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Abstract

Relay-aided communication methods have gained strong interests in academic community

and been applied in various wireless communication scenarios. Among different techniques

in relay-aided communication system, two-way relaying communication (TWRC) achieves

the highest spectral efficiency due to its bi-directional transmission capability. Nevertheless,

different from the conventional point-to-point communication system, TWRC suffers from

detection quality degradation caused by the multiple-access interference (MAI). In addi-

tion, because of the propagation characteristics of wireless channels, fading and multipath

dispersion also contribute strongly to detection errors. Therefore, this thesis is mainly con-

cerned with designing transmission and detection schemes to provide good detection quality

of TWRC while taking into account the negative impacts of fading, multipath dispersion

and multiple-access interference.

First, a TWRC system operating over multipath fading channels is considered and or-

thogonal frequency-division multiplexing (OFDM) is adopted to handle the inter-symbol

interference (ISI) caused by the multipath dispersion. In particular, adaptive physical-layer

network coding (PNC) is employed to address the MAI issue. By analyzing the detection

error probability, various adaptive PNC schemes are discussed for using with OFDM and

the scheme achieving the best trade-off among performance, overhead and complexity is

suggested.

In the second part of the thesis, the design of distributed precoding in TWRC using

OFDM under multipath fading channels is studied. The objective is to design a distributed

precoding scheme which can alleviate MAI and achieve multipath diversity to combat fading.

Specifically, three types of errors are introduced when analyzing the error probability in the

multiple access (MA) phase. Through analysis and simulation, the scheme that performs

precoding in both time and frequency domains is demonstrated to achieve the maximum

diversity gains under all types of errors.
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Finally, the last part of the thesis examines a communication system incorporating for-

ward error correction (FEC) codes. Specifically, bit-interleaved code modulation (BICM)

without and with iterative decoding (BICM-ID) are investigated in a TWRC system. Dis-

tributed linear constellation precoding (DLCP) is applied to handle MAI and the design

of DLCP in a TWRC system using BICM/BICM-ID is discussed. Taking into account the

multiple access channel from the terminal nodes to the relay node, decoding based on the

quaternary code representation is introduced. Several error probability bounds are derived

to aid in the design of DLCP. Based on these bounds, optimal parameters of DLCP are

obtained through analysis and computer search. It is also found that, by combining XOR-

based network coding with successful iterative decoding, the MAI is eliminated and thus

DLCP is not required in a BICM-ID system.
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1. Introduction

1.1 Introduction

Given the rapid growth in the use of wireless devices (e.g. smart phones, tablets) and

increased variety of data services (e.g. social networks, cloud computing) in recent years,

wireless communication systems require higher transmission rate and better quality of ser-

vice. Specifically, higher data rate can be achieved by using larger bandwidth and increasing

spectrum efficiency (data rate transmitted per unit bandwidth). To guarantee the quality

of service, the design of a wireless communication system needs to consider the influence of

two important factors of the wireless channels: fading and multipath dispersion.

Fading, the effect of the variation that signal level experiences due to the unique propa-

gation characteristics of wireless channels, is the main challenge in wireless communications.

In general, fading includes two types: large scale fading and small scale fading. Large scale

fading is caused by the long distance the signal travels and blocking by large objects in the

propagation path. The fading caused by the former is called pass loss, while that caused by

the later is called shadowing. Path loss determines the region of coverage and shadowing

causes coverage holes (regions of space at which the signal strength is very low). Because

of the existence of large scale fading, the quality of service at the edge of coverage areas

or in coverage holes cannot be guaranteed. To overcome the influence of large scale fading,

the conventional approach is to increase the transmitted power. However, for power-limited

devices, such as mobile phones, it is not economical or even realistic to increase the transmit

power beyond a certain limit. To overcome such technical problems, relaying techniques

have been studied extensively in recent years [1, 2].
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S D

Source Node Destination Node
Slot 1

(a) Direct communications

S D

R

Source Node Destination Node

Relay Node R

Slot 1
Slot 2

(b) Relay-aided communications

Figure 1.1 One-way communications: Direct and relay-aided transmissions.

A relay, as shown in Figure 1.1, is a node in a wireless network which is used to help

the transmission of information from one node to another when those two nodes cannot

directly communicate in a reliable manner. It has been shown that using relay is effective to

alleviate the influence of large scale fading and thus increases the coverage and enhances the

transmission reliability. In fact, relaying technology has been included in many advanced

wireless communication systems [3, 4]. Since relays operate in half-duplex mode (i.e., they

cannot transmit and receive at the same time), relay-aided communication requires one

more time slot when compared to direct communication, as shown in Figure 1.1. Due to

the scarcity of spectrum resource, more efficient relaying schemes need to be investigated to

enhance the spectrum efficiency.

It is difficult to solve the problem that relay-aided communication needs one more time

slot, especially when the communication is one-way, as shown in Figure 1.1. However, if

the communication is conducted in two-way, as shown in Figure 1.2, in which two nodes

exchange their information simultaneously, new protocols can be implemented so that the

number of time slots required to complete the transmission is the same as communicating

directly. In this scenario, the information exchange process aided by a relay is called two-way

relay communications (TWRC).

2
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Terminal Node 1 Terminal Node 2Slot 1
Slot 2

(a) Direct communications

T1 T2

R

Terminal Node 1 Terminal Node 2

Relay Node R

Slot 1
Slot 2

(b) Relay-aided communications

Figure 1.2 Two-way communications: Direct and relay-aided transmissions.

Small scale fading is caused by scattering, reflection and diffraction of the transmitted

signal by surrounding objects in the propagation environment. The receiver obtains con-

structively or destructively superimposed copies of the transmitted signal. This causes the

fluctuation of the power of the received signal. The fluctuation, especially when the power

of the received signal is extremely low (which is also called deep fade), has the negative

influence on the system reliability. To take into account signal fluctuation in system de-

sign, the wireless channel under small scale fading is usually modelled as a complex random

variable whose distribution depends on the characteristics of the propagation environment.

Typically, the channel coefficient h is modelled as a complex Gaussian random variable with

mean µ and variance σ2. If there is no line-of-sight (LOS) path between the transmitter and

receiver, µ is set to zero and the magnitude of the channel gain η = |h| follows a Rayleigh

distribution as given in Equation (1.1). It is common to refer to h as a Rayleigh fading

channel.

fη (η) =
η

σ2
exp

(

− η2

2σ2

)

, η ≥ 0. (1.1)

If there is a LOS path between the transmitter and receiver, then η follows a Rician distri-

bution as shown in Equation (1.2) and h is called a Rician fading channel.

fη (η) =
η

σ2
I0

( |µ|η
σ2

)

exp

(

−η2 + |µ|2
2σ2

)

, η ≥ 0. (1.2)

3



In Equation (1.2), I0(·) is the modified Bessel function of the first kind, given as

I0 (x) =
1

2π

∫ 2π

0

exp (x cosϕ) dϕ. (1.3)

To alleviate the influence of small scale fading, a technique called diversity is widely used

in modern wireless communication systems. Generally speaking, diversity is implemented

by sending copies of a signal over independent resource dimensions to lower the probability

of occurrence of a deep fade. The performance gain obtained by using diversity technique is

usually called diversity gain. Depending on the system resource that can be used to supply

the multiple signal copies, diversity can be categorized into the following types.

• Time diversity : Time diversity is implemented by sending the same signal over multi-

ple time periods whose channel responses are independent. Specifically, time diversity can be

implemented by simply repeating the same signal on different time periods, a method called

repetition code. More efficient schemes include using rotation matrix which can guarantee

that different errors are related to multiple independent channels.

• Space diversity : Space diversity is implemented by deploying multiple antennas at the

receiver or transmitter. If the multiple antennas are installed at the receiver, the diversity

gain is usually achieved by using a combining scheme such as the maximum ratio combing

(MRC) and it is called receive diversity. If the transmitter is equipped with multiple anten-

nas, space time coding (STC) is usually used to achieve the diversity gain and it is called

transmit diversity.

• Multipath diversity : Multipath diversity gain can only be exploited in the system that

has the bandwidth large enough so that different propagation paths can be distinguished.

Typical schemes that exploit multipath diversity includes the Rake receiver used in code

division multiple access (CDMA) systems, and performing rotation matrix in orthogonal

frequency division multiplexing (OFDM) systems.

Multipath dispersion is another characteristic of the wireless channel which causes the

signal to reach the receiver in more than one path. In a narrowband communication system,

since most of the paths arrive within one symbol time, the equivalent channel is represented

4



by one tap (this is typically called flat fading). However, in a broadband system, the trans-

mitted signal arrives over multiple symbol times and the equivalent channel is represented as

a filter with several taps and inter-symbol interference (ISI) exists (this is called frequency-

selective fading).

Equalization is a traditional method to deal with the ISI problem. In this method, the

receiver uses a filter with several taps to eliminate the influence of ISI. However, as larger

bandwidth is used in modern wireless communications, the number of taps for the equiva-

lent channel is large and the complexity of equalization can be very high. The techinique

of OFDM is proposed to combat ISI with reasonable complexity in [5, 6]. By using in-

verse fast Fourier transform (IFFT) at the transmitter and fast Fourier transform (FFT)

at the receiver, OFDM converts the high-rate data stream into a set of parallel low-rate

streams and transmits them over distinct carriers (also commonly called subcarriers). As

illustrated in Figure 1.3, signal in each subcarrier experiences an equivalent narrowband

channel. Therefore, the receiver only needs to handle multiple parallel flat fading channels

and the complexity is much lower than using a long equalization filter to remove ISI. Owing

to its effectiveness and simplicity, OFDM is widely adopted in modern broadband wireless

communication systems [7–9]. In addition, since multipath is also the source of diversity, dif-

ferent techniques of exploiting multipath diversity gain in OFDM systems have been studied

and proved to be effective [10–12].

A
m

pl
itu

de

Bandwidth W Frequency

subcarrier

Frequency-selective
channel response

Figure 1.3 Multiple subcarriers in OFDM.
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As listed above, techniques are developed to achieve the different types of diversity gains

and all schemes are designed for system without considering forward error correction (FEC).

Bit-interleaved coded modulation (BICM) is a technique first proposed in [13] which uses

convolutional encoder/decoder and bit interleaver/de-interleaver to achieve potential diver-

sity gains. Later, [14] gives an analytic framework of BICM and presents the design criterion

which treats coding and modulation as separate components. By selecting the convolutional

code with large free Hamming distance and designing interleaver with enough interleave

depth, BICM is able to achieve any types of diversity gains. Specifically, references [13, 14]

assume fast fading scenario where time diversity gains are achieved by using BICM. Then

in [12, 15], BICM is combined with OFDM to obtain the multipath diversity gains. In

multiple-input multiple-output (MIMO) systems, BICM is also able to exploit the space

diversity gains [16, 17]. To further enhance the performance of BICM system, iterative

processing is introduced in BICM systems and it is called BICM with iterative decoding

(BICM-ID). Reference [18] first proposed the iterative processing between the demodulator

and the decoder and shows that it can provide a significant performance gain over BICM

systems.

1.2 Research Motivation and Objectives

Different from point-to-point communications, implementing two-way relaying commu-

nications in two time slots needs to consider the influence of multiple access interference

(MAI). In other words, the relay node has to recover the signals of the two terminal nodes

based on the superimposed signal. Recently, several schemes have been proposed to address

the MAI problem. However, most of these schemes ignore the influence of small scale fading

and multipath dispersion in wireless transmissions. Motivated from the above observations,

this thesis is concerned with the design of TWRC which can effectively and efficiently handle

the problems caused by MAI, fading and multipath dispersion. The main research objectives

are elaborated below.

• To handle the poor detection performance caused by MAI, several references [19–22]

propose to use adaptive transmission schemes at the relay node to broadcast the processed
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signal to the terminal nodes. Specifically, the relay node uses different mapping rules or

constellations under different channel conditions in order to minimize the detection error

probability. Based on theoretical analysis and simulations, those adaptive schemes are

demonstrated to solve the problem caused by MAI. However, all these references consider

the wireless channels to be flat fading and the adaptive transmission schemes are designed

according to this assumption. As discussed above, multipath dispersion is the unique char-

acteristic of wireless channels, especially for a broadband communication system. Over

multipath channels, the existing schemes may not be efficient or even valid. Therefore, the

first objective of our research is to study the anti-MAI schemes designed for TWRC in mul-

tipath channels. Since OFDM has been widely used to combat multipath dispersion, the

research focuses on how to combine OFDM with TWRC. To this end, a system model is

developed for a TWRC-OFDM system. Then the detection error probability in different

scenarios is analyzed. The analysis leads to a scheme which is able to achieve the trade-off

among performance, overhead and processing complexity.

• Most of the existing studies on TWRC focus on designing the schemes which are able

to effectively handle MAI. However, in most scenarios, fading is still the dominating factor

which causes detection errors. Since the focus of our research is on TWRC systems, the

influence of large scale fading can be ignored by assuming that the relay node is properly

located. On the other hand, to handle small scale fading, the most effective technique is

to achieve diversity gains as discussed in Section 1.1. Therefore, another objective of our

research is to investigate how to achieve diversity gains in TWRC systems. Different from

simply using existing diversity-achieving schemes in TWRC systems, a joint design to handle

MAI and achieve diversity gains at the same time is proposed. Specifically, the multipath

diversity gain is selected as the target diversity gain since it is easy to implement (spatial

diversity requires deploying multiple antennas, while time diversity requires a large buffer to

store samples collected for a long time, or high mobility speed of terminal nodes). Meanwhile,

OFDM is still adopted to address the problem caused by multipath dispersion.

• FEC is an essential part in any modern wireless communication systems. However,

most of the designs and analysis on TWRC systems do not explicitly consider FEC. Because
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of the excellent ability of FEC to correct many types of errors (caused by noise, fading,

interference, etc.), it is of interest to also consider TWRC system incorporating FEC. As

mentioned in Section 1.1, BICM/BICM-ID is able to achieve diversity gains. Therefore, our

research will focus on TWRC system employing BICM/BICM-ID and the design of precoding

schemes to handle the problem caused by MAI. Specifically, due the existence of MAI, the

decoding process of the FEC code needs to be devised. Furthermore, the error probability

in a TWRC system employing BICM/BICM-ID is derived and used to aid the optimization

of anti-MAI precoding schemes.

1.3 Organization of the Thesis

This thesis is organized in a manuscript-based style. The first part of the thesis provides

some relevant background and knowledge of wireless communications. The main content and

contributions of the thesis are included in the form of published or submitted manuscripts.

The remainder of the thesis is organized as follows.

Chapter 2 first presents some background on relay-aided cooperative communications.

Fundamental knowledge on one-way relaying communications (OWRC) and TWRC are in-

troduced. The MAI problem faced in TWRC is analyzed and the existing solutions are

discussed. Since our research makes use of OFDM and BICM/BICM-ID techniques, some

basic concepts of OFDM and BICM/BICM-ID are also given in Chapter 2. In each of the

following chapters, a brief introduction precedes each manuscript in order to connect the

manuscript to the main context of the thesis.

The manuscript in Chapter 3 studies the adaptive physical-layer network coding (PNC)

in a TWRC system with OFDM under multipath channels. Different error events under

multiple access channels are analyzed and the corresponding error probabilities are derived.

Several adaptive PNC schemes in OFDM are proposed and the candidate achieving the

best trade-off among performance, overhead and complexity is selected. The manuscript in

Chapter 4 is also concerned with TWRC-OFDM systems under multipath channels. Instead

of PNC, distributed precoding is investigated to handle MAI and achieve the multipath
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diversity gains. The proposed precoding, conducted in both time and frequency domains,

is theoretically proved to achieve the maximum multipath diversity gains. Through com-

puter search, the optimal parameter of precoding matrices is obtained to further enhance the

performance of the proposed scheme. While Chapter 3 and 4 are concerned with TWRC sys-

tems without explicitly considering FEC, the manuscript in Chapter 5 considered a TWRC

system using BICM with and without iterative decoding. The iterative demodulation and

decoding process under the multiple access channel is developed by using the quaternary

code representation. Error probability bounds are derived in order to help the design of

distributed linear constellation precoding (DLCP) to combat MAI.

Finally, Chapter 6 summarizes the contributions of this thesis and suggests potential

research problems for future studies.

Notation: The complex number
√
−1 is denoted by j. The conjugate of complex number

a is denoted by a∗. The matrix containing elements from the ith to jth row , from the kth

to the lth columns of A are denoted by A (i : j, k : l). The inverse, transpose, Hermitian,

rank, and determinant of matrix A are denoted by A−1, AT , AH , rank (A) and det (A),

respectively. 0M is the length-M zero vector, 0M×N is the M ×N zero matrix and IN is the

N × N identity matrix. |a| denotes the magnitude value of a complex number a. diag (a)

denotes a diagonal matrix whose diagonal elements are from vector a and ‖a‖2 denotes the

Euclidean norm of vector a. CN (0, N0) denotes complex Gaussian distribution wit zero

mean and variance N0.
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2. Background

This chapter first discusses relay-aided communications which includes both OWRC and

TWRC. Different transmission protocols are introduced. Specifically for TWRC, the MAI

problem is explained and different schemes used to address the MAI issue are discussed. Next,

in order to familiarize the reader with the subject matters of the manuscripts in Chapter 3

and Chapter 4, basic concepts of OFDM and schemes used to achieve diversity gains in point-

point communications are described. Finally, some basic knowledge of BICM/BICM-ID is

introduced to establish a foundation for the manuscript in Chapter 5.

2.1 Relay-Aided Communications

As mentioned before, relay-aided communications have gained strong interests in research

and industry communities. Depending on factors such as the number of relays deployed in

a network, the number of antennas equipped in each relay, and whether fixed or mobile

relays are employed, the topology of a relay-aided system can be very complicated. For

example, considering multiple relays, references [23–27] focus on the optimization of resource

allocations. References [28,29] examine scenarios that mobile stations are used as relays and

analyze the influence of the mobility speed. Assuming multiple antennas are equipped at

relays, references [30–34] focus on space-time signal processing to achieve higher diversity

gains or to mitigate the interference. It is pointed out that, all research works conducted

on complicated scenarios are extensions of the simplest system having one fixed relay node

and two terminal nodes. As such, this section restricts the discussion on a communication

system having two terminal nodes and one relay node. Furthermore, it is assumed that the

relay node is fixed, equipped with one antenna and operates in a half-duplex mode.
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2.1.1 One-Way Relaying Communications (OWRC)

The transmission/reception process of OWRC requires two time slots as illustrated in

Fig. 2.1. The terminal node sending out information is called the source node, while the

terminal node receiving information is referred to as the destination node. In the first time

slot, the channel from source node S to relay node R is represented by hsr, which is a complex

Gaussian random variable with mean µhsr
and variance σ2

hsr
.

D

R

hsr

Source Node Destination Node

Relay Node R

hrd
sc yd

yr

Sd d

sr

Slot 1

Slot 2

Figure 2.1 One-way relaying communcations without a direct link

The binary information bits d are mapped into symbols sc. The information bits can

be mapped into amplitude levels of a sinusoidal carrier such as with amplitude-shift keying

(ASK), or into phases such as with phase-shift keying (PSK), or into both amplitude levels

and phases such as with quadrature amplitude modulation (QAM). If each symbol carries

m information bits, then there are M = 2m symbols in the symbol set and this set is called

constellation S. Figure 2.2 illustrates the constellation of 16-QAM and a mapping rule from

4 information bits into 16 symbols. In the figure, dmin is defined as the minimum Euclidean

distance between any two symbols in the constellation. This is an important parameter of

the constellation because it strongly influences the overall performance of the communication

system.

At the relay node, the received signal is:

yr = hsrsc + ωr, (2.1)

where ωr ∼ CN (0, σ2
r) represents the additive white Gaussian noise (AWGN) at the relay.
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Figure 2.2 Constellation and mapping of 16-QAM.

In the second time slot, the relay generates new signal sr from the received signal yr and

transmits it through channel hrd, which is medelled as a complex Gaussian variable with

mean µhrd
and variance σ2

hrd
. The received signal at destination node D is:

yd = hrdsr + ωd, (2.2)

where ωd ∼ CN (0, σ2
d) is AWGN at destination node D. Using the received signal yd, the

destination node tries to detect the transmitted information bits.

To implement the transmission described above, the most important design problem is

how to generate sr at the relay node. Depending on the type of signal processing used at the

relay node, two types of forwarding strategies are usually considered. A simple strategy is

amplify-and-forward (AF). In AF, the relay simply adjusts the power and re-transmits the

received signal yr. Assuming that all nodes have the same transmitted power, the AF signal

is:

sr =

√

1

|hsr|2 + σ2
r

yr. (2.3)
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Using (2.1) and (2.3), the received signal at the destination node in (2.2) can be expressed

as:

yd =
hsrhrd

√

|hsr|2 + σ2
r

sc +

(

hrd
√

|hsr|2 + σ2
r

ωr + ωd

)

. (2.4)

It can be observed from (2.4) that the noise component ωr at the relay is also amplified.

Therefore, although AF is easy to implement, it suffers from a performance degradation

caused by noise amplification.

Another strategy is decode-and-forward (DF). Different from AF, the relay first detects

the signal transmitted from the source node as ŝc and use ŝc as the forward signal sr. The

DF technique eliminates the influence of noise generated at the relay and is preferred in the

case that noise is the dominant factor causing errors. However, there are two disadvantages

of using DF. First, the signal processing needed for detection is much more complicated

than simply amplifying the received signal. Therefore, the relay using DF strategy requires

more computation resources than that using AF. Another problem is that, since erroneous

detection is unavoidable, this leads to a error propagation phenomenon due to forwarding

erroneous signals.

2.1.2 Two-Way Relaying Communications (TWRC)

Different from OWRC, a relay node, R, is used in TWRC to help the information exchange

between two terminal nodes T1 and T2. Depending on how many time slots are required to

complete the communication process, three types of transmission protocols are considered

as illustrated in Fig. 2.3.

Comparing Fig. 2.3(a) with Fig. 2.1, it can be seen that the four-slots protocol can be

viewed as a concatenation of two OWRC transmissions. In time slot 1 and time slot 2, T1 acts

as the source node and T2 acts as the destination node, while in time slot 3 and time slot 4,

the roles of T1 and T2 are reversed. Under this protocol, all transmission techniques designed

for OWRC can be applied directly. However, this protocol has the lowest spectral efficiency.

In the three-slots protocol, instead of allocating different time slots for each terminal node,

relay node R broadcasts the processed signal in only one time slot and that time slot is
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(a) Four-slots protocol
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(b) Three-slots protocol
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(c) Two-slots protocol

Figure 2.3 Two-way relaying communications without a direct link.

usually called the broadcasting (BC) phase. The main design problem in this protocol is

how to generate the broadcast signal so that both terminal nodes can recover the intended
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information from a received version of the broadcast signal. The solution of this problem is

discussed later in this section.

As an extension of the three-slots protocol, by allowing the two terminal nodes to send

their signals to the relay node in the same time slot, the resulting two-slots protocol further

eliminates one time slot in the whole transmission process. Besides the problem of generating

a proper signal for the BC phase, the relay used in the two-slots protocol needs to detect

signals of the two terminal nodes based on one superimposed signal it receives. Since the

transmission conducted in the first time slot is under a multiple access channel, it is called

the multiple access (MA) phase. Although it is most challenging to implement, the two-slots

protocol achieves the highest spectral efficiency (as high as in direct transmission). In the

remaining of this section, a system model based on the two-slots protocol is presented and

the related problems with existing solutions are discussed.

In the MA phase, the channel from terminal node Ti to relay node R is represented by

hi (i ∈ {1, 2}) which is modeled as a complex Gaussian random variable with mean µhi
and

variance σ2
hi
. The binary information bits d1 and d2 are modulated into symbols s1 and s2,

respectively. The symbols s1 and s2 are then simultaneously transmitted from two terminal

nodes over channels h1 and h2. At the relay, the received signal is:

yr = h1s1 + h2s2 + ωr, (2.5)

where ωr ∼ CN (0, σ2
r) is additive white Gaussian noise (AWGN) at the relay.

In the BC phase, the relay generates a new signal sr from the received signal yr and

transmits it over channels gi (i ∈ {1, 2}), which is modelled as a complex Gaussian random

variable with mean µgi and variance σ2
gi
. The received signal at terminal node Ti is:

yi = gisr + ωi, i ∈ {1, 2} (2.6)

where ωi ∼ CN (0, σ2
i ) is AWGN at terminal node Ti. Based on the self information d1 and

received signal y1, terminal node T1 can detect the information d2 and vice versa.

