by location. 

In Canada, cross-sectional studies of asthma prevalence show that between 1994 

and 2003, the overall prevalence of asthma among persons aged 12 years and over 

increased and then plateaus. Asthma prevalence is consistently higher among females 

than males, indicating that the increase in overall prevalence of asthma is primarily due 

to an increase in prevalence among females. To date, most of the research on the 

prevalence and incidence of asthma in adult populations has focused on gender 

differences [13, 15, 17, 18].  Further research is needed using longitudinal study designs 

to explore the reasons behind the higher prevalence and incidence of asthma among the 

female population in Canada.  

Beginning in 1994, the NPHS longitudinal survey has collected health and other 

information of the Canadian population every two years using a multi-stage sampling 

design5. This dataset is unique in that the results obtained can be generalized to the 

Canadian population. To date, the NPHS dataset has not been analyzed longitudinally 

using all five cycles for a comparative study of model-based and design-based 

approaches. As well, the dataset has not been used to study the prevalence and 

incidence of asthma and associated risk factors using appropriate statistical technique to 

account for the complex survey design.  
                                                
5 Refer to Chapter 4 for a detailed description of the NPHS data set 
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This thesis compares the design-based and model-based methods for 

longitudinal survey data with a binary asthma outcome. Although these methods have 

been discussed separately in literature, there has been no comparison between them 

using the NPHS dataset with asthma as the outcome. The uniqueness of the thesis is that 

it compares the model-based and design-based approaches for marginal modeling, 

survival analysis techniques, and variance corrected estimation methods for recurrent 

events. In addition, this thesis explores the effectiveness of various statistical methods 

for handling missing data commonly occurring in longitudinal surveys.   
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1.2. Study objectives 
The objectives of the present thesis are the following: 

1. To compare the design-based and model-based methods for the marginal 

modeling approach  

a. To determine the prevalence of asthma and associated risk factors in the 

adult Canadian female population, taking into account the complexity of 

the multi-stage sampling process. 

2. To compare the design-based and model-based methods for event history data. 

a. To determine the incidence of asthma and associated risk factors in the 

adult Canadian female population. 

3. To compare the variance corrected and frailty models for recurrent survival data 

using both the design-based and model-based approach. 

4. To compare the robustness of data for completers versus incompleters using 

missing data analysis. 
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CHAPTER 2 - LITERATURE REVIEW 

 

2.1 Introduction 

 Statistical methods used for analyzing data obtained from standard longitudinal 

studies can be easily extended to analyze longitudinal survey data. The major difference 

between standard longitudinal studies and longitudinal complex surveys is the sampling 

design. Simple random sampling (SRS) designs are often used to collect data for 

standard longitudinal studies. Commonly, for longitudinal complex surveys, stratified 

multi-stage sampling designs are used. Other types of sampling designs (e.g. stratified 

sampling, systematic sampling, cluster sampling etc.) are also available for complex 

surveys. In large-scale national surveys, multi-stage designs are used because of 

economical reasons.  Such designs substantially reduce the traveling cost of 

interviewers. However, multi-stage sampling techniques have drawbacks too. Clusters 

tend to be internally homogenous and this increases the standard errors of estimates, 

which in turn, decreases the statistical efficiency. Another disadvantage arising due to 

clustering is that in such sampling, the variation arises due to between-cluster variation 

and within-cluster variation. Analysis of survey data should be able to account for the 

additional source of variation. The variation within clusters contributes to the total 

variation. The problem arising due to clustering can be easily rectified at the design 
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stage, by using a large number of strata and then drawing more than one cluster per 

strata. For example, in the NPHS, approximately 3 clusters per strata are chosen. 

 The statistical methods discussed in the following sections are divided into 

longitudinal non-survey data and longitudinal survey data. The methods for longitudinal 

non-survey data analysis are reviewed first because these methods are extended to 

analyze longitudinal survey data. Statistical methods for survey data analysis must 

consider the design effects to achieve unbiased and correct estimates and their standard 

errors. Analytical or resampling techniques are then used to obtain variance estimates. 

 

2.2 Statistical methods for binary outcomes from longitudinal non-survey data 

 Research in longitudinal data analysis was first started by Wishart [23], and  

gained momentum in developing models for linear outcomes around 1950�s with the 

availability of computing facilities for statistical purposes [24].  The early efforts made 

by Box [25], Geisser and Greenhouse [26], Potthoff  and Roy [27], Rao [28, 29] and 

Grizzle and Allen [30] have resulted in the rich variety of models for Gaussian data 

[24].  However, for non-linear outcomes such as binary outcomes, few methods were 

available until 1986. One of the main reasons for the inadequate development of 

analytical methods for non-linear outcomes with longitudinal data was the lack of 

multivariate distribution.  For non-Gaussian longitudinal data, additional information is 

required to determine the likelihood, as the first two moments are not enough to 

determine the likelihood function. The mean and the variance  could not be separated in 

non-Gaussian data, as the mean and variance is related and estimated using a single 

parameter [31] as in binomial distribution variance is a function of mean (µ*(1-µ)) and 
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for Poisson distribution variance is equal to the mean (µ). The impossibility of modeling 

the mean and variance separately results in interpretational and computational problem 

in non-Gaussian data [24].  

 An alternative approach, which has gained a lot of attention, is the introduction 

of Generalized Linear Model (GLM) by Nelder and Wedderburn [32]. GLM extends the 

ordinary regression models to include the non- Gaussian responses such as discrete 

outcomes, and special cases of Poisson and survival. In a way, GLM unifies the 

different regression models [33]. GLM has three components: (i) a random component 

which identifies the response variable and its probability distribution; (ii) a systematic 

component which identifies the explanatory variables used in the linear predictor 

function; and (iii) a link function that relates the random and the systematic  

components [34]. GLM is a linear model that has a distribution in natural exponential 

family.  

 The traditional maximum likelihood approaches cannot be used  for non-

Gaussian data as the integral does not have a closed form, unlike the Gaussian data [35]. 

Numerical integration techniques are required to evaluate the likelihood. The likelihood 

estimates are often intractable and involves solving other nuisance parameters besides 

estimating regression coefficients, even with these additional assumptions [35]. To 

overcome these problems, Liang and Zeger [1] introduced the Generalized Estimating 

Equation (GEE). The GEE method is based on multivariate quasi likelihood theory and 

it can handle the complexities of longitudinal data. 
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2.2.1 Generalized Estimating Equations 

 The GEE approach proposed by Liang and Zeger [1] is a class of estimating 

equations which take into account the correlation arising due to a longitudinal study 

design, resulting in increased efficiency of standard error estimates. introduced by 

Wedderburn [36], the GEE approach is based on quasi likelihood theory and can be 

used for continuous as well as for discrete outcome [1, 37]. The GEE method is a 

multivariate generalization of quasi-likelihood, and this method is mainly proposed for 

marginal modeling with GLM [1]. This method avoids the use of multivariate 

distribution by assuming a functional form for marginal distribution at each time, 

making it useful for non-Gaussian outcomes [1]. The advantage of using the GEE 

method is that the solutions are consistent, i.e. the estimate of β are nearly efficient  and 

asymptotically Gaussian, even when the time dependence is misspecified [37, 38].   

 Considering the GEE approach, let Yi= (yi1,........yini)T denotes the outcome 

vector for subject (i=1,�.N);  µi = (µi1,��.., µini) T denotes the mean vector, where µit 

= E(Yit); and Xi= (xi1,��..,xini) T be a ni x p matrix of explanatory variables for subject 

i. 

 The GEE approach also assumes a working correlation matrix R(α) for Yit 

depending on parameter α. Let R(α) be the n x n symmetric matrix and α be an s x 1 

vector, then R(α) as defined by Liang and Zeger [1] is  

Vi=Ai
1/2 R(α)Ai

1/2/φ 

And vi= cov (Yi) if R is true correlation matrix for Yi, and Ai = diag {a΄΄(θit)} 

When we have univariate GLM, then the quasi likelihood estimating equation have the 

form  
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Ai denotes a diagonal matrix with main diagonal elements ai΄΄(θit) 
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When COV(Yi)=Vi, and the working correlation structure is true one, then the 

asymptomatic covariance matrix VG simplified to  
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The β estimated using the GEE  approach is efficient and consistent even if the 

covariance structure of Yit is incorrectly specified [1]. However, the correlation 

structure in case of discrete data is not one of the best ways to express the within- 

subject correlation [34]. An alternative approach is the use of odds ratios, by modeling 
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the log odds ratio for pairs in a cluster as exchangeable [34, 39, 40]. Another alternative 

is the iterative alternating logistic regression algorithm proposed by Carey [41].  

 Longitudinal data analysis has three extensions of the generalized linear models, 

(GLM) namely marginal models, random effects models and transitional models. In 

linear models with continuous outcomes, the interpretation of the regression parameter 

is independent of the correlation structure. However for non-linear models, different 

assumptions of correlation structure will result in regression coefficients with distinct 

interpretations [35]. The regression coefficient for linear models can have a marginal 

interpretation for all three approaches but this is not true for non-linear data [35]. Zeger 

et al. [42] showed that for the  logistic model, the β estimate of marginal and random 

effects models are not equal, but  

2 2 1/ 2 *( 1)c vβ β−≈ +                                                                                             (2.2.5)  

where c is a constant and is equal to 16 3 /(15 )π  with c2=0.346, and 2v  is the variance. 

β is estimated using a marginal model and β* is estimated using a random effects 

model. However, it is only in limited cases that the relationship between transitional and 

marginal models can be established for non-linear models [35]. As a consequence , one 

should be careful in the choice of the model for non-linear outcomes and this choice 

should depend on the research question being addressed [35]. 

  In the next section, the marginal models for non-Gaussian outcomes are 

discussed. 
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2.2.1.1 Marginal models for non-survey data 

 In marginal models, the parameters characterize the marginal probability of 

success at a given point in time when the response is binary [43].  A fully specified 

marginal model taking into account the correlation and implementing likelihood 

inference for discrete data, was first proposed by Bahadur [44]. This model was also 

studied by Cox [45], Kupper and Haseman [46] and Altham [47]. The existence of 

severe constraints on correlation parameter space was the major drawback of the model 

proposed by Bahadur [44]. The log-linear models proposed by Bishop et al. [48]  were 

the most widely used probability models for multivariate binary data. The canonical 

parameters were undesirable and their interpretation was dependent on the number of 

responses (N). The latter was a major drawback of the model proposed by Bishop et al. 

[48], because in longitudinal studies, the number of responses can vary across subjects.  

 Diggle et al. [35] tried to build a log-linear model by starting with marginal 

parameters µj= Pr (Yj=1), j=1,��..N. They proposed a saturated log linear model that 

had 2n-1 parameters, which could be obtained in three different ways: 

(1) using µj, second and higher order canonical parameters, as proposed by 

Fitzmaurice et al. [38]. 

(2) Using log linear models which uses marginal means, as proposed by Bahadur 

[44] 

(3) Parameterization of likelihood in terms of marginal odds ratio. 

The problem with all three models was the unavailability of simple methods to calculate 

the third and higher order moments, and even with the model fully specified, the 

likelihood estimates were very complicated [35]. 
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 To overcome these problems, the  GEE approach was proposed by Liang and 

Zeger [1].  The GEE approach was originally specified for modeling univariate 

marginal distributions, such as binomial and Poisson [34]. Prentice [49] extended the 

GEE approach by allowing the simultaneous estimation of  parameter vector and 

variance-covariance matrix. The variance-covariance matrix obtained by these 

equations was more stable compared to the variance-covariance estimator proposed by 

Liang and Zeger [9].  

Second order GEE were proposed by Zhao and Prentice [50] for continuous or 

categorical data and by Liang et al. [51] for categorical data.  Liang et al. [51] compared 

the log linear models with the marginal models and suggested that the marginal models 

can be used when the log linear models become inefficient. Liang et al. [51] referred to 

the GEE approach proposed by Liang and Zeger [1] as GEE1 and their method as 

GEE2. The authors showed that the GEE1 method proposed by Liang and Zeger [1] 

was highly efficient in determining the β estimate, but highly inefficient for estimating 

α. The GEE2 method was highly efficient in estimating both parameters β, and α. The 

authors suggest the use of GEE1 when α is a nuisance parameter. Besides this 

aforementioned point, valid standard errors for β� can be obtained using the empirical or 

�sandwich� estimator for the cov(β) estimate [1, 37]. 

An alternative approach to the GEE was given by Carey et al. [41], the so called 

�alternating logistic regression� (ALR) method. This method is different from all of the 

GEE methods discussed above, but because it is based on the odds ratio, has common 

features of GEE and GEE2 [43]. The advantage of the ALR method [52] is that it 

requires no working assumption of third and fourth order odds ratios, and combines 
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marginal as well as a conditional specification [43]. Work by Zhao et al.[50], 

Fitzmaurice and Laird [38] and Fitzmaurice et al. [39] made the connection between the 

GEE approach and the likelihood-based methods [53]. The GEE approach and the 

�sandwich estimator� of cov(β) are the most widely used methods in marginal models 

with discrete outcomes, and most of the available software that implements the use of 

the GEE approach has made it a very popular technique for models with discrete 

outcomes  [53]. 

 

2.2.2 Event history analysis for non-survey data 

 Survival analysis is a branch of statistics which primarily deals with death in 

biological organisms and failure in mechanical systems. Death or failure is called an 

"event" in the survival analysis literature, and therefore, models of death or failure are 

generically termed time-to-event models. Research in the field of survival analysis is 

very much influenced by the regression model developed by Cox [54], introduced in 

1972 [45]. 

Cox extended the Kaplan and Meier [55] life table analyses to include the 

regression equation. Since then, this technique has become widely used for survival and 

other censored outcomes. Cox�s proportional hazard model for the i th person, given the 

covariate value x, can be specified by the following equation:  

( ) ( )0| exp( ( ) )i it t tλ λ β=x x                          (2.2.6)                         

where '
1( ,..., )pβ β=β , is p x 1 column vector of coefficients and λo (t) represents 

baseline hazard and is a non negative function of time. 
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Assuming no ties, the inference on β can be estimated from the likelihood function: 
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β x
β x                                       (2.2.7) 

where R(ti ) =  (j: tj ≥ ti) and (1-δi) is an indicator of censoring, and later on Cox derived 

the equation 2.2.8 as partial likelihood function. 

Survival analysis techniques are also applied to recurring or repeated events, 

commonly referred to as event history analysis. Examples of repeated events would be 

recurrent asthma attacks, the occurrence of diabetic retinopathy over time, and the 

decline of the CD4 count over a small period in AIDS patients. The recurrent events or 

the repeated event models are correlated, and hence, the assumption of independence is 

violated. Thus, the major disadvantage of using Cox�s model for event history analysis 

or recurrent failure times data is that the basic assumption of independence is violated. 

The use of standard analytical approaches for correlated survival data results in reduced 

efficiency [56] and incorrect estimates of standard errors.  

 Various methods have been developed to account for dependencies due to 

repeated events at the variance estimation stage. Such methods are called variance 

corrected and frailty models, and are discussed in the next section. 

 

2.2.3 Variance corrected models 

Variance corrected models use robust variance  estimation methods to account 

for heterogeneity  among individuals and event dependence [57]. The most commonly 

used models for multiple events are Anderson Gill (AG), Wei, Lin and Weissfeld 
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(WLW) and Prentice, William and Peterson (PWP). The AG model is based on 

independent increment models, the WLW on marginal models and the PWP on 

conditional models.  

Anderson and Gill extended  Cox�s Proportional Hazard Model to recurrent 

event data, commonly known as the AG model (also referred to as the �independent 

increment� model) [58]. Their generalization was based on the work of the multivariate 

counting process of Aalen [59]. The AG model intensity process for ith subject is  

( ) ( )0| exp( ( ) )i it t tλ λ β=x x                                                                                 (2.2.8)  

and is identical to the Cox model (eq 2.2.7). The AG model is very similar to the Cox�s 

model with a difference in the definition of λi (t). In the Cox�s model λi (t) equals zero 

in case of an event whereas for AG model λi (t) equals 1 as event occurs [60]. Each 

subject in AG model is treated as a multi-event counting process with independent 

increments (see appendix A). This model requires a strong assumption of independent 

increments, especially if ordering of the event is necessary. Another assumption of the 

AG model is that multiple events for any particular observation are assumed to be 

independent [61]. The AG model can handle recurrence event data and the model 

usually assumes that the recurrences follow a non-homogeneous Poisson process and 

are not affected by the occurrence of earlier events [62]. Wei and Glidden [62] suggest 

that such strong assumptions can be relaxed by the including time dependent covariates 

in the model.  

 Wei, Lin and Weisfeld [63] (WLW) modeled  the marginal distribution of 

failure time variable with a Cox�s proportional hazards model. This method was based 

on a semi-parametric approach, with the regression model for the marginal relative risk 
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being the parametric component and the marginal baseline hazard and dependence 

structure constituting the non-parametric part [64]. The usefulness of the semi-

parametric approach over the full parametric approach was that it did not require as 

strong assumptions. As well, the modeling of multivariate failure time data has been 

made possible with the help of computer programs. The hazard function for the jth event 

for ith subject is  

( ) ( )0| exp( ( ) )ij j i jt t tλ λ β=x x                             (2.2.9) 

Here βj represents separate hazard for each event and for strata by covariate interactions 

[60]. 

 The Conditional Model, or the Prentice, William and Peterson (PWP) model 

[65] is based on the conditional method and can be analyzed using the partial likelihood 

principle. The model can be used to model multivariate failure time data. In the PWP 

model, a second event cannot occur unless the first event has occurred. The time 

dependent strata vary from event to event. The hazard function is defined as 

( ) ( )0| exp( ( ) )ij j it t tλ λ β=x x                         (2.2.10) 

This equation is similar to the WLW model, the only difference being that λij(t) has the 

value zero until the previous event has occurred. 

 Other marginal models for variance corrected models have been proposed. Wei, 

Ying and Lin [66] proposed an alternative inference procedure to estimate the variance. 

This alternative inference approach aids computation of the variances and it does not 

use the unstable non-parametric approaches. Lee, Wei and Ying [67] proposed a simple 

linear regression method to analyze highly stratified observations, based on a population 

averaged model, also known as a marginal model. This method does not require a 
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complicated model and the estimates are stable and are not based on non-parametric 

approaches. These population-averaged models provide valid inferences about the 

parameter estimates without any distributional assumption. Lee, Wei and Amato [68] 

used the Cox regression model to model the hazard function of each failure time 

without imposing dependence among the related failure time observations. Liang , Self 

and Chang [64] (LSC) also used the marginal distribution approach to make inferences 

on the parameters in marginal hazard (when there is dependence between individuals). 

The proposed LSC method used semi- parametric approaches but was different from the 

WLW marginal model. In LSC model, the relative risk is the parametric component, 

and the marginal baseline hazard and dependence structure is the non-parametric 

component. LSC model assumed the dependence structure to be completely 

unspecified. 

 An alternative method to the Cox model is the accelerated failure time (AFT) 

model.  The AFT model, which is based on regressing the logarithm of survival time 

over the covariate, can be easily extended to the multivariate case [66, 69].  One of the 

limitations of variance corrected models is that they are not suitable for modeling 

competing risks. Further research is needed in this area. 

 Gao and Zhou [70] compared the WLW and LSC models and found that under 

some regularity conditions (two pairs of observations from different clusters are 

independent), the LSC method provided robust estimates. However, they suggested the 

use of the WLW over the LSC method when all covariates are identical for failure data. 

Guo and Lin (1994) developed a grouped time version of marginal models, which is an 

advancement of the WLW model. Therneau and Hamilton [71] compared four models 
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(AG, WLW, PWP and the Prentice and Cai method) for survival analysis with multiple 

events per subject. They compared the AG [58] model, the WLW method [63], the 

PWP [65] and the Prentice and Cai method [72]. The PWP method used the conditional 

method and Prentice and Cai�s method modeled correlations directly using Cox�s 

framework.  

 Therneau and Hamilton [71] suggest the use of AG and WLW because of the 

availability of computer software to analyze repeated/correlated events data using these 

approaches. The PWP method is based on the conditional method and can be analyzed 

using the partial likelihood principle. Both the AG and the PWP models are sensitive to 

misspecification of dependence structures among recurrence times [63]. The AG, PWP 

and WLW methods can be analyzed using PROC PHREG in SAS [73]. Wei and 

Glidden (1997) suggest the use of the models WLW, Wei, Ying and Lin [66], Lee, Wei 

and Amato [68] and the model by Lee, Wei and Ying [67], as these models are robust 

and well developed.  

 Kelly and Lim [73] proposed four key elements to characterize the Cox based 

models: risk interval, baseline hazard, risk set and correlation adjustment. Based on 

these four key elements, they  compared five models: the AG [58], the WLW [63], the 

PWP-CP [65] , the PWP-GT [65] and the LWA [67]. The PWP-GT (gap time) and the 

PWP-CP (total time) were developed by Prentice, William and Peterson [65]. Gap time 

is the time from the prior event. Once the event has occurred, the clock restarts. The 

total time is the time from the start of the treatment. The counting process is similar to 

total time, except that a subject may have a delayed/censored period before the subject 

becomes at or a risk for the event. The PWP-CP model is the stratified AG model, 
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where the event specific baseline hazard is restricted. Gap time- unrestricted (GT-UR) 

assumes that the baseline hazard or the risk set is unrestricted and TT-R (Total Time -

Restricted) assumes that the baseline hazard or the risk set is restricted or event- 

specific. 

 Kelly and Lim [73] concluded from their study that the PWP-GT model and the 

Total time-restricted (TT-R) model introduced by them are useful for analyzing 

recurrent data. They suggest the use of PWP-GT when within subject events are 

independent. The four models compared by Kelly and Lim [73] did not account for the 

within-subject correlation, even with robust variance. Kelly and Lim [73] recommend 

the use of PWP-GT and TT-R when within-subject event are independent for analyzing 

recurrent event data. AG and GT-UR both assume that they have common baseline 

hazards, but these models cannot be used, as they do not have versatility of event 

specific model. WLW models are more suitable for multi-type event data, where the 

baseline hazard is different for each type of events. For example, tumours at different 

sites of the body [73]. LWA is useful for clustered data when the baseline hazard is the 

same. For example in clustered data on a pair of eyes [73]. When the WLW model is 

applied to recurrent data, it leads to an over-estimation of the treatment effect. The 

LWA model allows the subjects to be at risk several times for same event.  

 

2.2.4 Frailty models 

 The frailty or random effects model treats the repeated events as a special case 

of more general unit-level heterogeneity. The random effect is across individuals and 

constant over time. In Frailty models, a random effect is a continuous variable, which 
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describes excess risk or frailty for distinct categories, such as individuals or families. 

This excess risk or frailty for distinct categories, like individuals and families, is 

described using a random effect, which is a continuous variable. Computation of frailty 

is observed as the unobserved covariate [60]. 

 Univariate frailty models were first introduced by Vaupel [74]. Clayton [75] 

extended the Cox proportional hazard model [45] to multivariate life tables. The model 

proposed by Vaupel et al. had a fully parametric approach and later Clayton and Cuzick 

[76] extended the univariate model developed by Vaupel [74]. Their model was a 

generalization of the proportional hazard model and contained a random effect term to 

represent heterogeneity of �frailty.� The model used a non-parametric approach and 

parameters were estimated by the maximum likelihood method. The proportional 

hazard model for subject i can be written as            

 λi(t) = λo(t) exp(Xiβ + Ziω)                 (2.2.11) 

where Xi  and Zi are ith row of covariate matrices X and Z, X and β corresponds to p 

fixed effects in the model and ω corresponds to a vector which contains information on 

q unknown random effects or frailties, Z is the design matrix [77]. 

 Huster, Brookmeyer and Self [56] extended the fully parametric model of 

Clayton [75] and Oakes [78] to include covariate information, and the parameter 

estimates and robust variance estimators were obtained. Their independent working 

model (IWM) was computationally simple, but the only limitation was that it ignored 

the between pair association and resulted in a severe loss of information. On the other 

hand, the model proposed by Clayton and Oakes took into account between pair 

associations, but it was computationally intense and associations could only be positive.  
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 Ross and Moore [79] developed methods for modeling discrete or grouped time 

survival time when groups or clusters are correlated. They specified the marginal hazard 

of failure for individual items within a cluster or group by using the linear log odds 

survival model, and the dependence structure was based on the gamma frailty model 

[75]. To estimate the parameters, they used a method which combined the GEE method 

and a pseudo likelihood method. The developed model could handle cluster sizes 

greater than two and assumed that dependence varied with cluster level covariates. 

Cox�s frailty model [74, 75] allowed between cluster heterogeneity.  

 The mixed effects model developed by Ratcliffe et al. [80] extended the Cox 

frailty model for repeated measures to include both subject and cluster level random 

effects. This model was more efficient and less biased, and evaluated the effect of the 

treatment variable while accounting for the relationship between them. The mixed 

effects model can be extended to multiple common frailties, and the correlation between 

cluster level random effects and frailty can be easily overcome by the addition of frailty 

not linked with random effects. However, this method can be computationally intense.  

 Frailty models or random effects models can also be used when there is 

correlation present at different hierarchical levels. This  multilevel random-effects 

model for survival data is new, and is gaining momentum due to its application in data 

where clustering is present between  and within subjects at different levels of 

association. Some of the earlier work in this area is by Rodriguez [81] and Bandeen-

Roche [82]. The model proposed by Bandeen-Roche and Liang [82] had the same 

properties of the multivariate frailty model. Their proposed model took into 
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consideration clustering present at multiple levels and reduces to a univariate frailty 

model in the case of single clustering.  

 A nested frailty model for survival data was proposed by Sastry [83] when there 

was clustering at two hierarchical levels (community-level and family-level). The 

parameter estimates were obtained by using the EM-algorithm. Sastry suggests the use 

of such a model when there is clustering present at different levels as ignoring the 

clustering will result in upward bias of the estimates of variance at both levels. Gross 

and Huber [84] extended the partial logistic model to clustered survival data that may be 

censored. They assumed that individual survival times within clusters are correlated 

while the distinct clusters are considered independent. 

 

2.2.5 Missing data due to dropouts 

 Missing data is common in longitudinal survey studies as they are the result of 

non-response or losses during the follow-up process. In longitudinal studies, missing 

data has three major implications [53]. First, the data set is unbalanced, as not all the 

participants have the same number of repeated measurements. Second, missing data 

results in a loss of information. Third,  missing data may be missing at random thus 

resulting in misleading inferences [53].  

 Missing data can be categorized into three different types  based on Rubin [85]  

and Little and Rubin [86] : (i) missing completely at random (MCAR), (ii) missing at 

random (MAR), and (iii) missing not at random (MNAR). Under the MCAR 

mechanism, the probability of an observation being missing is independent of the 

observation. For the MAR mechanism, the probability of an observation being missing 
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is conditionally independent of the unobserved data. Finally for the MNAR mechanism, 

the probability of a measurement depends on unobserved data [43, 85, 86].  

 Some of the commonly used methods to analyze longitudinal data with missing 

data include complete case analysis (CC), last observation carried forward (LOCF), 

unconditional mean imputation [86] and conditional mean imputation [43, 86-88]. 

Complete case analysis is simple to describe and easy to use as most software assumes 

complete case analysis. However, there are some serious drawbacks associated with this 

method. Information is lost as only complete cases are included and thus, statistical 

efficiency is reduced leading to large standard errors [88, 89]. This analysis  requires the 

stronger assumption  that missing data is missing completely at random [43].  

 Another simple method is last observation carried forward (LOCF) [90, 91], 

where the last observation is substituted for any missing observation. This method can 

be applied to monotone or non-monotone missing patterns [43]. The disadvantage of 

using this method is that it increases the amount of information in the data by treating 

imputed and observed values in the same footing [43], thus affecting the variance 

structure, the correlation structure or random effects structure or the group difference. 

This has been shown for the linear mixed model setting by Verbeke and Molenberghs 

[92] .  

 The unconditional mean imputation method [86] was primarily developed for 

continuous data and its application to binary data will be problematic [43]. In this 

method, the averages of the observed values are used to replace the missing values on 

the same variable [43]. The drawback of this method is that the resulting model is often 
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distorted as the imputed values of a subject are unrelated with other measurement on the 

same subject [92].  

 The conditional mean imputation method, also known as Buck�s method, 

estimates the mean and covariance matrix assuming a normal distribution from the 

complete cases and then substitutes the conditional mean for the corresponding missing 

values. The conditional means are calculated from the regression of the missing 

component on observed component [43]. This conditional mean imputation method is 

better compared to the unconditional mean imputation and the LOCF method as the 

mean structure and the variance components are not distorted [43]. The methods 

discussed above are not very popular, due to their limitations and the unavailability of 

commercial software, which can perform the required complex analysis.  

 The weighted generalized estimating equations (WGEE) was devised by Robins, 

Rotnitzky and Zhao [93] for management of longitudinal data analysis with missing 

observations [93]. This method is valid under MAR assumption but requires 

specification of a dropout model in terms of observed outcome and/or covariates.  

 Two other available alternative methods are multiple imputation [94] and 

expectation-maximization (EM). Rubin [94] introduced the multiple imputation (MI) 

method and it requires the assumption that data are MAR. The method is highly 

efficient, even for small values of M imputations [43]. However, Molenberghs and 

Verbeke [43] suggest that the method of choice depends on the type of missing data. 

For monotone missing patterns  with MNAR dropout, a Dale model was proposed by 

Molenberghs, Kenward and Lesaffre [95] for ordinal outcome and a logistic regression 

approach was suggested by Van Steen et al. [96]. For the non-monotone missing pattern 
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(intermittent missing pattern), Baker et al. [97] proposed a family of models for two 

binary outcomes. This method was based on log-linear models for the four-way 

classification of both outcomes, together with their respective missingness.  

 Baker [98] proposed a model for three binary outcomes with non-monotone 

missing patterns, first one based on the marginal, second one on association models for 

the measurements, and the third one a logistic regression model for the missingness 

mechanism, depending on the last observed and last unobserved measurements.  

 The EM algorithm is an iterative algorithm used to  compute the maximum 

likelihood in parametric models for incomplete data . The EM algorithm was proposed 

by Depmster, Laird and Rubin [99], the method did not produce estimates for the co-

variance matrix of the maximum likelihood estimators, and convergence was slower in 

this model. The best feature of this method is that it can be used for MAR  and MNAR 

data .  

 In the direct likelihood method, the EM and the MI are the three most powerful 

tools when we have MAR data to conduct likelihood inferences [43]. Another 

noticeable feature of WGEE, EM and MI methods are that they can be easily extended 

to MNAR settings and the detailed illustration of these works can be found elsewhere 

[43].  

 

2.3 Cross-sectional and longitudinal Complex Survey designs 

  Multi-stage sampling design is used to collect data in large national survey 

studies. This survey design is used quite often for the reason discussed above and also 

because it simplifies data collection. The selection of individuals is conducted at more 
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than one stage. The sampling units, or clusters, follow a hierarchy: in each stage, 

elements are sub-sampled from the larger clusters from the previous stage. One usually 

employs a combination of more than one method, such as simple random sampling, 

cluster sampling and/or stratified sampling. More homogeneous strata created by 

stratification helps reducing the variance of parameter estimates [5]. Hierarchical 

sampling allows both person-based and household-level estimation.  

  The primary objective of analyzing survey data is to make inferences about 

characteristics for the finite population of interest [5]. Appropriate analysis methods 

should account for the effects of clustering and stratification, and for unequal selection 

probabilities. To account for unequal inclusion probabilities, appropriate survey weights 

must be taken into account. Survey weights calculated as (1/Пi), where Пi is the sample 

inclusion probability. The principle behind the survey weights is that each individual in 

the sample, besides himself /herself, represents other people with the same or similar 

characteristics but who are not in the sample. The data arise from randomly chosen 

clusters within a stratum, thereby helping to reduce the cost of data collection and 

enhancing practical efficiency; however, as a result, the data forms into in the 

aforementioned cluster effect [5]. The practical efficiency of clustered designs is 

counter balanced by a reduced statistical efficiency.  

 The advantage of using complex survey sample in comparison to the simple 

random sample (SRS) is that this sampling scheme does not require a complete 

sampling frame of the population elements and is, therefore,  more practical [100]. 

However, complex sampling scheme is less efficient than SRS and to obtain correct 

estimates of the data, the sampling design should be taken into account. The cluster 
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effect occurs mainly because the individuals belonging to the same clusters tend to have 

some similar characteristics, or, in other words, are correlated. This correlation is often 

referred to as the intra-cluster effect [101]. The survey sample weight should be taken 

into account in order to obtain correct point estimates. Additional adjustments, such as 

non-response and post stratification, should be accounted for in the survey weights. To 

get correct variance estimates, the survey weights are not sufficient, as these weights do 

not account for clustering and stratification effects. Other adjustments are required to 

get correct variance estimates.  

 

2.3.1 Analysis of complex survey data 

 The main purpose of the cross-sectional and longitudinal surveys is to produce 

unbiased estimates of population parameters, such as totals, means and regression 

coefficients. The statistical methods are well developed for cross-sectional survey 

designs; however, the methods are still in their developmental stage for longitudinal 

survey data. To account for the complexities of complex survey data, three approaches 

are commonly used: (i) model assisted approaches, (ii) model-based approaches and 

(iii) design-based approaches.  

 Model assisted estimation refers to a property of estimators that models the 

auxiliary information (those variables which helps in sampling design, for example in 

NPHS the auxiliary variables are age, sex and province) in the estimation procedure for 

the finite population parameters of interest such as regression coefficients. 

Incorporating the auxiliary variables in the sampling phase improves the accuracy of the 

estimates and decreases the design variances of the estimators [100]. The inferences are 
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still design-based, even when incorporating the auxiliary or secondary variables in the 

model for estimation procedure. For this reason, this modeling approach is also called 

the design-based model assisted approach [9].  Sarandal et al. [102] have discussed the 

model-assisted techniques in detail. 

 The pure model-based methods ignore the complex survey design, or, in other 

words, design effects, such as clustering and stratification. The sample observations, 

y1,��,yn, in a model-based approach are assumed to be random variables. Ordinary 

least squares (OLS) estimation is used when the data collection is done through a 

Simple Random Sample (SRS), but this approach cannot be used for complex survey 

sampling. Using OLS will result in biased estimates of model parameters and 

inconsistent variance estimates. If proper sampling design is not taken into 

consideration, then the model is misspecified and the conclusions are not valid [103]. 

There are several methods available which account for the clustering and stratification 

by calculating robust standard errors for cross-sectional design. The Generalized 

Estimating Equation (GEE) approach proposed by Liang and Zeger [1] takes into 

account the intra-class correlation. The work by Goldstein [104, 105], who proposed 

multi-level modeling approach, considers the clustering and stratification effects. Some 

other methods include hierarchical Bayes approach using Markov Chain Monte Carlo 

(MCMC)  technique [106]. 

  In the design-based approach, the complexities due to multi-stage sampling 

design such as clustering and stratification can be properly accounted for in the variance 

estimation.  
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 In survey analysis, to obtain the parameter estimates it is very important to use 

the proper survey weights. Two common types of survey weight are the following: (i) 

expansion weights which is usually the reciprocal of the selection probability and (ii) 

relative weight which takes into account post- stratification and the non response. The 

use of expansion weights is usually problematic when calculating variance and needs to 

be adjusted [107]. To estimate the variances of parameter estimates, replicated 

sampling, balanced repeated replication (BRR), Jackknife Repeated Replication, Taylor 

Series Method, Rao-Wu Bootstrap method and Ratio estimation methods are available 

[107]. To calculate the variance estimates or standard errors, clustering and 

stratification should also be considered, as the sampling weights alone are not sufficient.  

 The design-based approach is the best method for analyzing survey data as it 

accounts for any complexity arising due to the sampling scheme, whereas the model-

based approach ignores the sampling design. Model assisted approaches can also be 

used as an alternative to the design-based approaches. The use of this method improves 

the accuracy of estimates and decreases the design variances of the estimators [9]. 

Auxiliary  information in stratified sampling helps to reduce the within-stratum 

variations [9]. However, for analyzing the longitudinal NPHS data, the focus is to 

compare the model-based and design-based approaches.  

 

2.3.2 Longitudinal complex survey data 

 Longitudinal studies consist of repeated measures on two or more occasions on 

the same individuals over time. The stratification and clustering effects are often 

ignored in the standard analysis of longitudinal survey data. This results in biased 
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estimates of model parameters and leads to false inference [6]. The main objective of 

longitudinal survey studies is to produce estimates of the net change that occurred in the 

population between two time points [108]. Previous work in this area dealt mostly with 

the analysis of longitudinal data for non-surveys. The work in the area of longitudinal 

survey can be summarized into two sections: (i) marginal modeling approach and (ii) 

event history analysis. The development in each area will be discussed in turn.  

 

2.3.2.1 Marginal models for survey data 

 Rao [3] proposed Wald and quasi-score test for longitudinal survey design using 

the Taylor linearization and Jackknife method. This method accounts for the complexity 

of the survey design, as well as the longitudinal nature of the data. The marginal model 

proposed by Rao [3] is basically an extension of Liang and Zeger�s work [1]. In this 

paper, Rao [3] uses the Taylor linearization method to compute the variance, as 

proposed by Binder [109]. The variance estimator should account for post-stratification 

and non-response adjustments. The formula to estimate variance is the following: 
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assumes that the first stage clusters are either drawn with replacement in each stratum or 

first stage sampling fraction is negligible. This gets more complicated with non-

response. Rao [3] also proposed the use of Jackknife method to estimate the variance. 
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The advantage of Jackknife method is that the post stratification and unit non-response 

is taken into account. 

 Skinner and Vieria [110] compared the linearization method and robust variance 

estimation method and they concluded that both of the methods produce similar results. 

They treated the linearization method as the �gold standard� for variance estimation 

because of its consistency. However, this method may be less efficient than the model-

based variance estimation method when the model is correctly specified. 

 

2.3.2.2 Even history analysis for survey data 

 Binder [111] extended the work of Lin and Wei [112] to fit the Cox�s 

proportional hazard model from survey data. Binder [111] compared the design-based 

and model-based methods. The design-based methods accounts for the clustering, 

stratification and weighting, whereas the model-based method and the �robust� method 

proposed by Lin and Wei [112] ignore the sampling weights. Binder concluded from his 

study that the design-based and �robust� method gave similar coverage probabilities and 

Taylor linearization method to estimate variance performs better than model-based 

methods. The �robust� method proposed by Lin and Wei [112] uses the same 

linearization as the design-based method except that it is based on unweighted estimates 

and assumes simple random sampling with replacement in variance calculation. Binder 

[111] concluded that design-based method  is the best as it assumes that the survey data 

belongs to a finite population. 

 Lin [113] generalized Binder�s [111] work to the context of super-population 

analytical inference. Lin [113] proposed an alternative approach which considered 
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survey population as a random sample. The advantage of assuming survey population as 

a random sample was that the interpretation as the log hazard ratio and statistical 

conclusion applies to other populations as well. Lin [113] suggested that survey data 

analyzed within finite population or super population framework, is good for descriptive 

analysis and is not suited for regression analysis. When the survey population is fixed, 

there is no probability model governing the relationship between response variable and 

covariates. The interpretation and prediction of the regression is inept [113]. By treating 

survey population as random from super population and by adjusting for extra 

randomness in variance estimation, one can make an inference about parameters. These 

parameters have clear probabilistic interpretation and the statistical conclusion extend 

beyond the survey population under study [113]. The additional term in the variance 

estimator accounts for extra variation due to super population inference which assumes 

independence between all observations [113].  

 Lawless and Boudreau [114] discuss the methods available for duration data and 

review different approaches. In their paper, they used stratified Cox�s proportional 

hazard model and then compared the weighted and unweighted analyses. For the 

weighted analysis, they used Binder�s method [111] and Lin�s method [113] and for the 

unweighted, they accounted for the clustering and stratification.  The weighted analysis 

based on Binder�s and Lin�s methods produced identical results, indicating that the 

robust standard error method by Lin [113] works well. The unweighted and weighted 

estimates were close enough, indicating that there is slight difference between them. 

 Lawless [115] used the event history analysis approach for binary outcome. This 

approach can be used to understand the event history processes of an individual. 
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Lawless [115] used the US National Longitudinal Survey of Youth (NLSY) to study 

breastfeeding durations. He assumed the independence among individual responses. 

The covariates selected for analysis were related to the design factors. He conducted 

unweighted analysis, assuming that no cluster information was available.  Two methods 

namely, Cox�s semi-parametric proportional hazard model [45] and accelerated failure 

time model [114] were used for analysis. It was concluded from the study that both 

methods provided the same variance estimators and similar parameter estimates. 

Lawless [115], in his approach, did not consider the complexity of survey design, other 

than including covariates related design factors. He indicates that the variance 

estimation methods for event history survey data has not received much attention [115]. 

 Boudreau and Lawless [116] proposed variance estimators that account for the 

intra-cluster correlation. They used the theory of estimating equations in conjunction 

with the martingale theory. Their proposed method is similar to the method developed 

by Lin and Wei [112], the only difference being that Lin et al. [112] had developed 

�robust� variance estimator to protect against model misspecification.  

 The methods for longitudinal survey design are still under development. Most of 

the methods discussed above have their own limitation and the complexity of the survey 

data are further aggravated due to missing values, non-response, measurement error, 

and loss to follow-up. Some of the other areas that need development include methods 

for handling missing data, fitting multivariate and hierarchical models with incomplete 

data, and methods for handling response-selective sampling induced by retrospective 

collection of data. In the next section, the development of methods for longitudinal 

binary data are discussed when we assume simple random sampling.  
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2.4 Epidemiology of adult asthma 

2.4.1 International asthma prevalence 

 The prevalence of asthma is increasing among adults worldwide and has been 

shown to vary by gender. However, there has been limited research regarding the 

prevalence and characteristics of asthma in adults. The reason for this could be that 

adulthood asthma is often confused with symptoms of airway obstruction mainly caused 

by smoking- related diseases [117]. Asthma is more prevalent in westernized countries 

and may be related to increasing urbanization. According to the Global Initiative for 

Asthma (GINA), the prevalence of clinical asthma in westernized countries was highest 

in Scotland (18.4%) and lowest in the United States of America (10.9%). In Canada, 

clinical asthma prevalence was found to be 14.1 %.  

 There seems to be a wide variation of asthma prevalence within and between 

countries due to: (1) the different methods used to identify asthma, (2) geographic 

variation in the distribution of asthma, (3) the different definitions of asthma between 

studies, (4) the lack of a standardized instrument to diagnose asthma, and (5) biases 

arising while translating the questionnaire-related symptoms into different languages. 

Studies that use identical methodologies are needed at the international level to assess 

the wide variation in asthma prevalence that has been reported.  

