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Abstract

The effects of cropping systems on soil biological quality are slow to develop.  We sampled the
soil of a 36-year old long-term experiment established on an Orthic Brown Chernozem, at Swift
Current SK, in the fall of 2003, to define the long-term impact of 10 cropping systems on soil
biological quality.  Numerous variables related to soil function -soil pH, organic C (SOC),
moisture, enzymatic activities, available N, P, and S - and soil community structure -
phospholipid fatty acids (PLFA) indicators of fungal saprobes, arbuscular mycorrhizal fungi and
bacterial groups - were used to describe soil quality.  Soils under different cropping systems had
become distinct, as revealed by discriminant analyses.  Variations in SOC, and pH were most
influencial in discriminating the soils.  SOC varied from 2.38% under continuous wheat to
1.81% under a fallow-wheat rotation. pH went from 6.55 under fallow-wheat-wheat receiving no
P-fertilizer, to 4.89, under chemical fallow – fall rye – wheat.  Absence of fallow under normal
fertilization increased SOC and decreased soil pH.  Variations in SOC and pH were concurrent
with variations in microbial community structure.  Enhanced AM fungi abundance under low
soil P, could compensate for the large soil P depletion created by 36 years without P fertilizer, in
a fallow-wheat-wheat rotation, and P-fertilized and non-P-fertilized plots produced similar
yields.  The season of 2003 was dryer than normal and it remains to be seen if AM fungi can
compensate for low soil available P when soil moisture is abundant.

Introduction

Microorganisms are involved in numerous soil processes related to fertility and soil physical
quality.  In addition to being a pool of nutrients in soil, most fungi and bacteria mineralize
organic matter, making the nutrients held in organic forms available to plants.  Arbuscular
mycorrhizal (AM) fungi form a special group of fungi; they do not mineralize soil organic
matter, for all practical purposes.  They are are known as plant symbionts which physically
increase the absorptive surface of root systems (Fig. 1) and in this way, help their host plants
take up phosphorus, other nutrients and water.  AM fungi account for approximately 25% of total
soil microbial biomass in agricultural fields 10,11.



* Samples were taken from the crop rotation phase underlined

Table 1. Cropping systems included in the 36-year experiment studied

As recommendedWheat, LentilW-lentil(N&P)

As recommendedFallow followed by 5 yrs of 
Wheat

F-W-W-W-W-
W(N&P)

No NFallow, Wheat, WheatF-W-W(noN)

No PFallow, Wheat, WheatF-W-W(noP)

As recommendedFallow, Wheat, WheatF-W-W(N&P)

As recommendedFallow, WheatF-W(N&P)

As recommendedFallow, Flax, WheatF-flax-W(N&P)

No NContinuous wheatContW(noN)

As recommendedContinuous wheatContW(N&P)

As recommendedChemical fallow, Fall rye, WheatCF-rye-W(N&P)*

FertilizationRepeated crop sequenceAbbreviation
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Table 2. Variables 
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Soil available SO4
9
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Figure 2. Crop rotations influenced soil fertility and microbiology as 
revealed by (A) microbial phospholipid fatty acids (PLFA) extracted from 
soil (Wilks’ lambda < 0.00005; n=60) and (B) soil biology and fertility -
related variables (Wilks’ lambda < 0.00005; n=60) discrimination of the 
soils under different rotations. Variables with red underline, were driving 
the systems.

FACTOR(1)

W-Len(N&P)
FWWWWW(N&P)
F-W-W(noP)
F-W-W(noN)
F-W-W(N&P)
F-W(N&P)
F-Flx-W(N&P)
ContWnoN)
ContW(N&P)
CF-Rye-W(N&P

TREATMENT

Canonical Scores Plots

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

FACTOR(1)

A B

DiscriminantDiscriminant variables:variables:
C14:0 and isoC15, fungal 
saprobes, AM fungi, C15:0, 
C:16:0, C17:0

DiscriminantDiscriminant variables:variables: pH, organic C, 
mineralizable C, soil microbial biomass C and 
N, dehydrogenase, phosphatase and 
arylsulfatase activities, extractible PO4, NO3
and NH4, but not soil moisture.