Similar to the processing in OWRC, the strategies to generate sr can also be classified

as AF and DF. Like the AF process in OWRC, the relay using AF in TWRC also adjusts
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the power and re-transmits a scaled version of yr. Because yr is a superimposed signal from

the two terminal nodes, the amplification factor needs to consider the amplitudes of both h1

and h2. Assuming all nodes have the same transmitted power, the amplified signal sr can

be expressed as:

sr =

√

1

|h1|2 + |h2|2 + σ2
r

yr. (2.7)

It is can be observed that AF in TWRC also suffers from the problem of noise amplification.

Different from the DF strategy in OWRC, to implement DF in TWRC, the relay node

first detects signals transmitted from the two terminal nodes, then generates a broadcast

signal according to the detected symbols ŝ1 and ŝ2. Depending on how to combine these

two detected symbols, at symbol level or bit level, DF can be implemented in different ways.

In [35], the broadcast signal sr is generated as:

sr = h1ŝ1 + h2ŝ2. (2.8)

Since sr generated using this scheme incorporates the channel effect, it is named a partial

decode-and-forward (PDF) strategy. Compared to AF, PDF avoids the problem of noise

amplification. However, the broadcast signal generated by PDF may exceed the peak power

constrain for some specific h1 and h2. To keep the transmit power constant, another DF

scheme introduced in [36] generates sr as a linear combination of the detected symbols:

sr =
√
pŝ1 +

√

1− pŝ2 (2.9)

where p is the power allocation coefficient.

The two DF schemes discussed above perform signal combinations at the symbol level.

Alternatively, the signal processing to generate the broadcast symbol can operate at the

bit level. For example, [21] proposes a joint modulation-based DF scheme in which sr is

expresses as:

sr = M
(

d̂1 d̂2

)

(2.10)

where M denotes the function that maps bits to a constellation symbol and d̂i denotes the

bits demodulated from ŝi. It can be observed from (2.9) that the joint modulation-based DF
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scheme requires a high-order modulation in the BC phase than in the MA phase. A more

efficient bit-level DF scheme is proposed in [37], which generates sr as:

sr = M
(

d̂1 ⊕ d̂1

)

. (2.11)

In this scheme, the same modulation used in the MA phase can be used in the BC phase

by conducting the exclusive-or (XOR) on the bits of two detected symbols. In [37], this

XOR-based DF scheme is called network coding and it is adopted in most of research works

on TWRC.

It is clear that no matter what the combination method is employed in the DF scheme,

the most important task is to achieve a good performance in detecting (ŝ1, ŝ2). However,

this task is more difficult for a multiple access channel (MAC) than for the conventional

point-to-point channel. For a point-to-point channel, the detection quality is determined by

the signal-to-noise ratio (SNR) and the distance property of the employed constellation. For

a MAC, besides the influence of noise, multiple access interference (MAI) could also lead to

detection errors. To elaborate the influence of MAI, (2.5) can be rewritten as:

yr = h1(s1 + γejθs2) + ωr (2.12)

where γejθ = h2/h1 is the fade state of the MAC according to the definition in [38]. In some

specific fade states, the relay may not be able to distinguish different symbol pairs (s1, s2)

even if there is no noise. For example, under the scenario of γejθ = −1, all symbol pairs

satisfying s1 = s2 would lead to the same received signal and thus cause detection ambiguity.

Any fade state causing detection ambiguity is called a singular fade state whose distribution

in the complex plane is related to the modulation type that the terminal nodes use.

Figure 2.4 gives examples of distribution of the singular fade states for the cases of

quadrature phase-shift keying (QPSK) and 8-ary phase-shift keying (8-PSK). In practice,

the probability of γejθ equalling to a singular fade state is zero. However, if the value of

γejθ is close to a singular fade state, it would lead to the phenomenon of distance shortening

and this is illustrated in Fig. 2.5. In the example of Fig. 2.5, QPSK is employed by the

two terminal nodes and its constellation is given in Fig. 2.5(a). For simplicity, the decimal
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Figure 2.4 Distribution of singular fade states: (a) QPSK; (b) 8-PSK.

number is used to denote the corresponding bits (e.g., 01 → 1). Figure 2.5(b) illustrates

the constellation of the received signal yr when the channel coefficients are assumed to be

h1 = 1, h2 ≈ 1. For each point in Fig. 2.5(b), the corresponding label denotes the pair of

transmitted symbols: the first number denotes the information bits of s1, while the second

number represents the information bits of s2. From Fig. 2.5, it can be seen that under

specific channel conditions, some constellation points representing different symbol pairs

may be very close to each other (e.g., those included in the same circle). This distance

shortening deteriorates the detection quality in the MA phase.

In [19, 20], a denoise-and-forward (DNF) scheme is proposed to solve the problem of

distance shortening. Specifically, DNF maps the closest symbol pairs to the same symbol in

a (possibly new) constellation to be broadcast in the BC phase. By doing so, the detection

error due to symbol pairs which are mapped to the same broadcast symbol can be eliminated

at the terminal nodes by exploiting their self-information. To make such a scheme work, the

mapping function needs to satisfy the exclusive law. Specifically, suppose M2 is the mapping

function that generates the broadcast signal sr = M2 (ŝ1, ŝ2). The exclusive law is as follows:

M2 (s1, s2) 6= M2 (s
′
1, s2) where s1 6= s′2,

M2 (s1, s2) 6= M2 (s1, s
′
2) where s1 6= s′2.

(2.13)

According to (2.13), different fade states γejθ lead to different symbol pair profiles. Fig-
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Figure 2.5 Illustration of distance shortening: (a) constellation of transmitted

QPSK; (b) constellation of the received signal at the relay with h1 = 1,

h2 ≈ 1.

ure 2.6 gives an example explaining how DNF operates under different channel conditions

in which the symbols pairs covered with the same shape are grouped and mapped to the

same symbol in the BC phase. As shown in Fig. 2.6, following the criteria of DNF, different

mapping functions are used in different channel conditions. These mapping functions are

called denoising maps. Because the mapping rule is adaptively changed according to the fade

state, this scheme is also called adaptive physical-layer network coding. To aid the detection

at terminal nodes, information of the denoising maps needs to be sent to terminal nodes

in the BC phase. In fact, the main disadvantage of DNF is this extra overhead required

to convey the denoising maps. Another observation concerning the example illustrated in

Fig. 2.6(b) is that that there are five different shapes used to group different symbols. This

means that, in the BC phase, one needs to use a constellation with five symbols. Requiring

irregular modulation such as 5-QAM [20] in the BC phase for specific channel conditions is

another disadvantage of DNF.

More recently, to overcome the disadvantages of DNF, reference [39] proposes another

scheme called distributed space-time coding (DSTC) to alleviate the distance shortening
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Figure 2.6 Denoising map for different fade states with QPSK: (a) γejθ ≈ 1; (b)

γejθ ≈ (1 + j)/2.

problem. As illustrated in Fig. 2.7, information bits di are first modulated to two constel-

lation symbols represented as si. Suppose si(n) = [si(2n− 1) si(2n)]
T is the nth symbol

vector including symbols in adjacent time units from terminal node Ti. Then the precoded

symbol vector is:

xi(n) = Θisi(n), i ∈ {1, 2} (2.14)

where Θi is the 2 × 2 precoding matrix for terminal node Ti. Instead of sending symbols

in constellation S, the precoded symbols are transmitted in the MA phase. The precoding

matrices used in both terminal nodes are jointly designed to lower the probability of distance

shortening in the MA phase. An example for jointly-designed precoding matrices given in

reference [39] is as follows:

Θ1 =
1√
5





a aθ

ā āθ̄



 , Θ2 =
1√
5





ja jaθ

ā āθ̄



 ,

with θ = 1+
√
5

2
, θ̄ = 1−

√
5

2
, a = 1 + j − jθ and ā = 1 + j − jθ̄.

Compared to DNF, DSTC does not require any overhead in the BC phase and all nodes

can use the same modulation scheme. In addition, according to the simulation results given
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Figure 2.7 DSTC in a TWRC system.

in [39], DSTC shows better performance than DNF in the high SNR region.

Due to their effectiveness in handling the MAI problem, both the techniques of adaptive

PNC and DSTC are investigated in our research for frequency-selective fading channels.

Specifically, Chapter 3 examines the design of novel adaptive PNC schemes to lower the

overhead in the BC phase. On the other other hand, Chapter 4 designs DSTC in a more

general form so that it can achieve diversity gains and alleviate MAI at the same time.

2.2 Orthogonal Frequency-Division Multiplexing (OFDM)

As mentioned in Chapter 1, OFDM is an effective and widely used technique to combat

multipath dispersion encountered in frequency-selective fading channels. As such, OFDM is

also considered in our research when it is concerned with frequency-selective fading channels.

In this section, the basic OFDM system model is first introduced. Then, a linear constellation

precoding technique to achieve multipath diversity gains in OFDM is discussed.

Modulation IFFT
CP 

Insertion

CP 
Removal

Multipath
Channel

FFTDemodulation

s

y yt

st

h

st,cp

yt,cp

Figure 2.8 Block diagram of an OFDM system.

The block diagram of an OFDM system is shown in Fig. 2.8. The input bits are first

modulated to a symbol vector s = [s(0) s(1) · · · s(N − 1)]T whose elements belong to

constellation S. Then st = [st(0) st(1) · · · st(N−1)]T is generated by performing the inverse
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discrete Fourier transform (IDFT)1 on s where the nth element of st can be expressed as:

st(n) =
1√
N

N−1
∑

k=0

s(k)ej2πnk/N , 0 ≤ n ≤ N − 1. (2.15)

After that, a cyclic prefix (CP) is generated by copying the last P samples in st and inserting

them to the beginning of st, generating st,CP = [st(N−P ) · · · st(N−1) st(0) st(1) · · · st(N−
1)]T . The multipath channel is represented by vector h = [h(0) h(1) · · · h(L− 1)]T , where

L is the number of channel taps. For the case of Rayleigh fading, the components of the

channel vector are i.i.d. zero-mean complex Gaussian random variables with unit variance.

The received signal yt,CP is a convolution between st,CP and h and added with noise. If the

CP length is longer than the number of the channel taps, the symbols that are interfered by

the previous OFDM symbol can be discarded by removing the first P symbols of yt,CP to

obtain yt. Furthermore, yt can be shown to be given as:

yt = Hst,CP + ω (2.16)

where ω = [ω(0) ω(1) · · · ω(N − 1)]T is an AWGN vector with ω ∼ CN (0N , N0IN), and H

is a convolution matrix, expressed as:

H =



















h(L− 1) h(L− 2) · · · h(0) 0 · · · 0

0 h(L− 1) · · · h(1) h(0) · · · 0

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 h(L− 1) · · · h(1) h(0)



















(2.17)

Due the cyclic property of CP, (2.16) can also be expressed as:

yt = H̃st + ω, (2.18)

1If N is a power of 2, then the DFT and IDFT can be efficiently implemented with fast Fourier transform

(FFT) and inverse FFT (IFFT), respectively.
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where

H̃ =







































h(0) 0 · · · h(L− 2) · · · h(2) h(1)

h(1) h(0) · · · h(L− 3) · · · h(3) h(2)

...
...

. . .
. . .

. . .
. . .

...

h(L− 1) h(L− 2) · · · h(0) 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

0 · h(L− 1) h(L− 2) · · · h(0) 0

0 · 0 h(L− 1) · · · h(1) h(0)







































. (2.19)

Since H̃ is a circulant convolution matrix, it has the eigenvalue decomposition as:

H̃ = WHΓW , (2.20)

where W is a DFT matrix whose elements are W (n, k) = e−j2πnk/N and WH is the corre-

sponding IDFT matrix. Γ is a diagonal matrix of the eigenvalues of H̃ . Applying DFT on

yt is equivalent to multiplying with a DFT matrix. One has:

y = Wyt

= WWHΓWst +Wω

= Γs + ω̃. (2.21)

Because W is a unitary matrix, ω̃ has the same statistical property as ω. From (2.21), one

can see that by using IFFT/FFT and CP operation, OFDM successfully converts a multipath

channel into N parallel flat fading channels. For the convenience of further discussion, by

writing Γ = diag (WTh), (2.21) can be expressed as:

y = SWTh+ ω̃ (2.22)

where S = diag(s) and WT is a truncated DFT matrix with WT = W (1 : N, 1 : L).

Although OFDM successfully eliminates the ISI, it still suffers from the channel fading. In

fact, the channel response magnitude in each subcarrier significantly varies over a multipath

channel. For the symbols allocated in the subcarriers experiencing a deep fade, the error
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probability of detection can be very high. To overcome this problem, linear constellation

precoding (LCP) was proposed for OFDM system to achieve multipath diversity gains.

LCP, which is also known as signal space diversity (SSD), is proposed in [40, 41] for

point-to-point communications. In LCP, the transmitted symbols are partitioned into several

groups and each group contains symbols which are from conventional constellation (such as

QPSK, 16-QAM). Then an LCP matrix is multiplied to each group to create the precoded

symbols and all the symbols in each group are assigned to interleaved subcarriers. The LCP

matrix is designed using algebraic number theory to achieve the maximum diversity gain.

In [10], LCP is extended to OFDM systems and shown to be able to achieve the maximum

multipath diversity gain.

LCP IFFT
CP 

Insertion
Modulation

s x

Figure 2.9 Block diagram of an LCP-OFDM system.

Using the same notations for the traditional OFDM system model described above, LCP

is applied on s to produce

x = Θs, (2.23)

where x = [x(0) x(1) · · · x(N − 1)]T is the symbol vector after precoding and Θ is the LCP

matrix. Then the received signal can be expressed as:

y = XWTh+ ω̃, (2.24)

where X = diag (x).

To establish the connection between the LCP matrix and system performance, the pair-

wise error probability (PEP) under the maximum likelihood (ML) detection is analyzed.

First the pairwise error event {s → s′} where s 6= s′ is defined by assuming s was transmit-

ted but it is erroneously detected to s′. Letting X ′ = diag (Θs′), the conditional PEP can

be bounded as [42]

P (s → s′|h) ≤ exp

[

−‖ (X −X ′)WTh‖22
4N0

]

(2.25)
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Further, let Λ = X −X ′. Then (2.25) can be expressed as:

P (s → s′|h) ≤ exp

[

−hHWH
T ΛHΛWTh

4N0

]

= exp

[

−hHΨh

4N0

]

, (2.26)

where the L × L matrix Ψ is Ψ = WH
T ΛHΛWT . Averaging the conditional PEP with

respect to the distribution of h, one obtains the following upper bound on the average PEP:

P (s → s′) ≤
(

δc
1

4N0

)−δd

, (2.27)

where δd = rank (Ψ) and δc =
(

∏rank(Ψ)−1
l=0 λl

)
1

rank(Ψ)
with λl, l = 0, . . . , rank (Ψ)− 1, are the

nonzero eigenvalues of Ψ. The diversity gain is defined as:

Gd = min
∀s6=s′

δd (2.28)

The criterion to design the LCP matrix is to find the matrix that maximizes Gd. Based on

algebraic number theory, the Q×Q optimal LCP matrix is constructed as:

Θ =
1

β













1 α1 . . . αQ−1
1

...
...

. . .
...

1 αQ . . . αQ−1
Q













, (2.29)

where β is the normalization factor such that tr
(

ΘΘH
)

= Q. The rules on choosing the

parameters {αq}, 1 ≤ q ≤ Q, are given in [10]. This form of matrix can guarantee that Ψ is

full rank under all error events and therefore Gd = min {L,Q}.

According to the above analysis, as long as Q is equal or larger than the number of

channel taps, the maximum multipath diversity gain is achieved by using LCP.

In our research, when OFDM is incorporated in a TWRC system, the problem of how

to effectively combine OFDM with adaptive PNC is analyzed and a few solutions are inves-

tigated. On the other hand, when LCP is applied (in a distributed manner) to a TWRC

system, it is designed not only to achieve the diversity gain, but also to handle the MAI

problem in both uncoded and coded systems.
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2.3 Bit-Interleaved Coded Modulation and Iterative Decoding

Due to its ability to achieve many types of diversity gain, BICM and its “iterative”

version, BICM-ID (which is BICM equipped with a iterative decoding process at the receiver)

is also considered in our research. In this section, the system model, decoding procedure and

performance analysis are presented for BICM and BICM-ID. Since BICM can be treated as

BICM-ID with only one iteration, the presentation is mainly given for BICM-ID.

Encoder Interleaverc v
Modulator

Channel

u s

SISO
Demodulator

r
Deinterleaver

Interleaver
P(v ; I)

SISO
Decoder

P(c ; I)

P(c ; O)

P(u ; O)
Hard

Decision

u P(v ; O)

Figure 2.10 Block diagram of a BICM-ID system.

The block diagram of a BICM-ID system is shown in Fig. 2.10. At the transmitter, the

L-bit vector u = [u(1) · · · u(L)]T is first encoded into a coded vector c = [c(1) · · · c(M)]T .

The coded vector c is then interleaved by a bit-wise interleaver to become the interleaved

vector v. Then each group of K coded bits in v = [v(1) · · · v(M)]T is mapped to a complex

constellation symbol. The vector consists of N constellation symbols, s = [s(1) · · · s(N)]T ,

is sent to the receiver.

Let r = [r(1) · · · r(N)]T denote the received symbol vector at the relay node. It can be

expressed as:

r = Hs+ ω, (2.30)

where H = diag ([h(1) · · · h(N)]) is the N×N diagonal matrix whose components are i.i.d.

zero-mean complex Gaussian random variables with unit variance and ω = [ω(0) · · ·ω(N −
1)]T is an AWGN vector with ω ∼ CN (0N , N0IN). Based on r, the receiver performs

iterative decoding to obtain u. As illustrated in Fig. 2.10, iterative decoding involves two

blocks: the soft-input soft-output (SISO) demodulator and the SISO decoder, which uses

the maximum a posterior (MAP) algorithm.
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To elaborate the process of iterative decoding, the nth element of r can be expressed as:

r(n) = h(n)s(n) + ω(n). (2.31)

Let M be a function that maps K bits into a constellation symbol, i.e., s(n) = M (vn)

where vn = [v ((n− 1)K + 1) · · · v (nK)]. Using the same notations as in [43], the a priori

information and the extrinsic information of a random variable z are denoted by P (z; I) and

P (z;O), respectively. In the first iteration, the a priori information sent to the deinterleaver

is the a posteriori probability. Given the received signal r(n), the a posteriori probability

for K coded bits vn(k), 1 ≤ k ≤ K, is computed as follows:

P (vn(k) = q|r(n)) =
∑

s(n)∈Sk
q

P (s(n)|r(n)) . (2.32)

In (2.32), P (s(n)|r(n)) is the a posteriori probability of the transmitted signal s(n) given

the received signal r(n). The set Sk
q , q ∈ {0, 1}, denotes the subset of S that contains all

signals whose labels have the value q at the kth position, 1 ≤ k ≤ K. Using Bayes’ rule,

P (vn(k) = q|r(n)) can be determined as follows:

P (vn(k) = q|r(n)) =
∑

s(n)∈Sk
q

P (r(n)|s(n))P (s(n))

P (r(n))
∝

∑

s(n)∈Sk
q

P (r(n)|s(n))P (s(n)) (2.33)

where P (s(n)) is the a priori probability of the transmitted s(n). For the first iteration, the

transmitted signal can be assumed to be equally likely, i.e., P (s(n)) can be set to 1/2K.

From the second iteration, the extrinsic information P (c;O) of coded bits produced

by the SISO decoder is sent to the interleaver. After being interleaved, it becomes the

a priori information P (v; I) to enter the SISO demodulator. Thanks to interleaving, K

bits corresponding to each vector s(n) are assumed to be independent. Hence the a priori

information P (s(n)) of s(n) ∈ S can be obtained as:

P (s(n)) = P (vn(1|s(n)), · · · , vn(K|s(n))) =
K
∏

k=1

P (vn(k) = vn(k|s(n)); I) (2.34)

where vn(k|s(n)) ∈ {0, 1} is the value of the kth bit in the label of s(n). Using (2.33) and
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(2.34), the extrinsic information from the second iteration can be computed as:

P (vn(k) = q;O) =
P (vn(k) = q|r(n))
P (vn(k) = q; I)

∝
∑

s(n)∈Sk
q
P (r(n)|s(n))P (s(n))

P (vn(k) = q; I)
(2.35)

=
∑

s(n)∈Sk
q

[

P (r(n)|s(n))
∏

j 6=k

P (vn(j) = vn(j|s(n)); I)
]

.

The extrinsic information is then deinterleaved to become a priori information and delivered

to the SISO decoder. At any iteration, the hard-decisions of bits u can be obtained based

on the corresponding extrinsic information P (u;O).

To evaluate the performance of a BICM system (with or without iterative decoding), the

bit error probability (BEP) is usually used [14, 44, 45]. Suppose a rate-kc/nc convolutional

code is adopted. The corresponding BEP is calculated as:

Pe ≤
1

kc

∞
∑

d=dH

ρdf (d,S,M) (2.36)

where ρd is the total information weight of all error events at Hamming distance d and dH is

the free Hamming distance of the code. The function f (d,S,M) is the average PEP, which

depends on the Hamming distance d, the constellation S and the mapping rule M. Let c

and ĉ denote the transmitted and decoded vectors, respectively, with Hamming distance d

between them. The function f (d,S,M) is computed from the PEP P (s → ŝ) by averaging

over all possible vectors s and ŝ. The calculation of P (s → ŝ) is as follows.

Without loss of generality, assume that c and ĉ differ in the first d consecutive bits.

Hence, s and ŝ can be redefined as s = [s(1), · · · , s(d)] and ŝ = [ŝ(1), · · · , ŝ(d)]. Also let

hd = [h(1), · · · , h(d)], the PEP conditioned on hd can be computed as follows:

P (s → ŝ|hd) = Q





√

√

√

√

1

2N0

d
∑

n=1

|h(n)|2 |s(n)− ŝ(n)|2


 . (2.37)

By using the Gaussian probability integral Q
(√

2γ
)

= 1
π

∫ π/2

0
exp

(

− γ
sin2 θ

)

dθ and averaging

(2.37) over hd of d i.i.d. Rayleigh random variables, it can be shown that [45]

P (s → ŝ) =
1

π

∫ π/2

0

d
∑

n=1

(

1 +
1

4N0

|s(n)− ŝ(n)|2
sin2 θ

)−1

dθ (2.38)
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Then take the average of P (s → ŝ) over all possible s and ŝ, f (d,S,M) can be calculated

as follows:

f (d,S,M) ≤ 1

π

∫ π/2

0

E







(

1 +
1

4N0

|s(n)− ŝ(n)|2
sin2 θ

)−1






d

dθ. (2.39)

For BICM without iterative decoding, the union bound is usually used [14] and the

expectation in (2.39) can be expressed as:

E







(

1 +
1

4N0

|s(n)− ŝ(n)|2
sin2 θ

)−1






=
1

K2K

∑

s(n)∈S

K
∑

k=1

1

2K−1

∑

ŝ(n)∈S̄k
s(n)

(

1 +
1

4N0

|s(n)− ŝ(n)|2
sin2 θ

)−1

(2.40)

where S̄k
s(n) denotes the subset of S which contains all the symbols whose labels differ at

position k compared to s(n).

For BICM-ID with enough number of iterations, the error-free feedback bound (EF

bound) is used [44] and the expectation (2.39) can be expressed as:

E







(

1 +
1

4N0

|s(n)− ŝ(n)|2
sin2 θ

)−1






=
1

K2K

∑

s(n)∈S

K
∑

k=1

(

1 +
1

4N0

|s(n)− ŝ(n)|2
sin2 θ

)−1

(2.41)

where ŝ(n) is the symbol whose label only differs at position k compared to the label of s(n).

In our research, BICM/BICM-ID techniques are investigated for TWRC systems. Specif-

ically, the receiver with and without iterative decoding are developed that takes into account

the unique feature of the MAC in a TWRC system. Furthermore, distributed LCP schemes

are also designed to be used with BICM/BICM-ID and the performance advantage obtained

through iterative decoding is analyzed for TWRC.
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3. Adaptive Physical-Layer Network Coding in

Two-Way Relaying with OFDM

In the previous chapter, the transmission protocols of two-way relaying communications

have been discussed. In particular, it was shown that to implement the two-slots protocol,

which achieves the highest spectrum efficiency, the relay node has to handle the distance

shortening problem caused by multiple access interference (MAI) in the MA phase. On the

other hand, adaptive physical-layer network coding (PNC), which is also known as denoise-

and-forward (DNF), is able to effectively combat MAI in a flat fading channel at the cost of

requiring extra overhead and the use of irregular modulation in the BC phase [20].

