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Abstract 

 

Recent advances in next-generation sequencing (NGS) methods and computational analyses 

have identified a large class of non-polyadenylated RNA molecules.  Further, analysis of these 

RNAs revealed several unexpected junctions, which do not map to mRNAs, leading to the 

discovery of circular RNAs (circRNAs).  Unlike linear RNAs, circRNAs have no ends and are 

not sensitive to exoribonucleases, endowing circRNAs with a longer half-life.  This enhanced 

stability has prompted the study of circRNAs as cancer biomarkers.   While expression studies 

are becoming widely used to profile circRNAs in multiple cancers, there are no genome-wide 

tools available to decrease their levels in cells.  Methods that investigate the role of circRNAs 

through measuring their expression are prone to artifacts as bypassing transcription termination 

results in RNA concatamers.  To better characterize the function of circRNAs, we developed a 

novel pooled library of ~ 15,000 shRNAs targeting ~ 5,000 circRNAs.  We performed a loss-

of-function screen with the circRNA shRNA library in a colorectal cancer cell line to 

systematically identify circRNAs that were required for cell proliferation and survival.  During 

the construction and validation of this library, we also developed a method to improve NGS 

quality by reducing sequencing failure due to shRNA hairpin and/or heteroduplex formation.  

Using this approach, we identified and validated several circRNAs essential for the survival of 

colorectal cancer cell lines.  We believe that these essential circRNAs will provide an 

opportunity to understand cancer biology in a more detailed way, and to design effective cancer 

therapeutics and diagnostics. 
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1.0 Introduction 

1.1 Circular RNA: History, Biogenesis and Key Features  

Circular RNAs (circRNAs) were first discovered in late seventies (Hsu and Coca-Prados, 

1979) and described further by Vogelstein and colleagues in the early nineties (Nigro et al., 

1991).  For years, circRNAs were thought to originate from low frequency splicing errors.  

With the advent of next-generation sequencing (NGS) technologies, circRNAs have been 

confirmed as a new class of RNA that is present across the eukaryotic tree of life (Salzman et 

al., 2012; Jeck et al., 2013; Salzman et al., 2013; Memczak et al., 2013; Zhang et al., 2013; 

Wang et al., 2014a; Rybak-Wolf et al., 2015).  Until recently, almost all RNA-sequencing 

methods analyzed the polyadenylated fraction of the transcriptome.  These methods use poly 

(A)-tail purification and are preferred as they eliminate ribosomal RNAs (rRNAs), which 

constitutes more than 90% of the total RNA in eukaryotic cells.  Recent rRNA-depleting NGS 

methods that use random primer-based cDNA synthesis from the transcriptome, identified a 

large number of RNAs that are not polyadenylated (Hansen, 2016).  These methods revealed 

unexpected RNA junctions that do not map to the ‘linear’ genome and represent circRNAs 

(Salzman et al., 2012).  Today, the widespread existence of circRNAs is well established with 

several biochemical methods and computational algorithms that have been developed to 

identify them (Wang et al., 2010; Salzman et al., 2012; Jeck et al., 2013; Memczak et al., 2013; 

Salzman et al., 2013; Zhang et al., 2014; Rybak-Wolf et al., 2015; Szabo et al., 2015; Hansen 

et al., 2016).  Ongoing efforts are focused on understanding their biogenesis and functions, and 

more specifically their roles in development and diseases.  

While, it is not still clear how most of the circRNAs are formed and how they functions 

they have in cells,  it has been proposed that they are produced by exon scrambling or shuffling, 

through a non-canonical splicing of pre-mRNAs (also referred to as ‘back splicing’) that 

covalently links the 3′- and 5′-ends (Fig. 1.1) (Salzman et al., 2012; Hentze and Preiss, 2013; 

Jeck et al., 2013; Memczak et al., 2013; Salzman et al., 2013; Wilusz and Sharp, 2013; Lasda 

and Parker, 2014; Rybak-Wolf et al., 2015).  Recent studies demonstrated that circRNA 

biogenesis competes with pre-mRNA splicing and that cyclization is dependent on flanking 

sequences with inverted Alu repeats (Jeck et al., 2013; Ashwal-Fluss et al., 2014; Liang and 

Wilusz, 2014; Zhang et al., 2014).  Alu elements belong to the primate-specific, short-

interspersed, nuclear elements (SINEs) that are a family of retrotransposons roughly 0.3 kb in 
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size and represent 10.5% of the human genome.  Besides Alu sites, reverse complementary 

sequences between introns that bracket circRNAs have also been shown to promote cyclization 

(Ivanov et al., 2015).  Furthermore, RNA-binding proteins and spliceosome-dependent 

cyclization have been proposed to play a role in circRNA biogenesis (Conn et al., 2015; You et 

al., 2015).  In addition to these exonic circRNAs, introns and combinations of exons and introns 

can produce circRNAs (Salzman et al., 2012; Hentze and Preiss, 2013; Jeck et al., 2013; 

Memczak et al., 2013; Salzman et al., 2013; Wilusz and Sharp, 2013; Zhang et al., 2013; Lasda 

and Parker, 2014; Vicens and Westhof, 2014; Li et al., 2015a; Rybak-Wolf et al., 2015).  Based 

on their biogenesis, circRNAs can be broadly classified as exonic (E-circRNA) or intronic (I-

circRNA) or a combination of both exonic and intronic circRNAs (EI-circRNAs) (Fig. 1.1).  E-

circRNAs are the most abundant class of circRNAs (Salzman et al., 2012; Jeck et al., 2013; 

Memczak et al., 2013; Salzman et al., 2013; Rybak-Wolf et al., 2015).  It was observed that 

Figure 1.1 Different circRNA biogenesis pathways.  Illustration showing different types of 

circRNA biogenesis pathways.  Exonic circRNAs are formed from single or multiple exons by 

‘back splicing’ process during RNA splicing.  Intronic circRNAs are formed by intronic lariats 

that escape from the debranching process during RNA splicing.  Exon-intron circRNAs can be 

formed by any intron trapped inside some exons during the ‘back splicing’ process.  Some 

intergenic circRNAs are also found that do not have any alignment to known genes. 
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circRNAs coming from single or multiple exons (1-5 exons) constitute about 95% of total 

circRNAs (Memczak et al., 2013).  They also found that 85% of circRNAs originate from the 

sense RNA of protein-coding genes and 10% align to antisense strand of the genes.  The 

remaining 5% circRNAs observed by Memczak et al., 2013 were either I-circRNAs or 

intergenic circRNAs (Fig. 1.1).  Most recently, fusion circRNAs (f-circRNAs) have been 

identified that are derived from regions of chromosomal translocations (Guarnerio et al., 2016).  

Currently, several circRNA databases and online tools are available that archive and 

characterize circRNA sequences and other information identified in different species (Table 

1.1).  Mammalian cells contain a large number of circRNAs with enhanced stability and 

abundance, which are sometimes present at higher levels than their corresponding linear 

mRNAs (Salzman et al., 2012; Jeck et al., 2013; Memczak et al., 2013; Salzman et al., 2013; 

Rybak-Wolf et al., 2015).  Jeck et al., 2013 estimated that circRNAs are derived from 15% of 

actively transcribed genes.  Moreover, they show high conservation among mammals, 

indicating that they have evolutionary and functional importance (Jeck et al., 2013).  The size 

Table 1.1 Examples of databases and online tools for circRNAs 

Database Developers Features 

circBase Glažar et al., 2014 

Repository of data sets (genomic annotations and 

sequences) of circRNAs from different genomic 

studies 

Circ2Traits Ghosal et al., 2013 

Prediction of interaction network among genes of 

miRNA (microRNA), mRNA (messenger RNA), 

long non-coding RNA (lincRNA) and circRNA; 

mapping of disease associated single nucleotide 

polymorphisms (SNPs) on circRNA loci; 

identification of Argonaute (AGO) interaction 

sites on circRNAs 

circRNADb Chen  et al., 2016a 

Prediction of protein coding potentiality of 

circRNAs; information about circRNA parental 

genes in terms of expression and diseases 

CircInteractome Dudekula et al., 2016 

Detection of potential circRNAs sponging RNA 

binding proteins (RBPs); junction-specific primer 

design for circRNAs; design of siRNAs for 

silencing of circRNAs;  detection of potential 

internal ribosomal entry sites (IRES) of circRNAs 

circNet Liu et al., 2016 
Building miRNA-circRNA-gene network; 

expression profiling of circRNA isoforms 

CSCD Xia et al., 2017 Exploration of the cancer-specific circRNAs 
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of predicted and validated circRNAs can range from 100 bases to greater than 10,000 bases 

with the most species ranging between 100-1500 bases (Salzman et al., 2012;  Jeck et al., 2013; 

Memczak et al., 2013; Salzman et al., 2013; Rybak-Wolf et al., 2015).    

 

 1.2 Functions of Circular RNAs  

Functions of circRNAs are currently not well understood (Hentze and Preiss, 2013). 

CircRNAs have been shown to play an important role in modulating gene expression by 

binding and inactivating miRNAs through a process called sponging, as outlined in Fig. 1.2 

(Hansen, 2013).  It is evident that miRNAs have key roles in posttranscriptional regulation of 

gene expression and their sponging influences the overall gene regulatory events of a cell 

(Bartel, 2014).  The miRNA sponging mechanism is based on the presence of multiple binding 

sites for the same miRNAs on a circRNA.  For instance, CDR1as/CiRS (antisense to human 

CDR1 gene locus) has more than 60 binding sites for miR-7 and this sponging event is involved 

in zebrafish brain development (Hansen et al., 2013; Memczak et al., 2013).  In another 

example, the circRNA from the SRY gene (antisense to SRY gene locus) plays a role in murine 

testes development by the sponging of miR-138 (Capel et al., 1993; Hansen et al., 2013). 

The importance of miRNA sponging as the main function of circRNAs in gene regulation 

has been called into question, as many circRNAs do not have sufficient miRNA target sites to 

support this mechanism of action (Zhang et al., 2013; Guo et al., 2014; Li et al., 2015a).  

Alternative mechanisms by which circRNAs regulate parental genes in the nucleus and 

cytoplasm have therefore been proposed (Qu et al., 2015a).  It has been observed that some I-

circRNAs (e.g. ci-ankrd52) and EI-circRNAs (e.g circEIF3J) are very abundant in the nucleus 

and show cis-regulatory role on their parental genes (Zhang et al., 2013; Li et al., 2015a).  They 

act as positive regulator of RNA polymerase II and promote transcription of their parental 

genes.  Moreover, some E-circRNAs and mRNAs from their parental genes have common 

miRNA binding sites, which control the gene regulation in cytoplasm (Li et al., 2015b).  

Having the same miRNA binding sites creates competition between the circRNA and mRNA 

that ultimately modulates the gene expression.  CircRNAs have also been shown to regulate 

alternative splicing of pre-mRNAs after transcription (Ashwal-Fluss et al., 2014).  It was 

observed that the abundance of some circRNAs (e.g. circ7780) are correlated with cell 

proliferation (Bachmayr-Heyda et al., 2015).  Another study showed that circHIPK3 regulates 
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cell growth by sponging multiple miRNAs (Zheng et al. 2016).  Overall, these studies indicate 

that circRNAs play important roles from regulation of gene expression to transcriptional control 

and cell cycle progression. 

  Other functions for circRNAs have been proposed, including RBP delivery, RBP 

sponging, assembly of RBP factories, allosteric regulation of RBP functions, and templating for 

translation (Fig. 1.2) (Castello et al., 2012; Hentze and Preiss, 2013; Wilusz and Sharp, 2013, 

Ashwal-Fluss et al., 2014; Jeck et al., 2014; Lasda and Parker, 2014; Salzmn, 2014).  Though 

circRNAs were initially thought to be non-coding RNA (ncRNA), studies have shown that they 

can be translated in vitro and in vivo, indicating an unexplored layer of gene activity (Chen and 

Sarnow, 1995; Pamudurti et al., 2017). 

A. 

B. 

Figure 1.2 Types of circRNA functions.  (A) Illustration showing demonstrated functions of 

circRNAs.  CircRNAs can act as miRNA sponges in association with related AGO proteins and 

thus regulate gene expression.  CircRNAs that have an IRES can be translated into proteins.  

CircRNAs can also interact directly with other mRNAs and regulate their expression.  (B) 

Illustration showing other plausible functions of circRNAs.  CircRNAs can regulate RBPs, work 

as delivery vehicles of RBPs and miRNAs, and sponge or assemble RBPs.  Adapted from 

Hentze and Preiss, 2013. 
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Despite these studies described circRNA functions, it is still not clear how the network of 

multiple interactions involving circRNA-miRNA-mRNA axes is maintained and controlled 

throughout circRNA processing and beyond.  Many questions about the function of circRNAs 

remain, from their role in diseases like cancer to their epigenetic heritability.  Understanding 

the purpose of circRNAs may open doors to therapies for diseases as well as a better 

understanding of their involvement in biological processes. 

     

1.3 Circular RNAs and Human Cancer 

Proper understanding of circRNAs and their functions will lead to better decoding of 

complex diseases (Chen et al., 2016b).  Specifically, circRNAs are a new avenue of 

investigation to understand cancer (Li et al., 2015c).  It is already evident that miRNAs play 

pivotal roles in different stages of cancer through regulating the expression of tumor suppressor 

genes and oncogenes (Lee and Dutta, 2009).  In some malignancies, miRNA expression is often 

deregulated.  The sponging effect of circRNA on miRNAs indicates a direct involvement in this 

regard (Hansen et al., 2013).  For example, cir-ITCH circRNA derived from the ITCH gene 

presents a sequence enriched with three miRNA-binding sites (miR-7, miR-17 and miR-214) 

and interactions of cir-ITCH with miR-7, miR-17, and miR-214 might increase the level of 

ITCH, which inhibits the Wnt/β-catenin pathway (Li et al., 2015b).  The expression of cir-

ITCH in esophageal squamous cell carcinoma is very low, indicating that tumors downregulate 

cir-ITCH to enhance proliferation (Li et al., 2015b).  It also acts in colorectal cancer by 

targeting Wnt/β-catenin pathway (Huang et al., 2015).  In contrast, circTCF25 is upregulated in 

bladder cancer and imparts its effect through circTCF25-miR-103a-3p/miR-107-CDK6 

pathway (Zhong et al., 2016).  Recently, Burton Yang’s group demonstrated that circRNAs can 

bind to proteins involved in controlling cell cycle, senescence, and tumor progression (Du et 

al., 2016; Yang et al., 2016; Du et al., 2017).  In addition, they showed that circRNAs can 

promote nuclear translocation of oncogenic proteins (Yang et al., 2017a; Yang et al., 2017b).  

Some f-circRNAs play roles in acute promyelocytic leukemia through regulating PI3K and 

MAPK signal transduction pathways (Guarnerio et al., 2016). 

Unlike linear RNA, 3′- and 5′-ends of circRNA are not exposed, making them less 

sensitive to ribonucleases and imparting a longer half-life.  This enhanced stability has led to 

the use of circRNAs as clinical biomarkers, especially in cancer (Memczak, 2015; Zhang et al., 



 

7 
 

2017).  Recently, several studies have found differential expression of circRNAs between 

normal and cancer tissues (Table 1.2) (Qu et al., 2015b; Ahmed et al., 2016; Song et al., 2016).  

Interestingly, enrichment of certain circRNAs in exosomes can potentially benefit cancer 

diagnosis as a biomarker (Li et al., 2015e).  One of the more studied circRNAs, CDR1as, is 

described by Ajay Goel’s group as a promising prognostic biomarker and a potential 

therapeutic target in colorectal cancer due to its ability to act as a sponge for miR-7, a known 

tumor suppressor  (Weng et al., 2017). 

 

1.4 Functional Genomics, Pooled Screening, and Gene Essentiality 

Recent advancements in sequencing technologies and their applications in functional 

genomics have significantly broadened our understanding of cellular functions and our ability 

to perform translational science (Islam et al., 2017).  These technologies often involve 

sequencing a pool of DNA oligonucleotides that are unique in nature (Islam et al., 2017).  For 

example, large-scale, genome-wide screens using pooled shRNA or CRISPR libraries and 

subsequent NGS identified the unique shRNA or sgRNA sequences that affect cell viability 

(Fig. 1.3) (Blakely et al., 2011; Ketela et al. 2011; Marcotte et al., 2012; Bassik et al., 2013; 

Koike-Yusa et al., 2013; Mali et al., 2013; Vizeacoumar et al., 2013; Shalem et al., 2014; 

Wang et al., 2014b; Paul et al., 2014; Hart et al., 2015; Paul et al., 2016).  These methods are 

increasingly being applied to detect therapeutically relevant synthetic lethal targets (Luo et al., 

2009; Brough et al., 2011; Vizeacoumar et al., 2013; Bajrami et al. 2014; Cermelli et al., 2014;  

Paul et al., 2014; Van Der Meer et al., 2014; Paul et al., 2016) or cancer-specific essential 

Table 1.2 Examples of of circRNAs in cancer 

Cancer name CircRNA name Expression level Study group 

Cutaneous squamous cell 

carcinoma 

hsa_circ_0035381 Up 
Sand et al., 2016 

hsa_circ_0022383 Down 

Gastric cancer hsa_circ_002059 Down Li. et al., 2015d 

Colorectal cancer hsa_circ_001988 Down Wang et al., 2015 

Hepatocellular carcinoma hsa_circ_0001649 Down Qin et al., 2016 

Laryngeal squamous cell 

cancer 

hsa_circ_104912 Down 
Xuan et al., 2016 

hsa_circ_100855 Up 
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genes (Paddison et al., 2004; Luo et al., 2008; Schlabach et al., 2008; Silva et al., 2008; Barbie 

et al., 2009; Marcotte et al., 2012; Koike-Yusa et al., 2013; Shalem et al., 2014; Wang et al., 

2014b; Hart et al., 2015; Munoz et al., 2016).  These novel interactions reveal potential 

targetable vulnerabilities of malignant cells and have resulted in the initiation of several clinical 

trials (NCT01791309; NCT01750918; NCT01719380).  Similarly, NGS technologies are also 

used in selection techniques such as phage display, mRNA display, yeast display, and aptamer 

libraries (Ravn et al., 2013; Matochko and Derda, 2015; Van Blarcom et al., 2015; Jalali-Yazdi, 

2016; Tolle and Mayer, 2016).  A common theme in all of these sequencing reactions is that 

they depend on mixed-oligonucleotide PCR reactions wherein unique sequences are binned by 

molecular barcodes distinct to each sequence, allowing multiplexing (Islam et al., 2017). 

 While these sequencing methods are increasingly used in large core facilities, there are a 

number of challenges that impede their widespread usage in standard labs where cost-effective 

Figure 1.3 Library-based pooled screening pipeline.  (A) Schematic showing pooled 

screening methodology with a library (e.g. shRNA or sgRNA library). Specifically designed 

pooled oligonucleotides (shRNAs or sgRNAs targeting genes or transcripts) are amplified and 

cloned into an appropriate plasmid.  The plasmid library is then packaged into lentivirus to 

transduce target cells.  The library is prepared from genomic DNAs from different time points 

(T0, T1, and T2) of transduced cell passages for NGS.  (B) Illustration showing the relation 

between NGS data and cellular phenotypes. The data are analyzed and corresponding dropout 

and enriched sequences are identified to determine the effect of target gene/transcript on 

cellular phenotypes (e.g. cell death). 

 

A. 

B. 
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bench-top sequencers are routinely employed (Islam et al., 2017).  One reason for this is that 

most of these libraries are extremely large and these instruments do not provide the adequate 

read numbers required for expected sequence coverage (Islam et al., 2017).  The availability of 

sub-libraries that target a small subset of genes (such as ion channels) can alleviate this issue 

and enhance the feasibility of using low-to-medium throughput sequencers (Islam et al., 2017).  

However, the formation of secondary structures and mixed heteroduplex templates results in a 

significant challenge, as these structures reduce the number of useable sequences, in a 

technology which already experiences limited throughput (Gorbacheva et al., 2015).  The 

development of methods to mitigate sequencing failures will not only enhance the routine 

application of these techniques in standard labs, but will also increase the throughput and 

multiplexing capabilities in large core facilities (Islam et al., 2017).     

