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Referat:

Die vorliegende Arbeit beschreibt die Entwicklung des hochauflösenden Atmo-

sphärenmodells ASAMgpu. Dabei handelt es sich um ein sogenanntes Grobstruk-

turmodell bei dem gröbere Strukturen mit typischen Skalen von Deka- bis Ki-

lometern in der atmosphärischen Grenzschicht explizit aufgelöst werden. Hoch-

frequentere Anteile und deren Dissipation müssen dabei entweder explizit mit

einem Turbulenzmodell oder, wie im Falle des beschriebenen Modells, implizit

behandelt werden. Dazu wurde der Advektionsoperator mit einem dissipativen

Upwind-Verfahren dritter Ordnung diskretisiert. Das Modell beinhaltet ein Zwei-

Momenten-Schema zur Beschreibung mikrophysikalischer Prozesse. Ein weiterer

wichtiger Aspekt ist die verwendete thermodynamische Variable, die einige Vor-

teile herkömmlicher Ansätze vereint. Im Falle adiabatischer Prozesse stellt sie eine

Erhaltungsgröße dar und die Quellen und Senken im Falle von Phasenumwand-

lungen sind leicht ableitbar. Außerdem können die benötigten Größen Temperatur

und Druck explizit berechnet werden. Das gesamte Modell wurde in C++ imple-

mentiert und verwendet OpenGL und die OpenGL Shader Language (GLSL) um

die nötigen Berechnungen auf Grafikkarten durchzuführen. Durch diesen Ansatz

können genannte Simulationen, für die bisher Supercomputer nötig waren, sehr

preisgünstig und energieeffizient durchgeführt werden. Neben der Modellbeschrei-

bung werden die Ergebnisse einiger erfolgreicher Test-Simulationen, darunter drei

Fälle mit mariner bewölkter Grenzschicht mit flacher Cumulusbewölkung, vorge-

stellt.
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2Anzahl der im Literaturverzeichnis ausgewiesenen Literaturangaben
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1 Introduction

One of the oldest and very successful applications of numerical models in

the field of physics is the simulation and prediction of atmospheric processes.

Already in the early decades of the last century, shortly after Abbe rec-

ognized that the atmosphere can be described by fundamental hydro- and

thermodynamics (Abbe [1910]) and Richardson applied numerical methods

to perform the first physical based weather model forecast in history, the

idea of parallelizing this process emerged (Richardson [1922]). Richardson

realized that the enormous number of calculations needed to produce any

kind of global weather forecast could never be accomplished by a single per-

son. The calculation process had to be distributed over a large number of

workers controlled by some kind of organizer. This leads to the idea of the

Richardson’s Forecast Factory. In his book from 1922 on page 219 he wrote:

“Imagine a large hall like a theatre, except that the circles and galleries go

right round through the space usually occupied by the stage. The walls of this

chamber are painted to form a map of the globe. The ceiling represents the

north polar regions, England is in the gallery, the tropics in the upper circle,

Australia on the dress circle and the antarctic in the pit. A myriad computers

are at work upon the weather of the part of the map where each sits, but

each computer attends only to one equation or part of an equation. The

work of each region is coordinated by an official of higher rank. Numerous

little “night signs” display the instantaneous values so that neighbouring

computers can read them. Each number is thus displayed in three adjacent

zones so as to maintain communication to the North and South on the map.

From the floor of the pit a tall pillar rises to half the height of the hall. It

carries a large pulpit on its top. In this sits the man in charge of the whole

theatre; he is surrounded by several assistants and messengers. One of his

duties is to maintain a uniform speed of progress in all parts of the globe. In

this respect he is like the conductor of an orchestra in which the instruments

are slide-rules and calculating machines.”

It is amazing how well this passage describes basic architectural features

of modern high performance computer clusters and accordingly the structure
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of the computational cores in modern graphics adapters. While actual central

processing units (CPUs) consist of ten to twenty computational cores with

very high clock speeds and a huge set of available operations, the processing

units in graphics adapters (GPUs) feature several hundreds up to thousands

of such workers with a reduced instructional set and slightly lower clock

cycle. The question arises: “Is it possible and what is necessary to utilize

this computational power for weather forecasting.” To answer this question

this work gives an introduction to one possible way to use GPUs for general

purpose computations.

Therefore two classes were developed to abstract the GPU access func-

tions provided by OpenGL into a simple buffer kernel framework. The second

section of this work will give a detailed introduction to those classes and an

example how to apply this framework to a simple shallow water equation

system.

The classes were then used to implement a three dimensional moist at-

mospheric model (ASAMgpu) using an explicit time integration and a two

moment microphysical scheme. Currently operational high resolution fore-

cast weather models like the COSMO model (Steppeler et al. [2003]) by the

German Weather Service or the Weather Research and Forcasting Model

WRF (Skamarock and Klemp [2008]) by the NOAA usually use cell sizes in

the range from 2 to 4 km. With increasing computational power this reso-

lution will increase enabeling processes like boundary layer clouds and tur-

bulent mixing processes to be explicitly resolved. With that, more complex

approaches for microphysical parameterizations can be included in weather

prediction applications. The new model ASAMgpu focuses on domain sizes

and grid cell dimensions commonly used in large eddy simluation models

(LES). Those models resolve larger turbulent structures explicitly and have

to handle sub grid scale turbulence and viscosity using explicit parameteri-

zations or implicit numerical approaches (ILES, Hickel [2008]). Typical grid

cell sizes for boundary layer convection range from ten to a few hundred me-

ters, for processes at cloud boundaries even smaller cells in dependence on

the studied process are used. There are already several existing LES models

for example PALM (Raasch and Schröter [2001]), DALES (Heus et al. [2010])
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or the UCLA-LES (Stevens et al. [2005]) model, just to name a few. Also

some regional models like the WRF model can be used in a LES mode as well

(Moeng et al. [2007]). Most of them use clusters of common CPUs connected

by some kind of network infrastructure and a message passing interface for

the communication between the nodes. Compared to GPUs the number of

grid cells handled by one single node is small, which produces high commu-

nication costs. The process of miniaturisation of computational devices and

minimization of communication leads directly to a cluster infrastructure of

CPU nodes utilizing one or more GPUs each. This idea was also followed

by the work of Michalakes and Vachharajani [2008], where one possible mi-

crophysical parameterisation available in the WRF model was transferred

to be processed on a GPU. This brought a twenty times increase in perfor-

mance for the microphysics alone and overall 1.3 times increase for the total

application. One factor limiting the speedup was the communication cost

between the CPU memory space and the GPU memory, because large three

dimensional fields had to be transferred through the relatively slow PCIe bus.

To minimize communication cost through that channel and increase overall

speedup it makes sense to perform as much calculations as possible on the

GPU, including the dynamics, and to transfer data only for the boundaries

between the GPU nodes and if necessary the CPU nodes respectively. This

approach was also followed during the implementation of GALES by Schalk-

wijk et al. [2012], which is a completely rewritten version of the DALES code

using C++ and modern CUDA utilities done at the TU Delft. The model

ASAMgpu also follows this approach to perform all calculations on the GPU

and minimize communication, even some of the analysis and plotting during

runtime is performed on the GPU to prevent saving large datafields during

every timestep. This enables visualisation of data at very high temporal

resolution. That direct feedback during a model run simplifies identifying

problems, like high frequency oscillations for example. During the develop-

ment of the ASAMgpu model a new thermodynamic variable was used, which

for moist atmospheric processes has some advantages over previously used

variables like the internal energy, entropy or the equivalent potential temper-

ature for example. The used variable is a form of the entropy, and with that

8



is conserved under adiabatic processes, needed physical quantities like pres-

sure or temperature can be calculated explicitly and the source terms during

phase transitions can be derived very easily. Model details like the governing

equations, the used time integration scheme, the used thermodynamic vari-

able and the implemented microphysical parameterisations are presented in

the third section of the present work.

In the fourth section several test applications of the model ASAMgpu,

using the introduced framework, are presented. The first test is a simulation

of a Rayleigh-Bénard convection (Manneville [2006]) between a heated plate

at the lower surface of the domain and a cooled plate at the top. This was

used to check the model for breaks in symmetry due to floating point mistakes

and to get an idea of the behaviour of such a simple boundary layer convection

system without explicit turbulence parameterisation. The second and third

example are a rising heat bubble in a dry adiabatic layered atmosphere by

(Wicker and Skamarock [1998]) and a dry cold bubble falling on the ground

developing a strong density current (Straka et al. [1993]). Both tests mainly

focus on the stability of the used time integration mechanism. The fourth

very idealized test case was a moist heat bubble in a slightly supersaturated

environment (Bryan and Fritsch [2002]). This test was performed to validate

the implemented condensation mechanism and the amount of released latent

heat. The theoretical solution is similar to the dry heat bubble test case, and

also the results of the numerical simulation fits quite well.

The next step was to use more realistic setups to simulate boundary tur-

bulence in combination with cloud processes at the top of the boundary layer.

To be able to compare the results of the simulations with results from simi-

lar models, three cases from the Global Energy and Water Cycle Experiment

Cloud System Studies (GCSS) were choosen (GEWEX Cloud System Sci-

ence Team [1993]). All the three cases describe marine cloud topped bound-

ary layer systems, with relatively shallow boundary layers, an inversion and

clouds developing below that inversion. The first one is the Barbados Oceano-

graphic and Meteorological Experiment (BOMEX, Siebesma et al. [2003])

case, which describes a non drizzling marine cumulus cloud layer. The verti-

cal profiles and time series of the simulation results are presented in section
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4.5. The second GCSS case is from the Second Dynamics and Chemistry of

Marine Stratocumulus field study (DYCOMS-II, Stevens et al. [2003]). The

case describes a nocturnal stratocumulus cloud deck under a strong inver-

sion. The third case is the Rain in Cumulus over the Ocean (RICO) case

(VanZanten et al. [2011]), based on the campaign (Rauber et al. [2007]) that

took place during November 2004 – January 2005 above the western atlantic.

This case features marine cumulus clouds including precipitation.

Finally one interesting pratical application was the simulation of the in-

fluence of an heated island surface on the marine boundary layer. During

the Second Saharan Mineral Dust Experiment (SAMUM2, Ansmann et al.

[2011]) campaign, Doppler lidar measurements on the island Santiago, which

is the largest of the Cap Verde islands, were performed. One objective of this

measurement campaign was the investigation of aerosol entrainment from el-

evated aerosol layers down into the marine boundary layer. With that the

representativity of on-shore lidar measurements for the marine boundary

layer was of high interest. Also the origin of some reccuring patterns in the

vertical velocity measurements were not clear. The performed simulations

helped during the interpretation of these results.

This work is closed by a summary, a short overview over some realized

alternative applications of the presented buffer-kernel-framework and an out-

look for possible future development of the ASAMgpu model.
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2 General purpose computation on graphics

processing units

The first part of this section gives an overview about general purpose com-

putation on graphics processing units, and it explains what OpenGL and

GLSL are and why they were chosen. The following subsections give a more

detailed introduction into GPU programming, the developed shader and tex-

ture classes and the used frameworks, including code examples which should

enable the reader to follow the development. It is finalized by the application

of the developed classes for a simple shallow water example.

2.1 OpenGL + GLSL

The model ASAMgpu uses modern graphics processing units (GPUs) for fast

and efficient massive parallelized computations. The application of GPUs

for non-graphic calculations is also called general purpose computation on

graphics processing units (GPGPU). During the last years many different

approaches for GPGPU were developed. One early way to program GPU

hardware was the Brook+ Library by ATI. Later more and more vendor spe-

cific solutions like CUDA from nVidia or Stream from ATI evolved. One

disadvantage of these solutions was the hardware specific implementation

and with that the platform and vendor dependence of the software. The

decision for OpenGL was mainly inspired by personal experiences from the

years when the first consumer graphics cards with support of hardware ac-

celerated three dimensional graphics appeared on the market at the end of

the last millenium. The driver support for those graphics devices was as

fragmented as the GPGPU market is today. For example the GLIDE drivers

for the Voodoo Graphics cards by 3dfx Interactive, a company which was

bought by nVidia later, provided a slight performance boost for 3D gaming

applications compared to the early Direct3D versions from Microsoft and

the already existing OpenGL standard. At this time OpenGL was mainly

used by scientific and CAD software. 3dfx followed an aggressive promo-

tion strategy to place emphasis in the gaming market to their GLIDE API
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and with that to introduce a vendor lock into the published games to force

the costumers to buy 3dfx hardware. It took a while until they were finally

forced in 1996 by the game ”Quake” by Id Software to provide a minimal

working OpenGL driver. While the focus of OpenGL and DirectX was to

hide the technical details behind a software layer and in case of OpenGL

also to provide a platform independent API, the GLIDE drivers allowed low

level hardware access and with that an increased performance compared to

the other solutions. With time, more sophisticated device drivers and their

growing support for the open and independent APIs, outweighted the small

perfomance boost and GLIDE became obsolete. Similar tendencies and ag-

gressive marketing strategies can be observed concerning nVidias CUDA and

their TESLA platforms in todays GPGPU market, including the risk that

CUDA and software depending on CUDA will become obsolete as well.

In contrast to CUDA, OpenGL was developed by SGI and published in

1992 as an open and cross platform programming interface to access GPUs

and it is still under development. It is currently specified and developed

by the Khronos Group, which is a non profit consortium with members like

3Dlabs, ATI/AMD, Discreet, Intel, nVidia, SGI, Sun Microsystems, Google,

Apple, Samsung and many more. The model ASAMgpu uses the OpenGL

approach with the OpenGL Shader Language (GLSL). The Khronos group

also developed the Open Computing Language (OpenCL) as an interface

to GPU and CPU parallelization. Because at the time the development of

ASAMgpu started, OpenCL was still a theoretical construct and OpenGL

was available for a long time as a very reliable API with support for a wide

variety of hardware, OpenGL was used. A future transition from OpenGL

to OpenCL should be straight forward because the overall code structure is

compatible.

The main concepts of all GPGPU solutions are quite similar, but the

vocabulary is different between the different approaches. The main idea is

the so called stream processing paradigm. That means, the computation

process is defined using a certain number of streams, also called buffers or

textures. Those streams are used to access the data describing the physi-

cal system in the memory of the graphics device. Small programs, called
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kernels or shaders, define the computations applied to those buffers. In the

used OpenGL approach these kernels are written in GLSL, a language with

a C-like syntax. GLSL supports functions, if-branches and loops. Branches

should be used carefully because they could significantly slow down the com-

putation step. After the definition of the needed input and output buffers

and the used kernel, a calculation step is initiated. Using OpenGL this is

realized by drawing a rectangle using a certain number of input textures and

redirect the output from the screen to one or more output textures. The num-

ber of simultaneous possible input and output textures differs from device to

device, currently eight for each is a common number. During this step, the

graphics device splits the output buffers into a huge number of blocks, which

then are all processed in parallel by the shader units, also called stream pro-

cessors. In OpenGL this is done by the device driver completely transparent

to the developer. In OpenCL and vendor specific solutions like CUDA, it

is possible to control block sizes and the number of used threads. Current

GPUs have a large number of shader units, e.g. an ATI Radeon HD 5870

(2009) has 320 independent stream processors where every single one is a

small 5D vector unit, resulting in processing up to 1600 buffer elements in

one clock cycle, nVidia Tesla C2070 (2011) with 448 scalar stream processors

at higher clock cycles compared to the HD 5870. More recent examples are

the AMD R9 290X (2013) with 2816 and Tesla K40 (2013) with 2880 stream

processors. Newer cards not only provide more computation cores but lower

power consumption and larger graphics memory as well.

