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Abstract

Mining operations can produce highly localized, low intensity earthquakes that are referred to as

microseismic events. Monitoring of microseismic events is useful in predicting and comprehending

hazards, and in evaluating the overall performance of a mine design.

A robust localization algorithm is used to estimate the source position of the microseismic event

by selecting the hypothesized source location that maximizes an energy function generated from the

sum of the time–aligned sensor signals. The accuracy of localization for the algorithm characterized

by the variance depends in part upon the configuration of sensors. Two algorithms, MAXSRC and

MINMAX, are presented that use the variance of localization error, in a particular direction, as a

performance measure for a given sensor configuration.

The variance of localization error depends, in part, upon the energy spectral density of the

microseismic event. The energy spectral density characterization of sensor signals received in two

potash mines are presented and compared using two spectral estimation techniques: multitaper

estimation and combined time and lag weighting. It is shown that the difference between the the

two estimation techniques is negligible. However, the differences between the two mine characteri-

zations, though not large, is significant. An example uses the characterized energy spectral densities

to determine the variance of error for a single step localization algorithm.

The MAXSRC and MINMAX algorithms are explained. The MAXSRC sensor placement al-

gorithm places a sensor as close as possible to the source position with the maximum variance.

The MINMAX sensor placement algorithm minimizes the variance of the source position with the

maximum variance after the sensor has been placed. The MAXSRC algorithm is simple and can be

solved using an exhaustive search while the MINMAX algorithm uses a genetic algorithm to find a

solution. These algorithms are then used in three examples, two of which are simple and synthetic.

The other example is from Lanigan Potash Mine. The results show that both sensor placement

algorithms produce similar results, with the MINMAX algorithm consistently doing better. The
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MAXSRC algorithm places a single sensor approximately 100 times faster than the MINMAX al-

gorithm. The example shows that the MAXSRC algorithm has the potential to be an efficient and

intuitively simple sensor placement algorithm for mine microseismic event monitoring. The MIN-

MAX algorithm provides, at an increase in computational time, a more robust placement criterion

which can be solved adequately using a genetic algorithm.
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Chapter 1

INTRODUCTION

An increase in seismic activity surrounding open pit and deep underground mines has been

observed at many sites. This kind of seismic activity is often called induced seismicity to indicate

the triggering nature of mining activities in the release of preexisting stresses and stresses caused

by mining [1]. Knowledge of this induced seismic activity is useful for evaluating mine design, mine

planning and comprehending and predicting hazards. Also, as noted by Gibowicz and Kijko in [1]:

Seismicity associated with underground mining is probably the most adverse phenomenon,
among different types of triggered earthquakes, in relation to the safety and produc-
tivity of mining. Rockbursts are very often the major cause of fatalities in mines1.
The problem becomes progressively more severe as the average depth and the extent of
mining operations increase.

Thus, monitoring of seismic activity in the mine area is a very important topic. For an excellent

overview of mining induced seismicity in Canadian mines please see [2].

Seismic events, caused by mining, can be separated into three broad categories [3]

1. acoustic emissions

2. microseismicity

3. large–scale seismicity (earthquakes)

Acoustic emissions are caused by microscopic failure in rock and are often precursors to larger

failures. Quite often monitoring of these emissions is the basis of roof–fall warning systems [3]. In

potash mines, for example, a crackling sound is often heard, in freshly mined rooms, as salt crystals

adjust to the change in stress [2]. Large–scale seismicity, or earthquakes, involve rock failure over

1There is a distinction made in mining seismology between rockbursts and mine tremors. Rockbursts are violent
failure of rock which cause actual visible damage to underground voids and mine workings within a mine while mine
tremors are seismic events that do not cause damage [1].
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hundreds of meters or more [3]. The most prevalent and monitored class of seismic activity in mines

is microseismicity. The following section discusses microseismicity in detail, since this is by far the

most common form of induced seismicity and the greatest indicator of stress release in mines.

1.1 Microseismicity

Microseismicity involves failure over a few tens of meters and is often part of normal mine room clo-

sure in plastic rock mines, such as coal and potash. Room closure often involves roof–delamination

and/or floor heave. Microseismic events produce mechanical waves which propagate outward from

the source position. There are P–waves and S–waves; the P, or primary, waves are compressional

while the S, or secondary, are shear waves [4]. The P–waves travel faster than S–waves, as can be

seen in the following equations,

Vp =

(

λ + 2µ

ρ

)1/2

(1.1)

and

Vs =

(

µ

ρ

)1/2

, (1.2)

where Vp and Vs are the velocity of the P and S waves, respectively [4]. In equations (1.1) and

(1.2), ρ is the density of the propagation medium and λ and µ are the two Lamè constants. The

Lamè constants are both positive and depend on the medium in question [1]. Typical values for the

constants in potash are: ρ = 2100 kg/m3, µ = 13 GPa, and λ = µ. This gives an S wave velocity

of about 2500 m/s and a P wave velocity of about 4300 m/s. P waves are rarely observed on the

monitoring systems used in Saskatchewan potash mines.

Quantitatively seismic events can be classified relative to magnitude as seen in Table 1.1 [4].

The convention used throughout this thesis is to refer to microseismic events as those events with

magnitude less than 3 and refer to earthquakes as those events with magnitude greater than 3 [4].

Also, the terms microseismic event and microearthquake are used interchangeably.
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Magnitude (M) Classification

M ≥ 7 Major Earthquake

5 ≤ M < 7 Moderate Earthquake

3 ≤ M < 5 Small Earthquake

1 ≤ M < 3 Microearthquake

M < 1 Ultra–microearthquake

Table 1.1: Earthquake classification based on Richter Magnitude scale

1.1.1 Microseismic Monitoring

The most common type of seismic monitoring system deployed in mines are microseismic monitoring

systems. These systems are designed to monitor microseismic events in the vicinity of a mine.

Though the main target group are microearthquakes these systems are capable of recording large–

scale seismic events as well.

The purpose of monitoring is to obtain three types of information regarding seismic events in

mines:

1. When rock is breaking,

2. Where rock is breaking,

3. How much rock is breaking (the size of the failure).

This type of information allows one to, “accurately quantify the geomechanical response of the

‘host rock’ to the opening of rooms during mining [3].” Here the word ‘rooms’ refers to tunnels

in underground mines. Seismic monitoring of the geomechanical response to mining is useful in

evaluating the day–to–day performance of a mine design [3].

Even though rockbursts are a serious issue relating to mine safety, there is currently no system

which can reliably predict when and where they will occur. Seismic monitoring systems, however,

aim to contribute a portion of knowledge which hopefully can be analyzed in the context of other
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similar observations [3].

A monitoring system consists of a set of sensors distributed throughout the mine. This set of

sensors is often called a sensor array or sensor network. The sensors used are vibration sensors

which measure ground motion in the form of either velocity or acceleration. Velocity sensors are

called geophones and acceleration sensors are called accelerometers. Although both types of sensor

are available, geophones are much more prevalent in mine monitoring systems. An example of a

set of geophone outputs for a microseismic event is given in Figure 1.1. The traces shown in Figure

Figure 1.1: An example of a seismic trace recorded in December 2003 at Lanigan
Potash Mine near Saskatoon, SK

1.1 can be used to estimate the size of the event as well as the location of the event. The time

4



the event took place is inherent in the monitoring system since it records the time the traces were

captured. The accuracy of the location estimated from the received sensor signals is very important

and can depend on a number of factors. Of concern in this thesis, are the sensor positions relative

to an event’s location, since this has a considerable effect upon the estimate’s accuracy. This topic

is introduced briefly below.

1.1.2 Locating Seismic Events

This subsection gives a brief overview of the problem of locating a seismic event. A detailed

discussion of the various methods used in seismic event localization is given in Chapter 2. Locating

a source using a sensor network relies on the fact that the signals received at sensors at different

distances from the source will arrive at different times. That is, sensors closer to the source will

receive the signals before those farther away. The first step in locating a given seismic event,

assuming the received sensor signals as seen in Figure 1.1 are known, is to choose a velocity model

for wave propagation. The simplest model is that of uniform earth with either a known or unknown

velocity. Alternatively a layered velocity structure is often used to account for the geological

stratification of the earth [1, 4]. Using the chosen model an event location can be selected and the

model can be used to predict what the received signals should look like; specifically how each signal

is shifted relative to the other signals. The estimated signals, or some parameters of them, can

then be compared with the observed signals. In this way one can minimize the difference between

the estimated and observed parameters to estimate the location of an event. Though the approach

outlined above is used in most of the seismic and microseismic event location procedures, it is not

the only approach. Different approaches do exist, but they will not be discussed here.

1.1.3 CANSEIS

The CANSEIS microseismic monitoring system was developed in–house by the Potash Corporation

of Saskatchewan. It is deployed at a number of their potash mines, which are the focus of this

thesis. The system can be used either in manual or automatic mode to calculate the three pieces of
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information useful for microseismic monitoring: size of the event, time of the event and location of

the event. In manual mode the ‘picking’ of the arrival times can be done by eye and then refined

by the software. A ‘misfit’ function determines the differences between the observed and calculated

arrival times, based on the model. If this value is large, then the arrival times can be ‘re–picked.’

The CANSEIS system has been in use since 1997 and has proved invaluable to mine engineers

and planners. Currently, there is no procedure used to place sensors. Typically, they are placed ev-

ery 600 meters along the main mine rooms. The following section introduces the topic of algorithmic

sensor placement to improve the accuracy of the location estimate.

1.1.4 Sensor Placement

The accuracy of a location estimate depends upon a number of factors including: the precision of

the signal recording equipment, the accuracy of the assumed velocity model, the suitability of the

location estimation technique and the spatial distribution of the seismic sensors. The focus of this

thesis is to improve the accuracy of the event location estimate by adding additional sensors to the

sensor network to modify the spatial distribution of seismic stations. Related to this is the location

estimator, itself. To improve the accuracy of an estimate one needs a measure of how good one

spatial configuration of sensors is compared to another. A statistic of the estimator itself implicitly

depends upon the positions of sensors and is therefore an excellent measure of how well a given

spatial configuration performs.

The statistic and estimator chosen in this thesis is the variance of error, in a particular direction,

of a one–step estimator. The reason for these choices will be explained in the following chapter.

It is not necessary to understand either of these to see how the variance of error can be used to

evaluate the performance of a sensor configuration. If two sensor configurations are used to evaluate

the variance of error, it should be clear that the configuration that produces the smaller variance

of error would be superior. Typically, sensor configurations that surround an area to be monitored

produce better results than those that are clustered to one side.

The mines of interest in this thesis are potash mines in Saskatchewan and they are constantly
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expanding. They are, collectively, growing at a rate of approximately 500 meters per hour. It

would not make sense to reconfigure the entire sensor network each time an expansion is made.

This would be both costly and inefficient. To adequately monitor new areas of mines, termed mine

expansion regions, an additional sensor should be added to specifically monitor the new region.

This allows the current network to remain undisturbed as well as simplifying the algorithm used to

place an additional sensor.

1.2 Problem Statement

To develop a simple effective algorithm to place sensors in mine expansion regions to improve the

precision of the location estimator.

1.3 Aims and Objectives

The objective of this research is to provide a simple, practical and effective method of placing

additional sensors in mine expansion regions. The placement of these sensors will improve the

precision of the location estimator and also be superior to other possible sensor positions. There

are many possible criteria that could be used to decide which sensor position is superior to another,

and two of these are presented.

The statistic of a location estimator is dependent upon the specific estimator chosen. It is clear,

then, that an estimator should be chosen with a known formula for calculating one of its statistics.

A single–step estimator is chosen due to its quality of robustness to short–duration events. The

estimator’s localization variance in a given direction has been derived, previously, and is used as

the statistic.

The localization variance expression depends in part upon the seismic event’s energy spectral

density. To accurately estimate the variance it is necessary to have an accurate characterization of

the event’s energy spectral density. A characterization method using existing mine data captured

by the seismic monitoring system is designed.
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Though this placement algorithm can be used in any mine, the specific application of interest

here is potash mines.

1.4 Organization of Thesis

The organization of this thesis is as follows. Chapter 2 provides an overview and introduction to

location estimators. Estimators directly applicable to microseismic event location are highlighted.

