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ABSTRACT 
 

DEM analysis to delineate the stream network and its associated subwatersheds are the 

primary steps in the raster-based parameterization of watersheds. There are two widely 

used methods for delineating subwatersheds. One of these is the Upstream Catchment 

Area (UCA) method. The UCA method employs a user specified threshold value of 

upstream catchment area to delineate subwatersheds from the extracted network of 

streams. The other common technique is the nodal method. In this approach, 

subwatersheds are initiated at stream network nodes, where nodes occur at the upstream 

starting point of streams and at the point of intersection of streams in the network. 

 
The UCA approach and the Nodal approach do not permit watershed initiation at points 

of specific interests. They also fail to explicitly recognize drainage features other than 

single channel reaches. That is, they exclude water bodies, wetlands, braided channels 

and other important hydrologic features.  

 
TOPAZ (TOpographic PArameteriZation) [Garbrecht and Martz, 1992], is a typical 

program for raster based, automated drainage analysis. It initiates subwatersheds at 

source points and at points of intersection of drainage channels. TOPAZ treats lakes as 

spurious depressions arising out of errors in DEM, and removes them. This research 

addresses one important limitation of the currently used modeling techniques and tools. 

It adds the capability to initiate watershed delineation at points of specific interest other 

than junction and source points in the delineated networks from the Digital Elevation 

Models (DEMs). The research project evaluates qualitative and quantitative aspects of a 

new Object Oriented data structure and process model for raster format data analysis in 

spatial hydrology. The concept of incorporating a user-specified analysis in extraction 

and parameterization of watersheds is based on the need to have a tool to allow for 

studies specific to certain points in the stream network including gauging stations. It is 

also based on the need for an improved delineation of hydrologic features (water bodies) 

in hydrologic modeling. 
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The research project developed an interface module for TOPAZ [Garbrecht and Martz, 

1992] to offset the aforementioned disadvantages of the subwatershed delineation 

techniques. The research developed an internal hybrid, raster-based, Object Oriented 

data structure and processing model similar to that of vector data type. The new internal 

data structure permits further augmentation of the software tool. This internal data 

structure and algorithms provide an improved framework for discretization of the 

important hydrologic entities (water bodies) and the capability of extracting 

homogenous hydrological subwatersheds. 
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CHAPTER 1 

 

INTRODUCTION 
 
 
 
1.1 Statement of Problem 
 
The exponential growth of computer hardware and software has resulted in a rapid 

increase in computing power with diminishing costs. The decrease in the costs of 

computational power is not only in terms of the processing time (Mark 1983) but also 

monetary costs. The availability of inexpensive computational power has boosted the 

growth of digital-terrain-based analysis and modeling techniques in various engineering 

and science streams (Sivapalan and Kalma, 1995; Band and Moore, 1995; Wood et al., 

1988). 

 
Hydrology is a spatial science (Sivapalan and Kalma, 1995; Garbchet et al. 1996). The 

increase in computing power is being utilized in hydrology for fast and efficient 

analysis. There is an ever-increasing availability of spatial data in digital format 

(Sivapalan and Kalma, 1995). This has further promoted the process of computerization 

in hydrology (Djokic and Ye, 1999). Spatial hydrology is the combination of hydrology, 

Geographical Information Systems (GIS) and computer science. An important aspect of 

spatial hydrology is the raster-based digital terrain modeling of watersheds. In raster 

based digital–terrain-modeling, delineation and parameterization of the stream network 

and subwatersheds form the preliminary steps (Band, 1986; Jenson and Domingue, 

1988; Garbrecht and Martz, 1992; Wolock and McCabe, 1995; Tarboton et al., 1991). 

Currently, there are two ways of arriving at the subwatershed extraction from the 

delineated stream network.  In the first method, subwatersheds are initiated on the basis 

of a pre-defined, user-specified threshold value of upstream catchment area (UCA).  In

 1



 the second approach, which is node-based initiation, the subwatersheds are initiated at 

starting point, and points of intersection of channels in the delineated network. (Note-

these are related as the UCA is used to initiate channels in the node-approach.) 

 
 Both the threshold UCA approach and the nodal approach suffer from various 

limitations. Both approaches exclude the possibility of watershed initiation at points of 

specific interests like gauging stations, which may or may not satisfy the conditions of 

subwatershed initiation of either of the approaches. They also eliminate the water 

bodies, an important hydrologic feature, from the analysis process. 

 
TOPAZ (TOpographic PArameteriZation) (Garbrecht and Martz, 1992), a raster-based 

delineation and parameterization tool, initiates subwatersheds at source points and at 

points of intersection of drainage channels. TOPAZ, because of its typical raster 

techniques and robustness, is widely used by hydrologists. TOPAZ removes all the 

depressions by treating them as spurious and arising out of errors in the Digital 

Elevation Model (DEM). TOPAZ does not recognize lakes, but rather treats them as 

they are modeled in the DEM, i.e., like flat areas or depressions. TOPAZ treats these 

areas by adjusting the elevation values of the involved cells so as to maintain the flow 

continuity over these areas. TOPAZ employs the node-based approach in the delineation 

of subwatersheds, thus inheriting the limitations of this approach. This approach is very 

restrictive in analysis. It prevents inclusion of water bodies, an essential hydrologic 

feature, in the analysis process. It also precludes the delineation of subwatersheds 

around specific points of interest if it does not coincide with either of the subwatershed 

initiation points, (i.e., source and junction node points.) 

 
The pure raster-data-model has a number of limitations. The raster data model lacks the 

ability to organize process data around feature entities. Instead, most data handling and 

storage is on a pixel or grid cell basis only. On the other hand, a vector data structure is 

purely feature based, thus making it less suitable for continuous data with spatial and 

temporal variability. Currently, for most hydrological modeling, raster data and 

processing techniques are used, with a few exceptions of Triangular Irregular Network 
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(TIN) based models (Wilson and Gallant, 2000; Wise, 2000; Moore et al., 1991). 

However, the availability of raster data sets makes it the first choice of the hydrologists.  

 
The principal goal of this research is to add the capability of initiating watershed 

delineation at points of specific interest other than junction and source points in the 

delineated networks from the DEMs. The concept of incorporating a user-specified 

analysis framework in the extraction and parameterization of watersheds is based on the 

need to enhance and refine the point specific studies’ capabilities along with an 

improved delineation for water bodies like lakes. For instance, hydrologists and 

engineers may be interested in carrying out studies for flood estimates or predictions 

around a gauge station which may not be at any naturally occurring junction or source. 

This research project would strive to initiate a new set of software tools for use in these 

studies. Also, the research project evaluates qualitative and quantitative aspects of a new 

data structure and process model for raster format data in spatial hydrology. 

 
 
 
1.2 Research Objectives 
 
The objectives of this research project are to develop an interface module for TOPAZ 

(Garbrecht and Martz, 1992) in order to incorporate the capability of initiating the 

subwatershed delineation at user-specified points. This will offset the aforementioned 

disadvantages of the two approaches of the subwatershed delineation techniques.  

 
The research shall develop a hybrid, raster-based data structure and process model 

similar to the vector data model. This will involve development and evaluation of new 

algorithms using the object-oriented programming language Visual C++.  

 
The project will develop a modeling tool with the capability of facilitating a comparative 

study of watersheds upstream of different points of interest. The study intends to fill the 

functional gaps between the general geography based spatial concepts and hydrology. It 

will identify the fundamentals of the spatial analysis in generic GIS which are 

incompatible with hydrology. It will also suggest remedial approaches to overcome 

these hurdles in spatial hydrology. 
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1.3 Scope of Research 
 
The research project involves the implementation of a new module to interface with 

TOPAZ with all the desired characteristics and processing capabilities outlined in the 

objectives. The new interface will also focus on the generation of an open ended 

framework capable of serving as a base for any future development of decision support 

system in the field of raster-based-spatial-hydrology. 

The Wolf Creek basin was chosen as the study site for the test runs of the software with 

the purpose of extracting Coal Lake, with the intent of demonstrating the application of 

addition and subsequent merger of subwatershed capabilities of the software. 

 
The new data structure and algorithms will provide an improved framework for: 

(1) Discretization of the watershed entities for efficient processing and information 

extraction. 

(2) Easy storage and access of “Flow Direction” information. 

(3) Rapid processing of changes within the hydrologic framework. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 
 
 
2.1 General Background  
 
The delineation and parameterization of landscape drainage features is an important area 

of study in geomorphology studies and hydrology (Band, 1986; Zevenbergen and 

Thorne, 1987; Chorowicz, Ichoku, Riazanoff, Kim and Cervelle, 1992). The delineation 

of channel networks involves their representation by a set of measurable physical 

properties. These properties are then used in various models to extract other 

characteristics, and also to ascertain the response of the drainage system to other 

variables. 

 
The process of parameterization involves the demarcation of the drainage network on a 

base map. Once the drainage network is laid out on the map, parameters like channel 

lengths and angular measurements are measured (Garbrecht and Martz, 1992). The 

parameters being extracted depend on the model for which these parameters are 

determined and on the method of extraction. The process of acquiring these parameters 

can be either manual or by the use of Geographical Information System (GIS). These 

methods are very tedious, and require intensive labour (Band, 1986). Due to intensive 

human involvement and the tedious nature of the work, these methods are prone to 

errors. Moreover, the GIS-based techniques have limited hydrologic scope, as most of 

the GIS based techniques are developed for general purposes. The next few sections of 

this chapter will examine field based manual methods and automated methods of 

extracting these parameters. 

 

 5



2.2 Field Based Manual and Semi-Manual Methods  
 
The blue line stream network that is seen on topographic maps is a “best-estimate” of the 

actual drainage network. The blue-line stream network only comprises permanent and 

major channels. The minor, seasonal channels are usually omitted from the blue line 

network (Coates, 1958; Morisawa, 1959; Coffman et al. 1972; Montgomery and 

Foufoula-Georgiou, 1993). 

 
The field based manual method of extracting the physiographic parameters starts with 

the outline of the major channel sections of the drainage network. Traditionally, this 

outline was drawn by land surveying techniques, which are time consuming and labour 

intensive. Despite high accuracy of field measurements, this method is prone to errors 

and lack of precision due to unavoidable human and technical errors and precision 

limitations. 

 
Land surveying techniques can be replaced or supplemented by photogrammetry. The 

aerial photographs can be used to establish the outline network. This, however, requires 

human intervention by experts, and is also dependent upon the limits of what can be 

seen on photos.  Still, the land surveying techniques are needed, as aerial photographs 

only assist in the identification of major channels. Thus, with the combination of 

intensive landscape profile (close range contour map) and major drainage channels, the 

other seasonal and minor channel links are identified and marked. Once the required 

level of detail is obtained in the network, the next process involves measuring the basic 

parameters like link lengths, angular measurements etc. of the drainage networks and its 

watershed. 

 
The process of parameter extraction can be done either manually or by computer with 

the use of a co-ordinate digitizer (Javaris, 1977). A co-ordinate digitizer can be 

employed to generate digital data to carry out the further processing, measurements, and 

calculations by computers. Co-ordinate digitizers are special machines which are 

employed to convert conventional paper-based data into digital data. Despite the 

availability of high precision co-ordinate digitizers, their use still introduces many errors 

in the data due to the involvement of intensive, tedious human labour in controlling 
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these machines. However, with data converted into digital format the extraction process 

becomes faster and easier. Many parameters that are difficult to measure and calculate 

by pure manual methods can be determined with reasonable accuracy and precision after 

digitization. 

 
 
2.3 Digital Elevation Model (DEM): An overview 
 
Digital Elevation Models (DEMs) are a raster-geographic-digital-data-model developed 

by the US Geological Survey (USGS) (Kessler, 1992). It is an ordered array of the 

elevation values of an area sampled at regular horizontal intervals (Doyle, 1978).  

 
According to the United States’ Geological Survey (USGS):  

 
“Digital elevation model (DEM) data consist of a sampled array of 

regularly spaced elevation values referenced horizontally either to a 

Universal Transverse Mercator (UTM) projection or to a geographic 

coordinate system. The grid cells are spaced at regular intervals along 

south to north profiles that are ordered from west to east.” 

  
(http://interactive2.er.usgs.gov/faq/get_answer.asp?id=367) 

 

In its simplest form, a DEM can be in a two dimensional American Standard Code for 

Information Interchange (ASCII) or binary format. It is represented as a flat file with a 

two-dimensional computer array data structure holding elevation data. The one-

dimensional ASCII or binary format file has a header, which usually specifies the lower 

left-hand corner, the cell size, the number of cells in both the X and Y directions and the 

orientation of the grid. It also lists the null values followed by the elevation values listed 

in either one single row or column. 

 
DEM are divided into two basic types based on their procedure of production, namely, 

Level-1 and Level-2 DEM (Garbrecht and Starks; 1993). Level-1 DEM are those which 

are produced from manual profiling techniques using photogrammetric stereomodels or 

by Gestalt Photo Mapper-II techniques. Level-2 DEM are produced using modern 
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techniques of Digital Line Graphs (DLG). The Level-2 DEM are more accurate than 

Level-1 DEM, and are also checked against the presence of systematic errors and hence 

tend to have fewer systematic errors. 

 
 
2.3.1 DEM: Structure and Suitability and Availability 
 
Structurally, DEM are divided into two broad categories based on the data structure 

employed to represent the elevation. These categories are: 

 
1. Irregular Grid  

2. Regular  Grid Structure 

 
In the regular grid structure, the grid comprises regular geometrical shapes to cover the 

area, whereas in irregular grid, delauney irregular triangles are used to create surface 

(Lee and Schacter, 1980) (Watson, 1981). Theses irregular triangle based grid are 

referred to as Triangulated Irregular Network (TIN). The triangles in a TIN format have 

a ‘facet’ created by the three different elevation values of its vertices (Wilson and 

Gallant, 2000). Contour based grid are another irregular grid structure format which is 

formed by the laying of flow lines over the contours (Moore et al., 1991 and Maunder, 

1999).The irregular grid format is more suitable for complex and highly variable 

landscape (Wise, 2000). For terrain modeling purposes TIN is ideal as it generates a 

surface profile very close to the actual one (Moore et. al., 1991). TIN was used by Jones, 

Wright and Maidment (1990) in watershed delineation. The anisotropic nature of TIN 

structure makes it less suitable for use in hydrology. For simulation of flow of water on a 

terrain, a contour based format is more suitable (Moore and Grayson, 1991). The regular 

grid structures are described in subsequent subsections of this chapter. 

 
 
2.3.2 DEM Accuracy: Sources and Types of Errors 
 
In any DEM based analysis system, the DEM’s horizontal resolution as well as its 

vertical resolution and accuracy is of utmost importance (Gyasi-Agyei, Willgoose and 

Troch, 1995). Contrary to general belief, the DEM’s are not free from errors (Saunders, 
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1999). DEMs have a number of error sources depending upon their method of creation 

(Blackmore, 1984). 

The vertical positional errors in DEM are classified as blunder, systematic and random 

errors. Blunder is a vertical error identified by its pronounced scale. Blunder errors are 

caused due to different surveying techniques of data collection (Bie and Beckett, 1973; 

Salome et al. 1982). The common causes are incorrect contour reading, numerical errors 

during transposing, and correlation errors.   

 
Systematic errors are characterized by the presence of a fixed pattern or rule. These error 

patterns have consistent magnitude and/or repeat occurrences. The systematic errors are 

caused by bias in processing. Vertical elevation shift is an example of a systematic error 

in DEMS. The systematic errors often are results of incorrect interpretation of the 

elevation values due to building, tree shadows, or numerical errors in computer 

processing like rounding off (Gruenberger, 1984; Franklin 1984). Random errors are 

characterized by the lack of any prominent character. They are caused by unknown 

reasons often best described as ‘accidental’ causes. They are characterized by their 

random occurrences. 

 
 
2.4 Hydrologic Modeling 
 
A model is a simplification of a complex real-time process, and is an abstraction of 

processes and environments. The models serve to depict, to a maximum semblance, a 

concept or a theory. The models are used to predict, explain, and simulate a 

process/situation. A model is best described as a mathematical representation of a 

simplified form of a complex real-time process. Mathematical models have been defined 

as: 

 

“….. a simplified representation of a complex system in which the behavior 

of the system is represented by a set of equations, perhaps together with 

logical statements, expressing relations between variables and parameters” 

(Clarke, 1973, p.1) 

or 
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“………… a numerical system inter-relating in a given time reference a 

sample of input, cause or stimulus of matter, energy or information and a 

sample of output, effect or response of information, energy or matter ” 

                                                                                          (Flemings, 1975, p.18) 

 
Hydrologic modeling is an attempt to explain and simulate the responses to 

precipitation. These models not only predict the run-off response but also other effects. 

Models are classified into various categories based on their level of spatial variability 

and degree of precision. Models are classified as lumped models and distributed models 

based on their grouping, degree of spatial variability, and complexity. Distributed 

models tend to be spatially extensive with intensive data requirements. Lumped models, 

on the other hand, are less spatially variable and require less data. Models can also be 

classified based on the level of precision and accuracy of their results.  

 
In reality, models do not completely fall into any one category. Also, within a category 

they may fall in between two different sub-types. For instance, a model that falls in 

between the lumped and distributed sub-types is called a ‘semi-distributed’ model. A 

‘semi-distributed’ model requires less data than a distributed model and is more precise 

model than a lumped model. The ‘type’ of model is a function of the nature of 

investigation. Availability of data is another factor that has a bearing on the model type 

that can be employed for a particular study. Just like overlapping of lumped and 

distributed models give rise to ‘semi-distributed’ models, similarly overlapping of 

stochastic and deterministic models gives rise to an intermediate models referred to as 

‘parametric’  model. 

 
No one type of model can fit into the requirements of all studies. A good model is 

characterized by its level of universality. A good model will have a wide range of 

adaptability and applicability. In the words of Wood and O’Connell (1985, p.556): 

 
“……there is no ‘best’ model for hydrological forecasting. Different types 

of models are required to fulfill different roles and objectives.” 
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Apart from space and randomness, time is another component that is crucial in some 

hydrologic studies. Incorporation of all these factors (spatial variability, randomness and 

temporal variability) in one single model is not possible, despite powerful computational 

capabilities. Based on the temporal variability there are two main types of model, 

namely the ‘Event Based Stream flow Simulation’ (EBSS) model and the “Continuous 

Stream flow Simulation’ (CSS) model (Singh, 1988, 1989, 1995). 

 
 
2.4.1 DEM and Watershed Modeling 
 
Availability of DEM data introduced a new era of automated techniques to extract 

hydrologic, geomorphic, and other terrain properties. The initial work in automated 

extraction of stream network was based on the topology alone. Puecker and Douglas 

(1975) were amongst the pioneers to use DEM to identify potential streams and ridges. 