 Sequencing failure primarily occurs due to the formation of hairpins and heteroduplexes, 

as illustrated in Fig. 1.4 (Islam et al., 2017).   The formation of heteroduplex is common when 

sequencing a library of DNA variants derived from the same parental or closely related 

templates (Islam et al., 2017).  Particularly during PCR amplification of mixed-

oligonucleotides, annealing of similar types of library sequences results in heteroduplex 

formation when there is a primer shortage (Ruano and Kidd 1992; Thompson et al., 2002; 

Meyer and  Kircher, 2010; Bowman et al., 2013;  Liu et al., 2014; Rentero-Rebollo et al., 2014; 

Brandariz-Fontes et al., 2015; Gorbacheva et al., 2015).  This heteroduplex usually 

contaminates the intended library and reduces the quality of sequencing due to incomplete, low 

quality, and polyclonal reads (Islam et al., 2017).  Hairpin structures result from palindromic 

sequences and also lead to similar inadequate reads as heteroduplex formations (Miyagishi, 

2004; Kieleczawa, 2005; Kieleczawa, 2006; McIntyre and Fanning, 2006; Gorbacheva et al., 

2015).  To improve NGS quality, we developed a strategy to reduce sequencing failure due to 

shRNA hairpin and/or heteroduplex formation as described by Islam et al., 2017.  We 

optimized our methods using a minimally pooled shRNA library consisting of ~15,000 unique 

shRNA clones.  We also performed additional validation assays of our method by applying to a 

pooled CRISPR library called GeCKO that targets early consecutive exons for genome editing 

(Shalem et al., 2014).      



 

10 
 

 

1.5 Circular RNA Essentiality in Cancer through Pooled Screening  

While the differential expression of circRNAs in cancer-related pathways has been 

explored, it is not clear if these changes in circRNA expression are a cause or consequence of 

these malignancies.  Gene expression studies in normal and tumor tissues over the past two 

decades have shown that not all differentially regulated genes are essential for the survival of 

cancer cells.  Therefore, establishing the cancer-specific essentiality of individual circRNAs 

will provide a novel ‘therapeutic dimension’ for the role of circRNAs in cancers.  In addition, 

current methods often study the role of circRNAs by using circRNA overexpression plasmids.  

Mammalian plasmids normally contain the circularized exon(s) along with flanking splicing 

signals and intronic sequences, which harbor inverted repeats to facilitate their splicing into a 

A. 

B. 

Figure 1.4 Challenges with shRNA library sequencing.  (A)  Schematic showing expected 

PCR product when amplifying a mixed-oligo library. (B) Schematic showing formation of 

secondary structure (hairpin structure) and heteroduplex (mixed template due to primer 

shortage during high number of PCR cycles) resulting in low quality sequencing reads.  

Adapted from Islam et al., 2017. 
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circRNA (Hansen et al., 2013; Ashwal-Fluss et al., 2014; Liang and Wilusz, 2014; Li et al., 

2015b).  Generally, the transcription termination signals in the plasmid are bypassed, where 

RNA polymerase will continue to transcribe around the entire plasmid, generating a concatamer 

of the RNA sequence with undesired transcripts.  This technical artifact will contain a 

scrambled junction and might appear identical to a bona fide circRNA, depending on the 

approach used for its detection (Barrett et al., 2015; Barrett and Salzman, 2016).  This can lead 

to off-target effects on the cell and spurious circRNA quantification by qRT-PCR.  To 

overcome these constraints, we developed a strategy to rapidly perform genome-wide, loss-of-

function screens to systematically identify circRNAs required for cell proliferation and 

survival.   
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2.0 Rationale, Hypothesis and Objectives 

Currently there are no genome-wide efforts available to disrupt the function of individual 

circRNAs and understand their role in cancers.  To address this, shRNA libraries are needed 

that specifically target circRNAs. 

 

2.1 Hypothesis 

We hypothesized that circRNAs whose loss-of-function cause lethality to cancer cells 

will provide an opportunity to characterize and understand the biology of a subset of circRNAs 

in human cancer.  To test this hypothesis, we developed a circRNA shRNA library, screened a 

colorectal cancer cell line for circRNA essentiality with the circRNA shRNA library, and 

validated some of the top essential circRNAs. 

 

2.2 Objectives 

1. To construct an shRNA library that specifically targets human circRNAs  

2. To screen a human cancer cell line using this library and identify essential circRNAs  

3. To validate the essentiality of the identified circRNAs   
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3.0 Methods 

All reagents and kits were used and stored according to the standard procedures provided 

by the manufacturers.  DNA/RNA samples were contained in DNAase-free ddH2O and stored 

at -20°C for future use.  Cell pellets (bacterial and mammalian) from experiments were stored at 

-80°C before plasmid, genomic DNA (gDNA) or RNA isolation.  Bacterial cell stocks and 

lentivirus were stored at -80°C.  Mammalian cell stocks were stored at -150°C.  Gentle 

vortexing and/or pipetting were required at different steps to mix samples and reagents 

properly.  Filtered micropipette tubes or tips were used to reduce any biological or chemical 

contamination.  Different types of containers (e.g. flasks, tubes, plates) and common 

instruments (e.g. shakers, microwave ovens, centrifuges) were used in the experiments.  

Standard biosafety guidelines and aseptic practices were followed at every step of the research 

work. 

 

3.1 List of Uncommon Reagents 

3.2 Design, Construction and Evaluation of shRNA Library Targeting Circular RNAs 

3.2.1 Retrieval of Circular RNA Sequence Information from Database 

Information for human circRNAs from different genomic studies was collected from the 

‘circBase’ database (http://www.circbase.org/).  In this database, the ‘table browser’ option was 

selected to download ‘Human (hg19)’ circRNAs from four major genomic studies performed 

prior to 2014 (Memczak et al., 2013; Jeck et al., 2013; Salzman et al., 2013; Zhang et al.,  

2013).  All other parameters were set at default.  The separate ‘xlsx’ files from these studies 

contained information on the organism, genomic position, strand, circRNA ID, genomic length, 

Table 3.1 List of uncommon reagents  

Reagents Supplier Address 

7-Aminoactinomycin D (7-AAD) BD Biosciences (Mississauga, ON, Canada) 

Crystal violet Sigma-Aldrich (St. Louis, MO, USA) 

Polybrene Sigma-Aldrich (St. Louis, MO, USA) 

Polyethyleneimine Sigma-Aldrich (St. Louis, MO, USA) 

Puromycin Thermo Fisher Scientific (Burlington, ON, Canada) 
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spliced length, samples, scores, repeats, annotation, best transcript, gene symbol, and name of 

the circRNA study. The corresponding circRNA sequences were retrieved from ‘fasta’ files of 

‘Putative spliced circRNA sequences’ for ‘hg19 assembly’ under ‘downloads’ option in the 

circBase. 

 

3.2.2 Developing Computational Methods for Designing CircRNA shRNA Library 

The circRNA sequences were used to design an shRNA library based on the method 

described at the ‘Broad Institute’s TRC Portal.    All scripts for the design of the library were 

written in Python-2.7.9.  The design process of the circRNA shRNA library is outlined in Fig. 

3.1.  Candidate sequences that were 21 bases long (21-mers) for shRNAs were generated from 

each circRNA sequence (Fig. 3.2A).  These candidate sequences were considered as sense 

strands of the respective shRNAs.  The reverse 21-mers of the corresponding candidate 

sequences were also generated and considered as antisense strands of the shRNAs (Fig. 3.2A). 

Only the candidate sequences that were highly specific for a given circRNA were retained.  For 

example, the 21-mers that target more than one circRNA were eliminated.  Likewise, if the 

reverse 21-mers of a 21-mer candidate sequence matched to any regions within the same 

circRNA and/or a different circRNA that 21-mer was eliminated (Fig. 3.2B).  Thus, we made 

sure that none of the shRNAs targeted more than one circRNA.  We then calculated an intrinsic 

score for each remaining 21-mer candidate sequence using a standard ‘Rule Set 9’ as designed 

by the Broad Institute (https://portals.broadinstitute.org/gpp/public/resources/rules).  ‘Rule Set 

9’ either penalizes or rewards features predicting successful knockdown and clone-design 

considerations as described in Figure 3.2C.  The ‘Rule Set 9’ criteria to design effective 

shRNAs are listed in Table 3.2.  It is a standard procedure in the design of shRNAs that 

candidate sequences having a score < 4.96 were eliminated.   To reduce off-target effects of the 

circRNA shRNA library that arise from targeting linear transcripts, sense 21-mer sequences and 

their antisense 21-mer sequences were matched with all human mRNA sequences downloaded 

from ‘UCSC Genome Browser’ (https://genome.ucsc.edu/index.html).  Candidate sequences 

were removed if these 21-mers and/or their reverse 21-mers had 100% identity to the linear 

mRNA transcripts (Fig. 3.2D).  Thus it was ensured that no shRNA in the circRNA shRNA 

library targeted any human mRNAs.  As most shRNAs targeting the body of the circRNA 

mapped to the exonic regions (and most of the circRNAs were exonic in our list), this resulted 
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in different numbers of shRNAs per circRNA, targeting the back-spliced region alone.  For 

example, some circRNAs had just one shRNA targeting the back spliced junction while others 

had eight to ten overlapping shRNAs per circRNA.  We decided to have a minimum of one 

shRNA and a maximum of four shRNA targeting the back spliced region, per circRNA.  Based 

on their intrinsic scores, only the top four sequences were retained for each circRNA if it has 

more than four shRNAs (Fig. 3.2E).  Final oligonucleotide sequences of shRNAs, consisting of 

82 base pairs, were designed to contain the hairpin with at 21-mer stem and an XhoI site (six 

base pairs) in the loop between the 21-mers.  The hairpin was flanked by common sequences 

for PCR amplification (17 base pairs on either side).  The XhoI site allowed restriction digestion 

to eliminate secondary structure (hairpin and/or cruciform).  A common design of the shRNA-

oligonucleotide sequence is presented in Fig. 3.2F.  Oligonucleotides encoding these sequences 

were synthesized using DNA microarray technology (LC Sciences).  The number of the 

Table 3.2 ‘Rule Set 9’ by Broad Institute for designing shRNAs 

Rule Description 

aaStart9 Exclude any candidate beginning with AA (score = 0) 

fourRow9 
Exclude any candidate containing a run of four of the same base 

in a row (score = 0) 

gcScore9 

Exclude candidates with extreme GC percentage (GC <= 25% or 

>60 %); promote candidates with GC between 25-55% (score = 

3); if GC > 55% and <= 60% then score = 1 (neutral) 

nonGATC9 
Exclude any candidate containing ambiguous bases (e.g. N) 

(score = 0) 

restrictionSite9 

Exclude any candidate containing certain restriction sites: 

...GGTACC..., ...GAATTC..., ...CTCGAG..., ...CATATG..., 

...ACTAGT..., ...GGTAC, ...GAATT, GTACC..., TACC..., 

CTAGT... 

sevenGC9 Exclude any candidate with a run of 7 C/G bases (score = 0) 

stemLoopStem 
Penalize candidates that can form an internal stem-loop (score = 

0.1) (minimum stem length = 5, minimum loop size = 4) 

threePrimeCalmp6 

Give precedence to candidates with weaker base-pairing at 

positions 15-20 (priority on position 17-19); score = 5 if all 6 

positions are A or T, decreasing to 0.1 if all 6 are G/C.  Score 

drops off steeply as the number of A/T bases decreases. 
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oligonucleotides was adjusted to maintain the DNA chip coverage set by the company.  Two 

chips were used to synthesize two sets of the oligonucleotides that were eventually eluted from 

the chips and pooled together.  

Figure 3.1 Design process of circRNA shRNA library.  Flow chart showing the design 

process of circRNA shRNA library.  Python codes were generated for each step of the pipeline 

to design shRNAs to efficiently target specific circRNAs.  Sequences of circRNAs from 

‘circBase’ and sequences of mRNAs from ‘USCSC Genome Browser’ were used as inputs.  

‘Rule Set 9’ by Broad Institute was used to calculate intrinsic scores of candidate 21-mer 

sequences.   After several filtering and selections steps, the retained 21-mers were used to 

create the circRNA shRNA library.    
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A. B. 

C. 

D. E. 

F. 

Figure 3.2 Steps in the design process of circRNA shRNA library.  (A) Illustration showing 

generation of all possible 21-mers (sense strand of shRNA) and corresponding reverse 21-mers 

(antisense strand of shRNA) for a circRNA.  (B) Illustration of filtering 21-mers that target more 

than one circRNA.  If the corresponding reverse 21-mers target the same and/or any other 

circRNA, 21-mers were also filtered.  (C) Bar diagram and illustration showing selection of 21-

mers based on intrinsic score calculated with ‘Rule Set 9’.  (D) Illustration of filtering 21-mers 

that (and/or their reverse 21-mers) target any mRNAs.  (E)  Illustration showing final selection 

of top four 21-mers based on intrinsic scores.  (F) Illustration of the design of an shRNA 

oligonucleotide consisting of 21-mer, reverse 21-mer, XhoI loop, and forward and reverse 

common sequences.  

A. 
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3.2.3 PCR Amplification of CircRNA shRNA Library Oligonucleotides 

The synthesized oligonucleotides of the circRNA shRNA library were PCR-amplified 

with forward and reverse primers that have Gibson Assembly linkers (Table 3.3).  Conditions 

were optimized to perform a PCR amplification using 4.1 ng/µL template oligonucleotide mix 

(9.1 x 109 copies of oligonucleotides in 1 µL) dissolved in 25 µL of DNAase-free ddH2O.  For 

the PCR, 10 µL of 5 X HF Buffer (New England BioLabs), 2 µL of 10 mM dNTPs (Thermo 

Fisher Scientific), 5 µL of 10 µM Forward Primer, 5 µL of 10 µM Reverse Primer and 1 µL of 

Phusion High-Fidelity DNA Polymerase (New England BioLabs) were mixed with 10 µL of 10 

X diluted template oligonucleotide mix (> 6 x 104 times coverage of the library).  DNAase-free 

ddH2O was added to bring the final volume to 100 µL.  The 100 µL PCR was divided into two 

reactions and PCR was performed with a Thermal Cycler (Applied Biosystems).  The 

temperature profile for the PCR was set as 1 min at 98°C and 30 cycles of amplification (1 min 

at 98°C, 15 sec at 60°C, 1 min at 72°C) and reactions were pooled together afterwards.  An 

additional reaction mix of 100 µL was prepared using 20 µL of 5 X HF Buffer, 2 µL of 10 mM 

dNTPs, 20 µL of 10 µM Forward Primer, 20 µL of 10 µM Reverse Primer, 1 µL of Phusion 

High-Fidelity DNA Polymerase and 37 µL of DNAase-free ddH2O.  Three reactions were 

prepared by mixing 25 µL of the first PCR reaction and 25 µL of additional reaction mix (25 

µL of first PCR reaction was kept for checking the size).  An extra PCR cycle was run as 2 min 

at 98ºC, 20 sec at 60ºC, and 2 min at 72ºC.  Reactions were pooled together (25 µL of first the 

PCR reaction was kept for checking the amplicon size).  First and second PCR reactions (25 

µL) were mixed with 5 µL of 6 X DNA Gel Loading Dye (Thermo Fisher Scientific) and 

resolved on a 2% UltraPure™ Agarose gel (Thermo Fisher Scientific) at 80 V for 50 minutes in 

a Mini-Sub® Cell GT Systems (Bio-Rad).  The agarose gel was stained with SYBR® Safe 

Table 3.3 List of Primers for circRNA shRNA library construction (IDT) 

ID Oligonucleotide  Sequence (5′-3′) 

1. 
Gibson Assembly 

linker F.P. (AgeI) 

CTTTATATATCTTGTGGAAAGGACGAAACA3CCTCACCA

CTCTCCACC 

2. 
Gibson Assembly 

linker R.P. (EcoRI) 

ATGAATACTGCCATTTGTCTCGAGGTCGAG4GGTGGTGT

GGTGTAAGG 

F.P.: Forward primer, R.P.: Reverse primer, Common sequence 1, Common sequence 2, AgeI 

linker3, EcoRI linker4 
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DNA Gel Stain (Thermo Fisher Scientific) in 1 X TAE (Thermo Fisher Scientific).  The 142 bp 

expected amplicon was detected on Gel Doc™ XR+ Imager (Bio-Rad) using 100 bp DNA 

Ladder (Thermo Fisher Scientific).  From the second PCR reaction, 125 µL product was mixed 

with 25 µL of 6 X DNA Gel Loading Dye and resolved on a 2% UltraPure™ Agarose gel at  80 

V for 50 minutes in Mini-Sub® Cell GT Systems.  The agarose gel was stained with SYBR® 

Safe DNA Gel Stain in 1 X TAE.  The 142 bp expected band was excised on a UV 

Transilluminator (Thermo Fisher Scientific).  The expected product was purified by QIAquick 

Gel Extraction Kit (QIAGEN), according to the manufacturer’s protocol and eluted in 50 µL 

DNAase-free ddH2O.  DNA concentration and purity were quantified using NanoDrop™ 

2000/2000c (Eppendorf). 

 

3.2.4 Cloning of CircRNA shRNA Library Oligonucleotides into an shRNA Expression 

Plasmid 

The circRNA shRNA library amplicon was cloned into pLKO.1-TRC plasmid (8,901 bp, 

Addgene).  pLKO.1-TRC plasmid was digested with AgeI and EcoRI to release the ~ 1.9 kb 

stuffer fragment (Fig. 3.3).  To perform this reaction, 5 µg of pLKO.1 was mixed with 10 µL of 

10 X FastDigest Buffer (Thermo Fisher Scientific), 5 µL of FastDigest AgeI (Thermo Fisher 

Scientific), 5 µL of FastDigest EcoRI (Thermo Fisher Scientific), and DNAase-free ddH2O was 

added to bring the volume to 100 µL.  The reaction was incubated at 30°C for 30 minutes on an 

IsotempTM Incubator (Thermo Fisher Scientific).  The digested pLKO.1-TRC plasmid was 

mixed with 20 µL of 6 X DNA Gel Loading Dye and  was resolved on an 1% UltraPure™ 

Agarose gel at  90 V for 1 hour in a Mini-Sub® Cell GT Systems.  The agarose gel was stained 

with SYBR® Safe DNA Gel Stain in 1 X TAE.  The ~ 7 kb expected band was detected on Gel 

Doc™ XR+ Imager using 1 kb DNA Ladder (Thermo Fisher Scientific), cut out on a UV 

Transilluminator, purified by QIAquick Gel Extraction Kit according to the manufacturer’s 

protocol, and eluted in 50 µL DNAase-free ddH2O.  DNA concentration and purity were 

quantified using a NanoDrop™.  To perform the cloning, 100 ng of AgeI- and EcoRI- digested, 

purified pLKO.1 (~ 7 kb, 1.3 x 1010 copies) and 10 ng of PCR-amplified library 

oligonucleotides (142 bp, 6.4 x 1010 copies) were mixed (plasmid: insert molar ratio of 1: 5 in 

10 µL).  Three reactions were prepared by mixing this 10 µL of digested-plasmid/insert mixture 

and 10 µL of 2 X NEBuilder® HiFi DNA Assembly Master Mix (New England BioLabs) and 
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were incubated at 50°C for 30 minutes on an IsotempTM Incubator.  Reaction mixtures were 

used to transform One Shot™ TOP10 Electrocomp™ E. coli (Thermo Fisher Scientific) with 

very high transformation efficiency (> 3-5 x 109 cfu/µg).  Reaction mix of 2 µL volume was 

used to transform 50 µL of bacterial cells at 2500 V on a MicroPulser™ Electroporation system 

(Bio-Rad).  After electroporation, 950 µL of SOC medium was added to each transformation.  

Ten transformations were performed for each 20 µL reaction mix and 30 transformations were 

performed for all three reaction mixtures.  Transformation mixtures (~ 1 mL) for one reaction 

mix were pooled together after adding SOC medium and transformations for different reaction 

mixtures were kept separate for an hour of incubation at 37ºC with shaking at 200 rpm on 

Innova® 44/44R Stackable Incubator Shakers (New Brunswick Scientific).  The transformation 

efficiency was assessed by taking 10 µL from each pooled transformation mixture and serially 

diluting and plating on 2 X YT/carb (2 X yeast extract and tryptone media with 100 µg/ml 

carbeinicillin) agar plates (Table 3. 4).  Colony numbers were counted to determine bacterial 

cell numbers, which were calculated 2.2 x 106, 2.5 x 106, and 0.64 x 106 for three reaction 

Figure 3.3 Construction of circRNA shRNA library.  Illustration showing the construction 

method of circRNA shRNA library.  Template oligonucleotide mix of shRNA library was 

PCR-amplified with primers having Gibson Assembly linkers. The stuffer fragment was 

released from pLKO.1 plasmid by double-digestion with EcoRI and AgeI.   Library amplicon 

was cloned into the plasmid using Gibson/NEBuilder Assembly.  The cloned plasmid was used 

to transform ultra-competent E. coli cells for large scale production of library plasmid.  
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mixtures.  In total, this gave 5.34 x 106 cells, covering the circRNA shRNA library > 350 times.  