2.1.1 OpenGL context

Since GPUs were build for graphic calculations, the intuitive way to access

this hardware is through the graphics API of the used operating system. In

a Linux environment this is in most cases the xserver using the appropriate

device driver which provides a hardware accelerated graphics context. There-

fore some kind of access to the desktop manager (e.g. Gnome, KDE, Unity) is

needed to open a window including the graphics context. In our case a very

reliable and well documented way is to use the Simple DirectMedia Layer
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(http://www.libsdl.org/). This library provides a lot of functions mainly fo-

cused on game development and is available for a wide variety of operating

systems. The few SDL function calls needed are implemented in the con-

structor of a new class with the name openglcontext (header file shown in

listing 1, implementation source code in listing 19 in the appendix).

1 class openg lcontext

2 {
3 public :

4 int s i z ex , s i z e y ;

5

6 openg lcontext ( int s i zexn , int s i z eyn ) ;

7 } ;

Listing 1 The header file for the openglcontext class. (openglcontext.h)

This class is used to open the needed calculation window, which allows

output and direct user interaction as well, with just one single C++ in-

struction. The openglcontext constructor initialises the SDL library, opens a

window providing the hardware accelerated drawing context, checks for some

necessary OpenGL features like using custom fragment shaders and sets some

needed OpenGL settings. After the construction of such an openglcontext ob-

ject the application may use standard OpenGL commands for GPU access.

An example for the usage of the constructor is shown in Listing 2. The pa-

rameters passed to the constructor define the size of the resulting window,

in this case a width of 800 pixels and a height of 600 pixels.

1 #include ” openg lcontext . h”

2

3 int main ( )

4 {
5 openg lcontext context (800 ,600) ;

6 }

Listing 2 This main source demonstrates the usage of the openglcontext class to open

a window containing an OpenGL context for computation/drawing.

This simple example and the openglcontext class can be compiled using

the following commands.
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> g++ -c openglcontext.cpp

> g++ main01.cpp openglcontext.o -lSDL -lGL -lGLU -lGLEW

> ./a.out

The four linker flags in the second command ensure that the SDL li-

brary, the OpenGL (GL) library, the OpenGL Utility (GLU) library and

the OpenGL extension Wrapper (GLEW) library are linked to the applica-

tion. The so produced executable file ./a.out opens up a window and, while

nothing else is written in the main function, closes it immediately.

2.1.2 Shader/Kernel

The term shader derives from the original task these small programs had,

which was to calculate the resulting color of a projected pixel from the sur-

face of a 3D object using certain lighting and shading models in computer

graphics, but with the invention of the unified shader architecture they now

can be used for a variety of other things as well. OpenGL distinguishes

different types of shader programs by their task during the render process

of a three dimensional scene. In the current render pipeline those are the

vertex shader, the geometry shader, the tesselation shader and the fragment

shader. The vertex shader is applied to every point describing the geome-

try, and is mainly used to apply the projection matrix to those vertices to

calculate the final position on the two dimensional projection plane in the

resulting image. Here additional effects on the geometry may be applied,

for example wave like deformations to generate an ocean like surface. The

geometry shader can be used to generate complex geometrical shapes from a

single vertex information as the input parameter. This is useful for rendering

large numbers of more or less similar objects like grass, trees in a forest or

a large army in a computer game. The tesselation shader was introduced

with OpenGL V4.0 and can be used to subdivide surface patches to generate

very smooth geometries even for close viewing distances. The task of the

fragment shader, sometimes also called the pixel shader, is to fill the area

between the resulting vertices on the projection plane and to calculate the

resulting color for every pixel between those vertices. Therefore every pixel

15



is processed independently and in parallel to all other pixels. In general,

shaders are able to use texture information as input fields. This is the step,

where the GPGPU calculations can be performed. Each pixel in the texture

represents an element of the system, like a gridcell or a particle for exam-

ple. The different color channels for that pixel can be interpreted as physical

properties of the according element. In every render step these properties can

be changed in dependence of the parameters of all the other elements saved

in the input texture. The output result is then written into a new texture

and can be used as input data in the next iteration step. With that it is

quite simple to realize an explicit time integration scheme. Because all those

element updates should be independent from each other, they can easily be

parallelized by the device driver and distributed among the available shader

devices. But at first in Listing 3 the shader class definition in the shader

header file is presented.

1 #include <GL/ glew . h>

2 #include ” tex ture . h”

3

4 class shader

5 {
6 public :

7 GLhandleARB Handle , VertexHandle , FragmentHandle ;

8 GLint numTexUnits , numDrawBuffers ;

9 GLuint fb ;

10 t ex ture ∗∗ t ,∗∗ tout ;

11

12 shader ( const char ∗header , const char ∗ f i l ename ) ;

13

14 void bind ( ) ;

15 void s tep ( ) ;

16 } ;

17

18 #endif

Listing 3 This is the header file for the shader class, which is used to load GLSL shaders

from an ASCII file and bind it into the render pipeline to perform calculations.
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The shader class basically implements three methods. The first function

is the constructor for any shader object, including loading the shader source

code from an ASCII text file, transfer the code to the device driver, compile

the source code and return a handle which is used to refer to the shader

for further usage. The second function is called bind and is used to assign

input and output textures to the corresponding texture devices which then

can be used during shader execution. Therefore the shader object contains

two fields of pointers to texture objects (**t,**tout) which have to be set

accordingly before calling the bind method. This will be explained in detail

later in this section. The third function (step) is the actual render step, where

a rectangle is drawn with the size of the target texture. During this step

the GPU actually performs the calculations. The following basic example

demonstrates the usage of the shader class and the structure of a simple

vertex and fragment shader. While only the fragment shader is used for

GPGPU calculations later, the vertex shader is still essential. The example

shows how to load and bind the shader into the render pipeline. Hence the

texture class has not been introduced yet, this example does not use any

textures as input or output buffers and the result is directly written into the

framebuffer and displayed on the screen. This example fragment shader just

returns the color red.

1 #include <SDL/SDL. h>

2 #include ” openg lcontext . h”

3 #include ” shader . h”

4

5 int main ( )

6 {
7 openg lcontext context (800 ,600) ;

8 shader ∗ s ;

9 s=new shader (NULL, ” shaders / red ” ) ;

10

11 for ( int i =0; i <100; i++)

12 {
13 s−>bind ( ) ;

14 s−>s tep ( ) ;

15 SDL GL SwapBuffers ( ) ;

17



16 }
17 }

Listing 4 This main source code demonstrates the basic usage of the shader class.

As shown in listing 4 the new shader object is constructed in line 9 using

the shader source code saved in a textfile with the relative path ”shader-

s/red”. Therefore two more essential files have to exist in the shader subdi-

rectory. The files red.fsd and red.vsd contain the source code for the fragment

shader (.fsd) and the vertex shader (.vsd). For each a basic example is given

in listings 5 and 6. Then the example just binds and executes the shader a

thousand times, after every shader execution a SDL GL SwapBuffers has to

be called, to get the result from the back framebuffer to the front framebuffer.

This is a common technique for animation, where during the calculation the

resulting image is drawn in a hidden backbuffer while the actual displayed

framebuffer is held constant. When the render process has finished the two

buffers are flipped and the display gets an updated image as fast as possible

to prevent flickering.

1 void main ( )

2 {
3 g l P o s i t i o n =gl ModelViewProject ionMatr ix ∗vec4 ( g l Ver t ex ) ;

4 }

Listing 5 The vertex shader source code, which is used to calulate the position in the

output buffer of the resulting pixel.

During the step method of the shader class a rectangle is drawn with

the same edge points as the OpenGL context window. The given vertices

are processed by the vertex shader. To get the final position of the resulting

fragment on the screen, or alternatively the target texture, the incoming

vertex is multiplied with the actual projection matrix, which is in our case a

simple orthographic projection viewed from the top. After the vertex shader

execution the fragment shader is used to calculate the resulting color for every

pixel in the requested fragment (in this case the whole output area in the

window or the texture). This is the step where the fine grain parallelization of

the GPU is used. That means, the large number of resulting pixels, the target
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fragment contains, is distributed by the device driver among the available

shader devices and those perform the calculation simultaneously. In the

following simple example the fragment shader returns the color red for all

pixels in the fragment.

1 void main ( )

2 {
3 g l FragCo lor=vec4 ( 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) ;

4 }

Listing 6 The fragment shader source code is used to compute the resulting color for

the processed pixel.

The code can be compiled and executed using the following commands.

The shader class depends on the texture class, so this one has to be build and

linked as well, although it is not explicitly used in this example. In addition

the compiler call has to be extended to link the libgd2 library which is used

to load and write images in the texture class. More details can be found in

the next section.

> g++ -c openglcontext.cpp

> g++ -c texture.cpp

> g++ -c shader.cpp

> g++ main02.cpp texture.o shader.o openglcontext.o -lSDL \

-lGL -lGLU -lGLEW -lgd

> ./a.out

If the device driver was installed properly, the program opens a window

and fills it with the color red. The next step is to send some data from the

CPU to the GPU and produce some effect in the fragment shader. Therefore

OpenGL provides a set of functions which can be used to send different

types and amount of data to the actually bounded shader. In this case the

function glUniform1iARB (line 14 in listing 7) is used to send one integer

variable (i) to the shader. This function has to be called between the bind

and the step method. The keyword uniform during the variable definition in

the fragment shader (listing 8) allows access to the incoming value and can

be used to parameterize the result. For example the amount of the green
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channel in the returned color could be varied to produce a blinking effect.

This technique can be used to transfer a few parameters from the CPU to the

GPU. For large datafields the texture class, introduced in the next section

should be used, because there data transfers will be asynchronous and in

parallel.

1 #include <SDL/SDL. h>

2 #include ” openg lcontext . h”

3 #include ” shader . h”

4

5 int main ( )

6 {
7 openg lcontext context (800 ,600) ;

8 shader ∗ s ;

9 s=new shader (NULL, ” shaders / b l i nk ” ) ;

10

11 for ( int i =0; i <100; i++)

12 {
13 s−>bind ( ) ;

14 glUniform1iARB ( glGetUniformLocationARB ( s−>Handle , ” i ” ) , i ) ;

15 s−>s tep ( ) ;

16 SDL GL SwapBuffers ( ) ;

17 }
18 }

Listing 7 Basic example for how to transfer a single control parameter to a shader

program. In this example one integer (i) for the iteration step is transferred.

1 uniform int i ;

2

3 void main ( )

4 {
5 f loat t=f loat ( i ) / 6 0 . ;

6 g l FragCo lor=vec4 (1 . 0 , 0 . 5+0 .5∗ s i n ( 2 0 .∗ t ) , 0 . 0 , 1 . 0 ) ;

7 }

Listing 8 Basic example for usage of the transferred parameter in a fragment shader.

During evaluation of more complex systems the position of the currently

processed grid cell, and if necessary their neighbors, has to be known. This
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position is calculated in the vertex shader and can be passed using the key-

word varying during variable definition in the vertex and fragment shader.

With that the current grid cell can be identified and a huge variety of pro-

cedural textures can be calculated. Listings 9, 10 and 11 show an example

for passing several control parameters to a fragment shader that uses the

position to calculate a two dimensional procedural texture.

1 #include <SDL/SDL. h>

2 #include <s t d l i b . h>

3 #include ” openg lcontext . h”

4 #include ” tex ture . h”

5 #include ” shader . h”

6

7 int main ( )

8 {
9 openg lcontext context (800 ,600) ;

10 shader ∗ s ;

11 t ex ture ∗ t ;

12

13 s=new shader (NULL, ” shaders / procedura l ” ) ;

14 t=new t ex ture (800 ,600 ,1 ) ;

15

16 f loat w[ 3 2 ] ;

17 f loat v [ 3 2 ] ;

18 srand (100) ;

19 for ( int i =0; i <32; i++)

20 w[ i ]= 20.+40.∗ f loat ( rand ( ) ) / f loat (RAND MAX) ;

21 for ( int i =0; i <32; i++)

22 v [ i ]=−20.+40.∗ f loat ( rand ( ) ) / f loat (RAND MAX) ;

23

24 for ( int i =0; i <500; i++)

25 {
26 s−>bind ( ) ;

27 glUniform1iARB ( glGetUniformLocationARB ( s−>Handle , ” i ” ) , i ) ;

28 glUniform1fvARB ( glGetUniformLocationARB ( s−>Handle , ”w” ) ,10 ,w) ;

29 glUniform1fvARB ( glGetUniformLocationARB ( s−>Handle , ”v” ) ,10 , v ) ;

30 s−>s tep ( ) ;

31 SDL GL SwapBuffers ( ) ;

32 }
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33 }

Listing 9 This is the main source file (main.cpp) for an example that produces an

animated procedural texture and shows it on the screen. In this example 10 random floats

in the arrays w and v, and one integer for the iteration step are transferred.

1 vary ing vec2 pos ;

2

3 void main ( )

4 {
5 g l P o s i t i o n=gl ModelViewProject ionMatr ix ∗vec4 ( g l Ver t ex ) ;

6 pos =g l P o s i t i o n . xy ;

7 }

Listing 10 The vertex shader source code for the animated procedural texture example.

1 uniform int i ;

2 uniform f loat w[ 3 2 ] ;

3 uniform f loat v [ 3 2 ] ;

4

5 vary ing vec2 pos ;

6

7 void main ( )

8 {
9 int n=32;

10 f loat t=f loat ( i ) / 6 0 . ;

11

12 f loat r , g , b ;

13 r =0.0 ; g =0.0 ;b=0.0 ;

14

15 for ( int j =0; j<n ; j++)

16 {
17 r +=(0.5+0.5∗ s i n ( pos . x∗w[ j ]+v [ j ]∗ t ) ) ;

18 g+=(0.5+0.5∗ s i n ( pos . y∗w[ j ]+v [ j ]∗ t ) ) ;

19 b+=(0.0+1.0∗ s i n ( 2 0 .∗ l ength ( pos )+w[ j ]∗ t+w[ j ] ) ) ;

20 }
21

22 g l FragCo lor=vec4 ( r / f loat (n) , g/ f loat (n) ,b/ f loat (n) , 1 . 0 ) ;

23 }

Listing 11 The fragment shader source code for the animated procedural texture

example. The resulting color is a function of the output position and the iteration (i).
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Figure 1 Snapshot of the output of the procedural texture example. The displayed lines
and circles are calculated in dependence of the parameters, passed from the main source
to the fragment shader.

GLSL may be very strict with typing on some devices, depending on the

device driver. So with some drivers a floating point variable only accepts

floating point values, no implicit casting is allowed. One possible result of

the procedural texture example is shown in figure 1. In all examples in this

section the results are written into the framebuffer to display them on the

screen. After the render process has finished all results are lost. To get

access to the results the target memory address for the render process has

to be changed. With that the output is redirected into a buffer in the GPU

memory, also referred to as a texture, and is then available to further render

steps. This procedure will be explained in the following section.