The manuscript in this chapter studies adaptive PNC over the multipath fading channels

with OFDM. First, the system model under flat fading channels in the MA phase, which cor-

responds to information transmission over one subcarrier, is established. Then the concept

of singular fade state is introduced to explain the the distance shortening problem. Further-

more, following the exclusive law, two clustering criteria, closest-neighbour clustering (CNC)

and nearest neighbour clustering (NNC) are discussed. Given the low complexity of NNC,

one objective of this manuscript is to examine the error performance of adaptive PNC under

the NNC criterion. For this purpose, the minimum distances in three different cases and the

corresponding symbol error probabilities are analyzed.

Another objective of this manuscript is to design a clustering scheme when OFDM is

adopted since different subcarriers have different channel responses. Applying different clus-

terings in different subcarriers is the simple method and it has no performance loss. However,

this method has the disadvantage of high overhead in the BC phase, especially when the
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number of subcarriers is very large. Selecting one clustering for all subcarriers is more real-

istic although it suffers from the performance loss. Based on the analysis of the symbol error

probability, three clustering methods are proposed in this manuscript with different trade-

offs between performance and complexity. Simulation results of all methods using different

modulation and under different channel scenarios are provided. Comparing the obtained re-

sults, the clustering method considering the singular fade state which causes largest symbol

error probability is shown to achieve the best performance-complexity trade-off.

The results of our study on adaptive PNC in TWRC with OFDM are reported in the

below manuscript.

[Ch3-1] H. Yan and Ha H. Nguyen, “Adaptive Physical-Layer Network Coding in Two-

Way Relaying with OFDM”, IEEE Global Telecommun. Conf., Atlanta, GA, USA, pp.

4244–4249, Dec. 2013.
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Adaptive Physical-Layer Network Coding in Two-Way

Relaying with OFDM

Hongzhong Yan and Ha H. Nguyen

Abstract

Adaptive physical layer network coding (PNC) has been shown to be effective in two-way

relay communications (TWRC). Given that the existing PNC methods were developed for

frequency-flat fading channels, this paper studies adaptive PNC in OFDM systems operating

over frequency-selective fading channels. Proposed and investigated are three methods to

determine a common clustering for all subcarriers in order to reduce the overhead information

required in the broadcast phase. The “Min-SER” method is given based on the analysis of

the error event in the multiple access phase, while the “Max-fade-SER” and “Min-fade-

distance” methods are recommended to further reduce the computational complexity in

determining the common clustering. Considering the trade-off among performance, overhead

and complexity, the “Max-fade-SER” method is the most attractive clustering method for

applying adaptive PNC in OFDM systems.

Index terms

Two-way relaying, OFDM, physical layer network coding, singular fade state.

3.1 Introduction

With the bi-directional transmission capability, two-way relay communication (TWRC)

has recently gained a strong interest in research community. Many new techniques have

been presented concerning the design of relaying protocols and signal processing methods at

the relay and/or the terminal nodes [36,46,47]. Among them, physical-layer network coding

(PNC) [47] is an important technique that extends the traditional network coding into the

field of wireless communications.
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The transmission protocol of TWRC has two phases. In the first phase, the terminal

nodes send their information to the relay node. This is also known as the multiple access

(MA) phase. In the second phase, which is also called the broadcast (BC) phase, the relay

transmits the processed information back to the terminal nodes. If the traditional network

coding is used, two time slots would be needed in the MA phase in order to provide orthogonal

channels for the two terminal nodes. In contrast, the PNC assigns only one time slot for the

MA phase by allowing the two terminal nodes send their information over the same channel.

Such a MA scheme significantly enhances the spectrum efficiency of the network. With the

PNC approach, the signals from the two terminal nodes are superimposed at the relay and it

is challenging to process the superimposed signal at the relay so that the desired information

can be detected and re-encoded in the relay node.

Several signal processing strategies have been proposed [19, 47, 48]. One solution is

denoise-and-forward (DNF), which is described in [19] together with the optimal detection

and coding scheme for BPSK. Reference [20] extends the DNF technique to QPSK and 16-

QAM. Since the DNF technique needs to change the clustering (a mapping rule from detected

signal pairs in the MA phase to a single signal in the BC phase) and even the modulation

type according to the channel condition, it is also called adaptive PNC. Recently, the authors

in [49] and [50] perform a detailed analysis of the relationship between the clustering and

channel condition. Compared to the conventional XOR network coding, the adaptive PNC

is able to significantly lower the error probability and thus improve transmission efficiency.

To date, most of the research studies concerning TWRC only consider frequency-flat

fading channels. Given the effectiveness of TWRC and the fact that orthogonal frequency-

division multiplexing (OFDM) is a popular and efficient approach to combat frequency-

selective channels, it is natural to combine adaptive PNC with OFDM in TWRC when

designing communication systems that operate over frequency-selective fading channels. For

a frequency-selective fading channel, the gains in different subcarrriers of the OFDM sys-

tem are different and thus generally require different clusterings. This would cause a large

overhead in the BC phase if the clustering information needs to be conveyed to the termi-

nal nodes in subcarrier-by-subcarrier manner. To reduce overhead information, this paper
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proposes sub-optimal clustering methods that determine one common clustering for all the

subcarriers in a given OFDM frame. It is shown that the proposed methods have better

performance when compared to the pure XOR method and offer a good trade-off among

performance, computational complexity and the amount of overhead bits when compared to

the optimal method that is based on subcarrier-by-subcarrier clustering.

The rest of the paper is organized as follows. Section 3.2 presents the system model

and summarizes the important details of the adaptive PNC technique. Section 3.3 analyzes

the error probability in different channel conditions. Different clustering selection strategies

are investigated in Section 3.4. Section 3.5 provides the simulation results for performance

comparison. Section 3.6 draws conclusions.

3.2 System Model and Adaptive PNC

The TWRC system under consideration has two terminal nodes, denoted as node T1

and node T2, which exchange their information by the help of the relay node R. Both

the terminal nodes use the same modulation type. Let S denote the set of the constellation

points, whose average energy is normalized to unity. The channel of each communication link

is assumed to be block fading. The discussion in this section focuses on flat-fading channels,

while frequency-selective channels and the use of OFDM will be discussed in Section 3.4.

In the MA phase, the relay node receives the combined signal from nodes T1 and T2.

That is

YR = H1X1 +H2X2 + ωR, (3.1)

whereX1, X2 ∈ S, H1 andH2 are the coefficients of the T1-R and T2-R channels, respectively,

and ωR is the additive Gaussian noise, modeled as CN (0, N0). By defining H2/H1 = γejθ as

a fade state [50], one has

YR = H1

(

X1 + γejθX2

)

+ ωR. (3.2)

It follows that the effective constellation at the relay during the MA phase, SR(γ, θ) is related

to the fade state:

SR(γ, θ) =
{

Xi + γejθXj|Xi, Xj ∈ S
}

. (3.3)
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Let Dmin (γ, θ) be the minimum distance of the constellation SR(γ, θ), which is calculated

as:

Dmin (γ, θ) = min
(X1,X2),(X′

1,X
′
2)∈S×S

(X1,X2) 6=(X′
1,X

′
2)

∣

∣(X1 −X ′
1) + γejθ (X2 −X ′

2)
∣

∣ . (3.4)

It can be seen from (3.4) that there exists particular fade state γejθ that causes the

minimum distance to be zero. Following the definition in [50], such a fade state is called

singular fade state and the set of singular fade states is F =
{

γejθ|Dmin (γ, θ) = 0
}

. It

should be noted that although the singular fade states happen with an extremely low prob-

ability, the fade states near them cause short minimum distance (although not zero), and

this phenomenon is called distance shortening [20].

At the relay, the maximum likelihood (ML) detection is performed to obtain the estimates

X̂1 and X̂2 as follows:

(

X̂1, X̂2

)

= arg min
(X′

1,X
′
2)∈S×S

|YR −H1X
′
1 −H2X

′
2| . (3.5)

After obtaining the ML estimates, the relay node would map the pair
(

X̂1, X̂2

)

into one

signal. This mapping process is described asM : S×S → S ′. In general, the constellation S ′

can be different from the constellation used by the two terminal nodes. In the conventional

network coding, the XOR operation is used at the bit level and S ′ would be the same as

S. However, in adaptive network coding [20], to handle the problem of distance shortening,

the mapping is determined by the value of the fade state γejθ and it is explicitly written as

Mγ,θ. The elements in S ×S which are mapped to the same element in S ′ by Mγ,θ are said

to form a cluster and the formation of clusters under the fade state γejθ is called clustering

and denoted by Cγ,θ [50].

When designing the clustering, the exclusive law [19] should be followed to ensure the

successful decoding at the terminal nodes in the BC phase. The exclusive law is a follows:

Mγ,θ (X1, X2) 6= Mγ,θ (X ′
1, X2) where X1 6= X ′

1,

Mγ,θ (X1, X2) 6= Mγ,θ (X1, X
′
2) where X2 6= X ′

2.
(3.6)
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Based on the above exclusive law, reference [20] performs exhaustive computer search to find

the clustering that gives the optimal distance profile, which is called the closest-neighbor

clustering (CNC). However, this method is very computationally intensive and also requires

a large overhead in the BC phase. A simpler criterion, called the nearest neighbor clustering

(NNC), is also proposed in [20] and shown to achieve performance very close to that of the

CNC. The NNC method simply maximizes the minimum cluster distance instead of taking

into account the whole distance profile as in the CNC method. The minimum cluster distance

is computed as [49]:

dmin

(

Cγ,θ
)

= min
(X1,X2),(X′

1,X
′
2)∈S×S

Mγ,θ(X1,X2) 6=Mγ,θ(X′
1,X

′
2)

∣

∣(X1 −X ′
1) + γejθ (X2 −X ′

2)
∣

∣ . (3.7)

More recently, the authors in [49] and [50] present an analytical approach to find clus-

tering under the NNC criterion instead of relying on computer search. According to their

analysis, the whole complex plane representing γejθ can be partitioned into the singularity-

free and singularity regions. If the fade state is in the singularity-free region, any clustering

that satisfies the exclusive law achieves the upper bound of the minimum cluster distance.

However, if the fade state is in the singularity region, the clustering needs to be carefully

chosen according to the value of fade state γejθ. Reference [50] further quantizes the singu-

larity region into a finite number of sub-regions, each centered by a singular fade state. The

authors also point out that in each sub-region, there exists one optimal clustering under the

NNC criterion which can remove the distance shortening effect caused by the fade states in

that sub-region.

In the BC phase, nodes A and B receive the following signals:

Y1 = H ′
1XR + ω1, Y2 = H ′

2XR + ω2, (3.8)

where XR = Mγ,θ
(

X̂1, X̂2

)

∈ S ′, H ′
1 and H ′

2 are coefficients of the R-T1 and R-T2 chan-

nels, and ω1 and ω2 represent additive Gaussian noise components, which are modeled as

CN (0, N0). After receiving the signal broadcast from the relay, each terminal node finds X̂R

using the ML detection rule. Thanks to the exclusive law, with the knowledge of X̂R each

node can decode the information of its partner.
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3.3 Analysis of the Error Event in The MA Phase

This paper also adopts the NNC criterion to find the clustering when OFDM is used

for frequency-selective fading channels. The notations ΦF and ΦS are used to denote the

singularity-free and singularity regions, respectively. When OFDM is used, different sub-

carriers experience different gains (i.e., frequency responses) and thus different fade states.

It is unlikely that all the fade states belong to the same sub-region of ΦS and share the

same clustering. Our objective is to come up with one clustering that can be used for all

subcarriers. However, this also means that some subcarriers have to use a clustering which

is non-optimal (in the sense of the NNC criterion) with respect to their current fade states.

To analyze the impact of an unmatched clustering on the error performance, C and M shall

be used to denote some arbitrary clustering and the corresponding mapping in the following

analysis.

Let E1, E2, and EMA respectively, denote the error events of detections at nodes T1, T2,

and in the MA phase. Also let H = (H1, H2) and H′ = (H ′
1, H

′
2). Reference [51] gives the

conditional terminal-to-terminal symbol error rate (SER) expression as follows:

PH,H′ {E1 ∪ E2} = PH′ {E1 ∪ E2|EMA}PH {EMA} (3.9)

+PH′

{

E1 ∪ E2|EMA

}

(1− PH {EMA}) ,

where

PH {EMA} = PH

{

M
(

X̂1, X̂2

)

6= M (X1, X2)
}

. (3.10)

Since the performance bottleneck of TWRC is in the MA phase, we shall focus on the

error probability in (3.10). It is important to recognize that the error event happens when

the transmitted signal pair (X1, X2) is incorrectly determined to another pair which is not

included in the same cluster under clustering C, i.e., the error event is influenced by both

the ML detection rule in (3.5) and the employed clustering C.

Using the nearest-neighbor approximation [52], the error probability associated with the

transmission of (X1, X2) under clustering C can be written as:

P
(MA)
H (X1, X2|C, γejθ) ≈ κdmin

Q

(

|H1| dmin

(

X1, X2|C, γejθ
)

√
2N0

)

(3.11)
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where κdmin
is the number of nearest-neighbor pairs (X ′

1, X
′
2) which are not included in the

same cluster of (X1, X2). The corresponding minimum distance is computed and bounded

as [50]:

dmin

(

X1, X2|C, γejθ
)

= min
(X′

1,X
′
2)∈S×S

M(X1,X2)6=M(X′
1,X

′
2)

∣

∣(X1 −X ′
1) + γejθ (X2 −X ′

2)
∣

∣

≤ min
(

D
(S)
min, γD

(S)
min

)

, (3.12)

where D
(S)
min is the minimum distance of constellation S employed at the terminal nodes.

The above minimum distance can be further analyzed in three different cases as follows:

Case 1: If γejθ is in the singularity-free region, every clustering satisfying the exclusive

law achieves the upper bound, i.e.,

dmin

(

X1, X2|C, γejθ ∈ ΦF

)

= min
(

D
(S)
min, γD

(S)
min

)

. (3.13)

Case 2: If γejθ is in the singularity region, ΦS, and C is the optimal clustering, the closest

pairs are included in the same cluster. It follows that the upper bound can be very close to

the actual minimum distance and one can use the following approximation:

dmin

(

X1, X2|C = Cγ,θ, γejθ ∈ ΦS

)

≈ min
(

D
(S)
min, γD

(S)
min

)

. (3.14)

Case 3: If γejθ is in ΦS and C is a non-optimal clustering, the minimum distance is

calculated as:

dmin

(

X1, X2|C 6= Cγ,θ, γejθ ∈ ΦS

)

=

∣

∣

∣

∣

∆XA

∣

∣

∣

∣

∣

∣

∣

∣

1 + γejθ
∆X2

∆X1

∣

∣

∣

∣

, (3.15)

where ∆X1 = X1 − X ′
1, ∆X2 = X2 − X ′

2 and the pair (X ′
1, X

′
2) is the one that is nearest

to the transmitted pair (X1, X2). Because C is a non-optimal clustering, the problem of

distance shortening is not solved and the shortened distance cannot be approximated by the

upper bound in (3.13). With a slight abuse of notation, let Fγ,θ
min be the singular fade state

that makes
(

1 + Fγ,θ
min

∆X2

∆X1

)

= 0. Then (3.15) can also be expressed as:

dmin

(

X1, X2|C 6= Cγ,θ, γejθ ∈ ΦS

)

=

∣

∣

∣

∣

∆X1

∣

∣

∣

∣

∣

∣

∣

∣

∣

1− γejθ

Fγ,θ
min

∣

∣

∣

∣

∣

, (3.16)
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In fact, among all the singular fade states of the set F , Fγ,θ
min is the singular fade state that

is closest to the fade state γejθ. Furthermore, one can conclude that the closer to Fγ,θ
min the

fade state γejθ is, the smaller the minimum distance in (3.16) becomes.

For simplicity in the following analysis, we use a general expression dγ,θmin(X1, X2) to denote

the minimum distance in all these three cases under the fade state γejθ and eliminate the

explicit dependence on clustering C. With this simplification, (3.11) can be rewritten as

P
(MA)
H (X1, X2) ≈ κdmin

Q

(

|HA| dγ,θmin (X1, X2)√
2N0

)

. (3.17)

Therefore, the average error probability under the specific channel pair H is:

PH(EMA) =
∑

(X1,X2)∈S×S
P (X1, X2)P

(MA)
H (X1, X2), (3.18)

where P (X1, X2) = 1/M2 with equally-likely symbols for M-ary transmission in the MAC

phase.

To obtain a more explicit expression for PH(EMA), one not only needs to examine the three

different cases as discussed before, but also to specify the constellation S. For illustration

purpose, we take S to be QPSK, which has κdmin
= 2. For Case 1 and Case 2, dγ,θmin (X1, X2)

is the upper bound in (3.13). When multiplied with the channel magnitude |H1|, it would
equal to the minimum distance of the constellation multiplied with the magnitude of the

weaker channel, i.e.,

|H1| dγ,θmin (X1, X2) = λHD
(S)
min, (3.19)

where λH = min (|H1| , |H2|). Thus for the first two cases, (3.17) is simply 2Q

(

D
(S)
minλH√
2N0

)

.

The tricky case is Case 3, when γejθ ∈ ΦS and C is a non-optimal clustering. In this

case, the number of nearest neighbor pairs would be different for different signal pairs and

it depends on the value of γejθ. Besides, the minimum distance also varies according to
∣

∣

∣
1− γejθ

Fγ,θ
min

∣

∣

∣
. As described in [20], there are two types of fade states that cause distance

shortening for QPSK. One type is shown in Fig. 3.1 where the correct clustering is equivalent

to XOR (or modified XOR) rule. We use ΦX to denote the region of such fade states and

call it “XOR type”. The other situation is shown in Fig. 3.2 and it is called singular point
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in [20] for which 5QAM should be used in the BC phase. We use ΦSP to denote the region

of such fade states and call it “SP type”. It can be concluded that ΦX and ΦSP form the

partitions of ΦS.

I

Q

Figure 3.1 Constellation SR(γ, θ) when H2/H1 ≈ 1: Fade state of XOR type.

Fig. 3.1 shows that there are three types of signal pairs: (i) those covered by triangles

(whose set is expressed as X1) that are not affected by distance shortening and have the

same error probability as in the case of singularity-free region, (ii) those covered by circles

(whose set is expressed as X2) that have 1 nearest neighbor pair, and (iii) those covered by

rectangles (whose set is expressed as X3) that have 2 nearest neighbor pairs. For simplicity,

we use P
(MA)
H,ΦX

(Xi) to denote the probability P
(MA)
H,ΦX

((X1, X2)|(X1, X2) ∈ Xi). It follows that

P
(MA)
H,ΦX

(X1) ≈ 2Q

(

D
(S)
minλH√
2N0

)

, (3.20)

P
(MA)
H,ΦX

(X2) ≈ Q







D
(S)
min|H1|

∣

∣

∣
1− γejθ

Fγ,θ
min

∣

∣

∣

√
2N0






, (3.21)
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I

Q

Figure 3.2 Constellation SR(γ, θ) when H2/H1 ≈ (1+j)/2 : Fade state of singular

point (SP) type.

P
(MA)
H,ΦX

(X3) ≈ 2Q







D
(S)
min|H1|

∣

∣

∣
1− γejθ

Fγ,θ
min

∣

∣

∣

√
2N0






, (3.22)

Considering different types of pairs, one has the overall error probability under the fade

states of XOR type as:

P
(MA)
H,ΦX

≈ 1

4
P

(MA)
H,ΦX

(X1) +
1

2
P

(MA)
H,ΦX

((X2) +
1

4
P

(MA)
H,ΦX

(X3) . (3.23)

Similar for Fig. 3.2, those signal pairs covered by triangles (whose set is expressed as

Z1) are not affected by distance shortening, whereas those covered by circles (whose set is

expressed as Z2) have 1 nearest neighbor pair. Thus one has

P
(MA)
H,ΦSP

(Z1) ≈ 2Q

(

D
(S)
minλH√
2N0

)

, (3.24)

P
(MA)
H,ΦSP

(Z2) ≈ Q







D
(S)
min|H1|

∣

∣

∣
1− γejθ

Fγ,θ
min

∣

∣

∣

√
2N0






, (3.25)
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and

P
(MA)
H,ΦSP

≈ 1

2
P

(MA)
H,ΦSP

(Z1) +
1

2
P

(MA)
H,ΦSP

(Z2) . (3.26)

3.4 Adaptive PNC in OFDM

Over one frame duration, different subcarriers of an OFDM system experience different

channel conditions, i.e., different fade states γejθ. This means that there are different op-

timal clusterings for different subcarriers, although some close subcarriers (e.g., within the

coherence bandwidth) might share the same clustering. The problem is that providing the

information about all the optimal clusterings to the terminal nodes in the BC phase requires

a large amount of overhead bits. On the other hand, if only one clustering is applied in

all the subcarriers, there can be performance loss since the selected clustering might not

be optimal for some subcarriers. To minimize the performance loss, it is desired to have a

clustering method that takes into account the performance of all subcarriers.

Suppose there are K subcarriers and the channels corresponding to the kth subcarrier in

the MA phase are denoted as H
(k)
1 and H

(k)
2 . Also define Hk =

(

H
(k)
1 , H

(k)
2

)

and H
(k)
2 /H

(k)
1 =

γke
jθk . For the kth subcarrier, an arbitrary fade state γke

jθk may belong to different regions:

ΦF, ΦX and ΦSP. In the following, we present three criteria to select a common clustering in

OFDM to minimize the performance loss.

• Method 1: Min-SER

For a given constellation S used by the terminal nodes, there is a finite number of optimal

clusterings, each corresponding to one quantization region of the complex plane (representing

γejθ). Let Cn, n = 1, 2, . . . , N , denote these optimal clusterings. Based on the analysis in

Section 3.3, the overall error probability when using the nth clustering can be approximated
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as:

P{Hk}Kk=1
(EMA|Cn) =

1

K

[

∑

γke
jθk∈ΦF

P
(MA)
Hk,ΦF

+
∑

γke
jθk∈ΦS

Cn=Cγk,θk

P
(MA)
Hk,ΦF

+
∑

γke
jθk∈ΦX

Cn 6=Cγk,θk

P
(MA)
Hk,ΦX

+
∑

γke
jθk∈ΦSP

Cn 6=Cγk,θk

P
(MA)
Hk,ΦSP

]

. (3.27)

The selection criterion is to find the clustering which minimizes the overall error proba-

bility. That is,

n̂ = arg min
n=1,2,...,N

P{Hk}Kk=1
(EMA|Cn) (3.28)

By directly minimizing the approximated error probability, it is expected that this method

is almost globally optimal. However, its computation complexity is very high.

• Method 2: Max-fade-SER

For a given constellation S, there is a finite number of singular fade states in the complex

plane.1 The singularity region, ΦS, is quantized to multiple sub-regions, each centered by one

singular fade state. For each sub-region of the fade states there is a clustering that removes

the distance shortening effect caused the fade states in that region. From (3.16), one can see

that the minimum distance is related to the distance between γejθ and its closest singular

fade state. Thus, instead of using the overall error probability, one can consider the error

probability caused by critical fade states that are close to the singular fade states.

Suppose that there are I singular fade states and the ith state is Fi (a complex number).

Based on the above discussion, the following metric is adopted for the kth subcarrier with

respect to Fi:

PHk→Fi
(EMA) = Q

(

D
(S)
min|H(k)

1 |√
2N0

∣

∣

∣

∣

1− γke
jθk

Fi

∣

∣

∣

∣

)

. (3.29)

Taking into account all the subcarriers, one has

P{Hk}Kk=1→Fi
(EMA) =

1

K

K
∑

k=1

PHk→Fi
(EMA). (3.30)

1There are 12 and 104 singular fade states for QPSK and 8PSK, respectively [49].
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Then the singular fade state which causes the largest error probability is identified, i.e.,

î = arg max
i=1,2,...,I

P{Hk}Kk=1→Fi
(EMA) (3.31)

The optimal clustering that corresponds to the identified singular fade state is then selected.

Note that [49] provides the clusterings and mapping tables for singular fade states of QPSK

and 8PSK.

