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ABSTRACT 

The microstructure-property relationship for interpenetrating phase 

composites (IPCs) is currently poorly understood. In an attempt to improve this 

understanding this study focussed on one particular part of this relationship: the 

effect of phase shape on the elastic and plastic behaviour. A review of previous 

research showed that investigations had linked phase shape to the elastic and 

plastic behaviour of various inclusion reinforced composites, but that no similar 

work had been completed for IPCs. 

To study the complex response of the IPC microstructure under load, a 

numerical modelling analysis using the finite element method (FEM) was 

undertaken. Two three-dimensional models of IPCs were created, the first 

consisting of an interconnected spherical phase with the interstitial space 

forming the other interconnected phase, and the second replacing the spherical 

phase with an interconnected cylindrical phase. With the simulation of a uniaxial 

tension test under elastic and plastic conditions, these two models exhibited 

different responses based on the shape of the phases. 

Results from an analysis of the macroscopic behaviour identified that the 

cylindrical model produced greater effective properties than the spherical model 

at the same volume fraction. The influence of phase shape was connected to 

the increased contiguity of the superior phase within the IPC for the cylindrical 

model, which allowed similar levels of long-range continuity with smaller 

amounts of the superior phase (compared to the spherical model). 

An examination of microstructural stress distributions showed that 

preferential stress transfer occurred along paths of low compliance. This 

provided an explanation of how the improved contiguity of the stiffer (or 

stronger) phase could enhance the macroscopic effective properties of an IPC. 

Contiguity of the stronger phase was particularly important for plastic behaviour, 

where early yielding of the weaker phase requires the stronger phase to carry 

nearly all the load within itself. 
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CHAPTER ONE 

INTRODUCTION 

1.1   BACKGROUND 

Interpenetrating phase composites (IPCs) are fundamentally different 

from other composite materials due to the geometry of their microstructures. 

Most common composites consist of a reinforcing constituent (or phase) that is 

isolated within a continuous matrix phase. The reinforcing phase generally has 

the material properties desired for the composite, but because of processing 

difficulties, other less desirable properties or cost, a pure sample of this phase 

cannot be used. The matrix phase is usually chosen based on its bonding ability 

and thermal compatibility with the reinforcing phase, as well as low cost. Its 

mechanical properties are often less desirable to those of the reinforcing phase 

(though this is becoming less often the case with the development of metal 

matrix and ceramic matrix composites). This can pose problems, since as the 

continuous phase the matrix often dominates the behaviour of the composite. 

Two large families of conventional composite materials exist: particle reinforced 

composites, such as concrete, and fibre reinforced composites, such as glass 

fibre reinforced polymer (GFRP). The main difference between these two 

families is the shape of the reinforcing phase. In particle reinforced composites, 

the reinforcing phase consists of more or less equi-dimensional particles; in 

concrete, the reinforcing phase is the aggregate. In fibre reinforced composites, 

the reinforcing phase has a high aspect ratio, such that one dimension of the 

phase is much greater than the others. In GFRP, the glass fibres, either in 

discontinuous short lengths or one-dimensionally continuous long lengths, form 

the reinforcing phase. 

IPCs consist of two or more three-dimensionally interconnected phases, 

so there are not easily definable reinforcing and matrix phases based on states 

of isolation and continuity (see Fig. 1.1). This dual continuity of the phases 

removes the previous problem of matrix dominated behaviour. The stiffer or 
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stronger phase is now continuous, allowing it to more significantly influence the 

behaviour of the composite. The continuity of the other phase also allows it to 

have a significant influence. In this way, IPCs offer the possibility of truly 

composite behaviour, where two usually incompatible properties for pure 

materials can exist within a single composite. Each phase offers its own 

benefits due to its complete continuity. 

A good example of a potential application of this work is in electronics 

packaging. Shen (1998) describes the possible use of an aluminium silicon-

carbide (Al/SiC) IPC for attachment to delicate electronic circuitry. The thermal 

conductivity of the aluminium is needed to dissipate the heat generated during 

use of the electronics; however, the thermal expansion of pure aluminium would 

break the delicate circuit connections, destroying the device. In contrast, a SiC 

attachment would expand only a small amount, preventing breakages at the 

connections, but would not be able to prevent the build-up of intense heat within 

the device. The desired material should consist of a combination of these 

properties, making an IPC of Al/SiC an attractive solution. 

1.2   OBJECTIVE AND SCOPE 

Despite the potential benefits of using IPCs, there are few current 

applications for these materials. One of the major reasons for this is their 

Figure 1.1: An interpenetrating phase composite (from Torquato, 2002) 
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relatively unknown behaviour. The unique interpenetrating microstructure of 

IPCs is complex, making its performance difficult to predict. The following study 

focuses on a determination of: 

1. The effect of microstructural phase shape on the linear elastic behaviour of 

IPCs. This was examined through changes to the effective Young’s 

modulus of the overall composite and local stress distribution variations 

within the microstructure. 

2. The effect of microstructural phase shape on the non-linear plastic 

behaviour of IPCs, in this case examined through changes to the effective 

yield strength of the composite and stress distribution variations within the 

microstructure. 

The shapes chosen for investigation were those of interconnected 

spheres and interconnected cylinders, both surrounded by a second phase with 

more flexible and weaker properties. The former is comparable to the non-IPC 

particle reinforced composite and the latter is similar to the non-IPC fibre 

reinforced composite. 

Numerous other variables, in addition to phase shape, affect the 

behaviour of IPCs. In order to focus on shape, it was necessary to control these 

other variables. To do this, a periodic arrangement of the phases was used in 

the study so that parameters of the microstructural geometry (shape, size 

distribution, spatial distribution and orientation of the phases) could be easily 

defined. However, this means that various randomly arranged IPCs are not well 

represented in this study. All sphere and cylinder pieces were uniform in size, 

so that size distribution had no affect. A single spatial distribution – a hexagonal 

close-packed (HCP) system – was also chosen so that its influence was 

controlled. The HCP system also provides an isotropic response that allows the 

direction dependence of results to be ignored. The orientation of the phases 

could not be completely removed as a variable, since it is dependent upon both 

the chosen shape and spatial distribution. This can be seen by considering first 

the sphere shape, which is equi-dimensional and therefore has no orientation 
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dependence, and then the cylinder shape, whose orientation is set by the HCP 

system (this is examined in more detail in Chapter 3; see Fig. 3.1 and 3.6). 

While other orientations of the cylinder shape are possible, no other orientation 

will allow the creation of an IPC with an HCP system. Orientation may therefore 

be viewed as controlled by the spatial distribution. The overall composition of 

the IPCs, or the amount of each phase in them, was varied over an applicable 

range of volume fractions in order to generalise the results. 

Besides the parameters of the microstructural geometry, other variables 

had to be considered. The material properties of the constituent phases were 

assumed to be elasto-plastic, matching the basic behaviour of ductile materials. 

Various different values for the stiffness and strength of each phase were 

examined in order to generalise the applicability to a range of potential phases 

as much as possible. However, no case assuming a constituent to be purely 

elastic to failure was analysed and the results of this thesis should be applied to 

IPCs containing a brittle phase with caution. The interface between the phases 

also needed to be simplified due to the complexity of the interaction of IPCs 

under load. In the investigation described here, a perfect bond between the 

phases was assumed such that strain compatibility was required across the 

interface. This is generally the desirable interfacial condition from the 

processing of IPCs. 

In addition to controlling the variables considered in this research, it 

should be reiterated that only the basic elastic and plastic behaviours were 

studied. The investigation focussed on the determination of simple effective 

properties for IPCs, such as the Young’s modulus and the yield strength. The 

more severe plastic behaviour occurring near failure due to fracture or fatigue 

was not considered in this study. The effects of time-dependent behaviour from 

creep and relaxation were also not examined. Most important to the behaviours 

that were studied is that no thermal influences were considered. The creation of 

thermal residual stresses due to thermal expansion mismatch of the phases 

during processing can significantly influence IPC behaviour. This phenomenon 
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is discussed in the next chapter through the research of others, but was not 

studied as part of this thesis. 

1.3   METHODOLOGY 

In order to determine the influence of phase shape on IPC behaviour, 

two unit cell models, one containing a sphere and the other a cylinder, were 

created. Each unit cell was based on the HCP system and was limited by the 

scope just stated. The co-continuous, three-dimensional nature of these models 

is sufficiently complex to require the solution to be determined through 

numerical methods. For the purposes of this study, the computer software 

package ADINA (ADINA R&D, Inc. 2002a) was used to solve for the composite 

behaviour in response to a simulated uniaxial tension test. ADINA’s solutions 

are found by application of the finite element method (FEM). The solutions to 

linear elastic behaviour focussed on changes to the IPC’s effective Young’s 

modulus, while those for non-linear plastic behaviour focussed on changes to 

the effective yield strength. 

Modelling results provided data about the influence of several variables 

on composite behaviour. Different ratios of the constituent phase properties 

allowed general trends to be determined when various types of constituents are 

used. A range of volume fractions for the phases provided insight into the effect 

of phase composition on the mechanical behaviour of an IPC. The influence of 

phase shape became apparent when the volume fractions and phase property 

ratios in each of the two models were set to be the same. This influence was 

initially determined based on the macroscopic behaviour (either the effective 

Young’s modulus or effective yield strength), but it was also confirmed through 

a study of the mechanisms acting at the microstructural level. Finally, a 

parameter to help describe the effect of phase shape was developed. The 

purpose of this parameter was to account for the effect of phase shape in an 

equation that describes IPC behaviour. 
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1.4   LAYOUT OF THESIS 

The remainder of this thesis provides the details of the research just 

outlined. The second chapter is a literature review of previous research relevant 

to IPCs. Its first two sections describe various methods that have been used to 

study IPCs. Each method is briefly outlined and an analysis of its usefulness is 

provided. These sections are written as an introductory reference for planning 

research on IPCs. In the third section of the literature review, the results of 

previous research on the elastic and plastic behaviour of composites are 

discussed. This section gives a background on the current state of knowledge 

about IPC mechanical behaviour. It also provides a subsection on the influence 

of thermal residual stresses, which, although not considered in this study, can 

be a significant determinant of behaviour. 

The third chapter describes the development of the models used in this 

research. The material in this chapter is intended to simply provide a better 

understanding of how the models work; however, if the software programs in 

the appendices are used, it should also allow the models to be recreated. 

The fourth chapter discusses the results found by the models and how 

they were validated. Validation was a multiple step process to ensure sufficient 

accuracy of the results. After validation, the effect of phase shape on the elastic 

behaviour of IPCs is discussed through two separate methods. The first method 

draws initial results from the macroscopic behaviour. Confirmation of these 

results is then sought by examining the mechanisms at the microstructural 

level. A similar procedure is used to discuss the effect of shape on the plastic 

behaviour of IPCs. 

Finally, in the fifth chapter, a brief summary of the research is given, 

which leads to conclusions regarding the effect of phase shape on the elastic 

and plastic behaviour of IPCs. Recommendations are also provided on the 

future direction of research in creating a mechanistic model for IPCs. 
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CHAPTER TWO 

LITERATURE REVIEW 

Research into the relationship between the microstructural geometry and 

the macroscopic behaviour of composite materials has been a topic of interest 

for nearly a century. However, the possibility of multiple phases being three-

dimensionally continuous, as occurs within interpenetrating phase composites 

(IPCs), has been largely overlooked until the past decade; most researchers 

date the separate study of IPCs to a state-of-the-art paper by Clarke (1992). 

This situation is now rapidly changing as the growing importance of IPCs is 

leading researchers to develop methods to predict their performance. This 

chapter, therefore, describes the various approaches researchers are using to 

characterise the microstructures of IPCs, the methods that are being used to 

predict their behaviour and the factors which influence that behaviour. This 

objective has been broken into its three distinct parts, with Section 2.1 

examining the methods of microstructural characterisation, Section 2.2 

discussing the benefits and limitations of various prediction methods, and 

Section 2.3 describing some of the factors that influence the basic mechanical 

behaviour of IPCs. This separation of review material into these three sections 

should aid in the analysis of each part of the microstructure-behaviour 

relationship and emphasize the importance of considering each one in the 

proper development of IPC research. 

2.1   CHARACTERISATION OF MICROSTRUCTURAL 
GEOMETRY 

2.1.1   Experimental Characterisation Methods 

The proper characterisation of an experimental specimen’s 

microstructure is highly dependent on the technology and methods used to 

describe that microstructure. The most common means of observing the nature 

of composite microstructures is through two-dimensional sectioning of a sample 

followed by observation through some type of microscopy. Optical microscopy 
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is generally used for coarser microstructures, where the phases are fairly easy 

to distinguish with moderate magnification (e.g. Liu and Köster 1996, Agrawal et 

al. 2003, San Marchi et al. 2003). For finer microstructures or more detailed 

analyses, scanning electron microscopes (SEM) or transmission electron 

microscopes (TEM) are more useful (e.g. Daehn et al. 1995, Peng et al. 2000, 

Wegner and Gibson 2000b). 

Unfortunately, these methods provide two-dimensional representations 

whose accuracy in representing the actual three-dimensional material is 

dependent upon the number and orientation of the chosen sections. 

Characterisation of a three-dimensional microstructure is particularly important 

for IPCs, where the co-continuous geometry of the microstructure is dependent 

upon visualisation in three dimensions. Fredrich et al. (1995) attempted to 

improve their characterisation of sandstone and granite where the pore space 

was filled with a fluorescent epoxy by creating numerous thin sections. When 

studied under a laser scanning confocal microscope, three-dimensional images 

of each small section were created. Adjacent sections were then combined to 

provide larger three-dimensional representations of the pore structures. 

Flannery et al. (1987) determined a potential method involving the use of x-ray 

microtomography. In their method, x-rays are passed from a source through a 

specimen and the incident and transmitted intensities of the rays are detected. 

This can be used to produce two-dimensional representations along the paths 

of the x-rays. With numerous such representations taken at different angles, it is 

possible to non-destructively build a three-dimensional image of an 

experimental sample’s microstructure. Coker et al. (1996) used this method with 

synchrotron x-rays in order to study the microstructure of Fontainebleau 

sandstone. 

After finding a means to study the microstructure, the experimental 

researcher still must determine how to describe it. Most descriptions are largely 

qualitative judgements by the researcher, with only small amounts of 

quantitative data being listed. The preference for this system of description is 

due mainly to the complexity of depicting the microstructure in a numerical form; 
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however, it makes the characterisation highly subjective and dependent upon 

researcher experience. As examples, Liu and Köster (1996) studied 

alumina/aluminium IPCs with both optical microscope and TEM images, making 

note of the continuous appearance of the phases, the existence of silicon 

impurities, the progress of the reaction front and the volume fraction. Stainless 

steel/bronze composites considered in a project by Wegner and Gibson (2000b) 

were described using microstructural observations of volume fraction, the 

existence of voids along phase interfaces and tin rich regions within the bronze. 

In a study on the fracture behaviour of alumina/aluminium IPCs, Pezzotti and 

Sbaizero (2001) used SEM inspection to determine the absence of voids. 

Agrawal et al. (2003) used SEM and optical micrographs to determine the 

existence of co-continuous systems, phase volume fractions and the average 

phase grain size in alumina/copper and alumina/aluminium composites. With 

the exception of some information regarding phase volume fractions, all these 

microstructures are completely qualitatively characterised. 

The preference for qualitative descriptions, while useful, poses a definite 

problem for other researchers who are attempting to make comparisons with 

their own research or who require detailed data for the creation of numerical 

models. Even when sufficient experimental results exist to contrast the 

accuracy of other test predictions, an insufficient amount of microstructural 

information may exist to draw a strong connection between the geometry of the 

microstructure and the overall behaviour. This is particularly troublesome for 

modelling studies, since the potential usefulness of a model’s predictions 

become highly questionable when there are numerous limitations in accurately 

describing the microstructure. This problem is exacerbated in IPC research 

since the microstructures of these composites are more complex and a greater 

number of assumptions must be made. In order to improve modelling 

predictions on the behaviour of IPCs, experimental research must provide more 

detailed and more quantitative depictions of realistic microstructures to allow 

validation. 
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As early as 1984, Camus et al. (1984) were discussing the quantification 

of interpenetrating microstructures through topological or fractal analysis. 

Although at the time of their writing the analysis of numerous sections by the 

researcher made laboratory work extremely tedious, computer imaging software 

can now sometimes perform these operations. As an example, Coker et al. 

(1996) used an edge-based segmentation algorithm on synchrotron x-ray 

microtomographic data to separate the material and pore phases of 

Fontainebleau sandstone. With this data they characterised the microstructure 

through a number of statistical correlation functions as defined by Torquato 

(1991). Peng et al. (2000, 2001), in addition to a qualitative analysis, noted the 

average cell and window diameters of their foamed alumina preform’s 

microstructure. This allows some determination of the interconnection of the two 

phases. 

2.1.2   Characterisation through Topological Parameters 

An ideal means of quantifying a composite’s microstructure would be 

through the use of topological parameters. These are dimensionless variables 

that describe geometric properties and are independent of the size of the 

microstructure that is considered. The volume fraction of the phases is a 

common example: 

 
βα

α
αφ

VV

V

+
= ,      (2.1) 

where φα is the volume fraction of the α-phase, and Vα and Vβ are the volumes 

of the α and β-phases, respectively. Note that while the volumes of each of the 

phases are dependent upon the size of the sample, the volume fraction is not. 

Unfortunately, no other standard topological parameters are in wide 

spread use and a variety of them can be found in the literature. Contiguity was 

defined by Gurland (1958) as the fraction of surface area shared by a grain of 

one phase with all other grains of the same phase. In equation form, this is 
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where Cα is the contiguity of the α-phase, Sv
αα is the surface area between α-

phase grains per unit volume and Sv
αβ is the surface area between α and β 

grains. Lee and Gurland (1978) used the parameter “continuous volume 

fraction” in a study on sintered tungsten carbide/cobalt alloys. They defined 

continuous volume fraction as the volume fraction of one phase which is 

contiguous with itself. In mathematical form this is 

ααα φφ Cc = ,     (2.3) 

where φαc is the continuous volume fraction of α-phase. 

Fan and Miodownik (1993a) defined complements to the previous two 

parameters. The separation (Sα) was defined as the fraction of surface area 

shared by a grain of one phase with all other grains of another phase, i.e. 
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In addition, the separated volume fraction (φαs) was defined as the volume 

fraction of one phase that is not contiguous with itself, calculated by 

ααα φφ Ss = .    (2.5) 

Fan and Miodownik further defined the degree of continuity and its complement, 

the degree of separation. The degree of continuity, Fc, is related to the entire 

continuous volume fraction for the composite (for both phases), while the 

degree of separation, Fs, is related to the entire separated volume fraction. For 

a two-phase composite these are, respectively, 

cccF βα φφ +=     (2.6) 

and 

sssF βα φφ += .    (2.7) 
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One final topological parameter that arises in the study of IPCs is 

matricity. Matricity was defined by Leβle et al. (1998) as the length of skeleton 

lines from one phase divided by the length of skeleton lines for both phases, as 

taken from numerous section images of the composite microstructure (see 

example image in Fig. 2.1): 

βα

α
α ss

s
M

+
=     (2.8) 

where Mα is the matricity of the α-phase, and sα and sβ are the skeleton line 

lengths of the α and β-phases, respectively. 

The physical significance of these parameters is important to 

understanding their utility. Contiguity is a measure of short-range continuity, 

since it is concerned with grain neighbours. A high contiguity necessarily means 

that there is a great deal of short-range continuity of that phase. This does not, 

however, mean that long-range continuity exists, since clusters of a single 

phase would have high contiguity. A well dispersed, highly contiguous phase 

would, however, have a greater probability of having long-range continuity than 

a phase without these two properties. This was explored by Aldrich and Fan 

(2001) for an alumina/nickel composite. 

Along similar lines of argument, the continuous volume fraction is the 

Figure 2.1.  M icrograph of an IPC at left with skeleton lines used to determine 
matr icity at r ight (from Leββββle et al. 1999) 
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volume fraction of a phase that shows short-range continuity since it is 

dependent upon contiguity. The degree of continuity also denotes only short-

range continuity, although in this case it includes all phases. Matricity is also a 

measure of short-range continuity, but in this case it is based on the size, 

orientation and number of two-dimensional sections that are used to determine 

a microstructure’s matricity. By increasing the size, total number and number of 

orientations considered in representing the microstructure, a greater probability 

is created that the determined matricity denotes the long-range character. 

It is also interesting to note that the statistical correlation functions 

defined by Torquato (1991) have the same physical meaning as these 

topological parameters, and their ability to represent long-range rather than 

simply short-range continuity is also dependent on the care taken in a section 

analysis. Those parameters based on separation simply imply the inverse of 

those based on contiguity: short-range discontinuity. 

2.2   PREDICTION OF MACROSCOPIC MECHANICAL 
BEHAVIOUR 

2.2.1   Bounds on the Mechanical Properties of General Composites 

Important early analytical studies attempted to place bounds on the 

effective properties of any general composite material. These bounds are still 

valuable to current research as they provide some conception about the 

optimality of the composite, and a general solution against which more specific 

models can be tested. The general nature of the desired bounds meant that the 

original researchers attempted to make as few assumptions about the 

microstructure as possible. The most useful bounds for the work in this thesis 

are those by Hashin and Shtrikman (1963) for isotropic composites. 

The derivation of these bounds begins with the assumptions of 

macroscopic isotropy and elastic behaviour. Macroscopic isotropy requires that 

the component phases be significantly smaller than the composite sample 

considered. When calculating the upper bound, Hashin and Shtrikman (1963) 

used variational calculus together with the theorem of minimum potential 
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energy, and the lower bound was found using the theorem of minimum 

complementary energy. Only the volume fractions of the phases were used as 

microstructural parameters, so the bounds are applicable to the elastic 

properties of any isotropic composite regardless of its microstructure. The upper 

Hashin-Shtrikman bounds were found to be 
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where K, G and φ denote bulk modulus, shear modulus and volume fraction, 

respectively. The subscript “u” marks the upper bound, “1” the first phase 

parameters and “2” the second phase parameters. It is necessary when using 

these bounds that K2 is greater than K1 and G2 greater than G1. Similarly, the 

lower bounds are; 
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where Kl and Gl are the lower bounds for the effective bulk and shear moduli, 

respectively, and all other variables are as described above. In the same paper, 

Hashin and Shtrikman (1963) proved that these were the most restrictive 

bounds that could be found for any general isotropic composite without 
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incorporating information about the microstructural geometry in addition to the 

volume fraction. 

There is an implicit statement of phase geometry in the exact solution of 

the Hashin-Shtrikman bounds (though this does not affect the generality of the 

previous solutions). Hashin (1962) created a model assuming a microstructure 

of composite spheres, in which a sphere of one phase is coated by a concentric 

sphere of the other phase. These concentric spheres in a wide range of sizes 

are then packed so that no void space exists between them (this requires sizes 

from a relatively large maximum to an infinitesimally small minimum, see Fig. 

2.2). If the more flexible phase coats the stiffer phase, the result is the lower 

bound derived above, and if the stiffer phase coats the more flexible phase, the 

upper bound is achieved. The reason for this difference involves the 

connectivity of the stiffer phase. When placed as the coating, the stiffer phase is 

completely connected such that it is able to take the majority of the stress and 

reduce the deflections due to deformations of the more flexible phase. 

However, when placed in the centre, the stiffer phase is not connected and the 

composite behaviour is mainly dependent on the flexible phase. 

2.2.2   Analogy Models 

Similarities exist between numerous different physical properties and it is 

not uncommon for researchers to study physical phenomena that are relatively 

easy to model in order to better understand more complex phenomena. Such a 

Figure 2.2. Composite spheres model 
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correlation exists between the failure of electrical networks consisting of a 

random arrangement of resistors and the failure of composite materials. 

Moukarzel and Duxbury (1994) used this parallelism to study the mechanical 

behaviour of IPCs using the numerical model of an electrical network composed 

of two different types of resistors (each resistor type representing a different 

phase). In this analogy, the electrical conductivity of the resistors is similar to 

the mechanical stiffness of the phases, and the maximum electrical current at 

which a resistor fails is similar to the fracture strength. 

Their model used a process known as the multiple hottest bond 

algorithm in order to simulate the behaviour. In this system, a voltage is applied 

(a strain for mechanical comparison) and the current in each resistor is 

determined. Any resistor over its breakdown current (fracture strength) is 

removed from the system and the current in each resistor is again calculated. 

This process is repeated until no further resistors fail. The voltage is then 

increased slightly and the previous calculations are repeated incrementally until 

complete failure is achieved. 

