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Abstract 

 

In this thesis, the paper is divided into 2 parts, each corresponding to 2 individual projects.  We 

started with looking into the synthesis of 3-coordinate palladium complexes incorporating a 

nacnac ligated system for academic interest.  We utilized [{2,6-
i
Pr2Ph)2nacnac}PdCl]2 as the 

precursor into synthesizing these 3-coordinate palladium complexes.  Through many failed 

attempts of manipulating different substrates, we were able to synthesize a 4-coordinate [{(2,6-

i
Pr2Ph)2nacnacPdCl}(NH2Ph)]. 

 

The second project deals with the application of dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I) complex to catalysis.  We decided to focus our 

attentions specifically on carbonyl reduction of ketones being that hydrosilations with copper 

catalysts have only been recently looked at.  The dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I) complex proved to be very effective at 

hydrosilations of a wide variety of ketones at high temperatures.  We further investigated the 

scope of the dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) 

catalyst by testing it on the arylation and alkylation of imidazole.  The arylation of imidazole 

showed little to no conversion, whereas the alkylation proved to be quite active for both alkyl 

bromides and chlorides.  We also looked at the attempts in synthesizing bulkier analogues of 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) by varying the 

benzyl groups to 2,6-diisopropylphenyl and mesityl groups.  However, results show that there 

were difficulties in coordinating these bulkier ligands onto copper.   Optimization of complexing 

bulkier ligands onto copper needs to be conducted before one can proceed onto further reactions.   
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General Information:  

 

Chapter 1    Introduction 

 

1.1     3-Coordinate Palladium Complexes in Literature 

 

1.1.1    Nacnac Ligands 

 

β-Diketiminato (nacnac) ligands are nitrogen analogues of widely used acetylacetonato ligands 

that have been given the nickname acac.  The synthesis and study of nacnac ligands was first 

published in 1968 by Canadian researchers.
1
  Their research led to prominent exploration of 

nacnac ligands on late transitional metals especially with copper, cobalt and nickel.
1
  β-

Diketimines are versatile compounds that can be easily synthesized by reacting diketone with a 

primary amine in a condensation reaction yielding a β-diimine (Scheme 1.1).
2 

 

Scheme 1.1  The synthesis of a β-dimime and the subsequent tautomerization to the 

corresponding enamine. 

 

 

This β-diimine readily tautomerizes into a more stable β-diketimine (enamine), which in turn can 

be deprotonated to form β-diketiminato ligands.
2
  These β-diketiminato ligands are bidentate, 

mono-anionic, 4-electron donors that possess properties that can be especially useful in the 

synthesis of metal complexes.  Nacnac ligands are especially useful in organometallic chemistry 

where the ligand can be easily manipulated to increase steric protection about the metal center by 

altering the substituents attached to the nitrogen atoms with bulkier groups.  These ligands also 

possess the property of being bidentate, which generally creates more stability on the metal 

centers than monodentate ligands through chelation.  More specifically, [(2,6-
i
Pr2Ph)2nacnac] 

ligands recently have become increasingly popular in metal coordination chemistry, through the 



2 
 

ease of stabilizing unusual oxidation states and geometries for many main group elements and 

transition metals.
3
   

 

 

Figure 1.1    The structure of [(2,6-
i
Pr2Ph)2nacnac]. 

 

Nacnac ligands have been used to isolate rare 3-coordinate Fe(II),
4
 Cu(II),

5
 Zn(II),

6
 and 5-

coordinate Pt(IV)
7
 complexes.  The bulky 2,6-di-isopropylphenyl groups attached to the nitrogen 

sterically protect the metal center allowing the synthesis of these rare geometries.  

 

1.1.2  3-Coordinate Palladium Complexes  

 

In the last three decades unsaturated metal complexes containing a vacant coordination site have 

been proposed as intermediates for many catalytic reactions, such as hydrogenation
8

, 

hydroformylation
9
, olefin polymerization

10
, and various palladium catalyzed cross-coupling 

reactions (Buckwald-Hartwig, Sonogashira, Suzuki, etc).
11

 Evidence, shows that d
8
 3-coordinate 

metal complexes have been isolated and characterized before in literature; however palladium 

complexes have had very little exploration in reactivity and stability.  3-coordinate palladium 

complexes employing a diimine ligand have been proposed to be active catalysts in Suzuki, 

Heck, Sonogashira, and Hiyama cross-coupling reactions.
12

    

 

Attempted Synthesis of 3-Coordinate Palladium 

 

Studies shows the synthesis of 3-coordinate palladium complexes is rather difficult, due to the 

presence of a vacant coordination site, which makes the complex very susceptible to solvent 

interaction or dimerization, from a 14-electron 3-coordinate to a more stable 16-electron 4-

coordinate species.   
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Hartwig was the first to make any significant progress in the synthesis of 3-coordiante palladium 

complexes.  Hartwig being one of the leaders in the area of C-N coupling proposed many 

mechanisms for cross-coupling reactions going through a 3-coordinate palladium intermediate.
13

   

 

Scheme 1.2    The proposed catalytic pathway for cross-coupling reactions going through a 3-

coordinate intermediate.    

 

 

 

Very little is known about 3-coordinate palladium intermediates, especially in terms of stability, 

properties, and reactivity.   

 

In 2003, Nolan et al. made attempts at synthesizing a cationic 3-coordinate palladium employing 

the widely used mondentate N-heterocyclic carbene ligands by method of chloride abstraction 

(Scheme 1.3).
14

  They found that the cationic complex were very unstable and decomposed upon 

work up; therefore, making it very difficult to fully characterized what was thought to be the 

desired complex.
14

  However, Nolan et al. was able to eventually characterize one of their 

compounds, where crystallographic data shows a 4-coordinate palladium with a coordinating 
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acetonitrile occupying the fourth site.
14

  This suggests that his complexes are only stable in the 

presence of acetonitrile, and decomposes very readily upon the removal of solvent.
14

    

 

Scheme 1.3    Nolan et al. attempted synthesis of a 3-coordinated ligated cationic NHC 

palladium complex.
14

   

 

 

In 2005, Porschke et al. continued Nolan’s work by treating the similar NHC palladium 

precursors to that of Nolan’s with a variety of thallium salt reagents rather than silver salts 

(Scheme 1.4).
15

 The resulting product that was produced was neither the solvated 4-coordinate 

product nor the desired 3-coordinate complex but rather a binuclear species bridged by a 

chloride.
15

   

 

Scheme 1.4   Porschke et al. attempted synthesis of a 3-coordinated ligated cationic NHC 

palladium complex.
15

   

 

 

In that same year, Glorius et al. was able to generate what was proposed as a cationic low- 

coordinate palladium complex by chloride abstraction with silver salts (Scheme 1.5).
16

  

However, the complex that was very unstable despite the intramolecular stabilization of the 

double bond and never was able to be fully characterize the complex, where only 
1
H NMR 

spectroscopy was able to be obtained for this species.
16
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Scheme 1.5   Glorius et al. attempted synthesis of a 3-coordinated ligated cationic NHC 

palladium complex.
16

   

 

 

In 2010, Hartwig et al. treated several bidentate phosphine ligated palladium halide dimeric 

compounds with potassium aryl substituted amides (Scheme 1.6 and 1.7).
17

  They claimed that 

their species occurred in equilibrium between a 3-coordinate and dimerized product, where the 3-

coordinate complex was not isolated.
17

    They also show that the complexes that did not undergo 

dimerization contained a coordinating THF, yielding a 4-coordinate species.
17 

 

Scheme 1.6    Hartwig et al. attempted synthesis of a 3-coordinated ligated phosphine palladium 

complex in equilibrium with a 4-coordinate dimer.
17

     

 

 

Scheme 1.7    Hartwig et al. synthesis of a 4-coordinate palladium complex with a THF solvent 

donar.
17

   

 

 

From the above examples, the synthesis of 3-coordinate palladium complexes appears to be very 

reactive, where decomposition happens readily.  The instability of these intermediates makes it 

rather difficult to isolate, where the characterized product was never the desired product.  This 
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shows that the synthesis of 3-coordinate palladium intermediates require fine tuning of sterics 

and electronics to be able to successfully isolate this species.   

  

3-Coordinate Palladium with Agostic Interaction  

 

Though the concept of synthesizing a 3-coordinate palladium species appears to be relatively 

simple, the fundamental isolation of these complexes are rather challenging.  The presence of 

sterically hindered ligands was believed to inhibit dimerization and solvent interaction.  

 

In 2002, Hartwig et al. synthesized several aryl palladium halide complexes that appeared to be 

monomeric 3-coordinate species; however after obtaining the crystallographic data it was evident 

that these complexes were not true 3-coordinate species (Scheme 1.8).
18

  The crystal structures 

show that these complexes suffer from weak agostic interaction between the C-H bond of the 

ligand with the vacant coordination site on palladium.
18

    

 

Scheme 1.8  Hartwig et al. synthesis of aryl palladium halide complex with agostic 

interactions.
18

   

 

 

In 2004, Hartwig et al. continued their work with 3-coordinate palladium complexes using a 

similar approach of aryl halide palladium compounds, however, increasing the steric bulk on the 

phosphine position to inhibit agostic interaction (Scheme 1.9).
19

  They replaced substituents 

attached to the phosphine with a bulky ferrocene, where the Cp rings are substituted with 

phenyls.
19

  Despite the increase in steric bulk, the crystallography of the product still shows 

presence of agostic interaction.    
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Scheme 1.9   Hartwig et al. synthesis of aryl palladium halide Q-phos ligated complex with 

agostic interactions.
19

   

 

 

In that same paper, they showed isolation of a wide variety of 3-coordinate aryl triflate palladium 

compounds analogous to his chloride derivatives (Scheme 1.10).
19

  Hartwig et al. was able to 

characterized one of these 3-coordinate palladium compounds, which also showed weak agostic 

interaction into the vacant site of the palladium.
19 

 

Scheme 1.10  Hartwig et al. synthesis of aryl palladium triflate complex with agostic 

interactions.
19

   

 

 

In that same year, they made a second attempt at forming a 3-coordinate palladium species 

containing a heteroaromatic group (Scheme 1.11).
20

  They reacted 2-thienyl bromide with a 

bulky phosphine in presence of a bulky potassium reagent to form a 3-coordinate palladium 

complex.
20

   

 

 

 

 

 



8 
 

Scheme 1.11   Hartwig et al. synthesis of aryl palladium halide Q-phos ligated complex with 

agostic interactions.
20

   

 

 

Once again the crystal structure shows bond distances consistent with that of agostic interactions 

involving the butyl hydrogens of the phosphine.
20

    

 

In 2005, after the many failed attempts at synthesizing 3-coordinate palladium employing NHC 

as ancillary ligands, Bertrand et al. was able to isolate and characterize low-coordinate palladium 

(Scheme 1.12).
21

  They utilized an alkylamino carbene complex as their starting precursor and 

were able to isolate a 2-coordinate palladium species by means of chloride abstraction that also 

suffered clear indication of agostic interactions in the crystallography.
21

   

 

Scheme 1.12   Bertrand et al. synthesis of a low coordinate palladium complex with agostic 

interactions.
21

   

 

 

In 2007, Hartwig et al. isolated several monomeric 3-coordinate palladium species, by treating 

their previously synthesized aryl palladium halide complexes with a variety of bulky sodium 

aryloxides (Scheme 1.13).
22

  They were able to isolate and characterized two monomeric 

palladium aryloxides, where in both the crystallography showed Pd-H bond distances that are 

within the region of agostic interactions.
22
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Scheme 1.13  Hartwig et al. synthesis of  palladium aryloxide complexes with agostic 

interactions.
22

   

 

 

Recently in 2011, Rourke et al. synthesized a 14-electron aryl palladium species employing a 

bidentate pyridine ligand system by reacting the ligated palladium acetate species with potassium 

chloride (Scheme 1.14).
23

  After the obtaining the crystallography, it was evident that the bond 

distance show trends that are resemblence of that consistent with agostic interactions.
23

   

 

Scheme 1.14    Rourke et al. synthesis of low coordinate pyridine ligated palladium complex 

with agostic interactions. 
23

  

 

 

Even though, these structures remain 14 electron monomeric species, they are not considered 

true 3-coordinate palladium do to the agostic interaction occupying the remaining vacant site on 

palladium.   

