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ABSTRACT 

  

M-DNA is a novel complex formed between DNA and transition metal ions under 

alkaline conditions.  The unique properties of M-DNA were manipulated in order to 

rationally place metal ions at specific regions within a double-stranded DNA helix.   

Investigations using thermal denaturation profiles and the ethidium fluorescence assay 

illustrate that the pH at which M-DNA formation occurs is influenced heavily by the 

DNA sequence and base composition.  For instance, DNA with a sequence consisting of 

poly[d(TG)•d(CA)] is completely converted to M-DNA at pH 7.9 while DNA consisting 

entirely of poly[d(AT)] remains in the B-DNA conformation until a pH of 8.6 is reached.  

The pH at which M-DNA formation occurs is further decreased by the incorporation of 4-

thiothymine (s4T).  DNA oligomers with a mixed sequence composed of half d(AT) and 

the other half d(TG)•d(CA) showed that only 50% of the DNA is able to incorporate Zn2+ 

ions at pH 7.9.  This suggests that only regions corresponding to the tracts of 

d(TG)•d(CA) are being transformed.    

Duplex DNA monolayers were self-assembled on gold through a Au-S linkage 

and both B- and M-DNA conformations were studied using X-ray photoelectron 

spectroscopy (XPS) in order to better elucidate the location of the metal ions.  The film 

thickness, density, elemental composition and ratios for samples were analyzed and 

compared.  The DNA surface coverage, calculated from both XPS and electrochemical 

measurements, was approximately 1.2 x 1013 molecules/cm2 for B-DNA.  All samples 

showed distinct peaks for C 1s, O 1s, N 1s, P 2p and S 2p as expected for a thiol-linked 

DNA.  On addition of Zn2+ to form M-DNA the C 1s, P 2p and S 2p showed only small 

changes while both the N 1s and O 1s spectra changed considerably.  This result is 

consistent with Zn2+ interacting with oxygen on the phosphate backbone as well as 

replacing the imino protons of thymine (T) and guanine (G) in M-DNA.   Analysis of the 

Zn 2p spectra also demonstrated that the concentration of Zn2+ present under M-DNA 

conditions is consistent with Zn2+ binding to both the phosphate backbone as well as 

replacing the imino protons of T or G in each base pair.  After the M-DNA monolayer is 

washed with a buffer containing only Na+ the Zn2+ bound to the phosphate backbone is 

removed while the Zn2+ bound internally still remains. Variable angle x-ray photoelectron 
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spectroscopy (VAXPS) was also used to examine monolayers consisting of mixed 

sequence oligomers.  Preliminary results suggest that under M-DNA conditions, the zinc 

to phosphate ratio changes relative to the position of the d(TG)•d(CA) tract being at the 

top or bottom of the monolayer.    

Electrochemistry was also used to investigate the properties of M-DNA 

monolayers on gold and examine how the localization of metal ions affects the resistance 

through the DNA monolayer.  The effectiveness of using the IrCl6
2-/3- redox couple to 

investigate DNA monolayers and the potential advantages of this system over the 

standard Fe(CN)6
3-/4- redox couple are demonstrated.  B-DNA monolayers were 

converted to M-DNA by incubation in buffer containing 0.4 mM Zn2+ at pH 8.6 and 

studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and 

chronoamperometry (CA) with IrCl6
2-/3-.   Compared to B-DNA, M-DNA showed 

significant changes in CV, EIS and CA spectra.  However, only small changes were 

observed when the monolayers were incubated in Mg2+ at pH 8.6 or in Zn2+ at pH 6.0.  

The heterogeneous electron-transfer rate (kET) between the redox probe and the surface of 

a bare gold electrode was determined to be 5.7 x 10-3 cm/s.  For a B-DNA modified 

electrode, the kET through the monolayer was too slow to be measured.  However, under 

M-DNA conditions, a kET of 1.5 x 10-3 cm/s was reached.  As well, the percent change in 

resistance to charge transfer (RCT), measured by EIS, was used to illustrate the 

dependence of M-DNA formation on pH.  This result is consistent with Zn2+ ions 

replacing the imino protons on thymine and guanine residues.  Also, at low pH values, 

the percent change in RCT seems to be greater for d(TG)15•d(CA)15 compared to 

oligomers with mixed d(AT) and d(TG)•d(CA) tracts.  The IrCl6
2-/3- redox couple was 

also effective in differentiating between single-stranded and double-stranded DNA during 

dehybridization and rehybridization experiments.   
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1.0  INTRODUCTION 

 

On February 28, 1953, Francis Crick entered the Eagle pub in Cambridge, England 

and proclaimed that he and James Watson had found the secret to life (Watson, 1968).  

Together, they had solved the structure of deoxyribonucleic acid, or DNA, and 

suggested its fundamental role in the storage and transfer of life’s genetic material.  

Since their discovery, the vast majority of DNA research has been focused around its 

biological properties, in particular its role in genetic inheritance, disease and aging.  

However, regardless of its central importance in biology, the applications of DNA are 

no longer restricted to just the biological sciences.   

The idea of building machines and mechanical devices out of individual atoms was 

originally proposed in a speech by the Nobel Laureate Richard Feynman in 1959.    

Inspired by that speech, Eric Drexler not only pursued this area, but has been credited 

with increasing public interest and spawning the beginning of the nanotechnology 

revolution.  Naturally, due to its ability to self-assemble through complementary base 

pairs, participate in molecular recognition and be easily manipulated by a vast array of 

enzymes, DNA has become one of the most promising biomolecules for future 

applications in nanotechnology.  It has already been manipulated in order to design 

intricate geometric shapes (Chen and Seeman, 1991; Zhang and Seeman, 1994; Shih et 

al., 2004; Rothemund, 2006), construct various nanoscale mechanical devices (Mao et 

al., 1999; Yurke et al., 2000; Sherman and Seeman, 2004; Shin and Pierce, 2004; Ye 

and Mao, 2004) and has recently attracted considerable interest in molecular electronics 

(Murphy et al., 1993; Aich et al., 1999; Fink and Schonenberger, 1999).  The 

interactions of metal ions with DNA have been shown to profoundly effect not only the 

conformation of DNA, but properties such as the electrical conductivity.  Therefore, the 

introduction of this thesis will focus on the structural features and properties of DNA, 
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how these are affected in the presence of various metal ions and the techniques used to 

study them. 

 

1.1 Structure of DNA 

 

1.1.1  DNA Subunits 

 

The fundamental components of DNA are monomeric units called nucleotides.  

Each nucleotide consists of a sugar, a nucleobase and a phosphate group (Figure 1.1).  

The sugar in DNA is the cyclic β-D-furanose form of ribose and is referred to as β-D-2′-

deoxyribose as the hydroxyl group on the 2′ carbon of the ribose ring is replaced with 

hydrogen.   Also depicted in figure 1.1 are the four major nucleobases found in DNA 

which are derived from the two parent compounds purine and pyrimidine.  The two 

major purine bases are adenine (A) and guanine (G) whereas the two major pyrimidine 

bases are cytosine (C) and thymine (T).  The carbon numbers in the furan sugar are 

designated with a prime symbol in order to distinguish them from the numbered atoms 

in the nucleobase.  Each nucleobase is attached to the sugar through a β-glycosyl 

C1′―N linkage (N1 of pyrimidines and the N9 of purines) whereas the phosphate is 

attached to the sugar through an ester bond at the 5′ carbon.  In the absence of the 

phosphate group, the molecule is referred to as a nucleoside.   

A strand of DNA is simply formed from successive nucleotides covalently 

linked to each other through a phosphodiester bond in which the 5′-phosphate group of 

one nucleotide is attached to the 3′-hydroxyl group of the next nucleotide creating a 

polynucleotide chain that can be described and written in a specific direction.  For 

instance, in figure 1.2, a four base DNA oligonucleotide with the sequence 5′-CTAG- 3′ 

is shown. 

When the nucleotides are linked as described in the above section, the resulting 

polynucleotide chain is highly flexible due to the large number of conformations around 

the rotatable bonds in the phosphoribose backbone, the sugar and around the N-

glycosidic bond (Figure 1.3).    
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Figure 1.1  The general structure of a nucleotide along with the four major purine and 
pyrimidine nucleobases found in DNA.   Also shown are the numbering conventions for 
the furan sugar and the parent pyrimidine and purine bases which apply to all four bases 
as well as their analogues. 
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Figure 1.2  The deoxytetranucleotide dCTAG in a chain that extends from the 5′-
terminus to the 3′ terminus. 
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Figure 1.3  The rotatable angles in a nucleotide unit are defined by torsion angles along 
the phosphoribose backbone (α to ξ), within the sugar ring (v0 to v4) as well as the 
rotation of the nucleobase relative to the sugar ( χ).   Adapted from (Sriram, 1996). 
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Of particular importance to DNA structure, are the rotations about the bonds in the 

sugar ring.  In order to relieve steric strain between atoms, the deoxyribose sugar 

becomes slightly nonplanar with only four out of five atoms remaining in the same 

plane.  The different conformations, termed “sugar puckers”, are therefore defined by 

the direction in which the one atom in the ring deviates from this plane.  As illustrated 

in figure 1.4, a plane is formed by the C1′-O-C4′ atoms.  The sugar pucker, then, is 

defined by the positions of the C2′ or C3′ atoms relative to this plane.  When the atoms 

are displaced from this plane on the same side as the C5′ and the nucleobase, then they 

are referred to as endo atoms, while those on the opposite side are referred to as exo 

atoms.  The sugar pucker is conformationally important in DNA because it determines 

the orientation of the phosphate groups relative to the sugar residue.   

The other torsion angle that strongly affects the structure of DNA is the χ-angle 

around the glycosidic bond (Figure 1.5).  The base can be orientated in either the anti 

conformation, where it extends away from the ribose ring, or in the syn conformation, in 

which case the base lies over top or toward the sugar.  The anti conformation is most 

often observed since there is less steric hindrance in that position.  However, the syn 

conformation may occur when purine bases are present but is rarely observed with 

pyrimidine bases since the sugar residue sterically interferes with its C2′ substituent.   

 

1.1.2 Structure of Double-Stranded DNA 

 

The interaction of two DNA strands is referred to as hybridization and is 

mediated through specific base-pairing.   First proposed by Watson and Crick, A only 

pairs with T (AT) and G only pairs with C (GC) (Watson and Crick, 1953).  This 

proposal confirmed earlier observations made by Chargaff that DNA samples always 

contained equivalent amounts of A to T as well as G to C (Chargaff et al., 1951).  The 

specificity of Watson Crick (WC) base-pairing is achieved through the formation of 

intermolecular hydrogen bonds between the two DNA strands (Figure 1.6). 
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Figure 1.4  The pucker of the sugar in DNA is described as the displacement of the C2′ 
and C3′ atoms relative to the plane formed by the C1′-O-C4′ plane.  The endo face lies 
above the plane, toward the C5′ and the glycosidic bond, while the exo face lies below 
the plane.  Adapted from (van Holde, 2006). 
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Figure 1.5  The rotations of the nucleotides 2′-deoxyadenosine and 2′-deoxythymine 
relative to the sugar moiety. The bases are either extended away from the sugar (anti-
conformation) or situated above the ring (syn-conformation).  
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Figure 1.6  The standard WC base-pairing schematic for AT and GC base pairs with  
the major and minor grooves indicated. 
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Hydrogen bonds are noncovalent, dipole interactions caused as a result of the attractive 

force between hydrogen atoms containing a partial positive charge interacting with the 

electronegative keto oxygens or nitrogens on the complementary base.  There are three 

hydrogen bonds in GC base-pairs and only two in AT base-pairs.  However, the classic 

WC base-pairing is only one of several hydrogen bonding patterns observed.  Ten years 

after Watson and Crick’s discovery, Karst Hoogsteen showed that adenine and thymine 

were able to form hydrogen bonds involving the N7 atom of the purine ring compared 

to the N1 atom normally found in the WC base-pairing (Hoogsteen, 1963).  Although 

this alternative Hoogsteen geometry is the most favorable one for AT base-pairs in 

solutions, it is not the cases for double-stranded helices.  On the other hand, GC base-

pairs are only able to form this geometry in acidic pH where protonation of the C is 

essential for pairing.  However, the four bases can be arranged in 28 different ways 

where there is still at least two hydrogen bonds maintained.  Shown in figure 1.7  are 

some commonly found conformations including reverse WC, Hoogsteen and Wobble 

base pairs (Donohue, 1956; Donohue and Trueblood, 1960).  The bases can also exist in 

different chemical isomeric forms.  For example, the C6 keto position of guanine can 

undergo a tautomerization to an enol form with an –OH group at the C6 position.  

Although the hydrogen bonding between base-pairs provides specificity, it 

provides little stability to the duplex as there would be just as many hydrogen bonds 

between denatured DNA and the solvent.  Therefore, it is the base stacking interactions 

which are principally responsible for the stabilization of the duplex (Bugg et al., 1971).  

The parallel stacking of the bases effectively excludes water from the interior of the 

duplex.  Therefore the hydrogen-bonding groups are largely sequestered from the 

competing interactions with water and thus hydrogen bonding becomes more favorable.  

This parallel stacking of the base pairs also maximizes the van der Waals interactions 

between bases.  Most duplex DNA has the bases separated by 0.34 to 0.37 nm, the 

average sum of van der Waals radii of the base atoms.  Therefore the electrostatic 

dipole, and dipole-induced dipole interactions associated with the van der Waals 

interactions allow stable base stacking through the charge distributions within their π-

electron systems (Devoe and Tinoco, 1962; Hanlon, 1966).  
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Figure 1.7  Examples of base pairing schemes found in DNA.  The top pair represents a 
reverse WC pair with a 180° rotation of the pyrimidine base resulting in antiparallel 
orientation of the sugars and a wobble base pair in which the pyrimidine has been 
shifted slightly resulting in only two hydrogen bonds between the nucleotides.  On the 
bottom is a Hoogsteen base pair in which the pyrimidine uses it WC surface to pair with 
the C6 amino group and the N7 of the purine base.  A 180° rotation of the pyrimidine 
results in the formation of a reversed Hoogsteen base pair.   
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Although base pair hydrogen-bonding depends on composition, base stacking energies 

depend on composition and the sequence of the DNA (Ornstein et al., 1978).   For 

example, in unpaired bases, stacking interactions between purine and pyrimidine bases 

have the following trend (Solie and Schellma, 1968).   

 

 

 

This results from a greater degree of overlap between two purine bases compared to two 

pyrimidine bases.  For base-paired dinucleotides, although more complex,  in general 

the stacking is more stable for sequences rich in GC base pairs and weaker for those 

composed of AT base pairs (Ornstein et al., 1978).  However, the stacking energy is 

also influenced by the general sequence.  For instance, a 5’dCG-3’ dimer is more stable 

than a 5’-dGC-3’ dimer (Saenger, 1984).    

The structure of dsDNA is defined by the relative conformations of the bases in 

the base pair and the orientations of the neighboring base-pairs relative to one another 

(Figure 1.8).  Although all of this flexibility allows DNA to adopt a variety of 

conformations, the predominant structure found under physiological conditions is the 

DNA double helix referred to as the B-form.  The conformation of B-DNA contains two 

antiparallel polynucleotide chains connected by complementary WC base-pairing.   The 

overall structure of B-DNA has two distinct helical grooves, the minor and the major.  

The minor groove is narrow, while the major groove is wide, with both grooves 

possessing a moderate, nearly equivalent depth.  In this fashion, B-DNA adopts a right-

handed helical structure containing a hydrophobic interior of base pairs stacked 

perpendicular to the axis at 0.34 nm intervals (Wing et al., 1980; Dickerson et al., 

1982).  Each base-pair plane of B-DNA is rotated with a twist of approximately 34.3° 

relative do the one preceding it.  This results in a complete right-handed helical turn for 

every 10.5 contiguous base pairs and therefore a helical pitch of approximately 3.4 nm 

(Figure 1.9).  In B-DNA, the deoxyribose ring adopts a C2′-endo conformation, while 

the N-glycosidic bond angle is in an anti-configuration.   
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Figure 1.8  Base-pair and base-step parameters for duplex DNA.  Taken from 
(Dickerson, 1989) 
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Figure 1.9  The major structural features of a WC base paired DNA duplex in the B-
conformation. 
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1.1.3 Physical Properties of Double-Stranded DNA 

 

 The aromatic nature of the bases allows DNA to absorb ultraviolet light (UV) at 

a wavelength of approximately 260 nm (A260).  This allows the concentration of dsDNA 

to be measured, as an absorbance of 1 A260 equals approximately 50 µg/ml.  This also 

provides a convenient way to monitor the formation and breakdown of double helices as 

dsDNA has 40% less absorbance compared to ssDNA.  The decrease in absorbance is a 

result of the strong overlap between the π-orbitals caused from base stacking 

interactions which leads to less π- π* transitions and therefore a decrease in molecular 

absorbtivity (Voet et al., 1963).   

The denaturation of DNA is a cooperative process where the strands are either 

fully formed or completely dissociated (Porschke, 1971).  Therefore the observed 

change in absorbance occurs over a very narrow temperature range at which the 

midpoint of this transition is referred to as the melting temperature (Tm) (Doty et al., 

1959).  The nature of this melting transition is affected by several factors including 

nucleotide composition, chain length and sequence affects.  As mentioned previously, 

stacking interactions are more stable for GC rich regions compared to AT rich regions 

(Ornstein et al., 1978).  Indeed, there is a linear dependence of melting temperature on 

the number of guanine and cytosine content in the DNA (Marmur and Doty, 1962).  The 

melting temperatures of double-helical nucleic acids increase not only with their 

GC/AT ratio but also with the length of the polynucleotide. With increasing chain 

length, Tm increases and the slope at the melting point becomes steeper which is 

synonymous with enhanced cooperativity (Porschke, 1971; Filimonov and Privalov, 

1978).  Understandably, the strength of base-stacking mentioned in section 1.12 also 

correlates very well with the melting of DNA duplexes (Gotoh and Tagashira, 1981). 

The renaturation of DNA can be explained by the cooperative zipper mechanism 

in which the helix requires three base-pairs to create a stable starting point from which 

further addition of stacked base-pairs occurs spontaneously leading to a stepwise 

construction of a helix similar to a zipper being closed. (Porschke, 1977).  This 

nucleation event is also sequence dependent.  Therefore, since CG base pairs are more 



 16 

stable than AT base pairs, we expect the nucleation event to be more probable at 

stacked cytosine or guanine nucleotides.   

 

1.1.4 Electronic Properties of DNA 

 

Soon after the discovery of DNA by Watson and Crick, it was proposed that 

DNA could have conducting properties though the π- electron system of the staked 

bases (Eley and Spivey, 1962).  In 1993, Jacqueline Barton’s group reported 

photoinduced electron transfer between metallointercalators attached to opposite ends 

of a 15-base pair DNA duplex (Murphy et al., 1993).  Following investigations 

suggested an electron transfer rate of approximately 1x1010 s-1 over distances up to 40 

angstroms (Arkin et al., 1996; Hall et al., 1996).   This idea was further substantiated by 

showing that the repair of a thymine dimer was accomplished through the electron 

transfer from an intercalator through a 16-base pair DNA duplex (Dandliker et al., 

1997).  A reevaluation of these results has been given (Fahlman et al., 2002) and 

although there has been much debate with regards to this subject, the dominant 

mechanisms appear to be both short-range quantum mechanical tunneling (Dekker and 

Ratner, 2001) and long-range thermally activated hopping (Kandaswamy and 

Henderson, 1962; Lewis et al., 2000; Giese et al., 2001).  According to many models, 

the electron transfer can occur through a multistep hopping reaction in which a positive 

charge migrates between guanine bases having the lowest ionization potential.  In this 

mechanism, there is a shallow distance dependency on the rate of electron transfer.  In 

the tunneling mechanism, the charge tunnels through high energy bases without 

formally occupying them, in which cases the rate decreases exponentially with distance 

between the charge donor and acceptor (Giese, 2002). 

 Although there is agreement that electron transfer indeed happens through DNA, 

there is still debate on whether DNA is intrinsically conducting.  DNA electrical 

properties remain questionable due to the uncertainty in experimental procedures.  For 

example, the contacts between the electrode and the DNA molecules will most likely 

affect the total conductivity of the DNA-electrode system (Otsuka et al., 2002).   Also, 

there are many differences in the DNA molecules and their environment which can 
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influence DNA conductivity.  For instance, variations in the base composition and 

sequence may have consequences as it has been shown that positive charge is more 

stable on a GC base pair compared to an AT base pair (Endres et al., 2004).   The length 

and the character of the DNA molecules (bundles or single molecules) also will affect 

the conductivity.  Temperature and humidity may change the conformation of DNA as 

the number of water molecules is critical in determining the overall structure of the 

DNA.  For example, drying of the DNA with nitrogen tends to leave only two to three 

water molecules per nucleotide.  This results in a transition from B- to A-DNA (see 

later section) (Warman et al., 1996).  As well, the presence of tightly bound water or 

counterions attached to the DNA even in vacuum environment can not be completely 

ruled out and may lead to the enhanced conductivity (Fink and Schonenberger, 1999).  

In conclusion, it seems that electron transfer is possible for short scale length under 

certain conditions.  However, it is still unclear whether DNA itself is the conductor or if 

it needs help from the solvent to become conductive.   

 

1.2 DNA-Metal Ion Interactions 

 

Many factors affect DNA-metal interactions including the nature of the ligand 

and the metal ion, the pH of the surrounding environment as well as the accessibility of 

certain binding sites.  Such interactions are very important as it has previously been 

shown that metal ions can dramatically affect both the stability and conformation of 

DNA (Kazakov, 1996).  In many cases, completely new structures are formed which 

possess very unique and useful properties.  

 

1.2.1 Interaction Sites on DNA  

 

At physiological pH, the negative charge on the phosphate oxygens result in an 

ideal location for nonspecific electrostatic interaction with positively charged metal 

ions.  Although all metal ions can typically bind here, Pearson generalized that metal 

ions which are more difficult to polarize such as the alkali and alkaline earth metals 
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Na+, K+, Mg2+, Mn2+ and Ca2+ have a greater preference for these oxygen ligands 

(Pearson, 1963).   

For many other metal ions, initial nonspecific binding can be followed by more 

specific interactions with the nitrogen and exocyclic keto substituents on the 

nucleobases.  Generally, metal ions that have a larger radius and are easier to polarize, 

such as the transition metals Cu+, Ag+, Au+, Cd+, Pt+ and Hg+, tend to favour more 

covalent interactions with the nucleobase substituents (Pearson, 1963).  However, there 

are also some transition metals such as Cu2+, Zn2+, Ni2+ and Co2+ that can bind equally 

well to both ligands (Cowan, 1997). 

The association of metal ions with the nitrogens in the nucleobases is much 

more complex as there are many factors that can influence the availability of the metal 

ion binding sites.   For example, the formation of the glycosyl link in DNA renders the 

N9 of purines and the N1 of pyrimidines unavailable.  As well, the N3 position on the 

purine bases becomes less attractive due to the steric hindrance created from the sugar 

moiety when orientated in the syn conformation.  Changes in the glycosidic torsion 

angle could, however, make this site more attractive for metal ions (Martin, 1979).  

As well, since the ring nitrogens are potential protonation sites, the pH of the 

surrounding environment is quite relevant to the availability of binding sites for metal 

ions.  Therefore a preference for metal ions to interact with these sites correlates closely 

to the pKa values shown in parenthesis. At neutral pH, the principle metal-binding sites 

are on the nucleosides of guanosine (N7, 2.0), adenosine (N7 and N1, 3.8) and cytidine 

(N3, 4.2).  However, at elevated pH, the nitrogen atoms in thymidine (N3, 9.9) and 

guanosine (N1, 9.3)  become the preferential binding sites (Martin, 1979). 

