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ABSTRACT

The microstructure-property relationship for interpenetrating phase
composites (IPCs) is currently poorly understood. In an attempt to improve this
understanding this study focussed on one particular part of this relationship: the
effect of phase shape on the elastic and plastic behaviour. A review of previous
research showed that investigations had linked phase shape to the elastic and
plastic behaviour of various inclusion reinforced composites, but that no similar

work had been completed for IPCs.

To study the complex response of the IPC microstructure under load, a
numerical modelling analysis using the finite element method (FEM) was
undertaken. Two three-dimensional models of IPCs were created, the first
consisting of an interconnected spherical phase with the interstitial space
forming the other interconnected phase, and the second replacing the spherical
phase with an interconnected cylindrical phase. With the simulation of a uniaxial
tension test under elastic and plastic conditions, these two models exhibited

different responses based on the shape of the phases.

Results from an analysis of the macroscopic behaviour identified that the
cylindrical model produced greater effective properties than the spherical model
at the same volume fraction. The influence of phase shape was connected to
the increased contiguity of the superior phase within the IPC for the cylindrical
model, which allowed similar levels of long-range continuity with smaller

amounts of the superior phase (compared to the spherical model).

An examination of microstructural stress distributions showed that
preferential stress transfer occurred along paths of low compliance. This
provided an explanation of how the improved contiguity of the stiffer (or
stronger) phase could enhance the macroscopic effective properties of an IPC.
Contiguity of the stronger phase was particularly important for plastic behaviour,
where early yielding of the weaker phase requires the stronger phase to carry
nearly all the load within itself.



ACKNOWLEDGMENTS

| would like to begin by thanking Dr. Leon Wegner, my faculty supervisor
on this project, for his suggestion of this topic, his guidance during research and
his financial support. | take full responsibility for any mistakes within this thesis
but certainly the level of accuracy which has been attained has been due to Dr.
Wegner's diligence. | would also like to thank Dr. Mel Hosain, Dr. Wegner, Dr.
Bruce Sparling, Dr. Pufahl, Ms. Maureen Limet, Ms. Joanne Skeates and Mr.
Dale Pavier for their inspiration, encouragement and readiness to help during
my work as a sessional lecturer. | consider this experience to be amongst the
most valuable and rewarding of my graduate studies.

For support during times of frustration and stress | owe a debt of
gratitude to numerous friends. Special thanks are offered to Lisa Yang, Kevin
Heppner, Tanya De Rosairo, Kris Jackson, Mark Polachic, Anna Paturova and
Stephen Wood. To Emma Boghossian and Amit Pashan, | can not possibly
offer sufficient thanks. | do not think there has been a happy moment during my

graduate studies that does not contain the two of you.

Finally, I would like to thank those whose support, encouragement and
love has never been in doubt; my aunts, uncles, cousins, grandparents,
brothers and especially Sandra and my parents. You are the foundation upon
which any success | have obtained has been built and the reason | can face the

future without fear.
This thesis is dedicated with love to my parents,
Bernard Reno Del Frari
and

Lynn Marie Del Frari.



TABLE OF CONTENTS

COPYRIGHT et e e e e e e aaanas i
ABSTRACT ettt e e e e e i
ACKNOLEDGEMENTS ...ttt il
TABLE OF CONTENTS ... v
LIST OF TABLES ... e Vil
LIST OF FIGURES ...t viii
LIST OF NOTATIONS ...ttt Xi
1. INTRODUCTION ... ittt e e e e e eaa e eaeee 1
1.1 BacCKgQroUNG ........ouoiiiiiiiiieeei et e e e e e e e e eannnans 1
1.2 Objective and SCOPE ........cuuuvuiiiiieeeeeieeii e e e e e 2
1.3 MethOdOlOgY .......uuuuiiiiii e 5
1.4 Layout Of TRESIS .....uuuiiiiiiii s 6
2. LITERATURE REVIEW .....coiiiiiiiiiiiiiie et 7
2.1 Characterisation of Microstructural Geometry ............cccevvvvvvvvnnnnnnn. 7
2.1.1 Experimental Characterisation Methods...............cccceeiiinnnns 7
2.1.2 Characterisation through Topological Parameters............... 10
2.2 Prediction of Macroscopic Mechanical Behaviour .......................... 13

2.2.1 Bounds on the Mechanical Properties of

General CoOMPOSITES......cccceeiiieeiiiiie e e e e e e 13

2.2.2 Analogy MOdEIS ... 15
2.2.3 Self-Consistent Models...........ccooviviiiiiiiiiiieeeeeec e 17
2.2.4 Unit Cell MOAEIS ... 18

2.3 Factors Influencing Macroscopic Mechanical Behaviour................ 20
2.3.1 Factors Influencing Thermal Residual Stresses .................. 20
2.3.2 Factors Influencing Elastic Behaviour...............ccccooeiieiinnnns 23
2.3.3 Factors Influencing Plastic Behaviour.............ccccccceeeeeeeennn. 27

2.4 Summary of Research on Interpenetrating Phase Composites...... 32
3. NUMERICAL MODELLING PROGRAM......cooiii i 36
3.1 Geometry of the Spherical Model.............ccc 36



3.2 Geometry of the Cylindrical Model ............coooovviiiiiiiiiii. 40

3.3 Boundary Conditions for the Models ...........ccccccvceiiiiiiiiiiei. 45
3.4 Discretisation of the Models ............cooiiiiiiiiici 51
3.5 Constituent Materials for the Models.............cccccn, 54
3.5.1 Material Properties for the Linear Elastic Analyses ............. 54
3.5.2 Material Properties for the Non-linear Plastic Analyses....... 57

3.6 Implementation of the Models ... 58
4. NUMERICAL MODELLING RESULTS......co e 62
4.1 Validation of Numerical MOdelS............cuuvviiiiiiiiiiiiiiiiiiiiiiiiieieieeeee, 63
4.1.1 Geometry and Boundary Condition Validation..................... 63
4.1.2 Discretisation Validation .............cccooiiiiiiiiiiiiiiiiie e 64
4.1.3 Comparison of Results to Literature ............ccccoeeeiiiiiinnn. 68

4.2 Linear Elastic Behaviour of Interpenetrating Microstructures ......... 70
4.2.1 Macroscopic BEhaVIiOUr ..............uciiiiieeiiiiiiiiiee e 70
4.2.2 Microstructural Stress Mechanisms............cccccceeveeieeiniieennnns 85

4.2.3 Summary of Elastic Behaviour for Interpenetrating
IMICTOSITUCTUIES ...ttt 102
4.3 Non-linear Plastic Behaviour of Interpenetrating Microstructures... 105
4.3.1 Macroscopic Behaviour ... 105
4.3.2 Microstructural Stress Mechanisms............cccccceeiieiieieiieennnns 116

4.3.3 Summary of Plastic Behaviour for Interpenetrating

IMICTOSIIUCTUIES ...ttt eeeees 126

5. CONCLUSION ..o, 129
5.1 SUMMAIY et e e 129
5.2 CONCIUSIONS....coiiiiieiiiee e 131
5.3 Recommendations for Future Research.......................o. 133
REFERENGCES ... .ottt e e e e e e e e e e e e e eaaeeees 136

APPENDIX A: Volume Fraction of Sphere Material
within the Half Prism Unit Cell ...........cccoooiiiiiiiii e 141



APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

APPENDIX H:
APPENDIX I:

APPENDIX J:

APPENDIX K:

Volume Fraction of Cylinder Material

within the Half Prism Unit Cell ..............cccoo 145
Boundary Conditions for a

Hexagonal Close-Packed Unit Cell............cccovvviiiiiiiiinnennnee. 153
Discretisation of Unit Cell Geometry

for the Spherical Model.............ccooviiiiiiiiii e 165
Discretisation of Unit Cell Geometry

for the Cylindrical Model ... 183
Raw Data for the Macroscopic Behaviour

Discretisation Validation .................eeeviiiiiiiiiiieiiiiiiiiiiieeeeeenee, 213
Raw Data for the Linear Elastic

Macroscopic Behaviour ... 215
Contiguities of the Spherical and Cylindrical Models............ 217
Stress Distribution Plots for the Linear Elastic

Microstructural ANAlYSIS...........evevviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeee 226
Raw Data for the Non-linear Plastic

MacroscopiC BENAVIOUS ...........ccovvvvviiiiiiie e 231
Stress Distribution Plots for the Non-linear Plastic

Microstructural ANAlYSIS..........cevvvviiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee 236

Vi



LIST OF TABLES

Table Number

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Elements, nodes and degrees of freedom in the
models

Convergence of effective Young’'s modulus with
increasing refinement

Comparison of the spherical models of this thesis
and Wegner (1997)

Comparison of the effective Young’'s modulus to
the topological parameters

Statistical data for normalised first principal
stresses from the elastic microstructural analysis
Effective yield strength for both models at all
volume fractions

Maximum effective plastic strains in the stronger
phase of models that failed prematurely
Comparison of the effective yield strength to the
topological parameters

Statistical data for normalised effective stresses

from the plastic microstructural analysis

Vil

Page

55

64

70

82

96

108

109

114

123



LIST OF FIGURES

Figure Number

11

2.1

2.2
2.3
2.4
2.5
2.6

3.1

3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13

An interpenetrating phase composite (from
Torquato, 2002)

Micrograph of an IPC at left with skeleton lines
used to determine matricity at right (from Leple et
al. 1999)

Composite spheres model

Self-consistent model

Simple cubic unit cell

HCP unit cell

The Hashin-Shtrikman bounds on elastic
behaviour

Exploded view of the spherical hexagonal close-
packed (HCP) system

Plan view of the spherical HCP system

Prism unit cell of the spherical system

Half prism unit cell of the spherical system

Two intersecting spheres showing the volume lost
at the intersection (grey)

Cylindrical system

Half prism unit cell of the cylindrical system

Box for Monte Carlo simulation with half prism unit
cell inside

Convergence of the volume fraction of cylinders
with an increasing number of random points
Cylinder HCP microstructure at its maximum
volume fraction for interpenetration

Top surface boundary condition

Bottom surface boundary condition

Left-front surface boundary condition

viii

Page

12
15
17
20
20

24

37
37
38
38

39
41
41

42

44

46

48

48
49



3.14

3.15

3.16
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

4.14

Initial blocks for discretisation of the spherical
model (sphere @ = 85%)

Initial blocks for discretisation of the cylindrical
model (cylinder @ = 39%)

The three levels of refinement for both models
Convergence of effective Young’'s modulus with
increasing levels of refinement

Effective stress distributions at the 1-1-1
refinement level

Effective stress distributions in the more flexible
phase at the 1-1-1 refinement level

Increasing accuracy of the effective stress
distribution with increasing refinement
Comparison of both models elastic results to the
Hashin-Shtrikman bounds for a modular ratio of 2
Effective Young’s modulus versus the volume
fraction of the stiffer phase

Unit cells showing connections to neighbouring
particles

Relationship between contiguity and volume
fraction

Surface areas for the cylindrical model
Relationship between surface areas and contiguity
Surface areas for the spherical model

Effective Young’s modulus versus the contiguity of
the stiffer phase

Aligned model data for the elastic macroscopic
analysis

Reference system for spherical and cylindrical

models

52

52
54

65

67

67

67

69

71

74

76

77

78

79

81

84

86



4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

Normalised first principal stress distributions in the
spherical model (¢ = 75%)

Normalised first principal stress distributions in the
cylindrical model (¢ = 39%)

Quantitative normalised first principal stress
distribution for both models

Change of bottom connection area and preferred
stress path for spherical model

Aligned model data for the elastic microstructural
analysis

Stress-strain behaviour for both models at each
simulated volume fraction of the phases

Effective yield strength versus the volume fraction
of the stronger phase

Effective yield strength versus the contiguity of the
stronger phase

Aligned model data for the plastic macroscopic
analysis

Normalised effective stress distribution in the
spherical model (¢ = 75%) at an overall applied
strain of 0.00145

Normalised effective stress distribution in the
cylindrical model (¢ = 39%) at an overall applied
strain of 0.005

Quantitative normalised effective stress
distribution for both models

Aligned model data for the plastic microstructural

analysis

88

90

94

98

101

107

110

112

115

118

120

122

125



LIST OF NOTATIONS

a centre-to-centre distance between spheres

A correction constant for volume fraction in Eq. 4.2
Atop top surface area

b length of all prism unit cell base edges

B correction constant for contiguity in Eq. 4.2

Csp contiguity of the stiffer (or stronger) phase

Ca contiguity of the a-phase

Clsp coupled influence of the stiffer (or stronger) phase
E Young’s modulus

Ec Young’'s modulus of cylinder constituent phase
Eme Young’s modulus of the more flexible phase

Es Young's modulus of sphere constituent phase

Esp Young’s modulus of the stiffer phase

Esur Young’s modulus of surrounding phase

Fa reaction force due to applied displacement at master node
Fec degree of continuity

Fs degree of separation

G shear modulus

G lower shear modulus phase in Hashin-Shtrikman (H-S) bounds
G; higher shear modulus phase in H-S bounds

Gy upper H-S bound on the shear modulus

G lower H-S bound on the shear modulus

h height of prism unit cell

K bulk modulus

K1 lower bulk modulus phase in H-S bounds

K> higher bulk modulus phase in H-S bounds

Ky upper H-S bound on the bulk modulus

Ki lower H-S bound on the bulk modulus

lo half the height of the prism unit cell (h/2)

Mgy matricity of the a-phase

Xi



Npc

Nhp

N;

Nic

Ntotal

r

Sa

Sp

Sa

Sv(xcx

Sha
Ux(LeftBottom)
Ux(LeftFront)
Ux(RightBottom)
Ux(RightFront)
Uy(LeftBottom)
Uy(LeftFront)
Uy(RightBottom)
Uy(RightFront)
Uz(LeftBottom)
Uz(RightBottom)
Uz(Top)
Ux(TLB)

Uz(TLB)
Vbox

number of random points in the back cylinder

number of random points in the cylinders

number of random points in the half prism unit cell

number of random points at the cylinder intersection

number of random points in the top cylinder
total number of random points

radius of spheres

skeleton line length in a-phase

skeleton line length in B-phase

separation of the a-phase

surface area between parts of the a-phase
surface area between the a-phase and (3-phase
x-displacement of the left-bottom surface
x-displacement of the left-front surface
x-displacement of the right-bottom surface
x-displacement of the right-front surface
y-displacement of the left-bottom surface
y-displacement of the left-front surface
y-displacement of the right-bottom surface
y-displacement of the right-front surface
z-displacement of the left-bottom surface
z-displacement of the right-bottom surface
z-displacement of the top surface

x-displacement of the master node (top-left-back corner)

z-displacement of the master node (top-left-back corner)

volume of the Monte Carlo simulation box
volume of the half prism unit cell

volume of the a-phase

volume of the B-phase

applied displacement at master node

strain due to applied displacement at master node

Xii



Ve

VSUI’

Oa

Oeff
Oeff(norm)
Op1(mf)
OP1(sp)
Oy

¢

¢

®

Poisson’s ratio of cylinder constituent phase

Poisson’s ratio of sphere constituent phase

Poisson’s ratio of surrounding phase

stress due to applied displacement at master node
effective stress

normalised effective stress

first principal stress in a pure sample of the more flexible phase
first principal stress in a pure sample of the stiffer phase
yield strength

volume fraction

volume fraction of lower property phase for H-S bounds
volume fraction of higher property phase for H-S bounds
volume fraction of cylindrical phase

volume fraction of half prism unit cell

volume fraction of spherical phase

volume fraction of stiffer (or stronger) phase

volume fraction of the a-phase

continuous volume fraction of the a-phase

separated volume fraction of the a-phase

Xiii



CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND

Interpenetrating phase composites (IPCs) are fundamentally different
from other composite materials due to the geometry of their microstructures.
Most common composites consist of a reinforcing constituent (or phase) that is
isolated within a continuous matrix phase. The reinforcing phase generally has
the material properties desired for the composite, but because of processing
difficulties, other less desirable properties or cost, a pure sample of this phase
cannot be used. The matrix phase is usually chosen based on its bonding ability
and thermal compatibility with the reinforcing phase, as well as low cost. Its
mechanical properties are often less desirable to those of the reinforcing phase
(though this is becoming less often the case with the development of metal
matrix and ceramic matrix composites). This can pose problems, since as the
continuous phase the matrix often dominates the behaviour of the composite.
Two large families of conventional composite materials exist: particle reinforced
composites, such as concrete, and fibre reinforced composites, such as glass
fibre reinforced polymer (GFRP). The main difference between these two
families is the shape of the reinforcing phase. In particle reinforced composites,
the reinforcing phase consists of more or less equi-dimensional particles; in
concrete, the reinforcing phase is the aggregate. In fibre reinforced composites,
the reinforcing phase has a high aspect ratio, such that one dimension of the
phase is much greater than the others. In GFRP, the glass fibres, either in
discontinuous short lengths or one-dimensionally continuous long lengths, form

the reinforcing phase.

IPCs consist of two or more three-dimensionally interconnected phases,
so there are not easily definable reinforcing and matrix phases based on states
of isolation and continuity (see Fig. 1.1). This dual continuity of the phases

removes the previous problem of matrix dominated behaviour. The stiffer or



Figure 1.1: An inter penetrating phase composite (from Torquato, 2002)

stronger phase is now continuous, allowing it to more significantly influence the
behaviour of the composite. The continuity of the other phase also allows it to
have a significant influence. In this way, IPCs offer the possibility of truly
composite behaviour, where two usually incompatible properties for pure
materials can exist within a single composite. Each phase offers its own

benefits due to its complete continuity.

A good example of a potential application of this work is in electronics
packaging. Shen (1998) describes the possible use of an aluminium silicon-
carbide (Al/SIC) IPC for attachment to delicate electronic circuitry. The thermal
conductivity of the aluminium is needed to dissipate the heat generated during
use of the electronics; however, the thermal expansion of pure aluminium would
break the delicate circuit connections, destroying the device. In contrast, a SiC
attachment would expand only a small amount, preventing breakages at the
connections, but would not be able to prevent the build-up of intense heat within
the device. The desired material should consist of a combination of these
properties, making an IPC of Al/SIiC an attractive solution.

1.2 OBJECTIVE AND SCOPE

Despite the potential benefits of using IPCs, there are few current

applications for these materials. One of the major reasons for this is their



relatively unknown behaviour. The unique interpenetrating microstructure of
IPCs is complex, making its performance difficult to predict. The following study

focuses on a determination of:

1. The effect of microstructural phase shape on the linear elastic behaviour of
IPCs. This was examined through changes to the effective Young's
modulus of the overall composite and local stress distribution variations

within the microstructure.

2. The effect of microstructural phase shape on the non-linear plastic
behaviour of IPCs, in this case examined through changes to the effective
yield strength of the composite and stress distribution variations within the

microstructure.

The shapes chosen for investigation were those of interconnected
spheres and interconnected cylinders, both surrounded by a second phase with
more flexible and weaker properties. The former is comparable to the non-IPC
particle reinforced composite and the latter is similar to the non-IPC fibre
reinforced composite.

Numerous other variables, in addition to phase shape, affect the
behaviour of IPCs. In order to focus on shape, it was necessary to control these
other variables. To do this, a periodic arrangement of the phases was used in
the study so that parameters of the microstructural geometry (shape, size
distribution, spatial distribution and orientation of the phases) could be easily
defined. However, this means that various randomly arranged IPCs are not well
represented in this study. All sphere and cylinder pieces were uniform in size,
so that size distribution had no affect. A single spatial distribution — a hexagonal
close-packed (HCP) system — was also chosen so that its influence was
controlled. The HCP system also provides an isotropic response that allows the
direction dependence of results to be ignored. The orientation of the phases
could not be completely removed as a variable, since it is dependent upon both
the chosen shape and spatial distribution. This can be seen by considering first

the sphere shape, which is equi-dimensional and therefore has no orientation



dependence, and then the cylinder shape, whose orientation is set by the HCP
system (this is examined in more detail in Chapter 3; see Fig. 3.1 and 3.6).
While other orientations of the cylinder shape are possible, no other orientation
will allow the creation of an IPC with an HCP system. Orientation may therefore
be viewed as controlled by the spatial distribution. The overall composition of
the IPCs, or the amount of each phase in them, was varied over an applicable

range of volume fractions in order to generalise the results.

Besides the parameters of the microstructural geometry, other variables
had to be considered. The material properties of the constituent phases were
assumed to be elasto-plastic, matching the basic behaviour of ductile materials.
Various different values for the stiffness and strength of each phase were
examined in order to generalise the applicability to a range of potential phases
as much as possible. However, no case assuming a constituent to be purely
elastic to failure was analysed and the results of this thesis should be applied to
IPCs containing a brittle phase with caution. The interface between the phases
also needed to be simplified due to the complexity of the interaction of IPCs
under load. In the investigation described here, a perfect bond between the
phases was assumed such that strain compatibility was required across the
interface. This is generally the desirable interfacial condition from the
processing of IPCs.

In addition to controlling the variables considered in this research, it
should be reiterated that only the basic elastic and plastic behaviours were
studied. The investigation focussed on the determination of simple effective
properties for IPCs, such as the Young’s modulus and the yield strength. The
more severe plastic behaviour occurring near failure due to fracture or fatigue
was not considered in this study. The effects of time-dependent behaviour from
creep and relaxation were also not examined. Most important to the behaviours
that were studied is that no thermal influences were considered. The creation of
thermal residual stresses due to thermal expansion mismatch of the phases

during processing can significantly influence IPC behaviour. This phenomenon



is discussed in the next chapter through the research of others, but was not

studied as part of this thesis.

1.3 METHODOLOGY

In order to determine the influence of phase shape on IPC behaviour,
two unit cell models, one containing a sphere and the other a cylinder, were
created. Each unit cell was based on the HCP system and was limited by the
scope just stated. The co-continuous, three-dimensional nature of these models
is sufficiently complex to require the solution to be determined through
numerical methods. For the purposes of this study, the computer software
package ADINA (ADINA R&D, Inc. 2002a) was used to solve for the composite
behaviour in response to a simulated uniaxial tension test. ADINA’s solutions
are found by application of the finite element method (FEM). The solutions to
linear elastic behaviour focussed on changes to the IPC’s effective Young's
modulus, while those for non-linear plastic behaviour focussed on changes to

the effective yield strength.

Modelling results provided data about the influence of several variables
on composite behaviour. Different ratios of the constituent phase properties
allowed general trends to be determined when various types of constituents are
used. A range of volume fractions for the phases provided insight into the effect
of phase composition on the mechanical behaviour of an IPC. The influence of
phase shape became apparent when the volume fractions and phase property
ratios in each of the two models were set to be the same. This influence was
initially determined based on the macroscopic behaviour (either the effective
Young’'s modulus or effective yield strength), but it was also confirmed through
a study of the mechanisms acting at the microstructural level. Finally, a
parameter to help describe the effect of phase shape was developed. The
purpose of this parameter was to account for the effect of phase shape in an

equation that describes IPC behaviour.



1.4 LAYOUT OF THESIS

The remainder of this thesis provides the details of the research just
outlined. The second chapter is a literature review of previous research relevant
to IPCs. Its first two sections describe various methods that have been used to
study IPCs. Each method is briefly outlined and an analysis of its usefulness is
provided. These sections are written as an introductory reference for planning
research on IPCs. In the third section of the literature review, the results of
previous research on the elastic and plastic behaviour of composites are
discussed. This section gives a background on the current state of knowledge
about IPC mechanical behaviour. It also provides a subsection on the influence
of thermal residual stresses, which, although not considered in this study, can
be a significant determinant of behaviour.

The third chapter describes the development of the models used in this
research. The material in this chapter is intended to simply provide a better
understanding of how the models work; however, if the software programs in

the appendices are used, it should also allow the models to be recreated.

The fourth chapter discusses the results found by the models and how
they were validated. Validation was a multiple step process to ensure sufficient
accuracy of the results. After validation, the effect of phase shape on the elastic
behaviour of IPCs is discussed through two separate methods. The first method
draws initial results from the macroscopic behaviour. Confirmation of these
results is then sought by examining the mechanisms at the microstructural
level. A similar procedure is used to discuss the effect of shape on the plastic

behaviour of IPCs.

Finally, in the fifth chapter, a brief summary of the research is given,
which leads to conclusions regarding the effect of phase shape on the elastic
and plastic behaviour of IPCs. Recommendations are also provided on the

future direction of research in creating a mechanistic model for IPCs.



CHAPTER TWO
LITERATURE REVIEW

Research into the relationship between the microstructural geometry and
the macroscopic behaviour of composite materials has been a topic of interest
for nearly a century. However, the possibility of multiple phases being three-
dimensionally continuous, as occurs within interpenetrating phase composites
(IPCs), has been largely overlooked until the past decade; most researchers
date the separate study of IPCs to a state-of-the-art paper by Clarke (1992).
This situation is now rapidly changing as the growing importance of IPCs is
leading researchers to develop methods to predict their performance. This
chapter, therefore, describes the various approaches researchers are using to
characterise the microstructures of IPCs, the methods that are being used to
predict their behaviour and the factors which influence that behaviour. This
objective has been broken into its three distinct parts, with Section 2.1
examining the methods of microstructural characterisation, Section 2.2
discussing the benefits and limitations of various prediction methods, and
Section 2.3 describing some of the factors that influence the basic mechanical
behaviour of IPCs. This separation of review material into these three sections
should aid in the analysis of each part of the microstructure-behaviour
relationship and emphasize the importance of considering each one in the

proper development of IPC research.

2.1 CHARACTERISATION OF MICROSTRUCTURAL
GEOMETRY

2.1.1 Experimental Characterisation Methods

The proper characterisation of an experimental specimen’s
microstructure is highly dependent on the technology and methods used to
describe that microstructure. The most common means of observing the nature
of composite microstructures is through two-dimensional sectioning of a sample

followed by observation through some type of microscopy. Optical microscopy



is generally used for coarser microstructures, where the phases are fairly easy
to distinguish with moderate magnification (e.g. Liu and Koster 1996, Agrawal et
al. 2003, San Marchi et al. 2003). For finer microstructures or more detailed
analyses, scanning electron microscopes (SEM) or transmission electron
microscopes (TEM) are more useful (e.g. Daehn et al. 1995, Peng et al. 2000,
Wegner and Gibson 2000b).

Unfortunately, these methods provide two-dimensional representations
whose accuracy in representing the actual three-dimensional material is
dependent upon the number and orientation of the chosen sections.
Characterisation of a three-dimensional microstructure is particularly important
for IPCs, where the co-continuous geometry of the microstructure is dependent
upon visualisation in three dimensions. Fredrich et al. (1995) attempted to
improve their characterisation of sandstone and granite where the pore space
was filled with a fluorescent epoxy by creating numerous thin sections. When
studied under a laser scanning confocal microscope, three-dimensional images
of each small section were created. Adjacent sections were then combined to
provide larger three-dimensional representations of the pore structures.
Flannery et al. (1987) determined a potential method involving the use of x-ray
microtomography. In their method, x-rays are passed from a source through a
specimen and the incident and transmitted intensities of the rays are detected.
This can be used to produce two-dimensional representations along the paths
of the x-rays. With numerous such representations taken at different angles, it is
possible to non-destructively build a three-dimensional image of an
experimental sample’s microstructure. Coker et al. (1996) used this method with
synchrotron x-rays in order to study the microstructure of Fontainebleau

sandstone.

After finding a means to study the microstructure, the experimental
researcher still must determine how to describe it. Most descriptions are largely
gualitative judgements by the researcher, with only small amounts of
guantitative data being listed. The preference for this system of description is

due mainly to the complexity of depicting the microstructure in a numerical form;



however, it makes the characterisation highly subjective and dependent upon
researcher experience. As examples, Liu and Koster (1996) studied
alumina/aluminium IPCs with both optical microscope and TEM images, making
note of the continuous appearance of the phases, the existence of silicon
impurities, the progress of the reaction front and the volume fraction. Stainless
steel/bronze composites considered in a project by Wegner and Gibson (2000b)
were described using microstructural observations of volume fraction, the
existence of voids along phase interfaces and tin rich regions within the bronze.
In a study on the fracture behaviour of alumina/aluminium IPCs, Pezzotti and
Shaizero (2001) used SEM inspection to determine the absence of voids.
Agrawal et al. (2003) used SEM and optical micrographs to determine the
existence of co-continuous systems, phase volume fractions and the average
phase grain size in alumina/copper and alumina/aluminium composites. With
the exception of some information regarding phase volume fractions, all these

microstructures are completely qualitatively characterised.

The preference for qualitative descriptions, while useful, poses a definite
problem for other researchers who are attempting to make comparisons with
their own research or who require detailed data for the creation of numerical
models. Even when sufficient experimental results exist to contrast the
accuracy of other test predictions, an insufficient amount of microstructural
information may exist to draw a strong connection between the geometry of the
microstructure and the overall behaviour. This is particularly troublesome for
modelling studies, since the potential usefulness of a model's predictions
become highly questionable when there are numerous limitations in accurately
describing the microstructure. This problem is exacerbated in IPC research
since the microstructures of these composites are more complex and a greater
number of assumptions must be made. In order to improve modelling
predictions on the behaviour of IPCs, experimental research must provide more
detailed and more quantitative depictions of realistic microstructures to allow

validation.



As early as 1984, Camus et al. (1984) were discussing the quantification
of interpenetrating microstructures through topological or fractal analysis.
Although at the time of their writing the analysis of numerous sections by the
researcher made laboratory work extremely tedious, computer imaging software
can now sometimes perform these operations. As an example, Coker et al.
(1996) used an edge-based segmentation algorithm on synchrotron x-ray
microtomographic data to separate the material and pore phases of
Fontainebleau sandstone. With this data they characterised the microstructure
through a number of statistical correlation functions as defined by Torquato
(1991). Peng et al. (2000, 2001), in addition to a qualitative analysis, noted the
average cell and window diameters of their foamed alumina preform’s
microstructure. This allows some determination of the interconnection of the two

phases.

2.1.2 Characterisation through Topological Parameters

An ideal means of quantifying a composite’s microstructure would be
through the use of topological parameters. These are dimensionless variables
that describe geometric properties and are independent of the size of the
microstructure that is considered. The volume fraction of the phases is a

common example:

Vo (2.1)

V, +V,

%:

where @ is the volume fraction of the a-phase, and Vy and Vg are the volumes
of the a and B-phases, respectively. Note that while the volumes of each of the

phases are dependent upon the size of the sample, the volume fraction is not.

Unfortunately, no other standard topological parameters are in wide
spread use and a variety of them can be found in the literature. Contiguity was
defined by Gurland (1958) as the fraction of surface area shared by a grain of

one phase with all other grains of the same phase. In equation form, this is
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where Cq is the contiguity of the a-phase, S,°® is the surface area between a-
phase grains per unit volume and S,°? is the surface area between a and P
grains. Lee and Gurland (1978) used the parameter “continuous volume
fraction” in a study on sintered tungsten carbide/cobalt alloys. They defined
continuous volume fraction as the volume fraction of one phase which is

contiguous with itself. In mathematical form this is
Bre =Coly (2.3)
where @, is the continuous volume fraction of a-phase.

Fan and Miodownik (1993a) defined complements to the previous two
parameters. The separation (S,) was defined as the fraction of surface area

shared by a grain of one phase with all other grains of another phase, i.e.

aB
gzaé%ﬁﬁ_ (2.4)

In addition, the separated volume fraction (q.s) was defined as the volume

fraction of one phase that is not contiguous with itself, calculated by
Bos = Sa - (2.5)

Fan and Miodownik further defined the degree of continuity and its complement,
the degree of separation. The degree of continuity, F., is related to the entire
continuous volume fraction for the composite (for both phases), while the
degree of separation, Fs, is related to the entire separated volume fraction. For

a two-phase composite these are, respectively,
Fo= 0+ s (2.6)
and

Fo= @t s (2.7)
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One final topological parameter that arises in the study of IPCs is
matricity. Matricity was defined by Lefle et al. (1998) as the length of skeleton
lines from one phase divided by the length of skeleton lines for both phases, as
taken from numerous section images of the composite microstructure (see

example image in Fig. 2.1):

M, = (2.8)
Sa +Sﬁ

where Mq is the matricity of the a-phase, and sq and sg are the skeleton line

lengths of the a and B-phases, respectively.

The physical significance of these parameters is important to
understanding their utility. Contiguity is a measure of short-range continuity,
since it is concerned with grain neighbours. A high contiguity necessarily means
that there is a great deal of short-range continuity of that phase. This does not,
however, mean that long-range continuity exists, since clusters of a single
phase would have high contiguity. A well dispersed, highly contiguous phase
would, however, have a greater probability of having long-range continuity than
a phase without these two properties. This was explored by Aldrich and Fan

(2001) for an alumina/nickel composite.

Along similar lines of argument, the continuous volume fraction is the

Figure2.1. Micrograph of an IPC at left with skeleton lines used to deter mine
matricity at right (from Lele et al. 1999)
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volume fraction of a phase that shows short-range continuity since it is
dependent upon contiguity. The degree of continuity also denotes only short-
range continuity, although in this case it includes all phases. Matricity is also a
measure of short-range continuity, but in this case it is based on the size,
orientation and number of two-dimensional sections that are used to determine
a microstructure’s matricity. By increasing the size, total number and number of
orientations considered in representing the microstructure, a greater probability
is created that the determined matricity denotes the long-range character.

It is also interesting to note that the statistical correlation functions
defined by Torquato (1991) have the same physical meaning as these
topological parameters, and their ability to represent long-range rather than
simply short-range continuity is also dependent on the care taken in a section
analysis. Those parameters based on separation simply imply the inverse of

those based on contiguity: short-range discontinuity.

2.2 PREDICTION OF MACROSCOPIC MECHANICAL
BEHAVIOUR

2.2.1 Bounds on the Mechanical Properties of General Composites

Important early analytical studies attempted to place bounds on the
effective properties of any general composite material. These bounds are still
valuable to current research as they provide some conception about the
optimality of the composite, and a general solution against which more specific
models can be tested. The general nature of the desired bounds meant that the
original researchers attempted to make as few assumptions about the
microstructure as possible. The most useful bounds for the work in this thesis
are those by Hashin and Shtrikman (1963) for isotropic composites.

The derivation of these bounds begins with the assumptions of
macroscopic isotropy and elastic behaviour. Macroscopic isotropy requires that
the component phases be significantly smaller than the composite sample
considered. When calculating the upper bound, Hashin and Shtrikman (1963)

used variational calculus together with the theorem of minimum potential
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energy, and the lower bound was found using the theorem of minimum
complementary energy. Only the volume fractions of the phases were used as
microstructural parameters, so the bounds are applicable to the elastic
properties of any isotropic composite regardless of its microstructure. The upper

Hashin-Shtrikman bounds were found to be

_ %
K =K, + 2.9
u 2 1 .\ 3@ ( )
K,-K, ) (3K,+4G,
and
_ %
G, =G, + : (2.10)
? 1 ), 6(K,+2G,)p
G, -G,) 5G,(3K,+4G,)

where K, G and ¢ denote bulk modulus, shear modulus and volume fraction,
respectively. The subscript “u” marks the upper bound, “1” the first phase
parameters and “2” the second phase parameters. It is necessary when using
these bounds that K, is greater than K; and G, greater than G;. Similarly, the

lower bounds are;

— %
K =K, + 2.11
=K TRNEE" (2.11)
K,-K,) (3K, +4G,
and

G =G+ L (2.12)

1 ), 6K, +2G)a

G,-G,) S5G/(3K,+4G)

where K; and G, are the lower bounds for the effective bulk and shear moduli,
respectively, and all other variables are as described above. In the same paper,
Hashin and Shtrikman (1963) proved that these were the most restrictive

bounds that could be found for any general isotropic composite without
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incorporating information about the microstructural geometry in addition to the

volume fraction.

There is an implicit statement of phase geometry in the exact solution of
the Hashin-Shtrikman bounds (though this does not affect the generality of the
previous solutions). Hashin (1962) created a model assuming a microstructure
of composite spheres, in which a sphere of one phase is coated by a concentric
sphere of the other phase. These concentric spheres in a wide range of sizes
are then packed so that no void space exists between them (this requires sizes
from a relatively large maximum to an infinitesimally small minimum, see Fig.
2.2). If the more flexible phase coats the stiffer phase, the result is the lower
bound derived above, and if the stiffer phase coats the more flexible phase, the
upper bound is achieved. The reason for this difference involves the
connectivity of the stiffer phase. When placed as the coating, the stiffer phase is
completely connected such that it is able to take the majority of the stress and
reduce the deflections due to deformations of the more flexible phase.
However, when placed in the centre, the stiffer phase is not connected and the

composite behaviour is mainly dependent on the flexible phase.

2.2.2 Analogy Models

Similarities exist between numerous different physical properties and it is
not uncommon for researchers to study physical phenomena that are relatively

easy to model in order to better understand more complex phenomena. Such a

Figure 2.2. Composite spher es model
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correlation exists between the failure of electrical networks consisting of a
random arrangement of resistors and the failure of composite materials.
Moukarzel and Duxbury (1994) used this parallelism to study the mechanical
behaviour of IPCs using the numerical model of an electrical network composed
of two different types of resistors (each resistor type representing a different
phase). In this analogy, the electrical conductivity of the resistors is similar to
the mechanical stiffness of the phases, and the maximum electrical current at
which a resistor fails is similar to the fracture strength.

Their model used a process known as the multiple hottest bond
algorithm in order to simulate the behaviour. In this system, a voltage is applied
(a strain for mechanical comparison) and the current in each resistor is
determined. Any resistor over its breakdown current (fracture strength) is
removed from the system and the current in each resistor is again calculated.
This process is repeated until no further resistors fail. The voltage is then
increased slightly and the previous calculations are repeated incrementally until
complete failure is achieved.

A cubic lattice of resistors was modelled with two different volume
fractions of the two resistor types (the different phases). In the first case, the
volume fractions of the resistors were equal (50% each) so that an
interpenetrating network was created, and in the second case the volume
fraction of the stronger (inclusion) resistor was only 15% so that a discontinuous
two-phase network was created. For both cases, the current-voltage (stress-
strain) behaviour was recorded for each step in the process, as well as the
number of resistors that failed prior to complete failure (damage tolerance or
ductility) and peak overall current (composite ultimate strength). Although the
IPC models did not produce the highest peak overall current (ultimate strength)
they showed a significantly larger number of failed resistors (enhanced
ductility).

16



2.2.3 Self-Consistent Models

Composites containing random microstructures and exhibiting isotropic
behaviour are well suited for self-consistent models. These models consist of a
circular cell, which includes both of the actual phases of the composite,
embedded within a general homogeneous medium (see Fig. 2.3). The
properties of the constituent phases are applied to their respective parts of the
embedded cell, while initially assumed properties must be given to the
homogeneous embedding medium. With boundary conditions applied
sufficiently distant from the embedded cell, an iterative procedure may be used
to solve for the composite’s effective behaviour. Iteration is required since the
general homogeneous embedding medium’s properties must be determined
through improvements with each solution step. Some confusion has arisen
about the use of this model since several researchers have used only one
phase in the embedded circular cell and given the other phase properties to the
embedding medium. Christensen (1979) noted that this is an improper use of
the underlying mathematics of the self-consistent method and readers are

cautioned to carefully analyse the models used in this method.

Leple et al. (1998, 1999) expanded the use of self-consistent models into
the analysis of IPCs. Their method was based on the self-consistent models
originally developed by Dong and Schmauder (1996) and the use of the
topological parameter matricity (see Section 2.1.2). Dong and Schmauder’s
models were two-dimensional with applied plane stress, plane strain or
axisymmetric boundary conditions and were solved using the FEM. The volume

fractions of the phases could be varied by changing the radii of each phase

_— Embedded cell of actual phases

_—~ Homogeneous medium

Figure 2.3. Self-consistent model
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within the embedded cell (see Fig. 2.3). Matricity was incorporated through the
use of two self-consistent models where the skeleton line length of the a-phase
was equal to the circumference of the outer phase in the first model, and the
skeleton line length of the B-phase equal to the circumference of the outer
phase in the second model (in one model the a-phase was at the centre and
was surrounded by the B-phase, in the other model these positions were
switched). The matricity was given a weighting factor that was based on the
diameter of the embedded cell within each model. Effective composite results
were then determined by solving both models and weighting the determined
stress and strain values at each integration point by the diameter of the

embedded cell.

Hoffman et al. (1999) used self-consistent modelling to determine the
effective bulk modulus of an alumina/aluminium IPC. Although not described in
detail, the only geometric parameters they appear to have used are the volume
fractions of the phases. The effective bulk modulus, along with properties of the
constituent phases, was then used in several analytical equations to calculate
the yield and creep behaviour. This information was used in the determination
of mechanisms for thermal residual strains and stresses created in IPCs during

processing.

2.2.4 Unit Cell Models

In direct contrast to self-consistent models, unit cell models are better
able to describe composite materials with ordered periodic microstructures
rather than random microstructures. They are also useful in depicting internal
stress and strain distributions that occur within the microstructures of loaded
composites. These capabilities are possible through the representation of large,
often complicated microstructures with single building blocks (unit cells) of
those structures. Proper boundary conditions on the cell surfaces replicate the
existence of the surrounding material using the geometry within the cell. The
surrounding material therefore takes on an ordered arrangement based on the
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template geometry from the unit cell. For IPCs, three-dimensional unit cells are

required since their geometry is defined by its three-dimensional dual continuity.

A common unit cell for modelling IPCs is the anisotropic simple cubic
microstructure (see Fig. 2.4). This model was used by Ravichandran (1994) to
study the stress-strain behaviour of IPCs with two ductile phases. The cell was
separated into a combination of parallel and series components which were
then solved using Newton’s bisection method (Moore, 1979). Phase constraint
was introduced by assuming that pieces of the more compliant phase were
rigidly sandwiched between layers of the less compliant phase. Daehn et al.
(1995) used the simple cubic unit cell to model the stress-strain behaviour of an
interpenetrating network of brittle alumina and ductile aluminium. As is common
in similar studies of metal-ceramic composites, the brittle ceramic was modelled
as elastic and the ductile metal as elasto-plastic. Since they desired isotropic
material behaviour, they used Reuss (isostress) and Voigt (isostrain) averaging
to provide an aggregate response from the anisotropic results obtained using
the FEM. Shen (1998) used this unit cell in his study of the coefficient of thermal
expansion (CTE) for a brittle silicon-carbide and ductile aluminium IPC. A
similar model with discrete and continuous phases considered the CTE for
metal-matrix and ceramic-matrix composites in which various levels of
continuity were considered. Shen noted that the simple shape and distribution
assumed for the IPC (i.e. the simple cubic unit cell) was justified by previous
work that showed the effective CTE to be insignificantly affected by these
geometric parameters (Shen et al. 1994a). He also noted, however, that this
was not the case for effective elastic and plastic properties, where shape and
distribution had a marked affect on composite performance (Shen et al. 1994b,
1995). Analytical solutions were found using the simple cubic unit cell for the
piezoelectric and elastic properties studied by Bowen et al. (2001) and Feng et
al. (2003), respectively. Feng's model largely improved the work of
Ravichandran (1994) by extending its applicability to multiple continuous and

discrete phases.
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The anisotropy of the simple cubic unit cell differs from the usual
isotropic properties found in the experimental testing of IPCs. This led Wegner
and Gibson (2000a) to develop the isotropic hexagonal close-packed (HCP)
microstructure seen in the unit cell of Figure 2.5. The HCP unit cell was used to
model two ductile phases with a simulated uniaxial tension test and solved
using the FEM. Results were found for elastic and plastic behaviour, and in
Wegner and Gibson (2000b), comparisons to experimental data were used to
determine the effect from thermal residual stresses. A uniform heating regime
was also used to determine the effective CTE. In addition to the IPC model, a
discrete particle reinforced model for non-IPCs was used to consider the effect
of an interpenetrating geometry. Wegner and Gibson (2000a) noted that a
perfect bond was assumed between the two phases; this assumption is also

likely true of all the discussed unit cell models.

