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Abstract 

With the ability to generate fine displacements with a resolution down to sub-nanometers, 

piezoelectric actuators (PEAs) have found wide applications in various nano-positioning systems. 

However, existence of various effects in PEAs, such as hysteresis and creep, as well as dynamics 

can seriously degrade the PEA performance or even lead to instability. This raises a great need to 

model and control PEAs for improved performance, which have drawn remarkable attention in 

the literature. Sliding mode control (SMC) shows its potential to the control of PEA, by which 

the hysteresis and other nonlinear effects can be regard as disturbance to the dynamic model and 

thus rejected or compensated by its switching control. To implement SMC in digital computers, 

this research is aimed at developing novel discrete models and discrete SMC (DSMC)-based 

control schemes for PEAs, along with their experimental validation.   

The first part of this thesis concerns with the modeling and control of one-degree of freedom 

(DOF) PEA, which can be treated as a single-input-single-output (SISO) system. Specifically, a 

novel discrete model based on the concept of auto-regressive moving average (ARMA) was 

developed for the PEA hysteresis; and to compensate for the PEA hysteresis and improve its 

dynamics, an output tracking integrated discrete proportional-integral-derivative-based SMC 

(PID-SMC) was developed. On this basis, by making use of the availability of PEA hysteresis 

models, two control schemes, named “the discrete inversion feedforward based PID-SMC” and 

“the discrete disturbance observer (DOB)-based PID-SMC”, were further developed. To 

illustrate the effectiveness of the developed models and control schemes, experiments were 

designed and conducted on a commercially available one-DOF PEA, as compared with the 

existing ones. 

The second part of the thesis presents the extension of the developed modeling and control 

methods to multi-DOF PEAs. Given the fact that details with regard to the PEA internal 
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configurations is not typically provided by the manufacturer, a state space model based on the 

black box system identification was developed for the three-DOF PEA. The developed model 

was then integrated in the output tracking based discrete PID-SMC, with its effectiveness 

verified through the experiments on a commercially available three-DOF PEA. The superiority 

of the proposed control method over the conventional PID controller was also experimentally 

investigated and demonstrated. Finally, by integrating with a DOB in the discrete PID-based 

SMC, a novel control scheme is resulted to compensate for the nonlinearities of the three-DOF 

PEA. To verify its effectiveness, the discrete DOB based PID-SMC was applied in the control 

experiments and compared with the existing SMC. 

 The significance of this research lies in the development of the discrete models and 

PID-based SMC for PEAs, which is of great help to improve their performance. The successful 

application of the proposed method in the control of multi-DOF PEA allows the application of 

SMC to the control of complicated multi-inputs-multi-outputs (MIMO) systems without details 

regarding the internal configuration. Also, integration of the inversion based feedforward control 

and the DOB in the SMC design has been proven effective for the tracking control of PEAs.  
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1 Introduction and Objectives 

1.1 Introduction 

   Piezoelectric actuators (PEAs) have been widely used in nano-positioning applications due to 

their high stiffness, fast response and the capability to produce extremely small displacement 

down to 0.1 nm as well as large force [1]. However, the positioning precision can be greatly 

degraded by their nonlinear behavior such as hysteresis [2]. To successfully exploiting the full 

potential of PEAs in nano-positioning applications, modeling and control for PEAs have drawn 

considerable attention [3]-[83]. The models developed to describe the PEA hysteresis can be 

generally divided into two categories: the physical based models and the phenomenon based 

models. The physical based models are derived from the laws with clear physical meaning [25]. 

But due to their complicated forms, they are limited as applied to the control of PEAs. The 

phenomenon based models, such as Prandtl-Ishlinskiĭ (PI) model [34], Preisach model [26]-[32] 

and Duhem model [11], utilize mathematical methods to describe the hysteresis based on the 

experimental data, regardless of their physical meaning. These models have relatively simple 

forms compared to the physical models and have been applied in the control of PEA.   

   The hysteresis effect greatly deteriorates the performance of PEAs, for example, the tracking 

error can reach to 15%-20% of the stroke in the open-loop operation [2]. As a result, closed loop 

controllers are used in nano-positioning applications to improve their tracking performance. 

Among them, Proportional-integral-derivative (PID) controllers are simple and commonly 
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employed in PEA-driven nano-positioning systems to compensate for their nonlinear effects, 

including hysteresis and creep [2], [23]. The challenge to apply the PID controller is the 

improvement of performance while maintaining the system stability with the presence of 

parameter uncertainty and disturbance, and its low gain margin problem in high frequency 

operation. To improve the robustness of the control system, advanced feedback controllers such 

as the H  and 2H  controller have been developed in nano-positioning control systems [4], 

[47], [72]. As an alternative method to compensate for the hysteresis, feedforward control, which 

is model based, does not share the stability problem of the feedback approach. Therefore, 

significant improvement can be made at high frequencies. However, this approach cannot 

account for the external disturbance and modeling uncertainties [2], [7], [10], [12], [34]. 

   Sliding mode control (SMC) becomes the subject of research due to its great promising 

performance, even with the presence of system nonlinearity and uncertainty [84]-[93]. However, 

chattering, caused by the discontinuous switching control in SMC, may excite the high frequency 

resonant vibration, thereby degrading control performance and potentially even damaging the 

actuators being controlled. To resolve the chattering problem, boundary layer control has been 

employed by researchers [94], in which a saturation function is used to replace the discontinuous 

‘bang-bang’ switching control. If the unknown disturbance is significant, a sufficiently high gain 

control is needed. To alleviate this problem, one alternative way is to use a high order sliding 

surface instead of the first order one in the nominal SMC. With the merits of the SMC, the high 

order sliding mode control (HOSMC) can reduce the chattering effect [95], [96], which, however, 

is limited by the increased sliding information for its implementing. A new continuous PID-based 
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SMC (PID-SMC) for PEAs is recently developed, in which the discontinuous ‘bang-bang’ 

switching function is replaced by a PID regulator to eliminate chattering. Experimental results 

demonstrate that the PID-based SMC can effectively compensate for the hysteresis existing in a 

PEA, thus leading to an improved PEA performance [98].  

   Although the advances have made in the past decades with regard to the modeling and 

control of PEA, there are still a number of issues that need to be addressed by research. The 

present study is aimed to address some of them, particularly in the discrete domain. These issues 

are briefly outlined as follows, with details discussed in the literature review.   

   SMC stands out for its merits in the uncertainty and disturbance rejection, as well as the 

improved control efficiency over the feedforward controller. The issue here is whether it is 

effective to use SMC in conjunction with the feedforward control or the disturbance observer 

(DOB) to reduce the effects caused by the disturbance and uncertainties.   

   Second, it is noted that the existing PID-based SMC is essentially a state tracking control 

scheme. In some applications, the system states might not be readily or even impossibly obtained 

due to system complexity. In such case, the application of the existing PID-based SMC is 

challenged due to the lack of system states information.  

   Third, when implemented in a digital computer, the existing continuous SMC (CSMC) may 

not work as expected due to quantization error made by data sampling. For discrete SMC 

(DSMC), if the switching time doesn’t match the sampling time, the state will not stay on the 

sliding surface and the trajectory appears like a zigzag motion around the sliding surface, which 

suggests that the sampling itself also induces the chattering problem in the DSMC. Moreover, if 
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the mean of zigzag motion deviates from the sliding surface, steady state error will exist. 

Therefore, the appropriate forms of DSMC are desirable to alleviate the aforementioned 

problems, especially for the applications where the sampling rate is limited. 

   Fourth, the existing PID-based SMC for the single-input-single-output (SISO) system is 

developed based on the one-DOF dynamic performance. Its application can be extended to the 

control of multi-inputs-multi-outputs (MIMO) system with one PID-based SMC designed for 

each pair of input and output independently. However, adjusting controller parameters of one 

loop affects the performance of another, sometimes even to the extent of destabilizing the entire 

system. The cross-coupling effects caused by the multivariable interactions accounts for essential 

difference in design methodologies between single variable and multi-variable control systems. 

Inspired by this, it is desired to extend the application of PID-based SMC to the control of 

MIMO systems. 

1.2 Literature Review 

   A manuscript on the literature review was appended with this thesis in Chapter 2, which was 

recently submitted to ASME Journal of Dynamic System, Measurement and Control for possible 

publication. This manuscript presents a review on the recent achievements in modeling and 

control techniques for PEAs. Particularly, the existing methods for modeling hysteresis, creep, 

and vibration dynamics in PEAs are examined. Issues associated with the modeling errors are 

discussed along with the justification of the need of present research. Discussions are also given 

to various control schemes developed for PEAs. The literature review is essential for the author 
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to understand the current challenges in the control of PEAs, and establish the objectives of the 

present research as given in the following section. 

1.3 Objectives 

   This research is aimed at developing a discrete feedforward or DOB-based SMC to improve 

the PEA performance and implementing it digitally. To fulfill this requirement, the following 

objectives are set. 

① Model the PEAs to describe their behavior.  

   Hysteresis is an important nonlinear effect exhibited by PEAs. To develop the control 

scheme for the PEA, a phenomenon based hysteresis model will be developed and then 

combined with the models for their dynamics, forming an integrated model for the one-DOF 

PEA behavior. For the multi-DOF PEA with available information regarding its internal 

configuration, the one-DOF model can be extended to the multi-DOF PEA application by 

means of physical laws. If such details are not available, a state space model based on the black 

box system identification will be employed to describe the dynamic performance, with its 

parameters estimated from the Hankel matirx. 

② Develop output tracking integrated discrete PID-SMC for PEAs.  

   To compensate for the hysteresis and improve the performance of PEA, an output tracking 

integrated discrete PID-SMC along with the controller design approach will be developed for the 

one-DOF PEA. Without the need of system states, this method allows for eliminating chattering 

problem and the steady state error that may exists in such control methods as the continuous 
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PID-based SMC. Then the aforementioned method will be extended to the control of a 

three-DOF piezoelectric-driven stage. Cross-coupling effects among the inputs and outputs are to 

be considered in the design of the equivalent control. Using the model reference approach, the 

output tracking problem is transferred to a sub-state tracking problem on which the general SMC 

design approach can apply. The stability and zero steady state error of the proposed method will 

be theoretically proven. To demonstrate the effectiveness of the developed methods, experiments 

will be carried out on the commercially available piezoelectric actuators with varying sampling 

rates, as compared to other methods. 

③ Develop a discrete feedforward or DOB based SMC by integrating the feedforward 

control or DOB in the DSMC developed previously.  

   The feedforward controller will be strategically combined with the DSMC developed 

previously to control the PEA. By employing the feedforward control, the low gain margin 

problem of the feedback approach can be alleviated. The feedforward control error caused by 

the model uncertainty will be considered as the disturbance to the dynamics of the PEA and 

rejected by means of the switching control in DSMC. Another approach to improve the 

performance of the discrete PID-based SMC is to integrate the DOB with the DSMC, in which 

the disturbance is partially predicted and compensated by the equivalent control, thus reducing 

the disturbance rejected by the switching control. 

1.4 Organization of the Dissertation 

   Figure 1.1 shows the diagram of the general idea and major steps of the present research. 
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Based on the desired steps, this dissertation is comprised of eight chapters. Each of the first 

seven chapters mainly consists of a manuscripts appended with this thesis; and the last chapter 

presents the conclusions drawn from this research, followed by suggestions and 

recommendations for possible future work. 

 

 

Figure 1. 1  Diagram of the general idea and major steps of the present research 
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   Specifically, a discrete ARMA based hysteresis model was developed for a one-DOF PEA, 

as detailed in Chapter 3, where the performance was considered as a cascade of the hysteresis 

nonlinearity and the dynamics. Both the trapezoid estimation and the quadratic estimation were 

employed in the discretization of the hysteresis model. They are finally compared in the model 

verification experiments and the superiority of the proposed discrete model over the existing 

model is demonstrated. 

   Based on the dynamic model, Chapter 4 concerned with the development of an output 

tracking based DSMC for the control of one-DOF PEA, in which the hysteresis and other 

nonlinearities were regarded as the disturbance rejected by the switching control of the DSMC. 

In order to eliminate chattering, a PID regulator was applied instead of the ‘bang-bang’ 

switching control. The effectiveness of the proposed method was verified through the 

experiments carried on the commercially available one-DOF PEA by comparing the tracking 

error with the continuous PID-based SMC. Control effects under varying sampling rates are 

investigated and compared as well. 

   It is noted that if the hysteresis can be modeled or partially modeled, integration of 

hysteresis models into control schemes may improve the performance of the controller. Inspired 

by this, DSMC was combined with the inversion feedforward control and the DOB respectively 

to control the PEA in Chapter 5. Improvement over the nominal DSMC was illustrated through 

verification experiments and comparison between these modified DSMCs was made as well. 

   Then, research work based on the one-DOF PEA was extended to the three-DOF PEA. As the 

detail information with regard to the internal mechanical configuration of the three-DOF PEA 



 

9 
 

was not provided by the manufacture, the straightforward modeling method by means of physical 

laws is not applicable. Instead, the three-DOF PEA is regarded as a black box system, with its 

state space model obtained by system identification. Online estimation was integrated, further 

improving the parameter estimation. The effectiveness of the developed model and the 

corresponding identification method and its superiority over the conventional identification were 

verified experimentally, as shown in Chapter 6.  

   In Chapter 7, the output tracking integrated discrete PID-SMC developed in Chapter 4 was 

extended to the control of the three-DOF PEA. Static decoupling was employed in the equivalent 

control design. The remaining dynamic decoupling was considered as disturbance to be rejected 

by the discrete PID-based SMC. Due to the ingenious design of the sliding surface, coupling 

effect between variables can be diminished to an acceptable extent. To verify the effectiveness of 

the output tracking integrated discrete PID-SMC, experiments were carried out on the three-DOF 

PEA, with its model being identified in Chapter 6. The control results were compared to the 

conventional PID controller.  

   The disturbance can also be pre-rejected by the use of DOB, leading to the development of 

the discrete DOB-based SMC for the three-DOF piezoelectric driven stage, which is the major 

work presented in Chapter 8. By integration with DOB, the plant can be decoupled as three 

independent SISO systems and controlled by the corresponding discrete PID-based SMC. Since 

the coupling effect was compensated by the use of DOB, the disturbance to be rejected by the 

discrete PID-based SMC was reduced. Therefore, the tracking error was expected less in 

comparison to the nominal SMC which had been verified in the experiments. 
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   The verification experiments for the models and control schemes developed in the present 

research were carried on commercially-available PEAs (P-753 and P-558.TCD, Physik 

Instrumente). 

1.5 Contribution of the Primary Investigator 

   All papers are co-authored; however it is mutual understanding of the authors that Yu Cao, as 

the first author, is the primary investigator of the research work. The contributions of other 

authors are limited to an advisory and editorial capacity and they are acknowledged. 
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2 A Survey of Modeling and Control Issues for Piezoelectrc 

Actuators 

   Authors: Y. Cao, X. B. Chen1 

   Index Terms: Piezoelectric Actuators, SISO, MIMO, Hysteresis, Model, Sliding Mode 

Control, Discrete Control 

2.1 Abstract 

   Piezoelectric actuators (PEAs) have been widely used in nano-positioning applications due to 

their high stiffness, fast responses, and large actuating forces. However, the existence of its 

nonlinearities such as hysteresis greatly deteriorates their performance and as such model and 

control of PEAs have drawn remarkable attention in the literature. This paper reviews the recent 

achievements in modeling and control of PEAs. Specifically, the various existing methods for 

modeling hysteresis, creep, and vibration dynamics in PEAs are examined, followed by the 

discussions on the issues leading to the modeling errors. In the control of PEAs, the various 
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control schemes are introduced along with their corresponding advantages and disadvantages. 

The challenges associated with the control problem are also discussed. 

2.2 Introduction 

   An increasing demand for high accuracy in production manufacturing and other devices has 

led to the rapid development of precision engineering. From its origin in mechanical engineering, 

it evolved into micro-mechanics and then nanotechnology [1]. Nanotechnology is the study of 

controlling matter on an atomic and molecular scale. Generally, nanotechnology deals with 

structures that are sized between 1 and 100 nanometers and it involves developing materials or 

devices within that size. The past two decades have witnessed a huge growth of nanotechnology. 

Invention of the scanning tunnelling microscope (STM) and the atomic force microscope (AFM) 

have fundamentally changed research in many areas, such as chemistry, biology, medical science, 

physics and mechatronic manufacturing [2]. Nanopositioning is the core of these 

nanotechnologies. In the Canadian Light Source (CLS), for example, the monochrometer must 

be controlled precisely on a nanometer scale in the diffraction enhanced imaging process [3]. 

Therefore, high precision manipulation plays an important role in the imaging-based research at 

the CLS. 

   PEAs have been widely used in nanopositioning applications, such as the aforementioned, 

due to their fast response, high stiffness and ability to generate large forces [4]. PEAs utilise the 

piezoelectric effect of piezoelectric ceramic materials. One commonly-used material for PEAs is 

lead zirconate titanate (PZT) [5]. The dipoles in PZT are randomly distributed in various 
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directions and, as such, the total force generated by each dipole balances out. If PZT is exposed 

to a DC electric field, the directions of the dipoles are aligned regularly, referred to as the 

polarization process. As a result, most of the dipoles align in the same direction as the electric 

field and a net force is generated. This causes a change in the length of the crystal elements in the 

piezoelectric crystal material. The typical change in length is less than 100 nm. Based on the 

polarization process, PEAs are used to move the stage in STM with a high resolution [6]-[9]. 

Unlike other actuators such as electric motors, PEAs can be configured so that there is no friction 

between moving parts.   

   The performance of PEAs can be, however, degraded by hysteresis, creep and vibration [10]. 

Hysteresis is a memory effect of various systems, occurring in such phenomena as plasticity 

friction and ferromagnetic superconductivity. The hysteresis exhibited at a given time instant 

depends not only on the input at the present time, but also on the operational history of the 

system [11]. If displacement of the PEA is plotted versus the input voltage, the hysteresis loop 

appears to have a shape similar to phase lag, which is not nonlinearity and exists in many linear 

systems. One of the most important characteristics that makes hysteresis different from phase lag 

is the memory effect [12]. 

   Creep is another undesirable property of PEAs which results in loss of positioning precision 

when the PEAs are used for a long period of time. In particular, during slow operation or 

scanning in a monochrometer, creep can cause significant distortion in the image generated [3]. 

   Vibration occurs when the input frequency is close to the resonant frequency of the PEA, 

which is typically quite high. Therefore, tracking precision is seriously deteriorated by vibration 
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in high frequency manipulation. In applications such as SPM, the scanning speed is typically 

chosen to be 10-100 times lower than the first resonant frequency of the PEA in order to reduce 

the vibration effect [2]. 

   In the aforementioned properties, hysteresis is considered to be the most important nonlinear 

effect of PEAs. It can cause a tracking error of 15% in the total displacement range [2]. 

Therefore, the modeling and control of hysteresis has drawn considerable attention and a number 

of control schemes were developed for reducing the hysteresis effect. The aim of this review 

paper is to help the readers obtain a better understanding of the modeling and control issues for 

PEAs. To this end, it will be organized as follows. In section 2, categories and mechanical 

configuration of PEAs will be introduced. Creep, hysteresis and vibration, which present 

challenges to the control of PEAs, will be discussed in section 3, followed by control approaches 

in section 4 and emerging control issues in section 5. Finally, modeling and control issues will be 

summarized in section 6. 

2.3 Piezoelectric Actuators 

2.3.1 One-DOF Piezoelectric Actuators 

   A PEA is an electromechanical device that undergoes a dimensional change when a voltage is 

applied to both sides of the PEA. Due to the polarization process, the generated displacement is 

approximately proportional to the applied voltage and, therefore, can be adjusted with an 

extremely high resolution. One of the disadvantages of PEAs is the limited amount of 
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dimensional change. In order to extend the motion range, PEAs are commonly constructed by 

stacking piezoelectric slices. Figure 2.1 shows the typical configuration of a one-degree of 

freedom (DOF) PEA which is widely used in nano-positioning. The PEA is connected to a driven 

stage which moves by means of the deformation of the flexible hinges. As a result, friction and 

clearances in the macro-mechanical systems are avoided. 

 

 

Figure 2. 1  Typical structure of PEAs 

2.3.2 Multi-DOF Piezoelectric Actuators 

   Multi-DOF piezoelectric positioning systems are configured by means of several PEAs, 

which are connected through flexible joints. There are several studies on the design of three 

dimensional (3D) piezoelectric positioning systems. A three-DOF flexure-based parallel 

mechanism for nano-positioning was designed and fabricated in [13]. In that research, three 

PEAs were distributed symmetrically around a moving platform which was connected to the 

PEAs by flexure hinges. The translational and rotational displacement of the flexure based 
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mechanism reached 3 nm and 0.4 μrad, respectively. With the help of PID control, the dynamic 

overshoot of the positioning system was greatly reduced. A flexure-based XY stage for fast 

nano-positioning was described in [14]. Two PEAs were employed to actuate the 

nano-positioning stage. With special design of the flexure hinge, cross coupling of the XY axles 

was reduced to -35 dB. Similar designs can also be found in [15] and [16]. 

   As an efficient approach to removing singularities over the workspace in parallel systems 

[17], redundancy actuation is being used more often in multi-DOF PEAs [18] - [21].With 

advantages of improving Cartesian stiffness, achieving uniform output forces and optimizing 

internal and external forces, it provides the positioning system with the ability of fault tolerance 

[22] so as to increase the availability and reliability of multi-DOF PEAs. However, the control of 

actuation redundant multi-DOF PEA is much more complicated than that of non-actuation 

redundant systems because the control of each actuator must be coordinated with the others to 

avoid the deformation or internal stress of the multi-DOF PEAs. 

2.4 Model and Control Issues of Piezoelectric Actuators 

   As stated previously, the performance of PEAs can be greatly degraded by creep, hysteresis 

and vibration. An increased interest in using model-based control design techniques to improve 

the precision of the PEAs has been reported in the literature. The challenges of modeling and 

control of PEAs are discussed in this section. 
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2.4.1 Creep 

   Creep is an undesirable property of PEAs. It occurs when the input voltage is kept constant 

and the output displacement increases or decreases with time. As such, creep can result in 

significant tracking error if the PEAs are used for an extended period of time.  

Piezoelectric creep is related to the effect of the applied voltage on the remnant polarization of 

the piezoceramic actuator [2]. When the operating voltage of a PEA is kept constant, remnant 

polarization continues which results in a slow displacement increase of the PEA. A negative 

change in the applied voltage would have the opposite effect. 

   Creep can be physically modelled as an infinite cascade of mass-spring-damper systems [6] 

or as a phenomenon-based model. For example, an exponential equation was used to represent 

the creep nonlinearity in [23] and [24]. Feedback control for hysteresis reduction can be 

employed to compensate for the creep effect and, as such, control for creep only is seldom 

reported in the literature.  

2.4.2 Hysteresis 

   Hysteresis is a memory effect of PEAs. The hysteresis exhibited at a given time instant 

depends not only on the input at the present time, but also on the operational history of the 

system. One of the most important characteristics of hysteresis that differs from phase lag is the 

memory effect, as shown in Figure 2.2. As the input signal varies from point 1 to point 7 in 

Figure 2.2(a), one major and two minor loops are generated in the displacement/voltage 
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hysteretic domain as the result of these alternations. Then from point 7 to point 8, the input 

voltage increases and passes the point with the same magnitude as the extreme point 6, where the 

effect of turning points 6 and 7 and the properties of the inner loop are no longer useful for the 

remaining hysteresis and are wiped out. Instead, the hysteresis trajectory follows the path of the 

previously rising curve between points 5 and 6 towards the turning point 4. 

 

 

Figure 2. 2  Hysteresis and the memory effect [12] 
(a) the input voltage to the PEA and (b) the output displacement versus the input voltage 
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   The second wiping out happens when the input voltage exceeds the extreme point 4 and the 

internal loop associated with points 4 and 5 is no longer useful. Similarly, the trajectory 

continues along the path of the rising curve between points 3 and 4. The direction of input 

voltage change is reversed at point 8 and the trajectory goes down towards the turning point 3. 

The input voltage decreases from point 8 to 9, and then increases to a value equal to that of 

extreme point 8. At this point, the third wiping-out effect occurs with the trajectory following the 

path of the curve 3-8 up to point 10, where the direction of input voltage is changed one more 

time. The trajectory initiates from turning point 10, approaches and hits point 3 and continues 

along the path of curve 2-3 until the input voltage reaches its zero ending value. 

   In order to understand the performance of PEAs, several models have been developed to 

describe hysteresis, which can be divided into two categories: the physical-based model and the 

phenomenon-based model. The physical-based models are derived from the physical means of 

hysteresis and can be strictly verified [25]. One of the advantages of the physical-based models is 

their clear physical meaning. However, due to their complicated form, physical-based models are 

not commonly used in the control of PEAs. Phenomenon-based models for describing hysteresis, 

such as the Preisach, Prandtl-Ishlinskiĭ (PI) and Duhem models [11] utilize mathematical 

methods directly based on experimental data, regardless of the physical meaning. They are 

suitable for predicting the hysteresis performance of several materials and are widely used in 

research. However, the lack of physical meaning makes them difficult to understand. The 

following sections introduce hysteresis models typically used in the control of PEAs. 
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2.4.2.1 Preisach model 

   The Preisach model is a commonly used hysteresis model [26]-[32]. It employs a simple 

integral formula to describe the hysteresis effect, 

  ,
ˆ( , ) [ ( )]H t u t d d                              (2.1) 

where ( , )    is the weighting function of the hysteresis operator with two parameters α and β,   

,
ˆ [ ( )]u t   is the hysteresis operator and u(t) is the input voltage. The hysteresis can be regarded 

as the integral of the hysteresis operator in the α-β plane, as shown in Figure. 2.3. 

 

 

Figure 2. 3  Hysteresis mappling [33] 

   When the input voltage increases monotonically from 0( )u t  to ( )au t , the interference line 

L(t) moves horizontally from min   to ( )au t  . In the integral region below the 

interference line, ,
ˆ [ ( )] 1u t   ; and above this line, ,

ˆ [ ( )] 0u t   . Therefore, the output 

displacement H(t) can be written as 

  ( , )
p

H t d d    


  .                        (2.2) 

   As the input voltage decreases monotonically from ( )au t  to ( )bu t , the interference line L(t) 

moves vertically from ( )au t   to ( )bu t  . To the left of the interference line, ,ˆ [ ( )] 1u t   ; 
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and to the right, ,ˆ [ ( )] 0u t   . In general, the output of the hysteresis equals the integral of the 

hysteresis weighting function in the P+ region. and this leads to the memory effect  of 

hysteresis. The Preisach model can describe a wide range of hysteresis accurately, but the lack of 

physical meaning makes it difficult to understand. Also, compared to the differential model 

(mentioned in Section (d)), digital implementation requires more calculations. 

2.4.2.2 Prandtl-Ishlinskiĭ model (PI model) 

   The Prandtl-Ishlinskiĭ model was introduced in [34] to describe the hysteresis performance of 

smart materials. In contrast to the Preisach model, the PI model uses the PI operator (Backlash) 

as the basic element of the hysteresis, as shown in Figures 2.4 and 2.5. 

 

 

Figure 2. 4  PI operator [34] 

   The PI model can be regarded as the superposition of different PI hysteresis operators with 

corresponding weights as  
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  0[ ] [ , ]( )T
rH x t w H x z t                         (2.3) 

where Tw  is the vector of weight,  rH  is the PI hysteresis operator, r is the vector of 

thresholds. It has been mathematically verified that the PI model is a subset of the Preisach 

model [11]. Compared to the Preisach model, less research has applied the PI model for 

improving the performance of PEAs. 

 

 

Figure 2. 5  Initial loading curve [34] 

2.4.2.3 Duhem model  

   The generalized Duhem model is also a candidate for hysteresis. It can be described by 

[35]-[37] 

  0[ ( ), ( )] [ ( )], (0) , 0

( ) [ ( ), ( )]

x t f x t u t g u t x x t

y t h x t u t

  



 
                  (2.4) 

where x is the state, 0x  is the initial state, u and y are respectively the input and output of the 

hysteresis, f, g and h are continuous functions. The state space Equation (2.4) is a closed curve if 



 

23 
 

there exists a continuous piecewise, periodic map 2:[0, ) R    such that 

([0, )) Hysteresis   , and γ belongs to a first order derivative continuous function space. If the 

following parameters are given: 
[ ( )] [ ( )]

[ ( ), ( )] [ ( ) , ( ) ]
( ) ( )

d u t d u t
f x t u t x t x t

du t du t

      ; 

[ ( )] [ ( ), ( )]Tg u t u t u t    ; 0( ) ( ) ( ) [ ( )]y t x t u t h u t   ; where ( ) max{0, }u t u   and 

( ) min{0, }u t u  , then the Duhem model can be changed into the Bouc-Wen model [35]. 

2.4.2.4 Bouc-Wen model  

   The Bouc-Wen model has received an increased interest in recent years. Due to its capability 

to form a range of shapes of hysteretic cycles which match the behavior of a wide class of 

hysteretic systems, it has been applied in varies applications such as modeling the piezoelectric 

elements, control of magnetorheological dampers, developing wood joints and base isolation 

devices for buildings [38]-[42].  

   The normalized Bouc-Wen moel can be expressed as [39] 

1

( )( ) ( ) ( )

( ) [ ( ) | ( ) || ( ) | ( ) ( 1) ( ) | ( ) | ]

x w

n n

x t k x t k w t

x t x t x t w t w t x t w t  

  

      
           (2.5) 

where w is the input, ( )( )x t  is the output of the hysteresis, 

{ | , 1}, 0, 0.5,n Z          0 and 0x wk k   are the parameters. 

   Bouc-Wen model presents a good matching with specific experimental input data. However, 

its matching performance might be greatly deteriorated in the model prediction applications 

where the system input is independently provided [38]. Moreover, the Bouc–Wen class models 

are not in agreement with the requirements of classical plasticity theory, such as Drucker’s 
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postulate, and may produce negative energy dissipation when the unloading–reloading process 

occurs without load reversal [40]. 

2.4.2.5 Differential model  

   Another frequently used hysteresis model is a differential equation induced from the 

ferromagnetic material model [35], [43], 

[ ( ) ] ( )y x f x y xg x                             (2.6) 

where x is the input of the hysteresis, y is the output, and  f(x)  and  g(x)  are real valued 

functions of x which determine the shape of the hysteresis loop [44]. 

   Commonly, f(x) and g(x) are chosen such that f(x) = ax/α, g(x) = b, c = -1/α and then Equation 

(2.6) can be rewritten as 

( )y x ax cy bx                                (2.7) 

   The differential equation of the ferromagnetic material hysteresis model is readily 

implemented in computer simulation due to its simple mathematical form. The challenge for 

applying the ferromagnetic hysteresis model to PEA applications is choosing suitable shape 

functions f(x) and g(x). 

2.4.2.6 Other models 

   According to the wiping-out property of hysteresis, Bashash and Jalili [12] introduced an 

intelligence rule for representing piecewise hysteresis. They used an exponential expression to 

describe the hysteresis curve between two extreme points in the voltage-displacement plane, 
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1( )
1 1 2 2 1 1( ) ( , , , , ) (1 )( )v vx v F v v x v x k e v v x                   (2.8) 

where 1( ) 12 1

2 1

(1 )v vx x
k e

v v
   

 


, and 1 1( , )v x  2 2and ( , )v x are the two arbitrary extreme points. 

The predicted ascending hysteresis path can be represented as 

11 1 1 1 1 1
1

( ) ( , , , , ) ( , , ) ( ) ( , , )
i i i

n

A L L U U L U A U U
i

x v F v v x v x H v v v F v H v v v




        (2.9) 

where H is the Heaviside function. The same equation predicts the descending hysteresis path. 

When the intelligence rule is applied to feedforward control, determining the inverse of the 

intelligence hysteresis model is not difficult. Bashash and Jalili reduced the nonlinearity of 

hysteresis from 14 to 1%. However, all of the extreme points must be considered in predicting 

the hysteresis path. Therefore, its implementation is difficult. 

2.4.3 Dynamics 

   The above mentioned models are rate-independent hysteresis models whose loops do not 

vary with the frequency of the input voltage. In reality, the displacement/voltage loops of PEAs 

are rate-dependent. If the PEA is used at the resonant frequency, vibration occurs, which might 

destroy the mechanical configuration of the PEA. For this reason, PEAs are always used at an 

input frequency that is 10-100 times lower than their first resonant frequency. 

   A common method used to describe the performance of PEAs is regarding the PEA as the 

series connection between the rate-independent hysteresis and the dynamics [6], [43], [45], as 

shown in Figure 2.6. For example, the voltage v is the input to the ferromagnetic material 

hysteresis sub-model H and its output u is the effective mechanical force applied to the 
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subsequent dynamic model that predicts the displacement y. Cascading with the dynamics of the 

PEA, the rate-independent hysteresis model can be the Preisach model, ferromagnetic material 

model or one of the other models mentioned above. A transfer function can be used to represent 

linear dynamics. In [46], it was mathematically verified that when the mass ratio between the 

stage and the PEA increases, the dynamics of a PEA can be approximated as a second order 

system. Several studies have identified the dynamic model parameters [4], [7], [47]-[51]. In the 

majority of those studies, the use of Bode Plots is the preferred identification method. 

 

 

Figure 2. 6  Series of rate-independent hysteresis and linear dynamics 

   The rate-independent hysteresis model can also be combined with the nonlinear 

auto-regressive moving average model with exogenous inputs (NARMAX) to describe the 

rate-dependent performance of PEAs. For example, in [52], an empirical operator was employed 

to connect with the NARMAX model, and a model fit error of less than 0.1% was finally 

obtained.  

   A rate-dependent weighting function was developed in [53] to take place of the 

rate-independent weighting function in the Preisach model as 
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  ,
ˆ[ , , ( )] [ ( )]H t u t u t d d         .                  (2.10) 

Through the aid of learning algorithms in neural networks, the hysteresis output was shown to 

vary with the frequency of the input voltage. 

   Other rate-dependent models that considered the effects of dynamics included the neural 

network model [54]-[56] and the wavelet model [57]-[59]. However, the wavelet models were 

seldom employed in studies for control. 

2.4.4 Model Uncertainty 

   To successfully exploit the full potential of PEAs in control schemes, it is necessary to 

develop accurate hysteresis models for PEAs. The challenge is to minimize the effect of model 

uncertainty caused by parameter change, unmodeled dynamics, the coupling effect in multi-DOF 

PEAs and discrete model error. 

2.4.4.1 Parameter Change 

   A major difficulty in modeling a PEA is that parameters are not known accurately. Even 

when the parameters are identified with low estimation error, they can change over long time 

intervals due to aging effects. Moreover, piezoelectric parameters are very sensitive to 

environmental conditions such as temperature change [60]. Therefore, making robust, adaptive 

and learning techniques are important aspects of controller design for PEA-based systems. 
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2.4.4.2 Unmodeled Dynamics 

   In order to obtain a simplified model for controller design, high frequency vibration modes 

are often neglected. This conveys model uncertainties to the control system which greatly limits 

the achievable performance of the closed-loop system. In addition, high frequency vibration 

modes can affect the stability of the closed-loop system. Therefore, the effects of these 

unmodeled modes should be considered in controller design [2]. 

2.4.4.3 Model for the Multi-DOF PEAs 

   Due to the ingenious design of flexible hinges, friction and backlash clearance issues can be 

avoided, which leads to further improvement in the performance of multi-DOF PEAs. However, 

the cross-coupling effect of the parallel mechanism together with nonlinear effects in each PEA, 

such as creep and hysteresis, can greatly degrade the positioning accuracy of the stages [61] - 

[63]. To develop control schemes in nano-positioning, modeling of piezoelectric stages has been 

reported in the literature with increasing frequency.  

   In [15], a three-by-three transfer function matrix and a physical model were built for a 

three-DOF precision micro-stage. Empirical transfer function estimation was employed to 

identify the dynamic effect. Comparison with experimental data showed that both of these 

models were able to predict the performance of the micro-stage with acceptable accuracy.  

   An Auto-Regressive Exogenous (ARX) model was developed in [64] to describe the dynamic 

performance of a biaxial piezo-stage. The model was integrated in a feedforward compensator 

for precision tracking control and experimental results proved its effectiveness. However, 
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cross-coupling between the two axes was not considered in the ARX model potentially causing a 

negative effect to the performance of the controller.  

In [65], a fourth order linear transfer function was identified for a piezoelectric stage. Since the 

cross-coupling effect was neglected here as well, a chirp signal was applied to each of the axes 

independently. From the measured outputs, the parameters in each transfer function were 

estimated using the subspace system identification method integrated in the MATLAB command 

n4sid.  