 

True 3-Coordinate Palladium Species 

 

3-Coordinate palladium complexes are very rare, where only a handful of true 3-coordinate 

palladium complexes without agostic interaction actually exist in literature with evidence of 

crystallography.  It has been reported that complexes possessing agostic interaction typically 

have bond distance within the region of 2.74Å to 2.94Å.
20

  To truly possess a 3-coordinate 

species the C-H bond distance must lie outside this region, so that the spatial orientation of the 

ligand lies outside the fourth site of the palladium. 
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In 2004, Hartwig et al. was the first group to isolate a true 3-coordinate palladium species with 

full characterization of the compound (Scheme 1.15).
20

  They took their previously synthesized 

3-coordinate aryl palladium complexes with agostic interaction and treated these precursors with 

a bulky potassium amide reagent to abstract the chloride.
20

  Their rational was the amide group 

possesses a greater amount of bulk in comparison to the single halide should be able to inhibit 

rotation and force the hydrogens away from the coordination site.
20

  After obtaining the crystal 

structure the bond distances show that the ligand’s hydrogens lay outside the square plane of the 

palladium.
21

  This implies that only three of the sites are occupied in the square plane sphere, 

suggesting a true 3-cooridinate species free from agostic interaction.
20

    

 

Scheme 1.15    Hartwig et al. synthesis of true 3-coordinate palladium complexes without 

agostic interaction.
20

   

 

 

In the same year, shortly after Hartwigs discoveries, Kabuto et al. a Japanese group out of 

Tahoko University, synthesized the first 14-electron 3-coordinate disilene palladium complex 

and observed the degree of sigma donation of the disilene ligand onto palladium; however no 

further chemistry was conducted on these complexes (Scheme 1.16).
24

   

 

Scheme 1.16     Kabuto et al. synthesis of a 3-coordinate disilene palladium complex.
24
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1.1.2   T-Shape Vs Trigonal Planar 

 

These 3-coordinate structures tend to adopt a geometry favoring a T-shape rather than the 

trigonal planar orientation.  The crystal structures show that the bond angles vary closer to that of 

an ideal T-shape (90
o
, 90

o
, 180

o
) rather than that of a trigonal planar (120

o
, 120

o
, 120

o
).   This 

trend was evident with 3-coordinate palladium with and without agostic interaction.   

 

1.1.3  Research Goals 

 

There are many synthetic pathways that one can propose by which a 3-coordinate palladium can 

be formed; a common pathway is a simple one-step reaction to yield the desired monomeric 3-

coordinate species.  Many groups made attempts in forming a low-coordinate palladium by 

reacting palladium acetate with a protonated ligand, to yield the corresponding 3-coordinate 

species.  However, palladium acetate transition metal species have been reported to commonly 

form either a monomeric species with a chelating acetate or a dimeric species with a bridging 

acetate.
23

   

 

Our group previously attempted the synthesis of 3-coordinate palladium intermediates by 

utilizing a 4-coordinate monomeric palladium acetate species as the precursor (Scheme 1.17).
25

  

The following compounds appear to be very unstable, where there was no clear characterization 

that suggested that the 3-coordinate species was being formed.
25

    

 

Scheme 1.17    The attempted synthesis of a 3-coordinate palladium complex, by utilization of a 

palladium acetate complex.
25
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Palladium acetate species tend to be very difficult to characterize, therefore are reacted with a 

halide salt to form the corresponding palladium halide counterparts.  In most examples in 

literature the precursors into forming a 3-coordinate palladium generally possesses a halide.  

Halides are typically better leaving groups then that of acetates, where halide abstractions are 

more common for the synthesis of 3-coordinate palladiums.   

 

In this thesis we attempt to synthesize a 3-coordinate palladium by chloride abstraction of a 4-

coordinate palladium chloride dimer, employing a nacnac ligand as our precursor.
25

  We 

anticipate that the chlorine being a good leaving group will allow substitution of the substrate on 

palladium and, depending on the sterics of the substrate, can inhibit dimerization.  We also use 

computational analysis to provide insight into the sterics and geometry of our 3-coordinate 

species.   

 

1.2  Applications of N-Heterocyclic Carbene Copper Complexes 

 

1.2.1    N-Heterocyclic Carbene (NHC) Ligands 

 

Ever since the discovery of the first isolable free carbene by Arduengo, NHCs have emerged as a 

dominant class of ligands.
26

  Their strong σ-donating ability and tunable steric bulk about the 

metal center makes them a very ideal choice for ligand systems in catalysis.
27

   Along with these 

properties, NHCs tend to be very thermally stable compounds and water inert in comparison to 

that of the widely used phosphine-based ligands.
28 

 It has been known in literature that 

monodentate and chelating NHCs ligated systems are highly active in a wide array of coupling 

reactions and catalysis.
28

  The use of NHCs in metal mediated reactions has been heavily 

investigated for many transition metals, such as palladium and nickel; however, they still remain 

relatively unexplored for copper-based reactions.
28

   

 

Though many monodentate NHC copper complexes are known to be active in catalysis, only a 

few have been actually isolated, but rather used as precursor’s in situ reactions.
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1.2.2    Di(N-heterocyclic Carbenes) (diNHC) Ligands 

 

Poly-NHC’s have been synthesized and studied on late transition metals in literature; however, 

these ancillary ligands on copper still remain scarce.  Till this day there has been only a handful 

poly-NHC on copper that have been fully characterized in literature with crystallographic 

evidence.  

 

In 2001, Arnold et al. synthesized the first NHC-based chelating ligand incorporating an 

alkoxide functional group by reacting their silver complex with copper iodide, yielding a cationic 

dinuclear species (Scheme 1.18).
29

  The crystallography shows that each copper center was 

tetradentately bridging coordinated to two alkoxides and two carbenes.
29

 

 

Scheme 1.18    Arnold et al. synthesis of diNHC copper complex with bridging alkoxides.
29 

 

 

In 2003, Meyer et al. synthesized several tripodal triNHC copper species.
30

  They reacted their 

tert-butyl substituted triNHC free ligand with a tetraacetonitrile copper salt, to yield an unusually 

coordinated copper species (Scheme 1.19).
30

   

 

Scheme 1.19    Meyer et al. synthesis of tripodal bisdiaminoalkenyl triNHC copper complex.
30 
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With slight modification to their tripodal ligand system they were able to isolate a mononuclear 

species where the ligand was tetradentately coordinated to the copper metal (Scheme 1.20).
31

   

 

Scheme 1.20    Meyer et al. synthesis of tripodal mononuclear tridentately coordinated triNHC 

copper complex.
31 

 

 

They also display that by adding 2:3 ratio of ligand with respect to copper, yielded a trinuclear 

species (Scheme 1.21).
31

  The crystallography shows that the molecule contains two coppers that 

are bounded in T-shape geometry by two pendant carbene ligators and an anchoring nitrogen, 

while the third carbene was coordinated to the central copper.
31

    

 

Scheme 1.21   Meyer et al. synthesis of tripodal trinuclear triNHC containing two pendant 

carbene ligators and an anchoring nitrogen copper complex.
31 
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They also found that utilizing the silver oxide route into forming their tripodal copper complex 

yielded a trinuclear copper species, where all three cuprous ions are bounded bidentately by two 

different carbenes (Scheme 1.22).
31

   

 

Scheme 1.22    Meyer et al. synthesis of tripodal cationic bidentately coordinated triNHC copper 

complex.
31 

 

 

In 2009, Hoffman et al. synthesized a very unusual coordinated neutral copper bound diNHC 

polymer by deprotonation the corresponding diNHC salt followed by a sequential reaction with 

copper bromide (Scheme 1.23).
32

  The resulting crystallography showed that the compound was 

indeed a polymer, where each copper was directly bounded to a ligand, while still bridging at the 

bromine, with a bonding motif of (-L-Cu-(µ-Br)2-Cu-L-)n.
32

   

 

Scheme 1.23    Hoffman et al. synthesis of diNHC copper polymer.
32 

 

 

In attempts to synthesize an acetonitrile adduct from the polymer, they reacted their deprotonated 

diNHC with a tetraacetonitrile copper salt, where the resulting crystal structure showed a product 

consistent with presumably a nucleophillic attack of the CH2 bridging unit on the bisimidazolium 
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salt and not a polymeric complex (Scheme 1.24).  The crystallography also showed a single 

diNHC bound to two copper centers in different environments.
32

   

 

Scheme 1.24    Hoffman et al. synthesis of diNHC with coordinated imidazole.
32 

 

 

Hoffman et al., proceeded on breaking up the chain by reacting the polymeric copper species 

with an amine (Scheme 1.25).  The crystal structure showed a similar structure to that of the 

scheme above, but with an amine-bound copper.
32

   

 

Scheme 1.25    Hoffman et al. synthesis of diNHC with coordinated amine.
32 

 

 

In that same year, Tsubomura et al. synthesized a methyl-substituted diNHC copper complex by 

transmetallation of the silver carbene with the corresponding copper salts (Scheme 1.26).
33

  The 

diNHC ligand that was utilized in the synthesis of these copper complexes are very similar 

ligands to that employed by Hoffman et al., where only difference was in the steric bulk of the 

alkyl group attached to the nitrogen.
33

  Tsbomura et al. found that the resulting species that was 

formed was not polymeric but rather dimeric compound with bridging copper centers.
33
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Scheme 1.26   Tsubomura et al. synthesis of a dinuclear diNHC copper complex with bridging 

copper centers.
33 

 

 

Roughly around the same time, Albrect et al. showed that they were able to synthesize a wide 

variety of new NHC copper(I) complexes by a methodology different than the more traditional 

transmetallation of the silver carbene salts with copper.
34

  Among the majority of mono-NHC 

copper complexes, they isolated and characterized an isopropyl substituted diNHC mono-anionic 

copper(I) complex following a very similar prep to that of Tsbomura (Scheme 1.27).  The 

resulting crystal structure showed conclusions consistent with Tsbomura, where the compound 

was rather dinuclear with bridging copper centers.
34

   

 

Scheme 1.27   Albrect et al. synthesis of a dinuclear diNHC copper complex with bridging 

copper centers.
34 

 

 

In 2010, Chen et al. synthesized several substituted NHC-bridged pyrazole copper complexes by 

reacting the ligand salt with silver oxide, followed by a transmetallation with copper powder 
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(Scheme 1.28).
35

  They showed that by altering the steric and electronic attached to the NHC 

affects the coordination environments around copper.
35

  They were able to isolate a hexadentate 

pyridine substituted NHC complex containing two copper ions and a hydroxide.
35

   

 

Scheme 1.28    Chen et al. synthesis of a pyzole bridged diNHC copper complex with pendant 

pyridine donor arms.
35 

 

 

They also isolated a cationic pyridine substituted NHC complex where the aromatic group was 

orientated in a position closer to the copper (Scheme 1.29).
35

   They found that the complex 

contained two tetradentate coppers and two pentadentate coppers with a coordinating pyridine.
35

    

 

Scheme 1.29  Chen et al. synthesis of a cationic diNHC copper complex with bridging 

hydroxals.
35 

 

 

Then Chen et al., preceded to synthesizing a thienyl analogue of the NHC ligated copper 

complex (Scheme 1.30).
35

  After obtaining the crystal structure, they found the complex 
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possesses only two coppers each bound 4-coordinately by 2 pyrolates and 2 carbenes.  The 

crystal structure showed that the thienyl sulfur was not coordinated to copper.
35

   

 

Scheme 1.30    Chen et al. synthesis of a thienyl diNHC copper complex.
35 

 

 

In that same year, Lin et al. published a paper on the synthesis of a dinuclear diNHC copper 

complex (Scheme 1.31).
36

  They utilized a substituted methyl and tert-butyl dimeric bis-NHC 

copper complex as their precursor.  They showed that in presence of O2 there was coupling of the  

imidazoles by a C-C bond.
36

  The resulting crystal structure showed that the coppers were 

bounded bidentately by the nitrogen of two different carbenes.
36

   

 

Scheme 1.31    Lin et al. synthesis of a dimidazole ligated diNHC copper complex.
36 

 

 

Though it is clear that there have been several examples of poly-NHC copper systems that are 

fully characterized in literature; however, very few have been tested for catalysis, where the 

focus of these papers are the synthesis aspect of making these complexes itself.   
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1.2.3    Hydrosilations 

   

Carbonyl reduction of aldehyde and ketones have been studied for decades especially with 

transition metals, Ti,
37

 Rh,
38

 Ru,
39

 and Ir;
40

 however, are not very active towards sterically 

hindered substrates and require a large amount loading catalyst.
37-40 

 

Hydrosilations of a copper-based catalyst have only been recently investigated.  Having copper 

as a catalyst provides a cheaper alternative to previous catalyst sources (ie Ti, Rh, Ru, and Ir), 

which was first discovered in 1988 by the Stryker et al., where they showed that their hexameric 

copper hydride complex, known as the Stryker’s reagent, was effective in hydrosilation.
41

  The 

Stryker’s reagent was able to reduce simple aldehydes and ketones however, was never tested for  

sterically demanding substrates.
41

  Since then, copper-catalyzed hydrosilations only started 

taking off in the early 2000’s.  Several groups showed very strong advancement in copper 

catalyzed in situ reactions that were very active in hydrosilation of asymmetric aldehydes and 

ketones.
42

  Many of the ligand systems employed in these in situ reactions were phosphine 

ligated systems.
42

  Among these groups, Lipshutz et al. was really the largest players in copper-

catalyzed asymmetric hydrosilation of ketones, showing results with not only high yield and 

short reaction time, but also extremely high enantioselectivity’s.
42

  However, despite the 

remarkable achievement in copper catalyzed asymmetric hydrosilations, the reduction of 

sterically hindered carbonyls was yet to be tested.
42

  It wasn’t until 2005, Nolan et al. published a 

paper on copper catalyzed NHC systems for hydrosilations of ketones, specifically focusing on 

varying the sterics surrounding the carbonyl.
43

  They showed that his NHC systems catalyzed a 

wide array of very sterically demanding ketones that has not yet been tested in literature at high 

yields and minimal reaction times.
43

  From all the examples in literature for copper catalyzed 

hydrosilation of aldehydes and ketones, the majority have been in situ reactions and there are 

only several examples of well-defined systems present.   
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Figure 1.2  The effective well defined copper systems for hydrosilations of ketones in 

literature.
42-43

  

 

To this date, Lipshutz’s bi-aryl phosphine copper hydride complex and Nolan’s NHC copper 

chloride systems are the most effective catalyst for asymmetric and sterically hindered 

hydrosilations of ketones, respectively.  