2.3 FACTORS INFLUENCING MACROSCOPIC MECHANICAL
BEHAVIOUR

2.3.1 Factors Influencing Thermal Residual Stresses

Thermal residual stresses are commonly caused during the processing
of composite materials. Although they are rarely of direct interest to IPC
research, they can have a profound effect upon composite behaviour and are
therefore of indirect interest to numerous studies on effective properties. There

are two basic mechanisms for their creation; the first is related to the difference

pd

Figure 2.4. Simple cubic unit cell Figure2.5. HCP unit cell
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between the coefficients of thermal expansion (CTEs) of the constituent
phases, and the second to the dissimilar cooling rates in different locations
within the material. The latter mechanism regarding location was to some extent
alleviated in the following studies so that only the former mechanism is
considered further. During cooling from the manufacturing temperature, both
phases of a composite will contract. The phase with the higher CTE (more
compliant) will want to contract to a greater extent than the phase with the lower
CTE (less compliant). This difference causes the less compliant phase to
constrain the more compliant phase, such that compressive stresses and
tensile stresses are created in the less and more compliant phases,
respectively. These stresses are referred to as thermal residual stresses and
their existence in a newly manufactured composite produces an initially loaded

state.

Many of the same factors which influence composite effective behaviour
also influence thermal residual stresses. As mentioned above, the mechanism
of interest is related to the difference between the CTEs of the constituent
phases. However, the CTEs are not the only variables that affect the creation of
thermal residual stresses. Other material properties and the geometry of the
microstructure also have a significant influence. Skirl at al. (1998) recorded
overall strains in an alumina/aluminium (Al,O3/Al) IPC at various different
volume fractions of the ceramic and metal phases. They noted that the total
thermal residual strain in the IPCs increased in direct proportion to an increase
in the volume fraction of the metal phase. A more detailed study carried out by
Agrawal et al. (2003) used neutron diffraction measurements to determine the
stresses in each of the phases for both an alumina/copper (Al,O3/Cu) IPC and
an AlLOz/Al IPC. They found that the tensile stresses developed in the Cu
phase of the Al,O3/Cu IPC were much higher than those developed in the Al
phase of the Al,O3/Al IPC (620 MPa compared to 112 MPa), despite the fact
that the ratio between the CTEs for Cu and Al,O3z was smaller than the ratio of
the CTEs between Al and Al,O3 (2.54 Cu to Al,O3 and 3.65 Al to Al,Os3).
Although this appears inconsistent from the mechanism described previously, it
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can be understood when it is noted that for the AlL,Osz/Cu IPC the volume
fraction of Cu was 30%, whereas in the Al,Os/Al IPC the volume fraction of Al
was 70%. The much smaller amount of Cu in the first IPC was therefore of
much smaller dimensions and more greatly constrained than the Al of the
second IPC. A more minor link was also noted between the different stiffnesses

and melting temperatures for the two metals.

In the study of IPCs, the dual continuity of the phases requires a further
examination of microstructural parameters besides simply the volume fraction.
Shen (1998) noted that the thermal residual stresses in his simple cubic unit cell
model of a silicon carbide/aluminium composite were greatly affected by the
level of continuity for each phase. Hoffman et al. (1999) attempted to explain
the thermal residual stresses found by Skirl et al. (1998) through two
mechanisms. The first mechanism was dominant at low temperatures (near the
end of cooling) where permanent strain was induced through yielding of the
metal phase due to constraint from the ceramic phase. At higher temperatures
and lower stresses (near the metal's melting point) the second mechanism
involving time-dependent behaviour was dominant. In this mechanism, diffusion
creep leading to the relaxation of the metal was accounted for during the
creation of thermal residual stresses. A reasonable correlation was found
between this study and the experimental work of Skirl et al. (1998) if a
combination of the mechanisms was used. The majority of permanent
deformation in the aluminium was attributed to time-dependent behaviour at
elevated temperatures with only a minor effect due to yielding near room

temperature.

Agrawal et al. (2003) modelled their thermal residual stresses through
the use of a simple cubic unit cell and the concept of an effective processing
temperature. This allowed them to avoid the necessarily complex equations
used by Hoffman et al. (1999). Unfortunately, neither of these studies isolates
the effect that dual continuity has on the creation of thermal residual stresses

but only produces models able to predict their distribution.
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2.3.2 Factors Influencing Elastic Behaviour

The behaviour of IPCs in their elastic range of response is a key concern
in understanding their performance under usual service conditions. Unless the
IPC is intended for single use, it is generally desirable that the loads it is likely
to encounter on a regular basis are in its elastic range such that when the load
is removed all the deformation is removed. Determining this behaviour is,
however, complex due to the multiple continuity of the phases in IPCs. While
purely elastic behaviour would require all phases to be elastic (if one phase
were acting plastically then the removal of load would still not allow the material
to return to its initial form), a more complex situation is possible with IPCs
where a continuous phase of significantly greater strength could hold almost all
the load and create a pseudo-elastic condition. Several ceramic/metal and

ceramic/polymer IPCs have the potential to meet this condition.

The effect of constituent phase properties and volume fractions on
effective elastic properties was determined for any general isotropic composite
by Hashin and Shtrikman (1963). They were able to analytically solve for upper
and lower bounds on the effective bulk and shear moduli of two-phase
composites using variational principles and elastic theory (see Section 2.2.1).
This also applies to IPCs so long as they consist of two phases and behave in
an isotropic manner. A plot of the bounds for the effective Young’s modulus
against the volume fraction of the less compliant phase is shown in Figure 2.6.
To make this plot, the bounds from Equations 2.9 to 2.12 were used with the
following relationship, which relates them to the Young’s modulus:

_ 9KG
3K+G'

(2.13)

where E, K and G denote the Young's modulus, bulk modulus and shear
modulus, respectively. Whether the solution is for the upper or lower bound of
the Young’s modulus is directly dependent upon whether the upper or lower

bounds for the bulk and shear moduli are input into Equation 2.13. The bounds
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are plotted for two different modular ratios of the constituent phases, the blue

bounds for a ratio of 2 and the red bounds for a ratio of 5.5.

The first point to note is that the effective Young’s modulus increases
with an increase in the volume fraction of the less compliant phase. This is true
for both modular ratios and makes physical sense since, as the volume fraction
of the less compliant phase increases, it takes up an increasing amount of the

space and the composite should begin to act more like the stiffer phase.

The relative difference between the constituent material properties shifts
the entire range of potential behaviour defined by the bounds as well as the
spread between the upper and lower bounds. For the modular ratio of 2, shown
by the blue lines, the bounds are tight, indicating that the elastic behaviour of
any isotropic composite can be predicted to a great degree of accuracy knowing
only the volume fractions of the phases. This is not the case when the modular
ratio is increased to 5.5. The greater space between the red bounds allows the

effective Young’'s modulus of a composite to vary over a significant range at a
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Figure 2.6. The Hashin-Shtrikman bounds on elastic behaviour (n = modular ratio of phases)
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particular volume fraction. In this case, further information about the

microstructural geometry is necessary to make more accurate predictions.

The use of these bounds for an interpenetrating microstructure can be
seen when compared to the data from Liu and Koster (1996) for their Al,O3/Al
IPC, denoted by the purple diamond. This IPC had a volume fraction of 64.2%
Al,O3 and the Young’s moduli of the constituents differed by a ratio of 5.5. It can
be seen from Figure 2.6 that this plots near the upper bound and the
interpenetrating geometry has produced the optimum response for this volume

fraction of these materials.

The thermal residual stress derived from processing an IPC has been
found to have some effect on its elastic behaviour. The numerical work of
Daehn et al. (1995), considering an Al,O3s/Al IPC with a simple cubic
microstructure, showed a minor difference in overall stress-strain behaviour if
thermal residual stresses were or were not considered (the volume fractions for
each phase were 50%). The only point of significant change was the strain at
which yielding occurred. With the inclusion of thermal residual stresses, the
strain at yield increased, leading to a decrease in the slope of the elastic region
and therefore a decrease in the effective Young’'s modulus. Dong et al. (1999)
used the self-consistent model of Lefle et al. (1998, 1999) to find the stress-
strain behaviour of a tungsten/copper (W/Cu) IPC. Their work showed a
significant decrease in the effective Young’s modulus when thermal residual
stresses were considered but only when the volume fraction of Cu was greater
than 40%. The decrease in the effective Young’'s modulus with the
consideration of thermal residual stresses was further confirmed by the findings
of Wegner and Gibson (2000b), who compared their experimental work on a
stainless steel/bronze IPC to a hexagonal close-packed unit cell model. They
noted that thermal residual stresses could account, at least in part, for their

IPC’s Young’s modulus being below the Hashin-Shtrikman lower bound.

The continuity of the constituent phases also influences the elastic
behaviour of IPCs. Wegner and Gibson (2000a) studied interpenetrating and
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non-interpenetrating IPCs over the same volume fraction range with hexagonal
close-packed unit cells. The unit cells that interpenetrated showed a much more
significant increase in their effective Young's modulus as the volume fraction of
the stiffer phase was increased. This result had to be balanced against the
previously mentioned finding of a stiffness reduction due to thermal residual
stresses (Wegner and Gibson (2000b)). They theorised that an increased
effective Young's modulus was possible due to the interconnection of the stiffer
phase, but that this also applied an increased constraint to the more flexible
phase causing enhanced thermal residual stresses. The effect of continuity on
composite stiffness was therefore found to be based on the relative importance
of these two mechanisms. Dong et al. (1999) agreed that increased continuity
would produce a small increase the effective stiffness of the composite;
however, they theorised that a slightly different mechanism was acting on the
thermal residual stresses. In their self-consistent model of a brittle-ductile IPC,
the effect due to thermal residual stresses was found significant only over a
volume fraction greater than 40% of the ductile phase (above which they
suggest an interpenetrating ductile phase exists). This was assumed to be due
to plastic flow in the connected ductile phase caused by the thermal residual
stresses induced by the connected brittle phase. Peng et al. (2001) noted that
the effective Young's moduli of their experimental Al,03/Al IPCs best fit
predictions by Tuchinskii's (Peng et al. 2001) lower bound equation for an
interpenetrating microstructure rather than those of the Halpin-Tsai (Peng et al.
2001) equation for discontinuously reinforced composites. This again notes that
the continuity of the phases has an effect on the elastic behaviour.

Phase continuity has been shown to have an effect on the elastic
behaviour; however, continuity is itself dependent upon a number of
microstructural parameters, such as the phase shape, size distribution and
spatial distribution. No known study of these parameters has been made for
IPCs; however, Shen et al. (1994b) studied phase shape and spatial distribution
for two-phase particle reinforced composites. The findings of this study are a

guideline for the application of a shape study to IPC research. In the study on
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reinforcement phase shape, Shen et al. (1994b) used two-dimensional
axisymmetric unit cell models to show that shape had a significant effect on
composite behaviour. Increasing composite stiffness over that of the matrix
alone occurred in greater amounts with each of the following particle
reinforcement shapes: the double-cone (diamond cross-section), the sphere,
the truncated cylinder (hexagonal cross-section), the unit cylinder and the
whisker. This increased stiffness was attributed to the ability of the matrix to
transfer its load to the reinforcement. The whisker has the greatest surface area
through which the matrix could transfer its load by shear and therefore had the
greatest stiffness. This effective surface area decreases from unit cylinder, to
truncated cylinder, to sphere and to double-cone. It is interesting to note that
Shen et al. (1994b) did not find that any of the shapes was more effective at

constraining the matrix (reducing its strain) in the elastic range.

Shen et al. (1994b) also found that reinforcement spatial distribution had
a significant effect on composite behaviour (though less of an effect than
shape) through the use of two-dimensional plane strain models. Distributions
representing uniformly sized particles in horizontally and vertically aligned
periodic arrangements showed the greatest effective stiffening, while
distributions of uniformly sized particles in an offset periodic arrangement
showed the least stiffening. These results were linked to the reinforcement’s
ability to constrain the matrix. This is studied in more detail in the next section
where the composite’s plastic behaviour showed a similar but more definite

effect from the reinforcement spatial distribution.

2.3.3 Factors Influencing Plastic Behaviour

Plastic behaviour is the permanent deformation that commonly occurs in
ductile materials after loads have exceeded the elastic range. Near the failure of
such materials, plastic conditions usually exist and a proper understanding of
them is essential to predicting their maximum response. Accurate determination
of this behaviour is difficult, as mathematical models tend to be quite complex.

In addition, with IPCs pseudo-plastic conditions often exist due to the differing
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behaviours of phases made from ceramics, metals or polymers. In general, the

variables that affect elastic behaviour also affect plastic behaviour.

Unlike elastic behaviour, no general bounds have been determined for
the plastic behaviour of composite materials. The effect due to the volume
fractions and properties of the phases must therefore be based upon the
collective results of numerous studies. Basic theory suggests that effective
plastic properties will increase with the volume fraction of the stronger phase,
based simply on the fact that the more of this phase that is within the
composite, the more its behaviour will dominate the effective behaviour (this
assumes that no significant flaws exist in the microstructure). This was
confirmed by the self-consistent models of Lefle et al. (1999) and the
experimental and unit cell models of Wegner and Gibson (2000a, 2000b). In all
three of these studies, the effective yield strengths of the IPCs were found to

increase with increasing amounts of the stronger phase.

Comparable to the trend for elastic properties discussed in the previous
section, the plastic properties of IPCs are shifted by the relative difference
between the properties of the constituents, while producing similar stress-strain
behaviours. Daehn et al. (1995) confirmed this in a numerical sensitivity study
of the influence of the yield strength of the aluminium phase on the yield
strength of an Al,O3/Al IPC. It was found that the composite’s point of yielding
was shifted with changes to the ductile phase’s yield strength while producing
similar curves before and after yielding. As discussed earlier, the Hashin-
Shtrikman bounds demonstrate that increasing the relative difference between
the constituent phase elastic properties increases the range of potential
composite behaviour (the bounds become less restrictive). Without general
bounds, the same statement is difficult to verify for plastic properties. However,
the analogy model of Moukarzel and Duxbury (1994) showed that an
interpenetrating structure became more and more significant with an increasing
relative difference between the constituents. This indirectly shows that the
range of potential composite behaviour increases with increasingly different
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phases, since microstructural geometry is only important when the limits of

behaviour are far apart (consider the two sets of bounds in the Fig. 2.6).

All studies into the effect of thermal residual stresses on plastic
behaviour have shown it to have little influence. There is, however, some
difference in research observations as to whether this minor influence shifts the
stress-strain curve of IPCs upwards or downwards. The simple cubic unit cell
model of brittle/ductile phases in the study by Daehn et al. (1995) predicted a
slight shift in yield strength such that the stress-strain curve was shifted
downward when thermal residual stresses were present, but this was
considered insignificant. The results of the brittle/ductile self-consistent models
of Lefle et al. (1999) and Dong et al. (1999) agreed that the total effect of
thermal residual stresses was insignificant but that overall stress-strain
behaviour was shifted slightly upwards. The HCP unit cell model of Wegner and
Gibson (2000b) used two ductile phases and found slightly downward shifted
deformation behaviour that agreed more closely to the work of Daehn et al.
(1995). Reasons for these opposite but relatively small influences due to

thermal residual stress were connected to continuity, which is discussed below.

Current research has determined that continuity has an influence on the
plastic behaviour of IPCs that is likely well in excess of the influence it has on
elastic behaviour. In the self-consistent models of Lefle et al. (1999) and Dong
et al. (1999) the matricities of the phases (which control continuity in their
models) were varied while the volume fractions were kept constant. Stress-
strain behaviour, especially after yielding, was found to differ by large amounts
as continuity was shifted between the extremes of each phase forming
inclusions within a particle reinforced composite. The IPC and non-IPC unit cell
models of Wegner and Gibson (2000a) noted that continuity produced distinctly
different results at yielding. The IPC model produced much higher yield

strengths as the continuity of the stronger phase was increased.

This strong influence from continuity on plastic behaviour was used by all

these researchers to explain the minor effect from thermal residual stresses.
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Both Lefle et al. (1999) and Dong et al. (1999) focussed on an increased
plasticity of the ductile phase in their models, due to a continuous
microstructure, to explain their IPCs’ slightly enhanced behaviour. In their
theory, a slight improvement in behaviour is created by isotropic hardening of
the ductile phase as thermal residual stresses induce an initial plastic
deformation. This leads to an increase in the yield strength at which plastic
behaviour begins (though in this author’s opinion this theory only works if there
is some mechanism by which the thermal residual stresses could reduce to
zero prior to loading). Wegner and Gibson (2000b) attributed the only slightly
downward shifted stress-strain behaviour to the continuity of the stronger phase
in their IPC. Numerical results determined that thermal residual stresses were
sufficient to induce plasticity in the weaker phase, but were far below the yield
strength of the stronger phase. A reduction in overall behaviour as the IPC was
loaded should then be expected due to the reduced strength that could be
contributed from the weaker phase. This reduction, however, was assumed to
be largely offset by the dominant behaviour of the almost unaffected continuous

stronger phase.

Moukarzel and Duxbury (1994) studied the effect of a continuous
microstructure on plastic behaviour by considering the damage induced in their
electrically analogous system at failure. Their model with an interpenetrating
system produced more damaged resistors prior to complete failure than a non-
interpenetrating system. This suggested greater ductility in the interpenetrating
system due to an increased redundancy of paths for current flow (in their model
paths for current flow were analogous to paths for stress distribution). Based on
their results, IPCs obtain enhanced ductility through a reduction in the

importance of any single connection within the stronger phase.

As with elastic behaviour, no study has currently been performed to
determine the effect of geometric parameters of the microstructure on IPCs
under plastic conditions. Again, however, a study by Shen et al. (1995)
considered the effects of phase shape and spatial distribution on the plastic
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behaviour of two-phase particle reinforced composites. The same two-
dimensional axisymmetric and plane strain unit cell models were used for the
shape and distribution studies, respectively. Non-linear conditions were
considered by applying a sufficient load to obtain plastic behaviour in the matrix
(the reinforcement was assumed to remain elastic). The effect of reinforcement
shape on plastic behaviour was even more pronounced than that shown for
elastic behaviour. Composite strengthening with shape followed the same
pattern as was observed for stiffness: the double-cone showed the lowest
strengthening, then the sphere, truncated cylinder, unit cylinder and finally the
whisker, which showed the greatest strengthening. In this case, Shen et al.
(1995) determined that matrix constraint was occurring, as some reinforcement
shapes were able to produce a notable reduction of the strain in the matrix. Two

important constraining mechanisms were identified:

1. The ability of the reinforcement to interrupt the path of high plastic

strain; and

2. The ability of the reinforcement to restrict the size of the high and

moderate plastic flow paths.

The whisker shape showed the greatest ability to meet these two points and
therefore provided the highest constraint to the matrix material. Since any
reduction in the deformation of the weak matrix phase increases the load
carrying capacity of the composite, the whisker produced the greatest

strengthening to the composite.

The effect of reinforcement spatial distribution also had a more
significant effect on composite plastic behaviour than on elastic behaviour
(again this effect was less than that shown by the phase shape). Distributions
containing horizontally and vertically aligned periodic microstructures again
produced the most enhanced effective plastic properties, while distributions with
offset periodic microstructures again showed the least. The relative level of
strengthening was based on the ability of the distribution to constrain the matrix

by means of the previously listed two mechanisms. Of the two important points
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for constraint, the offset distributions were better able to interrupt the path of
high strain, while the aligned distributions showed a greater ability to restrict the
size of the overall strain path. It is the greater volume of matrix material that is
under moderate strain that leads to the weaker reinforcing of the offset
distributions. Neither unit cell was definitively better on both of the constraining
points, showing why reinforcement shape was shown to have a more significant

effect than distribution.

2.4 SUMMARY OF RESEARCH ON INTERPENETRATING
PHASE COMPOSITES

Several methods have been used to study IPCs and several means used
to describe their microstructures. Unfortunately, many of these studies have
failed to either properly describe the microstructures that they assumed or have
used representations of these microstructures that are overly simplistic. The
focus of researchers on the prediction of IPC behaviour rather than on
characterising microstructures has made the comparison of the results of
various studies difficult, as microstructural differences remain unknown. This
lack of microstructural data has led to a great deal of inefficiency in the attempt
to understand the behaviour of IPCs. It is therefore highly important that
researchers choose appropriate methods to use and characterise their

microstructures carefully.

The great benefit of an experimental study is that realistic results may be
found for an actual IPC’s behaviour. In general, the greatest problem that
occurs with experimental work is that the microstructural analysis is considered
only briefly or entirely in a qualitative manner such that comparisons to other
research are difficult. In particular, the increased complexity inherent in the
geometry of IPCs requires an increase in the amount of data used to
characterise these materials. The topological parameters from Section 2.1.2
along with methods of Aldrich and Fan (2001) are suggested as good
guidelines for the procedure needed in an IPC microstructural analysis.
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Early studies on prediction of IPC behaviour used simplified methods so
that the complexity of the microstructural geometry could be avoided. One of
these simplified methods is the use of general bounds on the effective
behaviour. General bounds, such as the Hashin-Shtrikman bounds (1963), offer
an excellent means of understanding some of the simple influences on effective
response, as well as a means to test the accuracy of experimental work or more
detailed models. Analogy models have also been used to determine broad
behavioural patterns in IPCs. Unfortunately, like general bounds they are also

quite limited and cannot produce exact results.

While the previous simplified methods provided a good understanding of
basic IPC behaviour, they consisted of too many simplifying assumptions to be
able to accurately predict the response of an actual IPC. Improvements in
predictions have been obtained with self-consistent models and unit cell
models. Self-consistent models have proven to be relatively simple and provide
good global results for the behaviour of IPCs with random microstructures.
These models do not, however, provide a good representation of ordered
microstructures and cannot be used to study the local conditions at a point
within a composite. For cases where an IPC has an ordered microstructure or
local behaviour within the microstructure is of interest, unit cell models are more
appropriate. The use of a fully described microstructure with the unit cell model

also allows the highest accuracy for characterisation of the microstructure.

Using the various prediction methods, researchers have determined a
number of important factors that influence the behaviour of IPCs. This was
studied for thermal residual stresses, elastic properties and plastic properties.
Thermal residual stresses are created as a result of relative differences in the
properties of the constituent phases. Research considered in Section 2.3.1
noted the importance of the constituent CTEs, stiffnesses and melting
temperatures in the development of thermal residual stresses. In addition, the
microstructural geometry also has a strong influence through the level of

constraint applied to the more compliant phase by the less compliant phase.
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The influence of constituent properties and volume fractions on the
elastic behaviour of general composites, including IPCs, has long been
understood; more recently the effects from thermal residual stresses and
continuity have been determined. The bounds determined by Hashin and
Shtrikman (1963) denote the limitations of elastic behaviour for all isotropic
composites. With the use of these bounds, it can be seen that constituent
properties influence the range of potential composite behaviour (the greater the
difference between the constituents the greater the range of behaviour for a
composite containing them). In general, an increase in the volume fraction of
the less compliant phase causes an upward shift of the stress-strain curve for
an IPC, denoting improved behaviour. Increased microstructural continuity was
also theoretically found to directly increase the elastic modulus. In experimental
programs, however, several studies have shown that elastic properties, such as
the effective Young’s modulus, slightly decrease with increases in continuity.
The source for this inconsistency has been linked to the creation of increased
thermal residual stresses due to the continuous microstructure, ultimately

leading to a lower elastic modulus.

The variables that affect the elastic behaviour of IPCs are also important
for their plastic behaviour. Assuming no significant flaws exist within an IPC’s
microstructure, the constituent phase properties and volume fractions have a
similar influence on the plastic behaviour to what was previously noted for the
elastic behaviour. The greater the volume fraction of the stronger phase, the
higher the effective yield strength of the IPC, and the larger the relative
difference in phase properties, the greater the range of potential effective
behaviour. For plastic behaviour, thermal residual stresses were found to be
unimportant due to the continuity of the microstructure. The exact mechanism
for this is currently undetermined; however, all studies have shown either an
increase in yield strength or an increase in post-yielding stresses related to the

continuous nature of IPCs.

Previous researchers have shown that long-range continuity has an

important influence on the mechanical behaviour of IPCs, but they have only
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rarely noted the effect of microstructural parameters on continuity. Among such
parameters are the shape, size distribution and spatial distribution of the
phases, which affect the location and amount of interconnection in a three-
dimensionally continuous microstructure. For two-phase particulate composites
(non-IPCs), Shen et al. (1994b, 1995) attempted to determine the effect of
phase shape and spatial distribution on the elastic and plastic behaviours.
These geometric parameters were found to enhance the behaviour of
particulate composites in direct relation to their ability to allow the reinforcement
to constrain the weaker matrix material. Given this importance to non-IPCs, it is
the purpose of this research to extend the understanding of how the
microstructural geometry influences the mechanical behaviour of composites to

IPCs, specifically the effect of phase shape on elastic and plastic properties.
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CHAPTER THREE
NUMERICAL MODELLING PROGRAM

Interpenetrating phase composites (IPCs) are distinguished from other
composite materials by the continuous three-dimensional geometry of all their
constituent phases. No other restrictions are placed on them, so the number of
potential microstructures that are interpenetrating is quite large. To study the
effect phase shape has on the behaviour of IPCs, this modelling program
considered two different microstructures in which only the shape differed; the

phase size and spatial distributions were kept constant.

To meet these requirements, a microstructure resembling the hexagonal
close-packed (HCP) system of uniformly sized, intersecting spheres was
considered. The HCP system provides an isotropic spatial distribution so the
direction of testing does not need to be considered and the uniformly sized
spheres supply a constant size distribution. This model provides one phase
shape as spherical with the other phase taking on the shape of the interstitial
space. A second model involving a uniformly sized cylindrical phase shape with
an HCP microstructure was also created. A cylindrical shape is oriented along
its length, so it differs significantly from the equi-dimensional nature of the
sphere shape. A comparison of these two shapes should therefore provide
extreme results of the influence of phase shape on IPC properties. The
interfacial bond between the two phases for both model geometries was
assumed to be perfect so that debonding was not taken into account. Both of
these geometries, as well as the steps required to model them using the finite

element method (FEM) are considered in this chapter.

3.1 GEOMETRY OF THE SPHERICAL MODEL

The long range order of the spherical hexagonal close-packed (HCP)
microstructure can be seen by considering Figure 3.1. The microstructure
consists of repeating layers of spheres with the spheres in adjacent layers fitting

into the gaps of the previous layer, the same gaps being used with every

36



second layer. If the plan view of the HCP microstructure is considered, a further
level of order can be seen (see Fig. 3.2). The black equilateral triangular region
near the centre of Figure 3.2, when symmetrically mirrored at its right boundary,
creates the red triangle (symmetrically mirroring simply flips the region within
the black triangle about the right boundary). The same process can be used
about the lower left boundary to create the blue triangle. Continuing this
process about the boundaries of the red and blue triangles, the entire area
within the black hexagon is soon defined.

Considering again the black triangle shown in Figure 3.2, if the upper left
boundary is symmetrically mirrored out of the hexagon, the region within the
green triangle is created. Note that the sphere at the centre of Figure 3.2 is
arbitrary since all spheres have similar adjacent spheres in the same locations.
Therefore the sphere in the upper left corner with the green triangle can also be
thought of as being surrounded by a hexagon and the symmetric mirroring
process used to complete it. Since this can be carried out for all the spheres on
the two planes shown in Figure 3.2 (the upper plane of seven spheres and the
lower plane of three), the HCP microstructure is sufficiently modelled by simply

using the black triangular region.

Cutting the black triangular region of Figure 3.2 through the equatorial
planes of the upper and lower layers of spheres and looking at it in three

Figure3.1. Exploded view of the Figure 3.2. Plan view of the spherical HCP
spherical hexagonal close- system (shaded spheres = lower layer;
packed (HCP) system open spheres = upper layer)
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dimensions, the prism unit cell in Figure 3.3 is created. The material above and
below this unit cell can be created by symmetrically mirroring the unit cell (flip
the unit cell about both the top and bottom planes). The prism unit cell of Figure
3.3 is therefore able to represent the entire HCP microstructure outwards in all

directions if symmetric boundary conditions are applied to all five of its faces.

A final simplification to this model can be made by considering Figure
3.4, where a plane has been cut through the prism unit cell perpendicular to a
line joining the sphere centres. If the top half of the unit cell is rotated about the
central axis of the bottom surface (shown in red), it creates the bottom half of
the unit cell; this is an anti-symmetric boundary condition. In summary, the half
prism unit cell with four faces having symmetric boundary conditions and one
face having an anti-symmetric boundary condition is able to represent the entire
three-dimensional HCP microstructure. This process was used to model the
IPC microstructure based on the spherical shape and is essentially the same as
that used by Wegner & Gibson (2000a, 2000b). A similar process will be used
to model the cylindrical shape in Section 3.2.

The spherical geometry of the IPC model follows the HCP microstructure

just described, but one further consideration is needed. The spheres in Figure

Axis of anti-symmetry
Figure 3.4. Half prism unit cell

Figure 3.3. Prism unit cell of the ’
of the spherical system

spherical system
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3.3 are required to remain within a certain range of possible sizes. If they are
reduced in size while prism dimensions remain constant such that they no
longer touch, then the material modelled would no longer be an IPC since the
sphere phase would not be continuous. On the other hand, if the spheres are
increased in size, the surrounding material will eventually become isolated into
small pockets and again the model will no longer represent an IPC. The final
consideration that needs to be made is the range of sphere sizes that will
produce an IPC model. This range of sizes is discussed in terms of the
spherical volume fraction that will produce an IPC model. How the behaviour of
the IPC changes with volume fraction is also of interest, so the entire range of

applicable volume fractions is studied.

Within the prism unit cell (Fig. 3.3) are two pieces of spheres, each one-
twelfth of a whole sphere minus the volume of material that is lost at their
intersection (see Fig. 3.5). The volume fraction of spheres within the prism unit
cell can be found by determining the volume of sphere material within the unit
cell, then the volume of the prism unit cell and finally dividing the former by the
latter. Note that the volume fraction of sphere material is the same in the half
prism unit cell as in the prism unit cell since the ratio of sphere to unit cell
volume is the same. This problem can be solved analytically to produce the

following equation for spherical volume fraction: (the derivation is shown in

Appendix A)
_ rY| -5 3(a _1(a :
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Figure3.5. Two intersecting spheres showing
thevolumelost at the inter section

(grey)
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where @ is the volume fraction of spheres in prism or half prism unit cells, “r" is
the radius of the spheres and “a” is the centre-to-centre distance between

spheres (for r and a see Fig. 3.3).

To understand the volume fraction range that will allow adjacent spheres
to come in contact, yet not be so large as to prevent the surrounding phase
from remaining interconnected, consider again Figure 3.3. The lower bound of
the volume fraction range is where the spheres just come into contact. This
occurs when the radius of the sphere equals half the centre-to-centre distance
between the adjacent spheres,

r= (3.2)

a
>
The upper bound of the volume fraction range is where the spheres take all the
space along one edge of the half prism unit cell; in this case, the surrounding
phase would not be interconnected but would only exist in pockets (consider,

for example, the closest top edge in Fig. 3.3). This condition is met when

r=2 (3.3)

NE

Substituting Equations 3.2 and 3.3 into Equation 3.1, the lower bound
volume fraction is found to be 74.05% of the spherical phase, and the upper
bound to be 96.41% of the spherical phase. For practical purposes, this model
was created over the range of 75% to 95% to avoid dealing with the extremely
small regions that were created in the sphere material near the lower bound

and in the surrounding material near the upper bound.

3.2 GEOMETRY OF THE CYLINDRICAL MODEL

The geometry of the cylindrical IPC model, like that of the spherical IPC
model, follows the basic HCP microstructure. However, to include cylinders in
place of the spheres, the appearance of the model was changed significantly. In
order to visualize this new geometry, imagine nodes that are located at the

centres of the spheres shown in Figure 3.1. The cylindrical system was created
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by connecting each adjacent node with a line that formed the axis of a cylinder.
All cylinders were of equal length and equal radius (equal length because all
adjacent nodes are an equal distance apart, and equal radius because the unit
cell should model a homogeneous, isotropic composite). As seen in Figure 3.6,
in the absence of the surrounding material, the cylindrical microstructure is a

space frame.

The cylindrical system was also modelled using the half prism unit cell,
since the spatial distribution of the intersection points of cylinder axes were the
same as those of the sphere centres. Thus, only the shapes of the phases
within the unit cell were changed. The cylindrical half prism unit cell contained
the halves of two cylinders of equal length minus a few pieces of those
cylinders which fall outside the unit cell near the top right corner (see Fig. 3.7).

Similar to the previous case with the sphere, the volume fraction range
over which this cylinder shape model can represent an IPC must be
determined. To solve this problem in the same way as was done for the sphere
would require calculation of the volume of the portions of the cylinders that fall
outside the unit cell. Although relatively simple in appearance, to do this for the
unit cell in Figure 3.7 involves solving numerous complex equations, making
another method more desirable. As an alternative, a Monte Carlo simulation or

single point probability function was used to determine the volume fraction of

)
*on)

Axis of anti-symmetry

Figure3.6. Cylindrical system
(small spheres denote nodes
where cylinders interconnect)

Figure3.7. Half prism unit cell of the
cylindrical system
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the cylinders as the radius of the cylinders was varied. The C++ program used
to run this simulation and details of its development are provided in Appendix B.

Only a simple discussion of the program’s methodology is provided here.

The Monte Carlo simulation created for this work produced groups of
three random numbers used to define the coordinates of points within a box
shown in Figure 3.8. Within the box is the half prism unit cell with its cylinders
oriented along the top and back surfaces. Using this geometry, the box was
separated into five regions: the total space in the box, space in the unit cell,
space in the back surface cylinder, space in the top surface cylinder and space
at the intersection of the cylinders. Each region was separated by equations

that defined the location of boundary coordinates.

The volume fraction of the cylinders within the half prism unit cell is
approximately equal to the number of random points within the cylinders divided
by the total within the unit cell. The problem is therefore simplified to a

determination of how many of the random points fall within each of the five

Point 1: Top-left-back corner (0,0, h)

Top surface Right-front
b v3b surface
Point 2: Top-front corner | — ,L .h b
2 2 .\
Point 3: Top-right-back corner (b,O, h) 3
. 3h) Left-front
Point 4: Bottom-left-back corner | 0,0,— |  surface ! /
4 I SE e
. V30 h
Point 5: Bottom-front corner | —,——,—
2 2 2
. _ h h
Point 6: Bottom-right-back corner b,O,Z /
Left-front Right-front
surface Surface Bottom /| 7
surface Back
surface
y v
Back X
surface
(@) Top view of the unit cell (b) Isometric view of the unit cell

Figure3.8. Box for Monte Carlo simulation with half prism unit cell inside

42



regions. To do this, the coordinates for each generated random point were
tested against the boundary equations to determine which region contained
each point. The points in each region were then counted and the ratio of those
within the cylinders to the total number in the unit cell was used to determine

the volume fraction. In equation form, this is

a :( N, Jmoo, (3.4)
Ny

where @ is the volume fraction of cylinders in half prism unit cell, nyp is the total
number of random points in the half prism unit cell, and n¢ is the number of

random points in cylinders. n; is defined as
nc :nbc+ntc_ni ’ (35)

where nyc is the number of random points in back cylinder, n, the number of
random points in the top cylinder, and n; the number of points at the cylinder

intersection.

Any time the Monte Carlo method is used, it is necessary to ensure that
a sufficient number of random points are used to achieve an accurate answer.
This was done by running the simulation for the same volume fraction several
times, while increasing the number of random points. As the number of random
points increases, the accuracy of the results should increase, but at a
decreasing rate such that they converge towards the correct solution. As an
example, the simulation was run at the maximum cylinder volume fraction and
the result for four different numbers of random points is graphed in Figure 3.9. It
can be seen from the figure that the volume fraction of the cylinders converges
towards a value of approximately 90.7% with a difference in the results for 10
million and 100 million random points being less than 0.02%. A satisfactory

level of accuracy is therefore obtained with about 10 million points.

Another test was run on the Monte Carlo simulation in order to verify that
the random number generator for C++ (Microsoft Corporation, 2003) was

sufficiently random that results could be considered unbiased. The test was a
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comparison between the volume fraction of the half prism unit cell within the
box (see Fig. 3.8), and the exact solution based on the dimensions of the unit

cell and box. The exact solution was found using the following equation:

Vi,
By = [—p} [100, (3.6)

box

where Vy, is the volume of half prism unit cell (which is equal to half the volume

of the prism unit cell, see Appendix A). Vpox iS the volume of the box, which is

defined as
=] 203
_3V3 |

Vbox - 8

where “b” is the length of a top surface edge and “h” the height of prism unit cell

(3.7)
bh

(see Fig. 3.8). This was then compared to the following result from the Monte

Carlo simulation:



a :[ M }moo (3.8)
i | .
n[otal

where nyta IS the number of total points (all points fall within box). Both methods
produced the result that 33.32% of the volume of the box is the half prism unit
cell. This verifies that the random number generator in C++ is sufficiently

unbiased for the purposes of this simulation.

The Monte Carlo method was then used to find the limits at which the
cylinder HCP microstructure could be used to model an IPC. Since the cylinders
become interconnected as soon as any cylinder material is added to the
composite, the theoretical lower volume fraction limit for an interpenetrating
geometry is zero. The upper limit can be visualised by considering the diameter
of the top cylinder along the top surface (see Fig. 3.10). As more cylinder
material is added to the composite the diameter of the top cylinder grows until it
takes up the entire top surface (this is when the diameter equals “b”, the length
of the top left-front edge). In this case, the surrounding material is no longer
continuous upwards, and both phases no longer interpenetrate. If a cylinder
diameter of “b” is input into the Monte Carlo simulation, a maximum cylinder
volume fraction of approximately 90.73% is obtained. Although the cylinder
model theoretically works between 0% and 90%, to avoid element distortion
problems near these extremes the model was tested between approximately
2% and 84%.

3.3 BOUNDARY CONDITIONS FOR THE MODELS

To use the HCP microstructure as a model for an IPC required both the
proper volume fraction to ensure the interpenetration of both constituents
(considered in previous sections), and the proper boundary conditions to ensure
the model acted as though surrounded by the rest of the material. Symmetric
surfaces, such as the top, back, left-front and right-front faces (see Fig. 3.8),
required that their displaced positions remain in a plane and be parallel to their
original positions in order to ensure geometric periodicity. It should also be

noted that the given displacement to the top surface, discussed below, was
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Figure 3.10. Cylinder HCP microstructureat its maximum
volume fraction for interpenetration
applied symmetrically (other loading conditions may violate the symmetric
boundary conditions). In the case of the bottom surface, an anti-symmetric
boundary condition necessitates rotation about a central axis as displacement
occurs. Although the rules are fairly simple, their application is complex and the
details for each of these boundary conditions are considered in the rest of this

section.

The top surface of the model was the most important boundary condition
in determining its behaviour. It was given an applied displacement to simulate
the IPC being placed in uniaxial tension or compression (see Fig. 3.11). This
simulation was desirable if the model was to provide information on the effective
elastic and plastic properties of the IPC and its overall stress-strain behaviour.
To ensure that all nodes on the top surface symmetric boundary remained on a
single plane, only one master node was given the applied displacement and all
the other nodes were made its slaves through a constraint equation forcing
them to displace the same as the master node. The node chosen to be the
master was in the top-left-back corner. The reasons for choosing this node will
become more apparent when the boundary conditions for the left-front and
right-front surfaces are considered. The constraint equation applied to the

nodes on the top surface was
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uZ(Top) = uZ(TLB)’ (39)
where Uyop) IS the displacement in the z-direction of all nodes on the top
surface and uyr.g) is the z-direction displacement of the master node (in the
top-left-back corner). Note that displacement in the z-direction indicates vertical

extension or compression as defined by the axes in Figure 3.8.

The movement of the bottom surface was the most complicated
boundary condition, since its anti-symmetry required rotation about a central
axis running from the bottom-front corner to halfway along the bottom-back
edge (see Fig. 3.4 and 3.7). To understand this movement, it is first necessary
to consider the entire prism unit cell (see Fig. 3.3). If the prism unit cell is
stretched with equal forces pulling at the top and bottom, nodes above the mid-
height would move upwards and nodes below the mid-height would move
down. Returning to the half prism unit cell, it should be noted that the axis of
anti-symmetry sits at half the height of the prism unit cell. Therefore, bottom
surface nodes to the right of the axis fall below half the height of the prism unit
cell and would move down when stretched, and nodes to the left of the axis fall
above half the height of the prism unit cell and would move up (see Fig.3.12).
The axis of anti-symmetry itself remains fixed in the z-direction. Since the
bottom surface must act such that the half prism unit cell when rotated 180
degrees will create the bottom half of the prism unit cell these downward and
upward movements must be equal. To ensure this, the z-displacements of
nodes to the right of the axis were made slaves to the negative z-displacements

of nodes to the left of the axis through the following constraint equation:

uz(R‘ghtBottom) = _uz(LeftBottom)' (310)
where U, rightsottom) IS the z-direction displacement of bottom surface nodes on
the right side of the axis, and uygefsotom) IS the z-direction displacement of

bottom surface nodes on the left side of the axis.

Taking the above discussion of vertical stretching further, it should be
noted that this stretching would cause lateral contraction in relation to the
constituent phases’ Poisson’s ratios. This lateral contraction means that for
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After displacement:

Before displacement:

Uy(TLB) .
VA
*_ Slave nodes —
X Master node
Figure 3.11. Top surface boundary condition Figure 3.12. Bottom surface boundary condition

nodes on the right side of the axis, the x-displacement is towards the left and
that for nodes on the left side it is towards the right. The y-displacements on
both the right and the left of the axis are the same (if a node on the left moves
forward a node on the right does also). Two more constraint equations can

ensure that these x and y-displacements are met:

l"Ix(RightBottom) = _ux(LeftBottom) ' (311)

uy(R‘ghtBottom) = uy(LeftBottom) ' (312)

where Uyrightsottom) IS the displacement in the x-direction of the bottom surface
nodes on the right side of the axis, and uUygefigotom) IS the X-direction
displacement for those nodes on the left side of the axis. The y-direction
displacement of nodes on the bottom surface are denoted as uywightsottom) fOr
those on the right side of the axis and uyefottom) fOr those on the left side of the

axis.

The necessary means to keep the back surface symmetric boundary as
a plane are the easiest to visualize in Figure 3.8. The global coordinate system
that was chosen for the model places the back surface on the x-z plane so that
the planar requirement was met by simply fixing the y-displacement. The x and
z-displacements remain free so the model can still expand or contract as

appropriate. This condition also does not contradict the y-direction constraint
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placed on the bottom, where both right and left y-displacements still remain

equal.