   In [66], the dynamic equations of a plane-type three-DOF precision positioning table were 

combined with Bouc-Wen model for each PEA. The resultant model was applied to a contour 

tracking controller design. The parameters of the model were optimized based on the real-coded 

genetic algorithm (RGA) method. From numerical simulations and experimental results, it was 

shown that the three-DOF cross-coupling was reduced by the proposed control method. Good 

contour tracking performance was obtained due to successful identification of the dynamic 

models. 

   If the controller is designed for each input/output pair of the multi-DOF PEA, the 

cross-coupling effect between axles can be regarded as unmodeled dynamics. In particular, this 

effect becomes significant if the PEAs are used with high frequency inputs. Therefore, it is 

necessary to consider the cross-coupling between axles in the controller design for multi-DOF 

PEAs. 
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2.4.4.4  Discrete Models 

   The models mentioned above are considered to be continuous hysteresis models because the 

controllers are designed in the continuous time domain. With the advance of computer 

technology, controllers have been mostly implemented either digitally or in a discrete domain. It 

is well-known that not all continuous controllers work on digital systems as desired, since errors 

due to quantization can degrade the control performance and make the system unstable [67]. 

Reducing the sampling time period could improve the system performance, but this is at a cost 

of requiring more expensive hardware and faster data processing for implementation. Therefore, 

it is desirable to develop discrete models for PEAs hysteresis in order to facilitate digital 

controller design. Vörös discretized the ferromagnetic hysteresis model as [68] 

( 1) ( ) { [ ( )] ( )} ( 1) ( ) [ ( )][ ( 1) ( )]y k y k f x k y k x k x k g x k x k x k             (2.11) 

He used the difference equation directly to estimate the derivative term from Equation (2.6). 

Unfortunately, this model was rate-independent and was not suitable for describing PEA 

hysteresis. 

2.5 Control Approaches for Piezoelectric Actuators 

   As mentioned above, the hysteresis effect greatly deteriorates the performance of PEAs. In 

open loop manipulation, the tracking error can reach 15-20% of the stroke of PEAs. Closed loop 

control is used to compensate for the hysteresis effect. Several kinds of controllers have been 

developed and reported in the literature for improving the performance of PEAs. 
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2.5.1 Charge Control 

   In 1981, a patent was granted for the use of charge control to reduce the hysteresis effect of 

PEAs [69]. Stemming from this idea, many researchers combined the use of charge control with 

other feedback control methods to reduce hysteresis nonlinearity [44], [49], [70], [71]. A 

grounded load charge amplifier is illustrated in Figure 2.7, where sR  and LR  are resistances, 

sC  and LC  are capacitors, refv  is the applied reference voltage, Lq  and Lcq  represents the 

load charge and actual charge respectively. 

 

 

Figure 2. 7  Grounded load charge amplifier [70] 

   The transfer function between the load charge and the reference voltage is: 
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   At frequencies above 1/RC, the amplifier is charge dominant which can be used to reduce the 

hysteresis effect. The results show an 89% reduction in the hysteresis. However, charge control 

requires hardware support which increases the difficulty and cost of use in applications. 

2.5.2 Feedback Control 

   As a simple feedback controller, the proportional-integral-derivative controller (PID)/ 

proportional-integral controller (PI) is well suited for nanopositioning. It was applied in [23] to 

compensate for the nonlinear effect of PEAs, such as creep and hysteresis, which were shown to 

be greatly reduced. The challenges of PID controller application are the improvement of 

performance while maintaining the stability of the overall system in the presence of parameter 

uncertainty and disturbance, and the low gain margin problem in high frequency manipulation 

[2]. To improve the robustness of control, advanced feedback controllers, such as the H and H2 

robust controllers, were designed to compensate for the hysteresis effect of PEAs. Their tracking 

errors were between 0.7 and 2% given a 50Hz sinusoidal input signal [4], [47], [72]. 

   Little work has been reported which uses phase compensation for hysteresis compensation. 

In [73], hysteresis was regarded as a transfer function whose amplitude and phase vary with both 

the input signal frequency and the magnitude of the input signal, i.e.,  

( ) ( , ), ( ) ( , )m pP j f j u P j f j u                       (2.13) 
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where ( )P j  and ( )P j  is the amplitude and phase of the transfer function, ω is the round 

frequency, u is the input signal. A nonlinear phaser with a positive phase can be added ahead of 

the plant to balance out the hysteresis phase. The results showed that the phase control is 

effective under a certain range of input amplitude and frequency. The phase difference was 

decreased from 38° to approximately zero. However, phase compensation was only reported in 

low frequency applications. For example, in [73], the frequencies of the input signals given in the 

experiments range only from 0.05Hz to 5Hz. The effect of phase compensation in high frequency 

applications has not been verified yet. 

2.5.3 Inverse Feedforward Control 

   Another control method which is frequently used in PEAs is inverse feedforward control [7], 

[10], [12], [34]. The basic idea of inverse feedforward control is shown in Figure 2.8, where the 

inverse of the transfer function is cascaded with the plant. The performance of this control 

scheme is sensitive to errors in the plant transfer function, leading to problems like divergence 

and instablity. 

 

 
Figure 2. 8  Inverse feedforward control 
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   In practice, feedforward control is commonly combined with feedback control, as shown in 

Figure 2.9. It does not share the low gain margin problem of the feedback approach leading to 

significant improvement of PEAs at high frequencies. However, determining the inverse of the 

hysteresis, as in the Preisach model, is still a significant burden on computer calculations. 

 

 
Figure 2. 9  Inverse feedforward based feedback control 

   Researchers have reported promising results in the literature combining feedforward with 

feedback. In [74], an adaptive control method combined with inverse feedforward was presented 

in which the inverse hysteresis model was updated online by means of an adaptive parameter 

controller. A tracking error of 1% was achieved. Using a similar method, hysteresis nonlinearity 

was reduced in [75]. A high gain feedback controller was employed for the tracking performance 

of the PEA in [7]. It used only the inverse of the linear dynamic part of the plant and a tracking 

error below 1.54% from a 50Hz sinusoidal input signal resulted. In [61], a PID controller 

combined with an inverse hysteresis model was introduced to control a PEA. The maximum 

tracking error was less than 0.45μm for a given 20 Hz sinusoidal input signal with a magnitude 
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of 15μm. 

2.5.4 Iterative Learning Control 

   Compared with inverse feedforward control, iterative learning control (ILC) does not require 

accurate, typically complicated, hysteresis models. An iterative controller generates the control 

action at present based on the tracking error and the control action of the previous iteration, as 

shown in Figure 2.10 [76]-[79]. 

 

 

Figure 2. 10  Iterative control [76] 

   The control action of ILC is given by  

1
0 1 .( ) 0, ( ) ( ) ( ) ( ) [ ( ) ( )]k k a m d ku j u j u j j G j x j x j       

            (2.14) 

where 1
. ( )a mG j  is the frequency response model of the system, ( )j   is the 

frequency-dependent iterative coefficient, ( ) and ( )k ku j x j   are the Fourier transform of the 

input and output at the kth iteration respectively. The goal of ILC is to generate a feedforward 

control that tracks a specific reference signal and rejects the repeating disturbance [79]. As such, 

the control performance is highly robust for system uncertainties. Moreover, it can significantly 

increase the manipulation bandwidth without reducing the positioning precision. However, ILC 
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is an open-loop control. For non-repeating disturbance or system uncertainties, a feedback 

controller is required as well. In spite of this, ILC has been widely used in nanopositioning, such 

as in the control of ATM, because a plant model is not required, it has self-learning adaptability, 

and it is robust.  

2.6 Emerging Issues in Control of Piezoelectric Actuators 

   In this section, emerging applications and control issues in PEA-based nanopositioning will 

be discussed. 

2.6.1 Disturbance Rejection 

   Since uncertainties are inevitable in the model of PEAs, maintaining the performance of the 

controller is necessary in the presence of disturbance and uncertainties. 

2.6.1.1 Disturbance Observer 

   Disturbance observer-based control (DOB) is an advanced control which has disturbance 

attenuation performance [80]. The general structure of a DOB controller is shown in Figure 2.11, 

where δ represents the disturbance of the plant system, and Q is a low pass filter that is used for 

the causality and determines several characteristics of the DOB system.    

   DOB control is aimed at estimating the system disturbance by taking the inverse of the plant 

model and subtracting the output from the input of the plant. The estimated disturbance is then 

fed back to the system input and subsequently eliminated by the controller. DOB has been widely 
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used in various motion control systems [80]. 

 

 
Figure 2. 11  Structure of a disturbance observer-based controller [81] 

   Chang et. al. applied DOB in the control system of PEAs [82]. The significance of their 

proposed DOB hysteresis compensator is its simple form that is implemented in the computer 

and its robustness due to independence from any mathematical model of hysteresis. They 

considered hysteresis to be a disturbance to the dynamics of the PEA, as shown in Figure 2.12 

and represented mathematically as  

( ) ( ) ( )Q t v t d t                            (2.15) 

where Q(t) and v(t) are the input and output of the hysteresis respectively, d(t) represents the 

hysteresis considered as a disturbance. Their experimental results showed successful 

compensation of hysteresis at an input frequency of 200 Hz. 
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Figure 2. 12  Schematic of a system that considers hysteresis to be a disturbance to the 
dynamics of a PEA [82] 

   The Q filter in DOB greatly affects the performance of DOB. There are three important 

factors in designing the Q filter: the time constant, numerator order and denominator order. 

Ideally, from Figure 2.11, if the nominal plant Pn = P, then the output of the DOB w is 

   1 1 1( ) [ ( )]w uQ QP y uQ QP P u QP Q                     (2.16) 

where v is the main controller output, u is the control input, δ is the external disturbance, y is the 

plant output and η is the sensor noise. 

   Based on Equation (2.16), three conditions that must be satisfied for the Q filter design were 

given in [83]: i.e., 

   Condition 1: All unstable zeroes of the plant must be zeroes of Q such that the output of the 

DOB is stable; 
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   Condition 2: The relative degree of Q must be larger than the relative degree of P to ensure 

reality of the DOB.  

   Condition 3: To completely compensate for hysteresis nonlinearity, the steady state gain of 

the Q filter should be 1. 

   In [80], a robust measure was introduced to combat the external perturbation and sensor 

noise for a DOB system. A lower robust measure requires a larger denominator order, a smaller 

relative degree and a smaller time constant. However, this makes the DOB system more sensitive 

to sensor noise. Therefore, a design which is aimed at reducing the sensitivity of DOB to 

disturbance and sensor noise is a contradiction [80]. 

2.6.1.2  Sliding Mode Control 

   Sliding mode control (SMC) is an attractive method for control applications in the presence 

of nonlinearity and system uncertainty. It has been successfully used in many studies [84]-[91]. 

Consider a second order system, for example, if the state error e is defined as the difference 

between the desired state Xd and the actual state X such that 

de X X  ,                             (2.17) 

then the state error of the system can be regarded as a point in the phase plane. When the desired 

state error trajectory is given by 

e ke ,                               (2.18) 

then as long as all eigenvalues of matrix k stay in the left half complex plane, e will 

exponentially converge to zero, as shown in Figure 2.13. The initial state error is not on the 
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desired trajectory. Therefore, a control action is desired that forces the system state error to reach 

the desired trajectory. If there exists a switching rule which limits the system state to the 

boundary layer region after the desired trajectory is reached, the state will follow a zig-zag 

motion around the desired trajectory and will finally converge to zero. The desired trajectory is 

called the sliding surface (S = 0).  

 

 

Figure 2. 13  Control scheme of sliding mode 

   Generally, the aim of SMC is to design a switching law which limits the system state in the 

boundary layer around the sliding surface [92]. For a system described by 

e Ae Bu w                               (2.19) 

where A and B are the system matrices of the state space model, w represents the matched 

uncertainties, the sliding surface is usually chosen to be s = Ce  The controller can be divided 
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into two parts 

equ u u                                (2.20) 

where 1( )equ CB CAe  is the equivalent control which is utilized to maintain the state of the 

system on the desired trajectory without any disturbance and  sgn( ),u K s   

1
max( )K CB Cw   is the switching rule for rejecting the uncertainties of the control system 

[93]. 

   The advantages of SMC are its robustness when subjected to system uncertainties and 

disturbances and the reduced order convergence to the zero state. However, due to the 

discontinuous characteristics of Δu, the state will switch around the sliding surface rather than lie 

directly on it. Switching can occur at high frequency, called chattering, which can excite an 

undesired high resonance mode which deteriorates the system tracking performance.  

   One solution to the chattering problem is the use of boundary layer control [94], in which a 

saturation switching control replaces the discontinuous switching control. If the unknown 

disturbance is significant, a sufficiently-high gain in the controller is always required and such a 

control scheme behaves like a high-gain proportional (P) controller. As a result, steady state error 

may exist. An alternative method for solving the chattering problem is to enlarge the width of the 

boundary layer and reduce the effective linear gain in order to reduce the state oscillation around 

the sliding surface. However the state can no longer strictly locate on the ideal sliding surface 

due to the wider boundary layer and the system will never behave as described by the sliding 

mode.  

   In [95] and [96], a high order sliding surface was designed instead of using a first order one 
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as in the nominal SMC design. While maintaining the main advantages of the nominal SMC, the 

high order sliding mode control (HOSMC) reduced the chattering effect and provided even 

higher accuracy [97]. The drawback to using HOSMC is the requirement of increased sliding 

information in its implementation. For example, the r-sliding controller keeping S = 0 requires  

1', '', , rs s s    to be available. 

   Recently, a new continuous PID-based SMC was developed in which the discontinuous 

‘bang-bang’ switching function is replaced by a PID regulator to eliminate the chattering 

problem [98]. Due to the integral effect of the PID regulator, zero steady state error can be 

achieved in the tracking performance of the plant. The continuous PID-based SMC was 

implemented in the tracking control of a commercially available PEA at a 20000 Hz sampling 

rate. The PEA was modeled as a second order system and other nonlinear effects, such as the 

hysteresis, were treated as uncertainties and disturbances which were rejected by the SMC. The 

results showed that with a 50 Hz sinusoidal input reference signal, the tracking error was reduced 

by 30% compared to the traditional PID controller.  

   The continuous PID-based SMC developed in [98] is actually a state tracking control scheme. 

For its application to second order mechanical systems, the states can be estimated from the 

output and its derivatives. The error state can then be evaluated by subtracting the desired state 

from the estimated one. The aim of a continuous PID-based SMC is to force the state error to be 

zero. However, for high order systems with zeros in their transfer functions, e.g., mechanical 

accelerometer systems and satellite rotation control systems, the states cannot be simply 

represented by the output and its derivatives. As a result, the design method developed in [98] 
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may not be applicable for these systems. 

2.6.2 Discrete Controller Design 

   With the advance of computer technology, controllers are mostly implemented digitally or in 

a discrete domain. Figure 2.14(b) shows, schematically, a continuous controller, represented by 

Figure 2.14(a), implemented in a real system. Blocks H and S represent the holding and 

sampling modules. Due to the quantization error of sampling, the control signal transferred to the 

plant is not exactly the same as calculated by the continuous controller, as illustrated in Figure 

2.15. This error can degrade the control performance and even make the system unstable, 

especially at low sampling rates [99]. For example, if the continuous SMC controller is directly 

implemented in the digital computer, the chattering problem will not be resolved by employing 

boundary layer control. Figure 2.16 shows the difference between the trajectories of a continuous 

sliding mode control system (CSMC) and a discrete sliding mode control system (DSMC). If the 

uncertainties are not considered and it is assumed that the discontinuous control can be 

implemented ideally, then the state of the CSMC, starting from any initial position, will move 

towards the sliding surface and arrive in a finite time, as shown in Figure 2.16(a). For DSMC, if 

the states arrive at the sliding surface at the sampling time instant, the trajectory will follow the 

sliding surface. This is called a type-I trajectory which is an ideal trajectory, as shown on the left 

side of Figure 2.16(b). If the switching time does not exactly match the sampling time, the state 

will not lay on the sliding surface and the trajectory will appear as a zigzag motion around the 

sliding surface. This is called type-P trajectory, as shown in the right side of Figure 2.16(b). This 
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indicates that the sampling itself can induce the chattering problem in DSMC. 

 

 
(a) Controller designed in continuous time domain 

 

(b) Continuous controller implemented in real systems 

 

(c) Discrete controller implemented in real systems 
Figure 2. 14  Comparison of discrete and continuous controllers 
The solid line represents the continuous signal and the dashed line represents the discrete signal. 

   Increasing the sampling frequency could improve control performance, but at a cost of 

requiring more expensive hardware and faster data processing for implementation [54]. 

Therefore, it is necessary to develop a discrete hysteresis model for PEAs, as shown in Figure 

2.14(c), and their digital controllers as well. Some DSMC design methods may be found in [101] 
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- [103]. 

 

y

(a) Sampling and zero hold
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(b) First order hold

 
Figure 2. 15  Quantization error in sampling and holding module 

 

(a)                             (b) 
Figure 2. 16  Difference between the continuous and discrete SMC systems [100] 
(a) Trajectories of continuous SMC; (b) Trajectories of discrete SMC 

2.6.3 Controller for Multi-DOF Piezoelectric Actuators 

   One of the most important characteristic of a multi-DOF system is the cross-coupling effect 
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or interaction between variables. For example, one input variable can lead to outputs of all 

variables. Commonly, each input/output pair is controlled separately without considering the 

coupling effects between variables. However, coupling greatly degrades the performance of the 

controller in many systems, in particular, parallel mechanics and chemical engineering systems 

with significant interactions [104]. Since the pioneering research of the early sixties [105], 

control of multi-DOF systems has received increased attention not only in the control research 

area but also in industry. Generally, controllers for single-DOF systems cannot be extended to 

multi-DOF systems due to the cross-coupling effect of multi-DOF systems [106]. Therefore, new 

controllers must be designed which consider the coupling effect [107]-[111].  

   Compared to the controller design for the one-DOF PEA mentioned above, much less work 

has been reported on the control of multi-DOF piezo-positioning systems. In [15], integral 

resonant control (IRC) was combined with inverse feedforward control to increase the damping 

ratio and ensure good performance at high frequency. The tracking error was reduced to 1.92% 

from a 400Hz input signal. In [16] an extended Coleman-Hodgdon model was introduced to 

represent the hysteresis effect of each axis in an AFM. The transfer matrix of the 

multi-input-multi-output (MIMO) system was identified by the non-parametric open-loop 

identification method and Welch’s averaged periodogram method. Robust inverse feedforward 

control was applied on each PEA and the tracking error was reduced to ±5nm with a scanning 

velocity of 3.6μm/s. A PID controller combined with a linearized feedback controller and a 

repetitive controller was developed in [17] for the tracking performance of an XY piezoelectric 

driven stage, as shown in Figure 2.17. The PEAs on both axes were controlled separately with a 
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capacitive sensor on each axis. The error was reduced to 0.51μm after 30 periodic iterations 

while tracking a sinusoidal path with amplitude of 150μm and frequency of 1Hz. 

 

 
Figure 2. 17  Schematic of a PID controller combined with linearized feedback and a repetitive 
controller [17] 

   Another issue of concern in the control of multi-DOF piezoelectric positioning systems is 

actuation redundancy (i.e., the number of actuators is larger than the degrees of freedom of the 

mechanism). For example, assume that the plant in sliding mode control can be represented by 

the state space model ,x Ax Bu y Cx    where A is the state matrix, B is the input matrix, C 

is the output matrix, x is the state, u and y are the input and output of the plant respectively. If 

the number of inputs is less than or equal to the number of outputs, the B matrix in the state 

space model will be a full rank matrix. As such, there exists a solution to the equivalent control 

by taking the inverse of the matrix SB, where S is the hyperplane defined by the switching 

function. However, if the number of inputs is greater than the outputs, actuation redundancy 

exists in the system and B will not be a full rank matrix. As such, SMC for one-DOF PEAs 

cannot be extended to the control applications of multi-DOF PEAs.  
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   A common approach for eliminating actuation redundancy is to use optimal control design 

methods, such as linear quadratic control which shapes the closed loop dynamics as well as 

actuator control distribution in one-step [112] - [114]. Consider a steady state model where (A, B, 

C, D) represent the system matrices, the optimal steady state *x  and the control signal *u  are 

derived by solving * *min( )Tu Ru subject to the constraints * * 0Ax Bu   and * * 0Cx Du  . If 

any actuator is broken or mis-controlled, the model should be changed because configuration of 

optimal control is not possible under conditions of a faulty actuator or incorrect control. 

Alternatively, the closed-loop chain mechanism could be transformed into several open-loop 

chain mechanisms by making a virtual cut and representing the joint torques of the original 

closed chain mechanism as open loop chain torques by taking account of the constraint. As a 

result, the dynamic model for the closed loop mechanism can be found [115]-[118]. Based on 

this model, controllers can be designed and a pseudo inverse is employed to solve the actuator 

redundancy [119], [120]. However, to find the dynamic model, the configuration of the parallel 

system is desired.  

   Another frequently used method for actuation redundancy control reported in the literature is 

control allocation [112], [113], [121], [122]. Control allocation is a control distribution module 

which is used to resolve actuation redundancy in parallel mechanisms. Figure 2.18 shows the 

scheme of the control system when control allocation performs separately. The control allocation 

is located between the controller and the plant, resolving the actuation redundancy such that no 

actuation redundancy exists in the control law. The distribution rule in the control allocation 

module is defined by certain optimal control methods such as the linear quadratic method. The 
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advantages of using control allocation module include tuning facility, ease of reconfiguration and 

actuator constraint consideration. 

 

 

Figure 2. 18  Control system structure with control allocation performing separately [112] 

2.7 Summary 

   PEAs have been widely used in nanopositioning applications due to their ability to produce 

displacements as small as 0.01 nm, as well as their high stiffness, fast response and large force. 

However, positioning precision can be greatly degraded by nonlinear behaviour such as 

hysteresis. With the purpose of successfully exploiting the full potential of PEAs in 

nanopositioning applications, modeling and control of PEAs has drawn considerable attention. 

To understand their behaviour, several models have been developed to describe hysteresis, which 

can be divided into two categories: phenomenon-based models and physically-based models. The 

phenomenon based models, such as the Prandtl-Ishlinskiĭ (PI), Preisach and Duhem models 

utilize mathematical methods to describe the hysteresis based on experimental data, regardless of 

physical meaning. These models have relatively simple forms compared to the physical models 

and as such, have been widely used in the control of PEAs.   
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   The hysteresis effect greatly deteriorates the performance of PEAs. Therefore, closed-loop 

controllers are used in nanopositioning applications to improve tracking performance. Among 

them, PID/PI controllers are simple and commonly employed in PEA-driven nanopositioning 

systems to compensate for nonlinear effects like hysteresis and creep. The challenge that exists in 

PID controller application is improving performance while maintaining the stability of the 

overall system in the presence of parameter uncertainties and disturbances In addition, it has low 

gain margin in high frequency manipulation. Therefore, advanced feedback controllers such as 

2 and H H  controllers, charge control and DOB have been developed for nanopositioning 

control systems. Feedforward control, which is model-based, does not share the stability problem 

of the feedback approach. So, significant improvement can be made at high frequencies. 

However, this approach cannot account for external disturbance and modeling uncertainties.  

   SMC became the subject of much research due to its success in the presence of nonlinearities 

and system uncertainty. However, chattering, caused by discontinuous switching control may 

excite high frequency resonant vibrations, thereby degrading control performance and potentially 

damaging the actuators being controlled. To resolve the chattering problem, boundary layer 

control has been employed by researchers in which a saturation function is used to replace the 

discontinuous ‘bang-bang’ switching function. If the unknown disturbance is significant, a 

significantly high gain in control is needed and, as such, steady state error may exist. 

Alternatively, a high order sliding surface is designed instead of the first order one used in the 

nominal SMC design. While keeping the main advantages of the nominal SMC, HOSMC 

reduces the chattering effect and provides even higher accuracy. The main drawback is the 
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increased sliding information required for implementing the HOSMC.  

   A new continuous PID-based SMC for PEAs was recently developed, in which the 

discontinuous ‘bang-bang’ switching function was replaced by a PID regulator to eliminate the 

chattering problem. Experiments were implemented on a commercially available PEA and it was 

proven that use of a continuous PID-based SMC effectively compensates for the hysteresis that 

exists in the PEA thereby leading to a great improvement in PEA performance. Moreover, due to 

the integration effect of the PID regulator, zero steady state error was achieved in the tracking 

performance. 

   The positive effect of combining feedforward control with the feedback approach has been 

shown in the literature. Therefore, it is reasonable to assume that better control performance will 

be obtained by combining a feedforward controller with SMC if model uncertainty must be 

considered in the controller design. This potentially leads to the development of a new controller 

called feedforward-based SMC. However, a discrete version of this new controller has not been 

reported in the literature. In addition, general SMC design, including the developed PID-based 

SMC, is actually a state tracking control approach which cannot be applied to the control of 

complicated PEA systems that must be identified as black box models. Therefore, development 

of a new SMC design approach is desired for these types of systems. Moreover, when SMC is 

implemented in a MIMO system, cross-coupling effects between variables can greatly affect the 

calculations of the equivalent inputs. As a result, it is still a challenge to extend the application of 

SMC to MIMO systems. Unfortunately, control of multi-DOF PEAs by SMC has not been 

reported in the literature. 
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3 Model of One-DOF Piezoelectric Actuators 

The work presented in this chapter was published in the following paper appended.  
 
Y. Cao and X. B. Chen, “A Novel Discrete ARMA-based Model for Piezoelectric Actuator 

Hysteresis,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 4, pp. 737-744, August 
2012. 

3.1 Introduction and Objectives 

   The performances of PEAs are greatly affected by hysteresis. Therefore, modeling and 

control for PEA hysteresis have drawn remarkable attention in the literature. There are several 

hysteresis models which are developed and successfully applied in the continuous controllers for 

PEAs, which, however, might not work as expected in the digital system, especially in the 

applications where the sampling rate is limited. As a result, it is desirable to develop discrete 

hysteresis model as well as the corresponding discrete controller to improve the PEA 

performance. To meet this need, this paper aims at developing a discrete model to describe the 

hysteresis and dynamic behavior of one-DOF PEA. 

3.2 Methods 

   The performance of PEA was modeled by cascading the ARMA model with the 

ferromagnetic material hysteresis model, resulting in the so-called “ARMA-based hysteresis 

model”. Figure 3.1 is the schematic of the model, in which the output of the ferromagnetic 

material hysteresis model is the input to the ARMA model. 

   The ferromagnetic material hysteresis model is given by [35], [43]
 

[ ( ) ] ( )y x f x y xg x                             (3.1) 
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where α is the parameter which determines the shape of the hysteresis loop, x is the input, y is the 

hysteresis output, f(x) and g(x) are functions of x, with which one can “shape” the hysteresis loop 

as well. 

 

 
Figure 3. 1  ARMA-based hysteresis model 

   If define 

( )
ax

f x


                                 (3.2) 

  ( )g x b                                 (3.3) 

and 1 /c   , taking integration on Equation (3.1) in one sampling interval yields 

( 1)2 2

( )

1( 1) ( ) [ ( 1) ( )] [ ( 1) ( )]
2

x k

x k
y k y k a x k x k c ydx b x k x k


               (3.4) 

   The integral term in the right side of Equation (3.4) can be estimated by trapezoid estimation 

and quadratic estimation, leading to different discrete hysteresis model. Since the hysteresis 

dominates in the performance of PEA under a low frequency input voltage x, parameters of the 

hysteresis model can be determined first, and the effective mechanical force y can be estimated 

from the identified hysteresis model. The dynamic model is to be identified from the estimated y 

and the measured displacement z. 

3.3 Results 

   Experiment results showed that the discrete ARMA-based hysteresis model predicts the 

performance of the PEA with higher accuracy. Moreover, the online estimation method leads to 
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better parameter identification for the discrete ARMA-based hysteresis model than the least 

square method. The model shows larger prediction error at high frequencies due to the estimation 

error caused by the integral term. Employing the quadratic equation can reduce the discrete 

estimation error at high input frequencies. However, the complexity of the model increases. 

3.4 Contributions 

   The contribution of this paper rests on the development of such a comprehensive discrete 

model to predict the performance of piezoelectric actuators, which can be of great help in the 

controller design. 

3.5 Paper: A Novel Discrete ARMA-based Model for Piezoelectric 

Actuator Hysteresis 

   Authors: Y. Cao and X. B. Chen, Member, IEEE2 

   Index Terms: Autoregressive moving average process, Hysteresis, Piezoelectric devices 

3.5.1 Abstract 

   Hysteresis is an important nonlinear effect exhibited by piezoelectric actuators and its 

modeling has been drawing considerable attention. This paper presents the development of a 

novel discrete model based on the concept of auto-regressive moving average (ARMA) for the 

piezoelectric-actuator hysteresis, and its parameter identification method as well. Experiments 
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were carried out to verify the effectiveness of the developed model. The result obtained shows 

that the developed model can well represent the piezoelectric actuator hysteresis, with improved 

performance over an existing discrete hysteresis model. 

3.5.2 Introduction 

   Due to their fast response and large force generated, piezoelectric actuators (PEA) have been 

widely used in nano-positioning technologies, such as atomic force microscope (AFM), scanning 

tunnel microscope (STM), digital video disc (DVD) reading and writing, diamond lathe machine, 

lithography, X-ray imaging and microfactory [123]. It has been shown that the hysteresis existed 

in a PEA can greatly degrade its performance [61], [124], [125]. Hysteresis is a memory effect 

[11], occurring in such phenomena as plasticity friction, ferromagnetism, superconductivity. The 

hysteresis exhibited at a given time instant depends on not only the input at the present time but 

also the operational history of the system considered. In order to develop control schemes on 

PEA, modeling of PEA has been drawing considerable attention and several models have been 

resulted to describe the hysteresis effect. In the study [29], the Preisach model was developed by 

integrating hysteresis operators in the Preisach plane. Since then, the Preisach model has been 

used in the PEA controller design, showing varying degrees of success [6], [62], [74]. The 

shortage of this model is the significant burden of calculation [63]. Prandtl-Ishlinskiĭ model (PI 

model) was developed to describe the hysteresis effect of a magneticostrictive actuator and was 

applied to the development of inverse control for improved performance [34], [126]. It is a kind 

of modified form of the Preisach model [11]. Limited work was found in the literature to use the 

PI model for the control of the PEA performance. Bouc-Wen model is a state space model to 

describe the hysteresis nonlinearity [127], which has been shown to have the ability to represent 

the behavior of a wide class of hysteresis systems [39]. Because of the introduction of an extra 
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state variable, difficulty increases in parameter identification and controller design [128]. A first 

order differential equation was used in the ferromagnetic material model [35], [43] to describe 

the hysteresis effect. Due to its simplicity, it is easy to be implemented in computer simulation. 

However like the other models mentioned above, this model cannot describe the rate-dependent 

characteristic of the PEA as well.   

   In contrast to the rate-independent hysteresis model, the shape of the rate-dependent 

hysteresis loop varies with the input frequency. It was reported in the literature [6], [43], [45], 

[82] that the hysteresis effect can be modeled in series with the dynamics of the actuator, i.e., the 

output of the rate-independent hysteresis model is the input of the dynamics model. Based on this 

concept, the Bouc-Wen model and the state space model were combined to describe the 

hysteresis and dynamics of a 6-DOF precision positioning system and the parameters of the 

combined model were identified by means of the Genetic Algorithm [129]. Similar method is 

also employed in [52] where a nonlinear auto-regressive moving average model with exogenous 

input (NARMAX model) is used to describe the input and output relationship of PEA. The 

hysteresis effect is considered as a hysteresis operator which is the input of the NARMAX model 

in the study.  

   It is noted that all the models aforementioned, including both rate-independent and 

rate-dependent hysteresis model, were developed in the continuous domain. Accordingly, the 

controller designs based on these models were then performed in the continuous time domain 

too. With the advance of computer technology, nowadays controllers have been mostly 

implemented digitally or in a discrete domain. It is known that not all the continuous controllers 

can work on the digital system as desired since the error due to quantization can degrade the 

control performance and even make the system unstable [67]. Reducing the sampling time period 
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could improve the performance, but at a cost of requiring more expensive hardware and faster 

data processing for implementation. Therefore, it is desirable to develop discrete models for the 

PEA hysteresis in order to facilitate the digital controller design. The ferromagnetic material 

hysteresis model was discrete by using difference equation in [68]. Unfortunately, the model was 

rate-independent and was not suitable to describe the PEA hysteresis. 

   To meet this need, this paper presents the development of a novel discrete model based on 

the concept of auto-regressive moving average (ARMA) for the piezoelectric-actuator hysteresis, 

and a method to identify the model parameters as well. In order to verify the effectiveness of the 

developed model, experiments were carried out on a typical PEA. Also, the results obtained from 

the discrete ARMA-based hysteresis model were compared to those from an existing discrete 

hysteresis model reported in [68].   

3.5.3 DiscreteARMA-based Hysteresis Model 

   In this study, the hysteresis is to be modeled by combining the ARMA model and the 

ferromagnetic material hysteresis model, resulting to the so-called “the ARMA-based hysteresis 

model”.  Figure 3.1 is the schematic of the model, in which the output of the ferromagnetic 

material hysteresis model is the input to the ARMA model. 

3.5.3.1 Discrete form of the Ferromagnetic Material Hysteresis Model 

   The first order hysteresis differential equation in the ferromagnetic material hysteresis model 

[35] is given by Equation (3.1) where α is the parameter which determines the shape of the 

hysteresis loop, x is the magnetic field strength, y is the magnetic flux density, f(x) and g(x) are 

functions of x, with which one can “shape” the hysteresis loop as well. It has been 

experimentally verified that this differential equation is also promising to describe the electric 
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hysteresis exhibited by PEAs. 

   According to the previous study [44], it is reasonable to choose ( ) / , ( )f x ax g x b   for 

the shape functions. Thus Equation (3.1) can be rewritten as 

( )y x ax cy bx                               (3.5) 

for a PEA, where x is the voltage input and y is the corresponding displacement, 1 /c   . By 

integrating both sides of Equation (3.5) in a time interval, the continuous derivative term can be 

transferred to the discrete one. If the input signal is monotonically increasing, i.e. 0x  , taking 

integration on both sides of Equation (3.5) in one sampling interval yields 

( 1) ( 1) ( 1) ( 1)k T k T k T k T

kT kT kT kT
ydt a xxdt c xydt b xdt

   
                      (3.6) 

where T is the sampling interval.  

   Equation (3.6) can also be rewritten as Equation (3.4).which is the discrete form of the first 

order hysteresis differential Equation (3.5).  However, it is noted this equation cannot be 

directly used as the integral term ( 1)

( )

x k

x k
ydx



  is unknown, which needs to be determined or 

estimated. One solution to this is to estimate the value of the integral term from the data of the 

adjacent points. For this, different methods can be used and discussed as follows. 

A. Trapezoid Estimation 

   By using trapezoid estimation, the integral term is given by   

( 1)

( )

1 [ ( 1) ( )][ ( 1)+ ( )]
2

x k

x k
ydx x k x k y k y k


                    (3.7) 

Substituting Equation (3.7) into (3.6) yields 

( 1) 2 ( 1) 2 ( 1)( 1) ( )
2 ( 1) 2 ( 1) 2 ( 1)

k c k ky k a y k b
c k c k c k

  
  
      

     
          (3.8) 

where 
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2 2( 1) ( 1) ( )  ( 1) ( 1) ( )k x k x k k x k x k        ，              (3.9) 

For the zero initial condition, i.e., (1) 0y  , one can have (2) 2 (2)(2)
2 (2) 2 (2)

y a b
c c
 
 

 
 

, 

(3) 2 (3) (2) 2 (3) 2 (3) 2 (2)(3) [ ] [ ]
2 (3) 2 (3) 2 (2) 2 (3) 2 (3) 2 (2)

c cy a b
c c c c c c
     
     

      
     

  

   It is seen from the above equations that the output y can be represented by the combination of 

a[·] + b[·]. Denoting the terms in the brackets by 
1y  and 

2y  respectively, one then has the 

following expression at t kT ,   

1 2( ) ( ) ( )y k ay k by k                            (3.10) 

It is noted that both 
1( )y k  and 

2 ( )y k  are still functions of x. 

   Substituting Equation (3.10) at t kT  into Equation (3.8) yields: 

1 2
( 1) 2 ( 1) 2 ( 1) 2 ( 1)( 1) [ ( )] [ ( )]

2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1)
k c k k c ky k a y k b y k

c k c k c k c k
   
   
         

       
 (3.11) 

Thus,  

1 1
( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
 
 
    

   
                (3.12) 

2 2
2 ( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
 
 

    
   

                (3.13) 

   If the input signal is monotonically decreasing, 0x  , repeating the above process, one can 

have  

1 2( 1) ( 1) ( 1)y k ay k by k                          (3.14) 

where 

1 1
( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
 
 

     
   

                (3.15) 

2 2
2 ( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
k c ky k y k

c k c k
 
 

    
                

    (3.16) 
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B. Quadratic Estimation 

   In the quadratic estimation, a quadratic curve f(x) is used to represent the hysteresis curve 

between k and k+1 approximately, as shown in Figure 3.2. 