Thirty pooled transformation mixtures were collected together (30 mL) and 15 mL was 

transferred to two sets of 1.5 L 2YT/carb medium to incubate at 37ºC overnight with shaking at 

200 rpm on Innova® 44/44R Stackable Incubator Shakers.  The circRNA shRNA library 

plasmid was isolated from the culture using Hispeed DNA Plasmid Maxi-prep Kit (QIAGEN), 

according to the manufacturer’s protocol.  DNA concentration and purity were quantified using 

NanoDrop™.  Library plasmid was aliquoted and stored at -20ºC. 

 

3.2.5 Validation of the CircRNA shRNA Library 

The circRNA shRNA library was first validated using XhoI restriction digestion to 

determine the corresponding DNA band sizes.  CircRNA shRNA library plasmid (1.5 µg) was 

mixed with 2 µL of 10 X FastDigest Buffer and 2 µL of FastDigest XhoI, and DNAase-free 

ddH2O was added to 20 µL.  pLKO.1 was digested using the same reaction conditions as a 

control.  Both reactions were incubated at 37°C for 30 minutes on an IsotempTM Incubator.  The 

digested product was mixed with Gel Loading Dye (4 µL) and resolved on a 2% low-melting 

UltraPure™ Agarose gel at 80 V for 1 hour in a Mini-Sub® Cell GT Systems. The agarose gel 

was stained with SYBR® Safe DNA Gel Stain in 1X TAE.  Expected DNA bands were 

detected on Gel Doc™ XR+ Imager using 1 kb DNA Ladder. 

NGS method was used to analyze individual circRNA shRNA library sequences and their 

relative abundance.  Conditions were optimized to conduct a PCR amplification using 213 

ng/µL circRNA shRNA library plasmid (27.8 x 109 copies of oligonucleotides in 1 µL of 

library plasmid).  For the PCR, 10 µL of 5 X HF Buffer, 1 µL of 10 mM dNTPs, 2.5 µL of 10 

µM Forward Primer, 2.5 µL of 10 µM Reverse Primer and 0.5 µL of Phusion High-Fidelity 

Table 3.4 Colony numbers from different transformation mixtures at different dilutions   

Transformation 

mix 

Colony 

number: 

for x 104 

dilution 

Colony 

number: 

x 105 

dilution 

Colony 

number: 

for x 106 

dilution 

Colony 

number: 

for x 107 

dilution 

Colony 

number: 

for x 108 

dilution 

Mix 1 > 100 22 1 0 0 

Mix 2 > 100 25 1 0 0 

Mix 3 64 4 1 1 0 
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DNA Polymerase were mixed with 0.5 µL of (13.9 x 109 copies of oligonucleotides, > 9.1 x 105 

times coverage of the library).  DNAase-free ddH2O was added to a final volume to 50 µL.  

PCR was performed with a Thermal Cycler using the following temperature profile: 1 min at 

98°C and 28 cycles of amplification (1 min at 98°C, 15 sec at 60°C, 1 min at 72°C) and 1 min at 

72°C.  An additional reaction mix of 50 µL was prepared using 10 µL of 5 X HF Buffer, 2 µL 

of 10 mM dNTPs, 10 µL of 10 µM Forward Primer (oligonucleotide 1 in Table 3.5) and 10 µL 

of 10 uM Reverse Primer (oligonucleotide 2 in Table 3.5), 1 µL of Phusion High-Fidelity DNA 

Polymerase and 17 µL of DNAase-free ddH2O.   A reaction was prepared by mixing 25 µL of 

first PCR reaction and 25 µL of additional reaction mix (25 µL of first PCR reaction was kept 

for checking the size).  An extra PCR cycle was run as, 2 min at 98ºC, 20 sec at 60ºC and 2 min 

at 72ºC.  A fraction (~ 10 µL) of both first and second PCR products was mixed with 2 µL of 6 

X DNA Gel Loading Dye and resolved on a 2% UltraPure™ Agarose gel run at 80 V for 50 

minutes in a Mini-Sub® Cell GT Systems. The agarose gel was stained with SYBR® Safe 

DNA Gel Stain in 1 X TAE.  The 205 bp expected band was detected on Gel Doc™ XR+ 

Imager using 100 bp DNA Ladder.  The 40 µL product from the second PCR was mixed with 8 

Table 3.5 Oligonucleotides for shRNA library preparation from genomic DNA (IDT) 

ID Oligonucleotide Sequence (5′-3′) 

1. 
Ion Torrent F.P. 

(A primer) 

CCATCTCATCCCTGCGTGTCTCCGAC1TCAGCTAAGGTAAC

CTTTATATATCTTGTGGAAAGGACGAAACA1 

2. 
Ion Torrent R.P. 

(tRP1 primer) 

CCTCTCTATGGGCAGTCGGTGAT2ATGAATACTGCCATTTG

TCTCGACGTC2 

3. 
F.P. for genomic 

DNA PCR 
GAGGGCCTATTTCCCATGATTC 

4. 
R.P. for genomic 

DNA PCR 
GGTGGTGTGGTGTAAGG 

5. 
Oligo 1 for SalI 

adapter 
TCGACCTCGAGACAAATGGCAGTATTC 

6. 
Oligo 2 for SalI 

adapter 
GAATACTGCCATTTGTCTCGAGG 

F.P.: Forward primer, R.P.: Reverse primer, A sequence1, Key, Barcode (one example, eight 

different barcodes were used for eight different genomic DNA samples), Framework1, P1 

sequence2, Complementary to adapter2 
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µL of 6 X DNA Gel Loading Dye and resolved on a 2% UltraPure™ Agarose gel at 80 V  for 

50 minutes in a Mini-Sub® Cell GT Systems.  Agarose gel was stained with SYBR® Safe 

DNA Gel Stain in 1 X TAE.  The 205 bp expected band was excised on a UV Transilluminator.  

The expected product was purified by QIAquick Gel Extraction Kit according to the 

manufacturer’s protocol and eluted in 50 µL DNAase-free ddH2O.  DNA concentration and 

purity were quantified using NanoDrop™.  Library quality assessment, Ion Torrent sequencing, 

data processing and analysis are discussed in sections 3.5.9 and 3.5.10. 

 

3.3 Cell Lines and Culture Conditions 

The HEK-293T cell line was used for generating lentivirus of circRNA shRNA library. 

HCT 116 (colorectal carcinoma) cell line was used for pooled screening with the lentiviral 

library.  HCT 116, DLD-1 (colorectal adenocarcinoma), MDA-MB-231 (breast 

adenocarcinoma), MCF7 (breast adenocarcinoma), Du 145 (prostate carcinoma), and PC-3 

(prostate adenocarcinoma) cell lines were used for validation experiments.  Cell lines were 

purchased from the American Type Culture Collection (ATCC).  Cells were passaged for less 

than three months following resuscitations and therefore no additional authentication was 

performed.  Monolayer cultures of HEK-293T and MCF7 cell lines were maintained in the 

DMEM medium (HyClone, GE Life Sciences) containing 10% FBS (Gibco, Life Technologies) 

and 1% penicillin/streptomycin (Gibco, Life Technologies).  MDA-MB-231 cell line was 

maintained in the DMEM medium containing 10% FBS, 1% penicillin/streptomycin, and 1 mM 

sodium pyruvate (HyClone, GE Life Sciences).  HCT 116 and DLD-1 cell lines were 

maintained in McCoy’s 5A medium containing 10% FBS and 1% penicillin/streptomycin.  Du 

145 and PC-3 cell lines were maintained in RPMI (HyClone, GE Life Sciences) containing 

10% FBS, 1% penicillin/streptomycin. ATCC guidelines were followed during storing, seeding, 

growing, splitting, washing (e.g. 1 X PBS) and harvesting (e.g. 0.25% trypsinaization) of the 

cell lines.  Standard incubation conditions (37ºC and 5% CO2) were also followed for culturing 

the mentioned cell lines.  Cell confluency was maintained between 70-80% and monitored 

using a light microscope.  A hemocytometer was used to count the cells at different steps of the 

experiments. 
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3.4 Generation of Lentiviral Particles 

CircRNA shRNA library lentivirus was generated for pooled screening. 3.5 x 106 HEK-

293T cells were seeded in a 10 cm tissue culture dish with 10 mL of DMEM medium.  After 24 

hours of incubation, the culture medium was replaced with 10 mL of new DMEM medium.  

The following three plasmids were pooled to prepare the transfection mix: 6000 ng of circRNA 

shRNA library plasmid, 5400 ng of psPAX2 plasmid (virus packaging), and 600 ng of pMD2.G 

plasmid (virus envelop).  A mixture containing 540 µL of Opti-MEM medium and 36 µL of 1 

mg/mL polyethyleneimine (PEI) was added drop wise to plasmid mixture and incubated for 30 

minutes at room temperature.  Transfection reagent was mixed and added dropwise on to a 10 

cm cell culture plate seeded with HEK-293T cells.  After 18 hours of incubation, cell culture 

medium with transfection reagent was removed and replaced with new 10 mL of DMEM 

medium, containing 20% BSA.  Cells were incubated for 24 hours again.  Lentivirus containing 

media was harvested and stored at 4ºC.  Another 10 mL of DMEM medium containing 20% 

BSA was added to the transfected cells and incubated for 24 hours.  Viral harvesting was 

repeated and combined with the first viral harvest.  Lentivirus containing medium was 

centrifuged at 500 X g for 5 minutes to remove any transfected cells or debris collected during 

harvesting.  Multiple transfections were performed to generate enough lentivirus for future use, 

which were pooled together (20 mL of virus/dish), aliquoted, and stored at -80ºC.  The 

lentivirus generation method is outlined in Fig 3.4.  

 

3.5 Pooled CircRNA shRNA Screening in Cell Lines 

3.5.1 Determination of Multiplicity of Infection 

Cell doubling time, puromycin (Thermo Fisher Scientific) and polybrene (Sigma-Aldrich) 

sensitivities of HCT 116 cells were measured before pooled screening with the circRNA 

shRNA library.  Viral titer was also assessed to determine ‘Multiplicity of Infection’ (MOI) for 

transducing HCT 116 cell line.   HCT 116 cells were transduced with a very low MOI (0.3 to 

0.4) to ensure that the cells were transduced by only one viral particle.  For determining MOI, 3 

x 106 of HCT 116 cells were transduced in duplicates with 0, 1, 2, 3, 4 and 5 mL of the 

lentiviral library respectively.  Each transduction was done in a T175 tissue culture flask with 

required McCoy’s 5A medium to a final volume of 30 mL containing 8 µg/mL polybrene.  A 

control was set in duplicate by seeding 3 x 106 of HCT 116 cells in T175 tissue culture flask 
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with the same culture medium to a final volume of 30 mL.  After 24 hours of incubation, the 

culture medium was replaced with 30 mL of culture medium containing 2 µg/mL puromycin 

(final concentration) for each virus treatment.  For the control, 30 mL of McCoy’s 5A medium 

without puromycin was added to each transduction.  After 48 hours of incubation, cells from all 

replicates of treatment and control groups were collected and counted.  To determine the 

percentage of cell survival, the number of living cells from each volume of virus treatment was 

compared to the average number of living cells from the duplicates of control.  Thus, the 

percentage of cell survival indicated the percentage of successfully transduced cells that 

acquired puromycin resistance.  As 30-40% of cell survival was considered MOI of 0.3-0.4, 

appropriate viral volume resulting this MOI was determined.  From MOI graph, 2 mL of virus 

was calculated for 30-40% of cell survival representing the expected MOI (Fig. 3.5).  

  

 

 

Figure 3.4 Generation of lentivirus from library plasmid.  Illustration showing generation 

of lentiviral particles from cloned library plasmid.  HEK-293T cells were co-transfected with 

plasmid library, viral packaging plasmid and envelope plasmid through PEI transfection 

method.  This lentiviral library was used for pooled screening in HCT 116 cell line. 
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3.5.2 Transduction of HCT 116 Cell Line with Lentivirus of CircRNA shRNA Library  

To perform primary screening, 120 x 106 HCT 116 cells were seeded in T175 tissue 

culture flasks (40 flasks, ~ 3 x 106 cells/ flask) with 2 mL of lentivirus (MOI of 0.3-0.4) in each 

flask.  McCoy’s 5A medium was added to a final volume of 30 mL containing 8 µg/mL 

polybrene.  After 24 hours of transduction, cells were washed with warm PBS and culture 

medium was replaced by 30 mL of the McCoy’s 5A medium, containing 2 µg/mL puromycin.  

After 48 hours of puromycin treatment, culture medium was removed and cells were washed 

with warm PBS.  Cells were then harvested from all plates and pooled together.  Two replicates 

of 10 x 106 cells were collected as time point 0 (T0) samples and centrifuged at 300 x g for 6 

minutes.  Each replicate represents the library > 500 times, assuming that most of the cells were 

transduced with only one viral particle at low MOI (0.3-0.4).  The cell pellet was store at -80ºC 

until genomic DNA extraction. Three replicates of 9 x 106 cells were passaged where each 

replicate was a set of three flasks containing 3 x 106 cells each.  The lentiviral transduction 

method is outlined in Fig 3.6. 

 

 

 

Figure 3.5 Determination of Multiplicity of Infection.  Line graph showing MOI calculation 

for different virus titers in HCT 116 cell line.  Transduction of HCT 116 cells with different 

viral titers (0-5 mL) was performed for 24 hours.  The transduced cells underwent puromycin 

selection for 48 hours.  After selection, 2 mL of virus showed ~ 33% cell survival.  The 

respective MOI was calculated as 0.33 from the graph.  This virus titer was used to transduce 

HCT 116 cell line for pooled screening.      

  

 Virus volume (mL) 
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3.5.3 Outgrowth Assay 

Every 2-3 days, 10 x 106 transduced cells were pelleted from each replicate and stored at -

80ºC and 9 x 106 cells were passaged again.  Thus, cells were passaged and pelleted for 14 

generations.  Cells were maintained in DMEM containing 2 µg/mL puromycin throughout the 

outgrowth assay.  The outgrowth assay is outlined in Fig. 3.6.  

 

3.5.4 PCR Amplification of shRNA Library from Genomic DNA  

Genomic DNA was isolated from cells using the QIAamp DNA Blood Maxi Kit 

(QIAGEN), according to manufacturer’s protocol.  DNA concentration and purity were 

Figure 3.6 Transduction of HCT 116 cell line with lentiviral library.  Illustration showing 

transduction procedure with lentiviral library.  Cells were transduced with the lentiviral library 

for 24 hours according to the calculated MOI. The transduced cells underwent puromycin 

selection for 48 hours.  Selected cells were passaged and collected up to several generations.  

Initial cell pellets after puromycin selection was considered T0 samples.  Cell pellets from 

passaging of T0 cells were considered T1 samples after seven generations and T2 after fourteen 

generations. 
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quantified using NanoDrop™ 2000/2000c and the DNA stored at -20ºC.  Genomic DNA was 

extracted from the cell pellets of the initial time point (T0), a middle time point (T1) and the 

last time point (T2) of the screening procedure.  Sections 3.5.4 to 3.5.10 are discussed for a 

replicate of T0 genomic DNA sample.  The same methods were applied to all other genomic 

DNA samples as described by Islam et. al., 2017.   Primers (Oligonucleotides 1 and 2 (Table 

3.5) were used for PCR amplification of the circRNA shRNA library from genomic DNA.  For 

half-shRNA sequencing, the library was PCR-amplified using oligonucleotides 3 and 4 (Table 

3.5) to generate a larger amplicon.  As a result, in the next step, digestion with XhoI resulted in 

a 316 bp digestion product, which was easily separated from the smaller 43 bp digestion 

product and removed during PCR clean up.  PCR was performed using the following reaction: 

160 µL of 10 X Pfx Amplification Buffer (Invitrogen), 160 µL of 10 X PCRX Enhancer 

Solution (Invitrogen), 24 µL of 10 mM dNTPs, 30 µL of 25 µM Forward Primer, 30 µL of 25 

µM Reverse Primer, 24 µL of 50 mM MgSO4 (Invitrogen) and 12 µL of Platinum™ Pfx DNA 

Polymerase (Invitrogen) were added together with 20 µg of genomic DNA template.  DNAase-

free ddH2O was added to give a final volume of 800 µL.  The 800 µL PCR was divided into 16 

reactions with each reaction as a 50 µL aliquot and PCR amplification was performed with a 

Thermal Cycler.  The temperature profile for the PCR was set as 3 min at 98°C, 30 cycles of 

amplification (10 sec at 98°C, 15 sec at 55°C, 15 sec at 72°C) and 5 min at 72°C.  We used 20 

µg template to ensure enough representation of each sequence of the circRNA shRNA library 

during the amplification.  PCR reactions were pooled together and purified using the GeneJET 

PCR Purification Kit (Thermo Fisher Scientific), according to manufacturer’s protocol and 

eluted in 100 µL DNAase-free ddH2O.  DNA concentration and purity were quantified using 

NanoDrop™.  About 10 µL of the PCR product was mixed with 2 µL of 6 X DNA Gel Loading 

Dye and resolved on a 2% UltraPure™ Agarose gel at 90 V for 45 minutes in a Mini-Sub® Cell 

GT Systems.  The agarose gel was stained with SYBR® Safe DNA Gel Stain in 1 X TAE.  The 

205 bp (shRNA sequencing) and 359 bp (half-shRNA sequencing) expected bands were 

detected on Gel Doc™ XR+ Imager using 100 bp DNA Ladder.  For shRNA sequencing, 2 µg 

of the 205 bp product was mixed with 6 X DNA Gel Loading Dye and resolved on a 2% low-

melting UltraPure™ Agarose the gel at 90 V for 45 minutes in a Mini-Sub® Cell GT Systems.  

The gel was stained with SYBR® Safe DNA Gel Stain in 1 X TAE.  The 205 bp expected band 

was excised on a UV Transilluminator.  The expected product was purified by QIAquick Gel 
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Extraction Kit according to the manufacturer’s protocol and eluted in 25 µL DNAase-free 

ddH2O.  DNA concentration and purity were quantified using NanoDrop™.  The 359 bp 

product was used in the next step for making half-shRNA.  

 

3.5.5 Removing Hairpin from shRNA by Restriction Digestion  

Half of the hairpin present in shRNAs (half-shRNA) was removed by digesting the 

purified PCR product (circRNA shRNA library from genomic DNA) with XhoI.  To perform 

the XhoI digestion reaction, 12 µg of PCR product was mixed with 120 µL of 10 X FastDigest 

Buffer, 60 µL of FastDigest XhoI (Thermo Fisher Scientific), and DNAase-free ddH2O to bring 

the volume to 1.8 mL reaction.  The entire 1.8 mL reaction was divided into 10 aliquots of 180 

µL.  Reactions were incubated at 37°C for 15 minutes on an IsotempTM Incubator.  The XhoI 

restriction enzyme reaction was performed immediately after PCR amplification to avoid 

cruciform formation.  Digestion reactions were pooled together and purified with GeneJET 

PCR Purification Kit according to the manufacturer’s protocol.  PCR Purification Kit removed 

the smaller XhoI-digested product at this stage and larger XhoI-digested product was eluted in 

20 µL DNAase-free ddH2O.  Purified and digested PCR product was mixed with 4 µL of 6 X 

DNA Gel Loading Dye and resolved on a 2% low-melting UltraPure™ Agarose gel at 90 V for 

45 minutes in a Mini-Sub® Cell GT Systems.  The agarose gel was stained with SYBR® Safe 

DNA Gel Stain in 1 X TAE.  The 316 bp expected band was detected on Gel Doc™ XR+ 

Imager using 100 bp DNA Ladder (some undigested product was also found at 359 bp).  The 

316 bp band was cut on a UV Transilluminator.  The XhoI-digested product was purified by 

QIAquick Gel Extraction Kit according to the manufacturer’s protocol and eluted in 20 µL 

DNAase-free ddH2O.  DNA concentration and purity were quantified using a NanoDrop™. 

 

3.5.6 Preparation and Ligation of an Adapter to Half-shRNA  

A SalI adapter was ligated to the half-shRNA. The SalI adapter was prepared using 

oligonucleotides 5 and 6 (Table 3.5).  This adapter sequence has a common complementary 

sequence at 3′-end for hybridizing to the Ion Torrent R.P. primer.  To prepare the adapter, 10 

µL of 200 µM Oligo 1 SalI adapter and 10 µL 200 µM Oligo 2 SalI adapter were added to 30 

µL DNAase-free ddH2O to make the 50 µL annealing reaction.  The reaction was heated at 

98°C, 80°C, 70°C, 60°C, 55°C, 50°C, 40°C, and 25°C for 1 minute at each temperature with a 
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Thermal Cycler and 950 µL of DNAase-free ddH2O was added.  DNA concentration and purity 

were quantified using NanoDrop™.  SalI adapter was ligated to XhoI-digested half-shRNA 

product.  The SalI adapter contains a cohesive compatible end with the XhoI-digested product 

and common complementary sequence for hybridizing to the Ion Torrent R.P. primer.  A 1: 3 

molar ratio of XhoI-digested half-shRNA product and SalI adapter was used.  For this purpose, 

600 ng of XhoI-digested PCR product was mixed with 5 µL of the SalI adapter (42.7 ng/µL).  