 

1.2.4    C-N Coupling of Imidazole (N-Arylation and N-Alkylation) 

 

Arylation of imidazoles has been discovered for over a century; however arylation employing 

copper has only been recently studied.
44

  Copper catalyzed arylation of imidazoles first started in 

the early 2006, where Taillefer et al. utilized copper oxide in situ reactions with a series of oxime 

ligands for the arylation of aryl bromide and iodides with imidazoles.
45

  He showed moderate 

yields for the bromides in mild reaction conditions.
45

  Since then, yields have not improved 

drastically for the arylation of imidazoles, where the majority of the aryl reagents tested were 

bromides and iodides.
45

 Very little progress or investigation has been done with the coupling of 

aryl chlorides with imidazoles, and effectively yields are relatively low.  Therefore, N-arylation 

of imidazoles has shown high yields for that of aryl iodides and rather moderate yields for 
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bromides, which also generally requires more punishing reaction conditions.
44-45

  Once again, 

most copper systems developed for the arylation of imidazoles are in situ reactions, and only a 

few examples of well-defined systems are known. 

 

 

Figure 1.3    The effective copper systems for arylation of imidazole in literature.
44-45

  

 

Although transitional metal catalyzed arylation of imidazoles has been known for decades, metal 

mediated alkylation coupling of imidazoles remains virtually non-existent.  There was only one 

example of copper catalyzed alkylation of imidazoles known in literature.  In 2003, Almanza et 

al. showed coupling of aryl azoles with imidazole catalyzed by copper carbenoid.
46

  They 

showed very efficient yields for a variety of coupled alkyl imidazoles; however the drawback of 

these reactions are the aryl azole precursors are not commercially available and need to be 

synthesized. 

 

The attraction to utilizing substituted chlorides over bromides and iodides was the fact that 

chlorides are more commercially available and cheaper.  Chlorides are fundamentally more 
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challenging to couple, due to the nature of the bond strength of the C-Cl bond being less readily 

to break and undergo oxidative addition, then that of bromides and iodides.  As one can see, the 

need for a copper system that can couple substituted chlorides with imidazoles at high yields and 

less rigorous conditions is essential.    

 

Alkylation and arylation of imidazoles has not always proceeded by metal mediated reactions, 

but rather more commonly made by synthetic routes.  Substituted imidazoles are generally 

synthesized by activating imidazole with a strong base and followed by addition of the 

substituted halide.
47

  This method has been shown to produce moderate yields, and mainly 

substituted bromides and iodides are employed.
47

  However, this methodology only works on 

primary and secondary substituted halides.  The SN2 attack of the activated imidazole onto the 

alpha carbon will not undergo for tertiary substituted halides.  The synthesis of more complicated 

substituted imidazoles, requires a more rigorous synthesis of reacting glyoxyl with the 

corresponding amine followed several sequential addition at specific time intervals of reagents 

(formaldehyde, phosphoric acid, ammonium chloride, and sodium hydroxide) over several days, 

while only achieving moderate yields.
48

  Thus, a more simplified and efficient synthesis for more 

complex substituted imidazoles needs to be developed.   

 

1.2.5    Research Goals 

 

The objective of this project was to synthesize a Cu(I) precatalyst incorporating a diNHC ligand.  

Literature precedence shows that group 11 complexes containing diNHC are likely to show the 

ligand bridging the copper centers, whereas group 10 complexes show the diNHC coordinating 

in a chelating fashion.  A synergetic effect of two copper centers within proximity possibly could 

open doors for a new reaction pathway incorporating two copper centers in the catalysis.  By 

varying the substituents on the diNHC, a variety of complexes with different steric protection 

about the metal center can be synthesized and allow further understanding of the relationship 

between steric bulk in the system with coordination environment of the metal center.  We also 

want to investigate the catalytic activity of these diNHC Cu(I) systems in hydrosilation of 

sterically hindered ketones.  Secondly, we want to study if Cu(I) complexes are active in C-N 
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coupling of imidazoles. Metal mediated alkylation of imidazole utilizing 2
o
 and 3

o
 alkyl halides 

does not exist in the literature.     
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Chapter 2    Results and Discussion   

 

2.1    Attempts to Synthesize 3-Coordinate Palladium 

 

2.1.1    Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 

 

The [(2,6-
i
Pr2Ph)2nacnacH] β-diketime complex was prepared by reacting 2,4 pentadione with 2 

equivalence of 2,6-diisopropylaniline in a condensation reaction.
3 

 

Scheme 2.1    The synthesis of [(2,6-
i
Pr2Ph)2nacnacH].

3 

 

 

The 
1
H NMR spectra of the [(2,6-

i
Pr2Ph)2nacnacH] compound was consistent to that of 

literature.
3
   

 

[(2,6-
i
Pr2Ph)2nacnacH] was then reacted with one equivalent of palladium acetate yielding red 

[{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] compound.

25 

 

Scheme 2.2    The synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)].

25 

 

 

The presence of the acetate in this 4-coordinate species, should give rise in another new 3-proton 

singlet, corresponding to its methyl group.  Certainly, the 
1
H NMR shows that the signal at ~1.06 

ppm fits this criterion.  The other key element to observe is the N-H at ~12ppm from the [(2,6-

i
Pr2Ph)2nacnacH] ligand spectra should no longer be present in this product.  The 

1
H NMR 
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clearly shows absence of this signal, signifying that the [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] was 

isolated because the 
1
H NMR accurately matches literature.

25 
  

 

The [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] was then reacted with excess lithium chloride (LiCl), to 

precipitate off lithium acetate (LiOAc) producing the green [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 

dimer.
25

  

 

Scheme 2.3    The synthesis of [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2.

25 

 

 

This compound has been synthesized by a previous PhD student in the Foley group; however has 

not yet been published.
25

   The 
1
H NMR of the isolated [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 dimer, 

shows that all the signals do indeed shift slightly up field from the
 
proton signals of the [{(2,6-

i
Pr2Ph)2nacnac}Pd(OAc)] compound.  This was notable for all signals even in the phenyl region, 

where the 2 proton triplet and 4 proton doublet are no longer overlapping.  The key determining 

factor that indicates the reaction has come to completion is the disappearance of the acetate peak.  

[{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 

1
H NMR clearly shows no signal that represents the acetate 

appearing around the 1ppm region.  The [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 was used as the reactant in 

the following experiments in attempts to form our desired 3-coodinate palladium species.       
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2.1.2    Attempted Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd{N(TMS)2}] (TMS = trimethylsilyl) 

 

Scheme 2.4    The attempted synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd{N(TMS)2}]. 

 

 

The first attempts at the synthesis of a 3-coordinate species was by reaction of the dinuclear 

[{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 in stoichiometric amounts with potassium bis-trimethylsilylamide 

(KN(TMS)2) in toluene for 24 hours at ambient temperatures.  Potassium bis-trimethylsilylamide 

was the first reactant choice because nitrogen being a good electron donor can bind on the metal 

center eliminating potassium chloride; with hope the bulky trimethylsilylamide group can inhibit 

dimerization.  The reaction appears to have no immediate colour change and remained a dark 

green solution.  After reacting for 24 hours, the observations still remained the same.  An 
1
H 

NMR was taken from an aliquot of the reaction mixture and shows no presence of new signals, 

where the signals correspond to the reactants [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 and potassium bis-

trimethylsilylamide.  This reaction was reproduced, using excess amounts of potassium bis-

trimethylsilylamide in attempts to strongly drive reaction towards the formation of [{(2,6-

i
Pr2Ph)2nacnac}Pd{N(TMS)2}].  Once again, the 

1
H NMR shows no reaction and the signals 

directly match that of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 dimer and potassium bis-

trimethylsilylamide starting materials.  This reaction was then heated at ~80
o
C for 24 hours.   

After the 24 hour duration, the mixture stayed green and the 
1
H NMR continued to show no 

reaction between the two reactants.  The temperature of the reaction was increased to ~110
o
C for 

24 hours, hoping to force the reaction past its activation energy resulting in the formation of the 

product.  The reaction showed a colour change from green to brown overnight.  The 
1
H NMR 

spectra of this reaction showed the absence of [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2, however rather than 

the expected product, the free ligand (nacnacH) was observed along with several TMS signals.  

This result suggested that there was possibility of a reaction when heated at ~110
o
C but the 
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product that was formed was very unstable and heat sensitive; therefore decomposing the 

product to the resulting free ligand.   

 

2.1.3    Attempted Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(O

t
Bu)]. 

 

Scheme 2.5    The attempted synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(O

t
Bu)].  

 

 

Based on the assumption that the potassium bis-trimethylsilylamide substrate was too bulky, 

potassium tert-butoxide being a smaller reactant was used to synthesize a 3-coordinate palladium 

complex.  Similarly to potassium bis-trimethylsilylamide, potassium was used to eliminate 

potassium chloride, with the exception of replacing the nitrogen with oxygen to coordinate onto 

the palladium center.  The reaction was prepared with [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 and 

potassium tert-butoxide in stoichiometric amounts.  Toluene was the solvent used to ensure that 

both components are in solution and stirred for 24 hours at room temperature.  Similarly to the 

potassium bis-trimethylsilylamide reaction, the 
1
H NMR shows no sign of new product peaks, 

where only the reactant signals are present.  The reaction was heated to 60
o
C, expecting to use 

temperature to drive the reaction to the product side of the equilibrium.  The reaction mixture 

showed no colour change from the initial green and the 
1
H NMR showed no reaction occurring.  

The final attempt using potassium tert-butoxide was increasing the reaction temperature to 80
o
C.  

The 
1
H NMR shows strong presence of the reactant signals, with also the emergence to a new set 

of signals that correspond to the free ligand.  This result suggests that the product was slowly 

decomposing as the temperature was increasing.  With this hypothesis no further reactions were 

conducted using heat. 
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2.1.4    Attempted Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd{NH(2,4,6Me3)Ph}] 

 

Scheme 2.6    The attempted synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd{NH(2,4,6Me3)Ph}]. 

 

 

The next reactant that was used in the synthesis of a 3-coordinate palladium complex begins with 

the lithiation of 2,4,6-trimethylaniline with butyl lithium under the conditions of stirring the 

mixture at ~-78
o
C for 2 hours.  The reaction mixture was brought to room temperature and 

[{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 was added in stoichiometric amounts to the reaction vessel and 

stirred at room temperature for 24 hours.  An 
1
H NMR was taken from a sample aliquot of the 

reaction, which shows that the reaction did not proceed and only reactant was active in the 

spectra.  This result implies that the substrate again being too bulky to bind onto the metal center.   
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2.1.5    Attempted Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(NHPh)] 

 

Scheme 2.7    The attempted synthesis of [{(2,6-
i
Pr2Ph)2nacnac}PdNHPh)]. 

 

 

Based on the same notion that phenyl rings are oriented in a fashion that allows easier access to 

the Pd center, a similar approach was taken but simplifying the aryl group of the substrate.  

Aniline was used in this experiment in attempts to form a 3-coordinate [{(2,6-

i
Pr2Ph)2nacnac}Pd(NHPh)].  Two equivalents of aniline (NH2C6H5) were added to the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 and reacted at room temperature overnight.  There appear to be no colour 

change from its original compound.  A 
1
H NMR was taken from an aliquot of the solution, which 

shows weak emergence of new signals in the presence of stronger reactant signals.  This result 

concludes that the reaction did not proceed to completion.  The mixture was allowed to react for 

another 24 hours.  The 
1
H NMR spectra showed little change from the last spectra and the 

reactant peaks are still stronger then the product signal.  The solution was then heated to 60
o
C for 

24 hours to speed up the reaction.  The 
1
H NMR spectra of this solution, after being heating to 

60
o
C showed very minimal change.  The mixture was further heated to ~110

o
C overnight to 

induce an interaction between the reactants.  The 
1
H NMR spectrum of this solution shows 

absence of the product and formation of the free ligand.  The experiment was replicated in the 

same conditions at room temperature except in large excess of aniline (5 equivalence).  After the 

24 hour duration, the reaction was no longer a green colour and changed to a red solution.  The 

1
H NMR of this experiment shows that the product signals have increased significantly and the 

present of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 reactant have decreased.  More aniline (20 

equivalence) was added to the point where the presence of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 

dimer  was no longer dominant in comparison to that of the new product peaks.   
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The spectra shows that the methyl of the 2,6-diisopropylphenyl for the [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] exhibited 4 doublets, each integrating to 6 protons (Scheme 2.7). 

