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Abstract 
Starting from Fick’s train of thought, which led to the formulation of his law 

governing diffusion in a solid or liquid medium, we first consider the limits of 
applicability of this law to solid medium-single penetrant systems. We then take up the 
question of proper formulation, in combination with simple but physically meaningful 
modeling, of diffusion behavior deviating from this law, because of (i) concentration 
dependence (ii) time dependence or (iii) space dependence, of the relevant transport 
parameters (which include the sorption, no less than the diffusion, coefficient). Examples 
of application to real systems are offered in each case. We conclude that progress in such 
studies depends on following Fick’s mode of thinking rather than on adhering to the 
formalism of his law. 
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1. Introduction: Formulation of Fick’s law 
Fundamental studies of the diffusion of penetrant micromolecules in solid media 

should fulfill two basic requirements: 
(i) proper formulation of the diffusion process in terms of physically meaningful material 
parameters and 
(ii) physical modeling of transport behavior under various conditions as a function of the 
physicochemical properties of the solid, the penetrant and the solid-penetrant system. 

The geometry of the medium is not of prime importance in this respect. It is thus 
advantageous to use an experimental set up ensuring effectively unidimensional 
transport, such as diffusion across a sufficiently thin membrane or through a septum 
confined in a cylindrical holder. 

The line of Fick’s thinking on the subject of formulation may be described in his own 
words: “It was quite natural to suppose that this law for the diffusion of a salt in its 
solvent must be identical with that, according to which the diffusion of heat in a 
conducting body takes place; upon this law Fourier founded his celebrated theory and it 
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is the same which Ohm applied, with such extraordinary success, to the diffusion of 
electricity in a conductor”[1]. 

This seminal perception led Fick to the formulation of the flux density J(x) of sorbed 
penetrant along the space coordinate +x, at any given time (t) and location (x) in the 
medium, as proportional to the corresponding concentration gradient ∂C/∂x (Fick’s law). 
Thus, we have  

Jx = – D(∂C/∂x) (1) 

where Fick’s law requires constant diffusivity D. Clearly, this law was meant, (like its 
Fourier and Ohm counterparts) to apply to solid media exhibiting spatially uniform and 
time-independent properties not materially affected by the presence of sorbed penetrant. 
In fact, Fick’s assignment to C the role of “diffusion potential”, analogous to temperature 
or electrical potential, means ipso facto that C is presumed uniform across the membrane 
at equilibrium, i.e. C(x, t→∞)=Ceq(x)=const. Yet eq. (1) came subsequently to be 
regarded as a more or less general definition of diffusivity and was applied, sometimes 
indiscriminately (one might say in an unFickian way), to systems not conforming to the 
above restrictions, notably systems exhibiting transport properties, depending (a) on 
sorbed penetrant concentration C or (b) on the location x across the membrane or (c) on 
time t due to penetrant-induced microstructural relaxation of the medium. Pertinent 
examples are considered below.  

2. Beyond Fick’s Law: Irreversible Thermodynamic Approach  
A more reasonable extension of Fick’s law, worthy of Fick’s original perceptive 

thinking, has been formulated by considering that diffusion occurs as a result of the 
disturbance of an equilibrium state characterized by uniformity of the chemical potential 
of the diffusing species μ (irrespective of the state of homogeneity or relaxation of the 
diffusion medium) [2]. Thus, it makes sense to assign to μ the role of diffusion potential 
and to regard sorbed molecules as moving (with macroscopic velocity ux), under a 
driving force ∂μ/∂x, against the “frictional resistance” of the solid medium, measured by 
a frictional coefficient fT (in complete analogy with the standard treatment of mechanical 
friction). Thus we may write 

Jx = Cux = – (C/fT)(∂μ/∂x) = – (DTC/RT)(∂μ/∂x) (2) 

where the friction coefficient formalism has furthermore been transformed to an 
equivalent one, involving a “thermodynamic” diffusion coefficient (DT), for easier 
comparison with D in eq. (1) (see e.g. [3, 4]). Eq. (2) may be rewritten in terms of the 
activity of sorbed penetrant a defined by 

μ = μo + RTlna  (3) 

where μo denotes a suitably chosen thermodynamic standard state. Eq. (2) then becomes 

Jx = – DTC(∂lna/∂x) = – DTS(∂a/∂x) = – P(∂a/∂x) (4) 

where we have introduced the equilibrium parameter, known as the sorption coefficient, 
S=(C/a)eq, and the permeability coefficient P=DTS. The value of a, and hence of S, for 



 

  

any given C, is determined in practice by equilibration with an external penetrant (e.g. 
gas or vapor) phase, where the activity of penetrant aR, defined by 

μR = o
Rμ + RTlnaR  (5) 

is known. Then, if we choose μo= o
Rμ  (and given that μ=μR at equilibrium), eqs (3) and 

(5) yield a=aR. 
Apart from a very substantial gain in generality, this “irreversible thermodynamic” 

(IRT) approach of eq. (4) also has the advantage of displaying explicitly the important 
role of the sorption coefficient S in diffusion processes. 

3. Concentration-Dependent (Fickian) Diffusion 

3.1 Theory 
For systems characterized by a unique relation between C and a (known as the 

sorption isotherm), i.e. by S, which is either constant (Henry’s law) or a function only of 
C or a, eq. (1) may be rewritten as 

Jx = – D(dC/da)(∂a/∂x) = – P(∂a/∂x) (1a) 

Comparison of eqs (1a) and (4) then yields a simple expression linking the Fick and 
thermodynamic diffusivities, namely (e.g. [3]) 

D ≡ DTS(da/dC) = DT(dlna/dlnC) = DTφT  (6) 

where φT is a “thermodynamic factor”, the magnitude of which depends on the shape of 
the equilibrium sorption isotherm. In particular, we find φT=1 or φT≠1 for solid-penetrant 
systems characterized by linear (S=const.) or nonlinear (S≠const.) sorption isotherms, 
respectively and eq. (6) yields D=DT or D≠DT respectively. 