2.1.3 Textures/Buffers

The examples, presented in the last chapter, only used one single render pass

to explicitly generate larger data fields and displayed them directly on the

screen. In this chapter we will at first use an existing data field, upload it to

the GPU and use it as an input field for an example shader to display the data

on the screen. The second part of this section will focus on the redirection of

the output data into another texture to use it in the next render step. With
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that a simple iteration process can be realized, for example for an explicit

time integration scheme. This will be demonstrated using a simple shallow

water equation system.

As an introduction, the header file of the texture class:

1 #include <GL/ g l . h>

2 #include <s t d i o . h>

3

4 class t ex ture

5 {
6 public :

7 GLuint id , fb ;

8 int sx , sy , sz ;

9 f loat ∗data ;

10

11 t ex ture ( int sxn , int syn , int szn ) ;

12 int get index ( int x , int y , int z ) ;

13 void ram2gpu ( ) ;

14 void gpu2ram ( ) ;

15 void s e t ( int x , int y , int z , int c , f loat v ) ;

16 f loat get ( int x , int y , int z , int c ) ;

17 void save ( const char ∗ f i l ename ) ;

18 int load ( const char ∗ f i l ename ) ;

19 void loadpng ( const char ∗ f i l ename ) ;

20 void savepng ( const char ∗ f i l ename ) ;

21 void save jpg ( const char ∗ f i l ename ) ;

22 } ;

Listing 12 The header file for the texture class.

Because GPUs are optimized for two dimensional texture access with up

to four components per pixel, the texture class used in this work, maps a

three dimensional field with four floating point values per cell onto a two

dimensional OpenGL texture field. That is why the constructor for a texture

object needs three parameters, the domain size in the x, y and z dimension

respectively, but constructs a two dimensional OpenGL texture object. The

data pointer points to the first element of the texture data in CPU memory.

The getindex method is used to transfer the coordinate from three dimen-

sional model space into the one dimensional address (the index) in the data
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field.

The two methods ram2gpu and gpu2ram transfer the data field from

CPU- to GPU memory and vice versa. So gpu2ram can be used to retrieve

data from a GPU texture buffer and copy it to CPU memory to finally save

it to disk or perform further analysis. Compared to CPU memory access or

GPU onboard memory access, this data transfer is quite slow and should be

done only if really necessary.

The set and get methods are useful for initializing texture fields in CPU

memory. After the usage of the set method, ram2gpu has to be called to

copy the updated values to the GPU memory. Save and load are used to

save data from CPU memory into a raw binary file or load it from there.

For loading texture data from a file, the texture size has to fit to the input

file. The method loadpng may be used to load an image and use it as an

input data field. Last but not least, there are the two methods savepng and

savejpg to save the data field using a compressed image format into a file,

to directly show it in a viewer or use it for further visualization. Those

two methods and the loadpng method use function calls of the common gd2-

library (http://www.boutell.com/gd/). Hence the image file access functions

only support eight bits per channel, they are not supposed to be used for data

saving and loading, but for visualisation purposes only.

The following code block (listing 13) shows the first example for the usage

of the texture class, where a texture object is constructed, data is loaded from

an existing example image file and used as an input field for a simple shader

that just passes the texture information to the framebuffer to show the image

in the open window.

1 #include <SDL/SDL. h>

2 #include <s t d l i b . h>

3 #include ” openg lcontext . h”

4 #include ” shader . h”

5 #include ” tex ture . h”

6

7 int main ( )

8 {
9 openg lcontext context (800 ,600) ;
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10 shader ∗ s ;

11 t ex ture ∗ t ;

12

13 s=new shader (NULL, ” shaders / t ex ture ” ) ;

14 t=new t ex ture (800 ,600 ,1 ) ;

15 t−>loadpng ( ” t e s t . png” ) ;

16 t−>ram2gpu ( ) ;

17

18 for ( int i =0; i <500; i++)

19 {
20 s−>t [0 ]= t ;

21 s−>bind ( ) ;

22 s−>s tep ( ) ;

23 SDL GL SwapBuffers ( ) ;

24 }
25 }

Listing 13 Main source code for the usage of the texture function. The program loads

an example texture from a file and displays it on the screen.

The created texture object has a vertical (z) size of one, resulting in a

two dimensional image. Using the method loadpng a prepared imagefile is

loaded into the data field. After that the data is copied to the GPU using

ram2gpu. To access the data in a shader kernel, the texture has to be bound

to a texture device. This is done in line 20 where the t[0] pointer is set

to the created texture object. The bind method will then take account on

binding the texture to the appropriate device (in this case the first available

texture device) and passes the texture handle to the shader. Listings 14

and 15 show how the texture data has to be accessed in the shader codes.

Therefore the vertex shader has to be extended to pass texture coordinates

to the fragment shader (line 4), where those are accessible through the built

in array gl TexCoords. Texture coordinates are defined in the shader class

during the step method. In ASAMgpu they are two dimensional and range

from zero to one. So (0, 0) refers to the lower left corner of the texture

and (1, 1) to the upper right. The built-in variable gl MultiTexCoord0 is

interpolated by the GPU texture device to match to the current output

position. The function texture2D in the fragment shader then returns the
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four dimensional data from the texture for the given position.

1 void main ( )

2 {
3 g l P o s i t i o n =gl ModelViewProject ionMatr ix ∗vec4 ( g l Ver t ex ) ;

4 gl TexCoord [0 ]= gl MultiTexCoord0 ;

5 }

Listing 14 The vertex shader for the texture usage example. The so called texture

coordinate has to be passed to the fragment shader and contains the position of the

resulting pixel.

1 uniform sampler2D t0 ;

2

3 void main ( )

4 {
5 gl FragData [0 ]= texture2D ( t0 , vec2 ( gl TexCoord [ 0 ] ) ) ;

6 }

Listing 15 The fragment shader for the texture usage example. The texture coordinate

is used to retrieve texture information using the built in texture2D function.

The result of this texture loading and drawing procedures is shown in

figure 2.

Figure 2 Result of a simple example that loads a texture from a file and displays it on
the screen.
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The second example in this chapter redirects the render output into a

texture. This is done by setting the tout pointer of the shader class to the

desired target texture. Hence OpenGL is able to use several render targets,

tout is implemented as an array. The maximum number of available render

targets is hardware dependent, currently eight is a common number. It is not

recommended to use an input texture as an output texture during the same

render pass, because that will produce so called racing conditions during

parallelization and may lead to unexpected results. The model ASAMgpu

uses up to four render targets simultaneously. The shader class will then

organize the creation of drawbuffers for the target textures and connects the

output of the shader to the target textures drawbuffers. If the tout pointer

is set to NULL the output of the shader will be directed to the display

framebuffer.

The build in array gl FragData provides write access to the available

output framebuffers. For example in listing 15 only the first output buffer

(with the index zero) is used for writing. The main source code is shown in

listing 16. The complete program simply loads the file test.png, copies the

data from texture t1 to texture t2, and writes it back to the file save.png.

1 #include <SDL/SDL. h>

2 #include <s t d l i b . h>

3 #include ” openg lcontext . h”

4 #include ” shader . h”

5 #include ” tex ture . h”

6

7 int main ( )

8 {
9 openg lcontext context (800 ,600) ;

10 shader ∗ s ;

11 t ex ture ∗ t1 ,∗ t2 ;

12

13 s =new shader (NULL, ” shaders / t ex ture ” ) ;

14 t1=new t ex ture (800 ,600 ,1 ) ;

15 t2=new t ex ture (800 ,600 ,1 ) ;

16 t−>loadpng ( ” t e s t . png” ) ;

17 t−>ram2gpu ( ) ;

18
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19 s−>t [0 ]= t1 ;

20 s−>tout [0 ]= t2 ;

21 s−>bind ( ) ;

22 s−>s tep ( ) ;

23

24 t2−>gpu2ram ( ) ;

25 t2−>savepng ( ” save . png” ) ;

26 }

Listing 16 Main source code for using a texture as an output buffer and save the result

to the disk.

Iterative algorithms can be realized by introducing a loop where the out-

put of the shader is used as an input field for the next render step . The

main changes to the former example are the commands for swapping the tex-

ture pointers (listing 17, line 26-28). With that the output texture becomes

the input texture for the next step and vice versa. Explicit time integration

mechanisms can be implemented by using this structure.

1 #include <SDL/SDL. h>

2 #include <s t d l i b . h>

3 #include ” openg lcontext . h”

4 #include ” shader . h”

5 #include ” tex ture . h”

6

7 int main ( )

8 {
9 openg lcontext context (800 ,600) ;

10 shader ∗ s ;

11 t ex ture ∗ t1 ,∗ t2 ,∗ temp ;

12

13 s =new shader (NULL, ” shaders / t ex ture ” ) ;

14 t1=new t ex ture (800 ,600 ,1 ) ;

15 t2=new t ex ture (800 ,600 ,1 ) ;

16 t1−>loadpng ( ” t e s t . png” ) ;

17 t1−>ram2gpu ( ) ;

18

19 for ( int i =0; i <500; i++)

20 {
21 s−>t [0 ]= t1 ;
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22 s−>tout [0 ]= t2 ;

23 s−>bind ( ) ;

24 s−>s tep ( ) ;

25

26 temp=t2 ; // po in t e r swap f o r i t e r a t i o n

27 t2=t1 ;

28 t1=temp ;

29 }
30

31 t2−>gpu2ram ( ) ;

32 t2−>savepng ( ” save . png” ) ;

33 }

Listing 17 Main source code example for a simple iteration process.

2.2 Example: shallow water equation

The last code example in this chapter applies the explained techniques from

last two sections to give an implementation of a shallow water equation sys-

tem on GPUs. For simplicity reasons the equations are implemented in the

non conservative form, using a third order upwind for the spatial discretisa-

tion in the advection scheme and a three step Runge Kutta time integration

method. The used advection and time integration schemes are also used

in the model ASAMgpu and explained in more detail in the next chapter.

Coriolis forces are neglected.

∂h

∂t
= −∇ · (vh) (1)

∂v

∂t
= − (v∇) v − g∇h (2)

The equation system describes the time evolution of a height field (h),

wich is advected with the velocity field (v) and the evolution of the velocity

field that is advected as well and influenced trough the gravitational force if

the height field is not in equilibrium with the adjacent cells. The system can

be interpreted as a limited area of shallow water, where perturbations of the
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height field will cause circular propagating waves in the velocity and height

field (like raindrops in a puddle). Because of the length, the listings for the

main source code and the shader kernel sources for the fragment shaders are

given in the appendix (listings 20-24). The corresponding vertex shaders are

not shown separately, because they are all the same and equal to the one

from the texture example (listing 14). Figure 4 is an overview about the

used textures and shaders and the flowchart of the main program including

data flow through the shaders.

The code uses four texture pointers, one to save the old time step, one

for the right hand side of the equations and one for the new time step. The

fourth pointer is just a temporary help pointer during texture swap (line 98),

so no additional memory is reserved for this one. The first channel of the

data textures contains the current height of the surface and the second and

third channel contain the velocities in x- and y-direction, the fourth channel

is not used in this example. Respectively the first channel for the right hand

side texture contains the source and sinks for the height and the second and

third channel the sources and sinks for the velocities.

Beside the three textures and the swapping pointer the main source de-

fines four shader kernels. The first one is the s plot shader, used to draw

the resulting data into the framebuffer to display it on the screen. To do

that with a water like appearance the current height in a grid cell is mapped

to a colorspace from blue to white. The next shader is the right hand side

(RHS) shader (s rhs) containing the calculations for the sources and sinks for

all three used components, including the upwind scheme and gravity. The

s step shader object performs an Euler step, that means it multiplies the

right hand side with a given time step and adds it to the incoming texture

values. This shader object is used to implement the Runge Kutta scheme.

The last shader is the s drop shader, used to add a perturbation to the height

field. This perturbation is added in the main function at a random position

every 100th time step (line 50-58).

After the initialisation of the shaders and the texture fields, the mainloop

starts. During this the pertubation is applied, which in this case is effectively

just drawing one point with the defined pointsize directly into the height
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field using the s drop shader object. The next lines define the Runge Kutta

scheme. Therefore at first the s rhs is executed to calculate the forcings.

Then a step forward in time with a third of the complete time step is done.

With this intermediate state, new forcings are calculated and integrated in

time from the original state up to half of the target time step. There again

new forcings are evaluated and used for the complete time step giving an

approximation for the new state. When all three Runge Kutta stages finished

the new and old time step textures are swapped and the current state is

plottet using the s plot shader. One possible result after 500 frames is shown

in figure 3.

Figure 3 Simple visualisation of the shallow water example height field after 500 frames
using the 2d color plot shader.
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Figure 4 Flowchart, texture- and shader reference card for the simple shallow water
example. The texture reference displays the used textures with the included components
(height, velocity fields, fourth channel is unused). The shader reference gives a short idea
of the shader task. The flowchart is a visualisation of the program and data flow with
input textures on the left side and the output texture on the right side.
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3 The Model ASAMgpu

This section describes the application of the developed shader and texture

classes presented in the last chapter for a local to regional scale atmospheric

model. Parts of this description including governing equations, the new en-

tropy variable, the handling of the microphysical forcings and some of the

examples in the next chapter were already published in Horn [2012].

The main interest during this development process was to gain under-

standing in high resolution cloud modeling including microphysical parame-

terizations that are suitable to study the influences of different aerosol con-

centrations on cloud properties and drizzle formation. At the same time the

model had to be fast enough to perform calculations in three dimensional

domains with an as large horizontal extend as possible to capture complete

cloud systems. Because the focus lay on marine stratocumulus and shal-

low cumulus cloud decks without ice, the microphysical parameterisation is

restricted to warm cloud processes.

The modelling process started with the implementation of a basic fully

compressible computational flow model (CFD), including transport equations

for density and momentum. In the next step a prognostic entropy variable

and the according equation was added. The development then was contin-

ued by adding moisture variables, like water vapor and cloud water and the

necessary equations to parameterize the phase transition from water vapor

to cloud water. With that the term for the latent heat release had to be

added in the entropy equation. Finally to study aerosol cloud interactions

a two moment microphysical parameterisation for warm cloud processes was

added including number densities for the different water phases as prognostic

variables. The so developed model was then used to perform some theoret-

ical experiments to verify the implemented processes and also one practical

application is presented.

The model is written in C++, using OpenGL and GLSL. It is embedded

in a web server environment using the Apache web server and PHP for remote

development, runtime control and analysis. Two GPU server nodes were set

up during the development. Both devices were assembled by Supermicro,
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with space for four GPUs and Intel Xeon CPUs. The first node is equipped

with four Xeon 5530 with four cores each, and the second one with four

Xeon X5650 with six cores each. The model ASAMgpu does not benefit

from the higher CPU core count, because it uses one thread per GPU, so

never more then four threads were used. The first server is equipped with

two ATI Radeon HD 4890 graphics cards with 1 GB memory per device and

the second server node with four ATI Radeon HD 5870 with 2 GB memory

each. Theoretical peak performance for the first node is 2.7 TFlops and the

second reaches about 11 TFlops. In practice this values are decreased by

communication costs through the relative slow PCI Express 2.0 bus. The

final caluclations were performed with a single AMD R9 290 Tri-X with 4

GB memory and a theoretical peak performance of 5.12 TFlops.