To perform the ligation reaction, 5 µL of T4 DNA Ligase (Invitrogen), 200 µL of 5 X Ligase 

Reaction Buffer (Invitrogen) and DNAase-free ddH2O was added to give a final volume of 1 

mL. The reaction was split into 10 aliquots of 100 µL and incubated at 25°C for 1 hour using an 

IsotempTM Incubator.  Ligation reactions were pooled together and SalI adapter-ligated product 

was purified with the GeneJET PCR Purification Kit according to the manufacturer’s protocol, 

which removes SalI self-ligated product as well.  Ligated product was eluted in 25 µL DNAase-

free ddH2O and DNA concentration and purity were quantified using a NanoDrop™.      

 

3.5.7 Barcode Labeling of Adapter-ligated Half-shRNA Product  

Primers 1 and 2 (Table 3.5) with a barcoding sequence were attached to the ligated 

product.  Eight different barcodes (designed according to Ion Torrent sequencing guidelines) 

were used for eight different genomic DNA samples.  For the PCR, 30 µL of 10 µM Ion 

Torrent Barcode Forward Primer, 30 µL of 10 µM Ion Torrent Barcode Reverse Primer and 250 

µL of 2 X Phusion Master Mix with HF Buffer were assembled with 50 ng ligated product and 

DNAase-free ddH2O was added to give a final volume of 500 µL.  The reaction was divided 

into 10 aliquots of 50 µL and PCR amplification was performed with a Thermal Cycler.  The 

temperature profile for the PCR was 30 sec at 98°C, 28 cycles of amplification (10 sec at 98°C, 

5 sec at 56°C, 5 sec at 72°C) and 15 sec at 72°C.  PCR reactions were pooled together and 

barcoded product was purified with the GeneJET PCR Purification Kit.  Barcoded product was 

eluted in 25 µL DNAase-free ddH2O and DNA concentration and purity were quantified using 

a NanoDrop™.  It is important to optimize the PCR conditions at this step to reduce 

heteroduplex formation.  PCR cycles were reduced from 28 cycles to 15 cycles to eliminate 

heteroduplex formation after optimizing the PCR cycles.  As 28 cycles formed heteroduplex, 

PCR reactions were performed with 15 cycles for improved half-shRNA sequencing. 
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3.5.8 Removal of Self-ligated Product  

To eliminate the XhoI self-ligated product, XhoI digestion was performed.  Briefly, 1 µg 

of barcoded product was mixed with 10 µL of 10 X FastDigest Buffer and 5 µL of FastDigest 

XhoI and the final volume was increased to 150 µL using DNAase-free ddH2O.  Digestion 

reaction was incubated at 37°C for 15 minutes with an IsotempTM Incubator.  After the removal 

of the self-ligated products, the barcoded PCR product was purified with the GeneJET PCR 

Purification Kit according to the manufacturer’s protocol and DNA was eluted in 50 µL of 

DNAase-free ddH2O.  For the lower cycle barcoded product (15 cycles), magnetic bead-based 

purification was done instead of gel extraction to reduce sample loss.  In this case, the eluted 

product was purified with Agencourt® AMPure® XP Reagent (Beckman Coulter) according to 

manufacturer’s protocol.  This was a two-step purification method where the first step removed 

all the high molecular weight DNA contamination (e.g. genomic DNA) and the second step 

removed all the smaller DNA fragments (e.g. primer, primer dimer, and restriction digested 

fragments).  In both processes, DNA concentration and purity were quantified using 

NanoDrop™. 

 

3.5.9 Quality Assessment of Library  

Throughout all procedures described above, the quality of the library sample or any PCR 

product was assessed with the Agilent 2100 Bioanalyzer, using the Agilent High Sensitivity 

DNA chip, according to the manufacturer’s protocol.  For this purpose, 1 µL of 500 pg/µL 

sample was applied to the chip.  A sharp peak was expected for a pure library sample.  Presence 

of multiple peaks and/or broad peak larger than the expected library suggested formation of a 

heteroduplex.  Electropherograms for this analysis were generated with 2100 Expert Software. 

 

3.5.10 Ion Torrent Sequencing, Data Processing and Analysis 

Though this method is explained for one sample, multiplexing of different samples with 

specific barcodes (barcode labeling) was performed to sequence multiple samples at the same 

time.  Amplicon concentration was determined using a NanoDrop™ and 25 µL of DNA (26 

pM) was prepared for emulsion PCR.  Emulsion PCR was performed using the Ion PGM™ Hi-

Q™ OT2 Kit (Life Technologies), according to manufacturer’s protocol.  First, a unique DNA 

amplicon was amplified and bound to a single Ion Sphere Particle (ISP) by emulsion PCR.  
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Amplification primers that bind to A and P1 adapters were used for clonal amplification so that 

each ISP was covered with many copies of the same DNA fragment.  Second, because the A 

primer was biotinylated, template positive ISPs could be isolated using Ion Torrent enrichment 

beads and non-templated ISPs were removed.  Third, dsDNA anchored to the ISPs was 

denatured.  This allowed the ISPs with ssDNA to go into solution while the biotinylated strand 

remain bound to enrichment beads.  The solution containing ssDNA enriched ISPs was used for 

Ion Torrent sequencing.  This NGS method was performed with Ion PGM™ System (Thermo 

Fisher Scientific).  Ion 318 chips and Ion PGM Hi-Q Sequencing Kits were used according to 

manufacturer’s protocol in this regard.  Base calling, chip analysis, and barcode separation were 

performed using the Ion Torrent Server Software 5.0 package.  Chip analysis included 

percentage ISP loaded, percentage of enriched ISPs, percentage of polyclonal reads (ISPs with 

multi-type DNA templates), and percentage of low quality reads.  Total raw sequence reads 

were retrieved as FASTQ format downloaded from Ion Torrent server, counted, compared to 

the designed library sequences and plotted accordingly.  All the scripts for the analysis of 

sequencing results were written on Python-2.7.9.  Each read was scanned for an established 

known set of sequence (represented as framework in Table 3.5) followed by the number of 

nucleotides equal to the length of the library sequences (in our case, 21) and then the cleaved-

XhoI site (‘CTC’).  Once all reads had been scanned, count of each unique library sequence was 

saved to a file.  The data processing and analysis methods are outlined in Fig. 3.7. 

 

3.5.11 Sequencing Library Preparation for GeCKO Library 

For quality assessment of the GeCKO library from plasmids, two-step PCR amplification 

was performed.  For the first PCR (PCR 1) using naïve plasmid DNA library, 20 µL of 10 X 

Pfx Amplification Buffer, 20 µL of 10 X PCRX Enhancer Solution, 3 µL of 10 mM dNTPs, 4.5 

µL of 20 uM Primer Mix (using oligonucleotide 1 and 2 from Table 3.6), 3 µL of 50 mM 

MgSO4 and 1.5 µL of Platinum™ Pfx DNA polymerase were added together with 40 ng of 

GeCKO library.  DNAase-free ddH2O was added to give a final volume of 100 µL.  The 

reaction was divided in 50 µL aliquots and PCR amplification was performed with a Thermal 

Cycler.  The temperature profile for the PCR was 5 min at 98°C, 30 cycles (note that  this cycle 

number was reduced as described below) of amplification (15 sec at 98°C, 15 sec at  65°C, 40 

sec at 72°C), and 5 min at 72°C.  The same reaction was performed with multiple dilutions of 
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the same library using different barcodes.  The reactions were pooled together.  About 10 µL of 

the PCR product was mixed with 2 µL of 6 X DNA Gel Loading Dye and resolved on a 2%  

low-melting UltraPure™ Agarose gel at 100 V for 1 hour in a Mini-Sub® Cell GT Systems.  

The agarose gel was stained with SYBR® Safe DNA Gel Stain in 1 X TAE.  The expected 312 

bp band was visualized using 50 bp DNA Ladder on a UV Transilluminator.  For the second 

PCR (PCR 2) 5 µL of PCR 1 product was used as a template.  Briefly, 20 µL of 10 X Pfx 

Amplification Buffer, 20 µL of 10 X PCRx Enhancer Solution, 3 µL of 10 mM dNTPs, 4.5 µL 

20 µM Primer mix (using oligonucleotide 3 and 4 from Table 3.6), 2 µL of 50 mM MgSO4 and 

1.5 µL of Platinum™ Pfx DNA Polymerase were added together with 10 µL of amplicon from 

PCR 1 (for a 2 X reaction) and DNAase-free ddH2O was added to give a final volume of 100 

µL.  The reaction was divided in 50 µL aliquots and PCR amplification was performed with a 

Thermal Cycler.  Optimization of PCR annealing temperature and cycle number for Illumina 

primers was carried out.  The temperature profile for the PCR was 5 min at 94°C, 25 cycles 

(note that this cycle number was reduced as  described below) of amplification (15 sec at 94°C, 

Figure 3.7 Data analysis of Ion Torrent sequencing.  Flowchart showing analysis of 

sequencing data from NGS platform.   Analysis was done by comparing raw sequence reads 

from shRNA and half-shRNA library sequencing to the designed library sequences.  In both 

cases, 21-mer sequences were considered for this comparison.  Eventually, the respective 

counts of the sequence reads were calculated. 
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30 sec at 63°C, 23 sec at 72°C), and 5 min at 72°C.  The reactions were pooled together and 

mixed with 20 µL of 6 X DNA Gel Loading Dye and resolved on a 2% low-melting 

UltraPure™ Agarose gel at 100 V for 1 hour in a Mini-Sub® Cell GT Systems.  The agarose 

gel was stained with SYBR® Safe DNA Gel Stain in 1 X TAE.  The expected 370 bp band was 

excised, using 100 bp DNA Ladder as a guide, on a UV Transilluminator.  QIAquick Gel 

Extraction Kit was used to purify the library according to the manufacturer’s protocol.  DNA 

was eluted in 30 µL DNAase-free ddH2O and DNA concentration and purity were quantified 

using a NanoDrop™.  The quality of samples was assessed on Bioanalyzer as previously 

described for shRNA library in section 3.5.9.  Since Bioanalyzer data showed formation of 

heteroduplex structures, we reduced the PCR cycles.  Specifically, we found that reducing first 

PCR cycle number to 18 cycles and the second PCR cycle number to 20 cycles eliminated 

heteroduplex formation.  We sequenced the GeCKO library using Illumina NextSeq 500 High 

Output (75 Cycles, 400M Reads) according to manufacturer’s protocol.  Python-2.7.9 was used 

to generate scripts for analyzing the data.  For assessment of the GeCKO library from genomic 

DNA, the PCR was performed as described above.  However, the genomic DNA template 

concentration was set at 30 µg to achieve higher representation of the integrated library.  

 

Table 3.6 Oligonucleotides for GeCKO library preparation (IDT) 

ID Oligonucleotide Sequences (5′-3′) 

1. 
F.P. for genomic 

DNA PCR 

AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTT

CG 

2. 
R.P. for genomic 

DNA PCR 

CTTTAGTTTGTATGTCTGTTGCTATTATGTCTACTATTCTT

TCC 

3. Illumina F.P. 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTTAAGTAGAGTCTTGTGGAAAGGA

CGAAACACCG 

4. Illumina R.P. 

CAAGCAGAAGACGGCATACGAGATAAGTAGAGGTGACTGG

AGTTCAGACGTGTGCTCTTCCGATCTTTCTACTATTCTTTCC

CCTGCACTGT 

F.P.: Forward primer, R.P.: Reverse primer, Illumina adapter, Stagger, Barcode (one 

example), Priming site 
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 3.6 Analysis of Screen Results 

All the scripts for the analysis of the screen results were written on Python-2.7.9.  Raw 

sequence files (FASTQ) were extracted and processed to compare the sequence reads to the 

designed library sequences using the same method described in Fig. 3.7.  In order to increase 

the counts of the library sequences for statistical purposes, the counts of all the sequence were 

summed up from four different NGS runs of a sample.  This led to 1,044,443 sequences for T0 

time point, 888,587 sequences for T1 time point and 1,046,616 sequences for T2 time point.  

The count of each library sequence was smoothed by five (the raw count of each library 

sequence was summed by five) and then normalized to per million of total library sequence 

count of a time point.  The count of each library sequence was then compared between different 

time points (T0, T1 and T2).  If a given knockdown of a circRNA by any shRNA causes 

lethality, then those cells with that shRNA integration gets depleted from the rest of the 

population (dropouts).  We used a scoring system that filters the shRNA sequences that show 

more than 1.25 fold increase of from initial time point (T0) to middle time point (T1).  The 

difference of cumulative change (DCC) for remaining shRNA sequences was calculated based 

on the following formula:  

 

DCC = [{loge(T1 value) – loge(T0 value)} + {loge(T2 value) – loge(T1value)}] 

 

  To increase the confidence in the analysis, a bootstrapping method was used to assign p-

values based on calculated DCC scores for at least two shRNAs targeting the same circRNA.  

The analysis method is outlined in Fig. 3.8.  The bootstrapping is a heuristic strategy which 

considers the highest dropout as the reference and assigns values to all other dropouts 

accordingly.  Expression patterns of the parental genes of the top essential circRNA hits (E-

circRNAs) were analyzed using ‘The Cancer Genome Atlas (TCGA)’ dataset 

(https://cancergenome.nih.gov/) and cancer cell lines from ‘Cancer Cell Line Encyclopedia 

(CCLE)’ dataset (http://www.broadinstitute.org/ccle).  Some enrichment studies on the genes of 

top genic essential circRNA hits were performed using FunRich version 3 software packages 

using the default parameters.   Top five essential circRNAs were selected for validation and 

respective sequences from our library were used to clone individual shRNA oligonucleotides.   
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3.7 Validation of Top Essential Circular RNAs from Screening 

3.7.1 PCR Amplification, Cloning and Validation of shRNA Oligonucleotides  

For validating the top five circRNA hits found from the screening, individual shRNA 

oligonucleotides targeting these circRNAs were amplified and cloned into pLKO.1-TRC 

plasmid (Table 3.7).  Here the procedures are shown for one shRNA oligonucleotide as outlined 

in Fig. 3.9.  To perform the PCR reaction, 20 µL of 5 X HF Buffer, 2 µL of 10 mM dNTPs, 2.5 

µL of 10 uM Forward Prime (oligonucleotide 1, Table 3.1), 2.5 µL of 10 uM Reverse Primer 

(oligonucleotide 2, Table 3.1) and 1 µL of Phusion High-Fidelity DNA Polymerase were mixed 

Figure 3.8 Pooled screening data analysis.  (A) Flowchart showing a pipeline of data analysis 

methodology for pooled screening.  (B) Diagrams showing the rationale to identify sequence 

dropouts in the screening procedure.  The raw sequence reads were compared to the designed 

library sequences.  The counts of the library sequences went through some normalization 

process.  Essential circRNAs were identified by comparing the normalized counts of library 

sequences among T0, T1 and T2 time points.  The essential circRNAs were listed based on the 

described scoring algorithm.  Top essential circRNAs were selected for validation experiments. 

 

A. B. 
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with 2 µL of 20 µM shRNA oligonucleotides.  DNAase-free ddH2O was added to bring the 

final volume to 100 µL.  The 100 µL PCR was divided into two reactions and PCR was 

performed with a Thermal Cycler.  The temperature profile for the PCR was set as 30 sec at 

98°C and 28 cycles of amplification (5 sec at 98°C, 10 sec at 60°C, 5 sec at 72°C) and 30 sec at 

72°C.  Reactions were pooled together afterwards.    About 10 µL of the PCR product was 

mixed with 2 µL of 6 X DNA Gel Loading Dye and resolved on a using a 2% UltraPure™ 

Agarose gel at 80 V for 50 minutes in a Mini-Sub® Cell GT Systems.  The agarose gel was 

stained with SYBR® Safe DNA Gel Stain in 1 X TAE.  The 142 bp expected band was 

detected on Gel Doc™ XR+ Imager using 100 bp DNA Ladder.  The remaining PCR product 

was resolved (with 6 X DNA Gel Loading Dye) at 80 V for 50 minutes in a Mini-Sub® Cell 

GT Systems using 2% low-melting UltraPure™ Agarose gel and stained with SYBR® Safe 

Table 3.7 shRNA oligonucleotides for top essential circRNAs (IDT) 

Hit ID shRNA oligonucleotide sequence (5′-3′) 

CircRNA 

Hit 1 

shRNA 1 
CCTCACCACTCTCCACCCAAACTTCTCAATGACTTGTCCTCGAG

GACAAGTCATTGAGAAGTTTGCCTTACACCACACCACC 

shRNA 2 
CCTCACCACTCTCCACCCAATGACTTGTCCAGTTCGGACTCGAG

TCCGAACTGGACAAGTCATTGCCTTACACCACACCACC 

CircRNA 

Hit 2 

shRNA 1 
CCTCACCACTCTCCACCCAATCATCCGTGAGCTGATGCCTCGAG

GCATCAGCTCACGGATGATTGCCTTACACCACACCACC 

shRNA 2 
CCTCACCACTCTCCACCATCAATCATCCGTGAGCTGATCTCGAG

ATCAGCTCACGGATGATTGATCCTTACACCACACCACC 

CircRNA 

Hit 3 

shRNA 1 
CCTCACCACTCTCCACCCTAAACAGTGTGGCCACAGACCTCGA

GGTCTGTGGCCACACTGTTTAGCCTTACACCACACCACC 

shRNA 2 
CCTCACCACTCTCCACCTACTAAACAGTGTGGCCACAGCTCGAG

CTGTGGCCACACTGTTTAGTACCTTACACCACACCACC 

CircRNA 

Hit 4 

shRNA 1 
CCTCACCACTCTCCACCAAATTTCTCCCAGTGGTGACTCTCGAG

AGTCACCACTGGGAGAAATTTCCTTACACCACACCACC 

shRNA 2 
CCTCACCACTCTCCACCATTTGCCATGGACAAGATTTCCTCGAG

GAAATCTTGTCCATGGCAAATCCTTACACCACACCACC 

CircRNA 

Hit 5 

shRNA 1 
CCTCACCACTCTCCACCATGTAATCCTGGTTCACACGGCTCGAG

CCGTGTGAACCAGGATTACATCCTTACACCACACCACC 

shRNA 2 
CCTCACCACTCTCCACCTGTAATCCTGGTTCACACGGCCTCGAG

GCCGTGTGAACCAGGATTACACCTTACACCACACCACC 
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DNA Gel Stain in 1 X TAE.  The 142 bp expected band was excised on a UV Transilluminator.  

The expected product was purified by QIAquick Gel Extraction Kit according to 

manufacturer’s protocol and eluted in 50 µL DNAase-free ddH2O.  DNA concentration and 

purity were quantified using NanoDrop™.    

  In order to clone the PCR-amplified oligonucleotide into pLKO.1-TRC plasmid, the 

plasmid was digested with AgeI and EcoRI to release the stuffer in the same method as 

described in section 3.2.4.  To perform the cloning, 100 ng of AgeI- and EcoRI- digested, 

purified pLKO.1 pLKO.1 (3.9 x 109 copies) and 3 ng of PCR-amplified oligonucleotide (142 

bp, 1.9 x 1010 copies) were mixed to make a plasmid: insert molar ratio of 1: 5 in 15 µL 

volume.  A reaction was prepared by combining 5 µL of digested plasmid/insert mix and 15 µL 

of Gibson Assembly® Master Mix (New England BioLabs) and incubated at 50°C for 1 hour on 

an IsotempTM Incubator.  This reaction mixture was used to transform ElectroMAX DH10B 

Cells (Thermo Fisher Scientific) E. coli cells with very high transformation efficiency (> 3-5 x 

109 cfu/µg).  Reaction mix of 1 µL volume was used to transform 50 µL of bacterial cells at 

2500 V on a MicroPulser™ Electroporation system.  After electroporation, 950 µL of SOC 

Figure 3.9 Validation of Essential circRNAs.  Schematic showing validation experiments for 

top essential circRNA.   Individual shRNA oligonucleotides were cloned into pLKO.1 plasmid.  

The plasmid library was packaged into lentivirus.  The lentiviral library was used to transduce 

target cells for 24 hours.  The transduced cells underwent puromycin selection for 48 hours.  