Thus, on the basis of the IRT approach: 
(1) Fick’s law (D=DT=const.) also presupposes S=const. (thermodynamically ideal 

system). 
(2) D as defined by Fick affords a proper measure of diffusivity only within the confines 

of Fick’s law. 
(3) Extension of Fick’s formalism to cover non-ideal systems [S=S(C)], is thermo-

dynamically acceptable, in view of the fact that the prerequisite C(x, t→∞)→Ceq(x) 
=const. (see above) is not violated (this is one good reason for calling such diffusion 
“Fickian”) but compromises the significance of the resulting D(C) as a physical 
kinetic parameter, to an extent depending on the behavior of φT in eq. (6). 
Thus a non-ideal system may be formally characterized (as is done in standard texts, 

such as [5]) in terms of D(C), determined by methods based on solutions of the classical 
diffusion equation 

∂C/∂t = (∂/∂x)D(∂C/∂x)    (7) 

which is obtained by substitution of eq. (1) in the mass conservation law 

∂C/∂t = – ∂J/∂x   (8) 



 

  

However, it is important not to forgo the conversion of D(C) to DT(C) via eq. (6) for a 
proper physical interpretation of diffusivity behavior, as illustrated in the example 
discussed in section 3.3 below. 

3.2  Main experimental methods for the determination of diffusivity 
Analytical (for D=const.) or numerical [for D=D(C)] solutions of eq. (7), are used in 

forms suitable for application to experimental work involving, most commonly, sorption 
or permeation experiments. 

The typical experimental set up consists of a membrane of thickness l, the surfaces of 
which, at x=0, x=l, may be kept at chosen penetrant activities ao, al respectively, by 
exposure to adjoining reservoirs (R1, R2) of pure penetrant (e.g. in the form of gas or 
vapor) maintained at the requisite gas or vapor pressures po, pl, respectively (see Fig. 1a). 

 

  

 
 
 
 

Fig. 1: Schematic representation of (a) experimental setup (b) typical permeation curve (c) typical 
(Fickian) absorption curve on a t 1/2 scale.  
 
 In a standard permeation experiment, the entire membrane is pre-equilibrated at a 
uniform activity a=al. The experiment is started, at time t=0, by instantaneously raising a 
at x=0 to a=ao>al and maintaining ao and al constant thereafter, i.e. 

a(x, t=0) = al ;   a(x=0, t>0) = ao = const.,   a(x=l, t>0) = al = const. (9a,b,c) 

One measures the quantity of penetrant (per unit membrane area), Q(l,t), which has 
entered the downstream reservoir (R2) at x=l, as a function of t, until a linear asymptote, 
QS(l,t), is attained to an experimentally satisfactory degree of accuracy. The slope of this 
asymptote is the steady-state flux density JS=const., while the intercept obtained by its 
back extrapolation to the t axis, is the time lag La (see Fig. 1b). We have  

JS = Pe(ao – al)/l = De(Co – Cl)/l (10a,b) 

where the experimental effective or integral permeabilities (Pe) and diffusivities (De) are 
defined on the basis of eqs (4) and (1) respectively and Co=Sao, Cl=Sal; while 

La = t – QS(l,t)/JS (11) 

For systems obeying Fick’s law: 

Pe = P;     De = D;    La = l 2/6D (12a,b,c) 
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Hence S=P/D=6LaP/l2 may be deduced purely from permeation data. For concentration-
dependent systems Pe, De turn out to be arithmetic averages of P(al≤a≤ao) and 
D(Cl≤C≤Co) respectively, namely 

1( , ) ( ) ( )o

l

a

e o l o l a
P P a a a a P a da−= = − ∫  (13a) 

1( , ) ( ) ( )o

l

C

e o l o l C
D D C C C C D C dC−= = − ∫  (13b) 

but there is no simple expression for La [5] permitting straightforward evaluation of De 
and of an effective sorption coefficient Se, analogous to the case of S=const. Thus, 
knowledge of S(C) from equilibrium sorption measurements is needed to evaluate 
Co=S(Co)ao and Cl=S(Cl)al, in order to deduce De from eq. (10b). Note, incidentally, that 
the assumption, sometimes made in the literature, that a meaningful Se may be deduced 
from Pe/De, is erroneous. The only expression of this kind, which is valid for Cl=al=0, 
follows from eqs (10a,b) namely S(Co)=Pe/De. 

For a standard sorption experiment, the surface of the membrane at x=l is blocked, the 
membrane is preequilibrated, as before, at uniform activity a1 and the activity at x=0 is 
raised (absorption) or lowered (desorption) to ao, which is maintained constant thereafter. 
The applicable boundary conditions are then: 

a(x, t=0) = a1 ;    a(x=0, t>0) = ao = const.;     ∂a(x=l, t)/∂x = 0 (14a,b,c) 

Alternatively, the membrane may remain in contact with both adjoining reservoirs and 
the activity changed from a1 to ao at x=0, l simultaneously, in which case eq. (14c) should 
be replaced by a condition analogous to (14b) for x=l, and the right hand side of eq. (15) 
below should be multiplied by 2.  

