Examining biochar as a carrier for *Rhizobium spp.* on pea crop

Kimberly Hardy, Master's Candidate

Department of Soil Science, University of Saskatchewan

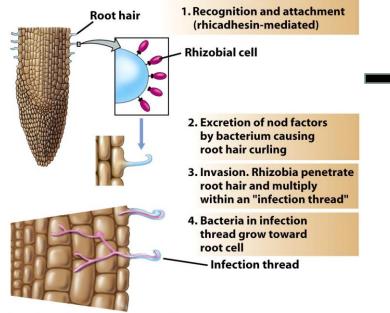
Outline

- I. Introduction
- II. Biochar Physical and Chemical Characterization
- III. Biochar Phytotoxicity Study
- IV. Rhizobium Survival Study
- V. Pot Study
- VI. Conclusion

I. Introduction

•Current Rhizobium inoculant carriers include clay and peat

 Room for research examining carriers that can be economically and biologically competitive with current commercial carriers

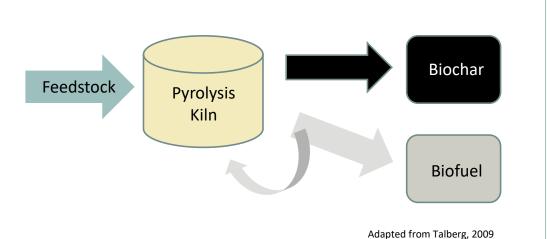

• Properties of a suitable carrier include:

- -Readily adjustable pH
- -Readily sterilisable

-Good moisture holding capacity

-Free of toxic materials

Nodulation



https://johninnessvc.files.wordpress.com/2014/08/img_2632.jpg

Figure 19-61 part 1 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

Biochar

Key properties of biochar:

• pH

- volatile matter content
- ash content
- moisture holding capacity
- pore volume
- surface area

Objectives

- Characterize the physical and chemical characteristics of a variety of biochars and examine the relationship between biochar characteristics and survival/population loads of rhizobia supported by the biochar.
- 2) Assess the potential phytotoxicity of each biochar.
- 3) Evaluate the ability of the biochars to deliver nodulating rhizobia to pea seed in growth chamber conditions.
- Manipulate a subset of biochars to achieve desirable measures of surface area and pore density.

Biochar ID	Feedstock	Source				
ВМВ	Bone Meal	Titan Clean Energy, Saskatoon, SK				
FB	Fish	Titan Clean Energy, Saskatoon, SK				
ОНВ	Oat Hull	Titan Clean Energy, Saskatoon, SK				
FHB	Flax Hull	Saskatchewan Research Council, Saskatoon, SK				
WB	Wheat	Saskatchewan Research Council, Saskatoon, SK				
DB	Spruce/Pine/Fir	DiaCarbon Energy Inc., Burnaby, BC				
ТВ	Spruce/Pine/Fir	Out of Ashes BioEnergy Inc., Prince George, BC (Turtleback Biochar [®])				
FFB1	Bone Meal or Creosote/Greenwood	Titan Clean Energy, Saskatoon, SK				
FFB2	Bone Meal or Creosote/Greenwood	Titan Clean Energy, Saskatoon, SK				

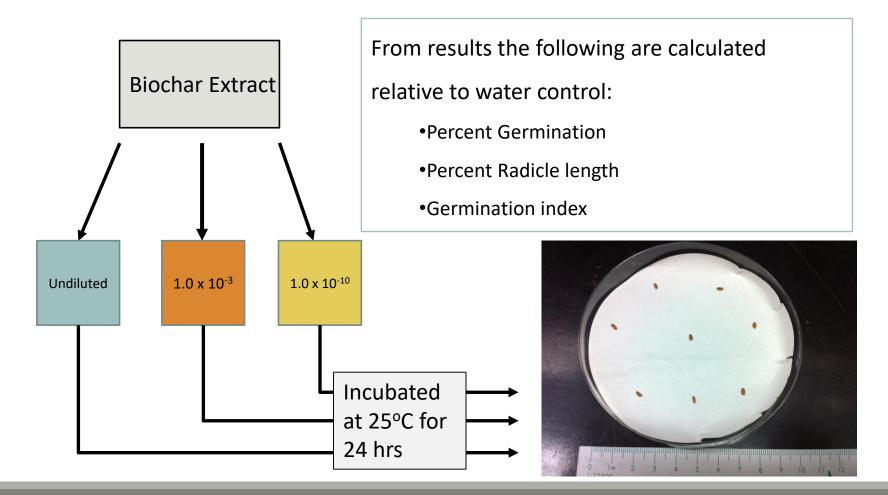
II. Biochar Physical and Chemical Characterization