3.1 Governing equations

The equations used in the GPU-Model are a form of the Euler equations

for a compressible fluid in conservative form where the conservation of mass

is applied for the bulk density (ρ). In addition further transport equations

for the partial phases water vapor density (ρv), cloud water density (ρc) and

rain water density (ρr), including the source terms from the microphysics

(SρiMP ) are used. The momentum equation is the standard Euler equation

using bulk density and bulk momentum. The energy equation is written

in the form of an entropy variable (σ) derived in section 3.4. In addition

to the mass density transport equations, similar equations are included for

available cloud condensation nuclei density (NCCN), cloud droplet density

(Nc) and rain droplet density (Nr), again with sources from the microphysical

parameterization (SNiMP ). These source terms include mass transfer between

the different phases and changes in number densities due to the processes of

condensation and evaporation, activation, selfcollection, autoconversion and

sedimentation.

Subgrid scale turbulence, the Coriolis force and ice-phase microphysics
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are currently ignored. So the basic equations can be written as follows:

∂ρ

∂t
+∇ (vρ) = 0 (3)

∂ρi
∂t

+∇ (vρi) = SρiMP i = v, c, r (4)

∂Ni

∂t
+∇ (vNi) = SNiMP i = CCN, c, r (5)

∂ρv

∂t
+∇ (ρv · v) = −∇p− ρg (6)

∂ρσ

∂t
+∇ (vρσ) = SρσMP (7)

3.2 Spatial discretization

ρw

ρv

ρu

All other scalars

X

y

z

Figure 5 Illustration of the used Arakawa-C grid. The momentum variables are stored
on the left face in the particular direction, all other scalars in the center of the gridcell.

The model uses a staggered grid (Arakawa-C, figure 5) with cell centered

scalars and the velocity components stored at corresponding faces. For the

advection scheme the scalars are interpolated to cell faces using a third order

upwind scheme without limiters once every Runge Kutta intermediate step.

The bottle neck for GPGPU is the PCIe bus, which is very slow compared to

internal GPU communication, so that such a small stencil strongly increases

performance on multi GPU setups. Listing 18 shows the equations for the

fluxes at cell faces in the case of positive and negative wind velocity and the

final flux divergence through advection in X-direction. The used variables
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are illustrated in figure 6. The velocities ulf and urf are computed from

the face centered momentum values divided by the arithmetic mean of the

adjacent cell centered densities. Fxlp and Fxrp are the fluxes at the left and

right cell face in case of positive wind speed at the according face, respectivly

Fxlm and Fxrm are the fluxes in case of negative wind velocity. Hence all

variables were initialized with zero, the result Fx is the final flux divergence

in the cell for the advection in X-direction.

Fxl
ulf

CCxlCxll Cxr CxrrFxr
urf

Figure 6 Illustration of the upwind stencil for u > 0, the variable c represents the cur-
rently advected scalar variable. F and u are the flux and the velocity at the corresponding
face.

1 i f ( u l f >0.0) Fxlp=u l f ∗( c /3 .+5 ./6 .∗ cxl−c x l l / 6 . ) ;

2 i f ( urf >0.0) Fxrp=ur f ∗( cxr /3 .+5 ./6 .∗ c− cx l / 6 . ) ;

3 i f ( u l f <0.0)Fxlm=u l f ∗( cx l /3 .+5 ./6 .∗ c− cxr / 6 . ) ;

4 i f ( urf <0.0)Fxrm=ur f ∗( c /3 .+5 ./6 .∗ cxr−cxr r / 6 . ) ;

5 Fx=(Fxlp−Fxrp+Fxlm−Fxrm) /dx ;

Listing 18 Code snippet showing the third order upwind interpolation used in the

advection scheme.

For the application of the upwind scheme during the evaluation of the

momentum equation, the face centered values are shifted to cell centered

values. This is done by a simple shader called FaceToCell which computes the

arithmetic mean of the according momentums. The computed cell centered

momentum values are stored and then processed similar to the advection

step for the other scalar variables. The derived source values for momentum

are now positioned in the cell center, so they have to be shifted back to face

centered values. This happens again using the simple arithmetic mean of the

sources in the adjacent cells.
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3.3 Time integration

The time integration scheme follows Wicker and Skamarock [1998], using

an explicit three step Runge Kutta scheme (RK3) with a time splitting algo-

rithm for the fast pressure waves, which are integrated using a simple leapfrog

algorithm. The Butcher tableau of the used low-storage RK3 is shown in fig-

ure 7. This RK3-Leapfrog combination has to be stabilized using divergence

damping.

0
1
3

1
3

1
2

0 1
2

0 0 1

Figure 7 Butcher tableau of the used Runge Kutta scheme

During every acoustic timestep pressure gradients and microphysical pro-

cesses are computed. Similar time integration methods are commonly used

by Bryan and Fritsch [2002], in the weather research forecast model (WRF,

Skamarock and Klemp [2008]), and the COSMO by the german weather ser-

vice (DWD).

3.4 A new thermodynamic variable

To describe atmospheric processes including heat fluxes, radiation and phase

transitions, the set of equations presented in the last section include a prog-

nostic equation describing the transport and the sources and sinks for en-

ergy. This can be done using different thermodynamic variables, e.g. the

total energy, temperature, potential temperature, equivalent potential tem-

perature or entropy. During this work a new variable was derived with some

important and practical properties. At first it should be conserved during

isentropic processes like advection, so no additional source terms containing

gradients of vertical velocity or pressure appear in the transport equation

in the case without a phase transition. Second, the absolute temperature

and the pressure are needed for the computation of boundary conditions,

microphysics and the evaluation of the pressure gradient in the momentum
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equation, so those values should be explicitly computable. And the source

terms in case of a phase transition should be derivable easily. This section

shows the derivation of such a variable.

Starting with the first law of thermodynamics, written in specific quan-

tities, including phase transition from water vapor to liquid water

du (s, α, ρl, ρv) = Tds− pdα +
1

ρ
(µv − µl) dρv (8)

with the definitions of enthalpy and latent heat

h = u+ pα and Lv = (µv − µl) (9)

we get

dh = Tds+ αdp+
1

ρ
Lvdρv (10)

Introducing the definitions of specific heat capacity at constant pressure and

the gas constant for a mixture,

dh = CpmldT (11)

Cpml =
ρdcpd+ρvcpv+ρlcpl

ρ
and Rml = ρdRd+ρvRv

ρ
(12)

and the equation of state for a vapor air mixture

α =
RmlT

p
(13)

we get

CpmldT = Tds+
RmlT

p
dp+

Lv
ρ
dρl (14)

or

ds =
Cpml
T

dT − Rml

p
dp− Lv

ρT
dρl. (15)
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Integration leads to

s = Cpml ln (T )−Rml ln (p)−
∫

Lv
ρT

dρl + C0 (16)

Introducing a quantity σ as a measure for entropy content caused by tem-

perature and pressure

σ = Cpml ln (T )−Rml ln (p) (17)

leads to

s = σ −
∫

Lv
ρT

dρl + s0 (18)

For the phase transition from vapor to liquid water the assumption of con-

servation of total mass (dρd
dt

= 0; dρv
dt

= −dρl
dt

) yields

ds

dt
=

dσ

dt
− 1

ρ
(Cpl − Cpv) ln (T )

dρl
dt
− 1

ρ
Rv ln (p)

dρl
dt

−Lv
ρT

dρl
dt

(19)

with

ds

dt
=

1

T
δQ (20)

we get the evolution equation for ρσ

(
∂ρσ

∂t
+∇ (vρσ)

)
=

ρ

T
δQ+ (Cpl − Cpv) ln (T )

dρl
dt

+Rv ln (p)
dρl
dt

+
Lv
T

dρl
dt

(21)

The so derived quantity has the desired advantages. First it is conserved

under adiabatic processes without phase transitions. Second, explicit equa-

tions for absolute pressure and temperature can be obtained.
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T = exp

(
σ

Cpml −Rml

+
ln (ρRml)

Cpml/Rml − 1

)
(22)

p = exp

(
σ

Cpml −Rml

+
ln (ρRml)

1−Rml/Cpml

)
(23)

And last but not least the source terms in the case of a phase transition

in equation 21 are very simple.

3.5 Microphysics

The model includes a two moment microphysics, based on the work of [Seifert

and Beheng 2006] (SB2005), but not all processes described by SB2005 are

included. Processes currently implemented are activation of cloud condensa-

tion nuclei to cloud droplets, condensation and evaporation of water vapor

to/from these droplets, selfcollection of cloud droplets, autoconversion from

cloud droplets to rain droplets, selfcollection of rain droplets, accretion of

cloud droplets by rain, sedimentation and evaporation of rain drops. Col-

lisional breakup and ice-phase microphysics as very important processes in

deep convective clouds are neglected, because the focus was on shallow cumu-

lus convection. The advection without limiters and numerical errors during

the condensation/evaporation process causes unphysical small negative val-

ues in the prognostic mass and number density variables, so all negative

densities have to be clamped to zero for the parameterizations after SB2005.

All transition rates are processed by an additional limiter which ensures that

negative values will be drawn back to zero and transition rates will not ex-

ceed available quantities. For this limiter the unclamped values have to be

used.

3.5.1 Limiter example: activation

Detailed description for the microphysical source terms can be found in

SB2005. In the ASAMgpu model these source terms are modified to in-

crease robustness and to handle negative values caused by the third order
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advection scheme without flux limiter. In this section this algorithm is pre-

sented using the example of activation from cloud condensation nucleis to

cloud droplets. After SB2005 the activation rates are nonzero if the cell is

supersaturated (S > 0.0), the vertical velocity is positive (w > 0.0 m/s), the

gradient of supersaturation in vertical direction is positive (dS/dz > 0.0 m−1)

and the temperature is above 233.15 K (T > 233.15 K). In this context S is

the supersaturation in percent. In SB2005 a power law is used as an empirical

activation spectra to compute available CCN number density as a function

of supersaturation and a background density. In the ASAMgpu model this

background density Nccn of available cloud condensation nuclei is an advected

prognostic variable as well. With that the activation rate is given by

∂NcSB

∂t
= Nccnkccn

1

S

dS

dz
w (24)

In the ASAMgpu model this activation rate gets limited by the unclamped

available cloud condensation nuclei density (Nccn) using a form of the tri-

angle inequality (Eq. 26). The result of this limiting procedure is near the

(for)cing if the (lim)iter is much larger then the forcing. This is the case if

a huge quantity of cloud condensation nuclei is available. If the forcing is

near the limiter, the process is damped to not consume more then the avail-

able Nccn. But if the limiter is negative the equation always gives a result

that compensates the negative values and draws them back to zero, while

conserving mass and number density budgets.

for =
∂NcSB

∂t
(25)

lim = Nccn (26)

∂Nccn

∂t
= for + lim−

√
for2 + lim2 (27)

The mass change from water vapor to cloud water can be calculated assuming

all activated droplets contain an arbitrary small drop mass of 10−12 kg. The

condensed water mass determines the source from latent heat and the change

in ρσ caused by the change of mass fractions in the gas constant and heat
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capacity of the mixture.

∂ρc
∂t

= 10−12kg
∂Nc

∂t
(28)

∂ρσ

∂t
= Lv

1

T

∂ρc
∂t

+ ln (T ) (Cpl − Cpv)
∂ρc
∂t

(29)

+ ln (p)Rv
∂ρc
∂t

(30)

3.5.2 Condensation and evaporation of cloud water

The saturation adjustment technique is a common method, to calculate the

amount of water vapor condensed during a timestep. Therefore all micro-

physical parameterizations are processed and after that the complete fraction

of water vapor above the saturation level is handled as condensate. In this

approach supersaturation is reduced immediately and the time integration

for the microphysics has to be processed separately. In the ASAMgpu model

the saturation adjustment technique was replaced by a relaxation process

from vapor pressure to saturation vapor pressure. The forcing for this pro-

cess is the difference between actual water vapor density and the water vapor

density at saturation point. The process is limited by the available cloud wa-

ter, so condensation occurs at supersaturation and evaporation occurs if the

gridcell is unsaturated and cloud water is available. The time scale of this

process is controlled by a constant Ccond. If this constant is very high, the

scheme is near the saturation adjustment technique and supersaturation will

be decreased nearly instantly. With a very low constant this process gets

too slow and convection may be suppressed, in this case the moist bubble

example presented later will produce wrong results. A constant set to 0.1

seems to be a good choice.

for = ρv − (pvsT/Rv) (31)

lim = ρc (32)

∂ρc
∂t

= Ccond

(
for − lim+

√
for2 + lim2

)
(33)
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Again from the condensed/evaporated mass the necessary source/sink from

latent heat release/consumption for the entropy variable has to be derived.

dρσ

dt
=

(
Lv

1

T
+ ln (T ) (Cpl − Cpv) + ln (p)Rv

)
dρc
dt

(34)

Two more simple equations are used to ensure that, if no condensate

exists, droplet number density reduces to zero, or if condensate exists droplet

number density is within the limits defined by the distribution parameters

(see SB2005). The speed of this correction is controlled by the constant C

currently set to 0.01s−1. This process is a transition between available cloud

condensation nuclei number density and cloud droplet number density, so

evaporated droplets produce new possible cloud condensation nuclei. These

corrections are reducing Nc if droplets get to small according to appendix D

in SB2005.
dNc

dt
= min

(
0, C

(
ρc
xmin

−Nc

))
(35)

and increasing Nc if droplets get to big

dNc

dt
= max

(
0, C

(
ρc
xmax

−Nc

))
(36)

with
dNccn

dt
= −dNc

dt
(37)
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4 Applications

This section presents applications simulated with the ASAMgpu model. The

first four examples are simple setups with the focus on testing the model dy-

namics and the basic functionality of the microphysical implementation. The

first example is a dry convection between two plates, with a positive sensible

heat flux at the bottom surface and a negative one at the top. The next test

case is a rising heat bubble in a dry atmosphere. The third case is a cold pool

falling to the ground, inducing a strong density current, and the fourth sim-

ple case is a heat bubble in a moist environment slightly above the saturation

point, where the latent heat released during condensation is a crucial factor

for the bubble to rise to the final height. To test the complete microphysics in-

cluding selfcollection, autoconversion, sedimentation and evaporation of rain

marine stratocumulus and shallow cumulus cloud layers are good examples.

The Global Atmospheric System Studies (GASS, formerly known as GCSS)

boundary layer cloud group which is part of the Global Energy and Water

Exchanges Project (GEWEX Cloud System Science Team [1993]) formulated

some interesting test cases, used for LES model inter comparisons. Three of

those, the BOMEX (Siebesma et al. [2003]), DYCOMS (Stevens et al. [2005])

and RICO (VanZanten et al. [2011]) case, were choosen to evaluate the mi-

crophysical performance of the model ASAMgpu. The simulations with a

typical domain size of 256 × 256 × 64 cells at a resolution of 60 m, a time

step of 1 s with 18 acoustic steps and a simulation time of 24 hours could be

realized within 16 hours computation time on one single GPU. As a more

practical oriented application the ASAMgpu was also used to investigate the

influence of an island on the structure of the marine boundary layer during

the SAMUM-II campaign on Cap Verde Island (Engelmann et al. [2011]).