Figure 2. Crop rotations influenced soil fertility and microbiology as 
revealed by (A) microbial phospholipid fatty acids (PLFA) extracted from 
soil (Wilks’ lambda < 0.00005; n=60) and (B) soil biology and fertility -
related variables (Wilks’ lambda < 0.00005; n=60) discrimination of the 
soils under different rotations. Variables with red underline, were driving 
the systems.

FACTOR(1)

W-Len(N&P)
FWWWWW(N&P)
F-W-W(noP)
F-W-W(noN)
F-W-W(N&P)
F-W(N&P)
F-Flx-W(N&P)
ContWnoN)
ContW(N&P)
CF-Rye-W(N&P

TREATMENT

Canonical Scores Plots

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

F
A

C
T

O
R

(2
)

FACTOR(1)

A B

DiscriminantDiscriminant variables:variables:
C14:0 and isoC15, fungal 
saprobes, AM fungi, C15:0, 
C:16:0, C17:0

DiscriminantDiscriminant variables:variables: pH, organic C, 
mineralizable C, soil microbial biomass C and 
N, dehydrogenase, phosphatase and 
arylsulfatase activities, extractible PO4, NO3
and NH4, but not soil moisture.

Sustainable cropping systems should maintain or improve soil biological quality.
Because the impact of cropping systems on soils is often slow to develop, their influence is
inferred based on general knowledge.  An on-going 36-year old long-term experiment conducted
in Southwest Saskatchewan was an opportunity to define the long-term impacts of cropping
systems on soil fertility and microbiology.

Methods

Ten different cropping systems (Table 1)
were applied continuously on 0.04-ha
experimental plots set up in 1967, on a
Swinton silt loam (Orthic Brown
Chernozem), at Swift Current SK, Canada.
Crops were fertilized according to soil test,
except for the treatments involving the
absence of N- or P-fertilizers.  The soil was
conventionally tilled at a depth of  7.5 cm,
each year.  On September 12, 2003, the soil
was sampled (0-7.5cm and 7.5cm-15cm
depth).  The soil variables listed in Table 2
were determined.  PLFA make up cell
membranes and, as such, are correlated with
biomass. The PLFA C16:1_5 was used as
an indicator of AM fungal biomass, and
C18:2, as an indicator of the biomass of fungal decomposers. The Supelco® BAME standards
were used as indicators of various soil bacterial groups’ biomasses. Shannon-Weaver
Biodiversity Index was calculated as - ∑pi lnpi, were pi = peak area of the ith peak over the area
of all peaks.  The PLFA considered are listed in Table 3.
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Figure 3. Impact of cropping systems on (A) soil 
organic C, (B) soil pH, (C) soil available P,(D) AM fungi 
abundance, (E)  microbial efficiency, and (F) grain yield.  
Bars associated with the same letter are not different at 
the P= 0.05 level, according to a protected LSD test. n=
6 except for grain yield and PO4, where n= 3.
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Figure 3. Impact of cropping systems on (A) soil 
organic C, (B) soil pH, (C) soil available P,(D) AM fungi 
abundance, (E)  microbial efficiency, and (F) grain yield.  
Bars associated with the same letter are not different at 
the P= 0.05 level, according to a protected LSD test. n=
6 except for grain yield and PO4, where n= 3.
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Soil variables were analyzed using 2-way randomized block design (cropping systems x depth, in
3 blocks) design, while PO4 and grain yield was analysed using 1-way randomized block, as soil
depth was not involved in these cases.  Interactions were absent; main effects of cropping
systems are presented. Anova were conducted with CoStat 6.003, and discriminant analyses,
using Systat 10.