• Method 3: Min-fade-distance

Although Method 2 is much simpler than Method 1, its computation is still subcarrier-

by-subcarrier. Next, we suggest another clustering method that works directly with the

time-domain channel responses. Let vectors h1 and h2 represent the time-domain channel

responses and G be the DFT matrix. The summation of the minimum distances squared

over all the subcarriers can be computed as:

K
∑

k=1

∣

∣

∣
D

(k)
min(i)

∣

∣

∣

2

= |Gh1 −Gh2/Fi|2 = |h1|2 + |h2/Fi|2 − 2ℜ
{

hH
1 h2/Fi

}

. (3.32)

Then the singular fade state that yields the minimum sum is identified:

î = arg min
i=1,2,...,I

K
∑

k=1

∣

∣

∣D
(k)
min(i)

∣

∣

∣

2

(3.33)

Finally, the corresponding clustering is selected.

3.5 Simulation Results

This section evaluates performance of the proposed clustering selection criteria in terms

of the terminal-to-terminal frame error rate (FER). The size of the fast Fourier transform

(FFT) is K = 256 and the length of cyclic prefix is Nc = 32 samples. The channels of all

links are modeled as quasi-static frequency-selective with L = 3 paths. The coefficients of

the channel impulse responses follow a Rician fading distribution with the Rician factor Kf

and exponential power delay profile:

p(t) =
1

τ

L−1
∑

l=0

e−t/τδ (t− lTs) , (3.34)
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where τ denotes the delay spread and Ts is the symbol duration. In our simulation, τ = Ts/2

is used. At the receiver, ideal synchronization and channel estimation are assumed.

Figs. 3.3 and 3.4 show the FER performance of the proposed methods when the ter-

minal nodes use QPSK. In addition to the three proposed methods, other two methods

are evaluated and used as references. The curve marked with “XOR” corresponds to the

standard method that the relay uses pure XOR regardless of the channel condition. The

“Per-sub” curve is for the case that each subcarrier uses its own optimal clustering. It can be

observed that the “Max-fade-SER” method has almost the same performance as the “Min-

SER” method, although the former requires less computation complexity than the latter.

At the FER level of 10−1, both of these two proposed methods have 3dB and 6dB gains

over the pure XOR method when the Rician factor equals to 1 and 10, respectively. On

the other hand, the performance loss of the “Min-fade-distance” method is quite significant,

although it has small performance advantage over the pure XOR method and it has very

low computational complexity.
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Figure 3.3 Terminal-to-terminal FER: QPSK, Kf = 1.
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Figure 3.4 Terminal-to-terminal FER: QPSK, Kf = 10.
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Figure 3.5 Terminal-to-terminal FER: 8PSK, Kf = 1.
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Figure 3.6 Terminal-to-terminal FER: 8PSK, Kf = 10.

Figs. 3.5 and 3.6 show the FER of the “Max-fade-SER”and “Min-fade-distance” methods,

and the other methods when the terminal nodes use 8PSK. In QPSK, the “Max-fade-SER”

method yields similar performance as the “Min-SER” method. However, the “Min-SER”

method is very complicated when applied to for 8PSK and only the results obtained with

the “Max-fade-SER” method are reported for 8PSK. It can be seen that, at the FER level

of 10−1, the “Max-fade-SER” method gives about 2dB and 3dB gains over the pure XOR

method when the Rician factor equals to 1 and 10, respectively. On the other hand, for

8PSK, the “Min-fade-distance” method performs almost the same as the pure XOR method.

Considering the trade-off among performance, computation complexity and required over-

head in the BC phase, the “Max-fade-SER” method is the most attractive method to obtain

a common clustering for adaptive PNC in OFDM systems.

3.6 Conclusions

This paper is concerned with the application of adaptive PNC in OFDM systems. The

error event in the multiple access (MA) phase is analyzed and an approximation of the error
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probability for the MA phase is given. Three methods were proposed to find a common

clustering for adaptive PNC in OFDM systems. Simulation results illustrate the performance

of the proposed methods under different scenarios. From the analysis of error events in the

MA phase and simulation results, it is concluded that the “Max-fade-SER” method is the

most attractive clustering method for adaptive PNC in OFDM systems when considering

the trade-off among performance, computational complexity and required overhead.
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4. Distributed Precoding for OFDM in Two-Way

Relaying Communications

The previous chapter investigated adaptive PNC to handle MAI in the MA phase of two-

way relaying communications with OFDM. Adaptive PNC is effective to solve the distance

shortening problem caused by MAI. However, adaptive PNC has the disadvantage that it

needs to send the clustering information to the terminal nodes in the BC phase. As discussed

in the previous chapter, the overhead in the BC phase is significant for an OFDM system

with a large number of subcarriers. Using one clustering for all subcarriers minimizes the

overhead but it also causes quite severe performance deterioration. Distributed space-time

coding (DSTC) proposed in [39] is another approach to combat MAI. In fact DSTC is shown

to achieve better performance in a high SNR region than adaptive PNC. In addition, DSTC

requires no extra overhead in the BC phase.

The manuscript in this chapter studies the design of distributed precoding in the MA

phase for TWRC system using OFDM. The distributed precoding has the similar form of

DSTC and also does not require any extra overhead. Different from the conventional DSTC

which only focuses on alleviating MAI in the MA phase, the distributed precoding proposed

in this manuscript also aims to exploit the multipath diversity gains with OFDM. Specif-

ically, the objective in this manuscript is to design a distributed precoding scheme which

is able to handle MAI while achieving the maximum multipath diversity gain with OFDM.

By analyzing the PEP in the MA system and introducing the three types of errors, the

corresponding diversity and coding gains under different types of errors are derived. The

conventional frequency-grouped linear constellation precoding (F-GLCP) is first examined

and proved not able to achieve the maximum diversity gain under type-3 errors. Then,
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frequency-time grouped linear constellation precoing (FT-GLCP) is proposed and theoreti-

cally proved to be able to achieve the maximum diversity gains under all three types of errors.

Simulation results of different schemes in various fading channels are provided to verify the

theoretic analysis and show the advantage of proposed FT-GLCP over other schemes.

The results of our studies on distributed precoding for OFDM in TWRC are reported in

two manuscripts listed below. The journal paper [Ch4-2] is included in this chapter.

[Ch4-1] H. Yan, Ha H. Nguyen and J. Su, “Distributed Precoding for Two-Way Relaying

with OFDM”, IEEE Int. Conf. Commun., Sydney, Australia, pp. 5432–5437, Jun. 2014.

[Ch4-2] H. Yan, Ha H. Nguyen and J. Su, “Distributed Precoding for OFDM in Two-Way

Relaying Communications”, IEEE Trans. Veh. Technol., vol. 64, pp. 1930–1941, May 2015.
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Distributed Precoding for OFDM in Two-Way

Relaying Communications

Hongzhong Yan and Ha H. Nguyen and Jian Su

Abstract

This paper is concerned with the design of distributed precoding in the multiple access (MA)

phase for two-way relaying communication (TWRC) systems using OFDM. The error prob-

ability analysis is conducted to establish the diversity and coding gains for three error types

in the MA phase. Then the design criteria of distributed precoding to achieve the maximum

diversity and coding gains are given. The frequency-grouped linear constellation precoding

(F-GLCP) is first investigated and shown not to be able to achieve the maximum diver-

sity gain under type-3 errors. A novel frequency-time GLCP (FT-GLCP) which performs

precoding in both frequency and time domains is then proposed. It is proved that the pro-

posed FT-GLCP is able to achieve the maximum diversity gain under type-3 errors, while

maintaining the maximum diversity and coding gains under type-1 and type-2 errors. To

corroborate the theoretical analysis, simulation results are provided to show the advantage

of the proposed FT-GLCP over other schemes in both Rayleigh and Rician fading channels.

Index terms

Two-way relaying, OFDM, distributed precoding, diversity gain, coding gain.

4.1 Introduction

With the bi-directional transmission capability, two-way relaying communication (TWRC)

systems have recently gained a strong interest in research community. Different protocols

are proposed and analyzed in [46, 53, 54]. In these papers, the two-slot protocol is shown to

provide capacity advantage over the conventional four-slot protocol as well as the three-slot

protocol which is based on exclusive-OR (XOR) network coding [55]. In the first slot of
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the two-slot protocol, the terminal nodes send their information to the relay node. This

is also known as the multiple access (MA) phase. In the second slot, which is also called

the broadcast (BC) phase, the relay node transmits the processed information back to the

terminal nodes.

In designing the two-slot protocol, there are two problems that need to be addressed. One

problem is how to combine the detected signals at the relay node. While XOR-based network

coding is a simple approach to solve this problem at the bit level, other signal processing

strategies have also been proposed in references [35,36,47]. In particular, the authors in [36]

extend the decode-and-forward (DF) in one-way relay communications to TWRC in such

a way that the relay broadcasts a linear combination of the detected signals. The authors

in [35] study two versions of partial decode-and-forward (PDF) relaying. One PDF strategy

combines the detected signals using weights that are determined by the channel responses.

The other PDF performs a modular sum on the constellation indices of the detected signals

and the obtained index is used to determine the broadcast signal. In addition, physical-layer

network coding (PNC) is investigated in [47], which directly maps the received signal to

a constellation symbol without first detecting signals from two terminal nodes. Since the

focus of this paper is not on the design of a combining scheme, XOR-based network coding

is adopted for its simplicity. The analysis performed and schemes designed in this paper are

also applicable when other combining schemes mentioned above are employed.

The second problem is how to guarantee good detection quality in the MA phase. Two

factors that influence the detection quality are multiple-access interference and channel

fading. To handle multiple-access interference, denoise-and-forward (DNF) is proposed

in [19, 20] which maps the close constellation pair in the MA phase to the same constel-

lation point in the BC phase and thus avoids the influence of multiple-access interference.

However, DNF has two main disadvantages: (i) high overhead in the BC phase in order

to inform the denoising maps to the terminal nodes; and (ii) irregular constellation may

need to be used in the BC phase which would cause performance degradation. It is recently

demonstrated in [56] that DNF requires even larger overhead when combined with orthogo-

nal frequency-division multiplexing (OFDM). This is because different channel responses in
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different subcarriers require different denoising maps. Reference [56] also proposes a scheme

to choose the best denoising map for all subcarriers which achieves a good trade-off between

performance and complexity. More recently, the authors in [39] propose a scheme which

uses distributed space-time coding (DSTC) at the terminal nodes to alleviate the influence

of multiple-access interference instead of avoiding it. This scheme does not require any over-

head in the BC phase and achieves better performance than DNF in high signal-to-noise

ratio (SNR) region.

However, all of the schemes discussed above are mainly designed to handle multiple-access

interference and they do not work well when one or more channels from the terminal nodes to

the relay node are in deep fade. Exploiting diversity is an efficient way to reduce the influence

of deep fading. In frequency-selective fading channels, multi-path diversity is an important

source of diversity gain. On the other hand, OFDM is widely used in systems with frequency-

selective fading channels because it is effective to combat inter-symbol interference (ISI)

caused by the frequency-selective fading. In point-to-point communication systems using

OFDM, schemes exploiting multi-path diversity gain have been well investigated [10,15,57].

Among these schemes, precoding-based schemes are easy to implement and able to achieve

higher spectral efficiency compared to other schemes. The objective of this paper is to design

a precoding-based scheme to efficiently exploit the multi-path diversity in TWRC systems

using the two-slot protocol and OFDM. The design can also obtain cooperative diversity gain

which is effective to alleviate the impact of the multiple-access interference on the detection

performance.

This paper is organized as follows. The TWRC system using the two-slot protocol and

OFDM is described in Section 4.2. Section 4.3 investigates the detection error probability in

the MA phase under three error types. Then the design criteria regarding the diversity gains

as well as the coding gains are given. The frequency-grouped linear constellation precoding

(F-GLCP) [10, 58] is first analyzed and shown not to achieve the maximum diversity gain

under type-3 errors. Then a novel frequency-time GLCP (FT-GLCP) is proposed in Section

4.4 and proved to achieve the maximum diversity gain under type-3 errors while maintaining

the maximum diversity and coding gains under type-1 and type-2 errors. Section 4.5 provides

53



simulation results and conclusions are drawn in Section 4.6.

Notations : The complex number
√
−1 is denoted by j. The inverse, transpose, Hermitian

transpose, rank, determinant, and trace of matrix A are denoted by A−1, AT , AH , rank (A),

det (A) and tr (A), respectively. 0M is the length-M zero vector, 0M×N is the M ×N zero

matrix and IN is the N × N identity matrix. diag (a) denotes a diagonal matrix whose

diagonal elements are from vector a and ‖a‖2 denotes the Euclidean norm of vector a.

4.2 System Model

The TWRC system under consideration has two terminal nodes, denoted as nodes T1

and T2, which exchange their information by the help of relay node R. This information

exchange happens in two phases. In the MA phase, both terminal nodes send their signal

frames to the relay node. After processing the received signals, the relay node broadcasts a

new signal frame in the BC phase.

In the MA phase, the multi-path channel from terminal node Ti to relay node R is

represented by vector hi = [hi(1), . . . , hi(Li)]
T , where Li is the number of channel taps,

i = 1, 2. The components of a channel vector follow a joint complex Gaussian distribution

with mean µhi
and covariance matrix Rhi

. The square root of matrix Rhi
, denoted by Bhi

,

is assumed to be full rank.

Suppose that there areN subcarriers andM OFDM symbols in each signal frame. Let the

mth OFDM symbol from terminal node Ti before precoding be si,m = [si,m (1) , . . . , si,m (N)]T ,

where each element belongs to a constellation set S. The whole information frame is ex-

pressed as Si = [si,1, . . . , si,M ] which contains N × M complex symbols. After precod-

ing is performed on the whole information frame, the mth OFDM symbol is expressed

as xi,m = [xi,m (1) , . . . , xi,m (N)]T . At the relay node, the mth received OFDM sym-

bol in the frequency domain is represented as ym = [ym (1) , . . . , ym (N)]T . By letting

Xi,m = diag (xi,m), Xi = [Xi,1, . . . ,Xi,M ]T and y =
[

yT
1 , . . . ,y

T
M

]T
, one has:

y = X1W1h1 +X2W2h2 + ωR, (4.1)
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where ωR ∼ CN (0MN , N0IMN) is additive white Gaussian noise vector at the relay node,

and Wi is the N × Li truncated discrete Fourier transform (DFT) matrix with elements

Wi (n, l) = exp
(

−j2π(n−1)(l−1)
N

)

. As usually, N0 is the one-sided power spectral density of

thermal noise at the terminal and relay nodes. By defining X = [X1 X2], h =
[

hT
1 hT

2

]T

and W =





W1 0N×L2

0N×L1 W2



, then (4.1) can be rewritten as:

y = XWh+ ωR. (4.2)

Let X (S1,S2) = X denote the mapping from the information frames (S1,S2) to X,

which includes precoding, diagonalization and combination of both terminal nodes’ signals

as described above. Then, based on the signal in (4.2), the relay node performs the maximum-

likelihood (ML) detection to obtain the estimates of the information frames as:

(S′
1,S

′
2) = arg min

(S1,S2)∈SN×M×SN×M
‖ỹ − X (S1,S2)Wh‖22, (4.3)

The ML estimates are then demapped into information bits as b′i,m(n) = M−1
(

s′i,m(n)
)

,

where M−1 indicates the symbol-to-bits demapping function. The bit-wise XOR operation is

then performed on the demapped bits and the resulting bits are mapped into a constellation

point. That is, um(n) = M
(

b′1,m(n)⊕ b′2,m(n)
)

, where M is the bits-to-symbol mapping

function. The frame of the network-coded signal is represented as U = [u1, . . . ,uM ], where

um = [um (1) , . . . , um (N)]T .

In the BC phase, the channel from relay node R to terminal node Ti is represented

by vector gi = [gi(1), . . . , gi(Pi)]
T , where Pi is the number of channel taps and the corre-

sponding mean vector, covariance matrix and its square root matrix are µgi , Rgi and Bgi ,

respectively. Before being broadcast back to the terminal nodes, the network-coded sig-

nal is precoded and the mth OFDM symbol after precoding is dm = [dm (1) , . . . , dm (N)]T .

The corresponding mth received OFDM symbol in the frequency domain is represented

by zi,m = [zi,m (1) , . . . , zi,m (N)]T . By letting Dm = diag (dm), D = [D1, . . . ,DM ]T and
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zi =
[

zT
i,1, . . . , z

T
i,M

]T
, one has

zi = DFigi + ωi, i ∈ {1, 2} , (4.4)

where ωi ∼ CN (0MN , N0IMN) is additive white Gaussian noise vector, Fi is the N × Pi

truncated DFT matrix with elements Fi (n, p) = exp
(

−j2π(n−1)(p−1)
N

)

.

Finally, the ML detection is performed at each terminal node to obtain:

u′
i = arg min

U∈SN×M
‖zi −D (U)Figi‖2

2, i ∈ {1, 2} , (4.5)

where D is used to describe the function performed on the network-coded signal U at the

relay node, which includes precoding and diagonalization operations. Terminal node Ti

then demaps the ML detected symbol into bits and performs XOR operation with its own

information bits to extract the information bits of the other terminal node.

Before closing this section, it is pointed out that the complexity of the ML detection

in (4.3) appears to be high in general, but it is not the case when practical precoding of

OFDM signals is implemented. This is because with OFDM transmission, precoding can be

done jointly with subcarrier grouping. Specifically, the total N subcarriers are divided in

V = N/K disjoint groups such that each group has only K subcarriers, where K can be

as small as the maximum number of multi-path channel components, i.e., is much smaller

than N . Precoding is then performed independently across subcarriers in each group. For

our proposed FT-GLCP scheme, the search space of the ML detection in (4.3) reduces to

SK×2 × SK×2.

4.3 Performance Analysis in the MA Phase

As described in the previous section, precoding is performed in both the MA and BC

phases. This section focuses on performance analysis of precoding in the MA phase. There

are two reasons for this.

First, in the MA phase, the detection quality is influenced not only by fading but also

by multiple-access interference due to simultaneous signal transmissions from two terminal
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nodes. Multiple-access interference causes the phenomenon of distance shortening and dete-

riorates the detection performance [20,51]. Therefore, the error probability in the MA phase

is typically much higher than that in the BC phase since the later is only affected by fading.

Second, as far as transmitting and detecting the network-coded signals are concerned, sig-

nal processing in the BC phase is almost the same as that in point-to-point communication

systems. As such, precoding design for the BC phase can directly follow existing designs for

point-to-point communication systems.

Referring to (4.2) and (4.3), let e = {(S1,S2) → (S′
1,S

′
2)}, where (S1,S2) 6= (S′

1,S
′
2),

denote the error event that the relay node decodes (S1,S2) erroneously to (S′
1,S

′
2). Focusing

on the case of Rayleigh fading, i.e., µhi
= 0Li

, the channel response vector can be expressed

as h = Bhh̄ where elements in h̄ are i.i.d. zero-mean complex Gaussian variables with unit

variance. By letting X (S1,S2) = X, X (S′
1,S

′
2) = X ′ and Λe = X − X ′, the following

upper bound on the conditional pairwise-error probability (PEP) can be obtained [42]:

P
(

e|h̄
)

≤ exp

[

−h̄HBH
h WHΛH

e ΛeWBhh̄

4N0

]

= exp

[

−h̄HΨeh̄

4N0

]

, (4.6)

where the (L1 + L2)× (L1 + L2) matrix Ψe is Ψe = BH
h WHΛH

e ΛeWBh with

Bh =





Bh1 0L1×L2

0L2×L1 Bh2



 .

Averaging the conditional PEP with respect to h̄, one obtains the following upper bound

on the average PEP:

P (e) ≤
(

δe,c
1

4N0

)−δe,d

, (4.7)

where δe,d = rank (Ψe) and δe,c =
(

∏rank(Ψe)−1
l=0 λl

)
1

rank(Ψe)

with λl, l = 0, . . . , rank (Ψe)− 1,

are the nonzero eigenvalues of Ψe.

Under the MAC of two terminal nodes, all the error events can be partitioned into 3

types of errors [59, 60]:

• Type-1 errors: E1 = {e : S1 6= S′
1,S2 = S′

2}. For this error type, the signals from
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terminal node T1 are erroneously detected at the relay node, while the signals from terminal

node T2 are correctly detected.

• Type-2 errors: E2 = {e : S1 = S′
1,S2 6= S′

2}. For this error type, the signals from

terminal node T2 are erroneously detected at the relay node, while the signals from terminal

node T1 are correctly detected.

• Type-3 errors: E3 = {e : S1 6= S′
1,S2 6= S′

2}. For this error type, signals from both

terminal nodes are erroneously detected at the relay node.

It is noted that type-1 and type-2 errors are likely caused by channel fading while type-3

errors are likely caused by both channel fading and multiple access interference.

The total error probability can be expressed as:

Pe =
∑

e∈E1

P (e|e ∈ E1) +
∑

e∈E2

P (e|e ∈ E2) +
∑

e∈E3

P (e|e ∈ E3) (4.8)

Applying (4.7) for type-1 and type-2 errors, one has

P (e|e ∈ Ei) ≤
(

δe,c,i
1

4N0

)−δe,d,i

, i ∈ {1, 2} , (4.9)

where δe,d,i = rank (Ψe,i) andΨe,i = BH
hi
Wi

HΛH
e,iΛe,iWiBhi

with Λe,i = Xi−X ′
i . Likewise,

for type-3 errors, one has

P (e|e ∈ E3) ≤
(

δe,c,3
1

4N0

)−δe,d,3

, (4.10)

where δe,d,3 = rank (Ψe) and Ψe = BH
h WHΛH

e ΛeWBh.

If Ψe,i and Ψe are of full rank, one has:

δe,c,i = [det (Ψe,i)]
1
Li = [det (Rhi

)]
1
Li

[

det
(

Wi
HΛH

e,iΛe,iWi

)]
1
Li , i ∈ {1, 2}

δe,c,3 = [det (Ψe)]
1

L1+L2 = [det (Rh)]
1

L1+L2

[

det
(

WHΛH
e ΛeW

)]
1

L1+L2 ,
(4.11)

Finally, the diversity and coding gains under each error type are defined as:

δd,i := min
∀e∈Ei,e 6=0

δe,d,i and δc,i := min
∀e∈Ei,e 6=0

δe,c,i, i ∈ {1, 2, 3} . (4.12)
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It is pointed out that, for the case of Rician fading, the diversity gain has the same form

as that of the Rayleigh fading case, whereas the coding gain is slightly different as it depends

on the non-zero mean µhi
[42].

Obviously, larger diversity and coding gains lead to smaller error probabilities for all

three types of errors. Therefore, to enhance the detection quality, the diversity and coding

gains need to be maximized. On one hand, from the definition of the diversity gains and

the size of Ψe,1, Ψe,2 and Ψe, the maximum diversity gains under three types of errors are

max δd,1 = L1, max δd,2 = L2 and max δd,3 = L1 + L2, respectively. On the other hand,

the maximum coding gains that can be achieved depend on the specific precoding scheme

employed and this will be investigated in detail in the following section. As mentioned, the

objective of this paper is to design the precoding scheme which can achieve the maximum

diversity and coding gains for all three types of errors. As can be seen from (4.9) and

(4.10), the diversity gain is a more influential factor since it determines the slope of the error

probability curve. As such, the diversity gain is considered first in the design and then the

coding gain is optimized once the maximum diversity gain is achieved.

4.4 Precoding Design in Two-Way Relaying Communication Sys-

tems

4.4.1 Frequency-Grouped Linear Constellation Precoding

In point-to-point communication systems with OFDM, frequency GLCP (F-GLCP) was

proposed [10] to achieve the maximum diversity and coding gains while maintaining accept-

able complexity of the receiver. In F-GLCP, all N subcarriers are equally divided into V

disjoint groups with K subcarriers in each group. LCP is performed separately in each group

by using the following Q×Q rotation matrix as the precoding matrix:

Θ =
1

β













1 α1 . . . αQ−1
1

...
...

. . .
...

1 αQ . . . αQ−1
Q













, (4.13)
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where β is the normalization factor such that tr
(

ΘΘH
)

= Q. The parameters {αq}, 1 ≤
q ≤ Q, are chosen according to the following rules for different values of Q [10]:

• If Q is an Euler number, i.e., Q ∈ Q1 := {η(Z) : Z 6= 0 mod 4}, where η(Z) is the

number of positive integers less than Z and relatively prime to Z, then {αq} are the roots

of η(x) =
∏

z∈Z (x− exp(j2πz/Z)), and Z := {1 ≤ z ≤ Z : gcd (z, Z) = 1}.

• If Q is a power of 2, i.e., Q ∈ Q2 := {2z : z is an integer}, then {αq} are the roots of

xQ −
√
−1 = 0.

• If Q /∈ Q = Q1 ∪Q2, then {αq} are the roots of xQ −
(

1 +
√
−1
)

= 0.