In their approach for identifying streams and ridges, Puecker and Douglas employed the 

‘upward concave’ and ‘convex’ area concept in relation to flow. Based on this 

algorithm, a FORTAN program called ‘HILO’ (High and Low Point Detection) was 

developed by Kikuchi, et al. (1982).  

 
Hydrologically, the stream network is characterized by dominance of fluvial processes 

over slope processes indicating threshold runoff quantity, thereby identifying a stream 

network. Speight (1968) manually applied this hydrologic approach to extract drainage 

networks. Based on Speight’s approach, O’Callaghan and Mark (1984) developed an 

algorithm for automated extraction of drainage network. The program, based on their 

algorithm, was very time consuming due to several repetitive passes/evaluations of 

DEM cells. The program was found suitable only for small sized DEMs.  Also, closed 

depressions were a major obstacle in extracting drainage networks. 

 
Jenson (1984) developed an algorithm which employed a three by three (3x3) matrix 

with the cell being investigated at the centre of the matrix. The algorithm identified the 

local minimum by doing a pass of this 3x3 window for all DEM cells, which was much  

less time consuming than Mark and O’Callaghan’s (1984) as it just needed a single pass 

in the identification process. The same 3x3 matrix pass is then used on the ‘identified’ 
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cells, beginning from the lowest elevation as a root. Its unmarked drainage neighbor is 

assigned the same identification number and the matrix then shifts to this cell and the 

process is repeated until no linked drainage cell is found. The entire process is done for 

every drainage cell with no identifying label assigned. In the final stage, all cells are 

given the same identification number as that of the drainage link into which they drain. 

Finally, based on incremental tolerance of elevation and distance between the roots, 

reassigning of the identification number is done to non-drainage cells to generate larger 

basins from these mini-basins. Depression filling algorithms were presented by Mark et 

al. (1984) and Jenson and Trautwein (1987) as a preprocessing for the DEM. TOE.C 

(Terrain Object Extraction), a C language program, was one of the first attempts at 

extracting features as objects from a DEM. Developed by Lammers and Band (1990), 

TOE.C is based on generating a database of spatial and functional relationships of basic 

geomorphic features identified as objects. It follows the rules and conventions of a 

formal geomorphic model (Band, 1989). 

 
In 1990 and 1991 work on a new way to extract drainage network was published by 

Tribe. Tribe introduced the ‘threshold’ slope value to ascertain the steepness of valley 

sides. Her algorithm also included cells other than the adjacent eight neighbors in 

evaluating the profile of a cell. The treatment of flat surface was different than non-flat 

surface for which she used the Jenson and Domingue (1988) method. Tribe’s method 

treated closed depressions as ‘spurious’ and filled them to generate flat surface and then 

assigned them flow directions. For flat areas, the flow directions are assigned based on 

an interpolated straight line, thereby implementing a flow pattern to drain into the 

interpolated channel link. Tribe’s method introduces new problems and increases the 

problem of channel straightening and causes a straight cut flow path across high 

elevations (Martz and Garbrecht, 1995). Tribe’s method produces unrealistic, straight 

cut stream channel sections across high elevation areas (Martz and Garbrecht, 1994). 

Furthermore Tribe’s approach, instead of solving the problem of unrealistic 

straightening of channel links, increases it. Tribe’s method also suffers from spatial 

variability in landscape characteristic, as pointed out by Martz and Garbrecht (1994). 
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Profile Scan, based on the principle of differential geometry (Papo and Gelbman, 1984) 

and the mathematical model for hydrologic flow developed by Riazanoff et al. (1990), 

were employed by Chorowicz et al. (1992) in their algorithm for automated drainage 

network. The algorithm was focused solely on linear features. 

 
 
2.4.2 Lumped Models 
 
Lumped models do not take into consideration spatial variability. Lumped Models, 

sometimes also referred to as the ‘Black Box’ models, are described by a chosen set of 

adjustable (fitted) parameters. It is the most simplified watershed model based on spatial 

averaging (grouping) (Kite, 1994, p.191). Lumped modeling techniques group together 

various individual process threads into one. Lumped models assume that the watershed 

is one homogenous unit subject to uniform processes (Linsley et al. 1986, p.340). 

The parameters are averaged, ignoring their spatial variability over the entire watershed 

unit (Flemming, 1979, p. 8-9). The lumped models are based on large generalization 

between input and output relationships which are arrived at from a representative range 

of basins. These models are ‘macroscopic’ in nature, as they relate various parameters to 

the watershed as one single unit. In a lumped watershed model the mathematical 

relationships only comprise of temporal factors and depth (Blackie and Eeles, 1985, 

p.313).   

 
Lumped models are best suited for small watersheds which have little spatial variability 

and can be considered ‘homogeneous’ for the purpose of modeling (Blackie and Eeles, 

1985, p. 313). For instance, in a small watershed, the variability of parameters like soil 

type, soil moisture, vegetation type, and precipitation is very low. Due to this low 

variability, these can safely be averaged over the entire watershed without adversely 

affecting the outcome. This does not hold for larger basins which have inherent 

variability in all the parameters. However, there have been successful cases of lumped 

model application to large heterogeneous watersheds (Blackie and Eeles, 1985:313).  
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2.4.3 Semi-Distributed to Distributed Models 
 
Distributed models sub-divide the drainage basin into elementary units. The physically 

based distributed model is one such model. It is based on the physics governing the 

hydrological process for each elementary unit to generate channel flow in a watershed 

(Beven, 1985, p. 405). The fully distributed model was arrived at by improvement over 

the semi-distributed model. Nash (1957) implemented a series of reservoirs in 

conjunction with the lumped model. In this model, a series of ‘lumped’ watersheds were 

linked to arrive at a bigger watershed. Dooge (1959) improved it with flow routing 

giving rise to a ‘cascading linear reservoirs’ type of model. This was followed by a 

‘multiple linear elements’ model (Eagleson) and then ‘multiple non linear storages’. In a 

distributed model, the watershed is sub-divided into a finite difference grid mesh or a 

finite element mesh. The finite element mesh could be a regular element mesh or it can 

be an irregular element mesh. Each element in this model is simulated separately and 

then the results for each element are compounded to arrive at the result for the entire 

watershed response (Fleming, 1979). Due to spatial intensity of this model, the data 

requirements for it are very large and the lack of data availability does not result in much 

precision and accuracy and is close to lumped model results (Linsley et al., 1986).  Apart 

from requiring time-consuming computational processes, the distributed models also 

require spatially distributed parameters and variables. The distributed models suffer 

from the lack of availability of precise data sets to simulate watershed response; this is 

partly because such intensive and extensive data collection has high costs associated 

with them. 

 
 
2.4.4 Deterministic Models 
 
A deterministic model is characterized by its replicable nature. Under certain 

environmental conditions, a deterministic model will produce the same output for a 

given input (Kirkby et al., 1993, p. 3). These models are closely linked to distributed 

models. Deterministic models are complex and precise compared to stochastic models, 

and are based on complete knowledge of the involved variables (Kirkby et al., 1993:14). 

In real world situations it is impossible to achieve a completely deterministic model 
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because of the complexity created by the spatial variability of the properties and the 

processes. Furthermore, it is not possible to map out all the relationships between the 

variables in a system.  According to Becker and Serban (1990), hydrological models 

comprise of both deterministic and stochastic elements. Deterministic models are 

physically based models governed by fundamental, scientific laws. Deterministic models 

are also known as ‘White Box’ models. 

 
 
2.4.5 Parametric Models 
 
Parametric models are the models which lay midway between the stochastic models and 

the deterministic models.  As per Kirkby et al., (1993, p. 14):  

 
“…..it must be stressed that this classification is somewhat arbitrary: all 

models are really a shade of ‘grey’ since even the most realistic models 

involve some simplification of the real world.” 

 
Parametric models are characterized by the inclusion of temporal components in 

addition to spatial components (Fleming, 1979). The parameters chosen in a parametric 

model are based on the fundamentals of the water movement, but their values are 

derived by methods which are either statistical or empirical in nature instead of direct 

deterministic measurements.  

 
 
2.4.6 Stream Flow Simulation Models 
 
Stream Flow Simulation Models are classified into two distinct categories, namely: 

 
1. Event based streamflow simulation models (EBSS Models). 

2. Continuous streamflow simulation models (CSS Models). 

 
EBSS models are simple as compared to the Continuous flow models because the latter 

represents more physical processes. Both models suffer from the lack of mass closure 

for the complete hydrologic cycle. HEC (1990, 1995) Software (Hydrologic Engineering 

Center), HEC-HMS (1995, 2001) (HEC-Hydrologic Modeling System) and USDA Soil 
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Conservation Service’s (SCS) TR-20 are widely used computer modeling programs that 

employ EBSS modeling. USGS PRMS/Stanford, NWS/Sacramento, HEC-Continuous 

Flow Simulation are a few of the computer modeling programs that are based on the 

Continuous Flow Simulation model.  Whereas EBSS models are suitable for flood 

control, real time hydrologic problems, continuous flow simulation is better suited for 

planning of the water resources and to study the effects of climate change on the flow of 

streams. 

 
 
2.5 Spatial Hydrology 
 
Spatial hydrology is the union of GIS and hydrology. GIS describes the geographical 

and spatial variations of a hydrologic system. Surface hydrology, on the other hand, 

deals with the effect of the variations of the surface profile on the flow of water over the 

terrain. A hydrologist is interested in modeling the overland flow of precipitation to 

develop effective flood control systems, water supply systems, and water resources 

management systems. Spatial hydrology is the branch that develops and employs the 

GIS based tools for the purpose of working out these hydrologic systems. 

 
Terrain characteristics are spatially intensive and so is their effect on the overland flow 

of water. This spatially intensive characteristic facilitates the use and development of 

GIS based automated techniques for surface water modeling. Spatial hydrology serves as 

a link between the spatially varying terrain and the surface water flow. It has two 

functions: 

 
1) To generate / develop spatial data sets. 

2) Support hydrologic modeling. 

 
 

2.6 Primary Spatial Data Models and Structures 
 
An ideal, GIS based hydrology is characterized by its ability to take into account the 

locational factor in its manipulation and processing of data to extract information and 

conduct information search. The efficacies of these processes are based on three factors: 
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1) Data Models, 

2) Data Structure and Algorithms and, 

3) Database management techniques. 

 
Geographically referenced data is spatially referenced. In the most basic format, 

spatially referenced data can be modeled by two different spatial addressing techniques. 

In the first technique, the graphical entities which represent the geographic features form 

the fundamental building blocks. These entity objects are spatially indexed. Each entity 

has ‘location’ as one of its attributes. In the second technique, it is the location which is 

the fundamental building block of the model. In this technique, every location has a set 

of attributes associated with it. The first method resulted in development of a ‘Vector’ 

data model whereas the second one in the development of ‘Raster’ data model. 

 
 
2.7. Vector data model 
 
The fundamental units in vector data models are the graphical geographic entities. These 

graphical entities are defined by a pair of co-ordinate values. A line is defined by a join 

between two set of co-ordinate values, one representing the beginning of the line and the 

other representing the end of the line. Three or more closed lines form an area or a 

polygon. Within this model there are variations. The models are further classified as 

unlinked models and topological models. 

 
 
2.7.1 Unlinked Vector data model 
 
Unlinked vector models are the simplest form of vector data model in which a map is 

abstracted by a set of separately encoded entities. These entities are not referenced with 

their neighbors. There is no concept of neighbors, hence there does not exist any spatial 

relationships in this model. This model lacks continuity of structure, and hence is very 

expensive for spatial analysis. It does have an advantage of data compression due to 

chain length encoding technique (Freeman, 1974). 
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2.7.2 Topological Vector data model 
 
In the Topological vector model, entities are referenced with their neighboring entities. 

This model has structural continuity, permitting better analysis, like optimization of 

networks, finding the shortest path and flow path analysis. This model allows for the 

definition of complex spatial relationships. 

 
 
2.8 Raster data model 
 
The Raster data model is a tessellation of a plane. In this model, the entire space is 

partitioned into small cells. Every cell representing a unique space has a set of properties 

associated with it. Raster data models have implicit spatial relationships. The continuity 

is also an implicit property of this data model.  In such models, there are no separate 

graphical/ geographical entities. Raster can be based on different geometric shapes for 

tessellation. The best tessellation shapes should have the basic quality of producing an 

infinite, repetitive pattern which can completely cover the plane being tessellated. They 

should also have the property of infinite recursive decomposition into similar smaller 

units. Further rater data models can be of regular or semi-regular tessellation types. 

Squares, triangles, and hexagons are the three regular tessellation logical units. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Raster Data Models: Regular Tessellations-Square, Triangle, Honeycombed 

 
 In a regular tessellation, the same number of sides and the same number of cells meet at 

any vertex. Each geometrical figure has its inherent draw backs. Hexagons cannot be 

 18



further decomposed while offering uniformity in adjacency and orientation. Only 

squares and triangles are capable of infinite decomposition into similar types.  Squares 

are best suited for hierarchical models. Hierarchical models can have various data 

structure configurations. Quad tree and pyramid are the two principal data structures 

used in hierarchical models.   

 
 
2.9 Spatial Data and Structure Modeling  
  
Spatial data is different from most of the other types of data such as business or medical 

data. Spatial data is characterized by the presence of a unique ‘location’ attribute. Not 

only just the location variability, but within the same domain of location there is an 

element of temporal variability for a given dataset. These unique properties add two 

more dimensions to the data. Unlike most data which are flat in structure, the spatial data 

is three-dimensional. It has a temporal dimension, a location dimension and then the 

attributes. 

 
To model a data structure for spatial dataset, two distinctly different approaches are 

used. The models used are: 

 
1) ER Model (Entity Relationship Model). 

2) UML (Universal Modeling Language). 

 
The ER model is more suitable to conventional data. However, it has been successfully 

employed in the vector based spatial data domain.  The onset of the Object-Oriented and 

Object-Based approach to spatial data modeling has also lead to using the UML. It is 

important to mention here that both the ER and UML approach are employed for the 

vector data model. 

 
 
2.10 TOPAZ: An overview of the framework 
 
TOPAZ is a raster based spatial hydrology tool. TOPAZ processes Digital Elevation 

Models (DEM) and delineates drainage network, extracts watersheds, subdivides 

watersheds into subwatersheds, and extracts their hydrologically and topologically 
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important parameters. TOPAZ is a suite of six software programs. The constituent 

software modules of TOPAZ are: 

 
1. DEDNM  Module (Digital Elevation Drainage Network  Model Module) 

2. RASPRO Module (RASter PROperties Module) 

3. RASBIN Module  (RASter to BInary Network Module) 

4. NSSTAT Module  (Network and Subcatchment STATistics Module) 

5. PARAM Module   (PARAMeterization Module) 

6. RASFOR Module  (RASter FORmatting Module) 

 
These six modules are classified into three categories, based on their inter-dependency 

and execution sequence. These categories are Primary, Secondary, and Tertiary Module. 

Primary modules run independent of any other module of the TOPAZ family whereas 

secondary modules can run using some output from the primary modules. Tertiary 

modules require inputs from primary and secondary modules’ outputs. The DEDNM 

module is independent of the rest of the other five modules of the TOPAZ family. The 

DEDNM module is the very first module to be executed. It requires two files to 

commence processing and subsequent analysis. One file is the DEM data file and the 

other file is the one containing processing options selected by the user. DEDNM 

generates ‘input’ data files for other modules. DEDNM is thus classified in the Primary 

Level of the TOPAZ Suite. DEDNM delineates the preliminary channel network and 

subwatersheds based on two user-provided network parameters: the critical source area 

(CSA) and the minimum source channel length (MSCL). The CSA parameter defines the 

drainage density. An increase in CSA value results in the decrease of the drainage 

density in generated network. On the other hand MSCL the parameter defines the 

minimum permissible channel length. Thus an increase in MSCL value results in 

removal of short source channels (1st order channels). The CSA and MSCl values which 

are provided by the user can be estimate from maps or field surveys. Their values are 

selected in accordance with the scale and resolution of the particular application under 

consideration.  
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Figure 2.2: TOPAZ Suite. TOPAZ has six modules which are differentiated into three 
hierarchical categories based on the inter dependency. Hence the execution sequence. 

(After: Martz and Garbrecht, 1998) 

 

The RASPRO and the RASBIN constitute the Secondary Level of TOPAZ. Both these 

modules can only be run if the DEDNM module has already been executed. These 

modules are dependent on DEDNM for their input data. RASPRO generates a set of 

spatially intensive physical characteristics of the terrain which are of hydrological 

importance e.g. slope, aspect etc.  

 
RASBIN, on the other hand, enlists the channel and subcatchment properties for the 

binary network. RASBIN converts the raster stream network into a binary network. 

Raster networks can have more than two inflows at any junction, but TOPAZ only 

allows two inflows per node.  A node with more than two inflows is defined as a 

‘complex’ node. RASBIN resolves the complex node to arrive at a binary network. 

Complex nodes arise due to the coarse horizontal resolution of the DEM. RASBIN 

decomposes the complex junction nodes into a set of simple junction nodes with only 

two inflows per junction node.  
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Figure 2.3 (a) Depiction of a Complex node named ‘A’ in the network with three 
inflows, (b) RASBIN decomposes the Complex node ‘A’ into two simple nodes- ‘B’ and 
‘C’ with only two inflows each. 
 
NSSTAT and PARAM form the tertiary level of TOPAZ. These modules can be 

executed once the modules in the Primary and Secondary levels of TOPAZ have been 

run. NSSTAT produces statistical information for each of the channel segments and 

subcatchment, for both the raster and the binary channel network.  

 
The PARAM (PARAMeterization) module generates the properties for the 

subwatersheds which are created by the primary level modules, namely DEDNM and 

RASPRO. PARAM calculates mean flow path length, the total drainage area and various 

slope alternatives. RASFOR is a secondary-tertiary hybrid level. It can be run 

immediately at the secondary level, immediately after the DEDNM execution. It can 

also be run at the tertiary level after the execution of RASPRO. It is so because 

RASFOR can use ‘output’ data of either DEDNM or RASPRO as its ‘input’ data. As the 

name suggests, RASFOR is a raster formatting module. It can be used to generate 

outputs in formats which are compatible with Geographical Information Systems (GIS) 

and other software programs. 

 
 
2.11. DEDNM-An Analytical Overview  
 
2.11.1 DEDNM-Breaching of Closed Depressions  
 
DEDNM pre-processes the DEM to rectify any value or set of values in the DEM which 

causes formation of closed depressions. Closed depressions prevent the continuity of 
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flow which is required in channel delineation. These closed areas serve as a sinks. 

Conventionally, these sinks are treated as spurious due to errors in elevation values in 

the DEM. It is assumed that these are caused by the error/underestimation of the 

elevation value for a grid cell or sets of grid cells. Based on this approach, these 

depressions are corrected by a simulated filling with a local outlet. Closed depressions, 

however, are caused not only by the underestimation of the elevation values, but also by 

overestimation.  