Maintaining the left-front surface as a plane requires control of varying
amounts of x and y-displacement. Consider Figure 3.13, where the top-left-back
corner moves completely in the x-direction and the top-front corner moves
completely in the y-direction (these displacements are necessary since the left-
front surface is a symmetric boundary condition and its displaced position must
be parallel to its original position). At a node somewhere between these two
corners, partial amounts of the x and y-displacements are required so that the
node moves from the original plane and falls on the displaced plane (see inset
of Fig. 3.13). Note that for this intermediate node, the x-component of the
resultant displacement can be viewed as the x-displacement of the top-left-back
corner minus a distance “a”. The distance “a” is related to the y-component of
the resultant displacement such that the following constraint equation can be

found for the x-displacement:

+ (3.13)

Uy (Lestrront) = Ux(TL)

ﬁ l"ly(LeftFront) J

where Uygetirronty 1S the Xx-direction displacement of nodes on the left-front

Top-front corner —_, O

Top-right-
back
corner

Ux(TLB)

Uy

Top View N\

Ux(TLB)

Master Node from Top
(Top-left-back corner)

Figure 3.13. L eft-front surface boundary condition

49



surface, uymg) iS the x-direction displacement of the master node (in the top-
left-back corner), and uyefirrony) iS the y-direction displacement of nodes on the
left-front surface. With this constraint equation, the left-front surface should
remain plane since for any given y-displacement the x-displacement conforms
to the necessary value to place the node on a plane that is parallel to the

original surface.

The right-front surface is quite similar to the left-front surface and should
have a similar constraint equation, except using the x-displacement of the top-
right-back corner in place of that from the top-left-back corner (see Fig. 3.13).
Considering, however, that the x-displacement of the top-right-back corner
should be the same as, but in the opposite direction to, that of the top-left-back

corner, the following constraint equation was derived:

1
ux(RightFront) = _ux(TLB) _ﬁuy(RightFront) ; (314)
where Uyrightrronty IS the displacement in the x-direction of nodes on the right-
front surface, uyrg) is the displacement in the same direction for the master
node (again in the top-left-back corner), and uyrighrrony IS Y-direction

displacement of nodes on the right-front surface.

When applying the previous boundary conditions to the surfaces, some
important situations along certain lines and nodes occur that need to be
confirmed. The first involves the axis of anti-symmetry. Nodes on either side of
the axis act in different directions for both the x and z-directions. This situation
requires the x and z-displacements of the axis be fixed since it must act as the
location about which the rotation occurs. At the back end of the axis, there is a
point that is on the back surface; this is the hinge point. All three of its degrees
of freedom are fixed because it is on both the axis (x and z-displacements are
fixed) and on the back surface (y-displacements are fixed). The hinge point is

an important condition since without it, rigid body translation remains possible.

Each edge provides an interesting case, since two surfaces meet along

these lines, and therefore a combination of boundary conditions must be

50



satisfied. In particular, the vertical front, back-left and back-right edges are of
interest since they have the added condition that they must remain perfectly

vertical.

All boundary conditions were added directly to the nodes (the creation of
the nodes is discussed in the next section). This was done through the use of a
simple C++ program, which performed essentially two functions. The first
function of the program was to locate all the surface nodes and note to which
surface they belong, and the second function was the application of the
appropriate boundary condition to those nodes. The details of this C++ program

can be found in Appendix C.

3.4 DISCRETISATION OF THE MODELS

The solution to both the different phase shape IPC models was
established using the finite element method (FEM), which requires the models
to be divided into discrete pieces, or discretised. The conditions involved in the
displacement of the bottom surface necessitate an accurately mapped
discretisation since this boundary condition requires the pairing of nodes on the
left and right sides of the axis of anti-symmetry. This means that the bottom
nodes must be carefully placed so that each slave node is paired with a master
node that is its exact mirror. To meet this need, the model was carefully divided

into smaller volumes that were then discretised in a controlled way.

A view of the spherical model's half prism unit cell broken into smaller
volumes or blocks is shown in Figure 3.14. The bottom surface, as needed, has
the right side as a mirror of the left side (see Fig. 3.14(b)). Once this surface
was set, the initial blocks were placed so that the various elements, when
discretised, would fit together correctly. To create this system of blocks, 107
points were sited at predetermined positions, any arc lines for volumes with
curved surfaces were defined, and groups of eight points were located for the
vertices of each individual block. The region of surrounding material was
separated into twenty-four blocks and the sphere region into thirty-eight, for a

total of sixty-two initial blocks in the spherical model.
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The half prism unit cell for the cylindrical model was handled in a similar
way to that of the spherical model (see Fig. 3.15). The bottom surface of this
model looks the same as the spherical model's (see Fig. 3.15(b)), so the same
process was carried out with care taken to deal with the different geometry
appropriately. The blocks for the cylindrical model were determined by 158
points, arc lines were input for curved surfaces, and groups of eight points were
used to define each block. The region of the surrounding material had forty
blocks and the cylinder region fifty-eight blocks, for a total in the cylindrical

model of ninety-eight blocks.

Three-dimensional isoparametric brick elements with twenty-seven

(b) bottom
surface

":&.

(a) isometric view ‘%& e g
K = T ]

Figure 3.14. Initial blocksfor discretisation of the spherical model (sphere @=85%)
- Thered lines indicate the phase interface

(b) bottom /
surface /
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/
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Figure 3.15. Initial blocksfor discretisation of cylindrical model (cylinder @=39%)
- Thered linesindicate the phase interface
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nodes were used for discretisation. Each face of this element has four corner
nodes, four nodes at the midpoints of the edges and one node at the centre of
the face. In addition to the nodes on the faces, there is a single node in the
interior of the element. This type of element is referred to as Lagrangian
because it possesses nodes that do not lie at either corners or edges. The
Lagrangian type of element was patrticularly useful for these models because it
shows little reduction in accuracy due to angular distortion (Lee & Bathe, 1993),

a problem in both models due to their geometry.

After each of the blocks was defined, they were automatically discretised
by stating the number of subdivisions into which each block was to be divided
along three of its edges. Each subdivision was then filled with the brick
elements. Using this method, all the nodes within the unit cells, in addition to
the 107 points for the spherical model or the 158 points for the cylindrical
model, were defined. Both model geometries were analysed for three different
levels of refinement: 1-1-1, 2-2-2 and 3-3-3, where each number in the
refinement refers to the number of subdivisions along each edge of a block (see
Fig. 3.16). With each increase in the level of refinement, the number of
equations that need to be solved to obtain results increases significantly. Table
3.1 shows the number of elements, nodes and degrees of freedom for each
refinement of both models. After validation of the model (see Section 4.1), the
3-3-3 refinement was used since its solutions were considered the most

accurate and the time for solution not excessive.

The discretisation data for both the phase shape IPC models was
created in two text files through the use of C++ programs. These programs are
provided in Appendices D and E for the spherical and cylindrical models,
respectively. Both programs contain the placement of initial nodes, complex
lines and location of vertices for the mapped division of the basic geometry, as
well as the necessary commands for further subdivision and element
generation. The programs also contain the constituent material information

described in the next section.
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(a) Refinements for Spherical models
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Figure 3.16. Thethree levels of refinement for both models

- Sphere volume fraction = 85%
- Cylinder volume fraction = 39%

3.5 CONSTITUENT MATERIALS FOR THE MODELS

As mentioned in Section 1.2, the objective of this research was to
determine the effect that phase shape has on the elastic and plastic behaviour
of an IPC. To do this, the constituent materials were modelled separately as
linear elastic and non-linear plastic. The main focus of both material models
was the characterisation of the behaviour through some representative
properties. For the elastic behaviour, the effective Young’'s modulus of the
composite was chosen and for the plastic behaviour the effective yield strength
was chosen. Both of these properties were studied as the volume fraction of the
phases and the phase property ratio (the modular ratio or yield strength ratio)

were varied.

3.5.1 Material Properties for the Linear Elastic Analyses

The first step in the analysis of the models was to validate if the results
they calculated were accurate. This was done through linear elastic simulations
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Table 3.1. Elements, nodes and degr ees of freedom in the models

Model Refinement Number of Number of Degrees of
Elements Nodes Freedom
Spherical 1-1-1 62 657 1518
2-2-2 496 4577 12068
3-3-3 1674 14737 40578
Cylindrical 1-1-1 98 979 2380
2-2-2 784 7013 18960
3-3-3 2646 22807 63852

of a uniaxial tension test on all three refinements of both models (the
refinements were described previously) and compared to the Hashin-Shtrikman
bounds described in Section 2.2.1. The phases in the elastic models were
assumed to be isotropic and have only small displacements during deformation.
With these assumptions, only the Young’s modulus and Poisson’s ratios of the

constituents were needed.

For the spherical IPC model, the simulations were carried out with a
specific set of constituent material properties. The specific properties were
taken from Wegner (1997), who used the same spherical model as used in this
research to better understand the behaviour of several experimental IPC’s.
Wegner's material properties were set so that the sphere material was a 420

stainless steel and the surrounding material a bronze:
Es =210 GPa Esuwr = 110 GPa

vs =0.29 Veur = 0.33

By validating the results of the spherical model used in this research with the
model from Wegner’s research, it is also indirectly validating this model with his
experiments. Since this study is only interested in the relative effect phase
shape has on the behaviour of IPCs, it is not necessary to have experimental
verification; however, this does provide an extra level of certainty about the

model results.

To the author’s knowledge, no experimental work such as that of Wegner

(1997) for the spherical model can be used for comparison with the cylindrical
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model. However, as mentioned, such experimental verification is not necessary
for the purposes of this study. For the cylindrical IPC model validation, the ratio
of the Young’s moduli of the two constituent materials was set equal to two and
the Poisson’s ratios were held constant:

E. = 200 GPa Esur = 100 GPa
v.=0.3 Vgur = 0.3

After the models were validated, numerical experiments were simulated
in uniaxial tension to determine the effect of phase shape on the effective
Young's modulus of the IPC. For both models, three series of tests were
analysed, each series consisting of a different modular ratio of the phases. The
stiffer phase was either the sphere or cylinder, depending on the model
considered, and had a Young’'s modulus kept at a constant value of 200 GPa.
The more flexible phase was always the surrounding material and, depending
upon the series, it had a Young’s modulus of 100 GPa, 20 GPa or 2 GPa. This
variation allowed modular ratios of 2, 10 and 100 to be studied. The Poisson’s
ratio for each phase was held equal to 0.3 for all analyses. Within each of the
three test series, the volume fraction of the phases changed. The spherical
model was tested at volume fractions of the sphere phase of 75%, 80%, 85%,
90% and 95%. The cylindrical model, with its much wider range of applicable
IPC geometry, was tested at volume fractions of the cylinder phase of 2%, 16%,
39%, 64% and 84%. The results presented in Section 4.2 therefore describe
IPC elastic behaviour for both the spherical and cylindrical models at different

phase property ratios over the entire volume fraction ranges of each model.

As noted at the end of Section 3.4, the elastic constituent material
information was input into both models through part of the C++ programs in
Appendices D and E. The commands necessary to create linear elastic models
are shown in Step 7 of the spherical discretisation program. More information
on the formulation of the linear elastic FEM can be found in Bathe (1996).
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3.5.2 Material Properties for the Non-linear Plastic Analyses

The same spherical and cylindrical models used for the linear elastic
analyses were used for the non-linear plastic analyses, so further validation was
considered unnecessary. The focus for the non-linear analyses was on
determining the effect phase shape had on the effective yield strength of the
IPC. In this case, two different series of tests were run at yield strength ratios
for the constituents of 2 and 10. The surrounding material’s yield strength was
always that of the weaker phase, having a constant value of 110 MPa, and the
stronger sphere and cylinder phases were given yield strengths of 220 MPa and

1100 MPa for each of the yield strength ratio series, respectively.

For the plastic model, it was assumed that the constituents were
isotropic, showed kinematic non-linearity and their deformation behaviour could
be approximated as bi-linear. Kinematic non-linearity assumes that large
displacements and strains are likely to occur as the models begin to behave
plastically. To assume a bi-linear stress-strain path, constituent properties other
than the yield strength were needed. These included the Young’s modulus,
Poisson’s ratio, strain hardening modulus (the slope of the stress-strain
behaviour after yielding), and maximum allowable effective plastic strain. For
both models, all these properties were held constant for all analyses. The
Young's modulus of the surrounding phase was set at 100 GPa and that for the
sphere or cylinder phase set at 200 GPa. It was considered to be reasonable
that the phase with the greater strength would also have a greater stiffness, so
a small difference in Young’s modulus was introduced. The Poisson’s ratios,
strain hardening moduli and maximum allowable effective plastic strains for
both phases were set equal to 0.3, 0.001, and 0.2, respectively. In each of the
two yield strength ratio series, the five different volume fractions listed for each
model in Section 3.5.1 were considered again for the plastic analyses.

Data for the non-linear plastic IPC models was created for the models
using the commands in Step 7 of Appendix E for the cylindrical model. These

commands could also be added to the program in Appendix D for the spherical
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model. Further information about the formulation of non-linear analyses using
the FEM can be found in Bathe (1996).

3.6 IMPLEMENTATION OF THE MODELS

To determine the effective material properties and deformation behaviour
of the model IPCs, solutions were found using the commercial FEM software
application ADINA, version 8.0 (ADINA R&D Inc., 2002a). As mentioned in
Section 3.3, a simple uniform displacement was applied to the top surface of
each model to simulate a uniaxial tension test. ADINA was used to predict the
model response to this simulation, from which solutions for the effective
Young's modulus and yield strength could be established. The results of these
solutions are provided in Chapter 4. In this section, the procedure for
completing a simulation and finding the solutions is described.

Simulation of a uniaxial tension test was carried out by applying a
displacement in the z-direction to the node in the top-left-back corner. Since all
other nodes on the top surface were constrained to this master node, a uniform
vertical displacement across the entire surface was created (see Section 3.3 for
more details about the application of this boundary condition). For the linear
elastic analyses, the actual displacement used was not important, so to simplify
later calculations, a uniform strain of 0.001 was chosen. In the non-linear plastic
analyses, strain incrementally increased to a maximum of 0.005 or until ADINA

was unable to converge towards a solution.

With the desired strain known, the appropriate displacement for use by
ADINA was determined by multiplication of that strain with the distance between
the top surface and the hinge point (see Section 3.3 for discussion of this
boundary condition). The hinge point is fully fixed such that it is the only point in
the model that is not displaced during the simulation. This makes it a desirable
reference point for determining the displacement of all other points within the
models, including the nodes on the top surface. For the simulations with elastic
conditions, the required uniaxial tensile displacement was therefore given by
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o,=¢&, 1, (3.15)

where &, is the displacement in the z-direction to be applied to the master node
on the top surface, €, is the desired applied strain to the master node on the top

surface and |, is half the height of the prism unit cell.

ADINA offers both direct and iterative solution methods. Based on
information provided by ADINA R&D, Inc. (2002b), a direct solution method was
used for the linear elastic analyses. All direct solution methods are based on the
process of Gauss elimination, in which the set of simultaneous equations
defining the problem are dealt with all at once. This requires significant amounts
of memory for storage. To reduce the memory requirement, a sparse matrix
solver was used. According to Bathe (1996), sparse solvers reduce memory
requirements and the time to solution by removing operations on matrix
elements that remain zero throughout the solution procedure. This is particularly
relevant for large three-dimensional problems like those found with these

spherical and cylindrical phase shape models.

For the plastic analyses, two nested iterative solution methods were
used to solve for the IPCs’ stress-strain behaviour. Since the behaviour was
non-linear, it was necessary to assume that each succeeding point along the
stress-strain curve had the properties of the previous point. By making this
assumption, a system of simultaneous equations was created that could be
solved by an iterative procedure known as the incomplete Cholesky conjugate
gradient method. This provided a definition of the succeeding point, but due to
the assumption of the properties of the previous point it was likely inaccurate. A
correction was now completed so that a more accurate set of simultaneous
equations was created, which again were solved using the incomplete Cholesky
conjugate gradient method. The iterative process of solutions and corrections is
referred to as the full Newton method, and it was continued until it reached an
accurate solution for the succeeding point along the IPC’s stress-strain curve.
The non-linear plastic analyses therefore required the definition of a series of

displacement increments. These increments used for this study are given in
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Section 4.3.1. More information on this solution method and other iterative
solution methods may be found in ADINA R&D, Inc. (2002b) and Bathe (1996).

After the models had been solved, the effective Young’s modulus and
yield strength of the IPC’s could be determined. The first step in obtaining the
effective Young’s modulus was to find the reaction force on the top surface
required to produce the applied displacement. Since all the nodes on the top
surface were slaved to the master node in the top-left-back corner, its reaction
was also the total reaction of the top surface. The applied stress was then

established by dividing this reaction force by the area of the top surface,

g =rta (3.16)

a 1
Aop

where 0, is the normal stress on the top surface, F; is the reaction force at the
master node due to the applied displacement, and Ay is the area of the top
surface. The effective Young’'s modulus was then simply determined through

the use of Hooke’s law for uniaxial conditions,

E, = (3.17)

m“’} |mQ

where Egf is the effective Young's modulus for the IPC and g, is the known

applied strain.

The effective yield strength of both IPC models was obtained using the
standard experimental criterion, which is the stress at a strain offset of 0.002.
The effective yield strength was determined for each model through linear
double interpolation of the stress-strain plot of the IPC’s deformation behaviour
with the offset line (a line parallel to the effective Young’s modulus with its origin
at the strain offset). In some cases, the models’ simulations failed prior to
reaching their offset yield strength due to the inability of ADINA's iterative solver
to converge to a solution. It could not be definitively determined if these
convergence failures were due to mathematical difficulties from the distortion of

elements or the failure of the materials. The possible causes for the failures are
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discussed in greater detail in Section 4.3. In these premature failure situations,
the maximum stress that was reached was used in place of the yield strength,

though it should be noted that significant error may exist as a result.
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CHAPTER FOUR
NUMERICAL MODELLING RESULTS

The numerical models described in the previous chapter provided a
method for determining the influence of phase shape on the mechanical
behaviour of interpenetrating phase composites (IPCs). Prior to using the data
generated by these models, it was first necessary to validate that they provided
an accurate solution to the theoretical model and that they had comparable
results to other sources from the literature. Several procedures were used for

validation and are discussed in Section 4.1.

After the models’ responses were validated, an examination of the linear
elastic behaviour of IPCs was conducted; this is described in Section 4.2. This
study was separated into two distinct subsections. The first subsection focussed
on the macroscopic behaviour of the models, specifically considering the
dependence of the effective Young’'s modulus on the elastic modular ratio, the
volume fractions of the phases, and the phase shape. In the second subsection,
the mechanisms within the microstructure that produced the macroscopic

behaviour were analysed.

A similar procedure was followed for the study of the non-linear plastic
behaviour of IPCs, described in Section 4.3. The first part of this study again
considered the models’ macroscopic behaviour; in this case, it was the effective
yield strength of the IPCs that was of interest. The second part then sought
explanation of the observed behaviours based on the mechanisms acting within
the microstructure. The discussion of results in Sections 4.2 and 4.3 forms the
basis for the conclusions presented in the next chapter regarding the effect of

microstructural phase shape on the behaviour of IPCs.
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4.1 VALIDATION OF NUMERICAL MODELS
4.1.1 Geometry and Boundary Condition Validation

An initial step after the completion of each model was a basic review of
its geometry and boundary conditions to ensure that they were correct. This is a
simple but often overlooked step in finite element analysis, and when not
completed can lead to poor results due to misrepresentation of the IPCs. The
intended geometry for both the spherical and cylindrical hexagonal close-
packed (HCP) models was checked quickly by examining graphical outputs
provided by the program ADINA (ADINA R&D, Inc., 2002a). Both models at
each of their volume fractions were plotted so that all external surface nodes
could be visually inspected and their correct positioning confirmed. Internal
nodes along the interface between the two phases were also checked by

making separate plots of each phase.

The boundary conditions were checked by examining the displaced
geometry after solving the model simulations for the linear elastic case. It is
important to note that the boundary conditions for both elastic and plastic
simulations were the same, so the models were only examined from the elastic
simulations. To ensure that results were as expected, nodes were chosen from
each surface and edge such that each condition or combination of conditions
could be tested. The independent degree of freedom displacements for each
chosen node were then used to calculate the dependent degree of freedom
displacements. Where discrepancies existed between the calculated behaviour
and that which was expected, revisions to the boundary conditions were made
until the model behaved properly. It is important to emphasize that this was not
an attempt to manipulate the global results and implicitly control the
macroscopic behaviour. Changes were always based on ensuring the correct

behaviour of single nodes, not on the overall behaviour.
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4.1.2 Discretisation Validation

The essential step in providing sufficient accuracy with the finite element
method (FEM) is deciding the level of refinement for the discretised model. Two
separate methods were used to examine three different refinements of both
models so that the correct refinement level could be determined (the three
refinements were previously discussed in Section 3.4). The first method
considered the global or macroscopic behaviour of the models and the second
method their local or microscopic behaviour. Both of these methods were
applied to solutions under only linear elastic conditions. It was assumed that the
best level of refinement for elastic conditions would also be the best refinement
for plastic conditions.

In the validation method based on global behaviour, the effective
Young's modulus was determined for both models at each of its volume
fractions and for all three refinement levels. This method is based on the fact
that increasing the level of refinement should increase the accuracy of the
global result so that convergence to the exact solution should occur. This
convergence is shown with example solutions for the spherical model and
cylindrical model in Figures 4.1 (a) and (b), respectively. The improvement in
accuracy for these examples is evidenced by the reduction in the effective
Young's modulus with the increase in the number of nodes. The percentage
decrease between each level of refinement is provided in Table 4.1. Using

either the figures or the table, it can be observed that there is only a small

Table 4.1. Conver gence of effective Young's moduluswith increasing refinement

Effective Young's

Model Refinement Modulus Difference

[GPa] [%]

Spherical 1-1-1 191.250 n/a
(¢ = 85%) 2-2-2 191.229 0.0112
3-3-3 191.225 0.0021

Cylindrical 1-1-1 132.285 n/a
(0= 39%) 2-2-2 132.202 0.0624
3-3-3 132.198 0.0035




improvement between the 1-1-1 refinement and the 2-2-2 refinement, and an
even more minuscule change between the 2-2-2 and 3-3-3 refinements. While
results are shown only for two examples, similar results were obtained for both
models at each volume fraction (see Appendix F). This suggests that any of the
refinements are sufficient for the determination of the macroscopic behaviour,

though slight improvements in accuracy are possible at each additional
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refinement level.

The second method of discretisation validation was through a
consideration of the local behaviour within the models. This method involved
examination of the effective stress distribution in the models provided by plots
from ADINA. The purpose of these examinations was to identify the existence
of discontinuities along element boundaries that suggest local errors in the FEM
calculations. The effective stress distribution was chosen as the field variable
for study based on its importance to the microstructural study in Section 4.3.

Example cases for both models are presented in Figure 4.2, showing the
effective stress contour plot for the 1-1-1 refinement level. The stiffer and more
flexible phases for each model can be clearly seen due to the large stress
discontinuity at the phase interface. This discontinuity is expected since the
constituent materials of the phases have different stiffness values, and since
strain compatibility is ensured across the interface, the stress distributions
should differ. Such effective stress discontinuities should not, however, exist

within each separate phase where material properties are uniform.

Examples are shown in Figure 4.3 of discontinuities in the more flexible
phase for each model at the 1-1-1 refinement level. These discontinuities exist
due to an insufficient number of calculation points to adequately solve for the
stress distribution in the local regions. The change in the stress distribution
associated with increasing levels of refinement is considered by examining only
the regions within the highlighted squares. As shown in Figure 4.4, the stress
distribution becomes smoother and more continuous across element
boundaries as the number of degrees of freedom in these regions increases
due to refinement. This improvement has a beneficial effect on the global
response of the model leading to slightly more accurate behaviour with each
refinement level. This was shown by the convergence of the effective Young's
modulus in the previous method. The improvement at the local level is more
pronounced, as significant shifts in the region’s stress distribution are observed

with increasing levels of refinement.
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(@) (b)
Figure4.2. Effectivestressdistributionsat the 1-1-1 refinement level:
(a) spherical model at ¢ = 85% and
(b) cylindrical model at @ = 39%

(b)

Figure4.3. Effective stressdistributionsin the moreflexible phaseat the 1-1-1
refinement level:
(@) spherical model at @ = 85% and
(b) cylindrical model at @ = 39%

(a) Sphere (1-1-1)

(b) Sphere (2-2-2)

(c) Sphere (3-3-3)

Figure 4.4. Increasing accuracy of effective stressdistribution with increasing r efinement
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After consideration of both validation methods, the 3-3-3 refinement level
for both models’ discretisation was used in all further analyses. The global
method determined that any of the three refinements would produce essentially
the same level of accuracy for macroscopic values such as the effective
Young's modulus. However, the local method showed significant improvement
with the use of higher refinement levels in the microscopic representation for
both models. In the second part of Section 4.2 and Section 4.3, a
microstructural analysis requires good local accuracy, making the higher levels
of refinement more desirable. Finally, simulation at increasing levels of
refinement produced only a slight increase in the time to solution, making the 3-

3-3 refinement the preferred choice.

4.1.3 Comparison of Results to Literature

Validation of the geometry and boundary conditions was based on a
gualitative inspection of model behaviour that may allow mistakes to sneak
through if insufficient care is taken. Even if this validation was successful, it still
did not ensure that the results were a good representation of any real material.
The discretisation validation improves the accuracy of the results but has no
effect on certifying that the results are not accurate around an incorrect answer.
To solve these problems, a comparison can be made to research that was

previously reviewed in the second chapter.

A check for the validation of the geometry and boundary conditions of the
models may be made by comparison of the results to the Hashin-Shtrikman
bounds. These bounds, reviewed previously in Section 2.2.1, describe the
range of possible elastic behaviour for any isotropic composite material. Since it
was stated in Section 1.2 that both the spherical and cylindrical models are
isotropic due to the use of the HCP system, they should both produce results
that lie within the Hashin-Shtrikman bounds. Using the Equations 2.9 — 2.13,
the Hashin-Shtrikman bounds on the effective Young's modulus may be

computed.
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Figure 4.5 shows a comparison of the Hashin-Shtrikman bounds with the
data from both models. In this comparison, an elastic modular ratio of 2 was
chosen in order that the bounds would be quite restrictive. The volume fractions
of the stiffer phase for the spherical model were 75%, 80%, 85%, 90% and
95%, and those for the cylindrical model were 2%, 16%, 39%, 64% and 84%.
The important point to note is that despite how tight the bounds are, the results
for both models at all volume fractions are within them. This suggests that the
models accurately represent an isotropic composite and provides some
confidence that the validation of the geometry and boundary conditions was

correct.

The final check for accuracy requires the comparison of results to those
of an actual IPC. It should be noted that this is not strictly required, since the
objective of this study was to determine the general influence of phase shape
on IPCs rather than its influence on a specific IPC. However, in the case of the
spherical model, an easily comparable case exists in the work of Wegner
(1997). Wegner was able to obtain a close comparison of his model results to
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Table 4.2. Comparison of the spherical models of thisthesis and Wegner (1997)

Thesis Model Wegner's Model

Volume Fraction Young's Modulus Young's Modulus Difference
[%] [GPa] [GPa] [%]
75 179.562 179.6 0.0210
83.2 189.067 188.9 0.0882
95 203.573 203.6 0.0135

those of an experimental IPC, so a close comparison to Wegner’'s model also

guarantees a close comparison to an actual IPC.

Wegner analysed his spherical HCP model for stiffer phase volume
fractions of 75%, 83.2% and 95% with an elastic modular ratio of 1.9. The
effective Young’s modulus results for the spherical model developed in this
thesis for the same volume fractions and elastic modular ratio are shown with
Wegner's in Table 4.2. At all three volume fractions, the difference between
results is less than a tenth of a percent. This is an insignificant difference, and
in the 75% and 95% volume fraction cases, the difference might be smaller, the
comparison being limited by the precision in which Wegner listed his results.
This provides some assurance that the accuracy of at least the spherical model

results is comparable to that of actual IPCs.

4.2 LINEAR ELASTIC BEHAVIOUR OF INTERPENETRATING
MICROSTRUCTURES

4.2.1 Macroscopic Behaviour

The initial stress-strain behaviour of the two ductile phase IPC is linear
elastic and it is therefore of interest to determine how the interpenetrating
microstructure might affect this low strain behaviour. The linear elastic range of
behaviour was studied through a determination of the effective Young's
modulus of the composite as several variables were changed. These variables
included the phase elastic modular ratio and two geometric parameters of the
microstructure: the volume fraction and shape of the phases.

A common way to display effective composite properties in relation to

microstructural geometry and constituent properties is through a plot like those
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shown in Figure 4.6. In both figures, the effective Young's modulus of the
composite is plotted against the volume fraction of the stiffer phase. It is
important to note that for all model simulations, the stiffer phase was always
either the sphere or cylinder portion of each of the unit cells. The surrounding
material was always the more flexible phase. Three different elastic modular

ratios were considered by reducing the Young’'s modulus of the more flexible
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phase while keeping the Young’'s modulus of the stiffer phase the same. Figure
4.6 (a) shows results for ratios of 2 and 10 while the results for a ratio of 100
are plotted separately in Figure 4.6 (b) to prevent the graphs from becoming too
cluttered. The Hashin-Shtrikman upper and lower bounds are also plotted for
each of the elastic modular ratios. As discussed in Section 2.2.1, these bounds
provide the range of behaviour for isotropic composites and they were
calculated using Equations 2.9 - 2.13. The raw data that was taken from the
uniaxial tension simulations used to create Figure 4.6 can be found in Appendix
G.

Considering first the influence of volume fraction, it can be seen from
Figure 4.6 that the effective Young's modulus of the composite increases with
greater amounts of the stiffer phase. This effect is due to the stiffer phase
occupying a greater proportion of the composite’s microstructure as its volume
fraction increases and therefore having a more dominant influence on the
overall composite behaviour. This trend occurs for both the spherical and
cylindrical unit cells, as well as the upper and lower Hashin-Shtrikman bounds.

Studying each set of bounds more closely reveals that they all diverge
through an intermediate volume fraction range and converge at either end of
the range. The convergence is necessary since the ends of the volume fraction
range denote samples of the pure constituent phases. At 0% volume fraction of
stiffer phase, only the more flexible phase exists, and at 100% volume fraction,
only the stiffer phase exists. Both bounds therefore converge upon the single
property values of the pure phases at the extremes. The maximum divergence
of the bounds occurs within the range where there is a majority of the stiffer
phase, though the actual maximum value occurs at different points for each
elastic modular ratio. Maximum divergence occurs at volume fractions of the
stiffer phase of approximately 60%, 75% and 90% for the elastic modular ratios
of 2, 10 and 100, respectively.

The properties of the constituent phases have a very noticeable effect on

the Young’s modulus of the composite. An increase in the elastic modular ratio
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shifts the composite behaviour downwards, since there is increasing
compliance of the more flexible phase. The Hashin-Shtrikman bounds also
differ noticeably with changes in the elastic modular ratio. For a small modular
ratio of 2, the bounds are quite restrictive, roughly approximating a linear
relationship between the properties of the pure phases. When the modular ratio
is increased to a high value of 10, the bounds have substantially diverged and
no longer follow this rough linear behaviour between the phase properties
(though the lower bound shows a much greater deviation from the straight line).
At a modular ratio of 100, where the more flexible phase can be considered
almost non-existent, the bounds are exceedingly divergent, with the lower
bound offering little restriction on effective behaviour. Since all these bounds
provide the range of possible behaviour for an isotropic composite, it can be
seen that the elastic modular ratio strongly influences this range; essentially,
the higher the elastic modular ratio, the greater the range of potential composite

behaviour.

The microstructural shape of the phases also influences the behaviour of
IPCs. This influence is imperceptible when the elastic modular ratio is small
(e.g. at a value of 2). For low modular ratios, the phases of the composite are
similar in terms of stiffness and the bounds on effective behaviour are
restrictive. The effective Young’s modulus of the composite can be predicted
accurately knowing only the volume fraction of the phases by simply observing
the values for the Hashin-Shtrikman bounds for a modular ratio of 2 at that
volume fraction. Phase shape therefore has a negligible influence on IPCs with

low elastic modular ratios.

With higher elastic modular ratios such as 10 or 100, the effect of phase
shape becomes much more apparent. When comparing the results for the
spherical and cylindrical unit cell models, it is important not to focus on the
different volume fraction ranges they were tested on; different ranges were
used due to geometric limitations as described in Sections 3.1 and 3.2. Instead,
it should be noted that the results do not coincide over their common volume

fraction range of 75% to 84%. Phase shape is therefore a geometric parameter
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of the microstructure that causes variation of composite behaviour within the
Hashin-Shtrikman bounds. It should also be noted that the model with the
cylinder phase plots above the model with the sphere phase. Since this means
that the cylinder model is able to obtain a greater effective Young’s modulus
than the sphere model at the same volume fraction, the cylindrical phase shape

is more efficient than the spherical phase shape.

To study why the cylindrical shape is more efficient than the spherical
shape, it is necessary to consider the topological parameter of contiguity.
Contiguity, as described in Section 2.1.2, is the ratio of the surface area of a
particle connecting it to pieces of the same phase divided by the total surface
area of the particle. Gurland (1958) defined contiguity in the following equation
form (it was previously listed as Equation 2.2):

C, = L (4.1)
28\70 + af
where Gurland defined contiguity such that S,°® was the surface area between

separate particles of the a-phase and S,°® the interfacial surface area between

a particle of the a-phase and the B-phase.

This definition can easily be applied to the spherical model, where each
individual sphere may be viewed as a separate particle. Considering the
spherical half prism unit cell (see Fig. 4.7), S," is the surface area connecting

the sphere within the cell to its neighbours, or the surface area shown as the
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Figure 4.7. Unit cells showing connectionsto neighbouring particles
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semicircles on the bottom and left-front faces. The interfacial surface area
between phases (S,°?) is then the area between phases interior to the unit cell.
If the entire sphere is considered, the amount that is in the half prism unit cell is
only one-twelfth of the total. This means that S,°® and S,®® should be twelve
times greater, but since contiguity is the ratio of these values, it would remain
unchanged. Contiguity can therefore be determined by considering only the

material within the half prism unit cell.

Gurland’s definition for the surface areas becomes somewhat more
problematic for the cylindrical model, as the proper place to designate individual
cylinder particles is not easily determined. Using the same procedure with the
cylindrical half prism unit cell as was used with the spherical half prism unit cell
should, however, provide a consistent definition. In this case, S,°® is the
semicircular areas connecting cylinders in adjacent unit cells (see Fig. 4.7) and
S, is again the surface area between the phases interior to the unit cell. The
detailed calculations used to determine the contiguities for each model are

provided in Appendix H.

The contiguity for both models at each of their different volume fractions
can be calculated to produce Figure 4.8. The contiguity of the stiffer phase is
plotted against the volume fraction of the stiffer phase. Along with curves for the
spherical and cylindrical models, dashed lines have been added to extrapolate
the data to the extremes. Figure 4.8 may be used to determine the influence of
shape on the relationship between contiguity and volume fraction. First, this
influence near the extreme of 100% contiguity indicates that none of the more
flexible phase exists, so the volume fraction of the stiffer phase is 100% for both
models at this point. When 0% contiguity exists for the cylindrical model, none
of the stiffer phase exists so the volume fraction in this case is 0% (detailed
reasons for this were discussed in Sec. 3.2). For the spherical model, 0%
contiguity marks the lower percolation point where the spheres are no longer in
contact. This was calculated in Section 3.1 to be at a volume fraction of 74.05%

of the stiffer phase.
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Figure 4.8. Relationship between contiguity and volume fraction

A second influence of phase shape is the curvature of each models’
relationship on Figure 4.8. Careful study of each curve shows that near the low
end the contiguity grows with volume fraction at a decreasing rate, evidenced
by concavity towards the right (this is more obvious with the cylindrical model
than the spherical model, but it does exist for both). There is then a region
approximating a linear relationship, followed by an increasing contiguity growth
rate. The region with an increasing rate of contiguity growth is shown by the

concavity at the upper end towards the left.

This behaviour is related to the relative growth rates of the stiffer phase
interconnection area (S,%%) and the interfacial surface area (S,**) with volume
fraction, which controls the growth of contiguity (see Equation 4.1). In the
cylindrical model, where the behaviour is more obvious, S,°* and S,°® both
begin to grow as the radius of the interconnection between adjacent cylinders
increases from very small values, but the value S,°® grows more quickly, thus
reducing the possible contiguity growth (consider Fig. 4.9(a), (b) and Fig. 4.10).

With further increase of the radius of interconnection (between volume fractions
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Figure 4.9. Surface areas for the cylindrical model (S,** shown asred
semicircles and S,°® shown as yellow areainternal to cell)
(8 Volume fraction = 2%, contiguity = 6%
(b) Volume fraction = 16%, contiguity = 19%
(c) Volume fraction = 39%, contiguity = 34%
(d) Volume fraction = 64%, contiguity = 52%
(e) Volume fraction = 84%, contiguity = 73%
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of 16% and 64%) the value of S,*® continues to grow and S,** shows slowly
increasing and then slowly decreasing growth (Fig. 4.9(b), (c), (d) and Fig.
4.10). The changing behaviour of S,*® is due to limitations enforced by the unit
cell boundaries and the intersection of the cylinders, resulting in a flattening of
its curve. Thus contiguity growth follows the nearly linear behaviour of S,°% in
this region. Finally, at higher volume fractions, while S,”® grows at a more rapid
pace, S,*® becomes increasingly limited such that it rapidly decreases in value,
leading to the upper zone of Figure 4.8 where both these surface area

parameters contribute to an increasing growth rate for contiguity.

In the spherical model, S,°® shows nearly identical behaviour to that of
the cylindrical model, but the S,*® curve differs since it has only a decreasing
behaviour (see Fig. 4.10 and Fig. 4.11). The nature of the contiguity — volume
fraction curves (Fig. 4.8) is, however, very similar for both models. This is due
to the initial slow increase of S,° and slow decrease of S,**, becoming a rapid

increase and decrease, respectively, as volume fraction increases. This
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Figure 4.11. Surface areasfor the spherical model (S,”® shown asred
semicircles and S,°® shown as yellow areainternal to cell)
(8 Volume fraction = 75%, contiguity = 5%
(b) Volume fraction = 80%, contiguity = 28%

(c) Volume fraction = 85%, contiguity = 47%
(d) Volume fraction = 90%, contiguity = 65%
(e) Volume fraction = 95%, contiguity = 82%
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changing behaviour again results from the limitations set by the boundaries of

the unit cell, and produces contiguity growth that increases with volume fraction

The third point of interest from Figure 4.8 is that the curve for the
cylindrical model always lies above the curve for the spherical model, indicating
that it is more efficient at creating contiguity since less volume fraction of the
stiffer phase is always needed. This efficiency difference is greatest at the
percolation point of the spherical model (the volume fraction equals 74.05%)
where the curves have the greatest vertical difference. As volume fraction
increases above the spherical model’s percolation point, its contiguity grows
much more rapidly than that of the cylindrical model. As an example, at the
volume fraction of 75% the contiguities of the spherical and cylindrical models
differ by approximately 0.59, while at a volume fraction of 90% they differ by
only about 0.18. This is a reduction in contiguity difference of 0.41 over a

volume fraction change of only 0.15.

The discussion of the contiguity — volume fraction relationship should be
kept in mind as the influence of contiguity on the effective Young’s moduli of the
models is studied using Figure 4.12. Only the results for an elastic modular ratio
of 10 are shown, since it was thought to be a reasonable intermediate case
between the ratios of 2 and 100, and the general trends were similar for these
other two cases. The spherical model plots above the cylindrical model and
labels indicating the volume fraction of the stiffer phase have been placed
beside each of the calculated data points. Also plotted are dashed lines
indicating the extrapolated behaviour for contiguity near 0% and 100%. An
examination of the behaviour near the extremes shows results that could be
predicted from the previous discussion. A contiguity of 100% again indicates
that none of the more flexible phase exists, so the effective Young’s modulus
corresponds to that of the stiffer phase. Contiguity of 0% for the cylinder
indicates that none of the stiffer phase exists and the effective Young’s modulus
becomes that of the more flexible phase, and contiguity of 0% for the spherical
model again notes the lower percolation point where the spheres are no longer

in contact.
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From the graph in Figure 4.12, a few more observations about the effect
of phase shape on IPCs can be made. First, it is interesting to note that despite
tremendously different amounts of the stiffer phase, the 75% volume fraction
sphere model has a nearly identical contiguity to the 2% volume fraction
cylinder model (the contiguities for these sphere and cylinder models are
approximately 5% and 6%, respectively). The fact that the effective Young's
moduli for these two models are so different shows that contiguity is not the
only geometric parameter of the microstructure that affects composite elastic
behaviour; otherwise they should be equal. Second, as in Figure 4.8 the
greatest difference between each of the models’ curves is at the percolation
point of the sphere model. Above this point, the results for the spherical model
rapidly converge towards those of the cylindrical model. This point is considered

in more detail in the following discussion.

To properly understand what Figure 4.12 reveals about the influence of

phase shape on contiguity for macroscopic elastic behaviour, a value for the
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effective Young’'s modulus needs to be examined. As an example, consider 105
GPa, which corresponds to the sphere model at the 75% volume fraction and
the cylinder model at the 66% volume fraction. The contiguities for these sphere
and cylinder models are 5% and 54%, respectively. To achieve a similar
effective Young’s modulus by using the cylinder phase shape in place of the
sphere phase shape, a 9% reduction in the necessary volume fraction of the
stiffer phase is possible due to the 49% increase in the contiguity. Essentially,
the cylinder shape provides a more advantageous positioning of the stiffer
phase than the sphere shape (this was determined previously using Fig. 4.8).
This allows the stiffer phase a greater area for interconnection through which
stress can be directly transferred. The greater efficiency in stress transfer
possible with the cylinder shape therefore allows a reduction in the required
amount of stiffer phase to reach the same effective Young’'s modulus as the

sphere shape.

Table 4.3 lists further comparisons of the volume fraction and contiguity
for each model as the effective Young’s modulus increases. It can be seen that
the amount that the volume fraction of stiffer phase can be reduced when using
the cylinder instead of the sphere shape decreases as the model results
converge at higher volume fractions. Simultaneously, the difference in contiguity
between the two shapes also decreases.

From the previous discussions in this section, it should now be apparent
that phase shape influences the elastic properties of an IPC through both

volume fraction and contiguity, and that the effect of these parameters is

Table 4.3. Comparison of the effective Young' s modulus to the topological parameters

Effective Vol. Frac.  Vol. Frac. Difference | Contiguity = Contiguity  Difference
Young's of of between of of between
Modulus Spheres Cylinders  Vol. Frac. Spheres Cylinders  Contiguity
[GPa] [%] [%] [%] [%]
105 75 65.70 -9.30 5 54.27 49.27
124 80 73.17 -6.83 28 62.00 34.00
142 85 80.24 -4.76 47 69.32 22.32
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coupled. Despite the coupled nature of these parameters’ influence, it is
obvious that they affect the effective Young’s modulus to different degrees, as
shown by the plots with elastic modulus equal to 10 (see Fig. 4.6(a) and Fig.
4.12). In the case of the effective Young’'s modulus versus volume fraction, the
data for both models plot quite closely together, suggesting that volume fraction
has a strong effect and only a minor influence keeps them from aligning
completely (Fig. 4.6(a)). When the effective Young's modulus is plotted against
the contiguity, the models are far apart relative to the volume fraction figure,
suggesting that contiguity is a minor influence and more significant parameters

exist.