The base keto substituents are also able to complex with metal ions directly 

through the keto group or indirectly through the interaction of hydrogen bonds from 

other ligands (Saenger, 1984).  The amino groups on the bases are not directly involved 

in metal ion coordination because the lone electron pair is delocalized over the π-

bonding ring system giving the attached nitrogen a partial positive charge and thereby 

effectively repelling any positively charged metal ions from this location (Martin, 

1979).   
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1.2.2 Effect of Metal Ions on DNA Stability 

 

Although most metal ions can stabilize double helixes, this property is not 

universal.  Generally, an interaction of metal ions with the phosphate backbone leads to 

stabilization of the DNA double helix whereas metal ions binding to the bases causes 

destabilization and eventual denaturation (Eichhorn and Shin, 1968; Yamada et al., 

1976).  Therefore, metal ions can be placed in the following sequence which indicates 

the magnitude of their influence on DNA stability (Eichhorn and Shin, 1968).  

 

Mg2+ > Co2+ ~ Ni2+ > Mn2+ > Zn2+ > Cd2+ > Cu2+ > Hg2+ 

 

The affinity for the base compared to the phosphate backbone increases from left to 

right.   Therefore, correspondingly, the first three metal ions in this list usually provide 

only stabilizing effects, whereas the others provide an initial stability as they bind the 

backbone followed by destabilization of the double helix at higher concentrations where 

they bind to the nucleobase (Eichhorn, 1973). 

 

1.2.3 Alternative DNA Conformations Containing Metal Ions 

 

Although the standard structure of DNA is in the B-form, there is an alphabet of 

alternative structures and conformations that are all heavily influenced by metal ions 

(Saenger, 1984; Wells et al., 1988; Ghosh and Bansal, 2003).  Since A-DNA and Z-

DNA conformations are currently the best characterized, these will be discussed in 

further detail.  Along with the linear duplexes described above, DNA can also adopt 

various other unusual structures such as triplex and quadraplex DNA structures 

consisting of three and fours strands of DNA respectively.  Finally, there will be a 

review of DNA containing novel nucleotide analogues which have been engineered 

specifically to incorporate various metal ions. 
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1.2.3.1 A-DNA 

 

 B-DNA transforms into an A-form helix under low humidity and high salt 

concentrations (Franklin and Gosling, 1953).  Although A-DNA is still a right handed 

helix, there are 11 base-pairs per helix turn with a rise of 0.25 nm per base pair, a 

helical pitch of 2.8 nm and a diameter of 2.3 nm resulting in a shorter, broader version 

of B-DNA as illustrated in figure 1.10 (Dickerson et al., 1982; Frederick et al., 1989).    

The most pronounced feature of this structure is the 20° tilting of the base-pairs and 

their net displacement away from the central axis (Sinden, 1994).  This results in a deep 

and narrow major groove and a very shallow and wide minor groove.  Looking down 

the central axis of A-DNA there is hollow core distinctly different from that of B-DNA.  

The A-form also adopts a C3′-endo sugar pucker conformation as opposed to the C2′-

endo conformation present in B-DNA.  The A-form is also commonly adopted by RNA-

DNA hybrids (Milman et al., 1967) as well as dsRNA (Arnott et al., 1973) as the C2’-

OH substituent forces the sugar to assume the C3’-endo conformation.   

 

1.2.3.2 Z-DNA 

  

A drastic conformational change was detected by circular dichroism with 

poly[d(GC)] in the presence of 700 mM Mg2+ or 2.5 M Na+ (Pohl and Jovin, 1972).  

Following this discovery, a crystal structure was solved and showed major structural 

differences in the sugar pucker, rotations about the glycosidic bond, and orientation of 

base pairs within the helix compared to the native B-DNA form (Wang et al., 1979).  

The newly-discovered structure, called Z-DNA, was discovered with its unique ability 

to adopt a left handed helical structure.   This conformation contains a wide and shallow 

major groove with a narrow and extremely deep minor groove.  Z-form DNA also 

adopts sugar puckering and N-glycosidic torsion angles that alternate between C2′-endo 

and C3′-endo and between anti and syn, respectively making the actual repeating unit 

for the Z-form helix two base pairs in contrast to the single-base-pair repeat unit of the 

A- and B- form DNAs.   
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Figure 1.10  A Comparison of the overall structures of A, B and Z forms of DNA.  
There are 24 base pairs in each of the structures shown.  The bases are shown in gray, 
the phosphate atoms in yellow, and the riboses and phosphate oxygens in blue.  Taken 
from (Lehninger, 1993) 
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The alternating pattern, in combination with the 180° rotation of the bases about the 

glycosidic bond, results in a left handed helix with a phosphate backbone that appears to 

zigzag around the helical structure.  There are 12 base pairs per helical turn, a helical 

rise of 0.37 nm per base and a helical pitch of 4.5 nm resulting in a longer narrower 

version of B-DNA (Figure 1.10).  Although there is an increase in the rise per residue, 

the alternating sugar puckers orientate the phosphate residues of subsequent bases so 

that they are actually closer to each other than in B-DNA.  Therefore, the proximity of 

the negatively-charged phosphate residues explains the dependence on the high ionic 

strength needed to stabilize this conformation (Sinden, 1994).    

  Although, the Z-DNA conformation can be induced by high concentrations of 

both Mg2+ and Na+ as previously mentioned, less than 5 mM of transitions metals such 

as Co2+, Ni2+ or Mn2+ is required to obtain the same response (van de Sande et al., 

1982).   Whereas alkaline and alkali-earth metals are able to stabilize the conformation 

by binding to the negatively charged phosphate groups, transition metal ions bind to the 

bases.  For instance, previous investigations have shown that both Ni2+ and Co2+ are 

able to bind to the N7 of G stabilizing the syn conformation which is required for Z-

DNA (Taboury et al., 1984).   

This conformation can also be induced or further stabilized by chemical 

modification of the bases.  Bromination of the G residues on C8 or the C residues on the 

C5 both lock the molecule in the Z conformation as the new bulky substituent holds the 

G residue in the syn conformation preventing its rotation back to the anti conformation 

found in B-DNA (Moller et al., 1984).  The methylation of C8 of G residues also 

favours the Z conformation (Xu et al., 2003).  The methylation of cytosine at the C5 

position also stabilizes Z-DNA as the hydrophobic methyl group in this position is less 

exposed to the solvent in the Z-DNA form than in the alternative B-form (Behe and 

Felsenfeld, 1981; Rich et al., 1984).   

The discovery that Z-DNA forms under conditions of negative superhelical 

stress (Klysik et al., 1981; Peck et al., 1982; Singleton et al., 1982) raised excitement as 

it suggested the existence of Z-DNA in a biological context as negative supercoils form 

behind actively transcribing RNA polymerase (Liu and Wang, 1987).  A number of 

experiments have been performed that demonstrate the existence of Z-DNA in vivo.  
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For example, the formation of Z-DNA in E. coli was assessed by creating fragments of 

DNA containing the EcoRI site.  In the presence of EcoRI methylase, this fragment 

becomes methylated when the DNA is in the B- conformation.  However, when the 

DNA is in the Z- conformation, this fragment becomes resistant to methylation 

(Jaworski et al., 1987).  Evidence for the existence of Z-DNA in eukaryotic systems is 

more indirect.  Antibodies against Z-DNA have been shown to bind to eukaryotic 

chromosomes and proteins have been isolated from eukaryotic systems that are able to 

bind Z-DNA (Herbert and Rich, 1996; Rich and Zhang, 2003).  Various possible 

biological roles have been suggested.  For instance, Z-DNA may function to regulate 

gene expression as it could act as an alternative binding location for transcription 

factors.  Also, the conformation may be important in recombination as alternating 

purine•pyrimidine tracts, which are very conducive to forming Z-DNA, have been 

found in recombination sites.   

 

1.2.3.3 Triplex 

 

In 1957, it was discovered that a WC duplex consisting of 

homopurine•homepyrimidine tracts had the ability to incorporate an additional third 

strand into the major groove (Felsenfeld et al., 1957).  Shortly after, a crystal structure 

was solved by Karst Hoogsteen which revealed that triplex formation was possible 

through the interaction with the N7 and C6 amino group of a purine base (Hoogsteen, 

1963).  This type of base interaction, referred to as Hoogsteen base-pairing, is shown in 

figure 1.7.   In order for triplex formation to occur, the central strand must be a purine to 

provide the necessary sites for a WC base-pair and an additional Hoogsteen base-pair as 

illustrated in figure 1.11.  The additional third strand, which is written in italics, may 

consist of either pyrimidines (PyPu•Py) or purines (PyPu•Pu) (Frank-Kamenetskii and 

Mirkin, 1995).  If the third strand consists of a pyrimidine tract, it will form Hoogsteen 

bonds which result in a parallel orientation with the WC purine strand.  As 

demonstrated in figure 1.11, if the third tract is purine rich, it forms reverse Hoogsteen 

hydrogen bonds resulting in an antiparallel orientation with the purine strand of the WC 

helix.   
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Figure 1.11  Hydrogen bonding pattern of the various triplex formations.  Shown on the 
top are WC base-pairs containing a third pyrimidine strand and on the bottom, WC 
base-pairs contain a third purine residue.  
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In either case, the third strand always runs anti-parallel to the WC strand with the same 

type of base.  As previously discussed with the above DNA conformations, triplex 

formation is also dependent on metal ions, pH, sequence effects and the incorporation 

of novel nucleotides. 

Compared to dsDNA, triplexes have a relatively higher charge density and 

therefore require metal ions to stabilize the triplex by neutralizing the negatively 

charged phosphate groups.  However, it is evident that the relationship is much more 

complex as different metal ions have drastically different effects on triplex formation, 

conformation and stability.   For example, alkali metal ions are sufficient for the 

stabilization of PyPu•Py triplexes, however PyPu•Pu triplexes require divalent metal 

ions such as Mg2+ or Ca2+ for complete stabilization (Rougee et al., 1992; Singleton and 

Dervan, 1993).  Also, other metal ions like K+ and Rb+ interfere with PyPu•Pu triplex 

formation all together (Cheng and Van Dyke, 1993).  In contrast, the transition metal 

ions Zn2+, Ni2+, Co2+, Mn2+ and Cd2+ enhance the stability of the structures containing 

both the CG•G and TA•T triplets (Malkov et al., 1993).   

Triple-stranded DNA formation is also affected by pH as well as the 

incorporation of novel nucleotides.  For instance, both CG•C+ and CG•A+ triplexes are 

stabilized at low pH since the protonation of the C or A residue enables the bases to 

participate in the Hoogsteen base-pairing (Lee et al., 1979).   On the other hand, 

substitution of 7-deazaadenine (z7A) or 6-methyladenine (m6A) with A in the central 

strand renders triplex formation impossible as it eliminates the essential hydrogen bonds 

needed for Hoogsteen interactions (Lee et al., 1984).   

Initial investigations showed triplexes containing three separate polynucleotide 

strands.  However, it was later suggested (Lee et al., 1984) and demonstrated that it was 

possible to form intramolecular triplexes from a double-stranded helix (Mirkin et al., 

1987; Kohwi and Kohwi-Shigematsu, 1988).  This type of triplex structure was referred 

to as H-DNA as initial results showed the formation occurred at low pH.  Alternatively 

the name originated because the structure involved Hoogsteen base-pairs.  Regardless, 

in order for a dsDNA sequence to form H-DNA, it must contain mirror repeats of Py-Pu 

(Lyamichev et al., 1985; Lyamichev et al., 1986).   
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As is apparent from figure 1.12, due to the presence of the mirror repeat, there are four 

possible ways for a given intramolecular triplex to form.   

Although any of the four intramolecular triplex structures are possible within a 

given mirror repeat, the conditions under which each one forms varies. Formation of 

Hy3 GC•C+ triplex by d(G)30•d(C)30 at acidic pH can be converted to Hu3 GC•G by 

addition of Mg2+ or by increasing the pH (Kohwi and Kohwi-Shigematsu, 1988).  Thus, 

as with intermolecular triplexes, formation of H-DNA can be modulated by adjusting 

the pH, the addition of different metal ions and changing the DNA sequence.  

As discussed above, PyPu•Py triplexes are formed under acidic pH, while 

PyPu•Pu triplexes require divalent cations.  However, under neutral pH, there is 

unlikely such a high level of metal ions in solution.  One alternative method of 

stabilization for both inter- and intramolecular triplexes was from polyamines spermine 

and spermidine.  This stabilizing effect was most likely a result of the decreased 

repulsion between the phosphate backbones after binding to polyamine (Hampel et al., 

1991).  

The widespread occurrence of polypurine•polypyrimidine tracts in the 

eukaryotic genome (Birnboim, 1978) combined with ability of  intramolecular triplex 

formation to occur within a single duplex DNA region (Mirkin et al., 1987), have 

sparked great interest towards what potential role triplexes might have on biological 

functions.   Initial experiments showed that GATC dam methylation sites adjacent to or 

between intramolecular-triplex forming regions were under-methylated in vivo 

(Parniewski et al., 1990).   Also, triplex-specific monoclonal antibodies, Jel 318 and Jel 

466, have been shown to bind the cell nuclei and chromosomes.  The binding could be 

inhibited by adding competing triplex DNA, but not by the addition of E. coli DNA to 

which the antibodies will not bind (Lee et al., 1987; Agazie et al., 1994; Agazie et al., 

1996).    

Intramolecular triplex DNA could influence gene expression by affecting the 

level of DNA supercoiling (Sinden, 1994).  The duplex to triplex transition could also 

act as a molecular switch by regulating which proteins are able to bind (Lee et al., 

1984).   As well, studies have indicated that triplexes may act as a termination site for 

DNA replication both in vitro and in vivo (Baran et al., 1991; Rao, 1994). 
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Figure 1.12  The various folding patterns adopted for intramolecular triplex formation.  
There are four possible isomers labeled Hu3, Hu5, Hy5 and Hy3.  In all instances, the H 
refers to H-DNA, which is the term coined by (Mirkin et al., 1987) to represent 
intramolecular triplex structures.   The y  and u represents a pyrimidine or purine rich 
region respectively acting as the third strand.  The number 5 and 3 refers to which end 
(5’ or 3’) of the purine or pyrimidine-rich strand is acting as the third strand.  Adapted 
from (Sinden, 1994). 
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1.2.3.4 Tetraplex 

 

Oligonucleotides containing guanine rich sequences are able to adopt novel 

conformations in the presence of monovalent cations.  The fundamental structural unit 

consists of four guanines arranged in a planar configuration (Figure 1.13a). Each 

guanine interacts with each of the two adjacent guanines through Hoogsteen-like 

hydrogen bonds where the N1-H and N2-H of one guanine pair with the N7 and O6 of 

the neighboring guanine (Gellert et al., 1962; Fresco and Massoulie, 1963; Zimmerman, 

1976).  It has previously been shown that the alkali-metal cations were able to promote 

and stabilize such conformations (Pinnavaia et al., 1978). As can been seen from figure 

1.13a, the G-quartet has four oxygen atoms clustered in its center.  Therefore, it is 

logical that cations will not only stabilize this structure, but without a bound cation in 

this cavity, the cyclic arrangement would be electronically unfavorable and would 

collapse (Spackova et al., 1999; Sessler et al., 2000).   In particular, Na+, K+ and Rb+ all 

were able to promote this conformational change while Li+ and Cs+ showed almost no 

ability to do so.  It was also found that Ca2+ and Ba2+ are even more effective at 

stabilizing polypurine tetraplexes (Lee, 1990). Therefore, it can be seen, that the cavity 

made by the G-guartet is size discriminatory.  If an ion is too large it is excluded 

sterically and if it is too small it is unable to bridge the distance between the ligand 

residues in the cavity.  Although G-quadraplexes are made from the same basic 

structural subunit, they can differ in their orientation.  As shown in figure 1.13b, 

tetraplex formation may occur either as a parallel intermolecular association of four 

separate strands (Sen and Gilbert, 1988; Sen and Gilbert, 1990) or as an association of 

two hairpin-forming strands (Sundquist and Klug, 1989) or as a single strand that is 

folded back on itself to comprise three loops (Williamson et al., 1989). In the proposed 

models, the strands are either parallel to each other in which all of the glycosidic torsion 

angles adopt the same anti orientation within the tetrad or antiparallel to each other in 

which case the glycosidic bonds alternate between syn and anti orientations along each 

strand of the quartet (Zimmerman et al., 1975; Sundquist and Klug, 1989).   
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Figure 1.13  A) Guanine tetraplex shown with a coordinated potassium ion.  B)  
Tetraplex formation can occur through a number of different oligoguanine associations.  
Four separate strands can assemble as a parallel-stranded tetraplex.  Oligonucleotides 
containing two oligoguanine repeats can form hairpin structures (only one example of 
this isomer is shown).  A single strand containing a number of oligoguanine repeats 
could also adopt a foldback structure (only one possible isomer shown). 
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The presence of G-rich sequences found in eukaryotic centromeres and 

telomeres suggest a fundamental role of quadraplex formation in these regions.  

Formation of quadraplexes has been shown to inhibit telomerase (Zahler et al., 1991) 

and have been suspected in playing a role in tethering of chromosomes for meiosis (Sen 

and Gilbert, 1988).   

 

1.2.3.5 Synthetic Metallized DNA 

 

It was realized that metal interaction with DNA not only provided stabilization 

and conformational changes, but also improved the conductivity of native DNA.  

Therefore, there has been a growing interest to broaden the structural variety of DNA 

and to change its natural structure to incorporate metal ions.  This has led to some 

promising new approaches including structural changes to the bases as well as the 

incorporations of completely new base pairs (Braun et al., 1998; Aich et al., 1999; 

Tanaka and Shionoya, 1999; Meggers et al., 2000; Atwell et al., 2001; Weizman and 

Tor, 2001; Zimmermann et al., 2002; Tanaka et al., 2003).  

In order to incorporate metal complexes into oligonucleotides the hydrogen-

bonding usually seen in WC base pairing is replaced by metal–assisted base pairing 

through the use of artificial nucleosides such as o-phenylenediamine, catechol or 2-

aminophenol shown in figure 1.14a (Kawasaki et al., 2000; Tanaka et al., 2001; Tanaka 

et al., 2003).  Ligandosides, such as 2,2’-Bipyridine in figure 1.14b, also have a higher 

affinity for metal ions compared to the regular heterocyclic bases and are able to form 

complexes with comparable dimensions to a DNA base pair (Weizman and Tor, 2001).   

Alternative approaches shown in figures 1.14c and 1.14d respectively include the 

design of a base pair between pyridine-2,6-dicarboxylate nucleobase (Dipic) and a 

pyridine nucleobase (Meggers et al., 2000) as well as artificial guanine which can still 

bind effectively to cytidine (Mancin and Chin, 2002).  However, such strategies 

represent a significant synthetic challenge.  As well, drastically changing the structure 

to incorporate metals may improve the conductivity, but it may unfortunately destroy 

the desirable molecular recognition properties of DNA.    
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Figure 1.14  Alternative DNA bases to allow the incorporation of metal ions.  Adapted 
from (Tanaka and Shionoya, 1999; Tanaka et al., 2001; Tanaka et al., 2003; Tanaka et 
al., 2002; Weizman and Tor, 2001; Meggers et al., 2000; Mancin and Chin, 2002.) 
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A promising alternative is a new metal-DNA conformation discovered at the University 

of Saskatchewan by Dr. Jeremy Lee called M-DNA. 

 

1.3 M-DNA 

 

1.3.1 Structure  

 

M-DNA is considered a modified B-type helix of duplex DNA in which metal 

ions such as Zn2+, Ni2+ and Co2+ replace the imino protons of G and T at every base pair 

(Lee et al., 1993; Aich et al., 1999).  The coordination of the metal ion is distorted 

square planar with the solvent providing the fourth ligand.  Although unusual, a 

propeller twist of the bases could give rise to this geometry.  From electrophoretic 

mobility assays, it can be estimated that this new helix is shorter and more compact than 

B-DNA containing approximately 5% fewer base pairs per turn.  Although not all of the 

features of the usual Watson-Crick base pairs are retained in the structure of M-DNA, A 

still pairs with T and G with C (Lee et al., 1993) (Figure 1.15).    

In the presence of Zn2+ at pH 9.0, Calf Thymus (CT) DNA shows an increase in 

melting temperature of approximately 12 degrees compared to DNA in the absence of 

metal ions.     Since previous research shows a destabilizing effect caused by zinc 

(Eichhorn and Shin, 1968), this unexpected stabilization may suggest that a possible 

metal ion complex or structural rearrangement is occurring.      

There are several results that indicate M-DNA formation involves the 

replacement of the imino protons of both G and T with divalent metal ions.  The H1 

NMR imino proton signal for d(TG)15 •d(CA)15 disappears in the presence of 2.4 mM 

Zn2+ at pH 9.0 which is equivalent to one metal ion per base pair (Lee et al., 1993).  As 

well, titration experiments also revealed that one proton is being released per metal ion 

per base pair upon Ni2+ M-DNA formation (Aich et al., 1999).  Not only is the high pH 

reflective of the high pKa for the imino proton on G and T, but results also indicate that 

by reducing the base pKa, M-DNA formation is able to occur at a lower pH as well 

(Wood et al., 2002).   
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Figure 1.15  Proposed structures for the base pairs of M-DNA where M represents the 
Co2+, Ni2+ or Zn2+ and R represents the atom C1’ of the 2’-deoxyribose sugar. Adapted 
from (Aich et al., 1999) 
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  Bacterial DNA ranging in various GC content shows M-DNA formation at 

equivalent rates demonstrating formation is independent of DNA composition.  

However, a large degree of sequence dependence is observed in synthetic polymers 

with a repeating sequence.  The effect of different repeating sequences on the rate of 

Zn2+ M-DNA formation was measured and it was determined that d(TG)n•d(CA)n was 

fully formed the quickest  whereas d(AT)n remained mostly in the B-DNA conformation 

even after one hour  (Lee et al., 1993). 

A second critical experiment was performed using the intercalator, ethidium 

bromide (EtBr).  EtBr binds strongly to both B- and A-type duplexes with a large 

increase in fluorescence which will be discussed in further detail in section 1.4.2.  

However, on addition of Zn2+ at high pH the fluorescence of EtBr was quenched 

suggesting that a novel conformation was being formed.  Since EtBr does not bind to 

M-DNA, a rapid EtBr fluorescence assay was developed which allowed many of the 

basic properties of M-DNA to be elucidated.  Ethidium presumably does not intercalate 

because the metal ion repels the positively charged molecule similar to triplexes 

containing CGC+ base triads that will also not accommodate ethidium (Morgan et al., 

1979; Lee et al., 1984; Scaria and Shafer, 1991).  However, Hoogsteen or other types of 

hydrogen bonding can be eliminated as the cause because replacing the adenosine with 

m6A and z7A did not inhibit the dismutation.   

Various metal ions were assessed for their ability to facilitate M-DNA 

formation.  Generally, only the metal ions that have ionic radii of about 0.70 Ǻ or less 

favoured M-DNA formation.  These include Zn2+, Ni2+ and Co2+ while Mg2+, Mn2+, 

Cu2+, Ca2+ and Ag+ were all ineffective.  Mn2+, Cu2+, and Ca2+ are all ineffective most 

likely as a result from their increased ionic radii of 0.80, 0.92 and 0.99 Ǻ respectively.  

Although Mg2+ has an ionic radius of 0.65, previous results show that it is unable to 

form stable complexes with nitrogen bases and therefore does not form M-DNA.  The 

ionic radius of Ag+ is 1.13 Ǻ and is most likely too large and therefore causes 

denaturation of the helix rather than M-DNA formation.   

Zn2+ is one of the few metal ions which can coordinate well to both oxygen and 

nitrogen.  Therefore, together with its small ionic radius, it is ideally suited for specific 

interaction with the bases of nucleic acids.    
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1.3.2 Properties of M-DNA 

 

The proposed structure of M-DNA consisting of metal-metal distance of 0.4 nm 

suggest that electron transfer could occur within the helix and the molecule could 

behave as a molecular wire.  Therefore, the conductivity of M-DNA has been examined 

by three methods.   