This chapter aims to provide an overview of estimators as well as justifying the use of this new

type of estimator in microseismic event location. Though location estimation techniques are not

directly related to sensor placement, it is necessary to have an understanding of them, since the

error of a location technique is used as a measure of performance for a sensor configuration. This

chapter should also clarify why chapter 3 is included. Neither Chapter 2 or Chapter 3 is necessary

to understand the main focus of this thesis, presented in chapters 4 and 5. However, they both

provide background information relevant to the choice and evaluation of the measure used in the

sensor placement algorithms.

Chapter 3, which is fairly self–contained, describes the procedure used to characterize the energy

spectral density for a given mine. It also presents the results of two mine characterizations using

two different spectral estimation techniques. These spectral estimation techniques are described

at the beginning of the chapter. At the end of the chapter an example is presented which uses

the results to evaluate the variance expression for the chosen location estimator. This provides a

practical comparison between the two mines and the two spectral estimation techniques.

Chapter 4 presents the the two sensor placement algorithms. Initally, at the beginning of the

chapter, an overview of previous work in seismic sensor positioning is presented. A justification of

the presented algorithms is also included to differentiate between those in the literature and those

presented in the chapter. At the end of the chapter some additional modifications to the algorithms

are suggested.

Chapter 5 presents three examples. The first two are synthetic while the third is taken from

Lanigan Potash Mine. In each example one and two sensors are placed using the algorithms with

8



and without the modifications.

Finally, Chapter 6 summarizes the thesis, presents the conclusions and outlines some possible

avenues for future work.
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Chapter 2

Location Estimation

Estimating the location of a passive acoustic source is an important topic in a wide range of

fields. Recently, much attention has been paid to acoustic source localization using microphone

arrays for camera pointing in video conferencing [5]. Underwater acoustics has also been a very

active research area in the past [6] and of specific relevance to this thesis, seismic and microseismic

earthquake location [7].

Specifically, the problem here can be termed as passively locating a wideband vibrational source

in the near–field region; wideband means a source whose ratio of highest to lowest frequencies is

much greater than unity. The near–field region is the region about a source where the wavefronts

appear curved unlike the far–field region where the wavefronts appear planar and parallel (figures

2.1 and 2.2). As the names indicate the far field region is much further away than the near field

region. It should be clearly stated that figures 2.1 and 2.2 are not to scale. Even though the distance

between source and sensors appear the same, this is not the case. For a wavefront to appear planar

to a group of sensors the source must be a long way away or the inter–sensor distance must be

small compared to the distance to the source. If the sensors are in the far field region then it is not

possible to obtain both the distance and direction to the source, such as in the near field region,

but only the direction to the source.

Although this location problem is present in many other areas of study, this chapter will focus

on the application of interest: seismic and microseismic event analysis. At a risk of generalizing,

estimation algorithms can be separated into two broad groups: two–step estimation and one–step

estimation. Strictly speaking these two groups may not span the complete set of location algorithms,

although for the purpose of explanation in this thesis they will be sufficient.

10



Source

Sensors

Wavefront

Figure 2.1: Sources in the near field produce curved wavefronts

The aim of this chapter is to introduce the location estimation problem and two types of location

estimators. It may, at first, not be clear how this relates to the placement of sensors. However, the

choice of the location estimator determines the performance measure of a sensor configuration. As

will be seen in this chapter a natural choice for the two–step estimator is the determinant of the

covariance matrix while for the one–step estimator the variance of error in a particular direction is

more appropriate. This chapter also attempts to explain the differences between the two techniques

so that the use of the one–step estimator is justified. Finally, the choice of the one–step estimator

necessitates characterizing the Energy Spectral Density (ESD) of microseismic events, which is

performed in Chapter 3. It is necessary because the variance expression, which will be used as a

performance measure of a sensor configuration, depends upon the ESD of microseismic events.
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Source

Sensors

Wavefront

Figure 2.2: Sources in the far field produce planar wavefronts

2.1 Two–Step Estimators

The two–step estimator, as the name implies, uses two steps to estimate the location for an acoustic

source. The first step estimates the time of arrivals (TOAs) at each sensor. The second step locates

a source position and origin time, which would produce the TOAs estimated in step one.

2.1.1 Time of Arrival Estimation

In the early days of seismology arrival times were picked by eye. This practice has continued to

the present day where many systems let a person make initial arrival time ‘picks’ and then refine

them using cross–correlation techniques. It has only been in the last 20 years that there has been

a concerted effort to develop automatic arrival time ‘pickers,’ mainly for convenience rather than

to improve the accuracy. When these new techniques are presented they are often compared to

human ‘pickers’ to assess their accuracy. An example of one of these newer techniques is presented

in [8]. The technique used in the potash mines in Saskatchewan use a technique similar to that

presented in [9]. The details of arrival time refinement, or picking, will not be discussed here and

it will be assumed for the next section that N arrival times, T̂i, are available.
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2.1.2 Localization

Once the arrival times are estimated the problem of locating an event can be stated as follows:

Given a set of arrival times T̂i and an assumed propagation model, find a location which minimizes

the error between the measured arrival times and those calculated using the assumed location.

The location estimation procedure outlined in this section follows that of seismic event location;

for some examples of algorithms not related, specifically, to seismology see [10–13].

The arrival time values can be calculated as

Ti = Ti(θ,P) + to, (2.1)

where θ is the vector of unknown parameters (xs, ys, zs, to), Ti(·) is the propagation time from the

source to sensor i and to is the origin time. The set of sensors is P = [~p1, ~p2, . . . , ~pN ]. The origin

time is the absolute time at which the event takes place, ie the time of day. It is usually only

included in the estimation in seismic location procedures. This is because, as mentioned in Chapter

1, the time an event takes place is an important piece of information for seismologists. It can

be estimated prior to source localization by centering techniques [14]. For the following analysis,

however, we assume the origin time still needs to be estimated.

The residuals can then be defined as

ri = T̂i − Ti, (2.2)

which is the difference between the calculated and observed arrival times. A common objective

function is a sum of squares

Θ =

N
∑

i=1

r2
i , (2.3)

and the solution which minimizes this is known as the Least Squares solution. Since Ti is a non–

linear function of the source location parameters, the optimization problem is non–linear.

One of the first methods used for earthquake location to minimize this objective function was

that by Geiger [15], which uses an iterated Gauss–Newton method. It attempts to find an adjust-

ment vector δθ which when added to a trial source position θ∗ produces a new estimate of the

source position, that decreases the objective function.
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An excellent description of this algorithm is presented in [4] and it will be followed closely here.

First, write the objective function in matrix notation

Θ(θ∗) = rT r, (2.4)

where r is a column vector containing the N residuals and T is the transpose operator. The

adjustment vector can be found to be

δθ = −(AT A)−1AT r, (2.5)

where A is the Jacobian evaluated at the trial source location θ∗.

A = −

























1 ∂T1/∂xs ∂T1/∂ys ∂T1/∂zs

1 ∂T2/∂xs ∂T2/∂ys ∂T2/∂zs

...
...

...
...

1 ∂TN/∂xs ∂TN/∂ys ∂TN/∂zs

























(2.6)

Solving for δθ in equation (2.5) gives an adjustment vector to the initial trial location θ∗ which leads

to a new trial solution. The new trial location θ′ can be found by setting it equal to δθ + θ∗. This

procedure can be repeated with θ∗ = θ′ in an iterative fashion until some termination criteria have

been met. The iterative procedure is necessary due to the nonlinearity; specifically, the propagation

time equations are nonlinear with respect to hypocenter1 coordinates. A simple modification to

equation (2.5), which arises by dismissing the assumption that the reliability of all observed arrival

times are the same, can be made. One possible estimate of the reliability is the standard deviation

of the time residuals σri
. Using these, and the assumptions that the time residuals are statistically

independent at each station the covariance matrix is

Cr = diag(σ2
r1

, · · · , σ2
rN

). (2.7)

The inverse of this can then be used as the weighting matrix in weighted–least–squares form of

equation (2.5),

δθ = −(ATCr

−1A)−1AT Cr

−1r. (2.8)

1Hypocenter is a seismological term which refers the earthquake location specified by the three spatial coordinates
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One of the drawbacks of the algorithms presented above is that the initial ‘guess’ of the source

location has to be quite good. If it is a poor guess then the algorithm may converge to a local

minimum in the objective function rather than the absolute minimum. To address this issue a

nonlinear search algorithm, the Nelder–Mead Simplex procedure, has been applied to this problem

[16,17]. The method described in [16] also modifies equation 2.3 to be the L1 norm as opposed to

the L2 norm,

Θ =

N
∑

i=1

|ri|, (2.9)

where | · | is the absolute value. The L1 norm tends to deemphasize effects of single large errors

and performs better when the outlier values are large [18].

2.1.3 Estimate of the Error

The estimate of the error in the case of least–squares is given by the covariance matrix of the sought

parameters θ [19]

Cθ(P) = (AT A)−1ATCrA(AT A)−1. (2.10)

The above equation simplifies to

Cθ(P) = (AT Cr

−1A)−1. (2.11)

Both of the above equations show how the error depends in part upon the sensor positions P,

because A depends on sensor location.

It will be seen in later chapters that when comparing sensor configurations, it is useful to

compare a single number and not a group of numbers, ie a matrix. To this end the determinant of

the covariance matrix is often used. The determinant of the covariance matrix is proportional to

the volume in the four dimensional (4D) error ellipse. A sensor configuration which minimizes this

determinant for a given source location is known as D–optimal. This will be discussed in greater

detail in Chapter 4.
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2.2 Single–Step Estimators

Single–step, or direct process, estimators forego the initial time delay estimation step. They typi-

cally have, as inputs, the recieved sensor signals. The algorithms are search based and maximize a

function over a grid of hypothesized source locations [20]. Some recent examples of these algorithms

are [21–24]. In this section, the Total Signal Energy estimate (TSE) [21], will be discussed and

modified to include weighting. The Weighted Total Signal Energy (WTSE) estimate, described in

the following subsection, is the location estimator that is used throughout the remainder of this

thesis. Because of its central role in this document the underlying signal model will be explained as

well as how the weightings are determined. In subsection 2.2.2 the variance of error in the direction

of the unit vector ~e for the WTSE estimate is presented. Subsection 2.2.3 looks at the variance of

error expression evaluated with sensor positions at or near the source location.

2.2.1 Weighted Total Signal Energy Estimate

This subsection describes the system model and the microseismic event localization algorithm. The

material presented here is an extension of the research published in [20] where the localization

algorithm is described and a lengthy derivation of the variance expression is presented. In this

thesis the original work is extended to include signal weighting to improve the performance of the

algorithm.

The spatial coordinate system used to develop the localization algorithm is a three dimension

x, y, z Cartesian system with arbitrary orientation. In the analysis the origin of the coordinate

system is defined to be the location of the microseismic event. Shifting the origin of the coordinate

system to the location of the event does not affect the variance of error since the error only depends

on the relative distances between the event location and the sensor locations.

The geometry of the sensor system is given in Figure 2.3. There are M sensors in the system

with the location of sensor m denoted as ~pm = (xm, ym, zm). The location of the source of the

microseismic event is ~ps = (0, 0, 0) and the distance from the event to sensor m is denoted dm. The
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dm =
√

(x2
m + y2

m + z2
m)

~pm = (xm, ym, zm)

~p1 = (x1, y1, z1)

~ps = (0, 0, 0)

Sensor 1

microseismic event

Sensor m

Figure 2.3: Coordinate system for the sensors

time origin is defined as the start time of the event.

The output of sensor m is modelled as a stochastic process,

rm(t) =
s(t− τm)

dm
+ nm(t− τm) (2.12)

where

τm =
dm

c
(2.13)

is the propagation time from the event location to sensor m and c is the speed of propagation of

the mechanical wave. This model is based on the assumption of spherical spreading in a lossless,

homogeneous medium.

The consequences of the model assumptions are briefly explored here. These three assumptions

are rarely used in detailed geophysical analysis due to their poor correspondence to actual physical

processes. For instance, spherical spreading is inconsistent with many failure mechanisms which

produce radiation patterns of a dipole or even quadripole nature. This could cause some sensors to

not receive any signal while another sensor, equal distance from the source, receives a clear signal.

This would be difficult to account for in a simple model, but with sufficient sensors in the region

of the event it would be more likely to attain a reasonable estimate of the location, even with

the assumption of spherical spreading. The effects of the homogeneous medium assumption can be

combatted by searching for an unknown velocity, as well as the spatial coordinates, in the algorithm.
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The aim of this is to take account for the varying properties of the medium. The algorithm used

in this thesis does assume a known velocity, but adding an unknown velocity to the algorithm is

very simple, as explained below.