 In 1988, the European Community Respiratory Health Survey (ECRHS) was 

conducted, funded by the European Commission. The aim of this survey was to 

estimate variation in asthma prevalence throughout Europe. The study population was 

young adults age 20-44 years [118]. The results of the study showed that the 

international variation in asthma prevalence was due to geographical differences 
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between countries [119]. The wide variation in asthma prevalence between countries is 

thought to be due to differences in environmental factors within countries [119, 120].  

 In a study by Woolcock and co-workers in Australia, asthma prevalence was 

measured by physician diagnosed asthma, self- reported wheeze, or by abnormal lung 

function and a combination of symptoms [121]. The ECRHS studies conducted in 

Australia showed that among adults aged 20-44 years, the prevalence of self-reported 

wheeze was fourth highest of all countries studied [122]. Ruffin et al. identified an 

increase in the prevalence of doctor diagnosed asthma in South Australia. Asthma 

prevalence increased from 8%  (95% CI, 6.4%-9.6%) in 1990 to 12.8% (95% CI, 

11.4%-14.2%) in 2001 [123].  

 U.S. researchers used the following asthma definition in the Behavioral Risk 

Factor Surveillance System (BRFSS) study: �Have you ever been told by a doctor, 

nurse, or other health professional that you have asthma� (lifetime asthma) and �Do you 

still have asthma?� (current asthma). According to the BRFSS survey, the prevalence of 

asthma has been rising in the United States since 1980. Doctor diagnosed asthma was 

reported to be 96.6/1,000 of the population and current asthma attacks were 40.7/1,000 

of the population in 1997 . The prevalence rate of lifetime reported asthma in US adults 

was 11.0% (95% CI, 10.8%-11.2%) and current asthma was 7.7% (95% CI, 7.3%-8.1%) 

in 2001 [124].  

 The prevalence rate of physician diagnosed asthma among adults in the age 

group 20-44 years is about 15.5% [122] in a New Zealand study and 14.2% when using 

current symptoms and bronchial hyperresponsiveness (BHR) as the criteria for asthma 

[125, 126]. The prevalence of asthma was highest in the age group 20-24 years (about 
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17.8%) [126]. D�Souza et al. [127] showed that physician diagnosed asthma in New 

Zealand adults in the age group of 20-44 years was 15.9%, which is similar to that 

reported by the ECRHS [125].  

 The prevalence of current asthma in the United Kingdom among adults in the 

age group 18 to 55 years, between the time periods 1981 to 1990, increased by 21% 

[128]. In another study in Newcastle, UK, a postal questionnaire was sent to 6,000 adult 

subjects, aged 20-44 years. The result showed an increase in the prevalence of doctor 

diagnosed asthma from 12.7% in 1992-93 to 16.9% in 1998-99. The overall mean 

change was found to be 4.4% [129]. Asthma prevalence in women increased from 

3.01% (95% CI,2.99-3.03) in 1990 to 5.14% (95% CI, 5.10-5.18) in 1998 and in men 

from 3.44% (95% CI, 3.41-3.46) in 1990 to 5.06%(95% CI, 5.02-5.10) in 1998 [130].  

 

2.4.2 Adult asthma prevalence in Canada 

 Like in other countries, the study of asthma prevalence in Canada among adults 

is limited. Six reports were located that assessed adult asthma prevalence (See Table 

2.1).  
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Table 2.1 Major Canadian studies of asthma prevalence in the general adult population 

 
Study Year Age 

(Years) 
Study Population Asthma definition 

Manfreda et. al. 
[131] 

2004 20-44 Six Canadian cities Q + LFT 

Senthilselvan et 
al. [20] 

2003 0-64 Saskatchewan Physician diagnosed 

Manfreda et. al. 
[132] 

2001 20-44 Six Canadian cities Q (Physician 
diagnosed) 

Levesque et al. 
[133] 

2001 All ages Quebec Q (Physician 
diagnosed) 

Senthilselvan 
[22] 

1998 0-64 Saskatchewan Physician diagnosed 

Manfreda et al. 
[134] 

1993 All ages Manitoba Q (Physician 
diagnosed) 

Q =Questionnaire reported asthma; LFT =Lung Function Test 

  

 Questionnaires that use a combination of physician diagnosis and asthma 

symptoms have been largely used to study asthma prevalence in Canada. According to 

the 2000-2001 National Population Health Survey in Canada, the prevalence of health 

professional diagnosed asthma in populations aged 12 and over increased slightly from 

8.1% (2,014,933 people) in 1998-99 to 8.4% (2,170,748 people) in 2000-20016. A 

cross-sectional study by Manfreda et al. [132] used a sampling strategy and 

standardized form of ECRHS among adults aged 20-44 years. They found that the 

prevalence of asthma and asthma-like symptoms varied between communities and by 

sex. For men, the prevalence of asthma was higher in Halifax (6.3%) and in Vancouver 

(6.1%). For females, asthma prevalence was highest in Halifax (9.5%) and Hamilton 

(8.8%) [132]. Compared to other international sites using the same survey [125], the 

median prevalence of bronchial hyper responsiveness (BHR) and asthma in Canada are 

                                                
6 (Source: Statistics Canada, CANSIM, table 104-0001, Catalogue no. 82-221-XIE) 
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still quite low at one third of median of other countries [131]. However, in a study by 

Senthilselvan et al. who examined data from Saskatchewan Health Databases for the 

years 1981 to 1998,  asthma prevalence increased amongst adults aged 15-34 years from 

1.2% in 1981 to 2.2% in 1990 [22].  There was an increase in prevalence from 2.2% in 

1991 to 3.3% in 1998. A trend for stabilization of prevalence rates was noted in the 

latter part of 1990�s [20].  

 An ECHRS study conducted among 20-44 year olds  in Spain showed that the 

incidence of asthma was higher in females when compared to males (6.88 in females, 

4.04 in males per 1000 person years) [135]. In a study conducted in Canada using the 

NPHS dataset, the two year cumulative incidence of asthma was higher in females 

(2.9%) as compared to males (1.6%) [16]. A study by Torren et al. on adults aged 20 to 

50 years showed that the incidence rate of adult-onset asthma among females was 1.3 

cases/1000 person-years compared with 1.0/1000 person-years for males [136]. A 

Norwegian study, conducted with 15 to 70 year old participants, showed a slightly 

different result. The 11 year cumulative incidence was higher in males (4.0%) than 

females (3.5%) [137]. A Finnish study on adult males and females aged 18 to 45 years, 

showed that there was no increase in asthma incidence from 1982 to 1990 [138]. 

 To conclude, adult asthma prevalence is increasing worldwide and is more 

prevalent in westernized, English speaking countries. The studies confirm that there is a 

gender difference and asthma prevalence is higher in females than males. Studies on the 

incidence of asthma also show higher incidences among females with a few exceptions. 

The study of asthma prevalence and incidence is limited among adults and there is a 



 41

need for more longitudinal studies examining variation in the incidence and prevalence 

of asthma over time in Canada. 

 

2.4.3 Gender differences 

 Several epidemiological studies have shown that childhood asthma is more 

prevalent in boys than girls [134, 139, 140]. During adolescence, asthma prevalence is 

more or less the same in both sexes [142, 144] and during early adulthood, females 

begin to outnumber males in asthma prevalence. As well, adult females appear to have 

more severe asthma [19, 21, 134, 141, 145, 146]. 

 Table 2.2 presents an examination of asthma prevalence for men and women in 

selected countries. With the exception of the UK, adult females in those countries 

reporting asthma prevalence by gender have higher asthma prevalence than males. 

 de Marco et al. [19] analyzed the ECRHS data set to study gender differences in 

children and adults. The age of the subjects varied from 0 to 44 years and 18,659 

subjects participated in the survey. de Marco et al. concluded that during and after 

puberty, a reversal in asthma prevalence occurs, with females becoming more 

susceptible to asthma than males. This change could partly be because of airway size, 

along with hormonal changes  in females [141]. 
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Table 2.2 International prevalence of doctor diagnosed asthma among males and 
females 
 

Country Age Asthma Prevalence  Year 
  Males Females Total  
New Zealand [125] 20-44 years - - 15.5% 1996 
South Australia [147] 15 years plus 9.8% 15.3% 12.8% 2001 
UK [130] 15-64 years 5.1% 5.1% - 1998 
Canada [148] 12 years plus 7.1% 9.6% 8.4% 2003 
USA [124] 18 years plus 5.1% 9.1% - 2001 
 

                                                                

 In a Danish study of adults by Omland et al. [149], researchers found that 

asthma was more prevalent among smokers and in women. Chen et al. [18] studied 

gender difference in asthma among adults in a rural Saskatchewan population. This was 

a cross-sectional study that defined asthma by physician diagnosis. The results of this 

study showed asthma prevalence to be higher in women (10.0%) than men (5.7%) and 

that the risk of asthma was positively associated with obesity in women but not in men. 

 Gustafsson et al. [145] studied 55 persons with asthma from childhood to 

adulthood. The mean age group at the beginning and end of the study was 9.4 years and 

30 years, respectively. They found that with increasing age, lung function deteriorated 

among females but got better for males. Males with poor lung conditions at the 

beginning of the study showed an improvement of lung function, whereas this was not 

true for females. Nicolai et al. [150] found that the changing gender ratio for asthma in 

adulthood compared to childhood appeared to be related to later increase in incidence of 

asthma among adolescent girls . Sears et al. [151] studied risk factors for the persistence 

and relapse of asthma in adulthood. They found that being female or having an early 

age of onset were major risk factors for persistence or relapse of asthma in adulthood . 
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 To summarize, both cross-sectional and longitudinal studies show that there are 

gender differences associated with asthma. Studies conducted across countries indicate 

higher asthma rates in young males and higher prevalence in females after puberty. 

  

2.4.4 Rural/ urban differences for asthma  

 Very little research has examined rural/urban differences of asthma in Canada or 

internationally. Earlier studies only focused on rural population [152-154]. In a Danish 

study by Omland et al. [149], the effect of farming exposure on asthma-like symptoms 

and lung status was studied in young farming students and non-farming students staying 

in rural areas. There were no differences between farming and non-farming groups on 

bronchial hyper-responsiveness.  

 Geographical variations of asthma were studied by Lewis et al. [155] in a large 

cross-sectional study in New Zealand. They studied adults 20-44 years old, using the 

asthma symptom questionnaire. They concluded that asthma was more prevalent in 

females (17.0%) as compared to males (13.2%) and more prevalent among urban than 

rural dwellers. A study conducted in Australia by Woods et al. [156] compared asthma 

prevalence in rural and urban populations. This was a cross-sectional study in adults 20-

44 years old using the ECRHS questionnaire. They found that there were significant 

rural/urban differences in asthma prevalence (p<0.001) and that asthma was more 

prevalent in the rural population as compared to the urban population. In a Canadian 

population- based study using the physician services database of the Saskatchewan 

Health Department, asthma prevalence (defined as at least one physician visit in a 

calendar year) was lower in rural than urban populations for all age groups [108]. A 
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cross-sectional study conducted in South Germany by Filipiak et al. [157] also 

compared rural/urban differences in asthma prevalence in adults aged 25-75 years. They 

used a self-administered questionnaire to study asthma prevalence. Unlike other studies, 

they found no differences in asthma prevalence between rural and urban populations. 

Eduard et al. [158], compared south east Norway (farming population) with south west 

Norway (general population). Using a questionnaire survey to identify physician 

diagnosed asthma, they found that the farming population (4%) had a lower prevalence 

of asthma compared to a general urban population (7.6%). They concluded that this 

lower prevalence can be attributed to the �healthy worker effect�.  

 Based on this review, there appears to be a limited amount of research 

examining rural/urban differences in adult asthma. Of those that do exist, the results 

have been mixed. However, most studies with rural populations have not had an urban 

comparison group.  

 

2.4.5 Other risk factors of asthma 

 Besides location of residence (rural/urban) and gender, there are a variety of 

other risk factors for adult asthma that have been identified in the research literature. 

These factors include obesity (measured by body mass index), smoking, exposure to 

second hand smoke, race/ethnicity and socioeconomic status. 

 Body mass index (BMI): The relationship between asthma and BMI is not clear. 

Several studies have shown a positive relationship between asthma and BMI among 

females but not among males [13, 16, 159]. Several other studies have also shown an 
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association between asthma incidence and BMI equally among males and females [160-

163].  

 Smoking: Smoking may be another risk factor for asthma, but a direct 

relationship between smoking and adult asthma has not been clearly determined. Some 

studies have shown that there is no direct link between active smoking and risk of 

asthma [135, 159, 164-167], whereas others have shown that smoking is a risk factor for 

asthma [136, 165, 167-169].  In a Canadian study examining gender differences, Chen 

et al. found a relationship between smoking and asthma for females but not for  males 

[17]. 

 Second hand smoke: The relationship of exposure to second hand smoke, 

particularly parental or maternal smoking and asthma, is well documented among 

children, but there is limited evidence for adult populations. No relationship between 

asthma and second hand smoke exposure was found among non-smoking adults [13]. 

Eisner [170] suggested a causal relationship between environmental tobacco smoke 

(ETS) exposure and asthma incidence among adults. Eisner [171] found that ETS 

exposure was associated with decreased pulmonary function in adult females, especially 

those with asthma. In another study by Eisner et al. [172], self-reported ETS exposure 

was associated with greater asthma severity, worse health status, and increased health 

care utilization in adults with asthma. 

        Race/Ethnicity: Research examining the relationship between race or ethnicity and 

asthma has shown contradictory results. Studies have shown that asthma prevalence was 

higher among the black population [173, 174] compared to the Caucasian population. 
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One of the studies found significant variation in asthma incidence especially among 

south Asian population and Afro-Caribbeans as compared to UK born Whites [175]. 

         Socioeconomic status:  Studies exploring the relationship between socioeconomic 

status and asthma have also shown opposing results. Several studies have found asthma 

prevalence and incidence to be higher among  populations with lower than higher 

socioeconomic status  [17, 18, 173]. De Marco et al. found no association between 

asthma and income [159] and Chen et al. found yet a different pattern of socioeconomic 

inequalities with respect to asthma [174]. Further research is clearly needed to explore 

the association of asthma with socioeconomic status.  

 To summarize, the development of statistical methods for longitudinal data with 

binary outcomes are available and widely used. However, there has been limited 

research conducted in the field of longitudinal survey data. Some of the areas in this 

field have received little attention and methodological developments are needed. These 

areas include handling missing data and repeated events and/or clustered data analysis 

for survival data. Research in this area is of interest and will be great value to 

researchers. 

 Regarding the epidemiology of asthma in adults, the prevalence of asthma varies 

by country, rural/urban location, and gender. Asthma is more prevalent among adult 

women than men. Currently, there have been few studies of asthma incidence and 

trends in asthma prevalence in the Canadian population concerning females only. 

Potential risk factors for asthma in the adult population include obesity, smoking, 

socioeconomic status and ethnicity. At present, the risk factors discussed above could 



 47

be potential risk factors for asthma incidence or prevalence. Further research is clearly 

needed to clarify the nature of these relationships.  
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CHAPTER 3 - DATASET DESCRIPTION 
 

3.1 Study design 

 The NPHS is an ongoing longitudinal study which collects information on the 

general health of the Canadian population. In the present analysis, all of the five cycles 

with complete data were used [Cycle 1 (1994-95), Cycle 2 (1996-97), Cycle 3 (1998-

99), Cycle 4 (2000-01), and Cycle 5 (2002-2003)], resulting in a retrospective cohort 

design for the current study. 

 

3.2 Sampling strategy 

 The sampling procedure of the household component of the NPHS was based on 

a multi-stage sampling design. As discussed in Chapter 1, this type of sampling design 

is a cost-effective and efficient way to collect data. In all of the provinces except 

Quebec, the same sampling design was adopted. In the first stage, homogeneous strata 

were formed by dividing each province into three types of areas, namely major urban 

centres, urban town and rural areas. Based on these separate geographic and /or 

socioeconomic status, strata were formed (Figure 3.1).
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 In most strata, independent samples of clusters (heterogeneous) were selected 

with probability proportional to size (PPS) from each stratum. PPS is a sampling 

technique commonly used in multi-stage cluster sampling, in which the probability that 

a particular sampling unit will be selected in the sample is proportional to some known 

variable (e.g., in a population survey, the population size of the sampling unit). PPS is 

useful when populations of sampling units vary in size and when units do not have the 

same probability of selection (unequal weights). In the second stage, a dwelling list was 

prepared for each cluster chosen and from this list, households were then selected. 

Further, the country was divided into 1000 strata and approximately 3000 clusters were 

formed which are the primary sampling units. Within each cluster, dwellings were 

selected at random which comprised the secondary sampling units, and finally, one 

individual was selected from each household producing the tertiary sampling units.  

 In Quebec, the NPHS samples were selected from dwellings which participated 

in the 1992-1993 Quebec health survey, Enquete sociale et de sante (ESS). The survey 

sampled 16,010 dwellings using a two-stage sampling design similar to that of the other 

nine provinces. The province was geographically subdivided by crossing 15 health areas 

with four urban density classes: Montreal Census Metropolitan Area, regional capitals, 

small urban agglomerations and the rural sector. Clusters were stratified based on 

socioeconomic characteristics and selected using PPS sample. Random samples of 

dwelling were drawn from each cluster. For further details, please refer to longitudinal 

documentation provided by Population Health Survey Program [176]. 
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3.2.1 Longitudinal sample weights 

 The principle behind estimation in a NPHS probability sample is that a person in 

the sample represents, beside himself/herself, several other persons who are not in the 

sample. The weights are to be included in the study to derive meaningful estimates from 

the survey. The survey weights used in the longitudinal household component of the 

NPHS are adjusted such that these weights reflect the probability of selecting the 

individuals at Cycle1 (represents the population of 1994-95) and not in subsequent 

cycles. The weights also represent the probability of selection of the unit of analysis at 

the time of sample selection. In addition, the weights are also adjusted for the non-

response and post-stratification features. Post-stratification weights are calculated by 

further post-stratifying Cycle1 stripped weights to the 1994-1995 population estimates 

based on 1996 Census counts by age group (0-11, 12-24, 25-44, 45-64, 65 and older) 

and sex within each province. The post-stratification adjustment is given by (Statistics 

Canada: Longitudinal NPHS documentation): 

Population estimate in a province/age/sex category 

Sum of �stripped� weights of respondent household members in a province/ age/ sex 

category. 

 

3.3 Description of National Population Health Survey 

 The National Population Health Survey (NPHS) is an ongoing longitudinal 

study of the health of the Canadian population. To date, the household component of 

NPHS have completed five cycles or data collection periods: NPHS Cycle1 (1994-95), 

NPHS Cycle 2 (1996-97), NPHS Cycle 3 (1998-99), NPHS Cycle 4 (2000-01) and 



 

 52

NPHS Cycle 5 (2002-03). Only those individuals surveyed in the year 1994-95 were 

studied in subsequent cycles. Data from the NPHS has been collected every second year 

and will continue so until 2014. The target population of the household component 

includes all household residents in all provinces in 1994-95, but does not include those 

residing on Indian reserves, Crown lands, in health institutions, on Canadian Forced 

Bases and in some remote areas in Ontario and Quebec. The survey collected data on 

economic, social, demographic, occupational and environmental correlates of health. 

The questionnaire included questions related to health status (self perception of health, 

functional ability, chronic conditions and activity restriction), use of health services, 

socio-demographic information such as age, sex, education, household income and 

labour force status.  

 Initially, 19,600 households were contacted, with a minimum of 1200 

households for each province. The final longitudinal sample, also called the 

�longitudinal panel�, was composed of 17,276 individual�s ages 0 to 99 years who were 

selected in Cycle 1 and completed at least the general component of the questionnaire in 

Cycle1. By Cycle5 all longitudinal respondents were 8 years old and over. The response 

rate of persons participating in the survey decreased from one cycle to the next and this 

is mainly due to non-respondents, refusals and individuals who could not be traced. 

Table 3.1 shows the sample size of longitudinal sample at the start of survey i.e. Cycle 1 

(1994-95) and complete response at the end of Cycle 5 (2002-03) A detailed description 

of the survey can be found elsewhere [176]. 
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Table 3.1 Longitudinal sample size of Cycle1 and Cycle 5 by Province 
 
 
Province Longitudinal Sample 

Cycle 1 (1994-95) 
Longitudinal Sample 

Cycle 5 (2002-03) 
Complete Response 

Newfoundland 1,082 822 
Prince Edward Island 1,037 803 
Nova Scotia 1,085 775 
New Brunswick 1,125 824 
Quebec 3,000 2,189 
Ontario 4,307 2,990 
Manitoba 1,205 921 
Saskatchewan 1,168 922 
Alberta 1,544 1,111 
British Columbia 1,723 1,189 
Total 17,276 12,546 
 

3.3.1 Study population 

 The longitudinal panel data were based on 20,095 in-scope persons who had 

completed at least General Survey component. Of the in-scope persons selected, 17,276 

responded to the general component and 16,794 people responded to the health 

component of the survey. After Cycle 3, the NPHS was purely longitudinal and the 

general or health component questionnaires were no longer distinguished. The 

longitudinal panel data consists of 17,276 participants for Cycle 1 and all subsequent 

Cycles.  

The present study is based on female respondents aged 18-64 years in Cycle 1. 

All those females who were less than 18 years and more than 64 years at the start of 

Cycle 1 were excluded from the study. Women who were pregnant in Cycle 1 were also 

excluded from the study.  The reason for including only participants aged18 to 64 years 

in this analysis was based on the evidence that body mass index, which was an 



 

 54

important covariate in the study, was calculated only on adults 18 to 64 years of age. 

Furthermore, pregnant females were also excluded from the study as body mass index is 

not calculated for these individuals. The final sample size consisted of 5841 female 

subjects. The flowchart of the final sample size selection is provided in Figure 3.2.  
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3.3.2 Data collection and non-responses 

 The survey questions were designed for a computer assisted interview (CAI) 

[176]. This CAI application was extensively pilot tested to identify errors. Interviewers 

were part time employees hired and trained specifically to conduct the survey using 

CAI interviewing techniques. In general, the respondents were contacted by telephone. 

Proxy reporting was done for respondents under 12 years of age, and 4.8% of the data 

were collected by proxy interview for respondents over 12 years of age who were 

medically infirm or who were otherwise incapacitated. Several methods were used by 

interviewers to trace non-respondents including personal visits and repeated telephone 

calls. A detailed description of survey methods can be found in Statistics Canada 

documentation for longitudinal surveys [176]. 

The response rate for Cycle 1 was calculated using the formula: 

(# of selected persons responding to the survey in 1994-95)                X 100 

 all in-scope selected persons 

The response rate for consecutive cycles was calculated as: 

(# of panel members responding or who have died or been institutionalized)          X 100 

# of longitudinal panel members (17,276) 

 In this survey, no panel members were classified out of scope, hence any 

participant who had died, moved or were interviewed in a health institution (Cycle 2 

and above) were counted as a response for longitudinal purpose [176].  Table 3.2 

summarizes the response rate, refusal rate, attrition rate and cumulative attrition rate of 

the longitudinal panel for each cycle. Refusals were the most significant source of non-

response, and about 49% of the non-response in Cycle 2, 56% in Cycle 3 and 61% in 
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Cycle 4 and 5 were a result of refusals. The refusal rates provided in Table 3.2 were 

based on all the 17,276 records, i.e. all the new refusals as well as the refusals that were 

not sent out. The refusal rate increased over the ten year time period. Attrition rates, 

calculated between two consecutive Cycles, were mainly due to loss in sample size due 

to non-respondents or participants moving out of scope (e.g. participants moving out of 

Canada and untraceable individuals). The fifth column provides the cumulative attrition 

rate which was obtained by totaling rates of the consecutive cycles. The cumulative 

attrition rate at the end of Cycle 5 was 27.4% 

 
Table 3.2 Response, refusal, attrition and cumulative attrition rate of 17,276 panel 
members for each Cycle 
 
Cycle Response Rate Refusal Rate Attrition rate Cumulative 

Attrition rate 
Cycle 1 86%* - - - 
Cycle 2 93.6% 3.1% 9.3% 9.3% 
Cycle 3 88.9% 6.2% 6.7% 15.4% 
Cycle 4 84.8% 8.9% 7.1% 21.4% 
Cycle 5 80.6% 11.3% 7.6% 27.4% 
* Cycle 1 response rate are based on 20,095 in-scope persons selected to form the panel 
 

3.4 Study variables 

3.4.1 Outcome variable of interest 

 Asthma was defined from a general questionnaire item that assessed a variety of 

chronic health conditions that lasted or were expected to last at least 6 months or more 

and that had been diagnosed by a health professional. The question was asked as �Do 

you have asthma?� The responses to this question were measured as a dichotomous (yes 

or no) outcome.  
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3.4.2 Risk factors of asthma in adult population  

 Thirteen possible covariates that were expected to be independent risk factors, 

confounders or effect modifiers for asthma were also examined: food allergies, other 

kinds of allergies, chronic bronchitis/emphysema, intestinal problems, rural/urban 

location, region of residence (province), body mass index, ethnicity, immigration status, 

current smoking status, exposure to second hand smoke, age group, income, and cycle 

(time).  

 Similar to the definition of asthma, food allergies, other allergies, 

emphysema/chronic bronchitis and intestinal problems were defined under chronic 

health conditions or long term conditions that had lasted or were expected to last six 

months or more and that had been diagnosed by a health professional. The questions 

asked in the questionnaire were regarding? �Do you have food allergies (yes/no), other 

allergies (yes/no) chronic bronchitis or emphysema (yes/no) stomach or intestinal 

problems (yes/no.)?� Negative responses to these questions were considered as the 

reference category.  

 Rural/urban �place of residence: Rural areas were defined as a �population 

living outside places of 1,000 people or more� [177-179]. Urban areas were 

continuously built up areas having a population concentration of 1000 or more and a 

population density of 400 or more per square kilometer [176]. Urban areas included 

urban core, urban fringe and urban area outside census metropolitan areas (CMA). The 

place of residence variable was a derived variable and according to the 1998 and 2000 

follow-up, the rural location included the participant staying in a rural fringe or rural 

area outside CMAs. The variable was derived based on a link between the postal code 



 

 59

of the respondent�s residence and the January 2003 postal code conversion file (PCCF). 

All the unmatched postal codes, those with no postal code provided, or where postal 

codes were not stated were considered missing and coded 9.  

 Region: The province or region of residence variable represents the participant�s 

province or region lived in at the time of data collection. This variable was collected 

separately at each Cycle. All ten provinces were accounted for by this variable. Some of 

these provinces (based on the sample size of the province) were recoded into regions. 

Newfoundland and Labrador, Prince Edward Island, Nova Scotia and New Brunswick 

formed Region 1. Quebec was Region 2; Ontario was Region 3 which was also the 

reference category. Manitoba, Saskatchewan and Alberta formed Region 4 and British 

Columbia formed Region 5. 

Body Mass Index (BMI): Body mass index (BMI) was calculated as:      

                                        Weight in kilograms X 10,000  

                                  (Height in centimeters) 2 

The height and weight of the participants was self-reported. It was not calculated for 

anyone less than three feet or more than seven feet tall. This classification was meant to 

align with the World Health Organization�s recommendations7 which are adopted 

internationally and was not intended for use with those under 18 years of age, or for 

pregnant and lactating females. 

 For the purpose of the present analysis, the baseline BMI was used. BMI was 

recoded into four categories: underweight (BMI < 18.5), normal weight (reference 

category-BMI >=18.5 and < 25.0), overweight (BMI >= 25.0 and < 30.0) and obese 

(BMI >= 30.0 and above). The obese category was obtained after combining obese class 
                                                
7 Canadian Guidelines for Body Weight Classification in Adults; www.healthcanada.ca/nutrition 
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I (BMI >= 30.0 and < 35), II (BMI >= 35.0 and < 40.0) and III (BMI >= 40.0 and 

above). 

 Ethnicity: The question on ethnicity was asked to all respondents. The question 

asked was �How would you best describe your race or colour?-White�. Those 

answering no were classified as others.  The ethnicity variable was recoded as 

Caucasian versus non-Caucasian (reference category). A refusal to answer, a �not 

stated�, or a �do not know� response were coded as missing and not included in the 

analysis.  

Immigration Status: The question of immigration status asked respondents to 

identify their immigration status only at the time during the first interview, i.e. 1994-95 

year (Cycle 1). The response to this particular question was dichotomous (yes/no) and 

all �not stated� or �do not know� responses were excluded from the analysis. 

Immigration status was a yes/no category. A positive response to this question included 

the participants who held immigrant status at the start of Cycle 1 (1994-95). A �no� 

response (reference category) included all those panel members who were Canadian 

citizens by birth. This question was not repeated at any other cycle of participation and 

the baseline value was used for analysis. 

Smoking status: The question to assess smoking status was �At the present time 

do you smoke cigarettes daily, occasionally or not at all?� Based on this question, the 

variable had six categories: daily smoker, occasional smoker but former daily smoker, 

always an occasional smoker, former daily smoker, former occasional smoker, never 

smoked and not applicable.  
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Smoking status was recoded further into three categories for analytical purposes. 

The three categories were current smoker, ex-smoker and non-smoker. The current 

smoker category was obtained by combining three categories: daily smoker, occasional 

smoker but former daily smoker and always an occasional smoker. Ex-smokers 

included former daily smokers and former occasional smokers. Non-smokers (reference 

category) included those who never smoked. Not applicable and not stated categories 

were coded as missing.  

Exposure to second hand smoke: The question was �Does anyone in the 

household smoke regularly inside the house?� The response to this question was also 

dichotomous (yes/no), and the not applicable, refusal and not stated categories were 

coded as missing. The reference category was a negative response 

Age: This was a continuous variable and was asked in every cycle during the 

time of interview. The study population included 18-64 year old female panel members 

at baseline (Cycle 1). Age was categorized as the primary interest was in studying and 

comparing the different subgroups of age. Based on quartiles, the age variable was re-

categorized into: 18-29 years, 30-49 years, 50-64 years and 65-72 years (reference 

category). This approach of categorizing continuous variable is used in practice for 

preliminary analyses which can result in easily understood summary measures[180].  

Socioeconomic status: Income adequacy was used as a measure of 

socioeconomic status. Four income adequacy groups were formed based on total 

household income and the number of people living in the household. (Table 3.3 

provides detailed description of the categories.)   
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Table 3.3 Income adequacy level based on the household income and size 
 
 
Coded value Description Income Household Size 

Less than $ 15,000 1 or 2 persons 
Less than $ 20,000 3 or 4 persons 

1 Lowest Income 

Less than $ 30,000 5 or more persons 
$ 15,000 to $ 29,000 1 or 2 persons 
$ 20,000 to $ 39,000 3 or 4 persons 

2 Lower Middle 
Income 

$ 30,000 to $ 59,000 5 or more persons 
$ 30,000 to $59,000 1 or 2 persons 
$ 40,000 to $ 79,000 3 or 4 persons 

3 Upper Middle 
Income 

$ 60,000 to $ 79,000 5 or more persons 
$ 60,000 or more 1 or 2 persons 4 Highest Income 
$ 80,000 or more 3 or 4 persons 

 

 

The derived income adequacy variable was further recoded for analysis purposes into 

three levels: lowest income (reference category), middle income (lower and upper 

middle income combined), and highest income.  

Time: This variable was created to identify the cycle of participation for each 

respondent. Based on the five cycles, this variable had five categories: 1994-95 (Cycle 

1), 1996-97 (Cycle 2), 1998-99 (Cycle 3), 2000-01 (Cycle 4) and 2002-03 (Cycle 5). 

Cycle 1 was considered to be the reference category for this variable.  

 

3.5 Data Management 

The �longitudinal square� subset of the National Population Health Survey was 

used in this study. This subset included all panel members, irrespective of their response 

pattern. Full/complete responses included panel members who provided full responses, 
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were deceased or institutionalized. Institutionalized panel members were those who 

were interviewed through the NPHS Health Institution Surveys.  

The general dissemination of longitudinal NPHS data in public use microdata file 

(PUMF) format is not allowed, but it can be accessed through Health Statistics 

Division-Population Health Surveys Remote Data Access services8. To obtain access to 

the remote data, a researcher has to obtain formal approval from the Health Statistics 

Division. The procedure involves submitting the title of the survey, goals/objective and 

brief description of the research project. After successful acceptance of the research 

project by the Health Statistics Division, researchers are provided with dummy data 

files supplied on a CD-ROM, which mimics the actual master files. Researchers 

develop and test their own computer program using the dummy data and submit their 

programs to a dedicated email address. These programs are then run on the master 

microdata files on an internal secure server. The outputs or the results are vetted for 

confidentiality reasons and then returned to the researcher via e-mail. Direct on-site 

access to the NPHS master microdata files is also possible at Statistics Canada�s 

Research Data Centers (RDC). The nearest RDC for researchers at the University of 

Saskatchewan, Saskatoon, Saskatchewan is at the University of Alberta, Edmonton. 

Since the University of Saskatchewan did not have the facility of RDC at the time of 

analysis, the services of the remote data access unit were used. 

                                                
8 http://www.statcan.ca/english/rdc/index.htm 
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CHAPTER 4 - METHODS: MODELS FOR DISCRETE 
LONGITUDINAL SURVEY DATA 

 

4.1 Introduction 

  In longitudinal survey data, the methods should account for the longitudinal 

nature, as well as account for the three features of complex survey design: clustering, 

stratification and unequal probability of selection. For a list of the available statistical 

methods for longitudinal data and longitudinal survey data, see Figure 4.1. 

  In this chapter, the statistical methods that account for the longitudinal nature of 

the data as well as the complexity of survey design will be discussed in detail.  Methods 

for each objective will be discussed separately and in detail. The marginal modeling 

approach was used for objective 1 in order to determine the risk factors for prevalence 

of asthma. For objective 2, Cox�s proportional hazard model and the discrete 

proportional hazard model were used to determine the risk factors for the incidence of 

asthma. The variance corrected and frailty model approaches were used for objective 3. 

Finally, for objective 4, the missing data approach was used to analyze the data. 
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4.2 Objective 1: Marginal modeling approach 

  The primary focus of the first objective was to compute the crude and adjusted 

prevalence rates for asthma, using the longitudinal NPHS data set. In section 4.2.1, the 

methods used to calculate the crude prevalence rate using model-based and design-

based approach will be discussed. To estimate the adjusted prevalence rate, marginal 

modeling approach was used. The model-based and design-based variance estimates of 

regression coefficients were compared. The model-based analysis based on the GEE 

approach is discussed in section 4.2.2. The design-based approach for variance 

estimation proposed by Rao [3] is discussed in section 4.2.3. The notations of the 

matrices and vectors, to understand the mathematical theory in the following sections, 

are given in appendix A.   

4.2.1 Crude prevalence estimation 

  Prevalence proportion is defined as �the proportion of people in a population 

that has disease� [181]. Prevalence proportion in equation form can be written as: 

(P individuals in the population those who have disease at a given time) 

 (Population of size N)  

The prevalence proportion calculated for complex survey design should take into 

account the weight variable. The weight variable accounts for the unequal probability of 

selection. However, survey weight which is calculated specially for the longitudinal 

survey data by methodologists at Statistics Canada is not enough to calculate the 

standard error or 95% confidence interval. If the clustering and stratification along with 
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the weight variable is not taken into account to estimate the variance, it can result in 

biased or false standard errors.  

  To calculate the standard error and the 95% confidence interval, two most 

commonly used methods are the bootstrap method and the Taylor linearization method. 

These two methods take into account the complexity of survey design to provide correct 

estimates of standard errors and hence 95% confidence interval. In the following 

section, the Rao-Wu Bootstrap and Taylor linearization methods are explained in detail. 

 

4.2.1.1 Rao and Wu Bootstrap Method for variance estimation of crude prevalence  

   Resampling methods for independent and identically distributed (i.i.d.) data of 

fixed sample size n have been studied by Efron [182]. Rao and Wu [2] extended the 

i.i.d. bootstrap to multi-stage sampling designs to calculate nonlinear statistics. Later, 

the Rao and Wu [2] resampling method was modified by Rao, Wu and Yue [183] to 

include the non-smooth statistics, and this method was implemented in the NPHS to 

calculate the nonlinear statistics and their standard errors [183, 184]. Consider the L 

design strata, hth stratum with Nh clusters and nh ≥ 2 sampled clusters with h = 1,��..,L 

and i = 1,��.,nh. An estimator of the total Y, is obtained using yhik and design weights, 

whik, associated with kth sample element in ith cluster of stratum h by [183, 184], 

hikhik ywY
S(hik)∑ ∈

∧
=  

The variance is calculated as follows [184]: 
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(1) The bootstrap weights are independently calculated by first selecting a simple 

random sample with replacement of nh-1 clusters from nh sampled clusters for each 

stratum.  

   hik
*
hi wm

1n
nw
h

h*
hik −

=                                               (4.2.1)  

*
him is defined as number of times (hi)th cluster is selected and 1nm h

*

hii
−=∑  

(2) The bootstrap weights obtained are post stratified in the same way as the survey 

weights to get the final weights. The estimates 
*∧

θ  are obtained by replacing the survey 

weights with the final bootstrap weights.  

(3) Steps 1 and 2 are replicated B (e.g., 500) times to calculate the estimates, 

*

)500(

*

)1( ,......
∧∧
θθ  

(4) Finally the bootstrap variance estimator for 
∧
θ  is calculated as: 

 
2

∑ 












−=








 ∧∧∧

b

*

(.)(b)
*

B θθθ
B
1v , where .1 *

(b)b

*

(.) θθ ∑
∧∧

=
B

                     (4.2.2) 

 

4.2.1.2 Taylor Linearization Method 

  This methodology is used to obtain an approximation of some nonlinear 

function through a linear or higher-order polynomial function. In the literature, the 

linear version of this method is also referred to as linearization, delta method and 

propagation of variance method [107]. For complex surveys, the Taylor approximation 
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is applied to the Primary Sampling Units (PSU) totals within that particular stratum. 

The variance estimate is formed as a weighted combination of  

   ( )
.

,i ij
j

fw yyθ   ∂=   ∂  
∑ ∑V V                                                            (4.2.3) 

across the PSUs within the same stratum. Here ),,......,,( 21 cxxxf=θ  where ix are c 

random variables in a sample of n observations, iw  is the weight for observation i, 

i=1,��,n (sample observations) and j=1,��,c (random variables). The above formula 

was suggested by Woodruff [185]. While this formula seems complex, it does have 

some advantages, no covariance calculation is needed and it is efficient in terms of 

computation time compared to replication based methods such as balanced repeated 

replication and jackknife replication [107]. Jackknife replication method can only be 

used to obtain the variance estimate for mean, the regression coefficients and, for 

example, cannot be used for median and other percentiles [107].  

 

4.2.2 Adjusted prevalence rates using marginal modeling approach 

Marginal models based on the GEE approach to analyze longitudinal complex 

survey data are known as model-based. These model-based models accounts only for 

within-subject correlations arising due to repeated measurements per subject. To 

account for the design effects, such as stratification and clustering, a replicate approach 

for the variance estimation is needed. Design-based models which accounts for design 

effects are explained in section 4.2.2.1 
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4.2.2.1 GEE for binary data9 

 Consider Yij, a dichotomous outcome variable which assumes the logit model for 

the first order marginal probabilities 

logit [Pr(Yit =1)] = logit µit  = it
T
tis

T
s

it

it xβxβ +=
−

)
1

log(
µ

µ ,                                 (4.2.4) 

t = 1,��.., T(occasions) and i= 1,��..,m (individuals), T
sβ is a vector of stationary 

covariates, and T
tβ is a vector of time varying covariates 

}exp{1

)exp{

it
,
tis

,
s

it
,
tis

,
s

it
xβxβ

xβxβ

++

+
=µ , where xis = design-matrix of time stationary covariates and 

xit = design-matrix of time varying covariates 

A set of score equations for a marginal normal model is given by   

 ( ) ( ) ( ) 0,)A(ADβU
N

1i

1
i

T
i =−ℜ=∑

=

−
ii

\
i

\
i µyα 2121                                                (4.2.5) 

where T
∂= ∂

i
i

µD β
and µi is the mean function, and Vi is a working covariance matrix of 

outcome variable Yi= ( )T
iji YY ,......,1 a t x 1 vector of i=1,��,m individuals observed at T 

occasions, ( )Tiji1,......,XX=iX is  t X P matrix of covariates for individual i. In 

equation 4.2.5 the working covariance structure, Vi is written in a decomposed 

form: ( ) 2\1
ii

2\1
ii AAV αℜ= , where iA =diag [var(Yi1),��.,var(Yij)], and ( )αiℜ =corr (Yi) 

is a T X T  �working� correlation matrix and α  is a vector of parameters which are 

usually associated with a specified model for corr(Yi) [186]. The above equations 

                                                
9 This section is developed from Internal report, January 2006, Statistics Canada and personal 
communication with Susana Rubin Bluer of Statistics Canada 
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reduce to independent equations if ( )αiℜ is the identity matrix. ( )αR is usually 

estimated by a method of moments; all the elements, including the diagonal elements 

are estimated by ( ) ( )tutuρ�� =αR  are  

 

.5,4,3,2,1,,
))((1�
22

=
−−

−−
= ∑ ut

YY

M i iuiuitit

iuitit
tu

iu

µµµµ

µµ
ρ                          (4.2.6) 

 
 The GEE estimator GEEβ�  is the solution of the set of score equations 4.2.9. The 

solution of the census GEE is obtained by iteration: 

 
1 1

( ) ( 1) ( 1) ( 1) ( 1) 1 1

1 1
( ) ( ) ( )

M M
k k k k kGEE

GEE i i i i i i i
i i

Y µ
− −

− − − − − −

= =

 ∂  ′ ′= − ⋅ = + −   ∂   
∑ ∑Uβ β β U β β D V D D V

β
          

                                                                                                                                 (4.2.7) 

Note that in the equation 4.2.5, 







∂

∂
β

UGEE  is replaced by its expected value 

.       where 1/2
i

11/2
i

1
i

M

1i
i

1
ii ARAV,DVD −−−−

=

− =′∑  

 
and all matrices above are calculated at ( ))1()1(

1
)1()1( ,...,, −−−− ′′′=′ k

T
kk

s
k ββββ : 

 
 

1 1 2 2 3 3 4 4

1 1 1

2 2 2

3 3 3

4 4 4

is i i is i i is i i is i i

i i i

i i i

i i i

i i i

− − − − 
 − 
 ′ = −
 − 
 − 

i

x µ (1 µ ) x µ (1 µ ) x µ (1 µ ) x µ (1 µ )
x µ (1 µ ) 0 0 0

D 0 x µ (1 µ ) 0 0
0 0 x µ (1 µ ) 0
0 0 0 x µ (1 µ )

 where all the means are 

calculated by 
 

{ }
{ }

( 1) ( 1)
1

( 1) ( 1)

exp
( )          

1 exp

k k
s is t it(k )

it k k
s is t it

µ
− −

−
− −

′ ′+
=

′ ′+ +

β x β x
β

β x β x
                                                                       (4.2.8) 

 
Similarly, the matrix 
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−−
=−

2
55

2
11

1,....,1

iiii

Diag
µµµµ

1/2
iA with ( 1)( ), t 1,2,3,4,5.         k

itµ −= =itµ β (T = 5), 

 
and the estimated correlation matrix ( )tutuρ�� =R with 
 
 

1 1

1 2 1 1 2 1

1� .iu

(k ) (k )
it it iu

(k ) (k ) (k ) (k )
i it it iu iu

(Y µ ( ))(Y µ ( ))
t u

M µ ( ) µ ( ) µ ( ) µ ( )

− −
−

− − − −

− −
= ≠

− −
∑(k 1)

tu

β β
ρ (β ) ,

β β β β
           (4.2.9) 

 
 
The variance of   GEEβ�  is consistently estimated by 
 

( )( - ) .i i i iY Yµ µ
− −

− −

= = =

    ′ ′ ′ ′−    
    
∑ ∑ ∑

1 1M M M
1 1

i i i i i i i i
i 1 i 1 i 1

D V D D D D V D                                           (4.2.10) 

 
 The GEE accounts for within-subject correlation, which results in consistent 

estimates. Efficiency increases when the assumed correlation structure is closer to the 

true correlation structure. The main inference is on the model-based coefficients, while 

the intra-cluster dependence is merely a nuisance characteristic, merely accounted for, 

but not subject to modeling in the classical sense. GEE method can be used for 

Gaussian and non-Gaussian outcomes alike [37]. The GEE method provides consistent 

estimates of  regression coefficients even under minimal assumption about the time 

dependence [37].  