First, duplexes were constructed in which the donor fluorophore (fluorescein) 

was attached to one end of the oligonucleotide and the acceptor fluorophore 

(rhodamine) was attached at the opposite end.  Upon formation of M-DNA the 

fluorescence of fluorescein is quenched which is attributed to electron transfer of the 

excited electron from fluorescein down the helix to the rhodamine where it is absorbed 

(Aich et al., 1999). More recently, a similar system was designed using a DNA Y-

branched junction in which the fluorescein was attached to one arm and the electron 

acceptors rhodamine and anthraquinone were attached to the other two arms.  Not only 

was it shown that electron transfer could occur through the junction, but that the 

quenching could be modulated by chemical reduction of anthraquinone thereby 

mimicking a chemical switch (Wettig et al., 2003a).  Interestingly, if a protein was 

bound to the duplex preventing M-DNA formation or the duplex was simply cleaved 

using a restriction enzyme no quenching was observed in either case (Aich et al., 1999).  

Unfortunately, it has been suggested that the quenching could occur through 

fluorescence resonance energy transfer (FRET) opposed to the proposed electron 

transfer mechanism (Spring and Clegg, 2007).  However, quenching was still observed 

using a different electron acceptor whose absorption spectrum did not overlap with the 

donor fluorescence (Wettig et al., 2005), a system in which FRET is no longer a 

reasonable mechanism (Aich et al., 2002). 

Second, direct measurements of the conductivity of B- and M-DNA have been 

performed with phage λ DNA which is about 15 µm in length (Rakitin et al., 2001). The 

DNA was placed between two gold electrodes separated by a deep physical gap. B-

DNA showed semiconducting behavior with a bandgap of a few meV.  M-DNA, on the 

other hand, showed a linear relationship between current and applied voltage with no 
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apparent bandgap providing direct evidence for metallic-like conduction (Rakitin et al., 

2001).  

Third, electrochemical techniques have been developed to probe self-assembled 

monolayers (SAMs) of short duplexes attached to gold electrodes (Herne and Tarlov, 

1997; Yang et al., 1998; Kelley et al., 1999; Petrovykh et al., 2003). The rate of 

electron transfer through an M-DNA duplex was 1.2 x 10-4 cm/s whereas for B-DNA it 

was too slow to be measured (Li et al., 2003).   

 

1.4 Stability and Formation Analysis of M-DNA 

 

 Various methods have been developed to assess the stability and formation of 

DNA.   Unfortunately, commonly applied methods such as UV absorbance and Circular 

Dichroism are rendered ineffective as large changes are not observed for the conversion 

of B-DNA to M-DNA.   However, the formation of M-DNA can be characterized 

effectively by thermal denaturation profiles.  As well, M-DNA does not bind ethidium 

which allows the formation of M-DNA to be monitored using fluorescence.   

 

1.4.1 Denaturation Profiles 

 

As mentioned previously the denaturation of DNA can be easily followed 

spectroscopically.  Original characterization of M-DNA showed that the Tm of calf 

thymus DNA only increased slightly in the presence of Zn2+ at pH 6.5.  Surprisingly, 

the Tm increased by as much as 12 °C when the pH was raised to 9.0 (Lee et al., 1993).  

This result suggested the possibility of a novel metal-DNA complex.   Other results 

have also shown that the increase in Tm seen in the presence of Zn2+ was even greater 

than that seen for Mg2+ at pH 9.0 (Wood et al., 2002).  This also suggests that the Zn2+ 

is not simply binding to the backbone and most likely is attributed to the conformational 

change to M-DNA.   In this capacity, DNA containing various sequences and novel 

bases were compared at different pH values in the presence of various metal ions using 

thermal denaturation profiles.   
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1.4.2 Ethidium Bromide Assay 

 

Ethidium Bromide (EtBr) is a positively-charged planar aromatic compound 

which has the ability to intercalate between the stacked base pairs of double helical 

DNA.  Although it was originally used as a trypanocidal drug (Kandaswamy and 

Henderson, 1962; Waring, 1965), its enhanced fluorescence upon binding to dsDNA 

has made it an attractive agent for identifying and visualizing nucleic acid bands in 

molecular biology techniques such as agarose gel electrophoresis (Sharp et al., 1973).    

Although EtBr will form a complex with most dsDNA it does exhibit 

preferential binding to pyrimidine (3’-5’) purine deoxydinucleotides as compared to 

purine (3’-5’) pyrimidine isomers (Krugh and Reinhardt, 1975; Reinhardt and Krugh, 

1978).  Although it as been shown that the apparent binding affinity of ethidium is not 

very dependent upon the overall base composition (Waring, 1965; Lepecq and Paoletti, 

1967; Muller and Crothers, 1975), ethidium fluorescence has been reported to be 

slightly higher for AT rich strands (Morgan et al., 1979; Latimer and Lee, 1991).   

As demonstrated in the crystal structure shown in figure 1.16, the planar 

phenanthridinium ring of the ethidium molecule intercalates between adjacent base 

pairs on the double helix.  The DNA becomes saturated at one drug for every two base 

pairs.  This binding pattern is referred to as the neighbor exclusion model and has been 

attributed to alternating sugar puckers hindering the binding at every base pair 

(Crothers, 1968; Bresloff and Crothers, 1981).   

In its unbound form, EtBr has a very low fluorescence intensity which is 

attributed to quenching of the excited state molecule by proton transfer to the water or 

solvent molecules.  However, EtBr fluorescence is enhanced approximately 25 fold 

after intercalating with dsDNA (Lepecq and Paoletti, 1967).  This increase in 

fluorescence is a result of the hydrophobic environment found between the base pairs.  

As the ethidium moves into this environment it sheds away any water molecules that 

were associated with it and therefore slows down the proton exchange leading to a 

longer life time for the excited state and an overall increase in fluorescence (Olmsted 

and Kearns, 1977).   
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Figure 1.16  Structure of Ethidium molecule (top) and the crystal structure of ethidium 
intercalated between 5-iodo-UA (bottom).  Taken from (Tsai et al., 1975). 
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This effect is supported further by the fact that EtBr bound to a triplex is better 

protected from the solvent and consequently has increased fluorescence (Scaria and 

Shafer, 1991).  However, if a triplex carries a positive charge no fluorescence is 

observed in the presence of EtBr (Morgan et al., 1979).  The lack of fluorescence has 

been attributed to the presence of a positive charge on the DNA effectively repelling the 

positively charged ethidium ions and preventing them from  binding to the DNA 

(Morgan et al., 1979; Lee et al., 1984). 

Similarly, EtBr does not bind to M-DNA presumably because the metal ion 

repels the positively-charged molecule (Morgan et al., 1979; Lee et al., 1993).  This 

property allows for a convenient assay to measure the conversion of B-DNA to M-

DNA. (Lee et al., 1993). 

 

1.5 Characterization of B-DNA and M-DNA Monolayers on Gold 

 

As discussed above, denaturation profiles and EtBr assays have been used 

extensively to investigate the physical properties of M-DNA.  In this research, surface 

techniques such as XPS and electrochemistry were also developed.  DNA was also 

immobilized onto a gold substrate through Au-S linkages in order to examine the effects 

of Zn2+ ions on the XP spectra of elements such as nitrogen which is only found on the 

bases and is projected to directly interact with the Zn2+ ion in the M-DNA 

conformation.  As well, detailed information such as the elemental ratios, DNA 

coverage, density and thickness are all able to be investigated through the use of XPS.  

Finally, the electronic properties of M-DNA will be assessed through the use of cyclic 

voltammetry, chronocoulometry and electrochemical impedance spectroscopy.  

 
 
1.5.1 Preparation of the Gold Substrate 

 

Polycrystalline gold was the chosen substrate as it is a relatively inert metal and 

has the capacity to easily attach DNA through thiol or disulfide adsorption as they 

coordinate very strongly to gold (Finklea, 1996).  Although a well-defined single crystal 

face is important for many surface analytical techniques, there is no consistent evidence 
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that pinhole-free SAMs require a single crystal surface.  The presence of impurities, 

grain boundaries, or large steps between atomically smooth planes may have more 

effect on the electrochemical properties of the SAM-coated electrode than the degree of 

crystallinity (Finklea, 1996). 

However, before the substrate can be used, the gold must be cleaned.  The two 

procedures, used in this thesis, for cleaning the gold substrate include immersion of the 

substrate in a powerful oxidant called “piranha” solution and electrochemical cycling in 

dilute sulfuric acid.  These will be discussed in further detail in the Material and 

Methods.  Both procedures lead to hydrophilic gold surfaces which are completely 

wetted by water.  Any partial dewetting of the gold surface by water indicates 

incomplete cleaning and the presence of organic contaminants (Whitesides and 

Laibinis, 1990).      

 

1.5.2 Preparation of Self-Assembled Monolayers 

 

Although organized monolayers can be deposited in a number of ways using 

various substrates, this discussion will focus on self-assembled monolayers formed by 

strong adsorption of thiols and disulfides onto a gold substrate (Nuzzo and Allara, 1983; 

Nuzzo et al., 1987a).  The chemisorption of alkanethiols or dialkyl disulfides on gold 

are easily obtained by exposing a clean gold surface at room temperature to a 0.1 mM 

solution of the organosulfur compound.  The organosulfur species formed from both 

alkanethiols and dialkyldisulfides at the Au0 surface is a AuI thiolate (Nuzzo et al., 

1987b).  In the case of dialkyl disulfides, this surface gold thiolate is undoubtedly 

formed by oxidative addition of the sulfur-sulfur bond to Au0.  Formation of a gold 

thiolate from a thiol requires loss of hydrogen, but whether this hydrogen is lost as H2 

or lost as water through reactions with trace oxidants in the system is presently not 

known.   

 

 



 41 

The absorption time is roughly equal for both processes and the energy of the bond 

between the organic thiolate and the gold surface is approximately 40-45 kcal/mol 

(Nuzzo et al., 1987b).  A number of studies indicate the alkyl chains are largely trans 

extended, with the axis of the chain tilted approximately 30° from the surface normal 

(Porter et al., 1987).  Also the sulfur atoms rest in threefold hollows of the gold surface 

(Fenter et al., 1994; Love et al., 2005). Therefore the overall organization is obtained 

from the affinity of the sulfur to the gold substrate combined with the favorable 

interactions between close-packed tail groups.   

    

1.5.3 X-Ray Photoelectron Spectroscopy 

Photoelectron spectroscopy is a common technique used to examine the 

composition and electronic state of species at the surface or near-surface region.   The 

photoelectric effect is the foundation of this technique.  As illustrated in figure 1.17, 

incident photons are absorbed by various atoms or molecules leading to the ionization 

and the emission of a photoelectron (Einstein, 1905).   

M + hv → M+ + e- 

Based on the principles of conservation of energy, the above equation can be interpreted 

as follows: 

hv –E(e-)  = E(M+) – E(M) 

where E(M) and E(M+) are the energies of the atom or molecule M and the ion M+ 

formed by the ionization, and E(e-) is the kinetic energy of the photoelectron.  Since hv 

is known and E(e-) can be measured, the difference between the energies of the ion and 

the original molecule is obtained.   

 



 42 

 

Figure 1.17  (Top)  Classic Bohr model illustrating the transfer of energy from the 
initial X-ray photon to a core-level electron leading to photoemission.  (Bottom) 
Energy Diagram showing ejection of inner 1s electron.   
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The difference in energy between the ionized and neutral atoms is generally referred to 

as the binding energy (BE) which leads to the following equation. 

KE = hv – BE 

However, the BE’s in solids are measured with respect to the Fermi-level of the solid, 

rather then the vacuum level.  As illustrated in the energy diagram in figure 1.17, an 

additional energy is required to raise an electron from the solid to the energy level 

corresponding to an electron at rest in vacuum.  This energy difference is referred to as 

the work function (Φ) and is incorporated into the above equation as follows. 

KE = hv – BE – Φ 

Photoelectric emission occurs if a photon with energy greater than the work function is 

applied.  Any excess energy is given to the electron as kinetic energy.  Depending on 

the energy of the incident photons, photoelectron spectroscopy can be classified as 

either ultraviolet photoelectron spectroscopy (UPS) or x-ray photoelectron spectroscopy 

(XPS).  UPS uses photons in the ultraviolet spectral range of 10-50 eV and is used to 

study valence electrons.  Conversely, XPS uses x-rays in the range of 100 eV – 10 keV 

in order to examine the inner core electrons.  Since only XPS experiments were 

performed for this thesis, UPS will no longer be discussed.   

XPS instrumentation consists of an x-ray source, a sample, an electrostatic lens 

system, an electron energy analyzer, an electron detector and a computer system for 

data collection and processing (Riviere, 1990; Riviere, 1998) (Figure 1.18) .  Analysis is 

done in an Ultra-High Vacuum so as to remove adsorbed gases and eliminate adsorption 

of contaminants on the sample.  The x-rays are generated by bombarding a metallic 

anode with high energy electrons (10-15 keV) and are then focused onto the sample 

though use of a monochromator.  The energy of the generated x-rays is determined by 

the anode material which is usually Al or Mg.   When x-rays strike the sample, a core 

electron can absorb the energy and be emitted with a range of energies.   
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Figure 1.18  Schematic diagram of X-ray Photoelectron Spectrophotometer.  The key 
components include X-ray source, collection lens, hemispherical analyzer, detector and 
computer analyzer. 
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An electrostatic lens system collects a portion of these emitted electrons and focuses 

them into an electron energy analyzer called a concentric hemispherical analyzer 

(CHA).  This analyzer consists of two plates.  Different voltages are applied to each 

plate creating an electric field between them.   Electrons entering the analyzer with a 

high energy will contact the outer plate while those with low energy will be attracted to 

the inner plate.  In this capacity, only electrons in a narrow energy region, referred to as 

the pass energy, are able to travel the distance of the analyzer and reach the detector.  A 

variable retarding voltage is applied to a deceleration element in the transfer lens of the 

CHA.  Therefore, only electrons that leave the target with a specific energy enter and 

pass through the analyzer to the detector.  The commonly used electron detector is 

referred to as a channeltron.  This consists of a bent tube coated with an insulating 

material which when struck by an electron emits a number of secondary electrons that 

are accelerated through the channeltron.  This process is repeated throughout the length 

of the tube producing a large number of secondary electrons and therefore an amplified 

signal.  The spectrum is obtained by recording the numbers of electrons as a function of 

the retarding voltage.  This allows the energy resolution to be constant over the entire 

spectrum.   

1.5.3.1 XPS Spectra Analysis 

The intensity of a peak depends on how efficiently the x-ray interacts with the 

specific electron to cause the photoemission process to occur.  The efficiency of the 

photon interaction with the electron is determined by the photoelectron cross section, σ 

(Scofield, 1976).  Each spectral line also has a specific width or resolution which is 

usually defined as the full-width at half maximum.  There are three main contributors 

that affect the photoelectron line width in an XPS spectrum.  First, the Heisenberg 

uncertainty principle states that if the lifetime of an atom or molecule in an 

electronically excited state is quite short, there is consequently a greater variability in its 

energy and therefore a broadening of the spectral line will be observed (Heisenberg, 

1927).     

π4/htE <∆∆  
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Secondly, the natural line-width of the anode material used as the x-ray source usually 

limits the overall energy resolution.  However, the use of a monochromator does reduce 

line width and therefore improves the resolution.  Finally, the resolution is also affected 

by the pass energy and slit width of the analyzer.  Therefore the peaks are fitted using a 

convolution of a Gaussian function to account for the principal x-ray line and 

instrumental response and a Lorentzian function to model the lifetime broadening due to 

the uncertainty principle. 

Not only is the line shape important, but the background shape must be 

considered as well.  Since X-rays penetrate far into the material compared to the depth 

from which electrons of a given kinetic energy can escape from the surface, there are 

changes to the background resulting from energy loss occurring as the photoelectrons 

are ejected from the surface material.   Therefore, XPS spectra characteristically show 

an increase in the intensity of the background level on the high energy side of all peaks 

in an XPS spectrum.  This phenomenon is a result of inelastic scattering.  For instance, 

only electrons close to the surface can escape without energy loss.  Electrons deeper in 

the surface lose energy from inelastic scattering and emerge from the sample with 

reduced KE, and therefore increased BE.  Electrons very deep in the surface lose all 

energy and cannot escape at all.  Inelastic scattering is caused from photoelectrons 

traveling though the solid and interacting with other electrons in the material.  The 

energy loss can result from the primary photoelectron losing energy from a single 

scattering event as it leaves the sample or multiple scattering events causing secondary 

low energy electrons to be ejected from the material (Shirley, 1972; Tougaard and 

Sigmund, 1982) 

Since electrons have spin, those ejected from core levels with primary quantum 

numbers p, d, f show two observable peaks.  The separation between the two peaks is 

referred to as spin-orbit coupling (Laidler and Meiser, 1995).  These doublet states are 

characterized by total angular momentum given by j.  

2
1±= lj  
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The relative intensities of these doublet pairs can be calculated from 2j + 1. Thus for p 

electrons where the angular momentum equals one, the relative intensities are 1:2, while 

for d electrons the doublet pairs are in the proportion 2:3 and for f electrons the ratio is 

3:4.   

1.5.3.2 Variable angle XPS 

Variable angle XPS (VAXPS) can be used in order to investigate the depth 

distribution of different chemical species.  In VAXPS, the effective sampling depth is 

dependent on the angle of the sample relative to the detector.  As shown in figure 1.19, 

as the Take-Off Angle (TOA) goes from 90° to 30° the sampling depth decreases and 

detection becomes more sensitive towards species at the surface.  Therefore, by 

comparing intensities at low and high take-off angles the approximate location of the 

species can be determined.   

1.5.4 Electrochemistry 

Electrochemistry investigates the transfer of charge between a metallic electrode 

and a species in a conductive solution.  Therefore, in a simple scenario, this involves the 

transport of the reactant to the electrode surface where electron transfer is able to occur.  

Through oxidation or reduction, the product is produced and returned back to the bulk 

solution.  Although the reaction of interest only occurs at the surface of the working 

electrode (WE), an auxiliary or counter electrode (CE) must be included in order to 

complete the circuit allowing the flow of current.  The CE is most commonly an inert 

metal to prevent any interfering reactions and whose electrochemical properties do not 

affect the behavior of the WE.  In most cases, a reference electrode (RE) is also 

included to monitor or maintain a specific potential at the WE.  The reference electrode 

has a high impedance to prevent current from passing through it and consequently 

retains a constant potential (Bard, 2001).  As well, trace amounts of chloride ions might 

adsorb onto the electrode surface changing its electrochemistry.  Therefore a salt bridge 

is also used to electrically connect the reference electrode to the main body of the cell to 

prevent the leakage of ions.  A typical three electrode cell setup is shown in figure 1.20.   
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Figure 1.19  As the sample is rotated, maintaining the X-ray source and detector in 
fixed positions, the effective sampling depth decrease by a factor of sinθ.  The sample 
angle, θ, is defined relative to the surface normal. 
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Figure 1.20  Typical experimental setup of three-electrode cell.  Circuit schematic 
taken from (Bard, 2001) 
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1.5.4.1 Cyclic Voltammetry 

In cyclic voltammetry, a potentiostat is used to direct the flow of electrons by 

controlling the potential at the WE. As illustrated in figure 1.21, if the potential at the 

electrode becomes increasingly negative, the energy of the electrons increases until they 

reach a level high enough that it is thermodynamically favorable to transfer into vacant 

electronic states on species in the electrolyte.  Therefore electrons flow from the 

electrode to the solution resulting in the reduction of the species in the electrolyte.  In 

this instance, the electrode is referred to as the cathode.  Similarly, the energy of the 

electrons can be lowered to a positive potential in which the electrons from the species 

in the solution will find it more energetically favorable to transfer to the electrode.  The 

flow of electrons from solution to the electrode will result in the oxidation of the species 

in the electrolyte and therefore the electrode is considered to behave as an anode.   

In this manner CV experiments are performed by linearly sweeping the potential 

between two values at a fixed scan rate.  A typical CV recorded for a reversible single 

electrode transfer reaction for [Fe(CN)6]
3-/4- is shown in figure 1.22.  As the voltage is 

swept from a positive to negative potential, a current begins to flow as FeIII  is being 

reduced to FeII at the surface of the electrode.   However, for the reaction to continue a 

constant supply of reactant must approach the surface which is accomplished through 

diffusion.  As more products are created over time, the concentration of reactant 

approaches zero at the electrode surface and a maximum (Ipc) eventually occurs.  At this 

point, the diffusion layer becomes too thick to sustain the transfer of enough reactant to 

the electrode surface and the current begins to drop off according to the Cottrell 

equation (Bard, 2001).  When the scan is reversed, the FeII which has been 

accumulating at the electrode surface from the preceding reduction reaction can now be 

oxidized back to FeIII in an identical manner.  The most important parameters for a CV 

are labeled in figure 1.22 and include the cathodic peak current (Ipc) and potential (Epc) 

as well as the anodic peak current (Ipa) and potential (Epa).  The peak potentials provide 

information regarding the identity of the analyte and the kinetics of the redox process 

where as the peak currents supply information about the analyte concentration and 

stability of the electrogenerated species (Bard, 2001).   
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Figure 1.21   Representation of the oxidation and reduction process at an electrode-
solution interface.  Adapted from (Bard, 2001) 
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Figure 1.22  A typical cyclic voltammogram showing reversible electron transfer.  
Anodic and cathodic current (Ipc, Ipa) and potentials (Epc, Epa) are indicated.   
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1.5.4.2 Electrochemical Impedance Spectroscopy 

EIS offers several advantages over cyclic voltammetry because the effects of 

solution resistance, double-layer charging and current due to diffusion or to other 

processes occurring in the monolayer are observed more explicitly (Bard, 2001). 

Impedance is measured by applying an AC potential to the electrochemical cell 

and measuring the resulting current.  As the name implies, the impedance is the ability 

of a circuit to oppose the flow of current.  There are two components that contribute to 

the total impedance in our system and will be discussed further.  The simplest of these 

components is the common resistor as it is not dependent on frequency.  Therefore at 

any specific voltage, the current can be easily predicted by Ohms Law.   However, the 

capacitance is more complex as it is dependent upon the frequency.  Therefore, to 

investigate the behavior of our electrochemical system, the impedance was measured 

over a range of frequencies.  

EIS is advantageous because a model based purely on electronic components 

can be used to represent the electrochemical system.  For example, the impedance of an 

electrode undergoing electron transfer through a DNA self-assembled monolayer is 

usually described on the basis of the model developed by Randles (Randles, 1947).  The 

circuit components in the Randles cell can easily be compared with familiar physical 

phenomena (Figure 1.23).  The solution resistance term, RS, represents the resistance of 

the solution between the counter and the working electrode.  The charge transfer 

resistance term, RCT, results from the transfer of electrons from the redox probe to the 

DNA monolayer, through the base pairs of the DNA helix and from the helix to the 

surface of the gold electrode.  The array of charged species and oriented dipoles 

existing at the metal-solution or DNA-solution interface create an electrical double 

layer which has been shown to resemble a capacitor (Cdl).  As well, at low frequency, 

diffusion begins to dominate the electrochemical reaction and this mass transfer is 

referred to as Warburg Impedance (W).   
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Figure 1.23 Randles equivalent circuit consists of the solution resistance through the 
redox probe (RS), the charge transfer resistance through the DNA (RCT), the double 
layer capacitance (Cdl) and the Warburg constant (W).  
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If a circuit is comprised of only a resistor, the sinusoidal waves for the current 

and voltage are in the same phase and differ only in amplitude.  However, when a 

capacitor is added to the circuit, the waves differ in both amplitude and phase.  This can 

be represented graphically, by using x,y coordinates, magnitude and phase angle, or by 

using a complex number.  In order to graph both components on the same graph, the 

capacitance term is simply calculated as a complex or imaginary number which is 

plotted on the y-axis and the resistance is then plotted on the x-axis and labeled as the 

real component.  This popular format for evaluating electrochemical impedance data is 

referred to as the Nyquist plot.   Figure 1.24 illustrates the expected response for the 

simple Randles circuit shown above the graph.  Each point represents the impedance 

value at a specific frequency which decreases from left to right.  At high frequencies, 

there is not enough time for charge to build up on the plates of the capacitor as the 

charges are constantly being added and removed as the current direction changes.  