The localization algorithm is based upon a global search of a finite grid. An energy function

is computed as a function of hypothesized source position for each point on the grid. The point

which maximizes the energy function is the estimate of the position of the source. It is assumed

the grid is very fine or that interpolation is used to find the location of the true peak. The energy

function, which includes signal weighting factors, wm, is

W (~̃ps) =

∫ T

0

[

M
∑

m=1

wmrm(t + τ̃m)

]2

dt, (2.14)

where ~̃ps is the hypothesized source location, rm(t) is a sample function from rm(t), T is the

length of the event s(t), which in practice can be estimated from the strongest sensor signal at the

closest sensor, and τ̃m, a function of ~̃ps, is the time required for the wave to propagate from the

hypothesized source position to sensor m. Note, to simplify this analysis the velocity c used in

the algorithm in expression (2.14) is assumed to be constant and known; however, the algorithm is

easily extended to include searching over an additional dimension, which would be velocity.

The energy function, seen in equation (2.14), is maximized when the received signals are in

alignment. In the abscence of noise this shift is consistent with the actual event location. In the

presence of noise the global maximum will shift away from the actual event location. This degrades

the performance of the algorithm.

The performance of the algorithm can be improved by defining suitable signal weights, wm. If

the true source location is known and is ~ps = (0, 0, 0) then τ̃m = τm and the energy function in

(2.14) can be expanded by substituting (2.12) to give

Ws(~ps) =

∫ T

0

[

M
∑

m=1

wm

dm
s(t) +

M
∑

m=1

wmnm(t)

]2

dt. (2.15)

The noise term in (2.15) adversely affects the peak of Ws. The effect of the noise can be reduced
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by selecting the signal weights, wm, to maximize the signal to noise ratio, γ,

γ =

∫ T

0

(

M
∑

m=1

wm

dm
s(t)

)2

dt

E





(

M
∑

m=1

wmnm(t)

)2




(2.16)

where E(·) is the expected value. Simplifying (2.16) gives

γ =

∫ T

0

s2(t)dt

σ2

M
∑

l=1

M
∑

m=1

wlwm

dldm

M
∑

m=1

w2
m

(2.17)

where the denominator is simplified by noting that the noise term nm(t) is an independent, zero

mean, process and E(n2
m(t)) = σ2 is the power in the noise. The term

∫ T

0
s2(t)dt is the signal

energy.

The weights, wm, are determined by solving the set of equations

∂γ

∂wm
= 0 m = 1, . . . , M ,

but a constraint is required to limit the choices for wm. Choosing the constraint as

M
∑

m=1

w2
m = 1

reduces the search to

maximizing

M
∑

i=1

M
∑

j=1

wiwj

didj
subject to

M
∑

m=1

w2
m = 1 (2.18)

Here the method of Lagrange multipliers is used to solve (2.18). Define the function

F (w1, . . . , wM , λ) =

M
∑

i=1

M
∑

j=1

wiwj

didj
+ λ

(

M
∑

m=1

w2
m − 1

)

. (2.19)

Taking the derivative of (2.19) with respect to the arguments gives

∂F

∂wm
=

M
∑

i=1

2wi

dmdi
+ λwm = 0 m = 1, . . . , M (2.20)

∂F

∂λ
=

M
∑

m=1

w2
m − 1 = 0. (2.21)
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Solving (2.20) for λ gives

λ =
− 1

dm

∑M
i=1

wi

di

wm
m = 1, . . . , M (2.22)

Equating the equations in (2.22) gives

1

w1d1
=

1

w2d2
= · · · = 1

wMdM
. (2.23)

Substituting wj = w1d1

dj
for j = 2, . . . , M , which was derived from (2.23), in (2.21) gives

w2
1 +

M
∑

j=2

(

w1d1

dj

)2

− 1 = 0. (2.24)

Simplifying gives

w1 =

1

d1
√

√

√

√

M
∑

j=1

1

d2
j

.

Similarly, the other weights are determined, to give

wm =

1

dm
√

√

√

√

M
∑

j=1

1

d2
j

. (2.25)

Note that the signal weights in (2.25) are inversely proportional to the distance between the source

and the sensors. These intuitively simple weights maximize the signal to noise ratio, which is

a common approach used in electronic communications. These weights, for high SNR’s, should

achieve the theoretical lower bound given by the Cramer–Rao Bound.

2.2.2 Estimate of the Error

An expression for the variance of location, in the direction of unit vector ~e, for the unweighted

(wm = 1, ∀m) localization algorithm is developed in [20]. This derivation is lengthy, but it can

easily be modified to include signal weighting to give
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E[ǫ̂2] =

(

4

2πc2

∫ ∞

−∞

ω2Sss(ω)Snn(ω)dω

×
[

M
∑

l=1

w2
l

(

M
∑

m=1

wm

dm
qm

)2

−2
M
∑

k=1

wk

dk
qk

M
∑

l=1

w2
l ql

M
∑

m=1

wm

dm

+

(

M
∑

l=1

wl

dl

)2 M
∑

m=1

(wmqm)2
]

+
4T

2πc2

(

M
∑

l=1

w2
l

M
∑

m=1

(wmqm)2

−
(

M
∑

m=1

w2
mqm

)2)
∫ ∞

−∞

ω2S2
nn(ω)dω

)

/(

− 1

2πc2

∫ ∞

−∞

ω2Sss(ω)dω

+

M
∑

l=1

M
∑

m=1

wlwm

dldm
(ql − qm)

2

)2

(2.26)

where ǫ̂ is a random variable representation of the error in the global maximum of the stochastic

process energy function in the direction of ~e. The energy spectrum, Sss(ω), is given by Sss(ω) =

|S(ω)|2, where |S(ω)| is the magnitude of the Fourier transform of s(t). Snn(ω) is the power

spectrum of the noise. qm = ~pm·~e
|~pm| , where ~pm · ~e is the dot product of the vector of sensor m’s

coordinates with the unit vector ~e, and |~pm| is the distance from the origin to sensor m. Note that

qm is the cosine of the angle between ~pm and ~e.

Equation (2.26) is the basis of the sensor placement algorithms presented in chapters 4 and 5

of this thesis. That is, given a set of sensor positions, the speed of wave propagation, a direction

in which to calculate the variance and the signal’s and noise’s energy spectral densities, a value

for the variance of a source position is obtained. A set of sensor positions that produce a lower

value of this variance would be deemed better at monitoring events located at the origin. Clearly,

to monitor a region, instead of just one event location, some tradeoffs must be made. This is the

subject of chapters 4 and 5. Because of the assumptions discussed in the previous section, this

estimate of the error should not be taken as the absolute error. This expression is merely used to

express the relative improvement of one configuration over another. This should be noted when

observing the results of the examples in Chapter 5 and will be stated again in that chapter.
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2.2.3 Sensor Positions Near Source

It may be unclear from the model presented in section 2.2.1, or that presented in [20], how to

evaluate the variance of error expression when sensors are within one meter of the source location.

Appendix A is devoted to this topic and this subsection summarizes the main results of that

appendix. The appendix, as well as this section, are for mathematical consistency and are not

intended to accurately model the signal a sensor would receive if it were close to a microseismic

event. In fact, since an event takes place over an area of tens of meters, modelling of the signal

within this area would be very difficult.

A large portion of Appendix A is devoted to showing that if the assumption that |p̃s| ≪ |~pm|

is not made, the same variance expression will result. The appendix also clarifies the evaluation of

the variance expression when a sensor is located at or within one meter of the source position. A

portion of this clarification is presented here. To clarify the evaluation of the variance expression

when a sensor is located at or within one meter of the source position it is necessary to separate

the attenuation and the time delay of the received sensor signals. Implied by the model, though

not stated explicitly, is that a signal received at sensors within one meter of the source location will

have the same attenuation as that received at one meter; the time delay, however, will be consistent

with the distance travelled.

Recognizing the above, how then should one evaluate the final expression for the variance?

What terms are related to the attenuation and what terms are related to the time delay? The

answer, fortunately, is quite simple. The dm values relate to attenuation and the ~pm·~e
|~pm| term relates

to time delay. This amounts to setting dm = 1 if the mth sensor is closer than one meter to the

event. It must be stated clearly that the distance between the sensor and event remains the same

but the attenuation is changed. It so happens that the attenuation equals 1/dm.

The final point to note is to set qm = 1 for |~pm| = 0. Once again, this is explained in Appendix

A. The clarifications helpful when evaluating the variance expression are summarized in Table 2.1
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Case For Action

1 |~pm| > 1 No change

2 0 < |~pm| < 1 set dm = 1

3 |~pm| = 0 set dm = 1 and set ~pm·~e
|~pm| = 1

Table 2.1: Summary of clarifications

2.2.4 Advantages of One–step Estimation

The one–step estimator has one major advantage over two–step estimators. The TOA estimation

step introduces errors into the arrival times. These errors are then propagated through a non–

linear error function, which could result in large errors in the final source estimation. The one–step

estimator foregoes this step and is therefore able to control errors. It could be for this reason that

the single–step estimator seems to perform well for short duration events.

2.3 Summary

Two classes of localization algorithms were discussed, the two–step and one–step procedures. In

addition, a specific estimator from each class was discussed in detail. For the two–step class of

algorithms it was Geiger’s method that solved the set of nonlinear equations using a nonlinear least

squares technique. The error in this estimator was presented in the form of a covariance matrix of

the unknown hypocentre location and origin time. In the case of the one–step, the WTSE estimator

was presented. It’s variance of localization error was presented which was seen to partly depend

upon the signal’s energy spectrum. The WTSE shows promise as a robust localization algorithm

that performs well with finite–duration events that may be of short time duration. The WTSE

estimator and its corresponding variance expression are used throughout the remainder of this

thesis as the estimator of choice.
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Chapter 3

Spectral Characterization

The signal’s Energy Spectral Density (ESD) is required in order to evaluate the variance of error

of a single step estimator, for a given sensor configuration. The ESD of a signal, s(t), is defined to

be

Sss(ω) = |S(ω)|2 =

∣

∣

∣

∣

∣

∫ ∞

−∞

s(t)e−jωtdt

∣

∣

∣

∣

∣

2

. (3.1)

Because real world signals are of finite length there are a number of ways to estimate the actual ESD

of a signal. Two such methods are described in this chapter which is devoted to the characterization,

or estimation, of microseismic event ESDs for two potash mines.

3.1 Method of Analysis

The data used were gathered, over a 12 month period, from C block Lanigan Potash Mine and over

a 9 month period from Allan Potash mine, both of which are located near Saskatoon. The sensors

used to gather the data are geophones. Geophones measure the ground motion relative to that of an

inertial mass [18]. Because the operation of a geophone is based on a mass–spring–damper system

its output is proportional to velocity. The geophones used are critically damped with a natural

frequency of 4.5 Hz and have a flat response above this frequency. A low–pass 8–pole Bessel anti–

aliasing filter, with cutoff frequency at 250 Hz, is used prior to digitizing the microseismic signal.

The signals are sampled at 1000 times per second implying that the sampling frequency, Fs = 1000

Hz.

Each microseismic event that occurs is recorded by 8, 12 or 16 sensors, of which, usually, a

few signals are usable. The other signals, which are not usable are too corrupted by noise. The
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signals which are not usable, the location of the event and the event’s energy are determined using

the CANSEIS software [25]. The event energy varies from a fraction of a Joule to thousands of

Joules. The majority of the events are less than 10 Joules in energy. The energy values calculated

by CANSEIS determine the effective radiated energy of the event, not the energy released. The

values of energy should therefore be used more of a relative measure of event strength, rather than

an absolute measure.

The remainder of the processing discussed in this chapter is performed using MATLAB [26].

The usable signals are first ranked according to their respective distance from the event. Because

noise, multipath effects, and signal attenuation are more pronounced at greater distances, the

signals closest to the event are the most suitable for analysis. Therefore, only signals closer than

610 meters (2000 feet) were analyzed.

In the following subsection the classification algorithm used to separate the signals into two

types is presented. It is important to classify the two types of signals so that it can be seen whether

the time–domain differences correspond to differences in their ESDs. In sections 3.1.2 and 3.1.3 the

multitaper and combined time and lag weighting methods, respectively, are outlined. Section 3.1.4

presents the results.