4.1 Dry thermally driven boundary layer

As an example for a dry boundary layer test case, the setup consists of two

imaginary very large plates, where the bottom one was heated and the top

plate was cooled down. Both with equal constant sensible heat fluxes like

shown in figure 8.
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Figure 8 Schematic view of the test environment for the thermally driven boundary
layer.

If an initial break of symmetry is model inherent a convective boundary

layer evolves, otherwise the initial symmetry has to be broken by an artificial

perturbation. This may be a noise or a still symmetric perturbation. The

three examples show three dimensional domains, with a surface heat flux at

the bottom of 50 Wm−2 and respectively −50 Wm−2 at the top of the domain.

The initial perturbation in the first case is a small temperature derivation of

10−3 K in the center cell of the domain. In the second case, a regular pattern

of sixteen equally distributed cells were perturbed. Finally for the third case

a random noise was applied to the density field in the boundary layer. The

domain size for the three dimensional simulation was 256× 256× 16 cells at

a spatial resolution of 250 × 250 × 50 m and an advective time step of one

second.

Figure 9 shows the vertical velocity for a horizontal cutplane at the height

of 400 m above surface for the case with one single initial perturbation in the

center of the domain. At the beginning of the simulation the first layer at

the bottom gets heated and the upper most layer gets cooled. This induces

pressure waves. In the case without perturbation, these pressure waves are

planar waves traveling up and down in the domain, resulting in an expansion

of the air at the lower surface and a contraction of the cooled air at the top.

Hence the heating and cooling is isotropic, the horizontal pressure gradient

is zero everywhere and no horizontal motions evolve. The change in density

through cooling and heating produces vertical motions only.
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Figure 9 Horizontal cutplane at half of the domain height for the vertical velocity for
one central initial perturbation after 8 hours.
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Figure 10 Vertical cutplane for the vertical velocity and potential temperature deviation
for one central initial perturbation after 8 hours.
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In the presence of a perturbation, small pressure gradients cause spher-

ically propagating fluctuations in the horizontal and vertical velocity fields.

At the heated bottom layer even a small convergence of warm air is a self

amplifying process. If a small updraft of warm air exists, it reduces pressure

at the lowest layers resulting in a convergence of warm air to resupply the

updraft. It is sustained or intensified as long as warm air is available. A sym-

metric process causes cold downdrafts in the cooled layer at the top of the

domain for the air with lower temperature and higher density. The amount

of energy and mass transported from the bottom to the higher layers has to

be in balance with the amount transported down from the top. The overall

mean temperature of the system remains constant, nevertheless a fraction

of the energy fluxe is converted to turbulent motion accelerating the circu-

lation between the two plates. The grid size, the geometry of the domain

in combination with the initial perturbation and the numerical diffusion de-

termine the resulting pattern. With time the cells grow and high frequency

oscillations are damped by the numerical diffusion of the upwind advection

scheme. Larger cells grow more rapidly and acquire the supply of warm air,

which then is missing for smaller cells resulting in their dissolution.

Figure 11 shows the same cutplane as in the single perturbation case

but with sixteen equally distributed small initial perturbations. The initial

symmetry is conserved and in contrast to the large convection cell in figure 9

sixteen smaller equal convection cells occur. The induced symmetry patterns

are conserved for the complete model runtime.

For the last simulation again the vertical velocity in the two cutplanes

are shown in figure 13 and 14. But in contrast to the last both examples this

time the initial perturbation is a small random temperature derivation below

10−3 K. The results for the simulation with the applied random noise appear

quite similar to structures that can be observed in simulations of inversion

topped boundary layers as well. The conservation of symmetry in the first

two examples is an indicator for the correct numerical implementation of the

advection and the pressure gradients in the momentum equation.
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Figure 11 Horizontal cutplane at half of the domain height for the vertical velocity for
sixteen symmetric initial perturbations after 8 hours.
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Figure 12 Vertical cutplane for the vertical velocity and potential temperature deviation
for sixteen symmetric initial perturbations after 8 hours.
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Figure 13 Horizontal cutplane for the vertical velocity at half of the domain height
after 8 hours. In this case the initial state was perturbed with a small random noise in
the temperature field.
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Figure 14 Vertical cutplane for the vertical velocity and potential temperature deviation
after 8 hours for the randomly perturbed case.
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4.2 Dry heat bubble

The second test is a rising heat bubble under dry conditions embedded in a

uniform horizontal flow field (Bryan and Fritsch [2002]). This test focuses on

the representation of the advection terms and the correct evaluation of the

buoyant forces in the momentum equation. The domain size is 160× 80 cells

at a spatial resolution of 125 m with periodic horizontal boundary conditions.

The initial state consist of an adiabatic atmosphere with a perturbation in

the potential temperature. The amplitude of the perturbation is 2 K with a

radius of 2 km. The bubble is located in the horizontal center of the domain

at 2 km height described by

xc = 10000 m zc = rx = rz = 2000 m (38)

L =

√(
x− xc
rx

)2

+

(
z − zc
rz

)2

(39)

θ′[K] = 2 cos2
(
πL

2

)
(40)

A uniform horizontal velocity of 20 m/s is applied, leading to a transport

of the bubble through the whole domain and the boundaries. After 1000 s a

complete cycle is fulfilled and the bubble reaches the center of the domain

again. The time steps for this test case were chosen after Jebens et al. [2009]

with 2 s and 10 fast pressure steps and 7 s and 30 pressure steps as well.

Divergence damping with a damping coefficient of ν = 0.025 is used. The

results for both time steps are equal and shown in figure 15. The bubble

rises up until the top of the bubble reaches a height of 8 km. As expected the

solution keeps more or less symmetric, small deviations are caused by the

horizontal background flow which causes different horizontal velocity ampli-

tudes in the right and the left circulating part of the bubble and with that

also different numerical diffusion.
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Figure 15 Result for the heat bubble test case after 1000 s (contours: pot. temp.
0.25 K).

4.3 Dry cold bubble

The third test case by Straka et al. [1993] has a slightly larger domain than the

second one and in contrast to the heat bubble the perturbation now consist

of a cold pool. During the simulation the cold pool descends until it reaches

the surface where the cold air starts to spread in the horizontal direction.

Two symmetric outflow boundary jets develop with high wind speeds moving

in opposite direction with several typical vortex structures evolving. Those

high wind speeds are a good test for the stability properties of the used time

integration scheme. Again the initial state is a dry, adiabatic atmosphere

with a uniform horizontal velocity field of 20 m/s. The domain now has

180 × 80 cells at a resolution of 200 m. With that one cylce needs 900 s.

The bubble is initialized in the horizontal center of the domain again, but

now at 4 km height, and the horizontal radius is extended to 4 km as well.

The amplitude of the pertubation is 15 K and applied to the temperature

described by:
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xc = 18000 m zc = rx = 4000 m rz = 2000 m (41)

L =

√(
x− xc
rx

)2

+

(
z − zc
rz

)2

(42)

T ′[K] = −15 cos2
(
πL

2

)
(43)

The large timestep is 2 s and with that six pressure time steps are needed

at this spatial scale to satisfy the Courant Fredrich Levy criteria for the

acoustic waves. Again, divergence damping is necessary with a damping

coefficient of ν = 0.025. The result after one complete cycle is shown in

figure 16. Compared to the results of Jebens et al. [2009] and Wicker and

Skamarock [2002] the overall structure is reproduced, but the solution is more

diffusive. This is caused by the implemented 3rd order upwind advection

scheme, in contrast to the 5th order advection schemes used by the cited

studies.
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Figure 16 Result for the cold bubble test case after 900 s (contours: pot. temp. 1K).

4.4 Moist heat bubble

The fourth test case for the GPU model is a modification of the rising heat

bubble. It was suggested by Bryan and Fritsch [2002], and is also a test for a

part of the microphysics. In this case the initial state is again a hydrostatic
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atmosphere with neutral stability for moist air. To simplify the definition of

neutral stability for the moist case two assumptions are made. The first one

is that the total water mixing ratio is constant and the second one is that

all phase changes are exactly reversible. Under these assumptions a moist

neutral atmosphere can be defined by a constant wet equivalent potential

temperature, therefore the atmosphere has to be saturated at all levels. For

this test the microphysical parameterisation is reduced to the reversible phase

change, respectively only the processes of activation and condensation/evap-

oration are enabled. The simulation is a good proof for the condensation

rates and the amount of latent heat release. If those are to slow the bub-

ble stops rising and will not reach the final height of 8 km after 1000 s. All

other parameters are similar to the dry heat bubble test case, that includes

a slightly different resolution than in the work of Bryan and Fritsch (125 m

vs 100 m), an advective timestep of 7 s with six steps for the acoustic modes

and 20 m/s horizontal wind. The perturbation are added to a 320 K back-

ground equivalent potential temperature and are described by the following

formulars.

xc = 10000 m zc = 2000 m rx = rz = 2000 m (44)

L =

√(
x− xc
rx

)2

+

(
z − zc
rz

)2

(45)

θ′[K] = 2 cos2
(
πL

2

)
(46)

The simulation results, shown in figure 17, should reproduce the structure

and the lifting height of the dry heat bubble, but now in the potential liquid

water temperature. Except for slight over- and undershoots caused by the

advection scheme the results are in good agreement with the work of Bryan

and Fritsch [2002].
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Figure 17 Result for the moist heat bubble test case after 1000 s (contours: equiv. pot.
temp. 0.5K).

4.5 Trade Cumulus: BOMEX

The first more complex test case simulated with the ASAMgpu model frame-

work is based on the Barbados Oceanographic a Meteorological Experiment

(BOMEX) from the GASS LES inter comparison cases for shallow cumulus

cloud convection. This experiment was carried out in 1969 with the objec-

tive to determine surface exchange fluxes between the ocean surface and the

lower atmosphere. Later, based on the measurements, different LES studies,

for example from Jiang and Cotton [2000], Heus et al. [2010] and a LES inter

comparison from Siebesma et al. [2003], were realized. The surface fluxes

are prescribed as fixed with 8 W/m2 sensible and 150 W/m2 latent heat flux.

The wind speed is constant at −8.75 m/s in the mixing layer up to a height

of 700 m and then increasing at a rate of 1.8 m/s per kilometer.

u[m/s] = −8.75 for 0 < z < 700 m

u[m/s] = −8.75 + 1.8 · 10−3(z − 700) for z > 700 m
(47)

The background profiles for the total water content and the liquid poten-

tial temperature are given as follows:
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qt[g/kg] = (48)

0 < z <520 17.0 + (16.3− 17.0)/(520) ·z

520 < z <1480 16.3 + (10.7− 16.3)/(1480− 520) ·(z − 520)

1480 < z <2000 10.7 + ( 4.2− 10.7)/(2000− 1480) ·(z − 1480)

z >2000 4.2− 1.2 · 10−3 ·(z − 2000)

θl[K] = (49)

0 < z <520 298.7

520 < z <1480 298.7 + (302.4− 298.7)/(1480− 520) ·(z − 520)

1480 < z <2000 302.4 + (308.2− 302.4)/(2000− 1480) ·(z − 1480)

z >2000 308.2 + 3.65 · 10−3 ·(z − 2000)

Further applied large scale forcings are a subsidence, a radiative cooling

of 2 K day−1, and a large scale advection term which emulates the transport

of dry air into lower boundary layers

wsubsidence[m/s] = (50)

0 < z <1500 − (0.0065/1500) ·z

1500 < z <2100 − 0.0065 + 0.0065/(2100− 1500) ·(z − 1500)

z <2100 0.0

dθ/dt[K/s] = (51)

0 < z <1500 − 2.315 · 10−5

1500 < z <2500 − 2.315 · 10−5 + 2.315 · 10−5/(2500− 1500) · (z − 1500)

z >2500 0.0
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dqt/dt[g/kg day−1] = (52)

0 < z <300 − 1.2 · 10−8

300 < z <500 − (1.2 · 10−8 − 1.2 · 10−8 · (z − 300)/(500− 300))

z >500 0

The BOMEX test case reaches a steady dynamic state with clouds evolv-

ing and evaporating without recognizeable influence of precipitation. The

cloud base is at 600 m and cloud top is between 1700 m and 2000 m. To

break the symmetry of the setup, small perturbations are added to the po-

tential temperature and the total water content. Those perturbations have

an amplitude of 0.1 K for the temperature and 2.5·10−2g/kg for the moisture.

The domain size for this simulation consists of 256× 256× 64 cells at an

isotropic resolution of 50 m. An advective time step of one second with 18

acoustic steps was chosen.

Figure 18 shows domain averaged values for the liquid water path (LWP),

the cloud fraction and the vertically integrated turbulent kinetic energy

(TKE). The begin of the simulation is dominated by the spin up process,

where the yet non existing vertical velocities have to evolve versus the shear

in the horizontal wind speed. While this happens moisture and heat accu-

mulates in the lower layers of the boundary layer. When the buoyant forces

get strong enough convection organizes and the accumulated heat and mois-

ture reaches the condensation level. A strong peak in liquid water path is

observable during that spin up process. In comparison to the other BOMEX

simulations, that took part in the inter comparison project, this peak is

stronger in the ASAMgpu, and it needs about 3 to 4 hours to reach the

steady state. This can be explained through the non existing explicit sub-

grid turbulence model. Such a turbulence model may accelerate the erosion

of wind shear and enhance the diffusion. This leads to less concentrated

energy in the surface layer and hence a reduced spin up time.

After the spin up phase a more stable convection develops. This consists

of rising heat and moisture bubbles, reaching condensation level at 600 m.
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Figure 18 Domain averaged liquid water path (LWP), cloud fraction and vertically
integrated turbulent kinetic energy (TKE) of the first 16 hours of the BOMEX test case.

At this height supersaturation occurs and activation of cloud droplet nucleis

and condensation sets in. Latent heat release allows a further rising of the

now existing cloud up to the inversion between 1500 m and 2000 m. During

that the cloud gets slightly sheared with the mean wind and dryer air is

entrained at the downstream side resulting in evaporation and cooling. A

few well organized updrafts reach maximum heights of 1900 m.

The liquid water path and the turbulent kinetic energy show a very slight

increase over the complete 16 hours simulation time while the cloud fraction

remains constant. The liquid water path reaches values between 10 g/m2

and 15 g/m2. The cloud cover ranges from 0.1 up to 0.2. All values are in

good agreement with the results of Siebesma et al. [2003] (figure 19) although

the liquid water path is a bit overestimated. The resolved turbulent kinetic

energy is with 250 kgm2/s2 slightly lower compared to about 400 kgm2/s2

at Siebesma et al. [2003]. This is also recognizeable in the comparison of

the vertical profiles of the turbulent kinetic energy in figures 20 and 21.
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Figure 19 Time evolution of the first 6 hours of the BOMEX test case after Siebesma
et al. [2003].