 

1k k
1k 

( )f x

x

y

0

m

1m 
1m 

 

Figure 3. 2  Quadratic estimation of the integral term 

   Suppose f(x) is described by 

2
1 2 3( )y f x d x d x d                           (3.17) 

The integral term can be estimated as: 

( 1) ( 1) 2 3 3 2 2
1 2 3 1 2( ) ( )

3

1 1( ) [ ( 1) ( )] [ ( 1) ( )]
3 2

                [ ( 1) ( )]

x k x k

x k x k
ydx d x d x d dx d x k x k d x k x k

d x k x k

 
        

  
   (3.18) 

where 
1d , 

2d , 
3d  are determined from the data at 1k  , k , 1k  , 

1
2

1 11 12 13
2

2 21 22 23
2

31 32 333

( 1)   ( 1)   1       ( 1) ( 1)
( )        ( )        1 ( )       ( )

( 1) ( 1)      ( 1)   ( 1)   1

x k x kd m m my k y k
d x k x k y k m m m y k

y k y km m md x k x k


      
      
      
      
        

   
 

  







     (3.19) 

Substituting Equation (3.18) into (3.4), one has 
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2 2
3 1 2

1(1 )[ ( 1) ( )] [ ( 1) ( )] [ ( 1) ( )] ( 1) ( )
2

q y k y k a x k x k b x k x k q y k q y k             (3.20) 

where 3 3 2 2
1 2 3

1 1[ ( 1) ( )] [ ( 1) ( )] [ ( 1) ( )](i=1,2,3 )
3 2i i i iq cm x k x k cm x k x k cm x k x k           

Similarly, using Equation (3.10), one can have 

1 2
1 1 1

3 3 3

1( 1)( 1) ( 1) ( )
2(1 ) 1 1

q qky k y k y k
q q q

     
  

               (3.21) 

1 2
2 2 2

3 3 3

1( 1)( 1) ( 1) ( )
1 1 1

q qky k y k y k
q q q

     
  

               (3.22) 

If the input signal is monotonically decreasing, 0x  , repeating the above process, one can 

have  

1 2
1 1 1

3 3 3

1( 1)( 1) ( 1) ( )
2(1 ) 1 1

q qky k y k y k
q q q

      
  

             (3.23) 

1 2
2 2 2

3 3 3

1( 1)( 1) ( 1) ( )
1 1 1

q qky k y k y k
q q q

     
  

              (3.24) 

There are two special cases that need to be addressed when discreting Equation (3.5) by means 

of the quadratic curve estimation.   

① Estimation of the output at certain time instant ( 1),  1,2iy k i   is based on the output of 

( )iy k  and ( 1)iy k  , as indicated by Equation (3.21)~(3.24). If 2k  , (1)iy  and (2)iy  

needs to be known. It is reasonable to set (1) 0iy   at the beginning, but (2)iy  is unknown. In 

such a case, one has to use the trapezoid method to estimate (2)iy . The use of Equations (3.12) 

and (3.13) as well as Equation (2.9) can yield 

2

1 2
(2) 2 (2)(2) ,  (2)

2 (2) 2 (2)
x xy y

cx cx
 

 
                    (3.25)  

② At the extreme points where the derivative of the input voltage x  changes its sign, the 

hysteresis loop starts from 1m  , then goes through m  and arrives at 1m  , as shown in 
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Figure 3.2. It is noted that the hysteresis loop between 1m   and 1m   is not a one-to-one 

mapping. Instead, the fitted quadratic curve (3.17) may start from m , go through 1m   and 

arrive at 1m  , shown as the dash line in Figure 3.2. Moreover, if ( 1) ( 1)x m x m   , it is 

impossible to take the inverse of matrix in Equation (3.19). As such, the quadratic equation 

cannot be used at the extreme point. Given the output at the extreme point m , the output of the 

next point 1m   can be estimated by using the trapezoid estimation. Thus, the use of Equation 

(3.10)~(3.16) yields 

   if ( 1) ( )x m x m  , 

1 1
( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
m c my m y m

c m c m
 
 

    
   

               (3.26) 

2 2
2 ( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
m c my m y m

c m c m
 
 

    
   

               (3.27) 

   if ( 1) ( )x m x m  , 

1 1
( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
m c my m y m

c m c m
 
 

     
   

               (3.28) 

2 2
2 ( 1) 2 ( 1)( 1) ( )

2 ( 1) 2 ( 1)
m c my m y m

c m c m
 
 

    
   

               (3.29) 

3.5.3.2 Discrete ARMA-based Hysteresis Model 

   In the literature, the ARMA model has been widely applied to auto-correlated time series 

data. Given a time series of data tz , the ARMA model is used to predict the future values by  

taking the following form  

1 0
( ) ( ) ( )

yz NN

i i
i i

z t a z t i b y t i
 

                          (3.30) 

   In our previous study [46], it was concluded for a PEA-driven positioning stage that if the 
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mass ratio of the stage to the PEA is big enough that the system can be approximated by using a 

second order system. By utilizing a second order ARMA model, one can have the following 

equation. 

1 2 0 1 2( ) ( 1) ( 2) ( ) ( 1) ( 2)z t a z t a z t b y t b y t b y t        
          

(3.31) 

Substituting the discrete hysteresis Equation (3.10) and (3.14) into Equation (3.31), one can 

obtain the discrete ARMA-based hysteresis model, which will be used to describe the 

rate-dependent PEA hysteresis, i.e.,  

1 2 0 1 2

1 1 2 2 1 2

1 2 0 1 0 2

1 1 1 2 2 1 2 2

( ) ( 1) ( 2) [ ( ) ( )]

      [ ( 1) ( 1)] [ ( 2) ( 2)]

      ( 1) ( 2) ' ( ) '' ( )

      ' ( 1) '' ( 1) ' ( 2) '' ( 2)

z t a z t a z t b ay t by t

b ay t by t b ay t by t

a z t a z t b y t b y t

b y t b y t b y t b y t

     
       
     
                  

(3.32) 

3.5.4 Parameter Identification 

   Given a series of known data sets 1 2{ , , }i i iy y z , Equation (3.32) can be rewritten as 

Z = W θ                                (3.33) 

where 
3 4[ , , , ]Z T

iz z z  ; 
1 2 0 0 1 1 2 2[ , , ', '', ', '', ', '']θ a a b b b b b b  is the parameter vector which is 

to be identified; 
2 1 13 23 12 22 11 21

3 2 14 24 13 23 12 22
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 
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; i  represents the 

number of the data points. 

   Equation (3.33) is linear, so the vector of θ  can be readily identified by using the least 

square method. Online estimation method can be applied as well to continuously update 

parameters as new data become available. However, in the present study as suggested by 

Equation (3.12) (3.13) (3.15) (3.16), the data sets 1 2{ , }i iy y  are calculated from the measured 
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input voltage { }ix  and the value of c which is an unknown parameter. It is required to obtain the 

value of parameter c firstly in order to use the ordinary parameter identification methods. 

   Consider the model error, Equation (3.33) can be rewritten as   

Z W θ                                (3.34) 

where   is an error vector which follows a normal distribution. The parameter vector θ  can 

be identified by using least square method as 

1( )θ W W W ZT T                           (3.35) 

If there is an uncertainty of parameter c, it will induce an error in the estimation of
1( 1)y k   

and
2 ( 1)y k   to the estimation of matrix W. Suppose the estimation error of W is M, then 

Equation (3.35) becomes: 

1[( ) ( )] ( )θ W M W M W M ZT T                     (3.36) 

The expectation of the estimated parameter θ  is given by, if 0 and 0W M M    

   1( ) [( ) ( )] ( )θ θ W M W M W M MθT TE                   (3.37) 

which indicates that with the error in estimating c, the estimated parameters will be biased. To 

address this issue, a straight forward method is to adjust the value of c in the parameter 

identification until the difference between model predictions and experimental results is 

minimum, which is detailed in the following section.   

3.5.5 Experiments and Results 

   The experiments presented in this section were implemented on a PEA (P-753, Physik 

Instrumente), shown in Figure 3.3. The actuator can generate displacement in a range of 15 μm 

with a resolution of 0.5 nm. For displacement measurements, a capacitive displacement sensor 

with a resolution of 50 nm, which is a built-in sensor of the P-753 PEA, was used. Both the 
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actuator and the sensor were connected to a host computer via an I/O board (PCI-DAS1602/16, 

Measurement Computing Corporation) and controlled via SIMULINK programs. All 

displacements were measured with a sampling interval of 0.05 ms. The mass ratio of the stage to 

the PEA is 49.8, suggesting that the dynamics of the piezoelectric driven stage can be regarded 

as a second order system approximately according to the previous study [46], [130].      

 

 
 

(a)                                (b) 
Figure 3. 3   Experimental settings on the piezoelectric driven stage 
(a) schematic and (b) picture.  

   In the experiments, three types of inputs were used to excite the system. One type is the 

sinusoidal inputs with amplitude of 70 V and varying frequencies from 1 Hz to 200 Hz. These 

sinusoidal inputs and the measured outputs were used in the parameter identification. The second 

type of inputs is the piecewise continuous combination of different-amplitude sinusoidal inputs 

with the same frequency, as shown in Figure 3.4a. The last type is the superposition of four 

sinusoidal inputs with different frequency, amplitude and phase delay, as shown in Figure 3.4b. 

The latter two types of inputs were mainly used in model verification. 

 



 

67 
 

 
(a)                               (b) 

Figure 3. 4  Input voltage for the model verification 
(a) the piecewise continuous combination of different-amplitude sinusoidal inputs with the same 
frequency and (b) the superposition of four sinusoidal input with different frequency, amplitude 
and phase delay. 

3.5.5.1 Parameter Identification 

   The values of parameters a, b and c were initially identified from the 1 Hz 70 V sinusoidal 

input and the measured output by using least square method, which gives 0.0064,a   

0.1144, 0.0378b c   . With the value of c, data sets 1 2{ , }i iy y  were produced for identifying 

the parameters involved in the linear model (3.33) and the estimation errors were calculated in 

terms of the 2-norm of the error vector. By adjusting the value of c around the above 

initially-identified value (i.e., -0.0378), the estimation errors were obtained and it was found that 

the minimum error occurs at 0.0305c   . On this basis, the least square method and online 

estimation method was used, respectively, to identify other parameters of the discrete 

ARMA-based hysteresis model by employing the trapezoid estimation. The identified results are 

summarized in Table 3-1 and Table 3-2 along with the calculated 2-norm errors. From Table 3-1 

and Table 3-2, it is seen that the online estimation method can get a better estimation than the 

least square method. 
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Table 3- 1  Identifcation results of the discrete ARMA based hysteresis model developed by 
trapezoid equation estimation based on the least square method 

Parameters 1a  
2a  0 'b  0 ''b  c  

Value 0.0725 0.7577 -0.0703 -1.4122 -0.0305 

Parameters 1 'b  
1 ''b  2 'b  2 ''b  ( )Error m  

Value 0.1448 2.9350 -0.0732 -1.5032 0.0451 

Table 3- 2  Identification results of the discrete ARMA based hysteresis model developed by 
trapezoid equation estimation based on the online estimation method 

Parameters 1a  
2a  0 'b  0 ''b  c  

Value 1.6531 -0.6758 -0.002759 -0.07323 -0.0305 

Parameters 1 'b  
1 ''b  2 'b  2 ''b  ( )Error m  

Value 0.006409 0.1736 -0.003526 -0.09756 0.0309 

Table 3- 3  Identification results of the discrete ARMA based hysteresis model developed by 
quadratic equation estimation based on the least square method 

Parameters 1 'b  
1 ''b  2 'b  2 ''b  ( )Error m  

Value 0.0592 0.7413 -0.0763 -2.4981 -0.029 

Parameters 1 'b  
1 ''b  2 'b  2 ''b  ( )Error m  

Value 0.1539 5.0563 -0.0766 -2.5343 0.1323 

Table 3- 4  Identification results of the discrete ARMA based hysteresis model developed by 
quadratic equation estimation based on the online estimation method 

Parameters 1 'b  
1 ''b  2 'b  2 ''b  ( )Error m  

Value 1.6522 -0.6751 -0.0027 -0.0748 -0.029 

Parameters 1 'b  
1 ''b  2 'b  2 ''b  ( )Error m  

Value 0.0063 0.1766 -0.0035 -0.099 0.0309 
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(a)                              (b) 

 
(c)                               (d) 

Figure 3. 5  Comparsion of experimental results and simulation results under inputs with a fixed 
amplitude of 70 V and different frequencies 
(a) 10 Hz, (b) 50 Hz, (c) 100 Hz, and (d) 200 Hz.  

   Using the same method, Table 3-3 and Table 3-4 show the estimation results for the discrete 

ARMA-based hysteresis model developed by using the quadratic estimation based on least 

square method and online estimation method, respectively. As an example, Figure 3.5 shows the 

online estimation result for the discrete ARMA-based hysteresis model developed by using 

quadratic equation, under inputs with a fixed amplitude of 70 V and different frequencies of 10, 

50, 100, and 200 Hz. It can be seen that the simulation results are in agreement with the 

experimental results. 
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3.5.5.2 Model Verification 

   The inputs shown in Figure 3.4 and the recorded output were used for the model verification. 

Table 3-5 shows each type of input data and their abbreviation.  

A. Comparison between the discrete ARMA-based hysteresis model developed by trapezoid 
equation and an existing discrete hysteresis model 

   In order to verify the effectiveness of the discrete ARMA-based hysteresis model, a 

comparison was made with an existing discrete hysteresis model reported in [68]. As the discrete 

hysteresis model developed in [68] is rate-independent, it was combined with the ARMA model 

to represent the rate-dependent performance of the PEA and the same parameter identification 

method was applied. With the identical input, the corresponding output predicted by both the 

discrete ARMA-based hysteresis model developed by trapezoid equation and the existing 

discrete hysteresis model were obtained and compared, respectively, with the measured 

displacement. Since the online estimation method leads to a better identification than the least 

square method, the parameters in both models were identified by the online estimation method. 

Figure 3.6 shows the results of output displacement vs. input voltage and the result of error vs. 

time for the inputs of PWSW200 and SW100. The solid line presents the experimental results 

and the dash line presents the simulation results calculated by the discrete ARMA-based 

hysteresis model developed by using trapezoid estimation. Table 3-6 shows a complete 

comparison of errors for all inputs used. From the results listed above, it can be seen that as the 

input frequency increases, the estimated error increases. In contrast to the existing discrete 

hysteresis model, the discrete ARMA-based hysteresis model has less estimation error. 



 

71 
 

Table 3- 5  Inputs used for model verification 

Abbreviation Input Description Remarks 

PWSW 10 
Piecewise continuous combination of 
different amplitude sinusoidal inputs 

10Hz 
PWSW 50 50Hz
PWSW 200 200Hz 
PWSW 400 400Hz 

SW 100 Superposition of four sinusoidal inputs with 
different frequency, amplitude and phase delay 

Highest 100Hz 
SW 400 Highest 400Hz 

SIN70V 200 

70V sinusoidal input 

200Hz 
SIN70V 300 300Hz 
SIN70V 400 400Hz 
SIN70V 500 500Hz 
SIN70V 600 600Hz 

Table 3- 6  Error estimated from the discrete ARMA-based hysteresis model developed by 
trapezoid equation and the existing discrete model 

Inputs 
Estimation error (μm) by using 

Existing discrete hysteresis model

Estimation error (μm) by using 
Discrete ARMA-based hysteresis 

model 
PWSW 10 0.0946 0.0943 
PWSW 50 0.0996 0.0989 
PWSW 200 0.1128 0.1112 
PWSW 400 0.1627 0.1603 

SW 100 0.2212 0.2209 
SW 400 0.2683 0.2637 

SIN70V 200 0.0309 0.0309 
SIN70V 300 0.0570 0.0569 
SIN70V 400 0.1293 0.1264 
SIN70V 500 0.6041 0.5081 
SIN70V 600 1.1037 1.0187 
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(a)                               (b) 

 
(c)                                (d) 

Figure 3. 6  Comparison of experimental results and simulation results and the errors 
(a) voltage vs. displacement for the PWSW 200 input; (b) estimation error for the PWSW 200 
input; (c) voltage vs. displacement for the SW 100 input; and (d) estimation error for to the SW 
100 input. 

B. Comparison between the discrete ARMA-based hysteresis model developed by trapezoid 
equation and quadratic equation 

   The comparison between the discrete ARMA-based hysteresis models developed by using 

different discrete method was made in order to show the effect of the discrete method with high 

order polynomial equation. With the identical input, the corresponding outputs were calculated 

from the discrete ARMA-based hysteresis model developed from the trapezoid equation 

(3.10)~(3.16) and the quadratic equation (3.21)~(3.24), respectively, and then were compared to 

the measured output. The error was calculated in terms of the 2-norm of the error vector. Table 

3-7 shows the estimation errors of the discrete ARMA based hysteresis model develop by the 

two different discrete methods. In contrast to the discrete method using trapezoid equation, the 

use of quadratic equation to develop the discrete ARMA-based hysteresis model can obtain 

better estimations, especially at high input frequencies. However, at low frequencies, the 

quadratic equation may be worse due to the error induced by taking inverse of the parameter 

matrix in Equation (3.18). 
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Table 3- 7  2-norm error for the discrete ARMA-based hysteresis model developed by using 
different discrete method 

Inputs 
Model verification error (μm) 

Develop from trapezoid 
estimation 

Model verification error (μm) 
Develop from 

 quadratic estimation 
PWSW 10 0.0943 0.1009 
PWSW 50 0.0989 0.1003 
PWSW 200 0.1112 0.1110 
PWSW 400 0.1603 0.1560 

SW 100 0.2209 0.2165 
SW 400 0.2637 0.2529 

SIN70V 200 0.0309 0.0309 
SIN70V 300 0.0569 0.0512 
SIN70V 400 0.1264 0.1156 
SIN70V 500 0.5081 0.4958 
SIN70V 600 1.0187 1.0091 

  

3.5.6 Conclusions and Discussions 

   This paper presents the development of a novel discrete ARMA-based hysteresis model to 

describe the hysteresis of PEA by using different discrete methods. Both least square method and 

online estimation method were applied to identify the model parameters. In order to show the 

effectiveness of the discrete ARMA-based hysteresis model, experiments were carried out and 

the results obtained were compared to the predictions from both ARMA-based hysteresis model 

and an existing discrete hysteresis model reported in [68]. It has been shown that the discrete 

ARMA-based hysteresis model can well predict the hysteresis of the piezoelectric actuator. 

Moreover, the online estimation method can get better parameter identification for the discrete 

ARMA-based hysteresis model than the least square method. However, the model shows larger 

estimation errors at high frequencies than at low frequencies due to the estimation of the integral 

term in the discrete hysteresis equation. Using a quadratic equation to estimate the integral term 

can reduce the discrete estimation error at high input frequencies. Therefore, it should be 
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preferred to use the quadratic equation at high input frequencies.  
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4 Discrete Sliding Mode Control for One-DOF Piezoelectric 

Actuators 

The work presented in this chapter is the one included in the following manuscript appended.  
 
Y. Cao, X. B. Chen and J. Y. Peng, “An Output Tracking Integrated Discrete PID-based 

Sliding Mode Control on SISO systems,” ASME Journal of Dynamic system, measurement and 
control, Submitted as Regular Paper in 2013, under review, manuscript ID: DS-13-1043. 

4.1 Introduction and Objectives 

   SMC is widely employed in control applications due to its excellent performance in 

disturbance and uncertainty rejection. However, chattering, caused by the discontinuous 

switching control, can greatly deteriorate its performance. One of the methods to eliminate 

chattering is to employ a PID regulator instead of the discontinuous switching control, which 

leads to the development of a novel PID-based SMC recently. As a state tracking control scheme, 

it has been shown effective in the control of the second order mechanical systems, in which the 

states can be readily measured. For other systems such as the black box systems whose models 

are obtained by means of system identification, the states have limited physical meaning and 

their information might not be available. In such cases, the existing design method is challenged 

for use due to the lack of system states information. In addition, the existing PID-based SMC is 

continuous and may not work as expected in digital systems. Due to the unmatched sampling 

time, zigzag state motion exists, which suggests that the sampling itself also induces chattering. 

The mean of the zigzag state motion might deviate from the sliding surface, causing steady state 
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error. Therefore, the appropriate forms of DSMC are desirable to alleviate the aforementioned 

problems, especially for the applications where the sampling rate is limited. This work is to 

develop an output tracking based DSMC to compensate the hysteresis and other nonlinear effects 

of the one-DOF PEAs without chattering. 

4.2 Methods 

   Considering the hysteresis and the other nonlinearities to be uncertainties and disturbance, 

the performance of the PEA can be described using the general discrete time invariant linear 

system expressed by the transfer function 
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where , ( 1,2, , )i i i n     and 
0 are the parameters. If 0i   for 1,2, ,i n  , the discrete 

transfer function can be rewritten in a state space form 

( 1) ( ) ( )d dx k A x k B u k                            (4.2) 
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the system matrixes of the discrete state space model. The state vector is represented in terms of 

the outputs in the past history. As such, the existing CSMC design method can be adopted for the 

development of the DSMC. However, if 0 ( 1,2, , )i i n    , such a state space form does not 

exist. Therefore, an output tracking based design approach has to be considered. Inspired by this, 
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the transfer function (4.1) is regarded as the cascade of the nominator 
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the denominator 
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G z z 


   in this work. It is noted that 2 ( )G z  can be 

expressed by such a state space model, as shown in Equation (4.2). Thus, v(z), defined as the 

output of 1( )G z  and the input of 2 ( )G z , can be derived by using the nominal SMC design 

approach. The input u can be obtained by cascading the inverse of the transfer function 1( )G z , 

denoted by 1
1G  , to the discrete PID-based SMC which is designed based on 2 ( )G z . It is noted 

that, due to the imperfection of the plant model, the dynamics of 1( )G z  may not be completely 

inverted by the use of 1
1G  . Such an error is considered as an uncertainty provided to the input 

of the plant and will be compensated by the PID-based SMC, as shown in Figure 4.1. 

 

 

Figure 4. 1  Inversion based approach for the discrete PID-based SMC 

   Due to the discontinuity of the ‘bang-bang’ switching control in the nominal SMC design, 

state switching can occur at high frequency, known as chattering. In order to eliminate 

chattering, a discrete PID regulator is employed,  
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where s is the output of the switching function, P, I and D are the proportional, integral and 

derivative parameters respectively. Such a controller is continuous and thus chattering can be 

eliminated. Moreover, due to the integral component of the switching control, zero steady state 

error can be obtained. 

4.3 Results 

   The output tracking based discrete PID-SMC as designed by both the traditional approach 

and the model reference approach can achieve better tracking performance and as the input 

frequency increases, the performance improvement with the proposed method becomes more 

profound. It is noted that the output tracking integrated discrete PID-SMC developed in this 

work can be used in control applications for proper SISO systems. If the reference signals are not 

derivable during the designated time period, the model reference approach is recommend in the 

controller design such that the large overshoot due to the discontinuous properties of the 

reference input can be eliminated. 

4.4 Contributions 

   The contribution of this paper is the development of an output tracking integrated discrete 

PID-SMC, in which the system output is integrated in the SMC design such that the proposed 

method can be employed in the control applications for SISO systems where the system states 

are not available. 
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4.5 Paper: An Output Tracking Integrated Discrete PID-based Sliding 

Mode Control on SISO Systems 

   Authors: Y. Cao, X. B. Chen, Member, IEEE and J. Y. Peng3  

   Index Terms: Discrete time systems, Control systems, Piezoelectric devices, Robustness 

4.5.1 Abstract 

   Sliding mode control (SMC) has been widely employed to compensate for the system 

uncertainty and disturbance. However, the chattering problem, caused by the discontinuous 

characteristic of switching function used in traditional SMC, greatly deteriorates the performance 

of SMC and has become the main limitation for its applications. Also, implementing the SMC in 

digital systems could make it even worse due to the limited sampling time. Moreover, as a state 

tracking control scheme, traditional SMC cannot be employed in the applications where the 

system states are not available. To alleviate these problems, the paper presents the development 

of a novel control method, so called “the output tracking integrated discrete PID-based SMC”, 

along with the controller design approaches (i.e., the traditional SMC design approach and the 

model reference approach). Without the need of system states, this novel method allows for 

eliminating chattering problem and the steady state error that may exists in such control methods 

                                                        

   Manuscript received October 18, 2012. This work was supported by the China Scholarship Council (CSC) and 
the Natural Science and Engineering Research Council (NSERC) of Canada. 
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as the continuous PID-based SMC. In order to demonstrate the effectiveness of the developed 

method, experiments were carried out on a commercially available piezoelectric actuator with 

varying sampling times, as compared to the continuous PID-based SMC. The results illustrate 

that the tracking performance with the proposed method is much better than the continuous 

PID-based SMC. 

4.5.2 Introduction 

   Sliding model control (SMC) is a form of variable structure control and has been recently 

drawing considerable attention in the control research community worldwide due to its ability to 

compensate for the system uncertainties and disturbance [81], [91], [92], [94]. However, because 

of the discontinuity of SMC switching control, chattering exists and thus excites undesired 

system high resonance mode to deteriorate the system tracking performance. One solution to the 

chattering problem is to use the boundary layer control [94], in which a saturation switching 

control is employed to replace the discontinuous switching control. It is noted that, if the 

unknown disturbance is profound, a sufficiently-high gain in controller is always required and 

such a control scheme behaves like a high-gain proportional (P) controller. As a result, steady 

state error may exist. An alternative way is to enlarge the width of the boundary layer, thus 

decreasing the effective linear gain for reduced state oscillation around sliding surface. However 

the state can no longer strictly locate on the ideal sliding surface due to the wider boundary layer 

and the system does not behave as described by the sliding mode. In [95], a high order sliding 

surface was used to replace the first order one typically used in the nominal SMC design. With 

the main advantages of the nominal SMC, the high order sliding mode control (HOSMC) can 

reduce the chattering effect and improve the accuracy for its realization. The main problem is 

that it requires increasing sliding information in implementing the HOSMC [97]. Recently, a 
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new continuous proportional-integral -derivative (PID)-based SMC was developed [98], in 

which the discontinuous ‘bang-bang’ switching function is replaced by a PID regulator in order 

to eliminate the chattering problem. Due to the integral effect of the PID regulator, the steady 

state tracking error can be eliminated.  

   As a state tracking control scheme, the PID-based SMC developed in [98] has been shown 

effective in the control of the second order mechanical systems, in which the states can be 

readily estimated from the measured output based on its physical model. In some applications, 

the system states may not be readily, or even be impossibly, obtained [104] due the system 

complexity. In such cases, the application of the PID-based is challenged due to the lack of 

information of system states [92].   

   Furthermore, it is noticed that, if implemented in a digital computer, the continuous SMC 

(CSMC) may not work as expected [100], [131]. For discrete SMC (DSMC), if the switching 

time doesn’t match the sampling time, the states will not lay on the sliding surface and the 

trajectory appears like a zigzag motion around the sliding surface, which suggests that the 

sampling itself also induces the chattering problem in the DSMC. If the mean of zigzag motion 

deviates from the sliding surface, the steady state error will exist. Therefore, the appropriate 

forms of discrete SMC are desirable to alleviate the aforementioned problems, especially for the 

applications where the sampling rate is limited. In [132], a robust DSMC design was proposed 

for a nonlinear electrical hydraulic actuator system; and the state required was measured by 

means of a position sensor. In [133], the DSMC design was combined with a state estimator and 

disturbance observer, which, however, significantly increased the system complexity.   

   To raise these challenges, this paper presents the development of a novel control method, so 

called “the output tracking based DSMC”, in which the system output is integrated in the SMC 
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design such that the proposed method can be employed in the applications where the system 

states are not available. Furthermore, the proposed method is cascaded with the optimal 

inversion control to further improve the system dynamics, in which the error caused by the 

imperfect compensation of the optimal inversion is treated as a disturbance and then rejected by 

the PID-based SMC. In addition, due to the application of the PID regulator in the proposed 

method, as designed by means of the traditional SMC design approach and the model reference 

approach, the state zigzag motion, as observed in other DSMCs, is eliminated for improved 

performance. In order to verify the effectiveness of the proposed method, experiments were 

carried out on a commercially available piezoelectric actuator (PEA), as compared to the 

continuous PID-based SMC. 

4.5.3 Output Tracking Integrated PID-based Sliding Mode Control 

4.5.3.1 Problem statement 

   Consider a discrete nth order single-input-single-output (SISO) system defined by Equation 

(4.1) where , ( 1, 2, , )i i i n     and 
0 are the parameters and the numerator and denominator 

are relatively prime polynomials. If 0i   for 1,2, ,i n  , the discrete transfer function can 

be rewritten in a state space form ( 1) ( ) ( )d dx k A x k B v k   , as shown in Equation (4.2), where 
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input signal vector; ( 1) 1 ( 1) ( 1)
1 2 1

0
( )α

α
n n n

n nd
n

I
A   


    

 

 
      

    


 , 

01 ( 1)0
T

d nB  
 
   are the system matrixes of the discrete state space model. The state vector 

is represented in terms of the outputs in the past history. As such, the method introduced in [98] 
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can be adopted and applied in the design SMC.   

   For the systems whose model is obtained by means of system identification with 0i   

( 1,2, , )i n  , the aforementioned state space form does not exist and as such, an output 

tracking based design process has to be employed. For this, the transfer function (4.1) is regarded 

as the cascade of the nominator 
1 0

0
( ) /

n
j

i
j

G z z 


   and the denominator 

2 0
1

( ) /(1+ )
n

i
i

i
G z z  


  , as shown in Figure 4.2.  

 

 
 

Figure 4. 2  Decomposition of the discrete SISO plant 

   It is noted that 
2 ( )G z  can be expressed by such a state space model, as shown in Equation 

(4.2). Therefore, the output of 
1( )G z  or the input to 

2 ( )G z , dented by v(z) in the following, can 

be derived from the traditional SMC design. The input u can be obtained by cascading the 

inverse of the transfer function 
1( )G z , denoted by 1

1 ( )G z , to the discrete PID-based SMC 

which is designed based on 
2 ( )G z . It is noted that, due to the imperfection of the plant model, 

the dynamics of 
1( )G z  may not be completely inverted by the use of 1

1 ( )G z . Such an error 

due to the model imperfection is considered as an uncertainty added to the input of the plant and 

will be compensated by the PID-based SMC, as shown in Figure 4.1. 
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4.5.3.2 Traditional SMC design 

   Consider Equation (4.2) with the bounded and matched uncertainties and disturbance 

( 1) ( ) ( ) ( )d dx k A x k B v k k                          (4.4) 

Denote the desired output vector to be 1( ) ( ) ( 2) ( 1)
T n

d d d dx k y k n y k y k R        . 

The objective of DSMC is to force the error state ( ) ( ) ( )de k x k x k  , staring from any initial 

value, to move to the sliding surface and then converge to zero. Equation (4.4) can be rewritten 

in terms of the dynamics of e(k), 

( 1) ( ) ( ) ( ) ( ) ( 1)d d d d de k A e k B v k k A x k x k                     (4.5) 

   Similar to the general design approach for the continuous system, the input v(k) can be 

divided into two parts 
1( )v k  and ( )SMv k , i.e.,   

†
1( ) [ ( ) ( 1)]d d d dv k B A x k x k                          (4.6) 

where †
dB  is the pseudo inverse of matrix 

dB . 

   Substituting Equation (4.6) into Equation (4.5) yields 

† †( 1) ( ) ( ) ( ) ( ) ( ) ( 1)SMd d d d d d d d de k A e k B v k I B B A x k I B B x k        
    

 (4.7) 

   For the system described by Equation (4.4), it can be verified 

† †( ) ( ) ( ) ( 1) 0d d d d d d dI B B A x k I B B x k     . Thus, Equation (4.7) is reduced to 

( 1) ( ) ( )SMd de k A e k B v k                          (4.8) 

   For the sliding function that takes the following form of  

( ) ( )s k Se k                               (4.9) 

where S defines the shape of the sliding surface, the control action can be considered 

consisting two parts, i.e.,  
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( ) ( ) ( )eqSMv k v k v k                            (4.10) 

where 1( ) ( ) ( )eq d dv k SB SA e k   is the equivalent control and ( )v k  is the switching 

control. Substituting Equation (4.10) into Equations (4.8) and (4.9) yields 

1( 1) [ ( ) ] ( ) ( ) ( )d d d de k I B SB S A e k B v k k                    (4.11) 

( 1) ( ) ( )ds k SB v k S k                           (4.12) 

   For the convenience of following discussion, Equations (4.9) and (4.11) are rewritten as 

( 1) ( ) ( ) ( ) ( ) ( )p de k A e k B v k k s k Se k     ，               (4.13) 

where 1[ ( ) ]p d d dA I B SB S A  . The system described by Equation (4.13) is equivalent to a 

dynamic plant, where ( )v k  is the input and s(k) is the output. The aim of the controller 

design is to force the output of the equivalent plant to be zero. Instead of using the switching 

control, a PID regulator is employed to generate the control signal in this paper, as shown in 

Figure 4.3, which is given by Equation (4.3), where P, I and D are parameters of the discrete 

PID-based SMC; T is the sampling period. 

 

 
Figure 4. 3  Equivalent plant for the design of Δv(k) 

   Theorem 4.1: If the closed-loop system is stable, by using the PID regulator stated in 
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Equation (4.3), the steady state output of the equivalent plant (4.13) will be zero [134], i.e., 

1
( ) lim ( ) 0

z
s s z


   . 

   Theorem 4.2: There exist such parameters P, I and D that the closed-loop control system in 

Figure 4.3 is stable. 

   Proof: Substituting Equation (4.3) into (4.12) yields 

     
1

0
1 ( ( ) ( 1 (/ ) / ) )d d

k

i
d d ds k PSB ISB T DSB s k DSB s k ISB T s i S kT T 




        (4.14) 

Note that 

       
1

0
( 1) [ 1 2 ] / ( 1)

k

d
i

d dISB T s i s k PSB s k DSB s k s k T S k



         

  

(4.15) 

Thus, Equation (4.14) can be rewritten as 

 
 

( 1) (1 (/ ) / )

/ )

) (2 1

           ( 2 ( ) ( 1)

d d d d d

d

s k PSB ISB T DSB s k DSB SBT s k

DSB s k S k S

T P

T k 

     





  




   (4.16) 

Denoting   ( ) ( 1)k S k S k     , Equation (4.16) can be re-expressed as a discrete transfer 

function ( ) / ( )s z z  with its characteristic function given by   

  3 2(1 (2 (/ ) / ) / )d d d d d dp z PSB ISB T DSB zz T T PDSB SB D B Tz S     (4.17) 

   The poles of the transfer function can be arbitrarily allocated by defining the coefficients of 

the characteristic function 

2

1

0

/ 1
/

0
20

0 /
Η

d d d

d d

d

T P P
T

SB SB T SB
I I

T D D
SB SB

SB





      
      
      
            


                 (4.18) 

where 
0 1 2,   and     are the coefficients of the characteristic function derived from the desired 

poles. Matrix H is full rank. Therefore, there exist P, I and D such that the closed-loop control 

system in Figure 4.3 is stable. 



 

87 
 

   The input u can be obtained by an inverse feedforward control, as shown in Figure 

4.2.Taking the inverse Z-Transform of the transfer function of 
1( )G z  yields 

0 1 0( ) [ ( ) ( 1) ( )] /nu k v k u k u k n                         (4.19) 

This recursive equation can be readily implemented in digital systems. It is noted in Equation 

(4.19) that the poles in the transfer function from v(z) to u(z) are the zeros of the plant (4.1). 