3.1.1 Classification Algorithm

After visually examining a large number of signals it was decided to separate the data into two

classes of signals. The two classifications were, an impulse type and a successive event type. Figure

3.1 shows an example of each type of signal, where Fs is the sampling frequency and n is the sample

index. The impulse type waveform has a sharp peak and decays very quickly. The successive event

type waveform, however, is much longer in duration and does not have a well defined peak; the

waveform may also have multiple peaks in succession as the event dies out. Comparing the upper

and lower plots it can be seen that the energy in the impulse is much greater than for the successive

event type signal. This energy discrepancy is often the case and is related to the type of signal. A

MATLAB script was written to automatically perform the task of classification.
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Figure 3.1: Typical signals of each classification

This classification algorithm separates each group into impulse and successive event type signals.

Signals that are determined not to be one of these types are discarded because they are too corrupted

by noise. In Lanigan and Allan mines there were sixty and seven signals, respectively, that were

too corrupted by noise to fall into either of these types. The algorithm proceeds as follows:

1. If the energy is below 80 Joules (determined using the CANSEIS software [25]) discard the

signal.

2. Subtract the DC bias from the original signal to give the zero mean signal s(n).

3. If the sample variance of the first 1000 samples, Var, is greater than 1 discard the signal. The
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sample variance is calculated, for the signal s(n) using the following formula,

Var =
1

1000

1000
∑

n=1

s2(n). (3.2)

The first 1000 samples are used since these are known not to contain the signal due to the

triggering method used to capture the event. This is a simple way to estimate the noise power

of the trace and therefore ensure that noisy signals are not included in the characterization.

4. Calculate the envelope of the signal, sh(n) using the Hilbert Transform, H, as in equation

(3.3) and then smooth it out using a lowpass filter.

sh(n) =
∣

∣s(n) + jH(s(n))
∣

∣. (3.3)

The filter is a 5th order lowpass constant phase finite impulse response filter designed using

the window method and has a corner frequency of 150 Hz. Its purpose is to ensure that there

are no fast changes in the envelope, that is, smooth it out. The output of the lowpass filter

is se(n).

5. Find the index, nm, at which the peak value of se(n) occurs.

6. If se(nm)/Var ≤ 700 discard the signal. This step ensures that the peak value is well above

the noise power. The purpose of this step is similar to that of 3, in that it will catch signals

with low SNR.

7. If se(nm + 40) ≤ se(nm)/4 and se(nm − 30) ≤ se(nm)/20 then the signal is an impulse signal.

The step recognizes an impulse type event which has the properties that the peak is high,

and that it is steeper on the rising edge than the falling edge.

8. The signals that are left are assumed to be of a successive event type signal.

The threshold values used in steps 6 and 7 were determined through a trial and error process to

ensure that the signals were classified properly. Once the signals are classified it is simply a matter

of estimating the spectrum for each signal, normalizing the spectrum, and finally averaging over all

spectrums. The important decision in this procedure is the selection of an estimation algorithm;

the chosen algorithms, used here, will be described in the following two sections.
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3.1.2 Multitaper method

The multitaper method, first proposed by Thomson [27], has been used frequently in geophysical

applications [18], [28], [29]. To assist in the simplification of notation and to be consistent with the

previously cited papers on this topic the frequency variable f is assumed to be continuous in the

following description. It should be noted, though, that in the actual implementation it will be a

sampled version of the continuous spectrum.

The multitaper method involves forming K spectral estimates,

Ŝ
(mt)
k (f) = Ts

∣

∣

∣

∣

∣

N
∑

n=1

hk(n)s(n)ej2πfnTs

∣

∣

∣

∣

∣

2

, (3.4)

each using a different taper; where s(n) is the data record with DC bias removed, Ts is the sampling

period, N is the length of the data record and the sequence hk(n),

hk(n) =















vk(n− 1; N, W ) n = 1, . . . , N

0 otherwise

, (3.5)

is called the kth data taper; where vk(n; N, W ) is the kth order discrete prolate spheroidal sequence

(dpss). The value of W is calculated from the time–bandwidth product which in this case is chosen

as four. The kth dpss is the eigenvector of the equation [30],

Ag = λkg. (3.6)

Here, A is an NxN matrix with elements

Anm =
sin[2πW (m− n)]

π(m− n)
. (3.7)

The kth dpss is the eigenvector vk(n; N, W ) corresponding to the kth eigenvalue λk. Some methods

of determining the eigenvalues and eigenvectors are presented in Chapter 8 of [30].

By weighting the spectral estimators, the adaptive multitaper can be formed

Ŝ(amt)(f) =

K−1
∑

k=0

b2
k(f)λkŜ

(mt)
k (f)

K−1
∑

k=0

b2
k(f)λk

, (3.8)
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where

bk(f) =
S(f)

λkS(f) + (1 − λk)σ2
. (3.9)

Since the weights, bk(f) depend on the actual spectrum, S(f), and variance, σ2, they need to be

estimated. The variance σ2 is estimated as the sample variance of the signal s(n). It is calculated

as in equation (3.2) but with the index covering the length of the record, N = 8000,

σ2 =
1

N

N
∑

n=1

s2(n). (3.10)

The initial estimate of S(f) is the energy spectral density estimated using a basic Fast Fourier

Transform. Using this estimate of S(f), and the variance, the weights can be calculated. The

weights can then be used in equation (3.8) to obtain the multitaper spectral estimate. This spectral

estimate with the original variance σ2 can then be used to recalculate the weights. This process

can be repeated many times, though typically it is done only twice [30].

3.1.3 Combined Time and Lag Weighting

The combined time and lag weighting (CTLW) method can be seen as a general case of both

the Weighted Overlapped Segment Averaging (WOSA) and the Blackman–Tukey methods [31].

As in the previous section the frequency variable f is assumed continuous and the F and F−1

represent the Discrete Time Fourier Transform and the Inverse Discrete Time Fourier Transform,

respectively. The actual implementation, however, implements these through the use of the Fast

Fourier Transform and inverse Fast Fourier Transform.

The method is a five step, or two stage, process. Like WOSA, the data s(n) is first divided into

P segments each of length L1 and then multiplied by a weighting function w1(n). The pth segment

after weighting is

yp(n) = s(n)w1(n−
L1

2
− pS), (3.11)

where S is the time shift. Each segment is then transformed into the Fourier domain and averaged

to give

Ŝ1(f) =
1

P

P−1
∑

p=0

∣

∣

∣

∣

F [yp(n)]

∣

∣

∣

∣

2

, (3.12)
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where F is the Fourier transform. The estimated autocorrelation R̂1(n) is then obtained by taking

the inverse Fourier transform,

R̂1(n) = F−1[Ŝ1(f)]. (3.13)

A second–stage correlation estimate R̂2(n) is obtained by multiplying the first-stage correlation

estimate by a window w2(n),

R̂2(n) = R̂1(n)w2(n). (3.14)

Finally, the second–stage correlation estimate is transformed back into the Fourier domain to obtain

the spectral density estimate

Ŝ(ctlw)(f) = F [R̂2(n)], (3.15)

where (ctlw) refers to an estimate using the combined time and lag weighting method.

An important characteristic of this method is that if a rectangular weighting is chosen for w1(n),

then by using the appropriate lag window w2(n) a result similar to one obtained with WOSA can

be computed, but with half the multiplications. This is explained further in [31]. The two windows

used in the implementation are discussed and explained in the following results section.

3.1.4 ESD Characterization Results

The two methods were implemented in MATLAB [26]. The multitaper method was performed by

calling the built–in MATLAB function pmtm with a time–bandwidth product of 4 and a FFT size

of 8192. The value of 4 was chosen as the time–bandwidth product as it is the common value

used in many implementations of the multitaper method [30]. The FFT size of 8192 covers the

entire record length with the addition of zeroes. This length of FFT was chosen for convenience,

since picking only the portion of the record containing the signal, and zero padding, makes no

difference to the final results. The characterization of successive event signals using this method for

the Lanigan and Allan potash mines is given in Figures 3.2 and 3.3, respectively. The signals from

Allan mine contained a strong 60 Hz component so this was filtered out using a notch filter and

this is apparent in Figure 3.3. In Figures 3.2 and 3.3 the units are milli–Joules per square meter

per Hz which is the energy flux density per frequency. Since the signals being analyzed are velocity
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signals, they had to be multiplied by two constants, ρ and V which are equal to 2100 kg/m3 and

2500 m/s [3]. The two constants are the rock density and the seismic velocity, respectively. In the

characterizations presented in this paper these constants have no effect on the final results since

each signal’s ESD is normalized before being averaged with the others.

The combined time and lag weighting method was written as a custom function in MATLAB

using a desired window, w2(n), known as the minimum 4–term window, described in [32]. The

parameters L1 and L2 were set as 4096 and 2048, respectively, with an overlap of 50%. Also,

the initial window, w1(n), was rectangular, so no multiplications were needed. The results of this

characterization of successive event signals for Lanigan and Allan mines are plotted in Figures 3.4

and 3.5, respectively. Each mine used a total of 37 signals in the averaging process. The impulse

type signal characterizations using the pmtm method for the Lanigan and Allan mines can be seen

in Figures 3.6 and 3.7, respectively. Only the pmtm characterized impulse type waveform ESDs

are shown since the differences between the two estimation methods can be adequately seen in the

other figures. The impulse type waveforms are much less common; in Allan mine only two were

used in the characterization and in Lanigan mine only nine were used.

3.2 Comparison

This section compares each signal type’s ESD, the two mines, as well as the two estimation algo-

rithms, using the results of the previous section. To further investigate the estimation algorithms

the ESDs of each algorithm are used to evaluate the variance expression given in equation (2.26)

in section 3.3.

3.2.1 Signal Types

Despite the apparent differences in the time domain, the ESDs of both types of signals are similar,

they can be compared, for example, in Figures 3.2 and 3.6, and could be assumed to be the same

type, for ESD purposes. This assumption is made throughout the remainder of this document so

that the only type of signal considered is that of the successive event type. The most prevalent
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Figure 3.2: Successive Event type ESD Characterization of Lanigan Mine using
the multitaper method

type of signal, by a large margin, is also the successive event type, so this assumption could also

be applied for this reason.

3.2.2 Estimation Algorithms

Quantitative comparison of the two methods, so implemented, is not a trivial matter. Commonly,

for a given frequency resolution, the bias and variance of spectral estimators can be compared.

It is accepted that under reasonable assumptions that both estimators are unbiased [31] [30]. By

taking the difference between the two spectral characterizations at each frequency index and then

calculating the mean of that difference, it can be seen that it is approximately zero (∼ 10−13).

This indicates that if the estimators are biased, then they are biased by the same amount. It is

reasonable to assume, then, that they are unbiased.

The two estimated ESDs are similar and therefore it is assumed that each estimator is equally

suitable. The following subsection uses both mine’s ESDs in an example. The remainder of this

section provides references and reasons as to why it is difficult to compare the variance of each
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Figure 3.3: Successive Event type ESD Characterization of Allan Mine using the
multitaper method

estimator. A closed form expression, assuming Gaussian noise, for the variance of the combined

time and lag weighting estimator is given in [31]. There is no such expression for the multitaper

method. The original work by Thomson [27] does give an expression of variance, but this is for

the direct averaging of the K spectral estimates, and does not include the adaptive weighting used

here. Walden [33] also gives an expression more amenable to computation, but it too, is just for

the direct average of the spectral estimates. Bronez [34] compares two other estimators with direct

averaging multitaper. It should be noted, once again, that in this thesis each estimator is assumed

to be equally suitable.

3.2.3 Mine Comparison

There are clear differences between the characterized ESDs of Lanigan and Allan potash mines.

In Allan mine, see figures 3.3, 3.5 and 3.7, the majority of the energy content is contained in two

distinct frequency peaks. Lanigan mine, see figures 3.2, 3.4 and 3.6, by contrast, has a single peak

whose base has similar bandwidth to that of Allan mine. The following subsection uses both mine
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Figure 3.4: Successive Event type ESD Characterization of Lanigan Mine using
the combined time and lag weighting method

characterizations to illustrate how this difference in frequency content affects their evaluation.