 

4.2.2.2 Survey GEE accounting for the design effects10 

 Consider a longitudinal study with T occasions of measurements and the finite 

longitudinal population of size M are clustered into N primary sampling units, also 

known as primary sampling units (psu). The subscript i in equation 4.2.4 is changed to 

                                                
10 Refer to Appendix C.1 for SAS macro 
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hik in survey data, where h is the strata, i  is the cluster in hth strata, and k is the subject 

in ith cluster and hth strata. For each stratum h, Nn and Mhi are, respectively, the number 

of clusters in stratum h and the number of secondary units in the cluster hi, i = 1,��., 

Nn and h = 1,��..,L 

Assume the same logit model for the first order marginal probabilities as in eq 4.2.4 

 The Survey independent estimating equations (IEE) estimators are [3] 

∑
∈

− =−=
lShik

hikhikhikhikhik y 0)() 1, µω VD(βUIEE
^

                                  (4.2.11) 

Sl represents the longitudinal sample and ωhik represents the longitudinal weight. 

To calculate the survey IEE estimator IEE

^
β , we do the iteration 

1^
^ ^ ^ ^

( ) ( 1) ( 1) . ( 1)IEE
IEEIEEIEE IEEK K K K

−
 ∂     = − − − −    ∂    
 

^

IEE
Uβ β β U β
β

                       (4.2.12) 

Where 
^

IEEU is the survey estimate of the independent estimating equation defined above 

and 
















∂
∂
β

U
^
IEE  is replaced by its expectation: hikhik

Shik
hikhik

l

DAD
β

U
^
IEE 1, −

∈
∑≈

















∂
∂ ω  

Where 













−−
=−

2
44

2
11

1 1,........,1

hikhikhikhik
hik Diag

µµµµ
A   

The Survey Generalized Estimating Equation (GEE) estimator proposed by Rao (1998) 

is of the form: 

( ) ( ) ( ) ( ) ( ) 0)(2/1
1

2/1`^
=−= −

−
−

∈
∑ βµβββωβ hikhikhikhik

Shik
hikhikGEE y

l

∆R∆DU
^

   (4.2.13) 
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Where the matrix of �correlation� 
^
R  now has the form ( )tuturR =

^
: with  

∑
∈









−















−


























−


















−

=
lShik

IEEiuIEEiuIEEitIEEit

IEEhikuhikuIEEhikthikt

hiktu

yy

^2^^2^

^^

ββββ

ββ

r

µµµµ

µµ
ω  

where ∑
∈ lShik

hikω , t and u = 1, ��..,5 

The estimator GEE
^
β  is defined as the solution of the survey GEE (4.2.13). 

GEE
^
β  is calculated through iteration,  where the GEE

^
β  (K-1) change at each 

iterations, but ( )tutur=
^
R  is fixed throughout the iterations to calculate GEE

^
β  

The variance matrix of GEE

^
β can be consistently estimated by 

_1 1^ ^ ^ ^
  . .G GGEE GEE GEE GEEβ ν

−       =       
       

^ ^
ν J β U J β                                                           (4.2.14) 

evaluated at β = GEE

^
β  with 

( ) ( ) ( ) ( )βββωβ hikhikhik
Shik

hik
l

DADJG
^ 1' −

∈
∑−=  and 






 ^

GEEUν ,                                 (4.2.15) 

 evaluated at β = GEE

^
β , is the survey design variances of a survey total and can be 

estimated by bootstrap, calculating for each one of the 500 sets of bootstrap weights 

estimated. 

( ) ( ) ( )hikhikhikhikhik
Shik

hikGEEGEE ybb
l

µωβ −=






 −−

∈

−

∑ 2/12/1'^
∆R∆DU

1^^
                     (4.2.16) 
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b= 1,.., 500 

And then calculate: 

( ) ( )( )′−−= ∑
=

)()(
500

1

)()( ����
500

1� b
GEE

b
GEE

b

b
GEE

b
GEEGEE nn UUUUUν  

For inference, we estimate the variance of ),�( GEEGEEn β−β which is ( ).β�GEEnv  
 

4.2.3 Statistical application: Objective 1 

4.2.3.1 Crude prevalence of asthma 

 The crude prevalence proportion of asthma was calculated using model-based 

and design-based approaches. SAS procedure GENMOD was used for the model-based 

method. SAS (available on version 9 onwards) procedure SURVEY LOGISTIC and 

BOOTVAR macro was used for the design-based method. SURVEY LOGISTIC 

procedure fits linear logistic regression models for discrete survey data by the method 

of maximum likelihood. This procedure incorporates complex survey design. The 

variances of the regression estimates and odds ratios are computed using Taylor 

expansion approximation [109]. BOOTVAR macro was developed by the 

methodologists at Statistics Canada, was used as another design-based method. This 

macro is based on Rao-Wu�s [2, 187] bootstrap method to calculate the parameter 

estimates and standard errors.  
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4.2.3.2 Adjusted prevalence of asthma using marginal modeling approach 

 The adjusted prevalence of asthma was computed by utilizing a logistic 

regression model adjusted for important covariates. The adjusted model was fitted using 

SAS procedure GENMOD for the model-based approach. Two macros in SAS language 

were written in order to compute the variance estimates. The first SAS macro based on 

the marginal modeling approach proposed by Rao [3] was written to account for the 

complex survey design11. The second SAS macro was an extension of the BOOTVAR 

macro developed by methodologist at Statistics Canada. The extension of the 

BOOTVAR macro used the GEE approach to account for the longitudinal nature of the 

data, as well as the complex survey design. BOOTVAR macro was modified by Prof. 

Lam [188] at Queen�s University, Canada, to account for the complexities of the survey 

design and the longitudinal nature of survey data.  

 Standard model building strategies were used to choose the final model, and also 

to check for potential outliers. Wald statistics was used to assess the model assumptions 

and model fit. The design variables were also included in the final model even if these 

variables were not significant at univariate level.  

 The SAS procedure GENMOD and the two SAS macros used to fit the marginal 

model assumed four different correlation structures: independent, exchangeable, Auto 

regressive (first order) and unstructured. The independent correlation structure assumes 

that the repeated observations are not correlated. The exchangeable correlation matrix 

assumes all the off diagonal elements of the covariance matrix are the same, i.e., the 

correlation between any two repeated observations are the same. The unstructured 

                                                
11 Refer to Appendix c.2 for SAS macro 
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correlation matrix assumes that the off diagonal elements of the covariance matrix are 

to be estimated. Finally, the auto regressive correlation matrix based on equally spaced 

observations assumes that the correlation decreases over time. A detailed description of 

the correlation structures can be found else where [189]. 

 The methods used to obtain crude and adjusted prevalence rate of asthma is 

summarized in Figure 4.2 
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Figure 4.2 Methods used to obtain prevalence of asthma  

Adjusted prevalence 

Model-based methods Design-based 
methods

GEE proposed by Liang and Zeger [1] 
(standard longitudinal data analysis 
methods), accounts for the repeated 
measurement and unequal probability 
of selection. 
Software: SAS procedure GENMOD, 
with repeated option 

Survey GEE [3]and modified BOOTVAR  
and , accounts for the complexity of survey 
design (stratification, clustering and 
unequal probability of selection) and 
repeated measurements.  
Software: SurveyGEE Macro and 
Modified BOOTVAR 
 

Crude Prevalence 

Rao-Wu Bootstrap 
[2] method to obtain 
standard errors 
Software: 
BOOTVAR Macro 

Taylor linearization 
method to obtain 
standard errors 
Software: SURVEY 
LOGISTIC (SAS) 

Model-based 
method 

Design-based 
method 

GEE proposed by 
Liang and Zeger [1]. 
Software: SAS 
procedure GENMOD 
with clustered option 
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4.3 Objective 2: proportional hazard model 

 To determine the adjusted incidence rates of asthma in the female Canadian 

population, the proportional hazard model was used. The crude incidence rate was 

calculated using incidence density and the cumulative incidence formula (see section 

4.3.1). To examine the effect of risk factors (or covariates) on incidences of asthma, see 

the discrete proportional hazard model discussed in section 4.3.2 and Cox�s 

proportional hazard model discussed in section 4.3.3.  

 

4.3.1 Crude incidence analysis 

 Incidence is defined as �the number of new events of a specific disease during a 

specified period of time in a specified population� [190]. In the present analysis, two 

different methods were used to calculate the incidence rate. The incidence rate is 

defined as �the rate at which new events, or new cases, occur in a specified time in a 

defined population that is at risk of experiencing the condition or event� [190].  

Incidence rate = (Number of new events in a specified period)                               (4.3.1) 

                           (Number of people exposed to risk in this period)  

 The methods explained below are for cumulative incidence and incidence 

density. The basic difference between incidence and cumulative density is that the first 

one tells how likely an event is to happen at any moment in time, whereas the second 

one provides the rate for a defined population and for a specified period of time. If the 

time period is short, then both the density rates are same. Usually for determining the 

incidence of a population incidence, density rate is preferred over the cumulative 

density rates for the reason stated above.  
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 Cumulative Incidence is defined as �the number of people who become infected 

during a specific period of time as a proportion of a specific population at risk of the 

disease� [190]. 

Cumulative Incidence = (Number of new cases during a given period of time)      (4.3.2) 

                   (Population at risk)  

 Incidence density is a more precise estimate of the rate of occurrence of a 

particular disease, as it accounts for the varying time periods of follow up [190]. 

Incidence density = (Number of new cases during a given period)                          (4.3.3) 

                       (Total person-time of observation) 

 The numerator of the cumulative incidence and the incidence density are the 

same: the difference is only in the denominator. The denominator for the cumulative 

incidence is the population at risk where as for incidence density is the sum of each 

individual�s time at risk or the sum of the time that each person remained under 

observation and free from disease [190].  

 

4.3.2 Cox�s proportional hazard model 

 Cox [45] introduced a large family of models which focused directly on the 

hazard function. Proportional hazard model is the simplest member of the family, where 

the hazard at time for an individual with covariates Xi is assumed to be 

( ) ( ) { }βλλ T
iii tt XX exp| 0=                                         (4.3.4) 

where ( )t0λ  is the baseline hazard function that describes the risk for individual with  
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Xi = 0;  { }βT
iXexp  is the relative risk, a proportionate increase or reduction in the risk 

associated with the set of characteristics Xi  

( ) ( )tt ii 0| λλ =X    if Xi =0 (risk at time t in group zero) 

                ( ) { }βλ exp0 t=  if Xi =1 

r= { }βexp  represents the ratio of the risk on group one relative to group zero at any 

time t 

Taking log on both sides of equation 4.3.1 we get, 

{ }[ ]βλλ T
iii tt XX exp)(log)|(log 0=  

                                βλ T
it X+= ))(log( 0  

           0 ( ) T
it Xα β= +                             (4.3.5) 

where ))(log()( 00 tt λα = is the log of the baseline hazard. 

If we integrate equation 4.3.5 from 0 to t, we get cumulative hazards 

( ) βαλ ∫∫∫ +=
t

T
i

tt

o
ii tt

00
0 )(|log XX  

( ) { }βT
iii tt XX exp)(| 0Λ=Λ  are the cumulative hazards. 

 The time varying covariates and time dependent effects may be combined to 

give the most general version of the hazard rate model as, 

{ })()(exp)())(|( 0 ttttt T
iii βXX λλ =  

Where )(tiX is a vector of time varying covariates representing the characteristics of 

individual i at time t and β(t) is a vector of time dependent coefficients. 
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4.3.3 Discrete proportional hazard model 

 In survival analysis, the outcome measure is time to an event. In the NPHS 

dataset, the exact time to event occurrence is not reported, and only the time interval is 

known, hence such kind of data are called �interval censored data� and such 

phenomenon is called �interval censoring�. 

Let pi = probability that an individual is diagnosed with asthma in their interval of 

observation. Then ( ){ }00 |,Pr ii
f

iiii tRttRp ≥∈=  

Where Ri is the time to failure for ith individual, a non-negative random variable 

0
it is the inception time, or the start time (in our case it is the start of the Cycle 2) 

f
it is the final time (in our case end of Cycle 5) 

 The hazard rate (λi) is defined as the rate of failing at time t given survival until 

that time. If we assume that the incidence process fits a proportional hazards model, 

then the hazard rate for subject i depend on subject factors Xi in a log-linear fashion, 

independent of time ti. 

βλλ T
ii tt X+= )(log)(log 0                             (4.3.6) 

where )(0 tλ is baseline hazard rate (for those individuals with Xi = 0) 

The discrete hazard or probability λij (that an individual i will die in the interval j given 

that the individual was alive at the start of the interval) can be written as: 

{ }00 |),(Pr1 ii
f

iiiij tRttR ≥∈−=λ  

        ( )
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Taking log on both sides 
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Again taking log on both sides we get, 
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The expression dtt

f
i

i

t

t

)(
0

0∫λ  is the baseline risk on time interval ( )f
ii tt ,0 , as long as λ0 (t) 

does not vary greatly over time span of interest approximately ( )∫
−

−≈

f
i

i

t

t
i

f
i ttdtt
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0λ is the mean baseline hazard. 

Equation 4.3.7 can be rewritten as: 
−
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0 log)log( i
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0 log i
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T
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where 00 )log( βλ =
−

 

When expanding this formula for the multiple data i.e. for repeated events there is 

separate record for each subject for different time points. 

( )( ) ( )0
0 log1loglog ij

f
ijj

T
ijij tt −++=−− ββλ X   

where ijλ  is the hazard for individual i at jth time point or cycle, ( )0
ij

f
ij tt −  is the risk 

time, and j0β  allows possible variation in the baseline hazards across cycles or time 

points. 
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4.3.3.1 Discrete survival and the complimentary log-log link  

 The extension of the proportional hazard model to discrete time proposed by 

Cox [45] by working with the conditional odds of dying (an event) at each time tj, he 

proposed the model 
( )

( ) { }β
λ

λ
λ

λ T
i

j

j

ij

ij
t

t
Xt

Xt
Xexp

)(1
)(

|1
|

0

0
−

=
−

                                        (4.3.8) 

 Where ( )ijt X|λ  is hazard at time tj for an individual with covariate values Xi 

)(0 jtλ is the baseline hazard at time tj and { }βT
iXexp  is the relative risk associated 

with covariate values Xi. 

On taking log on both sides of equation 4.3.8, we get 
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j i j ilogit t X logit t Xλ λ β= + βα T

ij X+= 0  

where )(0 jj titlog λα = is the logit of the baseline hazard. βT
iX  is the effect of the 

covariates on the logit of hazard. The model treats time as a discrete factor by 

introducing one parameter αj for each possible time of death (event) tj.  

 The survival function in a proportional hazard framework can be written as  

[ ]βT
ijij tSXtS Xexp

0 )()|( =  

where )|( ijtS X  is the probability that an individual with covariate values Xi will 

survive up to time point tj and )(0 jtS  is the baseline survival function.  
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The compliment of hazard function ( ) exp[ ]
01 | 1 ( )

T
iX

j i jt X t βλ λ − = −  , from this equation 

hazard function can be obtained for individual i at time point tj is  

( ) }exp{
0 )](1[1| βλλ

T
ijij tt XX −−=  

This model can be fitted to discrete survival data by generating pseudo observations and 

fitting a generalized linear model with binomial error structure and complementary log-

log link. 

 

4.3.4 Statistical application: objective 2 

4.3.4.1 Data arrangement for incidence analysis   

 The crude incidence rate was calculated using the incidence density rate and 

cumulative incidence rate. Before starting with the incidence rate calculations, the 

dataset needed to be rearranged to perform survival analysis. Three new variables were 

created: event, agein and ageout. Event variable was a dichotomous variable with values 

of 1 and 0. Event was equal to 1 if the individual responded yes to the asthma question 

or, in other words, was diagnosed with asthma. Event was equal to 0 if the individual 

was not diagnosed with asthma i.e. the individual was considered censored. As soon as 

the individual experienced the event, a value equal to one was assigned, and any further 

information from the rest of the cycles were not considered for further analysis. The 

other two variables created were agein and ageout. Agein is the age of the individual at 

the start of the cycle. Ageout is the age of the individual at which the person was 
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diagnosed with asthma. The time scale used is the subject�s age as this was the only 

scale that had a common meaning across all the subjects.  

 For example, an individual who experienced an event, i.e., was diagnosed with 

asthma in Cycle 3, then will have values for event, agein and ageout of (0, 34, 36), (0, 

36, 38), (1,38,40) and (.,40,42). The event variable will have the following value (event 

1: 0, event 2: 1, event 3:., event 4:.), and for an individual who was not diagnosed with 

asthma in any of the cycles will have value (event 1: 0, event 2: 0, event 3: 0, event 4: 

0). Figure 4.3 provides a diagrammatic representation of selecting new asthma cases.  
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Figure 4.3 Diagrammatic representation of selecting new cases of asthma at each cycle 
 

4.3.4.2 Crude incidence analysis 

 The incidence density rate was calculated using the equation 4.3.3. The data 

were collected every two years, and the exact time to asthma occurrence was not 

available. Hence, the person years of follow up was calculated as 
2
1)( −− o

i
f

i tt (length 

of the last between wave intervals) [191]. f
it is the time at which the individual may or 
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may not have had asthma and o
it the inception or start time at which the individual did 

not had asthma.  

Total person years were calculated as: (new cases at cycle 2*2 + new cases at cycle 3*4 

+ new cases at cycle 4*6 + new cases at cycle 5*8 + all censored cases*8). 

The person time and the incidence rate of new cases was calculated using STATA 

command STPTIME. The incidence rate was calculated for: 

1. new cases of asthma - overall 

2. stratified by cycle 

3. stratified by each of the categorical covariates included in the final model 

Weighted and unweighted analyses were performed to obtain the incidence 

 rates. 

Cumulative incidence rate was hand calculated as follows:  

Total number of new cases at the end of Cycle 5 = New cases at (Cycle 1 + Cycle 2 + 

Cycle 3 + Cycle 4 + Cycle 5) 

Total number of new cases at the end of cycle 5 was = 128 + 90 + 62 + 48 = 328 

Total population at risk = 3977 

Cumulative incidence rate over a period of 8 years i.e. from end of Cycle 1 to end of 

Cycle 5 = %24.8100
3977
328 =×   

Cumulative incidence rate over 2 year period i.e. Cycle 1 to Cycle 2 = 

%06.2
8
24.82 =×  
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Cumulative incidence rate over 4 year period i.e. Cycle 1 to Cycle 3 = 

%12.4
8
24.84 =×  

Cumulative incidence rate over 6 year period i.e. Cycle 1 to Cycle 4 = 

%19.6
8
24.86 =×  

The crude rate ratio was calculated using the STATA command STMH command.  The 

ratio of the rates between two groups was also calculated. These rate ratios were 

calculated for all the important risk factors or covariates with respect to the reference 

category, and were calculated using the STATA command STMH. The rate ratio was 

estimated as RR=

2
2

1
1

T
a

T
a  and the 95% confidence interval was calculated as RR 

21 /1/196.1 aae +±× , where a1 and a2 is total number of event and T1 and T2 is the 

total person year for group 1 and 2 respectively. STMH command in STATA calculates 

the stratified rate ratio and significance tests using a Mantel-Haenszel type method . 

 

4.3.4.3 Adjusted incidence of asthma 

 To examine the effect of risk factors or covariates on incidence of asthma, a 

discrete version of the proportional hazard regression model was used. The purpose of 

proportional hazard regression model was to find a parsimonious form which can 

describe the incidence rate of asthma between o
it (start of cycle 2) and f

it (final time, end 

of cycle 5). Outcome measure was time to an event (asthma). Since the exact time of 
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asthma occurrence was not reported, the time interval was used for these analyses. Such 

kind of data as mentioned before are called �interval censored� [192]. 

 The first step involved calculating the unadjusted rate ratios, which were 

calculated with just one covariate in the model. Standard model building strategies were 

used to choose variables for the final model. Design variables were included in the 

model even if these variables were not significant at the univariate level. Schoenfeld 

residuals were used to test the proportional hazard model assumptions and model fit. 

The discrete proportional hazard model and Cox proportional hazard models were used 

to obtain the most parsimonious model.  

 The discrete proportional hazard model is a discrete survival analysis that 

enables regression techniques to be applied for relating incidences of a disease, such as 

new asthma cases, to subject level covariates, such as body mass index and smoking 

[191]. This method is a discrete version of the proportional hazard regression model 

which is commonly used in survival analysis [192, 193]. The complementary log-log 

transformation was used to obtain the hazard rates[191, 193], as it has been shown that 

this log-log transformation also follows a linear model in Xi . 

 For the discrete proportional hazard model, the GLM command was used in 

STATA. The GLM command fits the generalized linear model, using the Newton-

Raphson optimization method. When the weight option is specified in the GLM 

statement, then robust is implied meaning that the Huber/White/Sandwich estimator of 

variance is used in place of traditional calculations. The robust standard errors are 

calculated using RGLM [194] command in STATA using robust generalized linear. 
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RGLM  fits the generalized linear models and calculates a Huber (Sandwich) estimate 

of variance co-variance matrix of estimates.  

 For fitting the Cox�s proportional hazard model, the STCOX command was used 

in STATA. Cox�s proportional hazard model using the STCOX command is fitted via 

the maximum likelihood approach. Prior to using the STCOX command, the data needs 

to be declared survival-time data. In the STSET command when the weight option is 

specified, by default, it calculates the jackknife variance estimates. To calculate the 

robust standard errors for Cox�s proportional hazard model, the robust option was 

specified in the STCOX statement, and the survival data was reset without specifying 

any sampling weights. When the robust option is specified, the variance-covariance 

matrix is calculated  using Lin and Wei�s [112] robust estimation method instead of the 

traditional method. The robust calculation is usually conducted to obtain the efficient 

score residual for each subject in the data for calculating the variance. The 

proportionality hazard assumption was tested using the STPHTEST, which is/was based 

on Schoenfeld residuals.  

Methods used to calculate the incidence of asthma (crude and adjusted) are summarized 

in Figure 4.4 
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Figure 4.4 Methods used to calculate incidence of asthma 

 

4.4 Objective 3: Variance corrected and frailty models 

 The third objective was to compare the variance corrected model and the frailty 

model for recurrent event data. In recent years, the focus was to apply survival analysis 

techniques to analyze data with multiple events per subject for non-survey data. Most of 

the methods developed are an extension of the Cox�s proportional hazard model. The 

Cox proportional hazard model assumes that observations are independent and the 

model is not applicable to data consisting of multiple events per subjects, which leads to 
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correlated observations per subject. Several methods have been proposed in the 

literature to analyze data which consists of correlated events per subject. Variance 

corrected models are discussed in section 4.4.1 which are an extension of the Cox�s 

proportional hazard model for multiple events data. Frailty models discussed in section 

4.4.2 are utilized when there is unobserved heterogeneity present.  

 

4.4.1 Variance corrected models  

 In this section, the marginal modeling approach will be discussed.  The variance 

corrected approach has more in common with the generalized estimating equations 

approach proposed by Liang and Zeger [1] and Zeger and Liang [37]. Three common 

approaches used for the variance corrected models are: the Andersen and Gill (AG) [58] 

model, Wei, Lin and Wiessfeld (WLW) [63] and Prentice, Williams and Petersen 

(PWP) [65]. Section 4.4.1.1 explains the AG approach, the WLW model is explained in 

section 4.4.1.2, and finally, the PWP method is explained in section 4.4.1.3.  

 

4.4.1.1 Andersen and Gill approach  

 This method is the simplest of all the three methods which are discussed; 

however, it makes very strong assumptions of independent increment (see appendix A 

for definition), especially if ordering of event is necessary. It is very close to the 

Poisson regression and can be accurately approximated with the Poisson regression 

software [60]. In this process, rows of data with time intervals (entry time, first event], 

(first event, second event], ��.., (mth event, last follow-up] are used to represent each 
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subject [60]. The first observation may or may not begin at zero, depending on the time 

scale. The intensity process for the ith subject when the time scale is �time since entry� 

is given as: ( ) ( ){ } ( )dtetFtdNEdtt tX
ti

')(
0 )(| βλλ == −                        (4.4.1) 

where N(t) be the number of events per subject over the interval [0 (entry time), t(last 

follow-up time)], X(.) be the covariate process of the subject, Ft- represents all the 

information of the processes N and X up to time t,  )(0 tλ  is an arbitrary baseline 

intensity function and β is the vector of regression coefficients.  

 The above equation has two components: the covariates have multiplicative 

effects on the instantaneous rate of the counting processes and the influences of the 

prior events on future recurrences, is done through the time-dependent covariates. AG 

model is similar to Cox�s model, the difference being in the definition of λi (t). With 

recurrent data, λi (t) is equal to one in case an event occurs for the AG model. Whereas 

for Cox�s model, the individual ceases to be at risk when the event occurs and the value 

of λi  goes to zero [60]. As suggested by Therneau and Grambsch [60], this method is 

best suited for the cases when the assumption of mutual independence of observations 

with a subject is made. Which is similar to the assumption of counting processes when 

�the numbers of events in non-overlapping time intervals are independent, given the 

covariates� [60].  

 

4.4.1.2 Wei, Lin and Wiessfeld (WLW) model 

 Another method for analyzing multiple events data proposed by Wei, Lin and 

Weissfeld [63]  is the WLW model, also known as the marginal Cox model. The 
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intensity or hazard function for the jth event and ith subject is given by the following 

equation: ( )( )jijij ttt βXexp)()( 0λλ =                                                            (4.4.2) 

where )(0 tjλ  is the event-specific baseline hazard function for the jth event, βj is the 

event specific column vector of regression coefficients for the jth event. WLW method 

estimates β1, β2, ��.. βj by maximum partial likelihood estimates
^

2

^

1

^
,........,, jβββ , 

respectively, and uses a robust sandwich covariance matrix estimate for 








 '^'

2

^'

1

^
,........,, jβββ to account for the dependence of the multiple failure times. The value of 

λij(t) is one until the occurrence of the jth event, it takes the value zero in case of 

censoring or non-occurrence of an event.  

 

4.4.1.3 Prentice, William and Peterson (PWP) model 

 The PWP model proposed by Prentice, William and Peterson [65] is also called 

the conditional model. The assumption of this model is based on the condition that the 

second event cannot occur until the  first event has occurred [60]. In general, it can be 

summarized that a subject or individual is not at risk at kth time point if that subject has 

not experienced (k-1) th the event.  

 The PWP model considers two time scales. One is the total time, which 

considers time from the beginning of the study, and the other one is called gap time 

following immediately after failure time. This model is a stratified Cox-type model, and 

the shape of the hazard functions depends on the characteristics of N (t), the number of 

events an individual experiences by time t and X(t) the covariate vector of an individual 

at time t. The total time model is given by the formula:  
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( ) ( ) '
0j| exp( ( )),t jt F t X tλ λ β− =   jj ttt ≤<−1              (4.4.3) 

and the gap time model is given by the formula:  

( ) ( ) ( )'
0j 1| exp ( ) ,t j jt F t t X tλ λ β− −= −  jj ttt ≤<−1               (4.4.4) 

Where λ0j is an arbitrary baseline intensity functions and βj is a vector of stratum 

specific regression coefficients. When a subject who experiences only one event moves 

from the first stratum to the second stratum after the event occurs and remains in the 

second stratum until the end of follow-up 

 

4.4.2 Frailty Model Approach 

 In survival models, the addition of the random effects term in the models has 

become a source of major research. In this setting, the random effect term or the frailty 

is continuous, which describes the excess risk for distinct categories. For example, 

individuals or families [60]. The basic idea behind the frailty model is that individuals 

have different frailties and the most frail individual will die (here death refers to 

occurrence of an event) earlier than others [60].   

4.4.2.1 Gamma frailty 

 The proportional hazard model when a random effect term is considered can be 

written as ( )ωβλλ iii tt ZX += exp)()( 0                                                            (4.4.5) 

where Xi and Zi are covariate matrix of dimension nxp, X and β correspond to p fixed 

effects in the model and ω is a vector containing q unknown random effects or frailties, 
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Z is a design matrix, and Zij is equal to 1 if the subject belongs to the group j otherwise 

it has value 0.  

The proportional hazard shared frailty model for subject i who belongs to the group j 

can be written as )exp()()( 0)( βϖλλ ijji tt X= , where jϖ is the frailty for group j and 

with i ranging over all subjects can be written as )exp( jj ωϖ = and rest of the terms 

have same as defined above. Let us assume that the frailty has a Gamma distribution 

with a mean of 1 and a variance of 1/ν. The log of density function of ϖ can be written 

as: 

[ ] ( ) ( ) ( )ννννϖϖννϖ Γ−+−−= log)log(log1);(log f                                     

(4.4.6) 

 

4.4.3 Statistical application: objective 3 

4.4.3.1 Arrangement of the data for recurrent survival data  

 In the present analysis, the focus was on females who had reported asthma in 

Cycle 2 (1996-97) and for other consecutive cycles. The focus of the present objective 

was to investigate the risk factors of asthma recurrence in females who had asthma at 

the start of Cycle 2 and who also experienced asthma episodes in later cycles. In the 

analysis, intermittent missing data was also included. Table 4.1 summarizes the 

recurrent asthma events from Cycles 2 through 4. First recurrence was only who 

reported asthma in Cycle 2 and not in other cycles, second recurrence was those females 

who reported asthma in Cycle 2 and in either Cycle 3, or 4 or 5. Third recurrence 
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included asthma in Cycle 2, and either in Cycle 3, and 4, or Cycle 3 and 5 or Cycle 4 

and 5. Fourth recurrence included females reporting yes in all the four cycles.  

 
Table 4.1 Recurrent asthma events included in the analysis to fit parsimonious model of 
asthma free females at the end of Cycle 1 
 

 
  

 To arrange the data in the format discussed above, four new variables were 

created. The three variables created were status, visit, tstart and tstop. The initial time or 

start time was considered to be Cycle 1 as no prior information was available for the 

initiation time to occurrence of asthma for those who reported asthma in Cycle1. Hence 

the time of origin was Cycle 1 and the individuals were studied over time. The status 

variable was dichotomous, with values of 1 and 0. Status was equal to 1 (recurrence) if 

the female individual answered yes to the asthma question, which was also the 

definition of an event and value 0 (censored) otherwise. Censored cases were those 

individuals who were not diagnosed with asthma at any particular Cycle or did not 

report asthma during the study period. Visit variable was a categorical variable with 

four categories, visit = 1 represented Cycle 2, visit = 2 represented Cycle 3, visit = 3 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 
First recurrent event  
Yes No No No 
Second recurrence 
Yes Yes No No 
Yes No Yes No 
Yes No No Yes 
Third recurrence 
Yes Yes Yes No 
Yes Yes No Yes 
Yes No Yes Yes 
Fourth recurrence 
Yes Yes Yes Yes 
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represents Cycle 4, and visit = 4 represents Cycle 5. Tstart variable is the time of the (E-

1)th recurrence for visit = E (potential asthma recurrence), or a value equal to 0 for visit 

= 1, or the follow-up time if the (E-1)th recurrence did not occur. Tstop variable is the E 

th recurrence if visit = E, or the follow-up time if the E th recurrence does not occur. The 

duration or the follow-up time was calculated as: (age at the end of the risk interval) � 

(age at the start of the risk interval).  

 For example, a female who experienced asthma episodes in Cycle 2 and 4 will 

have following values for variable Visit, Status, Tstart and Tstop: (1,1,0,2), (2,0, 2,4), 

(3,1,4,6) and (4,0,6,8). Another variable gaptime was created which was calculated as 

(tstop-tstart).  

 

4.4.3.2 Computer software of Variance corrected and frailty model  

 The SAS procedure PHREG was used to fit the following variance corrected 

models: the Anderson Gill (AG) method, the Wei, Lin and Weissfeld (WLW) model 

and the Prentice, William and Peterson (PWP) model. 

 Standard model building strategies were used to build the final model, and some 

of the design variables were also included even if these variables were not significant at 

univariate level. Schoenfeld residuals were used to test the proportionality hazard model 

assumptions and model fit.  

 The Cox�s regression with shared frailty model was fitted using STATA 

software with a STCOX command. In STATA software, special procedures are 

available to fit the Gamma shared frailty model. Usually, the Newton-Raphson iteration 

method is used to solve the penalized model [60]. A shared frailty model is the survival-
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data analog to regression model when we have random effects or unobserved 

heterogeneity. The data was re-arranged to fit the frailty model. The Cox shared frailty 

model was fitted by specifying gamma distribution. When we specify gamma 

distribution in the shared statement, the frailties are treated as having a gamma 

distribution. Here, we assume, using the shared statement, that observations with a 

group are correlated as they share the same frailty.  

 The procedures to fit the frailty model are not available in SAS; hence, a SAS 

macro �Gamfrail� was used to fit the Gamma frailty model12. The frailty model was 

then fitted using this SAS macro and according to the specification of the macro, the 

dataset should be arranged in time (follow up time), status (whether recurrent event or 

censored data), identity variable and the variables or covariates in the model. The 

dataset was arranged in the above discussed manner and the gamma frailty macro was 

used. 

The methods used for recurrent event data is provided in Figure 4.5.  All the three 

variance corrected models were fitted using SAS procedure PHREG.  

 

 

 

 

 

 

 

 
                                                
12 http://www.biostat.mcw.edu/software/SoftMenu.html 
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Figure 4.5 Variance corrected methods used for recurrent event data 

 

4.5 Objective 4: Missing data analysis 

 Missing data is very common in longitudinal studies, mainly due to non-

responses or if the individuals have moved or are lost to follow-up. The missingness can 

occur if the individual have intermittent missing pattern, i.e., dropping out of the study 

and again return back at some point during the study period. In the past few decades, a 

considerable amount of work has been conducted in this area. The major reason for the 

development of the statistical model in this area was due to the fact that in early days, 

researchers used to analyze only completed data and this resulted in loss of information. 

Ignoring the missingness resulted in biased or wrong estimates. Research into missing 
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data has gained momentum in the past few years due to the availability of most of the 

methods in commercial software.  

 Some of the previous work in this field focused on algorithmic or computational 

solutions [195, 196]. Later on, some Expectation Maximization (EM) algorithms were 

proposed by Dempster et al. [197]; however, while these methods provided solutions for 

missing data analysis, they were very cumbersome. Some of the recently used methods 

are complete case analysis, last observation carried forward (LOCF), direct likelihood, 

weighted generalized estimating equation (WGEE) and sensitivity analysis.  

 In the following section, the weighted generalized estimating equation approach 

and the random effects modeling approach will be discussed. In section 4.5.1, the 

notation and the arrangement of the dataset is explained, followed by discussions on the 

WGEE approach in section 4.5.2, and the random effect approach in section 4.5.3.  

 

4.5.1 Notation and arrangement of the data 

 Let Rij be an indicator variable such that  

Rij = 1 if subject i is observed at time point j 

      = 0 if subject i was not observed at time point j. 

The dependent variable with n time points is a nx1 vector defined as 

),........,( 2,1
'

iniii yyy=y  

 The nx1 missing data indicator vector for a subject is defined as 

( )iniii RRR ,........,, 21
' =R   
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Rij has same notation as above and it depends on whether yij is observed or not. The 

complete dependent variable can be partitioned based on Ri into O
iy i.e. observed 

component and M
iy  into unobserved component for subject i. O

iy is actually the 

observed dependent variable and M
iy is the dependent variable vector which was 

planned to be observed, but could not be done.  

 When we have data missing completely at random (MCAR), the missingness Ri 

is independent of the observed O
iy  and the unobserved M

iy vectors. For data missing at 

random (MAR), the missingness depends on covariates Xi and the observed dependent 

variable vector O
iy . When missing not at random (MNAR) is considered the 

missingness is related to the unobserved dependent variable M
iy after accounting for the 

observed variables Xi and O
iy .  

 Little [198] introduced the �pattern-mixture model� for analyzing incomplete or 

missing data. In this model, the dataset can be subdivided into different groups based on 

the missing data pattern. For the NPHS dataset, we have five time points, and there are 

25 i.e. 32 possible missing data patterns. For example, if we have three time points, then 

23 combinations i.e. 8 possible pattern will be as follows (O = Observed and M = 

Missing) 
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Pattern Group Time1 Time2 Time3 
1 O O O 
2 M O O 
3 M M O 
4 O O M 
5 O M M 
6 M O M 
7 O M O 
8 M M M 
 
Figure 4.6 Missing data patterns: using an example with three time point study 
  

 

  When the main interest is studying completers versus incompleters, a dummy 

variable is created with value equals zero if present in all the cycles or time points and a 

value equal to one if missing observation at any time point. However, the last pattern 

will not be included as there is no available information. The combination of complete 

versus incomplete pattern is useful when we have a large percentage of individuals 

completing the study.  

 

Pattern Coding Scheme Used (Completers versus Incompleters) 
OOO 0 
MOO 1 
MMO 1 
OOM 1 
OMM 1 
MOM 1 
OMO 1 
 
 
Figure 4.7 Coding scheme of missing data pattern, shown with the help of an example 
with three time points (O-observed; M-missing) 
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4.5.2 Weighted Generalized Estimating Equation (WGEE) 

 The generalized estimating equation (GEE) proposed by Liang and Zeger [1] 

assumed that the data are missing completely at random (MCAR) and inferences are 

valid under this strong assumption. Robins et al. [199] extended the GEE model and 

proposed a class of weighted generalized estimating equations which allows the data to 

be missing at random. This approach leads to consistent and asymptotically normal 

estimators of β0, and this method is computationally simple and does not require 

specification on the joint distribution of the data [199]. The marginal distribution of Yit 

given Xi is given as: ( ) ( )0,| βitiit gE XXY = , where the vectors have same notation as 

discussed above and gt(. , .) is fixed function and β0 is a px1 vector of unknown 

parameter for i = 1,..,n. 

 The basic concept of WGEE is to weight each individual�s measurements in the 

GEEs by the inverse probability that an individual drops out of the study at particular 

time point [43]. The weight is calculated as: 

( )[ ] ( ) }{
1,2

1

2
1,2 1....|01....|01)( injI

jiiij

j

k
kiiikiij PPjDPw ≤

−

−

=
− ====×====−==≡ ∏ RRRRRR

     

                                                                                                                                  (4.5.1) 

if the individual dropouts by time j or at the end of measurement of time point 

otherwise, 

[ ]∏
=

− ====−==≡
j

k
kiiikiij PjDPw

2
1,2 )1....|0(1)( RRR                                     (4.5.2) 

The mean µi can be partitioned into observed ( O
iµ ) and missing components ( M

iµ ). 

The score equations for the weighted GEE approach to estimate β will be as follows: 
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β ARA  where Wi is a diagonal matrix with the 

elements of wi vector of weights for the ith subject along the diagonal. This method can 

be adapted to the MNAR setting as well [43].  

 

4.5.3 Random effects models  

 When there are discrete repeated measurements, the most commonly used 

method for random effects modeling is the generalized linear mixed model. Let Yij be 

the outcome variable has the notation definition as above. Yij have density function of 

the form: 

( ) ( )[ ] ( ){ }φθψθφφβ ,exp,,| 1
ijijijijiiji ycybyf +−= −                          (4.5.3) 

where µij is the mean modeled through a linear predictor containing fixed and random 

parameters, bi is a qx1 random vector, normally distributed N(0, D) with 

( ) iijijij b'' zx += βµη  for a known link function η (.), xij is a p-dimensional design 

matrix for fixed effects covariates and zij is a q dimensional design matrix for random 

effects covariates and φ is the scale parameter.   

 There are several methods available for estimating the coefficients. One of the 

methods is using an approximation of the integrand, and other is approximation of the 

data. For objective 4, the focus is only on the approximation of the data. To estimate the 

coefficients using this approach, the data is decomposed into mean and an error term. 

The decomposition is done with a Taylor series of expansions of the mean, which is a 
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non-linear function of the linear predictor [43]. When we have binary outcome, i.e., 

with a logistic natural link function, the mean µij can be written as: 

( )
( )iijij

iijij
ijijij

b

b
YP

''

''

exp1

exp
)1(

zx

zx

++

+
====

β

β
πµ                (4.5.4) 

And the decomposition of the data is into mean and error term, hence ijε equals ijπ−1  

with probability ijπ  and equals ijπ− with probability ijπ−1 [43]. 

 The estimates can be calculated using a/the penalized quasi likelihood. Using 

this method, the estimates are obtained from optimizing a quasi likelihood function, 

which involves first and second order conditional moments, made larger with a penalty 

on random effects [43]. As shown by Molenberghs et al. [43], to approximate the mean, 

ijµ a Taylor expansion of  

( ) ijiijijijijij bhY εβεµ ++=+= '' zx                  (4.5.5) 

around fixed effect (
∧
β ) and random effect (

∧
ib ) results in: 
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                                                                                                                                  (4.5.6) 

and the above equation can be re written as: 
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The above equation 4.5.7 can be rewritten in vector notation as: 

iiiiiiiii bbVVY εββµ +







−+








−+≈

∧∧∧∧∧
ZX                (4.5.7)

 where Xi and Zi are the design matrices for fixed effects and random effects and the 

estimate of 
∧
iV  equals to the diagonal matrix with diagonal entries equal to 













 ∧
ijv µ . 