One measures the quantity (per unit membrane area) of penetrant Q(t) taken up 
(absorption) or released (desorption) by the membrane, as a function of time, up to final 
equilibrium Q∞=l|Co-C1|=l|Sao-Sa1| (see Fig. 1c). We have: 
(a) At sufficiently short times (effective semi-infinite medium conditions) [5] 

Q(t)/Q∞ = 2(DEt/πl 2)1/2     (15) 

where DE=D=const. for a system obeying Fick’s law. On the other hand, DE represents a 
rather complex “weighted mean” diffusivity in the range C1 to Co for concentration 
dependent D. However, the average diffusivity for a complete absorption ( a

ED )–

desorption ( d
ED ) cycle approximates very closely the mean diffusivity determined from 

steady-state permeation (see eq. 13b) [5] 

D ≅ ½ ( a
ED + d

ED )             (16) 

This is the most common sorption-based method for determining D=const. or 
D (Co,Cl). In the latter case, a series of experiments is performed. A series of “interval” 
experiments, where |ao-a1| is kept small and a1 is varied, can yield D(C) practically 



 

  

directly. In a series of “integral” experiments, a1 (usually zero for absorption 
experiments) is kept constant and ao varied; D(C) is then obtained by differentiation of 
eq. (13b) (see [5]). 
 Analogous series of permeation experiments may, of course, be used to study the 
behavior of P (Co,Cl), P(C). 
(b) At sufficiently long times, for a system obeying Fick’s law 

Q(t)/Q∞ = 1 – (8/π2) exp(– D2π2t/4l2)                                    (17) 

which yields a linear plot of ln[1–Q(t)/Q∞] vs t with D2=D. For a concentration dependent 
system, the plot is non-linear but the long-time slope eventually approaches the value 
characteristic of D2=D(Co) [5]. 

3.3   Fickian vs IRT formalism for the diffusivity of CCl4 in mesoporous alumina 
 This system (studied in [6]) exhibits strong concentration-dependent deviations from 
Fick’s and Henry’s laws. It is characterized by what is known as a type IV sorption 
isotherm C vs a [7]. Because of the low vapor pressure of CCl4, the vapor may be treated 
as an ideal gas. We thus set a=aR≅p/RT=cg (see Fig. 2a). The initial portion of this 
isotherm (which coincides with that of loose alumina powder) corresponds to the 
formation of a monolayer of adsorbed molecules on the surfaces of the pore walls (or of 
the grains of loose powder) and leads to increasing negative deviations from Henry’s law, 
as the said monolayer is progressively densified. This tendency should ultimately lead to 
a plateau in the isotherm, as the monolayer approaches saturation, if it were not for the 
intervening initiation of a second layer of more weakly adsorbed molecules on top of the 
first. Liquidlike multilayers of CCl4 adsorbate are thus readily built up (see Fig. 2b,c), as 
cg is further increased. They are characterized by properties not very different from those 
of bulk liquid and lead to a steep rise of the isotherm for both powder and porous 
medium. In the latter case, a plateau is reached at the point where the pores become 
saturated with liquid sorbate. This plateau is attained sooner than might be expected on 
the basis of multilayer-thickness (ts) growth, because of intervening condensation (due to 
capillary phenomena). Thus, a pore of radius r fills up with condensate at the point where 
the empty core radius (r–ts) falls below a critical size rK (known as the Kelvin radius) 
which is a function of p/psat. The occurrence of condensation in the porous medium is 
evidenced by the appearance of a characteristic absorption-desorption hysteresis loop, 
when cg is progressively reduced back to zero [7]. This phenomenon (most probably due 
to the existence of filled pores in the interior of the porous medium, which are 
supercritical at a given p but are denied exposure to the external vapor phase by 
surrounding subcritical filled pores) does not appear to affect materially the concentration 
dependence of the diffusion behavior of interest here. 
 Strictly speaking, account should be taken of the fact that pore space not occupied by 
adsorbate contains occluded vapor, which can also contribute to the measured overall 
sorption S and permeability P coefficients. Denoting by Cg, Cs (in mol/cm3 of porous 
medium) the concentrations of occluded vapor and of adsorbate, respectively, we find 
that, of the total porosity ε of the medium, the part occupied by adsorbate is εs=VLCs 



 

  

(where VL may be identified with liquid molar volume without serious error). Hence, 
Sg=Cg/cg=ε–εs; which is generally negligible by comparison with Ss=εs/VLcg; i.e. 

Ss = S – Sg ≅ S  (18) 

 
             

Fig. 2: (a) Sorption isotherm of CCl4 by alumina porous septum ( , adsorption branch; , 
desorption branch) and loose powder ( ) (amount of sorbate Vs vs vapor pressure p); from [6]. (b) 
Schematic representation of a cylindrical pore of radius r with multilayer of adsorbate of thickness 
ts and occluded vapor molecules (side view). (c) Top view. 
 
Similarly for the corresponding permeability coefficient we have  

Ps ≡ SsDTs = P – Pg = P – (ε – εs)DgT  (19) 

where DTg≡Dg=const. may be identified with the diffusivity for Knudsen flow and may 
thus be evaluated at any εs by measuring the permeability of He (assumed to be pure gas-
phase) PHe=(ε–εs)DHe and applying the following relation [8] (where Mg denotes gas 
molecular weight) 

Dg = DHe(Mg/MHe)1/2 

On this basis, and using vs=εs/ε as a convenient adsorbate concentration parameter, 
series of (concordant) “interval” and “integral” permeation experiments, covering the full 
range vs = 0 – 1, were performed (as described in section 3.2). The data, when analysed 
(following previous practice for analogous systems, see e.g. [8-13]) in terms of the Fick 
formalism Ds(vs)=Ps(dx/dCs) [see eq. (1a)], gave results (see Fig. 3) closely similar to 
those pertaining to the aforesaid analogous systems. In particular, Ds=

o

sD =const. (Fick’s 
law) in the region of vs→0 (not visible in Fig. 3); Ds then tends to increase with rising vs 
in the submonolayer region. Energetic non-homogeneity of the pore surfaces is a 
plausible physical explanation for this behavior, because stronger adsorption sites are 
filled first and penetrant molecules adsorbed at these sites are less mobile. However, 
when vs increases just beyond the point of completion of a monolayer (indicated by BET 
theory), Ds begins to decline, passes through a minimum and then increases strongly and 

(b) 

(a) 

(c) 



 