Therefore, there is no electric field to resist the flow of current and the impedance 

through the capacitor approaches zero.  Thus at high frequencies, the cell is controlled 

almost entirely by the initial resistance term.  At very low frequencies, charge is able to 

build up causing an electric field.  Eventually, it becomes so large that it is unable to be 

further charged resulting in no voltage drop across the plates preventing any flow of 

current.  Therefore, it is effectively removed from the circuit and the impedance of the 

cell becomes a combination of both the resistors.  Therefore, only at intermediate 

frequencies does the capacitor begin to have an effect which is evident from the 

increased imaginary values on the y-axis.  Although the capacitance is difficult to 

calculate from such a graph, this plot format is advantageous as the charge transfer 

resistance of the system can be easily read and compared. 
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Figure 1.24  Randles circuit comprised of a 10 Ω resistor followed by a 100 Ω resistor 
and 100 µF capacitor in parallel. Below is the corresponding Nyquist plot showing the 
resistance plotted along the x-axis and the capacitance comprising the y-axis 
component. 
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1.6 Objectives 

 

The potential utility of M-DNA is restricted by the narrow pH range under 

which it will form (Lee et al., 1993).   Therefore, the first objective of this thesis was to 

incorporate novel nucleotides into DNA and examine their effect on the formation and 

stability of M-DNA in the presence of Zn2+.  Using thermal denaturation profiles and 

the ethidium fluorescence assay, it was successfully shown that both sequence and base 

composition were able to lower the pH at which M-DNA formation could occur.    

As previously mentioned in section 1.2.3.5, there has been continued interest in 

the development of DNA scaffolding that can localize metal ions to specific locations. 

Therefore, it was our second goal to use sequence effects and base replacements in 

order to localize metal ions at specific locations throughout the M-DNA helix.  

Convincing results were obtained in solution using the ethidium fluorescence assay.  

Therefore, the next step was to use DNA self-assembled monolayers to examine how 

these gaps in the helix would alter the conductance through the DNA.  First, detailed 

characterization of B- and M-DNA monolayers were examined using X-ray 

photoelectron spectroscopy followed by the examination of the electronic properties 

using various electrochemical techniques including cyclic voltammetry and 

electrochemical impedance spectroscopy.    
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2.0 MATERIALS AND METHODS 

 

2.1 Chemical and Biological Reagents, Supplies and Equipment 

 

Table 2.1 contains a comprehensive list of all chemical and biological reagents, 

supplies and equipment used for research experiments described throughout this thesis.  

All chemicals were ACS grade or better.  A list of DNA primers used for PCR as well 

as the names and sequence for all synthetic oligonucleotides can be found in Table 2.2. 

 

2.2 Nucleic Acids 

 

2.2.1 Production of Synthetic Repeating-sequence DNA 

 

Duplex DNAs were synthesized by methods described previously with slight 

variations to the reaction conditions in order to improve synthesis (Morgan et al., 1974).  

Reaction mixtures were prepared in 50 mM potassium phosphate (Kpi) buffer pH 7.0 

with 5mM MgCl2, 2 mM NTPs, 50 µg/mL albumin, 15 µM double-stranded 

poly[d(AT)] or poly[d(TG)•d(CA)] as primer and 2 units of Escherichia coli DNA 

polymerase in a final volume of 2 mL.  Since the sequence is repetitive, there is strand 

slippage creating overhangs which allow polymerase a template to elongate the DNA. 

Reactions were incubated at 37 °C, and the synthesis was followed by the ethidium 

fluorescence assay (Lepecq and Paoletti, 1967; Morgan et al., 1974).  The fluorescence 

measurements were made on a Hitachi F-2000 fluorescence spectrophotometer set at 

525 nm excitation and 600 nm emissions.  The spectrofluorometer was calibrated with 

10 µL of a 50 µg/mL Calf Thymus DNA standard in 2 mL of ethidium buffer (5 mM 

Tris-HCl pH 8.0, 0.5 mM EDTA, and 0.5 µg/ml ethidium bromide).  At various times 

during the reaction, 10 µL of sample was removed and measured.   
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Table 2.1 Chemical and Biological Reagents, Equipment and Supplies 

Item Supplier 

Chemical and Biological Reagents  

(1,3-bis[tris(Hydroxymethyl)-methylamino]propane) (Bis-Tris) Sigma 

2'-deoxyadenosine-5'-triphosphate (dATP) Pharmacia 

2'-deoxycytidine-5'-triphosphate (dCTP) Pharmacia 

2'-deoxyguanosine-5'-triphosphate (dGTP) Pharmacia 

2'-deoxythymine-5'-triphosphate (dTTP) Pharmacia 

2'-dexoxyuridine-5'-triphosphate (dUTP) P-L Chemicals 

2-thio-2'-deoxythymine-5'-triphosphate (s2T) Trilink  

2-(N-cyclohexylamino)ethanesulfonic acid (CHES) Sigma 

2-(N-Morpholino)ethanesulfonic acid (MES) Sigma 

3-(N-Morpholino)propanesulfonic acid (MOPS) Sigma 

4-thio-2'-deoxythymine-5'-triphosphate (s4T) Trilink  

Agarose (ultra pure) Gibco BRL 

Argon (gas) Praxair 

Bacteriophage Lambda DNA (λ DNA) Pharmacia 

Bromophenol blue Pharmacia 

Calf thymus DNA (type I: sodium salt)  Sigma 

Cobalt Chloride hexahydrate (CoCl2·6H2O) Sigma 

Concert TM Rapid PCR purification system Gibco BRL 

Copper (II) sulfate pentahydrate Sigma 

di-Potassium hydrogen orthophosphate (K2HPO4) BDH 

DNA molecular weight markers Roche, NEB 

Ethidium Bromide (EtBr) Sigma 

Ethylenediaminetetraacetic acid disodium salt (EDTA) BDH 

Hydrochloric acid (HCl) BDH 

Magnesium Chloride (MgCl2) Sigma 

Magnesium Perchlorate hexahydrate (MgClO4)2·6H2O Alfa Aesar 
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N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) Sigma 
     Sodium salt (HEPES) 

Sigma 

Nickel Chloride hexahydrate (NiCl2·6H2O) Sigma 

Nitrogen (gas) Praxair 

Perchloric Acid, 70% EMD 

Potassium dihydrogen orthophosphate (KH2PO4) BDH 

Potassium hexacyanoferrate (II) K4[Fe(CN)6] Sigma 

Potassium hexacyanoferrate (III) K3[Fe(CN)6] Sigma 

Potassium hexachloroiridate (IV) (K2IrCl6) Alfa Aesar 

Sodium Chloride (NaCl) Sigma 

Sodium Hydroxide (NaOH) BDH 

Sodium Perchlorate (NaClO4) Sigma 

Taq DNA polymerase Amersham 

Tris[hydroxymethyl]aminomethane (Tris) Sigma 

Tth DNA polymerase Roche 

Zinc Chloride (ZnCl2) Sigma 

Zinc Perchlorate hexahydrate Zn(ClO4)2·6H2O Sigma 

Equipment and Supplies  

0.20 µM filter discs Nalgene 

18- and 30-guage needles Becton Dickinson 

Accumet Basic pH electrode Fisher 

Absorbance Spectrophotometer 260 Gilford 

Ag/AgCl Reference Electrode BASi 

Alumina Polishing Pads BASi 

Axis-165 (Kratos Analytical) ACSES 

Disposable fluorescence cuvettes VWR 

Double-junction reference electrode chamber BASi 

Eppendorf Tubes, 15 mL and 50 mL VWR 

F-2000 fluorescence spectrophotometer Hitachi 

F-2500 fluorescence spectrophotometer Hitachi 
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Falcon tubes, 15 mL and 50 mL VWR 

Faraday Cage  VoltaLab 

Gold-coated silicon wafers (1000 Å Au) Platypus Tech. 

Micropipettors and tips Eppendorf 

Millipore Q System Millipore 

Pasteur pipettes and bulbs VWR 

Platinum wire, annealed 0.5 mm Alfa Aesar 

Polishing alumina, 0.05 µM,  7mL BASi 

Potentiostat model 283 PAR 

Quartz cuvettes (1 mL) Fisher 

Single block easy cycler system Ericomp 

Syringes, 60 mL, 20 mL and 1 mL Becton Dickinson 
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Table 2.2 Names and Sequences of DNA Primers and Synthetic Oligonucleotidesa 

 

Name 
 

Sequence 

Primers 
 

 

λ-13 
 

5'-GCG GGT TTT CGC TAT TTA TG-3'  

λ-509 
 

5'-CAG CGG AGT CTC TGG CAT TC-3' 

Oligomers 
 

 

TG-30 HO-(CH2) 6-SS-(CH 2) 6-  
 

5'-TGT GTG TGT GTG TGT GTG TGT GTG TGT GTG-3' 
3'-ACA CAC ACA CAC ACA CAC ACA CAC ACA CAC-5'  

Mx-30a HO-(CH2) 6-SS-(CH 2) 6-  
 

5'-ATA TAT ATA TAT ATA TGT GTG TGT GTG TGT-3' 
3'-TAT ATA TAT ATA TAT ACA CAC ACA CAC ACA-5' 

Mx-30b HO-(CH2) 6-SS-(CH 2) 6-  
 

5'-TGT GTG TGT GTG TGT ATA TAT ATA TAT ATA-3' 
3'-ACA CAC ACA CAC ACA TAT ATA TAT ATA TAT-5' 

Mx(s4T)-30a HO-(CH2) 6-SS-(CH 2) 6-  
 

5'-ATA TAT ATA TAT ATA TGT GTG TGT G TG TGT-3' 
3'-TAT ATA TAT ATA TAT ACA CAC ACA CAC ACA-5' 

Mx(s4T)-30b HO-(CH2) 6-SS-(CH 2) 6-  
 

5'-TGT G TG TGT GTG TGT ATA TAT ATA TAT ATA-3' 
3'-ACA CAC ACA CAC ACA TAT ATA TAT ATA TAT-5' 

 
a Primers were purchased from the University of Calgary Regional DNA Synthesis Lab.  
Oligomers were purchased from the Plant Biotechnology Institute.  The location of the 
incorporated 4-thiothymines in Mx(s4T)-30 are indicated by the blocked characters in 
the sequence. 
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Reactions were allowed to continue linear synthesis until the reaction rate decreased at 

which time the synthesis was terminated by adding 25 mM EDTA (pH 8.0). 

 

2.2.2 Production of Lambda DNA by PCR 

 

A 496 bp duplex DNA fragment from the bacteriophage lambda genome was 

amplified using primers λ-13 and λ-509 listed in Table 2.2.  Each polymerase chain 

reaction contained 20 µL of 10X PCR buffer (500 mM KCl, 15 mM MgCl2, and 100 

mM Tris-HCl pH 9.0), 15 µM of lambda template DNA, 9.6 µM of each primer, 0.25 

mM of each dNTP, 10 U of Taq DNA polymerase and sterilized ddH2O in a final 

volume of 200 µL.  The reaction mixtures were covered with 1 drop of parafilm oil and 

run in an Ericomp thermocycler.  Reactions were cycled 30 times with each cycle 

consisting of 30 sec (94°C), 30 sec (45°C) followed by 1 minute (72°C).  Following 

purification (see below), the length of the PCR products were verified by agarose gel 

electrophoresis (Figure 2.1).  The amplified DNA was run along side molecular weight 

markers on a 2% (w/v) agarose gel dissolved in running buffer (40 mM TRIS-Acetate 

pH 8.0, 20 mM sodium acetate, and 0.1 mM EDTA).  The samples were 

electrophoresed at 80 V for 2 hours in a BioRad horizontally submerged gel apparatus 

and then stained with 2.0 µg/mL EtBr overnight on a shaker.  The gels were then 

photographed under illumination by UV light at 365 nm.   

 

2.2.3 Purification of Nucleic Acids 

 

All synthesized DNA was purified with the Concert ™ rapid purification system 

as per manufacturers instructions (Gibco BRL) using 10 mM Tris-HCl (pH 7.5, 8.0, 8.5) 

or 10 mM 2-[N-Cyclohexylamino]ethanesulfonic acid (CHES) (pH 9.0) with 5 mM 

NaCl at 65°C to elute the final purified product. 
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Figure 2.1  Ethidium Bromide fluorescence image showing the electrophoresis of PCR 
product for λ-496 DNA.  The gel was run on 2.0% agarose.  Roche DNA molecular 
weight marker VIII was loaded at 2 µL in the first lane. Five µL of PCR reaction was 
loaded into each of the lanes. 
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2.2.4 Oligonucleotides 

 

The 30-mer oligonucleotides were synthesized in the Plant Biotechnology 

Institute (National Research Council, Saskatoon, Canada) with a DNA standard solid 

synthesizer, purified by HPLC and characterized by MALDI-TOF MS.  DNA duplexes 

were prepared by adding 10 nmol of the disulphide-labeled DNA strands to 10 nmol of 

the complementary strands in a final volume of 100 µL in 20 mM Tris-ClO4 and 100 

mM NaClO4 for at least 4 hrs at room temperature.  The oligonucleotides were then 

electrophoresed on a 20% non-denaturing polyacryalamide gel in order to validate 

correct lengths and hybridization (Figure 2.2).  Gels were poured and run in 1x TBE at 

low voltage to prevent denaturation of small fragments of DNA by heating.  The gels 

were then stained with 2.0 µg/mL EtBr overnight on a shaker.  The gels were 

photographed under illumination by UV light at 365 nm.  Hybridization and 

concentration was confirmed using the ethidium fluorescence assay (Le Pecq and 

Paoletti, 1966).   Although the presence of ssDNA can not be completely ruled out, the 

concentration of dsDNA calculated from both fluorescence and absorbance 

measurements were equivalent, indicating an undetectable concentration of ssDNA in 

solution. 

 

2.3 Thermal Denaturation Profiles 

 

The Tm measurements were recorded on a Gilford 600 spectrophotometer 

equipped with a thermoprogrammer using a 0.5 °C/min heating rate with a DNA 

concentration of 15 µg/mL.  The buffer contained 10 mM Tris-HCl (pH 7.5, 8.0, 8.5) or 

10 mM CHES (pH 9.0) and 5 mM NaCl with or without 0.2 mM metal ion.   
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Figure 2.2  Ethidium bromide fluorescence image showing the electrophoresis of 30-
mer oligonucleotides.  The gel was run with 20% non-denaturing polyacrylamide gel 
for small DNA fragments. USB DNA low molecular weight marker was loaded at 2 µL 
in the first lane. Five µL of duplex oligonucleotide was loaded into each of the lanes. 
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Table 2.3 Experimental and Calculated Melting Temperatures of the  
Oligonucleotidesa 

 
 
 

NAME Tm (°C) Calculated 

Mx-30a 58.9 ± 0.4 59 

Mx-30b 59.6 ± 0.3 59 

TG-30 73.4 ± 0.1 70 

 
 
aThe calculated melting temperatures were derived from the publicly available program 
MeltCalc.   
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2.4  Ethidium Fluorescence Assay  

 

Briefly, if B-DNA is added to a pH 8.3 buffer containing ethidium and 0.2 mM 

Zn2+, the ethidium will bind and the fluorescence will be enhanced.  If M-DNA is added 

to the same buffer the conversion to B-DNA is very slow, ethidium does not bind and 

there is no enhancement of fluorescence (Lee et al., 1993). By addition of EDTA, the 

M-DNA is converted back to B-DNA and the fluorescence is restored.  The addition of 

EDTA also serves to distinguish between M-DNA and denatured DNA since the later 

does not bind ethidium to yield high fluorescence with or without EDTA (Figure 2.3). 

A modified form of the ethidium fluorescence assay was used in which the DNA 

and ZnCl2 were incubated in the presence of ethidium bromide.  This technique has 

been used previously and the ethidium bromide does not affect M-DNA formation 

(Wood et al., 2002).  Aliquots of 10 µL 150 µM DNA (in bases) in 10 mM, CHES (pH 

9.0) with 5 mM NaCl were added to 2 mL of ethidium fluorescence buffer (EFB), 

giving a final DNA concentration of 0.71 µM.  The EFB contained 10 mM buffer, 0.2 

mM ZnCl2 and 0.5 µg/ml ethidium bromide.  Eight pHs of buffer were used:  pH 6.0 

with 2-[N-morpholino]ehtanesulfonic acid (MES) buffer, pH 7.0 and 7.2 with 3-[N-

Morpholino]propanesulfonic acid (MOPS), and pH 7.6, 7.8, 8.0, 8.2, and 8.4 with Tris-

HCl buffer.  The aliquots were incubated in the EFB for 30 minutes then the emission at 

600 nm following excitation at 525 nm was recording using a Hitachi F-2500 

fluorescence spectrophotometer.  EDTA was added to a final concentration of 1.0 mM 

following each measurement, and the fluorescence was again measured.  All values are 

reported as percentage B-DNA normalized against the pH 6.0 reading taken as 100% B-

DNA. 
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Figure 2.3 A schematic of the ethidium fluorescence assay 
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2.5 X-ray Photoelectron Spectroscopy 

 

An Axis-165 (Kratos Analytical) photoelectron spectrometer equipped with a 

monochromatic Al-Kα X-ray source with an operating power of 210 W was used to 

collect photoemission spectra at the Alberta Centre for Surface Engineering and 

Science, University of Alberta.  The size of the sample spot was 400 µm x 700 µm and 

an 8 channeltron multidetector was used to collect the energy spectra.  The base 

pressure during measurements was maintained at 5 x 10-10 Torr.  The take-off angles 

were 90, 70, 45 and 30 degrees from surface.  The sample holder was rotated on an axis 

coplanar with the sample surface and intersecting the detector axis.  Survey scans were 

measured from 0-1100 eV binding energy at 160 eV pass energy at a step increment of 

0.33 eV and high-resolution spectra were measured at a pass energy of 40 eV and a step 

increment of 0.1 eV resulting in an energy resolution of 0.76 eV (measured as the 

FWHM for Ag 3d5/2 peak).  The peaks were fit using the publicly available XPSPEAK 

v. 4.1.  The film spectra were referenced to the Au 4f 7/2 at 84.0 eV and also checked 

against the Au 4d5/2 at 335. 2 eV as a secondary reference (Seah, 1989; Powell, 1995).  

Shirley and linear functions were used as a background and Gaussian-Lorentzian 

products were used to fit the individual peaks.   

 

2.5.1 Preparation of DNA Modified Gold Electrodes  

 

Prior to deposition of the films, gold-coated silicon wafers were cut into 

approximately 1cm x 1cm pieces and cleaned in a “piranha solution” consisting of 70% 

H2SO4 and 30% H2O2 (30% H2O2 in H2O) for 10 minutes (Caution! Piranha solution 

should be handled with extreme care and should never be stored in a closed container. 

It is a very strong oxidant and reacts violently with most organic materials).  The 

wafers were then rinsed thoroughly with Millipore water, dried with argon gas and 

immediately immobilized with 10 µL of 100 µM dsDNA dissolved in 20 mM Tris-ClO4 

buffer pH 8.5 with 20 mM NaClO4.  The DNA was deposited onto the freshly prepared 

gold electrode and manually spread to cover the entire gold surface area.  The 

electrodes were placed in a sealed container and incubated for 5 days in a humidifier in 
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order to prevent evaporation of the samples (Galka and Kraatz, 2002; Long et al., 

2003).  After the five day incubation, the wafers were then washed thoroughly with 

buffer in order to remove nonspecifically bound DNA and dried with Argon gas before 

measurements were taken (Yang et al., 1998).  The washing procedure was done using 

a glass Pasteur pipette in order to produce a reasonable amount of hydrodynamic force 

and was repeated using approximately 40 mL of buffer before drying with Argon gas.  

B-DNA was converted to M-DNA by the addition of 0.2 mM Zn(ClO4)2  to the gold 

surface for 2 hours (Li et al., 2003; Long et al., 2003).  As above, the wafers were 

washed with buffer and dried with Argon.  The bare gold control was cleaned with the 

same procedure as the other samples.  After rinsing with Millipore water the wafer was 

dried with Argon and incubated for 5 days alongside the other samples.  

 

2.5.2 DNA Coverage Calculations 

 

In order to determine the DNA coverage, the atomic density of N relative to Au 

(NN/NAu) was first calculated using Equation 3.2, which will be discussed in detail in the 

Results section.  This number was then multiplied by the film thickness in order to 

determine the relative N coverage and finally, was multiplied by 2.72 x 1013 

molecules/cm2 to obtain the DNA coverage.  The numerical factor 2.72 x 1013 

molecules/cm2 was derived by dividing the atomic density of gold, calculated as 5.892 x 

1022 atoms/cm3 assuming a gold density of 19.28 g/cm3, by the number of nitrogen 

(N=217) in one molecule of dsDNA and multiplying by a factor of 10-7 to account for 

the thickness being in nanometers rather than centimeters.   

 

2.5.3 Density Calculations 

 

In order to calculate the density of DNA in g/cm3, the NN/NAu calculated from 

Equation 5 was multiplied by the following conversion factor [19.28 x 

(18616/217)/197] = 8.40 where 18616 g/mol and 217 are the atomic mass and the 

number of nitrogen respectively in one molecule of dsDNA.  The atomic mass and 

density of gold are 197 g/mol and 19.28 g/cm3 respectively.   
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2.6 Electrochemistry 

 

2.6.1 Electrode Preparation 

 

Stationary gold voltammetry electrodes (1.6 mm diameter) were purchased from 

Bioanalytical Systems.  Before use, the electrodes were polished with alumina on fabric 

pads attached to glass plates and then rinsed thoroughly with Millipore water.  Finally, 

they were electrochemical treated by cycling from a potential of 0.2 to 1.5 V versus 

Ag/AgCl in 0.5M H2SO4 solution (Finklea, 1996).  The voltammogram in figure 2.4 

shows two clearly defined peaks separated by a third less distinct peak.  The three peaks 

observed in the anodic scan for bare gold in H2SO4 results from the chemisorption of 

OH species from the breakdown of water molecules at the electrode surface and 

proceed via the following three distinct steps (Woods, 1976). 

 

Au + H2O → Au4OH + H+ + e- 

Au4OH + H2O → Au2OH + H+ + e- 

Au2OH + H2O → AuOH + H+ + e- 

 

These formulas do not represent stoichiometric species, but only denotes the surface-

site occupancy.  The characteristics of clean gold includes a sharp rise in anodic current 

near 1.1 V, a single oxide stripping peak near 0.9 V and a reproducible cyclic 

voltammogram (CV) on successive scans (Figure 2.4).  Any residue of organic 

contaminant left by the preceding cleaning treatments is removed during repeated 

oxidation and reduction of the gold.   
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Figure 2.4  CV of a bare gold electrode cycled in 0.5 M H2SO4 at 100 mV/s.  The 
shaded area represents the integration of the cathodic peak current.   
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2.6.2 Real Surface Area Determination 

An added advantage of performing the above step is that the real surface area of 

the gold electrodes can be estimated from the oxygen adsorption measurements.  After 

the three peaks, there should be an approximate monolayer.  Therefore the coverage can 

be obtained by desorbing the layer on the cathodic potential sweep and calculating the 

amount of charge passed (Figure 2.4).  This can be done by integrating the cathodic 

peak current vs. voltage and then dividing by the scan rate or simply graphing the 

current vs. time and directly integrating the charge.  The charge corresponding to the 

adsorption of one oxygen atom per surface site was calculated to be approximately 386 

µC cm-2 (Woods, 1976).  Hence, the real area is given by the calculated charge of 

cathodic peak divided by 386 µC cm-2.  Importantly, it can be seen that the current 

begins to increase above ~1.5 V due to the onset of molecular oxygen evolution causing 

an increasingly larger cathodic peak (Figure 2.5).  Therefore, care must be taken to stop 

the scan prior to this event in order to achieve a more accurate estimation of surface 

roughness.  Also the charge created from the double layer capacitance should not be 

included when calculated the amount of charge passed. 