4.5.4 Statistical application: objective 4 

4.5.4.1 Data arrangement for handling missing data 

 To analyze data using a/the pattern mixture model, a dummy variable drop was 

created. This drop variable had a value of 0 if the person was present in all the five 

cycles, and a value of 1 if otherwise. The other category included all kind of missing 

patterns, i.e., intermittent missing as well as non intermittent missing data. The different 

possible missing patterns were explained with the help of an example (Figure 4.7).The 

SAS procedure MI was used to obtain the possible missing data patterns, presented in 

Table 4.2 
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Table 4.2 Possible missing data patterns and the frequency of the outcome variable 
�Self reported health professional diagnosed asthma� 
 
 
Cycle 1 Cycle 2 Cycle 3  Cycle 4  Cycle 5 N (%) 
X X X X X 6433 (69.7) 
X X X X . 709 (7.7) 
X X X . X 184 (2.0) 
X X X . . 491 (5.3) 
X X . X X 136 (1.5) 
X X . X . 54 (0.6) 
X X . . X 45 (0.5) 
X X . . . 453 (4.9) 
X . X X X 69 (0.8) 
X . . X X 36 (0.4) 
X . . . . 525 (5.7) 
X . X X . F 
X . X . X F 
X . X . . F 
X . . X . F 
X . . . X F 
F: Results flagged as per the restriction imposed by Statistics Canada, refer to Appendix B for further 
details 
  

 A total of 70% of the females had complete information in all the five cycles, 

and about 30% of the females had missing data in at least one cycle. The different 

missing patterns given in Table 4.2 were combined together to form the drop variable 

with a value equal to 1, and 0 included the first pattern with all data present in all the 

five cycles. Since there are a large percentage of subjects who have completed the 

study, the completers versus the incompleters were the most reasonable combination for 

pattern mixture modeling approach.  

 The drop variable created was included in the final model of Objective 1 as we 

are interested in studying if there is any difference between completers and 

incompleters. As suggested by Hedeker et al.[200] , a model was fitted with the final 
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model obtained from objective 1, and  was modified by including a drop variable and its 

interaction with the main effect variables and the interaction term variables which 

results in the pattern mixture model. The next step was using these variables together in 

the model to fit the weighted generalized estimating equation (WGEE) and random 

effect modeling approach.  

 

4.5.4.2 Application of WGEE analysis  

 To analyze the data using the WGEE approach, a weight variable was computed. 

This weight variable was different from the ones provided by Statistics Canada with the 

data set. To compute the WGEE estimates and standard errors, the SAS macro 

�dropout�13 was used [43], and in the first step, the dropout model was fitted using 

logistic regression. Using this macro, two variables are created, namely the �dropout� 

and �prev� variables. The outcome variable �dropout� is a binary variable and it 

indicates whether or not dropout occurred at a given time from the start of the 

measurement until the end of the study period [43].  �The  covariate sin the model are 

the outcomes at previous occasion (�prev� variable), supplemented with genuine 

covariate information� [43].Once these two variables have been created, they are used 

in the SAS macro �dropwgt� [43]. This macro computes the necessary weights for the 

WGEE analysis which accounts for the dropouts. Since we are using survey data and 

the weight variable are specially created for longitudinal data to account for the 

complexity of the survey design, a new weight variable was created using the weight 

variable for dropouts and longitudinal weights. The new weight variable was equal to 

                                                
13 Refer to Appendix C.3 for SAS macro 
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(weight variable for dropouts) * (weight variable for survey data). This weight variable 

was used in the WGEE analysis. 

 The final model fitted for the marginal models were pattern mixture model 

(PMM) which included the drop variable. Another was using WGEE analysis, where 

the missingness is taken into account by implementing the special weights. The SAS 

procedure GENMOD was used for both of these approaches of marginal models.  

 

4.5.4.3 Application of Random Effect Modeling 

 The SAS procedure GLIMMIX was used for the Quasi Likelihood. The 

Penalized Quasi Likelihood (PQL) method was implemented in the SAS procedure. 

This procedure is still in the experimental stage in the SAS version 9.1.3. Procedure 

GLIMMIX fits statistical models to data with correlations when responses are not 

necessarily normally distributed. The restricted maximum likelihood (REML), as well 

as the maximum likelihood (ML) method, can be used for the Penalized quasi 

likelihood. The restricted or the residual methods accounts for the fixed effects in the 

construction of the objective function. This reduces the bias in covariance parameter 

estimates. In REML, the covariance parameter estimates are the maximum likelihood 

estimates, and the fixed effects estimates are estimated generalized least square 

estimates. In ML, covariance parameters and fixed effects estimates are maximum 

likelihood estimates. For a detailed description of PROC GLIMMIX, refer to the SAS 
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procedure GLIMMIX manual, page 9714. The REML estimates of variances and 

covariance are unbiased. 

 Separate models were fitted with/without drop variable and other covariates 

were fitted for random effect modeling approach. The final model from objective 1 was 

used. Model 1: PQL � ML (with drop variable), model 2: PQL-REML (with drop 

variable), model 3: PQL � ML (without drop variable), model 4: PQL-REML (without 

drop variable).  

The methods used for missing data analysis (completers versus incompleters) is 

summarized in the Figure 4.8 below 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Missing data analysis using marginal and random effect modeling

                                                
14  www.sas.com/statistics/doc.html- SAS procedure GLIMMIX documentation 

Missing data analysis 

Marginal Model  Random Effect (GLMM) 

WGEE- Weight 
accounting for 
dropouts and survey 
non-response 
Software: SAS 
procedure 
GENMOD  

Pattern mixture 
model (PMM), 
with survey 
weights  
Software: SAS 
procedure 
GENMOD 

PQL 

With drop 
variable 
Software: 
SAS 
procedure 
GLIMMIX

Without drop 
variable 
Software: 
SAS 
procedure 
GLIMMIX
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CHAPTER 5 - RESULTS: MODELS FOR DISCRETE 

LONGITUDINAL SURVEY DATA 

 

5.1 Introduction 

 The focus of this thesis was to compare model- based and design- based 

statistical approaches, using pre-existing and recently developed statistical models to 

analyze longitudinal complex survey data with a binary outcome. Section 5.2 provides a 

descriptive analysis of the subjects, followed by a description of the various covariates 

to be included in the statistical analyses in Section 5.3. Section 5.4 provides the results 

on the crude prevalence rates of asthma and the adjusted prevalence rates using the 

model- based and design- based methods. The incidence of asthma and its relationship 

with various risk factors are discussed in Section 5.5. Variance corrected models and 

frailty models are discussed in Section 5.6, followed by missing data analysis of 

completers versus incompleters in Section 5.7. 
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5.2 Subjects  

The sample population of the NPHS contains 17,276 participants. For the 

present analysis, a subset of NPHS data was used comprised of adult Canadian females, 

aged 18 to 64 years at the start of Cycle 1 (1994/95). A total of 5841 females aged 18 to 

64 years were included in the analysis.  

 

5.3 Descriptive analysis  

Table 5.1 provides the number of participants (%) stratified by asthma status and 

cycle. There was an increase in the number of asthma cases from Cycle 1 (1994-95) to 

Cycle 3 (1998-99), and there was a slight decrease in asthma cases after Cycle 3 (1998-

99) to Cycle 5 (2002-03). The percentage of participants in the other category (no 

asthma) showed a decrease from 23% in Cycle 1 to 17% in Cycle 5. The last column in 

Table 5.1 presents the missing numbers for each Cycle. The missing category is mainly 

comprised of losses- to- follow- up and the �not stated� category.  

The results based on further stratification of the covariates by cycle and asthma 

status could not be presented, as the numbers in some cells were smaller than 30, and 

thus cannot be reproduced due to restrictions imposed by Statistics Canada.  
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Table 5.1 Number of participants (%) stratified by asthma status for each Cycle of 
participation 
 
 
Covariates Asthma (%) No Asthma 

15(%) 
Missing#16 

Cycle 1 (1994-95) 391 (18.1) 5442 (23.2) 8 
Cycle 2 (1996-97) 437 (20.3) 4971 (21.2) 433 
Cycle 3 (1998-99) 456 (21.1) 4613 (19.7) 772 
Cycle 4 (2000-01) 444 (20.6) 4360 (18.6) 1037 
Cycle 5 (2002-03) 430 (19.9) 4094 (17.4) 1317 
 

The baseline (Cycle 1-1994-95) characteristics of participants, by asthma status, 

are presented in Table 5.2.  

Of the females who answered �yes� to having asthma in Cycle 1, 22.4% were 

obese, compared with 13.5% among those who did not report asthma in Cycle 1. 

Stratifying asthma status by age group showed that about 44.5% of females reporting 

asthma were in the age range 30 to 49 years, 34.3% were in the age range 18 to 29 

years, followed by 21.2% in the age group 50 to 64 years. The percentage of asthmatic 

females was lowest in the 50 to 64 years age group. 

Of females diagnosed with asthma, 23% reported food allergies, 56% reported 

other kinds of allergies, 19% reported emphysema, and 9.2% reported intestinal 

problems.  

Among the women diagnosed with asthma, 82% of females who lived in urban 

areas and 18% resided in rural areas. The results for the ethnicity variable could not be 

presented due to low cell counts.   

                                                
15 Participants who did not report asthma. 
16 # - Total missing values presented for each Cycle 

 



 

 117

Stratifying females diagnosed with asthma by smoking status, 42.1% of them 

were current smokers, 25.8% of them were ex-smokers and 32.0% of them were non-

smokers. On stratifying females diagnosed with asthma by exposure to second hand 

smoke, 44.2% of them were exposed to second hand smoke and 56% said no to 

exposure to second hand smoke.  

Asthma status when studied by socio-economic status indicated 10.4% of the 

females belonging to higher socio-economic status, 56.4% belonging to middle socio-

economic and 33.2% belonging to lower income group also answered yes to asthma 

question.  

Percentage of females reporting asthma was higher among Canadian citizens 

(90.5%) as compared to non-Canadian citizens was 9.5%. Finally, on dividing asthma 

status by region, the number of females reporting asthma were higher in the Ontario 

region (26.3%), followed by the Atlantic region (24%), and the Prairie region (19.2%). 

The region of British Columbia (12.5%) and Quebec (17.9%) had the lowest percentage 

of participants who also answered yes to the asthma question. 
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Table 5.2 Baseline characteristics of the covariates included in the analysis, n (%) 
 
Covariates Asthma  

(Yes) 
Asthma 

(No) 
Missing#17

Body Mass Index (BMI)   221 
Underweight F18 F  
Normal Weight 179 (47.1) 2958 (56.5)  
Over Weight 102 (26.8) 1383 (26.4)  
Obese 85 (22.4) 706 (13.5)  

Age group   0 
18-29 years 134 (34.3) 1334 (24.5)  
30-49 years 174 (44.5) 2778 (51.1)  
50-64 years 83 (21.2) 1330 (24.4)  
65-72 years @19 @  

Food Allergy   8 
Yes 90 (23.0) 340 (6.3)  
No 301 (77.0) 5102 (93.8)  

Other Allergy   8 
Yes 219 (56.0) 1010 (18.6)  
No 172 (44.0) 4432 (81.4)  

Location   8 
Rural 71 (18.2) 1234 (22.7)  
Urban 320 (81.8) 4208 (77.3)  

Ethnicity    
White F F  
Non-white F F  

Smoking Status   124 
Current Smokers 163 (42.1) 1797 (33.7)  
Ex-Smokers 100 (25.8) 1471 (27.6)  
Non-Smokers 124 (32.0) 2062 (38.7)  

Second hand exposure to smoke   124 
Yes 171 (44.2) 2114 (39.7)  
No 216 (55.8) 3216 (60.3)  

Socio-economic status   244 
High Income 40 (10.4) 651 (12.5)  
Middle Income 216 (56.4) 3407 (65.3)  
Low Income 127 (33.2) 1156 (22.2)  

Emphysema/ Chronic Bronchitis   8 
Yes 73 (18.7) 135 (2.5)  

 

                                                
17 # - Total missing values presented for each category 
18 F- Results flagged as the cell numbers were very small and was suppressed as per restriction imposed 
by Statistics Canada 
19 @- Baseline characteristics and for age group variable participants aged 18 to 64 years only  
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Table 5.2 Cont�d 

Covariates Asthma  
(Yes) 

Asthma 
(No) 

Missing#20 

No 318 (81.3) 5307 (97.5)  
Intestinal Problems    

Yes 36 (9.2) 189 (3.5) 8 
 No 355 (90.8) 5253 (96.5)  

Immigration Status   10 
       Citizen 354 (90.5) 4676 (86.0)  
        Others 37 (9.5) 764 (14.0)  
Region   8 

Atlantic 94 (24.0) 1363 (25.1)  
Quebec 70 (17.9) 983 (18.1)  
Prairies 75 (19.2) 1209 (22.2)  
British Columbia 49 (12.5) 528 (9.1)  
Ontario 103 (26.3) 1359 (24.5)  

 

As previously mentioned, the study subjects included 5841 adult Canadian 

females. This NPHS collects data from participants belonging to the entire ten Canadian 

provinces; hence, frequencies were obtained for these 5841 females divided by their 

province of residence. Table 5.3 provides the number of female participants included in 

the analysis for each cycle, stratified by province. Quebec and Ontario had the highest 

participation rate, followed by British Columbia and Saskatchewan. Prince Edward 

Island had the lowest participation rate compared to other provinces. Over the ten year 

study period, the participation rates for each province remained similar.  

 

 

 

 

 

                                                
20 # - Total missing values presented for each category 
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Table 5.3 Number of participants (%) stratified by cycles and province 
 
 
Province Cycle 1 

(1994-95) 
Cycle 2 

(1996-97) 
Cycle 3 

(1998-99) 
Cycle 4 

(2000-01) 
Cycle 5 

(2002-03) 
Newfoundland and 
Labrador 

382 (6.5) 367 (6.3) 345 (5.9) 337 (5.8) 338 (5.8) 

Prince Edward 
Island 

332 (5.7) 320 (5.5) 317 (5.4) 310 (5.3) 308 (5.3) 

Nova Scotia 356 (6.1) 355 (6.1) 351 (6.0) 341 (5.8) 342 (5.9) 
New Brunswick 389 (6.7) 385 (6.6) 381 (6.5) 381 (6.5) 378 (6.5) 
Quebec 1057 (18.1) 1059 (18.1) 1057 (18.1) 1061 (18.2) 1058 (18.2) 
Manitoba 387 (6.6) 381 (6.5) 374 (6.4) 375 (6.4) 377 (6.5) 
Alberta  364 (6.2) 351 (6.0) 352 (6.0) 344 (5.9) 334 (5.7) 
Saskatchewan 533 (9.1) 549 (9.4) 571 (9.8) 589 (10.1) 598 (10.3) 
British Columbia 578 (9.9) 598 (10.2) 596 (10.2) 597 (10.2) 586 (10.1) 
Ontario 1463 (25.1) 1475 (25.3) 1494 (25.6) 1503 (25.8) 1495 (25.7) 

 

As this study focuses on studying asthma in the adult female population, the 

total numbers of asthma cases in this age group were obtained for each cycle of 

participation (Figure 5.1). The results indicate that there was an increase in asthma 

cases from 404 in Cycle 1 (1994/95) to 472 in Cycle 5 (2002/03).   
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Figure 5.1 Asthma cases in the study sample of female participants in the age group 18-
64 years stratified by Cycle of participation 
 

The prevalence proportions for asthma and the corresponding 95% confidence 

interval were calculated using the BOOTVAR macro for all the five cycles (Table 5.4). 

The results indicated that the prevalence of asthma increased in females from 6.2% 

(5.5-7.0) in Cycle 1 to 6.9% (6.1-7.7) in Cycle 5. However, the increase was not 

statistically significant.  
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Table 5.4 Asthma prevalence and 95% confidence interval of adult females in 18-64 
years age group 
 
 

Cycles Prevalence Proportion 95% Confidence Interval 
Cycle 1 (1994-95) 6.2 5.5-7.0 
Cycle 2 (1996-97) 7.2 6.4-8.0 
Cycle 3 (1998-99) 7.4 6.5-8.2 
Cycle 4 (2000-01) 7.1 6.3-7.9 
Cycle 5 (2002-03) 6.9 6.1-7.7 
 

The prevalence of asthma was further stratified by location of residence 

(rural/urban). Table 5.5 provides the asthma prevalence proportions and the 95% 

confidence intervals stratified by location for all the five cycles. The prevalence of 

asthma for rural and urban females was quite similar, with slightly a higher prevalence 

among urban females. At the end of Cycle 5 (2002-03), the prevalence of asthma was 

7.1% (6.1-8.0) among urban females and 6.3% (4.6-8.1) among rural females. However, 

this difference was not statistically significant.  

 
Table 5.5 Asthma prevalence and 95% CI of females for the age group 18-64 years 
stratified by location (Rural/Urban) 
 
 
Cycles Rural Urban 
 Prevalence  95% C.I. Prevalence  95% C.I. 
Cycle 1 (1994-95) 6.1 4.2-8.0 6.2 5.4-7.1 
Cycle 2 (1996-97) 6.7 4.7-8.6 7.3 6.4-8.2 
Cycle 3 (1998-99) 7.1 6.2-9.1 7.4 6.5-8.4 
Cycle 4 (2000-01) 7.0 5.1-8.9 7.2 6.3-8.1 
Cycle 5 (2002-03) 6.3 4.6-8.1 7.1 6.1-8.0 
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5.4 Objective 1: Prevalence estimation  

5.4.1 Crude prevalence rate calculation 

 The crude prevalence of asthma and the 95% confidence interval was calculated 

using the BOOTVAR macro provided with the dataset. Crude prevalence proportions 

were calculated for all the covariates which were included in the final model. These 

prevalence proportions and 95% confidence intervals are provided in Table 5.6.  

The prevalence of asthma was highest in females in the age group 18 to 29 

years, compared with other age groups; however, the prevalence for this age group 

decreased over time. For the age groups 30 to 49 years and 65 to 72 years, the 

prevalence increased from Cycle 1 through Cycle 5, and for the 50 to 64 years age 

group, it remained unchanged. Participants who reported chronic bronchitis/ 

emphysema, intestinal problems and food allergies showed an increase in asthma 

prevalence over the ten year study period. Female participants reporting allergies other 

than a food allergy showed a decrease in asthma prevalence over time. The prevalence 

of asthma for the participants residing in both rural and urban areas showed an increase 

in asthma prevalence over the ten year time period. The prevalence between rural and 

urban locations were not significantly different, but the prevalence was slightly higher 

for urban females,  

Obese females had the highest prevalence of asthma, followed by overweight 

females and both of these groups showed a steady increase in prevalence rate over time. 

The prevalence of asthma for among those in the under weight category for Cycle 1 and 

5 could not be presented due to restriction by Statistics Canada21.  

                                                
21 Please refer to Appendix B (8.2.1) 
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The Ontario region had the highest asthma prevalence compared to other 

regions, however the rate decreased from Cycle 1 to Cycle 5. The Atlantic regions, 

which included the province of PEI, Newfoundland and Labrador New Brunswick and 

Nova Scotia, and the region of British Columbia, had the lowest prevalence of asthma 

in Cycle 1 but it increased over time. By the end of Cycle 5, these regions had the 

second and third highest asthma prevalence rate. Quebec and the Prairie regions had the 

lowest asthma prevalence. 

With regard to ethnicity, the prevalence of asthma was higher among Caucasian 

females than non-Caucasian females. However, there was an increase in the prevalence 

over time for both Caucasian and non-Caucasian females.   

Smokers had the highest prevalence of asthma in Cycle 1, but by the end of 

Cycle 5, ex-smokers had higher prevalence. Among ex-smokers, asthma prevalence 

increased from 5.8% (Cycle 1) to 10.5% (Cycle 5) (p<0.05). Likewise, the increase in 

asthma prevalence from 4.7% (Cycle 1) to 7.6% (Cycle 5) among non-smokers was also 

statistically significant (p<0.05). Females who answered yes to second hand exposure to 

smoke showed an increase in asthma prevalence from 7.4% in Cycle 1 to 10.0% in 

Cycle 5. Among those  not exposed to second hand smoke, the prevalence increased 

from 5.5% in Cycle 1 to 8.8% in Cycle 5 (p<0.05). 

Asthma prevalence was lowest in females belonging to higher socioeconomic 

groups (5.4% in Cycle 1; 8.2% in Cycle 5) and highest for those in lower 

socioeconomic groups (8.5% in Cycle 1; 13.7% in Cycle 5). For females belonging to 

the middle socioeconomic groups, the increase in prevalence from 6.0% in Cycle 1 to 

8.5% in Cycle 5 was statistically significant at p<0.05 level. Canadian citizens had 
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higher asthma prevalence than non-Canadian citizens. Over time, there was a further 

decrease in the prevalence of asthma for non- Canadian females (3.7% in Cycle 1 to 

3.4% in Cycle 5), and for Canadian females, the prevalence increased from 6.8% in 

Cycle 1 to 7.8% in Cycle 5. However, these changes were not statistically significant.  
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5.4.2 Marginal modeling approach for cross-sectional survey data 

To determine the robustness of findings for prevalence of asthma, the adjusted 

odds ratio and 95% confidence interval for Cycle 1 (1994-95) was compared using the 

Taylor linearization (SAS procedure SURVEY LOGISTIC) method, the macro 

LOGREG as the BOOTVAR technique, and the SAS procedure GENMOD. The first 

two methods were design-based approaches, i.e., these methods accounted for the 

clustering and stratification along with the unequal probability of selection.  The last 

method was a model-based approach. The purpose of the analysis was to compare the 

design-based and model-based approaches at the cross-sectional level. The intent was to 

examine if these three methods provided similar results and could account for the 

complex survey design. Table 5.7 provides the adjusted odds ratio and 95% confidence 

interval using the three methods discussed above.  

The odds ratio obtained using the design-based and model-based methods 

produced similar results. The results suggest that the SAS procedure GENMOD does 

account for the complexity of the design, as does the design-based approach. In absence 

of any gold standard method analysis with survey design, it was assumed that the 

BOOTVAR method produced unbiased results. The 95% confidence intervals, using the 

BOOTVAR macro, were slightly wider than the other two methods used.   
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Table 5.7 Comparison of design-based versus model-based, adjusted odds ratio (95% 
confidence interval) for Cycle 1 (1994-95) 
 
 
Covariates Proc SURVEY 

LOGISTIC 
BOOTVAR 

Macro 
Proc GENMOD 
(Exchangeable) 

Province (Ontario)    
Newfoundland     
and Labrador 

0.52 
(0.33-0.84) 

0.52 
(0.31-0.87) 

0.52 
(0.33-0.82) 

Prince Edward  
Island 

0.74 
(0.47-1.15) 

0.74 
(0.47-1.16) 

0.74 
(0.47-1.15) 

Nova Scotia 0.91 
(0.58-1.42) 

0.91 
(0.55-1.49) 

0.91 
(0.57-1.44) 

New Brunswick 0.65 
(0.41-1.02) 

0.64 
(0.40-1.04) 

0.64 
(0.42-0.99) 

Quebec 0.98 
(0.72-1.32) 

0.98 
(0.71-1.34) 

0.98 
(0.73-1.31) 

Manitoba 0.79 
(0.52-1.21) 

0.79 
(0.51-1.24) 

0.79 
(0.50-1.25) 

Saskatchewan 0.63 
(0.40-0.97) 

0.62 
(0.41-0.96) 

0.62 
(0.39-0.99) 

Alberta 0.78 
(0.50-1.20) 

0.78 
(0.50-1.22) 

0.78 
(0.52-1.17) 

British  
Columbia 

1.07 
(0.76-1.53) 

1.07 
(0.74-1.55) 

1.07 
(0.75-1.52) 

Allergy (No)    
Yes 4.84 

(3.45-6.79) 
4.84 

(3.38-6.94) 
4.84 

(3.47-6.74) 
Emphysema (No)    

Yes 8.10 
(5.72-11.47) 

8.10 
(5.64-11.63) 

8.10 
(5.70-11.50) 

Intestine (No)    
Yes 1.54 

(1.01-2.36) 
1.54 

(0.99-2.40) 
1.54 

(0.99-2.38) 
Age Group (18-24)    

25-34 years 0.77 
(0.56-1.07) 

0.77 
(0.55-1.08) 

0.77 
(0.76-0.77) 

35-64 years 0.43 
(0.32-0.59) 

0.43 
(0.32-0.59) 

0.43 
(0.32-0.59) 

BMI (Normal Weight)    
Under weight 0.64 

(0.30-1.37) 
0.64 

(0.29-1.41) 
0.64 

(0.30-1.36) 
Over weight 1.27 

(0.97-1.64) 
1.27 

(0.97-1.65) 
1.27 

(0.97-1.66) 
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Table 5.7 (Cont�d) 

Covariates Proc SURVEY 
LOGISTIC 

BOOTVAR 
Macro 

Proc GENMOD 
(Exchangeable) 

Obese Class I 1.30 
(0.90-1.88) 

1.30 
(0.89-1.89) 

1.30 
(0.90-1.87) 

Obese Class II 2.83 
(1.56-5.12) 

2.83 
(1.53-5.24) 

2.83 
(1.56-5.11) 

Obese Class III 1.80 
(0.92-3.54) 

1.80 
(0.83-3.91) 

1.80 
(0.92-3.53) 

Smoking (Non-Smokers)    
Smokers 1.23 

(0.95-1.58) 
1.22 

(0.95-1.58) 
1.22 

(0.94-1.59) 
Ex-Smokers 1.14 

(0.85-1.54) 
1.14 

(0.84-1.55) 
1.14 

(0.85-1.53) 
Location (Urban)    

Rural 0.93 
(0.68-1.27) 

0.93 
(0.67-1.29) 

0.93 
(0.69-1.25) 

Reference categories are provided in parentheses 
 

5.4.3 Marginal modeling approach for the longitudinal survey data  

The marginal model approach used for cross-sectional analysis was extended for 

this longitudinal data analysis. The adjusted odds ratio and 95% confidence interval 

were calculated using three approaches: Survey GEE [3], BOOTVAR GEE  and 

GENMOD [1] procedure. The variables for the final model were chosen using the 

standard model building strategies. Bivariate analysis was conducted with asthma 

(yes/no) as an outcome or dependent variable with all the important covariates thought 

to be as the risk factors for asthma prevalence. The covariates for the multi-variable 

marginal model were selected based on the p<0.25 significance level or if the covariates 

had clinical or biological significance.   

The final model included age groups (age variable categorized), self reported 

food allergies, any other kind of allergies, rural/urban location, body mass index, region 
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of Canada, ethnicity, smoking status, exposure to second hand smoke, socio-economic 

status and immigration status.  

The model with exchangeable correlation matrix was chosen as the final model. 

The independent correlation matrix was not chosen as it assumes that observations are 

independent and which is not true when we have longitudinal data. Unstructured and 

auto regressive correlation matrices of first order were not chosen, when using these 

working correlation structure the convergence criteria was not satisfied and the Hessian 

matrix was not positive definite. However, the problem with convergence and the 

Hessian matrix not positive definite was true only for the model-based approaches, i.e., 

when using the SAS procedure GENMOD. The convergence criteria was satisfied for 

the exchangeable working correlation matrix and Hessian matrix was positive definite.  

The results based on the exchangeable working correlation structure for all three 

methods are presented in Table 5.8. The parameter estimates obtained from the model-

based and the design-based approaches were similar. However, the standard errors and 

95% confidence intervals were different using these two methods. The standard errors 

using the Rao [3] method were larger compared to Liang and Zeger [1] ,as well as using 

the design-based Bootstrap approach. For some of the variables, the standard errors 

were very similar (like for under weight and over weight categories of BMI, rural 

location, high income category of the socio-economic status, rural and ex-smokers 

interaction, ethnicity and socio-economic status interaction, second hand smoke 

exposure and time interaction, 18 to 29 years age group as well as the 30 to 49 years age 

group with high income category interaction). Based on the standard errors, the 
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significance level was very different for exchangeable working correlation structures 

using the model-based and design-based methods. 

 

5.4.3.1 Computation of parameter estimates 

Using the method by Liang and Zeger [1], the following variables were 

significant at p<0.05 significance level: (i) main effects - BMI, health professional 

diagnosed food allergy, other kinds of allergy, chronic bronchitis/emphysema, stomach 

or intestinal problems, region of residing, immigration status in the main effect; (ii) 

interaction terms: location * smoking status, location * socio-economic status, second 

hand exposure to smoke * repeat/time, smoking status * age group and age group * 

socio-economic status.  

For the design-based marginal modeling approach, the Survey GEE proposed by 

Rao [183] was used. This method accounts for the longitudinal nature of the survey data 

as well as the clustering, stratification and unequal probability of selection. Following 

variables were significant at p<0.05 level:  (i) main effects: health professional 

diagnosed food allergy, other allergy, chronic bronchitis /emphysema, and stomach or 

intestinal problems and immigrant status in the main effects model; (ii) interaction 

terms or effect modifiers: location * smoking status, location * socio-economic status 

and age group * socio-economic status.  

Next, the Bootstrap method modified by Professor Lam  of Queen�s University 

was used. The BOOTVAR macro was modified to account for the repeated observation, 

The following variables were significant at p < 0.05: (i) main effects: BMI, health 

professional diagnosed food allergy, other allergies, chronic bronchitis/ emphysema and 
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stomach/intestinal problems, immigration status; and (ii) interaction terms or effect 

modifiers: location * smoking status, location * smoking status, second hand exposure 

to smoke and repeat/time variable and age group * socio-economic status.  

 

5.4.3.2 Interpretation of results 

5.4.3.2.1 Interpretation of the main effects odds ratios 

In the main effects model, the risk or odds of developing asthma was lower in 

females who were under weight, 1.2 times higher in overweight females and 1.7 times 

higher in obese females compared to normal weight females. Females diagnosed with 

food allergies were 1.5 times more likely to be diagnosed with asthma compared to 

females with no food allergies. Females reporting allergies other than food allergies 

were 1.8 times more likely to be diagnosed with asthma compared with females with no 

other allergies. The odds of being diagnosed with asthma were 2.2 times more likely in 

females who were diagnosed with chronic bronchitis or emphysema compared to 

females with no chronic bronchitis or emphysema. Finally, the odds of being diagnosed 

with asthma were 1.3 times higher in females with stomach or intestinal problems 

compared to females with no stomach or intestinal problems.  

The odds of being diagnosed with asthma decreased for females residing in the 

Atlantic region (25%), Quebec region (17%), and in the Prairies region (21%). The odds 

of asthma increased by 1.2 times for females residing in the British Columbia region 

compared to females residing in the Ontario region. The odds of developing asthma was 

56% less in females who were not Canadian citizen compared to the females who were 

Canadian citizen.  
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5.4.3.2.2 Interpretation of interaction terms 

Rural females who were current smokers were 2.6 times more likely to be 

diagnosed with asthma when compared to urban non-smoking females. For rural 

females who were ex-smokers, the risk was about 1.5 times higher compared to the non-

smoking urban females.  

Rural females belonging to a higher socio-economic status were 1.8 times more 

likely to develop asthma compared to urban females belonging to lower socio-economic 

status. The same was true for rural females in the middle socio-economic status, the risk 

was about 1.3 times higher compared with urban females with lower socio-economic 

group.  

Caucasian females belonging to higher socio-economic status were 51% less 

likely to be diagnosed with asthma compared to females belonging to non Caucasian 

lower socio-economic group females. However, Caucasian females in the middle socio-

economic status were 1.7 times more likely to be diagnosed with asthma compared to 

the lower socio-economic status non Caucasian females.  

      The risk of being diagnosed with asthma was 1.1 times higher in females exposed to 

second hand smoke at Cycle 2 and the risk increased was higher for Cycle 5 compared 

to females who were not exposed to second hand smoke at baseline i.e. Cycle 1. 

The interaction of smoking with age indicated that the risk of asthma was 2.5 

times higher in 18 to 29 years age group female smokers, and 1.5 times higher in female 

ex-smokers in the same age range when compared with the 65 to 72 years age group 

non-smoker females. The odds of developing asthma were about 1.5 times higher in 

female smokers in the 30 to 49 years age group and 1.4 times higher in ex-smokers in 
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the same age group when compared with non-smokers in the 65 to 72 years age group. 

Female smokers aged 50 to 64 were 1.7 times more likely and ex-smokers were 1.5 

times more likely to be diagnosed with asthma compared to 65 to 72 years non-smoking 

females. The odds of developing asthma was highest amongst smokers and ex-smoker 

females in the age range 18 to 29 years, followed by 30 to 49 years, and finally, 50 to 64 

years age group. 

The interaction between age and socio-economic status interaction was 

significant, and indicated that the odds of being diagnosed with asthma was lower 

(55%) in 18 to 29 years females belonging to higher socio-economic status and about 

26% lower in the middle socio-economic status when compared to 65 to 72 years 

females in the lower socio-economic status. The same was true for 30 to 49 years age 

group females, the odds decreased by 62% in higher income group and 34% in middle 

income group females. For the 50 to 64 years age group asthma decreased by about 

49% in higher and 27% in middle socio-economic status when compared to lower 

socio-economic status females in 65 to 72 years age group category.  

The final model-based on the significant main effects and interaction terms, 

modeling the probability of asthma and its various risk factors can be summarized as:  

logit [Pr(Asthma)ij=1] = -3.23 -0.42*(underweight) i + 0.19*(overweight) i + 

0.53*(obese) i + 0.32*(food allergy) ij + 0.51*(other allergy) ij + (0.69)*(bronchitis) ij + 

0.24*(intestinal problems) ij + 1.29*(high income) ij -0.31*(middle income) ij � 

0.59*(rural) ij + 0.38*(18-29 years) ij + 0.42*(30-49 years) ij + 0.04*(50-64 years) ij - 

0.29*(Atlantic) ij -0.18*(Quebec) ij � 0.24*(Prairie) ij + 0.10*(British Columbia) ij -

0.81*(immigrants) ij + 0.19*(white) ij � 0.48*(smokers) ij � 0.34*(ex-smoker) ij � 

0.04*(exposure to second hand smoke) ij + 0.38*(Cycle 5) ij + 0.40*(Cycle 4) ij + 

0.32*(Cycle 3) ij + 0.11*(Cycle 2) ij + 0.43*(rural smokers) ij +0.36*(rural ex-smokers) ij 
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+ 0.56*(high income rural) ij + 0.28*(middle income rural) ij � 0.72*(high income white) 

ij + 0.46*(middle income white) ij + 0.06*(exposure to smoke in Cycle 2) ij + 0.12*( 

exposure to smoke in Cycle 3) ij + 0.11*( exposure to smoke in Cycle 4) ij + 0.27*( 

exposure to smoke in Cycle 5) ij + 0.80*(18-29 years smokers) ij + 0.44*(18-29 years ex-

smokers) ij + 0.29*(30-49 years smokers) ij + 0.37*(30-49 years ex-smokers) ij + 

0.46*(50-64 years smokers) ij + 0.38*(50-64 years ex-smokers) ij � 0.79*(18-29 years 

high income) ij � 0.30*(18-29 years middle income) ij � 0.97*(30-49 years high income) 

ij � 0.41*(30-49 years middle income) ij � 0.68*(50-64 years high income) ij � 0.19*(50-

64 years middle income) ij 
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5.4.3.3 Predicted probability calculated for the significant effect modifiers 

Mean predicted probabilities were calculated for significant interaction terms. 

Figure 5.2 provides the predicted probability of asthma status (yes/no) stratified by 

rural/urban location. The predicted probability of asthma is higher in females residing in 

urban area compared to rural females. At Cycle 3 (1998/99) and Cycle 5 (2001/03) the 

predicted probability is almost similar.  
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Figure 5.2 Mean predicted probability of asthma stratified by location (�� = rural; ---
- = urban) 
 

 The predicted probabilities of asthma for females exposed to second hand smoke 

stratified by each cycle are provided in Figure 5.3. The risk of developing asthma was 

higher for females exposed to second hand smoke, and the risk increased from Cycle 1 
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to Cycle 4 and then dropped for Cycle 5. The risk of asthma was lower for the non-

exposure group but it increased from Cycle 1 to Cycle 4 and then dropped slightly for 

Cycle 5. The increase in the mean predicted probability indicates a higher risk of 

asthma for females exposed to second hand smoke, and the risk increase with time. 
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Figure 5.3 Mean predicted probability of asthma stratified by exposure to second hand 
smoke (---- = exposure to second hand smoke; ��= no exposure to second hand 
smoke)  
 

Figure 5.4 shows the predicted probability on stratifying asthmatics females by 

smoking status and rural/urban location. The risk of developing asthma was highest 

among urban smokers compared to other categories, and it increased over time. For the 

ex-smoker group, the mean predicted probabilities were almost similar, and it increased 

steadily over time. Rural non-smokers females were at lower risk compared to the urban 

females for all the other categories of smoking, but the risk increased over the five study 

Cycles. However, the mean probability of rural non-smokers increased steadily over the 
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study period. By the end of Cycle 5, the mean predicted probability was the same for 

urban smokers, rural and urban smokers, and ex-smokers.  
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Predicted probabilities of socio-economic status stratified by location 

(rural/urban) for the five Cycles are provided in Figure 5.5. The risk of developing 

asthma was higher for rural females belonging to the higher socio-economic status and 

among urban females in the lower socio-economic status, followed by rural and urban 

females in the middle socio-economic status. The risk was lowest in rural females 

belonging to the lower socio-economic status in Cycle 1, then increasing in Cycle 2 and 

3, and dropping again in Cycle 5. The risk of developing asthma increased from Cycle 1 

to 4 and then decreased for Cycle 5 for high socio-economic status rural females and 

middle and low income females residing in urban areas.  
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The predicted probability of asthma by socio-economic status and ethnicity for 

each cycle is provided in Figure 5.6. Non-Caucasian females for all the three categories 

of income level were at lower risk of developing asthma compared to the Caucasian 

females, especially in the middle socio-economic status. Caucasian females belonging 

to the low income category were at higher risk of developing asthma, followed by 

middle and higher socio-economic status females, and the risk increased over time. 

Non-Caucasian females belonging to higher socio-economic group were at higher risk 

of asthma at the start of Cycle 1, but decreased over time. The risk of developing 

asthma increased for Caucasian females from Cycle 1 to Cycle 5 belonging to all three 

categories of socio-economic status. 
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The predicted probabilities of asthma by smoking status stratified by age groups 

for all the five cycles are provided in Table 5.7. Females in 18-29 years age group were 

at higher risk of developing asthma and this was true for all the three smoking 

categories. The risk among 18 to 29 years smokers increased from Cycle 1 to Cycle 4 

and then decreased for Cycle 5. The mean predicted probability at the end of Cycle 5 

was similar for smokers and ex-smokers in the age group 18 to 29 years, 30 to 49 years 

and 50 to 64 years. This was true for non-smokers in the age group 30 to 49 years and 

65 to 72 years. The mean predicted probabilities increased slightly over time for non-

smoker females in the age range 18 to 29 years and 50 to 64 years. These age groups, 

besides 65 to 72 years smokers, were at the lowest risk of having asthma. For Cycle 1, 

the mean predicted probability of asthma for females in the age group 65-72 years was 

not available as in baseline cycle all females were aged 18-64 years only. 
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The predicted probabilities of asthma by socio-economic status of different age 

groups are presented in Figure 5.8. Lower socio-economic status females in the age 

group 18 to 29 years, followed by 30-49 years and 50-64 years, were at higher risk of 

developing asthma. The risk, however, decreased for the 18 to 29 years age group 

females, but increased for 30 to 49 years and 50 to 64 years females. 65 to 72 years 

females belonging to a higher income level group were at a higher risk of developing 

asthma. Except for low and middle socio-economic status females in the age range 18 to 

29 years, females in all other categories showed an increase in the risk over time. The 

risk of developing asthma increased from Cycle 1 to Cycle 5 for all the three income 

level for females aged 50-64 years.  
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5.5 Objective 2: Incidence analysis 

5.5.1 Crude incidence rate calculation 

The crude incidence rate was calculated using two methods: incidence density 

rate and cumulative incidence rate. In the incidence analysis, the focus was on self 

reported newly diagnosed health professionals who diagnosed asthma cases over the ten 

year study period. For the current analysis, asthma free females at the start of Cycle 1 

were selected. Another reason for focusing on only asthma free individuals was that no 

prior information was available for those individuals who had already reported asthma 

in Cycle 1. Hence, the subset chosen for the purpose of analysis of the dataset contains 

only asthma free individuals at Cycle 1 (1994-95).  

Table 5.9 provides the incident cases of asthma stratified by each cycle. The 

results show that in this closed population there was a decrease in the incidence of 

asthma over time. At the end of cycle 5, there were 3649 censored cases. 

 

Table 5.9 New asthma cases stratified by Cycles 
 
 
Cycles/waves Event/ new cases  Censored cases Total 
Cycle 2 (1996-97) 128 3849 3977 
Cycle 3 (1998-99) 90 3759 3849 
Cycle 4 (2000-01) 62 3697 3759 
Cycle 5 (2002-03) 48 3649 3697 
Total 328 14954 15282 
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5.5.1.1 Incidence density rate  

Table 5.10 provides the weighted and unweighted incidence rates per 1000 for 

all the covariates included in the final model. The overall incidence rate is also reported 

in this table. The weighted and unweighted incidence rates were very similar, except for 

the categories of underweight and obese category in the BMI covariate and the category 

of chronic bronchitis/emphysema. The 95% confidence intervals for the weighted 

analysis were slightly wider than the unweighted analysis. The results stratified by 

cycles could not be presented as the cell counts were very small and could not be 

reproduced for publication22.  

The incidence density rate of asthma decreased from 16/1000/year in Cycle 2 to 

6.4/1000/year at the end of Cycle 5, and the overall incidence rate was 10.5/1000/year. 

Obese females had the highest incidence rate which was about 14/1000/year, followed 

by over weight (11/1000/year) and normal weight (10/1000/year) females. The 

incidence density rate was very high for food allergy, other kinds of allergies, chronic 

bronchitis and stomach/intestinal problems. The incidence density rate of asthma was 

about 69/1000/year for females diagnosed with chronic bronchitis or emphysema.  

Females belonging to lower socio-economic groups had the highest incidence 

density rate (13/1000/year), followed by middle socio-economic group (10/1000/year). 

The incidence density rate of asthma stratified by location was 10% per 1000 per person 

years for both rural and urban females. The incidence rate of asthma was highest among 

young females who were in the 18 to 29 years age group and was 16/1000/year, 

followed by 50 to 64 years and 65 to 72 years old females (10/1000/year).  

                                                
22 Please refer to Appendix B (8.2.1) 
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The region of Quebec had the highest incidence density rate of asthma of about 

12/1000/year, followed by Atlantic, British Columbia and Ontario region. When 

stratifying by immigration status, females who were Canadian citizens had the highest 

incidence rate of asthma, which was about 11.4/1000/year compared to others.  