It is proved in [10] that if Q is larger than the number of channel taps, the maximum

diversity gain is achieved. Furthermore, if Q ∈ Q, the maximum coding gain is achieved.

Otherwise, if Q /∈ Q, at least 70% of the maximum coding gain is achieved.

In addition, as proved in [10, 58], to guarantee the maximum diversity and coding gains

in a point-to-point communication system, the indices of the K subcarriers belonging to the

vth group are Iv = {v, V + v, . . . , (K − 1)V + v}, i.e., interleaved subcarrier grouping.

Next, the diversity and coding gains achieved by F-GLCP are analyzed for TWRC sys-

tems. Since subcarrier grouping is used, the system model for F-GLCP in TWRC systems

can be examined by focusing on the vth group (all other groups experience the same signal

processing). In the MA phase, the information symbols in the subcarriers of the vth group

from terminal Ti are S
(v)
i =

[

s
(v)
i,1 , . . . , s

(v)
i,M

]

, where

s
(v)
i,m = [si,m (v) , si,m (V + v) , . . . , si,m ((K − 1)V + v)]T , i ∈ {1, 2} .

The LCP is then applied as follows:

x
(v)
i,m = Θis

(v)
i,m, i ∈ {1, 2} , (4.14)

where both Θ1 and Θ2 are the rotation matrix in (4.13) with Q = K.

By defining X
(v)
i,m = diag

(

x
(v)
i,m

)

, X
(v)
i =

[

X
(v)
i,1 , . . . ,X

(v)
i,M

]T

, X(v) =
[

X
(v)
1 X

(v)
2

]

and

the K × Li truncated DFT matrix W
(v)
i with W

(v)
i (k, l) = exp

(

−j2π((k−1)V +v)(l−1)
N

)

, the
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following input-output equation, in a similar form as (4.2), is obtained:

y(v) = X(v)W (v)h+ z
(v)
R

, (4.15)

where y(v) and z
(v)
R

are obtained from y and zR by extracting the symbols in the subcarriers

of the vth group and

W (v) =





W
(v)
1 0K×L2

0K×L1 W
(v)
2





To analyze the diversity and coding gains of F-GLCP under three types of errors, define

the error event e(v) =
{(

S
(v)
1 ,S

(v)
2

)

→
(

S′(v)
1 ,S′(v)

2

)}

. Then one has

Λe(v),i,m = X
(v)
i,m −X ′(v)

i,m = diag
(

Θi

(

s
(v)
i,m − s′

(v)
i,m

))

(4.16)

and

Λe(v),i = X
(v)
i −X ′(v)

i =
[

Λe(v),i,1, . . . ,Λe(v),i,M

]T
. (4.17)

As far as type-1 and type-2 errors are concerned, the error performance behaves the

same as in point-to-point communication systems. It follows that F-GLCP can achieve

the maximum diversity and coding gains of δd,i = Li and δc,i = [det (Rhi
)]

1
Li ∆2

min [10],

respectively, where ∆min is the minimum Euclidean distance among constellation points in

S.

For type-3 errors, as mentioned in Section 4.3, the (inherent) maximum diversity gain

is L1 + L2. However, as stated in the following theorem, using F-GLCP can only achieve a

diversity gain of max(L1, L2).

Theorem 1 The maximum diversity gain that F-GLCP can achieve under type-3 errors

in the MA phase is δd,3 = max(L1, L2), as long as K ≥ max(L1, L2).

Proof : Let m1 and m2 be the symbol indices of signals transmitted from T1 and T2,

respectively. According to the definition of type-3 errors, S
(v)
1 − S′(v)

1 and S
(v)
2 − S′(v)

2 are

both non-zero. Since S
(v)
1 and S

(v)
2 consist of s

(v)
1,m1

and s
(v)
2,m2

, respectively, there must exist

non-zero vectors s
(v)
1,m1

− s′
(v)
1,m1

and s
(v)
2,m2

− s′
(v)
2,m2

. According to (4.16) and the properties
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of LCP rotation matrix, for all type-3 errors, there must exist K × K diagonal matrices

Λe(v),1,m1
and Λe(v),2,m2

whose diagonal elements are all non-zero.

Without loss of generality, assume that L2 ≥ L1. Then W
(v)
2 is a truncated DFT ma-

trix with size K × L2 and K ≥ L2. Therefore rank
(

W
(v)
2

)

= L2. In addition, since

Λe(v),2,m2
is a K × K diagonal matrix whose diagonal elements are all non-zero, one has

rank
(

Λe(v),2,m2
W

(v)
2

)

= L2.

Since Λe(v),2,m2
W

(v)
2 is a submatrix of Λe(v)W

(v), it follows that rank
(

Λe(v)W
(v)
)

≥ L2.

Furthermore, because Bh is a full-rank square matrix, one has

rank (Ψe(v)) = rank
(

Λe(v)W
(v)Bh

)

= rank
(

Λe(v)W
(v)
)

≥ L2. (4.18)

Next consider the special case of type-3 errors where m1 = m2 = m. In addition, except

for the non-zero submatrix Λe(v),m =
[

Λe(v),1,m Λe(v),2,m

]

, other parts of Λe(v) are all zeros.

Accordingly, with Ψe(v),m = BH
h (W (v))HΛH

e(v),m
Λe(v),mW

(v)Bh, one has

rank (Ψe(v)) = rank
(

Ψe(v),m

)

= rank
(

Ae(v),m

)

, (4.19)

where Ae(v),m = Λe(v),mW
(v) =

[

Λe(v),1,mW
(v)
1 Λe(v),2,mW

(v)
2

]

.

It is known from the system model that W
(v)
1 and W

(v)
2 have L1 identical columns. Fur-

thermore, for the specific error event that causes Λe(v),1,m = Λe(v),2,m, it follows that matrix

Λe(v),1,mW
(v)
1 and Λe(v),2,mW

(v)
2 have L1 identical columns. Therefore, rank

(

Ae(v),m

)

= L2.

Combing this result with (4.18), and according to the definition of the diversity gain, one

has δd,3 = L2. Similarly, in the case that L1 ≥ L2, it can be shown that δd,3 = L1. Therefore,

δd,3 = max(L1, L2). �

4.4.2 Frequency-Time Grouped Linear Constellation Precoding

It is recognized from the proof of Theorem 1 that the rank deficiency of Ae(v),m is the

main reason that F-GLCP cannot achieve the maximum diversity gain under type-3 errors.

Observing that Ae(v),m depends on Λe(v),m and W (v), two strategies can be considered to

solve this rank deficiency problem. One strategy is to change the form of W (v). For example,
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by adding a proper cyclic delay [11] at one of the terminal nodes, all columns of W
(v)
1 and

W
(v)
2 can be guaranteed to be independent. Then if Λe(v),1,m = Λe(v),2,m, Ae(v),m will be

column independent and the maximum diversity gain can be achieved. However, in a TWRC

system, it is possible that Λe(v),1,m 6= Λe(v),2,m. Therefore adding a cyclic delay is not good

enough and joint optimization on both rotation matrices and W (v) is required. Such joint

optimization appears to be difficult and will not be pursued in this paper. Another strategy

is to manipulate Λe(v),m. Since it is determined byΘ1 andΘ2, intuitively, one would consider

using different rotation matrices at the two terminal nodes. However, in optimizing Θ1 and

Θ2 based on the F-GLCP framework, the influence of W (v) needs to be considered, which

leads to complicated joint optimization similar to what just discussed above.

Our approach is to consider adjacent OFDM symbols and perform precoding in both

frequency and time domains. In this way Θ1 and Θ2 can be easily designed without con-

sidering W (v) (Theorem 3 gives the mathematical explanation for this). In designing Θ1

and Θ2, only one parameter γ needed to be adjusted to achieve the maximum diversity gain

under all types of errors. This scheme shall be called frequency-time GLCP (FT-GLCP) to

distinguish it with the F-GLCP discussed before.

Specifically, the proposed FT-GLCP is performed on the information data in one sub-

carrier group and over two adjacent OFDM symbols. It is mathematically described as,





x
(v)
1,2m′−1

x
(v)
1,2m′



 = Θ1





s
(v)
1,2m′−1

s
(v)
1,2m′



 , m′ = 1, . . . ,M/2,





x
(v)
2,2m′−1

x
(v)
2,2m′



 = Θ2





s
(v)
2,2m′−1

s
(v)
2,2m′



 , m′ = 1, . . . ,M/2,

, (4.20)

where Θ1 is a rotation matrix as defined in (4.13) with Q = 2K, and m′ is the pair index for

two adjacent OFDM symbols taken in the joint precoding operation. The rotation matrix

Θ2 is defined as

Θ2 = Θ1





IK 0K×K

0K×K γIK



 (4.21)

where γ is a parameter that can be adjusted. How to set the value of γ is discussed in the
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following.

For convenience of further analysis, define φ
(v)
i,2m′−1(k) = x

(v)
i,2m′−1(k) − x′(v)

i,2m′−1(k) and

φ
(v)
i,2m′(k) = x

(v)
i,2m′(k)− x′(v)

i,2m′(k). According to equation (4.20), one has

φ
(v)
i,2m′−1(k) = θ

(k)
i





s
(v)
i,2m′−1 − s′

(v)
i,2m′−1

s
(v)
i,2m′ − s′

(v)
i,2m′



 ,

φ
(v)
i,2m′(k) = θ

(k+K)
i





s
(v)
i,2m′−1 − s′

(v)
i,2m′−1

s
(v)
i,2m′ − s′

(v)
i,2m′



 ,

(4.22)

where θ
(k)
i denotes the kth row of Θi.

In addition, since Λe(v),i,2m′−1 = Xe(v),i,2m′−1 −X ′
e(v),i,2m′−1 and Λe(v),i,2m′ = Xe(v),i,2m′ −

X ′
e(v),i,2m′ , one has:

Λe(v),i,2m′−1 = diag
([

φ
(v)
i,2m′−1(1), φ

(v)
i,2m′−1(2), · · · , φ

(v)
i,2m′−1(K)

])

,

Λe(v),i,2m′ = diag
([

φ
(v)
i,2m′(1), φ

(v)
i,2m′(2), · · · , φ(v)

i,2m′(K)
])

.
(4.23)

Under type-1 and type-2 errors, with some restrictions on K and λ, the proposed FT-

GLCP achieves the maximum diversity gain and coding gain. This is proved in the following

theorem. Theorem 2 If K ≥ max (L1, L2) and 2K ∈ Q, the proposed FT-GLCP achieves

δd,1 = L1 and δc,1 ≥ [det (Rh1)]
1
L1 ∆2

min. Furthermore, if |γ| = 1, FT-GLCP achieves

δd,2 = L2 and δc,2 ≥ [det (Rh2)]
1
L2 ∆2

min.

Proof : First, the following lemma is needed, whose proof is given in Appendix 4.A.

Lemma 1 A is a K × L truncated DFT matrix and its row indices followsthe rule for

subcarrier grouping described in Section 4.4. Ξ is a K × K diagonal matrix with positive

elements ξ1, ξ2, . . . , ξK. Then if K ≥ L, the following inequality holds true:

det
(

AHΞA
)

≥ KL

(

K
∏

k=1

ξk

)
L
K

. (4.24)
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Next, consider type-1 errors. One has:

ΛH
e(v),1Λe(v),1 =



















Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦK



















, (4.25)

where, according to equation (4.17) and (4.23), Φk =
∑M/2

m′=1

(

|φ(v)
1,2m′−1(k)|2 + |φ(v)

1,2m′(k)|2
)

.

With K ≥ max (L1, L2), it follows from Lemma 1 that

det
(

(W
(v)
1 )HΛH

e(v),1Λe(v),1W
(v)
1

)

≥ KL1

(

K
∏

k=1

Φk

)

L1
K

. (4.26)

From the definition of type-1 errors, there must exist non-zero vector s
(v)
1,2m′−1 − s′

(v)
1,2m′−1 or

s
(v)
1,2m′−s′

(v)
1,2m′ . Then according to the property of LCP rotation matrix and equations (4.22)-

(4.23), there must exist two diagonal matrices Λe(v),1,2m′−1 and Λe(v),1,2m′ whose diagonal

elements are all non-zero.

Applying Jensen’s inequality, one obtains

K
∏

k=1

(Φk) ≥
K
∏

k=1

(

|φ(v)
1,2m′−1(k)|2 + |φ(v)

1,2m′(k)|2
)

≥ 2K
K
∏

k=1

(

|φ(v)
1,2m′−1(k)||φ

(v)
1,2m′(k)|

)

. (4.27)

Since φ
(v)
1,2m′−1(k) and φ

(v)
1,2m′(k), k = 1, . . . , K, are generated from the same finite algebraic

extension by using one 2K × 2K rotation matrix Θ1 (4.20), with 2K ∈ Q, it is known

from [10] that

K
∏

k=1

(

|φ(v)
1,2m′−1(k)||φ

(v)
1,2m′(k)|

)

≥
(

∆min√
2K

)2K

=

(

∆2
min

2K

)K

. (4.28)

Combining (4.26), (4.27) and (4.28) gives

det
(

(W
(v)
1 )HΛH

e(v),1Λe(v),1W
(v)
1

)

≥ (∆min)
2L1 . (4.29)

Therefore, for all type-1 errors, one has δc,1 ≥ [det (Rh1)]
1
L1 ∆2

min, which shows the maximum

coding gain is achieved. Furthermore, since Rh1 is of full rank and the determinant in (4.29)

is non-zero, Ψe,1 is guaranteed to be of full rank, which means that δd,1 = L1.
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Under type-2 errors, the derivations of the diversity and coding gains are similar to that

under type-1 errors. However, due to the existence of γ, Θ2 is not a standard form of LCP

rotation matrix and the following inequality may not hold.

K
∏

k=1

(

|φ(v)
2,2m′−1(k)||φ

(v)
2,2m′(k)|

)

≥
(

∆2
min

2K

)K

. (4.30)

According to the structure of Θ2, one can express φ
(v)
2,2m′−1(k) and φ

(v)
2,2m′(k) as

φ
(v)
2,2m′−1(k) = θ

(k)
1





s
(v)
2,2m′−1 − s′

(v)
2,2m′−1

s
(v)
2,2m′ − s′

(v)
2,2m′



 ,

φ
(v)
2,2m′(k) = γθ

(k+K)
1





s
(v)
2,2m′−1 − s′

(v)
2,2m′−1

s
(v)
2,2m′ − s′

(v)
2,2m′



 ,

(4.31)

It is observed that the absolute values of φ
(v)
2,2m′−1(k) and φ

(v)
2,2m′(k) are involved in (4.30).

Thus, if γ is chosen to have unit magnitude, the influence of γ disappears. Then by using

(4.31), φ
(v)
2,2m′−1(k) and φ

(v)
2,2m′(k) also can be considered as being generated by Θ1. Therefore,

according to the properties of LCP rotation matrix [10], the inequality in (4.30) holds and

one can show that δc,2 ≥ [det (Rh2)]
1
L1 ∆2

min and δd,2 = L2, i.e., the maximum diversity and

coding gains are also achieved under type-2 errors. �

Finally, the diversity performance of the proposed FT-GLCP under type-3 errors is stated

in the following theorem.

Theorem 3 Under type-3 errors, if γ is a transcendental number and 2K ≥ L1 + L2,

the proposed FT-GLCP achieves δd,3 = L1 + L2.

Proof : Let m′
i denotes the pair index of the adjacent OFDM symbols transmitted from

Ti. According to the definition of type-3 errors there must exist two non-zero vectors:

s
(v)
1,2m′

1−1 − s′
(v)
1,2m′

1−1 or s
(v)
1,2m′

1
− s′

(v)
1,2m′

1
, and s

(v)
2,2m′

2−1 − s′
(v)
2,2m′

2−1 or s
(v)
2,2m′

2
− s′

(v)
2,2m′

2
. Then

according to the property of LCP rotation matrix and equations (4.22)-(4.23), there must

exists diagonal matrices Λe(v),1,2m′
1−1, Λe(v),1,2m′

1
, Λe(v),2,2m′

2−1 and Λe(v),2,2m′
2
whose diagonal

elements are non-zero.
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If m′
1 6= m′

2, there exists a submatrix in Λe(v) such that

Λ̄e(v) =





Λe(v),1,2m′
1−1 0K×K

0K×K Λe(v),2,2m′
2−1



 .

Since Λ̄e(v) is a diagonal matrix, one can easily conclude that rank
(

Λ̄e(v)

)

= 2K. On the

other hand, if m′
1 = m′

2 = m′, there exists a submatrix in Λe(v) such that

Λ̄e(v) =





Λe(v),1,2m′−1 Λe(v),2,2m′−1

Λe(v),1,2m′ Λe(v),2,2m′



 .

Using the determinant equality [61],

det





A B

C D



 = det (A) det
(

D −CA−1B
)

, (4.32)

one has

det
(

Λ̄e(v)

)

= det
(

Λe(v),1,2m′−1

)

det
(

Λe(v),2,2m′ −Λe(v),1,2m′Λ−1
e(v),1,2m′−1

Λe(v),2,2m′−1

)

,

(4.33)

Furthermore, using (4.23), it can be shown that

det
(

Λ̄e(v)

)

=
K
∏

k=1

(

γφ
(v)
1,2m′−1(k)φ̄

(v)
2,2m′(k)− φ

(v)
1,2m′(k)φ

(v)
2,2m′−1(k)

)

, (4.34)

where φ̄
(v)
2,2m′(k) = φ

(v)
2,2m′(k)/γ.

It is known from (4.22) and (4.31) that all components in

(

γφ
(v)
1,2m′−1(k)φ̄

(v)
2,2m′(k)− φ

(v)
1,2m′(k)φ

(v)
2,2m′−1(k)

)

,

except γ, belong to the same finite algebraic extension formed by Θ1. Since γ is a transcen-

dental number which does not belong to any finite algebraic extension, it is guaranteed that
(

γφ
(v)
1,2m′−1(k)φ̄

(v)
2,2m′(k)− φ

(v)
1,2m′(k)φ

(v)
2,2m′−1(k)

)

6= 0.

Therefore, det
(

Λ̄e(v)

)

6= 0 and hence rank
(

Λ̄e(v)

)

= 2K.
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Because W
(v)
i is a truncated DFT matrix with size K × Li, where 2K ≥ L1 + L2, then

one has rank
(

W (v)
)

= L1 + L2. In addition, Λ̄e(v) is a 2K × 2K full-rank matrix, it is true

that rank
(

Λ̄e(v)W
(v)
)

= L1 + L2. Since Λ̄e(v)W
(v) is a submatrix of Λe(v)W

(v), it follows

that rank
(

Λe(v)W
(v)
)

≥ L1 + L2. Finally, because Bh is a full-rank square matrix, one has

rank (Ψe(v)) = rank
(

Λe(v)W
(v)Bh

)

= rank
(

Λe(v)W
(v)
)

≥ L1 + L2. (4.35)

Now, consider the worst case that m′
1 = m′

2 and all parts of Λe(v), except for Λ̄e(v) , are

zeros. It can be seen that

rank (Ψe(v)) = rank
(

Λe(v)W
(v)Bh

)

= rank
(

Λ̄e(v)W
(v)Bh

)

= L1 + L2. (4.36)

According to the definition of the diversity gain, which is the minimum rank of Ψe(v), one

concludes that δd,3 = L1 + L2. �

From the proof of Throrem 3, it can be seen that a proper choice of parameter γ is very

important to achieve the maximum diversity gain under type-3 errors. To illustrate this

point further, the following theorem states that if γ = 1, the proposed FT-GLCP cannot

achieve the maximum diversity gain of L1 + L2, but only max (L1, L2) under type-3 errors.

The proof is give in Appendix 4.B.

Theorem 4 Under type-3 errors, if γ = 1, FT-GLCP achieves δd,3 = max (L1, L2).

In summary, to achieve the maximum diversity and coding gains under type-1 and type-2

errors, γ should have unit magnitude. To achieve the maximum diversity gain under type-3

errors, γ should be a transcendental number. The number γ satisfying these two requirements

can be expressed as γ = exp (jϕ), where ϕ is a rational number [62] chosen to make γ a

transcendental number. Unfortunately, analytically finding the value of ϕ to maximize the

coding gain under type-3 errors appears difficult, if not impossible. Nevertheless, the optimal

value of ϕ can be easily found by computer search and this is explained further in Section

4.5. In addition to the choice of γ, according to Theorems 2 and 3, the subcarrier grouping

size K should satisfy K ≥ max(L1, L2) and 2K ∈ Q.
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4.5 Simulation Results

This section provides various simulation results to validate the analysis in previous sec-

tions. In all simulations, the size of FFT is N = 128, the length of cyclic prefix is Nc = 16

and the number of OFDM symbols is M = 2. In addition, QPSK is adopted as the mod-

ulation scheme for all nodes. All channels are assumed to be quasi-static fading and have

the same number of channel taps. Both cases of flat fading (Li = Pi = 1) and frequency-

selective fading with Li = Pi = 2 are tested and the average norms of the channel vectors

for all links are assumed to be unity. The size of subcarrier group is set to be K = 2 for the

case of frequency-selective fading channels. Let the transmitted powers of both terminals

and the relay be the same as Pt. Given that the average power gains of all channels are set

to unity (i.e., no large-scale pass loss is taken into account), the received SNR is the same

as the transmitted SNR and it is defined as Pt/N0, where N0 is the one-sided power spectral

density of thermal noise at the terminal and relay nodes. In addition, the performances are

evaluated in terms of both the terminal-to-terminal frame error rate (FER) and bit error

rate (BER) , which means that both the MA and BC phases are included in the simulation.

For the MA phase, four schemes, F-GLCP, FT-GLCP, no-precoding, and DSTC are

compared. As explained before, for the BC phase, the system model and signal processing

is basically the same as that in the point-to-point communication system. As such, the F-

GLCP scheme is applied in the BC phase of TWRC. It is pointed out that, with subcarrier

grouping, only K instead of total N subcarriers are jointly precoded. Thus, the search space

is SK×2 × SK×2 for the ML detection of (4.3), whereas it is SK×1 for the ML detection of

(4.5).

In fact, the F-GLCP scheme reduces to no-precoding in the case of flat fading. In

frequency-selective channels with two channel taps, the rotation matrices adopted for F-

GLCP are:

Θ
(F)
1 = Θ

(F)
2 =

1√
2





1 e−j π
4

1 e−j 5π
4



 . (4.37)
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For FT-GLCP, the rotation matrices used in flat fading case are:

Θ
(FT)
1 =

1√
2





1 e−j π
4

1 e−j 5π
4



 , Θ
(FT)
2 =

1√
2





1 e−j π
4

γ γe−j 5π
4



 . (4.38)

For frequency-selective channels with two channel taps, the rotation matrices used in FT-

GLCP are:

Θ
(FT)
1 =

1

2



















1 e−j π
8 e−j π

4 e−j 3π
8

1 e−j 5π
8 e−j 5π

4 e−j 15π
8

1 e−j 9π
8 e−j π

4 e−j 11π
8

1 e−j 13π
8 e−j 5π

4 e−j 7π
8



















, Θ
(FT)
2 =

1

2



















1 e−j π
8 e−j π

4 e−j 3π
8

1 e−j 5π
8 e−j 5π

4 e−j 15π
8

γ γe−j 9π
8 γe−j π

4 γe−j 11π
8

γ γe−j 13π
8 γe−j 5π

4 γe−j 7π
8



















.

(4.39)

For each case of fading channels (i.e., flat or frequency-selective), the optimum value

of γ = ejϕ that maximizes the coding gain under type-3 errors can be found by computer

search. Due to the symmetry of QPSK constellation, it is sufficient to search over the range

of [0, π/2) for the rotation angle ϕ. As an example, Fig. 4.1 plots the coding gain (under

type-3 errors) as a function of ϕ ∈ [0, π/2). The figure shows that the optimal value of γ

corresponds to ϕ = 0.881 ≈ 0.28π. A similar plot of coding gain can be obtained for the

case of frequency-selective fading channels, which reveals that the optimum rotation angle is

ϕ = 0.786 ≈ 0.25π. Since these two optimal angles are very close, for simplicity γ = ej0.881

shall be used in all simulations.

For DSTC [39], precoding is performed over two adjacent OFDM symbols and it is

mathematically expressed as:




x1,2m′−1(n)

x1,2m′(n)



 = Θ1





s1,2m′−1(n)

s1,2m′(n)



 , m′ = 1, . . . ,M/2, n = 1, . . . , N,





x2,2m′−1(n)

x2,2m′(n)



 = Θ2





s2,2m′−1(n)

s2,2m′(n)



 , m′ = 1, . . . ,M/2, n = 1, . . . , N.