Another approach to obtain the real surface area of the gold electrode is to 

perform CV experiments in solution containing a redox probe at various scan rates.  The 

slope from the peak current vs. the inversed square root of the scan rate can be used in 

the Randles-Sevcik equation in order to obtain the area of the electrode.   

( ) 0
2/12/12/351069.2 CvADnI p ×=     (2.1) 

Where the peak current (Ip) is in Amps, n is the number of electrons transferred, the 

diffusion coefficient (D) is in cm2/sec, the scan rate (v) is in V/sec, the concentration is 

in mols/cm3 and the area of the electrode surface (A) is in cm2.   
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Figure 2.5  CV of a bare gold electrode cycled in 0.5 M H2SO4 to increasingly positive 
potentials. 
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Figure 2.6  Cyclic Voltammetry of bare gold electrode performed in 1 mM IrCl6
2-/3- at 

various scan rates.  
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2.6.3 Monolayer Preparation 

 

Immediately following the electrochemical treatment in H2SO4, the electrode 

was thoroughly rinsed with Millipore water, dried with argon and 5 µL of 100 µM  

dsDNA was deposited onto electrode. The freshly prepared electrodes were incubated 

for 5 days in a sealed humidifier in order to prevent evaporation of the samples (Galka 

and Kraatz, 2002; Long et al., 2003).  After 5 days, the electrodes were rinsed 

thoroughly with buffer solution in order to remove nonspecifically bound DNA and 

mounted into an electrochemical cell shown in figure 1.20 in section 1.5.4.1 of the 

Introduction (Yang et al., 1998).   

 

2.6.4 Electrochemical Measurements 

 

All electrochemical experiments were performed in a conventional three electrode 

cell consisting of a gold working electrode with a geometrical area of 2.0 mm2, a 

Ag/AgCl/3 M NaCl reference electrode encased in a double-junction electrode chamber 

containing 3 M KNO3 and finally a Pt wire (0.5 mm diameter) as the auxiliary/counter 

electrode.  The salt bridge was used in conjunction with the reference electrode in order 

to prevent the leakage of Cl- ions which can result in etching of the gold surface or 

stripping of the DNA monolayer.  All experiments were performed in a grounded 

Faraday cage at room temperature using a Princeton EG & G 1025 frequency response 

analyzer interfaced to an EG & G 283 potentiostat/galvanostat.  All data was compiled 

using oligomers Mx-30a and Mx-30b unless otherwise specified. 

Typical cyclic voltammetry experiments were done in 2 mM hexachloroiridate 

(IV) in 20 mM TrisClO4 at a sweep rate of 100 mV/s.   Impedance measurements were 

taken using an ac voltage amplitude of 5 mV with voltage frequencies ranging from 100 

kHz to 25 mHz using an applied potential of 690 mV vs Ag/AgCl.  Measurements were 

performed in 1 mM hexachloroiridate (IV) in 20 mM TrisClO4.  The chronocoulometry 

experiments were done using a 400 mV potential step experiment (900 to 500 mV) in 2 

mM hexachloroiridate (IV) in 20 mM TrisClO4.  The initial potential of 900 mV was 

held for 0.1 sec and then stepped to 500 mV for 9.0 sec.   
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The dsDNA monolayer was converted to M-DNA by incubating the monolayer in 

a solution of 0.4 mM Zn(ClO4)2 in 20 mM Tris-ClO4 buffer (pH 8.6).  Bis-tris propane 

was used for experiments involving buffers at pH 6.0, 6.3, and 6.7.  Denaturation of ds-

DNA was achieved by exposing the monolayer to 10 mM NaOH for 10 minutes at 65 

°C, thorough rinsing with Millipore water followed by an additional 10 minute soak in 

NaOH.   Rehybridization was performed by exposing the film to 100 µM target strand 

in 20 mM Tris-ClO4, 100 mM NaClO4 (pH 7.1) for 3 hours.   

 

2.6.4.1 Determination of DNA Surface Density  

 

Chronocoulometry experiments were also performed in order to determine the 

DNA concentration on the gold surface (Steel et al., 1998; Yu et al., 2003).  The 

measurements were done in Tris buffer (pH 8.5) in the presence and absence of 100 µM 

[Ru(NH3)6]
3+.  Since [Ru(NH3)6]

3+ binds to the negatively charged phosphodiester 

backbone of DNA  in a 1:3 ratio, the amount of charge-compensating redox marker can 

be used to determine the DNA surface density with the integrated Cottrell equation, 

which expresses charge Q as a function of t  

0
2/1

2/1

*
0

2/1
02 Γ++= nFAQt

CnFAD
Q dlπ    (2.2) 

where n is the number of electrons per molecule for reduction, F is the Faraday constant 

(C/equiv), A is the electrode area (cm2), D0 is the diffusion coefficient (cm2/s), C0* is 

the bulk concentration (mol/cm2), Qdl is the capacitive charge (C), and nFAΓ0 is the 

charge from the reduction of Γ0 (mol/cm2) of adsorbed [Ru-(NH3)6]
3+.  The surface 

excess term, Γ0, is determined from the difference in chronocoulometric intercepts for 

identical experiments in the presence and absence of redox marker.  The DNA surface 

density can then be calculated using the following relationship 

))(/(0 ADNA NmzΓ=Γ       (2.3) 

where ΓDNA is the DNA surface density (molecules/cm2), m is the number of bases in 

the immobilized DNA, z is the charge of the redox molecule, and NA is Avogadro’s 

number (Steel et al., 1998).   
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3.0 RESULTS 

 

3.1 Thermal Denaturation Profiles 

 

The effect of metal ions on DNA stability has been extensively investigated 

previously using thermal denaturation profiles (Eichhorn, 1962; Eichhorn and Shin, 

1968).   Due to their ease of determination and the reproducibility of results, they were 

implemented in order to assess the effect of the sequence, modified base substitutions 

and pH on the thermal stability of M-DNA.   

 

3.1.1 Denaturation Profile of Lambda DNA 

 

As shown in figure 3.1, in the absence of metal ion, λ-496 DNA has three 

different melting transitions corresponding to A•T rich regions, mixed regions and G•C 

rich regions of DNA.   However, upon the addition of Zn2+ at pH 7.5 only one melting 

transition is observed.  This new Tm corresponds more closely to that of the A•T region 

in lambda DNA meaning the higher melting G•C regions have become less stable under 

these conditions.  As the pH is increased to 8.0 and 8.5, the destabilization becomes 

much more prominent.  However, upon the addition of Zn2+ at pH 9.0 there is an 

increase in temperature corresponding more closely to the mixed or G•C rich regions.  

This sudden increase in thermostability is associated with the structural transition to M-

DNA.  Interestingly, although the addition of Mg2+ (Table 3.1) increases the melting 

temperature at all pH values, there still remain three separate melting transitions.  The 

drastic difference in the denaturation profiles between Mg2+ and Zn2+ support previous 

claims that Mg2+ is simply binding to the backbone whereas Zn2+ is binding to the 

nucleobases and affecting the hydrogen bonds.  This may be responsible for the initial 

destabilization, but under high pH conditions the DNA is able to undergo a 

conformational change to M-DNA.   
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Figure 3.1  Thermal denaturation profiles for λ-496 DNA in the absence of metal ions 
(�) and in the presence of 0.2 mM ZnCl2 (�) at pH a) 7.5 and b) 9.0.  The solid lines 
represent calculated sigmoidal fits to the corresponding data. 
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Table 3.1   Melting Temperatures of λ-496 DNA in the Presence and Absence of 
Metal Ions 

 
 

pH DNA DNA + Zn DNA + Mg 

7.5 (72 ± 3), (76 ± 3), (80 ± 2) (69 ± 1) (77 ± 1), (82 ± 1), (85 ± 1) 

8.0 (70 ± 1), (74 ± 1), (77 ± 2) (59 ± 1) (78 ± 1), (83 ± 1), (85 ± 1) 

8.5 (70 ± 4), (75 ± 4), (78 ± 4) (59 ± 3) (77 ± 1), (82 ± 1), (84 ± 1) 

9.0 (66 ± 2), (71 ± 2), (74 ± 2) (70 ± 3) (77 ± 1), (82 ± 1), (84 ± 1) 
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These experiments demonstrate the importance of pH on the formation of M-

DNA.  However, in order to investigate the effects of sequence on M-DNA formation, 

repetitive sequence DNA was synthesized.  Such DNA is extremely useful as its 

sequence repetition will amplify any effect that the particular sequence has on the 

conformation.    

 

3.1.2 Synthesis of Repetitive Sequence DNA  

 

An important aspect of the experiments described in this report was the 

synthesis of repetitive sequence nucleic acids.  An example of the reaction kinetics for 

the synthesis of poly[d(AT)] is shown in figure 3.2.  Initially, great care was taken to 

stop the reaction before synthesis was complete in order to inhibit the 5’→3’ 

exonuclease activity of E. coli polymerase which would cause rapid degradation of the 

duplex, as demonstrated in figure 3.2.   However, in the majority of subsequent 

experiments only the large fragment, called the Klenow fragment, of polymerase was 

used.  The Klenow fragment is advantageous as it maintains the polymerase activity as 

well as the 3’→5’ proofreading activity, but no longer has the 5’→3’ exonuclease 

activity which is responsible for degrading the DNA.  Therefore, synthesis reactions 

were allowed to continue to completion without the need to stop the reaction 

prematurely.   

The effect of sequence on the rate of M-DNA formation was previously 

investigated and it was found that poly[d(TG)•d(CA)] formed Zn2+ M-DNA the 

quickest while poly[d(AT)] formed it at the slowest rate.   After only a couple of 

minutes poly[d(TG)•d(CA)] was completely converted to M-DNA.  However, even 

after one hour, the majority of poly[d(AT)] was still in the B-DNA conformation (Lee 

et al., 1993).  Therefore, these sequences were considered excellent candidates to study 

the effects of sequence in combination with the incorporation of novel nucleotides on 

the formation and stability of M-DNA.   
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Figure 3.2  Synthesis of poly[d(AT)] in Kpi buffer system at 37ºC using DNA E. coli 
polymerase.  Synthesis was followed by the ethidium fluorescence assay.  Reactions 
were allowed to continue linear synthesis until the reaction rate decreased at which time 
the synthesis was terminated by adding 25 mM EDTA (pH 8.0). 
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Since transition metal ions such as Zn2+ form stable complexes with sulphur-containing 

ligands (Lee et al., 1984; Maret, 2004), it was considered possible that incorporation of 

thiobases into the DNA helix might stabilize M-DNA at lower pHs.  Therefore, the 

effects of the nucleotide analogues 2-thiothymine (s2T) and 4-thiothymine (s4T) on the 

stability of M-DNA was studied by preparing poly[d(As2T)], poly[d(As4T)], 

poly[d(s2TG)•d(CA)] and poly[d(s4TG)•d(CA)].   

The synthesis of s4T-containing duplexes proved to be much more difficult than 

those with s2T.  A possible explanation for this is that the thioketo group coordinated to 

the C4 position is directly involved in a hydrogen bond whereas the sulfur bond to the 

C2 position is not.  Since the atomic radius of sulfur (109 pm) is almost twice as large 

as the oxygen atom (65 pm) it is replacing, a duplex with s4T must be distorted with a 

widening of the major groove.  However, it was discovered that synthetic reactions 

containing 50% s4TTP and 50% TTP gave reasonable yields with approximately a 42% 

incorporation of s4T.  Since the incorporation of s4T gives a characteristic UV 

maximum at approximately 345 nm which is clearly separated from the 260 nm 

maximum observed in native DNA, the proportion of s4T residues was estimated by 

comparing our spectra with those reported elsewhere (Figure 3.3) (Connolly and 

Newman, 1989). 

 Interestingly, in the presence of 0.2 mM ZnCl2 at pH 8.5, the 345 nm peak of 

poly[(As4T)] shows a blue shift of approximately 10 nm as well as a slight decrease in 

the intensity at 260 nm (Figure 3.4).  The 345 nm peak does not change with increasing 

pH in the absence of metal ion or in the presence of MgCl2 as shown in figure 3.5.  Only 

when the DNA is completely denatured is there a similar shift, which most likely results 

from the single stranded thiobases being in a state where they are free to interact with 

the Zn2+ or Mg2+.   However, the decrease in absorbance at 260 nm in the presence of 

Zn2+ at pH 8.5 clearly shows that the DNA is not denatured and that the Zn2+ must be 

interacting with the thiobases while maintaining the duplex conformation.  All of these 

results suggest strongly that a conformational change such as that proposed for M-DNA 

is taking place. 
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Figure 3.3  The UV absorption spectra of poly[d(As4T)].  The percentage of s4T 
incorporation was calculated based on the A260/A345 ratio in comparison to published 
data from Connolly and Newman, 1989. 
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Figure 3.4  Absorption spectra of poly[d(As4T)] in the absence of metal ion at 27ºC 
(�); with 0.2 mM ZnCl at 27ºC (�);  with 0.2 mM ZnCl at 92ºC (�); in (a) 10 mM 
Tris-HCl buffer (pH 7.5) with 5 mM NaCl and  (b)  in 10 mM Tris-HCl buffer (pH 8.5) 
with 5 mM NaCl. 
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Figure 3.5  Absorption spectra of poly[d(As4T)] in the absence of metal ion at 27ºC 
(�); with 0.2 mM MgCl at 27ºC (�);  with 0.2 mM MgCl at 92ºC (�); in (a) 10 mM 
Tris-HCl buffer (pH 7.5) with 5 mM NaCl and  (b)  in 10 mM Tris-HCl buffer (pH 8.5) 
with 5 mM NaCl. 
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Although initially this discovery showed promise for the development of an 

additional assay to monitor the formation of M-DNA, further studies showed that the 

shift is far less dramatic when the s4T is incorporated into λ-496 DNA.  The decrease in 

sensitivity is most likely a result of sequence.  Previously, it was shown that 

oligonucleotides GACGAs4TATCGTC and GACGATAs4TCGTC gave slightly 

different maximum UV values of 345 nm and 335 nm respectively (Connolly and 

Newman, 1989).   Therefore, such a shift would mask any effects seen for the 

conversion of B-DNA to M-DNA.  However, this development has clearly shown that 

there is a definite conformational change in the presence of Zn2+ as opposed to 

magnesium.    

 
3.1.3 Effect of Base-Substitutions on Thermal Stability  

 

Synthetic DNAs were studied by comparing thermal denaturation profiles at 

different pHs in the presence or absence of Zn2+.  Mg2+ was also included as a control 

since it does not induce M-DNA formation and stabilizes B-DNA at all pHs (Lee et al., 

1993).  As shown in figure 3.6a, an expected increase of approximately 10 °C in the Tm 

for poly[d(AT)] in the presence of Mg2+ is observed at all pH values (Eichhorn and 

Shin, 1968).  There is also a smaller increase observed upon the addition of Zn2+ at pHs 

7.5, 8.0 and 8.5.  However, there is an additional increase in Tm above that for Mg2+ 

observed for Zn2+ at pH 9.0.  This increase in thermostability at high pH is attributed to 

the formation of M-DNA.  As shown in figure 3.6b the Tm of poly[d(As2T)] with Zn2+ 

seems thermally unstable and reaches a minimum of 38 oC at pH 8.5.  Although an 

increase to nearly 50oC at pH 9.0 does suggest the formation of M-DNA, the structure is 

very unstable in comparison to its B-DNA construct.   In figure 3.6c, the Tm of 

poly[d(As4T)] with Zn2+ reaches a minimum of  35oC at pH 8.0 which begins to 

increases at pH 8.5 and continues to 55 oC at pH 9.  Therefore, this analogue seems to 

aid in the early formation of M-DNA at a lower pH value but still remains thermally 

unstable until pH 9.0 at which point the melting temperature is similar to that for Mg2+.  
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Figure 3.6  The effect of pH on the Tm of (a) poly[d(AT)]; (b) poly[d(As2T)]; and (c) 
poly[d(As4T)] in the presence of 0.2 mM MgCl2 (�), 0.2 mM ZnCl2 (�), and in the 
absence of metal ion (�).   
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In figure 3.7a, an expected increase of approximately 5 °C in the Tm for 

poly[d(TG)•d(CA)] in the presence of Mg2+ is observed at all pHs.  Similar to 

poly[d(AT)], there is an additional increase in the Tm of poly[d(TG)•d(CA)] above that 

seen for Mg2+ observed for Zn2+ at pH 9.0 which is attributed to the formation of M-

DNA.  The Tm of poly[d(s2TG)•d(CA)] in figure 3.7b continues to decrease with higher 

pH values.  Much like poly[d(As2T)], poly[d(s2TG)•d(CA)] is very unstable in the 

presence of Zn2+, but shows even less propensity to forming M-DNA.  However, the 

denaturation profile for poly[d(s4TG)•d(CA)] in the presence of Zn2+ shows an 

additional increase above that for Mg2+ beginning as low as pH 8.0 (Figure 3.7c). 

In order to investigate how thermal stability correlates with the ease with which 

the polymer will convert to M-DNA, the ethidium assay was used to examine the pH at 

which the transition occurs. 

 

3.2 Ethidium Fluorescence Assay  

 

3.2.1 Zn2+ M-DNA Formation on Repeating-sequence DNA 

 

In the presence of 0.2 mM Zn2+, poly[d(AT)] shows complete M-DNA 

conversion at pH 8.6 (Figure 3.8a).  As expected from the thermal denaturation profiles, 

poly[d(As4T)] is able to form M-DNA at an even lower pH and in fact, is fully 

converted by pH 8.2.  Surprisingly, the thermal profile of poly[d(As2T)] suggested a 

very unstable conformation,  however, it was still able to incorporate Zn2+ at a lower pH 

than the unmodified poly[d(AT)].   A possible explanation can be found in the Tm data 

measured at pH 7.5 (Figures 3.6 and 3.7) where all the DNAs are in the ‘B’ 

conformation.  The addition of Zn2+ increases the Tm of poly[d(AT)] but decreases the 

Tm of poly[d(As2T)], poly[d(TG)•d(CA)], poly[d(s2TG)•d(CA)] and 

poly[d(s4TG)•d(CA)].  Therefore, the B-form of poly[d(AT)] may be unusually 

refractory to conversion to M-DNA and therefore in this sequence context, the unusual 

base plays an important role in M-DNA formation.   
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Figure 3.7  The effect of pH on the Tm of (a) poly[d(TG)•d(CA)]; (b) 
poly[d(s2TG)•d(CA)]; and (c) poly[d(s4TG)•d(CA)] in the presence of 0.2 mM MgCl2 
(�), 0.2 mM ZnCl2 (�) and in the absence of metal ion (�).   
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Figure 3.8 The conversion of B-DNA to M-DNA with 0.2 mM ZnCl2 at ambient 
temperature.  (A) poly[d(AT)], (�); poly[d(As2T)], (�); poly[d(As4T)], (�). (B)  
poly[d(TG)•d(CA)], (�); poly[d(s2TG)•d(CA)], (�); poly[d(s4TG)•d(CA)], (�). 
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The results in figure 3.8b are consistent with the previous Tm data.  At pH 7.9, 

poly[d(TG)]•poly[d(CA)] is fully converted to M-DNA.  However, upon the 

incorporation of s4T, the polymer is almost completely converted at pH 7.6.  In contrast, 

the pH of poly[d(s2TG)]•poly[d(CA)] conversion increases to 8.2.  Therefore, it can be 

clearly seen that poly[d(AT)] has the lowest propensity of forming M-DNA.  In the 

presence of 0.2 mM Zn2+, poly[d(TG)]•poly[d(CA)] shows complete conversion to M-

DNA at pH 7.9 whereas poly[d(AT)]  is still 100% B-DNA.  As hypothesized from the 

thermal denaturation profiles, the pH at which M-DNA will form can be further reduced 

by incorporating s4T into poly[d(TG)]•poly[d(CA)].  Therefore, the next step was to use 

these sequence effects in combination with the modified bases in order to design 

olignonucleotides that could localize metal ions at various regions according to the pH.   

 
3.2.2 Zn2+ M-DNA Formation on 30-mer Oligonucleotides 

 

Double stranded oligomers 30 nucleotides in length were synthesized containing 

the sequences d(TG)15•d(CA)15, a mixed sequence with 50% d(AT) and the other 50% 

d(TG)•d(CA) and another mixed sequence in which three terminal thymines on the 

d(TG)•d(CA) track where replaced with 4-thiothymines.  All of the sequences and 

corresponding names can be found in Table 2.2 of the Material and Methods.  As would 

be predicted from the previous experiments, figure 3.9 demonstrates that at pH 7.9 TG-

30 is completely converted to M-DNA, but both mixed sequences show approximately 

only 50% M-DNA formation which accurately corresponds to the d(TG)•d(CA) tract 

forming M-DNA while the d(AT) tract remains as B-DNA .  Also, as would be 

expected, the mixed sequence Mx(s4T)-30 containing the incorporated 4-thiothymines 

begins to form M-DNA at a lower pH compared to both Mx-30 and TG-30.  Once the 

d(TG)•d(CA) track forms M-DNA, Mx(s4T)-30 starts to plateau at pH 7.9 and begins to 

follow the Mx-30 sequence more closely corresponding to the M-DNA conversion of 

the  remaining d(AT) tract.  
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Figure 3.9  The conversion of B-DNA to M-DNA with 0.2 mM Zn2+, TG-30 (�);  
average of Mx-30a and Mx-30b, (�);  average of Mx(s4T)-30a and Mx(s4T)-30b (�). 
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3.3 X-ray Photoelectron Spectroscopy 

 

A continuing challenge in the investigation of M-DNA has been solidifying the 

proposed binding location of the metal ion.  Therefore, XPS was employed to gain 

information on the electronic structure and chemical bonding of the molecules.  In XPS, 

the incident x-ray photons are absorbed by various atoms in the surface layer leading to 

the ionization and the emission of an inner shell electron.  Photoelectrons from each 

element will have a characteristic binding energy and relative intensity associated with 

each core atomic orbital providing an extremely powerful tool for quantitative analysis 

of the surface composition.  Notably, the shape of the peak and the binding energy are 

slightly altered by variations in the electrostatic shielding of the inner shell electrons 

from all other electrons in the atom.   Also, the removal or addition of electronic charge 

as a result of changes in bonding can also cause similar shifts in energy.  Therefore, in 

order to gain more information on the structure and electronic properties of M-DNA, 

nucleic acids were immobilization onto a gold surface and analyzed using XPS.   

Previous XPS studies of DNA have delineated the binding energies (BE) of  the 

C 1s, N 1s, O 1s and  P 2p electrons in ssDNA (Petrovykh et al., 2003; Moses et al., 

2004; Saprigin et al., 2005).  Of particular interest are the N atoms which are only 

present in the bases and are presumed to interact directly with Zn2+ upon M-DNA 

formation.  Therefore by examining these spectra, we were able to study the location of 

the metal ion location within the DNA helix.   

 

3.3.1 Characterization of the DNA Monolayer 

 

Duplex DNA, 30 base pairs in length, was assembled onto the gold surface as 

described in Materials and Methods and the resultant monolayer was characterized by 

XPS.  Disulfides with an attached hexanol were chosen rather than simple thiol 

adsorption because previous results showed stable monolayers with improved 

dehybridization-rehybridization characteristics (Long et al., 2003; Long et al., 2004; Li 

et al., 2006).  A monolayer formed from ssDNA or a simple thiol linked duplex may 

position the molecules too close together to allow efficient rehybridization.  Another 
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possible problem with ssDNA attachment is that the DNA may non-specifically bind 

through the bases so that it is unavailable for hybridization.   