3.3 Example

The ESD of a microseismic event was characterized so that it could be used to evaluate the vari-

ance of error expression given by equation (2.26). This calculation forms the basis of the sensor

positioning algorithm, explained in Chapter 4. It is, therefore, important to see the effect that

the four ESDs, calculated using different estimation algorithms and using data from two different

mines, have when used in this expression. The parameters used to evaluate equation (2.26) are

summarized below.

The sensor system used in the evaluation of the expression forms a rectangle with sensor coor-

dinates: ~p1 = (600,300,0), ~p2 = (-600,300,0), ~p3 = (600,-300,0), and ~p4 = (-600,-300,0). A value

of [1/
√

2,1/
√

2,0] was used for ~e. The results here, as in [20], use an ideal lowpass spectrum of
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Figure 3.5: Successive Event type ESD Characterization of Allan Mine using the
combined time and lag weighting method

bandwidth B Hz with the SNR defined is

SNR = 10 log

(
∫ 2πB

−2πB Sss(ω)dω/d2
i

T
∫ 2πB

−2πB
Snn(ω)dω

)

(3.16)

where T is the duration of the seismic event in seconds and di is the distance from the source

to the nearest sensor in meters. For the results presented, the SNR is kept constant at 10 dB

while the signal ESD is multiplied by the appropriate constant for a given bandwidth. The noise

is assumed white and therefore the spectrum is a constant. The signal duration is kept constant

at 0.2 seconds. Since the signal duration remains constant the bandwidth is changed to obtain

different BT products. This is done by setting the frequency content in the ESD above the chosen

bandwidth to zero. The speed of the mechanical wave, c, assumed a value of 2581 m/s. The

expression was evaluated and plotted in Figure 3.8 using five different signal ESDs: a white ESD,

the two characterized ESDs from Lanigan mine and two characterized ESDs from Allan mine, all

using the successive event type signal. The solid line is calculated using a white spectrum for both

signal and noise. The dashed line and dotted line uses the CTLW characterized signal spectrum

and white noise for Lanigan and Allan mines, respectively. The ∗’s and the o’s represent the pmtm
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Figure 3.6: Impulse type ESD Characterization of Lanigan Mine using the multi-
taper method

method characterized signal spectrum and white noise for Lanigan and Allan mines, respectively.

3.4 Summary and Discussion

As can be seen in Figure 3.8 there is little noticeable difference between the curves using the two

methods of characterization. Therefore, if efficiency is a concern, the combined time and lag weight-

ing method, should be chosen. Since the CTLW method is more efficient, the ESD characterized

with this method is used exclusively in the following chapters when evaluating equation (2.26).

There is, however some noticeable difference between the two mines, especially at higher band-

width time products. Therefore, it is necessary to characterize the signal ESD in a specific mine if

accurate results are desired when evaluating expression (2.26).
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Figure 3.7: Impulse type ESD Characterization of Allan Mine using the multitaper
method
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Chapter 4

Sensor Placement Algorithms

The errors associated with the location of a seismic event are partially dependent upon the

spatial distribution, or configuration, of geophones. The measure of performance for one configura-

tion of sensors over another should depend upon the location error for the respective configuration.

The variance expression described in equation (2.26) is used as the measure of performance in the

presented algorithms. These algorithms which are proposed to select the best location for future

sensors will be described in section 4.2. These algorithms are then compared with those outlined in

the literature in section 4.3. Finally, some modifications to the algorithms are discussed in section

4.4. Section 4.1 reviews the current literature related to optimum sensor placement.

4.1 Background on Sensor Placement

The first effort to place sensors in optimum positions to monitor seismic events was performed in

1965 and 1966 by Sato and Skoko [35–37]. They did this by modelling the process of seismic wave

recording using the Monte–Carlo method.

A general theory of optimum sensor placement was first presented by Kijko [38,39] in terms of the

statistical theory of optimum experiments. In the first paper the D-criterion, that is the determinant

of AT A, where A is defined in equation (2.6), was introduced as the objective function to maximize.

Maximizing det|AT A| is equivalent to minimizing det|Cθ(P)| since Cθ(P) ∝ (AT A)−1, where

Cθ(P) is the covariance matrix defined in equation (2.11). For cases where there is a region of

seismicity that needs to be monitored it is first partitioned into discrete regions, each of which

is assigned a weight. The weight assigned to a given partition is related to the probability of

microseismic event occurance. The location of each partition, usually near the center, is used to
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evaluate det|AT A|. This value is then multiplied by the weight assigned to that partition. Finally

these values are summed. The configuration which maximizes this weighted sum is chosen. The

second of his, often called landmark, papers looks at the accuracy of 7 different ‘optimal’ seismic

networks. The networks consist of 4 to 10 stations. The accuracy sees the most improvement when

a 4 station network is replaced by one of 5 or 6 stations. Burmin then looked at a nonstatistical

analysis of opitmal stations [40]. He showed that a system of stations optimal for certain ‘data’

ceases to be optimal if the data is changed. By ‘data’ he implies the unknown parameters such as

origin time, hypocentre, or epicentre.

In 1990 Rabinowitz and Steinberg used the DETMAX algorithm to find optimal configurations

for a single source [41]. Another important contribution of this paper was the inclusion of spatially

correlated error terms. As with Kijko’s papers they used the D-criterion from the theory of optimal

experiment design. Then in 1995 Steinberg et al. expanded their work to include multiple sources

[42]. They also proposed the D-criterion for Multiple Sources (DMS), which uses a weighted sum

of the logarithm of det|AT A|. This is opposed to Kijko’s criterion which is a weighted sum of

determinants. They felt that Kijko’s criterion produced networks that tended to over monitor

sources for which good coverage is possible but ignored sources that are difficult to monitor [42].

Also in 1995, Kijko and Sciocatti modified their criterion to take into account the energy, and

therefore the detectable distance of the seismic source [43].

Bartal et al, in 2000, in the context of the Comprehensive Test Ban Treaty (CTBT), used a

minmax approach to sensor placement [44]. That is, the source which produces the maximum con-

fidence ellipse is found and then the configuration of seismic stations which minimize this maximum

is chosen. He found the configuration using both a Genetic Algorithm (GA) and a Random Search

(RS); both of these were then compared to an exhaustive search. The GA was found to be superior.

Rabinowitz and Steinberg, in 2000, proposed two optimzation criteria [45]. The first, which is

also based on the D-criterion, is called the Average Information Criterion, and is the determinant

of the weighted sum of ATA. It is useful in problems where singular AT A might arise. Also,

proposed was an importance based criteria. The importance referred to is that of a phase arrival
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at a particular station. Finally, in 2003 Steinberg and Rabinowitz rigorously derived optimum

(D–optimum) networks for various constraints [46].

4.2 Placement Algorithms

Using both the results of [47] and the variance expression given by equation (2.26) the performance

of a sensor network can be calculated for a given microseismic event location. The functional

dependence of the variance upon the M sensor positions, pi and upon the parameter ~e, which is

the unit vector in the direction that the variance is calculated, can be explicitly expressed as

V(~e, ~p1, . . . , ~pM ) = σ2, (4.1)

where the source position is assumed to be at the origin. To use an alternate source position the

sensor positions can be shifted by the alternate source location. The following two subsections use

this expression in their criteria for the placement of additional sensors in a network to adequately

monitor expansion regions. The two criteria are similar in that they both seek to minimize the

variance of a source position with the maximum variance. The difference lies in that the MAXSRC

algorithm minimizes the maximum source position before any sensor is placed while the MINMAX

algorithm minimizes the source position with maximum variance after a sensor has been placed.

The two algorithms are discussed in detail in the following two subsections.

4.2.1 MAXSRC Algorithm

The algorithm first searches for the source position with the maxium variance, expressed mathe-

matically as

max
i
V(~e, ~p1 − ~θi, . . . , ~pM − ~θi), (4.2)

where ~θi ∈ ΩE . Here ΩE represents the mine expansion region and ~θi are the possible hypocentre

locations. The subtraction of ~θi from the sensor positions translates the equation so that it is

evaluated as if the source location was ~θi. From this expression ~θm, the source position which

produces the maximum variance, is obtained. Using ~θm as the hypocentre location additional
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sensor positions are tried throughout the expansion region. The position which minimizes the error

is chosen. This can be expressed mathematically as,

min
j
V(~e, ~p1 − ~θm, . . . , ~pM − ~θm, ~pj − ~θm), (4.3)

where ~pj ∈ ΩR. Here ΩR represents rooms in the mine expansion region. Note that ΩR ⊂ ΩE . The

search area for the sensor is narrowed to ΩR because placement outside of this area would require

bore holes to be drilled into the surrounding ore body and would therefore be quite expensive. It

was discovered, after many trials, that this algorithm would invariably place the additional sensor

as close as possible to the location of the maximum source. This then leads to a more efficient

criteria than that proposed in equation (4.3). After searching for the maximum position, using

equation (4.2), look for the closest possible sensor position to ~θm

min
j

∥

∥~pj − ~θm

∥

∥, (4.4)

where, once again, ~pj ∈ ΩR and ‖ · ‖ denotes the Euclidian distance. It has been seen that placing

a sensor using equation (4.4) instead of equation (4.3) produces little, if any, noticeable difference.

It may seem strange placing a sensor as close as possible to a source location when the model

breaks down at this point. However, it must be remembered that a region of seismicity is desired

to be monitored, not necessarily this particular source location.

If more than a single sensor is desired to be placed then one can run the algorithm again, but

adding the previously placed sensor to the current configuration. Multiple sensors can, therefore,

be placed in an iterative fashion.

The pseudocode for this algorithm can be seen in Algorthm 1. The function FunMaxSrc accepts

the current sensor configuration P, the direction which the variance will be calculated ~e, the set of

possible source locations ΩE and the set of possible sensor positions ΩR. The first loop, from lines 2

to 9 searches over the possible source locations in ΩE for the position with the maximum variance.

The second loop then searches over the set of possible sensor positions and finds the sensor position

p′ which is the closest to the source position with the maximum variance θm.

The following section will evaluate this method’s performance by comparing it to the more
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Algorithm 1 MAXSRC implementation

1: function FunMaxSrc(P, ΩE , ΩR, ~e)

2: for all θ ∈ ΩE do

3: P′ ← P− θ

4: V ′ ← V(~e,P′)

5: if V ′ ≥ Vt then

6: θm ← θ

7: Vm ← V ′

8: end if

9: end for

10: for all p ∈ ΩR do

11: d← ||p− θm||

12: if d ≤ d′ then

13: d′ ← d

14: p′ ← p

15: end if

16: end for

17: return (p′,Vm, θm)

18: end function
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complex criteria outlined below.

4.2.2 MINMAX Algorithm

The MAXSRC algorithm, described above, attempts to minimize the variance at the source position

that has the maximum variance. Unfortunately this says nothing regarding the maximum variance

after the additional sensor has been placed. It could, possibly, be worse. To combat this deficiency

a second criterion, termed MINMAX, is proposed. It finds the sensor position which minimizes the

maximum variance after it has been placed. This is expressed mathematically as

min
j

[

max
k
V(~e, ~p1 − ~θk, . . . , ~pM − ~θk, ~pj − ~θk)

]

. (4.5)

This criterion can be expanded to two sensors quite easily,

min
j,l

[

max
k
V(~e, ~p1 − ~θk, . . . , ~pM − ~θk, ~pj − ~θk, ~pl − ~θk)

]

. (4.6)

The pseudocode implementation of the single sensor case is given in Algorithm 2. The inputs

are the same as in Algorithm 1. The inner loop searches for the source position with the maximum

variance. Then for each sensor position it checks to see if the current sensor position’s corresponding

maximum variance is the smallest. If it is then this sensor position’s maximum variance value and

source position are saved. This continues until all sensor positions in ΩR have been checked.

Because of the increased complexity of the MINMAX algorithm it is not practical to conduct

an exhaustive search for the sensor position(s). In the following chapter a Genetic Algorithm (GA)

is used. Note that this criterion and the use of a GA are similar to that used by Bartal et. al. [44].

In fact they are the same with the exception that in this thesis the variance in the direction ~e is

used as the quantity to minimize while Bartal et. al. uses the determinant of ATA. This and other

differences are discussed briefly in the following section.