, (4.40)

where

Θ1 =
1√
5





a aθ

ā āθ̄



 , Θ2 =
1√
5





ja jaθ

ā āθ̄



 ,
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Figure 4.1 Coding gain under type-3 errors as a function of ϕ for the case of flat

Rayleigh fading channels.

with θ = 1+
√
5

2
, θ̄ = 1−

√
5

2
, a = 1 + j − jθ and ā = 1 + j − jθ̄.

It is useful to summarize in Table 4.1 the diversity gains achieved by all schemes in the

MA phase under comparison.

Table 4.1 Diversity gains of different precoding schemes in the MA phase.

no-precoding DSTC F-GLCP FT-GLCP (γ = 1) FT-GLCP (γ = ejϕ)

δd,1 1 1 L1 L1 L1

δd,2 1 1 L2 L2 L2

δd,3 1 2 max (L1, L2) max (L1, L2) L1 + L2

Figs. 4.2 to 4.5 show the FER and BER performances in the flat fading case (Li = Pi = 1).

According to Table 4.1, in this case, all schemes have the same diversity gain of 1 under

type-1 and type-2 errors. Under type-3 errors, DSTC and FT-GLCP (γ = ejϕ) can achieve

a higher diversity gain of 2 while no-precoding and F-GLCP still have a diversity gain of 1.
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This is because in flat fading channels, no multi-path diversity gain is available. However,

DSTC and FT-GLCP (γ = ejϕ) can obtain extra diversity gain by combating multiple-access

interference using precoding in the time domain.

The system model in the MA phase can be viewed as a system with two antennas at the

transmitter. By using DSTC or FT-GLCP (γ = ejϕ), the maximum spatial diversity gain of

2 is achieved. Since this spatial diversity gain is actually obtained via the cooperation of the

two terminal nodes (i.e., joint precoder design), it can be considered as cooperative diversity

gain. It is important to point out that, the ability of FT-GLCP to provide cooperative

diversity gain is only possible by using proper values for γ. For example, with γ = 1,

FT-GLCP has the same diversity gain as that of using no-precoding.

Figs. 4.2 and 4.4 show that under Rayleigh fading channels, the advantage on diversity

gain achieved by DSTC and FT-GLCP (γ = ejϕ) over other schemes is not obvious. In

contrast, as shown in Fig. 4.3, under Rician fading channels, the diversity advantage achieved

by DSTC and FT-GLCP (γ = ejϕ) is very clear. This phenomenon can be explained as

follows. From (4.8), it can be found that the total error probability is the sum of the

probabilities of three types of errors. Among these three types of errors, type-1 and type-2

errors are mainly caused by deep fades of the channels from the terminal nodes to the relay

node. Compared to a Rayleigh fading channel, the probability of being in a deep fade is lower

for a Rician fading channel and thus the probabilities of type-1 and type-2 errors are lower.

However, the main cause of type-3 errors is multiple-access interference which is determined

by the ratio of the channel responses from two terminal nodes to the relay node [20,51]. The

probability of experiencing severe multiple-access interference in a Rician fading channel is

not lower than that in a Rayleigh fading channel. Therefore, the probability of type-3 errors

in a Rician fading channel is nearly the same as that in a Rayleigh fading channel. As a

result, when considering the diversity gain of the total error probability in Rician fading

channels, the diversity gain advantage of the DSTC and FT-GLCP schemes under type-3

errors becomes evident.

The performance curves in Figs. 4.2 to 4.5 show that DSTC achieves the same diversity
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gain as FT-GLCP (γ = ejϕ). This is because in flat fading channels, DSTC is equivalent

to FT-GLCP (γ = ejϕ). Note that there exists a gap of 1 to 2 dB between the coding gain

achieved by DSTC and FT-GLCP (γ = ejϕ). This is because in FT-GLCP (γ = ejϕ), an

optimized γ is used while in DSTC, the value of γ is not optimized.
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Figure 4.2 FER performance for flat Rayleigh fading channels.

Figs. 4.6 to 4.9 show the FER and BER performance in frequency-selective channels with

two independent and identically distributed (i.i.d.) channel taps. It can be seen that larger

diversity gains are achieved by F-GLCP and FT-GLCP (for both cases of γ = 1 and γ = ejϕ)

as compared to no-precoding and DSTC. This is because only F-GLCP and FT-GLCP can

exploit multi-path diversity gain in frequency-selective fading channels. In addition, FT-

GLCP (γ = ejϕ) can further exploit cooperative diversity gain under type-3 errors. As a

result, FT-GLCP (γ = ejϕ) has advantage on diversity gain over all other schemes. Although

simulation results in both Rayleigh and Rician fading channels show performance advantage

of the proposed FT-GLCP (γ = ejϕ), the performance advantage is more significant in

Rician fading channels. Again, this is also because in Rician fading channels, type-3 errors

contribute more to the total error probability and FT-GLCP (γ = ejϕ) behaves much better

than other schemes under type-3 errors.
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Figure 4.3 FER performance for flat Rician fading channels (Kf = 10).
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Figure 4.4 BER performance for flat Rayleigh fading channels.
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Figure 4.5 BER performance for flat Rician fading channels (Kf = 10).
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Figure 4.6 FER performance for i.i.d. frequency-selective Rayleigh fading channels

(L = 2).

Finally, simulation results are also provided for correlated channels. Specifically, the fol-
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Figure 4.7 FER performance for i.i.d. frequency-selective Rician (Kf = 10) fading

channels (L = 2).
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Figure 4.8 BER performance for i.i.d. frequency-selective Rayleigh fading channels

(L = 2).
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Figure 4.9 BER performance for i.i.d. frequency-selective Rician (Kf = 10) fading

channels (L = 2).

lowing correlation matrix is assumed for 2-tap frequency-selective Rayleigh fading channels:

Rhi
= Rgi =







1 0.6

0.6 1






. (4.41)

As expected, the FER and BER plotted in Figs. 4.10 and 4.11 show that channel correlation

will cause performance degradation. In addition, the performance superiority of the proposed

FT-GLCP (γ = ejϕ) method over all other methods is also clearly observed for correlated

frequency-selective Rayleigh fading channels.

4.6 Conclusions

The design of distributed precoding in TWRC systems using OFDM was studied in this

paper. A novel frequency-time grouped linear constellation precoding (FT-GLCP) was pro-

posed by minimizing the error probability in the MA communications phase. Compared to

the no-precoding scheme and the precoding scheme based on distributed space time cod-

ing, the proposed scheme successfully utilizes the multi-path diversity gain to alleviate the
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Figure 4.10 FER performance for correlated frequency-selective Rayleigh channels

(L = 2).
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Figure 4.11 BER performance for correlated frequency-selective Rayleigh channels

(L = 2).
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influence of deep fading. Also compared to the scheme that employs the conventional fre-

quency GLCP, the proposed scheme was shown to achieve the cooperative diversity gain

under type-3 errors, while the frequency GLCP cannot. Simulation results validated the

theoretical analysis and showed the performance advantage of the proposed scheme over

other schemes.

4.A Proof of Lemma 1

Recall that A is a K × L truncated DFT matrix and its row indices follow the rule

for subcarrier grouping described in Section 4.4. Without loss of generality, assume that

the row indices are of the vth group. Thus the (k, l)th element of A can be expressed

as: A(k, l) = exp
(

−j2π((k−1)V+v)(l−1)
N

)

. By constructing the matrix Ā with (k, l)th element

being Ā(k, l) =
√
ξkexp

(

−j2π((k−1)V+v)(l−1)
N

)

, the determinant can be expressed as:

det
(

AHΞA
)

= det
(

ĀHĀ
)

. (4.42)

Applying the Binet-Cauchy theorem [63], one has

det
(

ĀHĀ
)

=
∑

I

∣

∣det
(

ĀI

)∣

∣

2
, (4.43)

where I = (i1, i2, · · · , iL) , 1 ≤ i1 < i2 < · · · < iL ≤ K, runs through all such indices, ĀI

denotes the matrix formed from Ā using columns in the set I. By expressing the (t, l)th

element in ĀI as: ĀI (t, l) =
√

ξitexp
(

−j2π((it−1)V +v)(l−1)
N

)

, it can be observed that ĀI is

closely related to a Vandermonde matrix. Therefore one has:

∣

∣det
(

ĀI

)∣

∣

2
= κ (I)

L
∏

t=1

ξit, (4.44)

where κ (I) =
∏

1≤t<l≤L

4 sin2
(

π
K
(it − il)

)

. Following the derivation in [58], divide the
(

K
L

)

combinations I into M groups in which any combination I in the same group Gm, 1 ≤ m ≤
M , results in the same value κ (I) = bm and the group Gm contains am combinations. Then

the following conclusions are proved in [58]: (i)
M
∑

m=1

ambm = KL; (ii) For any group Gm,

amL = smK, where sm is an integer; (iii) each element in {1, 2, · · · , K} appears sm times in
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group Gm. Therefore, applying the Cauchy inequality for each group Gm gives:

∑

I∈Gm

bm

L
∏

t=1

ξit ≥ bmam

(

K
∏

k=1

ξk

)
L
K

= KL

(

K
∏

k=1

ξk

)
L
K

.

Then using (4.42)-(4.44), the Lemma is proved:

det
(

AHΞA
)

≥ KL

(

K
∏

k=1

ξk

)
L
K

.

�

4.B Proof of Theorem 4

Following the same reasoning as in the proof of Theorem 4, for all type-3 errors, there

must exist K × K diagonal matrices Λe(v),1,2m′
1−1, Λe(v),1,2m′

1
, Λe(v),2,2m′

2−1 and Λe(v),2,2m′
2

whose diagonal elements are non-zero. Assume that L2 ≥ L1. SinceW
(v)
2 is a truncated DFT

matrix with size K ×L2 and K ≥ L2, one has rank
(

W
(v)
2

)

= L2. Since Λe(v),2,2m′
2−1W

(v)
2 is

a submatrix of Λe(v)W
(v), it follows that rank

(

Λe(v)W
(v)
)

≥ L2. Furthermore, because Bh

is a full-rank square matrix, one has

rank (Ψe(v)) = rank
(

Λe(v)W
(v)Bh

)

= rank
(

Λe(v)W
(v)
)

≥ L2.

If m′
1 = m′

2 = m′, there exists a submatrix in Λe(v) such that

Λ̄e(v) =





Λe(v),1,2m′−1 Λe(v),2,2m′−1

Λe(v),1,2m′ Λe(v),2,2m′



 .

Define,

Ψ̄e(v) = BH
h (W (v))HΛ̄H

e(v)
Λ̄e(v)W

(v)Bh.

Consider the case that all parts of Λe(v), except Λ̄e(v) , are zeros, since Bh is a full-rank square

matrix, one has

rank (Ψe(v)) = rank
(

Ψ̄e(v)

)

= rank
(

Āe(v)

)

,

where

Āe(v) =





Λe(v),1,2m′−1W
(v)
1 Λe(v),2,2m′−1W

(v)
2

Λe(v),1,2m′W
(v)
1 Λe(v),2,2m′W

(v)
2
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Under the scenario that the error events from two terminal nodes are the same, and using the

fact that W
(v)
1 has L1 identical columns with W

(v)
2 , one can conclude that rank

(

Āe(v)

)

= L2.

According to the definition of the diversity gain, it follows that δd,3 = L2. Similarly, under

the case that L1 ≥ L2, it can be shown that δd,3 = L1. Therefore, δd,3 = max(L1, L2). �
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5. Distributed Linear Constellation Precoding

with BICM/BICM-ID in Two-Way Relaying

Communications

The previous chapter presented a novel design of distributed linear constellation pre-

coding (DLCP) to achieve the multipath diversity gain with OFDM in TWRC. Besides

LCP, bit-interleaved coded modulation (BICM) is another technique which is widely used

to achieve diversity gains. By using channel coding and interleaving, BICM provides a low

complexity method to achieve diversity gains in fading channels. To further enhance the

performance of BICM, an iterative processing between the demodulator and the decoder is

conducted. A BICM system with such iterative processing at the receiver is usually called

BICM with iterative decoding (BICM-ID). In point-to-point communication systems, BICM-

ID is demonstrated to achieve much better performance than BICM. To apply BICM and

BICM-ID in TWRC systems, one also needs to consider how to handle the detection dete-

rioration caused by MAI. As discussed and demonstrated in the previous chapter, DLCP is

an efficient scheme to alleviate MAI. Therefore, DLCP shall be investigated in conjunction

with BICM and BICM-ID for TWRC in this manuscript

Different from point-to-point communications, the relay node in TWRC needs to decode

from the superimposed signal arriving from the two terminal nodes. Therefore, to achieve the

best performance, decoding based on the quaternary code representation is first developed.

Furthermore, the quaternary-digit error probability (QEP) and bit error probability (BEP)

under network coding are evaluated. For BICM without iterative decoding, union bounds

on QEP and BEP under network coding are derived and used to design DLCP. The analysis
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based on three types of errors is performed to simplify the performance metric. The key

performance parameter is identified and optimized in different fading channels. Simulation

results obtained with BICM in various fading channels are provided to verify the effectiveness

of the design metric and demonstrate performance advantage of the DLCP scheme with

the optimal parameter over other schemes. For BICM-ID, by invoking the error-free (EF)

feedback assumption, the upper bounds of QEP and BEP under network coding are derived.

Based on the EF bound of QEP, the optimal parameter for DLCP is calculated. Through

the analysis of the EF bound of the BEP under network coding, it is shown that MAI is

successfully eliminated with iterative decoding and XOR-based network coding for BICM-ID

systems. Simulation results obtained with BICM-ID in various fading channels are provided

to verify the analysis and show the advantage of using iterative decoding based on quaternary

code representation.

The results of our studies on DLCP for BICM/BICM-ID in TWRC systems are reported

in three manuscripts listed below. The submitted journal paper [Ch5-3] is included in this

chapter.

[Ch5-1] H. Yan and Ha H. Nguyen, “Distributed Space Time Coding for Bit-Interleaved

Coded Modulation in Two-Way Relaying Communications”, IEEE Global Telecommun.

Conf., San Diego, CA, USA, Dec. 2015.

[Ch5-2] H. Yan and Ha H. Nguyen, “BICM-ID in Two-Way Relaying Communications”,

to appear in Proc. IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, May 2016.

[Ch5-3] H. Yan and Ha H. Nguyen, “Distributed Linear Constellation Precoding for

BICM/BICM-ID in Two-Way Relaying Communications”, revised version submitted to

IEEE Trans. Veh. Technol., Jan. 2016.
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Distributed Linear Constellation Precoding with

BICM/BICM-ID in Two-Way Relaying

Communications

Hongzhong Yan and Ha H. Nguyen

Abstract

This paper investigates distributed linear constellation precoding (DLCP) for two-way relay-

ing communication (TWRC) systems in conjunction with the techniques of bit-interleaved

coded modulation (BICM) and BICM with iterative decoding (BICM-ID). First, a decoding

strategy for the relay node that is based quaternary code representation is developed. Then

the union bounds (for the case of BICM) and error-free feedback (EF) bounds (for the case of

BICM-ID) on the quaternary digit error probability (QEP) and bit error probability (BEP)

under network coding in the multiple access phase are obtained. Based on the obtained

bounds, the impact of DLCP on the error performance is analyzed by considering three

error types in the multiple-access (MA) phase. It is shown that type-3 errors need to be

carefully taken into account in the design of a DLCP scheme. By developing a performance

metric related to type-3 errors, the design parameter of DLCP is optimized when BICM

is used, whereas it is shown that DLCP is not needed when BICM-ID is used. Extensive

simulation results are provided to corroborate the analysis and demonstrate the performance

superiority of the proposed decoding strategy over the one that directly decodes the XOR

code. For the case of BICM, the performance advantage achieved by properly designing

DLCP is also illustrated.

Index terms

Two-way relaying, BICM, BICM-ID, iterative decoding, distributed linear constellation pre-

coding, quaternary decoding, network coding.
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5.1 Introduction

Two-way relaying communication (TWRC) systems have recently gained a strong interest

in research community because of its bi-directional transmission capability. In a TWRC

system a relay node is used to support information exchange between two terminal nodes.

The full information exchange process includes the multiple access (MA) and broadcast (BC)

phases. In the MA phase, the terminal nodes send their information to the relay node, while

in the BC phase the relay node transmits the processed information back to the two terminal

nodes. In a simple, but low-efficiency protocol, each of the MA and BC phases needs two

time slots. In [55], a protocol based on the exclusive-OR (XOR) network coding is proposed

so that the BC phase requires only one time slot. To further improve the transmission

efficiency, a two-slot protocol is proposed in [47, 54] so that each phase only needs one time

slot.

Different from the four-slot and three-slot protocols which use two time slots for the two

terminal nodes in the MA phase, the two-slot protocol faces the challenge of performance

deterioration caused by multiple access interference (MAI). Denoise-and-forward (DNF) is

proposed in [19, 20] to avoid the influence of MAI to the end performance of each terminal

node. Specifically, the DNF gathers pairs of close constellation points into one group accord-

ing to the channel response. Then in the BC phase, the pairs of those close constellation

points are mapped to one new constellation point for broadcasting. However, to implement

DNF, the denosing maps which are used to indicate how the pairs of constellation points

are grouped and mapped also need to be transmitted to the terminal nodes in the BC phase

and thus causes extra overhead. When the DNF is used with orthogonal frequency-division

multiplexing (OFDM) over frequency-selective fading channels, the overhead is even larger

since different channel responses in different subcarriers require different denoising maps [56].

Later on, distributed space-time coding (DSTC) is proposed in [39] as another approach to

handle the MAI issue in TWRC. Instead of avoiding MAI, DSTC alleviates the impact of

MAI by performing precoding at both the terminal nodes. The authors of [39] give two spe-

cific precoding matrices and show that DSTC does not require overhead for the BC phase

and achieves better performance than DNF in the high signal-to-noise ratio (SNR) region.
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More recently, [64] provides a more general form of DSTC by using distributed linear con-

stellation precoding (DLCP) and proposes frequency-time DLCP to be used with OFDM,

which can also achieve multipath diversity in addition to handling MAI.

While all the schemes discussed above are only designed for the uncoded two-slot proto-

col of a TWRC system, other researchers also consider channel coding in TWRC systems.

Specifically, reference [65] proposes and evaluates different decoding strategies for a two-slot

TWRC system in an additive white Gaussian noise (AWGN) channel, while [66] provides

distance spectrum and performance analysis. Furthermore, decoding schemes for TWRC

systems using low-density parity-check (LDPC) codes, convolutional codes and turbo codes

under a fading channel are investigated in [67–69]. For coded systems using the two-slot

protocol, the MAI problem still exists and needs to be handled properly. References [70,71]

present the modified DNF schemes when LDPC codes and convolutional codes are adopted

in TWRC systems.

For communication systems employing channel coding, bit-interleaved coded modulation

(BICM) [14] is an effective method to achieve the diversity gain over fading channels. Later

on, the works in [18,44,72] apply iterative processing between the demodulator and decoder

in a BICM receiver. Such iterative decoding (ID) is shown to significantly enhance the

system’s bit-error-rate performance. A BICM system that employs iterative decoding is

usually referred to as BICM-ID. Due to the popularity and performance advantages of BICM

and BICM-ID, this paper aims to study how to adopt BICM and BICM-ID in a TWRC

system, especially when DLCP is performed at the two terminal nodes.

Relevant to the study in this paper, references [73,74] discuss detection techniques when

BICM and BICM-ID is used in a TWRC system. However, there has been no study on

how to handle MAI when BICM or BICM-ID is adopted in TWRC systems. Since DLCP

is shown to efficiently alleviate the influence of MAI [64], one objective of this paper is

to develop DLCP to be used with BICM and BICM-ID in a TWRC system. The decoding

developed in reference [74] is based on a reduced trellis to directly decode the codewords after

network coding. It was pointed out in [67, 68, 75] that decoding based on a reduced trellis
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may incur a performance loss. As such, in this paper decoding based on the quaternary code

representation at the relay node is developed for both BICM and BICM-ID. The asymptotic

error performance is analyzed by means of the union bound and EF bound for BICM and

BICM-ID, respectively. Based on the union bound, DLCP is optimized to be used with

BICM so that MAI can be efficiently suppressed. On the other hand, based on the EF

bound analysis, the paper also demonstrates that BICM-ID is able to eliminate MAI in

the MA phase when combining with XOR-based network coding, i.e., DLCP is not needed.

Performance comparison with different precoding schemes and between BICM and BICM-ID

is thoroughly conducted by computer simulation.

This paper is organized as follows. Section 5.2 describes the TWRC system employing

the two-slot protocol and BICM/BICM-ID. Section 5.3 introduces decoding based on the

quaternary code representation. Section 5.4 investigates the error probability in the MA

phase and derives the union bounds and EF bounds for BICM and BICM-ID, respectively.

The proposed DLCP design is presented in Section 5.5 by making use of the bounds derived

in Section 5.4. Section 5.6 provides the simulation results and conclusions are drawn in

Section 5.7.

Notations : The complex number
√
−1 is denoted by j. The conjugate of complex number

a is denoted by a∗. The elements in the ith row, from the jth to the kth columns of A are

denoted by A (i, j : k). The transpose, Hermitian transpose, determinant of matrix A are

denoted by AT , AH and det (A), respectively. diag (a) denotes a diagonal matrix whose

diagonal elements are from vector a and ‖a‖ denotes the Euclidean norm of vector a.

5.2 System Model

The TWRC system under consideration has two terminal nodes, denoted as nodes T1 and

T2, which exchange information to each other by the help of relay node R. This information

exchange happens in two phases. In the MA phase, both terminal nodes send their signals to

the relay node. After processing the received signal, the relay node broadcasts a new signal

in the BC phase.
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The MA phase of such a TWRC system using DLCP and BICM/BICM-ID is shown

in Fig. 5.1. It is pointed out that BICM is a special case of BICM-ID when no itera-

tions are performed between the demodulator and the decoder. The L-bit information

vector ui = [ui(1), · · · , ui(L)]
T from node Ti is first encoded into an M-bit coded vec-

tor ci = [ci(1), · · · , ci(M)]T . This means that the code rate is R = L/M . The coded

vector ci is then interleaved by a bit-wise interleaver to become the interleaved vector

vi = [vi(1), · · · , vi(M)]T . Then each group of K coded bits in vi is mapped to a com-

plex constellation symbol, where the set of constellation symbols is denoted as S. This

results in vector si = [si(1), · · · , si(N)]T consisting of N constellation symbols. To apply

DLCP, two consecutive symbols in si are grouped, i.e., si is divided into G = N/2 groups

and the gth group is defined as si,g = [si(2g − 1), si(2g)]
T . Then the corresponding gth

precoded vector xi,g = [xi(2g − 1), xi(2g)]
T is obtained by

xi,g = Θisi,g, (5.1)

where Θi is a precoding matrix. Finally, all precoded symbols are arranged as

xi = [xi(1), · · · , xi(N)]T and sent to relay node R.

Let r = [r(1), · · · , r(N)]T denote the received symbol vector at the relay node. It can be

expressed as:

r = H1x1 +H2x2 + ω, (5.2)

whereHi = diag ([hi(1), · · · , hi(N)]) is the N×N diagonal matrix whose components are im-

pulse responses of the channel from Ti to R. In this paper, hi(n) is assumed to follow a Rician

distribution with mean value εhi
and variance σ2

hi
and the corresponding Rician factor Kf =

|εhi
|2 /σ2

hi
Also, for convenience of analysis, |εh1| = |εh2| = |εh| and σ2

h1
= σ2

h1
= σ2

h are as-

sumed. The vector ω = [ω(1), · · · , ω(N)]T contains additive white Gaussian noise (AWGN)

samples, which are modelled as i.i.d. zero-mean complex Gaussian random variables with

variance N0. Furthermore, under the condition that the channel responses corresponding

to each group of precoded symbols are approximately constant (i.e., slow fading) so that

hi(2g− 1) ≈ hi(2g) = hi,g, the gth group of received symbol vector in r can be expressed as:

rg = [r(2g − 1), r(2g)]T = h1,gx1,g + h2,gx2,g + ωg (5.3)
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Figure 5.1 A TWRC system employing BICM-ID.

where ωg = [ω(2g − 1), ω(2g)]T .

Let Es denote the average energy of the transmitted (i.e., precoded) symbols in xi and Eb

is the average energy per information bit. Since one symbol in xi corresponds toK coded bits

and because the code rate is R = L/M , one hasEb =
Es

K×R
= M×Es

K×L
. To facilitate performance

comparison among various precoding schemes and transmission techniques considered in this

paper, the received signal-to-noise ratio (SNR) per node is defined as SNR =
Es×σ2

h

N0
.