This indicates that the synthesized product exhibits reduced symmetry (ie. Cs symmetric).  This 

indicates that the hydrogen signals associated with both the diisopropylphenyl and the methyl 

groups in the backbone are no longer in the same environment.  The 
1
H NMR also shows that 

there are two 2 septets representative of the methines of the diisopropyl now having different 

shifts.  The methyls in the backbone of the ligand are also very different and produce two 

singlets each integrating for 3H, instead of one singlet due to the loss in symmetry.  The broad 2 

proton peak appearing close to the pentet at ~4.00 ppm was representative of the 2 hydrogen 

atoms attached to the nitrogen on the aniline coordinated on the metal center.  The signals of the 

phenyl on the aniline should also be present in the spectra; however the excess aniline makes it 

very difficult to extract any information in this region.  Since, a large excess of aniline was 

required to drive the reaction to form the product [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)], the 

removal of aniline was very difficult to pump off without heating being that it attains a boiling 

point of ~194 
o
C.  The product was proven in the previous experiment to be fairly heat sensitive 

and will decompose the product to the free ligand if heated.  Isolation of the product from the 

excess aniline was done by crystallization in toluene over several days.  A crystal structure of the 

product was obtained and it was evident that the product formed was the proposed [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] 4-coordinate species.   

 

The crystal structure shows that the complex has a square planar environment about the 

palladium center.  Table 3 shows that the bond angles are consistent with that of an ideal square 

planar geometry.   
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Figure 2.1    Crystal structure of [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)]. 

 

Table 2.1    Crystal data and refinement parameter for [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)]. 

Properties  [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] 

Empirical formula   C41H55Cl1N4Pd1 

Formula weight   745.74 

Crystal Color, Habit  pink, irregular plate-like 

Crystal dimensions (mm)  0.16  0.12  0.05 

Crystal system   monoclinic 

Space group   P21/n [non-standard setting of P21/c; No. 14] 

a (Å)  16.9112(4) 

b (Å)  11.7648(3) 

c (Å)  19.8746(5) 

 (°)  90 

 (°)  100.0690(10) 

 (°)  90 

V (Å
3
)  3893.29(17) 

Z
b
  4 

F(000)  1568 

Density (calcd)  1.272 Mg/m
3
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Absorption coefficient ()  4.711 mm
-1

 

Wavelength (Mo K)  1.54184 Å 

Temperature   -100(2) °C [173(2) K] 

Theta range for data collection  3.77 to 69.93° 

Final R [Fo
2
 > 2(Fo

2
)]

i
 R1=0.0578, R2=0.1495 

 

Table 2.2    The bond distances for [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)]. 

Bond Distances (Å) 

Pd(1)-N(2)   2.019(3) 

Pd(1)-N(1)   2.024(3) 

Pd(1)-N(31)   2.092(3) 

Pd(1)-Cl(1)   2.3375(7) 

N(1)-C(13)   1.329(4) 

N(1)-C(1)   1.434(5) 

N(2)-C(15)   1.328(5) 

N(2)-C(18)   1.435(5) 

N(31)-C(31)   1.461(5) 

N(31)-H(31A)   0.89(5) 

N(31)-H(31B)   0.83(6) 

 

Table 2.3    The bond angles for [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)]. 

Interatomic Angles (
o
) 

N(2)-Pd(1)-N(1)  91.83(12) 

N(2)-Pd(1)-N(31)  91.64(13) 

N(1)-Pd(1)-N(31)  176.46(11) 

N(2)-Pd(1)-Cl(1)  174.15(10) 

N(1)-Pd(1)-Cl(1)  92.61(8) 

N(31)-Pd(1)-Cl(1)  83.97(9) 

C(13)-N(1)-C(1)  116.7(3) 

C(13)-N(1)-Pd(1)  124.3(3) 



34 
 

C(1)-N(1)-Pd(1)  118.7(2) 

C(15)-N(2)-C(18)  117.6(3) 

C(15)-N(2)-Pd(1)  124.9(3) 

C(18)-N(2)-Pd(1)  117.5(2) 

C(2)-C(1)-C(6)  120.8(4) 

C(2)-C(1)-N(1)  121.0(3) 

C(6)-C(1)-N(1)  118.2(4) 

 

However, when obtaining a 
1
H NMR of the crystals, the spectra shows predominantly the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 dimer.  This suggests that excess aniline was required to produce the 

[{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)]. This proposes that aniline was only weakly coordinated 

onto the palladium center and requires a heavy excess of aniline to drive the reaction towards the 

4-coordinated [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] species.   

 

This trend was also observed from the crystals of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)].  As 

mentioned above, when excess aniline was added the reaction mixture turns from a green colour 

to a red solution, which was consistent to the crystal colour of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2.  

When the red [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] crystal was removed from the solution of 

aniline and submerged into oil, overtime an observation of a green crystalline product began to 

form around the red crystals.  Periodically over several minutes, the red crystals gradually 

disappear to a point where only this new green product was formed.  The green product that was 

formed had a 
1
H NMR spectra that was consistent to that of the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2.  

This result was very consistent with the observation from above because when the crystal was 

taken out of solution, [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] was no longer in an environment 

saturated with aniline the compound reverts to the more stable [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2.   
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Figure 2.2  The transformation of [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] crystals to [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 crystals. 

 

Taking this into consideration a few conditions must be manipulated before using [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] as a precursor to forming a 3-coordinate palladium species. 

 

In order to synthesized a 3-coordinate species using [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)], the 

chlorine and proton must be removed.  We rationalized by adding BuLi, the reaction can drive 

off butane by producing lithium chloride and forming the desired 3-coordinate [{(2,6-

i
Pr2Ph)2nacnac}Pd(NHPh)].   

 

Scheme 2.8    The synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(NHPh)]. 

 

 

The amount of butyl lithium that was added has to not only be equivalent to that of the amount of 

[{(2,6-
i
Pr2Ph)2nacnac}Pd(NH2Ph)] added but also take into the account the excess aniline that 

was left in solution, in order to achieve proper reaction conditions.  By adding this amount of 

BuLi ensures that there was not competing lithiation between the [{(2,6-

i
Pr2Ph)2nacnac}Pd(NH2Ph)] and the aniline.  The reaction was allowed to stir for 24 hrs and a 

1
H 

NMR was taken from the resulting mixture.  The spectra show no visible product signals and 
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only peaks from the starting materials.  A second method was conducted for the removal of the 

proton and chlorine from the [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)], by using heat.  It has been 

shown in literature that by using enough heat for specific reactions, one can drive off HCl.  A 

solution mixture of [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] and excess aniline in toluene was 

heated to 110
o
C for 24 hrs and a 

1
H NMR was obtained.  The obtained spectrum showed signals 

corresponding to the free ligand suggesting that heat led to decomposition, which matches the 

observation from the previous experiments using heat in this chapter.   

 

A secondary route was developed into forming the [{(2,6-
i
Pr2Ph)2nacnac}Pd(NHPh)] by the use 

of adding [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 directly to a controlled amount of lithiated aniline.  This 

route allows us to form the 3-coordinate species by adding a stoichiometric amount of aniline 

rather than in excess.  This would eliminate any possibilities for competing lithiation from 

having several reactants in solution [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] and excess aniline 

from the previous route.   

 

Scheme 2.9    The synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(NHPh)]. 

 

 

After conducting the reaction, the mixture was allowed to stir for 24 hours.  Based on the 

observation from the colour of the solution being green suggests that the reaction did not 

undergo.  After a 
1
H NMR was taken from the mixture, the spectrum shows only visible peaks 

from the starting material. 
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2.1.6    Computational Analysis (Geometry) 

 

A DFT calculation at the B3LYP level using a 6-31G* basis set was used to calculate the energy 

minimum for a simplified representation of Hartwig’s 3-coordinate palladium complex.   

 

 

Figure 2.3    Hartwig’s 3-coordinate structures.
20

  

 

It was critical to ensure that pseudo-potentials are incorporated into the results to reduce the 

complexity of the calculation and its computational time.  When calculating energy minimums 

for a compound, we are interested in the valence electrons because they contribute to a large part 

of the chemical bonding and most of the molecules physical properties, whereas the core 

electrons are very little affected by their atomic environments.
49

  In a valence electron wave 

function near the atomic nuclei there should be the presence of rapid oscillations.
49

  These 

oscillations give rise in a kinetic energy that requires plane waves to accurately represent the 

behavior of the molecule.
49

  The numbers of oscillations are directly proportional to the number 

of core electrons that are present in the compound.  Heavier atoms that have a large number of 

core electrons, in turn would produce a large number of oscillations, which requires a large 

number of plane waves.  Clearly, this would propose as a problem for heavy transition metals 

such as palladium, where the calculation might be too difficult for the program to produce 

representative results.  The solution to this problem is replacing the true potential of the core 

region with much weaker pseudo potentials.
49

   The pseudo potential function sets the core 

electrons to an average value to simplify the calculation because the effect of core electrons does 

not vary drastically across the periodic table.
49

   This reduces the number of terms required for 

the plane wave expansion and significantly reduces the computational time.  The Hartwig ligand 

was reduced to a phenyl, bisphenylamide and a phosphine around the palladium center.   
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Figure 2.4    The depiction of Hartwig’s reduced structure using DFT calculation.  

 

Figure 2.4 shows that from the results of the calculations the geometry of Hartwig’s reduced 

structure indeed does adopt a distorted T-shape conformation. 

 

Table 2.4    The bond angles of Hartwig’s reduced 3-coordinate structure.   

 Ideal T-shape (
o
) Hartwig’s 3-

Coordinate Complex 

(A)  (
o
) (Literature) 

Hartwig’s reduced 

structure 

(Computational) (
o
) 

Angle A 180 168.23 156.37 

Angle B 90 89.09 91.38 

Angle C 90 102.68 112.26 

 

Table 2.4 shows that Hartwig’s compound has bond angles closer to a true T-shape geometry in 

comparison to the calculated reduce structure.  One can drive a molecule to a T-shape structure 

by heavily shifting the steric bulk all to one ligand, while keeping the size of the other ligands 

constant.  This theory explains the inductive reasoning for Hartwig’s compound being a closer to 

the ideal T-shape because Hartwig’s bis-phenylamide has two trifluoromethyl groups attached to 

the phenyl ring highly favouring the steric bulk to one ligand in comparison to others.  This 

theory further explains Hartwigs B structure in figure 2.3 having bond angles straying more 

away from the ideal T-shape then his A structure.  In his A structure the steric bulk was heavily 

favoring his amido ligand.  In compound B the phosphine ligand has ferrocene with phenyls on 
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every carbon, which significantly increases in size distributing the steric bulk more evenly.  With 

this rational Hartwig’s compound most resembling a true T-shape should be in the following 

order A>B>C.  The same calculation was conducted on a simplified version of our hypothesized 

3-coordinate compound.  The methyl and diisopropylphenyl groups were removed from the 

compound to simplify the calculation.  In first run, the compound adopted a trigonal planar 

geometry with an energy of -1075009.55 KJ/mol. 

 

 

Figure 2.5    The depiction of our trigonal planar reduced structure using DFT calculation. 

 

Even though, this trigonal planar was the concluding geometry for this calculation, it is incorrect 

to assume that this conformation is its local minimum.  The IR of this trigonal planar structure 

displays the presence of an imaginary frequency.  This suggests that the trigonal planar geometry 

was a transition state and not a local minimum.  A minimum or maximum was determined by 

applying a second order differentiation to a function.  A positive value corresponds to a 

minimum, whereas negative to a maximum.  The frequency was the square root of the second 

derivative of the energy, therefore cannot be a negative value under the root.  A negative value 

under the root suggests that the function was complex and this directly correlates to the 

imaginary vibrations in IR.  A second run of the calculation was conducted using the same 

conditions and basis except the molecule was built in a different fashion.  This time the structure 

adopted a T-shape conformation with an energy of -1075191.03 KJ/mol.   
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Figure 2.6    The depiction of our T-shape reduced structure using DFT calculation. 

 

The energy values obtained from the DFT calculations are relative terms used for comparative 

purposes and not used as an absolute value.  The T-shape conformation was calculated to have a 

lower energy than that of the trigonal planar, therefore being more stable.  The IR spectrum of 

this compound obtained from Spartan does not contain any imaginary vibration states, which 

indicates that this energy is a minimum.  This suggests that more than likely palladium 

complexes that are 3-coordinate will tend to favor a T-shape geometry then that of a trigonal 

planar orientation.   