Therefore, the stability of the traditional SMC design approach depends on the location of the 

zeros of the plant. For the SISO system with zeros locating outside the unit circle, the divergent 

input u needs to be generated from Equation (4.19). To solve this problem, the optimal inversion, 

as reported in [6], is adopted and used in the present paper. The objective of the optimal 

inversion is to develop an input u such that the following cost function is minimized 

[ ( ) ( )] [ ( ) ( )] ( ) ( )T T
d dJ u k u k Q u k u k u k Ru k                  (4.20) 

where 
0 1 0( ) [ ( ) ( 1) ( )] /ndu k v k u k u k n         , Q and R are weight matrixes, which 

determine the stability of the optimal inversion. As such, the optimal input is given by 

0 1

0

[ ( ) ( 1) ( )]
( )

( )
n

opt
Q v k u k u k n

u k
R Q

  


    



               (4.21) 

4.5.3.3 Model reference design of the output tracking based DSMC 

   An alternative way to design the output tracking based DSMC is the model reference 

approach, as shown in Figure 4.4. The objective of the model reference design is to develop a 

control action which forces the plant dynamics to follow the dynamics of an ideal model. The 

controller should thus forces the error between the actual output y and the desired output 

calculated by the reference model 
dy  to zero as time approaches to infinity. 
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Figure 4. 4  Model reference approach of the SMC design 

   For the nth order discrete SISO system that is described by Equation (4.1) with bounded 

disturbance and uncertainties, the state space representation is 

( 1) ( ) ( ) ( )

( ) ( ) ( )
d d

d d

x k A x k B u k k

y k C x k D u k

   
 

                   (4.22) 

   It is noted that 
dD  does not have to be a zero matrix. Suppose the desired state space 

representation is denoted by   

( 1) ( ) ( )
( ) ( ) ( )

m m

m md

w k A w k B r k
y k C w k D r k

  
 

                       (4.23) 

where 1( ) mw k R   is the state; ( )r k R  is the reference input signal; ( )dy k R  is the 

output of  the reference system;  m m
mA R  , 1m

mB R  , 1 m
mC R   and mD R  are the 

system matrixes. The aim of the model reference approach is to force the output of the actual 

system to follow the output of reference system. Denoting the tracking error as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m md d de k y k y k C x k D u k k C w k D r k      
       

 (4.24) 

   With the denotation of ( ) [ ( ), ( 1), , ( 1)]Tk e k e k e k n     , Equation (4.24) leads to,  

0 ( 1)

0 ( 1)

( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1)
c c c n

cm cm cm n

k A x k B u k B u k n

k A w k B r k B r k n

 



     

      


             

(4.25) 
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where ( )k  represents the effective disturbance and uncertainty of the system,  

2 2
0 1 ( 1)

2 31 1

0 0
0
0, , , , , ,

md d

m md d d d d

d d d d dc cm m md d c c c n

n nn n
dd d d d d d m md d

C CD
C A C AC B D

C A B C BC AA B B B A C A

DC A B C A BC A C A



  

       
       
       
       
       
       
       

          

    
   

0 1 ( 1)

2 3

0 0
0

, , , ,0

m

m m m

m m m m mcm cm cm n

n n
mm m m m m m

D
C B D

C A B C BB B B

DC A B C A B



 

    
    
    
    
    
    
    

    

  
  

1 1 1

1 1

1
2 3

1

1 0 0
1 0

( ) ( ) ( 1) ( 1),
0
1

n n n

nd n

d d d

n
n n

nd d d d

C
C A Ck k k k n

C A C A

  

  

 


 



     
     
     
     
     
     
     

    

       
 

Equation (4.25) leads to  

0 ( 1)

0 ( 1)

( 1) ( ) ( ) ( 1) ( ) ( )

            ( 1) ( ) ( ) ( 1) ( )
c c ccd d c n

cm m cm m cm cm n

k A A x k A B u k B u k B u k n A k

k A A w k A B r k B r k B r k n

 



        

         




 (4.26) 

   It is noted that n n
cA R  . Under the assumption that system (4.26) be controllable, i.e., 

0cA  , one has  

1
0 1 ( 1)

0 1 ( 1)

( ) [ ( ) ( ) ( 1) ( 1) ( )+ ( )

       ( ) ( 1) ( 1)]
c cmc c c n

cm cm cm n

x k A k B u k B u k B u k n k A w k

B r k B r k B r k n






         

      




 (4.27) 

   Substituting Equation (4.27) into Equation (4.26) and denoting 1 ( ),e c cdA A A A k  

1 ,c c cm cm mdP A A A A A A   … 1
1 ( 2) ( 1) ,c cn c n d c nB A A A B
    

 

1( ) ( ) ( 1) ( ),c c cdk A k k A A A k         
1

0 0 ,c c cm mcmdR A A A B A B   

1
1 1 0 ,c c cm cmdR A A A B B   …, 1

1 ( 1) ( 2)c cn d cm n cm nR A A A B B
     and 

( 1)n cm nR B   , one has the 

dynamics of the tracking error vector δ given by 

0 1

0( 1)

( 1) ( ) ( ) ( 1)

            ( ) ( ) ( ) ( ) ( )
e n

nc n

k A k u k u k n

B u k n Pw k k R r k R r k n

  



        

        




       (4.28) 
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Equation (4.28) has similar form as Equation (4.5). As such the traditional SMC design can be 

employed to generate the control signal u. Following the design as shown in Equation (4.6), one 

has the control signal consisting of two parts 
1 2( ) ( ) ( )u k u k u k  . Therefore, Equation (4.28) 

can be re-written as 

1 2( 1) ( ) ( ) ( ) ( ) ( ) ( )ek A k Pw k f u f u k g r                      (4.29) 

where 
1 0 1 1 1 1( 1)( ) ( ) ( 1) ( )n c nf u u k u k n B u k n          , 

2 0 2 1 2 2( 1)( ) ( ) ( 1) ( )n c nf u u k u k n B u k n           and  

0 1( ) ( ) ( 1) ( )ng r R r k R r k R r k n      . 

   For a perfect tracking performance, it is required that ( 1) 0k   . If 

1( ) ( ) ( )=0Pw k f u g r                          (4.30) 

then Equation (4.29) leads to a nominal SMC problem 

2( 1) ( ) ( ) ( )ek A k f u k                           (4.31) 

In the following passages, 
1u  will be derived from Equation (4.30). Then the nominal SMC 

design will be applied to Equation (4.31) and both the equivalent control and the PID regulator 

will be obtained.  

 

(1) Determination of 
1u  

   From Equation (4.30), one has  

†
1 0 1 1 1 0( 1)( ) [ ( ) ( ) ( 1) ( ) ( )]nnc nu k n B Pw k u k u k n R r k R r k n               (4.32) 

Substituting Equation (4.32) into Equation (4.30) yields 

† † †
0 1 1 1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

† † †
0 1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1) ( ) ( ) 0

nc n c n c n c n c n c n

nc n c n c n c n c n c n

I B B Pw k I B B u k I B B u k n

I B B R r k I B B R r k I B B R r k n

     

     

          

        




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(4.33) 

Equation (4.33) is satisfied for any values of w and r if and only if  

† † †
0 1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

† † †
1 0 1( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

†
( 1) ( 1)

( ) 0, ( ) 0, ( ) 0, ,

( ) 0, ( ) 0, ( ) 0, ,

( ) 0

c n c n c n c n c n c n

nc n c n c n c n c n c n

nc n c n

I B B P I B B I B B

I B B I B B R I B B R

I B B R

     

     

 

       

      

 



  (4.34) 

   Theorem 4.3: For a controllable SISO system described by Equation (4.1), the conditions as 

given in (4.34) are satisfied if the reference model is selected such that 1
10i

m m mC A 
  

( 1, 2, , )i n  . 

   Proof: The Equation (4.1) can be rewritten as 

1 2
1 2 1 0

1 2
1 2 1 0

( )
n n

n n
n n n

n n

b z b z b z b
G z d

z a z a z a z a

 
 

 
 

   
 

    



               (4.35) 

The state space representation of the above system is similar to Equation (4.22). 

   Lemma 4.1: If cA is of rank n, then 1
c cdA A A   can be expressed in terms of its controllable 

canonical form [135]. 

   Lemma 4.2: For the system of simultaneous equations denoted by HD E , a solution for 

D exists if and only if rank[H E] = rank[H] [92]. 

   According to Lemma 4.1, 1
c cdA A A   can be expressed as 

1 11 12

21 22
c cd

N N
A A A

N N
  

 
  

                           (4.36) 

where ( 2) 1 ( 2) ( 2)
11

1 ( 2)

0

0 0
n n n

n

I
N     

 

 
 
  

 , ( 2) 1
12

0

1
nN   

 
  

 , 
21 0N  and  
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where 2 1
1 2( )  and T n T n

m m m m mcm cmA C C A A C A  
   .  
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        
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Similarly, for , ( 1, 2, , 1)i i n    and , ( 0,1, , )iR i n  , one has  
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   Therefore, †
( 1) ( 1)( ) 0, 1, 2, , 1,ic n c nI B B i n       †

( 1) ( 1)( ) 0, 0,1, , .jc n c nI B B R j n      

□ 

   Theorem 4.3 suggests that the model reference approach for the discrete SISO system can be 

transferred to the nominal DSMC design, as shown in Equation (4.31). 

 

(2) Determination of 
2u  

   Let the sliding surface be 

( ) ( ) 0s k S k                              (4.41) 

Following the nominal SMC design as shown in Equations (4.8) ~ (4.11), one has the control 

action consisting of two parts, i.e., 
2 ( ) ( ) ( )equ k u k u k   , where the equivalent control is 

defined by  

1
0 2 1 2 1 2( 1)( ) ( ) [ ( ) ( ) ( 1) ( 1)]eq e nc nu k n SB S A k u k u k u k n

              (4.42) 

and the PID regulator can be given by  

       
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i

s k s k
u k Ps k I s i T D

T

 
    

              
 (4.43) 

 

⑶ Stability analysis 

   It is noticed that w(k) is a function of r(k), r(k+1), …, r(k+n), substituting Equations (4.39) 

and (4.40) into Equation (4.32) yields 

1 0 0 1 1 1 1( ) ( ) ( ) ( ) ( 1) [ ( ), , ( )]n ndu k n b a d u k b a d u k n g r k r k n             (4.44) 

where 
0[ ( ), , ( )] ( ) ( ) ( )ng r k r k n Pw k R r k R r k n       . 

   By taking Z-Transform of Equation (4.44), the transfer function from r to 
1u  is given by 
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
      

       (4.45) 

Compared to Equation (4.35), Equation (4.45) indicates that the poles of the transfer function 

from r to 
1u  are the zeros of the plant transfer function. Therefore, location of the zeros of the 

plant determines the stability in the model reference approach. Particularly, if the zeros of the 

plant are located outside the unit circle in the complex plane, optimal inversion (4.21) can also be 

applied. 

4.5.4 Experiments 

   PEAs have been widely used in nanotechnology due to its high precision, fast response and 

large force generated. However, hysteresis, existing in PEA as a nonlinear effect, can greatly 

degrade their performance [2], [43]. To improve the performance of PEAs, control and 

compensation for hysteresis have been drawing considerable attention. In this paper, with the 

aim of verifying the effectiveness of the discrete PID-based SMC, experiments were designed 

and carried out on a commercially- available PEA (P-753, Physik Instrumente). The hysteresis 

nonlinearity existing in the PEA was considered as a disturbance, which was rejected by the 

proposed discrete PID-based SMC. 

   The PEA selected for experiments can generate displacement in a range of 15 μm with a 

resolution of 0.5 nm. For displacement measurements, a built-in capacitive displacement sensor 

with a resolution of 1 nm was used. Both the actuator and the sensor were connected to a host 

computer via an I/O board (PCI-DAS1602/16, Measurement Computing Corporation) and 

controlled via SIMULINK programs. The mass ratio of the stage driven by the PEA to the PEA 

is 49.8, suggesting that the dynamics of the whole system can be regarded approximately as a 

second order system [46], [124], [130], [136]. As such, a second order auto-regressive model 
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was chosen to describe the system dynamics, while the hysteresis exhibited by the actuator is 

considered as an extra disturbance to the dynamic model, as shown in Eqution (4.46)  

1 2 0 1 2( ) ( 1) ( 2) ( ) ( 1) ( 2)y k a y k a y k b x k b x k b x k        
       

 (4.46) 

where 
1 2 0 1 2, , ,  and a a b b b

 
are the model parameters. As a result, sophisticated models for 

hysteresis are not required in the implementation of developed control. For the experiments, a 

70V white noise input voltage was provided to the PEA and the corresponding output 

displacements were measured at sampling rate of 1000 Hz, 2000 Hz, 5000 Hz, 10000 Hz, and 

20000 Hz, respectively. With the recorded data, the parameters were identified by using the least 

square method, in which the 2-norm of the difference between the measured data and the 

estimations was used in the error evaluation. The identified parameters with the error are listed in 

Table 4-1. It is noted that 
1 20 and 0   , which indicates that the traditional state tracking 

based DSMC as shown in [132] and [133] are not applicable in this situation. 

Table 4- 1  Identified parameters for the dynamic model 
Sampling 
frequency 

  
1a    

2a     
0b     

1b    
2b  Error 

(μm) 
 1000 Hz 0.3212 0.01025 0.003889  0.1189 -0.01765 0.1863 
2000 Hz 0.0712 0.12058 0.002944 0.10592 0.01797 0.4224 
5000 Hz 0.7567 -0.16145 0.003463 0.01386 0.00447 0.6991 

10000 Hz 1.0589 -0.15055 0.002018 0.00075 0.01001 0.7914 
20000 Hz 1.6092 -0.6248 0.000778 -0.00041  0.00134 0.3403 
 

4.5.4.1 Output tracking integrated discrete PID-based SMC—Traditional SMC design 

approach 

   The output tracking integrated discrete PID-based SMC developed by using the traditional 

SMC design approach was implemented in the experiments to control the PEA with different 



 

96 
 

sampling frequencies – 1000Hz and 20000 Hz. A 5 μm step input was provided as the reference 

signal. The state was designed to be T[ , ]yx y v , where y is the output displacement and yv  is 

the velocity. The displacement and the velocity were estimated by a α-β filter which is a 

simplified observer for estimation and filtering. The parameters of the filter was adjust by 

trails-and-errors as α = 0.1, β = 0.0001 for 20000 Hz sampling rate and α = 0.3, β = 0.001 for 

1000 Hz sampling rate. The sliding surface was defined as Equation (4.9) where S = [m, 1]. It is 

noted from Table 4-1 that the zeros of the plant locate outside the unit circle. Therefore, optimal 

stable inversion (4.21) was integrated in the controller. Parameters in the SMC were adjusted in 

order to get the best tracking performance. Table 4-2 shows the adjustment results.  

Table 4- 2  Parameters adjusted in the proposed method for different sampling rates (traditional 
SMC design approach) 
Sampling 
frequency 

  m   P    I    D   Q  R 

 1000 Hz  1000   0.6   240 0.0005     1 100 
20000 Hz 18000 0.001    10 0.000001     1 400 
 

   For comparison, a nominal output tracking based DSMC was also implemented to control the 

PEA. The sliding surface was designed the same as the discrete PID-based SMC. ‘Bang-bang’ 

control was applied as the switching control. The parameter K is adjusted to be 1 for 20000 Hz 

sampling rate and 3 for 1000 Hz sampling rate. 

   Figure 4.5 and Figure 4.6 show the step tracking performance of PEA controlled by the 

proposed method derived from the traditional SMC design approach and the nominal output 

tracking based DSMC, sampled with 20000 Hz rate and 1000 Hz rate respectively. The blue 

solid line represents the desired displacement while the red dash line corresponds to the output 

displacement controlled by different methods.  
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(a)                               (b) 

 
(c)                               (d) 

Figure 4. 5  Step tracking performance (20000 Hz sampling rate) of the proposed method 
designed by the inversion approach 
(a) displacement (b) error state track and the ordinary DSMC (c) displacement (d) error state 
track 

   It can be seen that serious chattering problem exists in the nominal output tracking based 

DSMC with ‘bang-bang’ switching control. The output displacement oscillates from 3.6 μm to 

7.6 μm with high frequency. The center of the chattering is 5.6 μm, 0.6 μm offset from the 

desired displacement, which means that the steady state error exists in the nominal DSMC. By 

using the PID-based switching control instead of the ‘bang-bang’ switching, chattering problem 

and steady state error were eliminated. The error state converges to zero and oscillates around the 

origin point with its amplitude being 0.015 μm at 20000 Hz sampling rate and 0.006 μm at 1000 
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Hz sampling rate, which are the noise level of the sensor. 

 

 
(a)                                (b) 

 
(c)                               (d) 

Figure 4. 6  Step tracking performance (1000 Hz sampling rate) of the proposed method 
designed by the inversion approach 
(a) displacement (b) error state track and the ordinary DSMC (c) displacement (d) error state 
track 

   Compared with the proposed method designed by using the traditional approach, the error 

state controlled by the nominal output tracking based DSMC oscillated around the origin region 

with large amplitude. The oscillation center deviated from the origin point due to the zigzag 

motion generated by the unmatched switching time. It is noted from the results that the proposed 

method designed by the traditional approach at both sampling frequencies can achieve good 

control performance. However, since the reference signal is not derivable at the step time, large 
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overshoot was observed in the step response. 

4.5.4.2 Output tracking integrated discrete PID-based SMC—Model reference approach 

   In this section, the output tracking integrated discrete PID-based SMC was designed by using 

the model reference approach. Experiments with both 1000Hz and 20000 Hz sampling rates were 

carried out. A 5 μm step input was adopted as the reference signal as well. The state was 

designed to be T[ , ]yx y v  which was estimated by a α-β filter, with the same parameters set as 

the traditional SMC design approach. The transfer function of the desired second order system 

was given by 

2 2 2( ) / ( 2 )n n ndG s s s                           (4.47) 

where ς is the desired damping ratio and n  is the desired natural frequency. With ς and n  

being chosen as 0.7 and 1000 rad/s respectively, a step response with 5.7 ms setting time and 

4.6% overshoot can be obtained. The optimal stable inversion (4.21) was additionally integrated 

in the controller. Parameters in the proposed method designed by the model reference approach 

were adjusted such that the best tracking performance can be achieved. Table 4-3 shows the 

adjustment results.  

Table 4- 3  Parameters adjusted in the proposed method for different sampling rates (model 
reference approach) 
Sampling 
frequency 

  m   P    I    D   Q  R 

 1000 Hz  0.99   4.2  1150   0.001     1  0.5 
20000 Hz  0.99   10 25000 0.00002     1 0.001 
 

   Figure 4.7 shows the step tracking performance of PEA controlled by the proposed method 

developed from the model reference approach, sampled at rates of 20000 Hz rate and 1000 Hz, 



 

100 
 

respectively. The blue solid line represents the output displacement of the reference model while 

the red dash line corresponds to the output displacement controlled by the proposed method. 

 

 
(a)                                (b) 

 
(c)                                (d) 

Figure 4. 7  Step tracking performance of the proposed method designed by model reference 
approach at the 20000 Hz sampling rate 
(a) displacement (b) error state track; and at the 1000 Hz sampling rate (c) displacement (d) error 
state track 

   The setting time and the overshoot were respectively 5.5 ms and 5.2% for the 20000 Hz 

sampling rate and 4.2 ms and 4.3% for the 1000 Hz sampling rate. These values are close to that 

of the reference step response which indicates that the proposed method designed by the model 

reference approach can achieve a good tracking performance in relation to the reference output at 
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different sampling frequencies. In contrast with the output tracking integrated discrete PID-based 

SMC designed by the traditional design approach, less overshoot was observed in the step 

response because the derivability of the reference signal is not required in the model reference 

approach. 

4.5.4.3 Dynamic tracking performance compared with the continuous PID-based SMC 

   In order to verify the effectiveness of proposed control method, dynamic tracking 

experiments with the above sampling frequencies were also carried out on the PEA. Particularly, 

three types of inputs were used as the reference signal: ① the sinusoidal inputs of an amplitude 

of 5 μm with different frequencies of 1, 10, 30 and 50 Hz; ② the piecewise continuous 

combination of different-amplitude sinusoidal inputs with the same frequency (PSWS), as shown 

in Figure 4.8(a); ③ the superposition of four sinusoidal inputs with different frequencies, 

amplitudes and phase delays (SW), as shown in Figure 4.8(b) and Equation (4.48).  

 

 
                    (a)                                  (b) 
Figure 4. 8  Reference signals in the control verification 
(a) piecewise continuous combination of different-amplitude sinusoidal inputs with the same 
frequency (PSWS) and (b) superposition of four sinusoidal inputs with different frequency, 
amplitude and phase delay (SW) 
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      (4.48) 

   The output tracking integrated discrete PID-based SMC designed by the model reference 

approach was implemented on the PEA, in which the parameters of the second order reference 

model were chosen to be 0.25   and 3000 /n rad s  . The parameters of the output 

tracking integrated discrete PID-based SMC were adjusted as shown in Table 4-4. For 

comparison, the continuous PID-based SMC introduced in [98] was also implemented on the 

PEA. The parameters of the PID regulator were adjusted by using the Ziegler-Nichols method, 

leading to P = 0.001, I = 1, and D = 0.0000001 for the 20000 Hz sampling rate, P = 0.002, I = 

0.6, and D = 0.0000001 for the 10000 Hz sampling rate, and P = 0.0001, I = 0.03, and D = 

0.0000001 for the 5000 Hz sampling rate.  

Table 4- 4  Parameters adjusted in the proposed method for different sampling rates (model 
reference approach) 
Sampling 
frequency 

  m   P    I    D   Q  R 

 1000 Hz 0.99   9.6  1500   0.001    1 0.05 
2000 Hz 0.99 4  1000 0.00002 1 0.001 
5000 Hz 0.99    2  1500 0.00002 1 0.001 

10000 Hz 0.99 1.5  3500 0.00002 1 0.001 
20000 Hz 0.99 1 12000 0.00002    1 0.001 

   Figure 4.9 shows the dynamic tracking performance of the output tracking integrated discrete 

PID-based SMC designed by the model reference approach at 5000 Hz sampling frequency, 

compared with the continuous PID-based SMC. The tracking error was calculated in terms of the 

2-norm of the difference between the desired output and the measured output. More comparison 

is shown in Table 4-5 and Table 4-6 in detail.  
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                    (a)                                  (b) 

 
                    (c)                                  (d) 

 
                    (e)                                  (f) 
Figure 4. 9  Tracking performance of the proposed method and the continuous PID-based SMC 
at 5000 Hz sampling rate for different reference signals 
SW with its maximum frequency being 50 Hz (a) displacement (b) tracking error; PSWS with its 
frequency being 50 Hz (c) displacement (d) tracking error; and 30 Hz 5 μm sinusoidal signal (e) 
displacement (f) tracking error 
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Table 4- 5  Comparison of the tracking performance between the proposed method and the 
continuous PID-based SMC at 20000 Hz sampling rate 

Reference inputs 
Discrete PID-based 
SMC (Traditional 
design approach) 

Discrete 
PID-based SMC 
(Model reference 

approach) 

Continuous 
PID-based SMC

1 Hz sinusoidal input 0.0117 0.0088 0.0062 
10 Hz sinusoidal input 0.0519 0.0383 0.0213 
30 Hz sinusoidal input 0.1552 0.1253 0.1001 
50 Hz sinusoidal input 0.2641 0.2315 0.2678 
SW with maxf = 10 Hz 0.0142 0.0106 0.0074 
SW with maxf = 30 Hz 0.0223 0.0188 0.0169 
SW with maxf = 50 Hz 0.0313 0.0309 0.0352 

PSWS with 10 Hz frequency 0.0393 0.0295 0.0247 
PSWS with 30 Hz frequency 0.1188 0.0964 0.0979 
PSWS with 50 Hz frequency 0.2000 0.1769 0.1833 

Table 4- 6  Comparison of the tracking performance between the proposed method and the 
continuous PID-based SMC at 5000 Hz sampling rate 

Reference inputs 
Discrete PID-based 
SMC (Traditional 
design approach) 

Discrete 
PID-based SMC 
(Model reference 

approach) 

Continuous 
PID-based SMC

1 Hz sinusoidal input 0.0511 0.0283 0.0121 
10 Hz sinusoidal input 0.0620 0.0385 0.1535 
30 Hz sinusoidal input 0.1600 0.0833 1.2270 
50 Hz sinusoidal input 0.3685 0.1865 2.9360 
SW with maxf = 10 Hz 0.0372 0.0218 0.0479 
SW with maxf = 30 Hz 0.0635 0.0400 0.1976 
SW with maxf = 50 Hz 0.0849 0.0541 0.6206 

PSWS with 10 Hz frequency 0.0617 0.0384 0.1057 
PSWS with 30 Hz frequency 0.1423 0.0812 0.8469 
PSWS with 50 Hz frequency 0.2835 0.1430 2.0464 

   It can be concluded from the comparison that the output tracking integrated discrete 

PID-based SMC performs similar as the continuous PID-based SMC at high sampling 

frequencies. For example, the tracking error for 1 Hz 5 μm sinusoidal input controlled by the 

discrete PID-based SMC developed from the model reference approach is 0.0088 μm which is 
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only 0.0026 μm more than that controlled by the continuous PID-based SMC, while for 50 Hz 

sinusoidal input, the tracking error is 0.0363 μm less than that of the continuous PID-based 

SMC. As sampling frequency decreases, the output tracking integrated discrete PID-based SMC 

performs much better than the continuous PID-based SMC with one exception at a frequency of 

1 Hz, which is bolded in Table 4-6. 

   At low input frequency, the performance improvement with the proposed method is not 

apparent. However, as frequency increases, the improvement becomes more profound, for 

example, showing 91.3% improvement for the 50 Hz SW tracking by using proposed method as 

designed by means of the model reference approach and 86.3% improvement as designed by the 

traditional SMC design approach.  

   It is noted that as compared with the traditional SMC design approach, the model reference 

approach can achieve better tracking performance. For example, for the 30 Hz sinusoid reference 

input with 20000 Hz sampling rate, the tracking error by using the model reference approach is 

0.1253 μm ─ 0.0301 μm less than that obtained by using the traditional SMC design approach. 

Moreover, increasing the sampling rate improves the tracking performance of discrete PID-based 

SMC for both the traditional SMC design approach and the model reference approach. 

4.5.4.4 Dynamic tracking under different sampling rates 

   The improvement of tracking performance with the output tracking integrated discrete 

PID-based SMC can be further illustrated by experiments with varying sampling rates. 

Specifically, sinusoidal tracking experiments were implemented on the PEA at sampling rate of 

1000 Hz, 2000 Hz, 5000 Hz, 10000 Hz, and 20000 Hz, respectively. Both the discrete PID-based 

SMCs, as designed by the model reference approach and the continuous PID-based SMC 

approach, were used to control the PEA with the parameters given in Table 4-4. The parameters 
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of the continuous PID-based SMC were adjusted to be P = 0.002, I = 0.6, D = 0.0000001 for the 

case with the 10000 Hz sampling rate. Figure 4.10 shows the tracking error varying with the 

sampling rates by using these two controllers. The tracking error was evaluated in terms of the 

2-norm of the differences between the desired output and the measured output. It can be seen that 

the discrete PID-based SMC performs better than the continuous one, especially at low sampling 

rates. It is noted the tracking errors for the continuous PID-based SMC at 1000 Hz and 2000 Hz 

are not given in Figure 4.10 as they are significantly large. 

 

 
Figure 4. 10  Comparison of tracking errors as controlled by the discrete and continuous 
PID-based SMC with different sampling rates 

4.5.5 Conclusion 

   This paper presents the development of the output tracking integrated discrete PID-based 

SMC for SISO system, in which the system output is fed back for generating the control action. 

As such, it can be employed in the applications where the system states cannot be readily 
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available. Both the traditional SMC design approach and the model reference approach are 

employed for the controller design. By applying the PID regulator instead of the ‘bang-bang’ 

switching control, chattering, and the zigzag state motion thus the steady state error, were 

eliminated. In order to verify the effectiveness of the proposed control schemes, experiments 

were carried out on a commercially available PEA with varying sampling frequencies, as 

compared to the use of continuous PID-based SMC. The results show that the developed method 

as designed by both approaches can achieve better tracking performance and that as the input 

frequency increases, the performance improvement with the developed method becomes more 

profound. The results also show that due to the non-requirement on the derivability of the 

reference signal, the developed method designed by the model reference approach has a better 

performance than the one designed by the traditional SMC design approach. 
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5 Inversion-based Sliding Mode Control and Disturbance 

Observer based Sliding Mode Control for One-DOF Piezoelectric 

Actuators 

This chapter presents the work that is included in the following manuscript appended.  
  
Y. Cao and X. B. Chen, “Two Modified Discrete PID-Based Sliding Mode Control for 
Piezoelectric Actuators,” International Journal of Control, 2012, under review, manuscript 
ID: TCON-2013-0179. 

5.1 Introduction and Objectives 

   In the previous chapter, the discrete PID-based SMC was developed for the control of PEAs, 

where hysteresis and other nonlinear effects were considered to be disturbance to the dynamics 

and rejected by the DSMC. If hysteresis can be completely or partially modeled, the integration 

of hysteresis models into control schemes may improve the control performance. Inspired by this, 

discrete inversion based PID-SMC and DOB-based PID-SMC are to be developed in this study, 

in which the PEA hysteresis is completely and partially predicted, respectively, by using existing 

models of PEA hysteresis. 

5.2 Methods 

   PEA is commonly modeled as the cascade of the dynamics and the hysteresis, as shown in 

Figure 5.1. In Chapter 3, a rate independent hysteresis model and a second order auto regressive 

model were employed to depict the hysteresis and dynamic performance of PEA. The hysteresis 

nonlinearity can be compensated by cascading an inverse hysteresis prior to the plant, resulting 
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in a discrete inversion based PID-SMC proposed in this work, as shown in Figure 5.1.  

 

 
Figure 5. 1  Inversion based PID-SMC 

   The inverse of the rate independent hysteresis, denoted by 1H , is cascaded to a discrete 

PID-based SMC to compensate for the nonlinear hysteresis, while the discrete PID-based SMC is 

designed to improve the dynamics of the PEA. Since the hysteresis is compensated by its 

inversion, the disturbance to be rejected by the discrete PID-based SMC is reduced. As a result, 

the tracking error should be less in comparison to the nominal PID-based SMC. Due to the 

imperfection of the model, the hysteresis may not be completely compensated by the use of 

1H . Such a model imperfection is considered to be uncertainty and is provided to the input of 

the plant which is rejected by the discrete PID-based SMC. 

   It is reported in the literature that the hysteresis can be considered to be the combination of a 

linear component and a nonlinear component representing the disturbance. Therefore, DOB 

might be employed to compensate for the hysteresis, as shown in Figure 5.2, where η is the 

measurement noise and Q is a low pass filter which is employed to stabilize the DOB. The output 

of the DOB can be represented as 

( ) [ ( )]e
e e e e

Q Q Q Qw uQ y uQ G K u
K G K G K G K

                       (5.1) 

where v is the main controller output, u is the control input, δ is the external disturbance, y is the 
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plant output and η is the sensor noise. w is feedback to the input of the PEA. As a result, the 

integration of DOB would compensate for the hysteresis which is regarded as disturbance. The 

discrete PID-based SMC is designed based on the dynamics of the PEA. 

 

e

Q

K G

 

Figure 5. 2  DOB-based PID-SMC 

5.3 Results 

   Integration of the inverse hysteresis and the DOB is more effective in terms of the hysteresis 

compensation. Therefore, the disturbance, which is rejected by the DSMC, is reduced, thus 

improving the performance of the discrete PID-based SMC. Based on the examined cases with 

inputs of varying frequencies, it is recommended that the inversion based discrete PID-SMC 

should be used if the input frequency is low, while the discrete DOB-based PID-SMC is 

preferred for applications with higher frequencies. 

5.4 Contributions 

The contribution of this work was the successful improvement of the discrete PID-based 

SMC by integrating the inversion feedforward and DOB such that the disturbance to be rejected 
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by the DSMC is reduced. 

5.5 Paper: Two Modified Discrete PID-based Sliding Mode Controllers 

for Piezoelectric Actuators 

   Authors: Y. Cao and X. B. Chen, Member, IEEE4 

   Index Terms: Disturbance observer, Feedforward control, PID, Sliding mode control, 

Piezoelectric actuator. 

5.5.1 Abstract 

   Hysteresis is a nonlinear effect that can result in the degraded performance of piezoelectric 

actuators (PEAs). To counteract the effect, several control methods have been developed and 

reported in the literature. One promising method for compensation is the use of a 

proportional-integral-derivative (PID)-based sliding mode control (SMC), in which the PEA 

hysteresis is treated as an unknown disturbance to the PEA input. If the hysteresis can be 

modelled or partially modelled, the integration of the hysteresis models into the control schemes 

may lead to further improved performance. On this philosophy, this paper presents the 

development of two modified discrete PID-based sliding mode controllers (PID-SMC) for 

piezoelectric actuators, namely an inversion-based PID-SMC and a disturbance-observer 

(DOB)-based PID-SMC, in which the PEA hysteresis is predicted or partially predicted through 

use of existing models for the PEA hysteresis. Experiments were performed to verify the 
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effectiveness of the proposed control schemes. The results were compared to those of the 

nominal PID-based SMC. By employing the inversion hysteresis and the DOB, the PEA 

performance was greatly improved. 

5.5.2 Introduction 

   An increasing demand for high accuracy in production manufacturing and other devices has 

led to rapid development of precision engineering. From its origin in mechanical engineering, it 

evolved into micro-mechanics and then nanotechnology [1]. Nanotechnology is the study of the 

control of matter on an atomic and molecular scale. One key requirement imposed on 

nanotechnology is nano-positioning [2]. Piezoelectric actuators (PEA) have been widely applied 

to nano-positioning, due to their fast response, high precision, and their ability to generate large 

forces. However, hysteresis, the main nonlinear effect in PEAs, can greatly degrade the 

positioning accuracy of PEA-driven systems [61] - [63]. To compensate for the hysteresis effect, 

the control of PEA has been drawing considerable attention and several methods have been 

developed. A proportional-integral (PI) controller was used to compensate for the nonlinear 

effect of hysteresis [23]. The challenge in using PI controllers is maintenance of system stability 

in the presence of parameter uncertainty and disturbances. Another challenge is the issue of low 

gain margin in high frequency manipulation due to a rapid loss in phase at the sharp resonant 

peak [2]. To improve the robustness of control advanced feedback controllers, such as H  and 

2H  controllers [137], have been employed for the hysteresis compensation. For example, in 

[138], the tracking error for a 50 Hz sinusoidal reference input was reduced to 2% of the 

travelling path by integrating a Smith predictor-based robust H  controller.  Inverse 

feedforward control is also frequently used in PEAs due to its ability to avoid the low gain 
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margin problem of the feedback control. In [6], the inverse of the Preisach hysteresis model was 

combined with an optimal control scheme to compensate for PEA hysteresis. The results showed 

substantial improvements in positioning precision and operational speed. In [139], an 

inversion-based model predictive controller with an integral-of-error state variable was 

developed for the piezoelectric actuator control with improved tracking performance under given 

constraint of the input. Unfortunately, the disturbance and uncertainties were not considered in 

the aforementioned controller and as a result, the robustness of performance can be degraded by 

the imperfection of the model used. 

   Sliding model control (SMC), as a variable structure control method [131], has been widely 

employed by the control research community worldwide. SMC is recognized for its capacity for 

rejecting the input disturbance [92]. However, chattering, caused by the discontinuous switching 

function in SMC, may excite the high frequency resonant vibration, thereby degrading control 

performance and potentially even damaging the actuators being controlled. To resolve the 

chattering problem, boundary layer control has been employed by researchers [94], in which a 

saturation function is used to replace the discontinuous ‘bang-bang’ switching function. It is 

noted that if the unknown disturbance to be rejected is significant, a sufficiently high gain in 

control is needed. To alleviate this problem, one method is to employ a high-order sliding 

surface instead of the first-order one in the nominal SMC design [95], [96]. It has been shown 

that the high-order sliding mode control (HOSMC) can reduce the chattering effect, meanwhile 

improve the control performance [97]. The cost of using HOSMC is the increased sliding 

information in its implementation, for example, the r-sliding controller keeping 0s   requires 

( 1)', '', , rs s s   to be available. 

   A new continuous proportional-integral-derivative (PID) based SMC for PEAs was recently 
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developed, in which the discontinuous ‘bang-bang’ switching function is replaced by a PID 

regulator to eliminate the chattering problem [98]. Experiments were implemented on a 

commercial available PEA and it was proven that by using a continuous PID-based SMC, the 

hysteresis existing in the PEA could be effectively compensated, thereby leading to an improved 

performance. Moreover, due to the integration effect of the PID regulator, zero steady state error 

was achieved in the tracking performance. If implemented in a digital computer, SMC may lose 

some properties of its continuous form [100], [101], [131]. For a discrete sliding mode controller 

(DSMC), if the switching time does not match the sampling rate, the states cannot approach and 

maintain on the sliding surface. Instead, they follow a zigzag motion around the sliding surface, 

suggesting that the sampling can also induce chattering in DSMC. Therefore, it is argued in 

[100] that the discrete form of SMC is essentially needed for its implementation, especially in 

cases with relatively slow sampling rates. Unfortunately, this issue was not addressed in [98]. In 

addition, in [98], the hysteresis was regarded as a disturbance and rejected by the PID-based 

SMC. If the hysteresis can be modeled or partially modeled, the integration of hysteresis models 

into control schemes may improve the control performance.  