  

continuously as vs→1. This strong increase may plausibly be attributed to the onset of 
adsorbate-multilayer hydrodynamic flow (in keeping with evidence from comparison of 
Ds and corresponding tracer diffusion coefficients Ds* in analogous systems, which show 
Ds≈Ds* in the low, and Ds>Ds* in the high, vs region [12]). However, the behavior of Ds, 
in the intermediate vs region, is very difficult to reconcile with physical insight (cf. the 
comment of Gilliland et al [11]: “when diffusion coefficients vary in such a manner with 
concentration, the utility of the concept of diffusivity, as it is normally defined, has been 
lost for correlating purposes”). However, when allowance was made for the thermo-
dynamic factor φT inherent in Ds according to the IRT approach [see eq. (6)], the mobility 
of adsorbate, represented by DTs=Ps/Ss [see eq. (19)], was found (see Fig. 4; cf. also [14]) 
to increase smoothly from the submonolayer region up to the saturation of the porous 
medium with condensate (vs=1) (in contrast to the behavior of Ds, which approaches vs=1 
tangentially; see Fig. 3). The resulting DTs(vs=1)=DTL is related to the hydraulic 
permeability PHL, usually defined for hydrodynamic flow, by DTL = RTPHL/εVL. 

 

  
Fig. 3: Concentration dependence of the 
Fick adsorbate diffusivity Ds in terms of vs 
(fraction of pore volume occupied by 
liquidlike sorbate); ,  absorption;  

 desorption. From [6]. 

Fig. 4: Concentration dependence of the thermo-
dynamic surface diffusivity DTs in terms of vs, in 
comparison with the curve (–––) predicted by 
eq. (20); - - - - model of [16]; symbols as in Fig. 
3. From [6]. 

 
 Furthermore the aforeseen experimental DTs behavior has received remarkable 
support from a simple new physical approach applicable to multilayer adsorbate flow, in 
a single cylindrical capillary [15]; which supersedes the previous analogous one of [16] 
and yields a more accurate prediction of the concentration dependence of DTs/DTL (see 
Fig. 4) not subject to any external (or internal adjustable) parameters, namely  

DTs/DTL = 3vs – 2 – (2/vs)(1 – vs)2 ln(1 – vs)  (20) 

Physically, the experimental applicability of this relation is subject to (i) the limitations of 
simple multilayer adsorption theory (which obviously becomes increasingly inappropriate 
near, and even more so below, the monolayer region) and (ii) the effects of the structural 
complexity of real porous media and of simultaneous condensation. Fortunately, these 

 

 



 

  

effects have been shown (by simulation based on sophisticated pore network models) to 
be relatively small [17] and eq. (20) was found [15] to provide a good fit to the data 
reported in [10] on CH2Cl2 diffusing in mesoporous silica. 

4. Time Dependent Non-Fickian Diffusion (Relaxing Medium) 

4.1  Theory 
Polymer–organic vapor systems usually exhibit concentration-dependent diffusion 

behavior, with S a weak, and DT a strong, function of the concentration of sorbed 
penetrant C (which is defined here in a polymer-fixed frame of reference, namely in 
moles per unit volume of penetrant-free polymer), due to penetrant-induced swelling and 
plasticization of the polymeric medium. For rubbery polymeric systems, characterized by 
high segmental mobility (glass transition temperature Tg of the system well below the 
experimental temperature T), the relevant swelling process is fast relative to diffusion and 
the resulting sorption kinetics is Fickian. For glassy polymeric systems (characterized by 
Tg>T), on the other hand, completion of the local swelling process may be sufficiently 
slow (delayed swelling) to exercise a substantial, and even controlling, influence on 
sorption rate and kinetics (with attention focused here primarily on absorption kinetics). 

To model such non-Fickian sorption kinetics in a genuine Fickian spirit, recourse has 
to be made to a well-studied analogue of delayed swelling; notably the deformation of a 
viscoelastic solid under an applied mechanical stress. In the simplest practically useful 
approach of this kind, the (assumed linear) viscoelasticity of the solid is represented by a 
“mechanical equivalent” consisting of a Maxwell element (i.e. a spring of elastic modulus 
Ea in series with a dashpot of viscosity ηa) in parallel with a spring of elastic modulus Eb 
(see Fig. 5). Application of a constant stress σ1 (creep experiment) produces an 
instantaneous (elastic) strain 1

oe =σ1/Eo (Eo=Ea+Eb is the initial or instantaneous elastic 

modulus), which relaxes (due to viscous flow in the dashpot) to a final strain ∞
1e =σ1/E∞ 

(E∞=Eb is the final or equilibrium elastic modulus). The general relation between the 
evolution of an applied stress and of the resulting strain, in this mechanical model system, 
is given by (e.g. [18]) 

de/dt = (1/Eo)(dσ/dt) + (E∞βa/Eo)(e∞–e)              (21) 

where βa=Ea/ηa = viscous relaxation frequency (reciprocal relaxation time);  e∞=σ/E∞. 
 Similarly, a non-Fickian polymer-vapor system may be characterized by a relaxation-
dependent sorption coefficient S (which, for present modeling purposes, may be assumed,  



 

  

 
 
 
 
 
 
 
Fig. 5: (a) Mechanical equivalent 
model of linear viscoelastic 
behavior of a solid (b) Schematic 
stress (σ) – strain (e) relations at 
t=0 and t=∞ (see text). 

without loss, to be concentration-independent). Under conditions of sorption fully 
controlled by viscous relaxation (cf. “second-stage” absorption below), S may vary, at a 
given activity a=a1, from an initial value So=Co/a1 to a final value S∞=C∞/a1 
corresponding to 1/Eo and 1/E∞ respectively. For a more exact analogy (using subscripts 
A and B, to distinguish between penetrant and polymer properties respectively, where 
necessary), we define a swelling strain VAdC (where VA=liquid partial molar volume 
assumed constant) resulting from a (tensile) osmotic stress dπ applied on the polymer, 
given by 

dπ = – dμB/VB = (nA/nBVB)dμA     (22) 

where VB is polymer partial molar volume (assumed constant); n denotes number of 
moles; and the Gibbs-Duhem relation has been applied. Given the condition of thermo-
dynamic equilibrium applied above, eq. (3) and the definition of C and S, we get finally 

 dπ = C∞dμA = (RTC∞/a)da = RTS∞da                           (23) 