 

Table 2.5  The bond angles and energies of a trigonal and T-shape geometry for our 

hypothesized reduced 3-coordinate species. 

Geometry Energy 

(KJ/mol) 

IR Spectra Bond Angle 

A (
o
) 

Bond Angle 

B (
o
) 

Bond Angle 

C (
o
) 

Trigonal 

Planar 

-1075009.55  Imaginary 86.21° 136.89° 136.89° 

T-Shape -1075191.03 Real 104.37° 

 

166.14° 89.49° 
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2.1.7    Computational Analysis (Steric Bulk) 

 

The structure of [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] and [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 was 

built in Spartan and the space-filling orientation was observed.  The dark green molecule 

represents the palladium center that should not be confused for the lighter green molecule of 

chlorine. 

   

 

Figure 2.7    The space-filling diagram of [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2. 

 

 

Figure 2.8    The space-filling diagram of [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)]. 
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The [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 space filling diagram was observed at the side view of the 

molecule because the reactive site at the palladium center was only present between the phenyl 

rings attached to the metal.  The figure suggest that the reactive site for [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 was very limited because there was only two areas of the molecule that 

the substrate can react with and these sites appear to be fairly small.  As for the [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)], the molecule was viewed from the bottom to observe its reactive 

site on the palladium center.  The space-filling diagram shows that there was only one reactive 

site on this molecule; however its reactive site is bigger than that of the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2.  [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] potentially could be the easier 

route to synthesizing the 3-coordinate compound because it has a larger reactive site, allowing 

the substrate to come in a coordinate and eliminate chlorine more readily.    

 

With the same ideology as the [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] we rationalized a similar 

steric bulk with [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)].   

 

 

Figure 2.9    The space fill diagram for [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)]. 

 

The space-filling diagram of the [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] compound indeed does show 

similar steric bulk about the palladium metal center.  The diagram shows that the reactive site 

was substantially larger than of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2.   Since [{(2,6-

i
Pr2Ph)2nacnac}Pd(OAc)] was a monomeric species the steric bulk was substantially less because 

it only contains steric protection from 2 bulky 2,6-diisopropylphenyl, whereas the [{(2,6-
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i
Pr2Ph)2nacnac}PdCl]2 contains 4.  The main difference in steric bulk lies in the acetate 

substituent coordinating on the palladium.  The acetate substituent visually is quite bulky; 

however only contains 2 dimensional steric bulk seeing that its structure was more flat, whereas 

2,6-diisopropylphenyl was more bulky in a 3 dimensional arrangement.  Taking this into 

consideration we suspect that [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] would have a larger reactive site 

allowing the substrate to come in an coordinate easier.   

 

2.2    N-Heterocyclic Copper Complexes and Applications in Catalysis 

 

2.2.1    Synthesis of 1, 1'-Dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidenedibromide 

 

1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidenedibromide was synthesized according to 

literature by first reacting benzyl bromide with imidazole and 4 equivalent of sodium hydride in 

THF.
47 

 

Scheme 2.10  The synthesis of 1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidenedibromide 

 

 

The resulting benzyl substituted imidazole was then reacted in neat dibromomethane at 80
o
C, 

resulting in the formation of 1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidenedibromide 

as a white precipitate, which was isolated and washed with ether.
47 

 

2.2.2 Synthesis of Dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) 

 

The synthesis of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) 

was synthesized by deprotonation of 1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-
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diylidenedibromide with KN(TMS)2 and subsequently reacting the resulting free carbine with 

bromotris(triphenylphosphine)copper(I) in THF.  This yields a slightly pink precipitate, which 

upon isolation was the dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) catalyst.   

 

Scheme 2.11 The synthesis of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) 

 

 

 

Figure 2.10    The crystal structure of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I). 
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Table 2.6 Crystal data and refinement parameter for dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I). 

Properties  dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-

diylidene)dicopper(I) 

Empirical formula   C42H40Br2Cu2N8 

Formula weight   943.72 

Crystal Color, Habit  Pink 

Space group   P -1 

a (Å)  8.1754(2) 

b (Å)  10.2863(4) 

c (Å)  12.2036(4) 

α (°)  95.069(2) 

β (°)  105.563(3) 

γ (°)  91.804(2) 

V (Å
3
)  983.13(6) 

Z
b
  1 

F(000)  476.0 

Density (ρcalcd)  1.594Mg/m
3
 

Absorption coefficient (µ)  3.156 mm
-1

 

Wavelength (Mo Kα)  0.71073Å 

Temperature   173 K 

Theta (Max) 25.030 

Final R [Fo
2
 > 2σ(Fo

2
)]

i
 R1= 0.0716, R2= 0.2149 

 

The crystal structure above shows that the dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-

2,2'-diylidene)dicopper(I) complex was a dimeric species, where the copper was bridged at the 

NHCs.  This presented us with an opportunity to explore the differences between bridging 

diNHC versus that of monodentate NHC systems, where we still tested our system for 

hydrosilation and compared our results to that of Nolan’s NHC copper complexes.  This benzyl 
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substituted diNHC copper complex shows very limited solubility in a wide variety of polar and 

nonpolar solvents.  

 

2.2.3  Synthesis of Bulkier 1,1'-2,6-Diisopropylphenyl-3,3'-methylenediimidazolin-2,2'-

diylidenedibromide and 1,1'-2,4,6-Trimethylphenyl-3,3'-methylenediimidazolin-2,2'-

diylidenedibromide 

 

The results above show that when using a 1-benzylimidazole as the precursor for complexation 

with copper led to a dinuclear species, suggesting that there was not enough steric protection 

about the metal center to inhibit dimerization.  By varying the substituent attached to the NHC 

with bulkier groups, we hypothesized that the increase steric protection can inhibit dimerization, 

forming our initially proposed bidentate mononuclear chelating species.  2,6-dissopropylphenyl 

and mesityl were the target analogues chosen to increase steric protection around the copper 

center.  These two systems provide steric bulk in 3 dimensions rather than the 2 dimension 

present in the benzyl group.  Also, it has been known in our group that by adding 2,6-

dissopropylphenyl or mesityl substituents onto NHC complexes increases the solubility of the 

systems. 

 

Scheme 2.12  The reaction scheme for the synthesis of 1,1'-2,6-diisopropylphenyl-3,3'-

methylenediimidazolin-2,2'-diylidenedibromide and 1,1'-2,4,6-trimethylphenyl-3,3'-

methylenediimidazolin-2,2'-diylidenedibromide 

 

The route into synthesizing a mesityl or a 2,6-dissopropylphenyl diimidazolium dibromide salt 

was made differently than that of the benzyl analogue.   The reaction of aryl bromide with 

imidazole in presence of sodium hydride can only be conducted on primary and secondary aryl 
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compounds.  The two desired 1-substituted imidazoles are tertiary aryl amines, where the 

reaction with activated imidazole will not undergo.  These substituted imidazoles were 

synthesized by literature prep in 2003, by reacting glyoxyl with the desired aryl amine in 

methanol with a sequence addition of necessary reagents while refluxing.
48

  The order of 

addition was crucial in obtaining a pure and high product yield.
48

   

 

Scheme 2.13    The reaction scheme for the synthesis of tertiary substituted imidazoles. 

 

 

When the substituted imidazole was formed it was reacted in stoichiometric amounts of 

dibromomethane in xylene to form the diimidazolium dibromide salt.  This reaction differs from 

the synthesis dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) 

being that it requires more rigorous conditions to form this compound.  This reaction requires 

superheating to 200
o
C in xylene for 2 days to form the desired product.  The 

1
H NMR of both 

bulkier analogues was consistent with that to literature, where the crude product that was isolated 

remained relatively clean from impurities.  The crude products were used in the following 

complexation without any form of purification. 
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Scheme 2.14  The reaction scheme for the synthesis of 1,1'-2,6-diisopropylphenyl-3,3'-

methylenediimidazolin-2,2'-diylidenedibromide and 1,1'-2,4,6-trimethylphenyl-3,3'-

methylenediimidazolin-2,2'-diylidenedibromide. 

 

 

2.2.4  Synthesis of 1,1'-2,6-Diisopropylphenyl-3,3'-methylenediimidazolin-2,2'-

diylidenedibromidecopper(I) and 1,1'-2,4,6-Trimethylphenyl-3,3'-methylenediimidazolin-2,2'-

diylidenedibromidecopper(I) 

 

The first attempts at complexation was conducted similarly to the previous reaction of 

deprotonation of the ligand by addition of KN(TMS)2 followed by an immediate reaction with 

Cu(PPh3)3Br. 

 

Scheme 2.15  The synthesis of bisNHC copper complex employing Cu(PPh3)3Br as copper 

source. 
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After the addition of the KN(TMS)2 the solution mixture immediately turned green.  When the 

Cu(PPh3)3Br was added the solution gradually turned into a brown colour.  Based on 

observations alone this suggests there was reaction taking place; however since the addition of 

the 2,6-dissopropylphenyl increases the solubility of the system, the product remains in solution 

rather than precipitating.  This poses to be a problem because the complexation results in 3 

equivalence of triphenylphosphine being displaced into solution along with the desired product.  

A 
1
H NMR of the mixture was obtained, where the spectrum shows inconclusive results with no 

visible product peak.  Attempts to isolate a product by precipitation out of hexanes all remained 

unsuccessful.   

 

After realizing the difficulties in separating the product from the triphenylphosphine, an 

alternative route was taken for the complexation of the ligands onto copper.  By alternating the 

copper source to copper(I) halides, eliminates having triphenylphosphine in solution, therefore 

the product can be easily isolated by working up the reaction without separation from any 

biproducts.   

 

Scheme 2.16  The reaction scheme for the synthesis of bis-NHC copper complex employing 

copper (I) halide as copper source. 
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The following reactions produced a complicated 
1
H NMR, where no evident of any product 

peaks were present.  Once, again based on observations there appears to be a reaction taking 

place based on colour change; however no relevant information can be obtained from the 

spectrums.  

 

2.2.5    Hydrosilations 

  

From the above results, the only successful copper catalyst that was synthesized was the  

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I), while the bulky 

2,4,6-mesityl and 2,6-diisopropylphenyl analogues require a more optimization to work out the 

necessary conditions for complexation.  Therefore, only the dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I) catalyst was tested for catalysis.  The catalyst 

was first tested for hydrosilation of benzophenone in toluene at 80
o
C at 3 mol% catalyst, 

mimicking that of Nolan’s conditions.
43

  Since, the dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I) is a dinuclear species each mol of catalyst 

actually represents 2 copper centers.  Therefore hydrosilations were conducted using both 1.5 

mol % and 3 mol % of loading catalyst to obtain a similar assessment of loading catalyst to that 

of Nolan’s.  The catalyst showed relatively mediocre results of 50% yields within 48hrs, which is 

significantly lower than Nolan’s systems of 99% at 15 minutes.  The poor solubility of the 

catalyst was rationalized a major contributing factor to the low yield.  By switching to more 

polar solvents, this should increase dissolution of the catalyst in turn increasing activity of the 

reaction by allowing easier contact of the catalyst with the substrate.  The catalyst solubility was 

screened among a wide variety of solvents; however still showed poor solubility in polar 

reagents.  Dried acetonitrile and dioxane were the two polar solvent used to test the catalyst 

reactivity in comparison to that of using toluene as a solvent.  Table 3, shows that when 

switching to more polar solvent, such as acetonitrile or dioxane the results show increase in 

activity but still values far from that of Nolan’s yields.  We rationalized that if solubility was 

indeed the issue, using temperature as a variable could increase the dissolution of the catalyst.  

Before these reactions can be conducted, the catalyst must be capable of withstanding reaction 

conditions at harsh temperatures.  By performing thermal gravimetric analysis (TGA) on 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I), the temperature 
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at which the catalyst starts to decompose can be determined.  The TGA plot shows that 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) starts to 

decompose at 250
o
C, suggesting that increasing temperature should not be a problem. While 

trying to keep the conditions of Nolan’s systems relatively the same, xylene would be the most 

ideal solvent of choice.  Seeing how xylene has very similar properties to that of toluene, but also 

having a higher boiling point, it is the perfect choice to conduct hydrosilations at higher 

temperatures.  As shown in table 3, by increasing temperature to 140
o
C in xylene gave a 100% 

yield in 19 hrs. 

 

Scheme 2.17    The reaction scheme for the hydrosilations of benzophenone. 

 

 

Table 2.7    Optimizing conditions for hydrosilation (solvent, temperature, loading catalyst).  

Trial Catalyst 

Type 

Catalyst 

(%mol) 

Solvent Temp (
o
C) Time (hr) Yield (%) 

1 None N/A Xylene 140 2 0 

2 1 3 Toluene 80 48 48 

3 1 3 Dioxane 80 48 50 

4 1 1.5 MeCN 90 1.25 24 

5 1 3 Xylene 120 48 100 

6 1 1.5 Xylene 140 19 100 

 

Now that the loading catalyst, solvent, and temperature have been optimized for the 

benzophenone, the optimal reaction time needs to be determined.  The hydrosilation of 

benzophenone was optimized by taking aliquots at specific time interval, to determine the 

optimal reaction time that produces greatest percentage yield.  Table 2.7, shows after 1 hour the 
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activity reaches above 90 percent and does not increase significantly after that.  This suggests 

that the optimal reaction time for benzophenone is approximately 1 hour duration.  