   In this study, an inversion based discrete PID-SMC and a DOB-based PID-SMC are 

developed, in which the PEA hysteresis is predicted and partially predicted, respectively, by 

using existing models of PEA hysteresis. Imperfection of the hysteresis model and other 

uncertainties are treated as disturbances to be rejected by the discrete PID-based SMC. By using 

a discrete PID-based SMC, the zigzag motion of the states caused by the mismatch of switching 

and sampling time can be removed. To verify the effectiveness of the proposed control methods, 

experiments were performed on a commercially-available PEA. Both the inversion based 

PID-SMC and the DOB-based PID-SMC was implemented, respectively, and the results were 
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compared to those of the nominal PID-based SMC reported in [98]. In contrast to the nominal 

PID-based SMC, compensation for hysteresis is performed more effectively by both inversion 

based PID-SMC and DOB-based PID-SMC.  

5.5.3 Discrete PID-based SMC 

   Consider a discrete nth order single-input-single-output (SISO) system described by 

0
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where  and  ( 1, 2, , )i ia b i n   are the parameters of  the transfer function. It can be regarded 

as a cascade of the nominator 
1( )G z and the denominator 

2 ( )G z  
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Figure 5. 3  Block diagram of a discrete nth order SISO system: f(z) and y(z) is the input and 
output of the dynamics respectively, v(z) is a middle variable 

   The system state is defined as 

( 1) T( ) [ ( ), ( ), ( ), , ( )]nx k y k y k y k y k                       (5.3) 

where ( ) ( )ny k  represents the nth order derivative of the output at time kT.  Then, the transfer 

function 
2 ( )G z  can be written in the discrete state space form as   

( 1) ( ) ( ) ( )d dx k A x k B v k k                          (5.4) 

where 1( ) nk R  is the uncertainty at time kT; ( )v k is the control input signal at time kT; 
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and n n
dA R   and 1n

dB R   represent the system matrixes of the discrete state space model.  

   Define the error state to be 

( ) ( ) ( )de k x k x k                              (5.5) 

where ( )dx k  is the desired state. The objective of the SMC is, via the control action, to force 

the error state, regardless of its initial value, to move to the sliding surface in a finite amount of 

time and then converge to zero. If the desired reference state is designed to be 

( 1) T( ) [ ( ), ( ), ( ), , ( )]n
d d d d dx k y k y k y k y k                     (5.6) 

where dy is the desired output and ( ) ( )n
dy k  represents the nth order derivative of dy . The 

dynamics of the tracking error state can be derived from Equations (5.4) and (5.6) as 

( 1) ( ) ( ) ( 1) ( ) ( )d d d d de k A e k A x k x k B v k k                    (5.7) 

   Considering only the zero order and first order derivatives and neglect the disturbance, a 

perfect system requires ( ) 0e k   at any time, yielding  

( ) ( 1) ( ) 0d d d dA x k x k B v k                         (5.8) 

   Equation (5.8) can be satisfied if and only if, according to the study [92] 

†[ ( ) ( 1)]( ) 0d d d d dA x k x k I B B                        (5.9) 

where †
dB  is the pseudo inverse of matrix dB . Unfortunately, if the state is chosen and given 

by Equation (5.3) for a discrete SISO system, its state space model ( , , , )d d d dA B C D will not be 

the controllable canonical form and Equation (5.9) may not be satisfied. 

   To solve this problem, a linear transform is introduced here, i.e.,   

'x Fx                               (5.10) 

where 2 1[ , , , , ]n
d d dF p pA pA pA    and p is a one-by-n vector.  If  ( ) ( )e k Fe k , then, from 
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Equation (5.4), ( )e k  may be described by  

1 1( 1) ( ) ( ) ( ) ( +1) ( )d d d d de k FA F e k FB v k FA F x k Fx k F k            (5.11) 

   As introduced in [98], input v can be divided into two components 

1 2( ) ( ) ( )v k v k v k                            (5.12) 

where  

† 1
1( ) ( ) [ ( 1) ( )]d d d dv k FB Fx k FA F x k                    (5.13) 

Substituting Equations (5.12) and (5.13) into Equation (5.11) leads to the nominal SMC design 

problem [92], i.e.,  

1
2( 1) ( ) ( ) ( )d de k FA F e k FB v k F k                     (5.14) 

   The sliding surface s(k) is designed to be 

( ) ( ) 0s k Se k                             (5.15) 

where matrix S defines how the tracking error converges to zero. Combining Equations (5.14) 

and (5.15) yields 

1
2( ) ( )+ ( ) 0d dSFA F e k SFB v k SF k   .                 (5.16) 

  Therefore, 
2( )v k  can be decomposed into the equivalent control ( )eqv k  and the switching 

rule ( )SMv k , such as 

1( ) ( ) ( )eq d dv k SFB SFA e k                        (5.17) 

and 

       
0

( 1)
[ ]

k

SM
i

s k s k
v k Ps k I s i T D

T

 
                 (5.18) 

where P, I, and D are parameters of the discrete PID-based sliding mode control. 

   As illustrated in the appendix, it can be proved that the state will move towards the sliding 
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surface and converge to zero, thus eliminating the the steady state error. In addition, according to 

the transfer function 
1( )G z , the input f can be derived from v, which is a desired value as 

calculated from the SMC,  

1

0

[ ( ) ( 1) ( )]
( ) nv k b f k b f k n

f k
b

                      (5.19) 

    Therefore, 1( )G z  yields 

1
0 1 1

( ) 1
( ) n n

nn

f z
v z b z b z b z b




   

 .                  (5.20) 

   Equation (5.20) indicates that the poles of the transfer function from v to f are the zeroes of 

the plant. As long as the zeroes of the plant are located inside the unit circle, the control is stable. 

Otherwise, optimal inversion must be applied, as illustrated as follows. The objective of the 

optimal inversion is to develop a stable input f such that it minimizes the cost function 

[ ( ) ( )] [ ( ) ( )] ( ) ( )T T
d dJ f k f k Q f k f k f k Rf k                 (5.21) 

where 1 2

0 0 0 0

( )( ) ( 1) ( 2) ( )n
d

b b bv kf k f k f k f k n
b b b b

        , and Q and R are the weight 

matrixes which determine the stability of the optimal inversion. For example, if the 2 norm of the 

weight matrix R is high, the optimization will smooth the input in order to reduce the energy 

supply to the system. In this case, the output ( )f k  doesn’t tracking the input ( )df k .
 

   To minimize the cost function given in (5.21), it requires 

/ ( ) 0J f k                               (5.22) 

The solution of Equation (5.22) leads to the optimal input 

1 0

[ ( ) ( )]
( )

n
i

i
opt

b
Q v k f k i

b
f k

R Q


 
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


                     (5.23) 

Thus, Equation (5.23), together with Equations (5.13), (5.14), (5.18) and (5.19), forms the 
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discrete PID-based SMC. 

5.5.4 Inversion based PID-SMC for Piezoelectric Actuator Hysteresis 

   A PEA is commonly modeled as the cascade of the dynamics and the hysteresis, as shown in 

Figure 5.4, in which the input voltage u passes through the hysteresis sub-model, and its output f 

is the effective mechanical force supplied to the subsequent dynamic model which generates the 

displacement y. In [136], a rate independent hysteresis model and a second order auto regressive 

model were employed to describe the hysteresis and dynamic performance of PEA based on our 

previous research [46], [124], [130]. 

 

 
 

Figure 5. 4  Cascade model of PEA 

   Adopting this idea, an inversion based PID-SMC is proposed in this study, as shown in 

Figure 5.1. The inverse of the rate independent hysteresis, denoted by 1H , is cascaded to a 

PID-based SMC to compensate for the nonlinear hysteresis, while the PID-based SMC is 

designed to improve the dynamics of the PEA. Since the hysteresis is compensated by its 

inversion, the disturbance to be rejected by the PID-based SMC is reduced. As a result, the 

tracking error should be less in comparison to the nominal PID-based SMC introduced in [98]. 

Due to the imperfection of the hysteresis model, the hysteresis may not be completely 

compensated by using 1H . Such a model imperfection is considered to be an uncertainty and is 

added to the input of the plant that is to be compensated by the PID-based SMC. In this study, 

the inversion of hysteresis developed in [139] is adopted, which is represented by  
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2
1 1 14

if ( 1) ( ),  ( 1)
2

a
f k f k u k

a
    

                  (5.24) 

where 
1 ( 1) ( ) 2cf k cf k b     , 2

1 1( ) ( ) 2[ ( 1) ( )]au k u k f k f k      ; 

2
2 2 24

if ( 1) ( ),  ( 1)
2

a
f k f k u k

a
   

                  (5.25) 

where 
2 ( 1) ( ) 2cf k cf k b      , 2

2 2( ) ( ) 2[ ( 1) ( )]au k u k f k f k       . 

5.5.5 DOB-based PID-SMC for Piezoelectrc Actuator Hysteresis 

   It is reported in [82] and [98] that the hysteresis can be considered as a combination of a 

linear component and a non-linear component representing the disturbance, as shown in Figure 

5.5, i.e.,  

eF K u                                (5.26) 

where eK  is the effective coefficient of the PEA,   is the disturbance and max| |  . 
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Figure 5. 5  Hysteresis of PEA 

   It is supposed that the disturbance   can be compensated by the DOB [81], [82], [140], as 

shown in Figure 5.2, where η is the measurement noise and Q is a low pass filter employed to 
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stabilize the DOB. The output of the DOB is given by Equation (5.1) where w is feedback to the 

input of the PEA and as a result, the DOB is able to compensate for the hysteresis that is 

regarded as the disturbance. The PID-based SMC is Figure 5.2 is designed based on the PEA 

dynamics.  

   In [83], three conditions that need to be satisfied for the Q filter design are given and restated 

as follows.  

   Condition 1: All unstable zeroes of the plant must be zeroes of Q such that the output of the 

DOB w is stable; 

   Condition 2: The relative degree of Q must be larger than the relative degree of G to ensure 

reality of the DOB.  

   Condition 3: To completely compensate for the hysteresis nonlinearity, the steady state gain 

of the Q filter should be 1. 

   Considering the dynamics of the piezoelectric actuator which is described by a second order 

transfer function as 

 
2

0 1 2
2

0 1 2

( )
b z b z b

G z
a z a z a

 
                  

                (5.27)  

To meet the above conditions, the Q filter has be designed with the following transfer function  

 
2

0 1 2
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b z b z b
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 
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                            (5.28) 

with the following condition  

      0 1 2

0 1 2

1
b b b
c c c
 


              

                      (5.29) 

   The objective of design is to determine the parameters 0c , 1c  and 2c such that the continuous 

form of the Q filter can be described by the transfer function  
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( )( )
( )

D sQ s
N s


   

                (5.30) 

where s is the Laplace operator, 
2

1 1
( ) ( 1)sN s






 , D(s) is determined by the system parameters 

and ω is the cut-off frequency. Equation (31) indicates that the amplitude-  

phase curve of 1
( )N s

 drops at the cut-off frequency with a slope of 40 dB/decade. 

   Taking a bilinear transform on Equation (5.28), the transfer function of the Q filter can be 

transformed into a transfer function in the s domain. 
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0 1 2 0 1 2
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T s Ts
b b b b b b

   
       
   

                 (5.31) 

   Combining Equations (5.30) and (5.31) with Equation (5.29), one has the parameters c0, c1 

and c2 given by 

0 0 1 22 2

1 0 1 22 2

2 0 1 22 2

1 1 1( )( ),
4 4
1 1( )( ) and
2 2
1 1 1( )( ).
4 4

c b b b
TT

c b b b
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c b b b
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





    

   

    

                  (5.32) 

5.5.6 Experiments and Results 

   Experiments on a commercially-available PEA (P-753, Physik Instrumente), as shown in 

Figure 5.6, were implemented to verify the effectiveness of the proposed methods. The actuator 

can generate displacement with a range of 15 μm and a resolution of 0.5 nm. The P-753 PEA has 

a built-in capacitive displacement sensor for measuring the displacements. The root mean square 

(RMS) value of the sensor noise is 10~15 nm. Both the actuator and the sensor were connected 

to a host computer via an I/O board (PCI-DAS1602/16, Measurement Computing Corporation) 
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and controlled by SIMULINK programs. All displacements were measured with a sampling 

interval of 0.05 ms. The mass ratio of the stage to the PEA is 49.8, suggesting that the dynamics 

of the piezoelectric driven stage can be approximately regarded as a second order system 

according to previous studies [46],[124], [130].   

Two experiments were designed and implemented to demonstrate the effectiveness of the 

proposed control schemes. In the first experiment, the PID parameters and optimal inversion 

parameters were provided with the same values for all three control schemes, i.e., the inversion 

based PID-SMC, the DOB-based PID-SMC, and the nominal PID-based SMC, so that their 

performance could be compared on a common basis. In the second experiment, the PID 

parameters were adjusted, respectively, for each control scheme to achieve the best tracking 

performance.   

 

 

                   (a)                                  (b)  
Figure 5. 6  Experimental settings on the piezoelectric driven stage 
(a) picture and (b) schematic diagram.  

   In both experiments, three types of inputs were used as the reference signal for tracking. The 

first type was a sinusoidal input with amplitude of 5 μm and frequencies varying from 1 to 50 

Hz. The second type was a piecewise continuous function consist of different-amplitude 
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sinusoidal inputs with the same frequency, as shown in Figure 4.8a, where the amplitude is 5 μm 

for the first and second period of the sinusoidal wave, 2.5 μm for the third period and 0.75 μm 

for the fourth period. The last type was a superposition of four sinusoidal inputs with different 

frequencies, amplitudes and phase delays, as shown in Figure 4.8b and displacements w given by 

Equation (5.47). 

   Table 5-1 shows each type of input data and their abbreviation. 

Table 5- 1  Inputs in the experiments 

Abbreviation Input Description Remarks 

PWSW10 Piecewise continuous combination of 
different amplitude 
sinusoidal inputs 

10 Hz 
PWSW30 30 Hz 

PWSW50 50 Hz 
SW10 Superposition of  four sinusoidal 

inputs with different frequency, 
amplitude and phase delay 

Maximum 10 Hz 
SW30 Maximum 30 Hz 
SW50 Maximum 50 Hz 
SIN1 

5 μm sinusoidal input 

1 Hz 
SIN10 10 Hz 
SIN30 30 Hz 
SIN50 50 Hz 

 

5.5.6.1 Parameter Identification 

   First, experiments were performed to identify the parameters, i.e., a, b and c in the hysteresis 

model, such that the effective mechanical force f, which is the input of the dynamics, can be 

estimated. Then, the estimated f and the measured displacement y were used to identify the 

parameters in the dynamic model. 

   Since hysteresis dominates in PEA performance under low frequency voltages, a 70V, 1Hz 

sinusoidal input voltage was applied to the PEA and the corresponding displacement was 

measured to identify the parameters a, b and c. Specifically, the continuous hysteresis model 
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[136] was used and by means of least square method, a, b and c were given values of 0.0077, 

0.1167 and -0.0487, respectively. With these values, the inversion hysteresis model was obtained 

using Equations (5.24) and (5.25). Figure 5.7 shows an estimation of the hysteresis. The blue 

solid line is the hysteresis of the PEA for 1Hz input and the red dashed line is the fitted 

hysteresis. It can be seen that fitting error exists between the measured output and the model 

output. This error is considered as a disturbance to the PID based. The parameter 
eK was 0.1347, 

as identified in [98]. 

 

 
Figure 5. 7  Hysteresis identification 

   Next, a 70V white noise voltage was provided to the PEA and the corresponding 

displacement was measured. The input f to the dynamic model was estimated by substituting the 

estimated parameters a, b and c into the discrete hysteresis model introduced in [136]. With f and 

the measured displacement y, the parameters in the dynamic model were identified, leading to   
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( ) 1.6035 ( 1) 0.61995 ( 2) 0.0050811 ( )
        0.0036354 ( 1)+0.010553 ( 2)
y k y k y k u k

u k u k
    
  

           (5.33) 

Because the proposed methods are to be compared with the nominal PID-based SMC introduced 

in [98], the dynamic model for the nominal PID-based SMC should be identified as well, which 

is given by  

( ) 1.6076 ( 1) 0.61956 ( 2) 0.00071058 ( )
0.00047055 ( 1)+0.0012609 ( 2)

y k y k y k u k
u k u k

    
           

(5.34) 

5.5.6.2 Comparison based on the same PID parameters 

   To verify the effectiveness of the inversion feedforward compensation and DOB, the control 

methods were used to control a PEA with a sampling rate of 20 kHz. A comparison was made 

with the nominal PID-based SMC introduced in [98] based on the same PID parameters. The 

optimal inversion approach introduced in Section II was applied in the SMC design. The state 

was designed to be T[ , ]yx y v , where y is the output displacement and yv  is the velocity. The 

displacement and the velocity were estimated using a α-β filter which is a simplified form of 

observer for estimation and filtering. The parameters of the filter were determined to be α = 0.1, 

β = 0.0001 by trials-and-errors. The sliding surface was defined by Equation (5.16) where S = 

[18000, 1]. For the nominal PID-based SMC, since the zeroes of the plant were located outside 

the unit circle, the optimal inversion of Equation (5.23) was employed in the controller as well. 

The parameters of the PID regulator and the optimal inversion were kept the same for the 

inversion based PID-SMC and the DOB-based PID-SMC. Table 5-2 shows the adjusted 

parameters. The cutoff frequency in the DOB-based PID-SMC was designed to be 500rad/s. 
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Table 5- 2  Parameters in the experiments for the first part 

Parameters P I D Q R 

Value 0.01 30 0.000001 1 100 

 

   Table 5-3 compares the tracking errors of the PEA controlled by the nominal PID-based 

SMC, inversion based PID-SMC and DOB-based PID-SMC. The tracking error is defined by the 

RMS value of the difference between the output displacement of the PEA and the desired output 

defined by the reference input. Figure 5.8 shows some of the results for the tracking performance 

of the PEA controlled by means of different methods.  

Table 5- 3  Comparison of the tracking performance controlled by different methods in the 
experiments for the first part 

Inputs PID-based SMC Inversion based PID-SMC 
DOB-based  
PID-SMC 

SIN 1 0.027 0.0055 0.0063 
SIN 10 0.1835 0.0698 0.0516 
SIN 30 0.4526 0.2156 0.2016 
SIN 50 0.5988 0.3621 0.4588 
SW 10 0.044 0.0134 0.0117 
SW 30 0.0888 0.0316 0.0365 
SW 50 0.1252 0.0494 0.0737 

PWSW 10 0.1472 0.0543 0.0403 
PWSW 30 0.367 0.1701 0.1599 
PWSW 50 0.4823 0.2818 0.3628 

  

   Compared to the nominal PID-based SMC, the tracking errors for the inversion based 

PID-SMC and DOB-based PID-SMC were shown much smaller. For instance, for the 10 Hz SW 

input, the tracking errors of the piezoelectric actuator controlled by the inversion based 

PID-SMC and the DOB-SMC are 0.0134 μm and 0.0117 μm, which are 30.4% and 26.6% of that 

controlled by the nominal PID-based SMC, respectively. This occurred because the use of the 

inversion hysteresis and DOB has the capacity to compensate for the disturbance rejected by the 
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PID-SMC. This can also be seen from Figure 5.9, in which the influence of hysteresis is reduced 

by the inversion feedforward control. Compared to the hysteresis shown in Figure 5.7, the 

hysteresis here was shown to be reduced 83% by measuring the width of the hysteresis loop at 

the central input voltage of 35V.  

 
(a)                               (b) 

 
(c)                               (d) 

 
(e)                               (f) 
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(g)                               (h) 

 

 
(i)                                (j) 

 

 
(k)                               (l) 

Figure 5. 8  Comparison of the tracking performance controlled by different methods 
(a-d) control input for PWSW50, SW50, SIN1 and SIN50 inputs; (e-h) displacements for 
PWSW50, SW50, SIN1 and SIN50 inputs; (i-l) tracking error for PWSW50, SW50, SIN1 and 
SIN50 inputs; 
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   At low frequencies, the DOB-based PID-SMC performs better than the inversion based 

PID-SMC. If the 10 μm 10 Hz sinusoidal signal was applied to the input, the tracking error for 

the inversion based PID-SMC is 0.0698 μm while the tracking error for the DOB-based 

PID-SMC is 0.0516 μm. Similar results are also found where PWSW and SW are given as 

reference inputs. However, an exception exists for the 1Hz sinusoidal input. The tracking error of 

the PEA controlled by the inversion based PID-SMC is 0.0055 μm which is 87.3% of the 

tracking error for the DOB-based PID-SMC. At high frequencies, the inversion based PID-SMC 

performs better, which indicates the high gain margin of the inversion feedforward control. For 

the SW 50 reference input, for instance, the tracking error for the inversion based PID-SMC is 

67% of that for the DOB-based PID-SMC. 

 

 
Figure 5. 9  Hysteresis compensation by the inversion feedforward control (Sinusoidal input 
with 10 um amplitude and 1 Hz frequency) 

5.5.6.3 Comparison based on the PID parameters adjusted for the best performance  

   To verify the effectiveness of the proposed methods, experiments were performed on the 
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PEA with a 20 kHz sampling rate as well. The PID parameters of the three controllers were 

adjusted respectively by applying the Ziegler-Nichols method, such that the best tracking 

performance could be derived. The state was still designed to be [ , ]T
yx y v . The displacement 

and the velocity were estimated by a α-β filter with α = 0.1, and β = 0.0001. The sliding surface 

was again defined by Equation (5.16), where S = [18000, 1]. The optimal inversion of Equation 

(5.23) was employed in the controllers for stabilization. Table 5-4 shows the adjusted parameters 

for each controller. The cutoff frequency in the DOB-based PID-SMC was designed to be 500 

rad/s as well. 

Table 5- 4  Parameters in the experiments for the second part 

Controller P I D Q R 
PID-based SMC 0.01 60 0.000001 1 100 

Inversion based PID-SMC 0.001 10 0.000001 1 100 
DOB-based PID-SMC 0.05 12 0.000001 1 100 

 

Table 5-5 shows the tracking errors of the PEA controlled by the PID-based SMC, inversion 

based PID-SMC, and DOB-based PID-SMC. The tracking error is represented as described 

above in section B. From Table 5-5, it can be concluded that both the inversion based PID-SMC 

and DOB-based PID-SMC performed better than the nominal PID-based SMC. For example, for 

the PWSW 50 reference input, the tracking errors for the inversion based PID-SMC and the 

DOB-based PID-SMC are 56.9% and 49.6%, respectively, of the error by the nominal PID-based 

SMC. This implies that the tracking performance of the PID-based SMC can be improved by 

reducing the disturbance. At low frequencies, the inversion based PID-SMC performs better than 

the DOB-based PID-SMC. For example, for the 30 Hz sinusoidal input, the tracking error for the 

inversion based PID-SMC is 0.0552 μm while the tracking error for the DOB-based PID-SMC is 
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0.0013 μm more. Similar conclusions can be drawn for the PWSW and SW reference inputs. 

This differs from the results shown in the last section which indicated the influence of the 

adjusted PID parameters. At high frequencies, the DOB-based PID-SMC performs better. For the 

PWSW 50 reference input, the tracking error for the DOB-based PID-SMC is 0.0086 μm less 

than that of the inversion based PID-SMC.  

Table 5- 5  Comparison of the tracking performance controlled by different methods in the 
experiments for the second part 

Inputs PID-based SMC Inversion based PID-SMC 
DOB-based  
PID-SMC  

SIN1 0.0133 0.0125 0.0137 
SIN10 0.0461 0.0368 0.0473 
SIN 30 0.0973 0.0552 0.0565 
SIN 50 0.1416 0.0867 0.0683 
SW 10 0.0161 0.0135 0.0144 
SW 30 0.0273 0.0183 0.0205 
SW 50 0.0378 0.0223 0.0258 

PWSW 10 0.0383 0.0295 0.0373 
PWSW 30 0.0832 0.0446 0.0467 
PWSW 50 0.1208 0.0687 0.0601 

 

5.5.7 Conclusions and disscussions 

   PID-based SMC has shown promise in the control of PEA due to its disturbance rejection. In 

this control scheme, PEA hysteresis is treated as totally-unknown disturbance to the PEA input 

for compensation. For improvement, this paper presents the development of two modified 

PID-based SMC, namely, the inversion based PID-SMC and the DOB-based PID-SMC. In the 

inversion based PID-SMC, the PEA hysteresis is predicted from existing models of PEA 

hysteresis and then strategically included in the inversion feedforward control for its 

compensation. In the DOB-based PID-SMC, the PEA hysteresis is partially predicated and 
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compensated by employing the DOB technique.   

   To illustrate the effectiveness of the proposed control schemes, experiments were performed 

and the results were compared with those from the nominal PID-based SMC. It has been shown 

that by inclusion of the inverse hysteresis and the DOB are more effective in term of the 

hysteresis compensation. Therefore, the disturbance, which is rejected by the SMC, is reduced, 

thus improving the performance of the PID-based SMC. Based on the examined cases with 

inputs of varying frequencies, it is recommended that the inversion based PID-SMC should be 

used if the input frequency is low, while the DOB-based PID-SMC is preferred for applications 

with higher frequencies.  

5.5.8 Appendix 

   The state moves towards the sliding surface and converge to zero.   

   Prove: Divide the switching function into two parts 

0 1( ) ( )s k s s k                              (5.35) 

where 0s  is the initial value of the switching function, which depends on the value of the 

original state. 

   Substituting Equations (5.19) and (5.35) into Equation (5.16) and considering Equations 

(5.13)-(5.15), one can derive  

       1 1
1 0 1 1

0

1
( 1) [ ( 1) 1] ( )     

k

i

s k s k
s k SBP SBIT k s SF k SB Ps k IT s i D

T




 
 
  

 
         

 (5.36) 

where dB FB . 

   Equation (5.36) can be considered as a two-inputs-one-output system, where 0s  and ε re the 



 
 

134 
 

inputs. Because Equation (5.36) is linear, it can be divided into two subsystems: the input of one 

subsystem is 0s  and its corresponding output is 11s ; the input of the other subsystem is ε and its 

corresponding output is 12s . Therefore,  

1 11 12( ) ( ) ( )s k s k s k                           (5.37) 

   Assuming 11 12(0) (0) 0s s  , the first subsystem can be represented as 

         11 11
11 0 11 11

0

1
1 [ ( 1) 1]

k

i

s k s k
s k SBP SBIT k s SB Ps k IT s i D

T

 
 
  

 
         (5.38) 

   Taking Z-transform on Equation (5.38), the transfer function from 0s  to 11s  is given by   

 
 

11

1 1 00

1 1( )
( ) (1 )k k

SBP SBIT ks z
SBDs z z SBP SBIT z z z z

T
 

 
    


      

        

 (5.39) 

   If 0s  is a step input with its amplitude being 0s , according to the final value theory of the 

discrete system, 

     
   

 

1
01

11 11 01 1 1 1 0

1 1 1
1lim 1 lim
(1 )

z z k k

zz SBP SBIT k s
zs z s z s

SBDz SBP SBIT z z z z
T




   

 
     

     
      

(5.40) 

   The second subsystem can be represented as 

       12 12
12 12 12

0

1
( 1) ( )

k

i

s k s k
s k SB Ps k IT s i D SF k

T




 
 
  

 
            (5.41) 

   The transfer function from ε to 12s  is obtained by taking Z-transform on Equation (5.41) as 

 
12

1 1 0

( )
( ) (1 )k k

s z SF
SBDz z SBP SBIT z z z z

T
  


      

         (5.42) 

Therefore, 
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         

 
1

1
12 121 1 1 1 0

1
lim 1 lim 0

(1 )
z z k k

z SF z
s z s z

SBDz SBP SBIT z z z z
T




   

 
    

      
(5.43) 

   Equations (5.37), (5.40), and (5.43) suggest that the value of the switching function s is zero 

as time approaches to infinity. As such the state moves towards the sliding surface and 

eventually converges to zero.  

5.5.9 Acknowledgment 

   The support to the present study from the China Scholarship Council (CSC) and the Natural 

Sciences and Engineering Research Council (NSERC) of Canada is acknowledged. 

 



 

136 
 

6 Model of the Multi-DOF Piezoelectric Actuators 

This chapter presents the work that is included in the following manuscript appended.  
 
Y. Cao and X. B. Chen, “State Space System Identification of three-DOF Piezo-actuator 
Driven Stages with unknown configuration,” Actuators, 2, 2013, 1-18. 

6.1 Introduction and Objectives 

   Multi-DOF piezoelectric positioning systems are actuated by PEAs, which are connected 

through flexible joints. With ingenious design, friction and backlash clearance can be eliminated, 

leading to improved performance. However, nonlinear effects in the PEAs, such as creep, 

hysteresis, and the cross-coupling of the parallel mechanism can greatly degrade the positioning 

accuracy of the stages. In order to develop control schemes for nano-positioning, modeling of 

piezoelectric stages has been reported in the literature with increasing frequency. This paper aims 

at developing a dynamic model for the controller design of a three-DOF PEA. Since the detail 

information with regard to the internal mechanical configuration is not provided by the 

manufacture, the straightforward modeling method by means of the physical law is not 

applicable. Instead, a state space model based on the black box system identification is 

developed for the control of the three-DOF PEA. 

6.2 Methods 

   Considering hysteresis and other nonlinearities to be model uncertainties, the system 

matrixes in the state space model were derived through singular value decomposition (SVD) of 
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the Hankel matrix, which was directly identified from a Hankel-Toeplitz model by means of the 

maximum-a-posteriori (MAP) online estimation. 

6.3 Results 

   The linear state space model can predict the dynamic performance of a piezo-actuator driven 

stage with improved accuracy. Since MAP estimation utilizes the posteriori parameter 

information which have the beneficial effect of reduction of variances of parameter estimations, 

MAP online estimation method performs better in the model identification than the least squares 

method. Moreover, the identified parameters are updated online if more data is available for the 

model identification. This provides a starting point from which to adaptively compensate for the 

dynamics and cross-coupling effects of the piezo-actuator driven stage by means of the 

mode-based control scheme. 

6.4 Contributions 

   The contribution of this paper is the development of a black box model used to describe the 

dynamics of 3-DOF piezo-actuator driven stages, which allows investigation of the performance 

of complicated systems with unknown physical configuration by means of the linear state space 

model. 
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6.5 Paper: State Space System Identifcation of three-DOF 

Piezo-actutator Driven Stages with Unknown Configuration 

   Authors: Y. Cao and X. B. Chen, Member, IEEE5 

   Index Terms: State space model, Hankel matrices, Nano- positioning, System identification, 

Cross-coupling effect, Dynamics. 

6.5.1 Abstract 

   Due to their fast response, high accuracy and non-friction force, piezo-actuators have been 

widely employed in multiple degree-of–freedom (DOF) stages for various nano-positioning 

applications. The use of flexible hinges in these piezo-actuator driven stages allows for 

eliminating the influence of friction and backlash clearance as observed in other configurations; 

meanwhile it also causes more complicated stage performance in terms of dynamics and 

cross-coupling effect between different axes. Based on the system identification technique, this 

paper presents the development of a model for the 3-DOF piezo-actuator driven stages with 

unknown configuration, with its parameters estimated from the Hankel matrix by means of the 

maximum-a-posteriori (MAP) online estimation. Experiments were carried out on a 

commercially-available piezo-actuator driven stage to verify the effectiveness of the developed 

model. The results show that the developed model is able to predict the stage performance with 

improved accuracy, while the model parameters can be well updated online by using the MAP 
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estimation. These capabilities allow investigation of the complicated stage performance and also 

provide a starting point from which to apply the mode-based control scheme for an improved 

stage performance. 

6.5.2 Introduction 

   Piezo-actuator driven stages have advantages of fast response, high precision, and generation 

of large forces. As such, they have been widely applied in semiconductors, biomedical science, 

production manufacturing and other devices which require nano- positioning and manipulation 

[1], [2]. With the ingenious design of flexible hinges, friction and backlash clearance can be 

eliminated, leading to improved performance. Meanwhile, the use of flexible hinges also caused 

more complicated stage. Modeling and control for one degree-of-freedom (DOF) piezo-actuator 

driven stages have drawn considerable attention in the literature [6] – [10]. Due to the 

cross-coupling effect between different axes, the methods developed for 1-DOF piezo-actuator 

driven stages cannot be readily extended to multiple-axis ones [11], the research of which is still 

in its early stage. In [12], a 3-input-3-output state space model was developed for a 3-DOF 

micro-stage based on the free body force diagram of the stage. Provided with the nominal values 

and the uncertainty ranges, the parameters were searched so that the resulting physics-based 

model predicted the displacement outputs with high fidelity. By comparison with experimental 

data, it was shown that the proposed model was able to predict the performance of the 

micro-stage. An Auto-Regressive Exogenous (ARX) model was developed in [13] to describe 

the dynamic performance of a biaxial piezo-stage and the model was then integrated in a 

feedforward compensator for precision tracking control with experimental verification. However, 

cross-coupling between the two axes, which might have a negative effect on the performance of 

the controller, was not considered in the ARX model. In [14], a fourth order linear transfer 
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function was identified for a piezoelectric stage, where the cross-coupling effect was neglected. 

As such, a chirp signal was applied to each of the axes independently and with the measurement 

outputs, the parameters in each transfer function were estimated by using the system 

identification technique. In [15], the dynamic equations were combined with the Bouc-Wen 

model for each piezoelectric actuator to describe the performance of a plane-type 3-DOF 

precision positioning table or stage. The parameters of the model were optimized based on the 

real-coded genetic algorithm (RGA) method.  From the numerical simulations and experimental 

results, the 3-DOF cross-coupling effect was reduced by the proposed control method and good 

contour tracking performance was obtained due to successful identification of the dynamic 

models.    

   A straightforward modeling method for multi-DOF piezo-actuator driven stages can be based 

on the internal configuration by means of physics laws, as mentioned above. However, such 

details with regard to the internal structure are often not provided by the manufactures. 

Therefore, system identification for multi-DOF piezo-actuator driven stages with unknown 

configuration is always required for the model development. To meet this need, in this paper we 

report the model development based on the black box system identification of for 3-DOF 

piezo-actuator driven stages with unknown configuration. Specifically, a linear discrete state 

space model ( 1) ( ) ( )x k Ax k Bu k    and ( ) ( ) ( )y k Cx k Du k  (A, B, C and D are system 

matrices) is adopted and applied to describe the dynamics of the piezo-actuator driven stage.  

   To identify the parameters of the state space model, methods have been reported in the 

literature [16]-[22]. In [19], a modified frequency domain subspace identification algorithm was 

developed based on the previous work. The power spectrum estimates was strongly consistent 

when the measurements were corrupted by bounded random noise. In [20], the numerical 
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algorithms for subspace state space system identification (N4SID) method was combined with 

the multivariable output-error state space (MOESP) method for improved performance. The state 

space model was obtained in [21] by identifying the Markov parameters (a kind of matrix 

impulse response) that were indirectly calculated from an identified auto-regressive model or 

transfer function. In [22], the system matrices in the state space model were derived through 

singular value decomposition (SVD) of the Hankel matrix, which was directly identified from a 

Hankel-Toeplitz model using the least squares method. The parameters are time-invariant and 

thus the model cannot be applied if the performance of piezo-actuator driven stage changes with 

the environmental condition, such as the temperature. 

   To develop a state space model with updating parameters, the SVD of the Hankel matrix is 

strategically combined with MAP online estimation in this study. The parameters can be updated 

as new observations become available. Furthermore, MAP estimation utilizes prior information 

regarding the parameters and the measurement errors. Inclusion of posteriori parameter 

information can have the beneficial effect of reducing the variances of parameter estimators. To 

verify the effectiveness of the state space model identified by using the MAP online estimation, 

experiments were carried out on a commercially available piezo-actuator driven stage. The 

estimation errors obtained from the Hankel matrix using online estimation were compared to 

those reported in [22].   

6.5.3 Black Box System Identification 

   In this section, it is assumed that the configuration or the internal structure of 3-DOF 

piezo-actuator driven stages is not available or known. Also, it is assumed that the stage is 

regarded as a linear multiple-input and multiple-output (MIMO) system by ignoring the 

nonlinearity, which is reasonable as illustrated in the experiments presented later in this paper. 
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To represent the linear dynamics and cross-coupling effect of the stage, the simplified 

Hankel-Toeplitz model is adopted and employed in the present study, in which the Hankel 

matrix is to be identified by implementing the MAP online estimation method.  