Thus, given S∞≈const. (v.s.), we may replace e in the ordinate of Fig. 5b by CVA and σ in 
the abscissa by π=RTS∞a, with moduli E∞=RT/VA and Eo=RTS∞/SoVA. The lines for e∞ and 
eo in Fig. 5b now reduce to scaled versions of the sorption isotherms of Co vs a and of C∞ 

vs a respectively. These isotherms reflect, respectively, fast very local, and slow longer 
range, microstructural relaxations needed to accommodate incoming penetrant molecules 
(or to close gaps left behind by outgoing penetrant molecules in the case of desorption; 
which is not considered here in the interest of brevity). Hence, the counterpart of eq. (21) 
here is (after cancellation of VA which appears on both sides) 

∂C/∂t = So(∂a/∂t) + β(C∞–C)                           (24) 

where β=βaSo/S∞=βaE∞/Eo is an effective viscous relaxation frequency, analogous to a 
first-order rate constant in chemical kinetics, (but bearing in mind that β, like DT, is here  
an exponential function of C). Eq. (24) must be solved simultaneously with the IRT 
diffusion equation obtained by substitution of eq. (4) in eq. (8) 

∂C/∂t = (∂/∂x)[DTS(∂a/∂x)]         (25) 

(a) (b)



 

  

under the boundary conditions imposed by eqs (14) (sorption) or (9) (permeation). In the 
latter case, the effect of relaxation is to delay attainment of the steady state and yield a 
time lag La exceeding the value a

sL  expected for a fully relaxed (Fickian) system [19,20]. 
 On the other hand, absorption experiments yield a rather broad spectrum of kinetics, 
which has been studied extensively. The more straightforward kinetic features predicted 
by the above modeling approach [21] (for examples of other approaches, differing more 
or less significantly therefrom, see e.g. [22-27]) depend primarily on the behavior of the 
kinetic modulus l2β(C)/DT(C) [22], which provides a measure of the rate of relaxation 
(governed by β) relative to that of diffusion (governed by DT/l2). 
 As indicated above, sorption experiments wherein l2β/DT>>1 conform to the basic 
characteristics of Fickian kinetics, namely (i) initially linear Q(t) vs t1/2 plots and (ii) 
coincident Q(t)/Q∞ vs t/l2 curves for different l. For l2β/DT<<1, a two-stage Q(t) vs t1/2 plot 
is predicted, representing fast diffusion through practically unrelaxed polymer (stage I) 
and viscous delayed swelling, not significantly complicated by diffusion (stage II), 
respectively. A study of stage II absorption kinetics of benzene in atactic polystyrene [28] 
gave results practically coincident with those obtained from parallel mechanical creep 
experiments, thus providing strong quantitative evidence of the close physical similarity 
of viscous swelling and mechanical relaxation processes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Fig. 6: Sorption kinetics of methyl ethyl ketone, under the given external initial and final vapor 
pressures, in atactic polystyrene. (a) Series of interval sorption runs. (b) Series of integral sorption 
runs and one desorption run (broken line). From [29]. 
 
As l2β/DT assumes higher values, the said two stages tend to merge, yielding eventually a 
single S-shaped Q(t) vs t1/2 curve, with non-coincident Q(t)/Q∞ vs t/l2 plots. Further 
increase of l2β/DT ultimately leads, of course, to Fickian kinetics, as already noted above. 
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 Such transitions from two-stage, to ultimately Fickian, kinetics are commonly seen in 
the high concentration range of series of interval absorption runs (where the initial 
activity a1 is raised from one experiment to the next in relatively small steps; see section 
3.2), as shown in the upper part of Fig. 6a [29]. On the basis of the above model 
predictions, such behavior is attributable to strong (positive) concentration dependence of 
the modulus l2β(C)/DT(C). This interpretation ties up with the fact that increasing 
penetrant-induced plasticization of the polymeric medium, caused by rising C, past the 
point of transition to the rubbery state (as evidenced by the appearance of  Fickian 
kinetics), is accompanied by strong concentration dependence of β (which rises 
effectively to infinity in the rubbery state) far exceeding that of DT. On the other hand, 
the occurrence of S-shaped Q(t) vs t1/2 (changing to so-called “pseudo-Fickian”) curves in 
the lower concentration (glassy) range (lower part of Fig. 6a) is attributable to the effect 
of differential swelling stresses [30], generated by (and decaying with) concentration 
gradients (in close analogy to the well known thermal stresses generated by temperature 
gradients); which need not concern us here. 
 In series of integral absorption runs, with starting point a1=C1=0 for each run (see 
section 3.2), only S-shaped Q(t) vs t1/2 plots are normally obtained for all final Co=S∞ao, 
as illustrated in Fig. 6b [29]. However, replots of the high-Co curves (which usually 
extend to the rubbery state) reveal, in some systems studied (see example in Fig. 7), a 
new kinetic feature, namely a linear Q(t) curve (zero-order sorption kinetics, allowing for 
some initial induction period), often referred to as Case II diffusion. This process is 
associated with a flat high-concentration profile (C vs x) ending at a sharp penetration 
front, the low-concentration part of which extends to form a diffuse “precursor front” 
(assumed to obey Fick’s law), as illustrated in Fig. 8. The whole concentration profile 
remains practically unchanged, as it propagates within the space 0≤x≤l, under semi-
infinite medium conditions, with constant velocity vo.  
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Fig. 7: Series of integral absorption runs, plotted 
on a t scale, for biaxially oriented polystyrene-n 
pentane. From [31].  