- Prior to physical and chemical analysis:
 - Biochar was ground and sieved to <75µm (200 mesh)

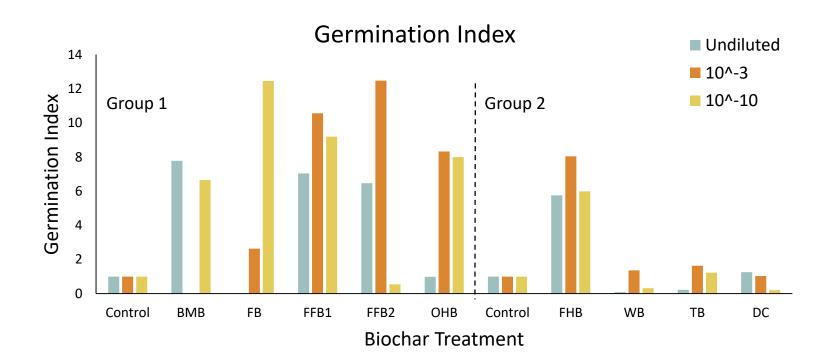
(Somasagaren and Hoben, 1994)

Results: Biochar Physical Characterization

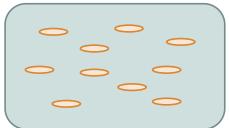
Biochar	BET Surface Area (m ² g ⁻¹)	Moisture holding capacity (% of dry weight)	Inherent moisture content (% of dry weight)	Pore Volume (cm³ g-1)	Source
Bone Meal Biochar; BMB	113.35	140	4	0.0974	TCE
Fish Biochar; FB	9.22	96	6	0.0303	TCE
Unknown Flin Flon 1; FFB1	77.60	138	7	0.0707	TCE
Unknown Flin Flon 2; FFB2	12.35	131	4	0.0366	TCE
Oat Hull Biochar; OHB	0.11	195	4	0.0028	TCE
Flax Biochar; FHB	2.99	96	5	0.0035	SRC
Wheat Biochar; WB	2.92	154	4	0.0050	SRC
Spruce/Pine/Fir; TB	4.93	214	4	0.0050	OAB
Spruce/Pine/Fir; DB	153.25	45	5	0.0159	DCE

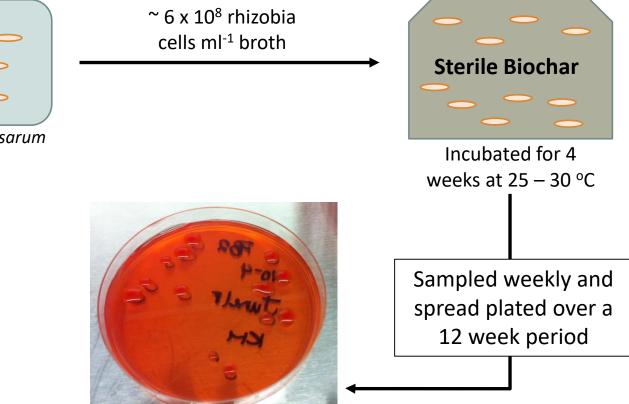

*TCE: Titan Clean Energy, Saskatoon, SK., SRC: Saskatchewan Research Council, Saskatoon, SK, OAB: Out of Ashes BioEnergy Inc., Prince George, BC (Turtleback Biochar ®), DCE: DiaCarbon Energy Inc., Burnaby, BC.

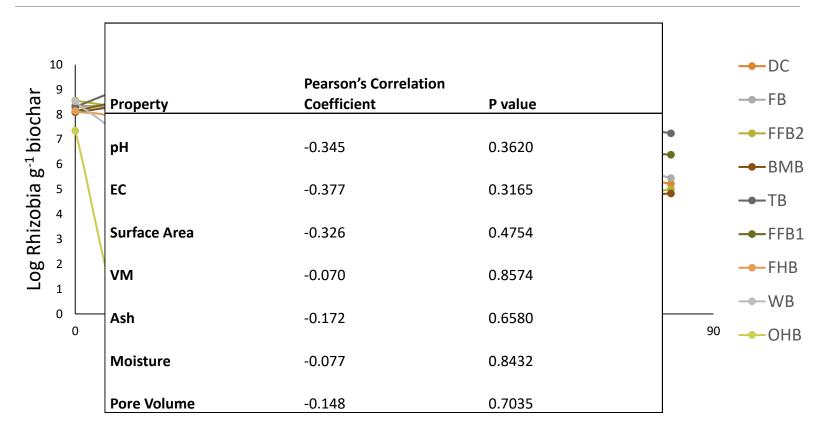
Results: Biochar Chemical Characterization