Caucasian females had the higher asthma incidence rate (11/1000/year) 

compared to non- Caucasian. Smokers and ex-smokers females had almost similar 

asthma incidence rate which was about 11/1000/year, and in non-smokers females the 

rate was about 8.6/1000/year. The incidence density rate of asthma was 14/1000/year 

among the females who reported exposure to second hand smoke and in the non-

exposed group the incidence rate was 9.0/1000/year.    
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Table 5.10 Weighted and unweighted analysis of Incidence density rates (per 1000 
person years) of asthma stratified by Cycle and each categorical covariate 
 
 
Covariates Weighted Analysis Unweighted analysis 
 Rate  95% C.I. Rate 95% C.I. 
Time     

Cycle 2 (1996-97) 16.0 13.1-19.9 16.1 13.5-19.1 
Cycle 3 (1998-99) 11.4 8.7-15.1 11.7 9.5-14.4 
Cycle 4 (2000-01) 7.8 5.9-10.7 8.2 6.4-10.6 
Cycle 5 (2002-03) 6.4 4.6-9.1 6.5 4.9-8.6 

BMI     
Underweight 5.5 2.2-17.0 8.9 4.5-17.9 
Normal weight 9.9 8.3-12.1 9.4 8.1-11.0 
Over weight 10.9 8.5-14.2 11.4 9.3-14.0 
Obese 13.8 10.2-19.1 15.0 11.7-19.3 

Food Allergy     
Yes 24.2 18.2-32.9 24.5 19.2-31.3 
No 9.3 8.0-10.8 9.4 8.4-10.7 

Other Allergy     
Yes 21.2 17.9-25.4 20.6 17.8-23.8 
No 6.3 5.1-7.7 6.8 5.8-8.0 

Bronchitis     
Yes 68.9 49.1-99.9 62.1 45.5-84.7 
No 9.4 8.1-10.8 9.6 8.6-10.8 

Intestinal Problems     
Yes 24.8 14.9-44.4 23.1 15.2-35.1 
No 10.1 8.8-11.6 10.3 9.2-11.6 

Socio-economic status     
Low Income 13.2 9.4-19.2 14.6 11.2-19.0 
Middle Income 10.1 8.6-12.1 10.2 8.9-11.8 
High Income 9.0 6.7-12.6 8.5 6.5-11.2 

Location (Rural/Urban)     
Rural 10.1 7.5-13.9 9.3 7.3-11.7 
Urban 10.6 9.2-12.3 11.2 9.9-12.7 

Age Group (years)     
18-29 years 14.2 11.1-18.4 14.7 11.9-18.2 
30-49 years 9.0 6.5-12.9 8.9 6.8-11.7 
50-64 years 9.8 7.7-12.5 10.4 8.6-12.6 
65-72 years 10.0 7.8-13.2 9.7 7.9-11.9 

Region     
Atlantic 10.6 8.2-13.9 9.9 7.9-12.4 
Quebec 11.7 8.8-15.7 10.8 8.4-14.0 
Prairie 9.8 7.6-12.9 10.5 8.4-13.2 
British Columbia 10.0 6.9-15.0 11.3 8.0-15.9 
Ontario 10.1 8.0-13.0 11.3 9.2-14.1 
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Table 5.10 Cont�d 

Covariates Weighted Analysis Unweighted analysis 
 Rate  95% C.I. Rate 95% C.I. 
Immigration status 

Immigrants 6.4 4.1-10.6 6.5 4.4-9.7 
Citizen 11.4 9.9-13.1 11.3 10.1-12.6 

Ethnicity     
White 10.9 9.6-12.5 10.8 9.7-12.1 
Non-white 6.6 3.6-13.4 10.0 6.2-16.0 

Smoking Status     
Current Smokers 11.9 9.4-15.3 12.9 10.6-15.7 
Ex-Smokers 11.8 9.5-14.7 11.3 9.5-13.5 
Non-Smokers 8.6 6.8-11.1 8.7 7.1-10.6 

Second Hand Smoke 
Exposure 14.4 11.7-17.9 14.8 12.5-17.5 
No Exposure 9.0 7.6-10.7 9.1 7.9-10.4 

     
Overall 10.5 9.2-12.1 10.7 9.6-12.0 
 

5.5.1.2 Crude rate ratio using STMH command 

The ratio of the rates also mentioned as crude rate ratio between the two groups 

was calculated using the STMH command in STATA software. The rate ratio was 

calculated for all the important risk factors or covariates with respect to the reference 

category. Both weighted and unweighted rate ratio and their corresponding 95% 

confidence interval are provided in Table 5.11.   

 The rate ratio obtained from the weighted and unweighted analysis, were 

different from each other. For the weighted analysis the survey weights were used. In 

STMH command when the sampling weights are included, the 95% confidence 

intervals are calculated using the jackknife method. The results using the two methods 

were different, especially for some covariates. These variables included body mass 

index, other allergies, emphysema, intestinal problems, region and ethnicity. The 95% 



 

    161

confidence intervals for the weighted analysis were very tight causing in higher 

significance level for all covariates in the model.   

The results show that there was a strong positive association incidence of asthma 

in females with the covariates obesity, food allergies, other types of allergies, chronic 

bronchitis, intestinal problems, females in 18-29 years age group, current smokers and 

exposure to second hand smoke when considered separately. A negative association of 

asthma incidence was observed for the covariates socio-economic status and females 

who were non Canadian citizens.  
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Table 5.11 Crude stratified rate ratio of asthma incidence for covariates/risk factor 
using the STMH command in STATA 
 
 
Covariates Weighted Analysis Unweighted Analysis 
 Rate 

Ratio 
95% C.I. Rate 

Ratio 
95% C.I. 

BMI (Normal weight)     
Under weight 0.55*** 0.54-0.56 0.95 0.47-1.93 
Over weight 1.09*** 1.09-1.10 1.21 0.94-1.57 
Obese 1.39*** 1.38-1.40 1.59** 1.19-2.14 

Food Allergy (No)     
Yes 2.60*** 2.58-2.62 2.60*** 1.97-3.41 

Other Allergy (No)     
Yes 3.39*** 3.37-3.41 3.00*** 2.42-3.73 

Bronchitis (No)     
Yes 7.35*** 7.28-7.41 6.45*** 4.63-8.98 

Intestinal Problem (No)     
Yes 2.46*** 2.43-2.48 2.23*** 1.45-3.44 

Socio-economic status (Low Income) 
Middle Income 0.68*** 0.68-0.69 0.58** 0.40-0.85 
High Income 0.77*** 0.76-0.77 0.70* 0.52-0.94 

Location (Urban)     
Rural 0.95*** 0.95-0.96 0.83 0.64-1.08 

Age Group (65-72 years)     
18-29 years 1.41*** 1.40-1.42 1.52** 1.13-2.04 
30-49 years 0.90*** 0.89-0.91 0.92 0.65-1.29 
50-64 years 0.97*** 0.97-0.98 1.07 0.80-1.42 

Region (Ontario)     
Atlantic 1.04*** 1.03-1.05 0.88 0.64-1.19 
Quebec 1.15*** 1.14-1.16 0.95 0.68-1.33 
Prairie 0.97*** 0.96-0.98 0.92 0.68-1.26 
British Columbia 0.98** 0.97-0.99 0.99 0.67-1.49 

Immigration (Citizen )     
Others 0.56*** 0.55-0.56 0.58** 0.38-0.88 

Ethnicity (Non-white)     
White 1.65*** 1.63-1.67 1.08 0.66-1.76 

Smoking Status (Non-Smokers)     
Current Smokers 1.38*** 1.37-1.39 1.49** 1.13-1.96 
Ex-Smokers 1.37*** 1.36-1.37 1.30 0.99-1.69 

Second hand smoke (No)     
Yes 1.61*** 1.60-1.62 1.63*** 1.30-2.03 

Reference categories are specified in parentheses 
*** p<0.001 
**p<0.01 
*p<0.05 
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5.5.2 Proportional hazard regression models 

To examine the effect of risk factors or covariates on incidence of asthma 

discrete version of the proportional hazard regression model was used. Table 5.12 

summarizes the different methods and STATA commands were used to fit the discrete 

and Cox proportional hazard model. Various STATA commands used for calculating 

the incidence density and the stratified rate ratio are also summarized in this table. 

 

Table 5.12 Methods and the STATA command used to achieve objective 2 
 
 
Methods Parameter estimates 

and standard errors 
STATA 
Command 

Tables 

Incidence Density Weighted STPTIME 5.10 
 Unweighted STPTIME 5.10 
Crude Rate ratio Weighted STMH 5.11 
 Unweighted STMH 5.11 
Discrete Proportional 
Hazard Model 

Weighted GLM 5.13*, 5.15** 

 Robust  RGLM 5.13*, 5.15** 
 Unweighted G LM 5.14*, 5.16** 
Cox�s proportional 
hazard model 

Weighted STCOX 5.13*, 5.15** 

 Robust  Robust option 5.13*, 5.15** 
 Unweighted STCOX 5.14*, 5.16** 
* Unadjusted hazard rate 
** Adjusted hazard rate 
 

 

Table 5.13 provides the weighted and robust standard error unadjusted hazard 

rate (rate ratio) and standard errors for discrete and Cox proportional hazard model. At 

the bivariate level, the proportionality hazard assumption was satisfied for all the 

covariates. The weighted and robust hazard ratios, as well as the standard errors for the 

Cox proportional hazard model were different, especially for the covariates BMI, other 
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allergies, bronchitis, region and ethnicity. The standard errors for the weighted analysis 

were larger than the robust analysis.  

For the Cox proportional hazard model, the weighted and robust hazard ratio 

and the corresponding standard errors were different. The standard errors for the 

weighted analysis were larger than the robust analysis.  

On comparing the weighted (robust) discrete and Cox proportional hazard 

model, the results were similar. The standard error obtained using the weighted discrete 

proportional hazard models were larger than the Cox proportional hazard model. All the 

covariates provided in Table 5.13 were significant at p<0.25 level, hence in the final 

model all these covariates were included.   
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Table 5.14 provides the model-based or unweighted unadjusted hazard ratios 

and standard errors for the discrete and Cox�s proportional hazard model. The 

proportionality hazard assumption for all the covariates at a bivariate level was 

satisfied. The hazard ratio and the standard errors were very similar using these two 

methods, the hazard ratio and standard error of the unweighted analysis were very 

similar to the unadjusted robust analysis (Table 5.13). For the model-based case, the 

discrete and Cox proportional hazard model were similar, with slightly large standard 

errors obtained using the first method. All the covariates (Table 5.14) for the model-

based analysis were highly significant.  
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Table 5.14 Model-based Discrete and Cox�s proportional hazard model; unadjusted 
hazard ratio of covariates/risk factors  
 
 
Covariates Discrete Proportional Hazard 

Model 
Cox�s Proportional 

Hazard Model 
 Hazard Ratio (S.E.) Hazard Ratio  (S.E.) 
BMI (Normal weight)   

Under weight 0.95 (0.34) 0.95 (0.34) 
Over weight 1.22 (0.16) 1.21 (0.16) 
Obese 1.61 (0.24)** 1.59 (0.24)** 

Food Allergy (No)   
Yes 2.52 (0.35)*** 2.67 (0.37)*** 

Other Allergy (No)   
Yes 2.97 (0.33)*** 3.05 (0.34)*** 

Bronchitis (No)   
Yes 7.21 (1.22)*** 6.16 (1.04)*** 

Intestinal Problem (No)   
Yes 2.31 (0.51)*** 2.20 (0.48)*** 

Socio-economic status  
(Low Income) 

  

Middle Income 0.47 (0.09)*** 0.69 (0.13) 
High Income 0.64 (0.10)** 0.74 (0.11) 

Location (Urban)   
Rural 0.81 (0.11) 0.84 (0.11) 

Age Group (65-72 years)   
18-29 years 1.86 (0.28)*** 1.32 (0.20) 
30-49 years 1.03 (0.18) 0.84 (0.15) 
50-64 years 1.11 (0.16) 1.04 (0.15) 

Region (Ontario)   
Atlantic 0.88 (0.14) 0.87 (0.14) 
Quebec 0.96 (0.16) 0.95 (0.16) 
Prairie 0.92 (0.15) 0.93 (0.15) 
British Columbia 1.01 (0.21) 0.99 (0.20) 

Immigration (Citizen )   
Others 0.57 (0.12)** 0.58 (0.12)* 

Ethnicity (Non-Caucasian)   
Caucasian 1.11 (0.27) 1.06 (0.26) 

Smoking Status (Non-
Smokers) 

  

Current Smokers 1.52 (0.21)** 1.47 (0.21)** 
Ex-Smokers 1.22 (0.16) 1.37 (0.18)* 

Second hand smoke (No)   
Yes 1.81 (0.20)*** 1.52 (0.17)*** 

Reference categories are provided in parentheses 
*** p<0.001 
**p<0.01; *p<0.05 
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The adjusted hazard ratios and 95% confidence interval for the weighted and 

robust analysis using discrete and Cox�s proportional model are provided in Table 5.15. 

The proportionality hazard assumption of covariates included in the final model was 

satisfied for weighted, unweighted and the robust analysis. The weighted and robust 

analyses for discrete and Cox proportional hazard model were very different from each 

other, with weighted analysis providing larger standard errors. 

The hazard ratio and the corresponding standard errors were similar for the 

weighted (robust) analysis for discrete and Cox proportional hazard models, with the 

exception of some of the covariates. The standard errors for the discrete proportional 

hazard model were larger than the Cox�s model. The significance level of the covariates 

was also differed based on the standard errors.  
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Table 5.16 presents the model-based (unweighted) hazard ratio and standard 

errors using discrete and Cox�s proportional hazard model when all the covariates or 

risk factors are included in the model. As previously noted, the model-based hazard 

ratio and standard errors using discrete and Cox proportional hazard was similar to the 

robust analysis (Table 5.15), with standard errors slightly larger than the robust 

analysis.  
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Table 5.16 Model-based adjusted hazard ratio Discrete and Cox�s proportional hazard 
model of covariates/risk factors 
 
 
Covariates Discrete Proportional 

Hazard 
Model 

Cox�s 
Proportional 

Hazard Model 
 Rate (S.E.) Rate (S.E.) 
BMI (Normal weight)   

Under weight 0.83 (0.32) 0.85 (0.33) 
Over weight 1.43 (0.20)* 1.34 (0.19)* 
Obese 1.65 (0.27)** 1.64 (0.26)** 

Food Allergy (No)   
Yes 1.72 (0.27)*** 1.78 (0.28)*** 

Other Allergy (No)   
Yes 2.49 (0.31)*** 2.51 (0.31)*** 

Bronchitis (No)   
Yes 5.87 (1.06)*** 5.13 (0.93)*** 

Intestinal Problem (No)   
Yes 1.80 (0.42)* 1.84 (0.43)* 

Socio-economic status (Low Income) 
Middle Income 0.58 (0.12)** 0.83 (0.17) 
High Income 0.79 (0.12) 0.90 (0.14) 

Location (Urban)   
Rural 0.79 (0.12) 0.85 (0.13) 

Age Group (65-72 years)   
18-29 years 2.24 (0.38)*** 1.53 (0.26)* 
30-49 years 1.23 (0.23) 1.00 (0.19) 
50-64 years 1.20 (0.19) 1.11 (0.18) 

Region (Ontario)   
Atlantic 0.68 (0.12)* 0.71 (0.12) 
Quebec 0.80 (0.15) 0.87 (0.16) 
Prairie 0.74 (0.13) 0.78 (0.13) 
British Columbia 1.11 (0.23) 1.09 (0.23) 

Immigration (Citizen )   
Others 0.61 (0.15)* 0.56 (0.14)* 

Ethnicity (Non-Caucasian)   
Caucasian 1.01 (0.29) 0.85 (0.24) 

Smoking Status (Non-Smokers) 
Current Smokers 0.68 (0.13) 0.79 (0.16) 
Ex-Smokers 1.03 (0.15) 1.14 (0.16) 

Second hand smoke (No)   
Yes 2.20 (0.37)*** 1.78 (0.30)** 

Reference categories are provided in parentheses 
*** p<0.001 
**p<0.01 
*p<0.05 
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 Since a complex survey data set was used and it is recommended that the weight 

variable should be used in order to get proper estimates and standard errors, hence the 

weighted discrete and Cox�s proportional hazard model was interpreted (Table 5.15). 

When adjusted for other covariates in the model, the hazard ratio of asthma 

incidence decreased for underweight females by 49%, increased by 1.4 times in over 

weight and obese females compared to normal weight females. However, BMI was not 

a significant predictor of asthma incidence.  

The hazard ratio of asthma was 1.8 times higher in females who had food 

allergies compared to those who did not. The hazard ratio was 3 times higher in females 

diagnosed with any other kind of allergy and  7 times higher in females diagnosed with 

chronic bronchitis or emphysema, compared to undiagnosed  (p<0.05). Asthma 

incidence was 2 times higher in females diagnosed with intestinal problems compared 

to females with no intestinal problems.  However, the increased risk was not statistically 

significant.  

Asthma incidence decreased by 33% in the middle socioeconomic group and by 

13% in highest socioeconomic group, compared to the lowest socioeconomic group. For 

rural females, the risk of asthma was almost equal to 1, showing that there was no 

difference in the hazard ratio of rural or urban females.  

When studied by age group, the risk of asthma was 2 times higher in the 18 to 

29 year age group, 1.2 times higher in the 30 to 49 year age group, and 1.1 times higher 

in the 50 to 64 year age group, compared to the 65 to 72 year age group. The increase in 

the risk was statistically significant, except for the 50 to 64 years age group.  
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Current smokers showed a significant decrease of 40% in the risk of asthma 

incidence, compared to non-smokers. Among ex-smokers, the risk was unity indicating 

that there was no risk associated between asthma incidences and being an ex-smoker. 

The risk of asthma was 2.2 times higher in females exposed to second hand smoke 

compared to the non-exposed females, and this increase was statistically significant at 

p<0.0001. There were no statistically significant findings between asthma incidence and 

region of residence or ethnicity.
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5.6 Objective 3: Variance corrected and frailty models 

The primary aim of the third objective was to compare the variance corrected 

and frailty models for recurrent event data. To perform the survival analysis, the data set 

were modified so that variance corrected and frailty modeling approach could be fitted. 

The asthma definition used was �Do you have asthma diagnosed by a physician?� All 

those females were included in the study who had answered �no� to the above question 

in Cycle 1. Females who had answered yes to the above question were not included in 

the study as information was not available regarding whether this was recurrent asthma 

attack they had, or if they were experiencing asthma for the first time.  

Descriptive analysis was conducted to study the recurrence of asthma over the 

ten year study period. Figure 5.9 shows the frequency distribution of asthma cases for 

each cycle and provides the number of individuals who experienced asthma episodes 

and individuals who reported no asthma. At the end of Cycle 2, it was further sub- 

divided into two groups, one who experienced asthma episodes and other who did not. 

By the end of Cycle 3 those who experienced asthma episodes were further subdivided 

into those who experienced asthma recurrence and those who did not experience 

recurrence in Cycle 3. Those without asthma were also subdivided into two categories. 

Similar sub-division was conducted for Cycles 4 and 5. The diagrammatic 

representation is provided in Figure 5.9. 

 

 

 

 



  
 

 
 

177

             F-
 R

es
ul

ts
 w

er
e 

fla
gg

ed
, a

s t
he

 c
el

l c
ou

nt
s w

er
e 

ve
ry

 sm
al

l 

  Fi
gu

re
 5

.9
 F

re
qu

en
cy

 d
ist

rib
ut

io
n 

of
 a

st
hm

a 
re

cu
rr

en
ce

 in
 fe

m
al

es
 fr

om
 C

yc
le

 2
 to

 C
yc

le
 5

A
st

hm
a 

fre
e 

fe
m

al
es

 a
t t

he
 e

nd
 o

f C
yc

le
 1

 (1
99

4-
95

) 

Y
es

 (1
28

)
N

o 
(4

91
8)

 

Y
es

 (9
3)

 
N

o 
(3

5)
 

Y
es

 (9
0)

 
N

o 
(4

45
5)

 

Y
es

  
(6

6)
 

N
o 

(2
7)

 
Y

es
 

(6
) 

N
o 

(2
9)

 
Y

es
 

(6
4)

 
N

o 
(2

6)
 

Y
es

 
(6

2)
 

N
o 

(4
04

4)
 

Y
es

 
(4

) 
N

o 
(1

6)
 

N
o 

(2
3)

 
Y

es
(F

) 
N

o 
(F

) 
Y

es
(F

) 
Y

es
(4

5)
N

o 
(3

64
9)

N
o 

(F
) 

Y
es

 
(5

0)
 

N
o 

(1
9)

 
Y

es
(2

) 
N

o 
(2

4)
Y

es
(4

1)
N

o 
(2

1)
Y

es
(4

8)

C
yc

le
 5

 (2
00

2-
03

)

C
yc

le
 4

 
(2

00
0-

01
) 

C
yc

le
 3

 
(1

99
8-

99
) 

C
yc

le
 2

 (1
99

6-
97

)



 

    178

5.6.1 Fitting variance corrected models 

Table 5.17 provides the recurrent episodes of asthma for each cycle. There were 

83 first episodes of recurrence, 69 cases of second recurrence, followed by 62 cases of 

third recurrent episodes of asthma and 56 fourth episodes of asthma.  

 

Table 5.17 Distribution of first and subsequent episodes of asthma and censoring 
during the follow-up time 
 
 
Follow-up Event  Censored cases Total 
Cycle 1-2 83 4582 4665 
Cycle 1-3 69 4596 4665 
Cycle 1-4 62 4603 4665 
Cycle 1-5 56 4609 4665 
Total 270 18390 18660 
 

The covariates for the final model were chosen based on the standard model 

building strategy and included BMI, food allergies, other allergies, bronchitis, socio-

economic status, location, age, region, immigration status, race, smoking and exposure 

to second hand smoke. All the covariates significant at p<0.25 level in the bivariate 

analysis with the outcome variable which in this case was recurrent events of asthma 

were included in the final model.  

Table 5.18 provides the weighted and unweighted hazard ratio and 95% 

confidence interval for recurrent data using Anderson Gill (AG) approach. Weighted 

and unweighted hazard ratios were close for some of the variables, but for the variables 

obese category of BMI, age and ethnicity the hazard ratio were slightly different. The 

standard errors obtained when using the sampling weight were very small, resulting in 

very tight confidence intervals, resulting in high significance of all covariates at 
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p<0.0001 level. The standard errors obtained when ignoring the sampling weights were 

larger and resulted in less significant covariates. The hazard ratio for the weighted and 

unweighted analysis for some covariates like BMI, age group, ethnicity, smoking status 

and exposure to second hand smoke provided very different results. BMI, self reported 

health professional diagnosed food allergies, other allergies and chronic bronchitis, age 

group, region, immigrant status and smoking category were the significant variables.  
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Table 5.18 Weighted and unweighted hazard ratio (HR) and 95% confidence interval 
using Anderson Gill (AG) approach 
 
 
Variables Weighted Unweighted 
 HR 95% CI HR 95% CI 
BMI (Normal weight)     

Under weight 1.21*** 1.19-1.23 1.44 0.77-2.69 
Over weight 1.37*** 1.36-1.38 1.60** 1.18-2.17 
Obese 2.05*** 2.67-2.73 3.44*** 2.55-4.64 

Food Allergy (No)     
Yes 2.41*** 2.38-2.43 2.34*** 1.69-3.25 

Other Allergy (No)     
Yes 2.54*** 2.52-2.56 2.21*** 1.70-2.87 

Bronchitis (No)     
Yes 2.24*** 2.21-2.26 2.45*** 1.57-3.83 

Socio-economic status 
(Low Income) 

    

Middle Income 1.66*** 1.64-1.67 1.41 0.91-2.18 
High Income 1.12*** 1.11-1.13 1.16 0.85-1.58 

Location (Urban)     
Rural 0.85*** 0.84-0.86 0.76 0.55-1.05 

Age Group (65-72 years)     
18-29 years 1.45*** 1.43-1.46 2.29*** 1.57-3.34 
30-49 years 1.06*** 1.05-1.07 1.45 0.98-2.13 
50-64 years 1.10*** 1.09-1.11 1.57* 1.07-2.28 

Region (Ontario)     
Atlantic 0.62*** 0.61-0.63 0.51*** 0.35-0.72 
Quebec 0.63*** 0.63-0.64 0.55** 0.36-0.82 
Prairie 0.69*** 0.69-0.70 0.69** 0.50-0.96 
British Columbia 0.92*** 0.91-0.93 0.86* 0.56-1.32 

Immigration (Citizen )     
Immigrants 0.60*** 0.59-0.61 0.58* 0.36-0.94 

Ethnicity (Non-white)     
White 4.35*** 4.24-4.47 1.39 0.74-2.63 

Smoking Status (Non-
Smokers) 

    

Current Smokers 2.70*** 2.67-2.73 1.73** 1.17-2.56 
Ex-Smokers 1.51*** 1.49-1.52 1.38* 1.00-1.91 

Second hand smoke (No)     
Yes 0.78*** 0.78-0.79 1.07 0.76-1.52 

*** p<0.001 
 **p<0.01 
*p<0.05 
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Table 5.19 provides the weighted and unweighted hazard ratio and the 95% 

confidence intervals for recurrent event data using the marginal modeling WLW 

approach. The weighted hazard ratio when using the WLW method were very similar to 

that of the weighted AG approach and the same was also true for unweighted result. 

However, the confidence interval obtained using the WLW approach was wider than the 

AG approach. The weighted and unweighted hazard ratios were different, and as noted 

previously, were very different for some of the covariates. The confidence intervals 

when using the sampling weight was larger compared to the unweighted standard 

errors.  
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Table 5.19 Weighted and unweighted hazard ratio (HR) and 95% confidence interval 
using Wei, Lin and Weissfeld (WLW) approach 
 
 
Variables Weighted Unweighted 
 HR 95% CI HR 95% CI 
BMI (Normal weight)     

Under weight 1.25 0.60-2.61 1.48 0.80-2.75 
Over weight 1.37** 0.94-1.99 1.57** 1.16-2.14 
Obese 2.02** 1.41-2.89 3.39*** 2.53-4.54 

Food Allergy (No)     
Yes 2.26** 1.48-3.45 2.22*** 1.59-3.11 

Other Allergy (No)     
Yes 2.53*** 1.78-3.60 2.19*** 1.67-2.87 

Bronchitis (No)     
Yes 2.14** 1.21-3.77 2.38*** 1.49-3.81 

Socio-economic status (Low 
Income) 

    

Middle Income 1.65 0.98-2.79 1.41 0.91-2.18 
High Income 1.12 0.79-1.60 1.17 0.87-1.58 

Location (Urban)     
Rural 0.85 0.54-1.35 0.75 0.54-1.05 

Age Group (65-72 years)     
18-29 years 1.51 0.94-2.44 2.37*** 1.62-3.48 
30-49 years 1.09 0.67-1.77 1.47 0.99-2.17 
50-64 years 1.13 0.72-1.78 1.59* 1.09-2.32 

Region (Ontario)     
Atlantic 0.61* 0.41-0.92 0.50*** 0.36-.071 
Quebec 0.63 0.38-1.05 0.55** 0.36-0.83 
Prairie 0.69* 0.48-0.99 0.70* 0.51-0.96 
British Columbia 0.91 0.55-1.52 0.86 0.56-1.32 

Immigration (Citizen )     
Immigrants 0.60 0.33-1.10 0.58* 0.34-0.99 

Ethnicity (Non-white)     
White 4.35** 2.06-9.19 1.40 0.73-2.69 

Smoking Status (Non-Smokers)     
Current Smokers 2.61** 1.52-4.51 1.66* 1.10-2.49 
Ex-Smokers 1.52* 1.04-2.24 1.39* 1.01-1.91 

Second hand smoke (No)     
Yes 0.79 0.48-1.29 1.08 0.75-1.55 

Reference categories are provided in parentheses 
*** p<0.001 
**p<0.01 
*p<0.05 
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Table 5.20 provides the weighted and unweighted hazard ratio and 95% 

confidence interval using the PWP-gap time/total time approach for recurrent event 

data. Both the gap time and total time provided exactly identical result and one table 

was provided. The weighted and unweighted hazard ratio using the PWP gap time and 

total time approach were exactly the same as WLW approach.  

The third objective of this thesis was aimed at comparing the three variance 

corrected models.  Based on the result obtained, the AG model was not able to account 

for the complex survey design. The result of the WLW and the PWP model provided 

exactly the same result; hence for the purpose of interpretation the WLW weighted 

analysis results will be used. 
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Table 5.20 Weighted and unweighted hazard ratio (HR) and 95% confidence interval 
using gap time/total time Prentice, William and Peterson (PWP) approach 
 
 
Variables Weighted Unweighted 
 HR 95% CI HR 95% CI 
BMI (Normal weight)     

Under weight 1.25 0.60-2.61 1.48 0.80-2.75 
Over weight 1.37** 0.94-1.99 1.57** 1.16-2.14 
Obese 2.02** 1.41-2.89 3.39*** 2.53-4.54 

Food Allergy (No)     
Yes 2.26** 1.48-3.45 2.22*** 1.59-3.11 

Other Allergy (No)     
Yes 2.53*** 1.78-3.60 2.19*** 1.67-2.87 

Bronchitis (No)     
Yes 2.14** 1.21-3.77 2.38*** 1.49-3.81 

Socio-economic status 
(Low Income) 

    

Middle Income 1.65 0.98-2.79 1.41 0.91-2.18 
High Income 1.12 0.79-1.60 1.17 0.87-1.58 

Location (Urban)     
Rural 0.85 0.54-1.35 0.75 0.54-1.05 

Age Group (65-72 years)     
18-29 years 1.51 0.94-2.44 2.37*** 1.62-3.48 
30-49 years 1.09 0.67-1.77 1.47 0.99-2.17 
50-64 years 1.13 0.72-1.78 1.59* 1.09-2.32 

Region (Ontario)     
Atlantic 0.61* 0.41-0.92 0.50*** 0.36-.071 
Quebec 0.63 0.38-1.05 0.55** 0.36-0.83 
Prairie 0.69* 0.48-0.99 0.70* 0.51-0.96 
British Columbia 0.91 0.55-1.52 0.86 0.56-1.32 

Immigration (Citizen )     
Immigrants 0.60 0.33-1.10 0.58* 0.34-0.99 

Ethnicity (Non-white)     
White 4.35** 2.06-9.19 1.40 0.73-2.69 

Smoking Status (Non-
Smokers) 

    

Current Smokers 2.61** 1.52-4.51 1.66* 1.10-2.49 
Ex-Smokers 1.52* 1.04-2.24 1.39* 1.01-1.91 

Second hand smoke (No)     
Yes 0.79 0.48-1.29 1.08 0.75-1.55 

Reference categories are provided in parentheses 
*** p<0.001 
**p<0.01 
*p<0.05 
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5.6.2 Interpretation of the WLW model 

The hazard ratio increased for all the three categories of body mass index. The 

risk of recurrent asthma increased by 1.3 times for under weight females, by 1.4 times 

for over weight and 2 times for obese females when compared to the normal weight 

females. The risk of asthma recurrence was 2.3 times higher in females diagnosed with 

food allergy compared to the females with no food allergies. Risk of asthma recurrence 

also increased 2.5 times for females with other kind of allergies and 2 times for females 

with bronchitis compared to females with no allergies or bronchitis.  Females in the 

middle socio-economic status showed 1.7 times increase in the risk of asthma 

recurrence compared to lower socio-economic status females. For the higher socio-

economic status the risk was 1.1 times, however, this increase was not statistically 

significant.  

Compared to the 65 to 72 year old group, the risk of asthma recurrence was 1.5 

times higher for females in 18 to 29 year, 1.1 times higher in the 30 to 49 group. For 50 

to 64 years, the hazard rate was similar to the 65 to 72 year old females. However, none 

of the increases were statistically significant.  

Compared to the Ontario region, the hazard of asthma recurrence for females 

residing in the Atlantic region decreased by about 39%, in the Quebec region it 

decreased by 37%, in the Prairie region decreased by 31% and in the British Columbia 

region decreased by 9%. The decreased in the hazard rate were statistically significant 

at p<0.05 level.  

Females who were not Canadian citizens were at 40% lower risk of asthma 

recurrence compared to females who were Canadian citizens. Females who were 
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Caucasian were at 4.4 times higher risk of asthma recurrence compared to the non-

Caucasian females (p<0.01).  

Females who were current smokers were at 2.6 times higher risk of asthma 

recurrence compared to the non-smoker females (p<0.01). The hazard rate for female 

ex-smokers was about 1.5 times higher compared to non-smoker females (p<0.05). For 

females who were exposed to second hand smoke, the risk decreased by about 21% 

compared to females who were not exposed to second hand smoke, but this decrease 

was not statistically significant.  
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5.7 Objective 4: Missing data analysis 

The fourth objective focused on comparing the robustness of the data with 

completers versus incompleters, using a missing data approach. The approaches used 

were the weighted generalized estimating equation and the random effects modeling 

approach also known as generalized linear mixed models.  

5.7.1 Marginal models  

Final Model as obtained from Objective 1 is: 

ij 0 1 i 2 i 3 i

4 ij 5 ij 6 ij 7 ij

8 ij 9 ij 10

[Pr(asthma) =1]=β +β *(underweight) +β *(overweight) +β *(obese)

+β *(foodallergy) +β *(otherallergy) +β *(bronchitis) +β *(intestinalproblem)

+β *(highincome) +β *(middleincome) +β *(rur

logit

ij 11 ij

12 ij 13 ij 14 ij 15 ij

16 ij 17 ij 18 ij 19 ij

20 ij 21

al) +β *(18-29years) +

β *(30-49years) +β *(50-64years) +β *(Atlantic) +β *(Quebec)

+β *(Prairie) +β *(BritishColumbia) +β *(Immigrants) +β *(white)

+β *(smokers) +β *(ex-smokers)ij 22 ij

23 ij 24 ij 25 ij 26 ij

27 ij 28 ij 29 ij

30 ij 31

+β *(secondHandSmoke)

+β *(Cycle5) +β *(Cycle4) +β *(Cycle3) +β *(Cycle2) +

β *(rural*smokers) +β *(rural*ex-smokers) +β *(rural*highIncome)

+β *(rural*middleIncome) +β *(white*hig ij 32 ij

33 ij 34 ij 35 ij

36 ij 37 ij 38 ij

39

hIncome) +β *(white*middleIncome)

+β *(exposure*Cycle5) +β *(exposure*Cycle4) +β *(exposure*Cycle3) +

β *(exposure*Cycle2) +β *(smoker*18-29years) +β *(smoker*30-49years)

+β *(smoker*50 ij 40 ij

41 ij 42 ij

43 ij 44 ij

45 ij 46

-64years) +β *(ex-smoker*18-29years) +

β *(ex-smoker*30-49years) +β *(ex-smoker*50-64years) +

β *(highIncome*18-29years) +β *(highIncome*30-49years)

+β *(highIncome*50-64years) +β *(middle ij

47 ij 48 ij

Income*18-29years) +

β *(middleIncome*30-49years) +β *(middleIncome*50-64years)

 

The modified final model for Objective 4 was obtained by adding a drop variable in the 

model as a main effect, and as an interaction term by multiplying all the variables in the 

final model by the drop variable. This approach is known as the pattern mixture model 

(PMM). 
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The GEE analysis using the SAS procedure GENMOD was used with the drop 

variable, as well as all possible interaction with the main effects, as well as interaction 

terms. The results indicated that the interaction terms with the drop variable and its 

interaction with the main effect variable or the interaction terms was not significant 

(result not presented). In the next step, the three way interaction terms were dropped 

from the final model and the analysis was re-run with just the main effects variables 

from the above equation, the drop variable and interaction of drop variable with the 

main effects variable. In this model, it was seen that the drop variable and the 

interaction of drop variable with location, ethnicity and socio-economic status variable 

were significant at p<0.05 level (result not presented). The following step included only 

the main effects variable, the drop variable and the significant drop and main effect 

interaction terms.  In this model, the interaction terms (location, ethnicity and socio-

economic status with drop variable) were not significant. Hence, the final model was 

chosen using the variables included in Objective 1 and keeping only the drop variable as 

a main effect term in the model. The final model was fitted using the exchangeable 

working correlation matrix as it was observed that with this correlation structure the 

model was stable. For the WGEE approach, special weight variable was created which 

accounts for missingness and the survey non-response. The empirically corrected 

standard errors, odds ratio and 95% confidence intervals are presented in Table 5.21.  

The result obtained using the WGEE approach without the drop variable and 

PMM with the drop variable differed in their parameter estimates for some variables, 

whereas for some of the covariates the estimates were similar. Self reported health 

professional diagnosed bronchitis and intestinal problems, rural location, smoking 
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status, time points or Cycles, interaction terms location and smoking as well as age 

group and income showed very similar point estimates. On comparing the standard 

errors using WGEE and PMM, the standard errors for WGEE without the drop variables 

were larger compared with the model with drop variable.  

The drop variable was significant for the PMM marginal model. The 

significance of the drop variable indicates that there is a difference between completers 

and incompleters, there is some bias associated with the missing data. The odds of being 

diagnosed with asthma were 1.3 times higher among incompleters compared to 

completers.  

The odds of being diagnosed with asthma was 1.7 times higher in obese females 

compared to the normal weight females (p<0.0001). The odds of asthma in females 

increased by 4 times in females who reported food allergies, 1.6 times higher in females 

with other allergies and 2 times higher in females diagnosed with bronchitis were 

significantly higher compared to their reference categories.  

Females staying in the Atlantic region were at a lower risk of developing asthma 

compared to females staying in Ontario region and this was statistically significant at 

p<0.05 level. Females who were not Canadian citizens were at a lower risk of being 

diagnosed with asthma compared to females who were not immigrants and this was 

highly significant at p<0.0001 level.  

Rural females who were current smokers were at 1.5 times more likely to be 

diagnosed with asthma compared to the urban non-smokers females. Females who lived 

in the rural areas and belonging to the higher socio-economic level were 1.7 times more 
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likely of being diagnosed with asthma compared to urban females belonging to lower 

socio-economic status.  

Younger female smokers (18-29 years) were 2.2 times more likely to be 

diagnosed with asthma compared to 65 to 72 years non-smoker females. The increase in 

the odds was significant. For various other age groups the odds of asthma prevalence 

increased, but this increase was not statistically significant. Interaction of socio-

economic status with various categories of age group showed a decrease in the odds of 

being diagnosed with asthma. The odds of being diagnosed with asthma were lower for 

all the combination of age and socio-economic status.  
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Table 5.21 Parameter estimates (standard errors) and odds ratio (95% confidence 
interval) for GEE with survey weights and weighted generalized estimating equation 
(WGEE)  
 
 
Covariates GEE-WT64LS WGEE 
 Estimate 

(S.E.) 
Odds Ratio 
(95% C.I.) 

Estimate 
(S.E.) 

Odds Ratio 
(95% C.I.) 

Intercept -3.33*** 
(0.40) 

0.04 
(0.02-0.08) 

-4.84*** 
(1.42) 

0.008 
(0.00-0.13) 

Drop  (Completers)     
Incompleters 0.29* 

(0.12) 
1.34 

(1.05-1.70) 
  

BMI (Normal weight)     
Under weight -0.45 

(0.30) 
0.64 

(0.35-1.16) 
-1.12* 
(0.48) 

0.33 
(0.13-0.84) 

Over weight 0.19 
(0.14) 

1.21 
(0.92-1.58) 

-0.47 
(0.38) 

0.62 
(0.30-1.31) 

Obese 0.53** 
(0.14) 

1.69 
(1.27-2.25) 

-0.18 
(0.34) 

0.84 
(0.42-1.64) 

Food Allergy (No)     
Yes 0.31*** 

(0.09) 
1.37 

(1.14-1.64) 
0.06 

(0.17) 
1.07 

(0.76-1.49) 
Other Allergy (No)     

Yes 0.50*** 
(0.06) 

1.64 
(1.45-1.86) 

0.98* 
(0.44) 

2.66 
(1.13-6.26) 

Bronchitis (No)     
Yes 0.67*** 

(0.15) 
1.96 

(1.47-2.61) 
0.64** 
(0.22) 

1.89 
(1.22-2.94) 

Intestinal Problem (No)     
Yes 0.23 

(0.13) 
1.26 

(0.98-1.62) 
0.22 

(0.22) 
1.25 

(0.80-1.94) 
Socio-economic status  
(Low Income) 

    

High Income 1.33 
(0.59) 

3.78 
(1.18-12.07)

3.79 
(1.44) 

44.33 
(2.65-742.6)

Middle Income -0.30 
(0.28) 

0.74 
(0.43-1.28) 

0.41 
(1.15) 

1.50 
(0.17-13.34)

Location (Urban)     
Rural -0.58 

(0.21) 
0.56 

(0.37-0.84) 
-0.51 
(0.33) 

0.60 
(0.31-1.14) 

Age Group (65-72 years)     
18-29 years 0.36 

(0.33) 
1.44 

(0.75-2.74) 
0.40 

(0.48) 
1.49 

(0.60-3.81) 
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Table 5.21 (Cont�d) 

Covariates GEE-WT64LS WGEE 
 Estimate 

(S.E.) 
Odds Ratio 
(95% C.I.) 

Estimate 
(S.E.) 

Odds Ratio 
(95% C.I.) 

30-49 years 0.40 
(0.28) 

1.50 
(0.86-2.62) 

0.66 
(0.47) 

1.94 
(0.77-4.87) 

50-64 years 0.04 
(0.25) 

1.05 
(0.64-1.70) 

0.0004 
(0.43) 

1.00 
(0.43-2.32) 

Region (Ontario)     
Atlantic  -0.27* 

(0.14) 
0.76 

(0.58-0.99) 
-0.92** 
(0.33) 

0.40 
(0.21-0.76) 

Quebec -0.19 
(0.14) 

0.83 
(0.63-1.09) 

-0.82* 
(0.36) 

0.44 
(0.22-0.90) 

Prairies -0.22 
(0.13) 

0.80 
(0.62-1.04) 

-1.07** 
(0.37) 

0.34 
(0.16-0.71) 

British Columbia 0.09 
(0.16) 

1.10 
(0.80-1.51) 

-0.80 
(0.44) 

0.45 
(0.19-1.07) 

Immigration (Citizen )     
Immigrants -0.83*** 

(0.20) 
0.43 

(0.29-0.64) 
-1.81** 
(0.61) 

0.16 
(0.05-0.54) 

Ethnicity (Non-white)     
White 0.23 

(0.30) 
1.26 

(0.70-2.27) 
1.85 

(1.42) 
6.34 

(0.39-102.0) 
Smoking Status (Non-
Smokers) 

    

Current Smokers -0.50 
(0.31) 

0.61 
(0.33-1.12) 

-0.84 
(0.57) 

0.43 
(0.14-1.32) 

Ex-Smokers -0.35 
(0.28) 

0.71 
(0.41-1.22) 

-0.37 
(0.52) 

0.69 
(0.25-1.89) 

Second hand smoke (No)     
Yes -0.05 

(0.12) 
0.95 

(0.76-1.20) 
0.11 

(0.29) 
1.12 

(0.63-1.99) 
Time (Cycle 1)     

Cycle 5 0.39 
(0.08) 

1.48 
(1.25-1.75) 

0.54 
(0.18) 

1.72 
(1.21-2.45) 

Cycle 4 0.41 
(0.08) 

1.51 
(1.30-1.75) 

0.76 
(0.29) 

2.15 
(1.22-3.79) 

Cycle 3 0.33 
(0.08) 

1.39 
(1.19-1.62) 

0.80 
(0.40) 

2.23 
(1.03-4.86) 

Cycle 2 0.11 
(0.06) 

1.12 
(0.99-1.26) 

0.10 
(0.09) 

1.11 
(0.92-1.33) 

Location  * Smoking      
Rural Smokers 0.43** 

(0.17) 
1.54 

(1.11-2.14) 
0.59* 
(0.28) 

1.81 
(1.04-3.13) 
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Table 5.21 (Cont�d) 

Covariates GEE-WT64LS WGEE 
 Estimate 

(S.E.) 
Odds Ratio 
(95% C.I.) 