A cubic lattice of resistors was modelled with two different volume 

fractions of the two resistor types (the different phases). In the first case, the 

volume fractions of the resistors were equal (50% each) so that an 

interpenetrating network was created, and in the second case the volume 

fraction of the stronger (inclusion) resistor was only 15% so that a discontinuous 

two-phase network was created. For both cases, the current-voltage (stress-

strain) behaviour was recorded for each step in the process, as well as the 

number of resistors that failed prior to complete failure (damage tolerance or 

ductility) and peak overall current (composite ultimate strength). Although the 

IPC models did not produce the highest peak overall current (ultimate strength) 

they showed a significantly larger number of failed resistors (enhanced 

ductility). 
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2.2.3   Self-Consistent Models 

Composites containing random microstructures and exhibiting isotropic 

behaviour are well suited for self-consistent models. These models consist of a 

circular cell, which includes both of the actual phases of the composite, 

embedded within a general homogeneous medium (see Fig. 2.3). The 

properties of the constituent phases are applied to their respective parts of the 

embedded cell, while initially assumed properties must be given to the 

homogeneous embedding medium. With boundary conditions applied 

sufficiently distant from the embedded cell, an iterative procedure may be used 

to solve for the composite’s effective behaviour. Iteration is required since the 

general homogeneous embedding medium’s properties must be determined 

through improvements with each solution step. Some confusion has arisen 

about the use of this model since several researchers have used only one 

phase in the embedded circular cell and given the other phase properties to the 

embedding medium. Christensen (1979) noted that this is an improper use of 

the underlying mathematics of the self-consistent method and readers are 

cautioned to carefully analyse the models used in this method. 

Leβle et al. (1998, 1999) expanded the use of self-consistent models into 

the analysis of IPCs. Their method was based on the self-consistent models 

originally developed by Dong and Schmauder (1996) and the use of the 

topological parameter matricity (see Section 2.1.2). Dong and Schmauder’s 

models were two-dimensional with applied plane stress, plane strain or 

axisymmetric boundary conditions and were solved using the FEM. The volume 

fractions of the phases could be varied by changing the radii of each phase 

Embedded cell of actual phases 

Homogeneous medium 

Figure 2.3. Self-consistent model 

r1 

r2 
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within the embedded cell (see Fig. 2.3). Matricity was incorporated through the 

use of two self-consistent models where the skeleton line length of the α-phase 

was equal to the circumference of the outer phase in the first model, and the 

skeleton line length of the β-phase equal to the circumference of the outer 

phase in the second model (in one model the α-phase was at the centre and 

was surrounded by the β-phase, in the other model these positions were 

switched). The matricity was given a weighting factor that was based on the 

diameter of the embedded cell within each model. Effective composite results 

were then determined by solving both models and weighting the determined 

stress and strain values at each integration point by the diameter of the 

embedded cell. 

Hoffman et al. (1999) used self-consistent modelling to determine the 

effective bulk modulus of an alumina/aluminium IPC. Although not described in 

detail, the only geometric parameters they appear to have used are the volume 

fractions of the phases. The effective bulk modulus, along with properties of the 

constituent phases, was then used in several analytical equations to calculate 

the yield and creep behaviour. This information was used in the determination 

of mechanisms for thermal residual strains and stresses created in IPCs during 

processing. 

2.2.4   Unit Cell Models 

In direct contrast to self-consistent models, unit cell models are better 

able to describe composite materials with ordered periodic microstructures 

rather than random microstructures. They are also useful in depicting internal 

stress and strain distributions that occur within the microstructures of loaded 

composites. These capabilities are possible through the representation of large, 

often complicated microstructures with single building blocks (unit cells) of 

those structures. Proper boundary conditions on the cell surfaces replicate the 

existence of the surrounding material using the geometry within the cell. The 

surrounding material therefore takes on an ordered arrangement based on the 
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template geometry from the unit cell. For IPCs, three-dimensional unit cells are 

required since their geometry is defined by its three-dimensional dual continuity. 

A common unit cell for modelling IPCs is the anisotropic simple cubic 

microstructure (see Fig. 2.4). This model was used by Ravichandran (1994) to 

study the stress-strain behaviour of IPCs with two ductile phases. The cell was 

separated into a combination of parallel and series components which were 

then solved using Newton’s bisection method (Moore, 1979). Phase constraint 

was introduced by assuming that pieces of the more compliant phase were 

rigidly sandwiched between layers of the less compliant phase. Daehn et al. 

(1995) used the simple cubic unit cell to model the stress-strain behaviour of an 

interpenetrating network of brittle alumina and ductile aluminium. As is common 

in similar studies of metal-ceramic composites, the brittle ceramic was modelled 

as elastic and the ductile metal as elasto-plastic. Since they desired isotropic 

material behaviour, they used Reuss (isostress) and Voigt (isostrain) averaging 

to provide an aggregate response from the anisotropic results obtained using 

the FEM. Shen (1998) used this unit cell in his study of the coefficient of thermal 

expansion (CTE) for a brittle silicon-carbide and ductile aluminium IPC. A 

similar model with discrete and continuous phases considered the CTE for 

metal-matrix and ceramic-matrix composites in which various levels of 

continuity were considered. Shen noted that the simple shape and distribution 

assumed for the IPC (i.e. the simple cubic unit cell) was justified by previous 

work that showed the effective CTE to be insignificantly affected by these 

geometric parameters (Shen et al. 1994a). He also noted, however, that this 

was not the case for effective elastic and plastic properties, where shape and 

distribution had a marked affect on composite performance (Shen et al. 1994b, 

1995). Analytical solutions were found using the simple cubic unit cell for the 

piezoelectric and elastic properties studied by Bowen et al. (2001) and Feng et 

al. (2003), respectively. Feng’s model largely improved the work of 

Ravichandran (1994) by extending its applicability to multiple continuous and 

discrete phases. 
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The anisotropy of the simple cubic unit cell differs from the usual 

isotropic properties found in the experimental testing of IPCs. This led Wegner 

and Gibson (2000a) to develop the isotropic hexagonal close-packed (HCP) 

microstructure seen in the unit cell of Figure 2.5. The HCP unit cell was used to 

model two ductile phases with a simulated uniaxial tension test and solved 

using the FEM. Results were found for elastic and plastic behaviour, and in 

Wegner and Gibson (2000b), comparisons to experimental data were used to 

determine the effect from thermal residual stresses. A uniform heating regime 

was also used to determine the effective CTE. In addition to the IPC model, a 

discrete particle reinforced model for non-IPCs was used to consider the effect 

of an interpenetrating geometry. Wegner and Gibson (2000a) noted that a 

perfect bond was assumed between the two phases; this assumption is also 

likely true of all the discussed unit cell models. 

2.3   FACTORS INFLUENCING MACROSCOPIC MECHANICAL 
BEHAVIOUR 

2.3.1   Factors Influencing Thermal Residual Stresses 

Thermal residual stresses are commonly caused during the processing 

of composite materials. Although they are rarely of direct interest to IPC 

research, they can have a profound effect upon composite behaviour and are 

therefore of indirect interest to numerous studies on effective properties. There 

are two basic mechanisms for their creation; the first is related to the difference 

Figure 2.4. Simple cubic unit cell Figure 2.5. HCP unit cell 
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between the coefficients of thermal expansion (CTEs) of the constituent 

phases, and the second to the dissimilar cooling rates in different locations 

within the material. The latter mechanism regarding location was to some extent 

alleviated in the following studies so that only the former mechanism is 

considered further. During cooling from the manufacturing temperature, both 

phases of a composite will contract. The phase with the higher CTE (more 

compliant) will want to contract to a greater extent than the phase with the lower 

CTE (less compliant). This difference causes the less compliant phase to 

constrain the more compliant phase, such that compressive stresses and 

tensile stresses are created in the less and more compliant phases, 

respectively. These stresses are referred to as thermal residual stresses and 

their existence in a newly manufactured composite produces an initially loaded 

state. 

Many of the same factors which influence composite effective behaviour 

also influence thermal residual stresses. As mentioned above, the mechanism 

of interest is related to the difference between the CTEs of the constituent 

phases. However, the CTEs are not the only variables that affect the creation of 

thermal residual stresses. Other material properties and the geometry of the 

microstructure also have a significant influence. Skirl at al. (1998) recorded 

overall strains in an alumina/aluminium (Al2O3/Al) IPC at various different 

volume fractions of the ceramic and metal phases. They noted that the total 

thermal residual strain in the IPCs increased in direct proportion to an increase 

in the volume fraction of the metal phase. A more detailed study carried out by 

Agrawal et al. (2003) used neutron diffraction measurements to determine the 

stresses in each of the phases for both an alumina/copper (Al2O3/Cu) IPC and 

an Al2O3/Al IPC. They found that the tensile stresses developed in the Cu 

phase of the Al2O3/Cu IPC were much higher than those developed in the Al 

phase of the Al2O3/Al IPC (620 MPa compared to 112 MPa), despite the fact 

that the ratio between the CTEs for Cu and Al2O3 was smaller than the ratio of 

the CTEs between Al and Al2O3 (2.54 Cu to Al2O3 and 3.65 Al to Al2O3). 

Although this appears inconsistent from the mechanism described previously, it 
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can be understood when it is noted that for the Al2O3/Cu IPC the volume 

fraction of Cu was 30%, whereas in the Al2O3/Al IPC the volume fraction of Al 

was 70%. The much smaller amount of Cu in the first IPC was therefore of 

much smaller dimensions and more greatly constrained than the Al of the 

second IPC. A more minor link was also noted between the different stiffnesses 

and melting temperatures for the two metals. 

In the study of IPCs, the dual continuity of the phases requires a further 

examination of microstructural parameters besides simply the volume fraction. 

Shen (1998) noted that the thermal residual stresses in his simple cubic unit cell 

model of a silicon carbide/aluminium composite were greatly affected by the 

level of continuity for each phase. Hoffman et al. (1999) attempted to explain 

the thermal residual stresses found by Skirl et al. (1998) through two 

mechanisms. The first mechanism was dominant at low temperatures (near the 

end of cooling) where permanent strain was induced through yielding of the 

metal phase due to constraint from the ceramic phase. At higher temperatures 

and lower stresses (near the metal’s melting point) the second mechanism 

involving time-dependent behaviour was dominant. In this mechanism, diffusion 

creep leading to the relaxation of the metal was accounted for during the 

creation of thermal residual stresses. A reasonable correlation was found 

between this study and the experimental work of Skirl et al. (1998) if a 

combination of the mechanisms was used. The majority of permanent 

deformation in the aluminium was attributed to time-dependent behaviour at 

elevated temperatures with only a minor effect due to yielding near room 

temperature. 

Agrawal et al. (2003) modelled their thermal residual stresses through 

the use of a simple cubic unit cell and the concept of an effective processing 

temperature. This allowed them to avoid the necessarily complex equations 

used by Hoffman et al. (1999). Unfortunately, neither of these studies isolates 

the effect that dual continuity has on the creation of thermal residual stresses 

but only produces models able to predict their distribution. 
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2.3.2   Factors Influencing Elastic Behaviour  

The behaviour of IPCs in their elastic range of response is a key concern 

in understanding their performance under usual service conditions. Unless the 

IPC is intended for single use, it is generally desirable that the loads it is likely 

to encounter on a regular basis are in its elastic range such that when the load 

is removed all the deformation is removed. Determining this behaviour is, 

however, complex due to the multiple continuity of the phases in IPCs. While 

purely elastic behaviour would require all phases to be elastic (if one phase 

were acting plastically then the removal of load would still not allow the material 

to return to its initial form), a more complex situation is possible with IPCs 

where a continuous phase of significantly greater strength could hold almost all 

the load and create a pseudo-elastic condition. Several ceramic/metal and 

ceramic/polymer IPCs have the potential to meet this condition. 

The effect of constituent phase properties and volume fractions on 

effective elastic properties was determined for any general isotropic composite 

by Hashin and Shtrikman (1963). They were able to analytically solve for upper 

and lower bounds on the effective bulk and shear moduli of two-phase 

composites using variational principles and elastic theory (see Section 2.2.1). 

This also applies to IPCs so long as they consist of two phases and behave in 

an isotropic manner. A plot of the bounds for the effective Young’s modulus 

against the volume fraction of the less compliant phase is shown in Figure 2.6. 

To make this plot, the bounds from Equations 2.9 to 2.12 were used with the 

following relationship, which relates them to the Young’s modulus: 

GK

KG
E

+
=

3

9
,    (2.13) 

where E, K and G denote the Young’s modulus, bulk modulus and shear 

modulus, respectively. Whether the solution is for the upper or lower bound of 

the Young’s modulus is directly dependent upon whether the upper or lower 

bounds for the bulk and shear moduli are input into Equation 2.13. The bounds 
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are plotted for two different modular ratios of the constituent phases, the blue 

bounds for a ratio of 2 and the red bounds for a ratio of 5.5. 

The first point to note is that the effective Young’s modulus increases 

with an increase in the volume fraction of the less compliant phase. This is true 

for both modular ratios and makes physical sense since, as the volume fraction 

of the less compliant phase increases, it takes up an increasing amount of the 

space and the composite should begin to act more like the stiffer phase. 

The relative difference between the constituent material properties shifts 

the entire range of potential behaviour defined by the bounds as well as the 

spread between the upper and lower bounds. For the modular ratio of 2, shown 

by the blue lines, the bounds are tight, indicating that the elastic behaviour of 

any isotropic composite can be predicted to a great degree of accuracy knowing 

only the volume fractions of the phases. This is not the case when the modular 

ratio is increased to 5.5. The greater space between the red bounds allows the 

effective Young’s modulus of a composite to vary over a significant range at a 
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particular volume fraction. In this case, further information about the 

microstructural geometry is necessary to make more accurate predictions. 

The use of these bounds for an interpenetrating microstructure can be 

seen when compared to the data from Liu and Köster (1996) for their Al2O3/Al 

IPC, denoted by the purple diamond. This IPC had a volume fraction of 64.2% 

Al2O3 and the Young’s moduli of the constituents differed by a ratio of 5.5. It can 

be seen from Figure 2.6 that this plots near the upper bound and the 

interpenetrating geometry has produced the optimum response for this volume 

fraction of these materials. 

The thermal residual stress derived from processing an IPC has been 

found to have some effect on its elastic behaviour. The numerical work of 

Daehn et al. (1995), considering an Al2O3/Al IPC with a simple cubic 

microstructure, showed a minor difference in overall stress-strain behaviour if 

thermal residual stresses were or were not considered (the volume fractions for 

each phase were 50%). The only point of significant change was the strain at 

which yielding occurred. With the inclusion of thermal residual stresses, the 

strain at yield increased, leading to a decrease in the slope of the elastic region 

and therefore a decrease in the effective Young’s modulus. Dong et al. (1999) 

used the self-consistent model of Leβle et al. (1998, 1999) to find the stress-

strain behaviour of a tungsten/copper (W/Cu) IPC. Their work showed a 

significant decrease in the effective Young’s modulus when thermal residual 

stresses were considered but only when the volume fraction of Cu was greater 

than 40%. The decrease in the effective Young’s modulus with the 

consideration of thermal residual stresses was further confirmed by the findings 

of Wegner and Gibson (2000b), who compared their experimental work on a 

stainless steel/bronze IPC to a hexagonal close-packed unit cell model. They 

noted that thermal residual stresses could account, at least in part, for their 

IPC’s Young’s modulus being below the Hashin-Shtrikman lower bound. 

The continuity of the constituent phases also influences the elastic 

behaviour of IPCs. Wegner and Gibson (2000a) studied interpenetrating and 
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non-interpenetrating IPCs over the same volume fraction range with hexagonal 

close-packed unit cells. The unit cells that interpenetrated showed a much more 

significant increase in their effective Young’s modulus as the volume fraction of 

the stiffer phase was increased. This result had to be balanced against the 

previously mentioned finding of a stiffness reduction due to thermal residual 

stresses (Wegner and Gibson (2000b)). They theorised that an increased 

effective Young’s modulus was possible due to the interconnection of the stiffer 

phase, but that this also applied an increased constraint to the more flexible 

phase causing enhanced thermal residual stresses. The effect of continuity on 

composite stiffness was therefore found to be based on the relative importance 

of these two mechanisms.  Dong et al. (1999) agreed that increased continuity 

would produce a small increase the effective stiffness of the composite; 

however, they theorised that a slightly different mechanism was acting on the 

thermal residual stresses. In their self-consistent model of a brittle-ductile IPC, 

the effect due to thermal residual stresses was found significant only over a 

volume fraction greater than 40% of the ductile phase (above which they 

suggest an interpenetrating ductile phase exists). This was assumed to be due 

to plastic flow in the connected ductile phase caused by the thermal residual 

stresses induced by the connected brittle phase. Peng et al. (2001) noted that 

the effective Young’s moduli of their experimental Al203/Al IPCs best fit 

predictions by Tuchinskii’s (Peng et al. 2001) lower bound equation for an 

interpenetrating microstructure rather than those of the Halpin-Tsai (Peng et al. 

2001) equation for discontinuously reinforced composites. This again notes that 

the continuity of the phases has an effect on the elastic behaviour. 

Phase continuity has been shown to have an effect on the elastic 

behaviour; however, continuity is itself dependent upon a number of 

microstructural parameters, such as the phase shape, size distribution and 

spatial distribution. No known study of these parameters has been made for 

IPCs; however, Shen et al. (1994b) studied phase shape and spatial distribution 

for two-phase particle reinforced composites. The findings of this study are a 

guideline for the application of a shape study to IPC research. In the study on 
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reinforcement phase shape, Shen et al. (1994b) used two-dimensional 

axisymmetric unit cell models to show that shape had a significant effect on 

composite behaviour. Increasing composite stiffness over that of the matrix 

alone occurred in greater amounts with each of the following particle 

reinforcement shapes: the double-cone (diamond cross-section), the sphere, 

the truncated cylinder (hexagonal cross-section), the unit cylinder and the 

whisker. This increased stiffness was attributed to the ability of the matrix to 

transfer its load to the reinforcement. The whisker has the greatest surface area 

through which the matrix could transfer its load by shear and therefore had the 

greatest stiffness. This effective surface area decreases from unit cylinder, to 

truncated cylinder, to sphere and to double-cone. It is interesting to note that 

Shen et al. (1994b) did not find that any of the shapes was more effective at 

constraining the matrix (reducing its strain) in the elastic range. 

Shen et al. (1994b) also found that reinforcement spatial distribution had 

a significant effect on composite behaviour (though less of an effect than 

shape) through the use of two-dimensional plane strain models. Distributions 

representing uniformly sized particles in horizontally and vertically aligned 

periodic arrangements showed the greatest effective stiffening, while 

distributions of uniformly sized particles in an offset periodic arrangement 

showed the least stiffening. These results were linked to the reinforcement’s 

ability to constrain the matrix. This is studied in more detail in the next section 

where the composite’s plastic behaviour showed a similar but more definite 

effect from the reinforcement spatial distribution. 

2.3.3   Factors Influencing Plastic Behaviour 

Plastic behaviour is the permanent deformation that commonly occurs in 

ductile materials after loads have exceeded the elastic range. Near the failure of 

such materials, plastic conditions usually exist and a proper understanding of 

them is essential to predicting their maximum response. Accurate determination 

of this behaviour is difficult, as mathematical models tend to be quite complex. 

In addition, with IPCs pseudo-plastic conditions often exist due to the differing 
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behaviours of phases made from ceramics, metals or polymers. In general, the 

variables that affect elastic behaviour also affect plastic behaviour. 

Unlike elastic behaviour, no general bounds have been determined for 

the plastic behaviour of composite materials. The effect due to the volume 

fractions and properties of the phases must therefore be based upon the 

collective results of numerous studies. Basic theory suggests that effective 

plastic properties will increase with the volume fraction of the stronger phase, 

based simply on the fact that the more of this phase that is within the 

composite, the more its behaviour will dominate the effective behaviour (this 

assumes that no significant flaws exist in the microstructure). This was 

confirmed by the self-consistent models of Leβle et al. (1999) and the 

experimental and unit cell models of Wegner and Gibson (2000a, 2000b).  In all 

three of these studies, the effective yield strengths of the IPCs were found to 

increase with increasing amounts of the stronger phase. 

Comparable to the trend for elastic properties discussed in the previous 

section, the plastic properties of IPCs are shifted by the relative difference 

between the properties of the constituents, while producing similar stress-strain 

behaviours. Daehn et al. (1995) confirmed this in a numerical sensitivity study 

of the influence of the yield strength of the aluminium phase on the yield 

strength of an Al2O3/Al IPC. It was found that the composite’s point of yielding 

was shifted with changes to the ductile phase’s yield strength while producing 

similar curves before and after yielding. As discussed earlier, the Hashin-

Shtrikman bounds demonstrate that increasing the relative difference between 

the constituent phase elastic properties increases the range of potential 

composite behaviour (the bounds become less restrictive). Without general 

bounds, the same statement is difficult to verify for plastic properties. However, 

the analogy model of Moukarzel and Duxbury (1994) showed that an 

interpenetrating structure became more and more significant with an increasing 

relative difference between the constituents. This indirectly shows that the 

range of potential composite behaviour increases with increasingly different 
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phases, since microstructural geometry is only important when the limits of 

behaviour are far apart (consider the two sets of bounds in the Fig. 2.6). 

All studies into the effect of thermal residual stresses on plastic 

behaviour have shown it to have little influence. There is, however, some 

difference in research observations as to whether this minor influence shifts the 

stress-strain curve of IPCs upwards or downwards. The simple cubic unit cell 

model of brittle/ductile phases in the study by Daehn et al. (1995) predicted a 

slight shift in yield strength such that the stress-strain curve was shifted 

downward when thermal residual stresses were present, but this was 

considered insignificant. The results of the brittle/ductile self-consistent models 

of Leβle et al. (1999) and Dong et al. (1999) agreed that the total effect of 

thermal residual stresses was insignificant but that overall stress-strain 

behaviour was shifted slightly upwards. The HCP unit cell model of Wegner and 

Gibson (2000b) used two ductile phases and found slightly downward shifted 

deformation behaviour that agreed more closely to the work of Daehn et al. 

(1995). Reasons for these opposite but relatively small influences due to 

thermal residual stress were connected to continuity, which is discussed below. 

Current research has determined that continuity has an influence on the 

plastic behaviour of IPCs that is likely well in excess of the influence it has on 

elastic behaviour. In the self-consistent models of Leβle et al. (1999) and Dong 

et al. (1999) the matricities of the phases (which control continuity in their 

models) were varied while the volume fractions were kept constant. Stress-

strain behaviour, especially after yielding, was found to differ by large amounts 

as continuity was shifted between the extremes of each phase forming 

inclusions within a particle reinforced composite. The IPC and non-IPC unit cell 

models of Wegner and Gibson (2000a) noted that continuity produced distinctly 

different results at yielding. The IPC model produced much higher yield 

strengths as the continuity of the stronger phase was increased. 

This strong influence from continuity on plastic behaviour was used by all 

these researchers to explain the minor effect from thermal residual stresses. 
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Both Leβle et al. (1999) and Dong et al. (1999) focussed on an increased 

plasticity of the ductile phase in their models, due to a continuous 

microstructure, to explain their IPCs’ slightly enhanced behaviour. In their 

theory, a slight improvement in behaviour is created by isotropic hardening of 

the ductile phase as thermal residual stresses induce an initial plastic 

deformation. This leads to an increase in the yield strength at which plastic 

behaviour begins (though in this author’s opinion this theory only works if there 

is some mechanism by which the thermal residual stresses could reduce to 

zero prior to loading). Wegner and Gibson (2000b) attributed the only slightly 

downward shifted stress-strain behaviour to the continuity of the stronger phase 

in their IPC. Numerical results determined that thermal residual stresses were 

sufficient to induce plasticity in the weaker phase, but were far below the yield 

strength of the stronger phase. A reduction in overall behaviour as the IPC was 

loaded should then be expected due to the reduced strength that could be 

contributed from the weaker phase. This reduction, however, was assumed to 

be largely offset by the dominant behaviour of the almost unaffected continuous 

stronger phase. 

Moukarzel and Duxbury (1994) studied the effect of a continuous 

microstructure on plastic behaviour by considering the damage induced in their 

electrically analogous system at failure. Their model with an interpenetrating 

system produced more damaged resistors prior to complete failure than a non-

interpenetrating system. This suggested greater ductility in the interpenetrating 

system due to an increased redundancy of paths for current flow (in their model 

paths for current flow were analogous to paths for stress distribution). Based on 

their results, IPCs obtain enhanced ductility through a reduction in the 

importance of any single connection within the stronger phase. 