 

Table 2.8    Optimizing conditions for hydrosilation of benzophenone.  

Trial Catalyst 

Type 

Catalyst 

Amount 

Solvent Temp (
o
C) Time (hr) Yield 

1 1 1.5 Xylene 140 0.25 37 

2 1 1.5 Xylene 140 0.5 81 

3 1 1.5 Xylene 140 0.75 95 

4 1 1.5 Xylene 140 1 96 

5 1 1.5 Xylene 140 1.25 97 

6 1 1.5 Xylene 140 2 100 

7 1 1.5 Xylene 140 3 100 

8 1 1.5 Xylene 140 4 100 

 

After optimizing conditions for benzophenone, this catalyst was tested against more bulky 

substrates.  These variety of substrates shown in table 2.9, were chosen because they cover a 

wide range of steric bulk about the ketone.  The results show that the catalyst activity produced 

exceptional yields for all substrates apart from 2,4,6-trimethylacetophenone.  According to 

Nolan’s results, 2,4,6-trimethylacetophenone was the most difficult substrate to hydrosilate, 

requiring rigorous reaction time of 24 hours and only achieving a maximum yield of 80%.  Our 

results show that although the conversion is only 20 percent at 24 hours, our system is still active 

in hydrosilating 2,4,6-trimethylacetophenone.   

 

Scheme 2.18    The reaction scheme for the hydrosilations of substituted ketones. 
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Table 2.9    Hydrosilation of hindered ketones. 

Substrate Product 

 

Time (hr) Percent Yield (%) 

  1.25 97 

  2 80 

  9 83 

  24 18 

 

2.2.6    Proposed Mechanism for Hydrosilation 

 

There have been several mechanisms that have been proposed as possible reaction pathway for 

hydrosilation of substituted ketones utilizing copper.  We propose the most plausible catalytic 

pathway in the schematic below, where the copper precatalyst was first activated by the base to 

form a copper alkoxide.  This compound copper alkoxide then further reacts with one equivalent 

of triethylsilane to form a more active copper hydride species.  This active copper hydride 

catalyst then reacts with the corresponding ketone, where the hydride adds across the carbonyl 

bond of the substrate.  This intermediate further reacts with another equivalent of triethylsilane, 

reductively eliminating the product regenerating the copper hydride catalyst species.   
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Scheme 2.19    The proposed catalytic pathway for hydrosilation of ketones. 

 

 

As one can see, scheme 2.19 does not show the complete structure of our active catalyst because 

its structure was unknown.  Since our precatalyst was a dimeric species, it makes it difficult to 

propose an exact structure of the active species.  Given the structure of our system, this suggest 

that our active catalyst could still remain a dimeric species, where the catalysis could happen at 

two copper centers simultaneously rather than one shown in the schematic above.    

 

2.2.7    Arylation of Imidazole 

 

From the above results, our copper system appears to be active in carbonyl reduction of various 

ketones.  We further tested the versatility of our copper catalyst, by conducting a series of C-N 

coupling reaction involving the arylation of imidazoles.  We first tested the effectiveness of our 

catalyst system on non-substituted phenyl halides.  It has been known in literature arylation 

genuinely requires harsh heating conditions to drive the coupling reaction.  Literature precedence 
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shows that typical high boiling solvents such as DMF and DMA were used for this type 

catalysis.  First we tested arylation of imidazole employing non-substituted phenyl halides as our 

substrates, where results showed high yields for the iodide but only moderate yields for the 

bromides.  Subsequently we tested the ruggedness of our catalyst with an array of substituted 

activated and deactivated aryl compounds.  The results below (Table 2.10) show the catalysis 

was conducted on a series of bromides and chlorides containing an electron withdrawing or 

donating group in the para-position of the phenyl ring.  Table 2.10 displays that the catalyst was 

not active for catalyzing any substituted aryl halides in DMA at high temperatures for 24 hours.   

 

Scheme 2.20   The reaction scheme for the arylation of imidazole in DMA using 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I). 

 

 

Table 2.10    Arylation of imidazole using dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-

2,2'-diylidene)dicopper(I) in DMA. 

Entry Substrate (R-X) Product Yield (Major) 

1 

 

 

 

 

0 

2 

 

0 

3 

  

0 

4 

 
 

0 

5 
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6 

 

90 

7 

 

 

 

0 

8 

 

0 

9 

 

 

0 

10 

 

0 

11 

  

0 

 

Therefore, a secondary approach was to optimize solvents.  DMA is a high boiling solvent which 

causes work up of the reaction to be more difficult.  In general the procedure requires an aqueous 

workup followed a DCM extraction, because DMA is very difficult solvent to remove.  The 

major downfall of this procedure was DMA was partially soluble in both the aqueous and DCM 

phases.  This suggests that some of the product still remain in the aqueous layer and resulting in 

poor recovery.  Therefore, test reactions were done using acetonitrile, where no aqueous workup 

was required and heating at less rigorous temperatures.  However, results show very low yields 

for the phenyl halides and once again no activity for the activated and non-activated aryl 

compounds.   

 

Scheme 2.21  The reaction scheme for the arylation of imidazole in MeCN using 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I). 
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Table 2.11    Arylation of imidazole using dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-

2,2'-diylidene)dicopper(I) in MeCN. 

Entry Substrate (R-X) Product Yield (Major) 

1 

 

 

 

 

0 

2 

 

0 

3 

  

0 

4 

 
 

0 

5 

 

 

 

0 

6 

 

26 

7 

 

 

 

0 

8 

 

0 

9 

 

 

0 

10 

 

0 

11 

  

0 

 

This suggests that the reactions require high temperature to drive the arylation of imidazoles and 

more optimal conditions must be developed for the arylation of imidazoles using our catalyst.  

The arylation was also tested using Cu(PPh3)3Br as the catalyst source, and results show similar 
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trends to that of our copper system for activated and deactivated substituted imidazoles.  The 

yields actually appear to be lower for the arylation of phenyl halide; therefore shows that 

Cu(PPh3)3Br isn’t our active system in the catalysis.   

 

Scheme 2.22  The reaction scheme for the arylation of imidazole in DMA using 

bromotris(triphenylphosphine)copper(I).     

 

 

Table 2.12    Arylation of imidazole using bromotris(triphenylphosphine)copper(I) in DMA. 

Entry Substrate (R-X) Product Yield (Major) 

1 

  

0 

2 

  

0 

3 

 
 

26 

 

2.2.8    Alkylation of Imidazole 

 

We further tested the ruggedness of our system by testing our copper catalyst with a variety of 

substituted alkyl halides.  It shows that our copper system is very active for primary and 

secondary alkyl halides in acetonitrile for 24 hours.  Our copper catalyst shows very high yields 

ranging from 80-100 percent for primary and secondary alkyl bromides.  Additionally, our 

systems also show to be active in catalyzing the more difficult to couple alkyl chlorides done in 

moderate to high yields.  Catalysis was conducted on alkyl iodides, where results show mixture 

of two products.  The secondary product that is formed is determined to be the disubstituted 

imidazolium halide.  This suggests that the coupling occurs at such a rapid rate allowing 

substitution at both nitrogens.  This trend was only ever observed for primary and secondary 
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alkyl iodides.  Therefore, the scope of alkyl halides were more investigated on bromides and 

chlorides because of commercial abundance and lower cost of the starting material and greater 

difficulty to couple.  The bromides and chlorides form only one major product which was the 

desired single substituted imidazole.  As for tertiary substituted alkyl halides, results show that 

our copper pre catalyst was not active in alkylation of imidazole in acetonitrile at 80
o
C overnight.  

 

Scheme 2.23  The reaction scheme for the alkylation of imidazole in MeCN using 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I). 

 

 

Table 2.13  Alyklation of imidazole using dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-

2,2'-diylidene)dicopper(I) in MeCN. 

Entry Substrate (R-X) Product Yield 

(Major) 

Yield 

(Minor) 

1 

 

 

72 14 

2 

 

80 0 

3 

 

27 0 

4  
 

100 0 

5  100 0 

6 

 

 

 

90 0 

7 

 

 57 0 

8  
 

62 0 

9  44 0 
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10  
 

91 0 

11 

  

57 0 

12 

 

 

 

100 0 

13 

 

85 0 

14 

 
 

0 0 

15 

 
 

0 0 

16 

 

 

0 0 

17  

 

43 11 

 

2.2.9    Proposed Mechanism for Arylation and Alkylation of Imidazole 

 

The mechanism for the arylation and alkylation of imidazole are similar to that of the catalytic 

pathways proposed for C-N coupling.  Differently than hydrosilation, the base of the reaction 

was not used to activate the catalyst but rather the imidazole to increase its nucleophillicity.  The 

imidazole then coordinates onto the copper, followed by an oxidative addition of the alkyl or aryl 

halide.  The following step is reductive elimination of the alkylated or arylated imidazole, along 

with regeneration of the copper halide species.   
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Scheme 2.24    The proposed catalytic pathway for the alkylation or arylation of imidazole.   
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Chapter 3    Conclusions 

 

3.1    Summary of the Attempted Synthesis of 3-Coordinate Palladium Complexes 

 

3.1.1    [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 

 

We have not successfully synthesized a 3-coordinate compound using multiple potassium and 

lithium substrates in a one-step reaction.  The 
1
H NMR spectrums showed no reaction and only 

signals pertaining to starting material.  Using Spartan, we were able to observe that the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 target compound to forming the 3-coordinate species was more bulky 

than expected.  The results illustrated that the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 dimer contains too 

much steric protection about the metal center limiting the accessibility for the substrate to 

coordinate onto the palladium.  These results suggest that the lithium and potassium based 

reagents that were employed were too bulky and cannot enter the reactive site.   

 

3.1.2    [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] 

 

In contrast, the aniline was the only substrate that was able to break up the [(2,6-

i
Pr2Ph)2nacnacPdCl]2 dimer forming [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)]; however the 

structure that was formed still remained 4-coordinate species.  The 
1
H NMR spectrum of this 

[{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] shows that the proton attached to the nitrogen of the aniline 

integrates for 2 protons indicating that the chlorine has not yet been eliminated and a 3-

coordinate species was not formed.  The data clearly indicates that aniline was a small enough 

substrate that allows just enough access to the palladium center.  Many reactions were conducted 

using this [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] as the precursor for a 3-coordinate product; 

however, 
1
H NMR spectrum shows only starting material.  The formation of [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] must be in presence of an excess of aniline to drive this reaction, 

because the aniline palladium bond was only weakly coordinated.  Therefore, when removed 

from a saturated environment of aniline the reaction reverts back to the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2 complex and free aniline. 
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3.1.3    Computational Analysis 

 

Using Spartan we were able to show that the expected geometry of our 3-coordinate species 

should favour a T-shape geometry instead a trigonal planar.  The values obtained from the DFT 

calculations states that the T-shape was more stable then trigonal planar, where the trigonal 

planar geometry was merely transition state.  However, one should take into consideration that 

the structure that was represented in Spartan was a reduced version of the actual molecule for 

simplification purposes therefore; the results will not be a perfect representation of our 

compounds.   

 

3.2    Summary of the Results for the Catalysis of N-Heterocyclic Copper Complexes 

 

3.2.1    Dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) 

 

In conclusion, our synthesized dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) precatalyst was very effective in hydrosilations of bulky ketones.  

Although our systems produced very poor yields and long reaction times at low temperature, we 

have proven that by varying temperature we can increase the activity of the system. Our catalyst 

possesses properties that are in general very ideal and advantageous for catalytic reactions.  

Dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) shows high 

thermal stability and long catalytic lifetime.  Our dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I) precatalyst shows comparable results to the 

best systems for hydrosilation known to literature.       

 

As for C-N coupling of imidazole, conclusively we can say that our pre-catalyst was poor system 

for arylation altogether.  Literature precedence suggests that these reactions require harsh 

conditions and high temperatures, where our system was only able to catalyze simple aryl 

halides, such a phenyl halides.  As for the deactivated and activated substituted halides, our 

system showed no activity for either even at high temperatures in DMA.  Although our 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) catalyst is 

shown to be very ineffective for the arylation, it turns out that our system was very efficient in 
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alkylation of imidazole.  Not only, our system was effective in coupling alkyl bromides, but also 

very active for alkyl chlorides.  This is very desirable because chlorides are generally the most 

difficult of the halides to couple.  The C-Cl bond is a stronger bond and requires more energy to 

break that bond; therefore typically are more difficult to break then that of other halide carbon 

bonds.  Our results show that our system was able to catalyze alkyl bromide and alkyl chlorides 

at high yields and moderate reaction conditions.  As mentioned before, alkylation of imidazole 

utilizing copper has not been known in literature; therefore our system is the first known 

example.  Not only is our system is the first known system but also produced results in high 

yields.   