4.3 Justification

There are three major differences between the algorithm presented here and those seen in the

literature. As discussed in Chapter 2, a new single–step energy based algorithm shows promise as
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Algorithm 2 MINMAX implementation

1: function FunMinMax(P, ΩE , ΩR, ~e)

2: for all p ∈ ΩR do

3: for all θ ∈ ΩE do

4: P′ ← [P : p]− θ

5: V ′ ← V(~e,P′)

6: if V ′ ≥ Vt then

7: θt ← θ

8: Vt ← V ′

9: end if

10: end for

11: if Vt ≥ Vm then

12: p′ ← p

13: θ′ ← θt

14: Vm ← Vt

15: end if

16: end for

17: return (p′, θ′)

18: end function
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an alternative estimator for the location of microseismic events induced by mining activity. The

variance of error in a particular direction, presented in equation (2.26), makes a natural choice for

the performance measure of a given network configuration.

Potash mines in Saskatchewan are constantly expanding. They are growing at a rate of approx-

imately 500 metres per hour. It would not make sense to reconfigure the entire sensor network

each time an expansion is made. This would be both costly and inefficient. To adequately monitor

new areas of mines, termed here mine expansion regions, an additional sensor should be added to

specifically monitor the new region. This allows the current network to remain undisturbed as well

as simplifying the algorithm used to place an additional sensor. More than one sensor can be placed

in a given expansion region by running the algorithm in an iterative fashion.

In summary the three major differences are:

1. The variance of error in a particular direction is used as network configuration measure

2. Only one or two sensors are placed at a time

3. The search area for microseismic events and sensor positions is restricted to the mine expan-

sion region

The following section discusses the possible choices that can be made regarding ~e, the vector in

the direction which the variance is calculated.

4.4 Parameter Modification

The parameter ~e in equation (2.26) allows extensive flexibility in implementing the algorithm de-

scribed in section 4.2. This section shows some of the possibilities involving the ~e parameter and

the following two subsections explain these modifications in more detail. Some of these possible

modifications will be used in examples in the following chapter.

Changing the direction of ~e can be very useful in mining applications. For example, in potash

mines the rooms are often parallel to each other. If one would like to know which room a mi-

croseismic event took place near, then the ~e vector could be chosen so that it is in the direction
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perpendicular to the mine rooms. It should be stressed, however, that there is no knowledge of the

other directions’ variances. That is, even though the maximum variance in two possible directions

is β and even though they may be perpendicular to each other there could (and likely is) another

direction with a much larger variance since the orientation of the error ellipse is unknown. With

that said this method is very useful in situations where the variance in certain directions, and those

directions only, is wished to be controlled.

Instead of just choosing different ~e vectors, many can be used. By running the first part of the

algorithm, finding the worst possible event location, for different ~e vectors a worst possible solution

out of all of them can be determined. This solution can then be used, along with direction vector

~e which produced it, to determine the sensor position to minimize the error. An obvious choice for

~e vectors in this case would be the cartesian coordinate unit vectors.

Finally, an average of multiple ~e vectors can be used to obtain a solution which performs well

in the given directions. First, the worst possible event location would be found; worst in the sense

that it produced the maximum average. Then the sensor would be found which minimized the

average.

In summary the three categories of modifications involving the direction vector ~e, are:

1. The direction of ~e can be changed based on the error requirements of the specific area

2. A number of ~e directions can be chosen, and then that which is the worst can be the chosen

direction in which to minimize the error

3. An average can be taken of multiple directions

Clearly the final two modifications would require more computation time than the first. To

better explain how these modifications will affect the criteria the two following subsections will

discuss and present the modified criteria for the MAXSRC and MINMAX alrgorithms.
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4.4.1 MAXSRC

The modifications required of the MAXSRC algorithm are very simple. For the case where multiple

~e vectors are used the procedure is, as follows. First, the maximum variance is found for each of

the ~e vectors. The sensor is then placed as close as possible to the position which generated the

maximum variance over all ~e vectors.

To modify the algorithm for a weighted average of the multiple ~e vectors the variance at each

source position is calculated for both vectors and is then averaged (or weighted averaged). The

sensor is then placed as close as possible to the source position with the largest weighted average.

4.4.2 MINMAX

The MINMAX algorithm is easily extended to the multiple parameter case. Instead of minimiz-

ing the maximum variance over the possible source positions another dimension is added, the ~e

dimension. The criterion for a single sensor placement of equation (4.5) can be modified for the

additional dimension so that it becomes

min
j

[

max
k,l
V(~el,P− θk, ~pj − ~θk)

]

. (4.7)

Here, the notation has been made more compact where P− θk implies the set of current sensors P

is being shifted to source location θk. In the examples presented in the following chapter only two

values are used for ~e. With only two values of ~e the above criterion can be written as

min
j

[

max
k

[V(~e1,P− θk, ~pj − ~θk),V(~e2,P− θk, ~pj − ~θk)]

]

. (4.8)

Algorithm 2 can be easily modified to include the special case of an additional ~e. This modified

algorithm can be seen as in Algorithm 3.

Instead of finding the maximum over the additional parameters the variances can be averaged

for each ~e so that the maximum average can be minimized. For the general case of L different ~e

vectors the criterion is

min
j

[

max
k

L
∑

l=1

αlV(~el,P− θk, ~pj − ~θk)

]

. (4.9)
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Algorithm 3 MINMAX implementation

1: function FunMinMax2e(P, ΩE , ΩR, ~e1, ~e2)

2: for all p ∈ ΩR do

3: for all θ ∈ ΩE do

4: P′ ← [P : p]− θ

5: V ′
1 ← V(~e1,P

′)

6: V ′
2 ← V(~e2,P

′)

7: if V ′
1 ≥ Vt then

8: θt ← θ

9: Vt ← V ′
1

10: end if

11: if V ′
2 ≥ Vt then

12: θt ← θ

13: Vt ← V ′
2

14: end if

15: end for

16: if Vt ≥ Vm then

17: p′ ← p

18: θ′ ← θt

19: Vm ← Vt

20: end if

21: end for

22: return (p′, θ′)

23: end function
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where αl is the weighting factor for ~el which for the average would be 1
L . If only two values of ~e

are used in an average, then this becomes

min
j

[

max
k

1

2
V(~e1,P− θk, ~pj − ~θk) +

1

2
V(~e2,P− θk, ~pj − ~θk)

]

. (4.10)

Algorithm 2 is similarly modified to include the average for the special case of two ~e vectors. This

can be seen in Algorithm 4.

Algorithm 4 MINMAX implementation

1: function FunMinMax2eAvg(P, ΩE , ΩR, ~e1, ~e2)

2: for all p ∈ ΩR do

3: for all θ ∈ ΩE do

4: P′ ← [P : p]− θ

5: V ′
1 ← V(~e1,P

′)

6: V ′
2 ← V(~e2,P

′)

7: V ′ ← 1
2V ′

1 + 1
2V ′

2

8: if V ′ ≥ Vt then

9: θt ← θ

10: Vt ← V ′

11: end if

12: end for

13: if Vt ≥ Vm then

14: p′ ← p

15: θ′ ← θt

16: Vm ← Vt

17: end if

18: end for

19: return (p′, θ′)

20: end function
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4.5 Summary

This chapter presented two classes of sensor placement algorithms for sensors in mine expansion

regions. An overview of the previous literature in seismic network configuration was given and then

the differences between this and previous work was highlighted. It was also shown how each of the

classes of algorithms could be modified to include multiple ~e directions in three different ways. The

following chapter will use each class of algorithms on three examples; two examples are synthetic

while the third is of a potash mine located near Saskatoon, Saskatchewan.

51



Chapter 5

Sensor Placement Examples

Three examples are presented in this chapter. All three examples compare both MAXSRC and

MINMAX algorithms. The first two examples are synthetic. Their purpose is to introduce the al-

gorithms using simple sensor configurations. The final example applies the algorithms to the sensor

network in Lanigan Potash Mine. For each example, sensors are placed using six variations of the

MINMAX and MAXSRC algorithms. The first two are single ~e cases of MINMAX and MAXSRC.

The final four use two ~e vectors and are referred to as: MINMAX both, which minimizes the max-

imum variance calculated using each ~e, MINMAX avg, which minimizes the maximum variance

calculated using the average of both ~e vectors, and similarly, MAXSRC both and MAXSRC avg.

The final section summarizes the results of this chapter.

5.1 Simple Examples

In this section, the six algorithms described above, MINMAX, MAXSRC, MINMAX both, MIN-

MAX avg, MAXSRC both, and MAXSRC avg, are each used to place both one and two additional

sensors in two different four station configurations. The sets ΩE and ΩR are the same and each

contain 25 elements. The search area is a 100 x 100 square area that is sampled every 25 units.

In the two cases to follow the original sensor configuration is inside the ‘expansion region.’ The

variance is calculated in the direction ~e1=[1 0 0], for the single ~e case and ~e2=[0 1 0] is added for the

two ~e case. These examples assume a two dimensional system located on the z = 0 plane. The ESD

of the signal used in the variance calculation is the CTLW successive event type characterization

for Lanigan Mine. The SNR used is -11.5 dB. Both of these were chosen for convenience.
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5.1.1 Configuration 1

The configuration of the initial sensor network is given in Figure 5.1. The sensors are located on a

square with p1 = (25, 25), p2 = (25, 75), p3 = (75, 75) and p4 = (75, 25), where z = 0 is assumed.

The results of placing one and two additional sensors using the six algorithms is shown in Table 5.1.

0
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25

50

50

75

75

100

100

Figure 5.1: Configuration of sensors in Configuration 1

Those algorithms using a GA, MINMAX, MINMAX avg, and MINMAX both, were run 10 times

to obtain the average and minimum values. In the first column of Table 5.1 the numbers (1) and

(2) following each method indicate the number of sensors placed. The second and third columns

display the average standard deviation (SD) and minimum SD, in meters, respectively. Clearly, for

the MAXSRC methods these two columns will be identical, since they are solved without use of

the GA. The sensor positions listed, in the fourth column, were the sensor positions that obtained

the minimum variance. An illustration of the best positions to locate two additional sensors when

~e1 is used is given in Figure 5.2. The additional sensors are represented as circles.
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Method Avg. SD (m) Min. SD (m) Sensor Positions

MINMAX(1) 5.94 5.94 (50,50)

MINMAX(2) 2.05 1.89 (0,50) (100,50)

MAXSRC(1) 6.19 6.19 (100,50)

MAXSRC(2) 1.89 1.89 (100,50) (0,50)

MINMAX both(1) 6.07 5.94 (50,50)

MINMAX both(2) 3.39 2.33 (0,0) (100,100)

MAXSRC both(1) 8.27 8.27 (50,0)

MAXSRC both(2) 5.84 5.84 (50,0) (0,50)

MINMAX avg(1) 4.59 4.59 (50,50)

MINMAX avg(2) 3.09 2.33 (0,100) (100,0)

MAXSRC avg(1) 5.90 5.90 (50,0)

MAXSRC avg(2) 4.18 4.18 (50,0) (0,50)

Table 5.1: Results for configuration 1
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Figure 5.2: Configuration of sensors in Configuration 1 with two additional sen-
sors, represented by open circles, placed at the best positions using MINMAX(2)

5.1.2 Configuration 2

The second configuration of sensors is illustrated in Figure 5.3. As can be seen in the figure, the

sensor positions are p1 = (25, 25), p2 = (50, 75), p3 = (50, 50) and p4 = (75, 25), where it is again

assumed that z = 0. Using the configuration in Figure 5.3, one or two additional sensors are placed

for the various algorithms and the results are presented in Table 5.2. For the single ~e case the best

positions for two additional sensors is given in Figure 5.4. The additional sensors are represented

as circles. The results of both configurations are discussed in the following subsection.