Fig. 8: Schematic Case II penetration 
profile as normally perceived (perfectly 
sharp propagating front preceded by a 
Fickian diffuse front). 

  
 This seemingly simple, but obscure, absorption kinetics was originally studied by 
postulating the presence of a constant-velocity convection term [23]. The function of a 
physically meaningful approach is, of course, to predict both the formation and mode of 
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propagation of the Case II profile, in the first place. Substantial progress in this direction, 
was made, invoking the mechanical analogy, e.g. in [32] and especially in [33], where 
extensive physically predictive model computations of Case II kinetics are reported, but 
the model used cannot account for some typical interval sorption kinetics noted above. 
 In terms of the more widely applicable (v.s.) modeling approach presented here [21] 
(for other similar approaches, see e.g. [24, 26, 27]), the physical basis of Case II kinetics 
may be outlined as follows:  
(a) Relaxation kinetics  
 For convenience, the shorthand notation DTo=DT(C=0), DTF=DT(C= ∞

oC ), βo=β(C=0), 

βF=β(C= oC∞ ), is used. The relaxation expression introduced in eq. (24), rewritten as 

 ∂C/∂t = βoexp(kBC)(C∞– C)                (26) 

with kB=const., C(t=0)=Co, C(t→∞)=C∞, and under conditions of  βF>>βo, C∞>>Co, 
yields solutions C(t), which rise slowly at first but become very steep as C→C∞ (see 
example for Co=0, βF/βo=104 in Fig. 9 [34]). This behavior closely parallels “delayed 
yielding” kinetics in mechanical creep experiments (illustrated in Fig. 10 [35]). The 
“swelling yield” feature is associated with an inflection point in C(t) (designated by 
C=CR), which appears if the condition kB(C∞–Co)>1 is satisfied. The corresponding time 
t(C=CR)=tR affords a useful measure of the effective lifetime of a relaxation process of 
the type envisaged here. 

0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

C

βot

~

 

ST
R

A
IN

TIME

 
Fig. 9: Example of a solution of the 
relaxation equation (26); C =C(t)/C∞, (Co=0 
and βF/βo=104) exhibiting a final steep rise to 
C(t)=C∞ (with inflection point at CR=0.89C∞). 
From [34]. 

Fig. 10: Schematic illustration of me-
chanical creep curve exhibiting delayed 
yielding. Adapted from [35]. 

 
(b) Behavior of the kinetic moduli 
 The basic conditions for Case II kinetics, in the space 0≤x≤l, are given as 

 l2βο/DTo ≥ 1 ;   l2βF/DTF >> 1 ;   l2βo/DTF << 1      (27a,b,c) 

 Conditions (27a) and (27b) involve the kinetic modulus defined previously. The 
former represents diffusion in a relatively slowly relaxing (glassy) polymeric medium 



 

  

(where the precursor front tends to shrink, as the value of this modulus rises). The latter 
condition represents Fickian diffusion in the relaxed (rubbery) swollen polymer. Finally, 
condition (27c) defines a new kinetic modulus, which ensures that the overall penetration 
process is rate-controlled by slow viscous relaxation in the low-concentration (glassy) 
region.  
 Fig. 11 presents an early example of the results obtained by simultaneous solution of 
eqs (24) and (25), representative of the diffusion and viscous relaxation conditions stated 
above [21]. The generation of the penetration front may be understood in terms of the 
C(t) kinetic results derived from eq. (26), which are directly applicable to the exposed 
surface (x=0) of the polymer film, if we put C∞= oC∞ =S∞ao and Co= o

oC =Soao. The 
induction period in Fig. 11a is obviously attributable to the pre-yield slow relaxation of 
Co(t), which is still going on at stage (A), as is confirmed by the associated (purely 
precursor) concentration profile in Fig. 11b. 

  
Fig. 11: (a) Computed plots of tQ =Q(t)/Q∞ vs t =Dot/l2 for a model integral absorption run with 

l2βo/Do=10, l2βF/DF=20, l2βo/βDF=0.02. (b) Associated profiles of concentration C =C/ oC∞  (–––) 
or activity a~ =a/ao (- - - -) vs x =x/l. From [21]. 
 

   Fig. 11a shows that, after completion of the relaxation process at x=0 (Co= oC∞ ), good 
conformity (within the limits of available computer resources) to Case II kinetics is 
observed; while the corresponding penetration fronts (B, C, D, E) in Fig. 11b (full lines) 
duly conform to the pattern shown in Fig. 8 and remain reasonably constant in time. Fur-
ther studies have shown that the velocity of propagation vo is very highly correlated to tR. 
 To gain better understanding of the mechanism underlying the above results, note that 
the steep part of the penetration front reflects viscous swelling kinetics in the yield region 
(as can be shown by introducing J=voC in eq. (8) to obtain ∂C/∂t=–vo∂C/∂x). The 
constancy of vo requires constancy of tR. This is achieved thanks to the very flat high- 
activity a(x,t)≅ao profiles (see broken lines in Fig. 11b), which propagate well ahead of 
the corresponding concentration profiles C(x,t). The crucial result is that, at any x, 
a(x,t)≅ao is attained while the relaxation of C(x) is still at the pre-yield stage. [This is 
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illustrated for stage C in Fig. 11b, where the attainment of a(x)≅ao is marked by arrows 
on the corresponding activity and concentration profiles]. Accordingly, swelling yield, at 
all x, occurs, under the same boundary condition C(x)≈ oC∞ =S∞ao [34], thus yielding 
tR=const. 