The selected cells were used for expression assay and several cell based experiments.     
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medium was added to the transformation.  The transformation mixture of ~ 1 mL was incubated 

at 37 ºC with shaking at 200 rpm on Innova® 44/44R Stackable Incubator Shaker.  Serial 

dilutions of transformation mixture were plated on 2 X YT/carb (2 X yeast extract and tryptone 

media with 100 µg/mL carbinicillin) and incubated at 37°C overnight.  Around 10 healthy 

colonies were picked from appropriate dilution (~ 50 µL) and were used in colony PCR.  To 

perform this PCR reaction, 4 µL of 10 X PCR Buffer (QIAGEN) 0.8 µL of 10 mM dNTPs, 1.5 

µL of 20 µM Forward Primer (oligonucleotide 1, Table 3.1), 1.5 µL of 20 µM Reverse Primer 

(oligonucleotide 2, Table 3.1) and 0.5 µL of HotStarTaq DNA 0.5 µL Polymerase (QIAGEN) 

were mixed with 31.7 µL DNAase-free ddH2O for a single colony touch.  The temperature 

profile of the Thermal Cycler was set as 15 min at 95°C and 30 cycles of amplification (30 sec 

at 94°C, 30 sec at 55°C, 1 min at 72°C), 5 min at 72°C.  About 10 µL of the PCR product was 

mixed with 2 µL 6 X DNA Gel Loading Dye and resolved on a 2% UltraPure™ Agarose gel  at 

90 V for 45 minutes in a Mini-Sub® Cell GT Systems.  The agarose gel was stained with 

SYBR® Safe DNA Gel Stain in 1 X TAE.  The colonies having 142 bp expected band was 

detected on Gel Doc™ XR+ Imager using 100 bp DNA Ladder.  Plasmids from different 

colonies having the band were isolated using GeneJET Plasmid Miniprep Kit (Thermo Fisher 

Scientific) according to the manufacturer’s protocol.  The plasmids were then sequenced on 

3500/3500xL Genetic Analyzer (Applied Biosystems) using 10 µL of 50 ng/ µL sample.  The 

sequence results were analyzed on Geneious R8 software package (Geneious) and colonies 

having exact shRNA oligonucleotide sequence was used to isolate plasmid (in larger amount) 

using Hispeed DNA Plasmid Maxi Kit according to the manufacturer’s protocol.  DNA 

concentration and purity were quantified using NanoDrop™.  Finally, the cloned plasmid was 

aliquoted and stored at -20 ºC.  

 

3.7.2 Generation of Lentiviral Particles and Transduction of Target Cell Lines 

In order to generate lentivirus from the cloned plasmids, the same procedures were 

followed as discussed in section 3.4.  Here, transduction methods are described for lentivirus 

generated from one cloned plasmid targeting a circRNA.  For transduction of the target cells, 

0.2 x 106 cells were seeded in a well of 6-well cell culture dish with 500 µL of thawed 

lentivirus.  Culture medium was added to the final volume of 3 mL, containing 8 µg/mL 

polybrene.  After 24 hours of transduction, cells were washed with warm PBS and culture 
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medium was replaced by 3 mL of the culture medium, containing 2 µg/mL puromycin.  After 

48 hours of puromycin treatment, culture medium was removed, cells were washed with warm 

PBS.  The required number of puromycin resistant cells were seeded for next set of experiments 

(section 3.7.3-section 3.7.9) as outlined in Fig. 3.9.  Some lentivirus for the control shRNA 

plasmid (sh-GFP/sh-RFP) was also prepared and used for transduction of the target cells.  

Control shRNAs are designed to target GFP or RFP and thus do not target any human proteins.  

These controls are used compare the effect of shRNAs targeting different circRNAs.      

 

3.7.3 Circular RNA Knockdown Assay 

The methods are described for lentivirus from one cloned plasmid targeting a circRNA 

after the procedures explained in section 3.7.2.  About 1 x 106 of puromycin resistant cells 

(HCT 116) were seeded in a well of 6-well cell culture dish in 3 mL culture medium and 

cultured for 72 hours.  Both floating and adhered cells were harvested together as cell pellet.  

The cell pellet was stored at -80°C and later used for total RNA extraction.  Total RNA from 

transduced cells was extracted using TRIzol™ Reagent (Thermo Fisher Scientific) according to 

the manufacturer’s protocol.  The quality of extracted RNA was assessed after resolving 1 µg of 

RNA sample was mixed with 6 X DNA Gel Loading Dye on an 1% low-melting UltraPure™ 

Agarose gel at 90 V for 1 hour in a Mini-Sub® Cell GT Systems.   The agarose gel was stained 

with SYBR® Safe DNA Gel Stain in 1 X TAE.  The 28S rRNA and 18S rRNA bands were 

detected on Gel Doc™ XR+ Imager using 1 kb DNA Ladder.  RNA concentration and purity 

were quantified using NanoDrop™ and stored at -20 ºC.  

  To conduct a two-step reverse transcription PCR, the total RNA was reverse transcribed 

to make cDNA using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) 

according to the manufacturer’s protocol.  Briefly, 2 µL of 10 X RT Buffer, 0.8 µL of 25 X 

dNTP (100 mM), 2.0 µL of 10 X RT Random Primers, 1 µL of MultiScribeTM Reverse 

Transcriptase and 4.2 µL of DNAase-free ddH2O were mixed (total 10 µL).  This 10 µL of 2 X 

RT master mix was added to 2 µg of total RNA in 10 µL to make a 20 µL of reaction.  To 

perform this reaction, the temperature profile of the Thermo Cycler was set as, 10 min at 25°C, 

120 min at 37°C, 5 min at 85°C and hold at 4°C before next steps.  The resulting cDNA was 

stored at -20°C for later use.   
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Primers were designed for specifically measuring the expression of circRNA and 

corresponding mRNA (for E-circRNAs). ‘Divergent Primers’ option in ‘CircInteractome’ 

database (https://circinteractome.nia.nih.gov/index.html) was used which directed circRNA 

junction sequences to ‘NCBI/Primer BLAST’ (https://www.ncbi.nlm.nih.gov/tools/primer-

blast/).  For designing mRNA specific primers, ‘Circular RNA’ option of ‘CircInteractome’ 

database was used to direct ‘Best Transcript’ sequences to ‘NCBI/Primer BLAST’.  For 

mRNAs corresponding to E-circRNAs, primers were designed at different exons from the 

circRNA forming ones using ‘Clustal Omega’ (https://www.ebi.ac.uk/Tools/msa/clustalo/) as 

described in Fig. 3.10.  Mostly default parameters were used for both the programs although 

some of the parameters were changed to get suitable primers.  Different set of primers were 

tested using RT-PCR from the cDNA to optimize the conditions.  To perform the PCR reaction 

(second step of two-step reverse transcription), 10 µL of 10 X PCR Buffer, 2 µL of 10 mM 

dNTPs, 2.5 µL of 20 uM Forward Primer, 2.5 µL of 20 uM Reverse Primer and 0.5 µL of 

HotStarTaq DNA Polymerase (QIAGEN) were mixed with 100 ng of total RNA.  DNAase-free 

ddH2O was added to the final reaction volume 100 µL.  The temperature profile of the Thermo 

Cycler was set as, 15 min at 95°C and 30-40 cycles (based on the expression level) of 

amplification (30 sec at 94°C, 30 sec at 55°C, 1 min at 72°C), 5 min at 72°C.  About 10 µL of  

the PCR product was mixed with 2 µL of  6 X DNA Gel Loading Dye and resolved on a 2% 

UltraPure™ Agarose gel at 90 V for 45 minutes in a Mini-Sub® Cell GT Systems.  The agarose 

gel was stained with SYBR® Safe DNA Gel Stain in 1 X TAE.   Appropriate bands were 

detected on Gel Doc™ XR+ Imager using 100 bp DNA Ladder.  Primers having clean expected 

bands were used in next steps (Table 3.8).  

Knockdown measurement of circRNAs and corresponding mRNAs (for E-circRNAs) was 

conducted based on a qPCR method (real-time) called ‘Comparative Ct Method (ΔΔCT 

Method)’ on StepOnePlus™ Real-Time PCR System (Applied Biosystems) according to the the 

manufacturer’s protocol.  Here, the procedures are described for one cDNA sample.  

SensiFAST SYBR Hi-ROX Kit (BIOLINE) was used to perform the qPCR according to the 

manufacturer’s protocol after optimizing the condition.  Briefly, 10 µL of 2 X SensiFAST 

SYBR Hi-ROX mix, 0.8 µL of 10 µM Forward  Primer (Table 3.8), 0.8 µL of 10 µM reverse 

Primer (Table 3.8), 8.4 µL (100 ng cDNA) of cDNA sample and required DNAase-free ddH2O 

were mixed to prepare a reaction of 20 µL.  Three-step cycling was performed as, 2 min at 
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95°C (holding stage), 50 cycles of amplification (5 sec at 95°C, 10 sec at 60°C, 15sec at 72°C).  

A melt curve stage (step and hold) was also set for the qPCR run.  StepOnePlus™ Software 2.3 

package was used to set the experiment and get the Ct value, amplification plot, melt curve and 

other information that helped to assess the quality of qPCR run.   For data analysis, Ct value of 

the endogenous control (GAPDH) was subtracted from Ct value of the corresponding 

circRNA/mRNA to get ΔCt value.  To calculate –ΔΔCt value, ΔCt value of control shRNA was 

subtracted from ΔCt value of circRNA targeting shRNA for corresponding circRNA/mRNA.  

Relative expression was measured by calculating 2-ΔΔCt. 

 

3.7.4 Cell Death Assay for Colorectal Cancer Cell Lines 

The methods are described for lentivirus from one cloned plasmid targeting a circRNA 

after the procedures explained in section 3.7.2.  About 1 x 106 of puromycin resistant cells 

(HCT 116 and DLD-1) were seeded in a well of 6-well cell culture dish in 3 mL culture 

medium and cultured for 72 hours.  Both floating and adhered cells were harvested together.  

The cells were stained with 7-AAD (BD Biosciences) and prepared for flow cytometry with 

CytoFLEX (Beckman Coulter) platform according to the manufacturer’s protocol.  CytoExpert 

Software package (that comes with the instrument) was used to set the experiment and get the 

percentage of dead cells in the circRNA targeted cell population.  Cells, treated with 10 X 

Permeabilization Buffer (Thermo Fisher Scientific), was used as positive control for dead cells.  

Figure 3.10 Design of qPCR primers for expression study.  Schematic showing design 

process of primers for specific expression measurement of circRNAs and respective mRNAs 

(for E-circRNAs).  Divergent primers were designed for circRNAs at junction regions. 

Convergent primers for mRNAs (linear) were designed at exons different from circRNA 

forming exons (for the E-circRNAs).  Different colored boxes represent different exons in a 

mature transcript (circRNA or mRNA). 
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The cell death for circRNA targeting shRNA was compared to the cell death for control 

shRNA. 

 

3.7.5 Proliferation Assay for Colorectal Cancer Cell Lines 

The methods are described for lentivirus from one cloned plasmid targeting a circRNA 

after the procedures explained in section 3.7.2.  Puromycin resistant cells (HCT 116 and DLD-

1) were seeded at two different numbers (10,000 and 25,000) in the wells of 12-well cell culture 

dish in 1 mL of culture medium.  Cells were counted for four days in each 24 hours after 

seeding.  Live cells were counted and the counts were normalized by the initial seeding number.  

Table 3.8 qPCR primers for knockdown study of top essential circRNAs (IDT) 

Hit ID 
CircRNA/ 

mRNA 

F.P./

R.P. 
shRNA oligonucleotide sequences (5′-3′) 

Amplicon 

size (bp) 

Hit 1 

CircRNA 
F.P. CCTGGAGGAGAGGATCGAGTT 

125 
R.P. TTCTGGATGGTCTGCTTGGA 

mRNA 
F.P. TTTGGGAACGAGACTAGCCC 

122 
R.P. GGGAAGAAAATCTCCCGGCAT 

Hit 2 

CircRNA 
F.P. GAGGCTGTGGACCGAGAGAT 

187 
R.P. TATCCAGCAGGTAACAGGGCT 

mRNA 
F.P. TTTTCTGTTCTCGTCCGGGG 

144 
R.P. TGCTTTGGCACTGTTAGGGT 

Hit 4 
CircRNA 

F.P. GACCCAACACAAATGGTTCCC 
134 

R.P. CTTGTCTGCAAACAGCTCCAA 

mRNA  No mRNA NA 

Hit 5 

CircRNA 
F.P GGAGGACTCCACACGCATT 

126 
R.P. TGAGGCAGGTACTTGGCATAC 

mRNA 
F.P. CTGCGCCGTGTGAACCA 

122 
R.P. GAGCCCTTGGCAGCATTGAT 

GAPDH 

(control) 
mRNA 

F.P. AAGGTGAAGGTCGGAGTCAAC 
101 

R.P. GGGGTCATTGATGGCAACAATA 

F.P.: Forward primer, R.P.: Reverse primer 
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The live cell number for circRNA targeting shRNA was compared to the live cell number for 

control shRNA. 

 

3.7.6 Colony Formation Assay for Colorectal Cancer Cell Lines 

The methods are described for lentivirus from one cloned plasmid targeting a circRNA 

after the procedures explained in section 3.7.2.   After puromycin selection, 200 cells (of HCT 

116 and DLD-1) were seeded in a well of 12-well cell culture dish in 1 mL of culture medium.  

The cells were grown for seven days (medium was replaced if necessary).  After day 7, media 

was removed and colonies were washed twice with 1 mL of PBS.  About 400 µL of crystal 

violet (0.5%) was added to the colonies and culture dishes were incubated for 5 minutes.  Extra 

crystal violet was removed by washing twice with 1 mL of PBS.  Finally, colonies were 

counted and photographed.  The colony number for circRNA targeting shRNA was compared 

to the colony number for control shRNA. 

   

3.7.7 Tumorsphere Assay for Colorectal Cancer Cell Lines   

The methods are described for lentivirus from one cloned plasmid targeting a circRNA 

after the procedures explained in section 3.7.2.  After puromycin selection, 2,000 cells (HCT 

116 and DLD-1) were seeded with 200 µL MammoCult™ Human Medium Kit (Stemcell 

Technologies) in a well of 96-well low attachment tissue culture dish.  The tumorspheres were 

grown for eight days.  The images of the tumorspheres were taken with ImageXpress®Micro 

(Molecular Devices) platform using MetaXpress 6 software package.  The tumorspheres were 

harvested afterwards, cells from tumorspheres were trypsinized and the cell number was 

counted.  The cell number for circRNA targeting shRNA was compared to the cell number for 

control shRNA. 

                

3.7.8 Cell Death Assay for Other Cancer Types 

Cell death assay for MDA-MB-231, MCF7, Du 145 and PC-3 cell lines were performed 

in the same way as described in section 3.7.4.  The media compositions for the culture of 

mentioned cell lines are described in section 3.3. 
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3.7.9 Bioinformatics Study of Circular RNA Interaction with miRNA and Protein 

The interaction study of essential circRNAs with miRNAs or proteins was conducted on 

‘CircInteractome’ database.  Default set up of ‘miRNA Target Sites’ option was used for 

circRNA-miRNA interactions and default set up of ‘RBP on CircRNA’ was used for circRNA-

RBP interactions. The miRNAs and their target proteins were studied on ‘TargetScan’ 

(http://www.targetscan.org/vert_71/) database.  Gene enrichment analysis was performed on 

miRNA interacting proteins using ‘ToppGene’ platform (https://toppgene.cchmc.org/). 
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4.0 Results 

4.1 CircRNA shRNA Library Design, Construction, and Evaluation 

To systematically identify essential circRNAs, we used lentivirus-based, pooled shRNA 

screening technology (Blakely et al., 2011; Ketela et al. 2011; Marcotte et al., 2012; Bassik et 

al., 2013; Vizeacoumar et al., 2013; Paul et al., 2014; Paul et al., 2016).  Each unique short 

hairpin sequence in the shRNA library acts as a molecular barcode that can be sequenced to 

quantify the amount of each shRNA present after transducing cells with pooled lentiviral 

particles.  A decrease in the frequency of specific shRNA sequences within the cell population 

can be used to identify essential circRNAs.  

We designed a novel ~ 15K circRNA shRNA library that targets ~ 5K circRNAs.  The 

library was designed by extracting human circRNA sequences from the ‘circBase’ database, 

which contains the most comprehensive collection of circRNAs compiled from several genomic 

studies as represented in Fig 4.1 (Glažar et al., 2014).  As of 2014, circBase contained 9,324 

circRNAs and we aimed at developing shRNAs targeting all these circRNAs.  Out of these 

Figure 4.1 Different data sources of circRNAs.  (A) Bar diagram showing number of 

circRNAs from different genomic studies collected from ‘circBase’.  Names of different 

genomic studies are plotted in X-axis and percentages of total number of circRNAs are plotted 

in Y-axis.  The common circRNAs identified by multiple studies are represented with 

intersection (∩) sign.  
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circRNAs, the study of Jeck et al., 2013 solely identified the highest 43.3% (4,038) of the 

circRNAs while 34.2% (3,184) of the circRNAs were overlapped between Salzman et al., 2013 

and Jeck et al., 2013 studies (Fig. 4.1).  Our targeted circRNAs had the highest fraction of  

38.1% (1,893) from overlapping of Salzman et al., 2013 and Jeck et al., 2013 studies while 

37.31% (1,855) from only Jeck et al., 2013 study.      

 We used rules from the Broad Institute shRNA design to create a circRNA shRNA 

library for all 9,324 circRNAs.  For this, we designed 21-mers of respective shRNAs targeting 

Figure 4.2 Design of shRNA library to target circRNAs.   Flow chart showing a pipeline to 

design shRNA library to target circRNAs.  The rationales and respective procedures for all 

filtering and/or selection steps to design the circRNA shRNA library are described.  The 

resulting shRNA number after each filtering and/or selections step is presented.                 
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the circRNAs that resulted in total of 22,299,112 21-mers (Fig. 4.2).  Our circRNA off-target 

filter, mRNA off-target filter, shRNA top four selection process and the oligo synthesis 

protocol of LC Sciences (restriction in chip coverage) reduced this number of shRNAs to 

927,587, 740,064, 15,217 and 14,846 21-mers, respectively (Fig. 4.2).  The circRNA off-target 

filter ensured that each shRNA in the circRNA shRNA library targeted only one circRNA.  We 

also designed the circRNA shRNA library to specifically target human circRNAs and not 

human mRNAs.  The mRNA off-target filter ensured that no shRNA in the circRNA shRNA 

library targeted any human mRNAs.  This filtering helped to select the shRNAs targeting the 

back-spliced region alone (Fig. 4.3A).  Based on their intrinsic scores, only the top four 

sequences were retained for a given circRNA for which have more than four shRNAs (Fig. 

4.2).  The filtering steps also resulted in different numbers of shRNAs per circRNA ranging 

from one to four.  Finally, we designed 14,846 shRNAs for 4,972 circRNAs. Our library did not 

cover 4,352 circRNAs from the circRNA dataset (Fig. 4.2).    

We constructed the circRNA shRNAs using these filters, resulting in 82% of circRNAs 

being targeted by at least two shRNAs (Fig. 4.3B).   Most circRNAs were targeted by four 

A. B. C. 

Figure 4.3 Key features of circRNA shRNA library.  (A) Illustration showing the design of 

shRNA library to specifically target unique junctions of circRNAs.  (B) Pie chart showing 

comparison of circRNAs targeted by different numbers of shRNAs in the designed circRNA 

shRNA library.  (C) Bar diagram showing the classification and respective fractions of 

circRNAs based on their genomic origins for circRNAs in both ‘circBase’ dataset and targeted 

circRNA set.  Different genomic locations are plotted in X-axis and percentages of total 

number of circRNAs are plotted in Y-axis.  
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shRNAs (51.7%) in the library and a small number of circRNAs were only targeted by one 

shRNA (17.7%) (Fig. 4.3B).  The majority of targeted circRNAs were from genic origin 

(96.4%) in comparison to a smaller fraction from intergenic region (3.6%) (Fig. 4.3C).  

Moreover, both E- and I- circRNAs from genic circRNA population, originated mostly from 

sense strand of the gene.  The fraction of both sense and antisense I-circRNAs and intergenic 

circRNAs were increased in targeted circRNAs in comparison to respective fractions in 

circBase dataset (Fig. 4.3C).  The targeted E-circRNA (both sense and antisense) fraction was 

reduced in comparison to circBase E-circRNA fraction.  Our circRNA shRNA library covered 

circRNAs present on multiple chromosomes (Fig. 4.4A).  All chromosomes had a very similar 

distribution of circRNAs in both circBase circRNAs and final targeted ones.  Fractions of 

circRNAs from chromosome 1 and chromosome 2 were comparatively high, while those 

circRNAs from chromosome X and chromosome Y were lower (Fig. 4.4A).  Our library also 

targeted circRNAs of different sizes from very small (~ 50 bp) to very large ones (~ 1 mbp) as 

shown in Fig. 4.4B. 