 
However, it is not possible to identify the cause of closed depressions in a DEM. 

DEDNM’s approach to filling these spurious sinks is more realistic. Apart from 

considering underestimation as a cause of depression, the DEDNM also accommodates 

the overestimation factor against the conventional method which completely ignores 

overestimation factor. In DEDNM the process of breaching is restricted to 

approximately two grid cells. The whole premise is that lowering the elevation value for 

any of the peripheral local outlets for the depression could shrink the depression. 

DEDNM’s breaching process is a three-step procedure. The very first step is the 

determination of the size of the depression. This is followed by locating and breaching 

the lowest outflow from the depression. Finally, the remaining grid cells of the 

depression are filled to the elevation level of the outflow. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Two dimensional illustration of spurious depressions along valley bottom 
(After: Martz and Garbrecht, 1998) 
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2.11.2 DEDNM-Treatment of Flat Areas to obtain Flow Vectors  
 
Flat surfaces pose a problem in drainage network extraction due to the inability to 

determine the flow direction across a flat area (Speight, 1974; Tribe 1992). To overcome 

this problem of flow routing on flat surfaces in the DEM, the DEDNM employs an 

approach based on the law of physics that the movement of water is away from higher 

areas and is directed towards lower elevations. This law is always true for any landscape 

in nature.  DEDNM achieves flow path over a flat surface in broad steps. In the first step 

the elevation is increased for all the cells which are adjacent to cells already not having a 

down-slope gradient. This process is repeated recursively until an overall gradient in the 

direction of the low lying area is achieved.  
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           Higher Elevation                      Lower Elevation                    Flat Surface with   

                                                                                                           Flow Direction 

 Figure 2.5: (a) Lower left hand number is the first pass of the depression incrementing 
elevation of cells neighbor to one not having any down slope (b) and (c) depict 
successive passes there by achieving the resultant flow directions as shown in (d). 

(Source: Garbrecht and Martz, 1997) 
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The amount of increments is 2/100 000 of the vertical resolution of the DEM in-order to 

prevent ridge formation at the boundaries. This process of the backward growth of the 

gradient from potential outlets for the flat area generates parallel flow vector directions 

ultimately leading to the outlets Fig 2.5 (d). 

 

In the second step, the goal is to achieve a gradient in a direction away from higher 

elevation areas.  Thus, the elevation increment is applied to the cells which are adjacent 

to cells with higher elevation values and no neighboring cell at a lower elevation. This 

generates a downward slope away from the higher areas.  

 

 1 2 3 4 5 6 7 
A 9 9 9 9 9 9 9 

B 9 1
 
  
6

1
 
  
6

1
 
  
6

1
 
  
6

1
 
  
6 9 

C 8 1
 
  
6

 
  
  
6    

  
6    

  
6

1
 
  
6 9 

D 8 1
 
  
6

 
  
  
6    

  
6

 
  
  
6

1
 
  
6 9 

E 7 1
 
  
6

 
  
  
6    

  
6

     
6

1
 
  
6 8 

F 7 6 6 6 1  
6

1  
6 8 

G 7 7 5 7 7 8 8 

(a) 

 1 2 3 4 5 6 7 
A 9 9 9 9 9 9 9 

B 9 2
 
  
6

2
 
  
6

2
 
  
6

2
 
  
6

2
 
  
6 9 

C 8 2
 
  
6

1
 
  
6

1  
6

1
 
  
6

2
 
  
6 9 

D 8 2
 
  
6

1
 
  
6    

  
6

1  
6

2
 
  
6 9 

E 7 2
 
  
6

1
 
  
6

1
 
  
6

1
 
  
6

2
 
  
6 8 

F 7 6 6 6 2
 
  
6

2
 
  
6 8 

G 7 7 5 7 7 8 8 

(b) 

 1 2 3 4 5 6 7 
A 9 9 9 9 9 9 9 

B 9 3  
6

3
  6

3
 
  
6

3
 
  
6

3
 
  
6 9 

C 8 3
 
  
6

2
 
  
6

2
 
  
6

2
 
  
6

3
 
  
6 9 

D 8 3
 
  
6

2
 
  
6

1
 
  
6

2
 
  
6

3  
6 9 

E 7 3
 
  
6

2
 
  
6

2
 
  
6

2
 
  
6

3
 
  
6 8 

F 7 6 6 6 3
 
  
6

3
 
  
6 8 

G 7 7 5 7 7 8 8 

(c) 

 1 2 3 4 5 6 7 
A        

B        

C        

D        

E        

F        

G        

(d) 
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Figure 2.6: (a) Lower left hand number is the first pass of the depression incrementing 
elevation of cells generating slope away from high areas (b) and (c) depict successive 
passes there by achieving the resultant flow directions as shown in (d). 

(Source: Garbrecht and Martz, 1997) 
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In the third and final step, the elevation increments of the previous two procedures are 

added linearly and applied to the cells. Since both the increments are inline with the law 

of physics (i.e. flow is always away from higher areas and towards low areas), the flat 

area is replaced by a downward slope towards an outlet, removing indeterminacy of flow 

paths. 
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Figure 2.7: (a) Final incremental elevations achieved by linear addition of the increments 
achieved in the first two steps. (b) Final drainage pattern with the size of arrows 
indicative of the size of respective upstream drainage area. 

(Source: Garbrecht and Martz, 1997) 
 
 

2.11.3 DEDNM-Flow Path Assignment using D8 method. 
 
Once the DEM is free from sinks and flat areas, the flow vectors are determined using 

the D8 method. The D8 method (Douglas, 1986; Fairchild and Leymarie, 1991) defines 

the landscape properties for each individual raster cell by the evaluation of itself and 

eight immediately adjacent cells. 

1 2 3
4 X 5
6 7 8

Figure 2.8: D8 method matrix, Flow from ‘X’ can flow in any of the eight adjacent cells 
depending on the steepest slope direction. 
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In this approach, the down-slope flow angle for each cell is determined. This angle is 

measured counter-clockwise from the steepest downward slope. The flow direction is 

the resultant of the two successive steepest directions which are not diagonals.  TOPAZ 

however, adopts a much simpler approach wherein the steepest slope is assigned as the 

flow path direction and incases of a tie the direction is chosen at random out of the two 

or more equally sloping directions. 

 
 
2.12 Watershed Segmentation - Hydrologic Response Approach 
 
In hydrological modeling, the segmentation of the land surface into spatial units based 

on their homogeneity with regard to their hydrological response is an emerging research 

area. In recent years there have been efforts to segment watershed based on hydrologic 

response unit (HRU) approach. This approach is effective in processing large 

watersheds. In HRU approach the areas with same responses are lumped together 

irrespective of their location. (Kouwen et al., 1993). There have been evaluative studies 

on segmentation of watersheds based on hydrologic response units based on derived 

drainage direction (Shaw, 2002). Derived drainage direction is defined as the drainage 

direction in line with the hydrography of the area. This derived drainage direction is 

limited to the four fundamental directions. WATPAZ Software (Shaw, 2002) has this 

cardinality limitation.  
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CHAPTER-3 

 

METHODOLOGY 
 
 
3.1 Framework  
 
The need for node manipulation capabilities for point specific studies, to delineate 

subwatersheds at points of specific interest rather than junction nodes and the need for 

the inclusion of water bodies in the extraction process lead to the development of the 

concept of a new software module in the TOPAZ module called TOPAZ-N (TOPAZ 

with node manipulation capabilities). A select set of hydrological data is required by the 

various TOPAZ-N functions to achieve the desired analysis. The source of this data for 

TOPAZ-N is not only external but also the intermediate data obtained from the internal 

processing. It was thus important to identify the data requirements for each step of the 

TOPAZ-N execution process. The Information Engineering (IE) (Martin and 

Finkelstein, 1981) based structured analysis approach was adopted to ascertain the data 

requirements for TOPAZ-N. The analysis was subdivided in following two logical 

categories: 

1) Functional Requirements. 

2) Technical Requirements. 

 
3.2 Functional Requirements 
 
The functional requirements for TOPAZ-N involved the identification of the scope and 

hence the framework of the new module/model. While doing so, the open-end structural 

requirement for possible future additions was kept in mind. This being the preliminary 

stage, a broad system domain was defined. The system’s domain was characterized as its 

ability to carry out automated extraction and parameterization of watersheds along with
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water bodies in a more efficient and flexible way. This domain was further decomposed 

to a user-subsystem level. The subsystem was defined as the users’ ability to initiate 

subwatershed delineation at user specified points. In other words, it meant the ability to 

analyze and manipulate: 

1) Subwatersheds  

2) Nodes 

3) Channel Links 

Spatial hydrology identifies only the channel links and the subwatersheds as 

hydrological features, where nodes are treated only as a tool for achieving certain 

objectives. In designing TOPAZ-N, the need to account for the hydrological importance 

of the nodes was felt. Nodes can be identified with gauge stations, and thus the nodes 

can become a hydrologic entity. TOPAZ-N involved dealing with three distinct, yet 

hydrologically linked entities: channel-links, subwatersheds, and nodes. The subsystem 

was further decomposed into functions. The major functions identified were the 

functions to add nodes in the channel network, functions to divide channel segments and 

thus, subwatersheds draining into those segments, and functions to remove nodes, thus 

merging channel segments and the corresponding watersheds. Figure 3.1 depicts the 

major object interactions for the system. TOPAZ-N Central Control is the controlling 

object.  

 

 

 

 

 

 

 

 

 

 
 
Figure 3.1: Functional Requirement for the TOPAZ-N. The ‘driver’ module received 
data from DEM/DEDNM and interacts with three basic internal functional modules.  
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Since all other objects are hydrologically linked they are also linked, in the 

implementation. It is important to note that in raster processing there is no such 

relationship. Thus, the objects were to be designed for raster data, yet they should have 

the vectorial relationship or multiple attribute associativity. Figure 3.1 depicts the 

Subwatershed Analysis and Manipulation function which interacts with the TOPAZ-N 

Central Control function to receive subwatershed merger or division related commands. 

 
Subwatershed Analysis and Manipulation function then interacts with the Nodal 

Analysis and Manipulation function directly. Subwatershed Analysis and Manipulation 

interacts with Channel Network Analysis function through the Nodal Analysis and 

Manipulation Function or through the TOPAZ-N Central Control function to maintain 

feature, data and parameter information integrity across the whole system in carrying out  

subwatershed manipulation and analysis. Also, since node-related manipulation has 

affects the subwatershed configuration as well as the channel network, the node analysis 

and manipulation function interacts directly with the other two modules on receiving any 

node manipulation or analysis instructions from the central control function. As the 

arrow indicates the interaction is two-way. The information is exchanged between the 

layer objects. The system, however, does not permit any direct manipulation of the 

channel network. The channel network is only manipulated through manipulation of  

subwatershed and node manipulation. However, independent interaction between the 

central control function and the channel network layer object is permitted for analysis. 

The same degree of analytical interaction is also permitted between the other two 

functionalities and the central control function. The central control function for TOPAZ-

N also serves as a data input or data filtering and channeling function for the system. 

The central control does intermediate processing of internal data as well as of the 

external data on requests by client functions. 

 
 
3.3 Technical Requirements 
 
The assessment was complex and was therefore broken down into a number of simple 

assessments. At the first level, a very coarse data flow within the system was charted 

out. In the functional requirements’ assessment, the major object interactions were 
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identified. The data flow chart laid down the groundwork for the modeling of the data 

and the data structure. The raster data was classified into three major layers: Channel 

Network Layer, Subcatchment Layer, and Node Layer (Figure 3.2). These layers were 

named after their constituent objects. Object interactions were used as a blueprint to 

chart out the layer interactions.  The classification was based on major features as done 

in vector-based spatial hydrology. These features are interlinked. Any node change has a 

corresponding change in channel layer and subcatchment layer and vice-a-versa.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Architectural Level Data Flow in the TOPAZ-N, The new data structure 
views and processes entities and attributes as interlinked layers. Links between the 
layers are based on their hydrologic relationship 

 

To achieve the same hydrological dependency between the data structure, and to 

maintain data and information integrity, it was imperative to link these layers based on 

their hydrological dependencies. Thus, a control mechanism was put into place to 

process the user’s requests in accordance with the hydrological constraints. Also, each 

layer itself was identified as a distinct object for implementation. Figure 3.2 depicts the 

macro or the architectural layout and data/information flow for the TOPAZ-N. Each 

layer is an object comprising of a collection of a particular raster unit. 
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3.4 Data Modeling 
 
In order to develop TOPAZ-N to be reliable, adaptable and open to future growth it was 

essential to base it on a data model with all these desired characteristics identified in the 

earlier analysis. The data model forms the foundation of an information system or 

decision support system based analytical tool. To develop a sound data model for 

TOPAZ-N, the following goals were set forth to be achieved in the data modeling: 

 
1) Due to spatial variability of the processed data it is essential that the data model 

establishes a clear picture of the data structure that would evolve. 

2) The data model should accurately and completely adhere to the problem and 

solution space. 

3) The data model should be transparent and should reveal, in entirety, the 

architecture of the framework/solution. 

 
To achieve these goals CASE (Computer Aided Software Engineering), Chen’s ER 

(Entity Relationship) (Chen, 1977, 1983, 2002) and IDEF (Integrated DEFinition) 

(Mayer, Richard J., et al.; Wisnosky, Dennis E., Allen W. Batteau, 1990) modeling 

methodologies were studied to generate an amalgamated approach suitable to the spatial 

domain.  

 
CASE is a collective term used for a collection of software tools available to produce 

diagrams and models. CASE tools analyze component relationships and generate the 

analysis and design in narrative form. ER diagrams are a significant and important part 

of any CASE tool. ER diagrams provide a conceptual visual of a data structure being 

modeled. There are three basic elements in ER models:  

1. Entities are the "things" about which we seek information.  

2. Attributes are the data we collect about the entities.  

3. Relationships provide the structure needed to draw information from multiple 

entities. 

These however are not enough to completely model the spatially variable hydrologic 

model entities and their dynamic relationships. IDEF is the modeling technique used to 

model functional processes. IDEF comprises of the Data Model, which is a model of the 
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entities and their relationships involved in the design. Data Model also involves 

‘information’ model, which is a set of activities (functions) acted upon the entities and 

by the entities based on their attributes, roles and relationships. In IDEF a combination 

of data and information model is used to develop the data structure and the process 

model. IDEF has few limitations in modeling dynamic spatially variable hydrologic 

relationships between the hydrologic model entities. A complimentary use of CASE 

tools with ER diagrams and IDEF modeling methodologies helped in offsetting their 

individual inherent limitations. This helped in achieving a near perfect abstraction with 

easy analytical ability along with formality and executability of the data model. Since 

the model being developed is a hybrid raster model, it was not possible to completely 

adhere to the Calkin’s (1996) modified ER symbology for spatial dataset which is more 

suitable for vector data only. 

 
Figure 3.3 represents the complex relationships as exist between the different entities of 

the TOPAZ-N. Unlike traditional relational structures, entities in TOPAZ-N are inter-

dependent for their definition. For instance ‘channel’ is defined by ‘starting node’ and 

‘ending node’, a ‘subcatchment’ is identified by the channel reach it drains into, thus a 

change in a node location affects all the three entities i.e. the node itself, the channel and 

the subcatchment. In traditional relational structures entities remain constant in their 

definition. For example in case of a doctor-patient-ward entity relationship, a patient is 

not dependent on doctor for its definition and vice-a-versa; same is true for patient-ward 

and doctor-ward entity relationships. 

 
 
 
 
 
 
 
 

 
 
 
 
 

 Figure 3.3: Entity Relationship Diagrams for TOPAZ-N 
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3.5 Hydrological issues in Data Structure & Process Modeling 
 
TOPAZ-N, being developed as a raster-based tool, would be processing and analyzing 

spatially extensive data. Thus, it appears to fit into the generic geometric based spatial 

analysis. This, however, is not true, as TOPAZ-N does not fit into the typical geometric 

based approach. There were many hydrologic issues that are completely different from 

vector data model based geometric manipulation. The merging of subwatersheds in 

hydrology cannot be designed as a simple geometric assimilation based on geometric 

adjacency definition. The node classification issue, and thus the channel order issue, was 

also identified. 

 
 
3.5.1 Subwatershed Aggregation and Adjacency Factor 
 
While adopting the vector-based approach of processing for raster data, since in pure 

raster there are no separate entities, it was realized that the vector-based approach for 

processing of raster data cannot be implemented in its entirety.  
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Hydro Zone Boundary
 
Subwatershed - A  
 
Subwatershed - B 
 
 
  
    
 
    
 
   Other 
   Subwatersheds  
 
      

Figure 3.4: Adjacency Issues in TOPAZ-N and Hydrology in general: Neither do the 
subwatershed ‘A’ & ‘B’ flow into one another nor do they have a common outlet 
subwatershed, hence cannot be characterized as hydrologic neighbor and thus cannot 
further be merged.  
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It was felt that the issue of adjacency for this raster-vector hybrid approach needs to be 

defined from scratch and needs to be tailor made based on the hydrologic principles. For 

instance, as in Figure 3.4, subwatershed (A) and subwatershed (B) are sharing a 

common boundary; hence, as per geometric principals, they can be classified as adjacent 

or neighbors. Thus, the two watersheds can be merged together. But hydrologically, the 

two watersheds are far from being neighbors as they do not flow into each other nor do 

they have a common outlet. Merging subwatershed (A) and subwatershed (B) would 

lead to ambiguity in flow direction. Both subwatersheds would contribute to the channel 

network at two different points. This would make the flow routing and parameterization 

vague. Thus, subwatershed (A) and subwatershed (B) cannot be merged.  

 
Hydrologically speaking, two or more subwatersheds can be classified as adjacent or 

neighbors, thus facilitating their merger if and only if one of the following criteria is 

satisfied: 

 

1) They all contribute to a common node. 

2) One flows into another. 

 

Mere sharing of geometric boundaries, however, is not sufficient for hydrological 

adjacency. In implementation, the adjacency issue was worked out by establishing 

relationships by way of spatial operations. These operations involved all three major 

layer objects, namely the Subwatershed Layer Object, the Channel Network Layer 

Object, and the Node Layer Object. Any change in the configuration of any of these 

objects/layers was based on the central spatial operation threads. This was essential to 

maintain the data integrity in hydrological terms. 

 
 
3.5.2 Subwatershed Aggregation and Bank Side Factor 
 
The hydrological analysis also identified that in certain cases, the merger of two or more 

subwatersheds leads to peculiar situations, in that it becomes impossible to adjudge the 

left and right sides of the new watershed. This is encountered when two watersheds on 

the top end of a typical ‘Y’ formation are merged. First, to get past many of such merger 
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related issues, it was decided to make merger a node independent function. In other 

words, merger would not necessarily mean the omission of any node. The node would 

still be retained in other channel related parameterization processes. Also, merger would 

strip the watersheds of their bank identity. In other words, if the user chooses to merge, 

the resulting watershed would comprise of subwatershed with no distinction as to their 

left or right banks. 