A more direct way to determine the relative influence of each topological
parameter on the effective Young’s modulus is to derive a new parameter that
is a function of the original parameters, such that when the effective Young’s
modulus is plotted against this new parameter, data for the two models are
perfectly aligned. The corrections needed to align the data would then provide
the proportional influences of volume fraction and contiguity. This can be better

understood by considering the form of the alignment function,
Cl, =(A)g, +(B)C,, (4.2)

where Clsp is the parameter denoting the coupled influence of the volume
fraction and contiguity on the stiffer phase, ¢, and Cs, are the volume fraction
and contiguity of the stiffer phase, respectively, and A and B are constants. The
constants are used to correct the alignment of each models’ data such that they
become co-linear. It is a requirement of the function that the sum of A and B
equals 1.0, so that the coupled influence parameter varies from 0% to 100%
just like volume fraction and contiguity. The aligned data is seen in Figure 4.13
with the effective Young’s modulus plotted against the coupled influence

parameter.
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Coupled influence is afunction of volume fraction and contiguity (see EqQ. 4.2)

The correction constants provide a measure of the importance of each
topological parameter. The constant for volume fraction, A, was found to equal
to 0.84, and the constant for contiguity, B, was 0.16. The value correcting the
influence of volume fraction is 5.25 times greater than the value correcting
contiguity. Since a larger value denotes a more important effect, this shows that
volume fraction is the dominant part of the coupled influence. Therefore, the
amount of a phase, rather than its level of contiguity is of greater importance for

the elastic properties of an IPC.

The newly derived coupled influence parameter is of limited value at this
point, since it was derived using data from only two microstructural geometries.
However, if it can be shown to be valid for other interpenetrating morphologies,
this would imply that the effective Young's modulus of an IPC depends only
upon the topological parameters of volume fraction and contiguity (in addition to
constituent properties) and therefore that the effective Young’s modulus can be
reliably predicted if these two variables can be quantified for a given IPC

geometry. This would make the parameter highly useful for predicting the



effective Young’s modulus for different IPCs and optimizing their microstructural

geometries.

4.2.2 Microstructural Stress Mechanisms

In the previous section on the macroscopic behaviour of the different IPC
models, references were made to two geometric parameters of the
microstructure: the phase volume fraction and shape. These parameters are
important because the macroscopic behaviour of composites is dependent on
the average statistical response of its components at the microstructural level.
To complete the study on the elastic behaviour of IPCs, the results of the
previous section should be explained through an investigation of microscopic
behaviour, with specific attention paid to the role of phase volume fraction and
shape. It should be noted that the microstructural investigation discussed in this
section was performed more to explain general trends rather than any specific

local behaviour.

The microstructural analysis consisted of two parts, the first providing
gualitative descriptions of the microstructural behaviour and the second
providing an attempt to quantify those descriptions into more definitive results.
Both of these analyses relied on ADINA’s post-processing functions which
provide many possible plots of various stress distributions for each of the

models.

The qualitative analysis consisted of studying stress distribution plots of
each of the phases within both IPCs to gain an understanding of their
deformation behaviour. Each of these plots was a three-dimensional view of
one of the model's phases, showing contours of the relative stress levels in
different regions. A discussion based on this qualitative data was then used to
analyse how the spherical and cylindrical models were able to resist the applied
strain. To understand this analysis, it is important to understand the referencing
system used for the two IPC models. This system is shown in Figure 4.14 and
should be recalled by the reader during the discussions of the microstructural

mechanisms for the IPCs’ behaviour. Due to time limitations, only the results for
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the intermediate phase property ratio were considered (i.e. for an elastic
modular ratio of 10). The stress distribution plots which form the raw data for

the qualitative analysis are collected in Appendix |.

The stress component chosen to represent each model’s response to the
applied strain was the first principal stress. Since the first principal stress at a
point is the maximum normal tensile stress at that point, it provides the
preferred direction for stress transfer. Plots of this stress therefore indicate the
direction and location of the preferred stress path for the qualitative analysis.
The absolute values of the first principal stress have little meaning, so it was
useful to compare them to a base situation. Base values were obtained by
considering the first principal stress that would have developed had an identical
uniaxial strain been applied to pure samples of each phase. In pure samples of

each phase, the maximum stress would have developed in the direction of the
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Figure 4.14. Reference system for spherical and cylindrical models
(@) Two-dimensional view of either model from top
(b) Three-dimensional view of spherical model from back
(c) Three-dimensional view of cylindrical model from back
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applied strain, since no external lateral load was applied. The first principal

stress in a pure sample of the more flexible phase was therefore

Opy(nt) = Ene (&4 (4.3)

where op1mf IS the first principal stress in the more flexible phase when there is
no stiffer phase, €, is the applied strain equal to 0.001, and E.y is the elastic
modulus of the more flexible phase (this was 20 GPa for an elastic modular
ratio of 10). Similarly, the first principal stress in a sample of the stiffer phase is

JPl(sp) = Esp Ea’ (44)

where 0Opy(sp) IS the stress in the stiffer phase when there is no flexible phase, €,
is the same as above, and Eg, is the elastic modulus for the stiffer phase (200
GPa for an elastic modular ratio of 10). The first principal stresses calculated by
ADINA were normalised by the values from Equations 4.3 and 4.4 for the more
flexible phase and stiffer phase, respectively, to depict the relative stress
difference for an IPC compared to a pure sample of each phase. This
comparison should provide help in understanding how each composite’s

behaviour differs from that of the constituent phases.

The mechanisms affecting the behaviour of each of the two different
microstructures can be determined by considering the qualitative results from
the various plots of stress distributions in Appendix I. An example of the phases’
responses for the spherical model is shown in Figure 4.15. In the stiffer phase,
the plot of the first principal stress shows the preferred stress path to be from
the top surface, down the back surface, towards the interconnection point on
the bottom surface (highlighted as Region 1). Away from this region, stresses
are lower and are shown as Region 2. In the more flexible phase, high first
principal stresses radiate out from the bottom connection and are highlighted as
Region 3. Parts of the more flexible phase away from the bottom connection
carry significantly less stress (Regions 4 and 5).

The reasons for the stress distributions in the spherical model are linked

to the difference in stiffness between the two phases. In Region 1, stress is
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Figure4.15. Normalised first principal stressdistributionsin the spherical model (¢ = 75%)
(a) Stiffer phase showing back, top and right-front surfaces
(b) Stiffer phase showing left-front, bottom and back surfaces
(c) Stiffer phase vector plot showing stress concentration at bottom connection
(d) More flexible phase showing left-front, bottom and back surfaces

transferred vertically in the stiffer phase from the top surface to the bottom
surface, but this transfer is not distributed equally in all directions as stresses
are also laterally transferred through shear away from zones with underlying
more flexible phase (Region 2). This is what causes the concentration of stress
at the bottom connection. The vector plot in Figure 4.15(c) also shows that the
direction of first principal stresses is predominately vertical with convergence
towards the bottom connection. Although the sharply delineated colours of the
contour plots over-emphasise the difference between nearby stresses, for

simplicity it is still useful to view Region 1 as the preferred stress path.

Consider now both Regions 1 and 3 at the phase interface near the
bottom connection. The stiffer phase in Region 1, just above Region 3, has

experienced higher stresses, and therefore larger strains, towards the bottom
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connection. Due to strain compatibility along the phase interface (both phases
are assumed perfectly bonded) the nearby more flexible phase is forced to
stretch to a similar amount. Thus, the high strains in Region 1 transfer stress to
the more flexible phase, causing Region 3 to have increased first principal
stresses. Region 4 of the more flexible phase is also near the phase interface,
but in a zone of low stress. In Region 5, the more flexible phase is bypassed as
a stress transfer path. The presence of this more flexible region between
spheres was the reason for lower stresses along the back surface of the stiffer
phase in Region 2. Stress was more easily transferred through Region 1, the
path of least compliance, leaving Regions 2 and 5 with low first principal

stresses.

Mechanisms affecting the microstructural behaviour of the cylindrical
model are also attributable to the difference in stiffness between the two phases
and may be determined from an examination of the first principal stress
distribution plots (see Fig. 4.16). For the stiffer phase, the preferred stress path
goes from the top surface in the cylinder intersection zone down the back
cylinder (Region 1). Significantly less stress is found in the top cylinder (Region
2) and along the “heel” of the back cylinder (Region 3), suggesting that these
regions lie outside the preferred path for stress transfer. In the more flexible
phase, higher first principal stresses are created in Regions 4, 5 and 6, which
are between vertically adjacent cylinders. Vertical adjacency refers to cylinders
that are nearest neighbours but do not lie on the same horizontal plane (x-y
plane). The use of this definition will become clearer in the following

discussions. In zones away from these cylinders, stresses are reduced.

Two mechanisms account for the stress development in the stiffer
cylindrical phase: axial tension and bending. Axial tension enhances first
principal stresses in Region 1 as a result of the back cylinder and cylinder
intersection zone forming the most direct, low compliance path for load to be
carried through the IPC. The same levels of axial induced stresses do not occur

in Region 2, where the top cylinder is underlain by the more flexible phase, thus
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Figure4.16. Normalised first principal stressdistributionsin the cylindrical model (¢ = 39%)
(a) Stiffer phase showing back, top and right-front surfaces
(b) Stiffer phase showing left-front, bottom and back surfaces
(c) More flexible phase showing back, top and right-front surfaces
(d) More flexible phase showing adjacent cylinders
(e) Stiffer phase vector plot showing first principal stress direction in the back cylinder

interrupting a vertical stress path. Similarly, stress passing vertically through
Region 3 also needs to pass through the more flexible phase, making it a poor

zone for axial stress transfer. Bending stresses in the back cylinder are also
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responsible for its stress response. Since the uniaxial strain applied to the
model is in the z-direction, the back cylinder is displaced towards a more
vertical position. In order for this to occur, extension is required along the side
of the back cylinder with an acute angle to the top cylinder, and contraction
along the opposite side. This provides a reason for the higher tensile stresses
on the left side of Region 1 and the lower tensile stresses on the right side,
including Region 3 (see Fig. 4.16(b)). In Region 2, bending should produce little
stress response, since only minor vertical strains are applied. Without a more
significant displacement of the top cylinder, both axial and bending related

stresses in Region 2 should be negligible.

Although simple in appearance, the first principal stress distribution for
the more flexible phase is a result of a series of interactions between it and the
complex geometry of the stiffer phase. To understand these interactions, it is
necessary to know the positions of several adjacent cylinders whose existence
is imposed by the boundary conditions of the model (the position of several of
these adjacent cylinders is indicated in Figure 4.16(d) by their centrelines; those
unimportant to the following discussion have been omitted). Region 4 forms a
relatively effective pathway for stress transfer due to its constricted position
between the top and back cylinders (which are vertically adjacent). Stress
passes into this region from the top cylinder (Region 2 of the stiffer phase) more
easily than it is able to transfer towards the back cylinder. The stress from
Region 2 is therefore passed down into Region 4, from which it is transferred

into the back cylinder.

The first principal stress in Region 5 is a result of constraint placed on
the more flexible phase by a network of several vertically adjacent cylinders,
specifically Cylinder A, the top cylinder, Cylinder B and the back cylinder.
Although the optimum path for the stress transfer is through Cylinder B to the
cylinder intersection zone and onwards through the back cylinder (this is the
path completely through the stiffer phase as shown in Region 1), the constraint
in Region 5 also makes it a reasonably effective pathway. By limiting the ease

with which the more flexible phase is able to distort, higher stresses are
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supportable in Region 5. This situation also exists in Region 6, between the
vertically adjacent back cylinder and Cylinder C. Cylinder C is enforced by the
anti-symmetric boundary condition and holds the position of the top cylinder
when the half prism unit cell is rotated about its axis of anti-symmetry (see Fig.
3.7; the counterparts for Cylinders A and B have been omitted for clarity).
Region 6 is therefore an extension of the stress response found in Regions 4

and 5, though the majority of this region is closer to the latter.

For Regions 4, 5 and 6, higher first principal stresses arise from
constraint provided by vertically adjacent cylinders. Lower stresses arise in
Region 7 due to the lower constraint imposed on it without these vertically
adjacent neighbours. The top cylinder and Cylinder D are adjacent to each
other and Region 7; however, because they are horizontally adjacent, or
adjacent on a plane perpendicular to the direction of applied strain, they have a

significantly reduced ability to constrain the distortion of Region 7.

Although it was not described here, it should be expected that the
previously explained mechanisms would show slightly different results for
different elastic modular ratios. With an elastic modular ratio of 2, the more
flexible phase is much more similar to that of the stiffer phase and could
therefore be expected to sustain much higher loads. This would make the axial
tension mechanism of stress transfer more dominant in the stiffer phase as an
increased amount of the load could be passed effectively through the more
flexible phase. This would then also increase the stress levels in the more
flexible phase. Alternatively, with an elastic modular ratio of 100, the stress
transfer bending mechanism in the stiffer phase should become dominant

because of the poor ability to transfer load through the more flexible phase.

A more quantitative analysis of results is now undertaken. The data for
the quantitative analysis were taken from ADINA’S post-processing results
calculated at the integration points of each element. As mentioned previously,
the results of interest for the elastic analysis were the first principal stresses,

which were then normalised by Equations 4.3 or 4.4 (depending on the phase
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considered) so that the values used were ratios of the stresses within the IPCs
to those that would occur in pure samples of each phase. The normalised first
principal stresses were then separated by incremental limits dividing them into
sub-domains of the total stress domain. This allowed the number of integration
points within each of these sub-domains to be counted so that the stress
distributions could be determined for each phase of both models. The
distributions were found to be highly dependent upon the increment used to
provide the limits for each sub-domain. A high level of accuracy was obtainable
because the majority of the stresses were distributed within a relatively small
domain (0 to 2 for the stiffer phase data and -1 to 5 for the more flexible phase
data), and it was possible to choose a very small increment for the sub-domains
without creating unmanageably large amounts of data (the increment chosen
was 0.05).

Unfortunately this method provides only an approximation of the
guantified stress distribution because it does not take into account the volumes
of individual elements. In regions of likely stress concentrations, more elements
were placed than in regions of lower stresses to provide a greater degree of
solution accuracy (see the bottom connection in Fig. 4.15 and the intersection
of the cylinders in Fig. 4.16). It is therefore likely that the following data is
biased towards the stress levels found in regions of small elements. Despite
this limitation, the analysis does provide some useful insights into how stress is

transferred through the different microstructures.

The normalised first principal stress distributions for both phases of each
model are shown in Figure 4.17. All the figures contain results for the spherical
and cylindrical models at their lowest, medium and highest stiffer phase volume
fractions (the other two intermediate volume fractions were not considered so

that the figures would not become overly crowded).

Use of the normalised first principal stress distributions should be done
with care taken to properly understand what the figures are indicating. As an

example, consider the stiffer phase of the spherical model at each of its volume
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fractions (see Fig. 4.17(a)). At its 85% volume fraction, normalised stresses in
each of the sub-domains between 0.15 and 1.25 are sustained in 1% or more of
the stiffer phase, while those between 0.75 and 1.0 are sustained in 5% or
more, and only one stress sub-domain takes up as much as 10% of the stiffer
phase. This indicates that there is a gradual variation of stress from the
minimum stress of -0.290 to the maximum stress concentration of 5.48 (the
maximum and minimum stresses are shown in Table 4.4). No stress sub-
domain takes up a significant amount of the stiffer phase and the majority of the
stiffer phase sustains a normalised stress of less than 1.0. It can therefore be
said that the stiffer phase in the spherical model at a volume fraction of 85%
has a non-uniform stress distribution and is not as effective as its base situation

in transferring stress (remember the base situation is that of a pure sample of
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Figure4.17. Quantitative normalised first principal stressdistribution for both models
(a) Stiffer phase of spherical model
(b) Stiffer phase of cylindrical model
(c) More flexible phase of spherical model
(d) More flexible phase of cylindrical model
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the stiffer phase, and although the spheres in the IPC should not be expected
carry a similar level of stress as a pure sample, comparison to a pure sample
provides a means to judge the effectiveness of the phase in transferring stress).
In the case of the stiffer phase of the spherical model at 75%, the stress
distribution appears to be as non-uniform as the 85% model, but in this case an
even larger amount of the stiffer phase carries normalised stresses below 1.0.
The behaviour of the stiffer phase for the 95% spherical model is in stark
contrast to these previous cases. Here 1% or more of the stiffer phase sustains
stresses in each of the sub-domains in the narrow band between 0.75 and 1.25,
and nearly 30% of the stiffer phase sustains normalised stresses in the single
sub-domain centred at 1.0. The stiffer phase in this case has a much more
uniform stress distribution and much more of it appears to be near its base
effectiveness. This is to be expected; since 95% of the sample is made up of
the stiffer phase, it therefore behaves much like the base case of a pure sample

of the stiff material.

An easier way exists to judge the effectiveness and uniformity of
stresses in the phases in each model as compared with the observations made
thus far. Statistically, how effective a phase is compared to its base situation is
represented by the mean normalised first principal stress (the closer the mean
value is to one, the closer it is to the base situation), and the uniformity of the of
the stress distribution is represented by the standard deviation (the closer the
standard deviation is to zero, the more uniform the stress distribution). These
values are listed for each phase of both models in Table 4.4. The use of the
mean and standard deviation is sufficient for the further discussion of the
microstructural mechanisms as long as the physical meaning of these numbers
is kept in mind. It is also important to remember at this point that these values
do not represent a volumetric distribution, but distributions based strictly on a

number count of integration points which represent different volumes.

As just shown in the example for the stiffer phase of the spherical model,
the volume fractions of the phases change the microstructural response. This

situation is, however, more complicated since this change in response could

95



Table 4.4. Statistical data for normalised first principal stresses from the elastic
microstructual analysis
(@) Datafor the stiffer phase of both models
(b) Datafor the more flexible phase of both models

(a) Stiffer Phase
Model Volume Contiguity  Mean Standard Maximum Minimum
Fraction Stress  Deviation  Stress Stress
[%0] [%0]
Sphere 75 5 0.77 0.56 5.86 -0.216
85 47 0.85 0.42 5.48 -0.290
95 82 0.95 0.33 414 -0.361
Cylinder 2 6 0.41 0.23 1.85 -0.435
39 34 0.56 0.32 2.78 -0.527
84 73 0.85 0.35 3.37 -0.630
(b) More Flexible Phase

Model Volume Mean Standard Maximum Minimum
Fraction Stress  Deviation Stress Stress
(%]

Sphere 25 3.66 4.17 18.52 -1.152
15 3.07 2.54 11.02 -0.301
5 2.90 2.12 10.03 0.016
Cylinder 98 1.02 0.11 1.78 0.073
61 1.46 0.46 5.04 -0.587
16 2.21 1.24 20.96 -0.202

have been equally well attributed to change in the contiguity of the stiffer phase.
Both of these topological parameters increase in the example; the volume
fraction of the stiffer phase increased from 75% to 85% and then to 95%, and
simultaneously the contiguity of this phase increased from 5% to 48% and then
to 82% (a comparison of these parameters to each other was made in Sec.
4.2.1). The influence of these parameters is therefore coupled and the following

discussion considers their combined effect.

If the stiffer phase of the spherical model is now studied using the mean
first principal stress and the standard deviation values of Table 4.4, rather than
the plots of Figure 4.17, it can be seen that the mean stress increases and
standard deviation decreases with increasing volume fraction and contiguity.
This shows exactly what the previous discussion had found: that the
effectiveness of the stiffer phase increases and the stress distribution becomes
more uniform as volume fraction and contiguity increase. For the stiffer phase of

the cylindrical model, increasing mean stresses point to a growth in the
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effectiveness of the phase and increasing standard deviation indicates a
decrease in its uniformity with increasing volume fraction and contiguity. It is
likely in both models that the increased effectiveness is due to a greater
proportion of the applied load being transferred directly into and then through
the larger, more connected stiffer phase. This mechanism is attributable to

increases in both topological parameters.

The difference in the influence of volume fraction and contiguity on the
uniformity of stresses in each model requires more careful inspection. In the
spherical model, increasing uniformity requires less stress concentration
towards the bottom interconnection, which is directly related to the phase
contiguity. This is shown by the expanded size of the preferred stress path in
Figure 4.18 as volume fraction and contiguity increase (Region 1 is the

preferred stress path).

In the cylindrical model, careful examination of Figure 4.17(b) shows
each volume fraction of the stiffer phase has two sub-domains possessing large
amounts of the stiffer phase (seen as spikes in the figure). The lower stress
sub-domain likely represents Regions 2 and 3, including the top cylinder and
back cylinder heel (see Fig. 4.16), and the higher stress sub-domain represents
Region 1, which includes the back cylinder. For the 2% volume fraction, the
cylindrical model can almost be broken into two uniform zones, with Regions 2
and 3 having stresses in the lower sub-domain, Region 1 having stresses in the
higher sub-domain, and a small series of sub-domains between these
representing the cylinder intersection between these zones. With the increase
in stiffer phase volume fraction to 39%, the distribution shifts towards the right,
with more of the material in Region 2 having stresses between the spikes (due
to an increased ability to transfer stress from the top cylinder to the back
cylinder through direct transfer or indirectly through the more constrained
flexible phase), and the back cylinder able to sustain higher stresses (though
the back cylinder decreases as a proportion of the total phase). When the stiffer
phase is increased to a volume fraction of 84%, the stress distribution is again

shifted to the right, but with a notable difference. Region 1 is the higher stress
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Figure4.18. Change of bottom connection area and preferred stress path for spherical model
(a) Volume fraction = 75%, contiguity = 5%
(b) Volume fraction = 85%, contiguity = 47%
(c) Volume fraction = 95%, contiguity = 82%
Note: The area bounded by the red line is the preferred stress path (Region 1 of Fig. 4.14).

sub-domain and much of Regions 2 and 3 fall either within the lower stress sub-
domain or the intermediate zone, but significant amounts of Regions 2 and 3
still exist within the broad lower stress region between 0.25 and 0.70. It is this
region of lower stress sub-domains that makes the stress distribution of the
cylindrical model non-uniform even when similar parameters have resulted in

uniformity for the spherical model.

Two reasons suggest themselves for the difference in the models’
uniformity. First, the difference in the spherical and cylindrical models’
behaviours may be due to the difference in the scale of the volume fraction
change between them. A smaller volume fraction change in the cylindrical
model, for example 70% to 90%, might result in its behaviour more closely
matching that of the spherical model. Second, if the stress transfer in the
cylindrical model were due in part to bending, it should be expected that its
distribution would have greater non-uniformity than the spherical model
(bending requires stresses to vary between high and low values in order to
reach force equilibrium). This is suggested by the 2% and 39% cylindrical
models whose means lie approximately midway between the high and low
spikes (see Fig. 4.17(b)).

Before beginning to study the influence of volume fraction and contiguity

on the microstructural behaviour of the more flexible phase for each model, a
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few important points should be made. First, because each successive volume
fraction considered reduces the volume fraction of the more flexible phase (from
25% to 5% for the spherical model and 98% to 16% for the cylindrical model), it
is a certainty that the absolute influence of the phase is decreasing. Second,
the contiguity of the more flexible phase will not be considered. It should be
expected that this phase’s contiguity has some effect; however, high stresses in
the more flexible phase are believed to be a result of stress transferring
between regions of the stiffer phase through an intervening layer of the more
flexible phase. Therefore, without the significance of direct stress transfer
through the more flexible phase, its contiguity appears less important. Finally,
the actual sub-domains used are not shown for this phase, for clarity of the
figures (they are the same as those used for the stiffer phase).

The more flexible phase in the spherical model has a decreasing
effectiveness with increasing volume fraction of the stiffer phase, and an
increasing uniformity (see Table 4.4). This phase for the cylindrical model
shows the opposite trend, with increasing effectiveness and decreasing
uniformity. These differences are related to the dissimilar volume fraction
ranges over which the more flexible phase changed for each model. The
volume fraction change with the spherical model is, relative to that of the
cylindrical model, quite small, and a simple inspection of the stress distributions
(see Fig. 4.17 (c) and (d)) shows the different responses of the spherical model

to be small compared to that of the cylindrical model.

Considering first the spherical model, it can be seen that two zones of
the stress distribution have higher amounts of the more flexible phase (see Fig.
4.17(c)). The notable lower stress sub-domains, between -1 and 1 for all three
volume fractions, contain the phase material closer to the top surface of the
model and away from the high stress transfer region on the bottom surface (see
Fig. 4.15(d)). Alternatively, the series of sub-domains between 1.75 and 4.15
contain the phase material near the bottom surface that experiences high stress
transfer between adjacent stiffer phase spheres. Also important to this model

are the large maximum stress concentrations (see Table 4.4), which
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substantially decrease with the increase in stiffer phase volume fraction. The
combination of these mechanisms causes a reduction of the mean stress (the
effectiveness). Although constraint of the more flexible phase increases
stresses in the top and bottom surface sub-domains, the reduced maximum
stress concentration is the more drastic change. When the reduced maximum
stress concentration is combined with the increase of the top surface stress
sub-domain, it should be expected that the uniformity of the stress distribution
increases. Despite these changes with volume fraction, it should still be noted
that the mean stresses remain high in a more flexible phase with a very non-

uniform stress distribution.

If the cylindrical model stress distribution for the more flexible phase is
now examined, vastly different conditions are found. At the 2% volume fraction,
a highly uniform distribution near the base normalised stress of 1.0 exists,
indicating that the more flexible phase appears to behave as if the stiffer phase
were not there (this situation is similar to the stress distribution that would be
expected for a pure sample of the more flexible phase). This significantly
changes as volume fraction is increased to 39% and then 84%, showing
increasing effectiveness and greater non-uniformity. Both of these phenomena
are due to the increasing deformation constraint on the more flexible phase
provided by the stiffer phase as its volume fraction increases. Increasing
constraint allows a greater amount of stress to be transferred through the more
flexible phase, but this constraint is not equal everywhere. Pieces of the more
flexible phase in more constricted locations and between vertically adjacent
cylinders have the most enhanced normalised first principal stresses (for the
definition of vertically adjacent cylinders see Fig. 4.16(d)). This creates the
conditions for both increasing effectiveness, as sustainable stresses are raised,
and increasing non-uniformity, as variable constraint makes the sustainable

stresses location dependent.

The effect of phase shape on the microstructural mechanisms for stress
transfer through the IPC models occurs through the coupled influence of

volume fraction and contiguity. Although it is not possible to consider the effect
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of either topological parameter completely independently of the other, it is
possible to test the relative importance of each parameter in the composite
response. This was done through the creation of a function that aligns the mean
normalised first principal stress data for the stiffer phase of each model. The
aligned condition of the models’ data may be viewed as a datum, from which
the corrections necessary to create alignment provide the relative importance of
each parameter. The form and use of the aligning function are the same as was
described in Sec. 4.2.1 (see Equation 4.2; alignment was achieved by solving
for the coefficients A and B). The aligned data is plotted for both models in
Figure 4.19 with the coupled influence of volume fraction and contiguity along

the abscissa and the mean normalised first principal stress on the ordinate.

The relative effect of volume fraction and contiguity can now be
determined by an examination of the values for the correction constants used to
enforce alignment of the models’ data. The value of A, the correction constant
for the volume fraction, was 0.95, and the value for B, the correction constant
for the contiguity, was 0.05. Alignment of data was therefore achieved by

reducing the influence of volume fraction by 5% and the contiguity by 95% in
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Figure 4.19. Aligned model data for the elastic microstructural analysis
Coupled influence is afunction of volume fraction and contiguity (see Eq. 4.2)
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each model. Essentially, this means that the data for both models is much more
greatly affected by the volume fraction parameter of the coupled influence and
only to a much smaller extent affected by the contiguity. Therefore, although the
effect of phase shape on the microstructural stress transfer mechanisms is
linked to the coupled influence of both topological parameters, it is the volume

fraction parameter that is dominant for elastic behaviour.

4.2.3 Summary of Elastic Behaviour for Interpenetrating Microstructures

The previous two sections presented and attempted to explain how the
elastic behaviour of an IPC is affected by the elastic modular ratio of the
constituent phases and two topological parameters of the microstructure: the
phase volume fraction and contiguity. The focus of these sections was on
linking composite behaviour to the three variables without necessarily explicitly
noting any unique characteristics due to the interpenetration of the
microstructure. In this section, the results of the studies on macroscopic
behaviour and microstructural mechanisms are summarised, and note is made

of their importance to IPCs.

In the study of elastic macroscopic behaviour, the easiest result to find
was the connection between behaviour and the volume fraction of the phases.
In all the simulations, the effective Young’s modulus of the composite increased
with the volume fraction of the stiffer phase (see Fig. 4.6). This result is, in
general, similar for all composites and simply states that the effect of a phase
on composite behaviour is related to the amount of the phase in the composite.
Despite the simplicity of this result, there are interactions between several
variables making the behaviour significantly more complex. The influence of the
elastic modular ratio was to increase the range of potential composite behaviour
as the difference between the Young's moduli of the phases increased. This
influence was found to be dependent on the volume fraction, with the highest
divergence in the Hashin-Shtrikman bounds between the volume fractions of
50% to 75%.
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Simple comparison of the response of different phase shape models
showed the cylindrical model to produce a higher effective Young’'s modulus
relative to that of the spherical model. The topological parameter of contiguity
was introduced to explain the reason for this property difference, and it was
noted that the shape of the phases links the contiguity and volume fraction. The
ability of the cylindrical shape to create greater contiguity at the same volume
fraction as the spherical shape allowed the improvement in the effective
Young’s modulus. The coupled nature of the topological parameters makes
guantifying their individual effects impossible, but their relative significance
could still be studied by plotting them as a linear combination of volume fraction
and contiguity. This study showed that the volume fraction was over five times
more important than contiguity in determining IPC elastic behaviour.

The use of these results is of particular importance to the development of
IPCs since it is likely that nearly equal amounts of both phases are desirable in
order to obtain beneficial properties from both phases. Knowing that divergence
of the elastic bounds is optimum near the middle range of volume fractions and
that contiguity can improve behaviour within the bounds, the materials engineer
must now consider phase shape as well as the amount of the phases in the

creation of IPCs for specific applications.

The study of microstructural behaviour linked the mechanisms for stress
development to the difference in phase stiffness. In the spherical model,
stresses were low near the top surface where the area connecting the stiffer
phase upwards was large. This was not the case near the bottom surface,
where stresses concentrate towards the small stiffer phase connection. These
stress concentrations are a direct result of the increased stress transfer in
regions of low compliance, or away from paths that must transfer stress through
the more flexible phase (see Fig. 4.15). In the cylindrical model, the orientation
of the stiffer phase increases the complexity. The top cylinder, because it is
oriented perpendicular to the direction of the applied strain, requires transfer of
stress through the more flexible phase. This makes it a poor stress path and it

therefore has low stresses. In contrast, the back cylinder is the most direct low
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compliance path in the direction of applied strain, causing it to develop high

stresses through a combination of axial tension and bending (see Fig. 4.16).

These basic microstructural mechanisms remain consistent for each of
the volume fraction variations considered in each model, but both the volume
fraction and contiguity have an effect on the location and level of stress that
develops. For the spherical model, increasing volume fraction and contiguity
increases the stresses in the stiffer phase and its uniformity. This also results in
a reduction of the stress being transferred through the more flexible phase
between vertically adjacent spheres. These changes are due to a broadening of
the preferred stress path, allowing smoother vertical stress transfer and
therefore reducing the creation of stress concentrations. In the cylindrical
model, stresses increase in both phases as the volume fraction of the stiffer
phase increases, and greater non-uniformity of the stresses suggests an
increase in local stress concentrations. This is due to the much greater
interaction between the phases with the large increases in the amount of the
stiffer phase. With more of the stiffer phase in the IPC, more stress is able to be
transferred through it as the path of least compliance, but it also places more

constraint on the more flexible phase, increasing its ability to carry stress.

The coupled influence of volume fraction and contiguity was studied for
the microstructural analysis through alignment of the mean normalised first
principal stresses in the stiffer phase. The relative influence of the volume
fraction on the microstructural response was much greater than that of the
contiguity. Although the magnitudes of the relative influences differ, this result
agrees with the macroscopic study that volume fraction is of greater importance
than the contiguity. It is therefore reasonable to state that the elastic behaviour
of an IPC is related to the phase shape by the coupled influence of volume
fraction and contiguity, and of these two parameters the volume fraction has a

much more dominant effect.
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4.3 NON-LINEAR PLASTIC BEHAVIOUR OF
INTERPENETRATING MICROSTRUCTURES

4.3.1 Macroscopic Behaviour

After an initial completely elastic response, further increases in tension to
a two phase ductile composite begin to initiate plastic deformation in regions
sustaining the highest stresses with lower stress regions remaining elastic. This
partially elastic, partially plastic behaviour continues until all portions of both
phases reach a sufficient stress to cause completely plastic behaviour to occur.
It is this non-linear elasto-plastic behaviour that is the focus of this section. The
effective yield strength of each IPC is used to provide the basis for a simplified
guantitative macroscopic analysis. The variables whose influences are studied
include the yield strengths of the constituent phases, the amounts of the phases

and the phase shapes.

A non-linear solution to the plastic behaviour of the spherical and
cylindrical IPCs required use of the iterative full Newton method in the FEM. In
the simulations performed, this involved applying a set strain increment,
calculating the stress by an iterative procedure and then applying the next
higher strain level (discussed previously in Section 3.6). This process was
continued until either the model failed (i.e. convergence was not achieved) or a
final set strain level was reached. The strain increments were experimented
with so that each simulation was able to reach its maximum possible strain
(either the final set strain or a strain at which the model would not converge to a
solution). The most successful increments are listed in Appendix J. Such
simulations were completed for the spherical model with stronger phase volume
fractions of 75%, 80%, 85%, 90% and 95%, and for the cylindrical model with
stronger phase volume fractions of 2%, 16%, 39%, 64% and 84%. The tests
were replicated for yield strength ratios of 2 and 10 for the constituents (the
weaker phase was given a yield strength of 110 MPa and the stronger phase
that of 220 MPa or 1100 MPa, depending on the ratio considered). Other
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information about the material properties for the plastic analysis models was

provided in Section 3.5.

The value used to quantify the initial plastic behaviour of IPCs is more
debatable than the use of the effective Young’s modulus for a uniaxial test of
elastic behaviour. Both the proportional limit and the yield strength of IPCs
could be useful measures. The effective yield strength of the models was
defined to be the stress at the standard 0.2% strain offset. The value for yield
strength derived from this definition is generally significantly greater than the
proportional limit. For the case of a two ductile phase composite, the
proportional limit coincides with the initial yielding, most likely of the weaker
phase. Since the purpose of this section is to evaluate the overall macroscopic
plastic behaviour of the IPCs, the use of the proportional limit is a poor measure
as it is too dependent on locally high stresses and the performance of only one
phase. The effective yield strength is therefore used as the quantifiable

measure of plastic behaviour.

General elasto-plastic behaviour with a low strain hardening modulus
was found for most models. This is characterised on the stress-strain graphs by
an initial linear section that denotes a fully elastic response followed by a
curvilinear transition section where initial plastic deformation begins, and finally
a low slope linear section where nearly complete plastic behaviour exists. This
type of behaviour may be seen in Figure 4.20 for each model and yield strength
ratio. The 2% strain offsets used to determine the effective yield strengths are
shown in Appendix J, with the values for the effective yield strengths listed in
Table 4.5.

Unfortunately, several of the models, especially those with a spherical
shape, failed prior to reaching their yield strengths (convergence was not
achieved at strains below the 0.2% strain offset). In these cases, the maximum
value they reached before failure was used as the effective yield strength,
though it should be noted that use of these values results in some error

(asterisks are used to indicate the failed simulations in Fig. 4.20). This error is
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Figure 4.20. Stress-strain behaviour for both models at each simulated volume fraction of the phases
(@) Spherica model with the yield strength ratio = 2
(b) Spherica model with the yield strength ratio = 10
(c) Cylindrical model with the yield strength ratio = 2
(d) Cylindrical model with the yield strength ratio = 10

relatively small for results from models with a yield strength ratio of 2, since
their stresses had already reached a plateau and would not be expected to
change significantly if higher levels of strain had been reached. However, the
error is large for results from models with a yield strength ratio of 10, where
stress increases were still expected between the failure strength and the stress
at the 0.2% strain offset.

The failure of several of the simulations to converge was likely produced
by numerical instability. Elements in regions of high stress, particularly in the
weaker phase, became highly distorted as the applied strain increased. A small
number of these elements reached the rupture condition set through the
maximum allowable effective plastic strain as 0.2. ADINA reacted to this
situation by setting the stiffness contributions of the ruptured elements to zero

as they were now considered unable to sustain any load (for the calculations,
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Table 4.5. Effectiveyield strength of both modelsfor all volume fractions

Effective Yield Strength [MPa]

Model Volume with the Yield with the Yield
Fraction Strength Ratio Strength Ratio

[%] of 2 of 10

Spherical 75 172 220

80 188 365

85 198 520

90 208 678

95 216 660

Cylindrical 2 111 114

16 123 146

39 144 235

64 172 465

84 198 541

setting the stiffness values equal to zero is the same as removing the ruptured
elements, see ADINA R&D, Inc. 2000b). The most likely result of these actions
was to cause the already large distortions in neighbouring elements to become
excessive, producing a poorly conditioned stiffness matrix that was unable to
achieve numerical convergence. It cannot, however, be completely ruled out
that material failure may have occurred. The rupture of a few elements could
have initiated a chain reaction of such ruptures in the surrounding elements as
the maximum allowable effective plastic strain was reached in each due to the
extra load that they must sustain. This scenario is less likely than that of
numerical instability since it would require elements of the stronger phase to
also rupture. As shown in Table 4.6, the maximum effective plastic strain in any
element of the stronger phase at the last strain increment was much lower than

those in the weaker phase, making overall failure of the IPC unlikely.

The effective yield strength is plotted against volume fraction of the
stronger phase in Figure 4.21. The stronger phase in all cases was always
either the sphere or cylinder shape, never the surrounding material. Results for
the simulations that failed to converge prior to reaching the 0.2% offset yield
strength are indicated by an asterisk on these figures. The first important thing
to note is the large number of early failures for the models with a yield strength
ratio of 10. Given the previously mentioned large error that is present with these

results, a significant amount of uncertainty exists in using them, especially
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Table 4.6. Maximum effective plastic strainsin the stronger phase of modelsthat
failed prematurely

Model Volume Maximum Effective Percentage of
Fraction of Plastic Strain Maximum Allowable
Stonger Phase Effective Plastic Strain
[%] [%]
Spherical 75 0.07355 36.78
(YSR =2) 80 0.12351 61.76
85 0.12780 63.90
Spherical 75 0.06357 31.79
(YSR =10) 80 0.10811 54.05
85 0.13140 65.70
90 0.14421 72.10
95 0.04203 21.02
Cylindrical 84 0.01291 6.46
(YSR = 10)

Note: The maximum allowable effective plastic strain was set at 0.2

those of the spherical model where no actual yield strength was achieved.
Fortunately, a similar spherical model with identical phase properties was
created by Wegner and Gibson (2000a) and tested by the same method, so
their results are directly comparable to those in this study. Wegner and
Gibson’s results are shown in Figure 4.21 by the open circles. Since they plot
above those from the spherical model of this study, it is certain that they are
superior, and all further references to results for the spherical model with a yield

strength ratio of 10 will use Wegner and Gibson’s data.

Also plotted on Figure 4.21 are the tightest reasonable bounds that can
be drawn around the model data. No analytical method has been derived for
plastic properties such as that of Hashin and Shtrikman (1963) for elastic
properties, so the bounds drawn based on the data from this study represent
only a useful guess. It is expected that if other parameters of the microstructural
geometry were studied, the bounds could be improved. However, they are

sufficient for the purposes of further discussion.

The effect of constituent phase properties on the behaviour of the IPCs
can be seen by comparing the responses at different yield strength ratios (i.e.
compare Fig. 4.21(a) and (b)). For both the ratios studied, the reasonable
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Figure 4.21. Effectiveyield strength ver susthe volume fraction of
the stronger phase
(@) for ayield strength ratio of 2, and
(b) for ayield strength ratio of 10

bounds are divergent between the two volume fraction extremes. However, the
divergence is far greater for the higher yield strength ratio. The bounds indicate

the range of potential effective yield strengths, so this observation shows that

the difference in constituent phase properties affects the range of response for
the derived composite. It is also interesting to compare these bounds for plastic
behaviour to the Hashin-Shtrikman bounds for elastic behaviour.
comparison is made between the bounds having the same phase property
ratios (compare the elastic modular ratio of 2 in Fig. 4.6 to the yield strength

ratio of 2, etc.) it is noticeable that those for the plastic behaviour are much
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looser. This suggests that parameters of the microstructural geometry have a

greater effect on the plastic properties of an IPC than on their elastic properties.

The influence of the amount of each phase on the behaviour of the IPCs
was determined by considering the effect of phase volume fraction changes. It
is easily seen from Figure 4.21 that the effective yield strength increases with
increases in the amount of the stronger phase in the composite. This influence
is based on the greater ability for the stronger phase to dominate composite
behaviour when more of it exists in the composite. Although the position of the
bounds is only a reasonable guess, it can be seen that they follow the same
pattern as those of Hashin and Shtrikman. Convergence occurs at either
volume fraction extreme, denoting a pure sample of one of the constituent
phases, and divergence is greatest through an intermediate range of about 50%
to 85% of the stronger phase, depending on the yield strength ratio. This is
significant, since it is within this range that IPCs are likely to find their greatest

applicability (see brief discussion of this in Sec. 4.2.3).

The shape of the phases has an influence on the plastic behaviour of
IPC’s, as shown in Figure 4.21 by the difference in performance of the spherical
and cylindrical models over their common volume fraction range (75% to 84%
of the stronger phase). With the lower yield strength ratio of 2, the cylindrical
shape is slightly more efficient than that of the sphere. This allows it to produce
a higher effective yield strength for the same volume fraction. A similar situation
should likely exist for the higher yield strength ratio of 10, but these results are
skewed by the premature failure of the 84% volume fraction cylinder model
below the strength obtained by Wegner and Gibson for the sphere model.

A better understanding of the effect of phase shape on the plastic
behaviour of IPCs can be obtained by again considering the contiguity
associated with each geometry. Contiguity is a property of the microstructural
geometry and the values for both models at each of their volume fractions are
the same as those calculated for the previous elastic analysis of Section 4.2.1.

The effective yield strength is plotted against the contiguity of the stronger
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phase in Figure 4.22, with results provided for both yield strength ratios. An
analysis of the effect of contiguity at a yield strength ratio of 10 is desired, since

it can be compared to the similar analysis for the elastic study in Section 4.2.1,

which used an elastic modular ratio of 10; however, the poor performance of the
sphere model from this study makes it unsuitable for the microstructural
analysis of the next section. The microstructural analysis therefore uses results

for a yield strength ratio of 2, which may be compared to the results of the
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macroscopic analysis with a yield strength ratio of 2. The labels on the figures
indicate the corresponding volume fractions for the data points and the dashed
lines represent the extrapolated behaviour at the extreme contiguities of 0%
and 100% (the extreme contiguities have the same meanings as discussed in
Section 4.2.1). It is important to note that the spherical model results for the
yield strength ratio of 10 are the superior values taken from Wegner and Gibson
(2000a).