 

3.2.2  1,1'-2,6-Diisopropylphenyl-3,3'-bisimidazolium Dibromide and 1,1'-2,4,6-Mesityl-3,3'- 

bisimidazolium Dibromide 

 

The synthesis of a more bulky and more soluble ligands was successful in high yield and good 

purity.  The attempts of forming a copper catalyst by employing these systems still remained 

unsuccessful.  While using several copper sources and methodology, there was no conclusive 

information that can be obtained from the 
1
H NMR of the experiments.  This could suggest that 

maybe the system was too bulky to allow coordination of the copper center and more studies 

needs to be done to conducted to actively make a conclusion. 
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Chapter 4    Future Works 

 

4.1    Future Experiments to Reduce the Steric of the Reaction 

 

4.1.1    Manipulating the Substrate 

 

Even though a 3-coordinate species was not able to be synthesized, the results open doors for 

different approaches that can be taken into consideration for the isolation of these unsaturated 

palladium complexes.  Spartan illustrates [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 was too bulky, therefore 

the substrate must be reduced for future experiments.  The results obtained from this research 

suggest that one should start with the smallest reactant that should likely react in theory, such as 

MeLi.   

 

Scheme 4.1    The reaction of [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 with MeLi. 

 

 

 

If this reaction shows promising results, then attempts to use bulkier reactants should be further 

explored.   

 

4.1.2    Manipulating the Precursor 

 

After many unsuccessful attempts in synthesizing a 3-coordinate species using the [{(2,6-

i
Pr2Ph)2nacnac}PdCl]2, our group rationalized [{(2,6-

i
Pr2Ph)2nacnac}Pd(OAc)] as the replacing 

precursor could be a better route to forming  the 3-coordinate palladium species.  [{(2,6-

i
Pr2Ph)2nacnac}Pd(OAc)] was a monomeric species that has different electronics and steric bulk 

around the metal center in comparison to that of the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 dimer.  We 
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theorized that the acetate group on this precursor was a better leaving group then the chlorine on 

the original chloride bridged dimer precursor.  The Spartan space-filling diagrams results also 

show a larger reactive site for the substrates to coordinate from less 3 dimensional steric bulk.  

Using [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] instead of [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] allows 

less complicated conditions of having to deal with excess aniline.  Seeing that the [{(2,6-

i
Pr2Ph)2nacnac}Pd(OAc)] was an easily isolable product, whereas [{(2,6-

i
Pr2Ph)2nacnac}PdCl(NH2Ph)] was not, routes into a 3-coordinate species should be used for this 

more ideal precursor.   

 

Scheme 4.2    The reaction of [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] with triphenylmethanethiol.   

 

 

The second route deals with forming a 4-coordinate [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)(NH2Ph)] 

species and driving off the acetic acid or lithium acetate to form the 3-coordinate species.   

 

Scheme 4.3    The formation of [{(2,6-
i
Pr2Ph)2nacnac}Pd(NHPh)] using a 4-coordinate [{(2,6-

i
Pr2Ph)2nacnac}Pd(OAc)(NH2Ph)] as the precursor. 
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4.1.3    Manipulating Nac Nac Ligand 

 

Computational analysis shows that the [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 dimer was very sterically 

bulky.  By altering the substituents attached to the nitrogen of the nacnac ligand with something 

less sterically bulky, this can reduce the amount of ligand protection about the palladium, 

allowing the reactive site to be more accessible.   

 

4.2    Developing Different Analogues of DiNHC Copper Complexes 

 

4.2.1    Long-Chain Alkanes 

 

Even though the dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) 

precatalyst showed promising results, its limitation still remains in its solubility, requiring 

rigorous reaction conditions.  Therefore, a more soluble catalyst system needs to be developed.  

It has been known to literature that having ligand systems containing long chain alkanes as 

substituents can increase solubility; however trading off steric bulk.  The longer chain generally 

led to greater the solubility.   

 

 

Figure 4.1    A diNHC incorporating long chain alkanes substituents.  

 

By synthesizing a system incorporating these long chain alkanes, we can increase the solubility 

of the catalyst, therefore a wider range of solvents can be utilize in hydrosilations. 
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4.2.2    Cyclohexyl  

 

Nolan most effective catalyst system was a mondentate NHC with cyclohexyls substituents.  The 

cyclohexyls must contribute an electronic effect to the system that may play a role in the activity 

of the reaction.  If we are able to synthesize a cyclohexyl analogue of our precatalyst, the 

electronics of the cyclohexyl may increase the activity in our system also.   

 

 

Figure 4.2    A diNHC incorporating cyclohexyl substituents.  

 

4.2.3    Crystallization 

 

From the results obtained for the attempted synthesis of the 2,6-disspropylphenyl and 2,4,6-

mesityl substituted bis-imidazolium copper reactions, the 
1
H NMR shows inconclusive results.  

Even though, there seems to be a reaction taking place, the compound that was being formed was 

still questionable.  Therefore, crystallization is currently taking place to crystallize out what we 

hoped to be the desired product.    
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Chapter 5    Experimental 

 

General Information. Unless otherwise stated, all reactions were performed under N2 using 

standard Schlenk techniques or in a N2-filled drybox. Solvents were dried using an MBraun 

solvent purification system and stored under nitrogen. 
1
H and 

13
C NMR spectra were recorded on 

a Bruker 500 MHz Advance spectrometer. Chemical shifts for 
1
H and 

13
C NMR spectroscopy are 

reported in ppm in reference to the 
1
H and 

13
C resonances of C6D6 (

1
H: δ 7.16; 

13
C: δ 128.39) or 

CDCl3 (
1
H: δ 7.24; 

13
C: δ 77.24). Coupling constants are given in Hz. Elemental analysis was 

performed on a Perkin-Elmer 2400 CHN elemental analyzer. Mass spectrum data were obtained 

using Applied Biosystem QSTAR
®
XL MS/MS System (ESI-Q-TOF) and VG70 SE (Double 

Focusing EI). Reagents were purchased from the Sigma-Aldrich Chemical Company and used as 

received. 

 

5.1    The Synthesis of Precursor for 3-Coordinate Palladium Complexes 

 

5.1.1    Synthesis of [(2,6-
i
Pr2Ph)2nacnacH]

3 

 

A mixture of 2,4 pentanedione (1.51 mL, 14.7 mmol) with 2,6 diisopropylaniline (6.27 mL,  33.2 

mmol) in the presence of hydrochloric acid (1.20 mL) was refluxed in ethanol (60 mL) for 3 

days.  After the 3 day duration the reaction mixture proceeded to a brown colour.  This mixture 

was then concentrated.  A solution of saturated sodium carbonate was added to the brown crude, 

followed by an extraction with dichloromethane (3x10 mL).  The organic layer was concentrated 

and then recrystallized in methanol.  Prior to the recrystallization, immediate white crystals are 

precipitated from the brown methanol solution.  This solution was filtered and the white crystals 

of the [(2,6-
i
Pr2Ph)2nacnacH] was isolated.  (Yield: 3.73g, 60.5%)   

 

1
H NMR (CDCl3): δ 12.09 (s, NH, 1H), 7.11 (m, CHar 6H), 4.86 (s, CHbackbone, 1H), 3.10 (m, 

CH, 4H), 1.70 (s, CH3, 6H), 1.19 (d, CH3, 12H ), 1.13 (d, CH3, 12H). 
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5.1.2    Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)]

25 

  

[(2,6-
i
Pr2Ph)2nacnacH] (1.023g, 2.443 mmol) was reacted with palladium acetate (0.5627g, 

2.506 mmol) in toluene (30 mL) at room temperature for 24 hours.  The reaction mixture was 

filtered to remove any palladium black build up, where the filtrate was concentrated via invacuo 

yielding a red solid.  (Yield:  1.358g, 95.4%)   

 

1
H NMR (C6D6): δ 7.13 (t, CHar, 2H), 7.11 (d, CHar, 4H), 4.89 (s, CHbackbone, 1H), 3.71 (m, CH, 

4H), 1.70 (d, CH3, 12H), 1.53 (s, CH3, 6H ), 1.22 (d, CH3, 12H). 

 

5.1.3     Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}PdCl]

25 

 

A solution of [{(2,6-
i
Pr2Ph)2nacnac}Pd(OAc)] (1.016 g, 1.742 mmol) was reacted with excess 

LiCl (1.454 g, 34.30 mmol) in toluene (10mL) for 2 days at 110
o
C.  After the 2 day duration, the 

initial red reaction mixture turned into a dark green solution.  This solution was filtered for the 

removal of palladium black and the filtrate was concentrated yielding a green product.  The 

reaction mixture was filtered to remove any palladium black build up, where the filtrate was 

concentrated yielding a green solid.  [{(2,6-
i
Pr2Ph)2nacnac}PdCl]2 was then further dried in 

vacuo, where the crude was used as is for further reactions.  (Yield: 0.895g, 91.8 %)  

 

1
H NMR (C6D6): δ 7.02 (t, CHar, 4H), 6.97 (d, CHar, 8H), 4.72 (s, CHbackbone, 2H), 3.38 (m, CH, 

8H), 1.51 (d, CH3, 24H), 1.45 (s, CH3, 12H ), 1.12 (d, CH3, 24H). 

 

5.1.4    Synthesis of [{(2,6-
i
Pr2Ph)2nacnac}PdCl(NH2Ph)] 

 

A mixture of [(2,6-
i
Pr2Ph)2nacnacPdCl]2 (0.210 g, 0.188 mmol) with aniline (0.326 mL, 3.57 

mmol) in toluene was stirred for 24 hours at ambient temperature.  The reaction mixture turned 

into a red solution from the initial green solution.  The solvent was removed in vacuo; however 

due to the added excess aniline to drive the reaction to the 4-coordinate species, the product 

could not be isolated from the aniline.   
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1
H NMR (C6D6):  7.29ppm (t, 1H, para-CH), 7.23ppm (d, 2H, meta-CH), 7.00ppm (t, 1H, para-

CH), 6.88ppm (d, 2H, meta-CH), 6.74ppm (excess aniline), 6.36ppm (excess aniline), 4.86ppm 

(s, 1H, CH), 4.00ppm (s, 2H, NH), 3.95ppm (m, 2H, CH), 3.44ppm (m, 2H, CH), 2.72ppm 

(excess aniline), 1.78ppm (d, 6H, CH3), 1.64ppm (s, 3H, CH3), 1.44ppm (s, 3H, CH3), 1.24ppm 

(d, 6H, CH3), 0.98ppm (d, 6H, CH3), 0.71ppm (d, 6H, CH3).       

 

Note the meta-CH and para-CH that are attached to the NH2Ph are not extractable from the 

NMR spectra because of large presence of excess aniline.  The excess aniline peaks are likely to 

be overlapping those CH signals in the phenyl ring of the product.  

 

5.2    The Synthesis of Copper Complex and Catalytic Products 

 

5.2.1    Synthesis of 1-Benzylimidazole
47  

 

In a Schlenk flask benzyl bromide (3.49 mL, 29.4 mmol) was added to a mixture of imidazole 

(2.025 g, 29.74 mmol) and 4 equivalent of sodium hydride (3.061 g, 127.5 mmol) in THF, 

affording a bright yellow solution after approximately 10 minutes. The solution was stirred 

overnight yielding a green milky solution, which was then filtered isolating a brown filtrate and a 

green precipitate. The mother liquor was concentrated via vacuo, leaving a brown solid.  The 

crude benzyl imidazole was used for the subsequent step without further purification and 

assumed 100% yield.  (Yield:  N/A) 

 

1
H NMR (CDCl3): δ 7.53 (s, CH, 1H), 7.34 (m, CH, 3H), 7.24 (d, CH, 2H), 7.06 (s, CH, 1H), 

6.89 (s, CH, 1H), 5.10 (s, CH2, 2H).   

 

5.2.2    Synthesis of 1,1'-Dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidenedibromide
47 

 

To a pressure vessel a solution of 1-benzylimidazole (unpurified) was heated (80
o
C) in neat 

dibromomethane (5mL) for 24 hours.  After the allotted duration a white precipitate was formed 

in the dibromomethane solution.  The reaction was then filtered, isolating the white precipitate 

from the mother liquor.  The precipitate was washed with 3 x 10 mL addition of THF and further 
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dried in vacuo.    Without any further purification 1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidenedibromide
 
was used for the complexation with bromotris(triphenylphosphine)copper(I) 

(Yield:  1.841g, 26%)  
 

 

1
H NMR (DMSO): δ 9.08 (s, CH, 2H), 8.13 (s, CH,  2H), 7.93 (s, CH, 2H), 7.44 (m, CHar, 10H), 

6.72 (s, CH2, 2H), 5.52 (s, CH2, 4H). 