One possible reason for this is the quite diffusive third order upwind scheme

for advection which dissipates higher frequency oscillations and eddies. The

strongest deviation is located near the surface, where the TKE from Siebesma

et al. [2003] shows values up to 0.4 m2/s2 while the maximum TKE value in

the model ASAMgpu is at 0.25 m2/s2 (see figure 20 and 21). Above the

near surface maximum both models show a decrease of TKE above 500 m

and a second peak at 1500 m. Again the second peak in ASAMgpu is not as

strong as the median from Siebesma et al. [2003]. Also the distribution of the

liquid water content with height differs from the ensemble mean. The model

ASAMgpu produces a stronger peak with 0.010 g/kg at a height of about

900 m and then decreases to 0.003 g/m3 at 1600 m. This peak can not be

found in the profile from Siebesma et al. [2003], where a more homogeneous

distribution of the liquid water content with height is presented. The work

of Slawinska et al. [2011] showed similar vertical profiles for cloud fraction

and cloud droplet density like the ASAMgpu model, if in cloud activation
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of cloud condensation nuclei is suppressed. The referred work uses a two

moment warm microphysical scheme by Morrison and Grabowski [2008]. The

profiles in Slawinska et al. [2011] change to the more isotropic behaviour with

enabled in cloud droplet activation. The background density of potential

cloud condensation nuclei for the ASAMgpu runs is initialized with 100 mg−1.

This leads to a maximum of domain averaged cloud droplet density of 1.5 ·
106/m3. Together with a cloud fraction of 0.08, which is the number of cells

with more than 0.01 g/kg liquid water related to total number of cells at that

level, and an approximated air density of 1 kg/m3, this leads to a medium

cloud droplet density of 20 mg−1 which is in good agreement with the work

of Slawinska et al. [2011]. The liquid water path and the turbulent kinetic

energy show a very slight increase over the complete 16 hours simulation time

while the cloud fraction remains constant. The liquid water path reaches

values between 10 g/m2 and 15 g/m2. The cloud cover ranges from 0.1 up

to 0.2. All values are in good agreement with the results of Siebesma et al.

[2003] (figure 19) although the liquid water path is a bit overestimated. The

resolved turbulent kinetic energy is with 250 kgm2/s2 slightly lower compared

to about 400 kgm2/s2 at Siebesma et al. [2003]. This is also recognizeable

in the comparison of the vertical profiles of the turbulent kinetic energy in

figures 20 and 21. One possible reason for this is the quite diffusive third order

upwind scheme for advection which dissipates higher frequency oscillations

and eddies. The strongest deviation is located near the surface, where the

TKE from Siebesma et al. [2003] shows values up to 0.4 m2/s2 while the

maximum TKE value in the model ASAMgpu is at 0.25 m2/s2 (see figure 20

and 21). Above the near surface maximum both models show a decrease of

TKE above 500 m and a second peak at 1500 m. Again the second peak in

ASAMgpu is not as strong as the median from Siebesma et al. [2003]. Also the

distribution of the liquid water content with height differs from the ensemble

mean. The model ASAMgpu produces a stronger peak with 0.010 g/kg at a

height of about 900 m and then decreases to 0.003 g/m3 at 1600 m. This peak

can not be found in the profile from Siebesma et al. [2003], where a more

homogeneous distribution of the liquid water content with height is presented.

The work of Slawinska et al. [2011] showed similar vertical profiles for cloud
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fraction and cloud droplet density like the ASAMgpu model, if in cloud

activation of cloud condensation nuclei is suppressed. The referred work uses

a double moment warm microphysical scheme by Morrison and Grabowski

[2008]. The profiles in Slawinska et al. [2011] change to the more isotropic

behaviour with enabled in cloud droplet activation. The background density

of potential cloud condensation nuclei for the ASAMgpu runs is initialized

with 100 mg−1. This leads to a maximum of domain averaged cloud droplet

density of 1.5 · 106/m3. Together with a cloud fraction of 0.08, which is the

number of cells with more than 0.01 g/kg liquid water related to total number

of cells at that level, and an approximated air density of 1 kg/m3, this leads

to a medium cloud droplet density of 20 mg−1 which is in good agreement

with the work of Slawinska et al. [2011].

Figure 23 shows the mean power spectrum in space at a height of 150 m

integrated over the last 2 hours of the simulation. To achieve this spectra

256 horizontal lines were sampled and analyzed using a Fast Fourier Trans-

formation (FFT). The showed spectrum is the average of the spectra for

every single horizontal line and for every time step during the last two hours.

The dotted line represents the theoretical decay of the spectral density in

the inertial subrange of the spectra. The model reproduces the dissipation

for larger eddies and increases dissipation in the higher frequencies. Espe-

cially in the direction parallel to the mean wind velocity (X) the −5/3 decay

is simulated quite well, while in the perpendicular direction (Y), higher en-

ergy densities can be found at wavenumbers between 10−3 m−1 and 20−2 m−1.

Those wavenumbers correspond to convective rolls evolving parallel to the

wind velocity.
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Figure 20 Vertical profiles for the BOMEX test case at the beginning and averaged over
the 6th hour.
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Figure 21 Mean profiles for the BOMEX case from Siebesma et al. [2003] averaged
over the 6th hour of (a) potential temperature, (b) water vapor specific humidity, (c) the
horizontal velocity components, and (d) the liquid water ql. The solid lines indicate the
average and the band is a width of twice the standard deviation of the models participated
in the comparison. The dashed lines indicate the initial profiles.

Figure 22 Vertical profiles from Siebesma et al. [2003] of (a) turbulent kinetic energy
(TKE) and its vertical component (b) σ2

w. The dashed line in (b) corresponds to a mixed-
layer relationship for a dry boundary layer (see Siebesma et al. [2003] for details).
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Figure 23 Turbulence power spectra for the BOMEX test case averaged over the last 2
hours in X- and Y-direction. The function f(x) represents the theoretical −5/3 decay in
the inertial range.
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4.6 Non-drizzling Stratocumulus: DYCOMS-II research

flight one (RF01)

This section presents the results for a simulation based on measurements from

the research flight one (RF01) during the second Dynamics and Chemistry

of Marine Stratocumulus field study (DYCOMS-II) that took place over the

Pacific Ocean near the coast of California. The setup follows Stevens et al.

[2005] trying to reproduce a nondrizzling boundary layer structure measured

during the flight. All initialisation profiles and surface fluxes for this example

are applied like described in Stevens et al. [2005]. The main difference to the

BOMEX case from the last section is the two layer setup with a well mixed

boundary layer topped by a very strong inversion. The calculations presented

in this section were performed in a domain with 256 × 256 × 32 grid cells

and an isotropic resolution of 50 m. The initial moisture and temperature

profiles are defined as follows.

qt[g/kg] = (53)

0 < z <840 9.0

840 < z 1.5

θl[K] = (54)

0 < z <840 289.5

840 < z 297.5+ (z − 840)1/3

With this conditions a cloud already exists in the initial state. The density of

available CCN’s in the cloud is initialized with a constant value of 65 cm−3.

The initialized droplet number density is not specified in the original work,

so a simple proportionality between cloud water content and droplet number

density is assumed.
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Nc[1/m
3] =

ρl
8.47× 10−4

· 55× 106 (55)

With that assumption a maximum cloud droplet density of 33 cm−3 at

a liquid water content of 0.45 g/m−3 was reached. To reduce numerical dif-

fusion the whole domain is subject to a Gallileian transformation with the

geostrophic wind of U = 7 m/s and V = −5.5 m/s. Surface fluxes are con-

stant 115 W/m−2 for the latent and 15 W/m−2 for the sensible heat flux. A

large scale subsidence is defined with W = −3.75 × 10−6 s−1 · z. In addi-

tion a simple long-wave radiative forcing is parameterized in dependence of

the liquid wather path in the column above and below the current position

following Stevens et al. [2005].
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Figure 24 Time series for the liquid water path (LWP), cloud fraction and the vertically
integrated turbulent kinetic energy for the DYCOMS-II RF01 case.

The time series for this example show a spin up phase for the first three

hours. During this phase the vertical motions in the boundary layer develop
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Figure 25 Time evolution of the first 6 hours of the DYCOMS II RF01 test case from
Stevens et al. [2005].

and a peak in the turbulent kinetic energy is observable. The vertical motions

lead to entrainment of warmer dry air at the inversion layer. Liquid water

path decreases from initial 80 g/m2 down to 30 g/m2. At the same time

the cloud fraction decreases from the initialised 1 down to 0.7. Like in the

BOMEX case the spin up phase in ASAMgpu took about as twice as long

as the model mean presented in Stevens et al. [2005], most probably again

through a stronger concentration of potential energy through the missing

subgrid scale turbulence. After the spin up phase the system is near the

equilibrium with the driving fluxes and a stady state evolves. Because the

low vertical resolution leads to an overestimated entrainment at the inversion,

cloud cover still reduces slightly.

The vertical profiles averaged over the fourth hour of the simulation (fig-

ure 26) are in good agreement with the results from the inter comparison

(figure 27). Temperature and moisture profiles show a constant behavior
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through the well mixed layer below the cloud. The initial strong gradients

in the profiles of moisture and temperature near the inversion are reduced.

Most probably the advection scheme, which tends to produce oscillations in

the presence of sharp gradients, and the enhanced spin up phase are the rea-

sons for the mixing of warm and dry air from above the inversion into the

cloud layer. The maximum liquid water content reaches 0.2 g/m3 at a height

of 750 m. With that the maximum is slightly lower and at a reduced height

compared to the master ensemble in Stevens et al. [2005] (figure 27) but still

in the range of the participated models.

Furthermore the vertical mean profiles of the variance of the vertical veloc-

ity and the turbulent kinetic energy show a tendency to develop a decoupled

cloud layer. This can be observed through the small peak in the TKE and

the change in gradient in the vertical velocity variance at cloud level. After

Stevens et al. [2005] this may happen if the simulation tend to produce a

warmer state with less cloud water.

The turbulence spectra (figure 28) show no destinctive features, but it is

recognizeable that more turbulent kinetic energy is present in the Y-direction

as a product of the higher mean wind speed in this direction. The simula-

tion shows that the GPU model is able to reproduce main features of the

DYCOMS-II RF01 case. The differences to the studies in Stevens et al.

[2005] can be explained mainly through the third order upwind advection

scheme especially in such a thin cloud layer with a thickness of 200 m (four

grid cells) and the very sharp gradient at the inversion.
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Figure 26 Mean vertical profiles for the DYCOMS-II RF01 test case for the fourth hour.
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Figure 27 Vertical profiles from Stevens et al. [2005] showing the initial state (dashed),
observations (dots) and values averaged over the 4th hour of the DYCOMS-II RF01 test
case.
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Figure 28 Turbulence power spectra for the DYCOMS-II RF01 test case averaged over
the last 2 hours in X- and Y-direction. The function f(x) represents the theoretical -5/3
decay in the inertial range.

4.7 Rain in Cumulus over the Ocean: RICO

The third test case is based on the Rain in (shallow) Cumulus over the

Ocean Campaign (RICO). The campaign was focused on the development

and evolution of precipitation in cumulus clouds. It took place in the western

Atlantic in the time from November 2004 to January 2005. Detailed informa-

tion about the campaign and the performed measurements can be found in
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Rauber et al. [2007]. The surface fluxes were implemented after VanZanten

et al. [2011] as a function of wind speed in the first model layer using

w′θ′ = −Ch||U ||(θ − θ|z=0) (56)

w′q′t = −Cq||U ||(qt − qsat|z=0)

u′w′ = −Cm||U ||u

v′w′ = −Cm||U ||v

with Ch = 0.001094, Cq = 0.001133 and Cm = 0.001229. This flux defini-

tion using the windspeed in the first level may produce differences between

models using an explicit subgrid turbulence scheme and models without.

Such a scheme would reduce the vertical wind shear induced by the frictional

forces at the surface through enhanced momentum diffusion. In a model

without a subgrid turbulence scheme the horizontal wind speeds in the first

level are reduced leading to smaller surface fluxes. The initial profiles for

moisture and temperature are defined as follows.

qt[g/kg] = (57)

0 < z <740 16.0 + (13.8− 16.0)/(740) ·z

740 < z <3260 13.8 + ( 2.4− 13.8)/(3260− 740) ·(z − 740)

3260 < z <4000 2.4 + ( 1.8− 2.4)/(4000− 3260) ·(z − 3260)

θl[K] = (58)

0 < z <740 297.9

740 < z <4000 297.9 + (317.0− 297.9)/(4000− 740) ·(z − 740)

In those profiles no clouds are present. The background cloud conden-

sation nuclei (CCN) population density in the original work was fixed at

70 cm−1. For models that predict the cloud-droplet activation spectrum this

value was assumed to be fixed at 100 cm−1 at 1% supersaturation. In con-
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trast to that, the ASAMgpu model contains a prognostic variable for the

background aerosol that serve as possible CCN’s. This is not the aerosol den-

sity but the density of the aerosol fraction activated at a supersaturation of

1%. The number of finally activated CCN’s is a function of supersaturation,

the mentioned CCN density variable and the product of the vertical gradi-

ent of supersaturation and the vertical velocity. This available CCN density

was initialised at 100 cm−1 as well and reduces during simulation time down

to 80 cm−1 through coagulation and scavenging by drizzle. Further applied

large scale forcings are a subsidence, a radiative cooling of 2.5 K day−1, and

a large scale advection term, which emulates the transport of dry air into

lower layers and moist air into upper ones, defined as follows.

wsubsidence[m/s] = (59)

0 < z <2260 − (0.005/2260) · z

2260 < z <4000 − 0.005

dθ/dt[K/s] = (60)

0 < z <4000 − 2.89 · 10−5

dqt/dt[g/kg s−1] = (61)

0 < z <2980 − 0.116 · 10−6 + 4.116 · 10−6/(2980) · z

2980 < z <4000 4 · 10−6

The domain size for this simulation differs from the original work and was

choosen with 256 × 256 × 64 cells at a resolution of 60 m in the horizontal

and vertical direction. For time integration an advection time step of 1 s and

a fast time step of 1/18 s for pressure waves and microphysics were used.

Overall simulation time was 24 hours.

Just as in the previous two cases the boundary layer is initialized in

complete rest pertubated by very small random fluctuations in θl and the

water vapor content ρv. This leads to a strong spin up phase until the

72



 0
 10
 20
 30
 40
 50
 60
 70

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

L
W

P
 [
g
/m

2
]

elapsed time [h]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

L
H

F
 [
W

/m
2
]

elapsed time [h]

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

S
H

F
 [
W

/m
2
]

elapsed time [h]

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

R
W

P
 [
g
/m

2
]

elapsed time [h]

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

C
lo

u
d
fr

a
c
ti
o
n

elapsed time [h]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

T
K

E
 [
m

3
/s

2
]

elapsed time [h]

Figure 29 Time series for the RICO test case from the model ASAMgpu.

convective structures in the boundary layer developed. During this spin up

a lot of cloud water and in this case also drizzle is produced. After that a

short phase with less clouds occurs, followed by small cumulus clouds growing
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Figure 30 Times eries for the RICO test case from VanZanten et al. [2011].

to larger drizzling cumulus clouds ascending in the cloud layer against the

inversion up to a height of 1900 m. Long term evolution of this example

shows constant surface fluxes at 160 W/m2 for the latent and 7 W/m2 for

the sensible heat flux. The liquid water path is too high for the complete

simulation time. The reason for that could not yet be identified. Experiments

showed a reduction of liquid water path with deactivated nucleation, which

effectivly reduces the microphysics to a single moment scheme. The high

rain water path could be a hint that the reason may be connected to the

autoconversion process, but it even could be some numerical issue concerning

the single precission during evaluation of the microphysical forcings. At this

point further evaluation is still necessary.