As with elastic behaviour, no study has currently been performed to 

determine the effect of geometric parameters of the microstructure on IPCs 

under plastic conditions. Again, however, a study by Shen et al. (1995) 

considered the effects of phase shape and spatial distribution on the plastic 
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behaviour of two-phase particle reinforced composites. The same two-

dimensional axisymmetric and plane strain unit cell models were used for the 

shape and distribution studies, respectively. Non-linear conditions were 

considered by applying a sufficient load to obtain plastic behaviour in the matrix 

(the reinforcement was assumed to remain elastic). The effect of reinforcement 

shape on plastic behaviour was even more pronounced than that shown for 

elastic behaviour. Composite strengthening with shape followed the same 

pattern as was observed for stiffness: the double-cone showed the lowest 

strengthening, then the sphere, truncated cylinder, unit cylinder and finally the 

whisker, which showed the greatest strengthening. In this case, Shen et al. 

(1995) determined that matrix constraint was occurring, as some reinforcement 

shapes were able to produce a notable reduction of the strain in the matrix. Two 

important constraining mechanisms were identified: 

1. The ability of the reinforcement to interrupt the path of high plastic 

strain; and 

2. The ability of the reinforcement to restrict the size of the high and 

moderate plastic flow paths. 

The whisker shape showed the greatest ability to meet these two points and 

therefore provided the highest constraint to the matrix material. Since any 

reduction in the deformation of the weak matrix phase increases the load 

carrying capacity of the composite, the whisker produced the greatest 

strengthening to the composite. 

The effect of reinforcement spatial distribution also had a more 

significant effect on composite plastic behaviour than on elastic behaviour 

(again this effect was less than that shown by the phase shape). Distributions 

containing horizontally and vertically aligned periodic microstructures again 

produced the most enhanced effective plastic properties, while distributions with 

offset periodic microstructures again showed the least. The relative level of 

strengthening was based on the ability of the distribution to constrain the matrix 

by means of the previously listed two mechanisms. Of the two important points 
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for constraint, the offset distributions were better able to interrupt the path of 

high strain, while the aligned distributions showed a greater ability to restrict the 

size of the overall strain path. It is the greater volume of matrix material that is 

under moderate strain that leads to the weaker reinforcing of the offset 

distributions. Neither unit cell was definitively better on both of the constraining 

points, showing why reinforcement shape was shown to have a more significant 

effect than distribution. 

2.4   SUMMARY OF RESEARCH ON INTERPENETRATING 
PHASE COMPOSITES 

Several methods have been used to study IPCs and several means used 

to describe their microstructures. Unfortunately, many of these studies have 

failed to either properly describe the microstructures that they assumed or have 

used representations of these microstructures that are overly simplistic. The 

focus of researchers on the prediction of IPC behaviour rather than on 

characterising microstructures has made the comparison of the results of 

various studies difficult, as microstructural differences remain unknown. This 

lack of microstructural data has led to a great deal of inefficiency in the attempt 

to understand the behaviour of IPCs. It is therefore highly important that 

researchers choose appropriate methods to use and characterise their 

microstructures carefully. 

The great benefit of an experimental study is that realistic results may be 

found for an actual IPC’s behaviour. In general, the greatest problem that 

occurs with experimental work is that the microstructural analysis is considered 

only briefly or entirely in a qualitative manner such that comparisons to other 

research are difficult. In particular, the increased complexity inherent in the 

geometry of IPCs requires an increase in the amount of data used to 

characterise these materials. The topological parameters from Section 2.1.2 

along with methods of Aldrich and Fan (2001) are suggested as good 

guidelines for the procedure needed in an IPC microstructural analysis. 
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Early studies on prediction of IPC behaviour used simplified methods so 

that the complexity of the microstructural geometry could be avoided. One of 

these simplified methods is the use of general bounds on the effective 

behaviour. General bounds, such as the Hashin-Shtrikman bounds (1963), offer 

an excellent means of understanding some of the simple influences on effective 

response, as well as a means to test the accuracy of experimental work or more 

detailed models. Analogy models have also been used to determine broad 

behavioural patterns in IPCs. Unfortunately, like general bounds they are also 

quite limited and cannot produce exact results. 

While the previous simplified methods provided a good understanding of 

basic IPC behaviour, they consisted of too many simplifying assumptions to be 

able to accurately predict the response of an actual IPC. Improvements in 

predictions have been obtained with self-consistent models and unit cell 

models. Self-consistent models have proven to be relatively simple and provide 

good global results for the behaviour of IPCs with random microstructures. 

These models do not, however, provide a good representation of ordered 

microstructures and cannot be used to study the local conditions at a point 

within a composite. For cases where an IPC has an ordered microstructure or 

local behaviour within the microstructure is of interest, unit cell models are more 

appropriate. The use of a fully described microstructure with the unit cell model 

also allows the highest accuracy for characterisation of the microstructure. 

Using the various prediction methods, researchers have determined a 

number of important factors that influence the behaviour of IPCs. This was 

studied for thermal residual stresses, elastic properties and plastic properties. 

Thermal residual stresses are created as a result of relative differences in the 

properties of the constituent phases. Research considered in Section 2.3.1 

noted the importance of the constituent CTEs, stiffnesses and melting 

temperatures in the development of thermal residual stresses. In addition, the 

microstructural geometry also has a strong influence through the level of 

constraint applied to the more compliant phase by the less compliant phase. 
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The influence of constituent properties and volume fractions on the 

elastic behaviour of general composites, including IPCs, has long been 

understood; more recently the effects from thermal residual stresses and 

continuity have been determined. The bounds determined by Hashin and 

Shtrikman (1963) denote the limitations of elastic behaviour for all isotropic 

composites. With the use of these bounds, it can be seen that constituent 

properties influence the range of potential composite behaviour (the greater the 

difference between the constituents the greater the range of behaviour for a 

composite containing them). In general, an increase in the volume fraction of 

the less compliant phase causes an upward shift of the stress-strain curve for 

an IPC, denoting improved behaviour. Increased microstructural continuity was 

also theoretically found to directly increase the elastic modulus. In experimental 

programs, however, several studies have shown that elastic properties, such as 

the effective Young’s modulus, slightly decrease with increases in continuity. 

The source for this inconsistency has been linked to the creation of increased 

thermal residual stresses due to the continuous microstructure, ultimately 

leading to a lower elastic modulus. 

The variables that affect the elastic behaviour of IPCs are also important 

for their plastic behaviour. Assuming no significant flaws exist within an IPC’s 

microstructure, the constituent phase properties and volume fractions have a 

similar influence on the plastic behaviour to what was previously noted for the 

elastic behaviour. The greater the volume fraction of the stronger phase, the 

higher the effective yield strength of the IPC, and the larger the relative 

difference in phase properties, the greater the range of potential effective 

behaviour. For plastic behaviour, thermal residual stresses were found to be 

unimportant due to the continuity of the microstructure. The exact mechanism 

for this is currently undetermined; however, all studies have shown either an 

increase in yield strength or an increase in post-yielding stresses related to the 

continuous nature of IPCs. 

Previous researchers have shown that long-range continuity has an 

important influence on the mechanical behaviour of IPCs, but they have only 



  

 35 

rarely noted the effect of microstructural parameters on continuity. Among such 

parameters are the shape, size distribution and spatial distribution of the 

phases, which affect the location and amount of interconnection in a three-

dimensionally continuous microstructure. For two-phase particulate composites 

(non-IPCs), Shen et al. (1994b, 1995) attempted to determine the effect of 

phase shape and spatial distribution on the elastic and plastic behaviours. 

These geometric parameters were found to enhance the behaviour of 

particulate composites in direct relation to their ability to allow the reinforcement 

to constrain the weaker matrix material. Given this importance to non-IPCs, it is 

the purpose of this research to extend the understanding of how the 

microstructural geometry influences the mechanical behaviour of composites to 

IPCs, specifically the effect of phase shape on elastic and plastic properties. 
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CHAPTER THREE 

NUMERICAL MODELLING PROGRAM 

Interpenetrating phase composites (IPCs) are distinguished from other 

composite materials by the continuous three-dimensional geometry of all their 

constituent phases. No other restrictions are placed on them, so the number of 

potential microstructures that are interpenetrating is quite large. To study the 

effect phase shape has on the behaviour of IPCs, this modelling program 

considered two different microstructures in which only the shape differed; the 

phase size and spatial distributions were kept constant. 

To meet these requirements, a microstructure resembling the hexagonal 

close-packed (HCP) system of uniformly sized, intersecting spheres was 

considered. The HCP system provides an isotropic spatial distribution so the 

direction of testing does not need to be considered and the uniformly sized 

spheres supply a constant size distribution. This model provides one phase 

shape as spherical with the other phase taking on the shape of the interstitial 

space. A second model involving a uniformly sized cylindrical phase shape with 

an HCP microstructure was also created. A cylindrical shape is oriented along 

its length, so it differs significantly from the equi-dimensional nature of the 

sphere shape. A comparison of these two shapes should therefore provide 

extreme results of the influence of phase shape on IPC properties. The 

interfacial bond between the two phases for both model geometries was 

assumed to be perfect so that debonding was not taken into account. Both of 

these geometries, as well as the steps required to model them using the finite 

element method (FEM) are considered in this chapter. 

3.1  GEOMETRY OF THE SPHERICAL MODEL 

The long range order of the spherical hexagonal close-packed (HCP) 

microstructure can be seen by considering Figure 3.1. The microstructure 

consists of repeating layers of spheres with the spheres in adjacent layers fitting 

into the gaps of the previous layer, the same gaps being used with every 
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second layer. If the plan view of the HCP microstructure is considered, a further 

level of order can be seen (see Fig. 3.2). The black equilateral triangular region 

near the centre of Figure 3.2, when symmetrically mirrored at its right boundary, 

creates the red triangle (symmetrically mirroring simply flips the region within 

the black triangle about the right boundary). The same process can be used 

about the lower left boundary to create the blue triangle. Continuing this 

process about the boundaries of the red and blue triangles, the entire area 

within the black hexagon is soon defined. 

Considering again the black triangle shown in Figure 3.2, if the upper left 

boundary is symmetrically mirrored out of the hexagon, the region within the 

green triangle is created. Note that the sphere at the centre of Figure 3.2 is 

arbitrary since all spheres have similar adjacent spheres in the same locations. 

Therefore the sphere in the upper left corner with the green triangle can also be 

thought of as being surrounded by a hexagon and the symmetric mirroring 

process used to complete it. Since this can be carried out for all the spheres on 

the two planes shown in Figure 3.2 (the upper plane of seven spheres and the 

lower plane of three), the HCP microstructure is sufficiently modelled by simply 

using the black triangular region. 

Cutting the black triangular region of Figure 3.2 through the equatorial 

planes of the upper and lower layers of spheres and looking at it in three 

Figure 3.1.  Exploded view of the 
spher ical hexagonal close-
packed (HCP) system 

Figure 3.2. Plan view of the spher ical HCP 
system (shaded spheres = lower layer; 
open spheres = upper layer) 
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dimensions, the prism unit cell in Figure 3.3 is created. The material above and 

below this unit cell can be created by symmetrically mirroring the unit cell (flip 

the unit cell about both the top and bottom planes). The prism unit cell of Figure 

3.3 is therefore able to represent the entire HCP microstructure outwards in all 

directions if symmetric boundary conditions are applied to all five of its faces. 

A final simplification to this model can be made by considering Figure 

3.4, where a plane has been cut through the prism unit cell perpendicular to a 

line joining the sphere centres. If the top half of the unit cell is rotated about the 

central axis of the bottom surface (shown in red), it creates the bottom half of 

the unit cell; this is an anti-symmetric boundary condition. In summary, the half 

prism unit cell with four faces having symmetric boundary conditions and one 

face having an anti-symmetric boundary condition is able to represent the entire 

three-dimensional HCP microstructure. This process was used to model the 

IPC microstructure based on the spherical shape and is essentially the same as 

that used by Wegner & Gibson (2000a, 2000b). A similar process will be used 

to model the cylindrical shape in Section 3.2. 

The spherical geometry of the IPC model follows the HCP microstructure 

just described, but one further consideration is needed. The spheres in Figure 

r

a

Figure 3.3. Pr ism unit cell of the 
spher ical system 

Figure 3.4. Half pr ism unit cell 
of the spher ical system 

Axis of anti-symmetry 
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3.3 are required to remain within a certain range of possible sizes. If they are 

reduced in size while prism dimensions remain constant such that they no 

longer touch, then the material modelled would no longer be an IPC since the 

sphere phase would not be continuous. On the other hand, if the spheres are 

increased in size, the surrounding material will eventually become isolated into 

small pockets and again the model will no longer represent an IPC. The final 

consideration that needs to be made is the range of sphere sizes that will 

produce an IPC model. This range of sizes is discussed in terms of the 

spherical volume fraction that will produce an IPC model. How the behaviour of 

the IPC changes with volume fraction is also of interest, so the entire range of 

applicable volume fractions is studied. 

Within the prism unit cell (Fig. 3.3) are two pieces of spheres, each one-

twelfth of a whole sphere minus the volume of material that is lost at their 

intersection (see Fig. 3.5). The volume fraction of spheres within the prism unit 

cell can be found by determining the volume of sphere material within the unit 

cell, then the volume of the prism unit cell and finally dividing the former by the 

latter. Note that the volume fraction of sphere material is the same in the half 

prism unit cell as in the prism unit cell since the ratio of sphere to unit cell 

volume is the same. This problem can be solved analytically to produce the 

following equation for spherical volume fraction: (the derivation is shown in 

Appendix A) 
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Figure 3.5.  Two intersecting spheres showing 
the volume lost at the intersection 
(grey) 
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where φs is the volume fraction of spheres in prism or half prism unit cells, “r” is 

the radius of the spheres and “a” is the centre-to-centre distance between 

spheres (for r and a see Fig. 3.3). 

To understand the volume fraction range that will allow adjacent spheres 

to come in contact, yet not be so large as to prevent the surrounding phase 

from remaining interconnected, consider again Figure 3.3. The lower bound of 

the volume fraction range is where the spheres just come into contact. This 

occurs when the radius of the sphere equals half the centre-to-centre distance 

between the adjacent spheres, 

2

a
r = . (3.2) 

The upper bound of the volume fraction range is where the spheres take all the 

space along one edge of the half prism unit cell; in this case, the surrounding 

phase would not be interconnected but would only exist in pockets (consider, 

for example, the closest top edge in Fig. 3.3). This condition is met when 

3

a
r = . (3.3) 

Substituting Equations 3.2 and 3.3 into Equation 3.1, the lower bound 

volume fraction is found to be 74.05% of the spherical phase, and the upper 

bound to be 96.41% of the spherical phase. For practical purposes, this model 

was created over the range of 75% to 95% to avoid dealing with the extremely 

small regions that were created in the sphere material near the lower bound 

and in the surrounding material near the upper bound. 

3.2  GEOMETRY OF THE CYLINDRICAL MODEL 

The geometry of the cylindrical IPC model, like that of the spherical IPC 

model, follows the basic HCP microstructure. However, to include cylinders in 

place of the spheres, the appearance of the model was changed significantly. In 

order to visualize this new geometry, imagine nodes that are located at the 

centres of the spheres shown in Figure 3.1. The cylindrical system was created 



  

 41 

by connecting each adjacent node with a line that formed the axis of a cylinder. 

All cylinders were of equal length and equal radius (equal length because all 

adjacent nodes are an equal distance apart, and equal radius because the unit 

cell should model a homogeneous, isotropic composite). As seen in Figure 3.6, 

in the absence of the surrounding material, the cylindrical microstructure is a 

space frame. 

The cylindrical system was also modelled using the half prism unit cell, 

since the spatial distribution of the intersection points of cylinder axes were the 

same as those of the sphere centres. Thus, only the shapes of the phases 

within the unit cell were changed. The cylindrical half prism unit cell contained 

the halves of two cylinders of equal length minus a few pieces of those 

cylinders which fall outside the unit cell near the top right corner (see Fig. 3.7). 

Similar to the previous case with the sphere, the volume fraction range 

over which this cylinder shape model can represent an IPC must be 

determined. To solve this problem in the same way as was done for the sphere 

would require calculation of the volume of the portions of the cylinders that fall 

outside the unit cell. Although relatively simple in appearance, to do this for the 

unit cell in Figure 3.7 involves solving numerous complex equations, making 

another method more desirable. As an alternative, a Monte Carlo simulation or 

single point probability function was used to determine the volume fraction of 

Figure 3.6.  Cylindr ical system 
(small spheres denote nodes 
where cylinders interconnect) 

Figure 3.7.  Half pr ism unit cell of the 
cylindr ical system 

b

Axis of anti-symmetry 
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the cylinders as the radius of the cylinders was varied. The C++ program used 

to run this simulation and details of its development are provided in Appendix B. 

Only a simple discussion of the program’s methodology is provided here. 

The Monte Carlo simulation created for this work produced groups of 

three random numbers used to define the coordinates of points within a box 

shown in Figure 3.8. Within the box is the half prism unit cell with its cylinders 

oriented along the top and back surfaces. Using this geometry, the box was 

separated into five regions: the total space in the box, space in the unit cell, 

space in the back surface cylinder, space in the top surface cylinder and space 

at the intersection of the cylinders. Each region was separated by equations 

that defined the location of boundary coordinates. 

The volume fraction of the cylinders within the half prism unit cell is 

approximately equal to the number of random points within the cylinders divided 

by the total within the unit cell. The problem is therefore simplified to a 

determination of how many of the random points fall within each of the five 

Figure 3.8.  Box for  Monte Car lo simulation with half pr ism unit cell inside 

(a) Top view of the unit cell (b) Isometric view of the unit cell 
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regions. To do this, the coordinates for each generated random point were 

tested against the boundary equations to determine which region contained 

each point. The points in each region were then counted and the ratio of those 

within the cylinders to the total number in the unit cell was used to determine 

the volume fraction. In equation form, this is 

100⋅





=
hp

c
c n

nφ , (3.4) 

where φc is the volume fraction of cylinders in half prism unit cell, nhp is the total 

number of random points in the half prism unit cell, and nc is the number of 

random points in cylinders. nc is defined as 

itcbcc nnnn −+= , (3.5) 

where nbc is the number of random points in back cylinder, ntc the number of 

random points in the top cylinder, and ni the number of points at the cylinder 

intersection. 

Any time the Monte Carlo method is used, it is necessary to ensure that 

a sufficient number of random points are used to achieve an accurate answer. 

This was done by running the simulation for the same volume fraction several 

times, while increasing the number of random points. As the number of random 

points increases, the accuracy of the results should increase, but at a 

decreasing rate such that they converge towards the correct solution. As an 

example, the simulation was run at the maximum cylinder volume fraction and 

the result for four different numbers of random points is graphed in Figure 3.9. It 

can be seen from the figure that the volume fraction of the cylinders converges 

towards a value of approximately 90.7% with a difference in the results for 10 

million and 100 million random points being less than 0.02%. A satisfactory 

level of accuracy is therefore obtained with about 10 million points. 

Another test was run on the Monte Carlo simulation in order to verify that 

the random number generator for C++ (Microsoft Corporation, 2003) was 

sufficiently random that results could be considered unbiased. The test was a 
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comparison between the volume fraction of the half prism unit cell within the 

box (see Fig. 3.8), and the exact solution based on the dimensions of the unit 

cell and box. The exact solution was found using the following equation: 

100⋅



=

box

hp
hp V

V
φ , (3.6) 

where Vhp is the volume of half prism unit cell (which is equal to half the volume 

of the prism unit cell, see Appendix A). Vbox is the volume of the box, which is 

defined as 
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




=
,    (3.7) 

where “b” is the length of a top surface edge and “h” the height of prism unit cell 

(see Fig. 3.8). This was then compared to the following result from the Monte 

Carlo simulation: 

Figure 3.9.  Convergence of the volume fraction of cylinders with an increasing number  of 
random points 

90.72

90.73

90.74

90.75

90.76

90.77

90.78

90.79

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Number of Random Points

V
o

lu
m

e 
F

ra
ct

io
n

 o
f 

C
yl

in
d

er
s 

[%
]

105 106 107 108 109



  

 45 

100⋅



=

total

hp
hp n

n
φ , (3.8) 

where ntotal is the number of total points (all points fall within box). Both methods 

produced the result that 33.32% of the volume of the box is the half prism unit 

cell. This verifies that the random number generator in C++ is sufficiently 

unbiased for the purposes of this simulation. 

The Monte Carlo method was then used to find the limits at which the 

cylinder HCP microstructure could be used to model an IPC. Since the cylinders 

become interconnected as soon as any cylinder material is added to the 

composite, the theoretical lower volume fraction limit for an interpenetrating 

geometry is zero. The upper limit can be visualised by considering the diameter 

of the top cylinder along the top surface (see Fig. 3.10). As more cylinder 

material is added to the composite the diameter of the top cylinder grows until it 

takes up the entire top surface (this is when the diameter equals “b”, the length 

of the top left-front edge). In this case, the surrounding material is no longer 

continuous upwards, and both phases no longer interpenetrate. If a cylinder 

diameter of “b” is input into the Monte Carlo simulation, a maximum cylinder 

volume fraction of approximately 90.73% is obtained. Although the cylinder 

model theoretically works between 0% and 90%, to avoid element distortion 

problems near these extremes the model was tested between approximately 

2% and 84%. 

3.3  BOUNDARY CONDITIONS FOR THE MODELS 

To use the HCP microstructure as a model for an IPC required both the 

proper volume fraction to ensure the interpenetration of both constituents 

(considered in previous sections), and the proper boundary conditions to ensure 

the model acted as though surrounded by the rest of the material. Symmetric 

surfaces, such as the top, back, left-front and right-front faces (see Fig. 3.8), 

required that their displaced positions remain in a plane and be parallel to their 

original positions in order to ensure geometric periodicity. It should also be 

noted that the given displacement to the top surface, discussed below, was 
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applied symmetrically (other loading conditions may violate the symmetric 

boundary conditions). In the case of the bottom surface, an anti-symmetric 

boundary condition necessitates rotation about a central axis as displacement 

occurs. Although the rules are fairly simple, their application is complex and the 

details for each of these boundary conditions are considered in the rest of this 

section. 

The top surface of the model was the most important boundary condition 

in determining its behaviour. It was given an applied displacement to simulate 

the IPC being placed in uniaxial tension or compression (see Fig. 3.11). This 

simulation was desirable if the model was to provide information on the effective 

elastic and plastic properties of the IPC and its overall stress-strain behaviour. 

To ensure that all nodes on the top surface symmetric boundary remained on a 

single plane, only one master node was given the applied displacement and all 

the other nodes were made its slaves through a constraint equation forcing 

them to displace the same as the master node. The node chosen to be the 

master was in the top-left-back corner. The reasons for choosing this node will 

become more apparent when the boundary conditions for the left-front and 

right-front surfaces are considered. The constraint equation applied to the 

nodes on the top surface was 

Figure 3.10. Cylinder  HCP microstructure at its maximum 
volume fraction for  interpenetration 

b
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)()( TLBzTopz uu = , (3.9) 

where uz(Top) is the displacement in the z-direction of all nodes on the top 

surface and uz(TLB) is the z-direction displacement of the master node (in the 

top-left-back corner). Note that displacement in the z-direction indicates vertical 

extension or compression as defined by the axes in Figure 3.8. 

The movement of the bottom surface was the most complicated 

boundary condition, since its anti-symmetry required rotation about a central 

axis running from the bottom-front corner to halfway along the bottom-back 

edge (see Fig. 3.4 and 3.7). To understand this movement, it is first necessary 

to consider the entire prism unit cell (see Fig. 3.3). If the prism unit cell is 

stretched with equal forces pulling at the top and bottom, nodes above the mid-

height would move upwards and nodes below the mid-height would move 

down. Returning to the half prism unit cell, it should be noted that the axis of 

anti-symmetry sits at half the height of the prism unit cell. Therefore, bottom 

surface nodes to the right of the axis fall below half the height of the prism unit 

cell and would move down when stretched, and nodes to the left of the axis fall 

above half the height of the prism unit cell and would move up (see Fig.3.12). 

The axis of anti-symmetry itself remains fixed in the z-direction. Since the 

bottom surface must act such that the half prism unit cell when rotated 180 

degrees will create the bottom half of the prism unit cell these downward and 

upward movements must be equal. To ensure this, the z-displacements of 

nodes to the right of the axis were made slaves to the negative z-displacements 

of nodes to the left of the axis through the following constraint equation: 

)()( LeftBottomzmRightBottoz uu −= , (3.10) 

where uz(RightBottom) is the z-direction displacement of bottom surface nodes on 

the right side of the axis, and uz(LeftBottom) is the z-direction displacement of 

bottom surface nodes on the left side of the axis. 

Taking the above discussion of vertical stretching further, it should be 

noted that this stretching would cause lateral contraction in relation to the 

constituent phases’ Poisson’s ratios. This lateral contraction means that for 
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nodes on the right side of the axis, the x-displacement is towards the left and 

that for nodes on the left side it is towards the right. The y-displacements on 

both the right and the left of the axis are the same (if a node on the left moves 

forward a node on the right does also). Two more constraint equations can 

ensure that these x and y-displacements are met: 

)()( LeftBottomxmRightBottox uu −= , (3.11) 

)()( LeftBottomymRightBottoy uu = , (3.12) 

where ux(RightBottom) is the displacement in the x-direction of the bottom surface 

nodes on the right side of the axis, and ux(LeftBottom) is the x-direction 

displacement for those nodes on the left side of the axis. The y-direction 

displacement of nodes on the bottom surface are denoted as uy(RightBottom) for 

those on the right side of the axis and uy(LeftBottom) for those on the left side of the 

axis. 