6.5.3.1 Simplified Hankel-Toeplitz Model 

   For a linear MIMO system, the discrete state space representation is given by   

( 1) ( ) ( ) ( )
     ( ) ( ) ( ) ( )
x k Ax k Bu k w k

y k Cx k Du k v k
   

  
                      (6.1) 

where n nA R  , n mB R  , q nC R   and q mD R   are system matrices, 1nx R   is the state, 

1mu R   is the input, 1qy R   is the output, 1nw R   and 1qv R   represent the ignored 

nonlinearity and uncertainties of the piezo-actuator driven stage, m and q are the number of 

inputs and outputs, respectively. By iteration, one has 

( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( 1) ( )

p
p p p p

p p p p p p p

x k p A x k B u k w k

y k C x k D u k w k v k

    
     

            (6.2) 

for any }{ | , 0p p p Z p   , where pu  and py  are defined as column vectors of the input 

and output data going p steps towards the future, 

( ) ( )
( 1) ( 1)

( ) , ( )

( 1) ( 1)

p p

u k y k
u k y k

u k y k

u k p y k p

   
   
   
   
   
      

 
 

   
 

,                (6.3) 

pv  and pw  are defined as column vectors of the noises and disturbance going p steps towards 

the future, pB  is the controllability matrix, pC is the observability matrix, pD  is the Toeplitz 

matrix for the system Markov parameters and 

1 21 2

12

,,
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,
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0 0 0 0 0

0 0 0 .

0
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 

    

   
   
   
   
   
   
   
   

    

 
 
 

         
 

(6.4) 

   If pm n , there exists an interaction matrix M such that 

0Mp
pA C  .                            (6.5) 

Substituting Equation (6.5) into Equation (6.2) yields 

( ) ( ) ( ) ( ) ( 1) ( ) ( ).M M M Mp p p p p p p p px k p B D u k y k w k v k w k             (6.6) 

Combining Equations (6.2) and (6.6) leads to the following equation, which is the so-called 

simplified Hankel-Toeplitz model 

( ) ( ) ( ) ( 1) ( )

         ( ) ( ) ( ) ( ) ( ).M M
p p p p p p p

p p p p p p p p

y k C x k D u k w k v k

C B D u k p C y k p D u k k

    
       

      (6.7) 

where ( ) ( 1) ( ) ( 1) ( ) ( ).M Mp p p p p p p p p p pk w k v k C w k p C v k p C w k p               

Using the following denotations 

( ),  Γ M Φ Mp p p pC B D C    ,                     (6.8) 

one has Equation (6.7) rewritten as 

( )

( ) ( ) ( )

( )

Γ Φ
p

p p p

p

u k p

y k D y k p k

u k

 
 

      
  


                      (6.9) 

where ( )k  represents the combined model noises and can be regarded as the model estimation 

error. Define 

0H Γ Φp p pC B D    ,                       (6.10) 

the square matrix 
0H  can be estimated without knowing M. 
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   Once 
0H  is identified, an adjacent 

1H p
p pC A B  can be calculated by using Equation 

(6.5) such that  

1 0( ) ( )H M M ΦHp p p p p pC C B C C B                    
 (6.11) 

Similarly, 

0( ) ( ) ( ) ( ) ( )H M M M M Φ Hp i i
p p p p p p p p p pi C A B C C C B C C C B          (6.12) 

Using 
0 1, ,H H   as building blocks, a Hankel matrix of any size can be constructed. For 

example, 

0 1H H H H
T

n     .                      (6.13) 

6.5.3.2 Reconstrucion of t the system matrices 

   The Hankel matrix is arranged with Markov parameters of increasing order going from left of 

right. Let the Hankel matrices be 

1 1

1 1

2 2 1 2 2 2 1 2
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1 1 2 1
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n n
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 

     

  
  
  
  
  
  

   

 

 
 

       
 

(6.14) 

where 
1 2, Zn n  . Comparing Equation (6.14) with Equations (6.4), (6.12) and (6.13), (0)H  

and (1)H can then be extracted from H by rearrangement of its elements. The state space 

matrices are reconstructed from the Hankel matrix by employing the following Lemma 6.1. 

Lemma 6.1: An s-th order state space model can be reconstructed as 

1 1
2 2(1)HT

s s s sA U V
 

                             (6.15) 

where B is the first m columns of 
1
2 T
s sV ,C is the first q rows of  

1
2

s sU   and 

1 2min{ ( 1), ( 1)}s m n q n   ,The matrix sU  and sV  are made up of s left and right singular 
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vectors of (0)H , and the diagonal matrix 
s  is made up of s corresponding singular values of 

(0)H [21]. 

6.5.3.3 MAP Online estimation 

   Equation (6.9) can be rewritten as, by ignoring ( )k   

( ) ( )θpy k X k                             (6.16) 

where 
( )

, ( ) .

( )

θ Γ Φ
p

p p

p

u k p

D X y k p

u k

 
 

      
  


    

   By using the least squares method, θ is identified to be a time-invariant matrix, which might 

not be able to accurately describe the environment dependent performance of the piezo-actuator 

drive stage. In order to apply the state space model in the control of piezo-actuator driven stage, 

the model parameters should be updated as new observation data is available. Therefore, MAP 

online estimation was employed to identify the parameter matrix in Equation (6.16) instead.  

   The MAP online estimation method is used to update the parameters as the new observation 

data points becomes available, which is given by 

1
1 1 1 1 1θ θ P X σ ET

ii i i i i


                             (6.17) 

where X has the same definition as the one given in Equation (6.16), θ i  is the value of 

identified parameters based on the first i groups of data, Pi  is the covariance of identified 

parameters from the first i groups of data, σ i  is the variance matrix of measurement errors, and 

E i  is the estimation error of the i-th group of data. Integration of the prior information 

regarding the parameters and the information regarding the measurement errors can have the 

beneficial effect of reduction of variances of parameter estimators. As a result, the parameter 
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identification could be improved. 

   Since the Hankel-Toeplitz model is a regression model given the zero initial condition, E i  

was also calculated by using the regression method as  

1E pi pii y y                                (6.18) 

where 
piy  is the measurement output of the piezo-actuator driven stage; and 

piy
  is the 

estimation output of the piezo-actuator driven stage calculated through i-1 iterations. 

6.5.3.4 Model for the 3-DOF Piezo-actuator driven stage 

   A 3-input-3-output state space model (6.1) is employed for the 3-DOF piezo-actuator drive 

stage. By implementing the singular value decomposition on the Hankel matrix which is 

estimated based on the the Hankel-Toeplitz model, as shown in Lemma 6.1, the system matrices 

of the state space model can be derived. 

 Since the 3-DOF piezo-actuator driven stage is previously assumed to be linear, the model 

identification can be implemented on each input channel individually. For example, when an 

input signal is only provided in one channel ( 1, 2,3)iu i  , the 3-dimensional output 

1 2 3[ ]T
i i i iy y y y ,  can be obtained from the identified one-input-three-output model by 

applying the method mentioned above 

( 1) ( ) ( ) ( )
     ( ) ( ) ( ) ( )

i i i i i i

i i i i i i

x k A x k B u k w k
y k C x k D u k v k
   

  
                    (6.19) 

where 3 3
iA R  , 3 1

iB R  , 3 3
iC R   and 3 1

iD R   are system matrices of the 

one-input-three-output system.  

   The states for all three channels in Equation (6.19) may be stacked as 
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1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 2 3

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

+ ( ) ( ) ( ) .
T

x k A x k B u k

x k A x k B u k

x k A x k B u k

w k w k w k
         
                     
                  


  


 (6.20) 

According to the definition of the linear system, the output can be expressed as the sum of 

( 1,2,3)iy i  , such that 

1 1

2 2 1 2 3

3 3

1 2 3 1 2 3 1 2 3

( ) ( )
( ) ( ) ( ) ( ) ( ).
( ) ( )

x k u k
y C C C x k D D D u k v k v k v k

x k u k
y y y

   
            
   
   

       (6.21) 

As such, the state space model for the 3-input-3-output system can be expressed as 

( 1) ( ) ( ) ( )
     ( ) ( ) ( ) ( )
x k Ax k Bu k w k

y k Cx k Du k v k
   

  
                      (6.22) 

where 
1 2 3A diag A A A   , 

1 2 3B diag B B B   , 
1 2 3C C CC  

  , 

1 2 3D D D D   , 
1 1 1

2 2 2

3 3 3

( ) ( ) ( )
( ) ( ) , ( ) ( ) , ( ) ( ) ,

( ) ( ) ( )

x k u k w k
x k x k u k u k w k w k

x k u k w k

     
     
     
     
     

    

1 2 3( ) ( ) ( ) ( ).v k v k v k v k   

6.5.4 Experiments and Results 

   To verify the effectiveness of the state space model and the proposed identification method, 

experiments were implemented on a commercially-available 3-DOF piezo-actuator driven stage 

(P-558.TCD, Physik Instrumente), as shown in Figure 6.1a. Driven by four piezoelectric 

actuators, the P558.TCD can generate linear displacements in the vertical direction Z, and 

rotation around two orthogonal horizontal axes xR  and yR . Table 6-1 shows the motion range 

and resolution in each DOF.  

   For displacement measurements, three capacitive sensors built in the stage are employed. All 

displacements were measured with a sampling interval of 2 ms in the present study. Both the 
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actuators and the sensors in the stage are connected to a host computer via a digtital controller 

(E-761, Physik Instrumente) and controlled by programming in Labview, as shown in Figure 

6.1b. During operation, the motion of the four piezoelectric elements must be coordinated to 

reduce the internal forces generated due to the over actuation, which may cause reduced stiffness 

and even break or damage the piezo-actuator driven stage. This is realized by a user program 

interface provided by the manufacturer, which is used to generate the voltage input of each 

piezoelectric actuator from the user defined reference signal. 

Table 6- 1  Motion range and resolution in each DOF 

DOF Z  x
R  y

R  

Motion range 50 μm ±250 μrad ±250 μrad 

Resolution 0.5 nm 50 nrad 50 nrad 

 

 
                          (a)                            (b)   
Figure 6. 1  Experimental settings on the piezo-actuator driven stage 
(a) picture and (b) schematic.  

6.5.4.1 Linearity of the 3-DOF piezo-actuator driven stage 

   Examine the linearity of the 3-DOF piezo-actuator driven stage, a case study was conducted 
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prior to the system identification.  

 

 
(a)                                (d) 

 
(b)                               (e) 

 
(c)                               (f) 

Figure 6. 2  Linearity of the 3-DOF piezo-actuator driven stage 
(a-c) comparison between the measured output when the three inputs were provided to the 
different channels simultaneously and the sum of the outputs when the three inputs were 
provided separately; (d-f) difference between these two outputs  
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   In particular, a 1 Hz 1 μm sinusoidal reference signal with 1 μm offset, a 2 Hz 200 μm 

sinusoidal reference signal with 2 s time delay and a 100 μm step reference signal with 3 s time 

delay were provided to the Z, xR  and yR channel, respectively, and the corresponding outputs 

were measured. Then, the stage displacement output as these three signals were applied 

simultaneously was measured. The criterion used for the linearity examination is that, if the 

output with three input signals equals or approximately equals to the sum of the outputs when the 

signals is applied individually, the 3-DOF piezo-actuator driven stage is linear or can be 

approximately considered to be linear. Figure 6.2 shows the comparison between the two outputs 

mentioned above.  

   It can be seen that they overlapped with each other, indicating that the stage can be 

approximately considered to be a linear system. Differences between the measured output when 

the three inputs were provided to the different channels simultaneously and the sum of the 

outputs when the three inputs were provided separately exist. For example, in xR  direction, the 

maximum difference is approximately 3 μm which is only 1.5% of the amplitude of the reference 

signal. This difference might be due to the nonlinearities of the 3-DOF piezo-actuator driven 

stage, which is ignored in the model development presented in this paper.   

6.5.4.2 System identification for the 3-DOF piezo-actuator driven stage 

   Figure 6.3 shows the flow chart of system identification. Since different signals applied in 

system identification may lead to the difference in the model identified, the effects of applying 

the random signal and the chirp signal in the parameter estimation were investigated in the signal 

selection in this study. The two signals were compared and the one with less model prediction 

error was employed as the input for order selection, in which state space models with different 
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orders were identified and compared.  The one with less model prediction error was employed 

as the model for the piezo-actuator driven stage. 

 

 
 

Figure 6. 3  Flow chart of black box system identification 

   For signal selection, a 20 μm reference chirp signal with 20 μm offset and frequency ranging 

from 1 to 100 Hz was provided to Channel 1 (Reference Z channel) and the corresponding output 

in each channel was measured. Based on the empirical knowledge of our previous study on 

piezoelectric actuators, the order of the state space model was originally set to be 3, and 
0θ  in 

Equation (6.17) was set to be a zero matrix. Since the covariance of the parameters is unknown, 

0P  is set to be a diagonal matrix with big covariance designated in the diagonal elements. By 
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applying online estimation with the identified Hankel matrix, the system matrices of the state 

space model (Equation (6.19), i=1) were obtained. 

   The estimation error varied, depending on the values of parameter p in Equation (6.2). Figure 

6.4 (a)-(c) shows the estimated error versus the p value. It can be seen that if p=8, the estimation 

errors in all three output directions approached or reached their individual minimum values. 

Therefore, it is reasonable to set p=8 as the chirp signal is provided to Channel 1. 

 

 
                (a)                     (b)                     (c) 
Figure 6. 4  Estimation error changes with p when reference input was applied in Channel 1 
(a) Z direction, (b) Rx direction, (c) Ry direction. 

   For other two channels, a 200 μrad reference chirp signal with frequency ranging from 1 to 

100 Hz was applied. By employing the aforementioned procedure, p was set to 25 and 27 for 

Channel 2 and 3 respectively. Table 6-2 shows the prediction error in each direction as a 1 Hz 

sinusoidal reference input was applied to the three channels, respectively. The prediction errors 

are calculated in terms of the 2-norm of the error vector (Defined as the difference between the 

measurement and the model prediction). It is seen that the diagonal prediction error is 0.1944 μm, 

4.864 μrad and 4.3387 μrad in Z, xR  and yR  direction respectively, which is 0.49%, 2.43% 

and 2.16% of the desired movement in the individual direction. 

   Similar to the use of the chirp signal, 40 μm and 200 μrad reference random signals were also 
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applied to each channel, respectively. The order of each sub-model was chosen to be 3 and p was 

set to 9, 14 and 13 for the three channels, respectively. The same 1 Hz sinusoidal inputs were 

provided to difference channels and the output was measured and compared with the model 

prediction. Table 6-3 illustrate the model prediction error.  

Table 6- 2  Model prediction error if chirp inputs were applied 

Direction Z (μm) x
R (μrad) y

R (μrad) 

1 Hz 20 μm sinusoidal inputs with 20 μm 
offset in Channel 1 

0.1944 0.4030 0.2008 

1 Hz 200 μrad sinusoidal inputs in 
Channel 2 

0.0192 4.8640 0.0760 

1 Hz 200 μrad sinusoidal inputs in 
Channel 3 

0.0263 0.2060 4.3387 

Table 6- 3  Model prediction error if random inputs were applied 

Direction Z (μm) xR (μrad) yR (μrad) 

1 Hz 20 μm sinusoidal inputs with 20 μm 
offset in Channel 1 

0.8670 0.8946 0.2061 

1 Hz 200 μrad sinusoidal inputs in 
Channel 2 

0.0542 57.362 0.1020 

1 Hz 200 μrad sinusoidal inputs in 
Channel 3 

0.0624 1.0143 45.9597 

 

   In contrast to the chirp signal, it can be concluded that the model prediction errors is much 

bigger when random signals are used in the model identification. For example, when a 1 Hz 200 

μrad sinusoidal reference input was provided to Channel 2, the model prediction error in xR  

direction reached 57.362 μrad by using the random inputs, which is over 10 times larger than that 

derived by using the chirp signal. As a result, a chirp signal was employed as the reference input 

for model identification below. 

   To determine the order of the state space model, the parameter identification, as described 
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previously, was  repeated with varying values of n (Equation (6.1)) in each channel. Tables 

6-4~6-6 show the estimation errors in each channel. Parameter p was chosen to have different 

values for varying orders based on the method mentioned above. It can be concluded that if the 

chirp signal was used in Channel 1, the estimation error in the Z direction reached its minimum 

value of 1.4906 μm with the order of the sub-model being 6 or 7. For the yR  direction, the 

optimal choice was to set n = 7. Therefore, the sub-model for Channel 1 was considered to be a 

7-th order state space system. The system matrices were determined as given in Equation (6.23). 

Using a similar procedure, the orders of the sub-model for the other two channels were both 

chosen to be 4 and the system matrices were determined as shown in Equations (6.24) and 

(6.25). 

Table 6- 4  Estimation error from the chirp input in channel 1 

Order p 
Estimation error 

Z (μm) xR (μrad) yR (μrad) 

2 11 1.5635 1.1174 0.1614 

3 8 1.5368 1.2597 0.1631 

4 11 1.4936 0.8100 0.3496 

5 14 1.4914 0.1876 0.1607 

6 31 1.4906 0.1184 0.1238 

7 38 1.4906 0.1192 0.0908 

8 38 1.4907 0.1180 0.1099 

9 38 1.4907 0.1202 0.1031 

10 30 1.4912 0.1195 0.1251 

11 30 1.4913 0.1186 0.1236 

12 28 1.4912 0.1266 0.1180 
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Table 6- 5  Estimation error from the chirp input in channel 2 

Order p 
Estimation error 

Z (μm) xR  (μrad) yR  (μrad) 

2 47 0.0118 18.0440 0.0565 

3 25 0.0106 17.8752 0.0474 

4 42 0.0107 17.7877 0.0476 

5 47 0.0128 17.7751 0.0483 

6 42 0.0129 17.8071 0.0477 

7 42 0.0125 17.8073 0.0480 

8 47 0.0133 17.8073 0.0477 

9 42 0.0118 17.8179 0.0484 

10 39 0.0103 17.8363 0.0479 

11 42 0.0120 17.8154 0.0475 

12 42 0.0119 17.8166 0.0481 

Table 6- 6  Estimation error from the chirp input in channel 3 

Order p 
Estimation error 

Z (μm) xR  (μrad) yR  (μrad) 

2 41 0.0124 1.0996 16.9180 

3 27 0.0108 1.0995 16.7524 

4 39 0.0111 1.0994 16.5991 

5 41 0.0144 1.1006 16.5917 

6 39 0.0109 1.0993 16.6212 

7 39 0.0111 1.0996 16.6183 

8 39 0.0112 1.0996 16.6183 

9 39 0.0112 1.0996 16.6177 

10 39 0.0111 1.0996 16.6188 

11 39 0.0111 1.0993 16.6184 

12 39 0.0111 1.0994 16.1686 
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0.9239 0.1747 0.0057 0.0297 0.0026 0.0045 0.0004
0.1757 0.6973 0.0604 0.2463 0.0262 0.0333 0.0031
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        (6.25) 

6.5.4.3 Model verification for the 3-DOF piezo-actuator driven stage 

   To illustrate the effectiveness of the MAP online estimation method, 1, 5 and 10 Hz 

sinusoidal reference inputs were provided to different channels, respectively. As comparison, the 

estimation method introduced in [22] was implemented, as well. The parameter p was defined as 

21, 4 and 7 for the different input channels. Table 6-7 and Table 6-8 show the prediction error in 

each direction based on the different identification methods. The prediction errors were 

calculated in terms of the 2-norm of the error vector. It can be concluded that the prediction error 
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increases with the frequency. 

Table 6- 7  Estimation error by applying the online estimation method 

Input Channel Z (μm) xR  (μrad) yR  (μrad) 

1 Hz 10 μm 1 0.1468 0.1584 0.0642 

1 Hz 200 μrad 2 0.0176 1.0305 0.0742 

1 Hz 200 μrad 3 0.0196 0.2574 9.9402 

5 Hz 10 μm 1 0.3666 0.3743 0.0956 

5 Hz 200 μrad 2 0.0538 2.3801 0.2044 

5 Hz 200 μrad 3 0.0510 0.2128 3.1906 

10 Hz 10 μm 1 0.5296 0.2699 0.0576 

10 Hz 200 μrad 2 0.0530 6.3244 0.3327 

10 Hz 200 μrad 3 0.0517 1.1101 5.6707 

Table 6- 8  Estimation error by applying the identification method introduced in [16] 

Input Channel Z (μm) xR  (μrad) yR  (μrad) 

1 Hz 10 μm 1 1.1124 0.9433 0.3675 

1 Hz 200 μrad 2 0.0180 2.2639 0.3403 

1 Hz 200 μrad 3 0.0374 0.3065 5.3670 

5 Hz 10 μm 1 5.0639 0.9224 0.3974 

5 Hz 200 μrad 2 0.0541 4.5928 0.3567 

5 Hz 200 μrad 3 0.0608 0.6449 11.349 

10 Hz 10 μm 1 6.2860 0.9419 0.4139 

10 Hz 200 μrad 2 0.0525 17.785 0.2683 

10 Hz 200 μrad 3 0.0543 1.0064 13.497 

 

   In contrast to the identification method introduced in [22], the use of posteriori parameter 

information in MAP online estimation leads to better estimations on the Hankel matrix. For 
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example, the estimation errors for the 5 Hz, 10 μm sinusoidal inputs to Channel 1 were 0.3666 

μm, 0.3843 μrad and 0.0956 in the Z, xR , and yR  directions, respectively. These results are 

7.3%, 40.6% and 24%, respectively of those derived using the identification method introduced 

in [22]. 

   Figure 6.5 shows the output in each direction as a result of a 10 μm 10 Hz sinusoidal 

reference input with 10 μm offset in Z direction compared with the model prediction. It can be 

clearly seen that the identified state space model is able to describe the coupling effect between 

each axle. 

 

 
                (a)                     (b)                     (c) 
Figure 6. 5  Comparison of experimental results and model prediction under 10 um 10 Hz 
sinusoidal input in Channel 1 
(a) Z direction; (b) Rx direction; (c) Ry direction  

   To verify the identified linear state space model three experiments were implemented. In the 

first experiment, the reference inputs simultaneously applied to the three channels are a 1 Hz and 

20 μm sinusoidal reference with 20 μm offset, a 2 Hz and 200 μrad sinusoidal reference with a 

time delay of 2 seconds, and a 100 μrad step input with a time delay of 3 seconds. The outputs in 

the three directions were measured and the predicted outputs were obtained according to the 

identified state space model of Equations (6.23)-(6.25), respectively. In the second experiment, a 
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1 Hz and 1 μm sinusoidal input with 1 μm offset and a 2 Hz, 0.5 μrad sinusoidal reference input 

with a 2 s time delay were provided to the piezo-actuator driven stage. The outputs were 

measured and compared to the predicted outputs.  

 

 
               (a)                     (b)                     (c) 

 
               (d)                     (e)                     (f) 

 
               (g)                     (h)                     (i) 
Figure 6. 6  Comparison of experimental results and model prediction from combined inputs to 
all three channels 
in the first experiment (a)-(c); in the second experiments (d)-(f) and in the third experiments 
(g)-(i). 
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   To validate the model in high frequency, the input of 1 Hz and 2 μm sinusoid in channel 1 

was replaced with a 10 Hz 40 μm one in the third experiment. Also, the corresponding outputs in 

the three directions were measured and compared to the outputs predicted by the identified state 

space model. The comparison is shown in Figure 6.6, from which it can be concluded that the 

model is able to describe the performance (both dynamics and cross-coupling effect) of the 

3-DOF piezo-actuator driven stage.  

6.5.5 Conclusions and Discussions 

   A straightforward modeling method for multi-DOF piezo-actuator driven stages can be based 

on the internal configuration by means of physics laws, as mentioned in the literatures. However, 

such details with regard to the internal structure are often not provided by the manufactures. 

Therefore, system identification for multi-DOF piezo-actuator driven stages with unknown 

configuration is always required for the model development.  

   The contribution of this paper is the development of a black box model used to describe the 

dynamics of 3-DOF piezo-actuator driven stages with unknown physical configuration, which 

allows the investigation of the complex system performance with unknown physical 

configuration by means of the linear state space model. By combining the MAP online 

estimation methods, the Hankel matrix of the state space model was identified and the model 

parameters were updated as new observation is available. To show the effectiveness of the 

proposed estimation method, model verification experiments were carried out on the 

piezo-actuator driven stage and the outputs obtained were compared to the predictions of the 

state space model identified using the method introduced in [22]. From the model verification 

results, it was shown that the linear state space model can predict the dynamic performance of a 

piezo-actuator driven stage with improved accuracy. Since MAP estimation utilizes the posteriori 
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parameter information which have the beneficial effect of reduction of variances of parameter 

estimators, MAP online estimation method performs better in the model identification than the 

least squares method. Moreover, the identified parameters are updated online if more data is 

available for the model identification. This provides a starting point from which to adaptively 

compensate for the dynamics and cross-coupling effects of the piezo-actuator driven stage by 

means of the mode-based control scheme. 
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7 Discrete Sliding Mode Control for Multi-DOF Piezoelectric 

Actuators 

This chapter presents the work that is included in the following manuscript appended.  
 
Y. Cao and X. B. Chen, “An Output Tracking based Discrete PID-Sliding Mode Control on 
MIMO systems,” IEEE/ASME Transactions on Mechatroics, 2013, under review, manuscript 
ID: TMECH-02-2013-2834. 

7.1 Introduction and Objectives 

   General SMC design, including the PID-based SMC developed recently, is essentially a state 

tracking control scheme. In some circumstances, it is impossible or prohibitively expensive to 

obtain all of the required states due to the system complexity. In such cases, the application of 

the general SMC design method is challenged.  

   The application of the PID-based SMC can be extended to the control of multi-inputs-multi- 

output (MIMO) system with one PID-based SMC designed for each pair of input and output 

independently. However, adjusting controller parameters of one loop affects the performance of 

another, sometimes even to the extent of destabilizing the entire system. The cross-coupling 

effects caused by the multivariable interactions accounts for essential difference in design 

methodologies between single variable and multi-variable control systems, for example, the 

cross-coupling effects between variables might affect the calculation of the equivalent control, 

leading to dynamic coupling. The objective of this paper is to extend the application of the 

output tracking integrated discrete PID-SMC developed in Chapter 4 to the control of MIMO 
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systems. 

7.2 Methods 

   The application of the discrete PID-based SMC developed in Chapter 4 can be extended to 

the control of MIMO systems by applying static decoupling in the calculation of the equivalent 

control. The remaining dynamic decoupling is considered to be disturbance which will be 

rejected by the PID-based DSMC. By applying the model reference approach, the output 

tracking problem is transferred to the state tracking problem so that the general SMC design can 

be applied. Due to the ingenious design of the sliding surface, the coupling effect between 

variables can be reduced to an acceptable extent. 

7.3 Results 

   By applying the PID based regulator instead of the ‘bang-bang’ switching control, chattering 

and the zigzag state motion of the DSMC were eliminated and zero steady state error can be 

achieved. The verification experiments carried on a commercially available three-DOF PEA 

showed that the output tracking based discrete PID-SMC as designed by the model reference 

approach can achieve better tracking performance compared with the nominal PID controller. As 

the input frequency increases, the advantage of using the discrete PID-based SMC becomes more 

profound. 
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7.4 Contributions 

   The contribution of this work was the development of the discrete output tracking based 

PID-SMC for MIMO system without measurable model states. 

7.5 Paper: An Output Tracking based Discrete PID-Sliding Mode 

Control on MIMO Systems 

   Authors: Y. Cao and X. B. Chen, Member, IEEE 6 

   Index Terms: Control System, Nanotechnology, Piezoelectric devices 

7.5.1 Abstract 

   Sliding mode control (SMC) has been widely employed for control applications in the 

presence of uncertainty and disturbance due to its ability to reject the disturbance. However, the 

chattering problem, caused by the discontinuous characteristic of the switching function, greatly 

deteriorates the performance of SMC and has become the main limitation for its application. 

Implementing the SMC in black box multi-input-multi-output (MIMO) systems is difficult 

because of state tracking and coupling effects between the control variables. This paper presents 

an output tracking based discrete proportional-integral-derivative based SMC (PID-SMC) for a 
                                                        

   Manuscript received Febuary 16, 2013. This work was supported by the China Scholarship Council (CSC) and 

the Natural Science and Engineering Research Council (NSERC) of Canada. 
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MIMO system. Using the model reference approach, the output tracking problem is transferred 

to a sub-state tracking problem on which the general SMC design can apply. Zero steady state 

error is achieved with the proposed method and the chattering problem is eliminated. To 

demonstrate the effectiveness of the proposed method, experiments were performed on a 

commercially available three degrees-of-freedom (DOF) nano-positioning stage as compared to a 

proportional-integral- derivative (PID) controller. 

7.5.2 Introduction 

   A typical multi-variable system, such as a multiple DOF robot or a temperature and humidity 

control system, will have several variables that must be controlled [142]. If there is more than 

one input and the outputs are the controlled variables, the multi-variable system is known as a 

MIMO system.  One of the most important characteristic of a MIMO system is the 

cross-coupling effect or interaction between variables. For example, one input variable can lead 

to outputs of all variables. It is common to control each input/output pair separately without 

considering the coupling effects between variables. However, coupling greatly degrades the 

performance of the controller in many systems, in particular, parallel mechanics and chemical 

engineering systems with significant interactions [105]. Since the pioneering research of the 

early sixties [106], control of MIMO systems has received more and more attention not only in 

the control research area but also in industry. Generally, controllers for 

single-input-signal-output (SISO) systems cannot be extended to MIMO systems due to the 

cross-coupling effect in MIMO systems [107]. Therefore, new controllers must be designed 
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considering the coupling effect that exists in a MIMO system [108]-[111].  

   Most decoupled controller design relies on the plant model and is very sensitive to parameter 

uncertainties. Thus, the emphasis for controller design of MIMO systems should be robust and 

stable design techniques which can achieve specified decoupling effects under plant uncertainties 

[142]. In recent decades, SMC, as a form of variable structure control, has drawn considerable 

attention in the control research community worldwide [84], [92]-[94], [141], [151]-[154] due to 

its robustness in the presence of system uncertainties and disturbances. However, because of the 

discontinuous switching control, the states of the actual system are, in fact, switching around the 

sliding surface rather than staying on it. The switching can occur with high frequency, referred to 

as chattering. This excites an undesired system high resonance mode which deteriorates the 

system tracking performance. One solution to the chattering problem is the use of boundary layer 

control [94], in which a saturation switching control replaces the discontinuous switching 

control. It is noted that if the unknown disturbance is significant, a sufficiently-high gain in the 

controller is required and such a control scheme behaves like a high-gain proportional (P) 

controller. As a result, steady state error may exist. An alternative method for solving the 

chattering problem is to enlarge the width of the boundary layer and reduce the effective linear 

gain in order to reduce the state oscillation around the sliding surface. However, the state can no 

longer strictly locate on the ideal sliding surface due to the wider boundary layer and the system 

will never behave as described by the sliding mode. Some examples of applying sliding mode 

controllers to MIMO systems in which the chattering problem was not well solved may be seen 

in [155]-[157]. In [95], a high order sliding surface was used to replace the first order one 
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typically used in the nominal SMC design. With the main advantages of the nominal SMC, the 

high order sliding mode control (HOSMC) can reduce the chattering effect and improve the 

accuracy for its realization. The main problem is that it requires increasing sliding information in 

implementing the HOSMC [97]. 

   Recently, a new PID-based SMC was developed [141] in which the discontinuous 

‘bang-bang’ switching function was replaced by a PID regulator to eliminate the chattering 

problem. Due to the integral effect of the PID regulator, zero steady state error can be achieved 

in the tracking performance of the plant. The PID-SMC was implemented in the tracking control 

of a commercially available piezoelectric actuator (PEA) at a 20000 Hz sampling rate, the results 

of which showed that under the 50 Hz sinusoidal input reference signal the tracking error was 

reduced by 30% compared to the traditional PID controller.  

   General SMC design [93], including the PID-SMC developed in [141], is actually a state 

tracking control scheme. In some circumstances, the system state might not be readily or even be 

impossibly obtained due to system complexity [104]. In such case, the application of the existing 

PID-SMC in the control of MIMO systems is challenged due to the lack of system state 

information. In addition, when implemented in a digital computer, the existing continuous SMC 

might not work as expected due to quantization error made by data sampling. For discrete SMC, 

if the switching time doesn’t match the sampling time, the state will not stay on the sliding 

surface and the trajectory appears like a zigzag motion around the sliding surface, which 

indicates that the sampling itself also induces the chattering in the discrete SMC. Moreover, if 

the mean of zigzag motion deviates from the sliding surface, steady state error will exist [100], 
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[101], [131]. Therefore, the output tracking based forms of discrete SMC are desirable to 

alleviate the aforementioned problems in the control of MIMO systems.  

   In this study, an output tracking based discrete PID-SMC is developed for the MIMO system. 

Static decoupling is applied in the equivalent control. The remaining dynamic decoupling is 

considered as a disturbance which will be rejected by the PID regulator. By applying the model 

reference approach, the output tracking problem is transferred to the state tracking problem so 

that the general SMC design can be applied, so called a novel sub-SMC design in this study. Due 

to the ingenious design of the SMC, the coupling effect between variables can be reduced to an 

acceptable extent. The first part of this paper focuses on the development of the output tracking 

based discrete PID-SMC for the MIMO systems based on the model reference approach. To 

verify the effectiveness of the proposed discrete PID-SMC, experiments were carried out on a 

commercially available nano-positioning stage which was identified as black box state space 

model. The results achieved using the proposed design approaches were compared to the 

traditional PID controller.   

7.5.3 Output Tracking based Discrete PID-SMC for MIMO systems 

7.5.3.1 Problem statement 

   Consider a system expressed by the discrete state space model  

( 1) ( ) ( ) ( ), ( ) ( )X k AX k BU k W k Y k CX k                    (7.1) 

where  1( ) nX k R   is the state;  1( ) nW k R   is the uncertainty;  1( ) qU k R   is the q 
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dimensional control input signal; 1( ) lY k R   is the l dimensional system output signal; and 

n nA R  , n qB R   and l qC R   are the system matrices. For convenience, only square 

systems are considered in this study, thus q = l and assume that / { | , 1}n q p Z      . By 

applying Lemma 7.1, Equation (7.1) can be transferred to the state space model of the 

controllable canonical nominal form 

( +1) ( ) ( ) ( ), ( ) ( )d d dx k A x k B u k k y k C x k                  (7.2) 

where 1 1, , ( ) ( ), .d d dA FAF B FB k FW k C CF      

   Lemma 7.1: If system (A, B, C) is controllable, then matrix A can be transformed into its 

controllable canonical form by linear transform such that 

x FX                                 (7.3) 

where  

12; ; ; ; p n nF C CA CA CA R  
                     (7.4) 

   Prove: See the appendix. 

   Let the desired state space model be 

( +1) ( ) ( ), ( ) ( )m m mdw k A w k B r k y k C w k                    (7.5) 

where 1( ) mw k R   is the state; 1( ) qr k R   is the reference input signal; 1( ) q
dy k R   is 

the output of the reference system; and m m
mA R   , m q

mB R   and q m
mC R   are the 

system matrices of the reference state space model.  

   Define the tracking error as 

( ) ( ) ( ) ( ) ( )md de k y k y k C x k C w k                       (7.6) 

The aim of the output tracking based SMC is to force the output of the actual system to follow 
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the output of the reference system, which indicates e(k) = 0. 

7.5.3.2 Controller design 

   By iteration and denoting 

( 1) [ ( ), ( 1), , ( 1)]T T T Tk p e k e k e k p                     (7.7) 

Equation (7.6) yields 
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   Considering the state space model (7.2), Equation (7.8) becomes 

0 ( 2)

0 0 1( 2) ( 2)

( ) ( ) ( ) ( 1) ( 1) ( ) ( )
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(7.9) 

   Since n n
cA R  , if 0cA  , then Equation (7.8) can be solved for x(k) such that 

1
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(7.10) 

   Prior to further discussions below, it is necessary to list all the notations that will be used in 

the equations, as shown in Table 7-1. 

