

Phenotyping Canola Flowering Using UAV-based Phenomics

<u>Ti Zhang</u>, Hema S. Duddu, Menglu Wang, Seungbum Ryu, Sally Vail, Rosalind Bueckert, Xulin Guo, Steve Shirtliffe*

> Department of Plant Sciences University of Saskatchewan 2017 Soils and Crops

Canola (Brassica napus L.)

Canada: largest exporter (74% of the export trade)

* Billions to Canadian economy

Product of seeds: oil with low saturated fats

Source: Canola Council of Canada, 2016

Introduction

Canola seed yield

- Stand density, pod number/plant, seed weight/pod
- Twice flowers than pods
- Good indication of potential pod development and seed yield

*****Phenotyping flowering manually

- Labor-intensive
- Destructive
- Subjective

Introduction (cont.)

&UAV-based Phenotyping methods

- Small UAV platforms
- Image sensors
- Hundreds of high-resolution images for phenotyping crop

Introduction (cont.)

- ***Novel vs. traditional**
 - Cost effective
 - Quickly and accurately
 - Non-invasive

Objective

To investigate the application of vegetation indices in detecting canola flower intensity

Methods and Materials

> Experiment design

- Rectangular lattice **Rep. 3** design with three rep.

Study site-year Rep. 2

- AAFC, 2016

> Factor

- 56 genotypes

Rep. 3Rep. 2Rep. 1

Fig. 3 Plot layout at the Agriculture and Agri-Food Canada Research Farm (52.181196°N, -106.501494°E) near Saskatoon, SK in 2016

Aerial imagery data collection

*****Platform and sensors

Fig. 4b) Multispectral camera with five bands

Fig. 4c) Modified commercial camera with three bands

Image processing pipeline

Step 1. Pre-process (Pix4D)

(a) Stitching/mosaic

(b) Calibration

Fig. 5a) Stitching individual images for experimental trial; b) radiometric and geometric calibration

Image processing pipeline

Step 2. Data extraction (ArcGIS)

- Plot segmentation
- Vegetation indices
- Pixel classification

Fig. 6 Calibrated orthomosaic images

Vegetation Indices

NDYI = Digital yellowness estimation

$NDYI = \frac{GREEN - BLUE}{GREEN + BLUE}$

Ground Reference Collection

- Collection dates:
 - July 8, 15, 22, 29
 - August 5, 12, 19

Fig. 7 Manually count flower number in the field.

Regression: flower intensity vs. NDYI

Flowering intensity vs. NDYI

Pixel Classification: threshold methods

(a) Calibrated orthomosaic image

(b) Calculate NDYI

(c) Extract pixels using threshold value

Conclusion

*****Achievements based on objectives

- Vegetation indices/pixel classification in detecting flower

Take-home message

- NDYI works better in peak flowering timing
- Threshold methods improved ability of detecting flower

Acknowledgements

Supervisor

Dr. Steve Shirtliffe

UNIVERSITY OF SASKATCHEWAN Plant Phenotyping and Imaging Research Centre

* Committee Members Dr. Sally Vail Dr. Rosalind Bueckert Dr. Xulin Guo

<u>Dr. Yuguang Bai</u>

Agronomy Weed Group

POTASHCORP - A FOUNDING PARTNER

UNIVERSITY OF SASKATCHEWAN College of Agriculture and Bioresources DEPARTMENT OF PLANT SCIENCES AGBIO.USASK.CA

THANKS