An understanding of the effect of phase shape on the macroscopic
plastic behaviour of IPCs may be determined from an examination of Figure
4.22. The contiguities for the 75% volume fraction sphere model and 2%
volume fraction cylinder model are almost the same (5% and 6%, respectively)
but their results are quite different, implying that contiguity is not the only factor
affecting plastic behaviour. However, contiguity does have a definite influence,
which is best seen by consideration of single values for the effective yield
strength. As an example, consider the yield strength ratio of 10 (see Fig.
4.22(b)), and focus on an effective yield strength of 332 MPa. This corresponds
to a spherical model volume fraction of stronger phase equal to 75% and a
contiguity of 5%. For the cylindrical model, the same effective yield strength is
created with a volume fraction of 50% (again see Fig. 4.22(b)) and a contiguity
of 42%. In using the cylinder instead of the sphere shape, there is a reduction in
the necessary volume fraction of stronger phase of 25% due to the 37% greater
contiguity between pieces of the stronger phase. As with the elastic behaviour,
the greater efficiency of the cylindrical model in plastic behaviour is due to the
increased path for direct stress transfer through the stronger phase.

Table 4.7 lists other similar comparisons of the models for different
effective yield strengths and for both yield strength ratios. It can be seen that
the effect of contiguity is reduced as the models converge towards a pure
specimen of the stronger phase. (Results for the yield strength ratio of 10 are
incomplete because less data was obtained at the higher volume fractions due

to the premature failure of the models at these volume fractions).
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Table4.7. Comparison of effectiveyield strength to the topological parameters
(a) for ayield strength ratio of 2, and
(b) for ayield strength ratio of 10

@) Effective | Vol. Frac. Vol. Frac. Difference| Contiguity Contiguity Difference

Yield of of between of of between
Strength | Spheres Cylinders Vol. Frac.| Spheres Cylinders Contiguity
[MPa] [%] [%] [%] [%]

172 75 63.77 -11.23 5 52.27 47.27
188 80 76.31 -3.69 28 65.24 37.24
198 85 84.14 -0.86 a7 73.35 26.35

(b) " Effective | Vol. Frac. Vol. Frac. Difference Contiguity Contiguity Difference

Yield of of between of of between
Strength | Spheres Cylinders Vol. Frac.| Spheres Cylinders Contiguity
[MPa] [%] [%] [%] [%]

332 75 49.74 -25.26 5 42.13 37.13
375 76 54.45 -21.55 10 45.54 35.54
425 78 59.93 -18.07 17 49.50 32.50

If the result just found in the previous example is compared to the
example result from Section 4.2.1, it can be seen that contiguity has a far
greater influence on the plastic behaviour of IPCs than it does on their elastic
behaviour (see Table 4.3, page 82). Both results are based on phase property
ratios equal to 10, but an increase of contiguity equal to 49% was required to
reduce the volume fraction by 9% when replacing spheres with cylinders in the
elastic case while only a 37% increase in contiguity was necessary to reduce
the volume fraction by 25% in the plastic case. While the influence of contiguity
on elastic behaviour is relatively minor, its influence on plastic behaviour

appears to be highly important.

The effect of phase shape on IPC plastic behaviour is related to the
coupled influence of both the volume fraction and contiguity of the phases. As
detailed in the macroscopic elastic analysis in Section 4.2.1, the relative
importance of the volume fraction and contiguity may be found by aligning the
effective property data for both models using a linear function of these
parameters. The coefficients A and B of the linear function (see Equation 4.2,
page 83) provide a simple quantitative measure of each parameter’s influence.

The aligned data for the macroscopic plastic behaviour of the models is seen in
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Figure 4.23. For the models with a yield strength ratio of 2, a rough alignment is
achieved when A, the coefficient for the volume fraction equals 0.87, and B, the
coefficient for the contiguity equals 0.13. When the yield strength ratio is 10 the
linear function is unable to achieve a good alignment over the entire common
domain of the models. While a non-linear function of volume fraction and
contiguity could produce a more exact alignment, for the purposes of providing

a simple relation between the two parameters the best fit given by the linear
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Figure 4.23. Aligned model data for the plastic macroscopic analysis

(a) for theyield strength ratio of 2, and

(b) for theyield strength ratio of 10

Coupled influence is afunction of volume fraction and contiguity (see EQ. 4.2)
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function is considered sufficient. For the best fit alignment the value of A is 0.63

and the value for B is 0.37.

A simple comparison of the coefficient values shows that volume fraction
has a more significant influence than contiguity for both yield strength ratios. In
the case of the yield strength ratio of 2, the volume fraction is much more
important than contiguity since it accounts for 87% of the coupled response. A
comparison of this value to the one found in the macroscopic elastic analysis
shows them to be quite similar (the A coefficient in Sec. 4.2.1 was 0.84), but it is
important to note that the elastic modular ratio in that case was 10. Although
results for the yield strength ratio of 10 are less accurate, they have the same
phase property ratio, making them more valuable for comparison between
behaviours. For the plastic situation, the contiguity has a significantly greater
influence than that for the elastic behaviour (the B coefficient for the plastic and

elastic analyses were 0.37 and 0.16, respectively).

This increase in the importance of the contiguity parameter after yielding
of the composite agrees with the previous discussion regarding the use of the
effective yield strength versus contiguity graphs of Figure 4.21. Given the
importance of plastic behaviour to ductile phase IPCs under higher loads, it
appears that microstructural geometry has increasing significance as the failure
of the composite is approached. This influence is not simple, however, since it
is affected by the phase property ratio and the volume fractions and contiguities

of the phases.

4.3.2 Microstructural Stress Mechanisms

After completion of the macroscopic analysis, a study looking into plastic
behaviour at the microstructural level was undertaken. The purpose of this
study was to find the underlying mechanisms responsible for the observed
overall plastic behaviour of the IPCs. As described in more detail previously in
Section 4.2.2, a qualitative and quantitative investigation of the stress
distributions within the model microstructures was performed. Both model

shapes were studied at three volume fractions of the stronger phase (low,
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intermediate and high). The stress distribution of interest was the effective
stresses, since ADINA uses the von Mises effective stress criterion to
determine yielding of the phases (ADINA R&D, Inc., 2002b). When the effective
stress distribution in each phase is divided by its yield strength, these
normalised values provide the relative distribution of yielding within each phase.
The normalising equation is

Jeff

O i (norm) = 0__ ’ (45)
y

where Oefinorm) IS the normalised effective stress, Oer the effective stresses

calculated by ADINA, and oy the yield strength of the phase being examined.

Only the models having a yield strength ratio of 2 were considered, since
results for a yield strength ratio of 10 were incomplete due to several premature
failures of the simulations. The stress distributions investigated for all three of
the cylindrical models were at an applied strain of 0.005. None of the spherical
models considered were able to converge at strain levels as high as 0.005, so
the last strain level at which they did converge was used (these were 0.00145,
0.003 and 0.00325 for the 75%, 85% and 95% volume fractions, respectively). It
is also important to note that the spherical models at stronger phase volume
fractions of 75% and 85% did not reach their 0.2% offset yield strength prior to
failure. All the normalised effective stress distribution plots for each phase of
both models are provided in Appendix K.

The qualitative descriptions of the stress distributions during the plastic
behaviour will focus only on the previously stated strain state. Since only a
single state of each model is considered during its strain history, it was not
possible to determine how each model changes as it was loaded. This would
have required examination of the models at many strain increments, which was
beyond the objective of determining the effectiveness of each microstructure.
Instead of focussing on when and by what means the microstructures yield, this
study looked simply at where vyielding occurred and the overall distribution of
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yielding within the models. This task was possible at a single strain state and

provided a means to judge the effectiveness of each microstructure.

The normalised effective stress distribution for the spherical model at a
stronger phase volume fraction of 75% is shown in Figure 4.24 (see Fig. 4.14
for the referencing systems for the unit cells). A simple examination of the
stronger phase in the model allows it to be separated into two distinct regions.
Region 1 lies on the path of preferred stress transfer through the bottom
connection, which was seen previously in Section 4.2.2. The material in this

region has all yielded. Region 2 does not lie on the preferred path since any
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stress passing through it must also pass through the underlying weaker phase.
With stress concentrating away from this region, it remains below its yield

strength.

It should be expected that the majority of the weaker phase has yielded,
since the macroscopic stress at the final converged strain was 172 MPa, well
above the vyield strength of the phase (which was 110 MPa). This expected
response is found in Region 3. However, small Regions 4 and 5 remain below
the yielded condition. In the case of Region 4, it is important to note that it lies
below Region 2 in the stronger phase, and since Region 2 has a reduced
amount of stress transferring through it, it passes on less stress to Region 4,
allowing it to remain below yield. Region 5 lies off a path of preferred stress
transfer in the upper half of the model. In the upper half of the model, most of
the stress passing through the weaker phase is from direct transfer within the
phase, not transfer between phases. However, the left-front surface connection
of the stronger phase breaks this path and forms a stiffer alternate path. Stress
passing through the weaker phase near this connection prefers to pass into the
surrounding stronger phase, leaving the weaker phase at a lower stress below

the yield point.

These responses to the applied strain suggest an important role for
contiguity in the plastic behaviour of IPCs. The concentration of stress towards
the direct connections of the stronger phase should be expected to increase as
the weaker phase vyields; that is, stress should continue to transfer along paths
of least compliance (the weaker phase’s stiffness reducing to zero after it
yields). Zones of the stronger phase which lie along the path of a direct
connection will be effectively used for stress transfer (such as Region 1), while

those that do not will be much less effective (such as Region 2).

For the cylindrical model, the normalised effective stress distribution is
shown for the stronger phase volume fraction of 39% in Figure 4.25. A brief
examination of the weaker phase shows that it has completely yielded. As with

the spherical model, this should be expected since the yield strength of the
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weaker phase is 110 MPa and the approximate stress at the strain of 0.005 is
144 MPa. The stronger phase for the cylindrical model appears to have almost
completely yielded, with the exception of Region 3, at the heel of the cylinder
intersection. This confirms that nearly complete yielding has occurred after the
offset yield strength has been exceeded. The reasons for the lower stress in
Region 3 of the cylindrical model are, in part, the same as those for Region 2 of
the spherical model: neither region lies on the path of preferred stress transfer.
In both cases, the region was underlain by the weaker phase causing stress to
concentrate away from it towards paths with greater stiffness. Region 3 is also a

zone of contraction for bending of the back cylinder, as was previously
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discussed for elastic conditions in Sec. 4.2.2. The bending mechanism reduces
the tensile stresses in Region 3, which leaves it non-yielded even when the rest

of the stronger phase has yielded.

The non-yielded state of Region 3 raises the question as to why Region
2 of the cylindrical model does not have a lower stress similar to Region 3,
since it is also underlain by the weaker phase. In this case, the back cylinder in
Region 1 lies quite close to Region 2, making stress transfer through the
intervening weaker phase more effective than below Region 3 (which must
transfer stress through the weaker phase to Cylinder C). This allows Region 2
to sustain higher stresses at lower strains than Region 3, causing it to yield
earlier. It could be expected that at slightly lower strains, both Regions 2 and 3
would be below the stronger phase yield strength, and at slightly higher strains,
Region 3 would also yield (though no analysis to substantiate this claim will be

considered here).

The fundamental qualitative plastic behaviour described above for
examples of the spherical and the cylindrical models was seen for all the
volume fractions of each model (though there were minor variations). To
determine how each model changed with the volume fraction and contiguity of
the phases, it was more instructive to consider the quantitative normalised
effective stress distribution data provided in Figure 4.26 and Table 4.8. The
data in this quantitative analysis were determined using the same means
described in Sec. 4.2.2, and are therefore only a rough approximation of the
volumetric stress distribution. However, due to the uniform stress state of each
simulation, it is likely that the true volumetric stress distribution would be similar.

Investigation of either the figure or the table quickly reveals that both
phases of each model had uniform stress distributions, with normalised mean
effective stresses near 1.0. This signifies that both of the phases in each model
have almost entirely yielded. Given the fact that the weaker phase was

essentially completely yielded for both models, for all the volume fractions of the
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(c) Weaker phase of spherical model
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phases, the rest of this analysis will consider only the stronger phase in each
model.

The stronger phase in the spherical model does show some definite
change in its effective stress distribution as the volume fraction and contiguity
increase. Consideration of Figure 4.26(a) shows a significant increase in the
uniformity of the stress distribution towards a normalised stress of 1.0 as the
topological parameters increase. There are two likely reasons for this
behaviour. The first is the different strains at which each of these simulations is
being analysed. The 75% stronger phase volume fraction failed to converge
past a strain of 0.00145, while the 85% and 95% volume fractions made it to
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0.003 and 0.00325, respectively, before failing (see Fig. 4.20). To some extent,
the smaller degree of uniformity in the 75% volume fraction simulation is due to
the lower level of strain it is subjected to in this analysis. Higher levels of strain
should cause a greater amount of yielding. However, it is important not to
neglect that the increase in contiguity with the three volume fractions also
increases the preferred stress path and the effectiveness of the phases to
sustain load. This is the second reason for increasingly uniform behaviour
around the phase’s yield strength. As previously noted in the qualitative
discussion, the effectiveness of the stronger phase to sustain load is based on
its ability to lie within the preferred stress path to the bottom surface connection.
With increasing volume fraction, the contiguity increases (see Fig. 4.8), allowing
more of the stronger phase to transfer its stress directly within the phase
through the bottom connection rather than through the weaker phase. By doing
S0, contiguity is able to increase the amount of the phase which is effective,
thus increasing the uniformity about the yield strength of the stronger phase
Table 4.8. Statistical data for normalised effective stresses from the plastic microstructual
analysis

(a) Datafor the stronger phase of both models
(b) Datafor the weaker phase of both models

(@ Stronger Phase
Model Volume Contiguity Mean Standard Maximum Minimum
Fraction Stress  Deviation  Stress Stress

[%] [%0]

Sphere 75 5 0.855 0.144 1 0.148
85 47 0.978 0.077 1 0.226
95 82 0.993 0.053 1 0.266

Cylinder 2 6 1.000 0.011 1 0.490
39 34 0.998 0.018 1 0.521
84 73 0.999 0.013 1 0.570

() Weaker Phase
Model Volume Mean Standard Maximum Minimum
Fraction Stress  Deviation  Stress Stress

[%]

Sphere 75 0.960 0.090 1 0.550
85 0.997 0.016 1 0.740
95 0.999 0.011 1 0.795

Cylinder 2 1.000 0.000 1 1.000
39 1.000 0.000 1 1.000
84 0.996 0.038 1 0.431
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(the normalised effective stress of 1.0).

The cylindrical model results probably have a similar response to that of
the spherical model, but it is too subtle to be noticeable. Examination of either
Figure 4.26 or Table 4.8 shows little difference between the results and no
obvious pattern. This similar state for all three volume fractions is likely due to
the much higher strain level analysed for the cylindrical model compared to the
spherical model (all cylindrical models were tested at a strain of 0.005, the
highest spherical model only at 0.00325). As mentioned in the previous
paragraph, increasing the applied strain tends to increase the uniformity of the

stress distribution, so these responses should be expected.

It is also interesting to note the pattern of behaviour seen in the
combined results for the stronger phase for both models when compared to the
level of applied strain. Altogether the results were analysed around three
different strains: the 75% spherical model at 0.00145, the 85% and 95%
spherical models around 0.003, and the cylindrical models all at 0.005.
Comparing the response of these three different groups, it is possible to see the
general behaviour of the models, irrespective of volume fraction or phase
shape, to increases in strain. As strain increases beyond the proportional limit,
an increasing amount of the composite will yield, but major portions will remain
below yielding, this is shown in the effective stress distribution of the spherical
model at 75% volume fraction (see Fig. 4.26(a)). Further increases in strain
expand the amount of stronger phase that has yielded such that it is nearly all
behaving plastically by the 0.2% offset yield strength (see the effective stress
distributions for the 85% and 95% spherical models in Fig. 4.26 and the stress-
strain responses in Fig. J.1). While further strain increases slowly remove the
final non-yielded portions of the stronger phase, almost all this strain should be
resulting in plastic flow within previously yielded regions (see the effective
stress distributions of the cylindrical models). This general response to slowly
applied strain is considered likely by the author for all low yield strength ratio
IPCs; however, since it has not been analysed using a single model at a single

volume fraction it should not be deemed as conclusive.
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The effect of phase shape, as previously mentioned, is not a simple
factor to determine. It is related to the coupled influence of both the volume
fractions and contiguities of the phases, and is best discussed in terms of the
relative influences of these two topological parameters. Using the method of a
linear aligning function of the coupled influence, described in Section 4.2.1, the
coefficient on each parameter may be used to determine each parameter’s
relative effect. To simplify the analysis, the microstructural response of the
stronger phase is investigated. The closest alignment of the mean normalised

effective stress for each model is seen in Figure 4.27.

The coefficient for the volume fraction and contiguity of the stronger
phase are zero and one, respectively. However, this alignment is so poor as to
be completely without value. The reason for this poor alignment is likely due to
the different strain levels at which each of the spherical model simulations was
analysed. As has been noted several previous times, the low strain state to
which the spherical model volume fractions reached (especially the 75%
volume fraction) caused them to have significantly less uniform distributions of
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Figure 4.27. Aligned model data for the plastic microstructural analysis
Coupled influence is afunction of volume fraction and contiguity (see Eq. 4.2).
The percentages on the figure are the volume fractions for the adjacent data points.
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effective stress compared to those in the cylindrical models. Less uniform stress
distributions produce lower mean normalised effective stresses and account for
the much more curved behaviour seen for spherical model results in Figure
4.27. Even without being able to use these results, the previous analyses
suggest that contiguity has a more significant effect for plastic behaviour than
for elastic behaviour. This is due to the increased requirement of stress to

transfer through the stronger phase after the weaker phase has yielded.

4.3.3 Summary of Plastic Behaviour for Interpenetrating Microstructures

The purpose of Section 4.3 was to investigate the plastic behaviour of
two differently shaped IPCs. Numerical tests were performed to study the
influences of the amounts of the phases, the shapes of the phases and the
constituent properties of the phases on this behaviour. In order to ensure the
discussion came to appropriate conclusions, two different methods were used
to analyse the data. The first involved a study of the macroscopic behaviour
produced by the models, and the second an examination of the microstructural
mechanisms that led to the macroscopic behaviour. The results from the plastic
behaviour were also compared to those from the elastic behaviour to distinguish

how the composites responded differently after yielding.

The constituent phase properties affected the models through the yield
strength ratio. The effect of the yield strength ratio was most easily seen by the
divergence of the approximate bounds placed around the models’ data. Since
the bounds indicate potential plastic behaviour, the greater divergence for the
yield strength ratio of 10, rather than 2, shows that the potential behaviour
becomes more variable as the ratio grows. Comparing these bounds to the
Hashin-Shtrikman bounds on elastic behaviour, it can be seen that the range of
divergence is much greater for a yield strength ratio of 2 than for an elastic
modular ratio of 2 (compare Figures 4.21(a) and 4.6(a)). This suggests that IPC
plastic behaviour has greater possible variation than elastic behaviour, so

parameters of the microstructural geometry are more important.
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The bounds are also dependent on the volume fractions of the phases.
The effective yield strength for both types of IPC increased with increasing
amounts of the stronger phase, but of more interest was the changing
divergence of the bounds from exceptionally tight at the extremes to highly
divergent through intermediate volume fractions. For a yield strength ratio of 2,
the greatest divergence was at a stronger phase volume fraction of 50%, and at

a ratio of 10 at a volume fraction of 85%.

It could be seen in Figure 4.21 that the cylindrical model produced higher
results than the spherical model. This improvement in the effective vyield
strength was explained through the different contiguities of the stronger phase
in each model. The cylindrical model was able to have the same effective yield
strength as the spherical model with less of the stronger phase because of a
greater connection between distinct pieces of the stronger phase. The effect of
shape on the plastic behaviour of an IPC was therefore linked to both the
amount of the phases in the composite (represented by volume fraction) and
the continuity of the stronger phase (represented by the contiguity).

Comparison of the relative influence of volume fraction and contiguity
using a linear function of the two parameters determined that volume fraction
had an effect approximately 1.7 times greater than the contiguity. When this
result for the plastic analysis is compared to that for the elastic analysis, an
important determination about IPC behaviour was found. Although volume
fraction was the dominant parameter in both cases, contiguity clearly becomes
more significant with yielding of the composite. When this is linked to the
greater potential range of IPCs for plastic behaviour, the level of contiguity
becomes a strong determinant of whether effective behaviour is near the upper
or lower bound. Since the level of contiguity obtainable with a certain volume
fraction of material is related to microstructural shape, the materials engineer

needs to consider it in his or her designs.

The microstructural study was used to investigate the mechanisms that

caused the behaviour found in the macroscopic study. The typical response of
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both microstructural geometries was related to regional differences in stiffness.
Stress was transferred preferentially along paths of least compliance
connecting the stronger phase from the top surface to the bottom surface. This
mechanism was studied against strain history in an approximate manner, to
determine the influence of yielding. In general, it was found that increased strain
produced early widespread yielding of the weaker phase with only more minor
amounts of yielding in the stronger phase. At such strains, contiguity between
pieces of the stronger phase is highly significant in providing a low compliance
path for stress transfer since the stiffness of the weaker phase had reduced to
zero. There was also a correlation between increasing uniformity of yielding in
the stronger phase and increasing contiguity and volume fraction in the
spherical model. Since increasing these parameters increases the size of the
preferred stress path, it also improves in the effectiveness of the microstructure
to sustain load. This directly contributes to higher effective yield strengths at the

macroscopic level.
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CHAPTER FIVE
CONCLUSION
5.1 SUMMARY

In recent years the increased ease with which composites can be
manufactured has encouraged an interest in the behaviour of special
composites that were not previously practical. One such type of composite is
the interpenetrating phase composite (IPC), in which both phases are three-
dimensionally continuous. The complexity of IPC microstructures makes it
difficult to predict their mechanical behaviour based on traditional methods, so
more research is required in order to obtain an accurate prediction for these
materials. The focus of this study was the effect that microstructural phase
shape has on the elastic and plastic behaviour of IPCs, though some other
significant variables were also considered. As part of this study, an initial review
of previous research into methods of investigating IPCs, and results regarding
their elastic and plastic behaviours, was completed. After this, a numerical
modelling program was undertaken to determine the effect of phase shape on

the mechanical properties.

The first two sections of the literature review considered the possible
methods for characterising the microstructure and studying the mechanical
properties of IPCs. The most obvious method is to create an IPC for use in an
experimental study. While this has the advantage of providing actual data about
an IPC’s performance, it is extremely difficult to examine the microstructure and
isolate the influence of any specific variable. However, the topological
parameters often developed from experimental work can be highly useful in

characterising these materials for analytical or numerical studies.

A more simplified approach is to use general bounds or analogy models
to estimate the behaviour of IPCs. Unfortunately, general bound methods are
limited to studying elastic behaviour and analogy methods can often only

determine trends. IPCs containing random microstructures have been modelled
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using self-consistent methods that produce reasonably good approximations of
the material behaviour. However, they cannot be used for directly studying the
influence of microstructural parameters, since they consider the structure of the
composite to be some statistical average of the actual structure. The
microstructural geometry remains unimportant to this approach, so the effect of
phase shape cannot be examined. Unit cell numerical models offer the best
method for studying the response of different microstructures since they allow a
simplified representation of the material. However, their periodic nature means
they likely predict responses that are higher to those of more common random
IPCs.

In the third section of the literature review, the results of previous studies
on the elastic and plastic behaviour of IPCs were investigated. Although not
considered as part of this study, thermal residual stresses have been shown to
have an influence on the elastic and plastic behaviour of IPCs. Their effect is
connected to the relative properties of the constituent phases, notably thermal
expansion, stiffness and yield strength. In general, researchers have noted that
thermal residual stresses significantly reduce the effective stiffness of an IPC
but have a negligible effect on the effective yield strength. Considerable work
has been completed in the elastic range of behaviour such that IPCs can be
generally said to be well understood at service loads; work within the plastic
range of behaviour is notably less extensive. For both types of behaviour, the
constituent phase properties affect the range of the potential properties at a
given volume fraction. The range can be calculated accurately for elastic
behaviour using the Hashin-Shtrikman bounds (1963), but is less definite for
plastic behaviour. There is also an improvement in both behaviours with an
increase in the amount or volume fraction of the stiffer phase. The influence of
continuity is much smaller for elastic behaviour as compared to plastic
behaviour. While there is an increase in the effective stiffness of IPCs relative to
non-IPC materials, it is minor compared to the increase in effective yield
strength for IPC materials. Continuity is a property of the microstructure which is

affected by parameters such as phase shape and spatial distribution. Shen

130



(1994b, 1995) studied the influence of shape and spatial distribution on two-
phase composites (non-IPCs), but no research has yet determined the effect of

these parameters on the properties of IPCs.

The unit cell method was chosen for the numerical modelling program
because it allowed a simplified representation of the actual IPC and an explicitly
defined microstructure. Two different unit cell models, one with a spherical
phase and the other with a cylindrical phase, were created to determine the
influence of shape differences. Both models could be used to investigate a
variety of phase volume fractions and constituent properties. The spatial
distribution of the phases in each model was based on the hexagonal close-
packed (HCP) system. This system behaves isotropically, removing the need to
consider direction dependence for the results. The boundary conditions applied
to the models required that the unit cell consist of half a triangular prism in order
to represent the periodic microstructure of the IPCs. The models were then
used to simulate uniaxial tension tests for linear elastic and non-linear plastic
conditions and solved using the finite element method (FEM). Results of these
simulations provided the effective Young's modulus and effective yield strength
of the IPCs for an analysis of the macroscopic behaviour. In addition, stress
distributions of the elastic and plastic responses were used to develop an

understanding of the microstructural behaviour mechanisms.

5.2 CONCLUSIONS

The results of both the macroscopic and microstructural components of
this study lead to three basic conclusions. First, the shape of the phases affects
their volume fraction and contiguity, both of which were linked to changes in
macroscopic behaviour. Volume fraction influences behaviour through the
amount of each phase in the IPC, and contiguity by improving the
interconnection of the phases. Comparative analyses of the relative influence of
these two factors showed that volume fraction was always more dominant,

though contiguity was highly significant for plastic behaviour.
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The second conclusion notes that the level of contiguity affects the path
of least compliance. Microstructural stress analysis showed that differences in
stiffness between the phases resulted in a preferred stress transfer path
through local regions of high stiffness, the path of least compliance. The path of
least compliance was influenced by the volume fraction of the phases and the
relative difference in their stiffnesses, but the contiguous nature of the IPC
geometry allowed the path to exist completely within the stiffer phase. Since
contiguity is a measure of the interconnectedness of the stiffer phase, its value

influences the size of the path of least compliance.

Finally, the path of least compliance affects how stress is transferred
through the stiffer phase. The path of least compliance is the preferred stress
path so how it transfers stress and the magnitude of stress it transfers influence
macroscopic behaviour. An interesting result of the microstructural stress
analysis was that the spherical model transferred stress in direct tension while

the cylindrical model had direct tension and flexural mechanisms.

These basic conclusions lead to two improvements in understanding the
phase shape — mechanical behaviour relationship for IPCs. For elastic
behaviour it was found that phase shape’s influence was minor. This was due to
the relatively small stiffness differences between the constituent phases during
elastic deformation. Without a great difference in phase stiffness, the path of
least compliance is only slightly preferred as a stress transfer path. Therefore
the path of least compliance is only of minor importance to overall stress
transfer, and the contiguity that creates it is also of only slight importance. Since
phase shape’s influence has been linked to contiguity’s influence, the effect of

phase shape on the elastic behaviour of IPCs is minor.

In the case of plastic behaviour, however, the influence of phase shape
is significant for IPCs. In contrast to the elastic behaviour, there is a great
difference in stiffness between the constituent materials when one has yielded
and the other is still experiencing elastic deformation. With a large stiffness

difference, high magnitudes of stress are transferred through the path of least
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compliance because its deformation is low relative to its surroundings. This
makes the contiguity that creates the path of least compliance an important
factor, and consequently the phase shape producing the contiguity highly
significant.

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH

The ultimate purpose of research such as that described in this thesis is
an improvement in the understanding of a material’'s behaviour. Where this
research ends is therefore somewhat arbitrary, since a perfect understanding of
the behaviour would require an infinite amount of studying, not including any
research that might be focussed on possible applications for the material.

However, in the reasonably short term a number of goals can be defined.

The first set of research goals involves perfecting and completing the
models already developed. The simulations investigated in this thesis only
considered the sphere and cylindrical shapes as the stiffer or stronger phase,
never as the surrounding material. Without much difficulty, simulations could be
completed so that the more flexible or weaker phase was the sphere or cylinder
shape. For some IPCs currently being developed, data such as these would be
more representative than those produced as part of this study. The IPCs were
also always modelled as two ductile phases, but there is a growing use of brittle
phases in such groups as metal matrix composites (MMCs) and ceramic matrix
composites (CMCs). Many of the composites within these groups either have
interpenetrating microstructures or could have them, making it useful to provide
data on the behaviour of a brittle/ductile IPC. This could be done by changing
the non-linear portion of the models so that one phase behaved completely
elastically (similar to a brittle constituent) while the other continued to have a

ductile elasto-plastic response.

If the complete elastic behaviour of the IPCs studied here is particularly
important, it would be valuable to define all the elastic constitutive properties.
For an isotropic material, this requires finding only one additional elastic

constant, since the effective Young’'s modulus has already been found as part
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of the current study. It is possible that the effective Poisson’s ratio could be
calculated from the current uniaxial tension simulations or the effective bulk

modulus could be found by simulating a state of hydrostatic pressure.

Finally, the geometry of each model should be improved or a more
flexible discretisation algorithm found to ensure that numerical failure of the
FEM simulations does not occur prior to failure of the material. This problem is
likely to be more difficult, but if it is solved it would allow much more extensive
study of plastic behaviour. This could include the definition of more basic
properties such as the ultimate strength and toughness, and further

modifications might produce results regarding fracture and fatigue.

Within the short term, but beyond the models already developed, would
be the development of simple mechanistically based analytical relationships for
IPC elastic and plastic behaviours. Such relationships would require additional
understanding of how microstructural parameters affect behaviour. Besides the
amount and shape of the phases, the influence of the spatial distribution and
size distribution needs to be established. The size distribution could be studied
by varying the size of the two cylinders in the cylindrical model. Geometry
problems may occur, requiring a new discretisation, but the model should
otherwise work relatively easily. The spatial distribution needs a different
periodic microstructure to compare to the hexagonal close-packed (HCP)
system already studied. An isotropic microstructure could be created using the
diamond crystal lattice with its carbon tetrahedrons as a basis, although it will
likely also be desirable to study anisotropic periodic microstructures in order to
obtain more generalised data. This step is more difficult than the size
distribution analysis since a completely new unit cell will need to be developed

and perfected.

It is important to note that the size and spatial distribution parameters, as
well as the phase shape and amount, affect the topological parameters of
volume fraction and contiguity that are likely to appear as variables within a

behaviour equation. It is therefore necessary to determine a generalised
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definition for contiguity that may be applied universally. This means that besides
being applicable to numerical models, it should be a useful, relatively easy
measurement for experimental IPCs so that it does not remain confined to
theoretical research. Taking into account the thermal residual stresses and
other effects of processing, an approximate equation for the prediction of IPC
behaviour should be possible. Although the equation would be based on data
from ordered periodic microstructures, it is probable that the behaviour of IPCs
with random microstructures would be similar to those with periodic
microstructures on average. This would make the equation completely
applicable to any general IPC and valuable for the prediction of both elastic and

plastic behaviour.
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APPENDIX A

VOLUME FRACTION OF SPHERE MATERIAL WITHIN
THE HALF PRISM UNIT CELL

The following calculations illustrate how Equation 3.1, describing the
volume fraction of sphere material within the half prism unit cell, was derived. It
was desirable to consider a range of volume fractions based on changing the
size of the spheres within the wunit celll. These requirements were
accommodated by solving for the volume fraction in terms of the spheres’ radii
and the centre-to-centre distance between spheres. The derivation is actually
solved by considering the geometry of the prism unit cell (see Fig. A.l);
however, since the ratio of sphere volume to unit cell volume is the same

between the prism and half prisms their volume fractions are also the same.
* Volume of sphere material in the prism unit cell (see Fig. A.2):

Vs =Vsuota) ~ Vstios) (A.1)

Figure A.1: Prism unit cell of spherical HCP
system
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Figure A.2: Two spheres showing the volume lost dueto intersection
ingrey
Vs(total): volume of sphere in unit cell ignoring the intersection
1
= Evsphere
1/4
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2
==r’0Or (A.2)
9
Vs(iost): volume of sphere lost due to the intersections (of the total volume

lost half is from region i and a quarter from each of regions ii and iii,
see Fig. A.1)

:ﬂrgn{1—§[3)+i(gj1 (A.3)
3 4\ r ) 16\r
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Volume of prism unit cell (see Fig. A.1 and A.3):
Vp = h DA\ria.ngle (AS)

Avyiangie: area of the top or bottom sides of the prism unit cell

= (A.6)
43
h: height of prism unit cell
= /aZ_bZ
LY
3
2
= |Za A.7
3 (A.7)
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Figure A.3: Plan view of spherical

HCP system
a3
Vv, = A.8
» =572 (A.8)
* Volume fraction of sphere material in the prism or half prism unit cells:
azle
Y,

o] -5 3050
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APPENDIX B

VOLUME FRACTION OF CYLINDER MATERIAL WITHIN
THE HALF PRISM UNIT CELL

The volume fraction of the cylinder material within the half prism unit cell
was determined through the use of a Monte Carlo simulation (also known as a
single point probability function). This appendix includes the development of this

Monte Carlo simulation, as well as the C++ program that was created to run it.

B.1 DEVELOPMENT OF THE MONTE CARLO SIMULATION
B.1.1 Surface Conditions for the Half Prism Unit Cell

The simulation generates groups of three random numbers that are used
to define the coordinates of points within a space represented by the box shown
in Figure B.1. The box dimensions are set such that the half prism unit cell lies
completely within it, see Figure 3.8 for the coordinates of points 1 to 6. The
relationship between points a, b and h are shown in Figures B.2 and B.3. All the
generated random points must fall within the box but their coordinates must be
tested against the following five surface criteria to determine if they are also
within the half prism unit cell:

Top surface: z<h (B.1)
Back surface: y=0 (B.2)
Left-front surface: y< V3% (B.3)
Right-front surface: y<+/3(b-x) (B.4)

Bottom surface: (B.5)

72 D _ X

22 V2
X, Y, z:coordinates of the random points to be tested
h: height of the prism unit cell as defined in Figure B.2 or B.3
b: base edge length of prism unit cell as defined in Figure B.2

or B.3
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Top surface

Right-front
surface

Left-front
surface
Bottom Back
surface surface

Figure B.1: Box for Monte Carlo simulation with half prism unit cell inside

The first two conditions (Equations B.1 and B.2) are ensured because of the
dimensions of the box; however, the other three conditions may or may not be

met so only a certain percentage of the random points fall within the unit cell.

B.1.2 Surface Conditions for the Back Cylinder

If a point falls within the half prism unit cell it then needs to be
determined if it also falls within one of the cylinders. The conditions that define
the surfaces of the cylinders are more complex than those of the half prism unit
cell, so a detailed derivation is provided below. To start with, it is important to
remember that if a coordinate system is such that one axis lines up with the
longitudinal axis of the cylinder then the equation of the cylinder is simply that of
a circle. For the back cylinder, consider Figure B.2, where the local z-axis
coincides with the axis of the cylinder. The equation for the back cylinder is then

simply:

(xf+(y) =0 (B.6)
X', y". coordinates in terms of the local axes defined in Figure B.2
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FigureB.2: Unit cell showing global axes and local
axesfor back cylinder

Jo, radius of cylinders as defined in Figure B.2

In order to use Equation B.6 in the Monte Carlo simulation it is necessary to
relate it to the random points which reference the global coordinate system.
This may be done by applying the normal laws for coordinate transformation to
determine the local coordinates in the global system. The relationship between

the local x and y-axes to the global axes in Figure B.2 is:

y=y (B.7)

X (Djx—[gjz (B.8)
a a

Substituting Equations B.7 and B.8 into Equation B.6, the following

transformation of the equation for the back cylinder is found:

(2] s

2 2
2) XZ_Z[Z_[:ZE)jXQ+[§j 22+y?=p°
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ys\/pz—{(hjzxz—Z[hmjxﬁ+[bj2 2} (B.9)
a a’ a

In the Monte Carlo simulation the x and z-coordinates for each random point
are inserted into Equation B.9 and a maximum y-coordinate calculated. If the
actual y-coordinate for a tested point is less than the limiting value it is within
the back cylinder and if it is greater than the limiting value it is not.

B.1.3 Surface Conditions for the Top Cylinder

The procedure for finding the condition for a point to lie within the top
cylinder is similar to that just given for finding a point within the back cylinder.
Consider Figure B.3 where the x’ axis is aligned with the longitudinal axis of the

top cylinder so that the equation for the top cylinder becomes:

(y)+(z) =0 (B.10)

y’, 2': coordinates in terms of the local axes defined in Figure B.3

The transformation equations from Figure B.3 between the local to the global

axes in this case are:

Z=z-h (B.11)

y :[%jx{g]y—(%bj (B.12)

Substituting Equations B.11 and B.12 into Equation B.10, the equation for the

top cylinder can be determined:
[%)x{gjy—[%bﬂz (z h) = p?
%)xz +Gjy2 +22 +[\/_]x[:y ( j (g ] (2h)z+[%b2j+h2 = p?

S VN (X M e P XY Py N (R
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FigureB.3: Unit cell showing global axes and local
axesfor thetop cylinder

Equation B.13 is therefore the condition determining if a random point is within
the top cylinder or not. It is also important to note that for a point to fall within
the intersection region of the top cylinder and back cylinder it must meet the

conditions of Equations B.9 and B.13.

B.1.4 Volume Fraction of Cylinder Material

Calculation of the volume fraction of the cylinders within the half prism
unit cell is based on the direct relationship between the volume fraction and the
number fraction of the random points. The solution can be found by counting
the number of random points that passed the cylinder test criteria and dividing
this number by the total number of points that passed the half prism unit cell
criteria. Note that it is necessary to subtract from the number of random points
within the cylinders the number of points at the cylinders’ intersection, since
these points are counted once in the top cylinder and once in the back cylinder.
The volume fraction of cylinders in the half prism unit cell is then:

Ny

@ =[ L ]DOO (3.27)
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n. =n,+n,-n (3.28)
@: volume fraction of cylinders in half prism unit cell
Nhp:  Number of points in half prism unit cell
Ne: number of points in cylinders
Npe:  nhumber of points in back cylinder (Eq. B.9)
Ne:  humber of points in top cylinder (Eq.B.13)

n;: number of points in the intersection (Eq. B.9 and B.13)

B.2 C++ PROGRAM TO RUN THE MONTE CARLO
SIMULATION

/1 CHCP_VF 1.1: Volune Fraction of Cylindrical HCP Mddel using Single
/1 Point Probability

11

11 Last Modified: Apr.8, 2004

/1 Step 1. Preprocessor Directives
#i ncl ude <i ostreanr

#i ncl ude <fstreane

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude <i omani p>

#include <tine. h>

usi ng nanespace std
int main()

[1Step 2: Initial Information
[1Step 2.1: Variable Declarations
int i;
i nt nhp, nbc, ntc, ncr, nmat, nax;
doubl e rhol, rho2;
double x, vy, z;
double zm n, zmax;
doubl e yf, zbot;
doubl e x1, x2, yl1, y2
doubl e ybcl, ybc2, ztcl, ztcz;
doubl e vfhp, vfcyl, vftb, vfcr, vfmat;

[1Step 2.2: Initialize Variables
i = 0;

x:y:z:O;

zmin = 1.0/sqrt(2.0);

zmax = 2.0 * sqrt(2.0);

nhp = nbc = ntc = ncr = nnmat = 0O;

x1 =x2 =yl =y2 =3.0
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yf = 0.0;

zbot = 3.0;

ybcl = ybc2 = -0.1;
ztcl = ztc2 = 3.0;

/1 Step 2.3: Input from User

cout << "CHCP_VF 1.1: Volune Fraction of"<< endl
<< " Cylindrical HCP Mdel using " << end
<< " Single Point Probability";
<< endl << endl

cout << "(a) Provide the nunmber of values" << end
<< " pseudo-random t hat shoul d be generated: ";

cin >> max;

cout << "(b) Provide the radius of the back"” << end
<< " cylinder" << endl
<< "(value between 0 and 1.0): ";

cin >> rhol;

cout << "(c) Provide the radius of the top << end
<< " surface cylinder" << end
<< " (value between 0 and 1.0): ";

cin >> rho2;

/1 Step 3. Generate Random Nunbers and Locate their Positions
srand(ti me(NULL));

for (i =1; i <= max; i++)
{
x = doubl e(rand())/RAND MAX * 2.0
y = doubl e(rand())/RAND_MAX * sqrt(3.0);
z = zmn + double(rand())/RAND MAX * (zmax - zmn);
[/Step 3.1: Find Points within Half PrismUnit Cel
if (x <= 1.0)
yf = sqrt(3.0) * x;
el se
yf = sqrt(3.0) * (2.0 - Xx);

zbot = (1.0/sqgrt(2.0)) * (3.0 - x);
if (y <= yf &% z >= zbot)
nhp = nhp + 1;
/1Step 3.2: Find Points within Back Cylinder
x1 = (1.0/sqgrt(2.0)) * z;
X2 = X - X1,
ybcl = (rhol * rhol) - (2.0/3.0) * (x2 * x2);
if (ybcl < 0.0)
ybc2 = ybcl;

el se
ybc2

sqgrt(ybcl);

if (y <= ybc2)

151



nbc = nbc + 1;

}

[1Step 3.3: Find Points within Top Cylinder
yl = (sqrt(3.0)/3.0) * (2.0 - x);
y2 =y -yl
ztcl = (rho2 * rho2) - (3.0/4.0) * (y2 * y2);
if (ztcl < 0.0)

ztc2 = 3.0;

el se
ztc2

(2.0 * sqrt(2.0)) - sqgrt(ztcl);

if (z >= ztc2)

{
ntc = ntc + 1,
[1Step 3.4: Find Points within Intersection of
Cylinders
if (y <= ybc2)
ncr = ncr + 1;
}
}

if (z < ztc2 & y > ybc2)
nmat = nmat + 1;

}

/1 Step 4. Cal cul ati ons and Qut put

vfhp = ((doubl e) nhp/ (doubl e) max) * 100;

vfcyl = (((doubl e)nbc + (double)ntc - (double)ncr)/(double)nhp)
* 100;

cout << "Volune Fraction of Box that is the Half Prisnt << endl
<< " Unit Cell: ";

cout << vfhp << endl;

cout << "Volunme Fraction of Half PrismuUnit Cell that" << endl
<< " is Cylinder: ";

cout << vfcyl << endl;

return O;
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APPENDIX C

BOUNDARY CONDITIONS FOR A HEXAGONAL
CLOSED-PACKED UNIT CELL

The boundary conditions for both the spherical and cylindrical models
were the same since they were based on the constant spatial distribution of the
phases. In this thesis, the spatial distribution chosen was the hexagonal closed-
packed system. The material in this appendix provides the C++ computer
program used to create a text file that applies the boundary conditions to the
non-linear plastic models in ADINA. A similar program was used for producing a
text file for the conditions of the linear elastic models. In order to change the
following program so that it produces linear elastic text files, it is necessary to
delete the lines that are italicised in Steps 2.1, 2.5 and 6.1. Greater detail about
the use of these boundary conditions may be found in Section 3.3.