  
Figure 3.5: Adjacency Issues in TOPAZ-N and Hydrology in general. Retaining the left-
right bank identity after the merger of ‘A’ and ‘B’ subwatersheds creates ambiguity as 
there are two channel segments in one subwatershed. 
 
 
3.5.3 Subwatershed Aggregation And Channel Network Issue 
 
Merger of subwatersheds also has an impact on the channel network. There were two 

options available to carry out the subwatershed merger. One involved altering the node 

system of one of the merging subwatersheds, which in turn affects the channel network. 

Another approach was to aggregate the subwatersheds and restrict this manipulation 

only to the subwatershed layer object and thus retain the node system to preserve the 

channel network. If, on the other hand, the aggregation involved simultaneous changes 

in the node system, and hence changes in the channel network, it would lead to absurd 

channel definitions, i.e., a channel with two sources but one end. In some complex 

aggregation cases, as in a typical ‘Y’ formation, there would be problems with channel 
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network parameterization, for example, designating the stem part of channel section in a 

‘Y’ configuration. Figure 3.6 illustrates that, in some cases, aggregation leads to a 

channel segment in the new subwatershed that has two initiatory points but only one end 

point. Although the situation is not absurd in reality but it does create absurdity in the 

current parameterization methodology.  

 

 

 

 

 

 

 

  

 

Figure 3.6: Adjacency Issues Merger of subbasins may cause ‘Y’ shaped channel 
segments in a subwatershed, distinct identity for each component of the segment 
requires retaining node as pseudo-node. 
 
Thus, by retaining the junction node in the merger process, TOPAZ-N maintained the 

sanctity of the channel network along with channel order allocation issues.  

 
3.6 Process Modeling 
 
Raster data has a flat tabular structure. In a raster there are grid cells with values. Each 

set of grid cells (a layer) corresponds to some attribute value associated with that 

location. Thus, raster structure lacks any real-life abstraction. In TOPAZ-N, a new, 

raster-based data structure was developed exclusively tailored for the spatial hydrology. 

It was felt that adhering to commonly available data and process models for spatial 

analysis does not suit spatial hydrology. The most pronounced was the adjacency issue. 

In any topological application, sharing of a boundary qualifies features to be classified 

as adjacent or neighbors. This, however, is not true in hydrology as topologically 

adjacent might not be hydrologically adjacent. In hydrology, adjacency is based on the 

final drainage point and is linked to the channel section in to which the watersheds 

finally drain.  

 37



3.7 Algorithm for Information Extraction and Utilization 
 
TOPAZ–N receives input from the output of the DEDNM preprocessing module. 

TOPAZ-N receives the ‘flow direction grid’ called the “Flovec.dat”. Flovec.dat is a flat 

file containing the flow vector directions for each of the grid cells, which are listed as 

numbers 1 through 9 as per D8 methodology convention. Also received is the data 

regarding subwatershed identities of the non-channel cells from the “Subwta.dat” file. 

The “Netw.dat” file provides the skeletal stream network. TOPAZ-N also requires a file 

called “Channel.dat” an output from an addendum TOPAZ program called INTER 

which lists node numbers and their coordinates as extracted by the preliminary run of 

TOPAZ. The data from all these sources is organized in the new data structure modeled 

with the grid cell as the basic unit, node status as a class of this basic unit, ‘Channel’ and 

‘Subcatchment’ forming the next level of hierarchy. 

 
Each grid cell is assigned an additional attribute of ‘final flow’ point/direction. This is 

the point at which a particular cell drains into the stream. Jenson and Domingue (1988) 

do make a reference to this property but never has it been utilized in any process 

modeling or analysis. This property is retrieved by starting with the top left hand corner 

of the grid. A trace is performed so as to ascertain where the cell is draining, based on its 

flow direction value. On reaching its drain point, a check is done if the drain cell is a 

part of a channel or not. If not then the process is continued until a channel cell is 

reached. When the trace leads to a stream cell, then the address of this stream cell is 

assigned to all the non-stream cells visited in the trace process. This process is continued 

until all of the un-flagged cells are assigned ‘final flow’ point/direction. At the same 

time, the traversal of the channel network is done and information of upstream and 

downstream node is collected and stored. The addition of node is accomplished by 

asking for user input of the row and column for the new node to be inserted.  First, a 

check is done if the given cell is a part of the channel network or not. If not, the user is 

asked to provide another set of coordinates. If the user-supplied coordinates (Row and 

Column) are a part of the channel network they satisfy one of the criteria for assigning 

the new node status.  
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Identify Cells Draining into Cells between New Node 

and its Upstream Node 

Addition Process Complete 

Continued from next page 

Figure3.7: Flow Chart of the New Node Addition Process in the TOPAZ-N Module. 

 

Then their current node status is verified. The given coordinate has to be a channel cell 

but with no node status. Once the non-node status is confirmed, the process for the 

addition of a new node at that cell is initiated.  This is worth mentioning although 

exterior to the program the process appears to be a node “addition” or “insertion” 

process,  but internally it is designed as a “re-assigning” process.  
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Once the user-supplied coordinates are verified, their node status is immediately 

changed, and the upstream and downstream nodes of this new node are determined. The 

new node is assigned a node ‘I.D.’ one value higher than its downstream value. Then all 

the nodes with an ‘I.D.’ greater than the ‘I.D.’ of the new node get a one unit-increment 

in their ‘I.D.’.  This also changes the subcatchment ‘I.D.s’ for all the non-channel cells 

with ‘I.D.’ higher than two unit values of the new node ‘I.D.’. 

 

Next a trace is started from the u/s (upstream) node of the new node flagging all the 

channel cells until the new node is reached. Then a pass is made on the cells with 

subcatchment ‘I.D.’ of the new node ‘I.D.’. All the cells which drain into any of the 

flagged cells between the u/s node and the new node are then given a single unit 

increment in their subcatchment ‘I.D.’, thereby partitioning the old subcatchment in two.  

 

Merger of two subwatersheds is designed to merge only two hydrologically adjacent 

subwatersheds, and not topographically adjacent subwatersheds. The user is asked to 

provide the ‘I.D.s’ of the subwatersheds that need to be merged.  Upon receiving the two 

ids for example ‘A’ and ‘B’ a check is performed to verify whether A is d/s of B or B is 

d/s of A. Once this is confirmed then the two subwatersheds are merged, retaining the 

outermost subcatchment ‘I.D.’. No other subwatershed gets any change in its ‘I.D.’, nor 

is the node number of any other node changed. Upon merger, the ‘removed’ node is ‘de-

recognized’ as an active node and is assigned a pseudo-node status. This serves only one 

purpose, i.e., if the merged watersheds are the two arms of a ‘Y’ junction, then the 

pseudo-node maintains a distinction between two different channel segments to avoid 

ambiguity in the channel network. The merger of subbasins is not purely a process of 

node removal. Also, during the merger, the process rids the subbasins of their left and 

right bank associativity. This is again meant to avoid ambiguity in case of ‘Y’ junction 

mergers as described in section 3.5.3. 
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Figure3.8: Flow Chart of Merging Process in the TOPAZ-N Module. 

 

Using these two capabilities, another process is designed to delineate water bodies. It is 

to be noted that the accuracy of the extraction or the homogeneity of the extracted 

feature is a factor of right combination of MSCL and CSA values which is evident from 
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test runs.  For extraction, the nodes are inserted at the intersection of streams with the 

lake boundary. The identification of coordinates of new nodes to be inserted is done 

externally, by performing an overlay analysis on an intermediate output of TOPAZ-N 

and the lake boundary dataset. The identified new node insertion coordinates are fed into 

the TOPAZ-N by a simple text file, and these new nodes get inserted. Next, a new 

‘intermediate’ output from TOPAZ-N is taken out and all the subwatersheds lying 

within the lake boundary are identified by overlay analysis. The ‘I.D.s’ of these 

subwatersheds are fed into TOPAZ-N through a file. These subwatersheds are checked 

and merged to define a new ‘feature’. The user is then asked to supply an ‘I.D.’ for this 

lake.  However the cells which are channel cells and are inside the lake boundary retain 

their status, as it is necessary to maintain flow continuity over the lake 
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CHAPTER-4 

 

MODEL DEVELOPMENT 
 
 
 
4.1 Introduction 
 
The software implementation of TOPAZ-N is done using Visual C++. There is a 

abundance of programming languages in the information technology market today. 

FORTRAN, which is still to some extent, a programming language of preference for the 

development of scientific and engineering applications is being replaced by more 

popular object oriented programming languages. Why Visual C++ over FORTRAN? 

C++ and Fortran 90 both are object-oriented languages used for scientific computing. 

C++ is a fully developed and full-featured, object-oriented language that provides 

support for inheritance and polymorphism. Inheritance allows code reusability feature 

and polymorphism is the ability of a method to behave differently depending upon the 

object it is acting on. Fortran 90 provides some object-oriented features through 

combinations of its TYPE and MODULE syntax elements, but it lacks inheritance and 

thus does not permit code reuse to the same extent as C++.  

 
FORTRAN has only standard data types like characters, integers, real etc. It does not 

permit user defined data types. Visual C++ on the other hand allows creation of user 

defined abstract data types also called ADT. This data abstraction capability enables the 

development of data type closely resembling the real world entity being mapped into the 

software. This close resemblance is in terms of characteristics and functionality. These 

complex data types enable the application developer to simplify the over all application 

model.  

 

 44



The other most important feature missing in FORTRAN 90 is the template. Template 

functionality in C++ allows a developer to build a portable and reusable code and to 

improve the efficiency of evaluation of complex expressions using user defined data 

types. C++ also offers advantage of a low-level language as well as a high level 

language due to its dual nature. It can interact directly with the system hardware almost 

without any limitation like a low-level language, at the same time it can be used like any 

high level language with supporting specific libraries. C++ codes are much concise as 

compared to the same code written in any other language. In summary C++ allows to 

take advantage of modern software design principles. It allows developers to write well-

structured code that can be easily modified as needed for changes in scientific research. 
 
  
4.2 Conceptual Design 
 
Projects in software domain, just like any other domain, require development of a 

conceptual design. The conceptual design describes the system in terms of major design 

elements and relationship among them. It involves determining user requirements and 

functional requirements of software. This requires gathering of information, based on 

which, the application responses are derived as per user requirements and actions. 

A Conceptual design maps the activities of the process being modeled and the tasks that 

a user might need to perform to address a certain issue. The information which is 

collected in the conceptual design process is transformed into the logical design and 

finally into the physical design. 

 
 
4.2.1 General & User Inputs, User Requirements and Application Responses. 
 
The information collected for the conceptual design of TOPAZ-N consisted of general 

inputs, user inputs, user requirements and the corresponding application responses. The 

first step was to identify the user requirements, which were: 

1. The ability to partition a subwatershed, and  

2. The ability to merge subwatersheds.  
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The next step in this process was to ascertain the inputs that the application would need 

from the user to accomplish the aforementioned requirements. These inputs were 

identified as:  

1. User specification of the co-ordinates where a new node needs to be inserted.  

2. User input of the sub catchment identification numbers to merge the 

subwatersheds.  

Based on these two information pieces, next was to determine the other non-user inputs 

for TOPAZ-N. DEDNM (a module of TOPAZ) was identified as the source for these 

non-user inputs. This was because the DEDNM pre-processes and extracts the 

preliminary subwatersheds. This would also ward off any redundancy in the functional 

design of TOPAZ-N. The DEDNM outputs which would enable and equip TOPAZ-N to 

satisfy user requirements were identified as: 

1. File NETW.OUT - It contains the information about the definition of the 

drainage network. This file comprises sequential numerical values, where ‘0’ 

value corresponds to non-channel cells and any other positive numerical value 

correspond to the ‘Strahler’ order of the channel to which the representative cell 

belongs.  

 
2. File SUBWTA.OUT – It contains the unique subcatchment indices of each of the 

delineated subcatchment. The encoding of subcatchment follows the following 

rule to include the left and right hand designations for the banks:  

Source Node Subcatchments = (NODN * 10) + 1 

Right Bank Subcatchments = (NODN * 10) + 2  

Left Bank Subcatchments = (NODN * 10) + 3 

Channel Network Cells = (NODN * 10) + 4 

where NODN is the index assigned to the nodes or channel links of the generated 

drainage network.  

 
3. File FLOVEC.OUT – This file contains the drainage direction at each raster cell 

(local flow vectors) in one of eight principal directions of the raster grid (D-8 

method). Values of flow vectors are 0 through 4, and 6 through 9. The value of 0 

defines cells with indeterminate flow direction.  
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4. File BOUND.OUT File - BOUND.OUT contains the watershed definition above 

the user specified watershed outlet point. Cells with a value of 0 are outside the 

watershed boundaries, and cells with a value of 1 define the area within the 

watershed boundaries.  

 
5. Another TOPAZ-DEDNM addendum whose out put was recognized to be 

needed by TOPAZ-N was INTER. INTER is an intermediate module which 

gives node information. Channel.int, an output of Inter, lists nodes, their 

coordinates and their numbers for the initial DEDNM delineated channel 

network.  

 
 
4.2.2 Data and Process Model Design 
 
Data Structure is a logical way of organizing data. Data in a data structure can be of 

fundamental data type or it can be a user defined data type. An important step in the 

development of a software program and paradigm is the design of model. A software 

model comprises the activities, methods, and practices necessary to develop the system 

(Humphrey, 1989). Just like any other model, it is an abstraction of the methodology. 

These models are employed as a mechanism to reduce the complexity of a real world 

entity by removing irrelevant details.  

 
Data structure modeling or design is the formal layout of the application data in the 

computer memory. TOPAZ-N deals with four distinct and yet co-related entities namely: 

 
1. Cell: It is the basic raster data entity. Each cell in a raster corresponds to a 

particular geographic location.  

2. Channel: Channel is a hydrologic entity, which is a set of linear sequence of cells 

satisfying the threshold criteria for their upstream contributing areas.  

3. Subcatchment: It is a collection of cells which have a common drainage outlet.  

4. Node: Node is a cell that lies at the junction of two or more channel segments.  
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Thus, TOPAZ-N requires these aforementioned sets of data abstractions. In addition for 

smooth data flow, file handling and container structures are required. TOPAZ-N thus 

was designed with the following base classes: 

1. Cell  

2. Node  

3. Subcatchment  

4. Channel  

5. File Manager  

6. TOPAZ_N  

The inheritance structure for the classes which form the basic entities of the model is as 

follows: 

 

Cell 

Subcatchment

Node 

Channel 

Class Diagram Inheritance  

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1- Inheritance hierarchy of the classes comprising TOPAZ-N 

 

Inheritance allows a class to use properties and methods of another class while adding its 

own functionality. The base class is known as the parent class and the inheriting class is 

known as the child class. In case of TOPAZ-N cell is the parent class while 

Subcatchment and Channel are the child classes inheriting from the Cell class. Channel 

class is the base class for the Node. Node class in this case inherits all the properties and 
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functionality of the immediate parent class Channel and also from the Cell class from 

the hierarchy. Inheritance hierarchy allows reusability of code and makes software 

design simpler and cleaner. The abstraction of each of the entity comprising TOPAZ-N 

required identification of the attributes and the behaviors for that entity. Classes are the 

result of the abstraction of these hydrologic entities into their programming language 

incarnates the abstract data types. 

 
The Cell Class was abstraction of ‘cell’ of a raster. A cell has a unique geographical 

location. Also cells have a number of attributes depending upon the study. These 

attributes could be soil type, vegetation type but in case of TOPAZ-N the basic attribute 

that was encoded into cell class was its flow vector direction, thus cell class in addition 

to its cell ID has the row and column co-ordinates of the cell into which it flows. 

 

 

 

 

 

 

  

Attributes-   
 -cellid;             
 -flowrow;  
 -flowcol; 
 
 

B

 
 

  

ehaviors- 
+setflowDir (long unsigned int, long unsigned int, 
long unsigned int): void 
 
+colfunct (long unsigned int, long unsigned int): int
 

: int

+cellid (long unsigned int, long unsigned int, int, 
int): long unsigned int 
 
+setFinalFlowDirExtraction (long unsigned int, 
long unsigned int): void 

Cell 

+rowfunct (long unsigned int, long unsigned int)
 

 

 

 

 

Fig 4.2: Class abstraction of raster entity cell 

 
The Channel class was characterized by its unique ID and the behavior to identify the 

channel status. The other attributes like the Strahler order were excluded from the 

encoding as they were not critical to characterize any channel segment. Similarly, the 

Subcatchment class is abstracted primarily on the basis of unique ID. The behaviors of 

Subcatchment class were in accordance with the need to set, alter and seek the attributes. 
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Attributes-   
 
+ int: ChannelID 
-int: tempValue( ) 

Behaviors- 
 
+DefineChannelStatus (long unsigned int, long 
unsigned int): void 

Channel  

 

 

 

Fig 4.3: Class abstraction of hydrologic entity channel. 

 

Attributes-   
 
+ int: SubcatchID 
 

Behaviors- 
 
+getSubID ( ): int 
+setID (int): void 
+Mergesheds (int, int): void 

Subcatchment  

 

 

 

 

Fig 4.4: Class abstraction of hydrologic entity subcatchment. 

 

 

Node, in TOPAZ-N, is defined as the junction of two or more channel segments, point 

of initiation or culmination of channel segments. Nodes numbers serve as the 

identification for the subcatchments. Node class is an important class as plays a central 

role in the functionality of TOPAZ-N. Major behaviors for the Node class comprise of 

seeking, altering/assigning the node status or node number for a particular valid cell. 

 

 
Attributes-   Type=initialValue 
Behaviors- 
+setNodeNumber (int): void 
+setNodeX (int): void 
+setNodeY (int): void 
+setNodeID (unsigned long int): void 

.....Continued on next page

Node 
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.....Continued from previous page 
 
+nsidfill (vector<int long unsigned> &, vector<int>, vector<int>, int 
long unsigned const, int long unsigned const): void 
 
+printNodeInfo (): void 
+setNodeStatus (): void 
+validate_Add (): void 
 
+getdsnode (int, vector<int long unsigned, vector<int>, vector<bool>, 
vector<bool>, vector<int long unsigned>): int 
 
+getusnode (int, vector<int long unsigned, vector<int>, vector<bool>, 
vector<int long unsigned>, vector<int>, int long unsigned, int long 
unsigned): int 
 
+load_dim (int long unsigned &, int long unsigned &, vector<int> &, 
vector<int> &, vector<int> &, int long unsigned &, int long unsigned &, 
int &): void 
 
+Pre_load_dim (int long unsigned &, int long unsigned &, vector<int> &,
vector<int> &, vector<int> &, int long unsigned &, int long unsigned &, 
int &): void 

 

 

 

 

 

 

 

Fig 4.5: Class abstraction of Node. 