Based on r, the relay node performs (iterative)1 demodulation and decoding to obtain

uq as illustrated in Fig. 5.1. In this paper, decoding at the relay is based on the quaternary

code representation [75]. As such, uq is a vector consisting of quaternary digits. The details

of the (iterative) demodulation and decoding based on quaternary code representation are

deferred to Section 5.3.

For transmission in the BC phase, uq is first network coded to obtain ub. In this paper,

the XOR-based network coding is adopted so that the ideal code is expressed as uo = u1⊕u2,

whereas the mapping from uq to ub is given in (5.10) in the next section when decoding based

on quaternary code representation is described. Due to possible decoding errors in uq, the

network-coded codeword ub obtained from uq might be different from the true codeword

uo. As such, one can define the bit error probability when comparing ub and uo. Next,

1Iterations are performed only for the case of BICM-ID.
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ub is encoded, interleaved and modulated as sb and broadcast to the two terminal nodes.

After receiving the broadcast signal, terminal node Ti performs conventional point-to-point

(iterative) demodulation and decoding to get ûb,i. Finally, by conducting XOR between ûb,i

and self information, the information of the other terminal node is extracted as:

û1 = ûb,1 ⊕ u2; û2 = ûb,2 ⊕ u1. (5.4)

Figure 5.2 Iterative decoding based on quaternary code representation.

5.3 Iterative Decoding Based on Quaternary Code Representation

As illustrated in Fig. 5.2, iterative decoding involves two blocks: the soft-input soft-

output (SISO) demodulator and the SISO decoder which uses the maximum a posteriori

probability (MAP) algorithm [43]. Because the received signal is from a multiple-access

channel, applying a conventional decoding approach designed for point-to-point communi-

cations does not achieve the best performance. Instead, iterative decoding based on the

equivalent quaternary code representation [75] shall be used. To this end, the equivalent

coded quaternary vector cq = [cq(1), · · · , cq(M)]T is defined as cq = 2c1 + c2. For simplicity

of analysis, the same length of information bits, code generator and interleaver are used in

both terminal nodes. Based on this assumption, one can construct the interleaved quaternary

vector vq = [vq(1), · · · , vq(M)]T by vq = 2v1+v2 and the equivalent information quaternary

vector uq = [uq(1), · · · , uq(L)]
T by uq = 2u1 + u2. The components of cq, vq and uq are

quaternary digits belonging to the set {0, 1, 2, 3}. As an example, the trellis diagram of the

corresponding quaternary code when both nodes use a convolutional code with generator

polynomials (in octal form) g = (5, 7) is shown in Fig. 5.3. The trellis shows the joint state

transfers of the two convolutional codes. The states tabulated on the left side are called

quaternary states. Specifically, suppose that the contents in the first and second registers of

90



0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

2 0

2 1

2 2

2 3

3 0

3 1

3 2

3 3

00

11

22

33

01

10

23

32

11

00

33

22

10

01

32

23

02

13

20

31

03

12

21

30

13

31

02

20

12

03

30

21

22

33

00

11

23

32

01

10

33

22

11

00

32

23

10

01

20

31

02

13

21

30

03

12

31

20

13

02

30

21

12

03

Figure 5.3 Trellis diagram of the equivalent quaternary code for a two-user MA

channel when both terminal nodes use a convolutional code with gen-

erator polynomials g = (5, 7).

the encoder at terminal Ti are ηi(1) and ηi(2), respectively. Then the first and second digits

defining a quaternary state are ηq(1) = 2η1(1) + η2(1) and ηq(2) = 2η1(2) + η2(2).

91



To elaborate the process of iterative decoding, (5.5) can be rewritten as:

rg = Xghg + ωg (5.5)

where hg = [h1,g, h2,g]
T andXg = [x1,g, x2,g]. LetM be a function that mapsK bits into a

constellation symbol. That is si(n) = M (vi(n)) where vi(n) = [vi ((n− 1)K + 1) , · · · , vi (nK)].

Similarly, taking into account the operation of DLCP and using the quaternary code repre-

sentation, Mq is defined as the mapping from 2K quaternary digits to a 2 × 2 matrix Xg.

That is Xg = Mq (vq,g) with vq,g = [vq (2(g − 1)K + 1) , · · · , vq (2gK)]. Furthermore, the

set of distinct matrices Xg is defined as a super constellation, expressed as Ψ.

Using the same notations as in [43], the a priori information and the extrinsic information

of a random variable z are denoted by P (z; I) and P (z;O), respectively. In the first iteration,

the a priori information sent to the deinterleaver is the a posteriori probability computed

by the SISO demodulator. Given the received signal rg, the a posteriori probability for 2K

coded quaternary digits vq,g(k), 1 ≤ k ≤ 2K, is computed as follows:

P (vq,g(k) = a|rg) =
∑

Xg∈Ψk
a

P (Xg|rg) . (5.6)

In (5.6), P (Xg|rg) is the a posteriori probability of the transmitted signal Xg given the

received signal rg. The set Ψk
a, a ∈ {0, 1, 2, 3}, denotes the subset of Ψ that contains all

signals whose labels have the value a at the kth position, 1 ≤ k ≤ 2K. Using Bayes’ rule,

P (vq,g(k) = a|rg) can be determined as follows:

P (vq,g(k) = a|rg) =
∑

Xg∈Ψk
a

p (rg|Xg)P (Xg)

p (rg)
∝

∑

Xg∈Ψk
a

p (rg|Xg)P (Xg) (5.7)

where P (Xg) is the a priori probability of the transmitted Xg. For the first iteration, the

transmitted signals are equally likely, hence P (Xg) = 1/42K .

From the second iteration, the extrinsic information P (cq;O) of coded quaternary digits

produced by the SISO decoder is sent to the interleaver. After being interleaved, it becomes

the a priori information P (vq; I) to enter the SISO demodulator. Thanks to interleaving,

2K digits corresponding to each vector Xg are assumed to be independent. Hence the a
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priori information P (Xg) of Xg ∈ Ψ can be obtained as:

P (Xg) = P (vq,g(1 ⊸ Xg), · · · , vq,g(2K ⊸ Xg)) =
2K
∏

k=1

P (vq,n(k) = vq,n(k ⊸ sq,n); I) ,

(5.8)

where the notation vq,g(k ⊸ Xg) ∈ {0, 1, 2, 3} means the value of the kth quaternary digit

in the label of Xg. Using (5.7) and (5.8), the extrinsic information from the second iteration

can be computed as:

P (vq,g(k) = a;O) =
P (vq,g(k) = a|rg)
P (vq,g(k) = a; I)

∝
∑

Xg∈Ψk
a
p (rg|Xg)P (Xg)

P (vq,g(k) = a; I)
(5.9)

=
∑

Xg∈Ψk
a

[

p (rg|Xg)
∏

j 6=k

P (vq,g(j) = vq,g(j ⊸ Xg); I)

]

.

The extrinsic information is then deinterleaved to become a priori information and delivered

to the SISO decoder. At any iteration, the hard-decisions of quaternary digits uq can be

obtained based on the corresponding extrinsic information P (uq;O). Furthermore, the lth

bit in ub can be obtained from uq as:

ub(l) =







0, if uq(l) = 0 or uq(l) = 3

1, if uq(l) = 1 or uq(l) = 2
(5.10)

5.4 Performance Analysis

In a TWRC system, the terminal-to-terminal bit error probability (BEP) is commonly

used for performance evaluation. In this paper, the terminal-to-terminal errors are the errors

between ui and ûi. Since there are two transmission phases in a TWRC system, the errors

between ui and ûi may happen in two stages: (i) transmitting ui and obtaining ub, and

(ii) transmitting ub and obtaining ûi. From Equation (5.4), it is known that the errors in

stage two are equivalent to the errors between ub and ûb,i. Since the signal processing in

the BC phase is the same as in the conventional point-to-point systems, the probability of

errors between ub and ûb,i is not analyzed in this paper. On the other hand, since ub is the

actual version of the ideal network-coded codeword uo = u1⊕u2, the errors in stage one are

equivalent to the errors between ub and uo. In the following sections, the errors between ub
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and uo are called the errors under network coding and the corresponding BEP is called the

BEP under network coding.

As seen from (5.10), ub is obtained from uq. Therefore, in the following discussion, the

error probability of decoding uq, which is called quaternary-digit error probability (QEP), is

first derived to aid the analysis of the BEP under network coding. Following the same method

in [44, 45, 75], an upper bound on the QEP of BICM-ID in the MA phase of the TWRC

system where both nodes employ the same rate-kc/nc convolutional code, an equivalent

super constellation Ψ and a mapping rule Mq can be written as follows:

Pe ≤
1

kc

∞
∑

d=dH

ρdf (d,Ψ,Mq) , (5.11)

where ρd is the total information weight of all error events at Hamming distance d and dH

is the free Hamming distance of the equivalent quaternary code. The function f (d,Ψ,Mq)

is the average pairwise error probability (PEP), which depends on the Hamming distance

d, the constellation Ψ and the mapping rule Mq. Let cq and ĉq denote the transmitted

and decoded quaternary vectors (each with a length of M quaternary digits), respectively,

with Hamming distance d between them. These quaternary vectors correspond to N × 2

matrices X = [X1, . . . ,XG] and X̂ = [X̂1, . . . , X̂G], where G = N/2 and each of the 2 × 2

matrices Xg and X̂g, 1 ≤ g ≤ G, is an element in the super constellation Ψ. The function

f (d,Ψ,Mq) is computed from the PEP P
(

X → X̂
)

by averaging over all possible matrices

X and X̂. The calculation of P
(

X → X̂
)

is as follows.

Without loss of generality, assume that cq and ĉq differ in the first d consecutive quater-

nary digits. Hence, X and X̂ can be redefined asX = [X1, · · · ,Xd] and X̂ =
[

X̂1, · · · , X̂d

]

.

Also let Hd = [h1, · · · ,hd] where hg (1 ≤ g ≤ d) denotes the channel responses that affect

the transmitted Xg. Then the PEP conditioned on Hd can be computed as follows:

P
(

X → X̂|Hd

)

= Q





√

√

√

√

1

2N0

d
∑

g=1

d2
(

Xg, X̂g|hg

)



 . (5.12)

In (5.12), d2
(

Xg, X̂g|hg

)

is the squared Euclidean distance between the two received signals

corresponding to Xg and X̂g, conditioned on hg. This squared Euclidean distance can be
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expressed as:

d2
(

Xg, X̂g|hg

)

=
∥

∥

∥

(

Xg − X̂g

)

hg

∥

∥

∥

2

= hH
g Dghg (5.13)

where Dg =
(

Xg − X̂g

)H (

Xg − X̂g

)

. Furthermore, by performing singular value decom-

position on Dg, one has

hH
g Dghg = hH

g U
H
g ΛgUghg = h̃H

g Λgh̃g =
∣

∣

∣
h̃1,g

∣

∣

∣

2

|λ1 (Dg)|2 +
∣

∣

∣
h̃2,g

∣

∣

∣

2

|λ2 (Dg)|2 (5.14)

where Ug is an unitary matrix, λ1 (Dg) and λ2 (Dg) are singular values of Dg. Since Dg is

unitary, the variance of h̃1,g and h̃2,g are the same as that of h1,g and h2,g. However, their

expectations depend on Dg and are expressed as εh1 (Dg) and εh2 (Dg).

Using the Gaussian probability integral and averaging (5.12) over Hd, or equivalently

over H̃d =
[

h̃1, · · · , h̃d

]

gives

P
(

X → X̂
)

= EHd

{

P
(

X → X̂|Hd

)}

=
1

π

∫ π/2

0

(

d
∏

g=1

ζ
(

Xg → X̂g

)

)

dθ (5.15)

where

ζ
(

Xg → X̂g

)

=

2
∏

i=1

sin2 θ

sin2 θ + Ωg,i

exp

(

−|εhi
(Dg)|2
2σ2

hi

Ωg,i

sin2 θ + Ωg,i

)

(5.16)

with Ωg,i = σ2
hi
λi (Dg) /4N0.

Next, by averaging (5.15) over all possible matrices X and X̂, the function f (d,Ψ,Mq)

can be calculated as follows:

f (d,Ψ,Mq) ≤
1

π

∫ π/2

0

[γ (Ψ,Mq)]
d dθ, (5.17)

where

γ (Ψ,Mq) = E
{

ζ
(

Xg → X̂g

)}

=
1

N1

∑

Xg∈Ψ

2K
∑

k=1

1

N2

∑

X̂g∈Ψ̄k
Xg

ζ
(

Xg → X̂g

)

. (5.18)

In the above expression, N1 = 2K42K is the size of the super constellation Ψ, whereas N2 is

the number of matrices in the set Ψ̄k
Xg

. The set Ψ̄k
Xg

is a subset of the super constellation

Ψ and how it is defined depends on whether BICM or BICM-ID is adopted in the system.

This is explained further in the following.
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When BICM-ID is adopted and with enough iterations performed at the receiver, the

error-free feedback (EF) bound [44] can be used to characterize the asymptotic performance

of the system. Under the error-free feedback assumption, Ψ̄k
Xg

is defined as the set of

matrices in Ψ whose labels differ only at position k compared to the label of a given matrix

Xg, i.e., the other 2K − 1 label digits of any matrix in Ψ̄k
Xg

must be the same as the

corresponding 2K− 1 label digits of Xg. It is pointed out that in the conventional point-to-

point BICM-ID system, the set Ψ̄k
Xg

contains only one matrix whose label can be obtained

by switching the kth bit of the label of Xg, from “1” to “0” or “0” to “1”. However, in

a TWRC system, since decoding at the relay is based on quaternary code representation,

the set Ψ̄k
Xg

contains N2 = 3 matrices. For example, suppose that both terminals use

QPSK modulation and the label of Xg is [0 0 0 0], then the matrices in Ψ̄1
Xg

are those

with labels {[1 0 0 0] , [2 0 0 0] , [3 0 0 0]}, whereas the labels of matrices in Ψ̄2
Xg

are

{[0 1 0 0] , [0 2 0 0] , [0 3 0 0]}.

On the other hand, for BICM, the standard union bound [14] is commonly used for

performance analysis. In this case, the Ψ̄k
Xg

is defined as the set of matrices whose labels

differ at position k compared to the label of Xg, i.e., the other 2K − 1 label digits can be

the same or different as compared to the corresponding 2K − 1 label digits of Xg. In a

point-to-point system with binary labels, Ψ̄k
Xg

would contain 42K−1 matrices. However, the

size of Ψ̄k
Xg

is N2 = 3(42K−1) in a TWRC system.

Now, considering the BEP under network coding. The union bound and EF bound of

BEP under network coding for BICM and BICM-ID, respectively, can be obtained in the

same way, starting with (5.11) and yield the same expressions as those of QEP. The only

difference is how the set Ψ̄k
Xg

is defined (hence, also the value N2). For the EF bound of

BEP under network coding with BICM-ID, Ψ̄k
Xg

contains N2 = 2 matrices for each given

Xg. This is because the errors from “0” to “3”, “3” to “0”, “1” to “2” and “2” to “1” should

not be counted in the view of XOR network coding. Using the same example for the label of

Xg being [0 0 0 0], the labels of the matrices in Ψ̄1
Xg

are {[1 0 0 0] , [2 0 0 0]}, whereas
the labels of matrices in Ψ̄2

Xg
are {[0 1 0 0] , [0 2 0 0]}. On the other hand, the size of

Ψ̄k
Xg

used in the calculation of the union bound of BEP under network coding with BICM
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is N2 = 2(42K−1).

Finally, for convenience in designing DLCP to be used with BICM and BICM-ID in

TWRC, an upper bound of f (d,Ψ, ξ) is obtained by setting θ = π/2, which yields:

fup (d,Ψ,Mq) = [γup (Ψ,Mq)]
d , (5.19)

where

γup (Ψ,Mq) =
1

N∞

∑

Xg∈Ψ

2K
∑

k=1

1

N∈

∑

X̂g∈Ψ̄k
Xg

ζup

(

Xg → X̂g

)

(5.20)

with

ζup

(

Xg → X̂g

)

=
2
∏

i=1

1

1 + Ωg,i

exp

(

−|εhi
(Dg)|2
σ2
hi

Ωg,i

1 + Ωg,i

)

. (5.21)

5.5 DLCP Designs For TWRC

LCP is originally proposed in [10,76] to achieve spatial and multipath diversity in single-

user point-to-point communications. In [64], DLCP is employed in conjunction with OFDM

at the terminal nodes to achieve diversity and reduce MAI in the two-slot TWRC. According

to the scheme given in [64], the DLCP is expressed as:

Θ1 =
1√
2





1 e−j π
4

1 e−j 5π
4



 , Θ2 =
1√
2





1 e−j π
4

β βe−j 5π
4 ,



 (5.22)

where β is a design parameter. As mentioned in Section 5.1, the objective of designing

DLCP is to achieve good detection performance in the MA phase. Therefore, upperbounds

on QEP and BEP under network coding are suitable metrics for the design. From (5.19), it

can be seen that the QEP and BEP under network coding performances are strongly related

to γup (Ψ,Mq) for a specific convolutional code. Since this paper focuses on the design of

DLCP, in the following discussion, the mapping rule Mq is not treated as a design variable.

In addition, for a specific modulation scheme, the super constellation Ψ is completely deter-

mined by the DLCP matrices Θ1 and Θ2. Thus γup (Ψ,Mq) is more meaningfully indicated

as γup (Θ1,Θ2). The form of DLCP given in (5.22) indicates that the LCP code used by ter-

minal node T1 is fixed, while the LCP code used by terminal node T2 needs to be optimized
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by choosing parameter β. In other words, the only parameter that needs to be optimized in

the design is β.

Before explaining the optimization of β, some concepts need to be introduced. First,

from (5.21), it can be found that ζup

(

Xg → X̂g

)

is actually the PEP upperbound between

Xg and X̂g and γup (Θ1,Θ2) is the average of a set of PEPs. Since Xg is consisted of x1,g

and x2,g which are precoded versions of s1,g and s2,g, the pairwise error events Xg → X̂g

can be partitioned into the following three types of errors [59, 60, 64]:

• Type-1 errors: E1 = {e : s1,g 6= ŝ1,g, s2,g = ŝ2,g}.

• Type-2 errors: E2 = {e : s1,g = ŝ1,g, s2,g 6= ŝ2,g}.

• Type-3 errors: E3 = {e : s1,g 6= ŝ1,g, s2,g 6= ŝ2,g}.

With the above definitions of three types of errors and by knowing that the DLCP

matrices are unitary, one has the following theorem.

Theorem 1 If DLCP matrices are unitary, they will not influence the PEP performance

under type-1 and type-2 errors.

Proof : First, suppose that the error event belongs to type-1 errors. Then one has

s1,g 6= ŝ1,g, s2,g = ŝ2,g and thus x1,g 6= x̂1,g,x2,g = x̂2,g. Therefore the matrix Dg =
(

Xg − X̂g

)H (

Xg − X̂g

)

takes the following form:

Dg =





xH
1,g − x̂H

1,g

0





(

x1,g − x̂1,g 0
)

=





‖x1,g − x̂1,g‖2 0

0 0



 . (5.23)

Because of the special form of matrix Dg, the expectation of h̃i,g does not depend on Dg

and can simply expressed as εhi
. On the other hand, the singular values of Dg are λ1 (Dg) =

‖x1,g − x̂1,g‖2 and λ2 (Dg) = 0. Furthermore, using the facts that xi,g = Θisi,g and Θi is a

unitary matrix, one has ‖x1,g − x̂1,g‖2 = ‖s1,g − ŝ1,g‖2 It then follows that the PEP upper
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bound of type-1 errors can be expressed as:

ζup,1

(

Xg → X̂g

)

=

(

1 +
δ2h1

‖s1,g − ŝ1,g‖2
4N0

)−1

exp

(

− |εh1|2 ‖s1,g − ŝ1,g‖2

4N0 + δ2h1
‖s1,g − ŝ1,g‖2

)

,

for
{

Xg → X̂g

}

∈ E1. (5.24)

Similarly, the PEP upper bound of type-2 errors is:

ζup,2

(

Xg → X̂g

)

=

(

1 +
δ2h2

‖s2,g − ŝ2,g‖2
4N0

)−1

exp

(

− |εh2|2 ‖s2,g − ŝ2,g‖2

4N0 + δ2h2
‖s2,g − ŝ2,g‖2

)

,

for
{

Xg → X̂g

}

∈ E2. (5.25)

From the above expressions, it can be seen that the PEP upper bounds for type-1 and type-

2 errors are only related to the channel parameters, but independent of the DLCP matrix.

This completes the proof. �

Theorem 1 implies that there is no need to consider type-1 and type-2 errors when

designing DLCP for TWRC. This is reasonable since DLCP is meant to reduce the influence

of MAI, which is the main cause of type-3 errors (type-1 and type-2 errors are mainly caused

by channel fading [64]). In the following subsections, DLCP designs are considered for BICM

and BICM-ID separately by examining type-3 errors in more details.

5.5.1 DLCP Design for TWRC with BICM

The DLCP design proposed here is to optimize the parameter β so that the union bound

on the BEP under network coding is minimized. This approach is reasonable and commonly

adopted for complex communications systems, such as the one considered in this paper.

From the analysis given in [39, 64], it is known that to achieve the full diversity gain under

type-3 errors, β needs to be a transcendental number. Furthermore, β can be expressed as

β = exp (jϕ), where ϕ is a rational number [62] chosen to make β a transcendental number.

Since Θ1 andΘ2 depend only on ϕ, considering only type-3 errors, the metric that effectively

determine the performance of DLCP can be expressed as:

γup,3 (ϕ) =
1

N1

∑

Xg∈Ψ

2K
∑

k=1

1

N2 −N3

∑

X̂g∈Ψ̄k
Xg,3

ζup,3

(

Xg → X̂g

)

, (5.26)
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where Ψ̄k
Xg ,3 denotes the set of matrices X̂g so that Xg → X̂g is a type-3 error, N1 = 2K42K

and N2 = 3(4(2K−1)) as explained in Section 5.4, while N3 = 4K is the number of matrices

X̂g such that Xg → X̂g is a type-1 or type-2 error.

The search for ϕ that minimizes γup,3 can be conducted over the range 0 ≤ ϕ ≤ π. This

is because the function γup,3 is symmetric around ϕ = π (see the proof in Appendix 5.A).

As an example, Fig. 5.4 plots γup,3 as a function of ϕ in the case of Rayleigh fading channels

that are related to both QEP and BEP under network coding. It can be seen that, for each

SNR value considered, the γup,3 curves have very similar patterns. Specifically, the figure

shows that the optimal value of ϕ varies for different SNRs. With low to moderate SNR

values, e.g. SNR = 3 dB or SNR = 7 dB, ϕ = 0 minimizes γup,3. However, for high SNR

values, e.g. SNR = 11 dB or SNR = 15 dB, the optimal value of ϕ is close to π/4.

From the derivation of γup,3, it can be seen that beside SNR, the expectations εhi
of

channels hi, i = 1, 2, also influence the performance. For a specific Rician factor Kf , define

exp (jθ) = εh2/εh1. Fig. 5.5 plots γup,3 related to QEP and BEP under network coding as a

function of ϕ in the case of Rician fading channels with different values of θ and Kf = 10.

As can be seen, for each SNR and θ, the γup,3 curves also have similar patterns. In addition,

it is found that for low to moderate SNR values, θ has a strong influence on the optimal

value of ϕ. Take SNR = 3 dB and SNR = 7 dB as examples, one sees that ϕ = 0 minimizes

γup,3 for θ = 0 and θ = π/4, while ϕ close to π/2 is optimal for θ = π/2. For high SNR

values, all curves with different values of θ have similar patterns with ϕ close to π/4 being

optimal.

5.5.2 DLCP Design for TWRC with BICM-ID

First, consider optimizing β to minimize the EF bound of QEP when BICM-ID is used.

Making use of Theorem 1 and considering only type-3 errors, equation (5.20) can be rewritten

as:

γup (Ψ,Mq) =
1

2K42K

∑

Xg∈Ψ

2K
∑

k=1

∑

X̂g∈Ψ̄k
Xg,3

ζup

(

Xg → X̂g

)

(5.27)
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Figure 5.4 γup,3 versus ϕ for QPSK and at different SNR values over Rayleigh

fading channels.

where Ψ̄k
Xg,3

contains only one matrix. Furthermore, in the high SNR region, one can

approximate

ζup

(

Xg → X̂g

)

≈
(

λ2
1 (Dg) λ

2
2 (Dg)

)−1
(

σ2
h

4N0

)−2

exp

(

|εh1 (Dg)|2 + |εh2 (Dg)|2
2σ2

h

)

. (5.28)

From (5.28), it can be seen that minimizing ζup is equivalent to maximizing λ2
1 (Dg) λ

2
2 (Dg),

and thus equivalent to maximizing |det (Dg)|.