We synthesized the shRNA oligonucleotides for the designed circRNA shRNA library 

with the facilities of LC Sciences.  We PCR-amplified the shRNA library oligonucleotides and 

cloned amplicons into the TRC cloning plasmid p.LKO.1 using the highly efficient 

‘NEBuilder’ method. The 142 bp shRNA library amplicon and the ~ 7 kb plasmid fragment 

were analyzed on an agarose gel (Fig. 4.5A, B).  During construction of library, we ensured 

sufficient representation of the library oligonucleotides.  We validated our cloned circRNA 

shRNA library by restriction digestion with XhoI.  Expected fragments from the restriction 

digestion (~ 6.5 kb, 310 bp and 190 bp) were detected using an agarose gel (Fig. 4.6A).  We 

also validated our library using NGS method.  We PCR-amplified the circRNA shRNA library 

from the plasmid, checked the amplicon size on an agarose gel (205 bp), extracted the library 

amplicon, and sequenced the amplicon using the Ion Torrent platform (Fig. 4.6B).  We obtained 

total 245,884 shRNA library sequence counts, which represented ~ 17-fold coverage of the 

library.  Approximately 92% (13,750) of our designed shRNA sequences were present in the 

raw sequence reads, which covered 97.4% (4,842) of targeted circRNAs (Fig. 4.7). 
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4.2 Analysis of Library Sequencing Methods 

We used the circRNA shRNA library to identify essential circRNAs in a colorectal cancer 

cell line (HCT 116).  We chose this cell line because the Vizeacoumar lab previously 

performed similar pooled shRNA screens using these cells (Vizeacoumar et al., 2013).  Briefly, 

HCT 116 cells were transduced with a MOI (0.3 to 0.4) under conditions where each cell was 

transduced by only one lentivirus and the library was covered ~ 600-fold in the screen.  The 

A. 

B. 

Figure 4.4 Position and size distribution of circRNAs.  (A) Bar diagram showing distribution 

of circRNA numbers over different chromosomes.  Chromosome numbers are plotted in X-axis 

and numbers of circRNAs are plotted in Y-axis.  (B) Dot plot showing the size distribution of 

circRNAs over different chromosomes.   In both cases, circRNAs targeted by shRNA library 

were compared to circRNAs from ‘circBase’ dataset.  Chromosome numbers are plotted in X-

axis and spliced lengths of circRNAs are plotted in Y-axis. 
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initial cell numbers for transduction were calculated based on MOI.  Cells were cultured with 

puromycin to remove un-transduced cells.  After selecting transduced cells, genomic DNA was 

prepared from the circRNA shRNA containing a cell population isolated at different time points 

during the screening procedure.   CircRNA shRNA library sequences were PCR-amplified from 

the genomic DNA using plasmid-backbone directed universal primers (Blakely et al., 2011; 

Ketela et al. 2011).  The abundance of each circRNA shRNA was quantified using Ion Torrent 

sequencing method and compared among an initial, a medium and the last time point of the 

screening process.  The following results on optimization of shRNA library sequencing 

methods are described from previous works by Islam et al., 2017.         

Sequencing of the library plasmid showed that ~ 30.1% of sequences in the raw sequence 

reads were prematurely terminated despite the circRNA shRNA library amplicon being purified 

A

. 

B. 

Figure 4.5 Preparation of circRNA shRNA library.   (A) Schematic and gel image showing 

preparation method of oligonucleotides of circRNA shRNA library.  The oligonucleotides, 

synthesized by LC Sciences, were PCR-amplified to attach Gibson Assembly linkers and 

detected as 142 bp product using an agarose gel.  The library amplicon was extracted and used 

to clone into pLKO.1 plasmid.  (B) Gel image showing different products by digestion of 

pLKO.1 plasmid with EcoRI and AgeI.  The double-digestion released stuffer fragment (~ 1.9 

kb) from the plasmid that helped to clone the library amplicon into the remaining ~ 7 kb 

product (detected and extracted from agarose gel) using NEBuilder method.  

 



 

52 
 

as a single band using an agarose gel (Fig. 4.6B).  We also observed 13% polyclonal reads and 

23% low quality reads.  In case of sequencing from genomic DNA sample, the read length 

histogram of the circRNA shRNA library sequencing showed that only 21.2% of the sequence 

A. 

B. 

Figure 4.6 Validation of constructed circRNA shRNA library.  (A) Schematic and gel 

image showing validation method of circRNA shRNA library with XhoI digestion.  The 

digested products were compared between pLKO.1 plasmid and plasmid library using an 

agarose gel.  (B) Representative schematic, agarose gel, electropherogram from Bioanalyzer 

and read-length histogram showing validation method of circRNA shRNA library by Ion 

Torrent sequencing.  For the read-length histogram, sequence length is plotted in X-axis and 

counts of library sequences is plotted in Y-axis.  The length of the shRNA library is 152 bp, 

excluding the A and P1 sequences.  
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output resulted in usable reads (Fig. 4.8A).  Of this, only 84% of our ~ 15K circRNA shRNA 

library sequences could be detected.  This represented only ~ 10-fold coverage of the library 

and was not sufficient for statistical analyses.  Analysis of incomplete reads revealed that 

termination of these sequences started at around 30 bp, which corresponded to the beginning of 

the hairpin loop (Fig. 4.8A).  This suggested that formation of hairpin structures was 

responsible for this premature sequence termination.  A second major peak of terminated 

sequences also occurred around 65 bps (Fig. 4.8A).  Variation in circRNA shRNA sequence 

began at 57 bp and sequence terminations at this point likely resulted from the low-quality 

scores associated with misidentified polyclonal Ion Sphere Particles (ISPs).  We characterized 

the library amplicon using capillary microfluidic gel electrophoresis by running samples on 

Bioanalyzer and observed multiple DNA fragments (Fig. 4.6B and Fig. 4.8A).  We 

hypothesized that secondary structures and/or mixed heteroduplex templates were responsible 

for these results.  The Ion PGMTM System uses the following steps to sequence DNA: emulsion 

Figure 4.7 Library sequence representation in NGS data of library plasmid.  Line chart 

showing counts of library sequences from Ion Torrent sequencing of circRNA shRNA plasmid 

library.  Each of the library sequence count was normalized to per million of total library 

sequence count.  Ranks of the library sequences are plotted in X-axis and normalized library 

sequence counts are plotted in Y-axis.              
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Figure 4.8 Steps involved in shRNA library sequencing.  (A) Workflow showing steps 

involved in sequencing shRNA library from the genomic DNA.  Step1: PCR amplification of 

shRNA library from gDNA.  Step 2: PCR purification of the amplified library.  Step 3: Gel 

extraction of the 205 bp library amplicon.  Step 4: Quality assessment of the library using a 

Bioanalyzer.  Step 5: shRNA library sequencing Ion Torrent platform.  Representative agarose 

gel, electropherogram from Bioanalyzer and read-length histogram from Ion Torrent 

sequencing are shown.  Sequence lengths are plotted in X-axis and respective frequencies are 

plotted in Y-axis.  The length of the shRNA library is 152 bp, excluding the A and P1 

sequences.  (B) Illustrations of ideal and non-ideal ISP conditions in Ion Torrent sequencing.  

Non-ideal situations were assumed to reduce sequencing quality.  Adapted from Islam et al., 

2017. 

 

 

A. 

B. 
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PCR, enrichment of template positive ISPs, and NGS.  In principle, the clonal amplification 

step should have resulted in ISPs that were coated with multiple copies of a single sequence 

from the library (Fig. 4.8B).  During sequencing, all copies of the template on an ISPs were 

expected to be single-stranded and anneal to the sequencing primer.  But at the time of primer 

annealing, single-stranded template had formed a hairpin structure on some ISPs, which 

resulted in termination of the polymerization reaction and shortened the anticipated sequencing 

reads (Fig. 4.8B).  Additionally, this hairpin structure caused de-synchronization between 

clonal fragments attached to a single ISP during the incorporation of new nucleotides in the 

synthesizing strands.  Inappropriate nucleotide insertion at one or several flows led to either 

polyclonal or low-quality reads.  Moreover, heteroduplex formation caused by the annealing of 

two different circRNA shRNA sequences resulted in ISPs being coated by two different 

templates (Fig. 4.8B).  This resulted in polyclonality and generated many polyclonal and low-

quality sequencing reads.  As a consequence, incomplete, low quality, and polyclonal reads 

were found in the final sequencing output. 

Overall, our initial sequencing of the circRNA shRNA library indicated that the 

sequencing was hindered by hairpin structure and heteroduplex formation.  Sequencing of this 

library resulted in a high proportion of prematurely terminated, polyclonal and low-quality 

sequencing reads.  This is a major shortcoming when sequencing is carried out using medium-

throughput sequencers such as Ion PGM™ System.  In an effort to reduce this problem, we 

developed strategies to eliminate the hairpin structure and reduce heteroduplex formation. 

To eliminate the hairpin structure, we cleaved the circRNA shRNA sequence in half by 

taking advantage of the XhoI restriction site present in the hairpin loop region (Moffat, J. et al., 

2006).  In order to PCR-amplify these half-shRNA sequences, we designed a SalI adapter and 

ligated this to the half-shRNA to generate an adapter-ligated half-shRNA product (Fig. 4.9).  

During the ligation of SalI adapter to XhoI-digested product, self-ligated products were also 

formed between XhoI-digested products or SalI adapters (Fig. 4.9).  The smaller SalI self-

ligated product was removed during the PCR purification step (Fig. 4.9).  To eliminate the XhoI 

self-ligated product, we digested the self-ligated XhoI products with XhoI and removed digested 

products using PCR purification and gel extraction (Fig. 4.9).  XhoI (C/TCGAG) and SalI 

(G/TCGAC) recognition sites are compatible to each other and when ligated they create a 

unique site (CTCGAC), which cannot be recognized by XhoI and/or SalI restriction enzymes.  
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Figure 4.9 Elimination of the hairpin in shRNA library.  Workflow showing steps to 

eliminate hairpin in the shRNA library.  Step 1: XhoI digestion of purified PCR amplicon from 

gDNA.  Step 2: PCR purification of XhoI-digested product.  Step 3: Gel extraction of expected 

316 bp XhoI-digested amplicon.  Step 4: Preparation of the SalI adapter.  Step 5: Adapter 

ligation to XhoI-digested amplicon.  Step 6: PCR amplification of the ligated product.  Step 7: 

PCR barcode labeling of the ligated product and detection of 160 bp PCR product on an 

agarose gel.  Step 8: PCR purification of the barcoded PCR product.  Step 9: XhoI digestion of 
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This new site makes it possible to remove only the XhoI self-ligated product but not the 

expected product.  By digesting the shRNA in half, we eliminated premature sequence stalling 

at around 30 bp as shown by the loss of the peak in the read length histogram (Fig. 4.9).  The 

half-shRNA sequencing increased the number of reads of the expected library and 45.9% of the 

sequence output was usable reads compared to 21.8% in shRNA sequencing.  These sequences 

covered 94.7% of the ~ 15K circRNA shRNA library with a 26-fold coverage.  The adapter-

ligated half-shRNA product did not generate a sharp clean peak when analyzed using the 

capillary microfluidic gel electrophoresis on Bioanalyzer (Fig. 4.9).  We assumed that the broad 

sized peak was due to heteroduplex formation.  Consistent with the Bioanalyzer data, we found 

that a second major peak of terminated reads around 65 base pairs still remained, suggesting the 

existence of heteroduplexes (Fig. 4.9).  To reduce heteroduplex formation, we decreased the 

number of PCR cycles from 28 to 15 cycles, a strategy suggested for decreasing heteroduplex 

formation (Ruano and Kidd, 1992; Thompson et al., 2002; Meyer and Kircher, 2010; Rentero 

Rebollo et al., 2014; Gorbacheva, et al., 2015).  The reduction in PCR cycles decreased the 

yield of the amplicon, and thus we used magnetic bead-based purification (Agencourt AMPure 

XP) to minimize DNA loss (Fig. 4.10).  This solid phase reverse immobilization technique was 

advantageous for low concentration DNA clean up and we successfully obtained a 95% yield 

after purification.  This modification eliminated the heteroduplex formation which resulted in a 

pure preparation of the library amplicon as seen in the Bioanalyzer analysis (Fig. 4.10).  

Consistent with this, we found that the peak at 65 bp was reduced (Fig. 4.10).  From the read 

length histogram we observed that the PCR optimization substantially removed the formation 

of heteroduplex and increased the expected library reads (Fig. 4.10).  In case of improved half-

shRNA sequencing,  82.5% of the sequence output was usable reads as compared to 45.9% in 

just half-shRNA sequencing or 21.8% in shRNA sequencing (Fig. 4.10).  These sequences 

the amplicon from XhoI self-ligated product.  Step 10: PCR purification after digestion of the 

amplicon from XhoI self-ligation.  Step 11: Gel extraction of the 160 bp barcoded product.  

Step 12: Quality assessment of the barcoded product on Bioanalyzer.  Step 13: Half-shRNA 

library sequencing on Ion Torrent platform.  Representative agarose gel, electropherogram 

from the Bioanalyzer and read-length histogram from Ion Torrent sequencing are shown.  

Sequence lengths are plotted in X-axis and respective frequencies is plotted in Y-axis.  The 

length of the half-shRNA library is 108 bp excluding A and P1 sequences.  Adapted from Islam 

et al., 2017. 
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covered 98.7% of our ~ 15K shRNA library with a 55-fold coverage.  Overall, these results 

suggested that a considerable amount of non-usable reads could be eliminated by removing 

hairpin and heteroduplex formation.  To show that optimized PCR conditions eliminated library 

heteroduplex formation, we also used a pooled Genome-scale CRISPR Knock Out (GeCKO) 

library (Shalem et al., 2014).  As these CRISPR libraries consist of mixed-oligonucleotides, 

they also suffer from the formation of heteroduplexes structures during PCR amplification (Fig. 

4.11A-C).  These are much larger libraries and might not be compatible with Ion PGMTM 

System due to limited throughput.  Still we expected that elimination of heteroduplex structures 

would improve the multiplexing capabilities in medium throughput instruments such as 

Figure 4.10 Reducing heteroduplex formation in half-shRNA library.  Workflow showing 

steps to reduce heteroduplex formation in half-shRNA library.  Step 1-10: same as in Fig. 4.9.  

In step 8, reduced number of PCR cycles were used which was the exception from the previous 

procedure.  Step 11: Magnetic bead-based purification of the barcoded product.  Step 13: 

Quality assessment of the barcoded product on the Bioanalyzer.  Step 14: Half-shRNA library 

sequencing on Ion Torrent platform.  Representative agarose gel, the electropherogram from 

Bioanalyzer, read-length histogram from Ion Torrent sequencing are shown.  Sequence lengths 

are plotted in X-axis and respective frequencies are plotted in Y-axis. The length of the half-

shRNA library is 108 bp excluding A and P1 sequences.  Adapted from Islam et al., 2017. 
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Figure 4.11 Steps involved in NGS of GeCKO library.  (A) Gel image of barcoded GeCKO 

library preparation from plasmid or gDNA.  In both cases, 312 bb product from PCR1 was 

detected on an agarose gel and 370 bp product from PCR2 was extracted from the gel.  (B) 

Bioanalyzer electropherogram showing formation of heteroduplex in barcoded CRISPR library 

from both plasmid and gDNA.  (C) Bioanalyzer electropherogram showing elimination of 

heteroduplex formation in GeCKO library from both plasmid and gDNA by reduced PCR 

cycles.  (D) Read-length histogram showing Illumina sequencing results for the GeCKO library 

amplified from plasmid.  The length of the GeCKO library is 76 bp after barcode separation.  

A

. 

B. 

C

. 

D
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Illumina NextSeq500.  Therefore, we extended our method as a validation strategy for quality 

assessment of the GeCKO library prior to Illumina sequencing.  In addition, a detailed protocol 

in preparing CRISPR libraries for Illumina sequencing will also benefit researchers as such 

resources are still limited.  Sequencing of the GeCKO library requires two steps of PCR 

reactions.  Reduction of cycles for both PCR reactions to amplify the library from plasmid or 

genomic DNA, decreased the ~ 520 bp DNA smear and resulted in an increase of the ~ 370 bp 

product (Fig. 4.11B, C).  Sequencing of the GeCKO library from plasmid on the Illumina 

platform by adapting our procedure showed minimal amounts of incomplete reads, indicating 

that our method was equally applicable for larger libraries as well (Fig. 4.11D). 

Overall, with the improvement of the methods, it was clearly observed that polyclonal, 

low quality, and terminated reads were gradually decreased, while the intended library reads 

were increased (Fig. 4.12A).  The library-fold coverage was also increased though there was no 

comprehensive difference among identified library sequences by these methods (Fig. 4.12B, C).   

 

4.3 Analysis of Pooled Screening Results to Identify Essential Circular RNAs 

We PCR-amplified circRNA shRNA library for eight different samples (two replicates of 

initial time point T0, three replicates of middle time point T1 and three replicates of last time 

point T2).  Library amplicons from these time points were sequenced using the Ion Torrent 

sequencing method.  Overall, we obtained ~ 2,978,646 usable reads with ~ 70 fold coverage of 

the circRNA shRNA library.  This represents 99% of the shRNA library that we designed to 

target ~ 4,972 circRNAs.  Different counts of circRNA shRNA library sequencing are 

summarized in Table 4.1.  For further analysis, the raw count of each sequence of the library at 

a time point was normalized to per million of total library sequence count, which was then used 

to calculate DCC scores.  We focused our analysis on sequences that decreased over time 

(dropouts) to identify essential circRNAs in HCT 116 cells.   We found 8,471 library sequences 

whose counts decreased to different extents (positive dropout score range: 711.65 to 0.008463) 

from T0 to T2 (Fig. 4.13 and Fig. 4.14A).  Interestingly, 6,376 library sequences were enriched 

to different extents (negative dropout score range: -0.51694 to -542.575) from T0 to T2 (Fig. 

Sequence lengths are plotted in X-axis and sequence counts are plotted in Y-axis.  Six different 

barcodes represent six different dilutions of the library, where consecutive dilutions caused 

comparatively lower sequence counts.  Adapted from Islam et al., 2017. 
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4.13 and Fig. 4.14B).  However, with a stringent bootstrapping of DCC scores and considering 

at least two shRNAs of the similar effect per circRNA, we identified 107 essential circRNAs 

(bootstrap p-value ≤ 0.05) whose loss-of-function caused lethality to HCT 116 cells.  

Normalized library sequence counts at different time points are shown for top five essential 

circRNAs in Fig. 14.15 with their annotations presented in Table 4.2. 

Out of 107 essential circRNAs, 79.4% (76.6% sense 2.8% antisense) were exonic, 14.9% 

were intronic (14% sense and 0.9% antisense) and 5.6% were intergenic (Fig. 4.16A and Fig. 

4.16B).  The percentage of essential circRNAs that we identified correlated with the abundance 

of different categories (exonic, intronic and intergenic) of targeted circRNAs.  As functions of 

these circRNAs are not known, we decided to study parental genes of genic circRNAs (94.3% 

Figure 4.12 Comparison of the quality of Ion Torrent sequencing across different 

methods.  (A) Bar diagram showing comparison of metrics from shRNA, half-shRNA and 

improved half-shRNA library sequencing.  Different types of sequence reads are plotted in X-

axis and percentages of sequence reads are plotted in Y-axis.    Polyclonal reads are presented 

as percentage of initial loading and enrichment.  Low quality reads are presented as percentage 

of total sequence output after loading, enrichment and initial polyclonal removal.  Terminated 

and barcoded sequence reads are presented as percentage of total filtered reads by Ion Torrent 

server.  (B) Bar diagram showing comparison of library fold coverage from shRNA, half-

shRNA and improved half-shRNA library sequencing.  Different types of sequencing methods 

are plotted in X-axis and respective fold coverages of the library are plotted in Y-axis.  (C) Bar 

diagram showing comparison of identified library sequences from shRNA, half-shRNA and 

improved half-shRNA library sequencing.  Different types of sequencing methods are plotted 

in X-axis and respective percentages of identified library sequences (in raw sequence reads) are 

plotted in Y-axis.  The experiments were done in duplicates, means ± standard deviation (error 

bars).  *P < 0.05 (Student’s t-test).  Adapted from Islam et al., 2017. 
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of top 107).  Interestingly, 25.17% of genes were involved in signal transduction (Fig. 4.16C), 

25% were related to cell communication (Fig. 4.16D), and 21.7% did not have any known 

association with a biological processes (Fig. 4.16D).  Furthermore, many of these genes had 

expression in both cancer and normal tissues with an enrichment in colon (57.6%), rectum 

(45.7%), and colorectal cancer (47.8%) (Fig. 4.16E).  Out of the 107 essential circRNAs,   21 

circRNA had bootstrap p-value ≤ 0.01.  Some of the parental genes of these 21 circRNAs had 

differential expression between normal and cancer tissues (analyzed using patient-derived 

expression data from ‘TCGA’) (Fig. 4.16F).  For example, PMM1 and WBSCR22 represent 

parental genes of circRNA hsa_circ_0005703 and hsa_circ_0005588 respectively.  PMM1 is 

downregulated in most cancers (including colon cancer) but WBSCR22 is upregulated in most 

cancers (including colon cancer) (Fig. 4.17).  This indicated possibilities that essential E-

circRNAs could utilize mechanisms independent of the expression of their parental genes.  