 

The two other major functionality internal to TOPAZ-N were data handling i.e. input 

from files and subsequent pre-processing to populate the data structure. File Manager 

class serves that purpose in the system. It creates input and out put stream objects for the 

entire TOPAZ-N. This class is more of a system requirement and has no hydrologic 

significance. 

 

Parameters - 
- bool initializer_a  
 - ifstream InputCell1 
 - ifstream InputCell2 
 - ifstream InputCell3 

.....Continued on next page

FileManager  
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 ....Continued from previous page ( FileManager ) 

 - ifstream InputCell4 
+ string ChannelDefFile 
+ string FlowPathFile 
+ string NodeFilePath 
 
Behaviors – 
 
+openDataFiles ( ): void 
+getChannelFile ( ): string 
+getFlowPathFile ( ): string 
+getNodeFilePath ( ): string 
+setChannelFile (string): void 
+setFlowPathFile (string): void 
+setNodeFilePath (string): void 
+output_11D (vector<int>, int long unsigned &, int long unsigned &, 
char, long unsigned int, long unsigned int, int): void 
 
+output_1 (vector<int>, int long unsigned &, int long unsigned &, 
vector<bool>,vector<bool>,char, long unsigned int, long unsigned int, 
int): void 
 
+output_2 (vector<bool>, int long unsigned &, int long unsigned &, 
vector<bool>,vector<bool>ns, char, long unsigned int, long unsigned int, 
int): void 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6: Class abstraction of FileManager. 

 
TOPAZ_N is the container class for all these constituent classes of the TOPAZ-N 

program. TOPAZ_N encompasses all these classes to carryout intra class interactions. 

All the classes in TOPAZ-N are interdependent. Any change in anyone of the class 

element has effects on the instances of other classes. Thus any change in anyone of the 

class must be reflected accordingly in other dependent instances. TOPAZ_N class 

performs this container class functionality. TOPAZ_N, though a purely system 

requirement, is based on the hydrologic process and emulates the hydrologic model 

while performing internal task. The behaviors of TOPAZ_N class are designed to adhere 

to the hydrologic principals in their operations. For instance, it is encoded in the 

TOPAZ_N behavior to verify the hydrologic adjacency of subwatersheds. 
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Parameters - 
 - char choice  
 - char ver 
+ int outrow 
+ int outcol 
+ int value 
+ int outcellid 
Behaviors - 
+printMsg ( ): void 
+readInputInfo ( ): void 
+mainmenu ( ): void 
+getNode ( ): Node 
+setNode (Node): void 
+getcell ( ): cell 
+setcell (cell): void 
+setFlagstaff (bool): void 
+setChar (char): void 
+printNodeInfo ( ): void 
+addNode ( ): void 
+mergeWatersheds (int, int): void 

TOPAZ_N  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 4.7: Class abstraction of TOPAZ_N. 

 
 
4.3 Class interactions 
 
The smooth functioning of software requires clear definition of class roles and class 

interactions. There are certain class interactions which are implicit in nature and are an 

outcome of inheritance of the different classes involved. The other class interactions are 

much more explicit in their nature. Class interactions involve information exchange and 

subsequent alteration of data values amongst the different instances of the involved 

classes. In TOPAZ-N there are two tier interactions between the classes. The 

fundamental classes (Cell, Channel, Node, and Subcatchment) interact with each other 

to exchange information for the purpose of validation of values like confirming channel 

status, node status etc. These classes also interact with the TOPAZ_N and through 

TOPAZ_N with FileManager class for overall execution of functions and altering of 

data values. The interactions between various classes are shown below: 
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TOPAZ_N 

File Manager

Cell 

Node 

Interaction Diagram for Classes

Subcatchment Channel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.8- Interaction between different classes of TOPAZ-N 

 
 
4.4 Process Model  
 
TOPAZ-N extracts the final flow destination for each individual cell of the watershed. 

The Final flow destination for any given cell is the first channel cell into which it finally 

drains. DEDNM gives the out put of flow vector directions for each cell. Each cell is 

assigned a numeral value 1 through 9 excluding 5. These values are assigned based on 

flow direction derived from the D8 method. For instance a value of ‘9’ for any given cell 

means it drains or flows into the lower right hand corner neighbor cell. As figure 4.9 

shows the immediate flow destination (any of the 8 adjacent cells) and the final flow 

destination (the first channel cell into which any cell finally drains). 
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                       Columns                    1      2      3      4      5      6      7     8 

                       Rows 

                          

1 8        
2 8 8 6      
3 3 3       
4         
5         
6         
7         
8         

                                - Channel Cells               Immediate Flow direction in accordance   

                                                                        with the flow vector number (D8 method) 

 
Fig 4.9 – Final Flow direction for cell (1, 1) is the channel cell (4, 2). cell (1, 2),  

                     cell (1, 3), cell (2, 2), cell (2, 3) and cell (3, 2) all have the same final flow 
                       destination. 
 

To arrive at the final flow destination (FFD) value, TOPAZ-N pre-processes the flow 

vector values as obtained from DEDNM out put. It extracts the FFD for each cell and 

then populates the data structure with these values. In this pre-processing, scanning 

begins with the first cell and control then moves to its immediate flow destination, a 

check is made if this destination is a channel cell or not. If it is not a channel cell then 

control moves to the immediate flow destination of this cell again the check is made, this 

process is continued till a channel cell destination is arrived. At that point all the 

previously passed cells are assigned the ID of this channel cell and are flagged. Then 

next cell is taken for scanning. This time a check is made to verify if this cell has been 

assigned FFD previously, if the cell is flagged from prior scanning it is skipped and 

control moves to the next cell performing the same check. This process is continued till 

all the cells are assigned FFD and are flagged off.  

  
Addition of node by TOPAZ-N involved division of a subwatershed. It makes use of the 

final flow destination values of cells for this purpose. In the very first step after the user 
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specifies the coordinates of the new node location, the control verifies if the given 

coordinate is that of a cell belonging to channel network. Once satisfied, a scan upstream 

of that location to the next node is done along the channel. All the channel cells between 

the new node location and its upstream node are identified and flagged. Then all the 

cells for that subwatershed (which is being divided) which have any of these flagged 

channel cells as their final flow destination are identified. A new subcatchment is 

created with ID same as the node number of the new node. The identified cells are 

assigned to that newly created subcatchment ID. Thus the old subcatchment gets 

divided. 

 
In the watershed aggregation the control checks for the adjacency of the two 

subwatersheds being merged. It does so by validating the premise that in order to be 

hydrologic neighbors, one of the subwatersheds should flow into another or they both 

should have a common outlet. The control goes to that node location and makes a 

downstream scan along the channel to identify the downstream nodes for both the 

subcatchment, if one of them has the other as the downstream subcatchment or if they 

have the same outlet then they are considered neighbors and the merger is performed by 

re-assigning of indices and IDs. 
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CHAPTER-5 

 

RESULTS AND DISCUSSION 
 
 

5.1 Runs and Results  
 
The test runs on TOPAZ-N were aimed at following two objectives: 
 

1) To evaluate the functional capabilities and data structure of the software. 

2) To evaluate the hydrologic applications of these capabilities of the software. 

Evaluation of functional capabilities and data structure meant to access if the basic 

functions for which the data structure and the software were designed are performed 

effectively.  The second objective was to evaluate the hydrologic applications of these 

capabilities. 

 
The first evaluation further looks at two different aspects of the data structure and 
functionality of the software, these were: 

a) Add a node in the channel system and there by divide a subwatershed.  

b) Merge two neighboring subwatersheds. 

TOPAZ-N successfully inserts new node and merges of two subwatersheds as shown in 

figure 5.1.The second objective of the evaluation focuses on exhibiting and measuring 

up the hydrologic applications of TOPAZ-N. In hydrologic modeling it is desired to 

segment the watershed into units that are reasonably homogeneous with regard to 

hydrological response. With the functionality of node addition and merger of 

subwatersheds TOPAZ-N can initiate subwatersheds at points of specific interests and 

merge neighboring subwatersheds having common hydrologic responses. Another 

interest was to evaluate TOPAZ-N to arrive at a watershed segmentation based on the 

derived drainage direction. 
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In order to evaluate the capability of the software module to extract the water bodies in 

the parameterization process, we did runs on a set of five CSA values. The initial run 

was done at CSA of 50 which is comparable to the 30 m grid size of the parent DEM. It 

was then decided to do runs with 1, 2, 10 and 200 CSA values. The jump from 50 to 200 

CSA value was done after evaluating the TOPAZ output for intermediate CSA values 

between 50 and 200, which revealed insignificant changes in the delineated network and 

subwatersheds from 50 to 200 CSA values. The number of nodes inserted at the 

intersection of streams and lake boundary almost remained constant over this range of 

CSA values. Within each CSA value, the MSCL values were varied from 100 to 400 in 

steps of 100 m. MSCL values below 100 did not show a significant effect on intersecting 

streams and lake boundary, hence 100 was adopted as the base value. The interval of 

100 for MSCL values was chosen to get a fairly wide range.  

 
As the CSA and MSCL values decrease the delineated network becomes increasingly 

dense. The denser the channel network becomes the more the number of intersection of 

channels with Lake Boundary. Thus denser networks give better extraction results. In 

general there is an overall trend of linear decrease in the number of nodes with 

increasing MSCL values for any given CSA value.  

 
Table 5.1: The variation in the percentage of ‘actual’ lake in the delineated lake with 
MSCL and CSA value variation. 
 
MSCL 100 200 300 400 

CSA  % % % % 

1 94.68 82.28 75.91 63.42 

2 67.68 66.25 58.39 52.66 

10 30.53 30.53 24.16 20.64 

50 12.25 10.43 10.43 10.43 

200 9.221 9.221 9.221 9.221 

 
In the table (Table 5.1) above, the column under each MSCL value category lists the 

percentage of the extracted lake as the ‘actual’ lake. The ‘actual’ lake refers to the lake 
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area from the original (Shawn Francis’s) digital data set. Table 5.1 was arrived at by an 

overlay analysis of the original data with the delineated lake DEM in Arc View. The 

data from the analysis was exported to an Excel file to calculate the percentage 

calculations vis-à-vis the actual lake area.  

 
The percentage is representative of homogeneity of the extracted feature. A 100 percent 

indicates that all the area of the extracted feature is water; less than 100 percent reflects 

an inclusion of some non-water areas into the extracted feature. 

 
Over all, the highest percent of homogeneity achieved was 94.68 percent at the CSA 

value of 1, and MSCL value of 100. For a given MSCL value, an increase in CSA value 

causes a sharp decrease in the homogeneity of the extracted feature. On the other hand, 

the variation in homogeneity for a given CSA value is not that sharp with increase in 

MSCL value. 

 

The highest homogeneity of 94.68 percent means that 5.32 percent is the area which is 

not lake but directly drains into the lake, hence gets included into the extracted lake. 

This inclusion of area close to the shoreline of the lake is in line with the fact that Coal 

Lake resides in a Steep Sloped valley. 

 

For a given CSA value, the percentage of ‘actual lake’ in the ‘extracted lake’ decreases, 

indicating inclusion of more of the surrounding area into the ‘extracted lake’. The same 

is true when MSCL is kept constant and CSA values are changed (Figure 5.2). 

 

Figure 5.3 to 5.7 show the delineation of Coal Lake at different CSA and MSCL values. 

It is observed that at low CSA value of 1 and MSCL value of 100 the delineated lake 

includes area which can be referred to as the riparian areas. This however cannot be said 

for higher CSA and MSCL values because the delineated lake includes vast areas 

beyond riparian zones. Thus TOPAZ-N would be a suitable tool to delineate water 

bodies with their riparian zones which drain directly into the lake without forming any 

significant channel links, but only at low CSA and MSCL values.  
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Figure 5.2: The graph showing the percent of homogeneity /percent of actual 
lake in the extracted feature as a function of MSCL value for different CSA 
values. 
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5.2 Application Runs 

 
There have been attempts and comparative studies to arrive at watershed segmentation 

based on the derived drainage directions (Shaw, 2002). Derived drainage direction is 

defined as the one which emulates the hydrography. The derived drainage direction is 

the drainage direction of the final outlet for that subwatershed. The results demonstrate 

that TOPA-N can be effectively be used to generate watershed segmentation based on 

derived drainage direction as shown in figure 5.8.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hydro Zone 
Boundary 
Derived Drainage 
Directions 

Stream Channels 
 
 
 
Subwatersheds 
based on derived 
drainage 
directions 
 
 
      
 
 
 
 
 
 
Remaining 
unaltered 
subwatersheds 

Figure 5.8 – Segmentation of a section of watershed based on the 
 

In another set of runs, an attempt was made to use the model to delineate  

subwatersheds based on some specific parameters. The specific parameter initially 

chosen was Ecozones. Thus, the runs were aimed at deriving subwatersheds that were 

fairly homogenous in terms of ecozones’ characteristics. The first few runs revealed no 

pattern and the level of homogeneity was fairly low. This was due to the extremely 

complex pattern of the ecozones’ mosaic which was used as an overlay.  Thus, no 

further runs were done on this data set. 
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Next the ‘hydro-zones’ data was used to arrive at subwatersheds which were fairly 

homogenous in terms of the hydro-zones. Hydro zone is the classification of the 

watershed based on the hydrologic property. These hydrologic properties could be soil 

type, conductivity and porosity. Instead of hydro zones, simple vegetation based 

classification of the watershed could be another base for segmentation of watersheds.  

Again the results for hydro zone were the same as the ecozones’ runs. Both attempts, 

however, did isolate a few select subwatersheds with very high (almost 90-95%) 

accuracy with CSA of 1 and MSCL 100.  However, this was not true for basin-wide 

application. For instance, in the Figure 5.9, one sees the outcome of the analysis that was 

performed on a DEM with CSA value of 10 and MSCL value of 100. A node was 

inserted at the intersection of the hydrozone boundary and the channel. Then all the 

subwatersheds from that node onwards, until the last node, which was in that hydrozone, 

were merged. The new watershed derived, however, has some areas outside the 

hydrozone. These ‘extra’ areas are downstream of the inserted node but do not 

completely fall in one hydrozone. It is not possible to initiate watersheds so that they can 

‘mimic’ hydrozone boundaries. This is because the flow path may or may not conform 

to the hydrozone boundaries.  

 Subwatershed isolated by merger of
small subwatersheds lying within the
boundaries of one of the hydrozone 

The new watershed includes
some areas which are
outside the hydrozone used
as the basis of merger; these
areas are at the boundaries 

Area belonging to different 
hydrozone 

Hydro Zone Boundary
  

Subwatershed created 
by merger of 
subwatersheds within 
one specific hydrozone 

 
 
 

   
  
  

   
  
   

   Unaltered     Subwatersheds  
  
  

       
 
 
 
 

Figure 5.9: Extraction of one subwatershed based on hydrozone overlay. 
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This is in agreement with lake extraction run in which the lake is treated as an isolated 

subwatershed and hence we get the same results as in ecozones and hydro-zones for 

isolated subwatersheds; i.e. 90-95 % homogeneity at low CSA values. The reason for a 

lack of any trend when the model was used for basin-wide application was due to that 

fact that the overlaying characteristics’ layer has a mosaic which is different from that of 

the flow pattern mosaic. Any attempt to mold the watersheds based on overlay mosaic 

results in the conflicting flow patterns in the watershed. 

 
The two zones in the inset (Figure 5.9) however do not belong to the Hydrozone under 

which they were aggregated. This is because the size of these zones is far too small as 

compared to the delineated subwatersheds in the underlying raster layer. The smallest 

feature to be extracted or delineated must be smaller than the smallest subwatershed 

extracted. Thus the CSA values should be low enough to accomplish this objective. If 

the subwatersheds delineated in the preliminary process are larger than the smallest 

feature in the overlying layer which is used for aggregation, then those smaller features 

shall not be extracted instead  they will be aggregated in accordance with the 

neighboring larger entity. At lower CSA and MSCL values the delineated network 

becomes exceedingly dense. This impedes the computation of the data as the processing 

become extremely sluggish. The enormously large number of subwatersheds and the 

dense network makes the process for the identification of coordinates and I.D.’s for node 

addition and aggregation of subwatersheds respectively a very difficult task. Another 

key question for which answer is sought is so as to what percentage of homogeneity can 

be achieved across the basin. The answer to this question eludes the generalization.  The 

level of homogeneity achieved across the basin is largely a factor of the complexity of 

the overlying layer.  If the overlying layer is complex in geometry then the level of 

homogeneity achieved will vary across the basin from 100% for few subwatersheds to 

50% for others. Not to forget the fact that this is also a function of CSA and MSCL 

values.  However for simple overlying layer with the combination of low CSA and 

MSCL values 100% homogenous subwatershed can be achieved for over 90% of the 

entire basin. That is to say up to 90% of the subwatersheds in a basin can achieve 100% 

homogeneity for a simple overlying layer and low CSA and MSCL values. No 

generalization can be made in this regard. 
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Hydro Zone Boundary
 
Different drainage 
outlet directions within 
the specific hydrozone 
 
 
 
 
  
    
 
    Subwatersheds  
 
 
      

Figure 5.10: One of the hydrozone for extracting homogenous subwatersheds. 

Figure 5.10 shows the upper left portion of the Wolf Creek basin. This particular zone 

has flow in three distinctly different directions. I aggregated the subwatersheds for the 

main stream starting from right hand side as shown in Figure 5.11. Towards the lower 

left area of this zone the subwatersheds were having parallel flow hence could not be 

further aggregated.   
Hydro Zone Boundary
 
Subwatersheds created 
by possible merger of 
subwatersheds within 
one specific hydrozone 
 
 
 
 
  
    
 
   Unaltered 
   Subwatersheds  
 
 
      

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Aggregation of subwatersheds  

The subwatersheds on the boundary of the overlying zone tend to have lesser degree of 

homogeneity as some of their areas fall in other zone. The solution to this problem is 

further fragmentation of these border subwatersheds then aggregating the smaller 
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subwatersheds derived from this process in accordance with the boundary restriction. 

This would improve the homogeneity but some areas still would fall into two different 

zones, though very small areas. To do achieve this, MSCL should be low, which results 

in single cell subwatersheds and clustered network. This leads to the size of the clustered 

network more significant than their contributing areas. As shown in the following test 

runs, excluding the boundary areas result in more homogeneity. The decrease in the 

CSA value created smaller subwatersheds there by resulting in exclusion of smaller 

areas for improved homogeneity (Refer to Figure 5.12, 5.13 and 5.14). 