4.2  Practical example 
 To illustrate the practical applicability of this modeling approach, we consider the 
example of bidimensional diffusion of liquid swelling agents into uniaxially oriented 
cellulose acetate films (containing 2.45 acetate groups per monomer unit), sandwiched 
between clamped glass plates to allow penetration only across the exposed edges of the 
films (see Fig. 12). Microscopic observation at right angles to the plates showed inward-
moving penetration fronts and corresponding outward-moving swelling fronts. 
Penetration rate (as well as swelling rate) was relatively fast and obeyed Fickian kinetics  

 
Fig. 12: Top view of schematic presentation of experimental setup for bidimensional penetration of 
liquid CH2Cl2 in uniaxially oriented cellulose acetate [36, 37]. A: swelling front; B: penetration 
front. 
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Fig. 13: (a) Experimental penetration curves (b) Experimental concentration profiles (c) simulated 
penetration curves (d) simulated concentration profiles. Penetration normal (●, –––) or parallel ( , 
- - - -) to the axis of macromolecular orientation. From [36, 37]. 
  
normal to the axis of preferred molecular orientation, but was markedly slower and 
followed Case II kinetics parallel to the said axis, under otherwise identical conditions 
(see Fig. 13a). Microdensitometry [36] and microinterferometry [37] revealed typical 
concentration-dependent Fickian and Case II concentration profiles respectively (see 
Fig. 13b). Delayed swelling, in the present set up, arises from the constraint imposed by 
the clamping pressure on swelling of the film in the direction of the thickness. This 
constraint is relieved (and full volume swelling recovered) by longitudinal viscous 
swelling, which is fast (slow) in the direction normal (parallel) to the axis of preferred 
molecular orientation, in accord with the direction of easier (more difficult) deformability 
of the polymeric medium. The basic characteristics of this kinetic behavior have been 
successfully simulated (see Figs 13c-d [36]; computation for simulation of the precursor 
front as well, was too onerous to envisage at the time) by setting, for penetration parallel 
to the axis of molecular orientation: l2βο/DTo=1, l2βF/DTF=200, l2βo/DTF=0.002, 
So/S∞=0.36. Then, penetration normal to the said axis of orientation was simulated simply 
by increasing βo by a factor of 103 (yielding new values of  l2βo/DTo=103, l2βο/DTF=2), 
keeping all other parameters the same. 

5. Space-Dependent Non-Fickian Diffusion (Axially Inhomogeneous Medium) 

5.1  Theory 
We consider unidimensional diffusion (assuming for simplicity concentration-

independent S and DT) in the space 0≤x≤l; wherein the solid medium exhibits variability 
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of some salient macroscopic structural characteristic (such as density or porosity), which 
translates to a functional dependence of S and DT on x. Under these conditions, the 
equilibrium sorption and steady-state permeation measurements, referred to in section 
3.2, yield effective sorption (Se) and permeability (Pe) coefficients, which are averages 
(arithmetic or harmonic respectively) of S(x) and P(x), and an effective diffusion 
coefficient De=Pe/Se [38-42]. The latter relation is consistent with Fick’s law, but the 
measured time lag La generally deviates from the expected value a

sL =l2/6De [see eq. 
(12c)]. This result is a useful indicator of non-Fickian diffusion, but not of its physical 
nature, in view of the fact that such discrepancies are also expected in the case of time-
dependent non-Fickian diffusion (see section 4). Note similar difficulties for the physical 
interpretation of absorption kinetics; for example, an S-shaped Q(t) vs t1/2 plot (see 
section 4) may also result from diffusion into a membrane with a surface “skin” of higher 
density (a common artefact of polymer film manufacture) and hence of lower S and DT. 
 Valuable additional information in this respect is obtainable by extension of the 
standard method of permeation time-lag measurement, based on the initial condition 
a(x,t=0)=al [see eq. (9a)], described in section 3.2. The extended method involves [38-
42]: (a) measurement of the amount (per unit membrane area) of penetrant entering the 
membrane at x=0, Q(0,t), in addition to the standard measurement of Q(l,t) and (b) 
repetition of these measurements, under a “desorptive” initial condition a(x,t=0)=ao (in 
this case the experiment is started by dropping the activity at x=l from a=ao, to a=al). 
These measured “absorptive” (superscript a) and “desorptive” (superscript d) permeation 
curves (illustrated in Fig. 14) yield four time lags, namely La(l)>0, La(0)<0, Ld(l)<0, 
Ld(0)>0; which may, for convenience, be put in the form: La ≡La(l);  ΔLa=La–La(0); 
δL=La–Ld(l);  δΔL=ΔLa–Ld(l)+Ld(0); for comparison with the corresponding time-lag 
parameters (denoted by subscript s) calculated for a system obeying Fick’s law, with S=Se 
and D=De, given below 

 6 a

sL  = 2Δ a

sL  = 2δLs = δΔLs = δΔL = l2/De 

N.B. the above relation δΔL=δΔLs; which enables determination of Se=Pe/De=PeδΔL/l2 

directly from permeation data, as was the case with Fick’s law in section 3.2. 
 Study of the discrepancies between actual and calculated values of the other time-lag 
parameters, a

EL =La– a

sL  etc., reveals distinctive properties enabling clear discrimination 
between (as well as characterization of) time-dependent and space-dependent non-
Fickian diffusion (the pertinent time lag discrepancies are designated as a

TL  etc., and a

hL  
etc., respectively). If the said non-Fickian processes happen to coexist, the resulting 
discrepancies (at least in the simplest case under consideration here) are additive, i.e., 

La – a

sL  = a

TL + a

hL ;   ΔLa – Δ a

sL  = Δ a

TL + Δ a

hL ;   δL – δLs = δLT + δLh      (28a,b,c) 



 

  

 

 
 
  
 
 
 
Fig.14: Experimental 
normalized absorptive  
( , ) and desorptive 
( , ) permeation 
curves for N2 diffusing in 
an unsymmetrically 
compacted graphite 
porous septum at 297K. 
From [42].  