 

4.4 Results of the Cloning of shRNA Oligonucleotides into the shRNA Expression Plasmid  

To validate the circRNA shRNA screen without bias, we took the top five essential 

circRNAs and cloned individual shRNA oligonucleotides into pLKO.1 plasmid to test them on 

a one-on-one basis (Fig 4.18).  These five circRNAs represent three E-circRNAs, one I-

circRNA, and one intergenic circRNA.  We successfully cloned two shRNA oligonucleotides 

for four of the top five essential circRNAs.  The shRNA oligonucleotides for the I-circRNA 

(hsa_circ_0092290) could not be cloned for unknown reasons.  For the cloning, we PCR-

amplified the shRNA oligonucleotides to attach Gibson Assembly linkers that were detected as 

a 142 bp product using an agarose gel.  The 142 bp shRNA oligonucleotide amplicons were 

cloned into ~ 7 kb XhoI- and AgeI-digested pLKO.1 plasmid.  The successful cloning was 

confirmed by performing colony PCR and checking the PCR products on agarose gel, checking 

Table 4.1 Different counts of circRNA shRNA library sequencing are 

Library parameters Counts 

Total library sequence count 2,979,646 

Fold coverage 66.9 

Percentage of the total library 98 % 

Percentage  of targeted circRNA 99 % 
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cloned plasmids on agarose gel, and Sanger sequencing of cloned insert of shRNA sequences.  

In total, we cloned eight oligonucleotides of circRNA shRNAs into pLKO.1 which targeted 

three E-circRNAs and one intergenic circRNA.        

 

4.5 Results of CircRNA shRNA Assays  

HCT 116 cells were transduced with the relevant circRNA shRNA expressing lentivirus 

followed by puromycin selection.  The extracted total RNA from transduced HCT 116 cells (by 

both control and treatment shRNAs) showed 28S and 18S ribosomal RNA bands, indicating 

intact RNA sample quality.  Small RNAs and some degraded RNA appeared as a lower 

molecular weight smear (Fig. 4.19A).  To specifically amplify circRNAs, we designed 

divergent primers, which amplify circRNAs and not corresponding mRNAs.  To test these 

primers, we did reverse transcription PCR (RT-PCR) of total RNA samples and analyzed 

Figure 4.13 Library sequence dropout and enrichment identification from NGS data.  

Line chart showing dropout scores of library sequences from sequencing of circRNA shRNA 

library from genomic DNA.  Each of the library sequence count was smoothed by five (five is 

added to the count) and normalized to per million of total sequence count.  Differences of the 

normalized counts between T0 and T2 time points were calculated for each of the library 

sequence and ranked accordingly.  Ranks of the library sequences are plotted in X-axis and 

difference of the normalized counts are plotted in Y-axis.  Positive scores represent sequence 

dropouts and negative scores represent enrichment of sequences.   
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Figure 4.14 Comparison of library sequence abundance between initial and last time 

points of screening procedure.    (A)  Bar diagram showing comparison between T0 and 

T2 time points based on normalized library sequence counts to find out sequence dropouts.  

Ranks of the library sequences are plotted in X-axis and normalized library sequence counts 

are plotted in Y-axis.  (B) Bar diagram showing comparison between T0 and T2 time points 

based on normalized library sequence counts to find out library sequence enrichments.  

Ranks of the library sequences are plotted in X-axis and normalized library sequence counts 

are plotted in Y-axis.                  

  

A. 

B. 
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Table 4.2 List of top five essential circRNAs from screening of HCT 116 cell line 

 

Screen 

rank 

 Bootstrap 

 p-value (five 

decimal digits)  

CircRNA ID Gene 
Spliced 

length 

Origin 

type 

1  0.00000 hsa_circ_0005703 PMM1 269 Exonic (single exon) 

2  0.00042 hsa_circ_0005588 WBSCR22 276 Exonic (single exon) 

3  0.00108 hsa_circ_0092290 
SCRIB 

 
300 Intronic 

4  0.00113 hsa_circ_0002989 
No gene 

 
358 Intergenic 

5  0.00182 hsa_circ_0005598 RPS5 339 Exonic (single exon) 

 

Figure 4.15 Identification of library sequence dropouts.  Bar diagram showing the library 

sequence counts of T0, T1 and T2 time points for the top five essential circRNAs.  Each of the 

library sequence count was smoothed by five (five is added to the counts) and normalized to 

per million of total sequence count.  Names of the two shRNA sequences per circRNA are 

plotted in X-axis and respective counts are plotted in Y-axis.      
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Figure 4.16 Features of top circRNA hits.  (A) Bar diagrams showing fractions of circRNAs 

based on their genomic origins for top 107 circRNA hits and for top 21 circRNA hits.  For both 

cases, different genomic locations are plotted in X-axis and percentages of total circRNAs (107 

or 21 circRNAs respectively) are plotted in Y-axis.  Bar diagrams showing enrichment of 

parental genes of E-circRNAs from top 107 circRNA hits based on (C) molecular function (D) 

biological process and (E) site of expression.  Percentages of the enriched genes are plotted in 

X-axis and respective molecular functions, biological processes and sites of expressions are 

A. B. 

C. 

D. 

E. F. 
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amplicon sizes.  We also checked product sizes for corresponding mRNAs (for E-circRNAs) by 

using mRNA specific primers (convergent primers).  For example, hsa_circ_0005588 had 

amplicons of 187 bp and 147 bp for two different primer sets and corresponding mRNA 

(WBSCR22 gene) had amplicons of 144 bp and 124 bp for two different primer sets (Fig. 

plotted in Y-axis.  The corresponding p-values were calculated by FunRich software.  (F) Bar 

diagram showing fractions of parental genes of E-circRNAs from top 21 circRNA hits based on 

differential expression between normal and cancer tissues (colon adenocarcinoma)  provided by 

‘TCGA’.  Types of expression in X-axis and percentages of total circRNAs (21 circRNAs) are 

plotted in Y-axis.  H: higher expression in cancer tissues than normal tissues, L: lower 

expression in cancer tissues than normal tissues, NS: no significant expression difference 

between normal and cancer tissues.   

 

    

 

 

    
 

 
  

 
A. B. 

Figure 4.17 Expression study of parental genes of top essential E-circRNAs in multiple 

malignancies.  (A) Box-and-whisker plot showing PMM1 (parental gene of has_circ_0005703) 

expression in different cancer types and matching normal tissue controls provided by ‘TCGA’. 

(B) Box-and-whisker plot showing WBSCR22 (parental gene of has_circ_0005588) expression 

in different cancer types and matching normal tissue controls provided by ‘TCGA’.  The 

normal and tumor conditions are plotted in X-axis and expression data are plotted in Y-axis.  

The expression data provided by ‘TCGA’ showed mRNA expression levels, which had been 

analyzed using RNA Seq V2 and was normalized using RSEM normalization according to 

‘TCGA’ standards.   
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4.19A).  The RT-PCR did not show any primer dimer, indicating that the amplicons were 

useful for qPCR analysis.  The qPCR amplification plots showed single types of amplicons, 

indicating the primer sets specifically amplified the E-circRNAs or the corresponding mRNAs.  

Additionally, absence of primer dimer or any other product was confirmed from melt curves 

(Fig. 4.19B).  

Interestingly, we found that E-circRNAs had higher Ct values than related mRNAs, 

indicating lower expression of circRNAs than linear counterparts in un-transduced HCT 116 

cells (Fig. 4.20A).  We also confirmed that circRNA shRNAs specifically targeted only the E-

Figure 4.18 Cloning of shRNA oligonucleotides targeting top essential circRNAs.  Gel 

images and sequencing chromatogram showing different steps of cloning of an shRNA 

oligonucleotide into pLKO.1 plasmid.  The oligonucleotide was PCR-amplified to attach 

Gibson Assembly linkers and detected as 142 bp product using agarose gel.  The double-

digestion (with EcoRI and AgeI) of pLKO.1 plasmid released stuffer fragment (~ 1.9 kb) from 

the plasmid that helped to clone the oligonucleotide amplicon into the remaining ~ 7 kb product 

(detected and extracted from an agarose gel) using Gibson Assembly method.  Bacterial 

colonies that were successfully transformed by the cloned plasmids, were picked from bacterial 

plates and used for colony PCR to check the size of the shRNA oligonucleotide insert amplicon 

(142 bp).  After size confirmation, the cloned plasmids were produce by MiniPrep method and 

detected on agarose gel as ~ 7 kb product.  The cloned insert for shRNAs sequence was further 

confirmed by Sanger sequencing as represented by the chromatogram.  The appropriate 

colonies were used to produce the cloned plasmids in large scale by MaxiPrep method, which 

were detected on agarose gel as ~ 7 kb product. 
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B. 

A. 

Figure 4.19 Expression study of a top essential circRNAs and corresponding mRNAs of 

top essential E-circRNAs.  (A) Gel images showing quality assessment of total RNA 

extraction from HCT 116 cells and PCR amplicons from reverse transcription PCR (RT-PCR) 

of an E-circRNA and respective mRNA by using specific primers.  (B) Amplification plots and 

melt curves showing specificity and purity of the amplicon of the circRNA and mRNA in 

qPCR study.  In the amplification plot, cycle numbers are plotted in X-axis, and ΔRn 

(normalized SYBR Green fluorescence, Rn) values are plotted in Y-axis.  In the melt curves, 

temperatures are plotted in X-axis and Derivative Reporter (-Rn) values are plotted in Y-axis.  

Amplification plot and melt curve are presented for three technical replicates from the sample.             
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A. 

B. 

Figure 4.20 Evaluation of knockdown of top essential circRNAs and corresponding 

mRNAs of top essential E-circRNAs using divergent and convergent primers.  (A) Bar 

diagram showing expression of circRNAs and corresponding linear mRNAs (for E-circRNAs) 

in HCT 116 cells.  The circRNA and mRNA names are plotted in X-axis and critical threshold 

(Ct) values are plotted in Y-axis.  (B) Bar diagrams showing qPCR results of relative 
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circRNAs and not the corresponding linear mRNAs (Fig. 4.20B).  We observed that shRNA 

caused significant reduction in expression level of all four circRNA hits (hsa_circ_0005703, 

hsa_circ_0005588, hsa_circ_0005598, hsa_circ_0002989).  In contrast, mRNAs (for 

hsa_circ_0005703, hsa_circ_0005588, hsa_circ_0002989) did not show any significant change 

in expression.     

   

4.6 Results of Cell Death Assay in Colorectal Cancer Cell Lines 

To examine whether the shRNA-mediated knockdown of circRNAs caused any effect on 

cell viability, we used two colorectal cancer cell lines (HCT 116 and DLD-1).  After lentiviral 

transduction and puromycin selection, we showed using 7-AAD staining and flow cytometry 

that shRNAs for E-circRNAs (hsa_circ_0005703, hsa_circ_0005588, hsa_circ_0005598) 

caused a significant increase in cell death in comparison to the control shRNA in HCT 116 cell 

line (Fig. 4.21).  Similar types of cell death were also found after targeting hsa_circ_0005588 

and hsa_circ_0005598 in the DLD-1 cell line although the top essential circRNA, 

hsa_circ_0005703 affected DLD-1 cells to a lesser extent compared to HCT 116 cells.  On the 

other hand, targeting the intergenic circRNA (hsa_circ_0002989) by the shRNAs did not cause 

extensive cell death in either cell line.   

 

4.7 Results of Cell Proliferation Assay in Colorectal Cancer Cell Lines 

To test whether the knockdown of circRNAs caused any effect on cell proliferation, we 

used the same colorectal cancer cell lines.  We showed that both shRNAs for all four circRNAs 

(hsa_circ_0005703, hsa_circ_0005588, hsa_circ_0002989, hsa_circ_0005598) affected cell 

proliferation in both HCT 116 and DLD-1 cell lines in comparison to control shRNA (Fig. 

4.22).  The growth of HCT 116 cells reached stationary phase on fourth day while DLD-1 cells 

were still in log phase on the fourth day.  Though equal number of cells were seeded for both 

cell lines on the first day, they grew at different rates probably due to different doubling time 

and/or varying effect of lentiviral transduction on them.  Considering the effect of both shRNAs 

expression of essential circRNAs and their corresponding linear mRNAs (for E-circRNAs).  

Knockdown and matching control cells were seeded and cultured for 72 hours before qPCR.  

Note that hsa_circ_0002989 does not have any linear mRNA as it comes from intergenic 

region.  The experiments were done in triplicates, means ± standard deviation (error bars).  

*P < 0.05 (Student’s t-test).    
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for a circRNA (average of normalized live cell numbers on the fourth day), proliferation of 

HCT 116 cells showed very similar effect in targeting all of the four circRNAs.  But DLD-1 

cells showed higher effect in targeting hsa_circ_0005598 in comparison to other three 

circRNAs.  Though targeting hsa_circ_0002989 in both the cell lines did not cause very high 

cell death, it caused proliferative disadvantages to cells.  This indicated that cell proliferation 

was not only affected by cell death but also slow growth rate.   Moreover, though targeting 

hsa_circ_0005703 in DLD-1 cells caused lesser cell death (than HCT 116) after 24 hours, 

slower growth was observed after 96 hours.  This indicated that cell lines of even the same 

cancer type responded differently to knockdown of hsa_circ_0005703.       

 

Figure 4.21 Cell death assay for knockdown of top essential circRNAs in colorectal cancer 

cell lines.  Bar diagrams showing comparison of cell death in colorectal cancer cell lines after 

targeting four different essential circRNAs identified from our screen.  Percentages of the cell 

death are plotted in Y-axis against respective shRNAs plotted in X-axis.  Knockdown and 

matching control cells were seeded and cultured for 72 hours before staining and flow 

cytometry.  The experiments were done in triplicates, means ± standard deviation (error bars).  

*P < 0.05 (Student’s t-test). 
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4.8 Results of Colony Formation Assay in Colorectal Cancer Cell Lines 

To test whether the shRNA-mediated knockdown of circRNAs caused any effect on 

colony forming ability of cancer cells, we used two colorectal cell lines (HCT 116 and DLD-1).  

We observed that both E- and intergenic circRNAs showed significantly less colony formation 

after targeting them with shRNAs in comparison to control shRNA in both HCT 116 and DLD-

1 cell lines (Fig. 4.23).  Targeting all four circRNA showed a very similar effect on colony 

formation and proliferation for HCT 116 cells.  DLD-1 cells showed reduced effect in colony 

formation for targeting hsa_circ_0005588 and hsa_circ_0002989 as compared to the respective 

effect in proliferation.  This indicated that, DLD-1 cells possibly developed resistance 

mechanism with time to overcome the effect caused by knockdown of respective circRNAs.  

 

4.9 Results of Tumorsphere Assay in Colorectal Cancer Cell Lines 

To examine whether the knockdown of circRNAs caused any effect on tumor 

aggressiveness properties, we used two colorectal cell lines (HCT 116 and DLD-1) for 

tumorsphere assay.  We observed that exonic circRNAs showed significantly less tumorsphere 

Figure 4.22 Cell proliferation assay for knockdown of top essential circRNAs in colorectal 

cancer cell lines.  Line charts showing proliferation of colorectal cancer cell lines after 

targeting four different essential circRNAs identified from our screen.  Number of days are 

plotted in X-axis and normalized live cell numbers (for both shRNAs targeting a circRNA) are 

plotted in Y-axis.  Knockdown and matching control cells were seeded and cultured for four 

days before harvest and counting.  The experiments were done in duplicates. 
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forming cells after targeting them with shRNAs in comparison to control shRNA in both HCT 

116 and DLD-1 cell lines (Fig. 4.24).  On the other hand, targeting intergenic circRNA did not 

affect tumorsphere formation significantly in both cell lines (for two shRNAs in HCT 116 cells 

and one shRNA in DLD-1 cells). 

 

4.10 Results of Cell Death Assay in Other Cancer Types 

We tested the essentiality of the four circRNAs in two breast cancer and two prostate 

cancer cell lines using 7-AAD staining and flow cytometry.  We checked the expression of the 

parental genes of E-circRNAs from ‘CCLE’ for all the mentioned cell lines.  We found that all 

Figure 4.23 Colony formation assay for knockdown of top essential circRNAs in 

colorectal cancer cell lines.  Images and bar diagrams showing comparison of colony 

formation after targeting four different essential circRNAs identified from our screen.  In the 

bar diagrams, number of colonies are plotted in Y-axis against respective shRNAs plotted in X-

axis.  Knockdown and matching control cells were seeded and cultured for seven days before 

colony staining, imaging and counting.  The experiments were done in duplicates, means ± 

standard deviation (error bars).  *P < 0.05 (Student’s t-test).  
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of these genes have higher expression level than the median of all human gene expression (Fig 

4.25).  As both genes and corresponding circRNAs come from the same splicing process, we 

assumed if the parental gene is expressed in a cell line, there is the possibility of corresponding 

E-circRNA expression.  We found that cell lines from other cancer types did not follow the 

same essentiality profile like HCT 116 under the same experimental conditions.  Breast cancer 

cell line MDA-MB-231 showed reduced essentiality for all four essential circRNA in 

comparison to HCT 116 cell line (Fig. 4.26).  On the other hand, breast cancer cell line MCF7 

exhibited higher essentiality than MDA-MB-231 for all four essential circRNAs.  Additionally, 

Figure 4.24 Tumorsphere assay for knockdown of circRNAs in colorectal cancer cell lines.  

Images and bar diagrams showing comparison of tumorsphere forming cells after targeting four 

different essential circRNAs identified from our screen.  In the bar diagrams, number of 

tumorsphere forming cells are plotted in Y-axis against respective shRNAs plotted in X-axis.  

For HCT 116 cells, 4 X images are presented while 10 X images are presented for DLD-1 cells.  

Knockdown and matching control were seeded in ultra-low attachment plates and cultured for 

seven days.  The resulting tumorspheres were collected, dissociated, and the total number of 

cells were counted.  The experiments were done in duplicates, means ± standard deviation 

(error bars).  *P < 0.05 (Student’s t-test). 
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prostate cancer cell line   DU 145 and PC-3 showed reduced essentiality for all of the four 

circRNAs in comparison to HCT 116 cell line.  These results suggested that circRNA 

essentiality has cell line and/or tissue specificity. 

 

4.11 Predictive Analysis of Circular RNA Interactions with miRNA and Protein 

We performed a bioinformatics analysis on ‘CircInteractome’ to predict miRNA and 

RNA binding protein (RBP) interaction with the top five essential circRNAs from the 

screening.  We found different circRNAs have binding sites for multiple miRNAs, indicating 

their possible involvement in diverse gene regulatory processes (Table 4.3).  There were almost 

no common miRNAs among the five circRNAs.  Most of the miRNA had only one binding site 

in the circRNAs.  Conversely, hsa_circ_005588 had two binding sites for hsa-miR-338-3p 

(highlighted with red) and hsa_circ_005588 had two binding sites for hsa-miR-1825 

(highlighted with red).  In the case of predicted RBP interactions with five circRNAs, 

hsa_circ_005598 had the highest number of predicted interaction partners and 

Figure 4.25 Expression study of parental genes of top essential E-circRNAs in different 

cancer cell lines.  (A) Bar diagram showing expression of parental genes of top three essential 

E-circRNAs from ‘CCLE’ in HCT 116, DLD-1, MDA-MB-231, MCF7, PC-3 and DU-145 cell 

lines.  The names of the cell lines are plotted in X-axis and expression data are plotted in Y-

axis.  The expression data provided by ‘CCLE’ showed mRNA expression levels, which was 

RMA-normalized gene-centric expression according to ‘CCLE’ standards.   
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Figure 4.26 Cell line specific essentiality of top essential circRNAs.  Bar diagrams showing 

comparison of cell death in cell lines of breast and prostate cancers after targeting four different 

essential circRNAs identified from our screen.  Percentages of the cell death are plotted in Y-

axis against respective shRNAs plotted in X-axis.  Knockdown and matching control cells were 

seeded and cultured for 72 hours before staining and flow cytometry.  The experiments were 

done in triplicates, means ± standard deviation (error bars). *P < 0.05 (Student’s t-test).   
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hsa_circ_00092290 had only a single interacting partner named EIF4A3 (Fig 4.27).  Some 

RBPs were common for multiple circRNAs.  Interestingly, all of the top five essential 

circRNAs have multiple binding sites for EIF4A3, indicating a possible involvement of this 

protein in the essentiality mechanism of these circRNAs.                