5.1.3 Discussion

These examples quite clearly indicate the greater robustness of the MINMAX criterion over that

of MAXSRC. It interesting to note the discrepancy between configurations for the results of the

MINMAX methods and MAXSRC methods. In the first configuration the MINMAX and MAXSRC

methods produce similar results. If only a single ~e is considered then when two sensors are placed

the MAXSRC method does better, on average. When two ~e vectors are considered the MINMAX
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Method Avg. SD (m) Min. SD (m) Sensor Positions

MINMAX(1) 8.32 8.30 (50,100)

MINMAX(2) 9.09 2.39 (100,25) (0,25)

MAXSRC(1) 16.96 16.96 (0,50)

MAXSRC(2) 12.61 12.61 (0,50) (100,50)

MINMAX both(1) 13.83 13.83 (25,0)

MINMAX both(2) 3.84 2.92 (0,100) (100,0)

MAXSRC both(1) 16.96 16.96 (0,50)

MAXSRC both(2) 12.61 12.61 (0,50) (100,50)

MINMAX avg(1) 9.98 9.98 (25,0)

MINMAX avg(2) 3.93 2.86 (100,100) (0,0)

MAXSRC avg(1) 12.32 12.32 (0,50)

MAXSRC avg(2) 8.93 8.93 (0,50) (100,50)

Table 5.2: Results for configuration 2
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Figure 5.3: Configuration of sensors in Configuration 2

method performs consistently better; for example when the averaging methods are used to place two

sensors MINMAX avg produces an average SD of 3.09 m while MAXSRC avg results in an average

SD of 4.18 m. When considering the second configuration the results between the two methods

are much wider with MINMAX consistently performing much better than the MAXSRC methods.

Clearly the performance of MAXSRC methods depend upon the initial sensor configuration.

5.2 Lanigan Mine

This example calculates the best sensor positions for an actual mine sensor network in Lanigan

Potash Mine, located near Saskatoon, Canada. To obtain meaningful results the average signal–

to–noise ratio needs to be estimated. The following subsection outlines the SNR derivation for C

block of Lanigan Potash Mine.
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Figure 5.4: Configuration of sensors in Configuration 2 with two additional sen-
sors, represented by open circles, placed at the best positions using MINMAX(2)

5.2.1 SNR Derivation

The derivation of the SNR in terms of the radiated energy of a seismic event is presented in this

subsection. The SNR is defined as

SNR = 10 log

(
∫ 2πB

−2πB Sss(ω)dω/d2
i

T
∫ 2πB

−2πB
Snn(ω)dω

)

, (5.1)

where B is the bandwidth, Sss(ω) is the energy spectral density of a microseismic event, Snn(ω)

is the noise power spectrum, T is the event duration in seconds, and di is the average distance

between the source and sensors. It should be noted that the SNR defined here is slightly different

than that defined in Chapter 3 in equation (3.16). In the previous definition, di was defined as

the distance from the source to the closest sensor, not the average distance, as it is defined here.

This change was made so that not as much emphasis would be placed on the closest sensor. It is

especially useful when a source location is very close to a sensor.

The radiated energy of a seismic event Ê as calculated by CANSEIS software [1, 25], is

Ê =
4πρocoC

M

M
∑

n

ǫ̂nR2
n. (5.2)
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That is, it is the weighted average of the sensor signal’s energy estimate ǫ̂n . The weights are the

squared distance between the sensor and the estimated source position R2
n. The other parameters

are: ρo = 2100 kg/m3, co = 2550 m/s , C = 1x10−12 m2/µm2 and M is the number of sensors used

in the average. The constant C appears since the original data are in units of µm/s. The energy

estimate of the signal is computed using 2000 samples about the high point of the signal. It can

then be assumed that this weighted sum is an estimate of the total energy of the signal and

∫ 2πB

−2πB

Sss(ω)dω ≈ 4πρocoC

M

M
∑

n

ǫ̂nR2
n. (5.3)

The SNR equation can then be rewritten as

SNR ≈ 10 log

(

Ê

T d2
i

∫ 2πB

−2πB Snn(ω)dω

)

. (5.4)

The noise was estimated as follows. Since the first 800 samples of each record contain only

the noise, this portion of the record was used to estimate the average noise power. Initially the

noise power was assumed to be approximately white and therefore its PSD would be completely

characterized by its sample variance. However, when the cumulative periodogram test was applied,

as in Section 6.6 of [30], it was found to be an incorrect assumption. Instead, the noise PSD was

estimated directly using the first 800 samples of 1901 records. Each PSD was then integrated

over the bandwidth B = 152.5 Hz, and then these values were averaged to give the average noise

estimate. This estimate was then multiplied by constants 4π, co, C and ρo to obtain the appropriate

units.

Since the interest here is the average SNR which occurs in the mine, the energy estimate used

was the average value taken over 1901 signals giving an average of 32 J. The parameter d2
i was also

the average distance between source and sensor and was set equal to 3x106 m2. The value of T was

set to 2 seconds. Using these values an estimate of the average SNR occuring in Lanigan Potash

Mine was -10.4 dB.
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5.2.2 Overview

The simulations were run in MATLAB [26] and the implementation of the GA used the Genetic

Algorithm Toolbox [48, 49]. An expansion region in Block C of Lanigan Potash Mine is the area

considered for sensor placement. A portion of Block C, highlighting the expansion region with

diamonds, can be seen in Figure 5.5. The current sensor configuration is taken directly from the

mine. The sensor positions are presented in Table 5.3, and are shown in Figure 5.5 with numerical

labels. To simplify the simulations the mine and events were assumed to be on the z = 0 plane. It

is also assumed that velocity is constant at c = 2581 m/s. The ~e is set equal to [1/
√

2, 1/
√

2, 0]

for all single ~e simulations and the second ~e was set to [-1/
√

2, 1/
√

2, 0] for simulations using two

~e vectors. The signal to noise ratio is set to -10.4 dB and the average time duration of an event is

set to T = 0.8. The derivation for the use of this value for the SNR was presented in the previous

section. Using the previously characterized energy spectral density for that portion of the mine [47],

the current sensor positions, and the SNR of -10.4 dB, additional sensors can be placed. In these

examples ΩE contains 208 elements and ΩR contains 841 elements. To deal with the complicated

constraints, seen in Figure 5.5, a mapping matrix was used for the MINMAX procedures that used

the GA, MINMAX, MINMAX avg and MINMAX both. The mapping was a 29x29 matrix and the

indexes were the numbers generated by the GA; that is, the GA had an upper and lower bound

of 29 and 1, respectively. Each element in the matrix contains two values which correspond to x

and y values in ΩR. This mapping is illustrated in Figure 5.6. The N in the figure is 29 and each

element aij is a coordinate of a point in the actual expansion region (xij , yij). Matrix elements

near one another must correspond to positions in the mine map that are near each other. This is

essential for proper functioning of the GA. The mapping matrix can be thought of as a sampling

and rotation of the expansion region. The GA was initially run without this mapping with similar

results but taking approximately 4 times longer to converge than when the mapping was used. The

mapping when using a GA was adapted from the paper by Bartal et al. [44].
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Figure 5.5: A plan view of C Block in Lanigan Potash Mine. The expansion region
is outlined by diamonds.

5.2.3 Results

The results list the standard deviations (SD), in meters, after sensors have been placed using the

listed algorithm. Before any additional sensors were placed the maximum SD was 6.33 meters. The

results are shown in Table 5.4 for the six algorithms placing both one and two additional sensors.

The GA was run 30 times to generate these results.

It should be stated, once again, that the values shown in the results are not meant to describe

the actual variance observed for the given sensor configuration. Rather, what is important in this

example is the relative standard deviation comparing before and after a sensor is placed.

The variance surfaces can be seen in Figures 5.7, 5.8 and 5.9 when zero, one and two additional

sensors have been placed, respectively. The sensors were placed using the MAXSRC algorithm. It

should be clearly noted in each of the three figures the change in the variance shading scale from

one figure to another.
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Sensor No. x Position (ft) y Position (ft)

1 108776.5 86117.8

2 112819.0 80048.0

3 111507.0 80690.0

4 115231.0 79495.0

5 109111.0 83283.0

6 107915.4 84491.5

7 109984.0 81756.0

8 111700.0 81649.9

Table 5.3: Sensor positions in Lanigan potash mine

Method Avg. SD (m) Min. SD (m) Sensor Position(s) (ft)

MINMAX(1) 0.871 0.832 (106159,80516)

MINMAX(2) 0.674 0.645 (106687,79988) (105420,81254)

MAXSRC(1) 1.195 1.195 (107320,79355)

MAXSRC(2) 0.776 0.776 (104651,81989)

MINMAX both(1) 1.191 1.137 (106370,80304)

MINMAX both(2) 0.794 0.692 (105696,83034) (106475,80199)

MAXSRC both(1) 1.239 1.239 (107320,79355)

MAXSRC both(2) 0.959 0.959 (104812,82150)

MINMAX avg(1) 0.936 0.899 (105948,80727)

MINMAX avg(2) 0.664 0.612 (106476,80199) (105214,82552)

MAXSRC avg(1) 1.223 1.223 (107320,79355)

MAXSRC avg(2) 0.669 0.669 (104651,81989)

Table 5.4: Results for Lanigan Mine example
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Figure 5.6: Mapping illustration

The improvement by adding a single sensor is significant; the SD goes from 6.33 meters to 120 cm

for MAXSRC or 87 cm for MINMAX. Clearly the MINMAX method provides better results. How-

ever, the difference between 120 cm or 87 cm is not great. The discrepancy is even smaller when two

sensors are placed with the MINMAX producing an average SD of 67 cm compared to MAXSRC’s

78 cm. Similar results are seen when two ~e vectors are used with the notable exception of the

MINMAX avg and MAXSRC avg algorithms which, when two sensors are placed produce results

which are only approximately half a centimetre different on average between the MINMAX avg

and MAXSRC avg algorithms. In all cases, however, the MINMAX algorithm outperforms the

MAXSRC algorithm.

To iteratively place two sensors using the MAXSRC algorithm takes approximately 3.5 seconds,

using MATLAB [26]. By contrast, to place a single sensor using the MINMAX criterion with the

GA takes significantly more time. It takes, on average, 13 generations for the GA to converge

and approximately 27 seconds per generation, giving approximately 6 minutes on average for the

algorithm to find a solution. To place two sensors at a time this corresponds to 8 minutes, on

average. The average times for the GA based MINMAX algorithms to converge are summarized in

Table 5.5.
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Figure 5.7: The filled contour plot of the variance for source postions in the
expansion region when no additional sensors have been placed.

All of these running times are well within the constraints, which may be present at a mine.

Additional sensors are usually added only a few times a year, depending on the rate of expansion.

5.3 Summary and Discussion

The first section of the chapter was devoted to two simple synthetic examples which assumed

that the current sensors were inside the expansion region. Both configurations illustrated how

consistently the MINMAX algorithm outperformed the MAXSRC algorithm, in terms of maximum

SD. The second configuration showed this fact in exemplary fashion.

The second section presented an example of sensor placement in a Lanigan Mine expansion

region. The average SNR was derived using existing mine data. Because of the complicated

constraints imposed by the mine rooms a mapping matrix was created, and used when the GA was

applied, which improved the speed of convergence of the GA algorithm. The results showed, once

again, the superiority, in terms of maximum SD, which the MINMAX class of algorithms have over
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Figure 5.8: The filled contour plot of the variance for source postions in the
expansion region when one additional sensor has been placed.

the MAXSRC class.

Despite the better results enjoyed by the MINMAX class of algorithms, the MAXSRC class is

intuitively very simple and over 100 times faster at finding a solution. It is clear from the above

three examples that the MINMAX class of algorithms, utilizing the GA, are more robust than the

MAXSRC class. If, however, there are time or processing constraints then the MAXSRC class of

algorithms provide acceptable solutions in approximately 1/100th the time.
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Figure 5.9: The filled contour plot of the variance for source postions in the
expansion region when two additional sensors have been placed.

Method Avg. Time (min)

MINMAX(1) 5.85

MINMAX(2) 8.10

MINAMX both(1) 9.43

MINMAX both(2) 11.47

MINMAX avg(1) 8.73

MINMAX avg(2) 11.43

Table 5.5: Average time for algorithm to converge
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Chapter 6

Conclusions and Future Work

6.1 Summary

In Chapter 2, two classes of localization algorithms were discussed, the two–step and single–step

procedures. In addition, a specific estimator from each class was discussed in detail. For the two–

step class of algorithms it was Geiger’s method which solved the set of nonlinear equations using

a nonlinear least squares technique. The error in this estimator was presented in the form of a

covariance matrix of the unknown hypocentre location and origin time. In the case of the single–

step, the Weighted Total Signal Energy estimator was presented. Its variance of localization error

was presented which was seen to partly depend upon the signal’s energy spectrum. The WTSE

shows promise as a robust localization algorithm that performs well with finite–duration events

that may have a small time–bandwidth product. It was used as the location estimator throughout

this thesis.

Chapter 3 presented a classification scheme of signals received in Potash Mines in Saskatchewan.