C.1 C++ PROGRAM TO APPLY BOUNDARY CONDITIONS

/1 HCPP_BC 1. 0: Boundary Conditions for Hexagonal - Cl osed- Packed Model
/1
/1 Last Modified: Jul.23,2003

/1 Step 1: Preprocessor Directives
#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude <i omani p>

usi ng namespace std,;
int main()

/1Step 2. Initial Information
/1 Step 2.1. Variable Declarations

const int MAX1 = 35000;
const int MAX2 = 2000;
const int MAX3 = 7000;

const int MAXNAME = 80;
char dat e[ MAXNAME]

char gnd[ MAXNAME] ;

char nodefil e[ MAXNAME] ;
char nodel [ MAXNAME] ;

i nt nstep;

doubl e factor;
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/1 (3: Read Node Coordi nates)
static double x[ MAX1], y[MAX1l], z[ MAX1];
int n[ MAX1];
i nt check, ntot;
ifstreaminfile;
/1 (4: Find Positions of Nodes)
int i, k;
doubl e toler;
/1 (Count Vari abl es)
int ALcnt, Tcnt, LFcnt, RFcnt;
int Bcnt, LBcnt, RBcnt;
int Fcnt, BLFcnt, BRFcnt;
int APcnt, TLBcnt;
int Ofcnt, OLFcnt, ORFcnt;
/1 (Flag Vari abl es)
i nt ALfl ag[ MAX3], Tfl ag[ MAX3];
int LFflag][ MAX3], RFflag[ MAX3];
int LBflag[ MAX3], RBflag[ MAX3];
int BLFfI ag[ MAX3];
i nt TLBf I ag[ MAX3] ;
/1 (List Variabl es)

int AL[ MAX2], T[MAX2], LF[MAX2], RF[MAX2];

int B[MAX2], LB[MAX2], RB[MAX2]:
int F[ MAX2], BLF[MAX2], BRF[MAX2];
int AP[ MAX2], TLB[ MAX2];
int OT[ MAX2], OLF[ MAX2], ORF[ MAX2];
/1 (Difference Vari abl es)
doubl e dx1, dyl, dzl, dz2;

/1 (5: Pair Nodes on Bottom Surface)

int j, paircnt;

i nt pair[ MAX2];

/1(6: Apply Boundary Conditions)

i nt constraint nane;

doubl e betacoeffl1, betacoeff2;

[1Step 2.2: Initialize Variables
/1 (3: Read Nodal Coordi nates)
factor = nstep = ntot = O;
k = 0;
/1 (4. Find Nodal Positions)
toler = 0.0001;
ALcnt = Tcent = O;
LFcnt = RFcnt = O;
Bent LBcnt = RBcnt = O;
Fcnt BLFcnt = BRFcnt =0,
APcnt = TLBcnt = O;
Ofcnt = OLFcnt = ORFcnt = O;
/1 (5: Pair Nodes on Bottom Surface)
pai rcnt = O;
for (i =1; i <= MAX3; i++)
{

ALflag[i] = O;
Tflag[i] = O;
LFflag[i]
RFfl ag[i]
LBfl ag[i]
RBf | ag[i]

eeLeer
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}

BLFfl ag[i]
TLBfl ag[i ]

0;
0;

[1Step 2.3: Open Qutput File
cout << "HCPP_BC 1.0: Boundary Conditions for”

<< * Hexagonal  osed-Packed Mbdel "
<< endl << endl;

cout << " (a) Provide the date (MD, Y): ";
cin >> date;
cout << endl;

cout <<

<< " file nane: ;

cin >> nodel ;
cout << endl;

of streamoutfil e;

" (b) Provide the nodel output" << endl

outfil e.open(nodel);

if (outfile.fail())

{
cout << "WARNING The file in Step 2.3 was not”
<< “ opened." << endl;
exit(1l);
}

outfile << setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)
<< setprecision(7);

/1Step 2.4: Initial Formatting

outfile << "*" << endl
<< ¥ Hexagonal - C osed- Packed Pl astic Mddel" << endl
<< MR << endl
<< MR Created on: "

<< date << endl
cc MEn << endl
<< "Dat abase New Save = No Prompt = No" << endl
<< "FEProgram ADI NA" << endl
<< "Control Fileversion = v75" << endl
<< "FEProgram Program = ADI NA" << endl
<< "Master Anal ysis = Static," << endl
<< " | DOF = 000111," << endl
<< " Reacti ons = Yes," << endl
<< " Solver = lterative” << endl;
/1 Step 2.5: Non-Linear Solution Data

outfile << "** << endl
<< "* Non- Li near Sol uti on Data" << endl
<< "Kinematics Displacenents = Large Strains = Large"
<< endl

<< "|teration Met hod = Ful | - Newt on" << endl
<< "Tol erances Iteration ETOL = 0.001" << endl;
cout << " (c) Nunber of Solution Steps: ";

cin >> nstep;

155



cout << endl;

outfile << "Tinestep Name = 1" << endl
<< setwW(5) << nstep << setwb) << 1 << endl
<< "Ti mefuncti on Name = 1" << endl;
cout << " (d) Multiplication Factor for Displacenment: "
<< endl;
outfile << setw(5) << 0 << setw(15) << 0 << endl;
for (i = 1; i <= nstep; i++)
{
outfile << setw(5) << i;
cout << " Factor for Step " << i << ": ";
cin >> factor;
outfile << setw(15) << factor << endl;
}

cout << endl;

/] Step 2.6: Read Geonetry - Material - Discretization Data

cout << " (e) Provide geonetry-nmaterial-discretization”
<< endl
<< " file name: *;

cin >> gnd,

cout << endl;

outfile << "*"
<< endl
<< " Read Geonetry-Material -Discretization”
<< * File" << endl
<< "Read File ="
<< gmd << endl;

/1 Step 3: Read Node Coordi nates

cout << " (f) Provide the node coordi nate"
<< endl
<< " file name: *;

cin >> nodefile;
cout << endl;

i nfile.open(nodefile);

if (infile.fail())

{
cout << "WARNING The file was not successfully opened."
<< endl
<< " Please check that the file currently exists."
<< endl;
exit(1);
}
while ((check = infile.peek()) !'= EOF)
{
k = k + 1;

infile >> n[Kk];
infile >> x[n[k]] >> y[n[k]] >> z[n[k]];

ntot = ntot + 1;
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cout << "Input Mdel Information to ADI NA:"
<< "Total Nodes: " << ntot

infile.close();

/1Step 4: Find Positions of Nodes

for

{

=1, i <= ntot; i++)

/1Step 4.1. Axis of Anti-synmetry
dx1 = fabs(x[n[i]] - 1.0);
dz1 fabs(z[n[i]] - sqrt(2.0));

if (dx1 <= toler && dzl <= toler)

ALflag[i] = 1;

ALcnt = ALcnt + 1;

AL[ ALcnt] = n[i];
}

/1 Step 4.2: Top Surface
dz1 = fabs(z[n[i]] - (2 * sqrt(2.0)));

if (dzl <= toler)

Tflag[i] = 1;

Tent = Tent + 1;

T[Tent] = nl[i];
}

/1Step 4.3. Left-Front Surface
dyl = fabs(y[n[i]] - (sqrt(3.0) * x[n[i]]));
if (dyl <= toler)

LFflag[i] = 1;

LFcnt = LFcnt + 1;

LF[ LFcnt] = n[i];
}

/1Step 4.4. Right-Front Surface

<< endl|
<< endl;

dyl = fabs(y[n[i]] - (sqrt(3.0) * (2.0 - x[n[i]])));

if (dyl <= toler)

RFflag[i] = 1;

RFcnt = RFcnt + 1;

RF[ RFcnt] = n[i];
}

/1 Step 4.5 Back Surface
if (y[n[i]] <= toler)
{

Bcnt = Bent + 1;
B[Bcnt] = n[i];
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/1 Step 4.6: Bottom Surface
dz1 = fabs(z[n[i]] - ((3.0/sqrt(2.0)) - (x[n[i]]/sqrt(2.0))));

if (dzl <= toler && ALflag[i] == 0)

{
dz2 = (z[n[i]] - sqrt(2.0));
if (dz2 > toler)
LBflag[i] = 1;
LBcnt = LBcnt + 1;
LB[ LBcnt] = n[i];
}
if (dz2 < toler)
RBflag[i] = 1;
RBcnt = RBcnt + 1;
RB[RBcnt] = n[i];
}
}

[1Step 4.7: Front Line
dyl = fabs(y[n[i]] - sqrt(3.0));

if (dyl <= toler)
{
Fcnt = Fcent + 1;
F[Fcnt] =n[i];
}

/]Step 4.8: Bottom Left-Front Line
if (LFflag[i] == 1 && LBflag[i] == 1)
{

BLFflag[i] = 1;

BLFcnt = BLFcnt + 1;

BLF[ BLFcnt] = n[i];
}

/1 Step 4.9: Bottom Ri ght-Front Line
if (REflag[i] == 1 & RBflag[i] == 1)
{

BRFcnt = BRFcnt + 1;
BRF[ BRFcnt] = n[i];
}

/1Step 4.10: Axis Point
if (ALflag[i] == 1 & y[n[i]] <= toler)
{

APcnt = APcnt + 1;
AP[ APcnt] = n[i];
}

/1 Step 4.11: Top Left Back Corner (Master Node)
if (x[n[i]] <=toler & & y[n[i]] <= toler && Tflag[i] == 1)
{
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}

TLBflag[i] = 1;

TLBcnt = TLBcnt + 1,

TLB[ TLBcnt] = n[i];
}

/[1Step 4.12: Other Top Surface
if (Tflag[i] == 1 && TLBflag[i] == 0)
{

Olfcnt = QOfcnt + 1;
Orforent] = nl[i];
}

[1Step 4.13: Other Left-Front Surface
if (LFflag[i] == 1 && TLBflag[i] == 0 && dyl > toler)
{

OLFcnt = OLFcnt + 1;
COLF[OLFcnt] = n[i];
}

/1Step 4.14: Other Right-Front Surface
if (RFflag[i] == 1 & dyl > toler & RBflag[i] == 0)
{

ORFcnt = ORFcnt + 1;
ORF[ ORFcnt] = n[i];

/] Step 5: Pair Nodes on Bottom Surface

/1Step 5.1: Check if Equal Nunber of Nodes on Upper and
Il Lower Parts
if (LBcnt == 0 & RBcnt == 0)

{
cout << "WARNING Step 5.1 Check: No nodes on”
<< “ anti-symetric plane." << endl
<< " Dl SCRETI ZATI ON ERROR"' << endl ;
exit(1l);
}
if (LBcnt !'= RBcnt)
{
cout << "WARNING Step 5.1 Check: Number of nodes”
<< “ on upper part of plane does not
<< "equal nunber on lower." << endl
<< " DI SCRETI ZATI ON ERROR' << endl ;
exit(1l);
}

/[/Step 5.2: Pair Nodes for Anti-symretric Boundary
11 Condi tion
for (i =1; i <= RBcnt; i++)
{
for (j = 1; j <= LBent; j++)
{
dz1
dyl

fabs((z[RB[i]] + z[LB[j]])/2.0 - sqrt(2.0)):
fabs(y[RB[i]] - y[LB[j]]);

if (dz1l <= toler && dyl <= toler)
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paircnt = paircnt + 1;
pair[i] = LB[j];
}
}
}
if (paircnt != RBcnt)
{

cout << "WARNING Step 5.2 Check: Insufficient”
<< " node pairs." << endl
<< " Dl SCRETI ZATI ON ERROR"' << endl ;
exit(1);

cout << "Masters for Slaves on Bottom (paircnt):"
<< paircnt << endl
<< endl;

/1 Step 6: Apply Boundary Conditions
outfile << "*" << endl
<< MR Boundary Conditions" << endl;

/1Step 6.1: Top Left Back Corner (Master Node)

outfile << "*" << endl
<< MR Top Left Back Corner (Master Node)"<< endl
<< "Apply Di spl acenent Substructure = 07
<< * Reuse = 1" << endl
<< "*Node Direction Fact or Ncur " << endl ;

outfile << setw(5) << TLB[1]
<< setw(10) << 3
<< setw(16) << 0.0014142
<< setw(5) << 1 << endl;

/1 Step 6.2: Back Surface

outfile << "*" << endl|
<< "% Back Surface" << endl|
<< "Boundari es Substructure = 0" << endl|
<< "*Node ux uy uz" << endl;
for (i =1; i <= Bent; i++)

outfile << setw(5) << B[i]
<< setw(9) << "free"
<< setw(8) << "fixed"
<< setw(6) << "free" << endl;

}

/1 Step 6.3: Front Line

outfile << "*" << endl|
<< "* Front Line" << endl|
<< "Boundari es Substructure = 0" << endl|
<< "*Node ux uy uz" << endl;

for (i =1; i <= Fcnt; i++)

{
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outfile << setw(5) << F[i]
<< setw(9) << "fixed"
<< setwW(7) << "free"
<< setwW(7) << "free" << endl;

}
/1Step 6.4. Axis of Anti-synmetry
outfile << "*" << endl
<< " Axi s of Antisymretry"” << endl
<< "Boundari es Substructure = 0" << endl
<< "*Node ux uy uz" << endl;
for (i =1; i <= Alcnt; i++)
{
outfile << setw(5) << AL[i]
<< setw(10) << "fixed"
<< setwm(8) << "free"
<< setw(8) << "fixed" << endl;
}
/1 Step 6.5: Axis Point
outfile << "*" << endl
<< "% Axis Point" << endl
<< "Boundari es Substructure = 0" << endl
<< "*Node ux uy uz" << endl;

outfile << setw(5) << AP[1]
<< setw(10) << "fixed"
<< setw(8) << "fixed"
<< setw(8) << "fixed" << endl;

/1 Step 6.6: Top Surface
betacoeffl = 1.0;
constrai ntname = 1;

outfile << "*" << endl
<< MR Top Surface" << endl
<< "Const rai nt - Node"
<< " Name = " << constraint nane
<< " Sl aveNode = " << OI[ 1]
<< " SlaveDOF = " << "'Z-Translation'" << endl;
for (i = 1; i <= Olcnt; i++)
{

outfile << setw(5) << TLB[1l] << " "Z-Translation "
<< betacoeffl << " "
<< setw(5) << OT[i] << " "Z-Translation" "
<< endl;

}

/1 Step 6.7: Bottom Surface
betacoeff1 = -1.0;
betacoeff2 = -1/sqrt(3.0);
constrai ntname = 2;

outfile << "*" << endl
<< "* Bot t om Sur f ace” << endl
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<< "Constrai nt - Node"

<< " Name = " << constrai nt name

<< " Sl aveNode = " << RB[1]

<< " SlaveDOF = " << "' X-Translation'" << endl
for (i =1; i <= paircnt; i++)

{
dyl = fabs(y[RB[i]] - (sqrt(3.0) * (2.0 - x[RB[i]])));

if (dyl <= toler)

{
outfile << setw(5) << TLB[1]
<< " '"X-Translation' " << betacoeffl << " "
<< setw(5) << RB[i] << " 'X-Translation' "
<< end
<< setwW(5) << pair[i] << " "Y-Translation" "
<< betacoeff2 << " "
<< setw(5) << RB[i] << " 'X-Translation' "
<< endl;
}
if (dyl > toler)
{
outfile << setw(5) << pair[i]
<< " '"X-Translation' " << betacoeffl << " "
<< setwW(5) << RB[i] << " 'X-Translation" "
<< endl;
}
}
bet acoeff1l = 1.0;
constrai nt name = 3;
outfile << "*" << end
<< "Constrai nt - Node"
<< " Nane = " << constrai nt nane
<< " Sl aveNode = " << RB[1]
<< " SlaveDOF = " << "'Y-Translation'" << endl
for (i = 1; i <= paircnt; i++)
{
outfile << setw(b) << pair[i]
<< " '"Y-Translation' " << betacoeffl << " "
<< setw(5) << RB[i] << " 'Y-Translation' "
<< endl;
}

bet acoeffl1l = -1.0;
constrai nt name = 4;

outfile << "*" << end
<< "Constrai nt - Node"
<< " Name = " << constraint nane
<< " Sl aveNode = " << RB[1]
<< " SlaveDOF = " << "'Z-Translation'" << endl
for (i = 1; i <= paircnt; i++)
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{

outfile << setw(b) << pair[i]

<< " '"Z-Translation' " << betacoeffl << "
<< setw(5) << RB[i] << " '"Z-Translation'
<< endl;

}

/1 Step 6.8: Left-Front Surface
bet acoef f1 1.0;

bet acoef f 2 1/sqrt(3.0);
constrai ntnane = 5;

outfile << "*" <<
<< "* Left Front Surface" <<
<< "Constrai nt - Node"
<< " Nanme = " << constrai nt nane
<< " Sl aveNode = " << OLF[1]
<< " SlaveDOF = " << "'X-Translation'" <<

for (i =1; i <= OLFcnt; i++)

{
outfile << setw(5) << TLB[1]

<< " '"X-Translation' " << betacoeffl << "
<< setwW(5) << OLF[i] << " 'X-Transl ation'
<< end
<< setw(5) << OLF[i]
<< " '"Y-Translation' " << betacoeff2 << "
<< setw(5) << OLF[i] << " 'X-Transl ation'
<< endl;

}

/1 Step 6.9: Right-Front Surface
betacoeff1 = -1.0;

betacoeff2 = -1.0/sqgrt(3.0);
constrai nt nane = 6;

outfile << "*" <<
<< " Ri ght Front Surface" <<
<< "Const rai nt - Node"
<< " Name = " << constrai nt nane
<< " Sl aveNode = " << ORF[ 1]
<< " SlaveDOF = " << "'X-Translation'" <<

for (i = 1; i <= ORFcnt; i ++)

{
outfile << setw(5) << TLB[1]

<< " '"X-Translation'" " << betacoeffl << "
<< setW(5) << ORF[i] << " 'X-Transl ation'
<< end
<< setw(5) << ORF[I]
<< " 'Y-Translation' " << betacoeff2 << "
<< setwW(5) << ORF[i] << " '"X-Transl ation’
<< endl;

}

/1 Step 6.10: Front Line
betacoeffl = -sqrt(3.0);
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constrai ntname = 7;

outfile << "*" << endl
<< "* Front Line" << endl
<< "Constrai nt - Node"
<< " Nane = " << constrai nt nane
<< Sl aveNode = " << F[2]
<< " SlaveDOF = " << "'X-Translation'" << endl;
for (i =1; i <= Fcnt; i++)
{
outfile << setw(5) << TLB[1]
<< " '"X-Translation' " << betacoeffl << " "
<< setw(5) << F[i] << " 'Y-Translation' "
<< endl;

}

outfile.close();

return O;
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APPENDIX D

DISCRETISATION OF UNIT CELL GEOMETRY FOR THE
SPHERICAL MODEL

To use the finite element method (FEM) it is necessary to break models
of continuous objects into a number of smaller pieces, or to discretise them. For
the spherical model, the initial discretisation of the unit cell geometry was
carefully completed in order to prevent the creation of elements with boundaries
that overlap. This is done for points in Steps 3 and 4 of the program listed below
for the surrounding (matrix) phase and the sphere phase, respectively. Arc lines
to provide the base for curved surfaces are defined in Step 5 and the volumes
supplying the initial elements in Step 6. The constituent material properties data
is defined in Step 7. The programming for the elastic case is shown in this
appendix with the spherical model and the programming for the plastic case is
shown with the cylindrical model in Appendix E. Both cases are, however,
applicable to both models and the parts that need to be changed to switch
between the two are shown in italics (in Steps 2.1, 2.3 and 7). Steps 8, 9 and 10
are then used to define the elements to be used, the number of subdivisions
into which the initial volumes may be broken and the generation of these
elements. The final step then simply provides a listing of all the nodes created
by the program. The overall purpose of this program and the source of its
development are discussed in Sections 3.1 and 3.4.

D.1 C++ PROGRAM FOR DISCRETISATION OF SPHERICAL

MODEL
/1 SHCPE_GVD_1.2: Geonetry-Material-Discretisation for Spherica
/1 Hexagonal - Cl osed- Packed Mode
/1
/1 Last Modified: Aug. 10, 2004

/1 Step 1. Preprocessor Directives
#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <stdlib. h>

#i ncl ude <math. h>

#i ncl ude <i omani p>
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usi ng namespace std,;
int main()

/[1Step 2. Initial Information
/1Step 2.1. Variabl e Declarations

/1 (Const ant s)
const double PI = 3.14159265359;
const int MAX = 500;
const int MAXNAME = 80;
/1 (Basic Vari abl es)
int i, k;
char dat e[ MAXNAME] ;
char grd[ MAXNANME] ;
char node[ MAXNAME] ;
/1 (38&4: Geonetry Point Vari abl es)
doubl e x[ MAX], y[MAX], z[MAX];
doubl e r, rho, rhop, rhopp;
doubl e al phalp, al phal, al pha2, al pha3, al pha4p;
doubl e betal, beta2, betas3;
doubl e gammal, gammaz;
doubl e delt a;
double a, b, c, s;
/1 (5: Line Arc Vari abl es)
int pl[MAX], p2[ MAX], p3[MAX];
/1 (6: Volune Vari abl es)
int vi[] MAX], v2[ MAX], v3[MAX], v4[MAX], v5[MAX];
int v6[ MAX], v7[MAX], v8[MAX];
[1(7: Material Property Variables)
double El1, E2, nul, nu2;
/1(98&10: Discretisation Variabl es)
int ndivl, ndiv2, ndiv3, elemodes;

/1Step 2.2: Open Qutput File

cout << "SHCPE GVD_1.2: Geonetry-Mterial-Discretisation”
<< * for Spherical Hexagonal C osed-Packed Mdel"
<< endl << endl;

cout << "STEP 1: Initial Information" << endl

<< " (a) Provide the date (MD,Y): ";
cin >> date;
cout << " (b) Provide the geonetry-material-*
<< “discretisation:" << endl
<< " file name: *;
cin >> gnd;
cout << " (c) Provide the node coordi nate" << endl
<< " file name: ";

cin >> node;
cout << endl;

of stream outfil e;
outfile.open(gmd);

if (outfile.fail())

{
cout << "WARNING The file in Step 2.2 was not”
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<< * opened." << endl
exit(1l);
}

outfile << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(7);

outfile << "*" << end
<< "* GWD File created on: "
<< date << endl

/1Step 2.3: Input from User
cout << "STEP 2: Volunme Fraction Information from Radii”

<< * of Spheres” << end
<< " Input the radii of the spheres: ";
cin >>r;

cout << endl

cout << "STEP 3: Material Properties" << end
<< " (a) The Matrix Material” << end
<< " (i) I'nput the Young's Mdulus: ";

cin >> EI1;

cout << " (ii) Input the Poisson's Ratio: ";

cin >> nul;

cout << " (b) The Sphere Material" << end
<< " (i) I'nput the Young's Mdulus: ";

cin >> E2;

cout << " (ii) Input the Poisson's Ratio: ";

cin >> nu2;
cout << endl

cout << "STEP 4: Discretisation of the Mdel" << end
<< " (a) Subdivision Data" << end
<< " (i) Input for direction 1: "

cin >> ndivl;

cout << " (ii) Input for direction 2: "

cin >> ndiv2;

cout << " (iii) Input for direction 3: "

cin >> ndiv3;

cout << " (b) I'nput nunber of nodes per elenent: ";

cin >> el emmodes;
cout << endl

/[1Step 2.4: Initialize Variables
i =k =0;

al phalp = atan(sqrt(2.0)/2);

al phal = (PI/2) + al phalp

al pha2 = (PI/2) - al phalp

al pha3 = atan(2 / (sqrt(2.0)/2));
al phadp = atan((sqrt(2.0)/2) |/ 2);
a=Db=c=0;

s = 0;

rho = sqrt(powr,2.0) - 3);
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bet al
bet a2
bet a3
ganmal
gamm?2

60 * (PI/180);

30 * (PI/180);

75 * (P1/180);
(PI/2) - atan((3/(2 * sqrt(2.0)))/sqrt(3.0));
(P1/2) - atan(((5/sqrt(2.0))/2)/(2/2));

/1 Step 3. Surroundi ng Phase (Matrix) Points
[1Step 3.1: CQuter Layer

x[1] = 0;

y[1] = 0;

z[1] =2 * sqrt(2.0);

x[2] = 0;

y[2] = 0;

z[2] = 3/sqrt(2.0);

x[3] = 1;

y[3] = sqrt(3.0);

z[3] =2 * sqrt(2.0);

x[4] = 1;

y[4] = sqrt(3.0);

z[4] = sqrt(2.0);

x[5] = 2

y[5] = 0;

z[5] = 1/sqrt(2.0);

x[6] = 3.0/2.0;

y[6] = sqrt(3.0)/2;

z[6] = (3/sqrt(2.0))/2;

x[7] = 1.0/2.0;

y[7] = sqrt(3.0)/2;

z[7] = (5/sqrt(2.0))/2;

/1 Step 3.2: Sphere Layer

X[8] =2 - r;

y[8] = 0;

z[8] =2 * sqrt(2.0);

X[9] =2 - r * cos(betal);

y[9] =r * sin(betal);

z[9] =2 * sqrt(2.0);

x[10] = 2;

y[10] = O;

z[10] = (2 * sqrt(2.0)) - r;

x[11] =2 - (r * sin(alpha2) * cos(betal));
y[11] =r * sin(al pha2) * sin(betal);

z[11] = (2 * sqrt(2.0)) - (r * cos(al pha2));
x[12] =2 - (r * sin(gamma2) * cos(betal));
y[12] =r * sin(gamma2) * sin(betal);

z[12] = (2 * sqrt(2.0)) - (r * cos(gamm2));
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x[13] =2 - (r * sin(al phal3));
y[13] = 0;
z[13] = (2 * sqrt(2.0)) - (r * cos(al pha3));
x[14] = 2 - (r * sin(gamml) * cos(beta2));
y[14] =r * sin(gammal) * sin(beta2);
z[14] = (2 * sqrt(2.0)) - (r * cos(gamml));
/1Step 3.3: Centre of Sphere
x[15] = 2;
y[15] = 0;
z[15] = 2 * sqrt(2.0);
//Step 3.4: BottomIntersecting Crcle
x[16] = 1;
y[16] = O;
z[16] = sqrt(2.0);
for (i =17, i <= 21; i++)
{
delta = (i - 17) * (PI/4);
x[i] =1 - (rho * cos(delta) * cos(al phalp));
y[i] = rho * sin(delta);
z[i] = sqrt(2.0) + (rho * cos(delta) * sin(alphalp));
}

/1Step 3.5: Bottom (Lower-CQuter) Intersecting Circle
s = asin(sin(1l/cos(al phalp))*(sin(betal)/sin(beta3)))-rho;
rhop = rho + (s)/3;

for (i = 22; i <= 26; i++)

{
delta = (i - 22) * (Pl/4);
X[i] =1 - (rhop * cos(delta) * cos(al phalp));
y[i] = rhop * sin(delta);
z[i] = sqrt(2.0) + (rhop * cos(delta) * sin(al phalp));
}

[1Step 3.6: Bottom (Upper-Quter) Intersecting Circle
rhopp = rho + (s)/6;

a =1,

b =-(4* sqrt(2.0));

for (i =27, i <= 31; i++)

{
delta = (i - 27) * (Pl/4);
x[i] =1 - (rhopp * cos(delta) * cos(al phalp));
yl[i] = rhopp * sin(delta);
c = (pow((x[i] - 2),2) + pow(y[i],2) - pow(r,2) + 8);
z[i] = (-b - sqgrt(pow(b,2.0) - 4 * a * ¢))/(2 * a);
}

[1Step 3.7: Left Intersecting Circle

x[32] = (x[1] + x[3])/2;
y[32] = (y[1] + y[3])/2;
z[32] =2 * sqrt(2.0);
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for (i = 33; i <= 37; i++)

{
delta = (i - 33) * (Pl/4);
x[i] = (1 + rho * cos(delta)) * cos(betal);
y[i] = (1 + rho * cos(delta)) * sin(betal);
z[i] = (2 * sqrt(2.0)) - (rho * sin(delta));
}

/1Step 3.8: Left (Lower-CQuter) Intersecting Crcle
s =1 - rho;
rhop = rho + (s)/3;

for (i = 38; i <= 42; i++)

{
delta = (i - 38) * (Pl/4);
x[i] = (1 + rhop * cos(delta)) * cos(betal);
y[i] = (1 + rhop * cos(delta)) * sin(betal);
z[i] = (2 * sqrt(2.0)) - (rhop * sin(delta));
}

/1Step 3.9: Left (Upper-Quter) Intersecting Circle
rhopp = rho + (s)/6;

a = 1,

b = -4

for (i = 43; i <= 47; i++)
{
delta = (i - 43) * (PI/4);
y[i] = (1 + rhopp * cos(delta)) * sin(betal);
z[i] = (2 * sqrt(2.0)) - (rhopp * sin(delta));
c = (pow(y[i],2)+pow((z[i]-(2*sqrt(2.0))),2)-pow(r, 2)+4);
x[i] = (-b - sgrt(powb,2.0) - 4 * a *c))/(2 * a);
}

/1Step 3.10: Intermnmediate Points

x[48] = x[1] + ((x[8] - x[1]) * (1.0/4.0));
y[48] = y[1];
z[ 48] = z[1];
x[49] = x[2] + ((x[13] - x[2]) * (1.0/4.0));
y[49] = y[2];
z[49] = z[2] + ((z[13] - z[2]) * (1.0/4.0));
x[50] = x[3] + ((x[9] - x[3]) * (1.0/4.0));
y[50] =y[3] - ((y[3] - y[9]) * (1.0/4.0));
z[50] = z[3];
x[51] = x[4] + ((x[11] - x[4]) * (1.0/4.0));
y[51] =y[4] - ((y[4] - y[11]) * (1.0/4.0));
z[51] = z[4] + ((z[11] - z[4]) * (1.0/4.0));
x[52] = x[6] + ((x[12] - x[6]) * (1.0/4.0));
y[52] = y[6] - ((y[6] - y[12]) * (1.0/4.0));
z[52] = z[6] + ((z[12] - z[6]) * (1.0/4.0));
x[53] = x[5];
y[53] = y[5];
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z[53] = z[5] + ((z[10] - z[5]) * (1.0/4.0));

x[54] = x[7] + ((x[14] - x[7]) * (1.0/4.0));

y[54] =y[7] - ((y[7] - y[14]) * (1.0/4.0));

z[54] = z[7] + ((z[14] - z[7]) * (1.0/4.0));

/1Step 3.11: Qutput for Matrix Geonetry Points

outfile << "*" << end
<< " Geonetry Points" << end

<< "Coordi nates Point System = 0" << end

<< "* Point"

<< setw(10) << "X"

<< setw(13) << "Y"

<< setw(15) << "Z" << end
<< " Matri x Points" << endl

for (i = 1; i <= 54; i+4+)

{
outfile << setw(5) << i
<< setw(15) << x[i]
<< setw(15) << y[i]
<< setw(15) << z[i] << endl;
}

/1Step 4. Interior Sphere Points
/1Step 4.1. BottomInner Intersecting Circle
for (i = 55; i <=59; i++)

{
delta = (i - 55) * (PI/4);
x[i] =1 - ((rho/2) * cos(delta) * cos(al phalp));
y[i] = (rho/2) * sin(delta);
z[i] = sqrt(2.0)+((rho/2)*cos(delta)*sin(al phalp));
}

/1Step 4.2: Bottom (Upper-Inner) Intersecting Crcle

x[60] =1 + ((r/10) * cos(al pha2));
y[60] = O;
z[60] = sqrt(2.0) + ((r/10) * sin(al pha2));
for (i = 61; i <= 65; i++)
{
delta = (i - 61) * (PlI/4);
x[i] = x[60] - ((rho/2) * cos(delta) * cos(al phalp));
y[i] = (rho/2) * sin(delta);
z[i] = z[60] + ((rho/2) * cos(delta) * sin(al phalp));
}

[1Step 4.3: Left Inner Intersecting Crcle
for (i =66; i <= 70; i++)

{
delta = (i - 66) * (Pl/4);
x[i] = (1 + (rho/2) * cos(delta)) * cos(betal);
y[i] = (1 + (rho/2) * cos(delta)) * sin(betal);
z[i] = (2 * sqgrt(2.0)) - ((rho/2) * sin(delta));
}

/1Step 4.4. Left (Upper-lnner) Intersecting Circle
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X[ 71] cos(betal) + ((r/10) * cos(beta2?));

y[ 71] ; sin(betal) - ((r/10) * sin(beta2));
z[71] = 2 * sqgrt(2.0);
for (i = 72; i <= 76; i++)
{
delta = (i - 72) * (Pl/4);
x[1] = ((1+(rho/2)*cos(delta))*cos(betal))+((r/10)*
cos(beta?));
y[i] = ((1+(rho/2)*cos(delta))*sin(betal))-((r/10)*
sin(beta2));
z[i] = (2 * sqrt(2.0)) - ((rho/2) * sin(delta));
}
/1Step 4.5. Top Back Row
k = 0;

for (i =77, i <= 82; i++)

{
k = k + 1;
x[i] =2 - (k * (rl7));
y[i] = 0;
z[i] =2 * sqrt(2.0);
}

/1 Step 4.6: Top R ght Row

x[83] =2 - ((6.0/7.0) * r) * cos(betal);
y[83] = ((6.0/7.0) * r) * sin(betal);
z[83] =2 * sqgrt(2.0);
x[84] = (x[15] + x[83])/2.0;
y[84] = (y[15] + y[83])/2.0;
z[84] = 2 * sqgrt(2.0);
/1Step 4.7 Internedi ate Back Row
x[ 85] = 2;
y[85] = O;
z[85] = (2 * sqrt(2.0)) - ((3.0/4.0) * r);
for (i = 86; i <= 90; i++)
{
x[i] = x[i - 9];
y[i] =0;
z[i] = z[i - 1] + ((1.0/7.0) * r) * tan(al phalp);
}
x[91] = x[82] + ((x[81] - x[82])/4);
y[91] = 0;
z[91] = z[90] + (x[81] - x[91]) * tan(al phalp);
/1Step 4.8 Internediate R ght Row
x[92] = x[84];
y[92] = y[84];
z[92] = z[85] + ((y[84]/sin(betal)) * tan(al phadp));
x[93] = x[83] + ((x[84] - x[83])/4);
y[93] = sqgrt(3.0) * (2.0 - x[93]);
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z[93] = z[85] + ((y[93]/sin(betal)) * tan(al phadp));

[1Step 4.9: Internediate Inner Circle
for (i =94; i <= 96; i++)

{
delta = (i - 93) * (Pl/4);
x[i] = x[88] - ((1.0/7.0) * r) * cos(delta);
y[i] = (((2.0/7.0) * r)/cos(al phalp)) * sin(delta);
z[i] = z[88]+((1.0/7.0)*r)*cos(del ta)*tan(al phalp);
}

/1Step 4.10: Intermediate Circle
for (i =97, i <= 99; i++)

{
delta = (i - 96) * (Pl/4);
x[i] =x[88] - (2 * (1.0/7.0) * r) * cos(delta);
y[i] = ((2 * (1.0/7.0) * r)/cos(al phalp)) * sin(delta);
z[i] = z[88]+(2*(1.0/7.0)*r)*cos(del ta)*tan(al phalp);
}

/1 Step 4.11: Top Inner Circle
for (i = 100; i <= 102; i++)

{
delta = (i - 99) * (Pl/4);
x[i] = x[79] - ((1.0/7.0) * r) * cos(delta);
y[i] = ((1.0/7.0) * r) * sin(delta);
z[i] =2 * sqrt(2.0);
}

/1 Step 4.12: Top Circle
for (i = 103; i <= 105; i++)

{
delta = (i - 102) * (Pl/4);

x[1] =x[79] - (2 * (12.0/7.0) * r) * cos(delta);
y[i] =(2 * (1.0/7.0) * r) * sin(delta);
z[i] =2 * sqrt(2.0);

}

[1Step 4.13: Internmediates of Circles

x[106] = (x[82] + x[83])/2;

y[106] = (y[82] + y[83])/2;

z[106] = 2 * sqrt(2.0);

x[ 107] = (x[91] + x[93])/2;

y[107] = (y[91] + y[93])/2;

z[107] = (z[91] + z[93])/2;

[1Step 4.14: CQutput for Interior Sphere CGeonetry Points
outfile << "* Interior Sphere Points" << endl

for (i = 55; i <= 107; i++)

{
outfile << setw(5) << i
<< setw(15) << x[i]
<< setw(15) << y[i]
<< setw(15) << z[i] << endl
}
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/1 Step 5. Line Arcs
//Step 5.1: Line Arcs in Matrix

for (i =1; i <=5; i++)
{
k =i - 1,
pl[i] = 47 - k;
p2[i] = 37 - k;
p3[i] = 15;
pl[i + 25] = 31 - k;
p2[i + 25] = 21 - k;
p3[i + 25] = 15;
}
for (i =6; I <= 9; i++)
{
k =i - 6;
pl[i] = 42 - k;
p2[i] = 41 - k;
p3[i] = 32;
pl[i + 4] = 47 - k;
p2[i + 4] = 46 - Kk;
p3[i + 4] = 32;
pl[i + 8] = 37 - k;
p2[i + 8] = 36 - k;
p3[i + 8] = 32;
pl[i + 12] = 31 - k;
p2[i + 12] = 30 - k;
p3[i + 12] = 16;
pl[i + 16] = 26 - k;
p2[i + 16] = 25 - k;
p3[i + 16] = 16;
pl[i + 25] = 21 - k;
p2[i + 25] = 20 - k;
p3[i + 25] = 16;
}
for (i =35; i <= 36; i++)
{
k =i - 35
pl[i] = 46 - k;
p2[i] = 13 + k;
pl[i + 2] = 44 - k;
p2[i + 2] =11 - (2 * k);
pl[i + 5] =14 - (3 * k);
p2[i + 5] =11 - (2 * k);
pl[i + 7] = 14 - k;
p2[i + 7] = 13 - (5 * k);
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}

p1[ 39]
p2[ 39]

p1[ 50]
p2[ 50]

for (i

31;
10;

= 35; i

p3[i]

/1 Step 5.2:
= 51; i

for (i

{

for (i

pl[i]
p2[i]

pl[i
p2[i

pl[i
p2[i

pl[i
p2[i

pl[i

+ 9] = 28 - k;
+ 9] =14 - k;
+ 11] = 30 - k;
+ 11] = 12 - k;
+ 13] = 12;
+ 13] = 11 - k;
<= 50; i++)
= 15;
Line Arcs in Interior
<= 54; | ++)
k =i - 5b1;
= 76 - k;
=75 - k;
= 71,
+ 4] =70 - k;
+ 4] = 69 - k;
+ 4] = 32;
+ 8] = 65 - k;
+ 8] =64 - k;
+ 8] = 60;
+ 12] = 59 - k;
+ 12] = 58 - k;
+ 12] = 16;
<= 68; i ++)
k =i - 67;
= 99 - k;
= 98 - k;
+ 2] =96 - k;
+ 2] =95 - k;
+ 4] =99 - (2 * k);
+ 4] =86 + (4 * k);
+ 6] =96 - (2 * k);
+ 6] =87 + (2 * k);
+ 8] = 105 - k;

Sphere



+
+

+

+

+ 4+ + + + +

p2[i
plf[i
p2[i
pl[i
p2[i
pl[i
p2[i
}
for (i = 67;
p3[i]
for (i = 75;
p3[i]
/lStep 5.3:
for (i =1,
{
out fi
}

/1 Step 6: Vol unes
/1 Step 6.1:
for (i =1,
{

v2[i]
v3[i]
vi[i
vAa[i
}
for (i = 1;
{
v4a[i]
vi[i
v6[i]
v5[i
vi[i]
v5[i]
va[i
Ve[ i
v2[i
v3[i
v5[i
Ve[ i
}

8] = 104 - k;

10] = 102 - Kk;

10] = 101 - Kk;

12] =105 - (2 * k);

12] =77 + (4 * k);

14] = 102 - (2 * Kk);

14] =78 + (2 * k);

i <= T74; i++4)

= 88;

i <= 82; i++)

=79,

Qut put for Line Arcs

i <= 82; i++)

e << "Line Arc"
<< " Name = <<
<< " Pl = << plfi]
<< " P2 = << p2[i]
<< " Centre = << p3[i]
<< endl;

Bottom Layer of Matrix Vol unes

i <= 4; i++4)
k =i - 1;
= 42 - k;
= 41 - k;
4] = 22 + k;
4] = 23 + k;
i <= 2; i++4)
k =i - 1;
=v2[i +4 =2 + (5 * k);
2] =v3[i +4 =7 - (3 * k);
= v5[i + 4] =49 + (5 * k);
2] = ve[i + 4] =54 - (3 * k);
=1 + k;
= 48 + k;
2] =4 - k;
2] =51 - k;
6] =4 + (2 * k);
6] =6 - k;
6] = 51 + k;
6] = 52 + k;
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/1 Step 6.2: Top Layer
for (i =9; i <= 12; i++4)
{
k =i - 9;
vi[i] = 42 - k;
v2[i] = 37 - k;
v3[i] = 36 - k;
va[i] = 41 - k;
v5[i] = 47 - k;
ve[i] = 46 - k;
v2[i + 4] = 42 - Kk;
v3[i + 4] = 41 - k;
ve[i + 4] = 47 - k;
v7[i + 4] = 46 - Kk;
vi[i + 8] = 22 + k;
va4[i + 8] = 23 + k;
v8[i + 8] = 28 + k;
vh[i + 8] = 27 + k;
vi[i + 12] = 17 + k;
v2[i + 12] = 22 + k;
v3[i + 12] = 23 + k;
va[i + 12] = 18 + k;
v5[i + 12] = 27 + k;
ve[i + 12] = 28 + k;
}
for (i = 13; i <= 14; i ++)
{
k =i - 13;
va[i] = v2[i + 4]
vi[i + 2] = v3[i + 4] = 54 -
v8[i] = v6[i + 4] = 13 + k;
v5[i + 2] =v7[i + 4] = 14 -
vi[i] = 48 + k;
v5[i] =8 + (5 * k);
va[i + 2] = 51 - k;
v8[i + 2] =11 - (2 * k);
v2[i + 6] = 51 + k;
v3[i + 6] = 52 + k;
ve[i + 6] = 11 + k;
v7[i + 6] =12 - (2 * k);
}
/1Step 6.3: Intersecting Circle Layer
for (i = 25; i <= 26; i++)
{
k =i - 25;
vi[i] =70 - (38 * k);
v2[i] =32 + (34 * k);
v3[i] = 68 - k;
v4[i] = 69 - k;
v5[i] =76 - (5 * k);
ve[i] = 71 + k;
v7[i] =74 - k;
v8[i] = 75 - k;

of Matrix Vol unes
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vi[i + 6] = 16 + (43 * k);
v2[i + 6] =55 - (39 * k);
v3[i + 6] = 56 + k;
v4[i + 6] = 57 + k;
v5[i + 6] = 60 + (5 * k);
v6[i + 6] = 61 - k;
v7[i + 6] = 62 + k;
v8[i + 6] = 63 + k;
}
for (i = 27; i <= 30; i++)
{
k =i - 27;
vi[i] = 37 - k;
v2[i] = 70 - k;
v3[i] = 69 - k;
v4[i] = 36 - k;
vh[i] = 47 - k;
v6[i] = 76 - Kk;
v7[i] = 75 - k;
v8[i] = 46 - Kk;
vi[i + 6] = 55 + k;
v2[i + 6] = 17 + k;
v3[i + 6] = 18 + k;
v4[i + 6] = 56 + k;
v5[i + 6] = 61 + k;
ve[i + 6] = 27 + k;
v7[i + 6] = 28 + k;
v8[i + 6] = 62 + k;
}

/1 Step 6.4. Surface Layer of Interior Sphere Vol unes
for (i = 37; i <= 40; i++)