 

 

Table 4.3 Predicted interacting miRNAs with top essential circRNAs  

 
hsa_circ_0005703 hsa_circ_0005588 hsa_circ_0092290 hsa_circ_0002989 hsa_circ_0005598 

hsa-miR-1184 

hsa-miR-1270 

hsa-miR-1299 

hsa-miR-1307 

hsa-miR-145 

hsa-miR-1827 

hsa-miR-198 

hsa-miR-217 

hsa-miR-361-3p 

hsa-miR-432 

 

hsa-miR-1227  

hsa-miR-146b-3p 

hsa-miR-1825  

hsa-miR-186  

hsa-miR-194  

hsa-miR-326  

hsa-miR-330-5p 

hsa-miR-338-3p 

hsa-miR-361-3p 

hsa-miR-512-5p 

 

hsa-miR-1224-3p 

hsa-miR-1225-3p 

hsa-miR-1228 

hsa-miR-1233 

hsa-miR-1827 

hsa-miR-187 

hsa-miR-512-5p 

hsa-miR-636 

hsa-miR-644 

hsa-miR-663b 

 

hsa-miR-1231 

hsa-miR-1246 

hsa-miR-1265 

hsa-miR-1292 

hsa-miR-1825 

hsa-miR-197 

hsa-miR-224 

hsa-miR-338-3p 

hsa-miR-346 

hsa-miR-492 

 

hsa-miR-1208 

hsa-miR-1289 

hsa-miR-1294 

hsa-miR-1827 

hsa-miR-197 

hsa-miR-377 

hsa-miR-490-5p 

hsa-miR-492 

hsa-miR-517b 

hsa-miR-556-5p 

 

  

 

 
  

Figure 4.27 Predicting interacting proteins of top essential circRNAs.  Bar diagrams 

showing predicted interacting proteins of top five essential circRNAs.  Numbers of predicted 

binding sites are plotted in X-axis and names of the respective proteins are plotted in Y-axis.  
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5.0 Discussion 

5.1 Development of a Novel Tool and Method for Systematic Study of Circular RNA 

Essentiality 

CircRNA is a new class of RNA molecules discovered by recent advancement in genomic 

technologies.  Many of the circRNAs are found to be involved in gene regulation during 

development and pathogenesis.  Unfortunately, the roles of most circRNAs are not still known, 

which requires intensive studies to decipher their functional characteristics.  Studying functions 

of each circRNA individually (from the vast repertoire) requires time and resources.  From this 

viewpoint, expression profiling has come into use for studying differential expression of 

circRNAs in normal and diseased conditions (e.g. cancer) (Li et al., 2015e; Qu et al., 2015b; 

Ahmed et al., 2016; Song et al., 2016).  Though expression studies can help in biomarker 

discovery, there are some major pitfalls, as expression is not always a cause of a biological or 

molecular phenomenon.  Specifically, from therapeutic point of view, it is important to identify 

the causative factor necessary for particular disease phenotypes.  In this regard, genome-scale, 

pooled shRNA screening is a suitable way to investigate large set of genes and/or transcripts for 

a particular characteristic (e.g. gene essentiality).  From this perspective, we decided to screen a 

significant number of circRNAs identified from different genomic studies for their essentiality 

in cancer cells.  Currently, there are no commercial tools (e.g. shRNA library, CRISPR library) 

available for such studies.  As circRNAs are alternative products generated during the splicing 

process, they cannot be targeted by more efficient screening tools like CRISPR library, as it 

targets DNA element rather than RNA transcript.  To address these challenges, we developed a 

novel ~ 15K shRNA library, which specifically targets ~ 5K circRNAs.  We effectively 

established a complete pipeline for design, construction, and validation of a circRNA shRNA 

library.  We used the circRNA shRNA library to systematically screen a colorectal cancer cell 

line (HCT 116) and identify essential circRNAs using a lentivirus-based pooled screening 

method.  For successful identification of essential circRNAs, we developed a scoring algorithm 

to analyze NGS results from the screening procedure.  Such large-scale, genome-wide screens 

have been applied to identify cancer-specific essential genes in some studies (Paddison et al., 

2004; Luo et al., 2008; Schlabach et al., 2008; Silva et al., 2008; Barbie et al., 2009; Marcotte 

et al., 2012; Koike-Yusa et al., 2013; Shalem et al., 2014; Wang et al., 2014b; Hart et al., 2015; 

Munoz et al., 2016).  Moreover, some research also utilized genome-wide screening for 



 

80 
 

detecting therapeutically relevant synthetic lethal targets (Luo et al., 2009; Brough et al., 2011; 

Vizeacoumar et al., 2013; Bajrami et al. 2014; Cermelli et al., 2014; Paul et al., 2014; Van Der 

Meer, et al., 2014; Paul et al., 2016).  

 

5.2 Improvement of shRNA and CRISPR Library Sequencing Methods on Next-

Generation Sequencing Platform  

Direct shRNA library sequencing from genomic DNA generally results in polyclonal, low 

quality, and incomplete reads due to hairpin and/or heteroduplex formation.  This challenge is 

significantly amplified in low-to-medium throughput bench-top sequencers as they already 

have limited coverage of sequencing.   Ideally, shRNA libraries are designed to form functional 

hairpin structures when processed within the cell.  Because of this, it is natural that these 

sequences form hairpin structures during sequencing reactions and reduce sequencing quality, 

irrespective of the sequencing platform that is being used. Similarly, heteroduplex structures 

can also reduce sequencing quality.  This heteroduplex issue is not unique to shRNA libraries 

alone but affects all types of mixed-oligo libraries (e.g. CRISPR, phage display libraries, etc.).  

For example, one study showed that 70% of sequences could not be read due to heteroduplex 

formation in a phage-selected peptide library (Rebollo et al., 2014).  Similarly, 40% of reads 

from Illumina sequencing of genetically distinct HIV-1 genome were unexpected recombinant 

sequences due to heteroduplex formation (Liu et al., 2014).  This heteroduplex issue also makes 

it very challenging when sequencing larger libraries, as it hinders multiplexing (running more 

samples at a time for sequencing).  Unfortunately, computational predictions to simulate the 

formation of heteroduplex structures are also limited due to high randomness associated with 

the formation of these structures.  

Our method aims to eliminate sequence failure and maximize throughput in low-to-

medium throughput bench-top sequencers.  We showed that the adapter-ligated half-shRNA 

sequencing increased usable read output by ~ 60%, relative to current sequencing strategies.  To 

confirm that our experimental procedures successfully eliminated the hairpin related issues, we 

carried out sequencing of both full-shRNA and half-shRNA library samples.  We showed that 

sequencing half-shRNA reduced the polyclonal, low quality, and sequence termination while 

increasing reads of the intended library.  In addition, reduction of heteroduplex structures also 

maximized our throughput.  As increased-fold representation of the shRNA library is important 
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for the reproducibility of pooled shRNA screens (Strezoska et al., 2012), our methodology 

should alleviate any of these concerns because sequencing of half-hairpins increased the fold 

coverage by at least five times. 

Our method resulted in improvements of the initial quality assessment by the server 

software (after loading and enrichment) in Ion Torrent sequencing.  While shRNA sequencing 

showed 21% initial polyclonal reads and 45% low quality reads, half-shRNA sequencing 

reduced them to 12% and 36%, respectively. After heteroduplex removal, half-shRNA 

sequencing decreased the polyclonal and low quality reads further to 6.5% and 9%, 

respectively.  In comparison to some of the established methods such as MuPlus (transposon-

based), MuSeek (commercial), and other ligation-based methods, our approach showed a 

significant reduction in the rate of polyclonal reads. While these methods exhibited 23%, 51%, 

and 31% polyclonal reads, respectively, our method produced only 6.5% (Gorbacheva, et al., 

2015).  Our method also reduced low quality reads (9%) in comparison to the commercial 

MuSeek method (55%), although MuPlus and other ligation-based methods have similar levels 

of efficiency (MuPlus: 6% and other ligation-based: 9%) (Gorbacheva et al., 2015).  

Additionally, final sequence output after loading, enrichment, initial polyclonal removal, and 

low-quality removal have been significantly increased with our method (88%), when compared 

to other methods (MuPlus: 72%, MuSeek: 22% and other ligation-based method: 63%) 

(Gorbacheva et al., 2015).  Unlike previously used sequencing strategies (Hoshiyama et al., 

2012), our ligation-based, half-shRNA sequencing is readily amenable to any pooled shRNA 

screening studies.  Our strategy to detect and minimize heteroduplex formation in shRNA or 

CRISPR libraries can also be extended to any mixed-oligo libraries. 

As targeted screening by small coverage libraries, using low-to-medium throughput 

bench-top sequencers demand minimal unusable reads that arise from hairpin and/or 

heteroduplex formation, we expect that our approach will be beneficial.  Our method can also 

be extended to whole genome screening using Illumina platforms.  With the recent increase in 

the library sizes such as the ultracomplex-pooled shRNA libraries with 25 shRNAs per gene 

(Bassik et al., 2013) or the TKO library, where 10 guide RNAs target each gene (Hart, 2015), 

there is an ever-increasing demand on the sequencing throughput.  Therefore, in its current 

state, maximizing the sequencing strategy is becoming a pressing issue.  A whole genome 

screen using a 90K shRNA pool may require ~ 45 million reads for ~ 500-fold coverage for a 
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single time point.  In fact, a single screen requires multiple time points and replicates, easily 

exceeding the limitations of a bench-top sequencer (e.g. Ion PGMTM
 System).  Though Illumina 

technologies provides vast coverage of sequencing, over 40% to 50% of the reads are still non-

usable.  We expect that our methodological improvements will minimize the loss of reads and 

maximize throughput and multiplexing capabilities. 

  

5.3 Identification and Characterization of Unique Essential Circular RNA Molecules in 

Cancer Cells 

Our screening of the HCT 116 cell line and subsequent analysis of NGS data identified 

~100 essential circRNA hits which might be very critical for the survival of this colorectal 

cancer cell.  As genome-wide screening procedure generates some false positive hits, we 

selected the top five essential circRNAs from our analysis for further validation.  We 

successfully cloned two shRNA oligonucleotides targeting the top four essential circRNAs 

(three E-circRNA and one intergenic circRNA) into the pLKO.1 plasmid.  We used lentiviral 

method to target these four circRNAs in HCT 116 cell line.  We confirmed knockdown of these 

circRNAs as well by designing specific divergent primers.  For three E-circRNAs, we also 

confirmed that our shRNAs only targeted the circRNAs and not the corresponding mRNAs.  

We observed different cellular effects due to the knockdown of the mentioned circRNAs with 

cell death assay, proliferation assay, colony formation assay and tumorsphere assay in HCT 116 

and DLD-1 cell lines.  Our results of the cell death assay showed that targeting the top essential 

circRNAs caused significant amount of cell death in two colorectal cancer cell lines.  

Proliferation assay and colony formation assay confirmed that knockdown of the essential 

circRNAs also disrupted normal proliferative properties of the cells.  Furthermore, tumorsphere 

assay showed that knockdown of some of the essential circRNAs altered tumor aggressive 

properties of the cells.  With cell death assay in two breast cancer and two prostate cancer cell 

lines, we also observed that essentiality of the mentioned circRNAs had cell line specific 

nature.  

 These essential circRNAs identified from our study have not been previously reported.  

Moreover, their expression profiles in cancer have not been described by any other authors.  

There is evidence that some circRNAs can be upregulated or downregulated in different types 

of cancer (Li. et al., 2015c; Wang et al. 2015; Qin et al., 2016; Sand et al., 2016; Xuan et al., 
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2016; Weng et al., 2017).  To have a better understanding, we studied parental genes of the top 

~100 E-circRNAs from our list and found that some of them are upregulated in colorectal 

cancer in comparison to the normal tissues while some are downregulated.  Interestingly, these 

genes had different types of essentiality that was identified from a previous screening (Hart et 

al., 2015).  For example, PMM1 (parental gene of hsa_circ_005703) is downregulated in cancer 

and has very low essentiality score (indicating very less involvement in cancer cell survival).  

Both WBSCR22 (parental gene of hsa_circ_005588) and RPS5 (parental gene of 

hsa_circ_005598) are upregulated in colorectal cancer and have a very high essentiality score 

(indicating higher importance in cancer cell survival). We assumed that the E-circRNAs can be 

essential irrespective of the expression and essentiality of the parental genes.                

 

5.4 Building a Foundation for Further Study on Mechanistic Understanding of Circular 

RNA Essentiality 

Our study set a base for mechanistic understanding of circRNA essentiality.  Two models 

can be postulated for the circRNA essentiality.  The first model can be described by circRNA 

and RBP interaction. For example, hsa_circ_005703 had three predicted binding sites for 

EILF4A3 (eukaryotic translation initiation factor 4A3).  Essential circRNAs can bind to three 

different EILF4A3 proteins and this assembly can help to initiate the translation process.  

Knockdown of circRNAs can disrupt this interaction, as well as affect cell cycle progression 

resulting in decreased cancer cell proliferation or increased cell death (Fig 5.1A).  Some similar 

types of mechanisms were also described by other groups (Du et al., 2016; Yang, 2016; Du et 

al., 2017).  A second model can be described by sponging of miRNAs by circRNA.  Essential 

circRNAs can sponge AGO-miRNA complexes.  This active sponging of miRNAs, can cause 

excessive mRNA levels of some oncogenes resulting in enhanced proliferation of cancer cells.  

Knockdown of essential circRNAs can release AGO-miRNA complexes which can repress the 

oncogenes, resulting in decreased cancer cell proliferation or increased cell death (Fig. 5.1B).  

For example, hsa_circ_005588 has two target sites for miR-338-3p which was found to be a 

highly conserved miRNA identified from ‘TargetScan’ analysis.  Furthermore, this miRNA is 

an established tumor suppressor (Xue et al. 2014) and has some oncogenic targets (predicted 

from ‘ToppGene’ analysis).  For instance, CDK4 (Cyclin-dependent kinase 4), an established 

oncogene (https://www.ncbi.nlm.nih.gov/gene: NCBI) and cell cycle regulatory protein, is a 
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target of miR-338-3p.  Though circRNAs having only one or two miRNA sites cannot be 

supported strongly by the sponging model, the relative abundance of circRNAs due to their 

stability might ensure their higher copy numbers in cancer cells and thus impart functional 

effect in cellular phenotypes (Salzman et al., 2012; Salzman et al., 2013; Jeck et al., 2013; 

Memczak et al., 2013; Rybak-Wolf et al., 2015).  Apart from circRNA based gene regulation 

mediated by miRNA sponging, E-circRNAs might have some roles in regulating their parental 

genes to enhance cancer progression.  For instance, cancer cells might maintain a ratio of 

circRNA and mRNA (for exonic circRNAs) to create a competition for tumor suppressor 

miRNAs between circRNA and mRNA. This is particularly reasonable when the parental gene 

Figure 5.1 Model of circRNA essentiality mechanism.  (A) Illustration of interaction 

between circRNAs and EIF4A3 and its role in cell-cycle progression.  (B) Illustration 

describing the model of has-miR-338-3p sponging by has_circ_0005588 and its role in cell-

cycle progression.   

 

A. 

B. 
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is oncogenic and upregulated in cancer.  A similar type of mechanism was described by Zhong 

et al., 2016.  Analysis of ‘CCSD’ database also showed that a ratio of circRNA and mRNA 

originally exists in different cancer samples.  For example, expression ratio of 

hsa_circ_005588/WBSCR22 and hsa_circ_005598/RPS5 were found to be 0.58 and 0.50 

respectively in K-562 cell line (leukemia).  On the other hand, circRNAs more likely regulate 

any other genes except the parental genes, specifically when the parental genes are 

downregulated.   

Based on the predicted interactions of circRNA with proteins, miRNAs and long non-

coding lincRNAs, cancer specific interactome can be built for circRNAs.  An example of such 

breast cancer interactome for CDR1as was generated from ‘circ2traits’ database as shown in 

Fig. 5.2.  Such interactome study can also be performed for essential circRNAs identified from 

genomic screens.  Thus it is possible to bridge the essential circRNAs to global cancer 

interactome.   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

Figure 5.2 CircRNA interactome study.  Predicted interactome of CDR1as in breast cancer 

indicating a model of circRNA specific gene regulatory network.  The regulatory network that 

comprises of circRNAs, miRNAs, mRNAs and lncRNAs, is also applicable in integrating 

essential circRNAs into the existing cancer knowledgebase.   
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6.0 Conclusions and Future Directions 

6.1 Conclusions  

CircRNAs are a newly discovered interesting class of RNA molecules.  There are 

limitations of the existing knowledge about their roles in complex human disease like cancer.  

In this study, we took a novel approach to investigate the essentiality of many of these 

circRNAs with a perspective to understand their roles in cancer biology.  We developed a 

circRNA specific shRNA library to systematically screen these circRNAs for their essentiality 

in cancer.  After targeting colorectal cancer cell line with the library through a standard 

screening procedure, several essential circRNA hits were identified using a novel scoring 

method.  The top four essential circRNAs were then validated further with some expression and 

cell based assays.  Moreover, expression and enrichment studies were performed on the 

parental genes of corresponding E-circRNAs to understand their functional relevance to cancer.  

Finally, we also performed some bioinformatics study to propose two models of circRNA-

associated essentiality mechanism. 

 
6.2 Future Directions 

To know the involvement of the essential circRNAs with different biological pathways, 

high-throughput pathway enrichment studies can be performed.  Epigenetic changes of 

circRNAs and their relevance to essentiality can lead to a novel field such as circRNA 

epigenomics.  Moreover, genome wide association study of essential circRNAs can be effective 

to understand the disease phenotypes.   As all the works were performed in vitro model so far, 

the targets should also be tested in appropriate mouse model to enhance the reliability of the 

circRNA essentiality.  Given that the expression profiling has been completed for circRNAs 

between normal and cancer tissues, they can be also used to identify synthetic lethal or 

synthetic dosage lethal partners for therapeutic intervention.  Specifically, highly 

downregulated circRNAs in cancer can be used to find synthetic lethal partners while highly 

upregulated circRNAs in cancer can be used to find synthetic dosage lethal partners through 

similar type of genome-wide screening.  As current studies suggest that circRNAs can be 

translated, it may be interesting to investigate whether essential circRNAs identified from our 

study can be translated into proteins.  The vast repertoire of stable circRNAs can be tested for 

novel biomarker discovery, particularly those with differential expression.  Furthermore, cancer 
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specific circRNA essentiality can be applied for therapeutic intervention of cancer.  Antisense 

therapy may be a better approach in this regard though its success is dependent on efficient 

drug delivery system into the cells.  As a whole, circRNA field has remarkable prospects in 

understanding cancer in a more mechanistic way and utilizing the knowledge for probable 

therapeutic and diagnostic advancement.  Our study provides a foundation for new studies to 

understand the roles of circRNAs in cancer.  Most importantly, our established circRNA 

shRNA library is a useful tool that can be used further to screen essential circRNAs in other in 

vitro or in vivo models.   We screened a single cancer cell line for circRNA essentiality, 

representing a particular type of cancer.  But there is ample opportunity to broaden the scope of 

such study by screening diverse cancer cell lines that cover all major types of malignancies.  

This is particularly significant for developing a global circRNA essentiality map.  The 

essentiality study of circRNAs can be coupled with their differential expression profiling 

between normal and cancer tissues.  This will help to identify more effective circRNAs from 

both a therapeutic and diagnostic point of view.  Clinical patient derived data from public 

repository (e.g. ‘TCGA’) can be very useful in this regard.  We validated the essentiality of 

only four circRNAs from our essentiality list and many others are still remaining for further 

validation.  Experimental validation of the essentiality mechanisms of circRNAs is another vital 

direction of the circRNA field.  Particularly, more intronic and intergenic circRNAs should be 

considered with importance for future validation and mechanistic study. We discarded all the 

circRNAs having single shRNA in the library during data analysis although these may be 

interesting targets as well for future studies.  Mechanistic study of E-circRNAs might also help 

understand many unknown functions of their parental genes.   
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