The necessary means to keep the back surface symmetric boundary as 

a plane are the easiest to visualize in Figure 3.8. The global coordinate system 

that was chosen for the model places the back surface on the x-z plane so that 

the planar requirement was met by simply fixing the y-displacement. The x and 

z-displacements remain free so the model can still expand or contract as 

appropriate. This condition also does not contradict the y-direction constraint 

After displacement: 

Before displacement: 

Master nodes 

Slave nodes 

Figure 3.12. Bottom sur face boundary condition Figure 3.11. Top sur face boundary condition 
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After displacement: 
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placed on the bottom, where both right and left y-displacements still remain 

equal. 

Maintaining the left-front surface as a plane requires control of varying 

amounts of x and y-displacement. Consider Figure 3.13, where the top-left-back 

corner moves completely in the x-direction and the top-front corner moves 

completely in the y-direction (these displacements are necessary since the left-

front surface is a symmetric boundary condition and its displaced position must 

be parallel to its original position). At a node somewhere between these two 

corners, partial amounts of the x and y-displacements are required so that the 

node moves from the original plane and falls on the displaced plane (see inset 

of Fig. 3.13). Note that for this intermediate node, the x-component of the 

resultant displacement can be viewed as the x-displacement of the top-left-back 

corner minus a distance “a”. The distance “a” is related to the y-component of 

the resultant displacement such that the following constraint equation can be 

found for the x-displacement: 

)()()(
3

1
LeftFrontyTLBxLeftFrontx uuu += , (3.13) 

where ux(LeftFront) is the x-direction displacement of nodes on the left-front 

Figure 3.13. Left-front sur face boundary condition 
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surface, ux(TLB) is the x-direction displacement of the master node (in the top-

left-back corner), and uy(LeftFront) is the y-direction displacement of nodes on the 

left-front surface. With this constraint equation, the left-front surface should 

remain plane since for any given y-displacement the x-displacement conforms 

to the necessary value to place the node on a plane that is parallel to the 

original surface. 

The right-front surface is quite similar to the left-front surface and should 

have a similar constraint equation, except using the x-displacement of the top-

right-back corner in place of that from the top-left-back corner (see Fig. 3.13). 

Considering, however, that the x-displacement of the top-right-back corner 

should be the same as, but in the opposite direction to, that of the top-left-back 

corner, the following constraint equation was derived: 

)()()(
3

1
RightFrontyTLBxRightFrontx uuu −−= , (3.14) 

where ux(RightFront) is the displacement in the x-direction of nodes on the right-

front surface, ux(TLB) is the displacement in the same direction for the master 

node (again in the top-left-back corner), and uy(RightFront) is y-direction 

displacement of nodes on the right-front surface. 

When applying the previous boundary conditions to the surfaces, some 

important situations along certain lines and nodes occur that need to be 

confirmed. The first involves the axis of anti-symmetry. Nodes on either side of 

the axis act in different directions for both the x and z-directions. This situation 

requires the x and z-displacements of the axis be fixed since it must act as the 

location about which the rotation occurs. At the back end of the axis, there is a 

point that is on the back surface; this is the hinge point. All three of its degrees 

of freedom are fixed because it is on both the axis (x and z-displacements are 

fixed) and on the back surface (y-displacements are fixed). The hinge point is 

an important condition since without it, rigid body translation remains possible. 

Each edge provides an interesting case, since two surfaces meet along 

these lines, and therefore a combination of boundary conditions must be 
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satisfied. In particular, the vertical front, back-left and back-right edges are of 

interest since they have the added condition that they must remain perfectly 

vertical. 

All boundary conditions were added directly to the nodes (the creation of 

the nodes is discussed in the next section). This was done through the use of a 

simple C++ program, which performed essentially two functions. The first 

function of the program was to locate all the surface nodes and note to which 

surface they belong, and the second function was the application of the 

appropriate boundary condition to those nodes. The details of this C++ program 

can be found in Appendix C. 

3.4  DISCRETISATION OF THE MODELS 

The solution to both the different phase shape IPC models was 

established using the finite element method (FEM), which requires the models 

to be divided into discrete pieces, or discretised. The conditions involved in the 

displacement of the bottom surface necessitate an accurately mapped 

discretisation since this boundary condition requires the pairing of nodes on the 

left and right sides of the axis of anti-symmetry. This means that the bottom 

nodes must be carefully placed so that each slave node is paired with a master 

node that is its exact mirror. To meet this need, the model was carefully divided 

into smaller volumes that were then discretised in a controlled way. 

A view of the spherical model’s half prism unit cell broken into smaller 

volumes or blocks is shown in Figure 3.14. The bottom surface, as needed, has 

the right side as a mirror of the left side (see Fig. 3.14(b)). Once this surface 

was set, the initial blocks were placed so that the various elements, when 

discretised, would fit together correctly. To create this system of blocks, 107 

points were sited at predetermined positions, any arc lines for volumes with 

curved surfaces were defined, and groups of eight points were located for the 

vertices of each individual block. The region of surrounding material was 

separated into twenty-four blocks and the sphere region into thirty-eight, for a 

total of sixty-two initial blocks in the spherical model. 



  

 52 

The half prism unit cell for the cylindrical model was handled in a similar 

way to that of the spherical model (see Fig. 3.15). The bottom surface of this 

model looks the same as the spherical model’s (see Fig. 3.15(b)), so the same 

process was carried out with care taken to deal with the different geometry 

appropriately. The blocks for the cylindrical model were determined by 158 

points, arc lines were input for curved surfaces, and groups of eight points were 

used to define each block. The region of the surrounding material had forty 

blocks and the cylinder region fifty-eight blocks, for a total in the cylindrical 

model of ninety-eight blocks. 

Three-dimensional isoparametric brick elements with twenty-seven 

Figure 3.14. Initial blocks for  discretisation of the spher ical model (sphere φφφφ = 85%) 
- The red lines indicate the phase interface 

(a) isometric view 

(b)  bottom 
surface 

Figure 3.15. Initial blocks for  discretisation of cylindr ical model (cylinder  φφφφ = 39%) 
- The red lines indicate the phase interface 

(b)  bottom 
surface
  

(a) isometric view 
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nodes were used for discretisation. Each face of this element has four corner 

nodes, four nodes at the midpoints of the edges and one node at the centre of 

the face. In addition to the nodes on the faces, there is a single node in the 

interior of the element. This type of element is referred to as Lagrangian 

because it possesses nodes that do not lie at either corners or edges. The 

Lagrangian type of element was particularly useful for these models because it 

shows little reduction in accuracy due to angular distortion (Lee & Bathe, 1993), 

a problem in both models due to their geometry. 

After each of the blocks was defined, they were automatically discretised 

by stating the number of subdivisions into which each block was to be divided 

along three of its edges. Each subdivision was then filled with the brick 

elements. Using this method, all the nodes within the unit cells, in addition to 

the 107 points for the spherical model or the 158 points for the cylindrical 

model, were defined. Both model geometries were analysed for three different 

levels of refinement: 1-1-1, 2-2-2 and 3-3-3, where each number in the 

refinement refers to the number of subdivisions along each edge of a block (see 

Fig. 3.16). With each increase in the level of refinement, the number of 

equations that need to be solved to obtain results increases significantly. Table 

3.1 shows the number of elements, nodes and degrees of freedom for each 

refinement of both models. After validation of the model (see Section 4.1), the 

3-3-3 refinement was used since its solutions were considered the most 

accurate and the time for solution not excessive. 

The discretisation data for both the phase shape IPC models was 

created in two text files through the use of C++ programs. These programs are 

provided in Appendices D and E for the spherical and cylindrical models, 

respectively. Both programs contain the placement of initial nodes, complex 

lines and location of vertices for the mapped division of the basic geometry, as 

well as the necessary commands for further subdivision and element 

generation. The programs also contain the constituent material information 

described in the next section. 
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3.5  CONSTITUENT MATERIALS FOR THE MODELS 

As mentioned in Section 1.2, the objective of this research was to 

determine the effect that phase shape has on the elastic and plastic behaviour 

of an IPC. To do this, the constituent materials were modelled separately as 

linear elastic and non-linear plastic. The main focus of both material models 

was the characterisation of the behaviour through some representative 

properties. For the elastic behaviour, the effective Young’s modulus of the 

composite was chosen and for the plastic behaviour the effective yield strength 

was chosen. Both of these properties were studied as the volume fraction of the 

phases and the phase property ratio (the modular ratio or yield strength ratio) 

were varied. 

3.5.1 Material Properties for the Linear Elastic Analyses 

The first step in the analysis of the models was to validate if the results 

they calculated were accurate. This was done through linear elastic simulations 

Figure 3.16. The three levels of refinement for  both models 
- Sphere volume fraction = 85% 
- Cylinder volume fraction = 39% 

 
(1-1-1) (2-2-2) (3-3-3) 

(a) Refinements for Spherical models 

(1-1-1) (2-2-2) (3-3-3) 

(b) Refinements for Cylindrical models 



  

 55 

of a uniaxial tension test on all three refinements of both models (the 

refinements were described previously) and compared to the Hashin-Shtrikman 

bounds described in Section 2.2.1. The phases in the elastic models were 

assumed to be isotropic and have only small displacements during deformation. 

With these assumptions, only the Young’s modulus and Poisson’s ratios of the 

constituents were needed. 

For the spherical IPC model, the simulations were carried out with a 

specific set of constituent material properties. The specific properties were 

taken from Wegner (1997), who used the same spherical model as used in this 

research to better understand the behaviour of several experimental IPC’s. 

Wegner’s material properties were set so that the sphere material was a 420 

stainless steel and the surrounding material a bronze: 

 Es = 210 GPa Esur = 110 GPa 

 νs = 0.29 νsur = 0.33 

By validating the results of the spherical model used in this research with the 

model from Wegner’s research, it is also indirectly validating this model with his 

experiments. Since this study is only interested in the relative effect phase 

shape has on the behaviour of IPCs, it is not necessary to have experimental 

verification; however, this does provide an extra level of certainty about the 

model results. 

To the author’s knowledge, no experimental work such as that of Wegner 

(1997) for the spherical model can be used for comparison with the cylindrical 

Model Refinement Number of Number of Degrees of

Elements Nodes Freedom

Spherical 1-1-1 62 657 1518

2-2-2 496 4577 12068

3-3-3 1674 14737 40578

Cylindrical 1-1-1 98 979 2380

2-2-2 784 7013 18960
3-3-3 2646 22807 63852

Table 3.1. Elements, nodes and degrees of freedom in the models 
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model. However, as mentioned, such experimental verification is not necessary 

for the purposes of this study. For the cylindrical IPC model validation, the ratio 

of the Young’s moduli of the two constituent materials was set equal to two and 

the Poisson’s ratios were held constant: 

 Ec = 200 GPa Esur = 100 GPa 

 νc = 0.3 νsur = 0.3 

After the models were validated, numerical experiments were simulated 

in uniaxial tension to determine the effect of phase shape on the effective 

Young’s modulus of the IPC. For both models, three series of tests were 

analysed, each series consisting of a different modular ratio of the phases. The 

stiffer phase was either the sphere or cylinder, depending on the model 

considered, and had a Young’s modulus kept at a constant value of 200 GPa. 

The more flexible phase was always the surrounding material and, depending 

upon the series, it had a Young’s modulus of 100 GPa, 20 GPa or 2 GPa. This 

variation allowed modular ratios of 2, 10 and 100 to be studied. The Poisson’s 

ratio for each phase was held equal to 0.3 for all analyses. Within each of the 

three test series, the volume fraction of the phases changed. The spherical 

model was tested at volume fractions of the sphere phase of 75%, 80%, 85%, 

90% and 95%. The cylindrical model, with its much wider range of applicable 

IPC geometry, was tested at volume fractions of the cylinder phase of 2%, 16%, 

39%, 64% and 84%. The results presented in Section 4.2 therefore describe 

IPC elastic behaviour for both the spherical and cylindrical models at different 

phase property ratios over the entire volume fraction ranges of each model. 

As noted at the end of Section 3.4, the elastic constituent material 

information was input into both models through part of the C++ programs in 

Appendices D and E. The commands necessary to create linear elastic models 

are shown in Step 7 of the spherical discretisation program. More information 

on the formulation of the linear elastic FEM can be found in Bathe (1996). 
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3.5.2 Material Properties for the Non-linear Plastic Analyses 

The same spherical and cylindrical models used for the linear elastic 

analyses were used for the non-linear plastic analyses, so further validation was 

considered unnecessary. The focus for the non-linear analyses was on 

determining the effect phase shape had on the effective yield strength of the 

IPC. In this case, two different series of tests were run at yield strength ratios 

for the constituents of 2 and 10. The surrounding material’s yield strength was 

always that of the weaker phase, having a constant value of 110 MPa, and the 

stronger sphere and cylinder phases were given yield strengths of 220 MPa and 

1100 MPa for each of the yield strength ratio series, respectively. 

For the plastic model, it was assumed that the constituents were 

isotropic, showed kinematic non-linearity and their deformation behaviour could 

be approximated as bi-linear. Kinematic non-linearity assumes that large 

displacements and strains are likely to occur as the models begin to behave 

plastically. To assume a bi-linear stress-strain path, constituent properties other 

than the yield strength were needed. These included the Young’s modulus, 

Poisson’s ratio, strain hardening modulus (the slope of the stress-strain 

behaviour after yielding), and maximum allowable effective plastic strain. For 

both models, all these properties were held constant for all analyses. The 

Young’s modulus of the surrounding phase was set at 100 GPa and that for the 

sphere or cylinder phase set at 200 GPa. It was considered to be reasonable 

that the phase with the greater strength would also have a greater stiffness, so 

a small difference in Young’s modulus was introduced. The Poisson’s ratios, 

strain hardening moduli and maximum allowable effective plastic strains for 

both phases were set equal to 0.3, 0.001, and 0.2, respectively. In each of the 

two yield strength ratio series, the five different volume fractions listed for each 

model in Section 3.5.1 were considered again for the plastic analyses. 

Data for the non-linear plastic IPC models was created for the models 

using the commands in Step 7 of Appendix E for the cylindrical model. These 

commands could also be added to the program in Appendix D for the spherical 
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model. Further information about the formulation of non-linear analyses using 

the FEM can be found in Bathe (1996). 

3.6  IMPLEMENTATION OF THE MODELS 

To determine the effective material properties and deformation behaviour 

of the model IPCs, solutions were found using the commercial FEM software 

application ADINA, version 8.0 (ADINA R&D Inc., 2002a). As mentioned in 

Section 3.3, a simple uniform displacement was applied to the top surface of 

each model to simulate a uniaxial tension test. ADINA was used to predict the 

model response to this simulation, from which solutions for the effective 

Young’s modulus and yield strength could be established. The results of these 

solutions are provided in Chapter 4. In this section, the procedure for 

completing a simulation and finding the solutions is described. 

Simulation of a uniaxial tension test was carried out by applying a 

displacement in the z-direction to the node in the top-left-back corner. Since all 

other nodes on the top surface were constrained to this master node, a uniform 

vertical displacement across the entire surface was created (see Section 3.3 for 

more details about the application of this boundary condition). For the linear 

elastic analyses, the actual displacement used was not important, so to simplify 

later calculations, a uniform strain of 0.001 was chosen. In the non-linear plastic 

analyses, strain incrementally increased to a maximum of 0.005 or until ADINA 

was unable to converge towards a solution. 

With the desired strain known, the appropriate displacement for use by 

ADINA was determined by multiplication of that strain with the distance between 

the top surface and the hinge point (see Section 3.3 for discussion of this 

boundary condition). The hinge point is fully fixed such that it is the only point in 

the model that is not displaced during the simulation. This makes it a desirable 

reference point for determining the displacement of all other points within the 

models, including the nodes on the top surface. For the simulations with elastic 

conditions, the required uniaxial tensile displacement was therefore given by 
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oaa l⋅= εδ , (3.15) 

where δa is the displacement in the z-direction to be applied to the master node 

on the top surface, εa is the desired applied strain to the master node on the top 

surface and lo is half the height of the prism unit cell. 

ADINA offers both direct and iterative solution methods. Based on 

information provided by ADINA R&D, Inc. (2002b), a direct solution method was 

used for the linear elastic analyses. All direct solution methods are based on the 

process of Gauss elimination, in which the set of simultaneous equations 

defining the problem are dealt with all at once. This requires significant amounts 

of memory for storage. To reduce the memory requirement, a sparse matrix 

solver was used. According to Bathe (1996), sparse solvers reduce memory 

requirements and the time to solution by removing operations on matrix 

elements that remain zero throughout the solution procedure. This is particularly 

relevant for large three-dimensional problems like those found with these 

spherical and cylindrical phase shape models. 

For the plastic analyses, two nested iterative solution methods were 

used to solve for the IPCs’ stress-strain behaviour. Since the behaviour was 

non-linear, it was necessary to assume that each succeeding point along the 

stress-strain curve had the properties of the previous point. By making this 

assumption, a system of simultaneous equations was created that could be 

solved by an iterative procedure known as the incomplete Cholesky conjugate 

gradient method. This provided a definition of the succeeding point, but due to 

the assumption of the properties of the previous point it was likely inaccurate. A 

correction was now completed so that a more accurate set of simultaneous 

equations was created, which again were solved using the incomplete Cholesky 

conjugate gradient method. The iterative process of solutions and corrections is 

referred to as the full Newton method, and it was continued until it reached an 

accurate solution for the succeeding point along the IPC’s stress-strain curve. 

The non-linear plastic analyses therefore required the definition of a series of 

displacement increments. These increments used for this study are given in 
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Section 4.3.1. More information on this solution method and other iterative 

solution methods may be found in ADINA R&D, Inc. (2002b) and Bathe (1996). 

After the models had been solved, the effective Young’s modulus and 

yield strength of the IPC’s could be determined. The first step in obtaining the 

effective Young’s modulus was to find the reaction force on the top surface 

required to produce the applied displacement. Since all the nodes on the top 

surface were slaved to the master node in the top-left-back corner, its reaction 

was also the total reaction of the top surface. The applied stress was then 

established by dividing this reaction force by the area of the top surface, 

top

a
a A

F=σ , (3.16) 

where σa is the normal stress on the top surface, Fa is the reaction force at the 

master node due to the applied displacement, and Atop is the area of the top 

surface. The effective Young’s modulus was then simply determined through 

the use of Hooke’s law for uniaxial conditions, 

a

a
effE

ε
σ= , (3.17) 

where Eeff is the effective Young’s modulus for the IPC and εa is the known 

applied strain. 

The effective yield strength of both IPC models was obtained using the 

standard experimental criterion, which is the stress at a strain offset of 0.002. 

The effective yield strength was determined for each model through linear 

double interpolation of the stress-strain plot of the IPC’s deformation behaviour 

with the offset line (a line parallel to the effective Young’s modulus with its origin 

at the strain offset). In some cases, the models’ simulations failed prior to 

reaching their offset yield strength due to the inability of ADINA’s iterative solver 

to converge to a solution. It could not be definitively determined if these 

convergence failures were due to mathematical difficulties from the distortion of 

elements or the failure of the materials. The possible causes for the failures are 
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discussed in greater detail in Section 4.3. In these premature failure situations, 

the maximum stress that was reached was used in place of the yield strength, 

though it should be noted that significant error may exist as a result. 
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CHAPTER FOUR 

NUMERICAL MODELLING RESULTS 

The numerical models described in the previous chapter provided a 

method for determining the influence of phase shape on the mechanical 

behaviour of interpenetrating phase composites (IPCs). Prior to using the data 

generated by these models, it was first necessary to validate that they provided 

an accurate solution to the theoretical model and that they had comparable 

results to other sources from the literature. Several procedures were used for 

validation and are discussed in Section 4.1. 

After the models’ responses were validated, an examination of the linear 

elastic behaviour of IPCs was conducted; this is described in Section 4.2. This 

study was separated into two distinct subsections. The first subsection focussed 

on the macroscopic behaviour of the models, specifically considering the 

dependence of the effective Young’s modulus on the elastic modular ratio, the 

volume fractions of the phases, and the phase shape. In the second subsection, 

the mechanisms within the microstructure that produced the macroscopic 

behaviour were analysed. 

A similar procedure was followed for the study of the non-linear plastic 

behaviour of IPCs, described in Section 4.3. The first part of this study again 

considered the models’ macroscopic behaviour; in this case, it was the effective 

yield strength of the IPCs that was of interest. The second part then sought 

explanation of the observed behaviours based on the mechanisms acting within 

the microstructure. The discussion of results in Sections 4.2 and 4.3 forms the 

basis for the conclusions presented in the next chapter regarding the effect of 

microstructural phase shape on the behaviour of IPCs. 
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4.1   VALIDATION OF NUMERICAL MODELS 

4.1.1   Geometry and Boundary Condition Validation 

An initial step after the completion of each model was a basic review of 

its geometry and boundary conditions to ensure that they were correct. This is a 

simple but often overlooked step in finite element analysis, and when not 

completed can lead to poor results due to misrepresentation of the IPCs. The 

intended geometry for both the spherical and cylindrical hexagonal close-

packed (HCP) models was checked quickly by examining graphical outputs 

provided by the program ADINA (ADINA R&D, Inc., 2002a). Both models at 

each of their volume fractions were plotted so that all external surface nodes 

could be visually inspected and their correct positioning confirmed. Internal 

nodes along the interface between the two phases were also checked by 

making separate plots of each phase. 

The boundary conditions were checked by examining the displaced 

geometry after solving the model simulations for the linear elastic case. It is 

important to note that the boundary conditions for both elastic and plastic 

simulations were the same, so the models were only examined from the elastic 

simulations. To ensure that results were as expected, nodes were chosen from 

each surface and edge such that each condition or combination of conditions 

could be tested. The independent degree of freedom displacements for each 

chosen node were then used to calculate the dependent degree of freedom 

displacements. Where discrepancies existed between the calculated behaviour 

and that which was expected, revisions to the boundary conditions were made 

until the model behaved properly. It is important to emphasize that this was not 

an attempt to manipulate the global results and implicitly control the 

macroscopic behaviour. Changes were always based on ensuring the correct 

behaviour of single nodes, not on the overall behaviour. 
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4.1.2   Discretisation Validation 

The essential step in providing sufficient accuracy with the finite element 

method (FEM) is deciding the level of refinement for the discretised model. Two 

separate methods were used to examine three different refinements of both 

models so that the correct refinement level could be determined (the three 

refinements were previously discussed in Section 3.4). The first method 

considered the global or macroscopic behaviour of the models and the second 

method their local or microscopic behaviour. Both of these methods were 

applied to solutions under only linear elastic conditions. It was assumed that the 

best level of refinement for elastic conditions would also be the best refinement 

for plastic conditions. 

In the validation method based on global behaviour, the effective 

Young’s modulus was determined for both models at each of its volume 

fractions and for all three refinement levels. This method is based on the fact 

that increasing the level of refinement should increase the accuracy of the 

global result so that convergence to the exact solution should occur. This 

convergence is shown with example solutions for the spherical model and 

cylindrical model in Figures 4.1 (a) and (b), respectively. The improvement in 

accuracy for these examples is evidenced by the reduction in the effective 

Young’s modulus with the increase in the number of nodes. The percentage 

decrease between each level of refinement is provided in Table 4.1. Using 

either the figures or the table, it can be observed that there is only a small

Effective Young's

Model Refinement Modulus Difference

[GPa] [%]

Spherical 1-1-1 191.250 n/a
(  = 85%) 2-2-2 191.229 0.0112

3-3-3 191.225 0.0021

Cylindrical 1-1-1 132.285 n/a
(  = 39%) 2-2-2 132.202 0.0624

3-3-3 132.198 0.0035

Table 4.1. Convergence of effective Young's modulus with increasing refinement 

(φ = 39%) 

(φ = 85%) 
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improvement between the 1-1-1 refinement and the 2-2-2 refinement, and an 

even more minuscule change between the 2-2-2 and 3-3-3 refinements. While 

results are shown only for two examples, similar results were obtained for both 

models at each volume fraction (see Appendix F). This suggests that any of the 

refinements are sufficient for the determination of the macroscopic behaviour, 

though slight improvements in accuracy are possible at each additional 
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Figure 4.1.  Convergence of effective Young’s modulus with increasing levels of refinement:  
  (a) spherical model at a volume fraction of 85% and 

(b) cylindrical model at a volume fraction of 39% 
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refinement level. 