Estimate 
(S.E.) 

Odds Ratio 
(95% C.I.) 

Rural Ex-Smokers 0.35 
(0.18) 

1.42 
(0.99-2.04) 

0.30 
(0.29) 

1.34 
(0.76-2.37) 

 
Location * Income 

    

High Income Rural 0.56* 
(0.24) 

1.75 
(1.09-2.79) 

0.15 
(0.38) 

1.16 
(0.56-2.43) 

Middle Income Rural 0.28 
(0.18) 

1.32 
(0.93-1.89) 

0.005 
(0.26) 

1.01 
(0.59-1.69) 

Ethnicity * Income     
White* High SES -0.74 

(0.45) 
0.48 

(0.20-1.17) 
-2.74* 
(1.34) 

0.06 
(0.004-0.89) 

White * Middle SES 0.46 
(0.24) 

1.58 
(0.99-2.53) 

-0.17 
(1.16) 

0.84 
(0.09-8.15) 

Second Hand Smoke * Time     
Exposure * Cycle 2 0.06 

(0.15) 
1.07 

(0.79-1.44) 
-0.20 
(0.31) 

0.82 
(0.44-1.52) 

Exposure * Cycle 3 0.12 
(0.13) 

1.12 
(0.87-1.45) 

-0.20 
(0.38) 

0.81 
(0.39-1.71) 

Exposure * Cycle 4 0.11 
(0.13) 

1.12 
(0.87-1.44) 

-0.37 
(0.49) 

0.69 
(0.26-1.79) 

Exposure * Cycle 5 0.27* 
(0.11) 

1.31 
(1.06-1.62) 

0.29 
(0.17) 

1.34 
(0.95-1.89) 

Smoking * Age Group     
Smoker * 18-29 
years 

0.79* 
(0.35) 

2.21 
(1.11-4.40) 

1.04 
(0.61) 

2.83 
(0.85-9.47) 

Ex-Smoker * 18-29  
years 

0.44 
(0.32) 

1.56 
(0.84-2.90) 

0.39 
(0.55) 

1.48 
(0.50-4.39) 

Smoker * 30-49 years 0.28 
(0.33) 

1.32 
(0.70-2.52) 

0.54 
(0.59) 

1.71 
(0.53-5348) 

Ex-Smoker * 30-49  
years 

0.37 
(0.30) 

1.45 
(0.80-2.61) 

0.26 
(0.54) 

1.29 
(0.45-3.71) 

Smoker * 50-64 years 0.45 
(0.28) 

1.58 
(0.91-2.75) 

0.68 
(0.54) 

1.97 
(0.68-5.71) 

Ex-Smoker * 50-64  
years 

0.37 
(0.27) 

1.45 
(0.86-2.44) 

0.84 
(0.54) 

2.32 
(0.80-6.72) 

Age Group * Income     
18-29 years * High  
SES 

-0.80* 
(0.34) 

0.45 
(0.23-0.88) 

-1.36* 
(0.61) 

0.25 
(0.08-0.84) 

18-29 years * Middle  
SES 

-0.30 
(0.22) 

0.74 
(0.48-1.13) 

-0.28 
(0.38) 

0.75 
(0.36-1.58) 
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Table 5.21 (Cont�d) 

Covariates GEE-WT64LS WGEE 
 Estimate 

(S.E.) 
Odds Ratio 
(95% C.I.) 

Estimate 
(S.E.) 

Odds Ratio 
(95% C.I.) 

30-49 years * High  
SES 

-0.98** 
(0.31) 

0.37 
(0.20-0.69) 

-1.51* 
(0.59) 

0.22 
(0.07-0.70) 

30-49 years * Middle  
SES 

-0.40* 
(0.18) 

0.67 
(0.46-0.96) 

-0.50 
(0.37) 

0.61 
(0.29-1.25) 

50-64 years * High  
SES 

-0.70* 
(0.29) 

0.50 
(0.28-0.88) 

-0.29 
(0.52) 

0.75 
(0.27-2.08) 

50-64 years * Middle  
SES 

-0.19 
(0.19) 

0.82 
(0.57-1.20) 

-0.02 
(0.37) 

0.98 
(0.47-2.04) 

Reference categories are provided in parentheses 
*** p<0.001 
** p<0.01 
* p<0.05 
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5.7.2 Random Effect Models 

Random effect models were also fitted using the SAS procedure GLIMMIX. 

PQL method under the restricted maximum likelihood and maximum likelihood 

approach with and without drop variables were used. Table 5.22 provides the PQL 

results with/without drop variable. The PQL method with restricted maximum 

likelihood as well as with maximum likelihood provided similar estimates and standard 

errors, only the difference was with the random intercept term and the deviance. For the 

PQL-REML method with the drop variable in the model, a total of 33 iterations were 

used in order to satisfy the convergence criterion. With the PQL-ML approach a total of 

23 iterations were used to reach convergence. When the drop variable was removed 

from the model, the PQL-REML method required a total of 36 iterations to reach 

convergence and for the PQL-ML method a total of 31 iteration was needed to satisfy 

convergence. On comparing the PQL model with and without the drop variable, it was 

seen that the model with drop variable in the model required lesser iterations to satisfy 

the convergence criterion. The drop variable�s parameter estimate and the standard error 

using the random effect model were higher than the marginal model. The difference is 

expected with binary outcome for the marginal and the random effects model. Both 

these models are direct extensions of the generalized linear model, but they produce 

very different results.  

Comparing the PQL-REML with drop variable with PQL-REML without the 

drop variable, results in likelihood ratio statistics of 3203899-3203135 = 764, df = 1, 

p<0.0001 (Table 5.22). The results indicate that the model terms do vary by missing 

patterns. However, this was not a test if missing at random (MAR) criterion was 
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satisfied, but it does specify that the model with the drop variable fits the data better 

than without the drop variable. The PQL-ML with the drop variable was compared to 

the PQL-ML without the drop variable. The resulting likelihood ratio test statistics, 

3203574-3202815 = 759, df = 1 and p<0.0001. This result also indicates the same that 

model terms do vary with the missing pattern.  

 In terms of the interpretation of the parameter estimates, we see that all the 

variables are highly significant at p<0.001 for all the four models. Highly significant 

results were mainly due to smaller standard errors. All the covariates among the 

completers, except for the middle income level, rural location, residing in Quebec, 

Prairies and British Columbia region, non Canadian citizens, Caucasian, current smoker 

or ex-smoker females, exposure to second hand smoke, and the age group and income 

interaction increased compared to their reference category. The negative parameter 

estimate indicates that the females who completed the study were at lower risk of being 

diagnosed with asthma. The positive parameter estimates indicates that the risk is higher 

of being diagnosed with asthma compared to the reference category.  
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Table 5.22 Parameter estimates (standard errors) for a generalized linear mixed model 
(GLMM) assuming Penalized Quasi Likelihood (PQL) restricted maximum likelihood 
and maximum likelihood approach with and without drop variable in the model 
 
 
Covariates With Drop variable Without drop variable 
 PQL-

REML 
PQL-ML PQL-

REML 
PQL-ML 

Intercept -9.87*** 
(0.55) 

-9.87*** 
(0.55) 

-9.07*** 
(0.54) 

-9.07*** 
(0.54) 

Drop  (Completers)     
Incompleters-Intercept 

of drop variable 
1.75*** 
(0.26) 

1.75*** 
(0.26) 

  

BMI (Normal weight)     
Under weight 0.23 

(0.64) 
0.23 

(0.64) 
0.40 

(0.65) 
0.40 

(0.65) 
Over weight 0.21 

(0.27) 
0.21 

(0.27) 
0.20 

(0.28) 
0.20 

(0.28) 
Obese 1.66*** 

(0.32) 
1.66*** 
(0.32) 

1.61*** 
(0.33) 

1.61*** 
(0.33) 

Food Allergy (No)     
Yes 0.30*** 

(0.007) 
0.30*** 
(0.007) 

0.30*** 
(0.007) 

0.30*** 
(0.007) 

Other Allergy (No)     
Yes 0.89*** 

(0.005) 
0.89*** 
(0.005) 

0.89*** 
(0.005) 

0.89*** 
(0.005) 

Bronchitis (No)     
Yes 1.30*** 

(0.008) 
1.30*** 
(0.008) 

1.30*** 
(0.008) 

1.30*** 
(0.008) 

Intestinal Problem (No)     
Yes 1.22*** 

(0.01) 
1.22*** 
(0.01) 

1.22*** 
(0.01) 

1.22*** 
(0.01) 

Socio-economic status (Low Income) 
High Income 5.92*** 

(0.36) 
5.92*** 
(0.36) 

5.89*** 
(0.35) 

5.89*** 
(0.35) 

Middle Income -3.18*** 
(0.05) 

-3.18*** 
(0.05) 

-3.18*** 
(0.05) 

-3.18*** 
(0.05) 

Location (Urban)     
Rural -2.05*** 

(0.02) 
-2.05*** 

(0.02) 
-2.05*** 

(0.02) 
-2.05*** 

(0.02) 
Age Group (65-72 years)     

18-29 years 0.18*** 
(0.04) 

0.18*** 
(0.04) 

0.18*** 
(0.04) 

0.18*** 
(0.04) 

30-49 years 0.58*** 
(0.04) 

0.58*** 
(0.04) 

0.58*** 
(0.04) 

0.58*** 
(0.04) 

 



 

    198

Table 5.22 (Cont�d) 

Covariates With Drop variable Without drop variable 
 PQL-

REML 
PQL-ML PQL-

REML 
PQL-ML 

50-64 years 0.20*** 
(0.03) 

0.20*** 
(0.03) 

0.20*** 
(0.03) 

0.20*** 
(0.03) 

Region (Ontario)     
Atlantic  2.86*** 

(0.09) 
2.86*** 
(0.09) 

2.87*** 
(0.09) 

2.87*** 
(0.09) 

Quebec -1.33*** 
(0.04) 

-1.33*** 
(0.04) 

-1.33*** 
(0.04) 

-1.33*** 
(0.04) 

Prairies -0.83*** 
(0.03) 

-0.83*** 
(0.03) 

-0.83*** 
(0.03) 

-0.83*** 
(0.03) 

British Columbia -1.48*** 
(0.03) 

-1.48*** 
(0.03) 

-1.48*** 
(0.03) 

-1.48*** 
(0.03) 

Immigration (Citizen )     
Immigrants -1.36*** 

(0.41) 
-1.36*** 

(0.41) 
-1.32*** 

(0.41) 
-1.32*** 

(0.41) 
Ethnicity (Non-white)     

White -1.76*** 
(0.52) 

-1.76*** 
(0.52) 

-2.16*** 
(0.53) 

-2.16*** 
(0.53) 

Smoking Status (Non-Smokers)     
Current Smokers -2.60*** 

(0.04) 
-2.60*** 

(0.04) 
-2.60*** 

(0.04) 
-2.60*** 

(0.04) 
Ex-Smokers -2.44*** 

(0.03) 
-2.44*** 

(0.03) 
-2.43*** 

(0.03) 
-2.43*** 

(0.03) 
Second hand smoke (No)     

Yes -0.33*** 
(0.01) 

-0.33*** 
(0.01) 

-0.33*** 
(0.01) 

-0.33*** 
(0.01) 

Time (Cycle 1)     
Cycle 5 2.09*** 

(0.01) 
2.09*** 
(0.01) 

2.09*** 
(0.008) 

2.09*** 
(0.008) 

Cycle 4 2.17*** 
(0.01) 

2.17*** 
(0.01) 

2.17*** 
(0.008) 

2.17*** 
(0.008) 

Cycle 3 1.62*** 
(0.01) 

1.62*** 
(0.01) 

1.62*** 
(0.007) 

1.62*** 
(0.007) 

Cycle 2 0.62*** 
(0.01) 

0.62*** 
(0.01) 

0.62*** 
(0.007) 

0.62*** 
(0.007) 

Location  * Smoking      
Rural Smokers 1.60*** 

(0.02) 
1.60*** 
(0.02) 

1.60*** 
(0.02) 

1.60*** 
(0.02) 

Rural Ex-Smokers 0.49*** 
(0.02) 

0.49*** 
(0.02) 

0.49*** 
(0.02) 

0.49*** 
(0.02) 
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Table 5.22 (Cont�d) 

Covariates With Drop variable Without drop variable 
 PQL-

REML 
PQL-ML PQL-

REML 
PQL-ML 

Location * Income     
High Income Rural 1.89*** 

(0.02) 
1.89*** 
(0.02) 

1.89*** 
(0.02) 

1.89*** 
(0.02) 

Middle Income Rural 1.34*** 
(0.02) 

1.34*** 
(0.02) 

1.34*** 
(0.02) 

1.34*** 
(0.02) 

Ethnicity * Income     
White* High SES 1.23*** 

(0.04) 
1.23*** 
(0.04) 

1.23*** 
(0.04) 

1.23*** 
(0.04) 

White * Middle SES 4.58*** 
(0.04) 

4.58*** 
(0.04) 

4.58*** 
(0.04) 

4.58*** 
(0.04) 

Second Hand Smoke * Time     
Exposure * Cycle 2 0.33*** 

(0.01) 
0.33*** 
(0.01) 

0.33*** 
(0.01) 

0.33*** 
(0.01) 

Exposure * Cycle 3 0.71*** 
(0.01) 

0.71*** 
(0.01) 

0.71*** 
(0.01) 

0.71*** 
(0.01) 

Exposure * Cycle 4 0.84*** 
(0.01) 

0.84*** 
(0.01) 

0.84*** 
(0.01) 

0.84*** 
(0.01) 

Exposure * Cycle 5 1.44*** 
(0.01) 

1.44*** 
(0.01) 

1.44*** 
(0.01) 

1.44*** 
(0.01) 

Smoking * Age Group     
Smoker * 18-29 years 2.87*** 

(0.05) 
2.87*** 
(0.05) 

2.87*** 
(0.05) 

2.87*** 
(0.05) 

Ex-Smoker * 18-29  
years 

2.70*** 
(0.03) 

2.70*** 
(0.03) 

2.69*** 
(0.03) 

2.69*** 
(0.03) 

Smoker * 30-49 years 0.39*** 
(0.04) 

0.39*** 
(0.04) 

0.39*** 
(0.04) 

0.39*** 
(0.04) 

Ex-Smoker * 30-49  
years 

1.88*** 
(0.03) 

1.88*** 
(0.03) 

1.88*** 
(0.03) 

1.88*** 
(0.03) 

Smoker * 50-64 years 0.89*** 
(0.04) 

0.89*** 
(0.04) 

0.89*** 
(0.04) 

0.89*** 
(0.04) 

Ex-Smoker * 50-64  
years 

1.04*** 
(0.03) 

1.04*** 
(0.03) 

1.04*** 
(0.03) 

1.04*** 
(0.03) 

Age Group * Income     
18-29 years * High  
SES 

-7.60*** 
(0.36) 

-7.60*** 
(0.36) 

-7.57*** 
(0.35) 

-7.57*** 
(0.35)  

18-29 years * Middle  
SES 

-2.10*** 
(0.03) 

-2.10*** 
(0.03) 

-2.10*** 
(0.03) 

-2.10*** 
(0.03) 

30-49 years * High  
SES 

-8.44*** 
(0.36) 

-8.44*** 
(0.36) 

-8.40*** 
(0.35) 

-8.40*** 
(0.35) 

30-49 years * Middle  
SES 

-2.25*** 
(0.03) 

-2.25*** 
(0.03) 

-2.25*** 
(0.03) 

-2.25*** 
(0.03) 
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Table 5.22 (Cont�d) 

Covariates With Drop variable Without drop variable 
 PQL-

REML 
PQL-ML PQL-

REML 
PQL-ML 

50-64 years * High  
SES 

-7.91*** 
(0.36) 

-7.91*** 
(0.36) 

-7.88*** 
(0.35) 

-7.88*** 
(0.35) 

50-64 years * Middle  
SES 

-1.36*** 
(0.03) 

-1.36*** 
(0.03) 

-1.36*** 
(0.03) 

-1.36*** 
(0.03) 

Random intercept 47.82 
(1.07) 

47.74 
(1.07) 

48.76 
(1.10) 

48.69 
(1.09) 

Deviance 3203899 3203574 3203135 3202815 
Reference categories are provided in parentheses 
*** p<0.001 
** p<0.01 
* p<0.05 
 

5.8 Conclusion 

 The final model for the four objectives is summarized in tabular form in Table 

5.23. 
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CHAPTER 6 - DISCUSSION 

 

6.1 Introduction 

Multi-stage sampling is a common approach to gather information from large 

scale complex surveys, which can be either cross-sectional or longitudinal in nature. 

The statistical methodologies for analyzing data obtained from complex longitudinal 

surveys are still in the developmental stage, mainly because the methods must address 

the longitudinal nature of the data, as well as the complexity of the survey design. 

Several statistical approaches have been proposed in literature, and this dissertation 

examined the two most commonly used methods, design-based and model-based. 

Comparisons of weighted, unweighted and robust variance estimation methods for the 

event history and recurrent survival data were also assessed. Missing data analyses were 

conducted using marginal and random effects modeling approaches. The NPHS dataset 

was used to achieve the above objectives with asthma in adult females as the outcome 

of interest. The associated risk factors for asthma prevalence and incidence among 

females was also examined.  
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6.2 Objective 1: To compare the design-based and model-based methods for the 

marginal modeling approach 

The focus of this objective was to compare the model-based approach (GEE-

Liang and Zeger [1])  with the design-based approach (Survey GEE- Rao [3]) for 

longitudinal survey data. With the exception of a few variables, the parameter estimates 

obtained using the model-based and design-based approaches provided very similar 

results. However, the standard errors obtained for the two GEE methods were different, 

with the standard errors using the design-based approach being larger. Robust standard 

errors were used to compare the design-based and model-based methods. A difference 

of 0.15 to 0.01 standard errors was considered to assess the best approach between 

model-based and design-based methods. The differences in the standard errors of these 

two methods can be explained by the fact that additional sources of uncertainty, which 

can arise due to the complexity of the survey design, were taken into account by the 

survey GEE method. Also accounting for the complexity of the survey design results in 

larger variance estimate.  

The results were also compared with another method referred to as BOOTVAR 

GEE, which used Bootstrap method to account for the complexity of longitudinal 

survey data. The standard errors obtained using this method were larger than the model- 

based GEE but were smaller compared to the survey GEE proposed by Rao [3].  

There may be several reasons for the differences in the standard errors between 

the model-based and design-based methods. One difference could be because of the 

large variation of weights used with a complex survey design, which can result in larger 

standard errors for the weighted estimates compared to the unweighted estimates [103]. 
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The larger standard errors may also be a result of using only a  subset of the NPHS (i.e., 

18-64 year old women) which could have resulted in the larger variability of weights 

[201]. Including the sampling weights in the analysis increases the variance of 

estimates, although it removes bias.   

An additional way of accounting for  complex survey data is to include  design 

or auxiliary variables in the model [103]. Design variables, such as sex, age, and 

socioeconomic status, are important components of a multi-stage survey. In this study, 

the design variables of age and socio-economic status were used.  

If analyses were conducted ignoring the three features of complex survey design 

(i.e., stratification, clustering and unequal inclusion probabilities), the parameter 

estimates and their corresponding standard errors would be quite different [212]. When 

we account for the sampling weights, it protects against model misspecification but it 

also increases the variances of estimates [201]. Hence, ignoring the sample design will 

result in biased estimates of standard errors. 

Since the true variance of the population cannot be determined (only an 

approximation can be obtained), it is hard to know which of these methods (model-

based or design-based) produced consistent estimates of standard errors. To summarize, 

for marginal modeling approaches, the design-based method should be preferred, as this 

method provided unbiased estimates.  
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6.3 Objective 2: To compare the design-based and model-based methods for event 

history data. 

The incidence rate and hazard rate of asthma was determined using Cox�s 

proportional hazard model and the discrete proportional hazard model. Weighted, 

unweighted and robust variance estimation methods were compared using the 

proportional hazard models.  

Robust standard errors were used to compare the model-based and design-based 

approaches. Also measures of confidence interval length were used to assess the relative 

efficiency of design-based and model-based methods for Mantel-Haenszel statistics. 

The 95% confidence intervals for the weighted incidence rates were wider than those 

for the unweighted incidence density rates. The sampling weights in the analysis can 

cause extra variability resulting in wider confidence intervals. The weighted standard 

errors obtained using STMH (STATA command to calculate rate ratios using a Mantel-

Haenszel method) produced very tight confidence intervals, resulting in highly 

significant p-values. This indicates that the STMH method was unable to account for 

the complexities of the survey design and produced biased results.  

The adjusted and unadjusted weighted analysis using Cox�s proportional hazard 

model and the discrete proportional hazard model provided similar hazard ratios for 

most covariates. The confidence intervals were wider and the standard errors were 

slightly larger (a difference of about 0.01 to 0.12 was observed) for the discrete model 

as compared to Cox�s proportional hazard model. The robust generalized method 

suggested by Lin and Wei [112] was used to obtain robust variance estimates. The 
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robust hazard ratios and corresponding 95% confidence intervals were similar to those 

obtained in the unweighted analysis. In the absence of a standard method, it becomes 

very difficult to compare the model-based and the design-based approaches for 

longitudinal survey data. It cannot be concluded from the results which method would 

best account for the complexities of survey design.  

Other studies of longitudinal data with binary outcome using different methods 

and software have been conducted. Boudreau and Lawless [116] used a stratified semi- 

parametric Cox�s proportional hazard modeling approach to account for the longitudinal 

survey data and  associated issues. Although SPlus and SUDAAN allow for the 

application of the stratified semi-parametric Cox�s proportional hazard model, however, 

this software is not available when using remote data access.  

Binder [111] prefers design-based approaches as they produce valid estimates 

with minimal efficiency loss. Boudreau and Lawless [116] suggest the use of the robust 

variance estimation method, though sampling weights are needed to account for the 

non-ignorable sampling or losses to follow- up.  

 

6.4 Objective 3: To compare the variance corrected and frailty models for 

recurrent survival data using both the design-based and model-based approach. 

The focus of the third objective was to compare the variance corrected models 

for recurrent survival data and to test for heterogeneity using a frailty model approach. 

The frailty model could not be fitted due to technical problems with the software. SAS 

macro �gamfrail� was used to fit the gamma frailty model, but the problems with the 

macro could not be resolved using remote data access. STATA software was also used 
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to fit the gamma frailty model. However, the gamma frailty model was not able to 

iterate and went into a loop so this method was also not used. Using the SAS procedure 

PHREG with the WEIGHT option, AG, WLW and PWP-total time and PWP-gap time 

model were applied to the survey data. The hazard ratios obtained for the AG and WLW 

models (accounting for the survey weights) were similar. The 95% confidence intervals 

were very tight for AG model, resulting in highly significant p-values. This indicated 

that the AG model was not able to account for the recurrent events in the survey data. 

Using the robust variance estimation method and ignoring the sampling design 

completely resulted in similar hazard ratios and their corresponding 95% confidence 

intervals for the AG and WLW models. The PWP-gap time and total time produced 

exactly the same results as the WLW approach. When the survey weights were 

specified, the confidence intervals of the WLW model were wider than the unweighted 

or the robust analysis. The difference in the confidence intervals could be due to extra 

variability arising from the complexity of the data.  Although the WLW method 

provided the most stable results, the lack  of any standard method makes it difficult to 

assess which method is the most suitable to analyze recurrent event history data.  

There are several reasons for the similar results between the WLW and the PWP 

approaches used in the current study. First, the similarity could be due to the absence of 

an exact follow-up time. In absence of this information, age at the start of the risk 

period and age when the event occurred was used, resulting in a two year gap for each 

individual at a particular time point. Hence, it was difficult to distinguish between risks 

sets at the time of censoring. Second, in this particular analysis, the number of censored 

cases was larger than the number of events. The reason for so many censored cases was 
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due to the fact that the NPHS focuses on the overall health of the Canadian population. 

Thus, the population at risk included not only subjects who were at risk for asthma, but 

also, for other diseases.  Third, the reason for such  results could be due to ignoring the 

intermittent missing data or the loss to follow up [116]. Fourth, similar results could be 

due to the fact that clustering due to the sampling design was not taken into account. 

Indeed, some researchers suggest that clustering should not be ignored [110]. In absence 

of the exact  follow-up time, the risk sets  which distinguish between the AG, WLW and 

PWP models [61] were all the same, and could have been responsible for the similar 

results. Sampling weights in survey data assist in the calculation of the estimates of 

hazard ratios. To obtain unbiased and correct estimates and their standard errors, 

stratification and clustering should also be taken into account, along with survey 

weights  [202].  

The unweighted results of all three models (AG, WLW and PWP) were similar. 

The three features of the sampling design were completely ignored. All three methods 

used the robust variance estimation method  to account for interdependence due to 

repeated events. However, the results suggest that robustness alone is not sufficient to 

account for the complexity of the survey design. Other features of the sampling design 

should also be considered while analyzing such data sets. As mentioned previously, the 

sampling weights only account for the unequal probability of selection . Methods 

should account for clustering and stratification to calculate the correct estimates and 

unbiased standard errors in multi-stage sampling design. Most researchers emphasize 

accounting for the clustering effect [6, 110] rather than the other issues of survey 

design. 
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To summarize, it is recommended that an analysis examining prevalence and 

incidence should be conducted accounting for the complexity of the survey design. The 

results also suggest that if the above methods are used, they should be interpreted with 

caution.  The design-based approach should be used to obtain correct and unbiased 

estimates. Other complexities of longitudinal survey design, such as intermittent 

missing observations, loss to follow- up and recurrent event data, should be considered 

so that the estimates obtained are unbiased. Further research is needed to extend the 

current statistical methods used in standard longitudinal (non-survey) studies to 

longitudinal complex surveys.  

 

6.5 Objective 4: To compare the robustness of data for completers versus 

incompleters using missing data analysis. 

The focus of this objective was to study the bias associated with missing data by 

comparing the results of completers versus incompleters. Marginal (WGEE and PMM) 

and random effect modeling approaches were compared. There was a difference in the 

standard errors of the regression parameter estimates (a difference of 0.10 � 1.04 in 

standard errors was noted), with larger standard errors for the PMM than the WGEE 

method. The confidence intervals of PMM model were tighter as compared to the 

WGEE model. This difference in the standard errors and the measures of confidence 

interval length suggests that the PMM accounts for additional sources of uncertainty 

mainly arising from missing observations and non-response [43]. Thus, the results of 

the PMM suggest that there was bias associated with the missing data and that this 

should be accounted for in the analysis. The standard errors obtained for the random 
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effect modeling using both the PQL-REML or PQL-ML approach were very small, 

resulting in highly significant point estimates. These highly significant results suggest 

that the weighted random effect modeling approach does not sufficiently account for the 

sampling design.  Stratification and clustering effects should also be considered to 

obtain the correct standard errors [2].  

A possible solution for fitting random effects models for the survey data is to 

use the four stage multilevel modeling approach. In this method, the primary sampling 

unit can be treated as level 4, the secondary sampling unit as level 3, the tertiary 

sampling unit as level 2, and the repeated observation as level 1. This method can then 

account for both the multi-stage sampling design and the longitudinal nature of the data. 

Unfortunately, for the present study, this approach was not available using remote data 

access. In the current analysis, only two-stage multi-level modeling was used, with 

subjects as Level 2 and repeated observations as Level 1. The results indicated that this 

approach was not able to account for the sampling design. The sampling weights 

specially calculated for the NPHS dataset  should be  recalculated for the multi-level 

model.[203]. Pfeffermann et al. [204] have shown that for two-level or two-stage 

sampling, the inclusion probability for Level 2 is Πi and for Level 1 the inclusion 

probability Πt|i is conditional on Level 2.  The sampling weights which should be 

created are iW for Level 2 and for Level 1 
1

|
i

it
it W

W
W = , where t = 1, �.., T and 1ii WW = , 

i.e. the weight for the first time point. These newly created weights can be used with  a 

modified  iterative generalized least square (IGLS) estimation approach [203]. This 

approach has been applied to data with a continuous outcome but can be used for 
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discrete outcomes. The method proposed by Pfeffermann could not be applied in the 

present analysis, as these weights were not available to the researcher.  

In short, the conservative results obtained when using random effect modeling 

suggested that the weight variable alone was not able to account for the two levels in the 

model and that the special weights discussed above are needed to obtain unbiased 

estimates and standard errors.  

In conclusion, the marginal model approach using PMM provided the most 

stable results and is therefore recommended for missing data analysis. The proposed 

probability weighted Iterative Generalized Least Square (PWIGLS) algorithm protects 

against informative sampling and should be used if there are indications that the design 

is informative and should not be ignored [7]. Future analysis should consider extending 

the PWIGLS model for binary outcomes in the NPHS [6].  

 

6.6 Prevalence and incidence estimation of asthma in the adult Canadian female 

population 

Based on the results of the marginal model and event history analysis, the risk 

factors for asthma prevalence and incidence among adult Canadian women were 

studied. The results showed an increase in the overall prevalence of asthma during the 

ten year study period, from 6.2% (5.0-7.5) in Cycle 1 to 6.9% (6.1-7.7) in Cycle 5.  

When stratified by smoking status, asthma prevalence showed a significant increase 

among ex-smokers, from 5.8% (4.4-7.2) in Cycle 1 to 10.5 (8.9-12.2) in Cycle 5.  The 

prevalence of asthma also increased among females who were not exposed to second 

hand smoke.  
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The statistically significant predictors of asthma prevalence were: obesity, 

allergies (food and other kind), bronchitis, intestinal problems, residing in the Atlantic 

region and immigration status. The significant interaction variables were: location and 

smoking status, location and socioeconomic status, ethnicity and socioeconomic status, 

exposure to second hand smoke and time, smoking status and age, and socioeconomic 

status and age.  

The overall incidence rate showed a decrease from 16% in Cycle 2 to 6.4% in 

Cycle 5. The decrease in the incidence of asthma over the study period could be because 

a closed population was studied. The significant predictors of asthma incidence were 

allergies, bronchitis, current smoking and exposure to second hand smoke.  

 The relationship between asthma and body mass index among females has been 

studied extensively. In this study, the prevalence and incidence of asthma was highest 

among obese women followed by overweight women. Compared to women of normal 

weight, the risk of asthma was significantly lower for underweight women. The results 

of this study are similar to  other studies which have also reported a positive association 

between  asthma and body mass index [13, 14, 16, 161, 205, 206]. The reason for the 

higher asthma prevalence and incidence of asthma in obese and overweight women 

could be because weight gain can lead to decreases in lung volumes and increasing 

airflow obstruction [14, 207, 208]. Other  researchers have suggested that the observed 

relationship between asthma and body mass index may be partly due  to the fact that 

asthma is over-diagnosed in obese individuals  and/or that more obese people are seen 

by health care providers and thus have a higher chance of  receiving an asthma 
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diagnosis [160]. Several studies have also shown that increasing obesity rates have not 

resulted in the rising trend in asthma prevalence [209, 210].  

 Women 18 to 29 years of age were at a higher risk of both asthma prevalence 

and incidence, followed 30 to 49 year old women.  These results were similar to several 

other studies which reported  that younger females were at higher risk of asthma 

compared to older females and that the risk of asthma decreased with age [16, 17, 206, 

209, 211]. In contrast to these findings, two studies found no statistically significant 

association between asthma and age [212].  

The relationship between smoking and asthma was also assessed in the present 

study. Compared to non-smokers, the incidence of asthma showed a statistically 

significant decrease over time among smokers and a non-statistically significant 

increase among ex-smokers. Compared to those not exposed to second hand smoke, the 

risk of asthma was 2.2 times higher amongst females who were exposed to second hand 

smoke. Some research has shown  active smoking to be associated with increased 

respiratory symptoms among those diagnosed with asthma [168, 169], while other 

studies report a higher risk  among ex-smokers [213]. Similar to the results obtained in 

this study, other research has reported a decreased risk of asthma in smokers and ex-

smokers compared to non-smokers [159, 209]. The decreased risk of asthma among 

smokers found in this study and others may be due to the fact that individuals with 

sensitive airways are less likely to become smokers and are more likely to quit smoking 

[165, 209]. Another possibility is that there is a  tendency to label asthma-like disorders 

as asthma in non-smokers, but not in smokers . Several studies have shown that there is 
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no association between asthma and smoking [164, 165], while others have found that 

smoking is an independent risk factor f asthma [166, 205].  

The relationship between asthma prevalence and exposure to second hand 

smoke was also studied and the results showed that the prevalence was higher in the 

exposed category and that it increased over time. Asthma incidence was also higher 

among those women exposed to second hand smoke. However, several studies have 

failed to find an  association between asthma and second hand exposure to smoke 

among non-smokers [13]. Other research among adults with asthma has found  second 

hand exposure to smoke to be associated with decreased lung function, greater asthma 

severity, worse health status, and increased health care utilization [172].   

The interaction effect between smoking and rural/urban residence was also 

examined in the present study.  Smokers and ex-smokers residing in rural areas were at 

higher risk of developing asthma compared to non-smokers residing in urban areas. 

Several studies have shown an association between a higher prevalence of asthma and 

asthma-like symptoms and smoking, after adjusting for place of residence [149]. 

However, location has not been studied as an effect modifier in the relationship between 

asthma prevalence and smoking. Rural living, particularly in farming environments, has 

been associated with a higher prevalence of asthma, allergies and respiratory symptoms 

in adults. [156]. In this study, the positive interaction observed between smoking and 

rural living   cannot be more fully explored since  information on outdoor 

environmental exposures that could modify the relationship between smoking and 

asthma were not available  [15, 214]. The irritating effects of smoking on the lungs may 

explain why smokers and ex-smokers were at a higher risk of asthma than non-smokers 
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[214]. However, further research is needed to identify why rural female smokers and 

ex-smokers may be more susceptible to asthma than their urban counterparts. 

There was a significant increase in the risk of asthma prevalence among young 

female smokers in the 18 to 29 years age group. The risk also increased for smokers and 

ex-smokers in the 30 to 64 years age groups; however, this risk was not statistically 

significant. These results are similar to several other studies (studying adult population-

18 years and older) where the increase was observed among smokers compared to the 

non-smokers [16-18, 173, 211].  

 Previous research has found  the prevalence and incidence of asthma to be 

higher among lower socioeconomic groups [16-18, 159, 173, 206]. In the present study, 

a statistically significant interaction emerged between location and socioeconomic 

status. More specifically, there was an increase in the prevalence of asthma among rural 

females in the higher and middle socioeconomic groups compared to urban females 

with lower socioeconomic status. These findings, though interesting, were not 

supported in other studies. 

The association of asthma with ethnicity and immigrant status was also 

examined in this study. Similar to previous research [16-18, 206], the prevalence and 

incidence of asthma  was higher among  Canadian citizens than non-Canadian citizens. 

In addition, Caucasian women had a higher prevalence and incidence of asthma 

compared to non-Caucasian women.  

Similar to previous research [16-18, 159], allergies were positively associated 

with both the incidence and prevalence of  asthma in the present study . Asthma 
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prevalence and incidence was also higher among women diagnosed with chronic 

bronchitis/emphysema, consistent with the results of a previous study [138]. 

 

6.7 Limitations and advantages of using the NPHS data 

There are several advantages of analyzing data from large national databases 

such as the NPHS. The longitudinal NPHS data provided a large sample size and 

enhanced statistical power due to repeated observations on the same individual when 

compared to other similar kinds of cross-sectional surveys. Some of the other 

advantages of longitudinal studies over cross-sectional studies are that fewer subjects 

are needed and repeated observations on the same individual adds more information, as 

each subject acts like their own control [35]. In Canada, most of the studies that have 

been conducted to investigate the prevalence of asthma among adults were cross-

sectional [20, 22, 131, 132, 215]. The NPHS is unique in that a cohort has been studied 

cross-sectionally over a period of time providing useful data to determine both the 

prevalence and incidence of asthma in a population.  

To reduce bias in the NPHS, quality assurance measures were implemented. 

Interviews were conducted by experienced and trained interviewers to reduce potential 

bias.  Non-response bias was minimized by implementing many strategies designed to 

enhance the response rate [216]. Another advantage of using such large national 

databases are that the results generated from the analysis will help policy makers to 

make decisions regarding the most needed areas of attention that can help to reduce the 

burden of disease.  
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There are also limitations to the present study. The diagnostic criteria used in the 

NPHS was self-reported, health professional diagnosed asthma. The sensitivity and 

specificity of self-reported asthma has been evaluated in numerous studies. In one 

study, the mean sensitivity and specificity of �health professional diagnosed asthma� 

was  64.3 % and 94.3%, respectively [217]. Thus, there may have been some subjects 

with asthma in the present study misclassified as not having asthma. Another limitation 

of using the NPHS was that no objective measures of asthma were included, such as 

pulmonary function tests, methacholine challenge tests, or allergy skin prick tests. This 

data set was not developed for asthma studies alone but as a study of general health and 

chronic disease. Consequently, very limited information related to asthma was 

available. Some of the results on associated  risk factors could not be presented due to 

low cell counts [216].  Another limitation of the study was the reliance on self-report of 

smoking, height and weight for calculation of body mass index, which could have also 

resulted in measurement or misclassification error.  

Finally, there were several limitations in using the NPHS for event history analysis. 

First, the NPHS data did not focus on a specific event of interest as required for survival 

analysis. Second, information on time to an event, a key feature of survival analysis, 

was not collected. Hence, the time to an event had to be calculated as the two year time 

gap between any two consecutive cycles. However, this data set provides valuable new 

information on the incidence of asthma in Canadian women. If additional information is 

made available on the exact date of asthma diagnosis in future surveys, this would 

provide more reliable information on asthma incidence in Canada. Apart from these 

limitations, the other major limitation was the use of remote data access. 
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Generalizability of conclusions about efficiency and unbiasedness can be achieved with 

a simulation study that systematically varies parameters such as the proportion of 

missing observations, correlation structure of repeated measurements, magnitude of the 

effect size, and various others. The consistency of the model-based and design-based 

methods could not be assessed using simulation studies due to the use of remote data 

access. 

6.8 Conclusion and future studies 

In conclusion, the design- based methods should be preferred over the model- 

based methods. The design- based methods provide unbiased results for complex survey 

designs. Results considering only the sampling weights produced biased results and 

should be avoided. Comparative studies using different statistical methods are needed to 

determine which method(s) can best handle the complexities of survey design.  

The overall crude asthma prevalence increased among adult Canadian women 

from Cycle 1 to Cycle 5 and the incidence of decreased over the eight year period. The 

present study was not able to find any rural-urban differences for asthma incidence. 

However, for the prevalence of asthma, there was significant interaction for rural/urban 

living and smoking status, as well as for rural/urban living and socioeconomic status. 

As well, the risk of asthma was higher for those females who were either smokers or ex-

smokers. Further research is needed to identify the characteristics of rural environments 

that could contribute to the results reported in this thesis.  

The application of recent developments in statistical theories to the analysis of 

the NPHS data set to determine the risk factors related to asthma prevalence and 

incidence in adult female population was novel. The limited use of large scale surveys 
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may be due to the fact that the required analyses are complex and researchers may not 

be trained to apply these methods. Continuing to train researchers in the use of these 

techniques is warranted.  

Some of the areas in the field of survey methodology which need attention are 

missing data analysis, recurrent survival data, hybrid frailty models and joint modeling 

of longitudinal data with survival analysis. Some of these areas, like missing data 

analysis and recurrent survival data analysis are well developed for non-survey studies, 

but have received very little consideration for survey data.  
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APPENDIX A 

A.1 Notation of matrices and vector 

Let us consider a longitudinal study with m subjects, and ni observation on ith subject, 
where i = 1,��..., m subjects, j = 1,��..., ni responses for the ith subject recorded at 
times ti1 < ti2 <��...<ti ni 
Yij is the observed response for subject i at time tij  

So 
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and 
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A. 2 Glossary of statistical terms used for survival analysis 

Heterogeneity across individuals -: The variance across individuals are not equal, and 
there exists within subject correlation. 
 
Event Dependence -: The occurrence of one event may make further disruption more or 
less likely. The dependence violates the independent assumption of the Cox model. 
 
Independent Increment -: The number of event in non-overlapping time intervals are 
independent, given the covariates. 
 
Coverage probabilities -: When we have a set of ensembles (a group of elements) of 
experiments and each member of which is associated with a fixed value of the 
parameter to be measured θ. For a given ensemble, the fraction of experiments with 
intervals containing the θ value associated with that ensemble is called the coverage 
probabilities. The interval θ ± 1.96 * S.E. covers the true value θ with a probability of 
approximately 95%. 
 
Multiple level of association -: is also known as clustering, intra (within) family 
association, between and within household association.  
 
Maximum likelihood estimation-:  An estimation procedure involving maximization of 
the likelihood or the log-likelihood with respect to the parameters.  
 
Partial Likelihood -: This is used to estimate the β coefficients (parameter estimates) in 
proportional hazard models. It is obtained by comparing the risk given xj to the risk 
given all other xis in the risk set at time t. 