 

 

 

 

 

 

 

 

 

 

Hydro Zone Boundary
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by merger of 
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Figure 5.12: Aggregation at CSA=200 and MSCL=100 for extracting homogenous 
subwatersheds in accordance with hydrozone boundaries. 
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Figure 5.13: Aggregation at CSA=50 and MSCL=100 for extracting homogenous 
subwatersheds in accordance with hydrozone boundaries. 
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one specific hydrozone 
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Figure 5.14: Aggregation at CSA=50 and MSCL=100 for extracting homogenous 
subwatersheds in accordance with hydrozone boundaries. 
 

The following is the graphical representation (Figure 5.15) which shows the variation in 

homogeneity with CSA values for the runs (Figure 5.12, 5.13 and 5.14). The lower the 

CSA value, the better the homogeneity of the extracted watershed. Thus with TOPAZ-N, 

it is possible to extract features with high level of homogeneity. However same cannot 

be said for re-classification and aggregation of the entire subwatershed according to 

some overlying attribute layer, like hydrozone, soil type etc.  
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Figure 5.15– Graphical representation of variation of homogeneity of delineated 
subwatershed with CSA values.  
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CHAPTER-6 

 

CONCLUSIONS 
 

 

TOPAZ is a reliable software tool for automated delineation and parameterization in the 

raster-based modeling domain. The DEDNM module of TOPAZ provides the input for  

the TOPAZ-N software module. This ensured prevention of redundancy in the TOPAZ-

N code by using the DEDNM processing capabilities. 

 

The automated extraction of drainage network and subwatersheds has shortened the time 

involved in hydrological modeling without compromising the quality of results. 

TOPAZ-N allows for a higher level of modeling variability and capabilities. It also 

embarks on evaluating new and improved data modeling techniques for the raster-based 

hydrological data, and explores new data structure designs keeping in line with the 

special requirements of the spatial hydrological data. A new process model for this type 

of unique data was also put to evaluation under the TOPAZ-N module. 

 

The results have indicated that features like lakes can be extracted and included in the 

raster-based hydrological modeling. They also have demonstrated that process models 

can be designed in such a fashion so as to retain the continuous nature of the raster data 

type while incorporating the ‘entity-manipulation’ type of discrete functionality in the 

raster-based hydrological modeling domain. Furthermore, results of test runs in an 

attempt to generate subwatersheds based on a certain attribute as a criterion have shown 

interesting results. They have demonstrated that although it is possible to generate a 

subwatershed with a high level of homogeneity within a basin, it is nevertheless highly 

unlikely to achieve the same level of homogeneity across the entire basin. This is due to 
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the fact that the attribute criterion does not conform to the flow paths which are the 

primary criterion in the subwatershed initiation. 

 

Also, the level of homogeneity is a function of CSA and MSCL values chosen. The 

smaller the CSA and MSCL values, the higher the degree of homogeneity.  It is also 

worth noting that it is possible to extract highly homogenous subwatersheds. However, it 

is not possible to extract subwatersheds based on any complex overlay of any particular 

attributes (the boundaries cannot be mimicked in the subwatershed extraction), the flow 

path being the main criteria of the delineating process. 

 

6.1 Limitations 

 
TOPAZ-N depends on DEDNM module of TOPAZ and the INTER addendum of 

TOPAZ for its execution. Hence, it lacks independent execution. TOPAZ-N lacks its 

own graphical interface and overlay processing. Due to this, the identification of 

subwatersheds to be merged and the identification of coordinates for the node insertion 

makes use of external GIS solutions. Also, TOPAZ-N considerably slows down while 

processing DEM of a size larger than 1000 x 1000  

 
6.2 Recommendations for Future Research 

 
Further development of data models and data structures in the object-oriented domain is 

needed. Improvement of the Graphical User Interface (GUI) is also recommended, as it 

is not just a cosmetic feature, but rather has far reaching effects on the processing 

design. Development of TOPAZ-N is recommended to incorporate decision support 

system capabilities to the module. Inclusion of a ‘querying’ capability can also be 

included in the future research as one of the desired features. Research to establish 

standards for data model and process model design specifically for the hydrological 

domain is also recommended. 
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/////////////////////////////////////////////////////////// 
//                    TOPAZ-N                            // 
/////////////////////////////////////////////////////////// 
//                                                       // 
//      Copyright: Naveen Mudgal                         // 
//                 Dr. L.W. Martz                        // 
//                 J.Garbchet                            // 
//                 University of Saskatchewan            // 
//                 Saskatoon,Canada.                     // 
//                                                       // 
/////////////////////////////////////////////////////////// 
 
 
//------ Preprocessor List ---------// 
 
#include<iostream> 
#include<fstream> 
#include<vector> 
#include<list> 
#include<string> 
#include<stddef.h> 
#include<ctype.h> 
#include<utility> 
#include<iterator> 
#include<iomanip> 
//#include"vars.h" 
# pragma warning (disable:4786) 
using namespace std; 
using namespace std::rel_ops; 
 
 
long unsigned int 

trow=0,tcol=0,tempvalue,temprow,tempcol,tcell_id,
counter; 

vector<int> node_no; 
vector<int> node_x; 
vector<int> node_y; 
vector<int> subcatch_id; 
vector<int long unsigned> node_id; 
vector<int long unsigned> cell_id; 
vector<int long unsigned> finalr(10000000); 
vector<int long unsigned> temphold_1; 
vector<int long unsigned> temphold_11; 
vector<int long unsigned> temphold_2; 
vector<int long unsigned> temphold2; 
vector<int long unsigned> ovf(10000000); 
vector<bool> cs; 
vector<bool> wss; 
vector<bool> ns; 
vector<int>cc; 
long unsigned int xl; 
long unsigned int yl; 
int size; 
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//----------------CLASS CELL--------------------------// 
class Cell{ 
private: 
 int cell_id; 
 int flowrow; 
 int flowcol; 
public: 
 
  ifstream infile; 
   
  int colfunct(long unsigned int totalcol,long unsigned int 

cell_id); 
 
 
  int rowfunct(long unsigned int totalcol,long unsigned int 

cell_id); 
 
 
  int long unsigned cellid(long unsigned int totalcol,long 

unsigned int totalrow,int col,int row); 
 
  void getFlowDir(long unsigned int,long unsigned int); 
   
  void getFinalFlowDirExtraction(long unsigned int, long 

unsigned int); 
   
  void getOutletInfo(long unsigned int, long unsigned int); 
    
  void getWatershedStatus(); 
 
};//cell 
 
 
void Cell::getFlowDir(long unsigned int trow, long unsigned 

int tcol){ 
 
   ifstream infile; 
  infile.open("FLOVEC.DAT"); 
  if(!infile) 
  { 
   cerr<<"Unable to open \"Flovec.dat\" 

file" 
    <<"......bailing out!\n"; 
   exit(-1); 
  } 
  else 
  { 
   cout<<"\nDefining Flow directions in 

the map"; 
   ovf.push_back(0); 
   //Declare Temporary Variables Used in 

the following "For Loop" 
   int cell_id,flowrow,flowcol; 
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 for(counter=1;counter<=(trow*tcol);counter++
) 

   { 
    cell_id=counter; 
    infile>>tempvalue; 
    temprow=rowfunct(tcol,cell_id); 
    tempcol=colfunct(tcol,cell_id); 
    //***********CASE-1 First Row 

First Column-Different Situations 
    if((temprow==1)&&(tempcol==1)) 
    { 
    

 if((tempvalue==1)||(tempvalue==2)||(tempvalu
e==3)||(tempvalue==4)||(tempvalue==7)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==6) 
     { 
      flowrow=temprow; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==8) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==9) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
 
    //***********CASE-2 First Row, 

Neither First Column, Nor Last Column-Different 
Situations 

    else 
if((temprow==1)&&(tempcol!=1)&&(tempcol!=tcol)) 

    { 
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 if((tempvalue==1)||(tempvalue==2)||(tempvalu
e==3)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==4) 
     { 
      flowrow=temprow; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==6) 
     { 
      flowrow=temprow; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==7) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==8) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==9) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
    //***********CASE-3 First Row and 

Last Column Different Situations 
    else 

if((temprow==1)&&(tempcol==tcol)) 
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    { 
    

 if((tempvalue==1)||(tempvalue==2)||(tempvalu
e==3)||(tempvalue==6)||(tempvalue==9)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==4) 
     { 
      flowrow=temprow; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==7) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==8) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
    //***********CASE-4 First Column 

but NOT First and Last Row-Different Situations 
    else 

if((temprow!=1)&&(temprow!=trow)&&(tempcol==1)) 
    { 
    

 if((tempvalue==1)||(tempvalue==4)||(tempvalu
e==7)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==2) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol; 
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 tcell_id=cellid(tcol,trow,flowcol,flowrow); 

      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==3) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==6) 
     { 
      flowrow=temprow; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==8) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==9) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
 
    } 
    //***********CASE-5 Last Column 

but NOT the First and Last Row-Different 
Situations 

    else if 
((temprow!=1)&&(temprow!=trow)&&(tempcol==tcol)) 

    { 
    

 if((tempvalue==3)||(tempvalue==6)||(tempvalu
e==9)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==1) 
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     { 
      flowrow=temprow-1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==2) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==4) 
     { 
      flowrow=temprow; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==7) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==8) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
    //***********CASE-6 Last Row and 

First Column-Different Situations 
    else 

if((temprow==trow)&&(tempcol==1)) 
    { 
    

 if((tempvalue==1)||(tempvalue==4)||(tempvalu
e==7)||(tempvalue==8)||(tempvalue==9)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
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     else if(tempvalue==2) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==3) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==6) 
     { 
      flowrow=temprow; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
 
    //***********CASE-7 Last Row 

Neither the First Column Nor the Last Column-
Different Situations 

    else if 
((temprow==trow)&&(tempcol!=1)&&(tempcol!=tcol)) 

    { 
    

 if((tempvalue==7)||(tempvalue==8)||(tempvalu
e==9)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==1) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==2) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol; 
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 tcell_id=cellid(tcol,trow,flowcol,flowrow); 

      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==3) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==4) 
     { 
      flowrow=temprow; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==6) 
     { 
      flowrow=temprow; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
    //***********CASE-8 Last Row and 

the Last Column-Different Situations 
    else if 

((temprow==trow)&&(tempcol==tcol)) 
    { 
    

 if((tempvalue==3)||(tempvalue==6)||(tempvalu
e==7)||(tempvalue==8)||(tempvalue==9)) 

     { 
      flowrow=0; 
      flowcol=0; 
      tcell_id=0; 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==1) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==2) 
     { 
      flowrow=temprow-1; 
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      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==4) 
     { 
      flowrow=temprow; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
    //***********CASE-9 Main Map Body 

Section 
    else if 

((temprow!=1)&&(temprow!=trow)&&(tempcol!=1)&&(te
mpcol!=tcol)) 

    { 
     if(tempvalue==1) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==2) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==3) 
     { 
      flowrow=temprow-1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==4) 
     { 
      flowrow=temprow; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==6) 
     { 
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      flowrow=temprow; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==7) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol-1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==8) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
     else if(tempvalue==9) 
     { 
      flowrow=temprow+1; 
      flowcol=tempcol+1; 
     

 tcell_id=cellid(tcol,trow,flowcol,flowrow); 
      ovf[counter]=tcell_id; 
     } 
    } 
   } 
  

 cout<<"..done(Elements:"<<counter<<")"<<endl
; 

  
 cout<<"_____________________________________
____________________"<<endl; 

  } 
  infile.close(); 
} 
 
 
 
//#########################################################

## 
// 

02...............................................
......... 

int Cell:: colfunct(long unsigned int totalcol,long 
unsigned int cell_id) 

{ 
 int current_col; 
 if((cell_id%totalcol)==0) 
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 { 
  current_col=totalcol; 
 } 
 else 
 { 
  current_col=(cell_id%totalcol); 
 } 
 return current_col; 
} 
 
//#########################################################

##### 
// 

03...............................................
............ 

int Cell:: rowfunct(long unsigned int totalcol,long 
unsigned int cell_id) 

{ 
 int current_row; 
 if((cell_id%totalcol)==0) 
 { 
  current_row=(cell_id/totalcol); 
 } 
 else 
 { 
  current_row=((cell_id/totalcol)+1); 
 } 
 return current_row; 
} 
 
//#########################################################

##### 
// 

04...............................................
............ 

int long unsigned Cell::cellid(long unsigned int 
totalcol,long unsigned int totalrow,int col,int 
row) 

{ 
 int cell_id; 
 if((col%totalcol)==0) 
 { 
  cell_id=row*totalcol; 
 } 
 else 
 { 
  cell_id=(((row-1)*totalcol)+(col%totalcol)); 
 } 
 return cell_id; 
} 
 
void Cell::getFinalFlowDirExtraction(long unsigned int 

trow, long unsigned int tcol){ 
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 /////////////////////////////////////////////////
/////////////////////////////////////////////// 

  //Procedure for Final Flow Direction 
Extraction 

  cout<<"Entering the  Loop to get final flow 
direction values"; 

  vector<int long unsigned> holden; 
  bool fflag=true; 
  int si,tval,hval,can; 
 
  for(long unsigned int ck=1; 

ck<=(trow*tcol);ck++) 
  { 
   si=ck; 
   fflag=true; 
   if(wss[ck]!=0) 
   { 
    while(fflag) 
    { 
     if ((wss[ck]!=0) && 

(cs[ck]!=1)) 
     { 
      holden.push_back(ck); 
      ck=ovf[ck]; 
     } 
     else if (cs[ck]==1) 
     { 
      tval=ck; 
      for (int 

pk=0;pk<holden.size();pk++) 
      { 
       hval=holden[pk]; 
       finalr[hval]=tval; 
      } 
     

 while(holden.empty()!=true) 
      { 
       holden.pop_back(); 
      } 
      ck=si; 
      fflag=false; 
     } 
    } 
   } 
 
  } 
 

 ////////////////////////////////////////////
/////////////////////////////////////////////////
////////// 

  cout<<"..done(Elements 
processed:"<<counter<<")"<<endl; 
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 cout<<"_____________________________________
____________________"<<endl; 

  cout<<"All data loaded Successfully"<<endl; 
 

 cout<<"_____________________________________
____________________"<<endl; 

 
   
} 
 
 
void Cell::getWatershedStatus(){ 
infile.open("SUBWTA.DAT"); 
  if(!infile) 
  { 
   cerr<<"Unable to open \"subwta.dat\" 

file" 
    <<"......bailing out!\n"; 
   exit(-1); 
  } 
  else 
  { 
   wss.push_back(false); 
   cout<<"Defining Watershed Status of 

Cells"; 
  

 for(counter=1;counter<=(trow*tcol);counter++
) 

   { 
    infile>>tempvalue; 
    if(tempvalue>0) 
    { 
     wss.push_back(true); 
    } 
    else if(tempvalue==0) 
    { 
     wss.push_back(false); 
    } 
   } 
  } 
  infile.close(); 
  cout<<"..done(Elements 

Loaded:"<<wss.size()<<")"<<endl; 
 

 cout<<"_____________________________________
____________________"<<endl; 

 
 
} 
 
 
//----------------CLASS CHANNEL-----------------------// 
class Channel:public Cell{ 
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public: 
 
 ifstream infile; 
 
 void getChannelstatus(); 
 
 
};//channel 
 
 
void Channel::getChannelstatus(){ 
 //Define channel Status 
 ifstream infile; 
  infile.open("Netw.dat"); 
  if(!infile) 
  { 
   cerr<<"Unable to open \"Netw.dat\" 

file" 
    <<"......bailing out!\n"; 
   exit(-1); 
  } 
  else 
  { 
   cout<<"Defining Channel Status of 

Cells"; 
   cs.push_back(false); 
   for 

(counter=1;counter<=(trow*tcol);counter++) 
   { 
    infile>>tempvalue; 
    if(tempvalue==0) 
    { 
     cs.push_back(tempvalue); 
    } 
    else 
    { 
     tempvalue=1; 
     cs.push_back(tempvalue); 
    } 
 
   } 
   cout<<"..done(Elements 

Loaded:"<<cs.size()<<")"<<endl; 
  

 cout<<"_____________________________________
____________________"<<endl; 

 
  } 
  infile.close(); 
 
 

 //xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

  //Define channel Status 
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  infile.open("Netw.dat"); 
  if(!infile) 
  { 
   cerr<<"Unable to open \"Netw.dat\" 

file" 
    <<"......bailing out!\n"; 
   exit(-1); 
  } 
  else 
  { 
   cout<<"Defining Channel Status of 

Cells"; 
   cc.push_back(0); 
   for 

(counter=1;counter<=(trow*tcol);counter++) 
   { 
    infile>>tempvalue; 
    cc.push_back(tempvalue); 
 
   } 
   cout<<"..done(Elements 

Loaded:"<<cc.size()<<")"<<endl; 
  

 cout<<"_____________________________________
____________________"<<endl; 

 
  } 
  infile.close(); 
 

 //xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

 
} 
//----------------CLASS NODE-------------------------// 
class Node:public Channel{ 
public: 
 void setNodeNumber(int value); 
 void setNodeX(int outcol); 
 void setNodeY(int outrow); 
 void setNodeID(int long unsigned outcellid); 
 void nsidfill(vector<int long unsigned> & node_id, 

vector<int> node_x, vector<int> node_y,int long 
unsigned const trow,int long unsigned const 
tcol); 

 void printNodeInfo(); 
 void setNodeStatus(); 
 void addNode(); 
 void validate_Add(); 
 int getdsnode(int node,vector<int long unsigned> 

nodeid,vector<int>nodeno,vector<bool>cs,vector<bo
ol>ns,vector<int long unsigned>ovf); 

 int getusnode(int node,vector<int long unsigned> 
nodeid,vector<int>nodeno,vector<bool>cs,vector<in
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t long unsigned>ovf,vector<int>subcatch_id,int 
long unsigned trow,int long unsigned tcol); 

 void load_dim(int long unsigned &trow,int long unsigned 
&tcol,vector<int> & node_no, vector<int> & 
node_x, vector<int> & node_y,long unsigned int & 
xl, long unsigned int & yl, int & size); 

 void Pre_load_dim(int long unsigned &trow,int long 
unsigned &tcol,vector<int> & node_no, vector<int> 
& node_x, vector<int> & node_y,long unsigned int 
& xl, long unsigned int & yl, int & size); 

 
};//node 
 
 
void Node::setNodeNumber(int value){ 
  node_no.push_back(value); 
} 
 
void Node::setNodeX(int outcol){ 
  node_x.push_back(outcol); 
} 
 
 
void Node::setNodeY(int outrow){ 
  node_y.push_back(outrow); 
} 
 
 
void Node::setNodeID(int long unsigned outcellid){ 
  node_id.push_back(outcellid); 
} 
 
 
void Node:: nsidfill(vector<int long unsigned> & node_id, 

vector<int> node_x, vector<int> node_y, int long 
unsigned const trow,int long unsigned const tcol 
) 