The second method of discretisation validation was through a 

consideration of the local behaviour within the models. This method involved 

examination of the effective stress distribution in the models provided by plots 

from ADINA. The purpose of these examinations was to identify the existence 

of discontinuities along element boundaries that suggest local errors in the FEM 

calculations. The effective stress distribution was chosen as the field variable 

for study based on its importance to the microstructural study in Section 4.3. 

Example cases for both models are presented in Figure 4.2, showing the 

effective stress contour plot for the 1-1-1 refinement level. The stiffer and more 

flexible phases for each model can be clearly seen due to the large stress 

discontinuity at the phase interface. This discontinuity is expected since the 

constituent materials of the phases have different stiffness values, and since 

strain compatibility is ensured across the interface, the stress distributions 

should differ. Such effective stress discontinuities should not, however, exist 

within each separate phase where material properties are uniform. 

Examples are shown in Figure 4.3 of discontinuities in the more flexible 

phase for each model at the 1-1-1 refinement level. These discontinuities exist 

due to an insufficient number of calculation points to adequately solve for the 

stress distribution in the local regions. The change in the stress distribution 

associated with increasing levels of refinement is considered by examining only 

the regions within the highlighted squares. As shown in Figure 4.4, the stress 

distribution becomes smoother and more continuous across element 

boundaries as the number of degrees of freedom in these regions increases 

due to refinement. This improvement has a beneficial effect on the global 

response of the model leading to slightly more accurate behaviour with each 

refinement level. This was shown by the convergence of the effective Young’s 

modulus in the previous method. The improvement at the local level is more 

pronounced, as significant shifts in the region’s stress distribution are observed 

with increasing levels of refinement. 
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(a) (b) 
Figure 4.2.  Effective stress distr ibutions at the 1-1-1 refinement level: 

(a) spherical model at φ = 85% and 
(b) cylindrical model at φ = 39% 

Figure 4.3.  Effective stress distr ibutions in the more flexible phase at the 1-1-1 
refinement level: 
(a) spherical model at φ = 85% and 
(b) cylindrical model at φ = 39% 

(a) (b) 

(a) Sphere (1-1-1) 

(b) Sphere (2-2-2) 

(d) Cylinder (1-1-1) 

(e) Cylinder (2-2-2) 

(f) Cylinder (3-3-3) 

Figure 4.4. Increasing accuracy of effective stress distr ibution with increasing refinement  

(c) Sphere (3-3-3) 



  

 68 

After consideration of both validation methods, the 3-3-3 refinement level 

for both models’ discretisation was used in all further analyses. The global 

method determined that any of the three refinements would produce essentially 

the same level of accuracy for macroscopic values such as the effective 

Young’s modulus. However, the local method showed significant improvement 

with the use of higher refinement levels in the microscopic representation for 

both models. In the second part of Section 4.2 and Section 4.3, a 

microstructural analysis requires good local accuracy, making the higher levels 

of refinement more desirable. Finally, simulation at increasing levels of 

refinement produced only a slight increase in the time to solution, making the 3-

3-3 refinement the preferred choice. 

4.1.3   Comparison of Results to Literature 

Validation of the geometry and boundary conditions was based on a 

qualitative inspection of model behaviour that may allow mistakes to sneak 

through if insufficient care is taken. Even if this validation was successful, it still 

did not ensure that the results were a good representation of any real material. 

The discretisation validation improves the accuracy of the results but has no 

effect on certifying that the results are not accurate around an incorrect answer. 

To solve these problems, a comparison can be made to research that was 

previously reviewed in the second chapter. 

A check for the validation of the geometry and boundary conditions of the 

models may be made by comparison of the results to the Hashin-Shtrikman 

bounds. These bounds, reviewed previously in Section 2.2.1, describe the 

range of possible elastic behaviour for any isotropic composite material. Since it 

was stated in Section 1.2 that both the spherical and cylindrical models are 

isotropic due to the use of the HCP system, they should both produce results 

that lie within the Hashin-Shtrikman bounds. Using the Equations 2.9 – 2.13, 

the Hashin-Shtrikman bounds on the effective Young’s modulus may be 

computed. 
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Figure 4.5 shows a comparison of the Hashin-Shtrikman bounds with the 

data from both models. In this comparison, an elastic modular ratio of 2 was 

chosen in order that the bounds would be quite restrictive. The volume fractions 

of the stiffer phase for the spherical model were 75%, 80%, 85%, 90% and 

95%, and those for the cylindrical model were 2%, 16%, 39%, 64% and 84%. 

The important point to note is that despite how tight the bounds are, the results 

for both models at all volume fractions are within them. This suggests that the 

models accurately represent an isotropic composite and provides some 

confidence that the validation of the geometry and boundary conditions was 

correct. 

The final check for accuracy requires the comparison of results to those 

of an actual IPC. It should be noted that this is not strictly required, since the 

objective of this study was to determine the general influence of phase shape 

on IPCs rather than its influence on a specific IPC. However, in the case of the 

spherical model, an easily comparable case exists in the work of Wegner 

(1997). Wegner was able to obtain a close comparison of his model results to 

Figure 4.5.  Compar ison of both models'  elastic results to the Hashin-Shtr ikman bounds for  a 
modular  ratio of 2 
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those of an experimental IPC, so a close comparison to Wegner’s model also 

guarantees a close comparison to an actual IPC. 

Wegner analysed his spherical HCP model for stiffer phase volume 

fractions of 75%, 83.2% and 95% with an elastic modular ratio of 1.9. The 

effective Young’s modulus results for the spherical model developed in this 

thesis for the same volume fractions and elastic modular ratio are shown with 

Wegner’s in Table 4.2. At all three volume fractions, the difference between 

results is less than a tenth of a percent. This is an insignificant difference, and 

in the 75% and 95% volume fraction cases, the difference might be smaller, the 

comparison being limited by the precision in which Wegner listed his results. 

This provides some assurance that the accuracy of at least the spherical model 

results is comparable to that of actual IPCs. 

4.2   LINEAR ELASTIC BEHAVIOUR OF INTERPENETRATING 
MICROSTRUCTURES 

4.2.1   Macroscopic Behaviour  

The initial stress-strain behaviour of the two ductile phase IPC is linear 

elastic and it is therefore of interest to determine how the interpenetrating 

microstructure might affect this low strain behaviour. The linear elastic range of 

behaviour was studied through a determination of the effective Young’s 

modulus of the composite as several variables were changed. These variables 

included the phase elastic modular ratio and two geometric parameters of the 

microstructure: the volume fraction and shape of the phases. 

A common way to display effective composite properties in relation to 

microstructural geometry and constituent properties is through a plot like those 

Table 4.2. Compar ison of the spher ical models of this thesis and Wegner  (1997) 

Thesis Model Wegner's Model

Volume Fraction Young's Modulus Young's Modulus Difference

[%] [GPa] [GPa] [%]

75 179.562 179.6 0.0210

83.2 189.067 188.9 0.0882
95 203.573 203.6 0.0135
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shown in Figure 4.6. In both figures, the effective Young’s modulus of the 

composite is plotted against the volume fraction of the stiffer phase. It is 

important to note that for all model simulations, the stiffer phase was always 

either the sphere or cylinder portion of each of the unit cells. The surrounding 

material was always the more flexible phase. Three different elastic modular 

ratios were considered by reducing the Young’s modulus of the more flexible 

Figure 4.6.  Effective Young's modulus versus the volume fraction of the stiffer  phase 
(a) for elastic modular ratios of 2 and 10, and 
(b) for an elastic modular ratio of 100 
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phase while keeping the Young’s modulus of the stiffer phase the same. Figure 

4.6 (a) shows results for ratios of 2 and 10 while the results for a ratio of 100 

are plotted separately in Figure 4.6 (b) to prevent the graphs from becoming too 

cluttered. The Hashin-Shtrikman upper and lower bounds are also plotted for 

each of the elastic modular ratios. As discussed in Section 2.2.1, these bounds 

provide the range of behaviour for isotropic composites and they were 

calculated using Equations 2.9 - 2.13. The raw data that was taken from the 

uniaxial tension simulations used to create Figure 4.6 can be found in Appendix 

G. 

Considering first the influence of volume fraction, it can be seen from 

Figure 4.6 that the effective Young’s modulus of the composite increases with 

greater amounts of the stiffer phase. This effect is due to the stiffer phase 

occupying a greater proportion of the composite’s microstructure as its volume 

fraction increases and therefore having a more dominant influence on the 

overall composite behaviour. This trend occurs for both the spherical and 

cylindrical unit cells, as well as the upper and lower Hashin-Shtrikman bounds. 

Studying each set of bounds more closely reveals that they all diverge 

through an intermediate volume fraction range and converge at either end of 

the range. The convergence is necessary since the ends of the volume fraction 

range denote samples of the pure constituent phases. At 0% volume fraction of 

stiffer phase, only the more flexible phase exists, and at 100% volume fraction, 

only the stiffer phase exists. Both bounds therefore converge upon the single 

property values of the pure phases at the extremes. The maximum divergence 

of the bounds occurs within the range where there is a majority of the stiffer 

phase, though the actual maximum value occurs at different points for each 

elastic modular ratio. Maximum divergence occurs at volume fractions of the 

stiffer phase of approximately 60%, 75% and 90% for the elastic modular ratios 

of 2, 10 and 100, respectively. 

The properties of the constituent phases have a very noticeable effect on 

the Young’s modulus of the composite. An increase in the elastic modular ratio 
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shifts the composite behaviour downwards, since there is increasing 

compliance of the more flexible phase. The Hashin-Shtrikman bounds also 

differ noticeably with changes in the elastic modular ratio. For a small modular 

ratio of 2, the bounds are quite restrictive, roughly approximating a linear 

relationship between the properties of the pure phases. When the modular ratio 

is increased to a high value of 10, the bounds have substantially diverged and 

no longer follow this rough linear behaviour between the phase properties 

(though the lower bound shows a much greater deviation from the straight line). 

At a modular ratio of 100, where the more flexible phase can be considered 

almost non-existent, the bounds are exceedingly divergent, with the lower 

bound offering little restriction on effective behaviour. Since all these bounds 

provide the range of possible behaviour for an isotropic composite, it can be 

seen that the elastic modular ratio strongly influences this range; essentially, 

the higher the elastic modular ratio, the greater the range of potential composite 

behaviour. 

The microstructural shape of the phases also influences the behaviour of 

IPCs. This influence is imperceptible when the elastic modular ratio is small 

(e.g. at a value of 2). For low modular ratios, the phases of the composite are 

similar in terms of stiffness and the bounds on effective behaviour are 

restrictive. The effective Young’s modulus of the composite can be predicted 

accurately knowing only the volume fraction of the phases by simply observing 

the values for the Hashin-Shtrikman bounds for a modular ratio of 2 at that 

volume fraction. Phase shape therefore has a negligible influence on IPCs with 

low elastic modular ratios. 

With higher elastic modular ratios such as 10 or 100, the effect of phase 

shape becomes much more apparent. When comparing the results for the 

spherical and cylindrical unit cell models, it is important not to focus on the 

different volume fraction ranges they were tested on; different ranges were 

used due to geometric limitations as described in Sections 3.1 and 3.2. Instead, 

it should be noted that the results do not coincide over their common volume 

fraction range of 75% to 84%. Phase shape is therefore a geometric parameter 



  

 74 

of the microstructure that causes variation of composite behaviour within the 

Hashin-Shtrikman bounds. It should also be noted that the model with the 

cylinder phase plots above the model with the sphere phase. Since this means 

that the cylinder model is able to obtain a greater effective Young’s modulus 

than the sphere model at the same volume fraction, the cylindrical phase shape 

is more efficient than the spherical phase shape. 

To study why the cylindrical shape is more efficient than the spherical 

shape, it is necessary to consider the topological parameter of contiguity. 

Contiguity, as described in Section 2.1.2, is the ratio of the surface area of a 

particle connecting it to pieces of the same phase divided by the total surface 

area of the particle. Gurland (1958) defined contiguity in the following equation 

form (it was previously listed as Equation 2.2): 

αβαα

αα

α
vv

v

SS

S
C

+
=

2

2
,    (4.1) 

where Gurland defined contiguity such that Sv
αα was the surface area between 

separate particles of the α-phase and Sv
αβ the interfacial surface area between 

a particle of the α-phase and the β-phase. 

This definition can easily be applied to the spherical model, where each 

individual sphere may be viewed as a separate particle. Considering the 

spherical half prism unit cell (see Fig. 4.7), Sv
αα is the surface area connecting 

the sphere within the cell to its neighbours, or the surface area shown as the 

Bottom connection Bottom connection 

Left-front 
connection 

Left-front 
connection 

Figure 4.7. Unit cells showing connections to neighbour ing par ticles 
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semicircles on the bottom and left-front faces. The interfacial surface area 

between phases (Sv
αβ) is then the area between phases interior to the unit cell. 

If the entire sphere is considered, the amount that is in the half prism unit cell is 

only one-twelfth of the total. This means that Sv
αα and Sv

αβ should be twelve 

times greater, but since contiguity is the ratio of these values, it would remain 

unchanged. Contiguity can therefore be determined by considering only the 

material within the half prism unit cell. 

Gurland’s definition for the surface areas becomes somewhat more 

problematic for the cylindrical model, as the proper place to designate individual 

cylinder particles is not easily determined. Using the same procedure with the 

cylindrical half prism unit cell as was used with the spherical half prism unit cell 

should, however, provide a consistent definition. In this case, Sv
αα is the 

semicircular areas connecting cylinders in adjacent unit cells (see Fig. 4.7) and 

Sv
αβ is again the surface area between the phases interior to the unit cell. The 

detailed calculations used to determine the contiguities for each model are 

provided in Appendix H. 

The contiguity for both models at each of their different volume fractions 

can be calculated to produce Figure 4.8. The contiguity of the stiffer phase is 

plotted against the volume fraction of the stiffer phase. Along with curves for the 

spherical and cylindrical models, dashed lines have been added to extrapolate 

the data to the extremes. Figure 4.8 may be used to determine the influence of 

shape on the relationship between contiguity and volume fraction. First, this 

influence near the extreme of 100% contiguity indicates that none of the more 

flexible phase exists, so the volume fraction of the stiffer phase is 100% for both 

models at this point. When 0% contiguity exists for the cylindrical model, none 

of the stiffer phase exists so the volume fraction in this case is 0% (detailed 

reasons for this were discussed in Sec. 3.2). For the spherical model, 0% 

contiguity marks the lower percolation point where the spheres are no longer in 

contact. This was calculated in Section 3.1 to be at a volume fraction of 74.05% 

of the stiffer phase. 
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A second influence of phase shape is the curvature of each models’ 

relationship on Figure 4.8. Careful study of each curve shows that near the low 

end the contiguity grows with volume fraction at a decreasing rate, evidenced 

by concavity towards the right (this is more obvious with the cylindrical model 

than the spherical model, but it does exist for both). There is then a region 

approximating a linear relationship, followed by an increasing contiguity growth 

rate. The region with an increasing rate of contiguity growth is shown by the 

concavity at the upper end towards the left. 

This behaviour is related to the relative growth rates of the stiffer phase 

interconnection area (Sv
αα) and the interfacial surface area (Sv

αβ) with volume 

fraction, which controls the growth of contiguity (see Equation 4.1). In the 

cylindrical model, where the behaviour is more obvious, Sv
αα and Sv

αβ both 

begin to grow as the radius of the interconnection between adjacent cylinders 

increases from very small values, but the value Sv
αβ grows more quickly, thus 

reducing the possible contiguity growth (consider Fig. 4.9(a), (b) and Fig. 4.10). 

With further increase of the radius of interconnection (between volume fractions  
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Figure 4.9. Sur face areas for  the cylindr ical model (Sv
αα shown as red 

semicircles and Sv
αβ shown as yellow area internal to cell) 

(a) Volume fraction = 2%, contiguity = 6% 
(b) Volume fraction = 16%, contiguity = 19% 
(c) Volume fraction = 39%, contiguity = 34% 
(d) Volume fraction = 64%, contiguity = 52% 
(e) Volume fraction = 84%, contiguity = 73% 

(a) (b) 

 (d) 

 (e) 

(c) 
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of 16% and 64%) the value of Sv
αα continues to grow and Sv

αβ shows slowly 

increasing and then slowly decreasing growth (Fig. 4.9(b), (c), (d) and Fig. 

4.10). The changing behaviour of Sv
αβ is due to limitations enforced by the unit 

cell boundaries and the intersection of the cylinders, resulting in a flattening of 

its curve. Thus contiguity growth follows the nearly linear behaviour of Sv
αα in 

this region. Finally, at higher volume fractions, while Sv
αα grows at a more rapid 

pace, Sv
αβ becomes increasingly limited such that it rapidly decreases in value, 

leading to the upper zone of Figure 4.8 where both these surface area 

parameters contribute to an increasing growth rate for contiguity. 

In the spherical model, Sv
αα shows nearly identical behaviour to that of 

the cylindrical model, but the Sv
αβ curve differs since it has only a decreasing 

behaviour (see Fig. 4.10 and Fig. 4.11). The nature of the contiguity – volume 

fraction curves (Fig. 4.8) is, however, very similar for both models. This is due 

to the initial slow increase of Sv
αα and slow decrease of Sv

αβ, becoming a rapid 

increase and decrease, respectively, as volume fraction increases. This  

Figure 4.10. Relationship between sur face areas and contiguity 
- The percentages on the figure indicate the volume fractions of the adjacent data points 
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Figure 4.11.  Sur face areas for  the spher ical model (Sv
αα shown as red 

semicircles and Sv
αβ shown as yellow area internal to cell) 

(a) Volume fraction = 75%, contiguity = 5% 
(b) Volume fraction = 80%, contiguity = 28% 
(c) Volume fraction = 85%, contiguity = 47% 
(d) Volume fraction = 90%, contiguity = 65% 
(e) Volume fraction = 95%, contiguity = 82% 

(a) (b) 

(c) (d) 

 (e) 
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changing behaviour again results from the limitations set by the boundaries of 

the unit cell, and produces contiguity growth that increases with volume fraction 

The third point of interest from Figure 4.8 is that the curve for the 

cylindrical model always lies above the curve for the spherical model, indicating 

that it is more efficient at creating contiguity since less volume fraction of the 

stiffer phase is always needed. This efficiency difference is greatest at the 

percolation point of the spherical model (the volume fraction equals 74.05%) 

where the curves have the greatest vertical difference. As volume fraction 

increases above the spherical model’s percolation point, its contiguity grows 

much more rapidly than that of the cylindrical model. As an example, at the 

volume fraction of 75% the contiguities of the spherical and cylindrical models 

differ by approximately 0.59, while at a volume fraction of 90% they differ by 

only about 0.18. This is a reduction in contiguity difference of 0.41 over a 

volume fraction change of only 0.15. 

The discussion of the contiguity – volume fraction relationship should be 

kept in mind as the influence of contiguity on the effective Young’s moduli of the 

models is studied using Figure 4.12. Only the results for an elastic modular ratio 

of 10 are shown, since it was thought to be a reasonable intermediate case 

between the ratios of 2 and 100, and the general trends were similar for these 

other two cases. The spherical model plots above the cylindrical model and 

labels indicating the volume fraction of the stiffer phase have been placed 

beside each of the calculated data points. Also plotted are dashed lines 

indicating the extrapolated behaviour for contiguity near 0% and 100%. An 

examination of the behaviour near the extremes shows results that could be 

predicted from the previous discussion. A contiguity of 100% again indicates 

that none of the more flexible phase exists, so the effective Young’s modulus 

corresponds to that of the stiffer phase. Contiguity of 0% for the cylinder 

indicates that none of the stiffer phase exists and the effective Young’s modulus 

becomes that of the more flexible phase, and contiguity of 0% for the spherical 

model again notes the lower percolation point where the spheres are no longer 

in contact. 
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From the graph in Figure 4.12, a few more observations about the effect 

of phase shape on IPCs can be made. First, it is interesting to note that despite 

tremendously different amounts of the stiffer phase, the 75% volume fraction 

sphere model has a nearly identical contiguity to the 2% volume fraction 

cylinder model (the contiguities for these sphere and cylinder models are 

approximately 5% and 6%, respectively). The fact that the effective Young’s 

moduli for these two models are so different shows that contiguity is not the 

only geometric parameter of the microstructure that affects composite elastic 

behaviour; otherwise they should be equal. Second, as in Figure 4.8 the 

greatest difference between each of the models’ curves is at the percolation 

point of the sphere model. Above this point, the results for the spherical model 

rapidly converge towards those of the cylindrical model. This point is considered 

in more detail in the following discussion. 

To properly understand what Figure 4.12 reveals about the influence of 

phase shape on contiguity for macroscopic elastic behaviour, a value for the 
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effective Young’s modulus needs to be examined. As an example, consider 105 

GPa, which corresponds to the sphere model at the 75% volume fraction and 

the cylinder model at the 66% volume fraction. The contiguities for these sphere 

and cylinder models are 5% and 54%, respectively. To achieve a similar 

effective Young’s modulus by using the cylinder phase shape in place of the 

sphere phase shape, a 9% reduction in the necessary volume fraction of the 

stiffer phase is possible due to the 49% increase in the contiguity. Essentially, 

the cylinder shape provides a more advantageous positioning of the stiffer 

phase than the sphere shape (this was determined previously using Fig. 4.8). 

This allows the stiffer phase a greater area for interconnection through which 

stress can be directly transferred. The greater efficiency in stress transfer 

possible with the cylinder shape therefore allows a reduction in the required 

amount of stiffer phase to reach the same effective Young’s modulus as the 

sphere shape. 

Table 4.3 lists further comparisons of the volume fraction and contiguity 

for each model as the effective Young’s modulus increases. It can be seen that 

the amount that the volume fraction of stiffer phase can be reduced when using 

the cylinder instead of the sphere shape decreases as the model results 

converge at higher volume fractions. Simultaneously, the difference in contiguity 

between the two shapes also decreases. 

From the previous discussions in this section, it should now be apparent 

that phase shape influences the elastic properties of an IPC through both 

volume fraction and contiguity, and that the effect of these parameters is 

Effective Vol. Frac. Vol. Frac. Difference Contiguity Contiguity Difference

Young's of of between of of between

Modulus Spheres Cylinders Vol. Frac. Spheres Cylinders Contiguity

[GPa] [%] [%] [%] [%]

105 75 65.70 -9.30 5 54.27 49.27

124 80 73.17 -6.83 28 62.00 34.00
142 85 80.24 -4.76 47 69.32 22.32

Table 4.3. Compar ison of the effective Young’s modulus to the topological parameters 
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coupled. Despite the coupled nature of these parameters’ influence, it is 

obvious that they affect the effective Young’s modulus to different degrees, as 

shown by the plots with elastic modulus equal to 10 (see Fig. 4.6(a) and Fig. 

4.12). In the case of the effective Young’s modulus versus volume fraction, the 

data for both models plot quite closely together, suggesting that volume fraction 

has a strong effect and only a minor influence keeps them from aligning 

completely (Fig. 4.6(a)). When the effective Young’s modulus is plotted against 

the contiguity, the models are far apart relative to the volume fraction figure, 

suggesting that contiguity is a minor influence and more significant parameters 

exist. 

A more direct way to determine the relative influence of each topological 

parameter on the effective Young’s modulus is to derive a new parameter that 

is a function of the original parameters, such that when the effective Young’s 

modulus is plotted against this new parameter, data for the two models are 

perfectly aligned. The corrections needed to align the data would then provide 

the proportional influences of volume fraction and contiguity. This can be better 

understood by considering the form of the alignment function, 

( ) ( ) spspsp CBACI += φ ,    (4.2) 

where CIsp is the parameter denoting the coupled influence of the volume 

fraction and contiguity on the stiffer phase, φsp and Csp are the volume fraction 

and contiguity of the stiffer phase, respectively, and A and B are constants. The 

constants are used to correct the alignment of each models’ data such that they 

become co-linear. It is a requirement of the function that the sum of A and B 

equals 1.0, so that the coupled influence parameter varies from 0% to 100% 

just like volume fraction and contiguity. The aligned data is seen in Figure 4.13 

with the effective Young’s modulus plotted against the coupled influence 

parameter. 
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The correction constants provide a measure of the importance of each 

topological parameter. The constant for volume fraction, A, was found to equal 

to 0.84, and the constant for contiguity, B, was 0.16. The value correcting the 

influence of volume fraction is 5.25 times greater than the value correcting 

contiguity. Since a larger value denotes a more important effect, this shows that 

volume fraction is the dominant part of the coupled influence. Therefore, the 

amount of a phase, rather than its level of contiguity is of greater importance for 

the elastic properties of an IPC. 

The newly derived coupled influence parameter is of limited value at this 

point, since it was derived using data from only two microstructural geometries. 