 
Thus, one may take advantage of the general properties: ΔLa

T=0 and Δ a

hL =–δLh; to 

extract the values of Δ a

hL  and δLT from eqs (28b,c) and thus obtain evidence regarding 
the presence (and, to some degree, the character) of each one of the coexisting non-
Fickian processes. 
 General space-dependent time-lag behavior is, in effect, governed by the “transport 
function” ψ(x)≡S(x)P(x)/SePe and it is found that the algebraic sign and magnitude of a

hL  

and Δ a

hL =–δLh can serve as useful diagnostics of the functional form of ψ(x) and of the 

relative degree of inhomogeneity [38-42]. Thus, Δ a

hL =0 is characteristic of a ψ(x) 

symmetrical about the midplane of the membrane, with a

hL >0 or a

hL <0, if the turning 

point is a maximum or a minimum respectively; whereas a

hL <0 with Δ a

hL <0 or Δ a

hL >0 
imply unsymmetrical ψ(x), with a preponderant tendency to increase or decrease with 
rising x respectively. Given an appropriate physical structure-property model, one may 
work back to the character of the underlying structural inhomogeneity of the medium. 

5.2  Practical example 
 As an example, consider dilute gas (Knudsen) diffusion (obeying Fick’s and Henry’s 
laws) across a mesoporous septum (consisting of compacted powder) with diffusivities 
DTg≡Dg and DTs≡Ds for gas-phase and adsorbate flow respectively. We have [39-42]: 

 S = Sg + Ss = ε + Aoks(1– ε) ;   P = Pg + Ps = Bgε2/(1– ε) + Aoks(1– ε)Ds      (29a,b) 

where Ao(1–ε) is the specific pore surface area (available for adsorption) per unit septum 
volume; ks is the adsorption coefficient (strongly dependent on gas molecular weight Mg); 



 

  

Bg ≈ const. (weakly dependent on Mg); Ao, Bg and ks are effectively independent of x; but ε 
is a function of x, if the degree of compaction is not uniform across the septum. 
 In the case of helium, ks≈0; hence the expected trend of ε(x) is obviously the same as 
that of ψ(x). Thus, according to what has been said above, the data of Table 1 (taken from 
[39-41]) lead to the conclusion (confirmed by direct measurements of local porosity [39], 
[41]) that symmetrical compaction (see G1) results in very nearly symmetrical ε(x) with a 
minimum at x=l/2; whereas unsymmetrical compaction (under the conditions used in [39-
41]) yields unsymmetrical ε(x) with preponderant tendency to increase with increasing x 
(see C1, G2-G4). On the other hand, the magnitude of the normalized experimental Δ a

hL  
of Table 1 shows that greater homogeneity of porosity is achieved by compaction in 
several small steps (cf. G2, G3) or to a lower overall porosity (cf. G3, G4). Table 2 
verifies the prediction of the model of eq. (29) that, for sufficiently high ks, the adsorbate 
term in eqs (29a,b) becomes dominant: this leads to ψ(x) varying inversely with ε(x). 
Accordingly, the negative experimental a

hL  values for the light gases [characteristic of a 
minimum in the corresponding ψ(x)] become positive for the heavier gases [characteristic 
of a maximum in ψ(x)]. 
 
 
Table 1. Time-lag parameters for He diffusing in 
activated-carbon (C1) or graphite (G1-G4) porous 
septa of porosity ε prepared by symmetrical or 
unsymmetrical powder compaction in 1-12 steps. 
 
Porous medium ε /a a

h sL L /a a

h sL LΔ Δ  

C1 unsym (12) 0.50 -0.14 0.16 
G1 sym (1) 0.15 -0.15 -0.05 
G2 unsym (1) 0.15 -0.38 0.42 
G3 unsym (5) 0.13 -0.35 0.16 
G4 unsym (6) 0.24 -0.58 0.62 

6. Conclusion 
 The primary objective of the present paper is to familiarize a wider audience with (not 
to provide a full-fledged review of) the formulation and physical modeling of diffusion of 
a penetrant in a solid medium, exhibiting kinetic behavior more complicated than could 
be expected on the basis of the analogy of Fick’s law with those of Fourier and Ohm. 
 The question is how far can Fick’s formalism be taken to deal satisfactorily with 
complications due to (i) concentration dependence (ii) time dependence or (iii) space (x) 
dependence of the transport parameters. The answer is “not very far”: 
  Formulation of case (i) in terms of D(C) is viable mathematically but physically the 
Fick formalism is inferior to the IRT one and may even prove misleading in extreme (but 
in practice not uncommon) situations (as shown in section 3.3). In case (ii), time 
dependence could be introduced into the Fick formalism only through the surface 
boundary condition Co(t) [4], which  ab initio could not possibly account for the 

Table 2. Time-lag parameters for a series 
of gases of increasing adsorbability (ks) 
diffusing in a symmetrically compacted 
graphite septum of porosity 0.30 [43]. 
 
Gas  ks/nm La /min a

hL /min 

He – 3.2 -0.33 
Ne 0.2 7.6 -0.6 
Ar 4.6 25.3 -0.85 
CH4 15.1 37.2 0.8 
Kr 16.8 90.0 1.2 



 

  

occurrence of relaxation in the body of the polymeric medium [20, 21]. Finally, 
formulation of x-dependence in terms of D(x) [44], is clearly inadequate, as it obviously 
ignores the effect of S(x) shown in section 5 to be particularly important. Thus, both of 
the last two cases can only be dealt with adequately by means of the IRT approach. 
 Fick’s lasting achievement was to put basic material transport under the theoretical 
umbrella already put up for thermal and electrical transfer. This is, indeed, how science 
progresses (“The specific of the senses, the generic of reason….without reason it is not 
possible to have science”, Aristotle). It is up to us to deal with the many more 
ramifications of material transport (Fourier or Ohm had to deal with only one kind of 
thermal or electrical fluid) in the same spirit. 
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