{
k =i - 37;
v2[i] = 47 - k;
v3[i] = 46 - k;
v6[i] = 76 - Kk;
v7[i] = 75 - k;
vi[i + 6] = 27 + k;
va4[i + 6] = 28 + k;
vi[i + 10] = 61 + k;
v2[i + 10] = 27 + k;
v3[i + 10] = 28 + k;
va4[i + 10] = 62 + k;
}
for (i =37; i <= 38; i++)
{
k =i - 37;
vB[i] = vi[i + 4] = v6[i + 6] =91 + (16 * k);
vh[i + 2] = va4[i + 4] = v7[i + 6] = 107 - (14 * k);

va[i] = v2[i + 6] = 13 + k;
vi[i + 2] = v3[i + 6] =14 - (3 * k);

vi[i]
V5[]

8 + (5 * k);
82 + (9 * Kk);
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va[i + 2] =11 - (2 * k);
v8[i + 2] =93 - (10 * k);
v2[i + 4] =75 - k;
v3[i + 4] =74 - k;
v5[i + 4] =82 + (24 * k);
ve[i + 4] =76 - (5 * k);
v7[i + 4] = 71 + k;
v8[i + 4] = 106 - (23 * Kk);
v2[i + 8] = 11 + k;
v3[i + 8] =12 - (2 * k);
ve[i + 8] = 93 - Kk;
v7[i + 8] =92 - (7 * k);
vi[i + 14] = 61 - k;
v2[i + 14] = 62 + k;
v3[i + 14] = 63 + k;
va[i + 14] = 60 + (5 * k);
v5[i + 14] = 89 - k;
ve[i + 14] = 94 + k;
v7[i + 14] = 95 + k;
v8[i + 14] = 88 - k;

}

for (i =37, i <= 39; i++)

{

k =i - 37;

VB[i + 7] = v8[i + 6] = v6[i + 11] = v7[i + 10] = 97 + k;
vB[i + 11] = v8[i + 10] = 94 + k;

}
v5[43] = 90;
v8[46] = v7[50] = 86;
v5[47] = 89;
v6[47] = 90;
v8[ 50] = 87;
/1 Step 6.5: Core Layer of Interior Sphere Vol unes
for (i = 53; i <= 55; i++)
{
k =i - 5b3;
vi[i + 1] = v4[i] = v3[i + 4] = 97 + k;
v5[i + 1] = v8[i] = v6[i + 5] = v7[i + 4] = 103 + k;
vi[i + 5] = v4[i + 4] = 94 + k;
v2[i + 5] = 97 + k;
v5[i + 5] = v8[i + 4] = 100 + k;
}
for (i = 53; i <= 54; i++)
{
k =i -53;
v2[i] =91 + (16 * k);
v3[i] = 107 - (14 * k);
v6[i] = 82 + (24 * k);
v7[i] = 106 - (23 * Kk);
v2[i + 2] =93 - k;
v3[i + 2] =92 - (7 * k);
ve[i + 2] = 83 + k;
v7[i + 2] =84 - (69 * k);
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vi[i + 8] = 89 - k;
v2[i + 8] = 94 + k;
v3[i + 8] = 95 + k;
v4[i + 8] = 88 - k;
v5[i + 8] = 80 - k;
v6[i + 8] = 100 + k;
v7[i + 8] = 101 + k;
v8[i + 8] =79 - k;
}
v1[ 53] = 90;
v4[ 56] = v3[60] = 86;
v5[ 53] = v6[57] = 81;
v8[56] = v7[60] = 77;
v1l[57] = 89;
v2[57] = 90;
v4[ 60] = 87;
v5[57] = 80;
v8[ 60] = 78;
/1 Step 6.6: Qutput for Vol unes
for (i =1; i <= 12; i++4)
{
outfile << "Volume" << " Vertex" << " Shape = Prisnf
<< " Name = " << | << "," << endl
<< " vertexl = " << vi[i]
<< " vertex2 = " << v2[i]
<< " vertex3 = " << v3[i]
<< " vertex4 =" << v4[i] << "," << endl
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< endl;
}
for (i = 13; i <= 20; i++)
{
outfile << "Volunme" << " Vertex" << " Shape = Hex"
<< " Nane = " << i << "," << endl
<< " vertexl = " << vl[i]
<< " vertex2 = " << v2[i]
<< " vertex3d = " << v3[i]
<< " vertex4d = " << v4[i] << "," << endl
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< " vertex7 = " << v7[i]
<< " vertex8 = " << v8[i]
<< endl;
}
for (i = 21; i <= 24; i++)
{
outfile << "Volunme" << " Vertex" << " Shape = Prisnt
<< " Name = " << i << "," << endl
<< " vertexl = " << vi[i]
<< " vertex2 = " << v2[i]
<< " vertex3 = " << v3[i]
<< " vertex4 = " << v4[i] << "," << endl
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<< " vertex5 = << v5[i]

<< " vertex6 = " << v6[i]
<< endl;

}

for (i = 25; i <= 62; i++)

{

outfile << "Volunme" << " Vertex" << " Shape = Hex"

<< " Nane = " << | << "," << endl|
<< " vertexl = " << vi[i]
<< " vertex2 = " << v2[i]
<< " vertex3d = " << v3[i]
<< " vertex4 = " << v4[i] << "," << endl
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< " vertex7 = " << v7[i]
<< " vertex8 = " << v8[i]
<< endl;

}

/1 Step 7. Material Properties
outfile << "Material Elastic"

cc " Name = " << 1
<< " E=" << E1
<< " Nu =" << nul
<< endl;

outfile << "Material Elastic"

<< " Name = " << 2
<< " E=" << E2
<< " Nu =" << nu2
<< endl;

/1 Step 8: Elenment G oups
for (i =1; i <= 2; i++4)

{
outfile << "EG oup ThreeDSol i d"
<< " Name =" <<
<< " Material =" <<
<< endl;
}

/1 Step 9: Subdivision Data
outfile << "Subdivide Vol une"

<< " Name = " << 1

<< " NDi vl = " << ndivil
<< " NDiv2 = " << ndiv2
<< " NDiv3 = " << ndiv3
<< endl;

for (i = 2; i <= 62; i++)

outfile << " "<
<< endl;

}

/1 Step 10: Cenerate El enents
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/1 Step 10.1: Surroundi ng Mat
outfile << "Gvol une"

<< " Nane = " <<
<< " Nodes = " <<
<< " Goup = " <<
<< " Pr ef Shape =
<< endl;

for (i = 2; i <= 24; i++4)

{

outfile << " "<
<< endl;
}

/1 Step 10.2: Interior Sphere
outfile << "Gvol une"

<< " Name = " <<
<< " Nodes = " <<
<< " Goup =" <<
<< " Pr ef Shape =
<< endl;

for (i =26; i <= 62; i++)
{

outfile << " "<
<< endl;

}

/1Step 11: List Node Coordi nates

outfile << "FileLi st Option = F
<< " File ="
<< node

outfile << "List Coordinates Node
<< endl|
<< "

<< endl;

return O;
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APPENDIX E

DISCRETISATION OF UNIT CELL GEOMETRY FOR THE
CYLINDRICAL MODEL

The procedure used to discretise the geometry of the cylindrical model is
the same as that used to discretise the spherical model. Steps 3 and 4 define a
number of initially mapped points. Step 5 describes complex lines such as arcs
and splines, and Step 6 defines the initial volumes. The constituent material
properties are listed in Step 7, just as they are with the spherical model. In this
appendix, however, plastic conditions are considered, while elastic conditions
were studied in Appendix D. The commands that need to be changed in order
to switch between plastic and elastic conditions are shown in italics (Sec. 2.1,
2.3, 7). Finally, Steps 7, 8 and 9 describe the creation and generation of
elements. It should be noted that this program does not produce a list of nodes
useful for applying the boundary conditions of Appendix C to the final text file for

ADINA. These commands may be found in Step 11 of Appendix D.

E.1 C++ PROGRAM FOR DISCRETISATION OF CYLINDRICAL

MODEL
/1 CHCPP_GVD 1. 1: Ceonetry-Material-Discretisation for Cylindrica
/1 Hexagonal - Cl osed- Packed Mde
/1
/1 Last Modified: Aug. 10, 2003

/1 Step 1: Preprocessor Directives
#i ncl ude <i ostreane

#i ncl ude <fstreanp

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude <i omani p>

usi ng namespace std
int main()

//Step 2: Initial Information
/1 Step 2.1. Variable Declarations
/1 (Const ants)
const double PI = 3.14159265359;
const int MAX = 500;
const int MAXNAME = 80;

183



/1 (Basic Vari abl es)

int i, k;

char dat e[ MAXNAME] ;

char gmd[ MAXNAME] ;

/1 (38&4: Geonetry Point Vari abl es)

doubl e x[ MAX], y[MAX], z[ MAX];

doubl e rho, rhop;

doubl e al phalp, al phal, al pha2, al pha3, al pha4p;
doubl e betal, beta2, beta3;

doubl e gammal, gamma2, gama3, gamra4, ganmab5, ganmab;
doubl e delta;

double a, b, ¢, s, cl, c2, c3;

double x1, x2, z1, z2;

double zmin, ymin, xnmin, anmin, bmn, cmn;
/1 (5: Line Arc Vari abl es)

int pl[MAX], p2[ MAX], p3[MAX];

/1 (6: Volune Vari abl es)

int vi[] MAX], v2[ MAX], v3[MAX], v4[MAX];
int vb] MAX], v6[ MAX], v7[MAX], v8[MAX];
[1(7: Material Property Variables)

double E1, E2, nul, nu2, Y1, Y2

doubl e ET1, ET2, EPAl, EPA2;

/1 (9&10: Discretisation Variables)

int ndivl, ndiv2, ndiv3, el emodes;

/1Step 2.2: Open Qutput File

cout << "CHCPP_GVD_ 1.1: Geonetry-Mterial-Discretisation”
<< “ for Cylindrical Hexagonal -C osed- Packed Model "
<< endl << endl;

cout << "STEP 1: Initial Information" << endl

<< " (a) Provide the date (MD,Y): ";
cin >> date;
cout << " (b) Provide the geonetry-material -

<< “discretisation file nane: ;
cin >> gnd;
cout << endl;
cout << " NOTE: This file does not ask for a listing”
<< * of nodes." <<endl;
cout << endl;

of stream outfil e;
outfile.open(gmd);

if (outfile.fail())

{
cout << "WARNING The file in Step 2.2 was not”
<< “ opened." << endl;
exit(1);
}

outfile << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(7);

outfile << "*" << endl|
<< "* GWD File created on: "
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<< date << endl

/1Step 2.3: Input from User
cout << "STEP 2: Vol ume Fraction Information from Radi
<< * of Cylinders" << end
<< " Input the radii of the cylinders: ";
cin >> rho;
cout << endl

cout << "STEP 3: Material Properties" << end
<< " (a) The Matrix Material” << end
<< " (i) I'nput the Young's Modulus [MPa]: ";

cin >> EI1;

cout << " (ii) Input the Poisson's Ratio: "

cin >> nul;

cout << " (iii) Input the Yield Strength [MPa]: ";

cin >> Y1;

cout << " (b) The Cylinder Material™ << end
<< " (i) Input the Young's Modulus [MPa]: ";

cin > E2;

cout << " (ii) Input the Poisson's Ratio: "

cin >> nu2;

cout << " (iii) Input the Yield Strength [MPa]: ";

cin >> Y2;

cout << endl

cout << "STEP 4: Discretization of the Model™ << end
<< " (a) Subdivision Data" << end
<< " (i) Input for direction 1: "

cin >> ndivl;

cout << " (ii) Input for direction 2: "

cin >> ndiv2;

cout << " (iii) Input for direction 3: "

cin >> ndiv3;

cout << " (b) I'nput number of nodes per el ement: "

cin >> el emmodes;
cout << endl

/1Step 2.4: Initialize Variables

i =k = 0;

a=b=c=cl =c¢c2=c¢c3=s =0;
ymn = xmn =amn = bmn=cnmn = 0
x1l = x2 = 2.0;

z1 = z2 = 0O;

zmin = 2 * sqrt(2.0);

al phalp = atan(sqrt(2.0)/2);

al phal = (PI/2) + al phalp
al pha2 = (PI/2) - al phalp
al pha3 = atan(2 / (sqrt(2.0)/2));

al phadp = atan((sqrt(2.0)/2) |/ 2);

betal = 60 * (PI/180);
beta2 = 30 * (PI/180);
beta3 = 75 * (PI/180);

/[l gamml: Defined in Step 4.12
gama2 = atan(sqrt(3.0)/(1.0/cos(al phalp)));
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/1ganmma3: Defined in Step 4.20, gamma4: Defined in Step 4.20
/1 ganmab5: Defined in Step 3.9, gamm6: Defined in Step 3.9

/1Step 3: Surrounding Phase (Matrix) Points
/1 Step 3.1. Quter Points

x[1] = 0;

y[1] = 0;

z[1] =2 * sqrt(2.0);
x[2] = O

y[2] = 0;

z[2] = 3/sqrt(2.0);

x[3] = 1;

y[3] = sqrt(3.0);

z[3] =2 * sqrt(2.0);
x[4] = 1;

y[4] = sqrt(3.0);

z[4] = sqgrt(2.0);

x[5] = 2

y[5] = 0;

z[5] = 1/sqrt(2.0);

x[6] = 3.0/2.0;

y[6] = sqrt(3.0)/2;

z[6] = (3/sqrt(2.0))/2
x[7] = 1.0/2.0;

y[7] = sqrt(3.0)/2;

z[7] = (5/sqrt(2.0))/2;
xX[8] = 2;

y[8] = 0;

z[8] =2 * sqrt(2.0);
/[1Step 3.2: CQuter Circle of Top Cylinder on Left-Front Surface
x[101] = (x[1] + x[3])/2;
y[101] = (y[1] + y[3])/2;
z[101] = 2 * sqrt(2.0);

s =1 - rho;
rhop = rho + (s/3);

for (i = 9; i <= 13; i+4+)

{
delta = (i - 9) * (PI/4);

x[i] = (1 + rhop * cos(delta)) * cos(betal);

y[i] = (1 + rhop * cos(delta)) * sin(betal);

z[i] = (2 * sqrt(2.0)) - (rhop * sin(delta));
}
/1Step 3.3: Points at Two-Thirds between Left-Front &
/1 I ntersection
x[129] = (3.0/2.0) - rho;
y[129] = (sqrt(3.0)/6.0) * (1.0 + 2 * rho);
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z[ 129]

X[ 14]
X[ 16]
x[ 18]

y[ 14]
y[ 16]
y[ 18]

z[ 14]
z[ 15]
z[ 17]
z[ 18]

/1 Step
/1

x[ 118]
y[118]
z[ 118]

for (i
{
d
x[i]
y[i]
z[i]
}

/1 Step
/1

X[ 24]
x[ 26]
x[ 28]

y[ 24]
y[ 26]
y[ 28]

z[ 24]
z[ 25]
z[ 27]
z[ 28]

/1 Step
x[ 160]
y[ 160]
z[ 160]

x[ 144]
y[ 144]
z[ 144]

a = (1.
zmn =
z1 = 0O;
x1l = 2.

=2 * sqgrt(2.0);

x[15] = (4.0/3.0) * (1.0 - rho);

x[17] = (1.0/3.0) * (5.0 - 2 * rho);
x[129];

y[15] = O;

y[17] = (sqrt(3.0)/3.0) * (1.0 + 2 * rho);
y[129];

z[16] = 2 * sqrt(2.0);

(1.0/(2 * sqgrt(2.0))) * x[15] + (3.0/sqrt(2.0));
sqrt(2.0) * x[17];

(z[15] + z[17])/2.0;

w

.4: Quter Circle at One-Third between Left-Front &
I ntersection

(1.0/2.0) * (2.0 - rho);

(sqrt(3.0)/6.0) * (2.0 + rho);

2 * sqgrt(2.0);

19; i <= 23; i++)

elta = (i - 19) * (PI/4);

x[118] + (rhop * cos(delta) * cos(betal));
y[118] + (rhop * cos(delta) * sin(betal));
(2 * sqrt(2.0)) - (rhop * sin(delta));

3.5: Points at One-Third between Left-Front Surface &
I ntersection

x[25] = (2.0/3.0) * (1.0 - rho);

x[27] = (1.0/3.0) * (4.0 - rho);

X[ 118];

y[25] = O;

y[27] = (sqrt(3.0)/3.0) * (2.0 + rho);
y[118];

z[26] = 2 * sqrt(2.0);

((1.0/(2 * sqrt(2.0))) * x[25]) + (3.0/sqgrt(2.0));
sqrt(2.0) * x[27];

(z[25] + z[27])/2.0;

.6: Points at One-Third between Bottom & | ntersection
2.0;

0;
(2 * sgrt(2.0)) - (sqrt(3.0) * rho);

I imn w

(2.0 * sgrt(3.0) - rho)/sqrt(3.0);
rho;
sqrt(2.0) * x[144];

0/3.0);
2 * sqgrt(2.0);

0;
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while (z1 < znin)

{
X2 = x1;
x1 = x1 - 0.01;
b =-(((2 * sqrt(2.0))/3.0) * x1);
c = ((11.0/3.0) * powmx1,2)) - (12.0 * x1) + 12 - powrho, 2);
z1 = (-b - sgrt(powmb,2.0) - 4 * a *c))/(2 * a);
if (z1 < zmn)
{
zmn = z1;
z1 = 0;
}
}
/1 The m ni mum poi nt values are zm n and:
Xmn = X2;
ymn = sqrt(3.0) * (2.0 - x2);

z[161] = zmin + (z[144] - zmi n)/10.0;

a = (11.0/3.0);
b =-(((2 * sqrt(2.0))/3.0) * z[161] + 12);
c = (1.0/3.0) * pow(z[161],2) + 12 - pow(rho, 2);

x[161] = (-b - sqgrt(powmb,2.0) - 4 * a *c))/(2 * a);
y[161] = sqgrt(3.0) * (2.0 - x[161]);

X[29] = 2.0;

y[29] = O;

z[29] = z[5] + (7.0/24.0) * (z[160] - z[5]);

x[30] = (7.0/24.0) * (x[161] - x[6]) + x[6];

y[30] = sqgrt(3.0) * (2.0 - x[30]);

z[30] = (7.0/24.0) * (z[161] - z[6]) + z[6];

/1 Step 3.7. Points at Two-Thirds between Bottom & I ntersection
x[31] = 2.0;

y[31] = 0;

z[31] = z[5] + (7.0/12.0) * (z[160] - z[5]);

x[32] = (7.0/12.0) * (x[161] - x[6]) + x[6];

y[32] = sqgrt(3.0) * (2.0 - x[32]);

z[32] = (7.0/12.0) * (z[161] - z[6]) + z[6];

/1Step 3.8. Quter Circle of Back Cylinder on Bottom Surface
x[ 149] = 1.0;

y[149] = 0;

z[149] = sqrt(2.0);

s = (sin(gamua2)/cos(al phalp)) - rho;
rhop = rho + (s)/3;

for (i =33; i <= 37; i++)
{
delta = (i - 33) * (PlI/4);
x[i] = x[149] + (rhop * cos(delta) * cos(al phalp));
yl[i] = y[149] + (rhop * sin(delta));
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z[i] = z[149] - (rhop * cos(delta) * sin(al phalp));

}

[IStep 3.9: CQuter Circle of Back Cylinder at One-Third between
Il Bottom & I ntersection

a=29.0/4.0;

b=-(9- 2* sqgrt(6.0) * rho);

c = (2 * pow(rho,2)) - (4 * sgrt(6.0) * rho) + 9.0;
x[141] = (-b - sqgrt(pow(b,2.0) - 4 * a *c))/(2 * a);
z[141] = (sqrt(2.0) * x[141]) + (sqrt(3.0) * rho);
y[141] = 0;

x[164] = (x[141] + x[160])/2.0;

y[164] = 0;

z[164] = (z[141] + z[160])/2.0;

amin = sqrt(pow((2.0 - xmn),2.0) + pom(ymn, 2.0));
ganma5 = atan(amn/(zmin - z[5]));
ganma6 = al pha3 - ganmab;

bmn = (1/sqrt(2.0)) * tan(ganmmb);
cmin = (bmn * sin(gamma6 + al pha4p))/sin(al pha2);
x1 = x[149] + (1.0/3.0) * cmn * cos(al pha2);
z1 = z[149] + (1.0/3.0) * cmin * sin(al pha2);
x2 = x[149] + (1.0/3.0) * (x[164] - x[149]);
z2 = z[149] + (1.0/3.0) * (z[164] - z[149]);
if (x1 <= x2)
x[170] = x1;
z[170] = z1;
}
el se
x[170] = x2;
z[170] = z2;
}
y[170] = O;
for (i = 38; i <= 42; i++)
{
delta = (i - 38) * (PI/4);
x[i] = x[170] + (rhop * cos(delta) * cos(al phalp));
y[i] = y[170] + (rhop * sin(delta));
z[i] = z[170] - (rhop * cos(delta) * sin(al phalp));
}
[1Step 3.10: Qutput for Matrix Geometry Points
outfile << "*" << end
<< MR Ceonetry Poi nts" << end
<< "Coordi nates Point System = 0" << end
<< "* Point"
<< setw(10) << "X
<< setw(13) << "Y"
<< setw(15) << "Z" << end
<< "* Matri x Poi nts" << endl|
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for (i = 1; i <= 42; i++)

{
outfile << setw(5) << i
<< setw(15) << x[i]
<< setw(15) << y[i]
<< setw(15) << z[i] << endl
}

/1 Step 4. Cylinder Points
/1Step 4.1. Circle of Top Cylinder on Left-Front Surface
// Note: Point 101 was input in Step 3.2
for (i = 102; i <= 106; i++)

{
delta = (i - 102) * (Pl/4);
x[i] = (1 + rho * cos(delta)) * cos(betal);
y[i] = (1 + rho * cos(delta)) * sin(betal);
z[i] = (2 * sqrt(2.0)) - (rho * sin(delta));
}

/1Step 4.2 Inner Circle of Top Cylinder on Left-Front Surface
for (i = 107; i <= 111; i++)

{
delta = (i - 107) * (Pl/4);
x[i] = (1 + (rho/2.0) * cos(delta)) * cos(betal);
y[i] = (1 + (rho/2.0) * cos(delta)) * sin(betal);
z[i] = (2 * sgrt(2.0)) - ((rho/2.0) * sin(delta));
}
/1Step 4.3: Inner Circle of Top Cylinder at Intersection
x[112] = 2.0 - (3.0/2.0) * rho;
y[112] = (sqrt(3.0)/2.0) * rho;
z[112] = 2 * sqrt(2.0);
for (i = 113; i <= 117; i++)
{
delta = (i - 113) * (PlI/4);
x[1] = x[112] + ((rho/2.0) * cos(delta) * cos(betal));
y[i] =y[112] + ((rho/2.0) * cos(delta) * sin(betal));
z[i] = (2 * sqrt(2.0)) - ((rho/2.0) * sin(delta));
}
[1Step 4.4: Circle of Top Cylinder at One-Third between Left-
/1 Front & Intersection

// Note: Point 118 was input in Step 3.4
for (i = 119; i <= 123; i++)

{
delta = (i - 119) * (PI/4);

x[1] = x[118] + (rho * cos(delta) * cos(betal));

y[i] = y[118] + (rho * cos(delta) * sin(betal));

z[i] = (2 * sqrt(2.0)) - (rho * sin(delta));
}
[1Step 4.5: Inner Circle of Top Cylinder at One-Third between
/1 Left-Front & I ntersection
for (i = 124; i <= 128; i++)
{
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delta = (i - 124) * (Pl/4);
X[1] x[118] + ((rho/2.0) * cos(delta) * cos(betal));
y[i] y[118] + ((rho/2.0) * cos(delta) * sin(betal));
z[i] (2 * sgrt(2.0)) - ((rho/2.0) * sin(delta));

}
/1Step 4.6: Circle of Top Cylinder at Two-Thirds between Left-
/1 Front & Intersection

/I Note: Point 129 was input in Step 3.3
for (i = 130; i <= 134; i++)

{
delta = (i - 130) * (PlI/4);
x[1] = x[129] + (rho * cos(delta) * cos(betal));
y[i] =y[129] + (rho * cos(delta) * sin(betal));
z[i] = (2 * sqrt(2.0)) - (rho * sin(delta));
}
[IStep 4.7: Inner Circle of Top Cylinder at Two-Thirds between
/1 Left-Front & Intersection
for (i = 135; i <= 139; i++)
{
delta = (i - 135) * (Pl/4);
x[1] = x[129] + ((rho/2.0) * cos(delta) * cos(betal));
y[i] =vy[129] + ((rho/2.0) * cos(delta) * sin(betal));
z[i] = (2 * sgrt(2.0)) - ((rho/2.0) * sin(delta));
}

[1Step 4.8: Pseudo-Circle of Top Cylinder at Intersection
/I Note: Point 144 was input in Step 3.6 & Point 141 was input in

/1 Step 3.9

x[140] =2 * (1 - rho);

y[140] = y[142] = O;

z[140] = z[143] = 2 * sqrt(2.0);

a=1.0/4.0;

b =-1.0;

z[142] = (z[140] + z[141])/2.0;

c = pow(z[142],2) - (4 * sqrt(2.0) * z[142]) + 9.0 - pow(rho, 2);
x[142] = (-b - sqgrt(pow(b,2.0) - 4 * a *c))/(2 * a);
x[143] = 2.0 - rho;

y[143] = sqrt(3.0) * rho;

a=1.0;

b =-4.0;

z[145] = (z[143] + z[144])/2.0;

c = pow(z[145],2)-(4 * sqgrt(2.0) * z[145]) + 12.0 - pow(rho, 2);

x[145] = (-b - sqrt(pow(b,2.0) - 4 * a *c))/(2 * a);
y[145] = sqgrt(3.0) * (2.0 - x[145]);
y[ 146] = 0.82 * rho;
y[147] = 0.41 * rho;
y[148] = 0.94 * rho;
for (i = 146; i <= 148; i++)
{
a=2- (sqrt(3.0)/9.0) * y[i];
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cl =-3* pow(y[i],2);

c2 = 2*pow (cl+3*powmrho, 2)),0.5)*sqrt(2.0)*sqgrt(3.0)*y[i];
c3 =6 * pow(rho, 2);

b =-(4.0/9.0) * powm((cl + 3 * powrho,2)),0.5) * sqrt(2.0);
c =-(2.0/9.0) * powm((cl1 + c2 + c3),0.5);

x[i] =a+ b + c;

z[i] = sqgrt(2.0) * x[i] + powm(cl + 3 * pow(rho,2)),0.5);

}
/1Step 4.9: Circle of Back Cylinder on Bottom Surface

// Note: Point 149 was input in Step 3.8
for (i = 150; i <= 154; i++)
delta = (i - 150) * (PI/4);
x[i] = x[149] + (rho * cos(delta) * cos(al phalp));
y[i] =vy[149] + (rho * sin(delta));
z[i] = z[149] - (rho * cos(delta) * sin(al phalp));
}
/1Step 4.10: Inner Circle of Back Cylinder on Bottom Surface
for (i = 155; i <= 159; i++)
{
delta = (i - 155) * (PlI/4);
x[1] = x[149] + ((rho/2.0) * cos(delta) * cos(al phalp));
y[i] = y[149] + ((rho/2.0) * sin(delta));
z[i] = z[149] - ((rho/2.0) * cos(delta) * sin(al phalp));
}
/1Step 4.11: Pseudo-Circle of Back Cylinder at Intersection
/I Note: Points 160 & 161 were input in Step 3.6
x[162] = (x[160] + xmin)/2.0;
a=(1.0/3.0);
b =-(((2 * sqrt(2.0))/3.0) * x[162]);
¢ = ((11.0/3.0)*powm(x[162],2))-(12.0*x[ 162])+12- pow(rho, 2);
z[162] = (-b - sqgrt(powb,2.0) - 4 * a *c))/(2 * a);
z[163] = (z[144] + zmin)/2.0;
a=(11.0/3.0);
b =-(((2 * sqgrt(2.0))/3.0) * z[163] + 12);
c =(1.0/3.0) * pow(z[163],2) + 12 - pow(rho, 2);
x[163] = (-b - sqgrt(powmb,2.0) - 4 * a *c))/(2 * a);
for (i = 162; i <= 163; i++)
y[i] =sqrt(3.0) * (2.0 - x[i]);
/1Step 4.12: Inner Circle of Back Cylinder at Intersection
// Note: Point 164 was input in Step 3.9
gammmal = atan((z[141] - z[160])/(x[160] - x[141]));
for (i = 165; i <= 169; i++)
{
delta = (i - 165) * (Pl/4);
x[1] = x[164] + ((rho/2.0) * cos(delta) * cos(ganmal));
yl[i] = y[164] + ((rho/2.0) * sin(delta));
z[i] = z[164] - ((rho/2.0) * cos(delta) * sin(gammual));
}
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/1 Step 4.13:
/1

Circle of Back Cylinder at One-Third between Bottom
& Intersection

/I Note: Point 170 was input in Step 3.9
for (i = 171; i <= 175; i++)
{
delta = (i - 171) * (Pl/4);

x[i] = x[170] + (rho * cos(delta) * cos(al phalp));

y[i] = y[170] + (rho * sin(delta));

z[i] = z[170] - (rho * cos(delta) * sin(al phalp));
}
/1Step 4.14: Inner Circle of Back Cylinder at One-Third between
/1 Bottom & I ntersection
for (i = 176; i <= 180; i++)
{

delta = (i - 176) * (Pl/4);

x[i] = x[170] + ((rho/2.0) * cos(delta) * cos(al phalp));

y[i] = y[170] + ((rho/2.0) * sin(delta));

z[i] = z[170] - ((rho/2.0) * cos(delta) * sin(al phalp));
}
/1 Step 4.15: Circle of Back Cylinder at Two-Thirds between
/1 Bottom & I ntersection
x1 = x[149] + (2.0/3.0) * cmin * cos(al pha2);

z1 z[149] + (2.0/3.0) * cmn * sin(al pha2);
x2 = x[149] + (2.0/3.0) * (x[164] - x[149]);
z2 = z[149] + (2.0/3.0) * (z[164] - z[149]);
if (x1 <= x2)
{
x[181] = x1;
z[ 181] = z1;
}
el se
{
x[181] = x2;
z[ 181] = z2;
}
y[181] = 0;
for (i = 182; i <= 186; i++)
delta = (i - 182) * (PI/4);
x[i] = x[181] + (rho * cos(delta) * cos(al phalp));
y[i] =vy[181] + (rho * sin(delta));
z[i] = z[181] - (rho * cos(delta) * sin(al phalp));
}
/1Step 4.16: Inner Circle of Back Cylinder at Two-Thirds between
/1 Bottom & I ntersection
for (i = 187; i <= 191; i++)
{
delta (i - 187) * (PI/4);
x[i] = x[181] + ((rho/2.0) * cos(delta) * cos(al phalp));
y[i] = y[181] + ((rho/2.0) * sin(delta));
z[i] = z[181] - ((rho/2.0) * cos(delta) * sin(al phalp));
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}

/1Step 4.17: First Layer of Cylinder Intersection

x[192] = 2.0 - (rho/2.0) * (2.0 + sqgrt(3.0/2.0));

y[192] = 0;

z[192] = 2 * sqrt(2.0);

x1 = (rho/2.0) * (2.0 + sqrt(3.0/2.0));

a=29..0;

b =-(36.0- (8 * sqrt(6.0) * rho));

c = ((12*powmrho, 2))-(16*sqgrt(6.0)*rho) +36. 0- pow x1, 2));

x[193] = (-b - sgrt(powmb,2.0) - 4 * a *c))/(2 * a);
y[193] = 0;

z[ 193] = (sqrt(2.0) * x[193]) + (sqrt(3.0) * rho);

z[194] = (z[192] + z[193])/2.0;

a=1.0;

b =-4.0;

c = ((4*powm(z[194],2))-(16*sqrt(2.0)*z[194]) +36. 0- powm x1, 2));
x[194] = (-b - sgrt(powmb,2.0) - 4 * a * ¢))/(2 * a);
y[194] = 0;

x[195] = 2.0 - (rho/2.0) * (1.0 + sqgrt(3.0/11.0));

y[195] = (sqrt(3.0)/2.0) * rho * (1.0 + sqrt(3.0/11.0));
z[195] = 2 * sqrt(2.0);

x[196] = 2.0 - (sqrt(3.0/11.0) * rho);

y[196] = 3.0/sqgrt(11.0) * rho;

z[196] = ((2 * sqrt(2.0)) + z[144])/2.0;

z[197] = z[196] + (z[195] - z[196])/4.0;

x1 =rho * (1.0 + sqrt(3.0/11.0));

a=1.0;

b =-4.0;

c = (pow(z[197],2)-(4.0*sqrt(2.0)*z[197]) +12. 0-powm (x1/2.0),2));
x[197] = (-b - sgrt(powmb,2.0) - 4 * a * ¢))/(2 * a);
y[197] = sqgrt(3.0) * (2.0 - x[197]);

x[198] = (x[193] + x[196])/2.0;

y[198] = (y[193] + y[196])/2.0;

z[198] = (z[193] + z[196])/2.0;

/1 Step 4.18: Third Layer of Cylinder Intersection

X[199] = 2.0 - sqrt(3.0/2.0) * rho;

y[199] = 0;

z[199] = z[200] = z[201] =2 * sqgrt(2.0);

X[200] = 2.0*(1.0-(sqrt(3.0)/sqrt(11.0))*rho*cos(betal));
y[200] = 2.0 * (sqrt(3.0)/sqgrt(11.0)) * rho * sin(betal);
x[201] = (x[199] + x[200])/2.0;

y[201] = (y[199] + y[200])/2.0;

/1 Step 4.19: Fourth Layer of Cylinder |Intersection

x[202] = 2.0 - (sqrt(3.0)/sqrt(11.0)) * rho * cos(betal);
y[202] = (sqrt(3.0)/sqgrt(11.0)) * rho * sin(betal);
z[202] = z[203] = 2 * sqrt(2.0);
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X[ 203] 2.0 - sqrt(3.0/2.0) * (rho/2.0);

y[ 203] 0;
for (i = 204; i <= 208; i++)
{

delta = (i - 204) * (PI/4);
x[i] x[203] + (rho/3.0) * cos(delta);
ylil] y[203] + (rho/3.0) * sin(delta);

z[i1] = z[203];
}
/1 Step 4.20: Second Layer of Cylinder |Intersection
x[209] = 2.0;
y[209] = O;
z[209] = (z[8] + z[160])/2.0;
x[210] = (x[196] + x[209])/2.0;
y[210] = (y[196] + y[209])/2.0;
z[210] = (z[196] + z[209])/2.0;
x[211] = (x[193] + x[209])/2.0;
y[211] = O;
z[211] = (z[193] + z[209])/2.0;
gamma3 = atan((z[ 193] - z[209])/(x[209] - x[193]));

c = sqrt (pow( (y[144]-y[209]), 2. 0) +pow( (X[ 209] - x[ 144]), 2. 0)) ;
gammea4 = atan((z[196] - z[209])/c);

for (i = 212; i <= 216; i++)

{
delta = (i - 212) * (Pl/4);
x[1] = x[211] + ((rho/3.0) * cos(delta) * cos(ganma3));
y[i] = y[211] + ((rho/3.0) * sin(delta) * cos(ganma4));
cl = (rho/3.0) * cos(delta) * sin(gamm3);
c2 = (rho/3.0) * sin(delta) * sin(gamm4);
z[i] = z[211] - (cl) + (c2);
}
/1 Step 4.21: Qutput for Cylinder Ceonetry Points
outfile << "* Cyli nder Points" << endl

for (i = 101; i <= 216; i++)

{
outfile << setw(5) << i
<< setw(15) << x[i]
<< setw(15) << y[i]
<< setw(15) << z[i] << endl
}

/1Step 5: Arc Lines and Splines
/1Step 5.1. Block Layers along Top Surface

for (i =1; i <=4; i++)
{
k =i -1
pl[i] = 102 + k;
p2[i] = 103 + k;
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p3[i] = 101;

pl[i + 4] = 107 + k;
p2[i + 4] = 108 + k;
p3[i + 4] = 101;
pl[i + 8] = 113 + k;
p2[i + 8] = 114 + k;
p3[i + 8] = 112;
pl[i + 12] = 119 + k;
p2[i + 12] = 120 + k;
p3[i + 12] = 118;
pl[i + 16] = 124 + k;
p2[i + 16] = 125 + k;
p3[i + 16] = 118;
pl[i + 20] = 130 + k;
p2[i + 20] = 131 + k;
p3[i + 20] = 129;
pl[i + 24] = 135 + k;
p2[i + 24] = 136 + k;
p3[i + 24] = 129;

}

pl[29] = pl[31] = 141;

pl[ 30] = p3[32] = 144;

pl[ 32] = p3[31] = 146;

p2[29] = 142;

p2[ 30] = 145;

p2[ 31] = 147,

p2[ 32] = 148;

p3[29] = 140;

p3[ 30] = 143;

/1 Step 5.2: Block Layers al ong Back Surface

for (i = 33; i <= 36; i++)

{

k =i - 33;

pl[i] = 150 + k;
p2[i] = 151 + k;
p3[i] = 149;
pl[i + 4] = 155 + k;
p2[i + 4] = 156 + k;
p3[i + 4] = 149;
pl[i + 10] = 165 + k;
p2[i + 10] = 166 + k;
p3[i + 10] = 164;
pl[i + 14] = 171 + k;
p2[i + 14] = 172 + k;
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p3[i + 14] = 170;
pl[i + 18] = 176 + k;
p2[i + 18] = 177 + k;
p3[i + 18] = 170;
pl[i + 22] = 182 + k;
p2[i + 22] = 183 + k;
p3[i + 22] = 181;
pl[i + 26] = 187 + k;
p2[i + 26] = 188 + Kk;
p3[i + 26] = 181,
}
for (i = 41; i <= 42; i++)
{
k =i - 41;
pl[i] = 160 + k;
p2[i] = 162 + k;
p3[i] = 161 - (17 * k);
}

/1Step 5.3: Block Layers at Cylinder Intersection
for (i = 63; i <= 66; i++)

{
k =i - 63;
pl[i] = 212 + k;
p2[i] = 213 + k;
p3[i] = 211;
pl[i + 4] = 204 + k;
p2[i + 4] = 205 + k;
p3[i + 4] = 203;
}
/1Step 5.4. Extra Arcs to Solve a Problem
for (i =71; i <= 74; i++)
{
k =i - 71;
pil[i] =9 + k;
p2[i] = 10 + k;
p3[i] = 101;
plli + 4] = 19 + k;
p2[i + 4] = 20 + k;
p3[i + 4] = 118;
pl[i + 8] = 33 + k;
p2[i + 8] = 34 + k;
p3[i + 8] = 149;
pl[i + 12] = 38 + k;
p2[i + 12] = 39 + k;
p3[i + 12] = 170;
}
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/1 Step 5.5:
for (i =1; i
{
outfile
}
for (i = 29;
outfile
}
for (i = 33;
{
outfile
}
for (i = 41,
{
outfile
}
for (i = 43;
outfile
}

/1 Step 6: Vol unes

[/Step 6.1: Fi
for (i =1; i
{
k =i -
vi[i] = vh[

<= 28; i ++)

<< "Line Arc"

<< " Name = " <<
<< " PL =" <<
<< " P2 =" <<
<< " Centre =" <<
<< endl;

<= 32; i++)

<< "Line Polyline"

<< " Nane = "

<< " Type = Spline"
<< pi[i]

<< p2[i]

<< p3[i]

<= 40; i ++)

<< "Line Arc"

<< " Name = " <<
<< " PL =" <<
<< " P2 =" <<
<< " Centre =" <<
<< endl;

<= 42; i ++)

<< "Line Polyline"

<< " Nane = "

<< " Type = Spline"
<< pi[i]

<< p2[i]

<< p3[i]

<= 86; i ++)

<< "Line Arc"

<< " Name = " <<
<< " PL =" <<
<< " P2 =" <<
<< " Centre =" <<
<< endl ;

rst

<= 4; i++4)

1;

i + 4] =9 + k;
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pil[i]
p2[i]
p3[i]

pi[i]
p2[i]
p3[i]

pil[i]
p2[i]
p3[i]

<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

endl
endl
endl
endl

endl
endl
endl
endl
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+ 4+ + +

k
vi[i]
v2li]
v3[i]
va[i]
V5[]
v6[i]
v7[i]
v8[i]

}

/1 Step 6.3: Second Matrix Bl ock Layer

for

{

(i

= v6[i + 4] =10 + k
= v7[i + 4] =20 + k
= v8[i + 4] =19 + k
1, i <= 2; i++)
i - 1;
=3 + k;
=4+ (3 * k);
= 27 + Kk;
= 26 + k;
2] =7 - (5 * Kk);
2] =2 - k;
2] = 25 - k;
2] =28 - (3 * k);
5; i <= 8; i++)
i - b5;
= 102 + k;
= 103 + k;
= 120 + k;
= 119 + k;
2: First Cylinder
9; i <= 12; i++)
i - 9;
= 107 + k;
= 108 + k;
= 125 + k;
= 124 + k;
= 102 + k;
= 103 + k;
= 120 + k;
= 119 + k;
13; i <= 14; i ++)
i - 13;
= 101 + (10 * Kk);
= 109 + k;
= 126 + k;
= 118 + (10 * Kk);
= 107 - (6 * k);
= 108 + k;
= 125 + k;
=124 - (6 * k);

15; i

<= 18; i ++)
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k =i - 15;
v2[i] = 19 + k;
v3[i] = 20 + k;
}
for (i = 15; i <= 16; i++)
{
k =i - 15;
vi[i] = 16 + k;
va[i] = 17 + k;
vh[i] = 26 + k;
ve[i] = 27 + k;
vi[i + 2] =18 - (3 * k);
va[i + 2] = 15 - k;
v5[i + 2] =28 - (3 * k);
ve[i + 2] =25 - k
v7[i + 4] =17 + kK
vB[i + 4] =16 + k
v7[i + 6] =15 - k
v8[i + 6] = 18 - (3 * k);
}
for (i =19; i <= 22; i++)
{
k =i - 19;
vi[i] = 119 + k;
v2[i] = 120 + k;
v3[i] = 131 + k;
v4[i] = 130 + k;
vh5[i] = 19 + k;
ve[i] = 20 + k;
}

/1Step 6.4: Second Cylinder Block Layer al ong
for (i = 23; i <= 26; i++)

{
k =i - 23;
vi[i] = 124 + k;
v2[i] = 125 + k;
v3[i] = 136 + k;
va4[i] = 135 + k;
v5[i] = 119 + k;
v6[i] = 120 + k;
v7[i] = 131 + k;
v8[i] = 130 + k;
}
for (i =27; i <= 28; i++)
{
k =i - 27;
vi[i] = 118 + (10 * Kk);
v2[i] = 126 + k;
v3[i] = 137 + k;
v4[i] = 129 + (10 * k);
v5[i] = 124 - (6 * k);
ve[i] = 125 + k;
v7[i] = 136 + k;
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v8[i] = 135 - (6 * Kk);
}

/[1Step 6.5: Third Matrix Bl ock Layer along Top Surface
for (i = 29; i <= 30; i++)