However, if it can be shown to be valid for other interpenetrating morphologies, 

this would imply that the effective Young’s modulus of an IPC depends only 

upon the topological parameters of volume fraction and contiguity (in addition to 

constituent properties) and therefore that the effective Young’s modulus can be 

reliably predicted if these two variables can be quantified for a given IPC 

geometry. This would make the parameter highly useful for predicting the 
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effective Young’s modulus for different IPCs and optimizing their microstructural 

geometries. 

4.2.2   Microstructural Stress Mechanisms 

In the previous section on the macroscopic behaviour of the different IPC 

models, references were made to two geometric parameters of the 

microstructure: the phase volume fraction and shape. These parameters are 

important because the macroscopic behaviour of composites is dependent on 

the average statistical response of its components at the microstructural level. 

To complete the study on the elastic behaviour of IPCs, the results of the 

previous section should be explained through an investigation of microscopic 

behaviour, with specific attention paid to the role of phase volume fraction and 

shape. It should be noted that the microstructural investigation discussed in this 

section was performed more to explain general trends rather than any specific 

local behaviour. 

The microstructural analysis consisted of two parts, the first providing 

qualitative descriptions of the microstructural behaviour and the second 

providing an attempt to quantify those descriptions into more definitive results. 

Both of these analyses relied on ADINA’s post-processing functions which 

provide many possible plots of various stress distributions for each of the 

models. 

The qualitative analysis consisted of studying stress distribution plots of 

each of the phases within both IPCs to gain an understanding of their 

deformation behaviour. Each of these plots was a three-dimensional view of 

one of the model’s phases, showing contours of the relative stress levels in 

different regions. A discussion based on this qualitative data was then used to 

analyse how the spherical and cylindrical models were able to resist the applied 

strain. To understand this analysis, it is important to understand the referencing 

system used for the two IPC models. This system is shown in Figure 4.14 and 

should be recalled by the reader during the discussions of the microstructural 

mechanisms for the IPCs’ behaviour. Due to time limitations, only the results for 
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the intermediate phase property ratio were considered (i.e. for an elastic 

modular ratio of 10). The stress distribution plots which form the raw data for 

the qualitative analysis are collected in Appendix I. 

The stress component chosen to represent each model’s response to the 

applied strain was the first principal stress. Since the first principal stress at a 

point is the maximum normal tensile stress at that point, it provides the 

preferred direction for stress transfer. Plots of this stress therefore indicate the 

direction and location of the preferred stress path for the qualitative analysis. 

The absolute values of the first principal stress have little meaning, so it was 

useful to compare them to a base situation. Base values were obtained by 

considering the first principal stress that would have developed had an identical 

uniaxial strain been applied to pure samples of each phase. In pure samples of 

each phase, the maximum stress would have developed in the direction of the 
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applied strain, since no external lateral load was applied. The first principal 

stress in a pure sample of the more flexible phase was therefore 

 ( ) amfmfP E εσ ⋅=1 ,     (4.3) 

where σP1(mf) is the first principal stress in the more flexible phase when there is 

no stiffer phase, εa is the applied strain equal to 0.001, and Emf is the elastic 

modulus of the more flexible phase (this was 20 GPa for an elastic modular 

ratio of 10). Similarly, the first principal stress in a sample of the stiffer phase is 

 ( ) aspspP E εσ ⋅=1 ,     (4.4) 

where σP1(sp) is the stress in the stiffer phase when there is no flexible phase, εa 

is the same as above, and Esp is the elastic modulus for the stiffer phase (200 

GPa for an elastic modular ratio of 10). The first principal stresses calculated by 

ADINA were normalised by the values from Equations 4.3 and 4.4 for the more 

flexible phase and stiffer phase, respectively, to depict the relative stress 

difference for an IPC compared to a pure sample of each phase. This 

comparison should provide help in understanding how each composite’s 

behaviour differs from that of the constituent phases. 

The mechanisms affecting the behaviour of each of the two different 

microstructures can be determined by considering the qualitative results from 

the various plots of stress distributions in Appendix I. An example of the phases’ 

responses for the spherical model is shown in Figure 4.15. In the stiffer phase, 

the plot of the first principal stress shows the preferred stress path to be from 

the top surface, down the back surface, towards the interconnection point on 

the bottom surface (highlighted as Region 1).  Away from this region, stresses 

are lower and are shown as Region 2. In the more flexible phase, high first 

principal stresses radiate out from the bottom connection and are highlighted as 

Region 3. Parts of the more flexible phase away from the bottom connection 

carry significantly less stress (Regions 4 and 5). 

The reasons for the stress distributions in the spherical model are linked 

to the difference in stiffness between the two phases. In Region 1, stress is 
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transferred vertically in the stiffer phase from the top surface to the bottom 

surface, but this transfer is not distributed equally in all directions as stresses 

are also laterally transferred through shear away from zones with underlying 

more flexible phase (Region 2). This is what causes the concentration of stress 

at the bottom connection. The vector plot in Figure 4.15(c) also shows that the 

direction of first principal stresses is predominately vertical with convergence 

towards the bottom connection. Although the sharply delineated colours of the 

contour plots over-emphasise the difference between nearby stresses, for 

simplicity it is still useful to view Region 1 as the preferred stress path. 

Consider now both Regions 1 and 3 at the phase interface near the 

bottom connection. The stiffer phase in Region 1, just above Region 3, has 

experienced higher stresses, and therefore larger strains, towards the bottom 

Region 1 

Region 2 (a) 

Region 1 

Region 2 
(b) 

(c) 

Bottom connection 

(d) 

Region 3 

Region 5 
Region 4 

Figure 4.15.  Normalised first pr incipal stress distr ibutions in the spher ical model (φφφφ = 75%) 
(a) Stiffer phase showing back, top and right-front surfaces 
(b) Stiffer phase showing left-front, bottom and back surfaces 
(c) Stiffer phase vector plot showing stress concentration at bottom connection 
(d) More flexible phase showing left-front, bottom and back surfaces 
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connection. Due to strain compatibility along the phase interface (both phases 

are assumed perfectly bonded) the nearby more flexible phase is forced to 

stretch to a similar amount. Thus, the high strains in Region 1 transfer stress to 

the more flexible phase, causing Region 3 to have increased first principal 

stresses. Region 4 of the more flexible phase is also near the phase interface, 

but in a zone of low stress. In Region 5, the more flexible phase is bypassed as 

a stress transfer path. The presence of this more flexible region between 

spheres was the reason for lower stresses along the back surface of the stiffer 

phase in Region 2. Stress was more easily transferred through Region 1, the 

path of least compliance, leaving Regions 2 and 5 with low first principal 

stresses. 

Mechanisms affecting the microstructural behaviour of the cylindrical 

model are also attributable to the difference in stiffness between the two phases 

and may be determined from an examination of the first principal stress 

distribution plots (see Fig. 4.16). For the stiffer phase, the preferred stress path 

goes from the top surface in the cylinder intersection zone down the back 

cylinder (Region 1). Significantly less stress is found in the top cylinder (Region 

2) and along the “heel” of the back cylinder (Region 3), suggesting that these 

regions lie outside the preferred path for stress transfer. In the more flexible 

phase, higher first principal stresses are created in Regions 4, 5 and 6, which 

are between vertically adjacent cylinders. Vertical adjacency refers to cylinders 

that are nearest neighbours but do not lie on the same horizontal plane (x-y 

plane). The use of this definition will become clearer in the following 

discussions. In zones away from these cylinders, stresses are reduced. 

Two mechanisms account for the stress development in the stiffer 

cylindrical phase: axial tension and bending. Axial tension enhances first 

principal stresses in Region 1 as a result of the back cylinder and cylinder 

intersection zone forming the most direct, low compliance path for load to be 

carried through the IPC. The same levels of axial induced stresses do not occur 

in Region 2, where the top cylinder is underlain by the more flexible phase, thus 
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interrupting a vertical stress path. Similarly, stress passing vertically through 

Region 3 also needs to pass through the more flexible phase, making it a poor 

zone for axial stress transfer. Bending stresses in the back cylinder are also 

Figure 4.16.  Normalised first pr incipal stress distr ibutions in the cylindr ical model (φφφφ = 39%) 
(a) Stiffer phase showing back, top and right-front surfaces 
(b) Stiffer phase showing left-front, bottom and back surfaces 
(c) More flexible phase showing back, top and right-front surfaces 
(d) More flexible phase showing adjacent cylinders 
(e) Stiffer phase vector plot showing first principal stress direction in the back cylinder 
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responsible for its stress response. Since the uniaxial strain applied to the 

model is in the z-direction, the back cylinder is displaced towards a more 

vertical position. In order for this to occur, extension is required along the side 

of the back cylinder with an acute angle to the top cylinder, and contraction 

along the opposite side. This provides a reason for the higher tensile stresses 

on the left side of Region 1 and the lower tensile stresses on the right side, 

including Region 3 (see Fig. 4.16(b)). In Region 2, bending should produce little 

stress response, since only minor vertical strains are applied. Without a more 

significant displacement of the top cylinder, both axial and bending related 

stresses in Region 2 should be negligible. 

Although simple in appearance, the first principal stress distribution for 

the more flexible phase is a result of a series of interactions between it and the 

complex geometry of the stiffer phase. To understand these interactions, it is 

necessary to know the positions of several adjacent cylinders whose existence 

is imposed by the boundary conditions of the model (the position of several of 

these adjacent cylinders is indicated in Figure 4.16(d) by their centrelines; those 

unimportant to the following discussion have been omitted). Region 4 forms a 

relatively effective pathway for stress transfer due to its constricted position 

between the top and back cylinders (which are vertically adjacent). Stress 

passes into this region from the top cylinder (Region 2 of the stiffer phase) more 

easily than it is able to transfer towards the back cylinder. The stress from 

Region 2 is therefore passed down into Region 4, from which it is transferred 

into the back cylinder. 

The first principal stress in Region 5 is a result of constraint placed on 

the more flexible phase by a network of several vertically adjacent cylinders, 

specifically Cylinder A, the top cylinder, Cylinder B and the back cylinder. 

Although the optimum path for the stress transfer is through Cylinder B to the 

cylinder intersection zone and onwards through the back cylinder (this is the 

path completely through the stiffer phase as shown in Region 1), the constraint 

in Region 5 also makes it a reasonably effective pathway. By limiting the ease 

with which the more flexible phase is able to distort, higher stresses are 
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supportable in Region 5. This situation also exists in Region 6, between the 

vertically adjacent back cylinder and Cylinder C. Cylinder C is enforced by the 

anti-symmetric boundary condition and holds the position of the top cylinder 

when the half prism unit cell is rotated about its axis of anti-symmetry (see Fig. 

3.7; the counterparts for Cylinders A and B have been omitted for clarity). 

Region 6 is therefore an extension of the stress response found in Regions 4 

and 5, though the majority of this region is closer to the latter. 

For Regions 4, 5 and 6, higher first principal stresses arise from 

constraint provided by vertically adjacent cylinders. Lower stresses arise in 

Region 7 due to the lower constraint imposed on it without these vertically 

adjacent neighbours. The top cylinder and Cylinder D are adjacent to each 

other and Region 7; however, because they are horizontally adjacent, or 

adjacent on a plane perpendicular to the direction of applied strain, they have a 

significantly reduced ability to constrain the distortion of Region 7. 

Although it was not described here, it should be expected that the 

previously explained mechanisms would show slightly different results for 

different elastic modular ratios. With an elastic modular ratio of 2, the more 

flexible phase is much more similar to that of the stiffer phase and could 

therefore be expected to sustain much higher loads. This would make the axial 

tension mechanism of stress transfer more dominant in the stiffer phase as an 

increased amount of the load could be passed effectively through the more 

flexible phase. This would then also increase the stress levels in the more 

flexible phase. Alternatively, with an elastic modular ratio of 100, the stress 

transfer bending mechanism in the stiffer phase should become dominant 

because of the poor ability to transfer load through the more flexible phase. 

A more quantitative analysis of results is now undertaken. The data for 

the quantitative analysis were taken from ADINA’s post-processing results 

calculated at the integration points of each element. As mentioned previously, 

the results of interest for the elastic analysis were the first principal stresses, 

which were then normalised by Equations 4.3 or 4.4 (depending on the phase 
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considered) so that the values used were ratios of the stresses within the IPCs 

to those that would occur in pure samples of each phase. The normalised first 

principal stresses were then separated by incremental limits dividing them into 

sub-domains of the total stress domain. This allowed the number of integration 

points within each of these sub-domains to be counted so that the stress 

distributions could be determined for each phase of both models. The 

distributions were found to be highly dependent upon the increment used to 

provide the limits for each sub-domain. A high level of accuracy was obtainable 

because the majority of the stresses were distributed within a relatively small 

domain (0 to 2 for the stiffer phase data and -1 to 5 for the more flexible phase 

data), and it was possible to choose a very small increment for the sub-domains 

without creating unmanageably large amounts of data (the increment chosen 

was 0.05). 

Unfortunately this method provides only an approximation of the 

quantified stress distribution because it does not take into account the volumes 

of individual elements. In regions of likely stress concentrations, more elements 

were placed than in regions of lower stresses to provide a greater degree of 

solution accuracy (see the bottom connection in Fig. 4.15 and the intersection 

of the cylinders in Fig. 4.16). It is therefore likely that the following data is 

biased towards the stress levels found in regions of small elements. Despite 

this limitation, the analysis does provide some useful insights into how stress is 

transferred through the different microstructures. 

The normalised first principal stress distributions for both phases of each 

model are shown in Figure 4.17. All the figures contain results for the spherical 

and cylindrical models at their lowest, medium and highest stiffer phase volume 

fractions (the other two intermediate volume fractions were not considered so 

that the figures would not become overly crowded). 

Use of the normalised first principal stress distributions should be done 

with care taken to properly understand what the figures are indicating. As an 

example, consider the stiffer phase of the spherical model at each of its volume 
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fractions (see Fig. 4.17(a)). At its 85% volume fraction, normalised stresses in 

each of the sub-domains between 0.15 and 1.25 are sustained in 1% or more of 

the stiffer phase, while those between 0.75 and 1.0 are sustained in 5% or 

more, and only one stress sub-domain takes up as much as 10% of the stiffer 

phase. This indicates that there is a gradual variation of stress from the 

minimum stress of -0.290 to the maximum stress concentration of 5.48 (the 

maximum and minimum stresses are shown in Table 4.4). No stress sub-

domain takes up a significant amount of the stiffer phase and the majority of the 

stiffer phase sustains a normalised stress of less than 1.0. It can therefore be 

said that the stiffer phase in the spherical model at a volume fraction of 85% 

has a non-uniform stress distribution and is not as effective as its base situation 

in transferring stress (remember the base situation is that of a pure sample of 

Figure 4.17.  Quantitative normalised first pr incipal stress distr ibution for  both models 
(a) Stiffer phase of spherical model 
(b) Stiffer phase of cylindrical model 
(c) More flexible phase of spherical model 
(d) More flexible phase of cylindrical model 
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the stiffer phase, and although the spheres in the IPC should not be expected 

carry a similar level of stress as a pure sample, comparison to a pure sample 

provides a means to judge the effectiveness of the phase in transferring stress). 

In the case of the stiffer phase of the spherical model at 75%, the stress 

distribution appears to be as non-uniform as the 85% model, but in this case an 

even larger amount of the stiffer phase carries normalised stresses below 1.0. 

The behaviour of the stiffer phase for the 95% spherical model is in stark 

contrast to these previous cases. Here 1% or more of the stiffer phase sustains 

stresses in each of the sub-domains in the narrow band between 0.75 and 1.25, 

and nearly 30% of the stiffer phase sustains normalised stresses in the single 

sub-domain centred at 1.0. The stiffer phase in this case has a much more 

uniform stress distribution and much more of it appears to be near its base 

effectiveness. This is to be expected; since 95% of the sample is made up of 

the stiffer phase, it therefore behaves much like the base case of a pure sample 

of the stiff material. 

An easier way exists to judge the effectiveness and uniformity of 

stresses in the phases in each model as compared with the observations made 

thus far. Statistically, how effective a phase is compared to its base situation is 

represented by the mean normalised first principal stress (the closer the mean 

value is to one, the closer it is to the base situation), and the uniformity of the of 

the stress distribution is represented by the standard deviation (the closer the 

standard deviation is to zero, the more uniform the stress distribution). These 

values are listed for each phase of both models in Table 4.4. The use of the 

mean and standard deviation is sufficient for the further discussion of the 

microstructural mechanisms as long as the physical meaning of these numbers 

is kept in mind. It is also important to remember at this point that these values 

do not represent a volumetric distribution, but distributions based strictly on a 

number count of integration points which represent different volumes. 

As just shown in the example for the stiffer phase of the spherical model, 

the volume fractions of the phases change the microstructural response. This 

situation is, however, more complicated since this change in response could 
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have been equally well attributed to change in the contiguity of the stiffer phase. 

Both of these topological parameters increase in the example; the volume 

fraction of the stiffer phase increased from 75% to 85% and then to 95%, and 

simultaneously the contiguity of this phase increased from 5% to 48% and then 

to 82% (a comparison of these parameters to each other was made in Sec. 

4.2.1). The influence of these parameters is therefore coupled and the following 

discussion considers their combined effect. 

If the stiffer phase of the spherical model is now studied using the mean 

first principal stress and the standard deviation values of Table 4.4, rather than 

the plots of Figure 4.17, it can be seen that the mean stress increases and 

standard deviation decreases with increasing volume fraction and contiguity. 

This shows exactly what the previous discussion had found: that the 

effectiveness of the stiffer phase increases and the stress distribution becomes 

more uniform as volume fraction and contiguity increase. For the stiffer phase of 

the cylindrical model, increasing mean stresses point to a growth in the 

Stiffer Phase
Model Volume Contiguity Mean Standard Maximum Minimum

Fraction Stress Deviation Stress Stress
[%] [%]

Sphere 75 5 0.77 0.56 5.86 -0.216
85 47 0.85 0.42 5.48 -0.290
95 82 0.95 0.33 4.14 -0.361

Cylinder 2 6 0.41 0.23 1.85 -0.435
39 34 0.56 0.32 2.78 -0.527
84 73 0.85 0.35 3.37 -0.630

More Flexible Phase
Model Volume Mean Standard Maximum Minimum

Fraction Stress Deviation Stress Stress
[%]

Sphere 25 3.66 4.17 18.52 -1.152
15 3.07 2.54 11.02 -0.301
5 2.90 2.12 10.03 0.016

Cylinder 98 1.02 0.11 1.78 0.073
61 1.46 0.46 5.04 -0.587
16 2.21 1.24 20.96 -0.202

(a) 

(b) 

Table 4.4. Statistical data for  normalised first pr incipal stresses from the elastic 
microstructual analysis 
(a) Data for the stiffer phase of both models 
(b) Data for the more flexible phase of both models 
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effectiveness of the phase and increasing standard deviation indicates a 

decrease in its uniformity with increasing volume fraction and contiguity. It is 

likely in both models that the increased effectiveness is due to a greater 

proportion of the applied load being transferred directly into and then through 

the larger, more connected stiffer phase. This mechanism is attributable to 

increases in both topological parameters. 

The difference in the influence of volume fraction and contiguity on the 

uniformity of stresses in each model requires more careful inspection. In the 

spherical model, increasing uniformity requires less stress concentration 

towards the bottom interconnection, which is directly related to the phase 

contiguity. This is shown by the expanded size of the preferred stress path in 

Figure 4.18 as volume fraction and contiguity increase (Region 1 is the 

preferred stress path). 

In the cylindrical model, careful examination of Figure 4.17(b) shows 

each volume fraction of the stiffer phase has two sub-domains possessing large 

amounts of the stiffer phase (seen as spikes in the figure). The lower stress 

sub-domain likely represents Regions 2 and 3, including the top cylinder and 

back cylinder heel (see Fig. 4.16), and the higher stress sub-domain represents 

Region 1, which includes the back cylinder. For the 2% volume fraction, the 

cylindrical model can almost be broken into two uniform zones, with Regions 2 

and 3 having stresses in the lower sub-domain, Region 1 having stresses in the 

higher sub-domain, and a small series of sub-domains between these 

representing the cylinder intersection between these zones. With the increase 

in stiffer phase volume fraction to 39%, the distribution shifts towards the right, 

with more of the material in Region 2 having stresses between the spikes (due 

to an increased ability to transfer stress from the top cylinder to the back 

cylinder through direct transfer or indirectly through the more constrained 

flexible phase), and the back cylinder able to sustain higher stresses (though 

the back cylinder decreases as a proportion of the total phase). When the stiffer 

phase is increased to a volume fraction of 84%, the stress distribution is again 

shifted to the right, but with a notable difference. Region 1 is the higher stress 
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sub-domain and much of Regions 2 and 3 fall either within the lower stress sub-

domain or the intermediate zone, but significant amounts of Regions 2 and 3 

still exist within the broad lower stress region between 0.25 and 0.70. It is this 

region of lower stress sub-domains that makes the stress distribution of the 

cylindrical model non-uniform even when similar parameters have resulted in 

uniformity for the spherical model. 

Two reasons suggest themselves for the difference in the models’ 

uniformity. First, the difference in the spherical and cylindrical models’ 

behaviours may be due to the difference in the scale of the volume fraction 

change between them. A smaller volume fraction change in the cylindrical 

model, for example 70% to 90%, might result in its behaviour more closely 

matching that of the spherical model. Second, if the stress transfer in the 

cylindrical model were due in part to bending, it should be expected that its 

distribution would have greater non-uniformity than the spherical model 

(bending requires stresses to vary between high and low values in order to 

reach force equilibrium). This is suggested by the 2% and 39% cylindrical 

models whose means lie approximately midway between the high and low 

spikes (see Fig. 4.17(b)). 

Before beginning to study the influence of volume fraction and contiguity 

on the microstructural behaviour of the more flexible phase for each model, a 

 

(a) (b) (c) 

Figure 4.18.  Change of bottom connection area and prefer red stress path for  spher ical model 
(a) Volume fraction = 75%, contiguity = 5% 
(b) Volume fraction = 85%, contiguity = 47% 
(c) Volume fraction = 95%, contiguity = 82% 

 Note: The area bounded by the red line is the preferred stress path (Region 1 of Fig. 4.14). 
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few important points should be made. First, because each successive volume 

fraction considered reduces the volume fraction of the more flexible phase (from 

25% to 5% for the spherical model and 98% to 16% for the cylindrical model), it 

is a certainty that the absolute influence of the phase is decreasing. Second, 

the contiguity of the more flexible phase will not be considered. It should be 

expected that this phase’s contiguity has some effect; however, high stresses in 

the more flexible phase are believed to be a result of stress transferring 

between regions of the stiffer phase through an intervening layer of the more 

flexible phase. Therefore, without the significance of direct stress transfer 

through the more flexible phase, its contiguity appears less important. Finally, 

the actual sub-domains used are not shown for this phase, for clarity of the 

figures (they are the same as those used for the stiffer phase). 

The more flexible phase in the spherical model has a decreasing 

effectiveness with increasing volume fraction of the stiffer phase, and an 

increasing uniformity (see Table 4.4). This phase for the cylindrical model 

shows the opposite trend, with increasing effectiveness and decreasing 

uniformity. These differences are related to the dissimilar volume fraction 

ranges over which the more flexible phase changed for each model. The 

volume fraction change with the spherical model is, relative to that of the 

cylindrical model, quite small, and a simple inspection of the stress distributions 

(see Fig. 4.17 (c) and (d)) shows the different responses of the spherical model 

to be small compared to that of the cylindrical model. 

Considering first the spherical model, it can be seen that two zones of 

the stress distribution have higher amounts of the more flexible phase (see Fig. 

4.17(c)). The notable lower stress sub-domains, between -1 and 1 for all three 

volume fractions, contain the phase material closer to the top surface of the 

model and away from the high stress transfer region on the bottom surface (see 

Fig. 4.15(d)). Alternatively, the series of sub-domains between 1.75 and 4.15 

contain the phase material near the bottom surface that experiences high stress 

transfer between adjacent stiffer phase spheres. Also important to this model 

are the large maximum stress concentrations (see Table 4.4), which 
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substantially decrease with the increase in stiffer phase volume fraction. The 

combination of these mechanisms causes a reduction of the mean stress (the 

effectiveness). Although constraint of the more flexible phase increases 

stresses in the top and bottom surface sub-domains, the reduced maximum 

stress concentration is the more drastic change. When the reduced maximum 

stress concentration is combined with the increase of the top surface stress 

sub-domain, it should be expected that the uniformity of the stress distribution 

increases. Despite these changes with volume fraction, it should still be noted 

that the mean stresses remain high in a more flexible phase with a very non-

uniform stress distribution. 