Table 7- 1  Notations used in the equations 

Notation Equivalent Equation Notation Equivalent Equation 

eA  1
e c cdA A A A  2R  2 2 1e cm cmR A B B   

P  e cm cm mP A A A A       

0  
0 0c e cdA B A B    2pR   

2 ( 2) ( 3)ep cm p cm pR A B B     

1  1 0 1ec cB A B    1pR   
1 ( 2)p cm pR B    

    0  
0 0c e cA A E    

2p  
2 ( 3) ( 2)ep c p c pB A B      

1  1 0 1ec cE A E    

0R  
0 0e cm mcmR A B A B       

1R  1 1 0e cm cmR A B B   2p  
2 ( 3) ( 2)ep c p c pE A E      

 

   Substituting Equation (7.10) into Equation (7.9), the dynamics of the tracking error vector δ 

is given by 

0 2 ( 2)

0 1 0 2 ( 2)

( ) ( 1) ( ) ( ) ( 2) ( 1)

          ( ) ( 1) ( ) ( 2) ( 1)
e p c p

p p c p

k p A k p Pw k u k u k p B u k p

R r k R r k p k k p E k p

 
  

 

  

              

              


   

(7.11) 

   Letting 
1 2( ) ( ) ( )u k u k u k   and substituting into Equation (7.11), a simplified equation is 

given by  
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1 2( ) ( 1) ( ) ( ) ( ) ( ) ( )ek p A k p Pw k f u f u k g r                    (7.12) 

where
1 0 1 2 1 1( 2)( ) ( ) ( 2) ( 1)p c pf u u k u k p B u k p           , 

2 0 2 2 2 2( 2)( ) ( ) ( 2) ( 1)p c pf u u k u k p B u k p           , 

0 1 1( ) ( ) ( 1) ( 1)pg r R r k R r k R r k p       and Δ(r) = 

0 1 2 ( 2)( ) ( 1) ( 2) ( 1)p c pk k k p E k p              . For perfect tracking performance, 

( ) 0k p   . If 

1( ) ( ) ( )=0Pw k f u g r                          (7.13) 

then Equation (7.12) becomes a nominal SMC problem. Therefore, it is necessary to design 
1u  

so that Equation (7.13) can be satisfied. 

 

① Design of 
1u  

   Lemma 7.2: If cA  is of rank n, then cA  can be represented as its controllable canonical 

form. 

( 1) ( 1) ( 1)

0

0 p q q p q p q
e T

I
A

A A

     
 
  

 
                       (7.14) 

where 
1 2 1

T

pA A A A 
 
   , 

10 1 ,, , p
q qAA A R
  are q order square matrixes. 

   Remark 7.1: Lemma 7.2 can be easily proven from Lemma 7.1. 

   Theorem 7.1: If cA  is of rank n, then , ( 0,1, , 2),iP i p    

( 2)( 0,1, , 1), , ( 0,1, , 2)j c p lR j p B l p      and ( 2)c pE   are of rank q, and their top 

( 1)p q  rows are zero sub-matrices (Proof in the appendix). 

   Based on Lemma 7.2 and Theorem 7.1, Equation (7.13) can be rewritten as a state space 
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model 

1 1 11 1

1 1 11 1

( ) ( ) ( )

 ( ) ( )+ ( )
d d

d d

X k A X k B u k

Y k C X k D u k

 


                       (7.15) 

where 
1 1 1 1( ) ( ) ( 1) ( 2)

T
T T TX k u k u k u k p 

      

1 0 ( 1)( ) ( ) ( ) ( 1),q q p qY k P w k R r k R r k p        

( 2) ( 2) ( 2)
0 1 21 1 1 1 ( 2)

( 2)

0
0

, , ,
00 0

q q

p q q p q p q
pd d d d c p

q qq q q p q

q q

I
A B C D B

I



    
 

  



 
               
 
 

      


  

and 
0 1 ( 1)q q q p qP R R R ， ， ， ，  are the last q rows of matrixes 

0 1 ( 1)pP R R R ， ， ， ，  , 

respectively. The design of 
1u  accomplishes the decoupling control of the MIMO system (7.15) 

where the desired output is 

1 0 1 ( 1)( ) ( ) ( ) ( 1) ( 1)q q q p qR k P w k R r k R r k R r k p         In this study, static decoupling 

[142] is used in the design of 
1u .  

   Assuming that 
1 1( , )d dA B  may be stabilized, the design of a state feedback control  

1 1 1 1 1( ) ( ) ( )u k K X k F R k                          (7.16) 

is desired such that the closed-loop discrete transfer function 

1
1 1 1 1 11 1 1 1 1 1

1
1 1 11 1 1 1 1 1

( ) ( )( )

        [( )( ) ]
d d d d d d

d d d d d d

T z C D K zI A B K B F D F

C D K zI A B K B D F





    

    
           (7.17) 

has a diagonal and non-singular 
1(1)T  and the control system is stable. 

   If such 
1K  and 

1F  may be found, then 

1
1 1 1 11 1 1 1 1 1(0) [( )( ) ]d d d d d dT C D K I A B K B D F I      . Therefore, 

1 1
1 1 11 1 1 1 1 1[( )( ) ]d d d d d dF C D K I A B K B D                   (7.18) 
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as long as 
1K  can be found such that 1 1 1d dA B K  has all its eigenvalues in the unit circle. 

1F  

is a constant matrix which statically decouples the MIMO system. From Equation (7.17), it may 

be seen that the term 1
1 11 1 1 1 1( )( )d d d d dC D K zI A B K B    determines the dynamic coupling effect 

of the closed-loop system which can be reduced by the appropriate design of 
1K . Denote ( )k  

to be the remaining dynamic coupling effect. Since  , ( 0,1, , 2),iP i p    

( 0,1, , 1),jR j p   

( 2) , ( 0,1, , 2)c p lB l p    and ( 2)c pE   are of rank q, ( )k  is of rank q as well and can be 

considered to be a matched disturbance which will be rejected by design of 
2u .  

   In this study, the design of 
1K  when p = 3 will be discussed. Similar design approaches can 

be employed for other applications.  

   When p = 3, 
0 1 11 1 1 1

0 0
, , , .

0 0
q q q q q q

cd d d d
q q q q q q

I
A B C D B

I
  

  

   
            

      For this specific 

system, 
1K  may be designed as  

1 1 1s sK K K                               (7.19) 

where 
1

q q
sK R  . Substituting Equation (7.19) into Equation (7.17) and applying matrix 

transformation gives 

1

1
1 1 0 1 1 1 1 11 1 1 1 1

1 1

1 1 2 1 1 1 1 1
1 1 1

0 1 1 1 1 1 2 1 1 1 1
1 1 1

0
( )( )

( ) ( )
        

( ) ( )

c s c sd d d d d
s s

s s s
c s c s

s s s

zI I
C D K zI A B K B B K B K

K zI K I

z I z z K zI I z z K K zI
B K B K

z K zI I z K K zI




      

   

   
           

 
    


       

 

     
    

    
2 1 1 1

0 1 1 1 1 1 1 1 1 1

0

        ( )( ) ( )( )c s s s c s s s

I

B K K zK z I B K z K K zI  

 
  
  

           

(7.20)

 
If 

1sK  is a lower triangular matrix, then the dynamic terms in Equation (7.20), 
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2 1
1 1( )s sK zK z I    and 1 1

1 1( )s sz K K zI   , are lower triangular matrixes as well. For 

example, if q = 3, then 
1sK  can be designed as 

111

1 121 122

131 132 133

0 0
0 .

s

s s s

s s s

K
K K K

K K K

 
 
 
 
 

  

Therefore, 2 1
1 1( )s sK zK z I   

12
111 111

2
121 121 122 122

2
131 131 132 132 133 133

0 0

0 .
s s

s s s s

s s s s s s

K zK z

K zK K zK z

K zK K zK K zK z


  
    
     

 

First, the diagonal elements 
111sK , 

122sK  and 
133sK  are designed, and then the remainder of 

the lower triangular elements are designed (Details of the design are given in the next section). 

 

② Design of the equivalent control 

   By applying Equation (7.16), Equation (7.13) is satisfied and as a result, Equation (7.12) 

leads to a nominal SMC design such that 

0 2 2 2 2( 2)( 1) ( ) ( ) ( 2) ( 1) ( )e p c pk A k u k u k p B u k p k                  (7.21) 

In this equation, Δ(k) includes the model uncertainty and the remaining dynamic coupling effect 

which is not completely compensated for by the design of 
1u . Note that eA  has controllable 

canonical form. 

   For the nominal SMC design, 
2u  can be divided into the equivalent control and the 

switching control, 

2 eq swu u u                               (7.22) 

   Let the sliding surface be 

( ) ( ) 0s k S k                              (7.23) 

For ideal sliding motion, 
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2( ) ( 1) ( ) ( ) 0eS k p SA k p Sf u S k                       (7.24) 

Thus, the equivalent control can be designed as 

1
0 2 1 2 1 2( 1)( ) ( ) [ ( ) ( ) ( 1) ( 1)]eq e nc nu k n SB S A k u k u k u k n

              (7.25) 

However, Equation (7.25) might not provide a stable solution.  

   To solve this problem, Equation (7.21) is considered to be a dynamic plant with its output 

being the tracking error. The objective is to design a controller, called a sub-SMC in this study, 

that forces the tracking error to approach zero, i.e., e(k+p) = 0. 

   According to Theorem 7.1 and Lemma 7.2, Equation (7.21) can be rewritten as 

0 1 1 0 2 2 2

1 2 0 2 1

( ) ( ) ( 1) ( 1) ( ) ( 2)

             ( 1) ( ) ( 2) ( 1)
p p

p p p

e k p A e k A e k A e k p B u k B u k p

B u k p E k E k p E k p  
 

  

            

          

 


(7.26) 

where 
0 1 2 1, , , ,p pB B B B   and 

0 1 2 1, , , ,p pE E E E   are the last q rows of 

0 1 2 ( 2), , , ,p c pB     and 
0 1 2 ( 2), , , ,p c pE     respectively. This is an auto-regressive 

model which can be represented by a state space model. Applying Lemma 7.1, this state space 

model can be transferred to the controllable canonical form 

2 2 22 2

22

( 1) ( ) ( ) ( )

( ) ( )
d d

d

X k A X k B u k k

e k C X k

    


                 (7.27) 

where 
 block

2 0 0
p

q q q q q qdC I   

 
 
 
  




  and ( )k  is the disturbance. Note that if 2( )X k  

approaches zero, e(k) will approach zero. Inspired by this, the output tracking SMC design 

problem (7.21) can be transferred to the state tracking SMC problem. 

   The sliding surface is designed as 

2( ) ( ) 0s k SX k                              (7.28) 
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where 
0 1 1pS 

 
      and 

0 1 1, , , q q
p R 
     are diagonal matrices. 

    The equivalent control can be designed as 

1
2 22 2( ) ( ) ( ) ( )eq d du k SB SA S X k                    (7.29) 

where 
2  is a q-by-q diagonal matrix which stabilizes the SMC. 

 

③ Design of swu  

   Substituting Equation (7.22) and Equation (7.29) into Equation (7.28) and considering model 

(7.27) yields 

2 2( 1) ( ) ( ) ( )sws k s k SB u k S k       and              (7.30) 

2 2 2( 1) ( ) ( ) ( )p swdX k A X k B u k k                       (7.31) 

where 1
22 2 2 2( ) ( )p d d d dA A B SB SA S   . 

   Rewrite Equations (7.28) and (7.31) together 

2 2 2

2

( 1) ( ) ( ) ( )

        ( ) ( )
p swdX k A X k B u k k

s k SX k

    


                (7.32) 

   Equation (7.32) can be considered to be a dynamic plant, where u(k) is the input and s(k) is 

the output. The goal of the SMC is to force the output of the equivalent plant to track the zero 

reference input, as shown in Figure 7.1. 

   Due to the discontinuous characteristics of the ‘bang-bang’ switching control in Equation 

(7.21), state switching may occur at a high frequency which leads to a chattering problem. To 

eliminate chattering, a PID regulator can be employed instead of the discontinuous switching 

control. This will cause the equivalent control error s(k) to be zero, as provided by Equation 
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(7.33), 

0

( ) ( 1)( ) [ ( ) ( ) ]
k

sw
i

s k s ku k Ps k I s i T D
T

                      (7.33) 

where P, I and D are matrixes of the discrete PID-based SMC; T is the sampling period. 

 

 

Figure 7. 1  Equivalent plant for SMC 

   Theorem 7.2: There exist matrices P, I and D such that the closed-loop control system (7.32) 

is stable. 

   Proof: Substituting Equation (7.33) into (7.30) yields 

     2 2 2 2 2

1

2
0

1 ( (/ ) / )) ( 1 ( )d d d d d

k

i
s k SB SB T SB s k SB s k SBP I D T D T IT s i S k




        

(7.34) 

Note that 

   2 2 2 2

1

2
0

/ ) /( ( 1) ( ( 1)) ( 2)
k

d d d d
i

I P DSB T s i s k SB SB s k SB ST D T ks k



         

 

(7.35) 

Thus, Equation (7.34) can be rewritten as 

   
 

22 2 2 22 2

2

1 ( ( ) (2 1

            (

/ ) / )

/ ) 2 ( ) ( 1)

d d d d d

d

s k I SB SB T SB s k SB SP I D T D T P

D T

B s k

SB s k S k S k

       

     





  (7.36) 
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Denoting  1 ( ) ( 1)k S k S k       , Equation (7.36) can be re-expressed as a state space 

model with input being  k  and output being  s k . Its characteristic matrix is given by 

1 2 3

0 0

0 0
q q q q q q

q q q q q q

I

A I

A A A

  

  

 
 
 
 
  

                           (7.37) 

where
21 ),( /dA B DS T 22 2 22 /d dD TSB SB PA   and 

23 2 2 2 / .d d dI SB SB T SP I D TA B    

   The eigenvalues of A , denoting as ( 1,2, ,3 )i i q   , can be obtained by 

1 2 3( )( ) ( )qI A                             (7.38) 

   Equation set (7.38) contains 3q equations with 3q×3q unknown parameters. Therefore, there 

exist matrices P, I and D such that the eigenvalues of A  can be arbitrarily located, which makes 

the close-loop system (7.32) stable. 

□ 

   Theorem 7.3: If the closed-loop system (7.32) is stable, the zero steady state error can be 

achieved. 

   Proof: The switching function may be divided into two parts, 

0 1( ) ( )s k s s k                              (7.39) 

where 
0s  is the initial vector of the switching function which depends on the position of the 

original state. 

   Substituting Equations (7.33) and (7.39) into Equation (7.32) and using the equivalent 

control (7.29) leads to 
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 

       
1 22 0

1 1
2 1

2

2 2 21
0

1 [ ( 1) 1 ]

1
             [( ) ] ( )

d d

d d d

k

i

s k SB P SB IT k s

s k s k
SB P s k SB IT s i SB D S k

T

      

 
     

 (7.40) 

   This is a two inputs one output system where 
0s  and   are the inputs. Since Equation 

(7.40) is linear, it can be divided into two subsystems: input 
0s  with corresponding output 

11s ; 

and input   with corresponding output 
12s . Therefore, 

1 11 12( ) ( ) ( )s k s k s k                           (7.41) 

   Suppose 
11 12(0) (0) 0s s  , then the first subsystem can be represented as 

 

       
11 2 0

11 11
2

2 2

11 112 2 2
0

1 [ ( 1) 1 ]

1
              [( ) ]

k

i

s k SB P SB IT k s

s k s k
SB P s k SB IT s i SB D

T

      

 
   

  (7.42) 

   Taking a Z-transform of Equation (7.42), the transfer function from 
0s  to 

11s  becomes 

 1
2 2 0211 ( )( ) )1 (1z SB P Sz s zBs IT k  

                   (7.43) 

where matrix  1 0 2 2
2

1
2 2( ) k k

q q
SB D SB D

SB IT z z z z
T T

z S Pz I B 


          . Since, 

0s  is a step input with its amplitude being 
0s , according to the final value theory of the discrete 

system, 

         1 1 1
11 11 2 2 2 0 01 1

lim 1 lim 1 ( ) 1 1
1z z

zs z s z z z SB P SB IT k s s
z

  
 

 
             

  

(7.44) 

   The second subsystem can be represented as 

         12 12
12 2 2 12 2 12 2

0

1
1 [( ) ] ( )

k

i

s k s k
s k SB P s k SB IT s i SB D S k

T

 
        (7.45) 

   Taking a Z-transform of Equation (7.45), the transfer function from   to 
12s  becomes 

1
12 ( ) ( )( )zs z zS                           (7.46) 
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Therefore, 

         1 1 1
12 121 1

lim 1 lim ( ) 1 0
z z

s z s z z S z z  
 

                  (7.47) 

   Equations (7.33) and (7.47) together with Equation (7.41) indicate that the value of the 

switching function s is zero when time approaches infinity. This implies that the state will move 

towards the sliding surface and converge to zero and zigzag motion of the states and the steady 

state error of the output in the discrete SMC are eliminated. 

 □ 

7.5.4 Experiments 

   Piezoelectric stages have been widely applied to nano-positioning, due to their fast response, 

high precision, and ability to generate large forces. With ingenious design of flexible hinges, 

friction and backlash clearance can be avoided which leads to further improvement in their 

performance. However, nonlinear effects in the piezoelectric actuators, such as creep and 

hysteresis, can greatly degrade the positioning accuracy of the stages [1], [2], [61]. To improve 

the performance, control of nano-positioning stages has drawn considerable attention. In this 

study, with the aim of verifying the effectiveness of a discrete PID-based SMC for a MIMO 

system, experiments were carried out on the commercially available nano-positioning stage 

(P-558.TCD, Physik Instrumente) shown in Figure 6.1. Four piezoelectric actuators are used to 

actuate the stage. It can generate linear displacements in the vertical direction Z and rotation 

around two horizontal directions xR  and yR . Table 6-1 shows the motion range and resolution 

of each DOF. 
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   For displacement measurements, three capacitive displacement sensors located inside 

P-558.TCD are employed. All displacements were measured with a sampling interval of 2 ms in 

this study. A transform matrix between the sensors’ displacements and the outputs Z, xR  and 

yR  is provied by the manufacturer. Both the actuators and the sensors in the stage are connected 

to a host computer via a digital piezo controller (E-761, Physik Instrumente) and controlled via 

Labview programs, as shown in Figure 6.1b. As instructed by its manual, the piezo controller can 

drive the actuator with a maximum operating frequency of 10-20 Hz if 30-50 V input voltage is 

applied. The controller can be manipulated in both open-loop mode and closed-loop mode. In 

open-loop mode, a 4-dimensional voltage signal is generated by the computer and transferred to 

the controller. Through amplifiers in E-761 board, this signal is received by each piezoelectric 

actuator. Since there are 4 inputs and 3 outputs, actuation redundancy exists in open-loop 

manipulation. This might destroy the nano-positioning stage, therefore, manipulation in 

open-loop mode is not recommended. In closed-loop mode, a 3-dimensional reference signal is 

forwarded from the computer to the controller and is then processed by the internal PID 

controllers of the stage and distributed to each piezoelectric actuator. The closed-loop mode may 

be regarded as a 3-input-3-output system without actuation redundancy and, as a result, it was 

adopted in this research. 

   Since the configuration of the nano-positioning stage is unknown, a black-box state space 

model was applied to describe the dynamic performance. The nonlinearity that exists in the 

nano-positioning stage is considered to be a disturbance to the dynamics which is rejected by the 

proposed discrete PID-SMC. Experiments for parameter identification were first carried out to 
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obtain the state space model. Then, an output tracking based discrete PID-SMC designed using 

the model reference approach was applied to control the nano-postioning stage for tracking step 

reference signals. Finally, dynamic tracking control with the proposed methods was implemented 

and comparison to a PID controller was made. 

7.5.4.1 Model identification 

   In this study, the performance of the nano-positioning stage was described by the state space 

model 

( 1) ( ) ( ), ( ) ( )x k Ax k Bu k y k Cx k                      (7.48) 

where 1( ) nx k R   is the state, 3 1( )u k R   is the control input, 3 1( )y k R   is the system 

output, and n nA R  , 3nB R   and 3 nC R   are the system matrices. For simplicity, the 

order of the system was chosen to be nine, thus p = 3. Since the state space model is linear, the 

model identification may be implemented on each input channel separately. For example, when 

an input signal is only provided to one channel, i.e., ( 1, 2,3)iu i   the three-dimensional 

output
1 2 3

T

i i i iy y y y     can be obtained by 

( 1) ( ) ( )

     ( ) ( ) ( )
i i i i i

i i i i i

x k A x k B u k

y k C x k D u k

  
 

                       (7.49) 

The states in Equation (7.49) for all three channels may be stacked as 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( 1) ( ) ( )
( 1) ( ) ( )
( 1) ( ) ( )

x k A x k B u k
x k A x k B u k
x k A x k B u k

         
         
         
         
         


  


          (7.50) 

According to the definition of the linear system, the output is regarded as the sum of 

( 1, 2,3)iy i  , i.e., 
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1 1

1 2 3 1 2 3 2 1 2 3 2

3 3

( ) ( )
( ) ( )
( ) ( )

x k u k
y y y y C C C x k D D D u k

x k u k

   
            
   
   

             (7.51) 

As such, the system matrices in the state space model for the three-input-three-output system are 

obtained by 

1 2 3 1 2 3 1 2 3 1 2 3, , ,A diag A A A B diag B B B C C C C D D D D                   (7.52) 

   For parameter identification, a 40 μm reference chirp signal with frequency ranging from 1 to 

100 Hz was provided in Channel 1 (Reference Z channel) and the corresponding output in each 

channel was measured. The order of the state space model was originally set to three. By 

applying the singular value decomposition on the identified Hankel matrix [150], the system 

matrices of the state space model were obtained.  

   To identify the state space model in the other two channels, a 200 μrad reference chirp signal 

with frequency ranging from 1 to 100 Hz was provided. By employing the same aforementioned 

estimation method, the system matrices of the sub-system were obtained. Equation (7.53) shows 

the identification results. Table 7-2 gives the prediction error in each direction when a 1 Hz 

sinusoidal reference input is provided in different channels. The prediction errors are calculated 

in terms of the 2-norm of the error vector (defined as the difference between the measurement 

and the model prediction).  

1 1

1

,

0.9235 0.1738 0.0103 0.3125
0.1754 0.6964 0.0997 , 0.2797
0.024 0.1912 0.8276 0.0717

0.308 0.2794 0.0363
0.0151 0.0273 0.0456
0.0028 0.0224 0.0224

A B

C

   
   
   
      
 
 
 
  


    


  

  

              

(7.53a) 
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2 2

2

,

0.9739 0.1057 0.022 0.252
0.2057 0.7501 0.1689 , 0.1241
0.024 0.5491 0.1313 0.076

0.000057 0.00011 0.000004
0.1988 0.1714 0.0701

0.0007 0.00066 0.0011

A B
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   
   
   
      
 
 
 
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


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              (7.53b) 

3 3

3

0.9739 0.1063 0.0219 0.2534
0.2048 0.7502 0.1684 , 0.1251 ,
0.0235 0.5504 0.1311 0.076

0.00005 0.0001 0.00005
0.0015 0.0018 0.00027

0.1988 0.172 0.07

A B

C

   
   
   
      
 
 
 
  

   
 


 

 

              

(7.53c)

 

Table 7- 2  Estimation error under chirp inputs in each channel 

Direction Z (μm) xR  (μrad) yR  (μrad) 

Chirp inputs in Channel 1 0.1944 0.4030 0.2008 

Chirp inputs in Channel 2 0.0192 4.8640 0.0760 

Chirp inputs in Channel 3 0.0263 0.2060 4.3387 

 

   From Table 7-2, it may be seen that the prediction error in the diagonal is only 0.49%, 2.43% 

and 2.16% of the input amplitude respectively. It is noted in the previous section that the 

dimension of the state vector should be integral multiple of the number of inputs or output in 

order to employ the proposed method ( / { | , 1}n q p Z      ). This can be guaranteed by 

choosing the same order in separate identification for each input-output pair. For example, in the 

aforementioned system identification, the order of each system ( iA , iB , iC , iD , i = 1, 2, 3) is set 

to be 3 such that the order of the 3-inputs-3-outputs system (A, B, C, D) is 9. 



 

186 
 

7.5.4.2 Step tracking 

   The output tracking based discrete PID-SMC for MIMO systems developed using the model 

reference approach was implemented in experiments to control the nano-positioning stage. The 

output displacement in each direction was estimated by a α-β filter which is a simplified observer 

for estimation and filtering. The parameters of the filter were adjusted to be α = 0.5, β = 0.002 

using trial-and-error. The sliding surface was defined as given in Equation (7.23) where 

2
3 3 3 3 3 32S m I mI I  

 
   and m = −0.7. The reference model was defined as a second order 

diagonal transfer matrix as 

2

2 2

2

2 2

2

2 2

0 0
2

0 0
2

0 0
2

n

n n

n
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n n

n

n n

s s

T
s s

s s
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 
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 
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 
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 
 
 
 
 
 
 
 
 

 


 

 

            (7.54) 

where η is the desired damping ratio and n  is the desired natural frequency. The parameters 

were adjusted to be 0.9   and 200n  . Then the transfer matrix was transferred to the state 

space model. For convenience, the PID matrices and stable matrix Φ were chosen to be diagonal 

matrices. As introduced in Equation (7.19), 
1K  in the SMC was selected to be a combination of 

two lower triangular matrices 
1sK . To adjust 

1K , a diagonal matrix was first applied with its 

diagonal elements set according to the diagonal outputs. The other elements in the lower triangle 

were tuned according to the interaction between each axis.  

   The step tracking experiments were divided into three groups. First, a 10 μm step reference 

signal was provided in the Z direction. To get the best tracking performance, the first diagonal 
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elements in the
1sK , Φ and PID matrices were set to 

111 11 11 110.3, 0.9, 1, 60sK P I       and 

11 0D   Then, a 10 μrad step reference signal was provided in the xR  direction with the other 

two kept at zero. The second diagonal elements in the 
1sK , Φ and PID matrices were set to -0.2, 

0.5, 4, 500, 0, respectively. To minimize the effect in the Z direction, 
121sK  was set to -0.007. 

Finally, the same reference signal was provided in the yR  direction with Z and xR  equal to 

zero. The third diagonal elements were set to 

111 11 11 11 110.3, 0.4, 2, 200 and 0sK P I D       . To minimize the effect in the xR  

direction, 
131sK  was set to 0.01. The other elements in the matrix 

1sK  were kept at zero. 

   Figure 7.2 shows the step tracking performance of the nano-positioning stage controlled by 

the proposed SMC.  

 

 

Figure 7. 2  Step tracking performance of the 3-DOF nano-positioning stage 
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   It can be seen that the tracking errors approach to zero through the use of the I component in 

the PID regulator. This was proven theoretically in the above section. Overshoots exist due to the 

large control input generated in order to obtain a fast response in each direction. 

7.5.4.3 Dynamic tracking performance compared with the PID controller 

   To verify the effectiveness of the proposed control method, dynamic tracking experiments 

were carried out on the nano-positioning stage. Three types of inputs were used as the reference 

signal: ①  sinusoidal inputs with different amplitudes and frequencies; ②  a piecewise 

continuous combination of different-amplitude sinusoidal inputs with the same frequency 

(PWSW), as shown in Figure 4.8a; and ③ the superposition of four sinusoidal inputs with 

different frequencies, amplitudes and phase delays (SW), as shown in Figure 4.8b and Equation 

(4.47).   

   The output tracking based discrete PID-SMC for MIMO systems designed by the model 

reference approach was implemented on the nano-positioning stage. The same α-β filter, sliding 

surface, the stable matrix Φ and 
1sK  adjusted for the step reference inputs were employed, as 

well. To improve the tracking performance, the parameters of the second order reference model 

were chosen to be 0.9   and 1000 /n rad s  . Thus, the parameters of the PID matrices 

based on the reference model were readjusted to be 6 2 3P diag    , 

300 50 30I diag     and 
3 30D  . For comparison, the PID controller was also 

implemented on the nano-positioning stage. Table 7-3 shows the PID parameters adjusted by 

trails-and-errors for the optimal performance. 
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Table 7- 3  PID parameters adjusted for the PID controller 

   Channel   P      I      D 

    Z   1.5     120      0 

     xR    2    90      0 

     yR    2     100         0 

Table 7- 4  Comparison of the tracking performance between the discrete PID-based SMC and 
PID controller 

Reference inputs Frequency 
Discrete PID-based SMC 

Z xR  yR  

10 μm sinusoidal input in Z 
direction 

1 Hz 0.0633 0.0008 0.0008 
5 Hz 0.2912 0.0011 0.0012 
10 Hz 0.7632 0.0025 0.0022 

10 μrad sinusoidal input in 

xR  direction 

1 Hz 0.1184 0.2707 0.0285 
5 Hz 0.2573 1.3789 0.044 
10 Hz 0.2666 2.8597 0.0506 

10 μrad sinusoidal input in 

yR  direction 

1 Hz 0.0661 0.0148 0.2879 
5 Hz 0.0521 0.0197 1.5742 
10 Hz 0.0818 0.034 2.9125 

Reference inputs Frequency 
PID controller 

Z xR  yR  

10 μm sinusoidal input in Z 
direction 

1 Hz 0.3658 0.0009 0.0009 
5 Hz 1.7395 0.0012 0.0012 
10 Hz 3.8355 0.0026 0.0026 

10 μrad sinusoidal input in 

xR  direction 

1 Hz 0.0909 0.492 0.0148 
5 Hz 0.3095 2.5681 0.0347 
10 Hz 0.5801 5.2104 0.0827 

10 μrad sinusoidal input in 

yR  direction 

1 Hz 0.0225 0.077 0.4557 
5 Hz 0.0586 0.024 2.4599 
10 Hz 0.2484 0.0531 5.2334 
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   Table 7-4 compares the tracking performance of the nano-positioning stage controlled by the 

proposed method and the PID controller. The tracking error was calculated in terms of the 

2-norm of the difference between the desired output and the measured output. It can be 

concluded that the proposed method performs better than the PID controller, especially in the 

diagonal direction. As frequency increases, the improvement becomes more obvious. For 

example, if a 1 Hz, 10 μm sinusoidal input is provided in the Z direction, the tracking error in the 

Z direction derived by the output tracking based discrete PID-SMC developed with the model 

reference approach is 0.0633 μm. This is 0.3025 μm less than that derived by the PID controller. 

For a 10 Hz sinusoidal input in the Z direction, the difference increases to 3.0723 μm. 

   In addition, the coupling effect is reduced when the proposed method is used. For example, 

consider the 10 Hz, 10 μrad sinusoidal input in the yR  direction. The tracking error in the Z 

direction from the proposed method is 0.0818 μm which is only 32.9% of that from the PID 

controller. However, at low input frequency, the improvement is not as obvious.  

   Occasionally, the performance of the output tracking based discrete PID-SMC is worse than 

the PID controller which has been indicated in bold font in Table 7-4. For example, when a 5 Hz, 

10 μrad sinusoidal input is provided in the xR  direction, the tracking error in the yR  direction 

derived by the proposed method is 0.0093 μm more than that derived by the PID controller. This 

might be caused by the nonlinear effect that exists in the nano-positioning stage. 

   To further show the performance of the proposed method, two extra experiments were 

implemented. In the first experiment, a 2 Hz, 10 μm sinusoidal input was provided in the Z 
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direction and a 5 Hz, 10 μrad sinusoidal signal was set as the reference input to the xR  

direction. There was no reference signal given in the yR  direction. In the second experiment, a 

2 Hz, 10 μm PWSW input was provided in the Z direction and a 10 Hz, 50 μrad SW signal was 

selected as the reference input to the yR  direction, with the other direction kept at zero. Figure 

7.3 and Figure 7.4 show the tracking performance.  

   Compared to the PID controller, the output tracking based discrete PID-SMC for MIMO 

systems performed better for the combined signals in all three directions. This can be seen from 

the tracking performance of the second experiment. Using the discrete PID-based SMC instead 

of the PID controller, tracking errors of 0.1086 μm and 1.1831 μrad were obtained in the Z and 

yR  directions, respectively. This is 0.6151 μm and 1.813 μrad lower than the PID controller. 

Similar results also occurred in the first experiment.  

   In terms of the decoupling effect, the advantage of using the proposed method over the PID 

controller is not as obvious. For example, in the second experiment the tracking error of the 

nano-positioning stage controlled by the discrete PID-based SMC derived from the model 

reference approach is 0.0763 μm. This is only 0.009 μm less than the PID controller. But 

compared with the tracking error without any controller, there is still 51.7% improvement using 

the discrete PID-based SMC, which can be observed from Figure 7.4(f). 
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(a)                                 (d) 

 

(b)                                (e) 

 

(c)                                (f) 
Figure 7. 3  Tracking performance of the discrete PID-based SMC designed by model reference 
approach for the 2 Hz 10 μm sinusoidal input in Z direction and 5 Hz 50 μrad sinusoidal input in 
Rx direction 
output displacement in (a) Z direction, (b) Rx direction and (c) Ry direction; tracking error in (d) 
Z direction, (e) Rx direction and (f) Ry direction; 
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(a)                                (d) 

 

(b)                                (e) 

 

(c)                                (f) 
Figure 7. 4  Tracking performance of the discrete PID-based SMC designed by mode reference 
approach for the 5 Hz 10 μm PWSW input in Z direction and 10 Hz 50 μrad SW input in Ry 
direction 
output displacement in (a) Z direction, (b) Rx direction and (c) Ry direction; tracking error in (d) 
Z direction, (e) Rx direction and (f) Ry direction; 
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7.5.5 Conclusion 

   This paper presents the development of an output tracking based discrete PID-SMC for a 

MIMO system. By applying the model reference approach, the output tracking problem is 

transferred to a state tracking problem so that the general SMC design method can be applied, so 

called a novel sub-SMC design in this paper. By applying the PID based switching control 

instead of the ‘bang-bang’ switching control, chattering and the zig-zag state motion of the 

discrete SMC were eliminated. The zero steady state error of the proposed method can be 

achieved. To verify the effectiveness of the proposed control schemes, experiments were carried 

out on a commercially available nano-positioning stage using different reference signals given in 

different directions. A black box state space model was identified to represent the dynamics of 

the nano-positioning stage such that general SMC design cannot be directly applied. The results 

obtained were compared with the PID controller. It was shown that the output tracking based 

discrete PID-SMC designed by the model reference approach can achieve better tracking 

performance. As the input frequency increases, the advantage of using the proposed method 

becomes more profound. 
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7.5.7 Appendix 

Proof of Theorem 7.1: 

Proof: Consider state space model (7.1) and substitute Equation (7.3) into (7.1). Therefore, 

1x FAF x FBu Fw                         (7.55) 

Assume that matrix 1FAF   has the controllable canonical form defined as  

( 1) ( 1) ( 1)1

0

0

α
m p m m p m pI

FAF
A
    

 
 
  

                   (7.56) 

where 
1 2 1α pA A A 

 
   , 

0 1, , , m m
pA A A R   are the coefficient matrixes. 

    Substituting Equation (7.4) into Equation (7.56) gives 

( 1) ( 1) ( 1)

0
1 1

0

α
m p m m p m p

p p

C C
ICA CA

A
A

CA CA

    

 

   
                
      

 
             (7.57) 

The first ( 1)p m   rows of Equation (7.57) are satisfied naturally. The last p rows lead to  

1 12
0 1 2 1

p p
pCA A C A CA A CA A CA 
                  (7.58) 

Assume that the elements in these coefficient matrixes are unknown, therefore, Equation (7.58) 

can be considered to be a group of m n  linear equations with m n  unknown parameters 

which are solvable. Therefore, Equation (7.58) can be satisfied. Moreover, by applying the 

transform (7.3), the input and output matrices of the new state space model will be, respectively,  

0 1 1' ; ; pB FB B B B 
 
     and                  (7.59) 

 block

1' 0 0
p

m m m m m mC CF I
  

 
 
 
  

 


  .                (7.60) 
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Proof of Theorem 7.1: 

Proof: According to Lemma 7.2, eA  can be decomposed as 

11 12

21 22
e

N N
A

N N
 
 
  

                            (7.61) 
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( 2)( ) [ ] .c pRank P Rank B q    
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   Also, it can be proven similarly that 
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□ 
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8 Disturbance Observer based Sliding Mode Control for 

Multi-DOF Piezoelectric Actuators 

This chapter presents the work that is included in the following manuscript appended.  
 
Y. Cao and X. B. Chen, “Disturbance Observer based Sliding Mode Control for a three-DOF 
Nano-positioning Stage,” IEEE/ASME Transactions on Mechatronics, 2012, under review, 
manuscript ID: TMECH-09-2012-2566. 

8.1 Introduction and Objectives 

   It is noted in Chapter 5 that if the disturbance and uncertainties can be completely or partially 

estimated, such estimations should greatly facilitate the hysteresis compensation by means of 

SMC. Common of the existing studies about the DOB-based control on the multi-DOF 

nano-positioning stages is that their structures were known and as such physical models can be 

developed to describe their behaviors. In reality, the challenge is that the commercially-available 

multi-DOF nano-positioning stages are typically provided without the information regarding the 

internal structure and as a result, it is difficult or even impossible to build their physical models 

for the control purpose. To rise to this challenge, this paper is to develop a discrete DOB-based 

SMC for the multi-DOF nano-positioning stage with unknown configuration. 

8.2 Methods 

   Figure 8.1 shows the proposed control scheme of the discrete DOB-based SMC. Due to the 

unknown configuration of the nano-positioning stage, the plant was identified as a black box 
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dynamic system, which is decoupled by the integration of DOB. Each pair of inputs and outputs 

can be controlled independently by a discrete PID-based SMC designed based on its dynamics. 