 

5.2.3)    Synthesis of Bromotris(triphenylphosphine)copper(I)
50

 

 

To an Erlenmeyer triphenylphoshine (3.025 g, 11.53 mmol) was heated to a boil in methanol and 

stirred till complete dissolution.  Dibromocopper(II) (0.654g, 2.93 mmol) was then added to the 

solution, where an immediate white precipitate was formed.  The reaction was allowed to stir for 

an additional 30 minutes to ensure that the reaction has reach completion.  The corresponding 

mixture was then filtered, where the precipitate was washed with 3 x 10mL addition of ice-cold 

methanol.  The isolated bromotris(triphenylphosphine)copper(I) was further dried in vacuo to 

remove any trace solvent.    

 

5.2.4 Synthesis of Dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) 

 

In an oven dried round-bottom 1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidenedibromide 

(0.491 g, 1.00 mmol) in THF (5mL) and 2.2 equivalent of potassium bistrimethylsilylamide 

(0.453 g, 2.27 mmol) was added in THF resulting in a green cloudy mixture after ~4 min under 

nitrogen.  This mixture was filtered into a second vessel containing a suspension of 

bromotris(triphenylphosphine)copper(I) (0.941 g, 1.01 mmol) in THF (5mL) and stirred 

overnight.  The resulting mixture turned into a milky beige solution, which was then filtered 

leaving a brown precipitate and a brown filtrate.  The filtrate was discarded and the precipitate 

was washed 3x10mL of THF.  This precipitate was isolated and further dried under vacuum.  

Without further purification, the crude product was tested for catalysis reaction.  (Yield:  

0.3451g, 73%)   
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1
H NMR (CDCl3): δ 7.66 (s, CH, 2H), 7.20 (m, CH, 8H), 7.02 (d, CH, 4H), 6.70 (s, CH2, 2H), 

5.04 (s, CH2, 4H). 

 

General Procedure for Hydrosilation Reaction with Dibromobis(1,1'-dibenzyl-3,3'-

methylenediimidazolin-2,2'-diylidene)dicopper(I)  

 

In an oven-dried vial with a septum screw cap was charged inside the glove box with 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) (0.030 g, 0.032 

mmol) (Catalyst), sodium tert-butoxide (0.024 g, 0.250 mmol) (Base), and 

dodecahydrophenylene (0.051g, 0.212 mmol) (Internal Standard) in dry xylene (5mL) , then 

stirred at 140
o
C for 10 min.  After the ten minute duration, triethylsilane (1.01 mL, 6.33 mmol) 

in xylene (1mL) was added via syringe through the septum.  The mixture was stirred for another 

20 min before the addition of ketone in xylene (1mL) was added to the reaction.  The reaction 

was allowed to proceed at 140
o
C while sampling aliquots at different time intervals.  The 

reaction mixture was cooled to room temperature, opened to air, and concentrated in vacuo.  The 

reaction was monitored by 
1
H NMR where the yield was calculated by the integration ratio of the 

product to internal standard peak, dodecahydrophenylene.  The 
1
H NMR spectra were consistent 

with previously reported spectra from literature.
 

 

5.2.5    (Diphenylmethoxy)triethylsilane
 

 

Using the general procedure benzophenone (0.392 g, 2.15 mmol) was added to a reaction 

mixture of triethylsilane, dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) (catalyst), sodium tert-butoxide (base) and dodecahydrophenylene (internal 

standard) in xylene and heated at 140
o
C.  (Yield:  97%)   

 

1
H NMR (CDCl3): δ 7.38 (d, 4H), 7.30 (t, 4H), 7.22 (t, 2H), 5.78 (s, 1H), 0.90 (t, 9H), 0.58 (q, 

6H). 
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5.2.6    (1-Isopropyl-2-methylpropoxy)triethylsilane  

 

Using the general procedure 2,4-dimethylpentanone (0.301mL, 2.19 mmol) was added to a 

reaction mixture of triethylsilane, dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) (catalyst), sodium tert-butoxide (base) and dodecahydrophenylene (internal 

standard) in xylene and heated at 140
o
C.  (Yield:  80%) 

   

1
H NMR (CDCl3): δ 3.32 (t, 1H,), 1.76 (q, 2H), 1.01 (t, 9H), 0.66 (q, 6H). 

 

5.2.7    (1-tert-Butyl-2,2-dimethlpropoxy)triethylsilane 

 

Using the general procedure 2,2,4,4-tetramethylpentanone (0.364 mL, 2.19 mmol) was added to 

a reaction mixture of triethylsilane, dibromobis(1,1’-dibenzyl-3,3’-methylenediimidazolin-2,2’-

diylidene)dicopper(I) (catalyst), sodium tert-butoxide (base) and dodecahydrophenylene (internal 

standard) in xylene and heated at 140
o
C.  (Yield:  83%)   

 

1
H NMR (CDCl3): δ 3.19 (s, 1H), 1.05 (t, 9H), 1.03 (s, 18H), 0.70 (q, 6H). 

 

5.2.8    Triethyl[1-(2,4,6-trimethylphenyl)ethoxyl]silane 

 

Using the general procedure 2,4,6-trimethylacetophenone (0.353 mL, 2.11 mmol) was added to a 

reaction mixture of triethylsilane, dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) (catalyst), sodium tert-butoxide (base) and dodecahydrophenylene (internal 

standard) in xylene and heated at 140
o
C.  (Yield:  20%)   

 

1
H NMR (CDCl3): δ 6.72 (s, 2H), 5.24 (q, 1H), 2.45 (s, 6H), 2.27 (s, 3H) 1.43 (d, 3H), 0.87 (t, 

9H), 0.54 (q, 6H).   
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General Procedure for C-N coupling Reactions 

 

Procedure A 

 

In an oven dried 30 mL reaction vial equipped with a stir bar was charged with 2 mol% catalyst 

(0.02 mmol), base (Cs2CO3) (1.4 mmol) and imidazole (1.2 mmol). Under nitrogen, dried solvent 

(DMA or DMF) (5 mL) and substituted halide (aryl or alkyl) (1 mmol), were added. The vial 

was sealed with a Teflon cap and was preheated to the appropriate temperature. After the 

specified time the vial was removed from the bath and water (20 mL) was added followed by 

extraction with dichloromethane (3 x 10 mL). The combined organic layers were washed with 

saturated aqueous NaCl (15 mL), dried over anhydrous MgSO4 and filtered.  Internal standard 

(dodecahydrotriphenylene) (0.1mmol) was added to the dried organic filtrate and concentrated in 

vacuo.  The 
1
H NMR was run in CDCl3, where the yield was calculated by the integration ratio 

of the product to internal standard peak.  The 
1
H NMR were consistent with previously reported 

spectra from literature. 

 

Procedure B 

 

In an oven dried 30 mL reaction vial equipped with a stir bar was charged with 2 mol% catalyst 

(0.02 mmol), base (Cs2CO3) (1.4 mmol) and imidazole (1.2 mmol). Under nitrogen, dried solvent 

(MeCN) (5 mL) and substituted halide (aryl or alkyl) (1 mmol), were added. The vial was sealed 

with a Teflon cap and was preheated to the appropriate temperature. After the specified time the 

vial was removed from the bath and open to air.  Internal standard (dodecahydrotriphenylene) 

(0.1mmol) was added to the reaction mixture and concentrated in vacuo.  The 
1
H NMR was ran 

in CDCl3, where the yield was calculated by the integration ratio of the product to internal 

standard peak.  The 
1
H NMR were consistent with previously reported spectra from literature. 

 

5.2.9    1-Phenylimidazole 

 

Using the general procedure A phenyl halide  (I or Br) (0.111 mL, 1.00 mmol or 0.105 mL, 1.00 

mmol) was added to a reaction mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-
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2,2'-diylidene)dicopper(I) (catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene 

(Internal Standard) and heated to the appropriate temperature. (Yield: 90% (I); 47% (Br))  

 

1
H NMR (CDCl3): δ 7.83 (s, CH, 1H), 7.38-7.41 (m, CH, 2H), 7.29-7.34 (m, CH, 3H), 7.26 (s, 

CH, 1H) 7.11 (d, CH, 1H).  

 

5.2.10    1-Isopropylimidazole 

 

Using the general procedure A or B isopropyl halide  (I or Br or Cl) (0.100 mL, 1.00 mmol or 

0.094 mL, 1.00 mmol or 0.091mL, 1.00 mmol) was added to a reaction mixture of 

dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) (catalyst), 

CsCO3 (base), Imidazole and dodecahydrophenylene (Internal Standard) and heated to the 

appropriate temperature.  (Yield: 72% (I); 80% (Br); 27% (Cl) )  

 

1
H NMR (CDCl3): δ 7.54 (s, CH, 1H), 7.03 (s, CH, 1H), 6.93 (s, CH, 1H), 4.32 (m, CH, 1H) 1.46 

(d, CH3, 6H). 

 

5.2.11    1-Butylimidazole 

 

Using the general procedure B 1-butyl halide  (Br or Cl) (0.11 mL, 1.0 mmol or 0.11 mL, 1.0 

mmol) was added to a reaction mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-

2,2'-diylidene)dicopper(I) (catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene 

(Internal Standard) and heated to the appropriate temperature.  (Yield:  100% (Br); 90% (Cl))  

 

1
H NMR (CDCl3): δ 7.51 (s, CH, 1H), 7.12 (s, CH, 1H), 6.87 (s, CH, 1H), 3.89 (t, CH2, 2H), 1.73 

(m, CH2, 2H,), 1.30 (q, CH2, 2H), 0.89 (t, CH3, 3H). 

 

5.2.12    1-2-Butylimidazole 

 

Using the general procedure B 2-butyl halide  (Br or Cl) (0.11 mL, 1.0 mmol or 0.11 mL, 1.0 

mmol) was added to a reaction mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-
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2,2'-diylidene)dicopper(I) (catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene 

(Internal Standard) and heated to the appropriate temperature.  (Yield: 57% (Br); 22% (Cl))  

 

1
H NMR (CDCl3): δ 7.48 (s, CH, 1H), 7.29 (s, CH, 1H), 6.88 (s, CH, 1H), 4.02 (m, CH, 1H) 1.71 

(m, CH2, 2H), 1.44 (d, CH3, 3H) 0.83 (t, CH3, 3H).  

 

5.2.13    1-Nonylimidazole 

 

Using the general procedure B 1-nonyl halide  (Br) (0.19 mL, 1.0 mmol) was added to a reaction 

mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-diylidene)dicopper(I) 

(catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene (Internal Standard) and heated to 

the appropriate temperature.  (Yield: 91% (Br))  

 

1
H NMR (CDCl3): δ 7.42 (s, CH, 1H), 7.01 (s, CH, 1H), 6.87 (s, CH, 1H), 3.88 (m, CH2, 2H), 

1.73 (m, CH2, 2H), 1.21 (s, CH2, 12H), 0.83 (m, CH3, 3H).  

 

5.2.14    1-Butyl-3-methylimidazole 

 

Using the general procedure B 1-butyl-3methyl halide  (Cl) (0.098 mL, 1.0 mmol) was added to 

a reaction mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-2,2'-

diylidene)dicopper(I) (catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene (Internal 

Standard) and heated to the appropriate temperature.  (Yield: 57% (Cl))  

 

1
H NMR (CDCl3): δ 7.44 (s, CH, 1H), 7.02 (s, CH, 1H), 6.89 (s, CH, 1H), 3.92 (t, CH2, 2H), 1.65 

(q, CH2, 2H), 1.55 (s, CH, 1H), 0.92 (d, CH3, 6H).  

 

5.2.15    1-Benzylimidazole 

 

Using the general procedure B 1-benzyl halide  (Br or Cl) (0.12 mL, 1.0 mmol or 0.12 mL, 1.0 

mmol) was added to a reaction mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-
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2,2'-diylidene)dicopper(I) (catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene 

(Internal Standard) and heated to the appropriate temperature.  (Yield: 85% (Br); 100% (Cl))  

 

1
H NMR (CDCl3): δ 7.53 (s, CH, 1H), 7.34 (m, CH, 3H), 7.24 (d, CH, 2H), 7.06 (s, CH, 1H), 

6.89 (s, CH, 1H), 5.10 (s, CH2, 2H).   

 

5.2.16    1-Allylimidazole 

 

Using the general procedure B 1-allyl halide  (Br or Cl) (0.087 mL, 1.0 mmol or 0.072 mL, 1.0 

mmol) was added to a reaction mixture of dibromobis(1,1'-dibenzyl-3,3'-methylenediimidazolin-

2,2'-diylidene)dicopper(I) (catalyst), CsCO3 (base), Imidazole and dodecahydrophenylene 

(Internal Standard) and heated to the appropriate temperature.  (Yield: 62% (Br); 44% (Cl))  

 

1
H NMR (CDCl3): δ 7.47 (s, CH, 1H), 7.19 (s, CH, 1H), 6.90 (s, CH, 1H), 5.96 (m, CH, 1H), 

5.24-5.26 (dd, CH, 2H,), 4.53 (d, CH2, 2H). 
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