For the calculation of the EF bound, the matrices Xg and X̂g are such that their labels

differ just in one digit. If the different label digit happens in any of the first to the Kth

positions, then the constellation symbols corresponding toXg and X̂g satisfy s1(2g) = ŝ1(2g)

and s2(2g) = ŝ2(2g). Likewise, if the different label digit happens in any of the (K + 1)th

to the (2K)th positions, one has s1(2g − 1) = ŝ1(2g − 1) and s2(2g − 1) = ŝ2(2g − 1).
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Figure 5.5 γup,3 versus ϕ for QPSK and at different SNR and θ values over Rician

fading channels (Kf = 10).

Without loss of generality, the different label digit is assumed to be anywhere between the

(K +1)th to the (2K)th positions. Then using Θ1 and Θ2 in (5.22) and defining α1 = e−j π
4

and α2 = e−j 5π
4 , one has

Xg − X̂g =
1√
2





α1∆s1(2g) α2∆s1(2g)

α1∆s2(2g) βα2∆s2(2g)



 (5.29)

=
1√
2





∆s1(2g) 0

0 ∆s2(2g)









1 1

1 β









α1 0

0 α2





where ∆si(2g) = si(2g)− ŝi(2g). Lastly, from the definition of Dg, |det (Dg)| is computed

as

|det (Dg)| = |∆s1(2g)∆s2(2g)|2 |β − 1|2 . (5.30)
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Because β is defined to have unity magnitude [64, 75], one concludes that β = −1 achieves

the maximum |det (Dg)| and thus the minimum QEP bound of BICM-ID.

Finally, the EF bound of BEP under network coding is examined. From the analysis

of Ψ̄k
Xg

for BEP under network coding in Section 5.4, one can see that error events are all

type-1 or type-2 errors. This means Ψ̄k
Xg,3

is an empty set. As an example, suppose that

the label of Xg is [0 0 0 0]. Then the label set of Ψ̄1
Xg

consists of {[1 0 0 0] , [2 0 0 0]}.
If the label of X̂g is [1 0 0 0], one has s1,g = ŝ1,g, which means Xg → X̂g is a type-2 error.

If label of X̂g is [2 0 0 0], one has s2,g = ŝ2, which means Xg → X̂g is a type-1 error.

In addition, Theorem 1 proves that DLCP does not influence the PEP performance under

type-1 and type-2 errors. Based on Theorem 1 and the fact that Ψ̄k
Xg,3

is an empty set, one

concludes that there is no benefit in applying or designing DLCP for a TWRC system when

BICM-ID is used and when the objective is to minimize the BEP under network coding. This

is a major difference as compared to the case of BICM. In essence, in addition to channel

fading, the MAI can also be effectively handled by BICM-ID under the error-free feedback

assumption.

5.6 Simulation Results

This section provides various simulation results to evaluate the performance of different

schemes and validate the analysis presented in the previous sections. In all simulations, all

nodes use a rate-1/2, 4-state convolutional code with generator polynomials g = (5, 7) and

random interleaver of length 512 bits. Both Rayleigh and Rician (Kf = 10) fading channels

are simulated with unit variance (σ2
h = 1), i.e., the average power gains of all channels are

unity.

5.6.1 TWRC with BICM

For the case of BICM, QPSK with Gray mapping [14] is adopted as the modulation

format at all nodes. As for the precoder blocks in Fig. 5.1, four designs are considered: (i)

No-DLCP, (ii) DLCP with ϕ = 0, (iii) DSTC in [39], and (iv) DLCP with optimal ϕ.
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Figure 5.6 QER performance under Rayleigh and Rician fading channels.

Fig. 5.6 presents the quaternary-digit error rate (QER) performance under Rayleigh and

Rician fading channels. It can be seen that in both cases of fading channels, ϕ = 0 yields

the same QER performance as with “No-DLCP” design. This phenomenon is explained

as follows. DLCP is designed to alleviate the influence of MAI by achieving cooperative

diversity gain under type-3 errors. On the other hand, it is proved in [64] that using ϕ = 0

cannot obtain the cooperative diversity. Since DLCP does not affect the performance due

to type-1 and type-2 errors as proved in Theorem 1, DLCP with ϕ = 0 has no performance

advantage as compared to the “No-DLCP” scheme. To realize the performance advantage

of DLCP, ϕ needs to be carefully selected.

From the QER results under Rayleigh fading channels, it can be seen that with high

SNR values, the DLCP scheme with optimal ϕ achieves the best performance and clearly

outperforms the scheme with ϕ = 0. With low and moderate SNR values, the DLCP scheme

with optimal ϕ has similar performance compared to the scheme with ϕ = 0. The simulation

results are consistent with Fig. 5.4 which shows in low and moderate SNR values, ϕ = 0

minimizes γup,3.
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For the QER results under Rician fading channels, the DLCP scheme with optimal ϕ

achieves the best performance over the whole SNR region. It also results in a higher diversity

gain over the “No-DLCP” scheme and the DLCP scheme with ϕ = 0 when compared to the

case of Rayleigh fading. The reason for this is that under Rician fading, the probability of

a deep fade is lower but the probability of experiencing MAI is the same as in the case of

Rayleigh fading. In such a situation, type-3 errors become the dominant type of errors and

the higher diversity gain under type-3 errors provided by DLCP can be seen clearer. The

DSTC scheme can achieve the same diversity gain as the DLCP scheme with the optimal ϕ

and therefore its performance curve has the same slope as that of the DLCP scheme with

optimal ϕ. However, in the case of Rayleigh fading, type-3 errors are not the dominant

errors since the probability of a deep fade is still high. The higher diversity gain under type-

3 errors achieved by DSTC cannot effectively enhance the overall performance and in fact

it performs even worse than the “No-DLCP” scheme as can be seen in performance curves

under Rayleigh fading channels.
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Figure 5.7 Terminal-to-terminal BER performance under Rayleigh and Rician

(Kf = 10) fading channels.

Furthermore, the terminal-to-terminal bit error rate (BER) curves are plotted in Fig. 5.7,
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which means that both MA and BC phases are included in the system simulation. As

explained before, for the BC phase, the signal processing is the same as in the point-to-point

communication system. For better clarity of different curves, since the DLCP scheme with

ϕ = 0 has the same performance as the “No-DLCP” scheme, its performance is not explicitly

included in the figure. It can be observed that all the BER performance curves have the

same trend as QER performance curves investigated in the MA phase alone.

5.6.2 TWRC with BICM-ID

To achieve the performance gain through iterative decoding with BICM-ID, QPSK with

anti-Gray mapping is adopted at all nodes. To evaluate the performance of BICM-ID in the

MA phase of TWRC systems, the BER under network coding in the MA phase is plotted

in Figs. 5.8 and 5.9 for Rayleigh and Rician (Kf = 10) fading channels, respectively. Two

iterative decoding strategies are evaluated: (i) directly decoding the XOR code as given

in [74], and (ii) decoding based on quaternary code representation as introduced in this

paper. Specifically, shown in the figures are the BER curves after 1, 2, 3 and 9 iterations

for both decoding strategies. From these two figures, it can be seen that iterative decoding

using quaternary code representation significantly outperforms the direct decoding strategy.

The reason is that the “XOR” method uses a reduced trellis2 and therefore loses the useful

information for decoding. This also explains why the “quaternary” decoding method obtains

a larger gain through iterations than the “XOR” decoding method since the more useful in-

formation delivered in the iterations, the greater improvement can be obtained with iterative

decoding.

To validate the conclusion in Section 5.5.2 that using BICM-ID can eliminate the influence

of MAI on the BER under networking coding, and hence DLCP is not needed, four schemes

are considered in the MA phase: (i) No-DSTC/DLCP, (ii) DSTC in [39], (iii) DLCP with

optimal parameter for BICM, (iv) DLCP with β = −1 (recall that β = −1 minimizes the

EF bound of QEP under BICM-ID). Fig. 5.10 presents the BER performance under network

coding with 9 iterations under Rayleigh and Rician fading channels. For the all schemes

2The reduced trellis is shown in reference [68].

106



4 5 6 7 8 9 10 11 12 13 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E
R

 

 
XOR decoding
Quaternary decoding
Iteration 1
Iteration 2
Iteration 3
Iteration 9

Figure 5.8 BER under XOR network coding with different iterations under

Rayleigh fading channels.
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Figure 5.9 BER under XOR network coding with different iterations under Rician

fading channels.
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under Rician channels, they show different performance in the low SNR region but the same

performance in the high SNR region. The reason is that in the low SNR region, a lot of

feedback information in the iterative decoding process is erroneous and obviously the EF

bound cannot be approached. But in the high SNR, through successful iterative decoding,

the error-free assumption holds and the influence of MAI is eliminated and thus all schemes

show the same performance. On the other hand, under Rayleigh channels, all schemes with

9 iterations show the same performance over the whole SNR region. As discussed in [64,75],

fading is the more dominant factor causing errors than MAI. Therefore, in the low SNR

region, although MAI is not totally eliminated, the probability of errors caused by MAI is

much smaller than the probability of errors caused by fading so that it is negligible when

evaluating the BER performance.
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Figure 5.10 BER under XOR network coding for DLCP: Rayleigh and Rician fading

channels.

For completeness, the QER of the four schemes under Rayleigh and Rician fading channels

are also shown in Fig. 5.11. It is seen that all schemes have the same QER performance

under Rayleigh fading channels, which validates the conclusion that after 9 iterations, the

errors caused by MAI are eliminated. Under Rician fading channels, different schemes show
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different performance in all SNR regions. The reason is that in Rician fading channels, even

with successful iterative decoding in high SNR, MAI still impacts the QER performance.

However, as shown in Section 5.5.2 using the EF bound, all the remaining errors caused by

MAI can be eliminated through XOR-based network coding. As expected, in the high SNR

region, the DLCP designed with β = −1 for BICM-ID achieves the best QER performance.
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Figure 5.11 QER for DLCP under Rayleigh and Rician fading channels.

Finally, the terminal-to-terminal BER curves under Rayleigh and Rician fading chan-

nels are plotted in Fig. 5.12. For these simulation results, both the MA and BC phases

are included and both phases adopt iterative decoding with 9 iterations. Five schemes are

evaluated and compared, including four schemes using decoding with quaternary code rep-

resentation and one with direct decoding of the XOR code. It can be observed that all

the terminal-to-terminal BER performance curves have the same trend as the BER perfor-

mance curves under network coding investigated in the MA phase alone. Specifically, all the

schemes employing decoding based on quaternary code representation achieve much better

performance than directly decoding the XOR version. Furthermore, with successful itera-

tive decoding and XOR-based network coding, the influence of MAI is eliminated since all

the schemes employing decoding based on quaternary code representation achieve the same
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performance in high SNR region.
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Figure 5.12 Terminal-to-terminal BER under Rayleigh and Rician fading channels.

5.7 Conclusions

The application of distributed linear constellation precoding (DLCP) in TWRC systems

in conjunction with BICM and BICM-ID has been studied in this paper. An (iterative)

decoding strategy based on quaternary code representation is developed for the multiple

access phase. The union bounds and the EF bounds on the QEP and BEP under XOR-based

network coding with BICM and BICM-ID are derived, respectively. Based on these bounds,

performance metrics to search for the optimal parameters of DLCP are obtained. For the

case of BICM, analysis and simulation results show that both the proposed decoding strategy

and the properly-designed DLCP help to significantly improve the system performance. On

the other hand, for the case of BICM-ID with enough iterations, analysis and simulation

results demonstrate that there is no benefit to apply DLCP and the proposed decoding

strategy combined with XOR network coding at the relay can successfully eliminate MAI in

the MA phase of a TWRC system.
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5.A Proof that γup,3 is symmetric around ϕ = π

Theorem 1 shows that for type-1 and type-2 errors, all values of ϕ result in the same

contribution to the upper bound of error probability. Therefore proving γup is symmetric

around ϕ = π is equivalent to proving γup,3 is symmetric around ϕ = π. Since β = exp (jϕ),

the task is to show γup (β) = γup (β
∗). From (5.20), it can be observed that γup is the average

of a set of PEP upper bounds ζup

(

Xg → X̂g

)

. Using the definition given in Section 5.2,

each error event Xg → X̂g corresponds to cq,g → ĉq,g where Xg and X̂g are 2× 2 complex

matrices and cq,g and ĉq,g are vectors with 2K quaternary digits. For convenience, in the

following, cq,g → ĉq,g is used to denote an error event. By mapping the quaternary digits

into binary vectors as:

0 →





0

0



 , 1 →





0

1



 , 2 →





1

0



 , 3 →





1

1



 , (5.31)

one can transfer cq,g and ĉq,g into 2K × 2 matrices Cg and Ĉg, respectively. Let Sg =

[s1,g s2,g]
T and Ŝg = [ŝ1,g ŝ2,g]

T and obtain

Sg (i, j) = M (C (i, (j − 1)K + 1 : jK)) (5.32)

Ŝg (i, j) = M
(

Ĉ (i, (j − 1)K + 1 : jK)
)

where M is a rule that maps K bits into a constellation symbol.

All error events cq,g → ĉq,g can be categorized into two types:

(A) cq,g and ĉq,g do not contain “1” or “2”;

(B) In cq,g and ĉq,g, at least one of them contains “1” or “2”.

For the type-A error events, the elements in the first row and second row of Cg and Ĉg

are identical: Cg (1, j) = Cg (2, j) and Ĉg (1, j) = Ĉg (2, j). Furthermore, since the same

mapping rule is used, one has

Sg (1, j) = Sg (2, j) , Ŝg (1, j) = Ŝg (2, j) . (5.33)
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By defining

yi =





Sg (i, 1)− Ŝg (i, 1)

Sg (i, 2)− Ŝg (i, 2) , i = 1, 2



 (5.34)

and using (5.33) one has

y1 = y2. (5.35)

Define the vectors in the LCP matrix as:

α1 =
1√
2

(

1 e−j π
4

)

, α2 =
1√
2

(

1 e−j 5π
4

)

. (5.36)

Then when parameter β is used in the design, the matrix Dg can be expressed as:

Dg (β) =





α1y1 α2y1

α1y2 βα2y2









yH
1 α

H
1 yH

2 αH
1

yH
1 α

H
2 β∗yH

2 αH
2



 . (5.37)

Using (5.35), Dg (β) becomes

Dg (β) =





|α1y1|2 + |α2y1|2 |α1y1|2 + β∗ |α2y1|2

|α1y1|2 + β |α2y1|2 |α1y1|2 + |α2y1|2



 . (5.38)

For the same error event, if β∗ is used in the design, the corresponding matrix is:

Dg (β
∗) =





|α1y1|2 + |α2y1|2 |α1y1|2 + β |α2y1|2

|α1y1|2 + β∗ |α2y1|2 |α1y1|2 + |α2y1|2



 . (5.39)

From (5.38) and (5.39) it can be seen that Dg (β
∗) = DT

g (β). Therefore Dg (β
∗) and

Dg (β) have the same singular values. Referring to the derivations given in Section 5.4, one

can conclude that if cq,g → ĉq,g is a type-A error, using β or β∗ achieves the same PEP

upperbound: ζup (cq,g → ĉq,g, β) = ζup (cq,g → ĉq,g, β
∗).

Now, for each type-B error cq,g → ĉq,g, one can find one error in the set which is

obtained by replacing “1” by “2” and “2” by “1” in both cq,g and ĉq,g. For example,

if cq,g =
(

1 1 3 2
)

and ĉq,g =
(

2 1 2 0
)

, then the corresponding paired error is

c̄q,g =
(

2 2 3 1
)

and ¯̂cq,g =
(

1 2 1 0
)

. Then it follows that Cg (1, j) = C̄g (2, j),
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Cg (2, j) = C̄g (1, j), Ĉg (1, j) =
¯̂
Cg (2, j) and Ĉg (2, j) =

¯̂
Cg (1, j). Using the definition in

(5.34), one has

y1 = ȳ2, y2 = ȳ1. (5.40)

Then for error event cq,g → ĉq,g, if β is used, the matrix Dg is

Dg (β) =





|α1y1|2 + |α2y1|2 α1y1y
H
2 α

H
1 + β∗α2y1y

H
2 αH

2

α1y2y
H
1 α

H
1 + βα2y2y

H
1 αH

2 |α1y2|2 + |α2y2|2



 . (5.41)

On the other hand, for the error event c̄q,g → ¯̂cq,g, using β∗, one has

D̄g (β
∗) =





|α1y2|2 + |α2y2|2 α1y2y
H
1 αH

1 + βα2y2y
H
1 αH

2

α1y1y
H
2 αH

1 + β∗α2y1y
H
2 α

H
2 |α1y1|2 + |α2y1|2



 . (5.42)

It can be observed that:

D̄g (β
∗) =





0 1

1 0



Dg (β)





0 1

1 0



 . (5.43)

ThereforeDg (β
∗) and D̄g (β

∗) have the same singular values and thus one has ζup (cq,g → ĉq,g, β) =

ζup
(

c̄q,g → ¯̂cq,g, β
∗). Performing similar derivations, it can also be shown that ζup

(

c̄q,g → ¯̂cq,g, β
)

=

ζup (cq,g → ĉq,g, β
∗).

Since γup is obtained by averaging over all error events, combining the derivations for

type-A and type-B errors, one can conclude that γup (β) = γup (β
∗).
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6. Summary and Suggestions for Further Study

6.1 Summary

This thesis focuses on developing and analyzing several novel transmission and detec-

tion/decoding schemes to improve the performance of two-way relaying communication

(TWRC) systems. Different from the conventional point-to-point communications, TWRC

has to handle to the problem caused by multiple access interference in the MA phase. This

is in addition to deal with familiar challenges such as fading and multipath dispersion faced

in wireless communications. In particular, the studies in this thesis make the following

contributions:

• In Chapter 3, a TWRC system with OFDM operating over multipath fading channels

was studied. Adaptive PNC was investigated to handle the MAI problem. First, the error

event in the MA phase was analyzed and approximations of the error probability under

different channel fade states were given. It is well known that the OFDM technique can

transform the (multipath) frequency-selective fading channel into a set of parallel flat fading

channels. Since different parallel channels have different responses, implementing adaptive

PNC may require a large overhead to convey the denoising maps in the BC phase. Based

on the derived error probabilities, three methods were proposed to find a common denoising

map for adaptive PNC with OFDM. Through simulation results and analysis, the method

which achieves the best trade-off among performance, overhead and complexity was selected.

• In Chapter 4, the design of distributed precoding in TWRC using OFDM was studied.

A general framework of a TWRC-OFDM system adopting distributed precoding was first

developed and the corresponding error probability was analyzed. To aid in the design of pre-
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coding, all error events were categorized into three types and it is pointed out that different

types of error events were caused by different factors (fading, MAI). Conventional schemes,

known as frequency-grouped linear constellation precoding (F-GLCP) and distributed space

time coding (DSTC), were examined using the definitions of three types of errors. It was

found that these two conventional schemes are not able to achieve the maximum diversity

gains under type-3 errors. Based on the analysis, frequency-time grouped linear constella-

tion precoding (FT-GLCP) was then proposed and demonstrated to achieve the maximum

diversity gains under all three types of errors. Simulation results obtained under different fad-

ing channels verified the theoretical analysis and demonstrated the impressive performance

advantage of the proposed FT-GLCP over other schemes.

• In Chapter 5, a TWRC system with BICM/BICM-ID using distributed linear constella-

tion precoding (DLCP) was studied. First, the (iterative) decoding based on the quaternary

code representation in the MA phase was developed. Different from the point-to-point com-

munications, quaternary-digit error probability (QEP) and bit error probability (BEP) under

network coding were used to evaluate the performance of BICM/BICM-ID in the MA phase

of TWRC. DLCP was adopted in the MA phase to handle the MAI problem. Through anal-

ysis, the design problem was simplified to find the optimal parameter of DLCP. Two cases

were analyzed: BICM without iterative decoding and BICM-ID with enough iterations and

can be assumed to have error-free feedback. For BICM without iterative decoding, union

bounds of QEP and BEP under network coding are used to search the optimal parameter.

For BICM-ID, optimal parameter was derived using error free bound (EF bound) of QEP.

By analyzing the EF bound of BEP under network coding, it was found that with successful

iterative decoding and XOR-based network coding, MAI is eliminated in the MA phase of a

TWRC system. Simulation results confirmed the optimality of the obtained parameter and

validated the theoretical analysis.

6.2 Suggestions for Further Study

While conducting our research, a few issues arose and are worthwhile to be investigated

further. They are elaborated next.
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• As noted in Chapter 3, the large number of subcarriers in an OFDM system leads

to a significant overhead when adaptive PNC is adopted in TWRC. In this thesis, one

denoising map is proposed for all subcarriers to reduce the overhead. However, using one

denoising map causes a large performance loss, especially for channels which have severe

frequency selectivity. It is known that, compared to the number of subcarriers, the number

of channel taps for a multipath channel is usually smaller and thus the channel responses on

neighbouring subcarriers usually have a strong correlation. Therefore, utilizing the frequency

correlation is a promising idea to reduce the overhead of adaptive PNC in a TWRC-OFDM

system.

• The maximum likelihood (ML) criterion is used by the relay node for detection in

the MA phase in this thesis. Although the ML detection achieves the best performance, it

also requires a high computation complexity, especially when linear constellation precoding

is adopted at the terminal nodes. Other non-linear detection schemes such as sphere decod-

ing [77,78] and linear detection schemes based on the minimum mean square error (MMSE)

criterion [79,79] can be used to lower the detection complexity. It is noted that since detec-

tion is conducted under the multiple access channel, the above mentioned low-complexity

detection schemes cannot be directly applied but requires proper modifications and analysis.

• Quaternary code representation is used to decode the codeword over the multiple

access channel in this thesis. In TWRC, another solution in coded system is to jointly design

FEC code at the terminal nodes so that the relay is able to detect its linear combination

[80,81]. It is an interesting study to apply those jointly designed codes in BICM-ID system.

Specifically, the iterative decoding process and design optimization for this joint code need

further investigation in TWRC systems.

• In our research, it is assumed that the terminal nodes do not know the channel response

between them and to the relay node. However, if the terminal nodes are fully aware of the

channel sates in the system, pre-processing can be conducted to eliminate the multiple

access interference. Under this circumstance, pre-processing designs under flat or frequency-

selective fading channels, with or without FEC, are worthwhile to be studied.

116



References

[1] R. Pabst, B. H. Walke, D.C. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee,

H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. D. Falconer, and

G. P. Fettweis, “Relay-based deployment concepts for wireless and mobile broadband

radio,” IEEE Commun. Mag., vol. 42, pp. 80–89, Sept. 2004.

[2] Y. Yang, H. Hu, J. Xu, and G. Mao, “Relay technologies for WiMax LTE-advanced

mobile system,” IEEE Commun. Mag., vol. 47, pp. 100–105, Oct. 2009.

[3] 3GPP TR 36.806, “Evolved Universal Terrestrial Radio Access (E-UTRA); Relay Ar-

chitecture for E-UTRA (LTE-Advanced),” http://www.3gpp.org.

[4] IEEE 802.16j, “Part 16: Air interface for fixed and mobile broadband wireless access

system: multihop relay specification,” http://www.ieee802.org/16/relay/.

[5] L. Hanzo, W. Webb, and T. Keller, Single and multi-carrier quadrature amplitude mod-

ulation - Principle and applications for personal communications, WLANs and broad-

casting, John Wiley & Sons, Ltd, 2000.

[6] B. Hirosaki, “An analysis of automatic equalizer for orthogonally multiplexed QAM

system,” IEEE Trans. Commun., vol. 28, pp. 73–83, Jan. 1980.

[7] ETSN EN 302 755, “Frame structure channel coding and modulation for a

second generation digital terrestrial television broadcasting system (DVB-T2),”

https://www.dvb.org/standards.

[8] IEEE 802.11n Standard, “802.11n,” http://grouper.ieee.org/groups/802/11/.

[9] 3GPP TS 36.211, “Techincal Specification Group Radio Access Network: Evolved

Universal Terrestrial Radio Access (E-UTRA), Release 8,” http://www.3gpp.org.

117



[10] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation precoding for OFDM with

maximum multipath diversity and coding gains,” IEEE Trans. Commun., vol. 51, pp.

416–427, Mar. 2003.
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