Lj  
 tat timeset risk  in therisk  average

 tat timesubject  failedfor risk  

 
Pseudo Likelihood -: A function of the data and parameters that has properties similar to 
the usual likelihood function; frequently arises as an estimate of the observed likelihood 
based on incomplete data.  
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APPENDIX B 

B. 1 Guidelines of Statistics Canada for result publication 
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B.2 NPHS selected questionnaires 
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Appendix C 

C.1 SAS Macro: Survey GEE 
 
data bsamp ; 
  set in2.bootwt; 
  keep fwgt REALUKEY PERSONID bsw1-bsw500; 
run; 
 
 PROC SORT DATA=bsamp;BY REALUKEY PERSONID;RUN; 
* Match the principal file and the weights bootstrap; 
data clusters; 
set in1.survival1; 
 keep  REALUKEY PERSONID ; 
run; 
 
 PROC SORT DATA=clusters nodupkey;BY REALUKEY PERSONID;RUN; 
 
     data in2.boot ; 
       merge clusters (in=in1) bsamp (in=in2); 
       by REALUKEY PERSONID; 
       if in1; 
      keep  REALUKEY PERSONID  bsw1-bsw500; 
     run; 
options nocenter linesize=80; 
 
%macro c2(reg,num,name2); 
  %do k=1 %to &num; 
     %let covk=%scan(&reg,&k); 
       &covk = &covk * &name2 ; 
  %end; 
%mend c2; 
 
%macro contrast(c=); 
do; 
if contrast = 0 then goto bottom; 
 
nc= ncol(contrast); 
 
r= nrow(variable); 
 
contrast=contrast[1,2:nc]; 
 
nr=(nc-1)/(r); 
nr=round(nr); 
 
contrast=shape(contrast,nr,r); 
 
xsq=(contrast*estimate)`*inv(contrast*vb*contrast`)* 
    (contrast*estimate); 
cont_est = contrast*estimate; 
var_cont = contrast*vb*contrast`; 
 
df=nrow(contrast); 
 
p=1-probchi(xsq,df); 
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&c=contrast; 
 
 
%if &c=c1 %then %do; 
print,  {"CONTRAST:   &title1"  }; 
%end; 
%if &c=c2 %then %do; 
print, {'                   '  }; 
print, {"CONTRAST:   &title2"  }; 
%end; 
print , &c; 
print, xsq df p; 
 
%if &c1est^=no %then %do; 
print, {'estimate of contrast is'  }; 
print, cont_est var_cont; 
%end; 
%if &c2est^=no %then %do; 
print, {'estimate of contrast is'  }; 
print, cont_est var_cont; 
%end; 
 
bottom: 
   stop; 
end; 
%mend contrast; 
 
%macro delem(reg,num); 
  %do k=1 %to &num; 
    %let covk=%scan(&reg,&k); 
    if &covk=. then delete; 
  %end; 
%mend delem; 
 
 
%macro 
gee(data=_last_,y=y,x=x,id=id,maxit=15,int=,print=yes,corr=ind,weight=
wt64ls, 
           outbeta=,it_his=no,method=cond,crit=.000001,outrho=, 
           
time=,k_j=,power=1,c1=,title1=,c1est=no,c2=,title2=,c2est=no,fmt=7.3,n
boot=); 
 
%* id = 1 to n; 
%* time = time of observation ; 
 
%* ---- count the covariates; 
%let p=0; 
%do %while(%scan(&x,&p+1)^=); %let p=%eval(&p+1); %end; 
 
data zzone; 
   set &data; 
 one=1; 
  if &y=. then delete; 
   %delem(&x,&p); 
   yzzz=1-&y; 
   intercep=1; 
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run; 
 
proc sort data = zzone; 
 by &id; 
run; 
 
data zzone; 
  set zzone; 
  by &id; 
  if first.&id then idm+1; 
  run; 
 
proc sort data=zzone; 
  by &id 
%if &time^= %then %do; 
    &time 
%end; 
  ; 
run; 
 
/*file of the identifiers of the clusters(individuals or households)*/ 
data name ( keep = realukey MENAGE personid idm); 
set zzone; 
informat menage f15.0 ; 
format menage f15.0 ; 
run; 
PROC SORT DATA=NAME NODUPKEY;BY REALUKEY;RUN; 
 
proc logistic data=zzone covout outest=esti noprint; 
%if &int=no %then %do; 
    model yzzz=&x /noint; 
%end; 
%else %do; 
    model yzzz=&x ; 
%end; 
%if &weight^= %then %do; 
    weight &weight; 
%end; 
%if &corr=ind %then %do; 
    output out=resid p=_p_; 
%end; 
run; 
 
data par(drop=_type_ _name_ 
%if &sysver^=6.07 %then %do; 
    _lnlike_ 
%end; 
  ); 
    set esti; 
    if (_type_ ne 'PARMS') then delete; 
run; 
 
%if &corr=ind %then %do; 
 
data c1(drop=_type_ _name_ _link_ 
%if &sysver^=6.07 %then %do; 
    _lnlike_ 
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%end; 
  ); 
    set esti; 
    if (_type_  = 'PARMS') then delete; 
run; 
 
data resid2; 
  set resid; 
  _resid_ = yzzz - (1-_p_); 
  _z_ = (yzzz - (1-_p_))/sqrt(_p_*(1-_p_) ); 
  run; 
 
proc sort data=resid2; 
  by &id; 
run; 
 
data c2dat1; 
 set resid2; 
 %c2(&x,&p,_resid_); 
; 
proc means data=c2dat1 noprint; 
    by &id; 
    var 
%if &weight^= %then %do; 
    &weight 
%end; 
%if &int=no %then %do; 
     &x; 
%end; 
%else %do; 
     _resid_ &x; 
%end; 
    output out=c2dat2(drop=_type_ _freq_ &id 
%if &weight^= %then %do; 
    j0 
jj1 - jj&p 
%if &int^=no %then %do; 
   jj0 
%end; 
 
%end; 
) 
    sum = 
%if &weight^= %then %do; 
    j0 
%end; 
%if &int=no %then %do; 
    &x 
%end; 
%else %do; 
     &x 
%end; 
%if &weight^= %then %do; 
    mean = 
    &weight 
%if &int=no %then %do; 
    jj1 - jj&p 
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%end; 
%else %do; 
   jj0 jj1 - jj&p 
%end; 
 
%end; 
 ; 
run; 
 
proc corr nocorr sscp out=uusq(type=sscp) noprint; 
%if &weight^= %then %do; 
    weight &weight; 
%end; 
 title '                         '; 
   ; 
 
data c2(drop=_type_ _name_); 
    set uusq; 
    if (_type_ ne 'SSCP') then delete; 
    if (_name_ = 'INTERCEP') then delete; 
    RUN; 
 
proc iml worksize=500; 
 reset nolog noprint; 
 
     use par; 
     read all into beta; 
nbeta = ncol(beta); 
 
     use c1; 
     read all into n_1c1_1; 
 
     use c2; 
     read all into nc2; 
 
%if &int=no %then %do; 
variable = { &x }; 
%end; 
%else %do; 
variable = { "INTERCEP" } || { &x }; 
%end; 
 
variable =   variable`; 
 
     vb = n_1c1_1;   *naive covariance ; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
 
     z=beta`/sebeta;                   *z-statistics; 
 
     zsq=z#z; 
 
     p=1-probchi(zsq,1);              *two-sided p-value; 
 
estimate=beta`; 
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se_est=sebeta; 
 
%if &print^=no %then %do; 
   print, { 'Correlation Structure: Independence' }; 
   print, { '                                   ' }; 
   print, { 'PARAMETER ESTIMATES with naive variance' }; 
   print, variable estimate[format=&fmt] se_est[format=&fmt] 
z[format=&fmt] p[format=&fmt]; 
%end; 
 
     vb = n_1c1_1*nc2*n_1c1_1;        *estimated covariance ; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
     z=beta`/sebeta;                   *z-statistics; 
 
     zsq=z#z; 
 
     p=1-probchi(zsq,1);              *two-sided p-value; 
 
     se_est=sebeta; 
 
%if &print^=no %then %do; 
   print, { 'PARAMETER ESTIMATES with robust variance' }; 
   print, variable estimate[format=&fmt] se_est[format=&fmt] 
z[format=&fmt] p[format=&fmt]; 
%end; 
 
%if &outbeta^= %then %do; 
 
vc= j(1,nbeta,'v'); 
coln = variable` || ( concat(vc,variable`) ); 
out = estimate` || (se_est#se_est)` ; 
create &outbeta from out [colname=coln]; 
append from out; 
close &outbeta; 
%end; 
 
%if &print^=no %then %do; 
 
   contrast= { 0  &c1 }; 
   %contrast(c=c1); 
 
   contrast= { 0  &c2 }; 
   %contrast(c=c2); 
%end; 
quit; 
%end; 
%else %do; 
 
%if &int=no %then %do; 
 
 
data x ( keep = &x ); 
  length &x 8; 
set zzone; 
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run; 
 
%end; 
%else %do; 
 
data x (keep=intercep &x); 
 length intercep &x 8; 
set zzone; 
 run; 
 
%end; 
 
data y ( keep = &y ); 
set zzone; 
run; 
 
data id ( keep = idm ); 
set zzone; 
run; 
 
%if &weight^= %then %do; 
data wt ( keep = &weight ); 
set zzone; 
run; 
%end; 
 
*******************************************************; 
/*creation of the file of the longitudinal weights*/ 
data W (keep=&weight); 
set zzone; 
run; 
*******************************************************; 
WANT TO INDICATE THE NAME OF THE FILE CONTAINING THE WEIGHTS 
BOOTSTRAP:        
**********************************************************************
; 
 
data boot (keep=bsw1-bsw500); 
set in2.boot; 
run; 
 
%if &corr=exc or &corr=cs %then %do; 
 
proc iml worksize=500; 
 
 reset nolog noprint; 
 
/*initial marginal parameters */ 
 
   USE PAR; 
   READ ALL INTO BETA; 
beta=beta`; 
nbeta = nrow(beta); 
   USE Y; 
   READ ALL INTO Y; 
 
   USE X; 
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   READ ALL INTO X; 
 nall =nrow(x);           /* number records in dataset, times*ind 
*/ 
 
   USE ID; 
   READ ALL INTO ID; 
 
%if &weight^= %then %do; 
   USE WT; 
   READ ALL INTO WT; 
%end; 
 
 n = max(id); 
 
crit=1; 
  theta=.01; 
 
 
Do it=1 to &maxit while (crit > &crit ); 
 
   U= J(Nbeta,1,0); 
   dvd= J(Nbeta,nbeta,0); 
   usq = dvd; 
   u2 = 0; 
   ewe = 0; 
 
Do i=1 to n; 
   u2_i = 0; 
   ewe_i = 0; 
    times = loc(id=i); 
    T_i = ncol(times); 
    Y_i = Y[times,]; 
    X_i = X[times,]; 
%if &weight^= %then %do; 
   wt_i = wt[times,]; 
   wt_i = wt_i[1,]; 
%end; 
    p_i = exp(X_i*beta)/(1 + exp(X_i*beta) ); 
    A_i = Diag( diag(p_i) - p_i*p_i` ); 
    D_i =  X_i`*A_i; 
 
  V_i = j(T_i,T_i,0); 
 
 if (T_i > 1) then do; 
  do s=1 to T_i; 
     do t=s+1 to T_i; 
 
 corr_st =   (EXP(theta)-1)/(EXP(theta)+1) ; 
   DET = SQRT( p_i[s,]#p_i[t,]#(1-p_i[s,])#(1-p_i[t,]) ); 
   Pst = p_i[s,]#p_i[t,] + corr_st#det; 
   DOR = 2#(EXP(theta))/(EXP(theta)+1)/(EXP(theta)+1)#det; 
 
%if &method=cond %then %do; 
 
   DOR = (Y_i[s,]/p_i[s,])#DOR - 
         (1-Y_i[s,])/(1-p_i[s,])#DOR ; 
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   V_i[s,t] = pst - p_i[s,]#p_i[t,]; 
   V_i[t,s] = pst - p_i[s,]#p_i[t,]; 
 
   nust = (Y_i[s,]/p_i[s,])#pst + 
         (1-Y_i[s,])/(1-p_i[s,])#(p_i[t,] - pst) ; 
 
   u2_i = u2_i + Dor#( Y_i[t,] - nust )/(nust#(1-nust)); 
   ewe_i = ewe_i + Dor#Dor/(nust#(1-nust)); 
%end; 
 
%if &method=uncond %then %do; 
 
   V_i[s,t] = pst - p_i[s,]#p_i[t,]; 
   V_i[t,s] = pst - p_i[s,]#p_i[t,]; 
 
   u2_i = u2_i + Dor#( (Y_i[s,])#(Y_i[t,]) - pst )/(pst#(1-pst)); 
   ewe_i = ewe_i + Dor#Dor/(pst#(1-pst)); 
%end; 
 
     end; 
   end; 
end; 
   V_i = V_i + A_i; 
 
u_i = D_i*inv(V_i)*( Y_i - p_i ); 
%if &weight^= %then %do; 
u = u + wt_i#u_i; 
usq = usq + wt_i#u_i*u_i`; 
dvd =  dvd + wt_i#D_i*inv(V_i)*D_i`;; 
 
u2 = u2 + wt_i#u2_i; 
ewe = ewe + wt_i#ewe_i; 
%end; 
%else %do; 
u = u + u_i; 
usq = usq + u_i*u_i`; 
dvd =  dvd + D_i*inv(V_i)*D_i`;; 
 
u2 = u2 + u2_i; 
ewe = ewe + ewe_i; 
%end; 
 
end; 
 
   DELTA1= solve( dvd, U ); 
   beta = beta+DELTA1; 
 
   DELTA2= solve( ewe, U2 ); 
   theta = theta + delta2; 
   CRIT= MAX( ABS(DELTA1 // delta2)); 
 
%if &print^=no %then %do; 
   %if &it_his=yes %then %do; 
     print, it crit; 
   %end; 
%end; 
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end; 
 
%if &print^=no %then %do; 
   print, it crit; 
%end; 
 
%if &int=no %then %do; 
variable = { &x }; 
%end; 
%else %do; 
variable = { "INTERCEP" } || { &x }; 
%end; 
 
variable =   variable`; 
 
     vb=inv(dvd);       *variance matrix; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
 
     z=beta/sebeta;                   *z-statistics; 
 
     zsq=z#z; 
 
     p=1-probchi(zsq,1);              *two-sided p-value; 
 
estimate=beta; 
se_est=sebeta; 
 
%if &print^=no %then %do; 
   print, { 'Correlation Structure: Exchangeable' }; 
   print, { '                                   ' }; 
   print, { 'PARAMETER ESTIMATES with naive variance' }; 
   print, variable estimate[format=&fmt] se_est[format=&fmt] 
z[format=&fmt] p[format=&fmt]; 
%end; 
 
     vb=vb*usq*vb;              *robust variance matrix; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
     z=beta/sebeta;                   *z-statistics; 
 
     zsq=z#z; 
 
     p=1-probchi(zsq,1);              *two-sided p-value; 
 
     se_est=sebeta; 
 
%if &print^=no %then %do; 
   print, { 'PARAMETER ESTIMATES with robust variance' }; 
   print, variable estimate[format=&fmt] se_est[format=&fmt] 
z[format=&fmt] p[format=&fmt]; 
%end; 
 



 

 263

%if &outbeta^= %then %do; 
 
vc= j(1,nbeta,'v'); 
coln = variable` || ( concat(vc,variable`) ); 
out = estimate` || (se_est#se_est)` ; 
create &outbeta from out [colname=coln]; 
append from out; 
close &outbeta; 
%end; 
 
/* Variance of CORR  */ 
 
   U= J(Nbeta+1,1,0); 
   dvd= J(Nbeta,nbeta,0); 
   usq= J(Nbeta+1,nbeta+1,0); 
   ewe = 0; 
   ewd= J(1,nbeta,0); 
 
Do i=1 to n; 
   u2_i = 0; 
   ewe_i = 0; 
   ewd_i= J(1,nbeta,0); 
    times = loc(id=i); 
    T_i = ncol(times); 
    Y_i = Y[times,]; 
    X_i =   X[times,]; 
%if &weight^= %then %do; 
   wt_i = wt[times,]; 
   wt_i = wt_i[1,]; 
%end; 
    p_i = exp(X_i*beta)/(1 + exp(X_i*beta) ); 
    A_i = Diag( diag(p_i) - p_i*p_i` ); 
    D_i =  X_i`*A_i; 
 
  V_i = j(T_i,T_i,0); 
 
 if (T_i > 1) then do; 
  do s=1 to T_i; 
     do t=s+1 to T_i; 
 
 corr_st =  ( (EXP(theta)-1)/(EXP(theta)+1) ); 
   DET = SQRT( p_i[s,]#p_i[t,]#(1-p_i[s,])#(1-p_i[t,]) ); 
   Pst = p_i[s,]#p_i[t,] + corr_st#det; 
   DOR = 2#(EXP(theta))/(EXP(theta)+1)/(EXP(theta)+1)#det; 
   V_i[s,t] = pst - p_i[s,]#p_i[t,]; 
   V_i[t,s] = pst - p_i[s,]#p_i[t,]; 
 
 
%if &method=cond %then %do; 
 
DPs = p_i[t,] + .5#corr_st#p_i[t,]#(1-p_i[t,])#(1-2#p_i[s,])/DET; 
DPt = p_i[s,] + .5#corr_st#p_i[s,]#(1-p_i[s,])#(1-2#p_i[t,])/DET; 
 
   DOR = (Y_i[s,]/p_i[s,])#DOR - 
         (1-Y_i[s,])/(1-p_i[s,])#DOR ; 
 
   nust = (Y_i[s,]/p_i[s,])#pst + 
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         (1-Y_i[s,])/(1-p_i[s,])#(p_i[t,] - pst) ; 
 
   DPs = Y_i[s,]#( DPs/p_i[s,] - pst/( (p_i[s,])##2 ) ) + 
(1-Y_i[s,])#( (-1)#DPs/(1-p_i[s,])+(p_i[t,]- pst)/( 
(1-p_i[s,])##2 ) ); 
 
 DPt = Y_i[s,]#( DPt/p_i[s,]  ) + 
(1-Y_i[s,])#( (1-DPt)/(1-p_i[s,]) ); 
 
DP = Dps // Dpt; 
DB = D_i[,s] || D_i[,t]; 
DB = DB*DP; 
 
   u2_i = u2_i + Dor#( Y_i[t,] - nust )/(nust#(1-nust)); 
  ewe_i = ewe_i + Dor#Dor/(nust#(1-nust)); 
  ewd_i = ewd_i + Dor*( 1/(nust#(1-nust) ) )*db`; 
%end; 
 
%if &method=uncond %then %do; 
 
DPs = p_i[t,] + .5#corr_st#p_i[t,]#(1-p_i[t,])#(1-2#p_i[s,])/DET; 
DPt = p_i[s,] + .5#corr_st#p_i[s,]#(1-p_i[s,])#(1-2#p_i[t,])/DET; 
 
DP = Dps // Dpt; 
DB = D_i[,s] || D_i[,t]; 
DB = DB*DP; 
 
   u2_i = u2_i + Dor#( Y_i[s,]#Y_i[t,] - pst )/(pst#(1-pst)); 
  ewe_i = ewe_i + Dor#Dor/(pst#(1-pst)); 
  ewd_i = ewd_i + Dor*( 1/(pst#(1-pst) ) )*db`; 
%end; 
 
     end; 
   end; 
end; 
   V_i = V_i + A_i; 
 
u_i = ( D_i*inv(V_i)*( Y_i - p_i ) ) // u2_i; 
%if &weight^= %then %do; 
usq = usq + wt_i#u_i*u_i`; 
dvd =  dvd + wt_i#D_i*inv(V_i)*D_i`;; 
 
ewe = ewe + wt_i#ewe_i; 
ewd = ewd + wt_i#ewd_i; 
%end; 
%else %do; 
usq = usq + u_i*u_i`; 
dvd =  dvd + D_i*inv(V_i)*D_i`;; 
 
ewe = ewe + ewe_i; 
ewd = ewd + ewd_i; 
%end; 
 
end; 
 
EUU = (dvd || j(nbeta,1,0) ) // ( ewd || ewe ) ; 
Vb2 = inv(EUU)*usq*inv(EUU`); 
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setheta=sqrt(vb2[nbeta+1,nbeta+1]); 
 
    corr =  ( (EXP(theta)-1)/(EXP(theta)+1) ) ; 
    secorr = 
2#(EXP(theta))/(EXP(theta)+1)/(EXP(theta)+1)#setheta; 
 
%if &print^=no %then %do; 
 
     z=corr/secorr; 
     zsq=z#z; 
     p=1-probchi(zsq,1); 
 
   print, corr secorr z p; 
 
   contrast= { 0  &c1 }; 
   %contrast(c=c1); 
 
   contrast= { 0  &c2 }; 
   %contrast(c=c2); 
%end; 
 
/* 
%if &outrho^=  %then %do; 
   coln = { 'rho' 'vrho' }; 
   out = corr || (secorr#secorr)` ; 
create &outrho from out [colname=coln]; 
append from out; 
close &outrho ; 
%end; 
*/ 
 
   coln = { 'rho' 'vrho' }; 
   out = corr || (secorr#secorr)` ; 
create outrho from out [colname=coln]; 
append from out; 
close outrho ; 
quit; 
%end; 
 
%if &corr=ar1 %then %do; 
  data occas ( keep = &time ); 
    set zzone; 
  run; 
 
proc iml worksize=5000; 
 reset nolog noprint; 
 
/*initial marginal parameters */ 
   USE PAR; 
   READ ALL INTO BETA; 
beta=beta`; 
nbeta = nrow(beta); 
   USE Y; 
   READ ALL INTO Y; 
 
   USE X; 
   READ ALL INTO X; 
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 nall =nrow(x);           /* number records in dataset, times*ind 
*/ 
   USE ID; 
   READ ALL INTO ID; 
 
%if &weight^= %then %do; 
   USE W; 
   READ ALL INTO W; 
%end; 
 n = max(id); 
 
   USE occas; 
   READ ALL INTO occas; 
crit=1; 
  theta=.01; 
 
Do it=1 to &maxit while (crit > &crit ); 
 
   U= J(Nbeta,1,0); 
   dvd= J(Nbeta,nbeta,0); 
   usq = dvd; 
   u2 = 0; 
   ewe = 0; 
 
Do i=1 to n; 
   u2_i = 0; 
   ewe_i = 0; 
    times = loc(id=i); 
    T_i = ncol(times); 
    Y_i = Y[times,]; 
    X_i = X[times,]; 
%if &weight^= %then %do; 
   wt_i = wt[times,]; 
   wt_i = wt_i[1,]; 
%end; 
    occas_i = occas[times,]; 
    p_i = exp(X_i*beta)/(1 + exp(X_i*beta) ); 
    A_i = Diag( diag(p_i) - p_i*p_i` ); 
    D_i =  X_i`*A_i; 
 
  V_i = j(T_i,T_i,0); 
 
 if (T_i > 1) then do; 
  do s=1 to T_i; 
     do t=s+1 to T_i; 
 
 
 corr_st =  ( (EXP(theta)-1)/(EXP(theta)+1) ) 
             ##( (abs( occas[s,] - occas[t,] ))## &power  ); 
   DET = SQRT( p_i[s,]#p_i[t,]#(1-p_i[s,])#(1-p_i[t,]) ); 
   Pst = p_i[s,]#p_i[t,] + corr_st#det; 
   c_st =  ( (EXP(theta)-1)/(EXP(theta)+1) ) 
         ##( ( (-1) + (abs( occas[s,] - occas[t,] ))## &power) ); 
   DOR = 2#(EXP(theta))/(EXP(theta)+1)/(EXP(theta)+1)# 
         det#( (abs( occas[s,] - occas[t,] ))## &power  )#c_st; 
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%if &method=cond %then %do; 
 
   DOR = (Y_i[s,]/p_i[s,])#DOR - 
         (1-Y_i[s,])/(1-p_i[s,])#DOR ; 
 
   V_i[s,t] = pst - p_i[s,]#p_i[t,]; 
   V_i[t,s] = pst - p_i[s,]#p_i[t,]; 
 
   nust = (Y_i[s,]/p_i[s,])#pst + 
         (1-Y_i[s,])/(1-p_i[s,])#(p_i[t,] - pst) ; 
 
   u2_i = u2_i + Dor#( Y_i[t,] - nust )/(nust#(1-nust)); 
  ewe_i = ewe_i + Dor#Dor/(nust#(1-nust)); 
 
%end; 
 
%if &method=uncond %then %do; 
 
   V_i[s,t] = pst - p_i[s,]#p_i[t,]; 
   V_i[t,s] = pst - p_i[s,]#p_i[t,]; 
 
   u2_i = u2_i + Dor#( (Y_i[s,])#(Y_i[t,]) - pst )/(pst#(1-pst)); 
   ewe_i = ewe_i + Dor#Dor/(pst#(1-pst)); 
%end; 
 
     end; 
   end; 
end; 
   V_i = V_i + A_i; 
 
u_i = D_i*inv(V_i)*( Y_i - p_i ); 
%if &weight^= %then %do; 
u = u + wt_i#u_i; 
usq = usq + wt_i#u_i*u_i`; 
dvd =  dvd + wt_i#D_i*inv(V_i)*D_i`;; 
 
u2 = u2 + wt_i#u2_i; 
ewe = ewe + wt_i#ewe_i; 
%end; 
%else %do; 
u = u + u_i; 
usq = usq + u_i*u_i`; 
dvd =  dvd + D_i*inv(V_i)*D_i`;; 
 
u2 = u2 + u2_i; 
ewe = ewe + ewe_i; 
%end; 
 
end; 
 
   DELTA1= solve( dvd, U ); 
   beta = beta+DELTA1; 
 
   DELTA2= solve( ewe, U2 ); 
   theta = theta + delta2; 
   CRIT= MAX( ABS(DELTA1 // delta2)); 
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%if &print^=no %then %do; 
   %if &it_his=yes %then %do; 
     print, it crit; 
   %end; 
%end; 
 
end; 
 
%if &print^=no %then %do; 
   print, it crit; 
%end; 
 
%if &int=no %then %do; 
variable = { &x }; 
%end; 
%else %do; 
variable = { "INTERCEP" } || { &x }; 
%end; 
 
variable =   variable`; 
 
     vb=inv(dvd);       *variance matrix; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
 
     z=beta/sebeta;                   *z-statistics; 
 
     zsq=z#z; 
 
     p=1-probchi(zsq,1);              *two-sided p-value; 
 
estimate=beta; 
se_est=sebeta; 
 
%if &print^=no %then %do; 
   print, { 'Correlation Structure: AR1' }; 
   print, { '                                   ' }; 
   print, { 'PARAMETER ESTIMATES with naive variance' }; 
   print, variable estimate[format=&fmt] se_est[format=&fmt] 
z[format=&fmt] p[format=&fmt]; 
%end; 
 
     vb=vb*usq*vb;              *robust variance matrix; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
 
     z=beta/sebeta;                   *z-statistics; 
 
     zsq=z#z; 
 
     p=1-probchi(zsq,1);              *two-sided p-value; 
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se_est=sebeta; 
 
%if &print^=no %then %do; 
     print, { 'PARAMETER ESTIMATES with robust variance' }; 
   print, variable estimate[format=&fmt] se_est[format=&fmt] 
z[format=&fmt] p[format=&fmt]; 
%end; 
 
%if &outbeta^= %then %do; 
  vc= j(1,nbeta,'v'); 
  coln = variable` || ( concat(vc,variable`) ); 
  out = estimate` || (se_est#se_est)` ; 
  create &outbeta from out [colname=coln]; 
  append from out; 
  close &outbeta; 
%end; 
 
/* Variance of CORR  */ 
   U= J(Nbeta+1,1,0); 
   dvd= J(Nbeta,nbeta,0); 
   usq= J(Nbeta+1,nbeta+1,0); 
   ewe = 0; 
   ewd= J(1,nbeta,0); 
 
Do i=1 to n; 
   u2_i = 0; 
   ewe_i = 0; 
   ewd_i= J(1,nbeta,0); 
    times = loc(id=i); 
    T_i = ncol(times); 
    Y_i = Y[times,]; 
    X_i =   X[times,]; 
%if &weight^= %then %do; 
   wt_i = wt[times,]; 
   wt_i = wt_i[1,]; 
%end; 
    occas_i = occas[times,]; 
    p_i = exp(X_i*beta)/(1 + exp(X_i*beta) ); 
    A_i = Diag( diag(p_i) - p_i*p_i` ); 
    D_i =  X_i`*A_i; 
 
  V_i = j(T_i,T_i,0); 
 
 if (T_i > 1) then do; 
  do s=1 to T_i; 
     do t=s+1 to T_i; 
 
 corr_st =  ( (EXP(theta)-1)/(EXP(theta)+1) ) 
             ##( (abs( occas[s,] - occas[t,] ))## &power  ); 
   DET = SQRT( p_i[s,]#p_i[t,]#(1-p_i[s,])#(1-p_i[t,]) ); 
   Pst = p_i[s,]#p_i[t,] + corr_st#det; 
   c_st =  ( (EXP(theta)-1)/(EXP(theta)+1) ) 
           ##( ( (-1) + (abs( occas[s,] - occas[t,] ))## &power) 
); 
   DOR = 2#(EXP(theta))/(EXP(theta)+1)/(EXP(theta)+1)# 
         det#( (abs( occas[s,] - occas[t,] ))## &power  )#c_st; 
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DPs = p_i[t,] + .5#corr_st#p_i[t,]#(1-p_i[t,])#(1-2#p_i[s,])/DET; 
DPt = p_i[s,] + .5#corr_st#p_i[s,]#(1-p_i[s,])#(1-2#p_i[t,])/DET; 
 
   V_i[s,t] = pst - p_i[s,]#p_i[t,]; 
   V_i[t,s] = pst - p_i[s,]#p_i[t,]; 
 
%if &method=cond %then %do; 
 
   DOR = (Y_i[s,]/p_i[s,])#DOR - 
         (1-Y_i[s,])/(1-p_i[s,])#DOR ; 
 
   nust = (Y_i[s,]/p_i[s,])#pst + 
         (1-Y_i[s,])/(1-p_i[s,])#(p_i[t,] - pst) ; 
 
   DPs = Y_i[s,]#( DPs/p_i[s,] - pst/( (p_i[s,])##2 ) ) + 
(1-Y_i[s,])#( (-1)#DPs/(1-p_i[s,])+(p_i[t,]- pst)/( 
(1-p_i[s,])##2 ) ); 
 
 DPt = Y_i[s,]#( DPt/p_i[s,]  ) + 
(1-Y_i[s,])#( (1-DPt)/(1-p_i[s,]) ); 
 
DP = Dps // Dpt; 
DB = D_i[,s] || D_i[,t]; 
DB = DB*DP; 
 
   u2_i = u2_i + Dor#( Y_i[t,] - nust )/(nust#(1-nust)); 
  ewe_i = ewe_i + Dor#Dor/(nust#(1-nust)); 
  ewd_i = ewd_i + Dor*( 1/(nust#(1-nust) ) )*db`; 
 
%end; 
 
%if &method=uncond %then %do; 
 
DPs = p_i[t,] + .5#corr_st#p_i[t,]#(1-p_i[t,])#(1-2#p_i[s,])/DET; 
DPt = p_i[s,] + .5#corr_st#p_i[s,]#(1-p_i[s,])#(1-2#p_i[t,])/DET; 
 
DP = Dps // Dpt; 
DB = D_i[,s] || D_i[,t]; 
DB = DB*DP; 
 
   u2_i = u2_i + Dor#( Y_i[s,]#Y_i[t,] - pst )/(pst#(1-pst)); 
  ewe_i = ewe_i + Dor#Dor/(pst#(1-pst)); 
  ewd_i = ewd_i + Dor*( 1/(pst#(1-pst) ) )*db`; 
%end; 
     end; 
   end; 
end; 
   V_i = V_i + A_i; 
 
u_i = ( D_i*inv(V_i)*( Y_i - p_i ) ) // u2_i; 
%if &weight^= %then %do; 
usq = usq +  wt_i#u_i*u_i`; 
dvd =  dvd +  wt_i#D_i*inv(V_i)*D_i`;; 
 
ewe = ewe +  wt_i#ewe_i; 
ewd = ewd +  wt_i#ewd_i; 
%end; 
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%else %do; 
usq = usq + u_i*u_i`; 
dvd =  dvd + D_i*inv(V_i)*D_i`;; 
 
ewe = ewe + ewe_i; 
ewd = ewd + ewd_i; 
%end; 
 
end; 
 
EUU = (dvd || j(nbeta,1,0) ) // ( ewd || ewe ) ; 
 
Vb2 = inv(EUU)*usq*inv(EUU`); 
 
     setheta=sqrt(vb2[nbeta+1,nbeta+1]); 
    corr =  ( (EXP(theta)-1)/(EXP(theta)+1) ) ; 
    secorr = 
2#(EXP(theta))/(EXP(theta)+1)/(EXP(theta)+1)#setheta; 
 
%if &print^=no %then %do; 
     z=corr/secorr; 
     zsq=z#z; 
     p=1-probchi(zsq,1); 
     print, { "POWER = &power" }; 
     print, corr secorr z p; 
 
%if &k_j^= %then %do; 
 
    t_s = { &k_j }; 
    t_s = t_s`; 
    its = t_s## &power; 
    lnc = its*log(corr); 
    vlnc = its*( (secorr/corr)##2 )*its`; 
    corr = exp(lnc); 
    vcorr = diag(corr)*vlnc*diag(corr); 
    secorr =sqrt(vecdiag(vcorr)); 
    k_j = t_s; 
    print k_j corr secorr; 
 
  %end; 
%end; 
 
   contrast= { 0  &c1 }; 
   %contrast(c=c1); 
 
   contrast= { 0  &c2 }; 
   %contrast(c=c2); 
 
%if &outrho^= %then %do; 
   coln = { rho vrho }; 
   out = corr || (secorr#secorr)` ; 
   create &outrho from out [colname=coln]; 
   append from out; 
   close &outrho; 
%end; 
 
  quit; 
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%end; 
%end; 
%if &corr = banded or &corr = un %then %do; 
proc freq data=zzone; 
 tables &time /out=new noprint; 
run; 
 
data new (keep=&time ordt); 
  set new; 
  ordt+1; 
run; 
 
data occas ( keep = &time junk); 
set zzone; 
junk+1; 
run; 
proc sort data= occas; 
  by &time; 
run; 
data occas(keep=junk ordt); 
 merge occas new; 
 by &time; 
 run; 
proc sort data=occas out=occas(drop=junk); 
 by junk; 
 run; 
proc iml worksize=5000; 
 reset nolog noprint; 
%if &corr = banded %then %do; 
  corr = 3; 
%end; 
%if &corr = un %then %do; 
  corr = 4; 
%end; 
 
/*initial marginal parameters */ 
   USE PAR; 
   READ ALL INTO BETA; 
beta=beta`; 
nbeta = nrow(beta); 
   USE Y; 
   READ ALL INTO Y; 
maxy = 2;                 /* # levels of multinomial */ 
   USE X; 
   READ ALL INTO X; 
 nall =nrow(x);           /* number records in dataset, times*ind */ 
   USE ID; 
   READ ALL INTO ID; 
%if &weight^= %then %do; 
   USE W; 
   READ ALL INTO W; 
%end; 
 n = max(id);             /* number of indiv. (clusters) */ 
 
 npair =0;                /* number of pairs of times    */ 
 maxt = 0;                /* maximum # times an indiv was seen */ 
do i=1 to n; 
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  times = loc(id=i); 
  times = ncol(times); 
   npair =  npair + times#(times-1); 
  if times > maxt then maxt=times; 
end; 
Imaxt = I(maxt); 
   USE occas; 
   READ ALL INTO occas; 
crit=1; 
Do it=1 to &maxit while (crit > &crit); 
free  lu; 
   U= J(Nbeta,1,0); 
   dvd= J(Nbeta,nbeta,0); 
   usq = dvd; 
/* ***************** Correlation matrix ******************** */ 
  R=j(maxt#(maxy-1),maxt#(maxy-1),0); 
  obs=R; 
  Do i=1 to n; 
    free Y_i X_i p_i A_i Wvar_i W_i weight_i poids_i;; 
    times = loc(id=i); 
    T_i = ncol(times); 
    Y_i = Y[times,]; 
    X_i = X[times,]; 
Wvar_i = W[times,];  /* vector to times (T) lines: weights of the ième 
cluster*/ 
    weight_i=Wvar_i[maxy-1]; /*Vector column weights to L-1 elements?  
*/ 
 poids_i=Wvar_i[1]; /* scalaire  poids du ième cluster, scalar 
weights*/ 
%if &time^= %then %do; 
    occas_i = occas[times,]; 
%end; 
 
    A_i = 0;  
    W_i=0; /* initialisation of the diagonal matrix of the weights for 
the ith cluster dimension */ 
/* création of diagonal matrix */ 
    W_it = poids_i @ Imaxy; 
 
    p_i = exp(X_i*beta)/(1 + exp(X_i*beta) ); 
    A_i = Diag( diag(p_i) - p_i*p_i` ); 
  W_i = Block(W_i,W_it); 
 
   nrW = nrow(W_i); 
      W_i = W_i[2:nrW,2:nrW]; 
      nrA = nrow(A_i); 
      A_i = A_i[2:nrA,2:nrA]; 
/* inversion de la matrice racine carrée de A_i */ 
      call eigen(M,ev,A_i); 
      e_i = inv(ev*sqrt(DIAG(M))*ev`) * (Y_i - p_i); 
%if &time= %then %do; 
      e_i = shape(e_i, maxt#(maxy-1), 1, 0); 
%end; 
%else %do; 
      I_i = Imaxt[,occas_i`]; 
      I_i = I_i @ I(maxy-1); 
*******************************************************************; 
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/* we introduce the weights for estimation of correlation */ 
      I_i = (diag(W_i))* I_i; 
*****************************************************************; 
      e_i = sqrt(I_i) *e_i; 
      obs_i = sqrt(I_i[,+]); 
      obs = obs + obs_i*obs_i`; 
%end; 
      R = R + e_i*e_i`; 
    end; 
end; 
if corr = 4 then do; 
      R = R/(obs-nbeta); 
  ch = 1 - ( (I(maxt)) @ j(maxy-1,maxy-1,1) ); 
  R = ch#R + I(nrow(R)); 
end; 
if corr = 3 then do; 
    free co; 
  do ti = 2 to maxt; 
      ch = j(maxy-1,maxt#(maxy-1),0); 
      ch[, (ti-1)#(maxy-1)+1 : ti#(maxy-1) ] = j(maxy-1,maxy-1,1); 
      ch = toeplitz(ch); 
      R_st = ch#R; 
      obs_st = ch#obs; 
      ch = j(maxt,1,1) @ i(maxy-1) ; 
      R_st = (ch`*R_st*ch/2)/(ch`*obs_st*ch/2-nbeta); 
      co = co || R_st; 
  end; 
    R = I(maxy-1) || co; 
    R = toeplitz(R); 
end; 
/* **************END Correlation matrix ******************** */ 
Do i=1 to n; 
    free Y_i X_i p_i D_i A_i W_i WW_i Wvar_i weight_i poids_i lu_i; 
    times = loc(id=i); 
    T_i = ncol(times); 
    Y_i = Y[times,]; 
    X_i = X[times,]; 
    occas_i = occas[times,]; 
Wvar_i = W[times,];  /* vecteur poids du ième cluster*/ 
    weight_i=Wvar_i[maxy-1]; /* vector column weights to L-1 elements 
?*/ 
 poids_i=Wvar_i[1]; /* scalaire  poids du ième cluster*/ 
%if &time^= %then %do; 
    occas_i = occas[times,]; 
%end; 
    A_i = 0; 
 W_i=0; WW_i=0; 
 W_it = poids_i @ Imaxy; 
 
    p_i = exp(X_i*beta)/(1 + exp(X_i*beta) ); 
    A_i = Diag( diag(p_i) - p_i*p_i` ); 
 WW_it = diag(W_it) ; 
             W_i = Block(W_i,W_it); 
      WW_i = Block(WW_i,WW_it); 
   D_i = X_i`*A_i;     
              * D_i = D_i || D_it; 
         end; 
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 /* one eliminates first line and first column*/ 
      nrW = nrow(W_i); 
      W_i = W_i[2:nrW,2:nrW]; 
   WW_i = WW_i[2:nrW,2:nrW]; 
      nrA = nrow(A_i); 
      A_i = A_i[2:nrA,2:nrA]; 
      I_i = Imaxt[occas_i`,]; 
      A_i1_2 = sqrt(A_i); 
if T_i > 1 then do; 
         V_i = A_i1_2*I_i*R*I_i`*A_i1_2; 
end; 
if T_i = 1 then do; 
         V_i = A_i ; 
end; 
u_i = D_i*inv(V_i)*( Y_i - p_i ); 
%if &weight^= %then %do; 
u = u +wvar_i# u_i; 
usq = usq + wvar_i#u_i*u_i`; 
dvd =  dvd + wvar_i#D_i*inv(V_i)*D_i`;; 
%end; 
%else %do; 
u = u + u_i; 
usq = usq + u_i*u_i`; 
dvd =  dvd + D_i*inv(V_i)*D_i`;; 
%end; 
 
end; 
/* CREATE A FILE OF THE TERMS NON BALANCED U_i FOR THE CALCULATION OF 
THE VARIANCE BOOTSTRAP LINÉARISÉE*/ 
   lu = D_i*inv(V_i)*( Y_i - p_i ); 
   *lu=lu // lu_i`; 
end; /* fin de la boucle en i*/ 
   DELTA= solve( dvd, U ); 
   beta = beta+DELTA; 
   CRIT= MAX( ABS(DELTA)); 
%if &print^=no %then %do; 
   %if &it_his=yes %then %do; 
     print, it crit; 
   %end; 
%end; 
end; 
/* CREATE A FILE OF THE PARAMETERS WITH THE elements of the sturdy 
VARIANCES CALCULATED without THE WEIGHTS 
BOOTSTRAP*/ 
  sandwich= lu; 
  CREATE milieu FROM sandwich; 
  APPEND FROM sandwich; 
  CLOSE milieu; 
print, it crit;  print R; 
intc = { "int" }; 
stop=maxy-1; 
do j=1 to stop; 
 intn = char(j,1); 
 int = concat(intc,intn); 
 variable = variable || int; 
end; 
variable = variable || { &x }; 
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variable =   variable`; 
 
     vb=inv(dvd);       *variance matrix; 
  izero=vb;         /* matrice de covariance naîve*/ 
  residw=u`;         /* S(u) avec poids full sample */ 
  print residw; 
     naiv_var=vecdiag(vb); * naive variance; 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
     z=beta/sebeta;                   *z-statistics; 
     zsq=z#z; 
     p=1-probchi(zsq,1);              *two-sided p-value; 
estimate=beta; 
se_est=sebeta; 
/* CREATE A FILE OF THE PARAMETERS WITH THE VARIANCES NAIVES 
CALCULATED WITH THE WEIGHTS BOOTSTRAP*/ 
  NAIVE= ESTIMATE||SE_EST||naiv_var||Z||P; 
  CREATE PARMNAIV FROM NAIVE; 
  APPEND FROM NAIVE; 
  CLOSE PARMNAIV; 
 
        if corr = 3 then do; 
print, { 'CORRELATION: banded' }; 
      end; 
      if corr = 4 then do; 
print, { 'CORRELATION: unstructured' }; 
      end; 
     
print, { 'PARAMETER ESTIMATES with naive variance' }; 
 
     print, variable estimate se_est z p; 
 
     vb=vb*usq*vb;              *robust variance matrix; 
 
     sebeta=sqrt(vecdiag(vb));      *vector of estimated 
                                       standard errors of 
                                       beta; 
     z=beta/sebeta;                   *z-statistics; 
     zsq=z#z; 
     p=1-probchi(zsq,1);              *two-sided p-value; 
se_est=sebeta; 
print, { 'PARAMETER ESTIMATES with robust variance' }; 
     print, variable estimate se_est z p; 
/* CREATE A FILE OF THE PARAMETERS WITH THE STURDY VARIANCES*/ 
  ROBUST= ESTIMATE||SE_EST||Z||P; 
  CREATE PARMROB FROM ROBUST; 
  APPEND FROM ROBUST; 
  CLOSE PARMROB; 
  %if &print^=no %then %do; 
    create out from R; 
    append from R; 
    close out; 
    print, it crit; 
%end; 
Imaxb=I(nbeta); 
* print Imaxb; 
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*--------------------------------------------------------------------; 
free lefsb0_d diff_v; 
* Calculation of the variance linéarisée by bootstrap; 
do B=1 to &&nboot; 
   U= J(1,Nbeta,0); /* initialisation to zero of the vector column of 
the dimension parameters Nbeta=p*/ 
Do i=1 to n; 
     free  W_i WW_i  poids_i u_i lu_i; 
 poids_i=BOOT[i,B]; /* scalaire bème poids bootstrap du ième 
cluster*/ 
/*if i=1 then do;print i B poids_i;end;*/ 
    lu_i=lu[i,]; 
/*if i=1 then do;print i B lu_i;end;*/ 
/* creation of the diagonal matrice of the weights*/ 
    W_i = poids_i @ Imaxb; 
/*if i=1 then do;print W_i;end;*/ 
       u_i = lu_i*diag(W_i); 
      u = u + u_i; 
end; /* fin de la boucle en i*/ 
residb=u; 
* print b residb; 
lefsb0=residb-residw; 
* print b lefsb0; 
/* create the file of the gaps */ 
 diff_v=diff_v ||lefsb0; 
* print b diff_v; 
 lefsb0_d=lefsb0_d //lefsb0; 
*  print b lefsb0_d; 
end; /* final bootstrap weights*/ 
*--------------------------------------------------------------------; 
  create residout from lefsb0_d; 
  append from lefsb0_d; 
  close residout; 
use residout; 
read all into differ; 
nn=nrow(differ); 
var_ef=(differ` *differ)/nn; 
/* create the file of the covariances of S(u)*/ 
  CREATE icentral FROM var_ef; 
  APPEND FROM var_ef; 
  CLOSE icentral; 
*--------------------------------------------------------------------; 
  * calculation of the variance linéarisée of beta; 
     vbeta=izero*var_ef*izero;              *robust variance matrix 
linearized; 
     sebeta=sqrt(vecdiag(vbeta));      *vector of estimated 
                                       standard errors linearized of 
                                       beta; 
     z=beta/sebeta;                   *z-statistics; 
     zsq=z#z; 
     p=1-probchi(zsq,1);              *two-sided p-value; 
se_est=sebeta; 
print, { 'PARAMETER ESTIMATES with robust variance linearized' }; 
     print, variable estimate se_est z p; 
/* CREATE A FILE OF THE PARAMETERS WITH THE STURDY VARIANCES 
LINEARISÉES*/ 
  ROBLIN= ESTIMATE||SE_EST||Z||P; 
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  CREATE PARMLIN FROM ROBLIN; 
  APPEND FROM ROBLIN; 
  CLOSE PARMLIN; 
*--------------------------------------------------------------------; 
%if &outbeta^= %then %do; 
  vc= j(1,nbeta,'v'); 
  coln = variable` || ( concat(vc,variable`) ); 
  out = estimate` || (se_est#se_est)` ; 
  create &outbeta from out [colname=coln]; 
  append from out; 
  close &outbeta; 
%end; 
 