{ 
 int tempx,tempy; 
 int long unsigned hold; 
 //cout<<"Size of node_x:"<<node_x.size(); 
 for(int i=0; i<node_x.size();i++) 
 { 
  tempx=node_x[i]; 
  tempy=node_y[i]; 
  //cout<<"\n X/Y are: "<<tempx<<"/"<<tempy; 
  hold=cellid(tcol,trow,tempx,tempy); 
  //cout<<" Cell ID is :"<<hold; 
  node_id.push_back(hold); 
 } 
} 
 
 
void Node::setNodeStatus(){ 
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//Define Node Status 
  cout<<"Defining Node Status of Cells"; 
 

 for(counter=0;counter<=(trow*tcol);counter++
) 

  { 
   ns.push_back(false); 
  } 
 

 for(counter=0;counter<node_x.size();counter+
+) 

  { 
   temprow=node_y[counter]; 
   tempcol=node_x[counter]; 
  

 tcell_id=cellid(tcol,trow,tempcol,temprow); 
   ns[tcell_id]=true; 
  } 
  cout<<"..done(Elements 

Loaded:"<<ns.size()<<")"<<endl; 
 

 cout<<"_____________________________________
____________________"<<endl; 

 
 
} 
 
 
 
void Node::addNode(){ 
ifstream  addx("add_x.txt"); 
  ifstream  addy("add_y.txt"); 
  vector<int> addxx; 
  vector<int> addyy; 
  int xadd; 
  int yadd; 
  long unsigned int idadd; 
  vector<long unsigned int> addid; 
  //Read all the nodes to be added 
  cout<<"\nReading File to add nodes\n"; 
  while((addx.peek())!=EOF) 
  { 
   cout<<"."; 
   addx>>xadd; 
   addy>>yadd; 
   addxx.push_back(xadd); 
   addyy.push_back(yadd); 
   idadd= cellid(tcol,trow,xadd,yadd); 
   addid.push_back(idadd); 
  } 
 

 //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

  cout<<endl; 
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  cout<<"Checking the validity & addition of 
new nodes \n"; 

  for(int ni=0;ni<addid.size();ni++) 
  { 
   idadd=addid[ni]; 
   ///////////////////////////////// 
   if(cs[idadd]==true) 
   { 
    if(ns[idadd]==false) 
    { 
     int usnode,node; 
     node=subcatch_id[idadd]; 

//This gives the Node Number of US Node (to the 
new node) 

     //change all nodes>node 
     for(int 

i=1;i<=(trow*tcol);i++) 
     { 
      if(subcatch_id[i]>=node) 
      

 subcatch_id[i]=subcatch_id[i]+1; 
     } 
     for(i=0;i<node_no.size();i++) 
     { 
      if(node_no[i]>=node) 
      

 node_no[i]=node_no[i]+1; 
     } 
     node_no.push_back(node); 
     node_id.push_back(idadd); 
    

 node_x.push_back(colfunct(tcol,idadd)); 
    

 node_y.push_back(rowfunct(tcol,idadd)); 
     ns[idadd]=true; 
     // Now change the Subcatch_ID 

of Cells draining from node+1's tcell_ID to 
tcell_ID 

     temphold_1.push_back(idadd); 
     bool condition=true; 
     while(condition) 
     { 
      int get=1; 
      if(get>(trow*tcol)) 
      

 cout<<"\nOverstreching\n"; 
 
      idadd=ovf[idadd]; 
      if((cs[idadd]==true) && 

(ns[idadd]==false)) 
      { 
      

 temphold_1.push_back(idadd); 
      } 
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      else 
if((cs[idadd]==true) && (ns[idadd]==true)) 

      { 
       condition=false; 
      } 
     } 
     //Now  I have the list of 

channel cell from old US to the Added Node 
     int long unsigned changer; 
    

 for(i=0;i<temphold_1.size();i++) 
     { 
      changer=temphold_1[i]; 
      for(int 

j=1;j<=(trow*tcol);j++) 
      { 
      

 if(finalr[j]==changer) 
       

 temphold_2.push_back(j); 
      } 
     } 
     for(int 

j=0;j<temphold_2.size();j++) 
     { 
     

 subcatch_id[temphold_2[j]]=node; 
     } 
    

 temphold_2.erase(temphold_2.begin(),temphold
_2.end()); 

    
 temphold_1.erase(temphold_1.begin(),temphold
_1.end()); 

 
 
    } 
 
   } 
   ///////////////////////////////// 
 
  } 
  
} 
 
 
void Node:: load_dim(int long unsigned &trow,int long 

unsigned &tcol,vector<int> & node_no, vector<int> 
& node_x, vector<int> & node_y,long unsigned int 
& xl, long unsigned int & yl, int & size) 

{ 
 char line[300]; 
 int holder; 
 int numNode; 
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 char comma; 
 ifstream din("CHANNEL.INT"); 
 ifstream pin("Dnmcnt.inp"); 
 string sometext4; 
 for(int pip=1;pip<=88;pip++) 
 { 
  if(pip==34) 
  { 
   pin>>xl; 
   //cout<<"\nXL is:"<<xl; 
  } 
  if(pip==41) 
  { 
   pin>>yl; 
   //cout<<"\nInitial YL:"<<yl; 
  } 
 
  if(pip==48) 
  { 
   pin>>trow; 
   //cout<<"\nRow:"<<trow; 
  } 
  if(pip==55) 
  { 
   pin>>tcol; 
   //cout<<"\nCol:"<<tcol; 
  } 
  if(pip==80) 
  { 
   pin>>size; 
   //cout<<"\nSize:"<<size; 
   yl=(yl)-((trow)*size); 
   //cout<<"\nYL is:"<<yl; 
  } 
  else 
  { 
   pin.getline(line,300,'\n'); 
  } 
 } 
 for(int k1=0;k1<3;k1++) 
 { 
  string sometext3; 
  getline(din, sometext3); 
 } 
 din>>numNode; 
 int num=(int)(numNode); 
 for(int i=0;i<numNode;i++) 
 { 
  din>>holder; 
  node_no.push_back(holder); 
  din.get(comma); 
 } 
 // skip line, now it does not matter how big this 

line is 
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 string sometext; 
 getline(din, sometext); 
 //reads the y coordinate 
 for(int j=0;j<numNode;j++) 
 { 
  din>>holder; 
  node_y.push_back(holder); 
  din.get(comma); 
 } 
 // skip line 
 //string sometext2; 
 //getline(din, sometext2); 
 //reads the x coordinate 
 for(int k=0;k<numNode;k++) 
 { 
  din>>holder; 
  node_x.push_back(holder); 
  din.get(comma); 
 } 
 din.close(); 
 
}; 
 
 
void Node::Pre_load_dim(int long unsigned &trow,int long 

unsigned &tcol,vector<int> & node_no, vector<int> 
& node_x, vector<int> & node_y,long unsigned int 
& xl, long unsigned int & yl, int & size) 

{ 
 char pline[300]; 
 int pholder; 
 int pnumNode; 
 int nodeno_t,nodex_t,nodey_t; 
 long unsigned int nodeid_t; 
 char pcomma; 
 ifstream pdin1("int_node_no.int"); 
 ifstream pdin2("int_node_id.int"); 
 ifstream pdin3("int_node_x.int"); 
 ifstream pdin4("int_node_y.int"); 
 ifstream ppin("Dnmcnt.inp"); 
 string psometext4; 
 for(int ppip=1;ppip<=88;ppip++) 
 { 
  if(ppip==34) 
  { 
   ppin>>xl; 
   //cout<<"\nXL is:"<<xl; 
  } 
  if(ppip==41) 
  { 
   ppin>>yl; 
   //cout<<"\nInitial YL:"<<yl; 
  } 
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  if(ppip==48) 
  { 
   ppin>>trow; 
   //cout<<"\nRow:"<<trow; 
  } 
  if(ppip==55) 
  { 
   ppin>>tcol; 
   //cout<<"\nCol:"<<tcol; 
  } 
  if(ppip==80) 
  { 
   ppin>>size; 
   //cout<<"\nSize:"<<size; 
   yl=(yl)-((trow)*size); 
   //cout<<"\nYL is:"<<yl; 
  } 
  else 
  { 
   ppin.getline(pline,300,'\n'); 
  } 
 } 
 int limit; 
 pdin1>>limit; 
 for(int i=0;i<limit;i++) 
 { 
  pdin1>>nodeno_t; 
  pdin3>>nodex_t; 
  pdin4>>nodey_t; 
  pdin2>>nodeid_t; 
  node_no.push_back(nodeno_t); 
  node_id.push_back(nodeid_t); 
  node_x.push_back(nodex_t); 
  node_y.push_back(nodey_t); 
 
 } 
} 
 
//#########################################################

####### 
 
void Node::validate_Add(){ 
 
//ifstream merge("merger.txt"); 
  ifstream  addx("add_x.txt"); 
  ifstream  addy("add_y.txt"); 
  vector<int> addxx; 
  vector<int> addyy; 
  int xadd; 
  int yadd; 
  int merge_1,merge_2; 
  long unsigned int idadd; 
  vector<long unsigned int> addid; 
  //Read all the nodes to be added 
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  cout<<"\nReading File to add nodes\n"; 
  while((addx.peek())!=EOF) 
  { 
   cout<<"."; 
   addx>>xadd; 
   addy>>yadd; 
   addxx.push_back(xadd); 
   addyy.push_back(yadd); 
   idadd= cellid(tcol,trow,xadd,yadd); 
   addid.push_back(idadd); 
  }//while 
 

 //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

  cout<<endl; 
  cout<<"Checking the validity & addition of 

new nodes \n"; 
  for(int ni=0;ni<addid.size();ni++) 
  { 
   idadd=addid[ni]; 
   ///////////////////////////////// 
   if(cs[idadd]==true) 
   { 
    if(ns[idadd]==false) 
    { 
     int usnode,node; 
    node=subcatch_id[idadd]; //This 

gives the Node Number of US Node (to the new 
node) 

 
     //change all nodes>node 
     for(int 

i=1;i<=(trow*tcol);i++) 
     { 
      if(subcatch_id[i]>=node) 
     

 subcatch_id[i]=subcatch_id[i]+1; 
     }//for 
     for(i=0;i<node_no.size();i++) 
     { 
      if(node_no[i]>=node) 
      

 node_no[i]=node_no[i]+1; 
     }//for 
     node_no.push_back(node); 
     node_id.push_back(idadd); 
    

 node_x.push_back(colfunct(tcol,idadd)); 
    

 node_y.push_back(rowfunct(tcol,idadd)); 
     ns[idadd]=true; 
     // Now change the Subcatch_ID 

of Cells draining from node+1's tcell_ID to 
tcell_ID 
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     temphold_1.push_back(idadd); 
     bool condition=true; 
     while(condition) 
     { 
      int get=1; 
      if(get>(trow*tcol)) 
      

 cout<<"\nOverstreching\n"; 
 
      idadd=ovf[idadd]; 
      if((cs[idadd]==true) && 

(ns[idadd]==false)) 
      { 
      

 temphold_1.push_back(idadd); 
      }//if 
      else 

if((cs[idadd]==true) && (ns[idadd]==true)) 
      { 
       condition=false; 
      }//else 
     }//while 
     //Now  I have the list of 

channel cell from old US to the Added Node 
     int long unsigned changer; 
    

 for(i=0;i<temphold_1.size();i++) 
     { 
      changer=temphold_1[i]; 
      for(int 

j=1;j<=(trow*tcol);j++) 
      { 
      

 if(finalr[j]==changer) 
       

 temphold_2.push_back(j); 
      }//for 
     }//for 
     for(int 

j=0;j<temphold_2.size();j++) 
     { 
     

 subcatch_id[temphold_2[j]]=node; 
     }//for 
    

 temphold_2.erase(temphold_2.begin(),temphold
_2.end()); 

    
 temphold_1.erase(temphold_1.begin(),temphold
_1.end()); 

 
 
    }//if 
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   }//if 
   ///////////////////////////////// 
 
}//for 
}//function 
void Node::printNodeInfo(){ 
     cout<<"Total Row:"<<trow<<endl; 
  cout<<"Total cols:"<<tcol<<endl; 
  cout<<"Xllcorner:"<<xl<<endl; 
  cout<<"Yllcorner:"<<yl<<endl; 
  cout<<"Size of Grid:"<<size<<" units"<<endl; 
  cout<<"\nTotal Number of 

nodes:"<<node_no.size()<<endl; 
 

 cout<<"_____________________________________
____________________"<<endl; 

  
 
} 
 
 
 
int Node::getdsnode(int node,vector<int long unsigned> 

nodeid,vector<int>nodeno,vector<bool>cs,vector<bo
ol>ns,vector<int long unsigned>ovf) 

{ 
 int long unsigned tcellid=0, holder; 
 bool flag=true; 
 int dsn=0; 
 for(int i=0;i<nodeno.size();i++) 
 { 
  if(nodeno[i]==node) 
  { 
   tcellid=nodeid[i]; 
   cout<<"The Cell_id of Node: "<<node<<" 

is: "<<tcellid<<endl; 
  } 
 } 
 if(tcellid==0) 
 { 
  cout<<"There is no Node with the node number 

\" "<<node<<"\" in the entire drainage 
network"<<endl; 

  flag=false; 
 } 
 
 while(flag) 
 { 
  tcellid=ovf[tcellid]; 
  if(ns[tcellid]==true) 
  { 
   for(int i=0;i<nodeid.size();i++) 
   { 
    if(tcellid==nodeid[i]) 
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     tcellid=i; 
   } 
   dsn=nodeno[tcellid]; 
   flag=false; 
  } 
 } 
 return dsn; 
} 
 
//#########################################################

########## 
 
 
int Node::getusnode(int node,vector<int long unsigned> 

nodeid,vector<int>nodeno,vector<bool>cs,vector<in
t long unsigned>ovf,vector<int>subcatch_id,int 
long unsigned trow,int long unsigned tcol) 

{ 
 int holder=0; 
 int long unsigned tcellid=0; 
 for(int i=0;i<nodeno.size();i++) 
 { 
  if(nodeno[i]==node) 
  { 
   tcellid=nodeid[i]; 
  } 
 } 
 if(tcellid!=0) 
 { 
  for(i=1;i<=(trow*tcol);i++) 
  { 
   if((cs[i]==true)&& (ovf[i]==tcellid)) 
   { 
    holder=subcatch_id[i]; 
    break; 
   } 
  } 
  if(holder==0) 
   cout<<"\nThe Given Node is the Source 

Node hence has NO Upstream Node\n"; 
 } 
 return holder; 
} 
//#########################################################

############ 
 
//----------------CLASS SUBCATCHMENT-----------------// 
class Subcatchment:public Cell{ 
public: 
 void getSubID(); 
 void setID(int); 
    void MergeSheds(Node); 
};//subcatchment 
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void Subcatchment::setID(int i){ 
subcatch_id.push_back(i); 
} 
 
void Subcatchment::getSubID(){ 
   //Define Subcatchment ID's 
  infile.open("SUBWTA.DAT"); 
  if(!infile) 
  { 
   cerr<<"Unable to open \"subwta.dat\" 

file" 
    <<"......bailing out!\n"; 
   exit(-1); 
  } 
  else 
  { subcatch_id.push_back(0); 
  cout<<"Defining Subcatchment ID Status of 

Cells"; 
 

 for(counter=1;counter<=(trow*tcol);counter++
) 

  { 
   infile>>tempvalue; 
   if(tempvalue>0) 
   { 
   

 subcatch_id.push_back((tempvalue/10)); 
   } 
   else if(tempvalue==0) 
   { 
    subcatch_id.push_back(0); 
   } 
  } 
  } 
 
  infile.close(); 
  cout<<"..done(Elements 

Loaded:"<<subcatch_id.size()<<")"<<endl; 
 

 cout<<"_____________________________________
____________________"<<endl; 

 
 
//---------------------------------------------------------

---------- 
  infile.open("SUBWTA.DAT"); 
  if(!infile) 
  { 
   cerr<<"Unable to open \"subwta.dat\" 

file" 
    <<"......bailing out!\n"; 
   exit(-1); 
  } 
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  else 
  { 
   wss.push_back(false); 
   cout<<"Defining Watershed Status of 

Cells"; 
  

 for(counter=1;counter<=(trow*tcol);counter++
) 

   { 
    infile>>tempvalue; 
    if(tempvalue>0) 
    { 
     wss.push_back(true); 
    } 
    else if(tempvalue==0) 
    { 
     wss.push_back(false); 
    } 
   } 
  } 
  infile.close(); 
  cout<<"..done(Elements 

Loaded:"<<wss.size()<<")"<<endl; 
 

 cout<<"_____________________________________
____________________"<<endl; 

} 
 
 
void Subcatchment::MergeSheds(Node node){ 
 
int merge_1, merge_2,adopt; 
int i=0; 
  cout<<"Please provide the ID of the 

Subwatersheds to be merged:" 
   <<"First Subwatershed ID:"; 
  cin>>merge_1; 
  cout<<"Second Watershed ID:"; 
  cin>>merge_2; 
  //check if they are adjacent 
  cout<<"\nVarifying the Hydrologic Adjacency 

of Subwatershed "<<merge_1 
   <<" and Subwatershed "<<merge_2<<endl; 
  int cc_merge1,cc_merge2; 
  long unsigned int merge_ad1,merge_ad2; 
  for( i=0;i<node_no.size();i++) 
  { 
   if(merge_1==node_no[i]) 
   { 
    merge_ad1=node_id[i]; 
   } 
   else if (merge_2==node_no[i]) 
   { 
    merge_ad2=node_id[i]; 
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   } 
  } 
  cc_merge1=cc[merge_ad1]; 
  cc_merge2=cc[merge_ad2]; 
  //////////////////////////////////// 
  /*{ 
  ofstream myfile("subcatch.asc"); 
 

 for(counter=1;counter<=(trow*tcol);counter++
) 

  myfile<<subcatch_id[counter]<<endl; 
  }*/ 
  //////////////////////////////////// 
 

 if((merge_2==node.getdsnode(merge_1,node_id,
node_no,cs,ns,ovf))||(merge_1==node.getdsnode(mer
ge_2,node_id,node_no,cs,ns,ovf))||(node.getdsnode
(merge_1,node_id,node_no,cs,ns,ovf)==node.getdsno
de(merge_2,node_id,node_no,cs,ns,ovf))) 