Biochar	рН	Electrical Conductivity (µS m ⁻¹)	Volatile Matter (% of dry weight)	Ash (% of dry weight)	Source
Bone Meal Biochar; BMB	9.05	1236	15	63	TCE
Fish Biochar; FB	9.65	1044	28	36	TCE
Unknown Flin Flon 1; FFB1	9.15	1861	20	64	TCE
Unknown Flin Flon 2; FFB2	9.86	1765	29	52	TCE
Oat Hull Biochar; OHB	9.88	830	25	15	TCE
Flax Biochar; FHB	8.58	863	55	7	SRC
Wheat Biochar; WB	8.88	1203	50	14	SRC
Spruce/Pine/Fir; TB	8.75	128	33	6	OAB
Spruce/Pine/Fir; DB	10.01	226	28	8	DCE

*TCE: Titan Clean Energy, Saskatoon, SK., SRC: Saskatchewan Research Council, Saskatoon, SK, OAB: Out of Ashes BioEnergy Inc., Prince George, BC (Turtleback Biochar [®]), DCE: DiaCarbon Energy Inc., Burnaby, BC.


III. Garden Cress Phytotoxicity Bioassay

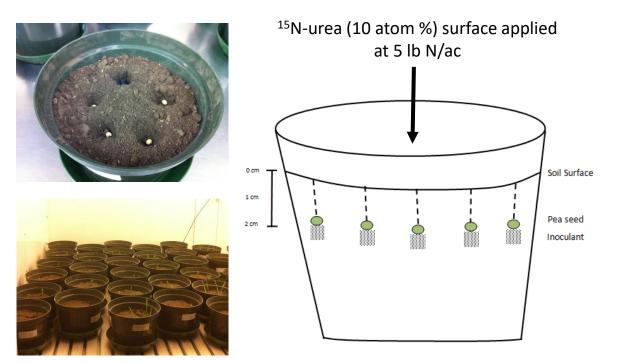

Results: Phytotoxicity


IV. Rhizobium Survival Study

Rhizobium leguminosarum biovar viceae

Lowest acceptable limit: 1.0 x 10⁶ rhizobia cells g⁻¹ biochar

Results: Survival Study


V. Pot Study

Treatments:

6 inoculated biochars

Controls:

- Uninoculated control
- Commercial inoculant
- Wheat reference crop
- Biochar uninoculated

V. Pot Study

Future Results:

- Root, shoot, seed and nodule dry weights
- Number of nodules
- Biomass to be finely ground with
 subsamples analyzed for ¹⁵N and N content
 via isotope ratio mass spectrometry

VI. Conclusion

•High variability in physical and chemical properties between biochars

•Observed that certain biochars support and sustain *Rhizobium* populations

•Thus far, there is no dominant property correlating to *Rhizobium* survival although it is possible that it could be an interaction between two or more properties

Acknowledgements

• Supervisor and Committee Members:

- Dr. Diane Knight
- Dr. Rich Farrell
- Dr. Russell Hynes
- Dr. Ajay Dalai and Heli Eunike from the Chemical & Biological Engineering Department
- Daniel Hupka and Jon Geissler from Agriculture and Agri-Food Canada
- •The lab members of 5E19
- Funding:
 - Saskatchewan Agriculture Development Fund

References

ASTM D1762-84. 2013. Standard method of chemical analysis of wood charcoal. ASTM International. Philadelphia.

Brock. 2006. Biology of microorganisms. Available online at: http://www.yorku.ca/tnoel/march5/RBimg/19 F61 01.jpg (accessed January 7, 2014).

Enders, A., K. Hanley, T. Whitman, S. Joseph, and J. Lehmann. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology. 113: 644-653.

Leege, P. B. and W. H. Thompson. 1997. Test methods for the examination of composting and compost. 1st Edition. The U. S. Composting Council, Maryland, U.S.

Lehmann, J. and S Joseph. 2009. Biochar for environmental management: science and technology. Earthscan, London, UK.

Lehmann, J., M. C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, D. Crowley. 2011. Biochar effects on soil biota: A review. Soil Biol. and Biochem. 43:1812-1836.

Saskatchewan Research Council. 2012. Biochar as soil ammendments. SRC Publication No. 13094-1C12.

Somasegaren, P. and H. J. Hoben. 1994. Handbook for rhizobia. Springer New York, New York.

Talberg, Anita. 2009. The basics of biochar. Science, Technology, Environment and Resrouces Section. Parliament of Australia. Available online: http://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/BN/0910/Biochar#_Toc240257673 (accessed January 7, 2015).

Thompson, J. A. 1983. Production and quality control of carrier-based legume inoculants. Information Bulletin No. 17. Patancheru, A.P., India: International Crops Research Institute for the Semi-Arid Tropics.

Questions?