Vertical profiles averaged over the last 4 hours (figure 32), show a maxi-

mum in the liquid water content at 1250 m with 50 mg/m3 which is too high

compared to the results in VanZanten et al. [2011]. In the cited work it is also

mentioned that results especially for the maximum liquid water content and

cloud fraction differ strongly between the different models. In addition ex-

periments with the UCLA-LES model (Matheou et al. [2011],Nuijens [2010])

using different advection schemes, time stepping methods or even mean wind

speeds produce commensurate or even larger differences in the results than

between the models presented in the cited work. The main reason for that
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is that the strength and the height of the trade-inversion is very sensitive to

numerical formulations because it has to develop in the model more or less

spontaneously, in contrast to the other cases where it was initialized with a

very strong gradient in the temperature and moisture profiles.

Contrary to the other two examples, where the power spectra were aquired

near the surface, the spectra for this case (figure 33) were calculated near the

cloud base at a height of 700 m to ensure comparability to Matheou et al.

[2011]. The results for the spectrum are in good agreement with the cited

work.
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Figure 31 Vertical profiles for the RICO test case at the beginning and mean profile
averaged over the hours 20-24.
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Figure 32 Vertical profiles from VanZanten et al. [2011] for the RICO test case at the
beginning and mean profile averaged over the hours 20-24.
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Figure 33 Turbulence power spectra for the RICO test case averaged over the last 2
hours in X- and Y-direction. The function f(x) represents the theoretical −5/3 decay in
the inertial range.
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4.8 Real Case: Kap Verde Islands

This section describes the simulation of the effect of a flat heat island on

the turbulence in the marine boundary layer. Most of the information were

already published as a part of Engelmann et al. [2011]. It was motivated

by Doppler lidar measurements during the SAMUM-2 campaign in the year

2008. The Doppler lidar was located in the southeast of the Cap Verde

island Santiago at the Airport of the capital city Praia (Ansmann et al.

[2011]). Figure 34 shows the vertical velocity measurement above the super

site at the 25th of January, 2008. At a height between 600 m and 1100 m a

relatively consistent vertical updraft with a velocity of about 0.5 m/s topped

up to a height of 2000 m by a vertical downward motion of the same order

can be observed.
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Figure 34 Vertical velocity above supersite at Cap Verde Island during SAMUM-II
Campaign measured with the wind LIDAR Willy (from Engelmann et al. [2011]).

In addition the Falcon research aircraft of the DLR provided lidar mea-

surements of the vertical distribution of aerosol layers in and above the ma-

rine boundary layer.

For a better interpretation of those measurements a simple large eddy

simulation setup was used. The two islands Santiago and Maio were modeled
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Figure 35 Aerosol backscatter ratio (total/Rayleigh backscatter) at 1064 nm measured
with HSRL aboard the DLR Falcon research aircraft on 25th of January. The aircraft
crossed the ground site (red circle at distance 32 km at approximately 15:30 UTC). The
flight course is shown in figure 40 (Engelmann et al. [2011]).

as flat heating surfaces in the ocean. The overall domain size was 256×256×
62 at a horizontal resolution of 360 m and a vertical resolution of 60 m. This

results in a simulation area of 92 × 92 km2 and a simulation domain height

of 3.7 km. The advective time step for this simulation was at 1 s and the

acoustic at 1/12 s. Because of missing values for the sensible and latent

heat fluxes for the soil model, data of the Global Data Assimilation System

(GDAS) of the United States National Centers for Environmental Prediction

were used. Since the islands are not completely resolved by GDAS, the

data were approximated using the nearby continental area in the outbacks of

Dakar, Senegal. The surface characteristic is comparable. The sensible heat

flux above the islands was modeled using a diurnal cycle with a minimum of

−77 W/m2 and a maximum at 516 W/m2, using the following function (62).
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Figure 36 Diurnal parameterization of the sensible surface heat flux for the Cap Verde
simulations (from Engelmann et al. [2011]).

Fsurf/day[W/m2] = −77 + 600 · cos
((
tlocal[h] − 14

)
/4.6

)
(62)

Fsurf/night[W/m2] = −77

The latent heat flux was constant at 55 W/m2. Figure 36 shows the

parameterized sensible surface flux compared to GDAS data. Because of

the much lower vertical resolution the GDAS data contain a parameterized

boundary layer, which causes the exponential growth in the surface heat

flux in the morning. This boundary layer can be resolved in high resolution

simulations. The assumption that the surface heat flux is proportional to

the incoming radiation leads to a simple cosine function with a maximum

similar to the GDAS data. During night the islands are cooled by radiation,

approximated by a negative sensible heat flux of 77 W/m2.

Above the ocean constant marine surface fluxes of 90 W/m2 latent heat

flux and about 20 W/m2 sensible heat flux were applied. To break the sym-
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metry, the latent heat flux is perturbed by a random noise of 5 W/m2. One

problem were the lateral boundary conditions at the in- and outflow bound-

aries. To provide a consistent turbulent flow field, including vertical velocities

and turbulent boundary layer structures like convective cells, a second simu-

lation was performed in parallel. This second simulation was processed in a

domain without the island, using periodic boundary conditions and initial-

ized with the sounding of the simulated day. In this domain an undisturbed

marine boundary layer was able to evolve, just controlled by the initial state

and the surface heat fluxes. Now three cells from the boundary of this period

domain were used as nesting boundary conditions for the domain containing

the islands. With this approach a more or less realistic inflow for the island

domain could be realized without the need for a very long forerun range in

the upwind region. All model runs started at 8:00 local time and the data

shown is from 15:30.

In figure 37 and figure 39 horizontal cutplanes of the model output for

the vertical velocity fields at the 23th and 25th of January, 2008 are pre-

sented. On both days the model simulations show a strong tendency to

produce smaller at the coast induced updrafts, which perform a self orga-

nization and converge to one strong updraft region above the heated island

surface. This recurring updraft region above the island is presumably the

basic structure for forming cloud streets behind such an island, although in

the two presented test cases, moisture was not sufficient to produce clouds.

In addition, to illustrate mixing processes induced by the heat island, the

vertical distribution of a passive tracer initialized in the marine boundary

layer is shown.

At the 23th of January vertical velocities of the convective structures

in the boundary layer were in the range of −4 m/s to 4 m/s. The already

mentioned induced updrafts finally produce one stronger updraft above the

island. During this day this larger updraft reached wind speeds up to 9.5 m/s.

The thick black line in figure 37 indicates the position of the vertical cut

plane where the vertical distribution of the simulated passive tracer as a

representation of the marine boundary layer aerosol is presented. The initial

step profile of the tracer at the domain boundaries was 1 up to 700 m height
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Figure 37 Vertical wind component over Santiago and Maio derived for a height of
400 m above sea level and at 15:30 UTC on 23 January 2008. For the solid line with
circles (indicating the island boundaries) height-distance profiles are shown in figure 38
(from Engelmann et al. [2011]).

and 0 for heights above 700 m. During this day the passive tracer reached a

height of 1500 m above the islands, even above the comparably small island

of Maio. Also in the area between 45 km and 55 km a lofted aerosol layer can

be found in the model data.

In contrast to the 23th, the prevalent vertical velocities at the 25th of Jan-

uary were a bit lower in the range of −2 m/s to 2 m/s, except in the organized

updraft above the island where it even reached higher velocities up to 11 m/s.

Another very interesting feature in this flow field is the sea breeze structure

in front of the north easterly coastline of the island of Santiago, showing

very consistent up- and downward motions also above the measurement site

at Praia in a velocity range of ±0.5 m/s. This could be one possible explana-

tion for the structures that were found in the lidar measurements above the
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Figure 38 Relative number concentration of passive boundary-layer aerosol tracer, isen-
tropic levels and horizontal wind speed and direction (arrows) at the cut plane indicated
in figure 37 for the 23th of January 2008 at 15:30 UTC. The islands of Santiago and Maio
are located from 18− 46 km and from 76− 88 km, respectively (indicated by open circles)
(from Engelmann et al. [2011]).

boundary layer in a heigt from 800 m to 1200 m. During this day also the

Falcon measurement took place. The vertical aerosol distribution plot for

this day is reoriented to be parallel to the flight path of the Falcon airplane,

indicated by the solid and dotted black lines in figure 39. The comparison

between the model output (figure 40) and the Falcon measurements (figure

35) concerning boundary layer depth show a good agreement. The boundary

layer in front of the island is mainly the original marine boundary layer up

to a height of 800 m. Above the island the Falcon measured a maximum

boundary layer height of 1500 m and behind the island in the flight path the

boundary layer height was determined with slightly below 1000 m. Even with

this simple flat heated planar surface as an island, all values are in very good

agreement with the model results.
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Figure 39 Vertical wind component over Santiago and Maio derived for a height of
400 m above sea level and at 15:30 UTC on the 25th of January 2008. For the solid line
with circles (indicating the island boundaries) height-distance profiles are shown in figure
40 (from Engelmann et al. [2011]).
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Figure 40 Relative number concentration of passive boundary-layer aerosol tracer, isen-
tropic levels and horizontal wind speed and direction (arrows) at the cut plane indicated
in figure 39 for the 25th of January 2008 ats 1530 UTC. The islands of Santiago and Maio
are located from 18− 46 km and from 76− 88 km, respectively (indicated by open circles)
(from Engelmann et al. [2011]).
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5 Summary

The presented work evaluates the possibility to use the general purpose com-

putation on graphic processing units (GPGPUs) with the example of a three

dimensional atmospheric model (ASAMgpu). Instead of the widely used

proprietary CUDA interface, the presented approach relies on open source

and object oriented techniques. The main program is written in C++ using

OpenGL and the OpenGL Shader Language (GLSL) as a reliable interface for

GPU access. Two classes were developed to encapsulate the functions nec-

essary for texture and shader handling. The resulting framework provides a

easy to use interface for data flow control and shader handling.

Overall the new model ASAMgpu allows to perform high resolution state

of the art atmospheric simulations on inexpensive hardware and with low

power consumption in time ranges prior only possible on large clusters of

supercomputers. Simulations with a typical domain size of 256 × 256 × 64

cells at a resolution of 60 m using a timestep of 1 s with 18 acoustic steps

and a simulation time of 24 hours could be realized within 16 hours compu-

tation time on one single GPU. Future development will include a transition

to OpenCL which should be straight forward, because the structure of the

source code is compatible. Also the development on the GPU market will

proceed, so strong accelerations can be expected there. The restriction to

single precission demands caution in numerical formulations, and may be

one reason for some still unsolved problems. Especially in the RICO case,

with larger amount of drizzle included, liquid water path and rain water path

could not be reproduced to complete satisfaction.

The implicit dissipation in the advection scheme is able to reproduce the

−5/3 decay in the power spectra during the simulations. Also the model

formulation using the new thermodynamic variable derived in this work pro-

duces reasonable results and simplifies the implementation of microphysical

parameterizations, hence sources only occure during phase transitions or in

case of external fluxes (e.g. surface fluxes). Because those sources consist

just of a few simple terms and the fact that needed quantities like tempera-

ture and pressure are explicit computeable this new variable is a good choice
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for the implementation of moist atmospheric models.

Beside the work presented here, the two developed classes have also been

the groundwork for an implementation of a metropolis algorithm for water

ice structure analysis during the master thesis of Zierenberg [2010]. During

the master thesis of Schierz [2013] the classes were used for the calcula-

tion of equipotential surface and the fugacity expansion coefficients in the

porous material ZIF-11. In this context the first transition of those classes to

OpenCL were realized as well. Also an experimental particle system model

using a Lenard-Jones potential approach was developed. Those applications

show the applicability of GPGPU and the developed classes in other physical

contexts as well.

Future development will lay more emphasis on multi GPU environments

and the nesting of the ASAMgpu into a larger scale regional weather model,

like the WRF for example. First steps into this direction were already

done. Usage of multiple GPUs is possible but relativly slow because of

the bandwith of the PCIe bus. This bandwith has doubled with the in-

vention of PCIe 3.0, so with newer hardware those multi GPU setups be-

come more interesting. In the context of the HOPE campaign in Melpitz

during September 2013 an experimental model setup using boundary con-

ditions from an external operational weather model (the WRF by Janek

Zimmer, http://www.modellzentrale.de) was build up, with some first and

quite promising results.
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Appendices
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A Listings: OpenGL context

1 #include <GL/ glew . h>

2 #include <GL/ g l . h>

3 #include <GL/ glu . h>

4 #include <SDL/SDL. h>

5 #include ” iostream ”

6 using namespace std ;

7 #include ” openg lcontext . h”

8

9 openg lcontext : : openg lcontext ( int s i zexn , int s i z eyn )

10 {
11 s i z e x=s i z exn ; s i z e y=s i z eyn ;

12 GLint i n tbu f ;

13 SDL Init (SDL INIT VIDEO | SDL INIT TIMER) ;

14 SDL GL SetAttribute ( SDL GL RED SIZE , 8 ) ;

15 SDL GL SetAttribute ( SDL GL GREEN SIZE , 8 ) ;

16 SDL GL SetAttribute ( SDL GL BLUE SIZE , 8 ) ;

17 SDL GL SetAttribute ( SDL GL DEPTH SIZE , 16 ) ;

18 SDL GL SetAttribute ( SDL GL DOUBLEBUFFER, 1 ) ;

19 SDL SetVideoMode ( s i z ex , s i z ey , 32 , SDL OPENGL |SDL RESIZABLE) ;

// |SDL FULLSCREEN

20 GLenum e r r=g l e w I n i t ( ) ;

21 i f ( e r r !=GLEW OK) { cout << ” glew e r r o r : ” << glewGetErrorStr ing (

e r r ) << ”\n” ;}
22 g l D i s a b l e (GL DEPTH TEST) ;

23 glDepthFunc (GL LESS) ;

24 glEnable (GL TEXTURE 2D) ;

25 g l D i s a b l e (GL BLEND) ;

26 glBlendFunc (GL SRC ALPHA, GL ONE MINUS SRC ALPHA) ;

27 glMatrixMode (GL PROJECTION) ;

28 g lLoadIdent i ty ( ) ;

29 glViewport ( 0 . , 0 . , s i z ex , s i z e y ) ;

30 gluOrtho2D (0 , 1 , 0 , 1 ) ;

31 glMatrixMode (GL MODELVIEW) ;

32 g lLoadIdent i ty ( ) ;

33 g lC l ea rCo lo r ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;

34 g lC l ea r (GL COLOR BUFFER BIT |GL DEPTH BUFFER BIT) ;

35 }
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Listing 19 openglcontext implementation (openglcontext.cpp)

B Listings: Shallow Water Example

1 #include <SDL/SDL. h>

2 #include <s t d l i b . h>

3 #include ” openg lcontext . h”