 

3.3.1.1 DNA Film Thickness 

 

From the intensity of the Au 4f7/2 peaks, the thickness of each DNA monolayer 

was estimated using the following equation, 

 

)ln()sin/()ln( 0IdI +−= θλ     (3.1) 

 

where λ is the inelastic mean free path (IMPF), θ is the takeoff angle between the 

sample surface and the photoelectron energy analyzer, I is the gold photoelectron 

intensity with the DNA sample present, and I0 is the photoelectron intensity of the bare 

gold substrate.  The value of λ was taken to be 3.980 nm which was the average 

effective attenuation length (EAL) from the gold substrate photoelectron in a DNA 

overlayer calculated using the NIST Standard Reference Database 82 (SRD-82) 

software (Powell, 2001).  The EAL definition allows this term to be introduced in place 

of the λ(IMPF).  A more detailed description and discussion on EAL formalism can be 

found in the following review (Jablonski and Powell, 2002).   According to the above 

equation, ln(I) should be linearly related to 1/(sinθ) with the slope of –(d/λ).   

 

 

Therefore, XP spectra  were obtained at the takeoff angles 90°, 60°, 45°, 30° and the 

slope from the plot of ln(I) versus 1/(sinθ) was used to calculate the thickness of each 

monolayer (Figure 3.10) (Kondo et al., 1998).  Each monolayer was composed of 30-

mer duplexes attached to the gold surface through an S-(CH2)6 linker.   Therefore, a 

thickness of approximately 11.2 nm would be expected if the strands were stretched to 

full length and perpendicular to the surface assuming the DNA films do not collapse 

when the water is removed under vacuum.  However, the average thickness calculated 

for the B-DNA monolayers was determined to be 5.2 ± 0.4 nm.   
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Figure 3.10  (a)  Au 4f XP spectra of the DNA SAM on polycrystalline gold measured 
at various values of θ; (b)  The relationship between 1/sinθ and logarithm of the 
integrated peak intensities from the Au 4f 7/2 XP spectra in figure A. 
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Therefore, for a completely rigid structure, the DNA chains would be orientated 

at approximately 30° to the surface (Figure 3.11).  However, another possibility is that 

the long oligomers in conjunction with the measurements being done in a vacuum have 

lead to the hybridized strands forming kinks or bends leading to a decrease in thickness.  

As well, immobilization in the presence of a monovalent cation such as NaCl compared 

to a divalent cation such as MgCl2 has been shown to decrease the monolayer coverage 

by approximately two fold (Petrovykh et al., 2003).  This would result in a lower 

surface density and most likely a decrease in thickness as well.    

 

3.3.1.2 Elemental Analysis 

 

All films analyzed showed distinct peaks for the principal elements in an 

immobilized thiol-linked DNA film (C, O, N, P, S).   The N 1s (399.5 – 402.0 eV), P 2p 

(134.0 eV) and S 2p (162.0 eV) peaks are all evident in the spectra with immobilized 

DNA but are absent in the spectrum for bare gold providing good evidence for the 

attachment of DNA to the surface (Figure 3.12)(Table 3.2).  The bare spectrum does 

show peaks for carbon (285 eV) and oxygen (531 eV) most likely as a result of 

atmospheric contamination.  In order to analyze the composition and coverage of the 

monolayer, elemental concentrations were determined using the following equation 

suggested by Petrovykh et al., 2003.  
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where T is the analyzer transmission function, σ is the total photoelectric cross section 

in which Scofield coefficients were used (Scofield, 1976), d is the film thickness and L 

is the EAL for electrons in the film.  More specifically, this equation utilizes two types 

of EALs: “average practical EAL” (PEALs) which refers to the attenuation of the 

electrons from the various elements caused by the DNA film and “EAL for quantitative 

analysis” (QEALs) which refer to the electrons originating in a material and attenuating 

within the material itself.   
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Figure 3.11  Schematic of dsDNA orientation at 30° to the surface. 
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Figure 3.12  XP spectra of bare gold (bottom) and 30 basepair duplex B-DNA 
assembled on gold (top) for elements P, S and N. 
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Table 3.2 Average Elemental Compositional Data for DNA Monolayers on Gold in 
the Presence and Absence of Various Metal Ions 

 

 

 Atomic Percent 
 

Atomic Ratio 

DNA Au 4f N 1s P 2p C 1s O 1s S 2p Zn 2p Mg 1s 
 

P/N C/N O/N 

Bare Au 81.3 
(4.8) 

- - 
15.2 
(2.9) 

3.5 
(1.9) 

- - - 
 

   

DNA 
theoretical 

        
 

0.28 2.7 1.7 

B-DNA 28.5 
(1.6) 

6.1 
(0.2) 

2.1 
(0.3) 

33.7 
(9.2) 

29.0 
(8.7) 

0.5 
(0.3) 

- - 
 

0.34 5.5 4.8 

M-DNAa 29.2 
(3.6) 

5.7 
(0.1) 

2.6 
(0.1) 

30.6 
(2.7) 

30.4 
(6.7) 

0.2 
(0.0) 

1.2 
(0.4) 

- 
 

0.46 5.4 5.3 

M-DNAb 36.9 
(1.6) 

5.6 
(1.3) 

2.4 
(0.4) 

31.5 
(1.1) 

19.6 
(1.3) 

0.5 
(0.2) 

3.5 
(1.2) 

- 
 

0.43 5.6 3.5 

Mg2+ 
(pH 8.6) 

22.9 
(2.2) 

8.7 
(1.6) 

3.9 
(0.5) 

34.9 
(1.8) 

27.7 
(3.5) 

0.3 
(0.1) 

- 
2.5 

(0.2) 

 
0.45 4.0 3.2 

Zn2+ 
(pH 7.0) 

23.2 
(4.9) 

7.0 
(1.1) 

2.8 
(0.1) 

29.7 
(0.8) 

36.9 
(5.0) 

0.1 
(0.0) 

0.2 
(0.1) 

- 
 

0.40 4.2 5.3 

 

After the monolayer was converted to M-DNA the electrodes were rinsed with a 20 mM 
Tris-ClO4 and 20 mM NaClO4 or alternatively b 20 mM Tris-ClO4 and 20 mM NaClO4 
containing 0.4 mM Zn(ClO4)2.  The values in parentheses represent the standard 
deviation. 
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In the above equation, LAu  and Lx represent the PEAL for electrons from Au and from 

DNA elements (X = C, N, O, P, Zn) in the DNA film respectively.  Similarly, LQ  is 

used to assign  the QEAL values all of which are listed in Table 3.3.  More complete 

and comprehensive definitions of EALs and their appropriate use can be found in the 

review mentioned previously (Jablonski and Powell, 2002). 

Since both P and N are located exclusively in DNA, their presence in the proper 

stoichiometric ratio reveals important information regarding the state of the film.  

Although the average P/N ratios are constant within the experimental ±10% error 

reported by Petrovykh (Petrovykh et al., 2003), the ratios are higher than expected 

(Table 3.2).  This result may be due to some desorption or preferential damage of the 

DNA bases compared to the phosphate backbone.   

 

3.3.1.3 Determination of DNA Coverage 

 

Since the DNA contains more N atoms than P atoms, and N has a higher XPS 

cross section the signal-to-noise was much higher and therefore was used to determine 

the DNA coverage.  The DNA coverage was determined to be approximately 1.2 x 1013 

molecules/cm2 with a density of 0.702 g/cm3 (Table 3.4).  The DNA coverage is less 

than the value of 3.7 x 1013 molecules/cm2 reported elsewhere for single stranded 25mer 

oligonucleotides (Steel et al., 2000).  However, this is most likely because the diameter 

is larger for dsDNA and there is possibly more repulsion between adjacent duplexes.  

Since there is limited data on the self-assembly of dsDNA, a surface coverage of 

approximately 4 x 1012  molecules/cm2 was found for monolayers formed by the self-

assembly of ssDNA followed by hybridization (Steel et al., 1998).  It is interesting to 

note the increase in surface coverage seen for dsDNA assembly in comparison to 

assembly through hybridization.  This may be a result of the poor hybridization 

efficiency associated with the latter method.   
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Table 3.3  Calculated EAL Values for the Major Components in the DNA 
Monolayer  

 

Peak PEAL in DNA film L (nm) QEAL LQ (nm) 

C 1s 3.497 3.646 

O 1s 2.884 3.035 

N 1s 3.213 3.364 

P 2p3/2 3.862 3.968 

S 2p3/2 3.793 3.900 

Zn 2p3/2 1.600 1.726 

Au 4f7/2 3.980 1.745 

Na 1s 1.616 1.460 

Mg 1s 0.773 0.928 

 

PEALs and QEALs were calculated for duplex B-DNA using NIST SRD-82 software 
with the following parameters:  experimental kinetic energy; asymmetry parameters β 
for electrons Au 4f (β=1.04), β=2 for 1s peaks, β=1.1 for P 2p, β=1.16 for S 2p and 
β=1.41 for Zn 2p (Campbell et al., 2002); ideal stoichiometry of nucleotides in DNA; 
band-gap energy Eg = 4.8 e; film density of 0.731 g/cm3.  The Eg was calculated based 
on an average UV absorption peak of 258 nm for DNA in solution (Petrovykh et al., 
2003).  An initial estimate of film density was used to calculate the PEALs and QEALs 
which were then used for analysis of one data set using equation 4.  The new value of 
density obtained from data analysis was then reentered into the NIST program to 
calculate revised PEALs and QEALs and the process was repeated until the density 
values converged self-consistently.  The resultant PEAL and QEAL values are listed in 
the above table and were used to analyze the characteristics of the various monolayers.   
All EALs were calculated for a film thickness of 5 nm.  As noted in ref (Petrovykh et 
al., 2003), the approximation of 5 nm in the PEAL and QEAL calculations will not 
introduce an appreciable systematic error into the analysis. 
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Table 3.4    Calculated Surface Characteristics of the DNA Film 

 

DNA DNA film  
thickness  (nm) ρρρρDNA g/cm3 

DNA coverage 
(x 1013 DNA/cm2) 

B-DNA 5.2 ± 0.4 0.702 ± 0.056 1.2 ± 0.1 

M-DNA  5.6 ± 0.7 0.619 ± 0.018 1.1 ± 0.1 

Mg2+ (pH 8.6) 6.0 ± 0.3 0.898 ± 0.171 1.7 ± 0.4 

Zn2+ (pH 7.0) 6.2 ± 1.6 0.733 ± 0.424 1.4 ± 0.4 
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In order to better validate the accuracy of the XPS measurements, 

chronocoulometric measurements were done in order to determine the DNA surface 

coverage (Figure 3.13).  Chronocoulometry was implemented in order to determine the 

quantity of DNA immobilized on the gold surface.  The positively charged redox probe 

[Ru(NH3)6]
3+ was used as it is able to electrostatically interact with the negatively 

charged phosphate backbone of DNA.  The amount of redox probe interacting with the 

DNA at the surface of the electrode can then be determined by chronocoulometry and 

used to calculate the amount of corresponding DNA (Steel et al., 1998).  The 

electrochemical methods resulted in B-DNA coverage of (1.2 ± 0.1) x 1013 

molecules/cm2 which agrees well with the calculated XPS results.  

 

3.3.1.4 Sulfur (S 2p) Spectrum 

 

Although the S 2p peak has a low signal-to-noise ratio and is somewhat difficult 

to observe, the sulfur signal is of interest as it provides more information regarding the 

immobilization of the thiolated DNA (Castner et al., 1996; Wackerbarth et al., 2004; 

Wood and Lee, 2005).  The poor  signal-to-noise ratio is due to the low relative 

concentration of sulfur atoms (the ideal S/P ratio is 1/60) and the strong attenuation of 

the signal caused by the overlaying DNA (Petrovykh et al., 2003). The S 2p spectra 

acquired for all SAMs had a doublet structure due to the presence of the S2p3/2 and S 

2p1/2 peaks.  All spectra were fit using a 2:1 peak ratio and showed a peak split of 1.2 

eV (Figure 3.14).  The S 2p3/2  peak binding energy was 162.0 eV which is consistent 

with a thiolate S-Au bond (Castner et al., 1996). In particular, there was no detectable 

intensity in the binding energy region above 164 eV which is the region typical for an S 

2p doublet for unbound thiol groups.  This strongly suggests that there is a single layer 

of thiolated DNA and alkanethiols chemisorbed at the gold surface with virtually no 

physisorbed DNA present in the film.   
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Figure 3.13  Chronocoulometric response curves for DNA modified electrodes in the 
absence (�) and presence (�) of 100 µM [Ru(NH3)6]

3+.  The lines represent the 
extrapolated fit from the linear portion of the curve and are used in order to determine 
the intercept at time=0. 

 

 

 

 

 



 107 

 

 

 

 

 

 

 

Figure 3.14   High-resolution S 2p XP spectra for 30-basepair thiol-DNA immobilized 
on gold (open circles for raw data, solid lines for the total fits and dashed lines for the 
component peaks).  Spectra were also taken after incubation with Zn(ClO4)2 and 
Mg(ClO4)2.  The data was fit with two peaks as discussed in the text both having a 
FWHM of 0.98 ± 0.09.   
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3.3.2 DNA-Metal Ion Interaction 

 

3.3.2.1 Carbon (C 1s) Spectrum  

 

On addition of Zn2+ to form M-DNA, P 2p and S 2p showed only small changes 

most likely due to small differences in the characteristics of each monolayer.  C 1s 

showed some changes and therefore a closer examination of the carbon species was 

conducted.  As shown in figure 3.15a, carbon species are observed in the C 1s region of 

a bare gold electrode.  There is one main peak observed at 284.1 eV which is indicative 

of alkyl chains or methyl species as well as smaller peaks at 285.5 and 288 eV which 

are due to the presence of surface contaminants containing C-O and C=O bonds 

respectively (Ishida et al., 1996; Ishida et al., 1997).  However, for the DNA modified 

electrode, the fit included peaks at BE of 285, 286.6, 288 and 289.5 eV each with an 

FWHM of 1.5 eV  corresponding to hydrocarbon (C-C/C-H), carbon bound to nitrogen 

and oxygen (C-N, C-O, N-C=N, O-C-N), amide carbon (N-C=O), and urea carbon [N-

C(=O)-N] respectively (Figure 3.15b), (May et al., 2004).  Therefore, figure 3.15b 

clearly shows a corresponding increase in peak intensities for DNA-related carbon 

peaks for species at 286.6, 288 and 289.5 eV.  Also, there is a peak shift of 

approximately 0.9 eV to higher energy observed in the 284.1 eV C 1s peak when the 

bare gold electrode is covered with a DNA monolayer.  This shift in energy is reflective 

of a decrease in Au-C interactions (Ishida et al., 1996).  Both of these observations 

indicate that the influence of adventitious hydrocarbons on the SAM is small.  This is 

expected, as it has previously been shown that the effect of carbon and oxygen 

contaminant layers on the gold surface becomes negligible in the case of long-term 

immobilization (Ishida et al., 1997).   

The atomic percentages of each species on the monolayers were determined and 

are shown in Table 3.5.  The small changes in the presence of Zn2+ and Mg2+ are only 

seen in the lower BE’s and are most likely due to differences in the DNA coverage as 

well as small inconsistencies in the hydrocarbon contamination.  
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Figure 3.15  High-resolution C 1s XP spectra of (a) bare gold electrode; (b) 30-basepair 
thiol-DNA immobilized on gold (open circles for raw data, solid lines for the total fits 
and dashed lines for component peaks).  The data was fit with four peaks, as discussed 
in the text all having FWHM of 1.38 ±0.05.   
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Table 3.5 Calculated Percentages For Each of the Fitted Components for the C1s  

High-Resolution XPS Data 
 

DNA C-C, C-H 
285.0 eV ( %) 

C-N, C-O 
286.6 eV (%) 

O-C-N, N=C-N 
288.0 eV (%) 

N-C(=O)-N 
289.5 eV (%) 

B-DNA 44 ± 8 40 ± 7 12 ± 1 4 ± 1 

M-DNA  42 ± 5 42 ± 5 12 ± 2 5 ± 1 

Mg2+ (pH 8.6) 35 ± 6 46 ± 7 13 ± 1 6 ± 1 

Zn2+ (pH 7.0) 33 ± 1 48 ± 1 13 ± 1 6 ± 1 
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Therefore it can be concluded that Zn2+ is unlikely to interact directly with either 

C or P and does not evidently effect the linkage between gold and sulfur; a result which 

is consistent with the M-DNA conformation.   

 

3.3.2.2 Oxygen (O 1s) Spectrum 

 

For O 1s with B-DNA, there is a peak at 533 eV with a shoulder at 532 eV again 

consistent with previous results for ssDNA (Figure 3.16). However, upon addition of 

Zn2+ the peak broadens as the shoulder becomes much more prominent.  Oxygen is 

present in DNA on the bases, the deoxyribose sugar and the phosphodiester backbone. 

Therefore, this result is very difficult to interpret since Zn2+ can potentially bind to all 

three building blocks.  However, since a similar result is seen in the presence of Mg2+, it 

is most likely that the change in the oxygen spectra is caused from the ionic interaction 

between the metal ion and the oxygens on the phosphate backbone. 

 

3.3.2.3 Nitrogen (N 1s) Spectrum 

 

For N1s the interpretation of spectral changes is likely to be simpler because 

nitrogen atoms are confined to the bases and previous work with homopolymer ssDNA 

has demonstrated the presence of a broad peak at about 400 eV (Petrovykh et al., 2003). 

The B-DNA duplexes also show these features but upon conversion to M-DNA the 

peak becomes much narrower.  According to the N1s spectra, it seems very unlikely 

that the bases in the duplex are interacting with the surface as there is no energy 

components observed at BE below 399.5 eV indicative of bases chemisorbed onto the 

gold surface (Petrovykh et al., 2003).  This may be due, in part, to the presence of 

excess alkanethiol chains acting as spacers between the DNA molecules.   
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Figure 3.16  High-resolution O 1s XP spectra for 30-basepair thiol-DNA immobilized 
on gold (open circles for raw data, solid lines for the total fits and dashed lines for 
component peaks).  Spectra were taken for (a) B-DNA and after incubation with (b) 
Zn(ClO4)2 and (c) Mg(ClO4)2. The data was fit with two peaks, as discussed in the text 
both having a FWHM of 1.55 ± 0.09.   
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As shown in figure 3.17, the N 1 s spectrum for B-DNA was fit with three peaks 

at BEs of 399.5 eV, 400.8 eV and 402.0 eV corresponding to conjugated nitrogen 

(−N=), non-conjugated nitrogen (−NH− and N with three single bonds) and the (−NH2) 

respectively (Mateo-Marti et al., 2005; Mateo-Marti et al., 2007).  However, there is 

evidence that the third peak at 402.0 eV may be partially due to non-specific adsorption 

of the Tris buffer as a similar peak is observed when a bare gold electrode is incubated 

with only Tris buffer (Figure 3.18).  Previous investigations have shown that this peak 

may be due to the protonated amine group in the Tris buffer (Strother et al., 2000) or 

alternatively from the amine group interacting with the gold substrate (Joseph et al., 

2004).   The protonation of the amine group does seem to play a role as the peak at 402 

eV becomes more pronounced at lower pH values.  As well, at pH 7.5 (Figure 3.19) the 

intensity of the peak at 402 eV decreases as the angle goes from 90° to 30°  from the 

surface normal.  This is also a strong indication that there is non-specific adsorption of 

Tris buffer at the surface and is not a result of amine groups on the bases throughout the 

monolayer.  On the other hand, the M-DNA spectra shows one main peak with a BE of 

about 400.5 eV and much smaller peaks at 399.5 eV and 402.0 eV.   

A similar trend is observed for N 1s upon conversion of a free-base porphyrin to the 

corresponding metalloporphyrins (Polzonettia, 1999; Sarno et al., 2001).  For example, 

a typical free-base porphyrin has two peaks of roughly equal intensity at 399.2 and 

397.2 eV corresponding to the non-conjugated and conjugated nitrogen respectively. 

Upon addition of Zn2+ the doublet collapses to one peak with an energy of 397.8 eV 

(Karweik and Winograd, 1976).  In other words, the nitrogen in the metalloporphyrin 

becomes indistinguishable because of electronic coupling within the extended π system 

of the porphyrin ring.  In M-DNA as well, the Zn2+ ion forms a bridge between the π 

system of each base so that all the nitrogen within a base pair exhibit a degree of 

electronic coupling.  The change in overall peak shape can be seen in figure 3.17 as the 

nitrogen spectra for B-DNA goes from a broad doublet to M-DNA consisting of one 

sharp well-defined peak.  Interestingly, the nitrogen spectra in the presence of Mg2+ is 

similar to that of B-DNA demonstrating that the Mg2+ is only interacting with the 

phosphate backbone. 
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Figure 3.17  High-resolution N 1s XP spectra for 30-basepair thiol-DNA immobilized 
on gold (open circles for raw data, solid lines for the total fits and dashed lines for 
component peaks).  Spectra were taken for (a) B-DNA and after incubation with (b) 
Zn(ClO4)2 and (c) Mg(ClO4)2.  The data was fit with two peaks, as discussed in the text 
all having a FWHM of 1.59 ± 0.11.   
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Figure 3.18.  High-resolution N 1s XP spectra for 20 mM TrisClO4 (pH 8.5) 
immobilized on gold (open circles for raw data, solid lines for the total fits and dashed 
lines for component peaks).   
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Figure 3.19  High-resolution N 1s XP spectra for 30-basepair thiol-DNA immobilized 
on gold (open circles for raw data, solid lines for the total fits and dashed lines for 
component peaks).  Spectra were taken after incubation with Zn(ClO4)2 at pH 7.5 at 
angles 90, 60, 45, 30 degrees from the surface normal. 
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3.3.2.4 Zinc (Zn 2p) Spectrum 

 

The Zn 2p spectra is of interest as it is assumed that when M-DNA forms, the 

Zn2+ ions replace the imino protons of T and G but also become weakly bound to the 

phosphates on the outside of the helix.  In order to assess this hypothesis, Zn/P ratios 

were calculated using equation 3.2 and compared to trends observed in the survey 

spectrum for Na 1s.  At pH 8.5, B-DNA shows no Zn 2p peak, but an intense peak for 

Na 1s at 1072.0 eV (Figure 3.20a).  The Na/P ratio in figure 3.20a is 5.1 demonstrating 

a surface excess of sodium.  However, in the presence of Mg2+ at pH 8.6 there is an 

intense peak observed at 1304.6 eV.  Under these conditions, the Mg/P ratio is 0.6 ± 

0.05.  A decrease in the cation to phosphate ratio would be expected in going from a 

monovalent to a divalent cation.  In both cases, a peak is also observed around 208 eV 

which is representative of the Cl- counterions also remaining on the surface. However, 

after the addition of 0.4-mM Zn(ClO4)2 to the monolayer for 2h at pH 8.5 and thorough 

washing with buffer containing Zn2+ an intense peak with a BE of about 1022.0 eV is 

now present but the Na 1s peak at 1072.0 was undetectable (Figure 3.20b).  Under these 

conditions, the Zn/P ratio was 1.7 ± 0.6.  Again, the decreased ratio compared to Na/P is 

expected from a monovalent to a divalent cation.  Although there is a large error, the 

average value corresponds well to zinc binding each phosphate as well as replacing the 

imino proton inside the helix at every base pair.  When this experiment is repeated 

under the same conditions, except the monolayer is washed with buffer containing only 

Na+ and no Zn2+, peaks are evident at both 1022.0 eV and 1072.0 eV (Figure 3.20c).  