Since the coupling effect is compensated by the use of DOB, the disturbance to be rejected by 

the PID-based SMC is reduced. Therefore, the tracking error is expected less in comparison to 

the nominal SMC. Due to the imperfection of the decoupling, integration of the DOB may not 

completely compensate for the interaction between each pair of inputs and outputs. Such an error 

is considered to be uncertainty and is estimated based on the desired decoupled system. This 

error is integrated in the design of the equivalent control of the SMC and rejected by the discrete 

PID-based SMC. 

 

 

Figure 8. 1  Control scheme of the DOB-based SMC 
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8.3 Results 

   By integration of the DOB into the discrete PID-based SMC, the disturbance to be rejected 

by the feedback control is reduced and the control performance of the three-DOF 

nano-positioning stage is greatly improved. This improvement becomes more profound as the 

frequency increases from 1 Hz to 10 Hz in the verification experiments. The developed method 

may also be employed in the application with a higher frequency, which has not been validated 

due to the limitation of the experimental settings used in the present study. 

8.4 Contributions 

   The contribution of this work was the successful extension of the application of the discrete 

DOB-based SMC to the control of multi-DOF piezoelectric actuator without available 

information regarding the internal mechanical configuration. 

8.5 Paper: Disturbance Observer based Sliding Mode Control for a 

Three-DOF Nano-positioning Stage 

   Authors: Y. Cao and X. B. Chen, Member, IEEE7 
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   Index Terms: Control systems, MIMO systems, Observers, Piezoelectric devices, 

Uncertainty   

8.5.1 Abstract 

   To compensate for the nonlinear effects of nano-positioning stages and their model 

uncertainties, several control methods have been developed and reported in the literature. One 

promising method for compensation is the use of a proportional-integral-derivative (PID)-based 

sliding mode control (SMC), in which the nonlinear effects are treated as an unknown 

disturbance to the system. If the nonlinearity and the model uncertainties can be completely or 

partially estimated, integration of their estimations into the control schemes may lead to 

improved performance. On this basis, this paper presents the development of a 

disturbance-observer-based (DOB) SMC, in which the nonlinearity of the nano-positioning stage 

is partially predicted through the use of an observer and then compensated by the PID-based 

SMC. Experiments were performed to verify the effectiveness of the proposed control schemes, 

and the results showed that the performance of the nano-positioning stage by employing the 

DOB-SMC was greatly improved, as compared to the PID-based SMC. 

8.5.2 Introduction 

   An increased requirement for high accuracy in production manufacturing and other devices 

has led to rapid development of precision engineering. From its origin in mechanical 

engineering, precision engineering has evolved into micro-mechanics and then nanotechnology 
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[1].  Nanotechnology is the study on the control or manipulation of matter on an atomic and 

molecular scale. One key branch of nanotechnology is nano-positioning [2]. Nano-positioning 

stages have been widely applied in nano-manipulation, due to the fast response, high precision, 

and large forces generated by their drivers ─ the piezoelectric actuators (PEA). The use of 

flexure hinges makes it possible to eliminate the friction and clearance issues that exist in a 

traditional mechanism. However, hysteresis, creep, and other nonlinear effects typically found in 

nano-positioning stages can greatly degrade the positioning accuracy [3] ─ [5]. As higher 

performance is required, classical controllers such as the PID controller (which has been widely 

used in industry), can no longer provide satisfactory results [6]. Therefore, various advanced 

control methods have been developed [7] – [9].  

   As a variable structure control method, SMC has recently attracted considerable attention 

[10] ─ [12] as applied to the control of nano-positioning systems. In [13], SMC was applied in 

the control of a three degrees-of-freedom (DOF) nanopositioner. Each piezoelectric actuator is 

considered to be independent and therefore the design of three controllers was required. Due to 

its ability to reject uncertainties and disturbances, the SMC performed much better than the 

traditional PID controller. However, chattering, caused by the discontinuous switching function 

in SMC, may excite the high frequency resonant vibration, thereby degrading control 

performance and even damaging the actuators being controlled [14]. To solve this problem, in 

[15] and [16], a high order sliding surface was designed to replace the first order one of the 

nominal SMC. With the merits of the nominal SMC, the high order sliding mode control 

(HOSMC) can reduce the chattering effect [17], which, however, is limited by the increased 
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sliding information for the implementation of HOSMC. In [18], a continuous PID-based SMC 

for piezoelectric actuators was developed, in which the discontinuous switching function was 

replaced by a PID regulator to eliminate chattering, while the hysteresis and other nonlinear 

effects were regarded as an unknown disturbance and were rejected by the PID-based SMC. The 

experimental results [18] demonstrated that the PID-based SMC can effectively compensate for 

the hysteresis that exists in a PEA, thus leading to an improved PEA performance.  

   If disturbances and uncertainties can be completely or partially estimated, such estimations 

should greatly facilitate their compensation by means of control. In the literature, DOB control 

schemes were employed [19] ─ [21]; for example, the DOB-SMC was exploited to improve the 

performance of piezoelectric actuators [22], [23]. Compared to single DOF nano-positioning 

systems, less research on the control of multi-DOF nano-positioning stages has been reported. In 

[24], a velocity observer was integrated with SMC to eliminate the coupling effect (i.e., the 

motion caused to other DOFs when a voltage is applied to one DOF) of a six-DOF motion stage; 

and the simulations showed that the stage could be manipulated with the same accuracy as that of 

the position sensors. However, disturbance was neglected in the controller design and was 

supposed to be rejected by the SMC (which might increase chattering). In addition, experimental 

verification was not provided in the study [24]. In [25], the sliding mode concept was utilized in 

the design of a disturbance observer, which decoupled a precision planar motion stage; and the 

PID control was employed to improve the dynamics of the stage as demonstrated in the 

experiments.  However, the use of discrete switching control may induce serious chattering 

problems, thereby degrading the controller performance.  
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   Common of the above studies on the multi-DOF nano-positioning stages is that their 

structures were known and as such physical models can be developed to describe their behaviors. 

In reality, the challenge is that the commercially-available multi-DOF nano-positioning stages 

are typically provided without the information on the internal structure and as a result, it is 

difficult, even impossible, to build their physical models for the control purpose. To rise to this 

challenge, this paper presents the development of a DOB-SMC for the three-DOF 

nano-positioning stage with unknown structure. Specifically, the nonlinearity of the 

nano-positioning stage is estimated through the use of an observer and then compensated by 

means of the PID-based SMC. The contribution of this paper rests on (1) the development of a 

novel control scheme that integrates the PID-based SMC with a disturbance observer and (2) the 

application of the developed control scheme to the three-DOF nano-positioning stage with 

unknown structure. 

8.5.3 DOB-SMC for the Three-DOF Nano-positioning Stage 

   Figure 8.1 shows the control scheme of the DOB-SMC for the three-DOF nano-positioning 

stage. Due to the unknown structure of the nano-positioning stage, the plant was identified as a 

black box dynamic system, which is decoupled by the disturbance observer. By integration with 

the disturbance observer, the plant can be regarded as a desired decoupled 

three-input-three-output system, in which each pair of inputs and outputs can be controlled 

separately by a PID-based SMC. Since the coupling effect is compensated by the disturbance 

observer, the disturbance to be rejected by the PID-based SMC is reduced. Therefore, the 
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tracking error is expected to be less in comparison to the three nominal SMC introduced in [13]. 

Due to the imperfection of decoupling, integration of the disturbance observer may not 

completely compensate for the interaction between each pair of inputs and outputs. Such an error 

is considered to be an uncertainty and is estimated according to the desired decoupled system. 

This error is integrated in the design of the equivalent control of the SMC. Other uncertainties 

which are not considered in the controller design are treated as the input of the plant and rejected 

by the PID-based SMC. 

8.5.3.1 Design of the disturbance observer 

   The disturbance observer developed in this section is for the multi-input-multi-output 

(MIMO) plant with the same number inputs and outputs (so called the square system). Figure 8.2 

shows the control scheme with the disturbance observer. 

 

P = Pn ( I + ∆ )
y

MIMO Plant
un

η
1

nQPQ
_

_

u
d

 

Figure 8. 2  Control scheme with the disturbance observer 
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   Considering the plant P with both multiplicative model error Δ and external disturbance d, its 

output can be expressed as 

( )ny Pu d P I u d                              (8.1) 

where mu R  is the input to the plant and my R  is the output, m is the size of the square 

system, and nP  is the nominal or desired model of the plant. Usually, nP  is chosen as a 

diagonal transfer matrix for the decoupling  

1 2( ) [ ( ) ( ) ( )]n nmn nP s diag P s P s P s  .                 (8.2) 

where s is the Laplace operator and ( 1,2, , )njP j m   are the nominal transfer functions for the 

corresponding pairs of inputs and outputs. The objective of the design is to obtain  

n ny P u                                 (8.3) 

as the input-output relation in the presence of the disturbance and uncertainties, where nu  is the 

command input. 

   Letting 

ny P u                                 (8.4) 

then,  

ny P u   .                              (8.5) 

Substituting Equation (8.5) into Equation (8.3) yields 

1
n nu u P                                (8.6) 

where  

1 1 1 1
1 2( ) [ ( ) ( ) ( )]n nmn nP s diag P s P s P s     .                (8.7) 
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Since the inverse of the nominal transfer function 1( )njP s  ( 1, 2, , )i m  may be unstable, in 

reality it is always multiplied by the diagonal matrix of unity gain low pass filters 

1 2( ) [ ( ) ( ) ( )]mQ s diag Q s Q s Q s                     (8.8) 

such that 1( )nQP s  is causal. Therefore, Equation (7.6) becomes 

1 1( )n n n nu u QP u QP y Qu                          (8.9) 

where η is the sensor noise from the output of the plant. This leads to the control scheme shown 

in Figure 8.2. 

   The equation that relates y to nu , d, and η is 

1 1 1 1 1 1[ ( ) ] { ( ) ( ) }n n n uy n ydyy I P I Q QP P I Q u d P I Q QP T u T d T                 (8.10) 

where 1 1 1 1[ ( ) ] ( )uy nT I P I Q QP P I Q        is the transfer function from nu  to y; 

1 1 1[ ( ) ]ndyT I P I Q QP      is the transfer function from d to y; and 

1 1 1 1 1[ ( ) ] ( )uy n nT I P I Q QP P I Q QP          is the transfer function from η to y. 

   Since, 

1 1 1 1 1 1[ ( ) ] ( )n n ndyT I P I Q QP I P QP P I Q QP             ,          (8.11) 

then Equation (8.11) would be zero if ( )Q j I   at low frequencies, indicating that the 

disturbance has been completely rejected by the disturbance observer. 

   Similarly, for low frequencies, the transfer function from nu  to y 

1 1 1 1 1 1 1[ ( ) ] ( ) [( ) ]uy n nT I P I Q QP P I Q I Q P QP                     (8.12) 

becomes uy nT P when ( )Q j I  . This means that the MIMO system has been regulated as the 

desired model.  

   The transfer function from η to y 



 

208 
 

1 1 1 1 1[ ( ) ] ( )uy n nT I P I Q QP P I Q QP                        (8.13) 

should be designed to be zero at high frequencies, which requires ( ) 0Q j  . Therefore, the 

choice of Q as a diagonal matrix of unity gain low pass filters as given in Equation (8.8) fulfills 

these requirements.   

   The Q filter is designed for a single-input-single-output (SISO) piezoelectric actuator. Since 

both Q and nP  are diagonal matrices, Equation (8.9) becomes 

1( )   ( 1,2, , )j nj j nj j j j ju u Q P y Q u j m                     (8.14) 

which means that the Q filter can be designed separately for each input-output pair. 

8.5.3.2 Discrete PID-based SMC 

   The use of disturbance observer, the MIMO plant can be decoupled as desired. However, due 

to imperfection of the DOB compensation, errors may exist in each output, denoted as 

( 1, 2, , )i i m   . This can be estimated as 

( 1, 2, , )j j njy y j m                           (8.15) 

where ( 1, 2, , )nj nj jy P u j m   is the nominal output. This error should be considered in design 

of the SMC. In this section, the SMC design will be introduced based on the dynamic model for 

each input-output pair. For convenience, the number j is omitted.  

   Consider the discrete nominal model described by the pth order transfer function 

0

1

( )
1

p
j

j
j

p p
i

i
i

b z
P z

a z















                           (8.16) 

where 
0b ,  and  ( 1, 2, , )i ia b i p   are parameters of the transfer function. It can be regarded 
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as a cascade of the numerator 
1( )P z  and the denominator 

2 ( )P z  
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Figure 8. 3  Block diagram of a discrete nth order SISO system 
f(z) and y(z) are the input and the output of the dynamics, respectively, and v(z) is an 
intermediate variable. 

   Let the nominal state be 

T( ) [ ( ), , ( 2), ( 1)]n n n nx k y k p y k y k                    (8.17) 

Then, the transfer function 
2 ( )P z  can be written in its discrete state space form as   

( 1) ( ) ( )n nd dx k A x k B v k                          (8.18) 

where v(k) is the control input signal at time kT; and 

( 1) 1 ( 1) ( 1)
1 2 1

0
 ( )α

α
p p p

p pd
p

I
A a a a

a
    

 

 
      

    


  and 
0( 1) 10

T

d pB b 
 
   represent 

the system matrices of the discrete state space model.  

   Denoting T( ) [ ( ), , ( 2), ( 1)]x k y k p y k y k     and 

 T( ) [ ( ), , ( 2), ( 1)]k k p k k       , considering Equation (8.15) yields 

( 1) ( ) ( ) ( )d dx k A x k B v k k                         (8.19) 

where 

( ) ( 1) ( )dk k A k      .                        (8.20) 

Equation (8.20) is a non-causal which cannot be implemented in the computer. Therefore, 
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( 1)k  has to be estimated based on past values. Using trapezoid estimation, 

( 1) 2 ( ) ( 1)k k k                              (8.21) 

and thus 

( ) (2 ) ( ) ( 1)dk I A k k       .                     (8.22) 

   The error state is defined as 

( ) ( ) ( )de k x k x k                            (8.23) 

where ( )dx k  is the desired state. The objective of SMC is to force the error state, regardless of 

its initial value, to move to the sliding surface in a finite amount of time and then converge to 

zero. If the desired reference state is designed to be 

T( ) [ ( ), , ( 2), ( 1)]d d d dx k y k p y k y k                     (8.24) 

where dy is the desired output, then the dynamics of the tracking error state can be directly 

derived from Equations (8.19) and (8.23), i.e.,   

( 1) ( ) ( ) ( 1) ( ) ( )d d d d de k A e k A x k x k B v k k                   (8.25) 

   Considering only the zero order and first order derivatives and neglecting the disturbance, a 

perfect system requires ( ) 0e k  at any time, which leads to 

( ) ( 1) ( ) 0d d d dA x k x k B v k                         (8.26) 

   Equation (8.26) can be satisfied if and only if [26] 

†[ ( ) ( 1)]( ) 0d d d d dA x k x k I B B                       (8.27) 

where †
dB  is the pseudo inverse of matrix dB .  

   As introduced in [18], input v can be divided into two components, i.e.,  
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1 2( ) ( ) ( )v k v k v k                            (8.28) 

where  

†
1( ) [ ( 1) ( )]d d d dv k B x k A x k                        (8.29) 

It can be verified that for the controllable canonical state space model (8.18) Equation (8.27) is 

satisfied. Therefore, substituting Equations (8.28) and (8.29) into Equation (8.27) leads to the 

nominal SMC design problem [26], i.e.,  

2( 1) ( ) ( ) ( )d de k A e k B v k k     .                  (8.30) 

   The sliding surface s(k) is designed to be 

( ) ( ) 0s k Se k                             (8.31) 

where matrix S defines how the tracking error converges to zero. 

Combining Equations (8.30) and (8.31) yields 

2( ) ( )+ ( ) 0d dSA e k SB v k S k  .                    (8.32) 

   Therefore, 
2( )v k  can be decomposed into the equivalent control ( )eqv k  and the switching 

rule ( )SMv k , where 

1( ) ( ) ( )eq d dv k SB SA e k                          (8.33) 

and 

       
0

( 1)
[ ]

k

SM
i

s k s k
v k Ps k I s i T D

T

 
                   (8.34) 

and where P, I, and D are parameters of the discrete PID-based sliding mode control. 

   It can be proved that the state will move towards the sliding surface and converge to zero. 

Therefore, zigzag motion of the states and the steady state error of the output are avoided. 
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   According to the transfer function 
1( )P z , the input f can be derived from v, which is a 

desired value calculated from the SMC, so that 

1

0

[ ( ) ( 1) ( )]
( ) nv k b f k b f k n

f k
b

      .                (8.35) 

   Therefore,
1( )P z  yields 

1
0 1 1

( ) 1
( ) n n

nn

f z
v z b z b z b z b




   

 .                 (8.36) 

   Equation (8.36) indicates that the poles of the transfer function from v to f are the zeroes of 

the plant. As long as the zeroes of the plant are located inside the unit circle, the control is stable. 

Otherwise, optimal inversion needs to be applied.  

   The objective of optimal inversion is to develop a stable input f such that it minimizes the 

cost function 

[ ( ) ( )] [ ( ) ( )] ( ) ( )T T
d dJ f k f k Q f k f k f k Rf k                  (8.37) 

where 1 2

0 0 0 0

( )( ) ( 1) ( 2) ( )n
d

b b bv kf k f k f k f k n
b b b b

        , and Q and R are the weight 

matrices which determine the stability of the optimal inversion. For example, if the norm of 

weight matrix R is high, the optimization will smooth the input in order to reduce the energy 

supply to the system. In this case, the output ( )f k  does not track the input ( )df k .
 

   Minimizing the cost function given in (8.37) requires that 

/ ( ) 0J f k                               (8.38) 

Solution of Equation (8.38) leads to the optimal input 

1 0

[ ( ) ( )]
( )

n
i

i
opt

b
Q v k f k i

b
f k

R Q


 





.                    (8.39) 

Thus, Equation (8.39), together with Equations (8.28), (8.29), (8.33) and (8.34), form the discrete 
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PID-based SMC.  

8.5.4 Experiments and Results 

   Experiments were implemented on a commercially available nano-positioning stage 

(P-558.TCD, Physik Instrumente), as shown in Figure 6.1, to verify the effectiveness of the 

proposed methods. In this stage, four piezoelectric actuators are used to actuate the stage, 

generating linear displacements along the vertical direction Z and two rotations around the 

horizontal axes of xR  and yR . Table 6-1 shows the motion range and resolution of each DOF. 

   For displacement measurements, three capacitive displacement sensors built in the actuator 

were employed. All displacements were measured with a sampling interval of 2 ms in this study. 

The relationship between the sensors’ displacements and the outputs Z, xR  and yR  is supplied 

by the manufacturer. Both the actuators and the sensors in the stage are connected to a host 

computer via a digital piezo controller (E-761, Physik Instrumente) and controlled via Labview 

programs, as shown in Figure 6.1b. As instructed by its manual, the piezo controller can drive the 

actuator with a maximum operating frequency of 10-20 Hz if 30-50 V input voltage is applied. 

The controller can be manipulated in both open-loop and closed-loop modes. In the open-loop 

mode, a four- dimensional voltage signal is generated by the computer and transferred to the 

controller, where the voltage signal is amplified and applied to each piezoelectric actuator. Since 

there are 4 inputs and 3 outputs, actuation redundancy exists in the open-loop manipulation, 

which might destroy the nano-positioning stage if they are not properly coordinated. Therefore, 

the operation of the stage in the open-loop mode is not recommended by the manufacturer. In the 
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closed-loop mode, a three-dimensional reference signal is generated in the computer and then 

sent to the controller, where the PID scheme is applied to generate the control action or voltage 

to each piezoelectric actuator. The closed-loop mode can be regarded as a 3-input-3-output 

system without actuation redundancy, which was employed for the experiments presented in this 

paper. 

   Since only the nominal plant model is required in the disturbance observer design, to account 

for the unknown structure of the nano-positioning stage three auto-regressive models (ARX) 

were identified to describe the dynamics for each input-output subsystem. The coupling effects 

among the axles are considered to be disturbances which are rejected by the proposed method. 

Experiments was performed to identify the parameters of the nominal plant model and then, the 

DOB-SMC, as designed based on the nominal model, was used to control the nano-positioning 

stage for tracking sinusoidal reference signals. Also, dynamic tracking control with the proposed 

methods was implemented and the results were compared to the three nominal SMC introduced 

in [13] using a PID regulator instead of the boundary layer control. 

8.5.4.1 Parameter Identification 

   Experiments were performed to identify the model parameters for the nano-positioning stage. 

Since a diagonal nominal plant model is needed in the design of a DOB-SMC and as such the 

transfer function from each input channel to the corresponding output was identified. Due to the 

unknown structure of the nano-positioning stage, in this study three ARX models were employed 

to describe the dynamics of each input and output subsystem. Based on our previous research 
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[27] - [30], the dynamics order was chosen as two. For model identification, a 40 μm reference 

chirp signal with frequency ranging from 1 to 100 Hz was applied to Channel 1 (Reference Z 

channel) and the corresponding output in the Z direction was measured. From the results 

obtained, the model parameters were identified using the least squares method, giving the model   

( ) 1.699 ( 1) 0.7394 ( 2) 0.004917 ( 1)+0.04512 ( 2)y k y k y k u k u k        (8.40) 

  For the other two input and output subsystems in rotation, 200 μrad reference chirp signals 

with frequency ranging from 1 to 100 Hz were applied to the xR  and yR  channels and the 

corresponding outputs were measured. Using the same estimation method, the ARX models for 

the sub-systems were obtained as well, given by   

( ) 1.796 ( 1) 0.8122 ( 2) 0.001969 ( 1)+0.03962 ( 2)y k y k y k u k u k        (8.41) 

and 

( ) 1.832 ( 1) 0.847 ( 2) 0.001185 ( 1)+0.02997 ( 2)y k y k y k u k u k         (8.42) 

8.5.4.2 Results of experimental verification 

   In the verification experiments, three types of inputs were used as the reference signals for 

tracking. The first type of inputs was sinusoidal signals with different amplitudes and frequencies 

varying from 1 to 10 Hz. The second type of inputs was a piecewise continuous function 

consisting of different-amplitude sinusoidal signals with the same frequency (PWSW), as shown 

in Figure 4.8a. The amplitudes of the second, third and fourth period of the sinusoidal signals 

were 100%, 50% and 15% of the amplitude of the first period, respectively. The last type, shown 

in Figure 4.8b, was a superposition of four sinusoidal singals with different frequencies, 
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amplitudes and phase delays (SW), and displacements w given by Equation (4.47). 

   The DOB-based SMC for MIMO systems developed in this paper was then implemented on 

the nano-positioning stage. The output displacement in each direction was estimated by an α-β 

filter which is a simplified observer for estimation and filtering. The parameters in the α-β filter 

were adjusted by trial-and-error, leading to 0.5   and 0.002  . The sliding surface was 

defined by Equation (8.33) with S being [0.2, 1]. The cut-off frequency in the DOB-SMC was 

selected to be 30 Hz. To improve tracking performance, the parameters of the PID-based SMC 

were adjusted based on the tracking performance in each inputs and output subsystem. For 

comparison, the nominal PID-based controller was also implemented on the nano-positioning 

stage. Table 8-1 shows the PID parameters that were adjusted for optimal performance. Table 

8-2 and Table 8-3 show the tracking performance of the nano-positioning stage, obtained by 

means of the developed method as compared to the nominal PID-based SMC. The tracking error 

was calculated in terms of the 2-norm of the difference between the desired and measured 

outputs. 

Table 8- 1  PID parameters adjusted for the DOB-based SMC and nominal SMC 

Parameters Channel P I D R Q 

DOB-based 
SMC 

1 0.3 0.5 0 0.1 1 

2 0.1 0.3 0 0.05 1 

3 0.05 0.1 0 0.05 1 

Nominal 
PID-based SMC 

1 0.1 0.6 0 0.1 1 

2 0.2 0.3 0 0.05 1 

3 0.05 10 0 0.05 1 
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Table 8- 2  Tracking error by means of the DOB-based SMC 

Reference inputs Frequency Z ( )m  ( )xR rad  ( )yR rad  

10 μm sinusoidal inputs 
in Z direction 

1 Hz 0.2435 0.0384 0.0208 

5 Hz 1.1848 0.2586 0.046 

10 Hz 2.7955 0.4356 0.1012 

10 μrad sinusoidal 

inputs in xR  direction 

1 Hz 0.0008 0.1399 0.0682 

5 Hz 0.0011 1.1099 0.0215 

10 Hz 0.0024 2.4265 0.0386 

10 μrad sinusoidal 

inputs in 
yR  direction 

1 Hz 0.0009 0.018 0.1378 

5 Hz 0.0011 0.0245 0.7901 

10 Hz 0.0022 0.0717 2.0945 

Table 8- 3  Tracking error by means of the nominal PID-based SMC 

Reference inputs Frequency Z ( )m  ( )xR rad  ( )yR rad  

10 μm sinusoidal inputs 
in Z direction 

1 Hz 0.4481 0.055 0.0179 

5 Hz 2.2843 0.2601 0.0574 

10 Hz 4.4031 0.5002 0.1782 

10 μrad sinusoidal 

inputs in xR  direction 

1 Hz 0.0008 0.6204 0.0133 

5 Hz 0.0012 2.235 0.0251 

10 Hz 0.0025 3.3913 0.0445 

10 μrad sinusoidal 

inputs in 
yR  direction 

1 Hz 0.0009 0.0184 0.3133 

5 Hz 0.0012 0.0358 2.3295 

10 Hz 0.0025 0.0789 3.3418 

 

   From Table 8-2 and Table 8-3, it can be seen that the developed method performs much 

better than the nominal PID-based SMC controller, especially in the diagonal direction. 

Moreover, as the frequency increases, the performace improvement becomes more obvious. For 



 

218 
 

example, when a 1 Hz, 10 μm sinusoidal input was applied to the Z direction, the tracking error 

in the Z direction which occurred using the DOB-SMC was 0.2435 μm, which is 0.2046 μm less 

than that of the nominal PID-based SMC controller. In comparison, for a 10 Hz sinusoidal input 

in the Z direction, the difference increased to 1.6076 μm. 

   Also, it can be seen that the coupling effect was reduced by means of the developed method. 

For example, for the 10 Hz, 10 μrad sinusoidal input in the yR  direction, the tracking error in 

the Z direction using the proposed method was 0.0022 μm, which is 88% less than the error by 

using the nominal PID-based SMC controller. In the other hand, it is also noted that there are two 

data bolded in Table 8-2, showing the error with the DOB-SMC is slightly bigger than the one 

with PID-based SMC. Both of them are the coupling effects in the yR  direction when a 

sinusoidal input of 1 Hz was applied to the Z and yR  directions, respectively. Given their small 

values, the authors would not see specific reasons behind their difference.    

   To further show the performance of the proposed method, two more experiments were 

designed and implemented on the nano-positioning stage. In the first experiment, a 2 Hz, 10 μm 

sinusoidal input was applied to the Z direction and a 5 Hz, 50 μrad sinusoidal signal was set as 

the reference input to the xR  direction, while the zero reference signal was given in the yR  

direction. In the second experiment, a 2 Hz, 10 μm PWSW input was applied to the Z direction 

and a 10 Hz, 50 μrad SW signal was selected as the reference input to the yR  direction, with the 

other direction input kept at zero. Figures 8.4 and 8.5 show the tracking performance. 
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(a)                               (d) 

 
(b)                               (e) 

 
(c)                                (f) 

Figure 8. 4  Tracking performance of the discrete PID-based SMC designed by model reference 
approach as compared with the three nominal PID-based SMC (stated as 3-SMC) introduced in 
[13] for a 2 Hz, 10 μm sinusoidal input in the Z direction and 5 Hz, 50 μrad sinusoidal input in 
the Rx direction: output displacement in (a) Z direction, (b) Rx direction and (c) Ry direction; 
tracking error in (d) Z direction, (e) Rx direction and (f) Ry direction; 
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(a)                                (d) 

 
(b)                                (e) 

 
(c)                                (f) 

Figure 8. 5  Tracking performance of the discrete PID-based SMC designed by model reference 
approach as compared with the three nominal PID-based SMC (3-SMC) introduced in [13] 
for the 5 Hz 10 μm PWSW input in Z direction and 10 Hz 50 μrad SW input in Ry direction: 
output displacement in (a) Z direction, (b) Rx direction and (c) Ry direction; tracking error in (d) 
Z direction, (e) Rx direction and (f) Ry direction; 
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   Compared to the nominal PID controller, the DOB-SMC for MIMO systems performed 

better for the combined signals in all three directions, as seen from the tracking performance of 

the second experiment. Using the DOB-SMC, the tracking errors are 0.6861 μm and 1.7618 μrad 

in the Z and yR  directions, respectively, which were 0.3361 μm and 0.7141 μrad lower than the 

nominal PID-based SMC. Similar results also obtained in the first experiment. However, since a 

low frequency component existed in the input signal, it is not easy to determine the advantage on 

the decoupling effect of using the proposed method over the PID-based SMC. For example, in 

the first experiment, the tracking error of the nano-positioning stage controlled by the 

DOB-based SMC was 0.0507 μm which is only 0.0118 μm less than that of the nominal 

PID-based SMC. 

8.5.5 Conclusions and Discussion 

   PID-based SMC has shown promise in the control of nano-positioning systems due to its 

disturbance rejection. In this control scheme, all nonlinear effects and the model uncertainty are 

treated as unknown disturbances to the nano-positioning system. For improvement, this paper 

presents the development of the DOB-SMC, in which the nonlinear effects of the three-DOF 

nano-positioning stage and model uncertainties are partially predicted and then compensated by 

the PID-based SMC. To illustrate the effectiveness of the proposed control schemes, experiments 

were performed and the results were compared with those from the nominal PID-based SMC. It 

has been shown that by integration of the disturbance observer into the PID-based SMC, the 

disturbance to be rejected by the feedback control is reduced and the control performance of the 
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three-DOF nano-positioning stage is greatly improved. This improvement becomes more 

profound as the frequency increases from 1 Hz to 10 Hz. The developed method may also be 

employed in the application with a higher frequency, which has not been validated due to the 

limitation of the experimental settings used in the present study. 
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9 Conclusions and Future Work 

   PEAs have been widely employed in various nano-positioning applications. However, 

hysteresis and other nonlinear effects greatly degrade the performance of PEAs. To 

exploit the full potential of PEAs in nano-positioning applications, this work presents the 

development of the model and its corresponding control schemes for both the one-DOF 

PEAs and three-DOF PEAs.  

   The control schemes developed to improve the performance of one-DOF PEAs can be 

generally divided into two categories. If modeling of hysteresis is not considered, the 

hysteresis together with other nonlinearities can be regarded as disturbances and rejected 

by the robust controller. This leads to the development of the discrete PID-based SMC, 

with details introduced in Chapter 4. If hysteresis can be completely or partially modeled, 

the integration of hysteresis models into control schemes will improve the control 

performance (Chapter 5). Based on the fact that PEAs are commonly modeled as the 

cascade of the dynamics and hysteresis, as stated in Chapter 3, an inverse hysteresis 

model can be employed to compensate for the hysteresis nonlinearity. Combined with the 

PID-based SMC, it is experimentally verified that the performance of the PEA can be 

further improved. Alternatively, by applying DOB, the hysteresis information can be 

estimated and integrated in the design of the PID-based SMC, leading to the development 

of the DOB-based SMC. 
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   A straightforward modeling method for multi-DOF PEAs can be based on the internal 

configuration by means of physics laws. However, such details with regard to the internal 

structure are often not provided by the manufactures. In this situation, a state space model 

is developed in Chapter 6, based on which the output tracking based SMC can be 

designed and implemented in the control of multi-ODF PEA (Chapter 7). Integration of 

DOB into the SMC will further improve the performance of the multi-DOF PEA, as 

illustrated in Chapter 8. 

9.1 Concluding Remarks 

   The aim of this research work is to develop a feedforward or DOB based SMC to 

improve the PEA performance and implementing it digitally. The main conclusions of 

this research are summarized as follows. 

   1. The discrete ARMA-based hysteresis model can predict the hysteresis of the PEA 

with acceptable accuracy. Online estimation allows better parameter identification for the 

discrete ARMA-based hysteresis model than the least square method. However, the 

model shows larger errors at high frequencies due to the estimation of the integral term in 

the discrete hysteresis equation. Using a quadratic equation to estimate the integral term 

can reduce the discrete estimation error at high input frequencies. Therefore, it should be 

preferred to use the quadratic equation at high input frequencies.  

   2. By applying the discrete PID regulator instead of the discontinuous switching 

control, such problems as the chattering, zigzag state motion and steady state error, which 
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are typically observed in the DSMC, are eliminated. The output tracking integrated 

discrete PID-SMC developed from both the traditional design approach and the model 

reference approach can achieve better tracking performance, especially at low sampling 

rates. As the input frequency increases, the performance improvement with the proposed 

method becomes more profound. Due to the non-requirement on the derivability of the 

reference signal, the output tracking integrated discrete PID-SMC designed by the model 

reference approach has a better performance than the one designed by the traditional 

approach. 

   3. Inclusion of the inverse hysteresis and DOB in the DSMC design are more 

effective in terms of the hysteresis compensation. It has been shown that the disturbance, 

which is rejected by the switching control of DSMC, is reduced, thus improving the 

performance of the discrete PID-based SMC. Based on the examined cases with inputs of 

varying frequencies, it is recommended that the discrete inversion based PID-SMC 

should be used if the input frequency is low, while the discrete DOB-based PID-SMC is 

preferred for applications with higher frequencies. 

   4. By combining the MAP online estimation methods, the Hankel matrix of the state 

space model is identified and the model parameters can be updated as new observation is 

available. Since MAP estimation utilizes the posteriori parameter information which have 

the beneficial effect of reduction of variances of parameter estimators, MAP online 

estimation method performs better in the model identification than the least squares 

method. 
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   5. The application of the discrete PID-based SMC designed for SISO systems are 

successfully extended to the control of MIMO system. The discrete output tracking based 

PID-SMC developed from the model reference approach can achieve better tracking 

performance. As the input frequency increases, the advantage of using the proposed 

method becomes more profound. 

   6. By integration of the DOB in the discrete PID-based SMC design, the disturbance, 

which is rejected by the DSMC, is reduced and the performance of the discrete PID-based 

SMC is greatly improved. This improvement becomes more profound as the frequency 

increases and thus the developed method is also expected to be employed in the 

application with a higher frequency. 

9.2 Future Work 

   It is worth explicitly stating the limitations of the methods used in the present study so 

that future work based upon this research moves forward successfully.  

   First, the shape functions are considered to be linear in the development of the 

discrete ARMA based hysteresis model proposed in Chapter 3. Better parameter 

identification is expected by applying special designed nonlinear shape functions in the 

hysteresis model. 

   Second, the optimal inversion control is integrated in the discrete PID-based SMC in 

Chapter 4 to compensate for the numerator of the plant. If the zeros of the plant locate 

outside the unite circle in the complex plane, compensation error exists in the optimal 
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inversion control since the inverse numerator of the plant is unstable. Although, this 

compensation error is considered to be disturbance and rejected by the DSMC, it has a 

negative effect on the tracking performance of the discrete PID-based SMC.  

   Finally, the output tracking based discrete PID-SMC developed in Chapter 7 is only 

applicable in the control of square MIMO systems. 

   Based upon the work presented in this dissertation, a number of studies can be 

considered for the future work along the similar direction.  

   1. The discrete inversion feedforward based PID-SMC can be further improved by 

integration of the inverse Preisach model, which is shown to have a high accuracy in the 

parameter estimations in the literature. However, compared with the discrete ARMA 

based hysteresis model, the inverse Preisach model has more rigorous requirement in the 

digital implementation. That might challenge its application with high sampling rates. 

   2. Extend the application of the output tracking integrated discrete PID-SMC 

developed in Chapter 7 to the control of non-square multi-DOF actuators. If the number 

of inputs is more than the number of outputs, actuation redundancy exists and thus the 

control of each actuator should coordinate with each other so as to avoid the deformation 

or internal stress of the system. To alleviate this problem, control allocation might be 

employed, which distribute the control signal to different actuators based on certain rules 

to prevent actuation redundancy. 

   3. There are two different approaches to implement DSMC in the control of 

complicated MIMO system without measurable states. The first one is to design a state 
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tracking based DSMC combined with the state estimation. The second one is to design an 

output tracking based DSMC as presented in Chapter 7. Comparison between these two 

approaches has not been reported in the literature. 

   4. It is expected that the discrete PID-based SMCs developed in Chapters 7 and 8 

would also be employed in the applications with high frequency, such as fast steering 

mirrors. This will further verify the effectiveness of the proposed control methods on 

multi-DOF PEA-driven positioning systems.
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