4 #include ” shader . h”

5 #include ” tex ture . h”

6

7 int s i z e x =512;

8 int s i z e y =256;

9 f loat dt =0.015;

10

11 shader ∗ s p l o t ; // shaders f o r p l o t t i n g

12 shader ∗ s s t e p ;

13 shader ∗ s drop ;

14 shader ∗ s r h s ;

15

16 t ex ture ∗ t0 ; // t e x t u r e b u f f e r s f o r data

17 tex ture ∗ t1 ;

18 t ex ture ∗temp ;

19 t ex ture ∗ rhs ;

20 int frame =0;

21

22 int main ( )

23 {
24 openg lcontext context ( 2 .∗ s i z ex , 2 . ∗ s i z e y ) ;

25 t0 =new t ex tu re ( s i z ex , s i z ey , 1 ) ;

26 t1 =new t ex tu re ( s i z ex , s i z ey , 1 ) ;

27 rhs=new t ex tu re ( s i z ex , s i z ey , 1 ) ;

28

29 for ( int x=0;x<s i z e x ; x++)

30 for ( int y=0;y<s i z e y ; y++)

31 t0−>s e t (x , y , 0 . 0 , 0 . 0 , 5 . 0 ) ;

32 t0−>ram2gpu ( ) ;

33
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34 glEnable (GL POINT SMOOTH) ; // t r i e s to produce c i r c u l a r

p e r t u r ba t i on s i f d r i v e r suppor t s i t

35 g l P o i n t S i z e (9 ) ; // s i z e o f d r o p l e t p e r t u r ba t i on s

36

37 s p l o t =new shader (NULL, ” shaders / p l o t ” ) ; // load shader

f o r v i s u a l i z a t i o n

38 s r h s =new shader (NULL, ” shaders / rhs ” ) ; // load shader

f o r rhs computation

39 s s t e p =new shader (NULL, ” shaders / s tep ” ) ; // load shader

f o r p a r t i a l runge ku t t a t imes t ep

40 s drop =new shader (NULL, ” shaders /drop” ) ; // load shader

f o r d r o p l e t p e r t u r ba t i on o f h e i g h t f i e l d

41

42 s rhs−>bind ( ) ;

43 glUniform1iARB ( glGetUniformLocationARB ( s rhs−>Handle , ” s i z e x ” ) ,

s i z e x ) ;

44 glUniform1iARB ( glGetUniformLocationARB ( s rhs−>Handle , ” s i z e y ” ) ,

s i z e y ) ;

45

46 for ( int i =0; i <5000; i++)

47 {
48 frame++;

49

50 glViewport ( 0 . , 0 . , s i z ex , s i z e y ) ;

51

52 i f ( frame%100==0 && frame<1000) // app ly d r o p l e t

p e r t u r ba t i on in every 5 th frame

53 {
54 s drop−>tout [0 ]= t0 ;

55 s drop−>bind ( ) ;

56 g lBeg in (GL POINTS) ;

57 g l C o l o r 3 f ( 1 . 0 , 0 . 0 , 0 . 0 ) ; // random he i g h t

58 // g lVe r t e x 2 f ( f l o a t ( rand () ) / f l o a t (RANDMAX) , f l o a t ( rand () ) /

f l o a t (RANDMAX) ) ; // random po s i t i o n

59 g lVer t ex2 f ( f loat ( int ( f loat ( rand ( ) ) / f loat (RAND MAX) ∗ s i z e x ) ) /

f loat ( s i z e x ) , f loat ( int ( f loat ( rand ( ) ) / f loat (RAND MAX) ∗
s i z e y ) ) / f loat ( s i z e y ) ) ; // random po s i t i o n

60 // g lVe r t e x 2 f ( 0 . 5 , 0 . 5 ) ; // random po s i t i o n

61 glEnd ( ) ;
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62 }
63

64 ///////////////////////////////// S ta r t Runge−Kutta

65

66 s rhs−>t [0 ]= t0 ;

67 s rhs−>tout [0 ]= rhs ;

68 s rhs−>bind ( ) ;

69 s rhs−>s tep ( ) ;

70

71 s s t ep−>t [0 ]= t0 ;

72 s s t ep−>t [1 ]= rhs ;

73 s s t ep−>tout [0 ]= t1 ;

74 s s t ep−>bind ( ) ;

75 glUniform1fARB ( glGetUniformLocationARB ( s s t ep−>Handle , ”dt” ) , dt

/ 3 . ) ;

76 s s t ep−>s tep ( ) ;

77

78 s rhs−>t [0 ]= t1 ;

79 s rhs−>tout [0 ]= rhs ;

80 s rhs−>bind ( ) ;

81 s rhs−>s tep ( ) ;

82

83 s s t ep−>t [0 ]= t0 ;

84 s s t ep−>t [1 ]= rhs ;

85 s s t ep−>tout [0 ]= t1 ;

86 s s t ep−>bind ( ) ;

87 glUniform1fARB ( glGetUniformLocationARB ( s s t ep−>Handle , ”dt” ) , dt

/ 2 . ) ;

88 s s t ep−>s tep ( ) ;

89

90 s rhs−>t [0 ]= t1 ;

91 s rhs−>tout [0 ]= rhs ;

92 s rhs−>bind ( ) ;

93 s rhs−>s tep ( ) ;

94

95 s s t ep−>t [0 ]= t0 ;

96 s s t ep−>t [1 ]= rhs ;

97 s s t ep−>tout [0 ]= t1 ;

98 s s t ep−>bind ( ) ;
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99 glUniform1fARB ( glGetUniformLocationARB ( s s t ep−>Handle , ”dt” ) , dt

) ;

100 s s t ep−>s tep ( ) ;

101

102 temp=t0 ; t0=t1 ; t1=temp ;

103 /////////////////////////////////End Runge Kutta scheme

104 ///////////////////////////////// S ta r t V i s u a l i z a t i o n

105

106 s p l o t−>t [0 ]= t1 ;

107 s p l o t−>tout [0 ]=NULL;

108 s p l o t−>bind ( ) ;

109

110 glMatrixMode (GL PROJECTION) ;

111 g lLoadIdent i ty ( ) ;

112 glViewport ( 0 . , 0 . , 2 . ∗ s i z ex , 2 . ∗ s i z e y ) ;

113 gluOrtho2D (0 , 1 , 0 , 1 ) ;

114 glMatrixMode (GL MODELVIEW) ;

115 g lLoadIdent i ty ( ) ;

116

117 g lC l ea rCo lo r ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;

118 g lC l ea r (GL COLOR BUFFER BIT |GL DEPTH BUFFER BIT) ;

119

120 g lBeg in (GL QUADS) ;

121 g l C o l o r 4 f ( 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ) ;

122 glTexCoord2f ( 0 . 0 , 1 . 0 ) ; g lVe r t ex2 f ( 0 . 0 , 0 . 0 ) ;

123 glTexCoord2f ( 1 . 0 , 1 . 0 ) ; g lVe r t ex2 f ( 1 . 0 , 0 . 0 ) ;

124 glTexCoord2f ( 1 . 0 , 0 . 0 ) ; g lVe r t ex2 f ( 1 . 0 , 1 . 0 ) ;

125 glTexCoord2f ( 0 . 0 , 0 . 0 ) ; g lVe r t ex2 f ( 0 . 0 , 1 . 0 ) ;

126 glEnd ( ) ;

127

128 SDL GL SwapBuffers ( ) ;

129 /////////////////////////////////End V i s ua l i z a t i o n

130 }
131 }

Listing 20 Main source code for the shallow water example

1 uniform sampler2D t0 ; // incoming data

2 uniform int s i z e x ; // s i z e o f incoming t e x t u r e

3 uniform int s i z e y ; // s i z e o f incoming t e x t u r e
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4

5 void main ( )

6 {
7 // d e f i n i t i o n o f v a r i a b l e s

8 vec2 pos , posxl , posxr , posyl , posyr , po sx l l , posxrr , po sy l l , posyrr ;

9 vec4 c , cxl , cxr , cyl , cyr , c x l l , cxrr , c y l l , cyrr , rhs ;

10 vec4 Fx , Fz , Fy ;

11 vec4 Fxlp , Fxlm , Fxrp , Fxrm ;

12 vec4 Fylp , Fylm , Fyrp , Fyrm ;

13 f loat Gx,Gy;

14 f loat Gxlp , Gxlm , Gxrp ,Gxrm;

15 f loat Gylp , Gylm , Gyrp ,Gyrm;

16 f loat uxl , uxr , vyl , vyr ;

17

18 // un i t v e c t o r s to c a l c u l a t e p o s i t i o n o f ne ighbour c e l l s

19 vec2 dxt=vec2 ( 1 . / f loat ( s i z e x ) , 0 . 0 ) ;

20 vec2 dyt=vec2 ( 0 . 0 , 1 . / f loat ( s i z e y ) ) ;

21

22 // cons tan t s

23 const f loat dx =0.25;

24 const f loat dy =0.25;

25 const f loat g =9.81;

26 const f loat b=0.1;

27

28 // ge t s t e n c i l p o s i t i o n s

29 pos =gl TexCoord [ 0 ] . xy ;

30 posx l =pos−dxt ;

31 posxr =pos+dxt ;

32 posy l =pos−dyt ;

33 posyr =pos+dyt ;

34 p o s x l l=pos−2.∗dxt ;

35 posxrr=pos +2.∗dxt ;

36 p o s y l l=pos−2.∗dyt ;

37 posyrr=pos +2.∗dyt ;

38

39 // ge t data f o r s t e n c i l

40 c =texture2D ( t0 , pos ) ;

41 cx l =texture2D ( t0 , posx l ) ;

42 cxr =texture2D ( t0 , posxr ) ;

95



43 c x l l=texture2D ( t0 , p o s x l l ) ;

44 cxr r=texture2D ( t0 , posxrr ) ;

45 cy l =texture2D ( t0 , posy l ) ;

46 cyr =texture2D ( t0 , posyr ) ;

47 c y l l=texture2D ( t0 , p o s y l l ) ;

48 cyr r=texture2D ( t0 , posyrr ) ;

49

50 uxl =texture2D ( t0 , posx l ) . g ;

51 uxr =texture2D ( t0 , posxr ) . g ;

52 vyl =texture2D ( t0 , posy l ) . b ;

53 vyr =texture2D ( t0 , posyr ) . b ;

54

55 // advec t ion

56 Fx=−(uxr∗ cxr−uxl ∗ cx l ) / ( 2 .∗ dx ) ;

57 Fy=−(vyr∗ cyr−vyl ∗ cy l ) / ( 2 .∗ dy ) ;

58

59 // g r a v i t a t i o n a l f o r c i n g

60 Gx=−g ∗( cxr . r−cx l . r ) / ( 2 .∗ dx )−b∗c . g ;

61 Gy=−g ∗( cyr . r−cy l . r ) / ( 2 .∗ dy )−b∗c . b ;

62

63 // re turn sum of a l l f o r c i n g s

64 g l FragCo lor = Fx+Fy+vec4 ( 0 . 0 ,Gx,Gy, 0 . 0 ) ;

65 }

Listing 21 Shader source code to compute source terms (RHS)
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1 uniform sampler2D t0 ;

2 uniform sampler2D t1 ;

3 uniform f loat dt ;

4

5 void main ( )

6 {
7 vec4 c=texture2D ( t0 , vec2 ( gl TexCoord [ 0 ] ) ) ;

8 vec4 rhs=texture2D ( t1 , vec2 ( gl TexCoord [ 0 ] ) ) ;

9

10 gl FragData [0 ]= c+dt∗ rhs ;

11 }

Listing 22 Shader source code for one Euler timestep

1 uniform sampler2D t0 ;

2

3 void main ( )

4 {
5 vec4 c=texture2D ( t0 , vec2 ( gl TexCoord [ 0 ] ) ) ;

6 g l FragCo lor=c+g l C o l o r ;

7 }

Listing 23 Shader source code for perturbation of heightfield

1 uniform sampler2D t0 ;

2

3 void main ( )

4 {
5 vec4 c=texture2D ( t0 , vec2 ( gl TexCoord [ 0 ] ) ) ;

6

7 // map va lue to co l o r ( dark b l u e to whi te )

8 gl FragData [0 ]= vec4 ( 5 . ∗ ( c . r−5.) , 5 . ∗ ( c . r−5.) ,0 .5+2 .5∗ ( c . r−5.)

, 1 . 0 ) ;

9 }

Listing 24 Shader source code for visualisation

97



References

Abbe, C., editor (1910). The mechanics of the earth’s atmosphere : A collec-

tion of translations; third collection. Smithsonian Inst., Washington, DC.

Bandunterteilung auf Seite V und Ersch.jahr auf Vortitelbl. d. 1. Teils.

Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Müller, D.,

Weinzierl, B., Müller, T., and Heintzenberg, J. (2011). Saharan mineral

dust experiments samum–1 and samum–2: what have we learned? Tellus

B, 63(4):403–429.

Bryan, G. H. and Fritsch, J. M. (2002). A benchmark simulation for moist

nonhydrostatic numerical models. Monthly weather review, 130(12):2917–

2928.

Engelmann, R., Ansmann, A., Horn, S., Seifert, P., Althausen, D., Tesche,

M., Esselborn, M., Fruntke, J., Lieke, K., Freudenthaler, V., and Gross,

S. (2011). Doppler lidar studies of heat island effects on vertical mixing of

aerosols during samum–2. Tellus B, 63(4).

GEWEX Cloud System Science Team (1993). The gewex cloud system study

(gcss). Bulletin of the American Meteorological Society, 74(3):387–399.

Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A.,

Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D.,
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Ausbreitung von Pflanzen Diasporen”, Wissenschaftliche Mitteilungen des

LIM, Volume 41, Pages 85-98, 2007.

Vorträge
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Doktoranden Seminarvorträge, IfT, Leipzig, 2007-2010,

Large Eddy Simulations (LES) of stratocumulus cloud fields

Seminarvortrag, Universität Halle, 2009,

Feuchte Grenzschicht Simulation mit OpenGL Shadern

Seminarvortrag, MPI Hamburg, 2010,

104



Large Eddy Simulation on GPU’s using OpenGL/GLSL

Facing the Multicore-Challenge, Heidelberg, 2010,

Moist Planetary Boundary Layer Simulation Using OpenGL and GLSL

ModelCare, UFZ Leipzig, 2011,

Modeling and Visualisation of cloud systems in the planetary boundary layer

using GPUs

ICCP, Leipzig, 2012,

Large Eddy Simulations of aerosol and resolution dependence of open cell

structures in stratocumulus cloud layers using GPU

Poster

EGU, Wien, 2007,

Frequency domain analysis and modeling of velocity in the surface layer to

develop a trajectory diaspore dispersal model

DACH, Hamburg, 2007,

Modellierung der Windausbreitung von Diasporen in strukturiertem Gelände

EUCAARI IMPACT-LONGREX joint workshop, Toulouse, 2008,

LES modelling of warm clouds using a GPU

Proceedings of EUCAARI annual meeting, Stockholm, 2009,

LES modelling of warm clouds using a GPU

METTOOLS VIII, Leipzig, 2012,

Modellierung komplexer meteorologischer Strömungen mittels Grafikkarten -
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