The Zn/P ratio was 0.44 ± 0.11 meaning there is now approximately one zinc for every 

base pair.  This ratio correlates well to M-DNA formation where only the imino protons 

of thymine and guanine are being replaced by zinc.  However, under the same 

conditions with Zn2+ at pH 7.0, there is virtually no zinc left in the monolayer with a 

Zn/P ratio of 0.07.  Therefore, under non M-DNA conditions it is very easy to wash off 

all of the zinc ions.  The Zn/Na and Na/P ratios in figure 3.20c were 0.22 and 2.0 

respectively, indicating that the negative charge on the phosphate backbone is 

neutralized by the saturation of Na+ ions present whereas the Zn2+ ions are interacting 

inside the helix.   
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Figure 3.20  Survey scan of the Zn 2p and Na 1s region with corresponding schematic 
illustrating the location of the respective ions under various washing conditions; (a) 
Immobilized B-DNA was incubated and washed in 20 mM Tris-ClO4 (pH 8.5), 20 mM 
NaClO4 buffer.  (b) Immobilized B-DNA was converted to M-DNA by incubating for 2 
hrs in 20 mM Tris-ClO4 (pH 8.5), 0.4 mM Zn(ClO4)2, washed with 20 mM Tris-ClO4 
(pH 8.5), 0.4 mM Zn(ClO4)2, dried and measured.  (c) Immobilized B-DNA was 
converted to M-DNA by incubating for 2 hrs in 20 mM Tris-ClO4 (pH 8.5), 0.4 mM 
ZnClO4, washed with 20 mM Tris-ClO4, 20  mM NaClO4 containing no ZnClO4, dried 
and measured. 
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Under these conditions, the O 1s spectrum resembles that of B-DNA shown in figure 

3.16 and the N 1s spectrum resembles that of M-DNA shown in fgure 3.17. This is 

expected since the conversion from M-DNA back to B-DNA is slow (Wood et al., 

2002; Wood and Lee, 2005), so that during the washing procedure the Zn2+ ions are 

removed from the outside of the helix and replaced with Na+ resulting in an O 1s 

spectrum similar to B-DNA.  However, the zinc ions interacting with the imino nitrogen 

inside the helix are not removed resulting in an N 1s spectrum similar to M-DNA.  This 

effect would result in a Zn/P ratio of approximately 0.5 which is observed.   

 

3.3.3 Variable angle XPS 

 

Variable angle x-ray photoelectron spectroscopy (VAXPS) was also used to 

further investigate the distribution of zinc within the self-assembled monolayer.  

Oligonucleotides containing the Mx-30a sequence were self-assembled onto gold 

through a disulfide linkage.   The identical but reverse sequence, Mx-30b, in which the 

d(TG)•d(CA) portion was situated next to the sulfur linkage was also analyzed.  The 

surface was probed at take-off angles 90, 70, 45 and 30 degrees from surface.  

According to previous result, the d(TG)•d(CA) will incorporate metal ions at a much 

lower pH than the d(AT) tract illustrated in figure 3.21.  As seen in figure 3.22, at pH 

7.0 when the d(TG)•d(CA) tract is situated at the top of the monolayer the Zn/P ratio 

increases as the take-off angle decreases.  Conversely, if the d(TG)•d(CA) tract is 

located at the bottom of the monolayer, the Zn/P ratio decrease along with the take-off 

angle.  Also of interest are the control experiments which clearly show that at pH 6.5 

the wash easily removes zinc bound to the phosphate backbone leaving very little zinc 

remaining as the pH is too low to have formed M-DNA.  As well, at pH 8.5 at which the 

entire oligomer should be converted to M-DNA, the Zn/P ratio approaches 0.5 which is 

a good indication that there is one zinc residue for every base-pair.  As well, Zn/P ratios 

in figure 3.22 are greater for Mx-30a compared to Mx-30b for all pH values.  This may 

be a due to Zn2+ ions having easier access to the d(TG)•d(CA) tract when it is situated at 

the top of the monolayer compared to when it is unexposed at the bottom.   
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Figure 3.21  Schematic of Zn2+ ions situated only at specific regions corresponding to 
the sequence and the pH.   
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Figure 3.22  Relative Zn/P ratios of Mx-30a (�) and Mx30b (�) at angles 90, 70 45 
and 30 degrees relative to the surface at various pH values. 
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Unfortunately, the  values are subject to an estimated error of at least 10%, which is 

mainly caused by the uncertainty of the peak area and the error of the inelastic 

background correction (Tougaard and Sigmund, 1982).  Therefore, the change in Zn/P 

ratio is not great enough to warrant a firm conclusion.  Although, repeated 

measurements showed similar trends for Zn/P ratios at 90° to the surface, the changes 

observed at the various other angles were unpredictable.  This was most likely a result 

of inconsistencies in the DNA monolayer coverage and morphology.  Although this 

technique shows promise and illustrates very interesting trends, modification to the 

existing assay will have to be made in order to gain useful data.   

 

3.4 Electrochemical Investigations 

 

Electrochemical DNA biosensors based on nucleic acid hybridization are being 

developed for the diagnosis of genetic and infectious diseases (Boon et al., 2000; 

Drummond et al., 2003).  They have gained tremendous popularity because of their 

high sensitivity and selectivity, their simplicity to operate, the low cost, ease of 

fabrication and their ability to be miniaturized in order to increase portability.  There 

have been numerous approaches developed for the electrochemical detection of DNA 

hybridization (Drummond et al., 2003; de-los-Santos-Alvarez et al., 2004; Kerman et 

al., 2004).  Some common methods have utilized DNA probes with covalently attached 

enzymes (Campbell et al., 2002) or redox-active molecules (Ihara et al., 1996; Kelley et 

al., 1999).  As well, various procedures have exploited nanoparticle-modified 

olignucleotides (Wang et al., 2001a; Wang et al., 2001b; Palecek et al., 2002).   Other 

strategies employ electrochemically active intercalators such as daunomycin (Wang et 

al., 1998), metal complexes such as ruthenium bipyridine (Napier et al., 1997) and 

organic dyes such as methylene blue (Ozkan et al., 2002)  all of which have the obvious 

advantage of not requiring a labeling procedure.  The electron transfer properties of the 

monolayer are then interrogated by CV, CA or EIS, (Hartwich, 1999; Kelley et al., 

1999; Long et al., 2004).  Among the electrochemical techniques used, EIS has been 

proven to be an effective and sensitive method (Katz, 2003). 
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Previously, a label-free method able to detect single DNA base pair mismatches 

at concentrations as low as 100 pM had been reported (Long et al., 2003; Wettig et al., 

2003b; Long et al., 2004; Li et al., 2005; Li et al., 2006).  Briefly, the unlabelled single-

stranded probe DNA is attached to a gold working electrode through a thiol linkage and 

the target, also unlabelled, is hybridized to it. The impedance is measured for B-DNA 

and for M-DNA which is formed after incubation with Zn2+ at pH ≥ 8.5 (Lee et al., 

1993; Aich et al., 1999).  M-DNA monolayers have decreased RCT compared to B-DNA 

but the presence of a mismatch increases the RCT for M-DNA whilst decreasing the RCT 

for B-DNA. Thus, the difference in impedance before and after formation of M-DNA 

allows for the unequivocal detection of a mismatch within a synthetic DNA 20mer.  

However, there are a few fundamental problems with this procedure that need to be 

addressed.  First and foremost is the delicacy of this protocol in the presence of metal 

ions.  If the pH is too high, the DNA may denature or the metal ion may precipitate.  If 

the pH is too low then M-DNA will not form.  To complicate matters further, the 

addition of zinc salt to the [Fe(CN)6]
4- may cause the formation of zinc ferrocyanides 

which will precipitate out of the solution potentially causing numerous inconsistencies 

in results (Miller and Falk, 1904; Cheng, 1955; Riveros et al., 1996).  As well, 

[Fe(CN)6]
3- cannot be kept as aqueous stock solutions because potassium ferricyanide 

decomposes slowly on standing.  In order to address these and other problems, a new 

redox probe was tested that has longer storage times, less preparatory time, faster 

analysis and increased reliability especially in the presence of metal ions such as Zn2+.   

In the following section, the effectiveness of IrCl6
2-/3- as a redox couple is demonstrated 

as well as the advantages associated with this system in comparison to the [Fe(CN)6]
3-/4- 

reported previously (Li et al., 2003; Long et al., 2003; Long et al., 2004) . 

 

3.4.1 Effect of Metal Ions on Electron Kinetics 

 

In order to investigate the electron properties of M-DNA both cyclic 

voltammetry and electrochemical impedance spectroscopy were used.  Previous work 

took advantage of the commonly used negatively charged redox couple [Fe(CN)6]
3-/4-.  

This probe has been very successful in looking at DNA monolayers as the negative 
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charge is sufficiently repelled from the monolayer and therefore the electron must flow 

from the probe through the monolayer to the gold surface.  However, as mentioned 

above, this probe shows some limitations when investigating M-DNA.  Therefore, 

various alternative redox probes such as Ferrocenecarboxaldehyde and 1,1’-

Ferrocenedicarboxylic acid were tried.  However, in both cases, the probes were able to 

penetrate into the monolayer causing the signal transduction through the monolayer to 

proceed virtually unimpeded.  Finally, the anionic probe IrCl6
2-/3- was also tested and 

proved to be quite effective in investigating DNA monolayers.   Therefore, the 

following work reconfirms the electronic properties of M-DNA previously shown using 

[Fe(CN)6]
3-/4- as a redox couple (Li et al., 2003; Long et al., 2003; Li et al., 2005; Li et 

al., 2006) and for the first time demonstrates the correlation of incremental pH changes 

on M-DNA formation using electrochemistry.   As well, the potential advantageous of 

using the IrCl6
2-/3- redox couple over standard [Fe(CN)6]

3-/4- system will be highlighted.   

 

3.4.2 Cyclic Voltammetry 

 

Duplex DNA, 30 base pairs in length, was assembled onto the gold surface as 

described in Materials and Methods and the resultant monolayer was examined 

electrochemically using 2 mM IrCl6
2-.   IrCl6

2- undergoes spontaneous reduction to 

IrCl6
3- making an effective redox couple in situ.  Even though the concentration of 

reduced species is variable, there is no significant change in the formal potential over 

the time course of one measurement.  In order to achieve greater consistency, fresh 

solution was used for each measurement.   

From the CV plot shown in figure 3.23, it can be seen that for a bare electrode 

immersed in 2 mM IrCl6
2- in 20 mM Tris-ClO4 at pH 8.6, a characteristic reversible 

redox cycle with anodic and cathodic peak currents of approximately 8 µA and a peak 

separation of 85 mV is seen.  However, once DNA is immobilized on the surface, the 

peak current drops and the separation between the oxidation and reduction peaks 

increased considerably indicating the reduced ability for electron transfer between the 

solution and the surface caused by blocking of the gold surface by the DNA monolayer.   
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Figure 3.23  Cyclic Voltammograms of (a) bare gold electrode, (b) ds-DNA modified 
electrode, (c) ds-DNA monolayer in the presence of 0.4 mM Zn2+ at pH 8.6 and (d) ds-
DNA monolayer in the presence of 0.4 mM Mg2+ at pH 8.6.  The concentration of 
hexachloroiridate (IV) was 2 mM in 20 mM TrisClO4 (pH 8.6).  All CVs were recorded 
at a sweep rate of 100 mV/s. 
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Upon the exposure of the monolayer to 0.4 mM Zn(ClO4)2 for only 2 minutes, the peak 

currents reach approximately 7 µA with a separation of 152 mV indicating electron 

transfer through the monolayer is only restricted slightly under M-DNA conditions.  

There were no changes in peak current or separation with longer incubation times.  

Similarly, impedance values remained constant after two minutes incubation (see 

below).  One explanation for this result is that the addition of Zn2+ causes a 

reorientation of DNA molecules on the surface.  This may allow the redox probe easier 

access to pin holes or other defect sites.  However, the shape of the cyclic 

voltammogram is characteristic of linear diffusion and the anodic peak current increases 

with the square root of the scan rate in the range of 25 to 250 mV (Figure 3.24).  Both 

of these characteristics suggest that the electrochemical reaction is primarily controlled 

by linear diffusion and not by pinholes or small defects (Chailapakul and Crooks, 

1993).   Alternatively, the Zn2+ is able to coordinate with the negatively charged 

phosphate backbone effectively reducing the electrostatic repulsion and facilitating the 

penetration of the monolayer by the negatively charged redox probe.  Presumably then, 

the exposure of the monolayer to Mg2+
 would give a similar result.  However, the CV 

plot decreases only slightly compared to native DNA indicating very slow electron 

transfer between the solution and the surface (Figure 3.23).  Therefore, the much faster 

electron transfer implies that M-DNA is a better conductor than B-DNA.   Finally, 

exposing the monolayer to 10 mM EDTA in 20 mM Tris-ClO4 with 100 mM NaClO4 at 

pH 7.1 converts the signal back to native DNA.  This result demonstrates that the 

decrease in signal is not a result of denaturation or destruction of the monolayer (Figure 

3.25).   As well, the return of the original signal after the addition of EDTA further 

confirms that the formal potential remains constant even after repeated measurements.  

 In order to investigate the electron-transfer kinetics, the CV plots for a bare 

gold electrode and M-DNA modified electrode were fitted using DigiSim version 3.0 

from BASi and compared.  In figure 3.26, both CV plots are shown with the 

background current subtracted together with the simulated CV plots.  In 20 mM Tris-

ClO4
 at a scan rate of 100 mV/s, a ∆Ep of 85 mV was measured for the IrCl6

2-/3- redox 

couple at a bare electrode and a ∆Ep of 152 mV for the M-DNA modified electrode.   
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Figure 3.24  Plot of anodic peak current (Ipa) vs. the square root of the scan rate.  The 
cyclic voltammograms were obtained using an M-DNA modified electrode in 20 mM 
Tris-ClO4 buffer (pH 8.6) in the presence of 2 mM IrCl6

2-/3-. 
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Figure 3.25  Cyclic Voltammograms of an M-DNA modified electrode (�) and the 
electrode after incubation in 10 mM EDTA in 20 mM TrisClO4, 100 mM NaClO4 at pH 
7.1 (�).  All measurements were performed in 2 mM hexachloroiridate (IV) in 20 mM 
TrisClO4 (pH 8.6) at a sweep rate of 100 mV/s. 
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Figure 3.26  Cyclic voltammograms (	) in 2 mM IrCl6
2-/3- in 20 mM Tris-ClO4 buffer 

solution (pH 8.6) at (A) bare gold electrode and (B) a M-DNA modified gold electrode 
together with simulated data (�).  Scan rate used was 100 mV/s.  Digital simulations 
were made using the kET, E0, and α (transfer coefficient) values of (A) 5.7 x 10-3 cm/s, 
0.69 V vs. Ag/AgCl/3 M NaCl, and 0.5 and (B) 1.5 x 10-3 cm/s, 0.69 V vs. Ag/AgCl/3 
M NaCl and 0.5.  A diffusion coefficients of 8.9 x 10-6 cm2/s was used for both Dox and 
Dred in (A) and (B).  Both CVs have the background current subtracted. 
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Under these conditions, the electron-transfer rate was 5.7 x 10-3 cm/s and 1.5 x 10-3 

cm/s respectively.  In the case of a regular dsDNA monolayer, the electron-transfer rate 

was too small to be measure effectively and therefore must be orders of magnitude 

smaller.   

3.4.3 Electrochemical Impedance Spectroscopy 

To further investigate the properties of M-DNA monolayers, EIS was employed.  

Impedance spectroscopy is advantageous because a model based on electronic 

components can be used to represent the electrochemical system (Figure 3.27 inset).   

The impedance of an electrode undergoing heterogeneous electron transfer through a 

self-assembled monolayer can be described on the basis of the model developed by 

(Randles, 1947).    The circuit components in the Randles cell can easily be compared 

with familiar physical phenomena.  The solution resistance term, RS, represents the 

resistance of the solution between the working (gold electrode) and reference 

(Ag/AgCl) electrode.   The charge transfer resistance term, RCT, results from the transfer 

of electrons from the redox probe to the DNA monolayer, through the base pairs of the 

DNA helix and from the helix to the surface of the gold electrode.  A constant phase 

element (CPE) will act as a non-ideal capacitor in order to account for inconsistency on 

the electrode surface (Dijksma et al., 2002).  Finally, a Warburg impedance element, W, 

is dependent on the rate of diffusion of the redox probe (Long et al., 2004).  The data 

are shown as Nyquist plots where the impedance values are a result of the resistance 

and capacitance measured at various frequencies.  The data is presented as the real (Zre), 

versus the imaginary (-Zim) components.  The Nyquist plot for a bare electrode (data not 

shown) consists of a semicircular region lying on the Zre axis followed by a straight line.  

The semicircle portion, measured at higher frequencies, corresponds to direct electron 

transfer, whereas the straight linear portion, observed at lower frequencies, represents 

the diffusion-controlled electron transfer process known as Warburg impedance (Long 

et al., 2003; Wettig et al., 2003b).  For a clean bare electrode, the Warburg impedance 

will appear as a line with a slope of approximately 0.5 on a Nyquist plot (Glarum and 

Marshall, 1982).   
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Figure 3.27  Nyquist plots (Zim vs Zre) of a 30 base pair-complementary DNA 
performed in 1 mM hexachloroiridate (IV) redox probe in 20 mM Tris-ClO4 at pH 8.6.   
Measurements were done in a three-electrode cell using an applied potential of 690 mV 
vs. Ag/AgCl.  In all cases the measured data points are shown as symbols with the 
calculated fit to the equivalent circuit as a solid line.  (
) 30 basepair duplex B-DNA, 
(�)  after incubation in 0.4 mM Zn2+ at pH 6.0, (�)  after incubation in 0.4 mM Mg2+ 
at pH 8.6, and (�) after incubation in 0.4 mM Zn2+ at pH 8.6.  Inset:  The experimental 
data were fit to the Randles equivalent circuit which consists of the solution resistance 
through the redox probe (RS), the charge transfer resistance through the DNA (RCT), the 
constant phase element (CPE) and the Warburg constant (W). 
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As expected, the resistance for M-DNA is much lower than its corresponding B-DNA 

construct illustrating that electron transfer via M-DNA is much faster than that of the 

native DNA.  Figure 3.27 shows the Nyquist plots when the DNA monolayer is exposed 

to Zn2+ at pH 6.0 or to Mg2+ at pH 8.6, conditions under which M-DNA does not form.  

Consistent with the CV experiments, only small changes in the charge transfer are seen.  

These changes are most likely a result of reducing the charge repulsion of the DNA 

monolayer by the metal ions binding to the negatively charged phosphate backbone.   

As shown in Table 3.6 for the various films, a monolayer composed of B-DNA has a 

RCT of 416 ± 64 kΩ compared to M-DNA which has a RCT of 91 ± 56 kΩ.  Both 

monolayers in the presence of Zn2+ at pH 6.0 and Mg2+ at pH 8.6 show much smaller 

decreases in RCT of 335 ± 60 and 298 ± 64 kΩ respectively.  In all cases, M-DNA is 

reproducibly converted back to B-DNA and original RCT values are obtained by the 

incubation of the monolayer in 10 mM EDTA. 

The change in RCT between B-DNA and M-DNA monolayers was calculated as 

%∆RCT as different electrode morphologies can yield different impedance values, but 

the percent changes between B- and M-DNA are more reproducible.  As illustrated in 

figure 3.28, as the pH increases the percent change between B- and M-DNA becomes 

larger until it reaches a maximum of 70% above pH 8.0.  Conversely, the monolayer 

exposed to Mg2+ shows no dependence on the pH of the solution.  Therefore, the large 

change at increased pH values for M-DNA is indicative of zinc ions replacing the imino 

proton on thymine and guanine residues.  
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TABLE 3.6   Impedance Data as a Function of pH and Metal Iona 

 

Circuit element B-DNA  

pH 8.6 

M-DNA 

pH 8.6 

DNA incubated  

with Zn2+ pH 6.0 

DNA incubated  

with Mg2+ pH 8.6 

Rs / kΩ 4.3 (0.3) 4.2 (0.3) 4.3 (0.3) 4.1 (0.2) 

CPE / µF 1.02 (0.16) 1.09 (0.36) 1.03 (0.16) 1.22 (0.06) 

n 0.87 (0.01) 0.85 (0.02) 0.88 (0.01) 0.88 (0.01) 

RCT / kΩ 416 (64) 91 (56) 335 (60) 298 (64) 

W / 10-5 Ω•s-1/2 4.1 (0.9) 5.6 (1.0) 5.0 (1.1) 5.1 (0.8) 

 
aThe values in parentheses represent the standard deviation from at least 5 electrodes. 
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Figure 3.28  Determination of pH dependency on M-DNA formation.  Each point is 
calculated as the change in RCT between DNA monolayers which was incubated in the 
presence of Zn2+ (�) or Mg2+ (�) at pH 6.0 and each corresponding pH.  Error bars 
represent the standard deviation and are derived from a minimum of three different 
electrodes.  All measurements were performed in freshly prepared 1 mM 
hexachloroiridate (IV) in 20 mM Tris-ClO4. 
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3.4.3.1 Dehybridization-Rehybridization 

 

In order to assess the ability to detect hybridization, the dsDNA was denatured 

and then rehybridized with target strand.   A schematic of the experimental procedure is 

outlined in figure 3.29a.  As seen from the Nyquist plots in figure 3.29b, the RCT 

decreases by approximately 46 ± 10 % after denaturation compared to the original 

dsDNA monolayer.  The decrease in RCT seen in the impedance plots is assumed to be 

correlated with the degree of denaturation.  Although the impedance signal does not 

return to the values for a perfect dsDNA monolayer, the increase is reflective of 

rehybridization efficiencies of approximately 87.9 ± 4.0%.   