If the cylindrical model stress distribution for the more flexible phase is 

now examined, vastly different conditions are found. At the 2% volume fraction, 

a highly uniform distribution near the base normalised stress of 1.0 exists, 

indicating that the more flexible phase appears to behave as if the stiffer phase 

were not there (this situation is similar to the stress distribution that would be 

expected for a pure sample of the more flexible phase). This significantly 

changes as volume fraction is increased to 39% and then 84%, showing 

increasing effectiveness and greater non-uniformity. Both of these phenomena 

are due to the increasing deformation constraint on the more flexible phase 

provided by the stiffer phase as its volume fraction increases. Increasing 

constraint allows a greater amount of stress to be transferred through the more 

flexible phase, but this constraint is not equal everywhere. Pieces of the more 

flexible phase in more constricted locations and between vertically adjacent 

cylinders have the most enhanced normalised first principal stresses (for the 

definition of vertically adjacent cylinders see Fig. 4.16(d)). This creates the 

conditions for both increasing effectiveness, as sustainable stresses are raised, 

and increasing non-uniformity, as variable constraint makes the sustainable 

stresses location dependent. 

The effect of phase shape on the microstructural mechanisms for stress 

transfer through the IPC models occurs through the coupled influence of 

volume fraction and contiguity. Although it is not possible to consider the effect 



  

 101 

of either topological parameter completely independently of the other, it is 

possible to test the relative importance of each parameter in the composite 

response. This was done through the creation of a function that aligns the mean 

normalised first principal stress data for the stiffer phase of each model. The 

aligned condition of the models’ data may be viewed as a datum, from which 

the corrections necessary to create alignment provide the relative importance of 

each parameter. The form and use of the aligning function are the same as was 

described in Sec. 4.2.1 (see Equation 4.2; alignment was achieved by solving 

for the coefficients A and B). The aligned data is plotted for both models in 

Figure 4.19 with the coupled influence of volume fraction and contiguity along 

the abscissa and the mean normalised first principal stress on the ordinate. 

The relative effect of volume fraction and contiguity can now be 

determined by an examination of the values for the correction constants used to 

enforce alignment of the models’ data. The value of A, the correction constant 

for the volume fraction, was 0.95, and the value for B, the correction constant 

for the contiguity, was 0.05. Alignment of data was therefore achieved by 

reducing the influence of volume fraction by 5% and the contiguity by 95% in 
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Figure 4.19. Aligned model data for  the elastic microstructural analysis 
 Coupled influence is a function of volume fraction and contiguity (see Eq. 4.2) 
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each model. Essentially, this means that the data for both models is much more 

greatly affected by the volume fraction parameter of the coupled influence and 

only to a much smaller extent affected by the contiguity. Therefore, although the 

effect of phase shape on the microstructural stress transfer mechanisms is 

linked to the coupled influence of both topological parameters, it is the volume 

fraction parameter that is dominant for elastic behaviour. 

4.2.3   Summary of Elastic Behaviour for Interpenetrating Microstructures 

The previous two sections presented and attempted to explain how the 

elastic behaviour of an IPC is affected by the elastic modular ratio of the 

constituent phases and two topological parameters of the microstructure: the 

phase volume fraction and contiguity. The focus of these sections was on 

linking composite behaviour to the three variables without necessarily explicitly 

noting any unique characteristics due to the interpenetration of the 

microstructure. In this section, the results of the studies on macroscopic 

behaviour and microstructural mechanisms are summarised, and note is made 

of their importance to IPCs. 

In the study of elastic macroscopic behaviour, the easiest result to find 

was the connection between behaviour and the volume fraction of the phases. 

In all the simulations, the effective Young’s modulus of the composite increased 

with the volume fraction of the stiffer phase (see Fig. 4.6). This result is, in 

general, similar for all composites and simply states that the effect of a phase 

on composite behaviour is related to the amount of the phase in the composite. 

Despite the simplicity of this result, there are interactions between several 

variables making the behaviour significantly more complex. The influence of the 

elastic modular ratio was to increase the range of potential composite behaviour 

as the difference between the Young’s moduli of the phases increased. This 

influence was found to be dependent on the volume fraction, with the highest 

divergence in the Hashin-Shtrikman bounds between the volume fractions of 

50% to 75%. 
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Simple comparison of the response of different phase shape models 

showed the cylindrical model to produce a higher effective Young’s modulus 

relative to that of the spherical model. The topological parameter of contiguity 

was introduced to explain the reason for this property difference, and it was 

noted that the shape of the phases links the contiguity and volume fraction. The 

ability of the cylindrical shape to create greater contiguity at the same volume 

fraction as the spherical shape allowed the improvement in the effective 

Young’s modulus. The coupled nature of the topological parameters makes 

quantifying their individual effects impossible, but their relative significance 

could still be studied by plotting them as a linear combination of volume fraction 

and contiguity. This study showed that the volume fraction was over five times 

more important than contiguity in determining IPC elastic behaviour. 

The use of these results is of particular importance to the development of 

IPCs since it is likely that nearly equal amounts of both phases are desirable in 

order to obtain beneficial properties from both phases. Knowing that divergence 

of the elastic bounds is optimum near the middle range of volume fractions and 

that contiguity can improve behaviour within the bounds, the materials engineer 

must now consider phase shape as well as the amount of the phases in the 

creation of IPCs for specific applications. 

The study of microstructural behaviour linked the mechanisms for stress 

development to the difference in phase stiffness. In the spherical model, 

stresses were low near the top surface where the area connecting the stiffer 

phase upwards was large. This was not the case near the bottom surface, 

where stresses concentrate towards the small stiffer phase connection. These 

stress concentrations are a direct result of the increased stress transfer in 

regions of low compliance, or away from paths that must transfer stress through 

the more flexible phase (see Fig. 4.15). In the cylindrical model, the orientation 

of the stiffer phase increases the complexity. The top cylinder, because it is 

oriented perpendicular to the direction of the applied strain, requires transfer of 

stress through the more flexible phase. This makes it a poor stress path and it 

therefore has low stresses. In contrast, the back cylinder is the most direct low 
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compliance path in the direction of applied strain, causing it to develop high 

stresses through a combination of axial tension and bending (see Fig. 4.16). 

These basic microstructural mechanisms remain consistent for each of 

the volume fraction variations considered in each model, but both the volume 

fraction and contiguity have an effect on the location and level of stress that 

develops. For the spherical model, increasing volume fraction and contiguity 

increases the stresses in the stiffer phase and its uniformity. This also results in 

a reduction of the stress being transferred through the more flexible phase 

between vertically adjacent spheres. These changes are due to a broadening of 

the preferred stress path, allowing smoother vertical stress transfer and 

therefore reducing the creation of stress concentrations. In the cylindrical 

model, stresses increase in both phases as the volume fraction of the stiffer 

phase increases, and greater non-uniformity of the stresses suggests an 

increase in local stress concentrations. This is due to the much greater 

interaction between the phases with the large increases in the amount of the 

stiffer phase. With more of the stiffer phase in the IPC, more stress is able to be 

transferred through it as the path of least compliance, but it also places more 

constraint on the more flexible phase, increasing its ability to carry stress. 

The coupled influence of volume fraction and contiguity was studied for 

the microstructural analysis through alignment of the mean normalised first 

principal stresses in the stiffer phase. The relative influence of the volume 

fraction on the microstructural response was much greater than that of the 

contiguity. Although the magnitudes of the relative influences differ, this result 

agrees with the macroscopic study that volume fraction is of greater importance 

than the contiguity. It is therefore reasonable to state that the elastic behaviour 

of an IPC is related to the phase shape by the coupled influence of volume 

fraction and contiguity, and of these two parameters the volume fraction has a 

much more dominant effect. 
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4.3   NON-LINEAR PLASTIC BEHAVIOUR OF 
INTERPENETRATING MICROSTRUCTURES 

4.3.1   Macroscopic Behaviour 

After an initial completely elastic response, further increases in tension to 

a two phase ductile composite begin to initiate plastic deformation in regions 

sustaining the highest stresses with lower stress regions remaining elastic. This 

partially elastic, partially plastic behaviour continues until all portions of both 

phases reach a sufficient stress to cause completely plastic behaviour to occur. 

It is this non-linear elasto-plastic behaviour that is the focus of this section. The 

effective yield strength of each IPC is used to provide the basis for a simplified 

quantitative macroscopic analysis. The variables whose influences are studied 

include the yield strengths of the constituent phases, the amounts of the phases 

and the phase shapes. 

A non-linear solution to the plastic behaviour of the spherical and 

cylindrical IPCs required use of the iterative full Newton method in the FEM. In 

the simulations performed, this involved applying a set strain increment, 

calculating the stress by an iterative procedure and then applying the next 

higher strain level (discussed previously in Section 3.6). This process was 

continued until either the model failed (i.e. convergence was not achieved) or a 

final set strain level was reached. The strain increments were experimented 

with so that each simulation was able to reach its maximum possible strain 

(either the final set strain or a strain at which the model would not converge to a 

solution). The most successful increments are listed in Appendix J. Such 

simulations were completed for the spherical model with stronger phase volume 

fractions of 75%, 80%, 85%, 90% and 95%, and for the cylindrical model with 

stronger phase volume fractions of 2%, 16%, 39%, 64% and 84%. The tests 

were replicated for yield strength ratios of 2 and 10 for the constituents (the 

weaker phase was given a yield strength of 110 MPa and the stronger phase 

that of 220 MPa or 1100 MPa, depending on the ratio considered). Other 
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information about the material properties for the plastic analysis models was 

provided in Section 3.5. 

The value used to quantify the initial plastic behaviour of IPCs is more 

debatable than the use of the effective Young’s modulus for a uniaxial test of 

elastic behaviour. Both the proportional limit and the yield strength of IPCs 

could be useful measures. The effective yield strength of the models was 

defined to be the stress at the standard 0.2% strain offset. The value for yield 

strength derived from this definition is generally significantly greater than the 

proportional limit. For the case of a two ductile phase composite, the 

proportional limit coincides with the initial yielding, most likely of the weaker 

phase. Since the purpose of this section is to evaluate the overall macroscopic 

plastic behaviour of the IPCs, the use of the proportional limit is a poor measure 

as it is too dependent on locally high stresses and the performance of only one 

phase. The effective yield strength is therefore used as the quantifiable 

measure of plastic behaviour. 

General elasto-plastic behaviour with a low strain hardening modulus 

was found for most models. This is characterised on the stress-strain graphs by 

an initial linear section that denotes a fully elastic response followed by a 

curvilinear transition section where initial plastic deformation begins, and finally 

a low slope linear section where nearly complete plastic behaviour exists. This 

type of behaviour may be seen in Figure 4.20 for each model and yield strength 

ratio. The 2% strain offsets used to determine the effective yield strengths are 

shown in Appendix J, with the values for the effective yield strengths listed in 

Table 4.5. 

Unfortunately, several of the models, especially those with a spherical 

shape, failed prior to reaching their yield strengths (convergence was not 

achieved at strains below the 0.2% strain offset). In these cases, the maximum 

value they reached before failure was used as the effective yield strength, 

though it should be noted that use of these values results in some error 

(asterisks are used to indicate the failed simulations in Fig. 4.20). This error is 
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relatively small for results from models with a yield strength ratio of 2, since 

their stresses had already reached a plateau and would not be expected to 

change significantly if higher levels of strain had been reached. However, the 

error is large for results from models with a yield strength ratio of 10, where 

stress increases were still expected between the failure strength and the stress 

at the 0.2% strain offset. 

The failure of several of the simulations to converge was likely produced 

by numerical instability. Elements in regions of high stress, particularly in the 

weaker phase, became highly distorted as the applied strain increased. A small 

number of these elements reached the rupture condition set through the 

maximum allowable effective plastic strain as 0.2. ADINA reacted to this 

situation by setting the stiffness contributions of the ruptured elements to zero 

as they were now considered unable to sustain any load (for the calculations, 

Figure 4.20. Stress-strain behaviour  for  both models at each simulated volume fraction of the phases 
(a) Spherical model with the yield strength ratio = 2 
(b) Spherical model with the yield strength ratio = 10 
(c) Cylindrical model with the yield strength ratio = 2 
(d) Cylindrical model with the yield strength ratio = 10 
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setting the stiffness values equal to zero is the same as removing the ruptured 

elements, see ADINA R&D, Inc. 2000b). The most likely result of these actions 

was to cause the already large distortions in neighbouring elements to become 

excessive, producing a poorly conditioned stiffness matrix that was unable to 

achieve numerical convergence. It cannot, however, be completely ruled out 

that material failure may have occurred. The rupture of a few elements could 

have initiated a chain reaction of such ruptures in the surrounding elements as 

the maximum allowable effective plastic strain was reached in each due to the 

extra load that they must sustain. This scenario is less likely than that of 

numerical instability since it would require elements of the stronger phase to 

also rupture. As shown in Table 4.6, the maximum effective plastic strain in any 

element of the stronger phase at the last strain increment was much lower than 

those in the weaker phase, making overall failure of the IPC unlikely. 

The effective yield strength is plotted against volume fraction of the 

stronger phase in Figure 4.21. The stronger phase in all cases was always 

either the sphere or cylinder shape, never the surrounding material. Results for 

the simulations that failed to converge prior to reaching the 0.2% offset yield 

strength are indicated by an asterisk on these figures. The first important thing 

to note is the large number of early failures for the models with a yield strength 

ratio of 10. Given the previously mentioned large error that is present with these 

results, a significant amount of uncertainty exists in using them, especially 

    Effective Yield Strength [MPa]
Model Volume with the Yield with the Yield

Fraction Strength Ratio Strength Ratio
[%] of 2 of 10

Spherical 75 172 220
80 188 365
85 198 520
90 208 678
95 216 660

Cylindrical 2 111 114
16 123 146
39 144 235
64 172 465
84 198 541

Table 4.5. Effective yield strength of both models for  all volume fractions 
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those of the spherical model where no actual yield strength was achieved. 

Fortunately, a similar spherical model with identical phase properties was 

created by Wegner and Gibson (2000a) and tested by the same method, so 

their results are directly comparable to those in this study. Wegner and 

Gibson’s results are shown in Figure 4.21 by the open circles. Since they plot 

above those from the spherical model of this study, it is certain that they are 

superior, and all further references to results for the spherical model with a yield 

strength ratio of 10 will use Wegner and Gibson’s data. 

Also plotted on Figure 4.21 are the tightest reasonable bounds that can 

be drawn around the model data. No analytical method has been derived for 

plastic properties such as that of Hashin and Shtrikman (1963) for elastic 

properties, so the bounds drawn based on the data from this study represent 

only a useful guess. It is expected that if other parameters of the microstructural 

geometry were studied, the bounds could be improved. However, they are 

sufficient for the purposes of further discussion. 

The effect of constituent phase properties on the behaviour of the IPCs 

can be seen by comparing the responses at different yield strength ratios (i.e. 

compare Fig. 4.21(a) and (b)). For both the ratios studied, the reasonable 

Model Volume Maximum Effective Percentage of

Fraction of Plastic Strain Maximum Allowable

Stonger Phase Effective Plastic Strain

[%] [%]

Spherical 75 0.07355 36.78

(YSR = 2) 80 0.12351 61.76
85 0.12780 63.90

Spherical 75 0.06357 31.79
(YSR = 10) 80 0.10811 54.05

85 0.13140 65.70
90 0.14421 72.10

95 0.04203 21.02

Cylindrical 84 0.01291 6.46
(YSR = 10)

Note: The maximum allowable effective plastic strain was set at 0.2

Table 4.6. Maximum effective plastic strains in the stronger  phase of models that 
failed prematurely 
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bounds are divergent between the two volume fraction extremes. However, the 

divergence is far greater for the higher yield strength ratio. The bounds indicate 

the range of potential effective yield strengths, so this observation shows that 

the difference in constituent phase properties affects the range of response for 

the derived composite. It is also interesting to compare these bounds for plastic 

behaviour to the Hashin-Shtrikman bounds for elastic behaviour. If the 

comparison is made between the bounds having the same phase property 

ratios (compare the elastic modular ratio of 2 in Fig. 4.6 to the yield strength 

ratio of 2, etc.) it is noticeable that those for the plastic behaviour are much 
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the stronger  phase 
(a) for a yield strength ratio of 2, and 
(b) for a yield strength ratio of 10 
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looser. This suggests that parameters of the microstructural geometry have a 

greater effect on the plastic properties of an IPC than on their elastic properties. 

The influence of the amount of each phase on the behaviour of the IPCs 

was determined by considering the effect of phase volume fraction changes. It 

is easily seen from Figure 4.21 that the effective yield strength increases with 

increases in the amount of the stronger phase in the composite. This influence 

is based on the greater ability for the stronger phase to dominate composite 

behaviour when more of it exists in the composite. Although the position of the 

bounds is only a reasonable guess, it can be seen that they follow the same 

pattern as those of Hashin and Shtrikman. Convergence occurs at either 

volume fraction extreme, denoting a pure sample of one of the constituent 

phases, and divergence is greatest through an intermediate range of about 50% 

to 85% of the stronger phase, depending on the yield strength ratio. This is 

significant, since it is within this range that IPCs are likely to find their greatest 

applicability (see brief discussion of this in Sec. 4.2.3). 

The shape of the phases has an influence on the plastic behaviour of 

IPC’s, as shown in Figure 4.21 by the difference in performance of the spherical 

and cylindrical models over their common volume fraction range (75% to 84% 

of the stronger phase). With the lower yield strength ratio of 2, the cylindrical 

shape is slightly more efficient than that of the sphere. This allows it to produce 

a higher effective yield strength for the same volume fraction. A similar situation 

should likely exist for the higher yield strength ratio of 10, but these results are 

skewed by the premature failure of the 84% volume fraction cylinder model 

below the strength obtained by Wegner and Gibson for the sphere model. 

A better understanding of the effect of phase shape on the plastic 

behaviour of IPCs can be obtained by again considering the contiguity 

associated with each geometry. Contiguity is a property of the microstructural 

geometry and the values for both models at each of their volume fractions are 

the same as those calculated for the previous elastic analysis of Section 4.2.1. 

The effective yield strength is plotted against the contiguity of the stronger 
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phase in Figure 4.22, with results provided for both yield strength ratios. An 

analysis of the effect of contiguity at a yield strength ratio of 10 is desired, since 

it can be compared to the similar analysis for the elastic study in Section 4.2.1,  

which used an elastic modular ratio of 10; however, the poor performance of the 

sphere model from this study makes it unsuitable for the microstructural 

analysis of the next section. The microstructural analysis therefore uses results 

for a yield strength ratio of 2, which may be compared to the results of the 

Figure 4.22. Effective yield strength versus the contiguity of the 
stronger  phase 
(a) for the yield strength ratio of 2, and 
(b) for the yield strength ratio of 10 
Note: The percentages on the figure are the volume 

fractions for the adjacent data points 
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macroscopic analysis with a yield strength ratio of 2. The labels on the figures 

indicate the corresponding volume fractions for the data points and the dashed 

lines represent the extrapolated behaviour at the extreme contiguities of 0% 

and 100% (the extreme contiguities have the same meanings as discussed in 

Section 4.2.1). It is important to note that the spherical model results for the 

yield strength ratio of 10 are the superior values taken from Wegner and Gibson 

(2000a). 

An understanding of the effect of phase shape on the macroscopic 

plastic behaviour of IPCs may be determined from an examination of Figure 

4.22. The contiguities for the 75% volume fraction sphere model and 2% 

volume fraction cylinder model are almost the same (5% and 6%, respectively) 

but their results are quite different, implying that contiguity is not the only factor 

affecting plastic behaviour. However, contiguity does have a definite influence, 

which is best seen by consideration of single values for the effective yield 

strength. As an example, consider the yield strength ratio of 10 (see Fig. 

4.22(b)), and focus on an effective yield strength of 332 MPa. This corresponds 

to a spherical model volume fraction of stronger phase equal to 75% and a 

contiguity of 5%. For the cylindrical model, the same effective yield strength is 

created with a volume fraction of 50% (again see Fig. 4.22(b)) and a contiguity 

of 42%. In using the cylinder instead of the sphere shape, there is a reduction in 

the necessary volume fraction of stronger phase of 25% due to the 37% greater 

contiguity between pieces of the stronger phase. As with the elastic behaviour, 

the greater efficiency of the cylindrical model in plastic behaviour is due to the 

increased path for direct stress transfer through the stronger phase. 

Table 4.7 lists other similar comparisons of the models for different 

effective yield strengths and for both yield strength ratios. It can be seen that 

the effect of contiguity is reduced as the models converge towards a pure 

specimen of the stronger phase. (Results for the yield strength ratio of 10 are 

incomplete because less data was obtained at the higher volume fractions due 

to the premature failure of the models at these volume fractions). 
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If the result just found in the previous example is compared to the 

example result from Section 4.2.1, it can be seen that contiguity has a far 

greater influence on the plastic behaviour of IPCs than it does on their elastic 

behaviour (see Table 4.3, page 82). Both results are based on phase property 

ratios equal to 10, but an increase of contiguity equal to 49% was required to 

reduce the volume fraction by 9% when replacing spheres with cylinders in the 

elastic case while only a 37% increase in contiguity was necessary to reduce 

the volume fraction by 25% in the plastic case. While the influence of contiguity 

on elastic behaviour is relatively minor, its influence on plastic behaviour 

appears to be highly important. 

The effect of phase shape on IPC plastic behaviour is related to the 

coupled influence of both the volume fraction and contiguity of the phases. As 

detailed in the macroscopic elastic analysis in Section 4.2.1, the relative 

importance of the volume fraction and contiguity may be found by aligning the 

effective property data for both models using a linear function of these 

parameters. The coefficients A and B of the linear function (see Equation 4.2, 

page 83) provide a simple quantitative measure of each parameter’s influence. 

The aligned data for the macroscopic plastic behaviour of the models is seen in 

Effective Vol. Frac. Vol. Frac. Difference Contiguity Contiguity Difference

Yield of of between of of between

Strength Spheres Cylinders Vol. Frac. Spheres Cylinders Contiguity

[MPa] [%] [%] [%] [%]

172 75 63.77 -11.23 5 52.27 47.27

188 80 76.31 -3.69 28 65.24 37.24
198 85 84.14 -0.86 47 73.35 26.35

Effective Vol. Frac. Vol. Frac. Difference Contiguity Contiguity Difference

Yield of of between of of between
Strength Spheres Cylinders Vol. Frac. Spheres Cylinders Contiguity

[MPa] [%] [%] [%] [%]

332 75 49.74 -25.26 5 42.13 37.13
375 76 54.45 -21.55 10 45.54 35.54

425 78 59.93 -18.07 17 49.50 32.50

(a) 

(b) 

Table 4.7. Compar ison of effective yield strength to the topological parameters 
(a)  for a yield strength ratio of 2, and 
(b)  for a yield strength ratio of 10 
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Figure 4.23. For the models with a yield strength ratio of 2, a rough alignment is 

achieved when A, the coefficient for the volume fraction equals 0.87, and B, the 

coefficient for the contiguity equals 0.13. When the yield strength ratio is 10 the 

linear function is unable to achieve a good alignment over the entire common 

domain of the models. While a non-linear function of volume fraction and 

contiguity could produce a more exact alignment, for the purposes of providing 

a simple relation between the two parameters the best fit given by the linear 

Figure 4.23. Aligned model data for  the plastic macroscopic analysis 
(a) for the yield strength ratio of 2, and 
(b) for the yield strength ratio of 10 
Coupled influence is a function of volume fraction and contiguity (see Eq. 4.2) 
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function is considered sufficient. For the best fit alignment the value of A is 0.63 

and the value for B is 0.37. 

A simple comparison of the coefficient values shows that volume fraction 

has a more significant influence than contiguity for both yield strength ratios. In 

the case of the yield strength ratio of 2, the volume fraction is much more 

important than contiguity since it accounts for 87% of the coupled response. A 

comparison of this value to the one found in the macroscopic elastic analysis 

shows them to be quite similar (the A coefficient in Sec. 4.2.1 was 0.84), but it is 

important to note that the elastic modular ratio in that case was 10. Although 

results for the yield strength ratio of 10 are less accurate, they have the same 

phase property ratio, making them more valuable for comparison between 

behaviours. For the plastic situation, the contiguity has a significantly greater 

influence than that for the elastic behaviour (the B coefficient for the plastic and 

elastic analyses were 0.37 and 0.16, respectively). 

This increase in the importance of the contiguity parameter after yielding 

of the composite agrees with the previous discussion regarding the use of the 

effective yield strength versus contiguity graphs of Figure 4.21. Given the 

importance of plastic behaviour to ductile phase IPCs under higher loads, it 

appears that microstructural geometry has increasing significance as the failure 

of the composite is approached. This influence is not simple, however, since it 

is affected by the phase property ratio and the volume fractions and contiguities 

of the phases. 