{
k =i - 29;
vi[i] = 143 + k;
v2[i] = 130 + k;
v3[i] = 131 + k;
va[i] = 144 + (2 * k);
v5[i] = 16 + k;
v6[i] = 17 + k;
vi[i + 2] = 146 - (5 * k);
v2[i + 2] = 132 + k;
v3[i + 2] = 133 + k;
va[i + 2] = 141 - k;
vh[i + 2] =18 - (3 * k);
ve[i + 2] =15 - k
}

/1Step 6.6: Third Cylinder Block Layer along Top Surface
for (i =33, i <= 36; i++)

{
k =i - 33;
vi[i] = 135 + k;
v2[i] = 136 + k;
v3[i] = 114 + k;
v4[i] = 113 + k;
v5[i] = 130 + k;
ve[i] = 131 + k;
}
for (i =33; i <= 34; i++)
{
k =i - 33;
v7[i] = 144 + (2 * k);
v8[i] = 143 + k;
v7[i + 2] = 141 - Kk;
vB[i + 2] = 146 - (5 * Kk);
vi[i + 4] =129 + (10 * k);
v2[i + 4] = 137 + k;
v3[i + 4] = 115 + k;
va[i + 4] = 112 + (5 * k);
v5[i + 4] = 135 - (6 * Kk);
ve[i + 4] = 136 + k;
v7[i + 4] = 114 + k;
v8[i + 4] = 113 - k;
}

/1Step 6.7: First Matrix Block Layer al ong Back Surface
for (i = 39; i <= 42; i++)

{
k =i - 39;
vi[i] = v5[i + 4] =42 - k
v2[i] = v6[i + 4] =37 - k
v3[i] = v7[i + 4] =36 - k



va[i] = v8[i + 4] = 41 - Kk;

}
for (i =39; i <= 40; i++)
{
k =i - 39;
v5[i] =25 + (3 * k);
ve[i] =2 + (5 * k);
v7[i] =7 - (3 * k);
v8[i] = 28 - k;
v5[i + 2] =27 + (3 * k);
ve[i + 2] =4 + (2 * k);
v7[i + 2] =6 - k;
v8[i + 2] =30 - k
}
for (i = 43; i <= 46; i++)
{
k =i - 43;
vi[i] = 175 - k;
v2[i] = 154 - k;
v3[i] = 153 - k;
va[i] = 174 - k;
}

/1 Step 6.8: First Cylinder Block Layer al ong Back Surface
for (i = 47; i <= 50; i++)

{
k =i - 47;
vi[i] = 180 - k;
v2[i] = 159 - k;
v3[i] = 158 - k;
va[i] = 179 - k;
v5[i] = 175 - k;
ve[i] = 154 - k;
v7[i] = 153 - k;
v8[i] = 174 - k;
}
for (i = 51; i <= 52; i++)
{
k =i - 51;
vi[i] = 170 + (6 * k);
v2[i] = 149 + (6 * k);
v3[i] = 157 - k;
va4[i] = 178 - k;
v5[i] = 180 - (10 * k);
v6[i] = 159 - (10 * Kk);
v7[i] = 158 - k;
v8[i] = 179 - k;
}

/1Step 6.9: Second Matrix Bl ock Layer along Back Surface
for (i =53; i <= 56; i++)
{
k =i - 53;
v2[i] = v6[i + 4] =42 - k
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v3[i] = v7[i + 4] = 41 - Kk;
vi[i + 4] = 186 - k;
v2[i + 4] = 175 - k;
v3[i + 4] = 174 - k;
va4[i + 4] = 185 - k;
}
for (i =53; i <= 54; i++)
{
k =i - 53;
vi[i] = v5[i + 4] =15 + (3 * k);
va4[i] = v8[i + 4] = 18 - Kk;
v5[i] =25 + (3 * Kk);
v6[i] = 28 - k;
vi[i + 2] = v5[i + 6] = 17 + (15 * k);
va4[i + 2] = v8[i + 6] = 32 - Kk;
v5[i + 2] =27 + (3 * k);
ve[i + 2] =30 - k;
}
/1 Step 6.10: Second Cylinder Block Layer al ong Back Surface
for (i = 61; i <= 64; i++)
{
k =i - 61;
vi[i] = 191 - k;
v2[i] = 180 - k;
v3[i] = 179 - k;
v4[i] = 190 - k;
v5[i] = 186 - k;
ve[i] = 175 - k;
v7[i] = 174 - k;
v8[i] = 185 - k;
}
for (i = 65, i <= 66; i++)
{
k =i - 65;
vi[i] = 181 + (6 * k);
v2[i] = 170 + (6 * k);
v3[i] = 178 - k;
va4[i] = 189 - k;
v5[i] = 191 - (10 * k);
v6[i] = 180 - (10 * Kk);
v7[i] = 179 - k;
v8[i] = 190 - k;
}
/1 Step 6.11: Third Matrix Bl ock Layer al ong Back Surface
for (i = 67; i <= 70; i++)
{
k =i - 67;
v2[i] = 186 - k;
v3[i] = 185 - k;
}
for (i = 67; i <= 68; i++)
{
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- 67,

- X
1

vi[i] = 141 + (5 * k);
va[i] = 146 - (2 * k);
v5[i] =15 + (3 * Kk);
ve[i] = 18 - k;
vi[i + 2] = 144 + (17 * k);
va4[i + 2] = 161 - k;
v5[i + 2] = 17 + (15 * k);
ve[i + 2] =32 - k
}
/1 Step 6.12: Third Cylinder Block Layer al ong Back Surface
for (i =71; i <= 74; i++)
{
k =i - 71;
vi[i] = 169 - k;
v2[i] = 191 - k;
v3[i] = 190 - k;
v4[i] = 168 - Kk;
ve[i] = 186 - k;
v7[i] = 185 - k;
}
for (i =71; i <= 72; i++)
{
k =1 -71,
v5[i] = 141 + (5 * k);
vB[i] = 146 - (2 * k);
vh[i + 2] = 144 + (17 * Kk);
v8[i + 2] = 161 - k;
vi[i + 4] = 164 + k;
v2[i + 4] = 181 + (6 * k);
v3[i + 4] = 189 - Kk;
va[i + 4] = 167 - k;
v5[i + 4] = 169 - (5 * k);
v6[i + 4] = 191 - (10 * k);
v7[i + 4] = 190 - k;
v8[i + 4] = 168 - Kk;
}

/1Step 6.13: First Layer of Cylinder Intersection
for (i =77, i <= 80; i++)

{
k =i - 77;
v2[i] = 113 + k;
v3[i] = 114 + k;
}
for (i =77, i <= 78; i++)
{
k =i - 77;
vi[i] = 195 + k;
va[i] = 197 + k;
v5[i] = 143 + k;
vb[i] = 144 + (2 * k);

vi[i + 2] =198 - (4 * K);
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va[i

v5[i

V6[i
}

v1[ 81]
v2[ 81]
v3[ 81]
v4[ 81]
v1[ 82]
v2[ 82]
v3[ 82]
v4[ 82]

/1 Step
for (i

{

»

v5[i]
ve[i]
v7[i]
v8[i]
v5[i
V6[i
v7[i
va[i
vi[i
v2[i
v3[i
vAa[i
v5[i
Ve[ i
V7[i
v8[i

k
[
[

}

/1 Step 6
for (i

{
k
vi[i]
v2[i]
v3[i]
va[i]
V5[]
v6[i]
v7li]
v8[i]

193 -
146 -
141 -

+ 2]
+ 2]
+ 2]

197;
114;
196;
144;
193;
194;
116;
141;

.14: Second Layer

83; i <= 86;

193 + (5
141 + (5
146 - (2
- (2
196 +
144 +
161 -
210
211
164
167
214 -
216 -
169 -
168 -
215 -

* ok X

[iny
©
o

+
+

+ 4+ o+

. 15:

89; i <= 90;

- 89;
112
115
198 -
201 -
113
114
196
200

Third Layer

k;
(5 * k);
K;

of Cylinder
i ++)

i ++)

k) ;

k) ;

k) ;

k) ;
(14 * k);
(17 * K);
K;

XX~~~ X XXX X
oo oo

of Cylinder
i ++)

k) ;
k) ;

k) ;

k) ;
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vi[i + 2] = 200 - k;
v2[i + 2] =113 + (4 * k);
v3[i + 2] =114 + (2 * k);
va[i + 2] =196 - (3 * k);
v5[i + 2] =195 - (3 * k);
ve[i + 2] =197 - (3 * k);
}
/1 Step 6.16: Fourth Layer of Cylinder Intersection
for (i = 93; i <= 96; i++)
{
k =i - 93;
vli[i] = 208 - k;
v2[i] = 216 - k;
v3[i] = 215 - k;
va[i] = 207 - k;
}
for (i = 93; i <= 94; i++)
{
k =i - 93;
vh[i] =199 + (2 * k);
v6[i] = 193 + (5 * k);
v7[i] =198 - (2 * k);
v8[i] = 201 - k;
v5[i + 2] =200 + (2 * k);
ve[i + 2] =196 + (14 * k);
v7[i + 2] = 210 - k;
v8[i + 2] = 202 - (194 * k);
vi[i + 4] = 203 + k;
v2[i + 4] = 211 + k;
v3[i + 4] = 214 - k;
va[i + 4] = 206 - k;
v5[i + 4] = 208 - (5 * k);
v6[i + 4] = 216 - (5 * k);
v7[i + 4] = 215 - k;
v8[i + 4] = 207 - k;
}
/1 Step 6.17: Qutput for Vol unes
for (i =1; i <= 14; i++)
outfile << "Volume" << " Vertex" << " Shape = Hex"
<< " Nanme = << j << "," << end
<< " vertexl = << vi[i]
<< " vertex2 = << v2[i]
<< " vertex3 = << v3[i]
<< " vertex4 = " << v4[i] << "," << end
<< " vertex5 = << v5[i]
<< " vertex6 = << v6[i]
<< " vertex7 = << v7[i]
<< " vertex8 = << v8[i]
<< endl;
}
for (i = 15; i <= 18; i++)
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outfile << "Volunme" << " Vertex" << " Shape = Prisnt
<< " Nane = " << | << "," << end
<< " vertexl = " << vl[i]
<< " vertex2 = " << v2[i]
<< " vertex3d = " << v3[i]
<< " vertex4d = " << v4[i] << "," << end
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< endl;
}
for (i =19; i <= 28; i++)
{
outfile << "Volunme" << " Vertex" << " Shape = Hex"
<< " Name = " << | << "," << endl
<< " vertexl = " << vi[i]
<< " vertex2 = " << v2[i]
<< " vertex3 = " << v3[i]
<< " vertex4d = " << v4[i] << "," << end
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< " vertex7 =" << v7[i]
<< " vertex8 = " << v8[i]
<< endl;
}
for (i =29; i <= 32; i++)
{
outfile << "Volume" << " Vertex" << " Shape = Prisnf
<< " Name = " << | << "," << endl
<< " vertexl = " << vi[i]
<< " vertex2 = " << v2[i]
<< " vertex3 = " << v3[i]
<< " vertex4d = " << v4[i] << "," << end
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< endl;
}
for (i = 33; i <= 52; i++)
{
outfile << "Volume" << " Vertex" << " Shape = Hex"
<< " Name = " << i << "," << end
<< " vertexl = " << vi[i]
<< " vertex2 = " << v2[i]
<< " vertex3 = " << v3[i]
<< " vertex4d = " << v4[i] << "," << end
<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< " vertex7 =" << v7[i]
<< " vertex8 = " << v8[i]
<< endl;
}
for (i =53; i <= 56; i++)
{
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}

for

}

for

}

for

{

}

for

{

(i

(i

(i

(i

outfile << "Vo
<< "
<< "
<< "
<< "
<< "
<< "
<< "

<< endl;

= 57; i <= 66;

outfile << "Vo
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< "

<< endl;

= 67; i <= 70;

outfile << "Vo
<< "
<< "
<< "
<< "
<< "
<< "
<< "

<< endl;

=71, i <= 76;

outfile << "Vo
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< end

= 77; i <= 80;

outfile << "Vo

ume" << Vertex" << Shape = Prisnt
Nane = " << i << "," << endl
vertexl =" << vi[i]
vertex2 =" << v2[i]
vertex3d = " << v3[i]
vertex4d = " << v4[i] << "," << end
vertex5 = " << v5[i]
vertex6 = " << v6[i]
i ++)
ume" << " Vertex" << " Shape = Hex"
Nane = " << i << "," << endl
vertexl = " << vi[i]
vertex2 = " << v2[i]
vertex3 = " << v3[i]
vertex4d =" << v4[i] << "," << end
vertex5 = " << v5[i]
vertex6 = " << v6[i]
vertex7 = " << v7[i]
vertex8 = " << v8[i]
i ++)
ume" << " Vertex" << " Shape = Prisnt
Name = " << | << ", " << end
vertexl = " << vi[i]
vertex2 = " << v2[i]
vertex3 = " << v3[i]
vertexd =" << v4[i] << "," << end
vertex5 = " << v5[i]
vertex6 = " << v6[i]
i ++)
ume" << " Vertex" << " Shape = Hex"
Name = " << | << "," << end
vertexl =" << vi[i]
vertex2 = " << v2[i]
vertex3d = " << v3[i]
vertex4d = " << v4[i] << "," << endl
vertexs = " << vh[i]
vertex6 = " << v6[i]
vertex7 = " << v7[i]
vertex8 = " << v8[i]
i ++)
ume" << " Vertex" << " Shape = Prisnt
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}

for

{

}

for

{

}

for

{

}

for

{

(

(

(

(

81;

outfile

83;

outfile

91;

outfile

93;

outfile

<< "
<< "
<< "
<< "
<< "
<< "
<< "

<< endl;

<= 82,

<< " Vol
<< "
<< "
<< "
<< "
<< "

<< endl;

<= 90;

<< " Vol
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< "
<< "

<< endl;

<= 92;

<< " Vol
<< "
<< "
<< "
<< "
<< "
<< "
<< "

<< endl;

<= 98;

<< " Vol
<< "
<< "
<< "
<< "
<< "

"<
vert
vertex2
vert ex3
vert ex4

vert
vertex6e =

Name

i ++)

<< "
"<
vert
vertex2
vertex3
vertex4

unme”
Name

i ++)

<< "
"<
vert
vertex2
vertex3
vertex4
vert
vert ex6
vertex7
vert ex8

unme”
Name

i ++)

<< "
"<
vert
vertex2
vert ex3
vertex4
vert
vertexe =

unme”
Name

i ++)

<< "
"<
vert
vertex2
vertex3
vertex4

une”
Name
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<
exl
<< v2[i]
"o<< v3[i]
"< v4li]
ex5 =
"o<< VB[]

Vert ex"
< j
exl
"< v2[i]
"< v3[i]
"o<< v4li]

Vertex"
< i
exl
"< v2[i]
"o<< v3[i]

<< "o
" e

" e

<< "o

<< "o

<< end

vi[i]

<< "

V5[]

<< "

<< end

Shape

<< end

" << vi[i]

<< "

Shape

<< end

" << vi[i]

" << v4[i] << "," << end

ex5 =
"o<< VB[]
"< VT[]
"o<< vg[i]

Vertex"
< i
exl
"< v2[i]
" o<< v3[i]

<< "o

" << V5[]

<< "

Shape

<< end

" << vi[i]

" << v4[i] << "," << end

ex5 =
"< ve[i]

Vert ex"
< j
exl
"< v2[i]
"< v3[i]

<< "

" << V5[]

<< "

Shape

<< end

"o<< vl[i]

< V4[] << ")

<< end

Tetra"

Hex"

Prisnf

Hex"



<< " vertex5 = " << v5[i]
<< " vertex6 = " << v6[i]
<< " vertex7 =" << v7[i]
<< " vertex8 = " << v8[i]
<< endl;
}
[/ Step 7: Material Properties
ET1 = ET2 = 0. 001,
EPA1 = EPA2 = 0. 2;
outfile << "Material Plastic-Bilinear"
<< " Name = " << 1
<< " E=" << E1
<< " Nu =" << nul
<< " Y =" << Y1
<< " ET = " << ET1
<< " EPA = " << EPAL
<< endl;
outfile << "Material Plastic-Bilinear"
<< " Name = " << 2
<< " E=" << E2
<< " Nu =" << nu2
<< " Y =" << Y2
<< " ET =" << ET2
<< " EPA = " << EPA2
<< endl;
/1 Step 8. Elenment G oups
for (i =1; i <= 2; i++)
{
outfile << "EGroup ThreeDSol i d"
<< " Nanme = " <<
<< " Material =" <<
<< endl;
}
/1 Step 9: Subdivision Data
outfile << "Subdivide Vol une"
<< " Name = " << 1
<< " NDivl = " << ndivl
<< " NDiv2 = " << ndiv2
<< " NDi v3 = " << ndiv3
<< endl;
for (i =2; i <= 98; i++4)
{
outfile << " "<
<< endl;
}
/1 Step 10: Generate El enents
/1Step 10.1: Surrounding Material (Matrix)

outfile << "Gvol unme"

<< " Name = " << 1
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<< " Nodes " << el emnodes

<< " Goup =" <<1
<< " Pr ef Shape = Hexahedral "
<< endl;

for (i =2; i <= 8; i++)

{
outfile << " "<
<< endl;
}
for (i = 15; i <= 22; i++)
{
outfile << " "<
<< endl;
}
for (i = 29; i <= 32; i++)
{
outfile << " "<
<< endl;
}
for (i =39; i <= 46; i++)
{
outfile << " "<
<< endl;
}
for (i =53; i <= 60; i++)
{
outfile << " "<
<< endl;
}
for (i = 67; i <= 70; i++)
{
outfile << " "<
<< endl;
}
/1 Step 10.2: Cylinder
outfile << "Gvol une"
<< " Name = " << 9
<< " Nodes = " << el emmodes
<< " Goup =" << 2
<< " Pr ef Shape = Hexahedral "

<< endl;
for (i = 10; i <= 14; i ++)
{

outfile << " "<
<< endl;

for (i = 23; i <= 28; i+4+)
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return

outfile
(i = 33;
outfile
(i = 47,
outfile
(i = 61;
outfile
(i =71,
outfile

<< "
<< endl;
<= 38;
<< "
<< endl
<= 52;
<< "
<< endl
<= 66;
<< "
<< endl
<= 98;
<< "
<< endl;

i ++)

i ++)

i +4+)

i +4+)
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APPENDIX F

RAW DATA FOR THE MACROSCOPIC BEHAVIOUR
DISCRETISATION VALIDATION

The data provided in this appendix shows how increasing the level of
discretisation refinement leads to the convergence of the macroscopic
behaviour to the exact solution. This validation was completed for both the
spherical and cylindrical models simulating linear elastic conditions. It was
assumed that results for non-linear plastic conditions would follow a similar
trend. Table F.1 presents the results for the spherical model and Table F.2
presents the results for the cylindrical model. For a discussion of these results
see Section 4.1.2. Note that the effective Young’s modulus of each model was
calculated using Equations 3.16 and 3.17 with the top surface area of 1.732
mm? and the applied strain of 0.001.

TableF.1: Raw Data for the Validation of the Spherical M odel
(elastic modular ratio = 1.9)

Volume Fraction Level of Reaction at Effective Young's
of Spheres Refinement Master Node Modulus Difference

[%] [N] [GPa] [%]

75 1-1-1 311.080 179.602 n/a
2-2-2 311.018 179.566 0.0199
3-3-3 311.011 179.562 0.0023

80 1-1-1 320.971 185.313 n/a
2-2-2 320.933 185.291 0.0118
3-3-3 320.928 185.288 0.0016

83.2 1-1-1 327.515 189.091 n/a
2-2-2 327.479 189.070 0.0110
3-3-3 327.473 189.067 0.0018

85 1-1-1 331.255 191.250 n/a
2-2-2 331.218 191.229 0.0112
3-3-3 331.211 191.225 0.0021

90 1-1-1 341.812 197.345 n/a
2-2-2 341.774 197.323 0.0111
3-3-3 341.763 197.317 0.0032

95 1-1-1 352.641 203.597 n/a
2-2-2 352.607 203.578 0.0096
3-3-3 352.598 203.573 0.0026
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TableF.2: Raw Datafor the Validation of the Cylindrical M odel
(elastic modular ratio = 2)

Volume Fraction Level of Reaction at Effective Young's

of Cylinders Refinement Master Node Modulus Difference
[%] [N] [GPa] [%0]
2.09 1-1-1 175.830 101.515 n/a
2-2-2 175.800 101.498 0.0171
3-3-3 175.792 101.494 0.0046
16.45 1-1-1 194.905 112.528 n/a
2-2-2 194.814 112.476 0.0467
3-3-3 194.806 112.471 0.0041
39.11 1-1-1 229.124 132.285 n/a
2-2-2 228.981 132.202 0.0624
3-3-3 228.973 132.198 0.0035
63.77 1-1-1 272.271 157.196 n/a
2-2-2 272.081 157.086 0.0698
3-3-3 272.069 157.079 0.0044
84.14 1-1-1 312.507 180.426 n/a
2-2-2 312.224 180.263 0.0906
3-3-3 312.199 180.248 0.0080

214



APPENDIX G

RAW DATA FOR THE LINEAR ELASTIC MACROSCOPIC
BEHAVIOUR

The linear elastic macroscopic behaviour analysis in Section 4.2.1 is
based on the effective Young’'s moduli of the composites. This data was
obtained from the simulation of the two unit cell models to a uniaxial tension test
in the finite element program ADINA (ADINA R&D, Inc., 2002a). ADINA
provided the reactions of each simulation at the master node from which the
effective Young’s moduli could be calculated (see Section 3.6). The data for the
spherical model is listed in Table G.1 and the data for the cylindrical model in
Table G.2.

TableG.1: Raw Datafor theLinear Elastic M acroscopic Analysis of the Spherical M odel

Modular Volume Fraction Contiguity of Reaction at Effective Young's

Ratio of Spheres Spheres Master Node Modulus
[%] [%0] [N] [GPa]

2 75 5.00 292.127 168.660

80 28.17 302.303 174.535

85 47.48 312.875 180.638

90 64.70 323.749 186.917

95 82.27 334.928 193.371

10 75 5.00 182.056 105.110

80 28.17 214.401 123.784

85 47.48 246.722 142.445

90 64.70 279.684 161.476

95 82.27 313.161 180.804

100 75 5.000 79.092 45.663
80 28.174 147.272 85.028

85 47.484 201.591 116.389

90 64.702 252.570 145.821

95 82.27 301.121 173.852
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Table G.2: Raw Datafor the Linear Elastic M acroscopic Analysis of the Cylindrical M odel

Modular Volume Fraction Contiguity of Reaction at Effective Young's
Ratio of Cylinders Cylinders Master Node Modulus
[%] [%] [N] [GPa]
2 2.09 5.97 175.792 101.494
16.45 19.19 194.806 112.471
39.11 34.45 228.973 132.198
63.77 52.27 272.069 157.079
84.14 73.35 312.199 180.248
10 2.09 5.97 36.954 21.335
16.45 19.19 56.310 32.511
39.11 34.45 99.800 57.619
63.77 52.27 173.365 100.092
84.14 73.35 263.119 151.912
100 2.09 5.97 5.198 3.001
16.45 19.19 20.572 11.877
39.11 34.45 59.150 34.150
63.77 52.27 134.346 77.565
84.14 73.35 242527 140.023
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APPENDIX H

CONTIGUITIES OF SPHERICAL AND CYLINDRICAL
MODELS

The methodology for calculating the contiguities of the spherical and
cylindrical models using Equation 4.1 was described in Section 4.2.1. While this
information was sufficient to allow the reader to understand the physical
meaning of contiguity, it was much too simplified to describe how the
contiguities were actually calculated. The geometry of the spherical model
makes the calculation of its contiguity relatively simple so that it is possible to
determine an exact solution. This is not the case for the cylindrical model where
determining the surface areas of the cylinders within the half prism unit cell and
within the intersection is particularly difficult. An approximate solution was
therefore derived for the cylindrical model. The calculations for each model are
described in the following two sections: Section H.1 for the spherical model and

Section H.2 for the cylindrical model.

H.1 CONTIGUITY OF THE SPHERICAL MODEL

» Parameters of the geometry (see Fig. H.1):

c=+22+1> =4/3
p=+r?-3

h=r-c

r: radius of sphere
c. distance from centre of sphere to edge of section
©. radius of contact area

h: height of sphere section

« Surface area between adjacent spheres (S,"°):

Sjm = ﬂ.|$2 (Hl)
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1

@) ¢ (b)

FigureH.1: Spherical Model
(@) Top view of the unit cell showing the piece of sphere
(b) Circle showing the variables used in the calculations

« Surface area between phases (S,*?):

1
Aspere _E(mmz)

Aﬁection = 2DT|] [ﬂ]

Agphere:  Surface area of sphere within unit cell assuming none is outside

Asection:  Surface area of sphere that is outside unit cell

S?ﬁ = A%phere - A\section (HZ)

Equations H.1 and H.2 may now be inserted into Equation 4.1 to determine the

contiguity of the spherical model for any interpenetrating volume fraction.

H.2 CONTIGUITY OF THE CYLINDRICAL MODEL

For the cylindrical model it is necessary to integrate the surface area of a

cylinder. Given the function of a cylinder;
z= f(x, y), (H.3)

the surface area is;

s= ] 1+(Qj2+ 9z 2axay. (H.4)
0x oy
» Parameters of the geometry (see Fig. H.2):

| =422 +12 =4/3
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Cq

35.6644°

FigureH.2: Cylindrical Model
(@) Top view of the unit cell showing the top cylinder
(b) Back view of the unit cell showing the back cylinder

o radius of a cylinder
I:  length of a cylinder on its centreline |_| = \/§]

b: length of each horizontal edge for the unit cell [b = 2]

h:  height of full prism unit cell (see Fig. H.4) |_h = 2\5]
cy. distance from top-right-back corner to where top cylinder intercepts the top-back
edge and the top-right edge [C1 = 2,0]

c,: distance from top-right-back corner to where back cylinder intercepts the top-

back edge [CZ = \/gp}

cs.  distance from top-right-back corner to where back cylinder intercepts the top-right

edge [Cg = %ﬁp}

¢, distance from top-right-back corner to where back cylinder intercepts the right-

back edge lC4 = \/§,0]
« Surface area between cylinders inside and outside of unit cell (S,*°):
S = ntp? (H.5)
« Surface area between phases (S,%):

o0 Surface area of a cylinder if its entire length was within the unit cell:
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Auw =3 (20Tp0)

o Surface area of top cylinder:

a) Remove surface area that is beyond back surface and right front

surface (see Fig. H.3):

- Equation of top cylinder: z=4p* =%
2 - -2 2
EEEE -

ox | OX

3 gk

- Equation of back surface:  y=+/3x

- The surface area goes between 0 and p in the x-direction, and O

and +/3x in the y-direction.

P 3x 2
Apw = [ | \/1+[(p2xjﬂ+(o)ayax

b) Remove approximate surface area that enters the cylinder

intersection (see Fig. H.3):

- Location of point 141 based on global axes (see Fig. H.4):

Point 144

Local axes

(@) 7 (b)

FigureH.3: Top part of unit cell showing thetop cylinder
() Surface areas of top cylinder removed in step (a) shownin red
(b) Surface area of top cylinder removed in step (b) shown inred,
important geometry points shown in blue
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Gj%z ~(o-2Vop) + (20" - 480+ 9)=

X,y =2- f 60
- Location of point 141 based on local axes (see Fig. H.3):
d=b-x,
X,y = d [€0s(60) Yy.a = d 8in(60)

- Location of point 144 based on global axes (see Fig. H.4):

’ 2’\/§_ r ]
Xigs = \/§ P Yiaa = \/‘;’(b_le)

- Location of point 144 based on local axes (see Fig. H.3):

d = (2= X f + (Vi
X4 = —d [€0s(60) Yy, = d 8in(60)
- Upper bound in y-direction:

_ (Yaas = Viwa)

(X1 —x, ) Ntopb) = Y141 ~ Mtopb) (X141 )
a1~ X

rn(top b

yup(top b) (rn(top b )X n(top b)

- The surface area goes between Xxis4 and Xisz in the x-direction,

and 0 and Y, iN the y-direction.

X141 Yup(topb) 2
Aop(b) = _[ _[ \/1+|: p2X 2 }+(O)6y6x

Y44 0 -X

Therefore the surface area of the top cylinder is:
Aop = Aotal - (ZAop(a) + Aop(b)) (H6)
o0 Surface area of back cylinder:

a) Remove surface area that is beyond the top surface (see Fig. H.4):
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- The equation for the back cylinder is the same as it was for the top
cylinder based on the change in the local axes. The derivatives

are also the same.

- Equation for top surface: y:ix

V2

- The surface area goes between -p and 0 in the x-direction, and O

Top surface

Local axes
h , ; z
Z Right-front
1 ~ surface Point
<__’
Point 141 144
‘\‘ ®—__ Right-back X
v ' edge y
X Local axes
Global axes -

(@ (b)
Top-right edge

Top-back edge

¥ &
DR

Xiow(back ¢)

(©) X Right-back edge (d)

FigureH.4: Unit cell showing the back cylinder

(@) Prismunit cell showing axes and back cylinder

(b) Piece of unit cell showing the surface arearemoved in step (d) in red with
important geometry points shown in blue

(c) Back cylinder showing surface areas removed in step (a) inred, step (b) in
blue, and step (¢) in orange

(d) Top view showing intersection with back cylinder and lower bound for x-
direction used in step (c)
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and ix in the y-direction.

J2

1,
072

Aback(a) = j j \/1+|: p2X_2X2 j|+(0)ayax

-p 0

b) Remove surface area that is beyond the right-back edge (see Fig.
H.4):

- Equation for right-back edge: y = V2x

- The surface area goes between 0 and p in the x-direction, and O

and +/2x in the y-direction.

B p~l2x X2
Acki) = I j\/l+{ 07X }+(O)6y6x

00 -X

c) Remove surface area that is beyond the right-front surface (see Fig.
H.4):

- Equation for right-front surface based on global axes:

Y =3(2-x)
- Equation for back cylinder based on global axes:
2 12 2'\/_ 1.0 2
= —xz + Z2+y?% =
3 3 y?=p

Z =/2x -/-3y? +3p?
(a_zj: NS ) =2

0x

0z [ o ( I gy'?
ARETP——

(ay'J _Gy'\/_ % '0_ (-3y2+3p?)

- Lower bound in x-direction:
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Xluw(back c) = b - C3 COS(6O)

- The surface area goes between Xiowpack ¢y and 0 in the x-

direction, and 0 and +/3(2-x) in the y-direction.

0 /3(2-x) gy,z ( )
ack(c) = 1+ (—) +(2)oy'ox’
AJ k(c) )qm(b_[Ckc) (_)l. \/ |: _3y2 +3p2 :|

d) Remove approximate surface area that enters the cylinder

intersection (see Fig. H.4):

- Location of point 141 based on global axes:
I 2 ! !
X1 = 2 —5\/6,0 Ly = \/§X141 + \/510

- Location of point 141 based on local axes:

d= \/(b_ )(141)2 + (h - 2141)2

Xy =—P Yia1 =+ d* - )(1412 z,,=0

- Location of point 144 based on global axes:

N _23-p
* 3

- Location of point 144 based on local axes:
,_ (b-Xu) , :
d :( A d=,d?*+(h-
o60) Jd?+(h-2,)
%144 =0 Y144:\/d2_21442 Zy =P

- Upper bound in y-direction:

Zy = \/Exi44

— (Y141 _ Y144)
m(bade) (X144 - X141)

Nibackd) = Y14s

Yip(backd) = (m(back d) )X * Npack a)
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- The surface area goes between Xxjs1 and Xigq in the x-

direction, and ix (the equation of the top surface) and

V2

yup(backd) in the y-direCtion.

X144 YUp(back d)

Aoy = _[ _[ \/1"'[ pzx_z -z }+(O)0y0x

X141 ix
J2
Therefore the surface area of the back cylinder is:

Aback = Aotal - (Aback(a) + Aback(b) + Aback(c) + Aback(d)) (H7)

Therefore the approximate surface area between the phases for the

cylinder model is:

S?ﬁ = Aop + Aback (H8)

Note that the approximations for the surface areas that needed to be removed
from the intersection region for both cylinders are both slightly low. Had more
exact surfaces been calculated the areas removed this region would have been
higher. This means that the surface areas between the phases for the top and
back cylinders (Awp and Apack) Would have been lower. The total surface area
between phases would then also be lower (S,*f), and this would cause the
contiguities calculated to be slightly greater than they are with this approximate

method.
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APPENDIX |

STRESS DISTRIBUTION PLOTS FOR THE LINEAR
ELASTIC MICROSTRUCTURAL ANALYSIS

In the linear elastic investigation for microstructural mechanisms in
Section 4.2.2, qualitative and quantitative analyses of the stress distributions in
both models were undertaken. The qualitative analysis was based on contour
and vector plots of the first principal stresses at three different volume fractions,
and the quantitative analysis on these stresses at each element integration
point (from which the plots were derived). The volume fractions based on the
stiffer phase were the 75%, 85% and 95% for the spherical model, and for the
cylindrical model were the 2%, 39% and 84%. All of this information came from
simulations performed using ADINA (ADINA R&D, Inc., 2000a), a computer
software application of the finite element method. The contour and vector plots

of the first principal stresses in each model are shown below.

.1 FIRST PRINCIPAL STRESS DISTRIBUTION FOR THE
SPHERICAL MODEL

L L :

x * L_
NORM NORM X
5T 5T
PRINGIPAL PRINGIPAL
STRESS STRESS STRESS
5P 5P RSTCALL
RSTCALG RSTCALG TME 1000
TIME 1.000 TIME 1.000

5256
t 2.925 t 2.925 I
= zars = zars
= 2025 = 2025 E
= 1575 = 1575 5400
= 1125 = 1125 o a0

0675 0678 = 3000

F 0.225 F 0.225 - 1300
= 500

MAXIMUM MAXIMUM
A T4 & 70092

MINIMUM MINIMUM
¥ -0.3303 ¥ -0.3303

Figurel.l: Stiffer phase (¢=75%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from back
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z
%v
%
NORM

15T
FRINCIPAL
STRESE
HFP

RSTCALD
TIME 1000

MAXIMUM
21941 (b)

MINIMUM
* 1235

Figurel.2: Moreflexible phase (@= 75%)

NORM

181
PRIMCIPAL
STRESS
(MFP

RSTCALC
TIME 1.000

MAXMUM
& 19.41

MINLMUM
* -1.239

(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back

2
L;Y
NORM
15T
PRINCIPAL
STRESS
&)
RSTCALC
TIME 1.000 y
oo
Fue Yaa/ o2
3 et
E . 4

MAzIMUM ( )
& 7826 b

LN
¥ -0.1440

Figurel.3: Stiffer phase (¢ =85%)

MORM

15T
PRINCIPAL
STRESS
(8P1

RET CALC
TIME 1.000

HAXIMUM
A a2

MINIMUM
* -0.1440

(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back

z
L
X

NORM
15T
FRINCIFAL
STRESS
HFP

RSTCALT
TIME 1.000

MINMUM (b)
* 03133

Figurel.4: Moreflexible phase (¢ =85%)

"
NORM

1!
PRINCIFAL
STRESS
IMFP

RST CALC
TIME 1.000

MIMIMUM
#* -0.3133

(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back
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STRESS

RSTCALT
TIME 1.000

b

STRESS
RSTCALT
TIME 1000

] 9566

i
b
STRESS

RST CALC
TIME 1.000
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3 z
NORM MNORM
5T 15T L X
PRINCIPAL FRINCLF
STRESS STRESS
5P 1SP) STRESS
RSTCALD RST CAL RSTGALD
TIME 1.000 TME 1.0 TIME 1.003
| e | PP 2094
L 2475 T 2.475
— 2025 — 2008
- 1.575 = 1575
SNF R l— 900.0
Fu.srs " 0e7s = 7388
0.225 o = B0
I: gz = 4500
FAXIHUM HAXIMUE - 3000
& 5.040 & 5040 = 1500
MINIMUM — a0
M (b) e i

Figurel.5: Stiffer phase (¢ =95%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from back
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Figurel.6: Moreflexible phase (¢=95%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from back
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.2  FIRST PRINCIPAL STRESS DISTRIBUTION FOR THE
CYLINDRICAL MODEL
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Figurel.7: Stiffer phase (¢=2%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-Ileft-back corner
(c) Vector plot with view from bottom-left-back corner
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Figurel.8: Moreflexible phase (¢=2%)
(8) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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Figurel.9: Stiffer phase (¢=39%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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Figurel.10: Moreflexible phase (¢ = 39%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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Figurel.11: Stiffer Phase (¢= 84%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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Figurel.12: Moreflexible phase (@ = 84%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-Ileft-back corner
(c) Vector plot with view from bottom-left-back corner
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APPENDIX J

RAW DATA FOR THE NON-LINEAR PLASTIC
MACROSCOPIC BEHAVIOUR

This appendix contains the raw data taken from the finite element
method program ADINA used to determine the non-linear plastic macroscopic
behaviour of the interpenetrating phase composites (IPCs). The IPCs were
tested in a simulated uniaxial tension test in which the strain increment was
slowly increased and the resulting stress calculated. From this data the figures
for the stress-strain behaviour of each IPC were determined. The vyield
strengths for these IPCs were then determined using the standard definition of
the 0.2% strain offset or the highest stress the model reached if it failed prior to
the offset. The simulated tension test strain increments and strain offsets for the
stress-strain behaviour are provided here with the effective yield strengths listed

in Table 4.5.

Table J.1: Simulated tension test strain incrementsfor the spherical model with
ayield strength ratio of 2

Volume Fraction

of Stronger Phase 75 80 85 90 95
[%]

Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.0750 0.0750 0.0750 0.0750 0.0750

[%0] 0.1000 0.1000 0.1000 0.1000 0.1000
0.1150 0.1250 0.1250 0.1250 0.1250
0.1300 0.1500 0.1500 0.1500 0.1500
0.1350 0.1750 0.1750 0.1750 0.1750
0.1400 0.2000 0.2000 0.2000 0.2000
0.1450 0.2250 0.2250 0.2250 0.2250

0.2350 0.2500 0.2500 0.2500
0.2450 0.2750 0.2750 0.2750
0.2870 0.3000 0.3000
0.3000 0.3250 0.3120
0.3370 0.3250

0.3500

0.3620
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Table J.2: Simulated tension test strain incrementsfor the spherical model with
ayield strength ratio of 10

Volume Fraction

of Stronger Phase 75 80 85 90 95
[%]

Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.0750 0.0750 0.0750 0.0750 0.0750

[%6] 0.1000 0.1000 0.1000 0.1000 0.1000

0.1250 0.1250 0.1250 0.1250 0.1250
0.1500 0.1500 0.1500 0.1500 0.1500
0.1650 0.1750 0.1750 0.1750 0.1750
0.1750 0.2000 0.2000 0.2000 0.2000
0.1850 0.2250 0.2250 0.2250 0.2250
0.2500 0.2500 0.2500 0.2500
0.2750 0.2750 0.2750 0.2750
0.3000 0.3000 0.3000 0.3000
0.3250 0.3250 0.3250
0.3500 0.3500 0.3370
0.3620 0.3750 0.3500

0.3750 0.4000

0.4250

Table J.3: Simulated tension test strain incrementsfor the cylindrical model
with ayield strength ratio of 2

Volume Fraction

of Stronger Phase 2.09 16.45 39.11 63.77 84.14
[%]

Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.1000 0.1000 0.1000 0.1000 0.1000

[%0] 0.2000 0.2000 0.2000 0.1250 0.1250

0.3000 0.3000 0.3000 0.1500 0.1500
0.4000 0.4000 0.4000 0.1750 0.1750
0.5000 0.5000 0.5000 0.2000 0.2000
0.2250 0.2250
0.2500 0.2500
0.2750 0.2750
0.3000 0.3000
0.3250 0.3250
0.3500 0.3500
0.3750 0.3750
0.4000 0.4000
0.4250 0.4250
0.4500 0.4500
0.4750 0.4750
0.5000 0.5000
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Table J.4: Simulated tension test strain incrementsfor the cylindrical model
with ayield strength ratio of 10

Volume Fraction

of Stronger Phase 2.09 16.45 39.11 63.77 84.14
[%]

Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.1000 0.1000 0.1000 0.1000 0.1000

[%0] 0.2000 0.2000 0.2000 0.2000 0.1500

0.3000 0.3000 0.3000 0.3000 0.2000
0.4000 0.4000 0.4000 0.4000 0.2500
0.5000 0.5000 0.5000 0.5000 0.3000

0.3500
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N ]
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FigureJ.l: Stress-strain behaviour of spherical modelsfor ayield strength ratio of 2
Note: - Asterisksindicate failure to converge prior to reaching yield strength.
- 0.2% strain offsets shown in colour of their simulation.
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FigureJ.2: Stress-strain behaviour of spherical modelsfor ayield strength ratio of 10
Note: - Asterisksindicate failure to converge prior to reaching yield strength.
- 0.2% strain offsets shown in colour of their simulation.
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FigureJ.3: Stress-strain behaviour of cylindrical modelsfor ayield strength ratio of 2
Note: - Asterisksindicate failure to converge prior to reaching yield strength.
- 0.2% strain offsets shown in colour of their simulation.
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FigureJ.4: Stress-strain behaviour of cylindrical modelsfor ayield strength ratio of 10

Note: - Asterisksindicate failure to converge prior to reaching yield strength.
- 0.2% strain offsets shown in colour of their simulation.
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APPENDIX K

STRESS DISTRIBUTION PLOTS FOR THE NON-LINEAR
PLASTIC MICROSTRUCTURAL ANALYSIS

The study into the microstructural mechanisms affecting non-linear
plastic behaviour quantified the stress distributions of the spherical and
cylindrical models through a similar procedure as described for the linear elastic
investigation. The effective stress distribution plots shown in this appendix are
for the stronger phase volume fractions of 75%, 85% and 95% with the
spherical model, and 2%, 39% and 84% with the cylindrical model. All the
contour and vector plots were taken from the final strain increment which each
of the models reached. To determine the final strain increment of any one

model, see the tables in Appendix J.

K.1 EFFECTIVE STRESS DISTRIBUTION FOR THE
SPHERICAL MODEL
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FigureK.1: Stronger phase (¢ = 75%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from back
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FigureK.2: Weaker phase (9= 75%)
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(a) Contour plot with view from top-right-back corner

(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back
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FigureK.3: Stronger phase (¢ = 85%)

.y
MORM.
EFFECTIVE
STRESS
15P)

RETCALG
TIME 12.00

Ew
=267
— 1133
- 1000
= 0867

0733
FO.GOO
MaxiMuM
A 1289
MINIMLM
¥ 0.3236

(a) Contour plot with view from top-right-back corner

(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back
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FigureK.4: Weaker phase (¢ =85%)
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(a) Contour plot with view from top-right-back corner

(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back
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FigureK.5: Stronger phase (¢ = 95%)
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(a) Contour plot with view from top-right-back corner

(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back
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FigureK.6: Weaker phase (¢=95%)

(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner

(c) Vector plot with view from back
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K.2 EFFECTIVE STRESS DISTRIBUTION FOR THE
CYLINDRICAL MODEL
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FigureK.7: Stronger phase (¢=2%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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FigureK.8: Weaker phase (¢p=2%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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FigureK.9: Stronger phase (¢ = 39%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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FigureK.10: Weaker phase (¢=39%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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FigureK.11: Stronger phase (¢ =84%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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FigureK.12: Weaker phase (¢=84%)
(a) Contour plot with view from top-right-back corner
(b) Contour plot with view from bottom-left-back corner
(c) Vector plot with view from bottom-left-back corner
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