 

3.4.3.2 Effect of Site-Specific Metal Ions on Resistance through M-DNA 

 

As previously mentioned in section 3.2.3.2 oligomers 30 base-pairs in length 

where designed with 50% d(AT) and the other 50% d(TG)•d(CA) in which three 

terminal thymines on the d(TG)•d(CA) track where replaced with 4-thiothymines (Table 

2.2).  As shown in figure 3.9, this sequence begins to form M-DNA at a lower pH 

compared to d(TG)15•d(CA)15.  Therefore, DNA containing the above sequences was 

immobilized onto gold electrodes and the resistance through the DNA was measured at 

various pH values in the absence and presence of Zn2+.  As shown in figure 3.30, the 

%∆RCT for d(TG)15•d(CA)15 is the largest at low pH values.  A possible explanation is 

that the partial M-DNA formation in the thiolated region of both Mx(s4T)-30a or 

Mx(s4T)-30b is not sufficient to allow fast electron transfer through the entire 

monolayer.   However, the errors in the results obtained are substantial and definitive 

conclusion cannot be made at this time.  The large error was originally thought to be 

connected with the initial resistance of the B-DNA monolayer as a possible correlation 

may be seen in figure 3.31 showing %∆RCT of both Mx(s4T)-30a and Mx(s4T)-30b at 

pH 7.4 vs. their initial RCT.  Surprisingly, even for reproducible monolayers that have an 

initial RCT within ± 50 kΩ of each other, there are different %∆RCT (Figure 3.31 shaded 

area).  Therefore, most likely a combination of surface coverage, density, thickness and 

surface morphology all lead to the inconsistency of the results.   
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Figure 3.29  Dehybridization-Rehybridization experimental procedure. i)  Monolayer 
was exposed to 10 mM NaOH solution at 65 °C for 10 minutes, rinsed with Millipore 
water and soaked for an additional 10 minutes.  ii)  Monolayer was exposed to 100 µM 
target strand in 20 mM Tris-ClO4, 100 mM NaClO4 (pH 7.1) for 3 hours.  (b)  Nyquist 
plot of fully hybridized monolayer (�), ssDNA monolayer after denaturation procedure 
(�) and a rehybridized dsDNA monolayer (�).   
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Figure 3.30  Determination of pH dependency on the M-DNA formation of TG-30 
(�); Mx-30a (�); and Mx-30b (�).  Each point is calculated as the change in RCT 
between DNA monolayers which were incubated in the presence of Zn2+ at pH 6.0 and 
each corresponding pH.  Error bars represent the standard deviation and are derived 
from a minimum of three different electrodes.  All measurements were performed in 
freshly prepared 1 mM hexachloroiridate (IV) in 20 mM Tris-ClO4. 
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Figure 3.31  The change in RCT between DNA monolayers which were incubated in the 
presence of Zn2+ at pH 6.0 and pH 7.4 for Mx-30a (�) and Mx-30b (�).  The red line 
shows a linear fit for all data points. 
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3.4.4 Chronocoulometry 

 

A comparison of the charge passed at the various modified electrodes is shown 

in figure 3.32.  The experiment begins at an initial potential of 900 mV vs. Ag/AgCl, 

where no electrolysis of IrCl6
2- can occur.  The potential is then stepped to 500 mV, at 

which essentially all of the IrCl6
2- is reduced to the IrCl5

3-.  As one can see form figure 

3.32, the amount of charge passed through the M-DNA modified electrode is 

significantly larger than that on the dsDNA modified electrode.  As is also evident, 

when the dsDNA modified electrode is incubated in the presence of Mg2+ which 

presumably only occupies the negatively charged phosphate backbone, the charge 

increases slightly compared to that of regular dsDNA.  A similar trend is seen when the 

monolayer is incubated in Zn2+ at pH 6.0.  However, when the monolayer is incubated 

at pH 8.6 in the presence of Zn2+ there is a considerable increase in charge which can be 

attributed to electron transfer through the M-DNA monolayer. 
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Figure 3.32  Chronocoulometric transients at 500 mV of 2 mM hexachloroiridate (IV) 
in 20 mM tris-ClO4 (pH 8.6) at (a) a ds-DNA modified electrode, (b) a ds-DNA 
modified electrode incubated in the presence of 0.4 mM Zn(ClO4)2 at pH 6.0 (c) a ds-
DNA modified electrode incubated in the presence of 0.4 mM MgClO4 and (d) a ds-
DNA modified electrode incubated in the presence of 0.4 mM Zn(ClO4)2 at pH 8.6. 
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4.0 DISCUSSION 

 

4.1 Evidence Confirming the Proposed Model for M-DNA 

 

As discussed in section 1.3.1 of the introduction, there have been numerous 

studies that have lead to the proposed structure of M-DNA in which the metal ion 

replaces the imino proton on both thymine and guanine (Lee et al., 1993; Aich et al., 

1999; Wood et al., 2002; Wood and Lee, 2005).  However, without a solved crystal 

structure, there still remains skepticism as to the exact location of the metal ion.  The 

results in this thesis strengthen the proposed M-DNA model and clearly show that M-

DNA is distinct from denatured DNA.   

 

4.1.1 Thermal Denaturation Profiles 

 

Previously, it has been shown that transition metals which interact with the 

bases are able to cause thermal destabilization and denaturation of the DNA helix 

(Eichhorn and Shin, 1968).  Also, an increase in pH has been shown to cause a similar 

effect (Ageno et al., 1969).   However, as shown in figure 3.6a in the presence of Zn2+, 

the Tm of poly[d(AT)] actually increases as the pH value is raised to 9.0.  First, the 

increase in thermostability caused by Zn2+ at pH 9.0 is even greater than that caused by 

Mg2+.  Therefore, Zn2+ is doing much more than simply binding to the negatively 

charged backbone of the DNA.  A simple explanation for the increase in Tm is the 

conversion to a new conformation.  Second, unlike Mg2+ which increases the Tm 

approximately 10 °C at all pH values, the thermostability caused by the addition of Zn2+ 

is pH dependent.  This result also correlates very well with the formation of M-DNA as 

the replacement of the imino proton with a metal ion would be more favorable at higher 
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pH.  Finally, it is clear that the DNA is not becoming denatured since the Tm increases 

in the presence of Zn2+ at high pH.    

It has been shown that the lower the pKa of the imino proton of the base, the 

lower the pH at which M-DNA will form (Wood et al., 2002).  For example, the 

incorporation of 5FU stabilizes M-DNA at a lower pH because the pKa of 5FU is about 

two pH units lower than that of T.  Similarly, as shown in figure 3.7c, the incorporation 

of s4T into poly[d(TG)•(CA)] causes the Tm to increase at an even lower pH compared 

to native poly[d(TG)•(CA)].  This result is consistent with the above hypothesis as s4T 

has a lower pKa compared to the native T.  Again, this suggests that the metal ion is 

indeed replacing the imino proton of the base.   

The melting profile of λ-496 shown in figure 3.1 was also interesting.  Under 

normal conditions, λ-496 has three different melting transitions corresponding to AT 

rich regions, mixed regions and GC rich regions.  Although the addition of Mg2+ 

increases the Tm at all pH values, there still remains three separate melting transitions.   

However, the addition of Zn2+ causes one single melting transition.  One possible 

explanation is that when the Zn2+ replaces the imino proton the ∆G of base-pair 

formation becomes similar so that there are no longer separate melting transitions seen 

for GC and AT rich regions.   

 

4.1.2 Ethidium Bromide Assay 

 

Formation of M-DNA was also measured by the EtBr assay.  One explanation 

for the decrease in ethidium fluorescence upon M-DNA formation is the denaturation of 

the DNA.  However, following M-DNA formation, there is rapid restoration to B-DNA 

upon the addition of EDTA to the ethidium fluorescence buffer.  Since the 

concentration of DNA and the ionic strength are both low, rehybridization is very slow 

(Morgan et al., 1979).  Therefore, this result cannot be explained by denaturation.  A 

better explanation for the inability of ethidium to intercalate between the base-pairs is 

explained by the charge repulsion caused from the Zn2+ replacing the imino proton.  A 

similar result is seen for triplexes containing CG•C+ (Morgan et al., 1979; Lee et al., 

1984; Scaria and Shafer, 1991).   The substitution of both s4T and s2T into poly[d(AT)] 
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lowered the pH at which M-DNA formation occurred (Figure 3.7a) .  This result was 

not surprising as both analogues have lower pKa values than T and transition metals 

bind well to sulfur-containing functional groups.  Similarly, when the analogue s4T was 

incorporated into poly[d(TG)•(CA)], the pH of M-DNA formation was again lowered 

(Figure 3.7b).  However, the incorporation of s2T resulted in an increase in the pH 

needed for the conversion to M-DNA.  This result may be due to the location of the 

sulfur atom hindering the binding of the metal ion.  Alternatively, poly[d(AT)] may 

simply be refractory to forming M-DNA and therefore under this sequence context, the 

unusual base pair aids in M-DNA formation.   

 

4.1.3 UV Absorption Spectrum  

 

Also supporting the location of the metal ion is the absorption spectrum of 

poly[d(As4T)] in the presence of Zn2+.  As summarized in figure 3.4 the absorbance 

peak at 345 nm, which is a result of the incorporation of s4T, shifts in the presence of 

Zn2+ at pH 8.5.  This alone suggests that the metal ion is intimately involved with the 

sulfur atom which would be the case if the metal ion was replacing the imino proton.  

Interestingly, this result is not seen with Zn2+ at pH 7.5 or with Mg2+ at either pH 7.5 or 

8.5.  Further evidence indicating the metal ion is involved with the hydrogen bonding is 

that the shift is also seen after denaturation indicating the metal ions now have access to 

the base.  It is important to note that the shift is seen under M-DNA conditions in which 

the DNA is not denatured as evident from the peak at 260 nm.    

 

4.1.4 X-ray Photoelectron Spectroscopy  

 

The XPS results show direct interaction of Zn2+ with nitrogen.  More 

importantly, they strongly suggest that the metal ion is replacing the imino proton on 

thymine and guanine rather than other alternative binding locations that have been 

suggested.  For instance, x-ray crystallography has demonstrated that Zn2+ is able to 

bind to the N7 of guanine under M-DNA conditions (Labiuk et al., 2003).  However, 

previous investigation using the EtBr assay has shown that this position is not important 
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for M-DNA formation as z7A substituted DNA is still able to adopt the M-DNA 

conformation (Lee et al., 1993).  Another possible binding location for the metal ion is 

on the ring amine groups.  However, this position is unlikely as ring amine groups are 

not good ligands for transition metals (Martin, 1979).  As shown in figure 3.17a, there 

are two main peaks observed in N 1s spectra for B-DNA.  Interestingly, these two peaks 

collapse into a single sharp peak under M-DNA conditions.  These results are very 

similar to those seen with metal porphoryins which closely resembles the proposed M-

DNA model.  Finally, Zn/P ratios reaffirm that under M-DNA conditions, there are 

approximately 3 zinc residues for every base pair which corresponds well with zinc 

interacting with the phosphate backbone as well as the imino nitrogen.  After washing 

with buffer containing no Zn2+, the zinc residues interacting with the phosphate 

backbone are easily removed while only the zinc bound to the imino nitrogen remains.     

Previously, it has been shown that ssDNA is able to interact with a gold surface 

through the base nitrogens (Petrovykh et al., 2003).  This will result in an observed 

signal below 399 eV.  However, there is no energy peak observed under 399 eV in the 

nitrogen spectrum indicating the presence of very little if any ssDNA on the electrode 

surface.   

  

4.1.5 Electrochemistry 

 

The electrochemical results show that the electron transfer kinetics is much 

faster for M-DNA compared to B-DNA (Rakitin et al., 2001; Aich et al., 2002; Li et al., 

2003).  Other studies have suggested that the enhanced electron rate observed for M-

DNA monolayers on gold is simply a result of  increased penetration of the redox probe 

Fe(CN)6
3-/4- caused from the binding of divalent metal ions (Liu et al., 2005).  

Although, this is certainly a contributing factor, this work clearly shows that this same 

effect is not seen with Mg2+ or Na+ under similar conditions or with Zn2+ at pH 6.5.  

This indicates that the transfer rate is caused from something other than cations 

associated with the phosphate backbone.  As well, it has been shown theoretically that 

increased conductivity is attributed to M-DNA (Nokhrin et al., 2007).  As well, the 

electrochemical impedance results show that the decrease in resistance seen with M-
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DNA is dependent on pH (Figure 3.27).  Again, the pH dependency supports the 

proposal that the imino proton is being replaced with the metal ion. 

As shown in figure 3.25 M-DNA can be converted back to B-DNA through the 

addition of EDTA.  The same effect can also be seen in the impedance plots.  Such 

results would not be attainable if the DNA was being denatured because the strand 

would be removed from the monolayer during rinsing or repeated measurements as 

there is no sulfur linker to keep it attached to the gold surface.  Therefore, the 

conversion back to B-DNA with EDTA shows that the DNA is remaining as dsDNA 

even in the presence of Zn2+.   

 
4.2 Applications in Biosensing  

 

4.2.1 Characterization of B-DNA and M-DNA Monolayers on Gold  

 

The attachment of DNA to a solid support is widely used in biosensing 

applications.  Historically, the first example was the detection of DNA-binding 

antibodies in Enzyme-Linked ImmunoSorbent Assays with the DNA being bound 

nonspecifically to plastic wells (Kemeny, 1997; Price, 1997).  In this case, the 

characteristics of the surface are not a major concern as long as some of the DNA is 

available for antibody binding.  More recently, several types of fluorescence-based 

assays have been developed to detect DNA and RNA hybridization.  In most formats 

which can be extended to an array, the probe sequence is attached to a surface through a 

biotin/avidin or gold/thiol linkage and the target sequence is labeled with a fluorescent 

dye (Schulze and Downward, 2001). The fluorescence intensity provides a measure of 

the target sequence concentration. For these assays, the characteristics of the DNA 

bound to the surface are much more important; not only must the concentration of probe 

DNA be consistent from one array spot to the next but also it must be reproducibly 

available for hybridization to the target.  In particular if these assays are being used to 

detect sequence variations (mismatches or Single Nucleotide Polymorphisms, SNPs) 

then hybridization efficiencies become crucial. 
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 Biosensors have also been designed to detect hybridization and single nucleotide 

polymorphisms (SNPs) by electrochemical methods (Boon et al., 2000; Drummond et 

al., 2003). In these techniques, a probe DNA monolayer is self-assembled on a gold 

electrode and hybridized to an unlabelled target DNA in the same way as for the 

fluorescence assays.  The electron transfer properties of the monolayer are then 

interrogated by cyclic voltammetry, chronoamperometry or impedance spectroscopy 

(IS), (Hartwich, 1999; Kelley et al., 1999; Long et al., 2004; Li et al., 2005; Li et al., 

2006).  The rate of electron transfer is dependent on the degree of hybridization as well 

as the presence of a mismatch. Electrochemical detection has the potential advantages 

of direct electrical readout, an unlabelled target, and detection of SNPs without relying 

on differential hybridization.  

However, reproducible surface characteristics of the monolayer are critical since 

small variations can lead to large changes in electron transfer rates.  The majority of 

reports regarding the immobilization of nucleic acids on a gold surface have been on the 

assembly of thiol-terminated single-stranded DNA followed by hybridization (Herne 

and Tarlov, 1997; Peterlinz et al., 1997; Levicky et al., 1998; Moses et al., 2004; Li et 

al., 2006).  Although most of these methods use DNA mixed with short hydroxyl-

terminated alkanethiols, non-specific DNA-surface interactions through nucleotide 

amines, steric issues between DNA probes, and electrostatic forces can all affect the 

hybridization efficiency.  Some of these problems can potentially be overcome using 

dsDNA.  While there have been some investigations on the self-assembly of dsDNA 

(Sakao et al., 2003; Wackerbarth et al., 2004), our method demonstrates a successful 

approach in which dsDNA along with alkanethiols are directly immobilized onto the 

surface through disulfide adsorption.  

In order to develop this and other electrochemical biosensors, the surface 

characteristics of B-DNA and M-DNA monolayers must be understood.  Therefore, 

detailed examinations of the surface characteristics were done using XPS.  As described 

in section 3.3 the DNA coverage, density, thickness and elemental composition of the 

monolayers were determined.  As well, the degree of atmospheric contamination and its 

effect on the monolayer after 5 days immobilization was examined.  In summary, stable 

SAMs are formed with DNA attached to the gold surface through a S-Au bond.   
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4.2.2 Design and Optimization of Redox Couple  

 

The results discussed in section 3.4 reconfirms the electronic properties of M-

DNA previously shown using [Fe(CN)6]
3-/4- as a redox couple (Li et al., 2003; Long et 

al., 2003) and for the first time demonstrates the correlation of incremental pH changes 

on M-DNA formation using electrochemistry.  More importantly, the IrCl6
2-/3- redox 

couple has significant advantages compared to the previously mentioned [Fe(CN)6]
3-/4- 

system.  The most significant advantage of this system is that one can avoid the 

production of zinc ferrocyanides which can precipitate out of the solution when adding 

zinc salt to the [Fe(CN)6]
3-/4- solution (Miller and Falk, 1904).    With the previous 

[Fe(CN)6]
3-/4-  system, pH dependent experiments are very restricted by the narrow 

range of conditions under which M-DNA will form.  If the pH is too high, the DNA 

may denature or the metal ion may form metal hydroxides and precipitate out of the 

solution.  At lower pH values there is a greater prevalence of forming zinc 

ferrocyanides (Cheng, 1955; Riveros et al., 1996).   Therefore, care must be taken as 

any precipitation at the monolayer-solution interface may drastically change the charge 

transfer leading to erroneous results.  From time dependent measurements it is clear that 

2 minutes is sufficient to form M-DNA which is comparable to the ethidium bromide 

assay which has shown that M-DNA is capable of forming in < 10 minutes with 0.25 

mM Zn2+ (Wood et al., 2002).   In the current system, M-DNA is reproducibly 

converted back into B-DNA by the addition of EDTA which allows one to rule out 

denaturation or destruction of the monolayer and enables electrodes to be used multiple 

times.  There are also other laboratory benefits of using this redox probe.  Even though 

hexachloroiridate (IV) undergoes spontaneous reduction to hexachloroiridate (III) in 

neutral and basic solutions (Fine, 1969), the redox probe can be stored for several 

months under more acidic conditions.  Therefore, all measurements are done with fresh 

solution made with aliquots taken from the stock.  This aids in the reproducibility of the 

system compared to ferri/ferrocyanide which cannot be kept as a stock solution very 

well as aqueous solutions of potassium ferricyanide decompose slowly on standing.  

Another advantage of using hexachloroiridate (IV) instead of ferri/ferrocyanide is that 

deoxygenation of the sample solution by purging with nitrogen or argon gas is not 
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necessary with the hexachloroiridate (IV) since the potential scan only needs to go to 

approximately 400 mV which is too oxidative of an environment for any appreciable 

reduction of dissolved oxygen (Petrovic, 2000).  On the other hand, the cathodic peak of 

ferricyanide merges with a second voltammetric wave, which corresponds to the 

reduction of dissolved oxygen.  In summary, the IrCl6
2-/3- redox couple is able to 

discriminate between B- and M-DNA as well between ss- and ds-DNA monolayers 

effectively.  This redox probe eliminates the potential problems of metal ferrocyanides, 

is effective under a broad range of pH values, has longer storage times, less preparatory 

steps with rapid detection making it a more ideal redox probe for use with biosensors.   

 

4.3 Localization of Metal Ions to Specific Regions in Oligonucleotides 

 

As previously mentioned in section 1.2.3.5, there is considerable interest in the 

ability to incorporate metal ions to localized regions of DNA.  However, most strategies 

represent a significant synthetic challenge or alter the structure of DNA so drastically in 

the process, that the molecular recognition properties of the DNA are destroyed.  

However, M-DNA offers an alternative approach that does not require difficult 

synthesis and retains the molecular recognition properties of the native DNA.  

Throughout this thesis, it has been demonstrated that the formation of M-DNA relies 

heavily on the sequence, the incorporation of novel nucleotides and the pH.   This 

research has effectively shown that the pH at which M-DNA formation occurs can be 

manipulated by altering the sequence and base composition of the DNA.  Therefore, 

this knowledge was used in order to localize metal ions to specific regions within the 

DNA by creating oligonucleotides which contained one sequence with a high 

propensity to adopt the M-DNA conformation and the remaining portion having a 

sequence that does not favour M-DNA formation.  As discussed in section 3.2, only the 

d(TG)•d(CA) tract will form at low pH while the d(AT) tract will remain as B-DNA 

until a higher pH is reached.  Unfortunately, oligomers containing only d(AT) tracts 

were unable to be examined for comparison as correct hybridization was unsuccessful 

due to strand slippage or the formation of hairpin loops.   
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The ability to control the conformation of the DNA with metal ions may have 

practical applications. For example, the number of Zn2+ ions present in a duplex may be 

inversely related to the conductivity of the M-DNA complex. Therefore, the 

conductivity of DNA wires can be controlled which may be useful for nanoelectronics.   

As well, the pH could be used as a molecular switch or alternatively, oligomers with 

various sequences could be used in biosensors to detect variations in the pH.   

As mentioned in the introduction, DNA is one of the most promising 

biomolecules for nanofabrication.  Currently, an almost limitless variety of geometric 

shapes have been produced using self-assembly (Chen and Seeman, 1991; Zhang and 

Seeman, 1994; Shih et al., 2004; Rothemund, 2006).  Controlled nanoscale motion has 

been achieved (Mao et al., 1999; Yurke et al., 2000; Sherman and Seeman, 2004; Shin 

and Pierce, 2004; Ye and Mao, 2004) and the functionalization of DNA structures with 

metal ions has been accomplished (Braun et al., 1998; Aich et al., 1999; Meggers et al., 

2000; Weizman and Tor, 2001; Zimmermann et al., 2002; Tanaka et al., 2003).  In this 

thesis, the structure of M-DNA has been examined and its properties have been 

investigated.  M-DNA offers a simple and inexpensive means of manipulated DNA in 

order to localize metal ions at specified regions within an oligonucleotide.  M-DNA has 

shown to have practical applications and will add to the vast and continually growing 

nanoscale construction kit.  As Lloyd Smith remarks, “the barrier we have to surmount 

next is to deploy our knowledge to develop structures and devices that are really useful.  

Happily, in that endeavor, we are now perhaps limited more by our imagination than by 

our ability” (Smith, 2006). 

 

4.4 Future Directions  

 

The experiments conducted in this thesis have confirmed the proposed structure 

for M-DNA.  As well, it has been clearly shown that the incorporation of s4T into 

poly[d(TG)•(CA)] caused the formation of M-DNA at a much lower pH.  This 

discovery has the potential to facilitate the crystallization of M-DNA as the formation at 

a lower pH will help prevent the precipitation of the metal ions.  Additionally, other 

modified nucleotides should be incorporated into the DNA and the effect of these 



 150 

unusual bases on the stability and formation of M-DNA can be investigated with the 

ethidium fluorescence assay and thermal denaturation profiles.  Good candidates are 6-

thioguanine or 2-thiocytidine, which may also show spectral shifts and are also 

expected to favour the incorporation of thiophilic metal ions such as Zn2+.  A 

combination of one or both of these with 4-thiothymine may allow M-DNA to form at 

extremely low pH values.  As well, the different placements of the sulfur on the bases 

and how it effects M-DNA formation and stability may give us more information 

regarding the location of the metal ion.   

 It has previously been shown with XPS that the introduction of an electron-

withdrawing group into the center of a porphyrin will decrease the N 1s binding energy 

as the metal ions electronegativity decreases (Karweik and Winograd, 1976).  

Therefore, experiments with Ni2+ and Co2+ should alter the peak energy compared to 

Zn2+ further validating the chemical structure of M-DNA.  Also VAXPS experiments 

should be continued in order to confirm the localization of metal ions within the DNA 

monolayer.  Possible strategies to improve results include using shorter oligomers 

which will maintain rigidity better and therefore might align more perpendicular to the 

gold providing more defined layers.  Alternatively, longer oligomers may be 

advantageous by provided a greater separation between layers containing metal ions and 

those without.  Another approach is to establish very dense monolayers with increased 

coverage and thickness by immobilizing in the presence of Mg2+ or Ca2+ (Petrovykh et 

al., 2003).  This again may provide better definition between the layers.     

A logical continuation of this work would be to study the effect of the metal 

localization on electron transfer properties of oligomers containing gaps or regions with 

and without metal ions.  Although differences were observed in charge transfer between 

various oligomers designed to incorporate metal ions at different locations, slight 

differences in surface morphology and monolayer coverage effect the results 

significantly.  In order to improve on this, it is suggested that the change seen in the 

charge transfer, must be in relation to the DNA coverage and density.  Hopefully, this 

will give more meaningful and reproducible data.   

Finally, there is one experiment worth further investigation as it was started, but 

was unable to be completed.  Previously, fluorescence lifetime experiments were 
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performed on oligomers 54 base-pairs long which were constructed with a donor 

fluorophore at one end and an acceptor fluorophore at the opposite end of the DNA 

(Aich et al., 1999).  The oligomer also contained a recognition site for the D-site 

binding protein (Roesler et al., 1992).  Upon conversion to M-DNA, the fluorescence 

intensity rapidly dropped to 25% of the original value.  However, in the presence of the 

D-site binding protein, the fluorescence intensity only dropped slowly indicated that the 

protein interrupted the signal by preventing the incorporation of metal ions in that 

specific region (Aich et al., 1999).  It has also recently been demonstrated that the 

binding of proteins to dsDNA SAMs increased the impedance providing the framework 

for the development of a valuable assay for studying DNA-protein interactions (Li et 

al., 2004).  Therefore, oligomers 30 base-pairs in length containing a disulfide linker 

were constructed containing the recognition site for the D-site-binding protein.  DNA 

monolayers were created on gold in order to access the electron properties of M-DNA 

in the presence of bound protein as well as with the eventual goal of developing an 

assay for the detection of small molecules.  However, the protein solution used 

contained small amounts of Dithiothreitol (DTT) which when added to the monolayer 

reduced the S-Au bond and stripped the monolayer after only minutes.  Attempts to 

remove DTT resulted in precipitation of the protein.   Therefore, continuation with this 

project would be recommended as the materials are already available in the Lee lab and 

the area is still of interest to the scientific community.   
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