The scheme separated the signals into a successive event type and an impulse type signal. Energy

Spectral Densities (ESD) of each type of signal were estimated using the multitaper and Combined

Time and Lag Weighting (CTLW) methods for two specific potash mines, Lanigan and Allen mines.

The characterized ESDs of each mine of the successive event type signal were used to evaluate the

variance of error expression for various bandwidth–time products showing little defference between

estimation methods and a small, but possibly significant, difference between Allen and Lanigan

mine.

Chapter 4 presented two classes of sensor placement algorithms for sensors in mine expansion
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regions. An overview of the previous literature in seismic network configuration was given and then

the differences between this and previous work were highlighted. It was also shown how each of the

classes of algorithms could be modified to include multiple ~e directions in two different ways.

The first section of Chapter 5 was devoted to two simple synthetic examples that assumed the

current sensors were inside the expansion region. Both configurations illustrated how consistently

the MINMAX algorithm outperformed the MAXSRC algorithm, in terms of minimizing the maxi-

mum standard deviation (SD). The second configuration showed this fact in exemplary fashion.

The second section, of Chapter 5, presented an example of sensor placement in a Lanigan

Mine expansion region. The average SNR was derived using existing mine data. Because of the

complicated constraints imposed by the mine rooms, a mapping matrix was created and used when

the Genetic Algorithm (GA) was applied, which improved the speed of convergence of the GA. The

results showed, once again, the superiority, in terms of maximum SD, that the MINMAX class of

algorithms has over the MAXSRC class.

Despite the better results enjoyed by the MINMAX class of algorithms the MAXSRC class is

intuitively very simple and over 100 times faster at finding a solution. It is clear from the above

three examples that the MINMAX class of algorithms, utilizing the GA, are more robust than the

MAXSRC class. If, however, there are time or processing constraints then the MAXSRC class of

algorithms provide acceptable solutions in approximately 1/100th the time.

6.2 Conclusions

There are two main areas which conclusions will be drawn from: the ESD characterization and the

sensor placement algorithms. First, conclusions from the ESD characterization.

• The Combined Time and Lag Weighting method of spectrum estimation should be used if

there are time constraints. If there are no time constraints then it was seen that both methods

produced very similar results and so the choice is left to the user.

• There was noticeable difference between the ESDs of the two mines, though this difference
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was not great. It is therefore advised that, in the future, an analysis and characterization of

each particular mine is performed to obtain a specific ESD for that mine.

• The differences between the two mine ESDs was seen to also affect the variance calculation.

This difference was seen to be larger at higher time bandwidth products.

Conclusions relating to the sensor placement algorithms are summarized below.

• The MINMAX algorithm using a Genetic Algorithm has been shown to consistently produce

superior results to those of the MAXSRC algorithm. Though, it takes approximately 100

times as long to run as the MAXSRC algorithm, the execution time on a modern PC is very

acceptable, being in the neighbourhood of 5.85 or 8.10 minutes, depending on whether one

or two sensors are placed, respectively.

• The MINMAX algorithm is a robust sensor placement procedure which should be used instead

of the MAXSRC algorithm in all situations unless relevant time constraints are present.

• The MAXSRC algorithm provides a fast and intuitively simple procedure to place additional

sensors in mine expansion regions. It consistently performs the same or worse than the

MINMAX algorithm and therefore should only be used when time or processing constraints

are present.

6.3 Future Work

There are three main areas dealt with in this thesis that suggest future avenues of investigation:

the energy spectral density, the placement algorithms and the variance expression and underlying

location estimate. The following paragraphs will discuss each of these individually.

There are two areas which need work in terms of the ESD of potash mines and both are due to the

need for more data. To adequately characterize the impulse type waveform requires a considerable

amount of data, probably over two years from a particular mine. Using this amount of data should

allow an adequate characterization of the impulse type waveforms at both mines. The second area
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is the need for data from another potash mine that is not in the same geographical area and most

likely a different configuration. This will allow a better ESD comparison between mines.

There are a number of areas of future work related to the sensor placement algorithms. A very

useful, in terms of practicality in mining situations, is for a set of general ‘rules’ for placing sensors

in expansion regions to be developed. This development would likely involve using both algorithms

to place sensors in a large number of different examples. Hopefully from examining these examples

a set of rules could be determined.

When the variance expression was derived it was assumed that the noise at each sensor was

independent. In previous work, in sensor placement by Rabinowtiz and Steinberg [41] it was

pointed out that this assumption has caused two sensors to be placed very near to each other. This

violates the independent noise assumption. The examples presented in this thesis did not show any

predeliction of the criterions to place two sensors very close to one another. This, however, is not

conclusive and there needs to be further examples and analysis undertaken to determine whether

this problem will arise with the algorithms presented in this thesis.
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Appendix A

Evaluation of the Variance of Error: Sensor

Positions at or Near Source Location
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When evaluating the expression given in Daku and Salt’s paper [20] for sensor postions close
to or at the origin (the source location) it may be unclear how it is to be evaluated. This is also
the case for the weighted variance expression used in this thesis. For this appendix, however, the
analysis will be performed for the unweighted expression, but is equally applicable to the weighted
expression. The purpose of this appendix is to clarify the model in such a way that when the
variance expression is evaluated for sensor positions at or near zero it produces meaningful results.
The first section discusses clarifications to the model which need to be made and the second section
explores an assumption in the derivation which, it will be shown, does not need to be made. The
meaning of the previous statement will become clear in the respective section.

A.1 Model Clarification

The received signal model given in the paper [20] at the mth sensor is

rm(t) =
s(t− τm)

dm
+ nm(t− τm), (A.1)

where nm(t) is a sample function from an independent, stationary stochastic process, τm is the
time it takes for the signal to propagate from the source to sensor m and is given by

τm =
dm

c
, (A.2)

where c is the speed of propagation and dm is the distance between the source and sensor m. The
reference signal, s(t−τo), for the purposes of the theoretical model is defined to be a signal received
at a noiseless sensor one meter from the source in the direction ~e, where τo is the time it takes for
the signal to propagate one meter. The question that one may ask is, what about sensors which
are closer than one meter to the source position?

Though it may be unclear from the paper [20], and as described above, the model does, in
fact, make allowances for sensors closer than one meter. The remainder of this section attempts to
explain and clarify the model for sensors which are closer than one meter to the source location. To
do this it is necessary to separate the attenuation and the time delay of the received sensor signals,
for sensors closer that one meter. Implied by the model, though not stated explicitly, is that a signal
received at sensors within one meter of the source location will have the same attentuation as that
received at one meter; the time delay, however, will be consistent with the distance travelled.

Once the above is clear, how then should one evaluate the final expression for the variance?
What terms are related to the attenuation and what terms are related to the time delay? The
answer, fortunately, is quite simple. The dm values relate to attenuation and the ~pm·~e

|~pm| term relates

to time delay. This amounts to setting dm = 1 if the mth sensor is closer than one meter to the
event. It must be stated clearly that the distance between the sensor and event remains the same
but the attenuation is changed. It so happens that the attenuation equals 1/dm.

A further clarification is needed when the mth sensor is located at the same position as the
event ~pm = (0, 0, 0)

d̃m = |~pm − p̃s| = |p̃s| = |ǫ̃~e| = ǫ̃. (A.3)

Then,

∆τ̃m = τ̃m − τm =
ǫ̃

c
, (A.4)

where τm = 0. When this result is carried through the derivation it is seen that values of qm which
are normally equal to ~pm·~e

|~pm| are instead equal to unity, for the case when ~pm = (0, 0, 0).

A.2 Derivation Assumption

The assumption which causes problems is |p̃s| ≪ |~pm| which leads to the approximation that

d̃m = |~pm − p̃s| ≈ |~pm| −
~pm · p̃s

|~pm|
. (A.5)
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Clearly when a sensor is within a metre of, or at, the source location this assumption is not valid.
This section re–derives the variance expression without making the above assumption. It is assumed
throughout this section that the paper by Daku and Salt [20] is being followed along as this section
progresses. The notation used here is also the same as that in [20].

The non–trivial case where ∆τ̃m becomes

∆τ̃m =
1

c
(|~pm − p̃s| − |~pm|) (A.6)

where

|~pm − p̃s| =
√

(xm − p̃s · î)2 + (ym − p̃s · ĵ)2 + (zm − p̃s · k̂)2, (A.7)

where xm, ym, zm are the x,y and z coordinates of sensor m and î,̂j and k̂ are the three unit vectors
which ‘pick out’ the x, y and z coordinates of p̃s.

Using (A.6) in the derivation results in the same final expression as derived in [20]. For illus-
tration purposes Appendix I of [20] is rederived using (A.6). Begin with

Ws(ǫ̃~e) =

M
∑

m=1

M
∑

k=1

∫ T

0

1

dmdk
s(t + ∆τ̃m)s(t + ∆τ̃k)dt. (A.8)

As shown in Appendix I the above equation can be rewritten as

Ws(ǫ̃~e) =
M
∑

m=1

M
∑

k=1

1

dmdk2π

∫ ∞

−∞

exp(−j
1

c
(|~pm− p̃s|− |~pm|− |pk− p̃s|+ |pk|)λ)S(λ)S(−λ)dλ. (A.9)

It is required to evaluate the second derivative w.r.t ǫ̃ and evaluate it at ǫ̃ = 0. Since we are
taking the derivative of an exponential the exponent will stay the same. Also note that when the
exponent is evaluated at ǫ̃ = 0 it goes to zero. To see what happens when the derivative is taken
it is useful to compare the results when the two ∆τ̃m’s are compared. With assumption, we have

d∆τ̃m

dǫ̃
= −~pm · ~e

|~pm|c
(A.10)

and then evaluate when ǫ̃ = 0
d∆τ̃m

dǫ̃

∣

∣

∣

∣

ǫ̃=0

= −~pm · ~e
|~pm|c

, (A.11)

which is the same. The same can be done when the assumption is not made, in that we are taking
the derivative of

|~pm − p̃s| =
√

(xm − p̃s · î)2 + (ym − p̃s · ĵ)2 + (zm − p̃s · k̂)2, (A.12)

which is

d∆τ̃m

dǫ̃
=

1

2c|~pm|
(2(xm − p̃s · î)(−~e · î) + 2(ym − p̃s · ĵ)(−~e · ĵ) + 2(zm − p̃s · k̂)(−~e · k̂)) (A.13)

and then when the above is evaluated at ǫ̃ = 0

d∆τ̃m

dǫ̃

∣

∣

∣

∣

ǫ̃=0

= −2
xm~e · î + ym~e · ĵ + zm~e · k̂

2c|~pm|
. (A.14)

Noting that the numerator is equivalent to ~pm · ~e and cancelling the twos yields

d∆τ̃m

dǫ̃

∣

∣

∣

∣

ǫ̃=0

= −~pm · ~e
|~pm|c

(A.15)
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Case For Action
1 |~pm| > 1 No change
2 0 < |~pm| < 1 set dm = 1

3 |~pm| = 0 set dm = 1 and set ~pm·~e
|pm| = 1

Table A.1: Summary of expression evaluation

which is the same as obtained for the simplifying assumption. These results prove useful when
evaluating the second derivative of Ws(ǫ̃~e) w.r.t ǫ̃ and evaluated at zero, to give

d2Ws(ǫ̃~e)

dǫ̃2

∣

∣

∣

∣

ǫ̃=0

= − 1

2πc2

∫ ∞

−∞

ω2Sss(ω)dω

M
∑

m=0

M
∑

k=0

1

dmdk

[

~pm · ~e
|~pm|

− pk · ~e
|pk|

]2

(A.16)

which is the same as when the simplifying assumption is used. It can be shown by using the same
procedure on the remaining Appendices that each is equivalent whether the simplifying assumption
is made or not. It can, therefore, be said that even though the variance expression derived in [20]
was done with the assumption that |p̃s| ≪ |~pm| this assumption is not needed to arrive at the same
expression, as given in [20].

The following section summarizes the results of this Appendix.

A.3 Summary

The clarifications helpful when evaluating the variance expression are summarized in Table A.3.
Using this table the variance expression can now safely be evaluated when sensors are at or near
the source location. Once again, it should be noted that the attenuation is being set to one in steps
2 and 3, not the distance between the source and sensor m. This distinction is very important as
|pm| = dm and clearly we do not want to set |pm| = 1.
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