Results and discussion

After 36 years, cropping systems had a profound effect
on soil microbial community structure (Fig.2 A) and
on soil fertility (Fig. 2B).   All the soil variables
measured, except soil moisture, significantly
contributed to differentiate soils under different
cropping system, according to the stepwise
discriminant analysis reported in Fig. 2B.  Soil pH and
organic C level were the variables driving the system,
as revealed by their large and inverse weight in
discriminant functions 1 and 2 of the analysis.  Soil
organic C increased linearly with decreasing soil pH

(P= 0.006; regression not shown, but see Fig. 3A and B).  Several important components of the
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Figure 4. Relationship between soil pH and the PLFA indicator of AM 
fungi, as reavealed by regression analysis (P values for the 
regression and the coefficient of x are <0.00005; n=60).

soil microbial community were correlated with these two variables (Table 3).  AM fungal
biomass was not correlated with soil organic C, presumably because these fungi do not use
organic matter as a source of C, in contrast to most other soil organisms.  But the abundance of
the AM fungal PLFA indicator was correlated with soil pH, decreasing rapidly and linearly from
pH 6.5 to 4.5.  The AM fungi marker C16:1_5 is also found in some gram negative bacteria 11.
Hydroxy fatty acids, which are common in gram negative bacteria 12, were either unaffected by
pH or less abundant at low pH, just like the AM fungal indicator (Table 3).  This suggests that
the impact of pH on AM fungi may in fact be less prononced than it may seem from Fig. 4.  We
need to examine the effect of pH on C16:1_5 in the neutral fatty acid (NLFA) fraction of soil
extracted lipid, as the AM fungal indicator in the NLFA fraction is more specific 13.

After 36 years with no P fertilization, plots in F-W-W(noP) were depleted in soil
available P (Fig. 3C).  Wheat yield in
these plots, however, was not lower than
in the F-W-W(N&P), which was
fertilized as recommended (Fig. 3F).
The AM fungal PLFA indicator was
more abundant in the F-W-W(no-P)
plots (Fig. 3D) and, presumably, AM
fungi compensated for reduced P
availability by effectively improving
root system P extraction ability. The
summer of 2003 was dry, and drought
may have limited the yield potential in
the fertilized plots. If the year had been
less dry, the fertilized F-W-W(N&P)
plots might have produced a higher yield
than the F-W-W(noP) plots, unlike what
we observed.  It is also possible that the
beneficial effect of AM fungi on yield is
stronger in a dry year, as these fungi are
known to reduce drought stress in crop plants 14, in addition to improving P uptake.

Soil with inadequate fertilization had the highest microbial metabolic quotient
(dehydrogenase activity/soil organic C) (Fig.3E).  This may indicate an increased performance of
microbial metabolism or communities under suboptimal conditions.  But, it may also, and more
likely reflect the fact that AM fungi, which are more abundant under limited fertility conditions,
tap directly on the plants – an extraneous C source – to fullfil their C needs, giving a semblance
of improved overall microbial efficiency.  The latter hypothesis is supported by a positive
correlation between the abundance of the AM fungi PLFA indicator and microbial metabolic
quotient, that was calculated with the data from all cropping systems.

The unexpectedly good grain yield obtained in F-W(N&P), as compared to other
cropping systems, is probably due to a previous year in fallow for this cropping system, in
contrast to all others which were in production  in 2002 (Table 1). F-W(N&P) plots may have
had more water than those of other cropping systems, and water was limiting in 2003.  The
highest grain yield in CF-Rye-W(N&P) was explained by superior water stable soil aggregation,
elsewhere15.



Conclusions

 Absence of fallow under normal fertilization increased soil organic C and decreased pH.
 Variations in soil organic C and pH with cropping systems had the largest influences on

the soil systems and on their biological quality.
 Soil organic C- and pH-related modifications were concurrent with changes in microbial

community structure.
 Abundance of AM fungi was correlated with soil pH, decreasing rapidly from pH 6.5 to

4.5.
 Enhanced AM fungi abundance can compensate for the soil P depletion created by 36

years with no P fertilization, in F-W-W.
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