

diffusion-fundamentals.org

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

Direct calculation of the thermodynamic correction factor, Γ ,

from molecular dynamics simulations.

Sondre K. Schnell^a, Thijs J.H. Vlugt^a, Jean-Marc Simon^b, Signe Kjelstrup^{a,c}, Dick Bedeaux^c

^aProcess and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44, 2628CA Delft, The Netherlands

bLaboratoire interdisciplinaire Carnot de Bourgogne, UMR 5209, 9 avenue Alain Savary, CNRS-Université de Bourgogne, F-21078 Dijon, France, jmsimon@u-bourgogne.fr
c Department of Chemistry, Faculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway

The link between the Maxwell diffusion coefficient, D^M , and Fick's diffusion coefficient, D^F , is made through the thermodynamic correction factor, Γ , that gives the variation of the chemical potential of one species as a function of the variation of the number of molecules for a given volume and temperature. While D^M can be easily

calculated from molecular dynamics (MD) simulations under equilibrium conditions, a lot of applications or softwares favor the use of D^F . D^F can be directly calculated from direct non-equilibrium molecular dynamics but it is not the most popular method to get it, as an alternative it is deduced from D^M and knowledge of Γ . Except for the case of ideal systems, the calculation of Γ requires additional simulations. The aim of this work is to propose a new route to

obtain Γ directly and accurately from one molecular dynamics (MD) simulation (microcanonical or canonical) in which D^M also can be calculated.

As it is well known, small parts of a large system behave like a grand-canonical ensemble. Under these conditions Γ can be directly calculated from the fluctuations of the number of particles, N, in subvolume, V, at fixed temperature, T:

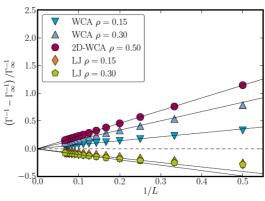


Figure 1 The variation in thermodynamic correction factor for small systems as a function of 1/L (L the system size). One set of simulations were performed in 2-dimensions with WCA-particles, while the rest were performed in 3-dimensions with LJ and WCA particles. The densities ρ are given in reduced units.

1

$$\Gamma^{-1} = k_B T \left(\frac{\partial \ln N}{\partial \mu} \right)_{T,V} = \frac{\left\langle N^2 \right\rangle - \left\langle N \right\rangle^2}{\left\langle N \right\rangle},$$

where μ and k_B are the chemical potential and the Boltzmann constant.

We applied this formula to different systems, n-heptane in zeolite [1] and fluid argon [2] and obtained excellent agreement with previous methods. For argon systems we compared different atomic models (LJ: Lennard-Jones and WCA: Weeks Chandler Andersen) and we predicted and verified important small size scaling effects, see Figure 1. As we showed in [2], the deviation of Γ^{-1} from the value at the thermodynamic limit is linear with the inverse of the length of the volume investigated. From a single simulation, the calculations of Γ^{-1} using different sizes of sub-volumes lead by a simple linear extrapolation to the value of Γ^{-1}_{∞} at infinite volume. The results of the Figure 1 were computed from grand-canonical Monte-Carlo simulations they perfectly agree with MD simulations in canonical and microcanonical ensembles.

These results confirmed that small sub-systems of a larger one behave like a grand-canonical ensemble and that the fluctuation equation can be used to calculate directly the thermodynamic correction factor from a N constant molecular dynamics simulation. As a consequence, the Maxwell and the Fick's diffusion coefficients, can be easily computed in the same simulation using this fluctuation approach.

References

- [1] Floquet, N.; Simon, J.-M.; Coulomb, J.-P.; Bellat, J.-P.; Weber, G.; Andre, G. Microporous Mesoporous Materials 122 (2009) 61.
- [2] Sondre, K.S.; Vlugt T. J. H.; Simon, J.-M.; Bedeaux, D.; Kjelstrup S.; Chem. Phys. Let. 504 (2011) 199.