%if &print^=no %then %do; 
   contrast= { 0  &c1 }; 
   %contrast(c=c1); 
  contrast= { 0  &c2 }; 
   %contrast(c=c2); 
%end; 
  quit; 
 
%if &print^=no %then %do; 
%if &corr = banded %then %do; 
  title 'Banded Correlation Matrix'; 
%end; 
%if &corr = un %then %do; 
  title 'Unstructured Correlation Matrix'; 
%end; 
proc print data= outcorr; 
  run; 
%end; 
%end; 
title '               '; 
%mend gee; 
%gee (data= in1.survival1 ,y=asthm, x=fallergy 
,time=repeat,id=realukey,corr=ind,nboot=500); 
run; 
/* fichier des paramètres IEE avec variances naîves  */ 
data in1.parmnaiv_4RAO; 
set parmnaiv; 
RENAME COL1=estimate 
       COL2=se_est_naiv 
       col3=NAIV_VAR 
       col4=Z 
       col5=P; 
run; 
/* creation of the file of the parameters GEE with variances robust */ 
data in1.parmrob_4RAO; 
set parmrob; 
run; 
/* creation of the file of the parameters GEE with variances 
linéarisés */ 
data in1.parmlin_4RAO; 
set parmlin; 
RENAME COL1=estimate 
       COL2=bs_sd_l 
       col3=LINEAR_VAR 
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       col4=Z; 
run; 
data in1.parmlin_4RAO; 
  set in1.parmlin_4RAO; 
  cil95=ESTIMATE-1.96*bs_sd_l; 
  ciu95=ESTIMATE+1.96*bs_sd_l; 
  odds=exp(estimate); 
  oddl95=exp(cil95); 
  oddu95=exp(ciu95); 
run; 
proc print data=in1.parmlin_4RAO noobs; 
      title "Estimation de la variance à l'aide du bootstrap 500 pour 
des"; 
      title2 "paramètres de la cumlogit POUR LHZ DE Liang-Zeger and 
Williamson "; 
  title3 "pour des données répétées par GEE AVEC DE LA VARIANCE 
LINÉARISÉE"; 
  title4  "pour une structure de corr=UNSTRUCTURED"; 
  var   /*VAR1*/ ESTIMATE BS_SD_L cil95 ciu95 odds oddl95 oddu95; 
    format  ESTIMATE  BS_SD_L cil95 ciu95 odds oddl95 oddu95 6.4; 
run; 
 

C.2 SAS macro for Bootstrap analysis 
*                                    WARNING 
 
* The Government of Canada (Statistics Canada) is the owner of all 
intellectual 
* property rights (including copyright) in this software.  Subject to 
the terms below, 
* you are granted a non-exclusive and non-transferable licence to use 
this software. 
* 
* This software is provided "as-is", and the owner makes no warranty, 
either express 
* or implied, including but not limited to, warranties of 
merchantability and fitness 
* for any particular purpose.  In no event will the owner be liable 
for any indirect, 
* special, consequential or other similar damages.  This agreement 
will terminate 
* automatically without notice to you if you fail to comply with any 
term of this 
* agreement.; 
 
/*******************************************************************/ 
/* Date: April 2004                                                */ 
/*******************************************************************/ 
 
/*********************************************************************
************/ 
/***                                                                           
***/ 
/***                            MACROE_V30.SAS                                 
***/ 
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/***                            (Version 3.0.1)                                
***/ 
/***                                                                           
***/ 
/*** This program calculates variance estimates using the bootstrap 
weights    ***/ 
/*** for different types of estimators.  Using SAS Macros, this 
program can    ***/ 
/*** calculate variance estimates for totals, ratios and differences 
between   ***/ 
/*** ratios.  It can also calculate variance estimates for the 
parameters      ***/ 
/*** of a linear regression or logistic regression. This program can 
also be   ***/ 
/*** customized for other types of analyses.                                   
***/ 
/***                                                                           
***/ 
/*** This program contains the macros that are necessary to use the 
        ***/ 
/*** BOOTVARE_V30.SAS program.                                                 
***/ 
/***                                                                           
***/ 
/*** This program is automatically called by BOOTVARE_V30.SAS and NO 
MODIFICA- ***/ 
/*** TIONS SHOULD BE MADE BY THE USER (except for specific cases 
mentioned in  ***/ 
/*** BOOTVARE_V30.SAS)                                                         
***/ 
/***                                                                           
***/ 
/*********************************************************************
************/ 
 
options ps=64 ls=120 nonotes; 
 
 
**********************************************************************
*********** 
*** Section 1: Declaration of the Macro Variables                             
*** 
**********************************************************************
***********; 
 
/*  Verification if breakdown variable(s) */  
 
%let by=; 
%let cla_tmp="&classes"; 
 
data _NULL_; 
if substr(&cla_tmp,1,1)='.' then do; 
                   call symput ('by' ,'*'); 
                   call symput ('classes' ,''); 
                   call symput ('number',0); 
       end; 
run; 
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* TO OBTAIN THE MARGINALS IN THE OUTPUT; 
 
 
&by  %let cla_tmp="&classes"||' #'; 
 
&by  data _NULL_; 
&by  do i=1 to 10; 
&by   call symput ('cla'||left(trim(i)),' '); 
&by  end; 
&by  init=1; &by  i=1; &by  fin=1; &by  stop=' '; 
&by  do until (stop='#'); 
&by   do until (substr(&cla_tmp,i,1)=''); 
&by    call symput 
('cla'||left(trim(init)),substr(&cla_tmp,fin,i-fin+1)); 
&by    call symput ('number',init); 
&by    i=i+1; 
&by   end; 
&by   fin=i; 
&by   stop=substr(&cla_tmp,i+1,1); 
&by   init=init+1; 
&by  end; 
&by  run; 
 
 
* VARIABLE SPECIFIC TO EACH VERSION OF SAS ; 
 
data _NULL_; 
if &sysver >= 8 then call symput ('inter' ,'intercept'); 
else call symput ('inter' ,'intercep'); 
run; 
 
* VARIABLES FOR INDEX(next section):   ; 
 
%let indx=(id=(&ident blank));  
 
 
**********************************************************************
*****; 
*  SECTION 2: READING IN THE MAIN FILE AND MERGING TO THE WEIGHTS         
*; 
**********************************************************************
*****; 
 
OPTIONS notes; 
 
data Mfile (index=&indx); 
   set &Mfile ; 
   blank=.; 
run; 
 
/* The next step reads the bootstrap weights and standardize the name 
of the bootatrap weigths varaibles */ 
/* FWGT is the same weight as on the analysis file */ 
 
OPTIONS nonotes; 
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data bsamp (index=&indx); 
  set &bsamp; 
   blank=.; 
         if &bsw.1 ne '' then do;  
                           call symput ('bsw_frst' ,'&bsw.1'); 
                           call symput ('bsw_last' ,'&bsw.&b'); 
      end; 
 
         else if &bsw.001 ne '' then do;  
                           call symput ('bsw_frst' ,'&bsw.001'); 
                           call symput ('bsw_last' 
,'&bsw.%sysfunc(putn(&b,z3.))'); 
      end; 
         else if &bsw.0001 ne '' then do;  
                           call symput ('bsw_frst' ,'&bsw.0001'); 
                           call symput ('bsw_last' 
,'&bsw.%sysfunc(putn(&b,z4.))'); 
      end;    
run; 
 
OPTIONS notes; 
 
/* Merging the main file and the bootstrap weights */ 
 
     data bs_data ; 
       merge Mfile (in=in1) bsamp (keep=&fwgt &ident &bsw_frst-
&bsw_last); 
       by &ident; 
       if in1; 
    drop blank; 
       rename &bsw_frst-&bsw_last=bsw1-bsw&b;  
     run; 
 
 
&by  proc sort data=bs_data; 
&by     by &classes; 
&by  run; 
 
 
* RESULTS FILES :     ; 
 
data alltots allrats diffrat bs_reg bs_reglg bs_reggen; 
      set _NULL_; 
run; 
 
%let result= alltots allrats diffrat bs_reg bs_reglg bs_reggen; 
 
 
/*********************************************************************
************/ 
/*** Section 3: Declaration of the macros                                      
***/ 
/*********************************************************************
************/ 
 
%let printtot=0; 
%let printrat=0; 
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%let printdif=0; 
%let printreg=0; 
%let printlog=0; 
%let printgen=0; 
 
%global dep1 dep2; 
 
*************************************; 
 
%macro total(var); 
 
*************************************; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var; 
&by  class &classes; 
  output out=ytot 
         sum=yhat ybs1-ybs&b; 
run; 
 
 
proc means data=Mfile noprint; 
  var &var; 
  where &var>0; 
&by  class &classes; 
  output out=n n=n; 
run; 
 
data ytot; 
 merge ytot n (drop=_type_ _freq_); 
&by by &classes; 
run; 
 
     data est; 
    set ytot; 
    length var $ 8; 
    length type $ 8; 
    Estimate=yhat; 
    bs_var=((&b-1)*(var(of ybs1-ybs&b)))/&b; 
    bs_sd=sqrt(bs_var); 
    bs_cv=round((bs_sd/yhat)*100,.01); 
    cil95=yhat-1.96*bs_sd; 
    ciu95=yhat+1.96*bs_sd; 
    var="&var"; 
    type="Total"; 
    drop ybs1-ybs&b _type_ _freq_; 
&by    drop &cla1 &cla2 &cla3 &cla4 &cla5 &cla6 &cla7 &cla8 
&cla9 &cla10; 
 
&by     %do k=1 %to &number;  
&by     if &&cla&k ne ' ' then cla&k=put(&&cla&k,best8.); 
&by     %end; 
run; 
 
data alltots; 
 set alltots est; 



 

 284

run; 
 
%let printtot=1; 
 
proc datasets library=work; 
 delete ytot est; 
run; 
 
%mend total; 
 
 
*******************************************; 
 
%macro ratio(var1,var2,); 
 
*******************************************; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var1; 
&by  class &classes; 
  output out=ytot 
         sum=yhat ybs1-ybs&b; 
run; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var2; 
  &by  class &classes; 
  output out=xtot 
  sum=xhat xbs1-xbs&b; 
run; 
 
proc means data=Mfile noprint; 
  var &var1; 
   where &var1>0; 
&by  class &classes; 
  output out=n n=n1; 
run; 
 
data ytot; 
 merge ytot n (drop=_type_ _freq_); 
&by by  &classes; 
run; 
 
 
data est; 
  merge ytot xtot; 
  array ybs{&b}; 
  array xbs{&b}; 
  array rbs{&b}; 
  length var1 $ 8; 
  length var2 $ 8; 
  length type $ 8; 
  Estimate=((yhat/xhat)); 
  do i=1 to &b; 
    rbs{i}=((ybs{i}/xbs{i})); 
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  end; 
  bs_var=((&b-1)*(var(of rbs1-rbs&b)))/&b; 
  bs_sd=sqrt(bs_var); 
  bs_cv=round((bs_sd/Estimate)*100,.01); 
  cil95=Estimate-1.96*bs_sd; 
  ciu95=Estimate+1.96*bs_sd; 
  var1="&var1"; 
  var2="&var2"; 
  type="Ratio"; 
  drop ybs1-ybs&b xbs1-xbs&b rbs1-rbs&b xhat yhat i _type_ _freq_; 
&by    drop &cla1 &cla2 &cla3 &cla4 &cla5 &cla6 &cla7 &cla8 
&cla9 &cla10; 
 
&by     %do k=1 %to &number;  
&by     if &&cla&k ne ' ' then cla&k=put(&&cla&k,best8.); 
&by     %end; 
run; 
 
data allrats; 
 set allrats est; 
run; 
 
%let printrat=1; 
 
proc datasets library=work; 
    delete ytot xtot est; 
run; 
 
%mend ratio; 
 
 
********************************************************; 
 
%macro diff_rat(var1,var2,var3,var4); 
 
********************************************************; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var1; 
  &by  class &classes; 
  output out=ytot 
  sum=yhat ybs1-ybs&b; 
run; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var2; 
  &by  class &classes; 
  output out=xtot 
  sum=xhat xbs1-xbs&b; 
run; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var3; 
  &by  class &classes; 
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  output out=yytot 
  sum=yyhat yybs1-yybs&b; 
run; 
 
proc means data=bs_data noprint; 
  var &fwgt bsw1-bsw&b; 
  weight &var4; 
  &by  class &classes; 
  output out=xxtot 
  sum=xxhat xxbs1-xxbs&b; 
run; 
 
proc means data=Mfile noprint; 
  var &var1; 
  where &var1>0; 
&by  class &classes; 
  output out=n1 n=n1; 
run; 
 
proc means data=Mfile noprint; 
  var &var3; 
  where &var3>0; 
&by  class &classes; 
  output out=n3 n=n3; 
run; 
 
data ytot; 
 merge ytot n1 (drop=_type_ _freq_) n3 (drop=_type_ _freq_); 
&by by &classes; 
run; 
 
data est; 
  merge ytot xtot yytot xxtot; 
  array ybs{&b}; 
  array xbs{&b}; 
  array yybs{&b}; 
  array xxbs{&b}; 
  array drbs{&b}; 
  length var1 $ 8; 
  length var2 $ 8; 
  length var3 $ 8; 
  length var4 $ 8; 
  length type $ 10; 
  Estimate=(((yhat/xhat)-(yyhat/xxhat))); 
  do i=1 to &b; 
    drbs{i}=(((ybs{i}/xbs{i})-(yybs{i}/xxbs{i}))); 
  end; 
  bs_var=(((&b-1)*(var(of drbs1-drbs&b)))/&b); 
  bs_sd=sqrt(bs_var); 
  bs_cv=abs(round((bs_sd/Estimate)*100,.01)); 
  cil95=Estimate-1.96*bs_sd; 
  ciu95=Estimate+1.96*bs_sd; 
  var1="&var1"; 
  var2="&var2"; 
  var3="&var3"; 
  var4="&var4"; 
  type="Dif_Rat"; 
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  drop ybs1-ybs&b xbs1-xbs&b yybs1-yybs&b xxbs1-xxbs&b drbs1-drbs&b 
       xhat yhat xxhat yyhat i _type_ _freq_; 
&by    drop &cla1 &cla2 &cla3 &cla4 &cla5 &cla6 &cla7 &cla8 
&cla9 &cla10; 
 
&by     %do k=1 %to &number;  
&by     if &&cla&k ne ' ' then cla&k=put(&&cla&k,best8.); 
&by     %end; 
run; 
 
data diffrat; 
 set diffrat est; 
run; 
 
 
%let printdif=1; 
 
proc datasets library=work; 
   delete ytot xtot yytot xxtot est; 
run; 
 
%mend diff_rat; 
 
 
*********************************************; 
 
%macro regress(yvar,xvar); 
 
*********************************************; 
 
proc reg data=bs_data outest=orig(keep=&classes &inter &xvar) noprint; 
  model &yvar=&xvar; 
  weight &fwgt; 
&by  by &classes; 
run; 
 
proc transpose data=orig out=origest(drop=_label_) prefix=beta 
name=param; 
  var &inter &xvar; 
&by  by &classes; 
run; 
 
data _NULL_;  
    L=int((&b/10)+0.999); 
    call symput ('L' , trim(left(L)));  
run; 
 
OPTIONS nonotes; 
 
%let j_dep=1; 
 
%do k=1 %to 10; 
  %let j=%eval(1+((&k-1)*&L)); 
  %let kL=%eval(&k*&L); 
 
data _NULL_; 
if (&b - &kL) >0  then do;  



 

 288

                          k=&k; 
                          j=1+((&k-1)*&L); 
                          kL=&k*&L; 
                       end; 
                  else do;   
                          k=10;  
                          j=&j_dep; 
                          kL=&b; 
                       end; 
 
call symput ('k' , trim(left(k))); 
call symput ('j' , trim(left(j))); 
call symput ('kL' , trim(left(kL))); 
run; 
 
data poids (keep = bsw&j-bsw&kL &yvar &xvar &classes);   
  set bs_data; 
run; 
 
  %do i=&j %to &kL; 
 
     %put Regression &i completed; 
 
   %let j_dep=%eval(&kl+1); 
 
   proc reg data=poids outest=betas(keep=&classes &inter &xvar) 
noprint; 
     model &yvar=&xvar; 
     weight bsw&i; 
&by  by &classes; 
   run; 
 
   proc transpose data=betas out=betat prefix=best name=param; 
     var &inter &xvar; 
&by  by &classes; 
   run; 
 
   data betat; 
     set betat; 
     drop _label_; 
     rename best1=best&i; 
 if &i=1 then test=1; 
 else test=test+1; 
   run; 
 
   %if (&i =1) %then %do; 
 
     data bsbeta; 
       set betat; 
     run; 
 
   %end; 
   %else %do; 
 
     data bsbeta; 
       merge bsbeta betat; 
&by    by &classes; 
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     run; 
 
   %end; 
  %end; 
%end; 
 
OPTIONS notes; 
 
data est; 
  merge origest bsbeta; 
  rename beta1=beta; 
  bs_var=((&b-1)*(var(of best1-best&b)))/&b; 
  bs_sd=sqrt(bs_var); 
  bs_cv=abs(round((bs_sd/beta1)*100,.01)); 
  cil95=beta1-1.96*bs_sd; 
  ciu95=beta1+1.96*bs_sd; 
  ydep="&yvar"; 
  drop best1-best&b; 
run; 
 
data bs_reg; 
    set bs_reg est; 
run; 
 
%let printreg=1; 
%let dep1=&yvar; 
 
proc datasets library=work; 
    delete betas betat bsbeta origest; 
run; 
 
 
%mend regress; 
 
*********************************************; 
 
%macro logreg(yvar,xvar); 
 
*********************************************; 
 
proc logistic data=bs_data outest=orig(keep=&classes &inter &xvar) 
descending noprint; 
  model &yvar=&xvar; 
  &by by &classes; 
  weight &fwgt; 
run; 
 
proc transpose data=orig out=origest prefix=beta name=param; 
  var &inter &xvar; 
  &by by &classes; 
run; 
 
 
data _NULL_;  
    L=int((&b/10)+0.999); 
    call symput ('L' , trim(left(L)));  
run; 
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OPTIONS nonotes; 
 
%let j_dep=1; 
 
%do k=1 %to 10; 
  %let j=%eval(1+((&k-1)*&L)); 
  %let kL=%eval(&k*&L); 
 
data _NULL_; 
if (&b - &kL) >0  then do;  
                          k=&k; 
                          j=1+((&k-1)*&L); 
                          kL=&k*&L; 
                       end; 
                  else do;   
                          k=10;  
                          j=&j_dep; 
                          kL=&b; 
                       end; 
 
call symput ('k' , trim(left(k))); 
call symput ('j' , trim(left(j))); 
call symput ('kL' , trim(left(kL))); 
run; 
 
 
data poids (keep = bsw&j-bsw&kL &yvar &xvar &classes);   
  set bs_data; 
run; 
 
  %do i=&j %to &kL; 
 
     %put Logistic regression &i completed; 
 
     %let j_dep=%eval(&kl+1); 
 
    proc logistic data=poids outest=betas (keep=&classes &inter &xvar) 
noprint descending; 
      model &yvar=&xvar; 
      &by by &classes; 
      weight bsw&i; 
    run; 
 
 
 
    proc transpose data=betas out=betat prefix=best name=param; 
      var &inter &xvar; 
      &by by &classes; 
    run; 
 
    data betat; 
      set betat; 
      rename best1=best&i; 
    run; 
 
    %if (&i =1) %then %do; 
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      data bsbeta; 
        set betat; 
      run; 
 
    %end; 
    %else %do; 
 
      data bsbeta; 
        merge bsbeta betat; 
        &by by &classes; 
      run; 
 
    %end; 
  %end; 
%end; 
 
OPTIONS notes; 
 
 
data est; 
  merge origest bsbeta; 
  rename beta1=beta; 
  bs_var=((&b-1)*(var(of best1-best&b)))/&b; 
  bs_sd=sqrt(bs_var); 
  bs_cv=abs(round((bs_sd/beta1)*100,.01)); 
  wald=(beta1/bs_sd)*(beta1/bs_sd); 
  pvalue=1-probchi(wald,1); 
  lo95=beta1-1.96*bs_sd; 
  hi95=beta1+1.96*bs_sd; 
  odds=exp(beta1); 
  cil95=exp(lo95); 
  ciu95=exp(hi95); 
  ydep="&yvar"; 
  drop best1-best&b; 
run; 
 
data bs_reglg;  
    set bs_reglg est; 
run; 
 
%let printlog=1; 
%let dep2=&yvar; 
 
proc datasets library=work; 
    delete betas betat bsbeta origest; 
run; 
 
 
%mend logreg; 
 
*********************************************; 
 
%macro genreg(yvar,xvar); 
 
*********************************************; 
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ods output GEEEmpPEst=orig; 
proc genmod data=bs_data descending; 
  &by by &classes; 
  class realukey time; 
  model &yvar=&xvar / dist=binomial; 
  repeated subject=realukey / within=time type=ar(1); 
  weight fwgt; 
run; 
 
data origest; set orig; 
beta=parm; bhat1=estimate; 
run; 
 
data _NULL_;  
    L=int((&b/10)+0.999); 
    call symput ('L' , trim(left(L)));  
run; 
 
OPTIONS nonotes; 
 
%let j_dep=1; 
 
%do k=1 %to 10; 
  %let j=%eval(1+((&k-1)*&L)); 
  %let kL=%eval(&k*&L); 
 
data _NULL_; 
if (&b - &kL) >0  then do;  
                          k=&k; 
                          j=1+((&k-1)*&L); 
                          kL=&k*&L; 
                       end; 
                  else do;   
                          k=10;  
                          j=&j_dep; 
                          kL=&b; 
                       end; 
 
call symput ('k' , trim(left(k))); 
call symput ('j' , trim(left(j))); 
call symput ('kL' , trim(left(kL))); 
run; 
 
 
data poids (keep = bsw&j-bsw&kL &yvar &xvar &classes realukey time);   
  set bs_data; 
run; 
 
  %do i=&j %to &kL; 
 
     %put Genmod Logistic regression &i completed; 
 
     %let j_dep=%eval(&kl+1); 
    ods select none; 
    ods output GEEEmpPEst=betas; 
    proc genmod data=poids descending; 
      &by by &classes; 
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      class realukey time; 
      model &yvar=&xvar / dist=binomial; 
      repeated subject=realukey / within=time type=exch;  
      weight bsw&i; 
    run; 
    ods select all; 
 
 
    data betat; set betas; 
    beta=parm; best1=estimate; 
    run; 
 
    data betat; 
      set betat; 
      rename best1=best&i; 
    run; 
 
    %if (&i =1) %then %do; 
 
      data bsbeta; 
        set betat; 
      run; 
 
    %end; 
    %else %do; 
 
      data bsbeta; 
        merge bsbeta betat; 
        &by by &classes; 
      run; 
 
    %end; 
  %end; 
%end; 
 
OPTIONS notes; 
 
data est; 
  merge origest bsbeta; 
  rename bhat1=bhat; 
  bs_var=((&b-1)*(var(of best1-best&b)))/&b; 
  bs_sd=sqrt(bs_var); 
  bs_cv=abs(round((bs_sd/bhat1)*100,.01)); 
  wald=(bhat1/bs_sd)*(bhat1/bs_sd); 
  pvalue=1-probchi(wald,1); 
  lo95=bhat1-1.96*bs_sd; 
  hi95=bhat1+1.96*bs_sd; 
  odds=exp(bhat1); 
  cil95=exp(lo95); 
  ciu95=exp(hi95); 
  ydep="&yvar"; 
  drop best1-best&b; 
run; 
 
data bs_reggen;  
    set bs_reggen est; 
run; 
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%let printgen=1; 
%let dep2=&yvar; 
 
proc datasets library=work; 
    delete betas betat bsbeta origest; 
run; 
 
 
%mend genreg; 
 
****************; 
 
%macro prntgen; 
 
****************; 
%if &printgen=1 %then %do; 
 
/********************************************/ 
/*Prints the results of the genreg macro    */ 
/********************************************/ 
 
   proc print data=bs_reggen; 
     title "Variance estimation using &B bootstraps for "; 
     title2 "Genmod Logistic regressions"; 
     title3 "Dependent variable: &dep2"; 
     var  &classes beta bhat odds wald pvalue bs_var bs_sd bs_cv cil95 
ciu95; 
  run; 
%end; 
 
        
/*********************************************************************
*****/ 
        /***  Where:                                                            
***/ 
        /***   beta       : parameter to estimate                               
***/ 
        /***   bhat       : parameter estimate                                  
***/ 
        /***   odds       : odds ratio                                          
***/ 
        /***   wald       : Wald's statistic                                    
***/ 
        /***   pvalue     : p-value of Wald's statistic                         
***/ 
        /***   bsvar      : variance of the parameter estimate                  
***/ 
        /***   bs_sd      : standard deviation of the parameter 
estimate        ***/ 
        /***   bs_cv      : coefficient of variation for the parameter 
estimate ***/ 
        /***   cil95      : lower bound of the 95% confidence interval          
***/ 
        /***   ciu95      : upper bound of the 95% confidence interval          
***/        
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/*********************************************************************
*****/ 
 
 
%mend prntgen; 
****************; 
 
%macro prnttot; 
****************; 
%if &printtot=1 %then %do; 
 
&by  data alltots; 
&by   set alltots; 
&by     ind1=3; &by  ind2=3; &by  ind3=3; &by  ind4=3;&by   ind5=3; 
&by  ind6=3; &by  ind7=3;&by   ind8=3;&by   ind9=3;&by   ind10=3;   
&by      %do i=1 %to &number; 
&by        &&cla&i=cla&i; 
&by        if &&cla&i=" " then &&cla&i="     All"; 
&by        if &&cla&i="     All" then ind&i=1;  &by  else ind&i=2; 
&by   %end; 
&by   run; 
 
&by   proc sort data=alltots; 
&by     by ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 ind10  
&classes; 
&by   run; 
/*******************************************/ 
/* Prints the results of the total macro   */ 
/*******************************************/ 
proc print data=alltots; 
      title "Variance Estimation for Totals"; 
      title2 "using &B bootstrap replicates"; 
      title3 ; 
  var &classes type var n Estimate bs_sd bs_cv cil95 ciu95; 
    format Estimate bs_sd cil95 ciu95 11.2; 
run; 
%end; 
        
/*****************************************************************/ 
        /*** Where:                                                    
***/ 
        /*** type         : estimate type (total )                     
***/ 
        /*** var          : variable used to calculate the estimate    
***/ 
        /*** n            : sample size for the estimate               
***/ 
        /*** Estimate     : parameter estimate                         
***/ 
        /*** bs_sd        : standard deviation                         
***/ 
        /*** bs_cv        : coefficient of variation                   
***/ 
        /*** cil95        : lower bound of the 95% confidence interval 
***/ 
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        /*** ciu95        : upper bound of the 95% confidence interval 
***/        
/*****************************************************************/ 
%mend prnttot; 
****************; 
%macro prntrat; 
****************; 
%if &printrat=1 %then %do; 
&by  data allrats; 
&by   set allrats; 
&by     ind1=3; &by  ind2=3; &by  ind3=3; &by  ind4=3;&by   ind5=3; 
&by  ind6=3; &by  ind7=3;&by   ind8=3;&by   ind9=3;&by   ind10=3;   
&by      %do i=1 %to &number; 
&by        &&cla&i=cla&i; 
&by        if &&cla&i=" " then &&cla&i="     All"; 
&by        if &&cla&i="     All" then ind&i=1;  &by  else ind&i=2; 
&by   %end; 
&by   run; 
 
&by   proc sort data=allrats; 
&by     by ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 ind10  
&classes; 
&by   run; 
/*******************************************/ 
/* Prints the results of the ratio macro   */ 
/*******************************************/ 
proc print data=allrats; 
      title "Variance Estimation for Ratios"; 
      title2 "using &B bootstrap replicates "; 
      title3 ; 
  var &classes type var1 var2 n1 Estimate bs_sd bs_cv cil95 
ciu95; 
     format  bs_sd cil95 ciu95 Estimate 11.4; 
run; 
%end; 
/*****************************************************************/ 
        /*** Where:                                                    
***/ 
        /*** type         : estimate type (ratio)                      
***/ 
        /*** var1 et var2 : variables used to calculate the estimates. 
***/ 
        /*** n1           : sample size for the numerator (var1)       
***/ 
        /*** Estimate     : parameter estimate                         
***/ 
        /*** bs_sd        : standard deviation                         
***/ 
        /*** bs_cv        : coefficient of variation                   
***/ 
        /*** cil95        : lower bound of the 95% confidence interval 
***/ 
        /*** ciu95        : upper bound of the 95% confidence interval 
***/ 
        
/*****************************************************************/ 
%mend prntrat; 
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****************; 
%macro prntdiff; 
****************; 
%if &printdif=1 %then %do; 
 
&by  data diffrat; 
&by   set diffrat; 
&by     ind1=3; &by  ind2=3; &by  ind3=3; &by  ind4=3;&by   ind5=3; 
&by  ind6=3; &by  ind7=3;&by   ind8=3;&by   ind9=3;&by   ind10=3;   
&by      %do i=1 %to &number; 
&by        &&cla&i=cla&i; 
&by        if &&cla&i=" " then &&cla&i="    Tous"; 
&by        if &&cla&i="    Tous" then ind&i=1;  &by  else ind&i=2; 
&by   %end; 
&by   run; 
 
&by   proc sort data=diffrat; 
&by     by ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 ind10  
&classes; 
&by   run; 
/**********************************************/ 
/* Prints the results of the diff_rat macro   */ 
/**********************************************/ 
proc print data=diffrat; 
    title "Variance Estimation for Differences between Ratios"; 
  title2 "using &B bootstrap replicates "; 
  title3 ; 
     var &classes type var1 var2 var3 var4 n1 n3 Estimate bs_sd bs_cv 
cil95 ciu95; 
     format  bs_sd cil95 ciu95 Estimate 11.4; 
   run; 
%end; 
 
        
/*****************************************************************/ 
        /*** Where:                                                    
***/ 
        /*** type         : estimate type (ratio difference)           
***/ 
        /*** var1, var2,                                               
***/ 
        /*** var3 and var4: variables used to calculate the estimates. 
***/ 
        /*** n1           : sample size for the first numerator (var1) 
***/ 
        /*** n3           : sample size for the second numerator 
(var2)***/ 
        /*** Estimate     : estimate                                   
***/ 
        /*** bs_sd        : standard deviation                         
***/ 
        /*** bs_cv        : coefficient of variation                   
***/ 
        /*** cil95        : lower bound of the 95% confidence interval 
***/ 
        /*** ciu95        : upper bound of the 95% confidence interval 
***/ 
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/****************************************************************/ 
%mend prntdiff; 
****************; 
%macro prntlog; 
****************; 
%if &printlog=1 %then %do; 
/********************************************/ 
/*Prints the results of the logreg macro    */ 
/********************************************/ 
 
   proc print data=bs_reglg; 
     title "Variance Estimation for a Regression "; 
     title2 "Dependent variable: &dep2"; 
     title3 "using &B bootstrap replicates "; 
     var  &classes param beta odds wald pvalue bs_var bs_sd bs_cv 
cil95 ciu95; 
  run; 
%end;        
**********************************************************************
****/ 
        /***  Where:                                                            
***/ 
        /***   param      : parameter to estimate                               
***/ 
        /***   beta       : parameter estimate                                  
***/ 
        /***   odds       : odds ratio                                          
***/ 
        /***   wald       : Wald's statistic                                    
***/ 
        /***   pvalue     : p-value of Wald's statistic                         
***/ 
        /***   bsvar      : variance of the parameter estimate                  
***/ 
        /***   bs_sd      : standard deviation of the parameter 
estimate        ***/ 
        /***   bs_cv      : coefficient of variation for the parameter 
estimate ***/ 
        /***   cil95      : lower bound of the 95% confidence interval          
***/ 
        /***   ciu95      : upper bound of the 95% confidence interval          
***/ 
        
/*********************************************************************
/ 
%mend prntlog; 
****************; 
/*%macro output; 
****************; 
 %prnttot; 
 %prntrat; 
 %prntdiff; 
 %prntreg; 
 %prntlog; 
 proc datasets library=work; 
       delete Mfile bsamp version tmp; 
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 run; 
 quit; 
%mend output;*/ 
****************; 
%macro output; 
****************; 
 %prnttot; 
 %prntdiff; 
 %prntreg; 
 %prntlog; 
 %prntgen;   /* add in to print the results of Genmod Logistic 
Regression */ 
 data time; 
   set time; 
   format stop datetime16.; 
   stop=datetime(); 
   output; 
 run; 
 proc print data=time; 
    title ' Length of time required to run the program '; 
 run; 
 
%mend output; 
/* End of MACROE_V30.SAS SAS program */ 
 

C.3 SAS macro for WGEE analysis 
 
/*Macros "DROPOUT" and "DROPWGT" to create dataset for WGEE analysis 
*/ 
%macro dropout(data=,id=,time=,response=,out=); 
%if %bquote(&data)= %then %let data=&syslast; 
proc freq data=&data noprint; 
tables &id /out=freqid; 
tables &time / out=freqtime; 
run; 
proc iml; 
reset noprint; 
use freqid; 
read all var {&id}; 
nsub = nrow(&id); 
use freqtime; 
read all var {&time}; 
ntime = nrow(&time); 
time = &time; 
use &data;  
read all var {&id &time &response}; 
n = nrow(&response); 
dropout = j(n,1,0); 
ind = 1; 
do while (ind <= nsub); 
  j=1; 
  if (&response[(ind-1)*ntime+j]=.) then print "First Measurement is 
Missing"; 
  if (&response[(ind-1)*ntime+j]^=.) then 
    do; 
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      j = ntime; 
      do until (j=1); 
        if (&response[(ind-1)*ntime+j]=.) then  
          do; 
            dropout[(ind-1)*ntime+j]=1; 
   j = j-1; 
    end; 
          else j = 1; 
      end;  
 end; 
  ind = ind+1; 
end; 
prev = j(n,1,1); 
prev[2:n] = &response[1:n-1]; 
i=1; 
do while (i<=n); 
  if &time[i]=time[1] then prev[i]=.; 
  i = i+1; 
end; 
create help var {&id &time &response dropout prev}; 
append; 
quit; 
data &out; 
merge &data help; 
run; 
%mend; 
 
%macro dropwgt(data=,id=,time=,pred=,dropout=,out=); 
%if %bquote(&data)= %then %let data=&syslast; 
proc freq data=&data noprint; 
tables &id /out=freqid; 
tables &time / out=freqtime; 
run; 
proc iml; 
reset noprint; 
use freqid; 
read all var {&id}; 
nsub = nrow(&id); 
use freqtime; 
read all var {&time}; 
ntime = nrow(&time); 
time = &time; 
use &data;  
read all var {&id &time &pred &dropout}; 
n = nrow(&pred); 
wi = j(n,1,1); 
ind = 1; 
do while (ind <= nsub); 
 wihlp=1; 
 stay=1; 
 /* first measurement */ 
 if (&dropout[(ind-1)*ntime+2]=1) 
   then do; 
    wihlp = pred[(ind-1)*ntime+1]; 
  stay=0; 
   end; 
 else if (&dropout[(ind-1)*ntime+2]=0) 
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   then wihlp = 1-pred[(ind-1)*ntime+2]; 
 /* second to penultimate measurement */ 
 j=2; 
 do while ((j <= ntime-1) & stay); 
   if (&dropout[(ind-1)*ntime+j+1]=1) 
     then do; 
    wihlp = wihlp*pred[(ind-1)*ntime+j+1]; 
    stay=0; 
  end; 
   else if (&dropout[(ind-1)*ntime+j+1]=0) 
     then wihlp = wihlp*(1-pred[(ind-1)*ntime+j+1]); 
   j = j+1; 
 end; 
 j=1; 
 do while (j <= ntime); 
   wi[(ind-1)*ntime+j] = wihlp; 
   j = j+1; 
 end; 
 ind = ind+1; 
end; 
create help var {&id &time &pred &dropout wi}; 
append; 
quit; 
data &out; 
merge &data help; 
data &out; 
set &out; 
wi = 1/wi; 
run; 
%mend; 
 
/* using both macros, the following code can be used to prepare for a 
WGEE analysis */ 
%dropout(data=in1.dummy, id=realukey, time=repeat, response=asthm, 
out=test); 
proc genmod data=test descending; 
class prev fallergy oallergy ulcer1 bronch agr4 incom imm time 
new_prov ethnic bmi smk_sts 
smk_hh locate; 
model dropout = prev fallergy oallergy ulcer1 bronch agr4 incom imm 
time new_prov ethnic bmi smk_sts 
smk_hh locate locate*smk_sts locate*incom 
ethnic*incom smk_hh*time smk_sts*agr4 agr4*incom/ pred dist=binomial;  
/* we use trt and time as covariates for dropout model */ 
ods output obstats=pred; 
run; 
data pred; 
set pred; 
keep observation pred; 
run; 
data test; 
merge pred test; 
run; 
 
%dropwgt(data=test,id=realukey,time=repeat,pred=pred,dropout=dropout,o
ut=wgee);run; 
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/* After this preparatory work, we include the weights by means of the 
WEIGHT*/ 
/* (or, equivalently, SCWGT) statement within the GENMOD procedure*/ 
 
data in1.missing; 
set wgee; 
wtmiss=wi*wt64ls; 
run; 
 
ODS TRACE ON/LISTING; 
/*Keeping drop, main effect * drop interaction amd drop*interaction*/ 
PROC GENMOD DATA=in1.missing; 
CLASS REPEAT REALUKEY fallergy oallergy ulcer1 bronch agr4 incom imm 
time new_prov ethnic bmi smk_sts 
smk_hh locate; 
MODEL ASTHM=fallergy oallergy ulcer1 bronch agr4 incom imm time 
new_prov ethnic bmi smk_sts 
smk_hh locate locate*smk_sts locate*incom 
ethnic*incom smk_hh*time smk_sts*agr4 agr4*incom/DIST=BIN LINK=LOGIT; 
   repeated subject=realukey / corrw within=repeat 
type=exch; 
   weight wtmiss; 
   ODS OUTPUT GEEEmpPEst=myests1;   
RUN; 
data myests1; 
set myests1; 
or=exp(estimate); 
low_or=exp(estimate-1.96*stderr); 
hi_or=exp(estimate+1.96*stderr); 
run; 
proc print DATA=myests1; 
var parm estimate stderr or low_or hi_or; 
RUN; 
 
proc printto; 
run; 
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APPENDIX D 

D. 1 Remote access to National Population Health Survey data 
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APPENDIX E 

E. 1 Exemption from ethics approval letter 
 

 

 

 

 

 

 





To whom it may concern 
 
This is to verify that Sunita Ghosh has had remote access privileges with us in the Data 
Access Unit since 2004/09/30 and her current application has a proposed end date of 
2007/12/31 with access to NPHS cycles 1-5.  
 
Regards, 
 
Catherine Dick 
613-951-1653 | facsimile / télécopieur 613-951-0792 
Catherine.Dick@statcan.ca 
Statistics Canada | 150 Tunney's Pasture Driveway Ottawa  ON K1A 0T6 
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