  { 
   cout<<"Hydrologic adjacency of the 

given Subwatersheds varified\n"; 
   for(int long unsigned 

i=1;i<=(trow*tcol);i++) 
   { 
    if(cc_merge1>cc_merge2) 
    { 
     if(subcatch_id[i]==merge_2) 
     { 
      subcatch_id[i]=merge_1; 
     } 
    } 
    else if (cc_merge2>cc_merge1) 
    { 
     if(subcatch_id[i]==merge_1) 
     { 
      subcatch_id[i]=merge_2; 
     } 
    } 
    else if (cc_merge2==cc_merge1) 
    { 
     if(merge_1>merge_2) 
     { 
     

 if(subcatch_id[i]==merge_2) 
      { 
      

 subcatch_id[i]==merge_1; 
      } 
     } 
     else if(merge_2>merge_1) 
     { 
     

 if(subcatch_id[i]==merge_1) 
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      { 
      

 subcatch_id[i]==merge_2; 
      } 
     } 
    } 
   } 
   int retained; 
   if(cc_merge1>cc_merge2) 
   { 
    adopt=merge_2; 
    retained=merge_1; 
   } 
   else if(cc_merge2>cc_merge1) 
   { 
    adopt=merge_1; 
    retained=merge_2; 
   } 
 
   else if(cc_merge2==cc_merge1) 
   { 
    if(merge_1>merge_2) 
    { 
     adopt=merge_2; 
     retained=merge_1; 
    } 
    else 
    { 
     adopt=merge_1; 
     retained=merge_2; 
    } 
   } 
   for(i=0;i<node_no.size();i++) 
   { 
    if(node_no[i]==adopt) 
    { 
     ns[node_id[i]]=false; 
    

 node_no.erase(node_no.begin()+(i)); 
    

 node_x.erase(node_x.begin()+(i)); 
    

 node_y.erase(node_y.begin()+(i)); 
    

 node_id.erase(node_id.begin()+(i)); 
    } 
   } 
   //////////////////////////////////// 
  } 
  else 
  { 
   cout<<"Sorry, the given subwatersheds 

cannot be merged as they are not hydrologically 
adjacent\n" 
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    <<"Please provide another set of 
subwatersheds for merging"; 

  } 
 
} 
 
 
 
 
 
//----------------CLASS FILEMANAGER------------------// 
 
class FileManager{ 
public: 
 void output_11D( vector<int> vec, int long 

unsigned & trow,int long unsigned & 
tcol,vector<bool>cs, vector<bool>ns,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size); 

 
    void output_1D( vector<int> vec,int long unsigned & 

trow,int long unsigned & tcol,vector<bool>cs, 
vector<bool>ns,char file[30],long unsigned int 
xl, long unsigned int yl, int size); 

 
 void output_1D( vector<bool> vec, int long 

unsigned & trow,int long unsigned & 
tcol,vector<bool>cs, vector<bool>ns,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size); 

 
    void output_1D( vector<int long unsigned> vec,int long 

unsigned & trow,int long unsigned & tcol,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size); 

 
    void output_1D( vector<bool> vec, int long unsigned & 

trow,int long unsigned & tcol,char file[30],long 
unsigned int xl, long unsigned int yl, int size); 

 
}; 
 
 
 
void FileManager::output_11D( vector<int> vec, int long 

unsigned & trow,int long unsigned & 
tcol,vector<bool>cs, vector<bool>ns,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size) 

{ 
 ofstream outfile(file); 
 outfile<<"ncols"<<" "<<tcol<<endl; 
 outfile<<"nrows"<<" "<<trow<<endl; 
 outfile<<"xllcorner"<<" "<<xl<<endl; 
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 outfile<<"yllcorner"<<" "<<yl<<endl; 
 outfile<<"cellsize"<<" "<<size<<endl; 
 outfile<<"nodata_value"<<" "<<"-32768"<<endl; 
 for(int i=1;i<=(trow*tcol);i++) 
 { 
   outfile<<vec[i]<<endl; 
 } 
 
} 
//#########################################################

########## 
 
 
void FileManager::output_1D( vector<int> vec, int long 

unsigned & trow,int long unsigned & 
tcol,vector<bool>cs, vector<bool>ns,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size) 

{ 
 ofstream outfile(file); 
 outfile<<"ncols"<<" "<<tcol<<endl; 
 outfile<<"nrows"<<" "<<trow<<endl; 
 outfile<<"xllcorner"<<" "<<xl<<endl; 
 outfile<<"yllcorner"<<" "<<yl<<endl; 
 outfile<<"cellsize"<<" "<<size<<endl; 
 outfile<<"nodata_value"<<" "<<"-32768"<<endl; 
 for(int i=1;i<=(trow*tcol);i++) 
 { 
  if((cs[i]==true)&&(ns[i]==false)) 
  { 
   outfile<<1<<endl; 
  } 
  else if((cs[i]==true)&&(ns[i]==true)) 
  { 
   outfile<<0<<endl; 
  } 
  else 
  { 
   outfile<<vec[i]<<endl; 
  } 
 } 
 
} 
//#########################################################

######### 
 
 
void FileManager::output_1D( vector<bool> vec, int long 

unsigned & trow,int long unsigned & 
tcol,vector<bool>cs, vector<bool>ns,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size) 

{ 
 ofstream outfile(file); 
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 outfile<<"ncols"<<" "<<tcol<<endl; 
 outfile<<"nrows"<<" "<<trow<<endl; 
 outfile<<"xllcorner"<<" "<<xl<<endl; 
 outfile<<"yllcorner"<<" "<<yl<<endl; 
 outfile<<"cellsize"<<" "<<size<<endl; 
 outfile<<"nodata_value"<<" "<<"-32768"<<endl; 
 for(int i=1;i<=(trow*tcol);i++) 
 { 
  if((cs[i]==true)&&(ns[i]==false)) 
  { 
   outfile<<1<<endl; 
  } 
  else if((cs[i]==true)&&(ns[i]==true)) 
  { 
   outfile<<2<<endl; 
  } 
  else 
  { 
   outfile<<vec[i]<<endl; 
  } 
 } 
 
} 
//#########################################################

######### 
 
 
 
void FileManager::output_1D( vector<int long unsigned> vec, 

int long unsigned & trow,int long unsigned & 
tcol,char file[30],long unsigned int xl, long 
unsigned int yl, int size) 

{ 
 ofstream outfile(file); 
 outfile<<"ncols"<<" "<<tcol<<endl; 
 outfile<<"nrows"<<" "<<trow<<endl; 
 outfile<<"xllcorner"<<" "<<xl<<endl; 
 outfile<<"yllcorner"<<" "<<yl<<endl; 
 outfile<<"cellsize"<<" "<<size<<endl; 
 outfile<<"nodata_value"<<" "<<"-32768"<<endl; 
 for(int i=1;i<=(trow*tcol);i++) 
  outfile<<vec[i]<<endl; 
} 
 
//#########################################################

######### 
 
 
void FileManager::output_1D( vector<bool> vec, int long 

unsigned & trow,int long unsigned & tcol,char 
file[30],long unsigned int xl, long unsigned int 
yl, int size) 

{ 
 ofstream outfile(file); 
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 outfile<<"ncols"<<" "<<tcol<<endl; 
 outfile<<"nrows"<<" "<<trow<<endl; 
 outfile<<"xllcorner"<<" "<<xl<<endl; 
 outfile<<"yllcorner"<<" "<<yl<<endl; 
 outfile<<"cellsize"<<" "<<size<<endl; 
 outfile<<"nodata_value"<<" "<<"-32768"<<endl; 
 for(int i=1;i<=(trow*tcol);i++) 
  outfile<<vec[i]<<endl; 
} 
//#########################################################

######### 
 
 
 
 
//----------------CLASS TOPAZN-----------------------// 
class TopazN{ 
 public: 
 char choice; 
 bool flag_staff; 
 int outrow,outcol,value; 
 int long unsigned outcellid; 
 char file[30]; 
 char ver; 
 Node node; 
 Cell cell; 
 Channel channel; 
 Subcatchment sub; 
 FileManager fm; 
    void printMsg();    
   void readInputInfo(); 
    void mainmenu(); 
 Node getNode(); 
 void setNode(Node); 
 Cell getCell(); 
 void setCell(Cell); 
 void setFlagstaff(bool); 
 void setChar(char); 
 void addNode(); 
 void mergeWatersheds(Node node); 
};// TOPAZN 
 
 
void TopazN:: printMsg(){ 
    cout<<"\nWelcome to the TOPAZ-N Version-1.0 

\nCopyrigts:Dr. L.W.Martz, Jurgen 
Garbrecht,Naveen Mudgal\n \n"; 

 cout<<"Please press:('P' or 'p') to proceed:"; 
 
} 
 
 
 
void TopazN::mainmenu() 
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{ 
 cout<<"\n________________________________________

___" 
  <<"\nPlease choose from the following 

options:\n" 
  <<"\n   Press \"A\" or 'a' to ADD NEW 

NODES\n" 
  <<"\n   Press \"M\" or 'm' to Merge 

Watersheds\n" 
  <<"\n   Press \"F\" or 'f' to Find\n" 
  <<"\n   Press \"E\" or 'e' to Exit this 

Menu\n" 
  <<"\n   For intermediate output,Press \"O\" 

or 'o'\n" 
  /*<<"\n   To Save current settings ,Press 

\"S\" or 's'\n"*/ 
  <<"\n   To Add a list of New Nodes please 

press \"L\" or 'l' \n" 
 

 <<"_________________________________________
_" 

  <<"\n   Please select your option now :"; 
} 
 
 
 
 
void TopazN::readInputInfo(){ 
   cin>>ver; 
   TopazN tn; 
   Cell cell; 
   Subcatchment sub; 
   Node node; 
   FileManager fm; 
   flag_staff=true; 
   outrow,outcol,value=0; 
 
 
 if((ver=='P') ||(ver=='p')) 
 { 
  cout<<"Please Specifiy the Co-ordinates of 

the Outlet:" 
   <<"\nRow:"; 
  cin>>outrow; 
  cout<<"Column:"; 
  cin>>outcol; 
 

 node.load_dim(trow,tcol,node_no,node_x,node_
y,xl,yl,size); 

 
 node.nsidfill(node_id,node_x,node_y,trow,tco
l); 
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 outcellid=cell.cellid(tcol,trow,outcol,outro
w); 

 
  node.setNodeNumber(value); 
  node.setNodeX(outcol); 
  node.setNodeY(outrow); 
  node.setNodeID(outcellid); 
  cout<<"\nThank You 

\n_______________________________________________
________\n"<<endl; 

 
  node.printNodeInfo(); 
   
  node.setNodeStatus(); 
  system("cls"); 
  cout<<"Welcome to the TOPAZ-N Version-1.0 

\nCopyrigts:Dr. L.W.Martz, Jurgen 
Garbrecht,Naveen Mudgal\n \n"; 

  cout<<"Total Row:"<<trow<<endl; 
  cout<<"Total cols:"<<tcol<<endl; 
  cout<<"Xllcorner:"<<xl<<endl; 
  cout<<"Yllcorner:"<<yl<<endl; 
  cout<<"Size of Grid:"<<size<<" units"<<endl; 
  cout<<"Row & Column for Outlet are:"<<outrow 

<<" & "<<outcol<<" respectively"<<endl; 
 

 ////////////////////////////////////////////
//////////////////////////////// 

     //Defining Flow directions in the map"; 
     cell.getFlowDir( trow, tcol); 
  //Define channel Status 
        channel.getChannelstatus(); 
  //Define Node Status 
  node.setNodeStatus(); 
  //define watershed status of cells 
  cell.getWatershedStatus(); 
   //Procedure for Final Flow Direction 

Extraction 
        cell.getFinalFlowDirExtraction(trow,tcol); 
   
 }//if 
 
 else if((ver=='X')||(ver=='x')) 
 { 
 

 node.Pre_load_dim(trow,tcol,node_no,node_x,n
ode_y,xl,yl,size); 

 
 node.nsidfill(node_id,node_x,node_y,trow,tco
l); 

  cout<<"\nTotal Number of 
nodes:"<<node_no.size()<<endl; 

  node.printNodeInfo(); 
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  cout<<"Proceeding to load other 
parameters\n"; 

  ifstream reader("inter_subwta.tpz"); 
  int holder; 
  sub.setID(0); 
  while((reader.peek())!=EOF) 
  { 
   reader>>holder; 
   sub.setID(holder); 
  } 
 
  //Defining Flow directions in the map"; 
    cell.getFlowDir( trow, tcol); 
  //Define channel Status 
    channel.getChannelstatus(); 
  //Define Node Status 
   node.setNodeStatus(); 
  //define watershed status of cells 
   cell.getWatershedStatus(); 
   //Procedure for Final Flow Direction 

Extraction 
         cell.getFinalFlowDirExtraction(trow,tcol); 
 

 ////////////////////////////////////////////
/////////////////////////////////////////////////
/// 

   
 
 
 } 
 while(flag_staff==true) 
 {   tn.mainmenu(); 
 cin>>choice; 
 //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@ 
 if(choice=='A' || choice=='a') 
 { 
  node.addNode(); 
   
 } 
 
 else if(choice=='M' || choice=='m') 
 { sub.MergeSheds(node); 
   
  char cho1; 
  cout<<"\nDo you wish to have an intermediate 

output? (Press 'Y' for Yes & 'N' for No)"; 
  cin>>cho1; 
  char extn1[30]; 
  if((cho1=='Y')||(cho1=='y')) 
  { 
   char file_I1[50]="_Inter_CNNS.Dat"; 
   cout<<"\nPlease provide a \"Prefix\" 

for the intermediate files:\n"; 
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   cin>>extn1; 
   strcat(extn1,file_I1); 
  

 fm.output_1D(subcatch_id,trow,tcol,cs,ns,ext
n1,xl,yl,size); 

  } 
 } 
 /////////////////////////////////////////////////

///////////////////////////////////////// 
 else if(choice=='E' || choice=='e') 
 { 
  cout<<"\nBefore Exiting, Please provide a 

\"Prefix\" for the output files:\n"; 
  cin>>file; 
  flag_staff=false; 
 } 
 else if(choice=='o' || choice=='O') 
 { 
  char cho3; 
  cout<<"\nDo you wish to have an intermediate 

output? (Press 'Y' for Yes & 'N' for No)"; 
  cin>>cho3; 
  char extn3[30]; 
  char extn4[30]; 
  if((cho3=='Y')||(cho3=='y')) 
  { 
   int pep; 
   char file_I3[50]="_Inter_CNNS.Dat"; 
   char 

file_I4[50]="_Inter_Subwatersheds.Dat"; 
   cout<<"\nPlease provide a \"Prefix\" 

for the intermediate files:\n"; 
   cin>>extn3; 
   strcpy(extn4,extn3); 
   strcat(extn3,file_I3); 
   cout<<"Size:"<<size; 
   cout<<"\nThe size of 

Subcatch_id:"<<(subcatch_id.size()-1); 
   cin>>pep; 
  

 fm.output_1D(subcatch_id,trow,tcol,cs,ns,ext
n3,xl,yl,size); 

   strcat(extn4,file_I4); 
  

 fm.output_11D(subcatch_id,trow,tcol,cs,ns,ex
tn4,xl,yl,size); 

  } 
 } 
 else if(choice=='F' || choice=='f') 
 { 
  int holders, nodenoe; 
  cout<<"Please provide the node no:"; 
  cin>>nodenoe; 
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 holders=node.getdsnode(nodenoe,node_id,node_
no,cs,ns,ovf); 

  cout<<"\nThe D/S node of "<<nodenoe<<" is 
:"<<holders; 

 
 holders=node.getusnode(nodenoe,node_id,node_
no,cs,ovf,subcatch_id,trow,tcol); 

  if(holders>0) 
  { 
   cout<<"\nThe U/S node of "<<nodenoe<<" 

is :"<<holders<<endl<<endl; 
  } 
 
 } 
 else if(choice=='S' || choice=='s') 
 { 
  ofstream out1("int_node_no.int"); 
  ofstream out2("int_node_id.int"); 
  ofstream out3("int_node_x.int"); 
  ofstream out4("int_node_y.int"); 
  out1<<node_no.size()<<endl; 
  for(int i=0;i<node_no.size();i++) 
  { 
   out1<<node_no[i]<<endl; 
   out3<<node_x[i]<<endl; 
   out4<<node_y[i]<<endl; 
   out2<<node_id[i]<<endl; 
  } 
  cout<<"The Size of Node_No 

is:"<<node_no.size()<<endl; 
  ofstream out5("inter_subwta.tpz"); 
  for(i=1;i<=(trow*tcol);i++) 
  { 
   out5<<subcatch_id[i]<<endl; 
  } 
 
 } 
 else if (choice=='L' || choice=='l') 
 { 
   node.validate_Add(); 
   
  } 
 

 //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 
  char extn11[30]; 
  char proceed; 
  char file_I11[50]="_Inter_CNNS.Dat"; 
  cout<<"\nPlease provide a \"Prefix\" for the 

intermediate files:\n"; 
  cin>>extn11; 
  strcat(extn11,file_I11); 
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 fm.output_1D(subcatch_id,trow,tcol,cs,ns,ext
n11,xl,yl,size); 

 
  cout<<"\nPlease Press Proceed to Continue 

with the rest of the process\n"; 
  cin>>proceed; 
  cout<<"\nThank You\n"; 
 /////////////////////////////////////////////////

///////////////////////////////////////// 
}//while 
 
 //output CN-Channel Network 
 char file_O[30]; 
 strcpy(file_O,file); 
 char file2[30]="_CN.Dat"; //CN-Channel Network 

File 
 char file3[30]="_CNN.Dat";//CNN-Channel Network & 

Node File 
 char file4[30]="_CNNS.Dat";//CNNS-Channel 

Network, Node & Subcatchment File 
 char file5[30]="_FFD.Dat";//FFD-Final Flow 

Direction File 
 strcat(file,file2); 
 fm.output_1D(cs,trow,tcol,file,xl,yl,size); 
 strcpy(file,file_O); 
 strcat(file,file3); 
 fm.output_1D(cs,trow,tcol,cs,ns,file,xl,yl,size); 
 strcpy(file,file_O); 
 strcat(file,file4); 
 fm.output_1D(subcatch_id,trow,tcol,cs,ns,file,xl,

yl,size); 
 strcpy(file,file_O); 
 strcat(file,file5); 
 fm.output_1D(finalr,trow,tcol,file,xl,yl,size); 
 cout<<"\nThank You...can shut the program now\n"; 
 
 
} 
 
Node TopazN::getNode(){ 
  return node; 
} 
 
void TopazN::setNode(Node node){ 
  Node node1; 
  node1= node; 
} 
 
Cell TopazN::getCell(){ 
  return cell; 
} 
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void TopazN::setCell(Cell cell){ 
 Cell cell1; 
 cell1=cell; 
} 
 
void TopazN::setFlagstaff(bool t){ 
 flag_staff=t; 
} 
 
void TopazN::setChar(char c){ 
 ver =c ; 
} 
 
void TopazN::addNode(){ 
 node.addNode(); 
} 
 
void TopazN::mergeWatersheds(Node node){ 
  sub.MergeSheds( node); 
} 
// ------------------ MAIN FUNCTION ----------------- // 
//###################################################### 
void main() 
{ 
 TopazN tn; 
 tn.readInputInfo(); 
 
} 
//###################################################### 
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