4.3.2   Microstructural Stress Mechanisms 

After completion of the macroscopic analysis, a study looking into plastic 

behaviour at the microstructural level was undertaken. The purpose of this 

study was to find the underlying mechanisms responsible for the observed 

overall plastic behaviour of the IPCs. As described in more detail previously in 

Section 4.2.2, a qualitative and quantitative investigation of the stress 

distributions within the model microstructures was performed. Both model 

shapes were studied at three volume fractions of the stronger phase (low, 
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intermediate and high). The stress distribution of interest was the effective 

stresses, since ADINA uses the von Mises effective stress criterion to 

determine yielding of the phases (ADINA R&D, Inc., 2002b). When the effective 

stress distribution in each phase is divided by its yield strength, these 

normalised values provide the relative distribution of yielding within each phase.  

The normalising equation is 

y

eff
normeff σ

σ
σ =)( ,    (4.5) 

where σeff(norm) is the normalised effective stress, σeff the effective stresses 

calculated by ADINA, and σy the yield strength of the phase being examined. 

Only the models having a yield strength ratio of 2 were considered, since 

results for a yield strength ratio of 10 were incomplete due to several premature 

failures of the simulations. The stress distributions investigated for all three of 

the cylindrical models were at an applied strain of 0.005. None of the spherical 

models considered were able to converge at strain levels as high as 0.005, so 

the last strain level at which they did converge was used (these were 0.00145, 

0.003 and 0.00325 for the 75%, 85% and 95% volume fractions, respectively). It 

is also important to note that the spherical models at stronger phase volume 

fractions of 75% and 85% did not reach their 0.2% offset yield strength prior to 

failure. All the normalised effective stress distribution plots for each phase of 

both models are provided in Appendix K. 

The qualitative descriptions of the stress distributions during the plastic 

behaviour will focus only on the previously stated strain state. Since only a 

single state of each model is considered during its strain history, it was not 

possible to determine how each model changes as it was loaded. This would 

have required examination of the models at many strain increments, which was 

beyond the objective of determining the effectiveness of each microstructure. 

Instead of focussing on when and by what means the microstructures yield, this 

study looked simply at where yielding occurred and the overall distribution of 
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yielding within the models. This task was possible at a single strain state and 

provided a means to judge the effectiveness of each microstructure. 

The normalised effective stress distribution for the spherical model at a 

stronger phase volume fraction of 75% is shown in Figure 4.24 (see Fig. 4.14 

for the referencing systems for the unit cells).  A simple examination of the 

stronger phase in the model allows it to be separated into two distinct regions. 

Region 1 lies on the path of preferred stress transfer through the bottom 

connection, which was seen previously in Section 4.2.2. The material in this 

region has all yielded. Region 2 does not lie on the preferred path since any 

 
Region 1 

Region 2 

Bottom connection 

Region 2 

Region 1 

Region 3 

Region 4 

Region 5 

(a) (b) 

(c) (d) 

Figure 4.24.  Normalised effective stress distr ibution in the spher ical model (φφφφ = 75%) at an 
overall applied strain of 0.00145 
(a) Stronger phase showing back, top and right-front surfaces 
(b) Stronger phase showing left-front, bottom and back surfaces 
(c) Stronger phase vector plot showing stress concentration at bottom connection 
(d) Weaker phase showing top, right-front and back surfaces 
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stress passing through it must also pass through the underlying weaker phase. 

With stress concentrating away from this region, it remains below its yield 

strength. 

It should be expected that the majority of the weaker phase has yielded, 

since the macroscopic stress at the final converged strain was 172 MPa, well 

above the yield strength of the phase (which was 110 MPa). This expected 

response is found in Region 3. However, small Regions 4 and 5 remain below 

the yielded condition. In the case of Region 4, it is important to note that it lies 

below Region 2 in the stronger phase, and since Region 2 has a reduced 

amount of stress transferring through it, it passes on less stress to Region 4, 

allowing it to remain below yield. Region 5 lies off a path of preferred stress 

transfer in the upper half of the model. In the upper half of the model, most of 

the stress passing through the weaker phase is from direct transfer within the 

phase, not transfer between phases. However, the left-front surface connection 

of the stronger phase breaks this path and forms a stiffer alternate path. Stress 

passing through the weaker phase near this connection prefers to pass into the 

surrounding stronger phase, leaving the weaker phase at a lower stress below 

the yield point. 

These responses to the applied strain suggest an important role for 

contiguity in the plastic behaviour of IPCs. The concentration of stress towards 

the direct connections of the stronger phase should be expected to increase as 

the weaker phase yields; that is, stress should continue to transfer along paths 

of least compliance (the weaker phase’s stiffness reducing to zero after it 

yields). Zones of the stronger phase which lie along the path of a direct 

connection will be effectively used for stress transfer (such as Region 1), while 

those that do not will be much less effective (such as Region 2). 

For the cylindrical model, the normalised effective stress distribution is 

shown for the stronger phase volume fraction of 39% in Figure 4.25. A brief 

examination of the weaker phase shows that it has completely yielded. As with 

the spherical model, this should be expected since the yield strength of the 
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weaker phase is 110 MPa and the approximate stress at the strain of 0.005 is 

144 MPa. The stronger phase for the cylindrical model appears to have almost 

completely yielded, with the exception of Region 3, at the heel of the cylinder 

intersection. This confirms that nearly complete yielding has occurred after the 

offset yield strength has been exceeded. The reasons for the lower stress in 

Region 3 of the cylindrical model are, in part, the same as those for Region 2 of 

the spherical model: neither region lies on the path of preferred stress transfer. 

In both cases, the region was underlain by the weaker phase causing stress to 

concentrate away from it towards paths with greater stiffness. Region 3 is also a 

zone of contraction for bending of the back cylinder, as was previously 

Figure 4.25.  Normalised effective stress distr ibution in the cylindr ical model (φ φ φ φ = 39%) at an 
overall applied strain of 0.005 
(a) Stronger phase showing back, top and right-front surfaces 
(b) Stronger phase showing left-front, bottom and back surfaces 
(c) Weaker phase showing back, top and right-front surfaces 
(d) Stronger phase showing adjacent cylinders 
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discussed for elastic conditions in Sec. 4.2.2.  The bending mechanism reduces 

the tensile stresses in Region 3, which leaves it non-yielded even when the rest 

of the stronger phase has yielded. 

The non-yielded state of Region 3 raises the question as to why Region 

2 of the cylindrical model does not have a lower stress similar to Region 3, 

since it is also underlain by the weaker phase. In this case, the back cylinder in 

Region 1 lies quite close to Region 2, making stress transfer through the 

intervening weaker phase more effective than below Region 3 (which must 

transfer stress through the weaker phase to Cylinder C). This allows Region 2 

to sustain higher stresses at lower strains than Region 3, causing it to yield 

earlier. It could be expected that at slightly lower strains, both Regions 2 and 3 

would be below the stronger phase yield strength, and at slightly higher strains, 

Region 3 would also yield (though no analysis to substantiate this claim will be 

considered here). 

The fundamental qualitative plastic behaviour described above for 

examples of the spherical and the cylindrical models was seen for all the 

volume fractions of each model (though there were minor variations). To 

determine how each model changed with the volume fraction and contiguity of 

the phases, it was more instructive to consider the quantitative normalised 

effective stress distribution data provided in Figure 4.26 and Table 4.8. The 

data in this quantitative analysis were determined using the same means 

described in Sec. 4.2.2, and are therefore only a rough approximation of the 

volumetric stress distribution. However, due to the uniform stress state of each 

simulation, it is likely that the true volumetric stress distribution would be similar. 

Investigation of either the figure or the table quickly reveals that both 

phases of each model had uniform stress distributions, with normalised mean 

effective stresses near 1.0. This signifies that both of the phases in each model 

have almost entirely yielded. Given the fact that the weaker phase was 

essentially completely yielded for both models, for all the volume fractions of the 
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phases, the rest of this analysis will consider only the stronger phase in each 

model. 

The stronger phase in the spherical model does show some definite 

change in its effective stress distribution as the volume fraction and contiguity 

increase. Consideration of Figure 4.26(a) shows a significant increase in the 

uniformity of the stress distribution towards a normalised stress of 1.0 as the 

topological parameters increase. There are two likely reasons for this 

behaviour. The first is the different strains at which each of these simulations is 

being analysed. The 75% stronger phase volume fraction failed to converge 

past a strain of 0.00145, while the 85% and 95% volume fractions made it to  
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Figure 4.26.  Quantitative normalised effective stress distr ibution for  both models  
(all cylindrical models were analysed at a strain of 0.005, strains for the spherical models 
were: 0.00145 for φ = 75%, 0.003 for φ = 85% and 0.00325 for φ = 95%) 
(a) Stronger phase of spherical model 
(b) Stronger phase of cylindrical model 
(c) Weaker phase of spherical model 
(d) Weaker phase of cylindrical model 
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0.003 and 0.00325, respectively, before failing (see Fig. 4.20). To some extent, 

the smaller degree of uniformity in the 75% volume fraction simulation is due to 

the lower level of strain it is subjected to in this analysis. Higher levels of strain 

should cause a greater amount of yielding. However, it is important not to 

neglect that the increase in contiguity with the three volume fractions also 

increases the preferred stress path and the effectiveness of the phases to 

sustain load. This is the second reason for increasingly uniform behaviour 

around the phase’s yield strength. As previously noted in the qualitative 

discussion, the effectiveness of the stronger phase to sustain load is based on 

its ability to lie within the preferred stress path to the bottom surface connection. 

With increasing volume fraction, the contiguity increases (see Fig. 4.8), allowing 

more of the stronger phase to transfer its stress directly within the phase 

through the bottom connection rather than through the weaker phase. By doing 

so, contiguity is able to increase the amount of the phase which is effective, 

thus increasing the uniformity about the yield strength of the stronger phase 

 
Stronger Phase

Model Volume Contiguity Mean Standard Maximum Minimum
Fraction Stress Deviation Stress Stress

[%] [%]
Sphere 75 5 0.855 0.144 1 0.148

85 47 0.978 0.077 1 0.226
95 82 0.993 0.053 1 0.266

Cylinder 2 6 1.000 0.011 1 0.490
39 34 0.998 0.018 1 0.521
84 73 0.999 0.013 1 0.570

Weaker Phase
Model Volume Mean Standard Maximum Minimum

Fraction Stress Deviation Stress Stress
[%]

Sphere 75 0.960 0.090 1 0.550
85 0.997 0.016 1 0.740
95 0.999 0.011 1 0.795

Cylinder 2 1.000 0.000 1 1.000
39 1.000 0.000 1 1.000
84 0.996 0.038 1 0.431

(a) 

(b) 

Table 4.8. Statistical data for  normalised effective stresses from the plastic microstructual 
analysis 
(a) Data for the stronger phase of both models 
(b) Data for the weaker phase of both models 
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(the normalised effective stress of 1.0). 

The cylindrical model results probably have a similar response to that of 

the spherical model, but it is too subtle to be noticeable. Examination of either 

Figure 4.26 or Table 4.8 shows little difference between the results and no 

obvious pattern. This similar state for all three volume fractions is likely due to 

the much higher strain level analysed for the cylindrical model compared to the 

spherical model (all cylindrical models were tested at a strain of 0.005, the 

highest spherical model only at 0.00325). As mentioned in the previous 

paragraph, increasing the applied strain tends to increase the uniformity of the 

stress distribution, so these responses should be expected. 

It is also interesting to note the pattern of behaviour seen in the 

combined results for the stronger phase for both models when compared to the 

level of applied strain. Altogether the results were analysed around three 

different strains: the 75% spherical model at 0.00145, the 85% and 95% 

spherical models around 0.003, and the cylindrical models all at 0.005. 

Comparing the response of these three different groups, it is possible to see the 

general behaviour of the models, irrespective of volume fraction or phase 

shape, to increases in strain. As strain increases beyond the proportional limit, 

an increasing amount of the composite will yield, but major portions will remain 

below yielding, this is shown in the effective stress distribution of the spherical 

model at 75% volume fraction (see Fig. 4.26(a)). Further increases in strain 

expand the amount of stronger phase that has yielded such that it is nearly all 

behaving plastically by the 0.2% offset yield strength (see the effective stress 

distributions for the 85% and 95% spherical models in Fig. 4.26 and the stress-

strain responses in Fig. J.1). While further strain increases slowly remove the 

final non-yielded portions of the stronger phase, almost all this strain should be 

resulting in plastic flow within previously yielded regions (see the effective 

stress distributions of the cylindrical models). This general response to slowly 

applied strain is considered likely by the author for all low yield strength ratio 

IPCs; however, since it has not been analysed using a single model at a single 

volume fraction it should not be deemed as conclusive. 
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The effect of phase shape, as previously mentioned, is not a simple 

factor to determine. It is related to the coupled influence of both the volume 

fractions and contiguities of the phases, and is best discussed in terms of the 

relative influences of these two topological parameters. Using the method of a 

linear aligning function of the coupled influence, described in Section 4.2.1, the 

coefficient on each parameter may be used to determine each parameter’s 

relative effect. To simplify the analysis, the microstructural response of the 

stronger phase is investigated. The closest alignment of the mean normalised 

effective stress for each model is seen in Figure 4.27. 

The coefficient for the volume fraction and contiguity of the stronger 

phase are zero and one, respectively. However, this alignment is so poor as to 

be completely without value. The reason for this poor alignment is likely due to 

the different strain levels at which each of the spherical model simulations was 

analysed. As has been noted several previous times, the low strain state to 

which the spherical model volume fractions reached (especially the 75% 

volume fraction) caused them to have significantly less uniform distributions of 
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Figure 4.27. Aligned model data for  the plastic microstructural analysis 
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effective stress compared to those in the cylindrical models. Less uniform stress 

distributions produce lower mean normalised effective stresses and account for 

the much more curved behaviour seen for spherical model results in Figure 

4.27. Even without being able to use these results, the previous analyses 

suggest that contiguity has a more significant effect for plastic behaviour than 

for elastic behaviour. This is due to the increased requirement of stress to 

transfer through the stronger phase after the weaker phase has yielded. 

4.3.3   Summary of Plastic Behaviour for Interpenetrating Microstructures 

The purpose of Section 4.3 was to investigate the plastic behaviour of 

two differently shaped IPCs. Numerical tests were performed to study the 

influences of the amounts of the phases, the shapes of the phases and the 

constituent properties of the phases on this behaviour. In order to ensure the 

discussion came to appropriate conclusions, two different methods were used 

to analyse the data. The first involved a study of the macroscopic behaviour 

produced by the models, and the second an examination of the microstructural 

mechanisms that led to the macroscopic behaviour. The results from the plastic 

behaviour were also compared to those from the elastic behaviour to distinguish 

how the composites responded differently after yielding. 

The constituent phase properties affected the models through the yield 

strength ratio. The effect of the yield strength ratio was most easily seen by the 

divergence of the approximate bounds placed around the models’ data. Since 

the bounds indicate potential plastic behaviour, the greater divergence for the 

yield strength ratio of 10, rather than 2, shows that the potential behaviour 

becomes more variable as the ratio grows. Comparing these bounds to the 

Hashin-Shtrikman bounds on elastic behaviour, it can be seen that the range of 

divergence is much greater for a yield strength ratio of 2 than for an elastic 

modular ratio of 2 (compare Figures 4.21(a) and 4.6(a)). This suggests that IPC 

plastic behaviour has greater possible variation than elastic behaviour, so 

parameters of the microstructural geometry are more important. 
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The bounds are also dependent on the volume fractions of the phases. 

The effective yield strength for both types of IPC increased with increasing 

amounts of the stronger phase, but of more interest was the changing 

divergence of the bounds from exceptionally tight at the extremes to highly 

divergent through intermediate volume fractions. For a yield strength ratio of 2, 

the greatest divergence was at a stronger phase volume fraction of 50%, and at 

a ratio of 10 at a volume fraction of 85%. 

It could be seen in Figure 4.21 that the cylindrical model produced higher 

results than the spherical model. This improvement in the effective yield 

strength was explained through the different contiguities of the stronger phase 

in each model. The cylindrical model was able to have the same effective yield 

strength as the spherical model with less of the stronger phase because of a 

greater connection between distinct pieces of the stronger phase. The effect of 

shape on the plastic behaviour of an IPC was therefore linked to both the 

amount of the phases in the composite (represented by volume fraction) and 

the continuity of the stronger phase (represented by the contiguity). 

Comparison of the relative influence of volume fraction and contiguity 

using a linear function of the two parameters determined that volume fraction 

had an effect approximately 1.7 times greater than the contiguity. When this 

result for the plastic analysis is compared to that for the elastic analysis, an 

important determination about IPC behaviour was found. Although volume 

fraction was the dominant parameter in both cases, contiguity clearly becomes 

more significant with yielding of the composite. When this is linked to the 

greater potential range of IPCs for plastic behaviour, the level of contiguity 

becomes a strong determinant of whether effective behaviour is near the upper 

or lower bound. Since the level of contiguity obtainable with a certain volume 

fraction of material is related to microstructural shape, the materials engineer 

needs to consider it in his or her designs. 

The microstructural study was used to investigate the mechanisms that 

caused the behaviour found in the macroscopic study. The typical response of 
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both microstructural geometries was related to regional differences in stiffness. 

Stress was transferred preferentially along paths of least compliance 

connecting the stronger phase from the top surface to the bottom surface. This 

mechanism was studied against strain history in an approximate manner, to 

determine the influence of yielding. In general, it was found that increased strain 

produced early widespread yielding of the weaker phase with only more minor 

amounts of yielding in the stronger phase. At such strains, contiguity between 

pieces of the stronger phase is highly significant in providing a low compliance 

path for stress transfer since the stiffness of the weaker phase had reduced to 

zero. There was also a correlation between increasing uniformity of yielding in 

the stronger phase and increasing contiguity and volume fraction in the 

spherical model. Since increasing these parameters increases the size of the 

preferred stress path, it also improves in the effectiveness of the microstructure 

to sustain load. This directly contributes to higher effective yield strengths at the 

macroscopic level. 
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CHAPTER FIVE 

CONCLUSION 

5.1   SUMMARY 

In recent years the increased ease with which composites can be 

manufactured has encouraged an interest in the behaviour of special 

composites that were not previously practical. One such type of composite is 

the interpenetrating phase composite (IPC), in which both phases are three-

dimensionally continuous. The complexity of IPC microstructures makes it 

difficult to predict their mechanical behaviour based on traditional methods, so 

more research is required in order to obtain an accurate prediction for these 

materials. The focus of this study was the effect that microstructural phase 

shape has on the elastic and plastic behaviour of IPCs, though some other 

significant variables were also considered. As part of this study, an initial review 

of previous research into methods of investigating IPCs, and results regarding 

their elastic and plastic behaviours, was completed. After this, a numerical 

modelling program was undertaken to determine the effect of phase shape on 

the mechanical properties. 

The first two sections of the literature review considered the possible 

methods for characterising the microstructure and studying the mechanical 

properties of IPCs. The most obvious method is to create an IPC for use in an 

experimental study. While this has the advantage of providing actual data about 

an IPC’s performance, it is extremely difficult to examine the microstructure and 

isolate the influence of any specific variable. However, the topological 

parameters often developed from experimental work can be highly useful in 

characterising these materials for analytical or numerical studies. 

A more simplified approach is to use general bounds or analogy models 

to estimate the behaviour of IPCs. Unfortunately, general bound methods are 

limited to studying elastic behaviour and analogy methods can often only 

determine trends. IPCs containing random microstructures have been modelled 
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using self-consistent methods that produce reasonably good approximations of 

the material behaviour. However, they cannot be used for directly studying the 

influence of microstructural parameters, since they consider the structure of the 

composite to be some statistical average of the actual structure. The 

microstructural geometry remains unimportant to this approach, so the effect of 

phase shape cannot be examined. Unit cell numerical models offer the best 

method for studying the response of different microstructures since they allow a 

simplified representation of the material. However, their periodic nature means 

they likely predict responses that are higher to those of more common random 

IPCs. 

In the third section of the literature review, the results of previous studies 

on the elastic and plastic behaviour of IPCs were investigated. Although not 

considered as part of this study, thermal residual stresses have been shown to 

have an influence on the elastic and plastic behaviour of IPCs. Their effect is 

connected to the relative properties of the constituent phases, notably thermal 

expansion, stiffness and yield strength. In general, researchers have noted that 

thermal residual stresses significantly reduce the effective stiffness of an IPC 

but have a negligible effect on the effective yield strength. Considerable work 

has been completed in the elastic range of behaviour such that IPCs can be 

generally said to be well understood at service loads; work within the plastic 

range of behaviour is notably less extensive. For both types of behaviour, the 

constituent phase properties affect the range of the potential properties at a 

given volume fraction. The range can be calculated accurately for elastic 

behaviour using the Hashin-Shtrikman bounds (1963), but is less definite for 

plastic behaviour. There is also an improvement in both behaviours with an 

increase in the amount or volume fraction of the stiffer phase. The influence of 

continuity is much smaller for elastic behaviour as compared to plastic 

behaviour. While there is an increase in the effective stiffness of IPCs relative to 

non-IPC materials, it is minor compared to the increase in effective yield 

strength for IPC materials. Continuity is a property of the microstructure which is 

affected by parameters such as phase shape and spatial distribution. Shen 
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(1994b, 1995) studied the influence of shape and spatial distribution on two-

phase composites (non-IPCs), but no research has yet determined the effect of 

these parameters on the properties of IPCs. 

The unit cell method was chosen for the numerical modelling program 

because it allowed a simplified representation of the actual IPC and an explicitly 

defined microstructure. Two different unit cell models, one with a spherical 

phase and the other with a cylindrical phase, were created to determine the 

influence of shape differences. Both models could be used to investigate a 

variety of phase volume fractions and constituent properties. The spatial 

distribution of the phases in each model was based on the hexagonal close-

packed (HCP) system. This system behaves isotropically, removing the need to 

consider direction dependence for the results. The boundary conditions applied 

to the models required that the unit cell consist of half a triangular prism in order 

to represent the periodic microstructure of the IPCs. The models were then 

used to simulate uniaxial tension tests for linear elastic and non-linear plastic 

conditions and solved using the finite element method (FEM). Results of these 

simulations provided the effective Young’s modulus and effective yield strength 

of the IPCs for an analysis of the macroscopic behaviour. In addition, stress 

distributions of the elastic and plastic responses were used to develop an 

understanding of the microstructural behaviour mechanisms. 

5.2   CONCLUSIONS 

The results of both the macroscopic and microstructural components of 

this study lead to three basic conclusions. First, the shape of the phases affects 

their volume fraction and contiguity, both of which were linked to changes in 

macroscopic behaviour. Volume fraction influences behaviour through the 

amount of each phase in the IPC, and contiguity by improving the 

interconnection of the phases. Comparative analyses of the relative influence of 

these two factors showed that volume fraction was always more dominant, 

though contiguity was highly significant for plastic behaviour. 
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The second conclusion notes that the level of contiguity affects the path 

of least compliance. Microstructural stress analysis showed that differences in 

stiffness between the phases resulted in a preferred stress transfer path 

through local regions of high stiffness, the path of least compliance. The path of 

least compliance was influenced by the volume fraction of the phases and the 

relative difference in their stiffnesses, but the contiguous nature of the IPC 

geometry allowed the path to exist completely within the stiffer phase. Since 

contiguity is a measure of the interconnectedness of the stiffer phase, its value 

influences the size of the path of least compliance. 

Finally, the path of least compliance affects how stress is transferred 

through the stiffer phase. The path of least compliance is the preferred stress 

path so how it transfers stress and the magnitude of stress it transfers influence 

macroscopic behaviour. An interesting result of the microstructural stress 

analysis was that the spherical model transferred stress in direct tension while 

the cylindrical model had direct tension and flexural mechanisms. 

These basic conclusions lead to two improvements in understanding the 

phase shape – mechanical behaviour relationship for IPCs. For elastic 

behaviour it was found that phase shape’s influence was minor. This was due to 

the relatively small stiffness differences between the constituent phases during 

elastic deformation. Without a great difference in phase stiffness, the path of 

least compliance is only slightly preferred as a stress transfer path. Therefore 

the path of least compliance is only of minor importance to overall stress 

transfer, and the contiguity that creates it is also of only slight importance. Since 

phase shape’s influence has been linked to contiguity’s influence, the effect of 

phase shape on the elastic behaviour of IPCs is minor. 

In the case of plastic behaviour, however, the influence of phase shape 

is significant for IPCs. In contrast to the elastic behaviour, there is a great 

difference in stiffness between the constituent materials when one has yielded 

and the other is still experiencing elastic deformation. With a large stiffness 

difference, high magnitudes of stress are transferred through the path of least 
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compliance because its deformation is low relative to its surroundings. This 

makes the contiguity that creates the path of least compliance an important 

factor, and consequently the phase shape producing the contiguity highly 

significant.  

5.3   RECOMMENDATIONS FOR FUTURE RESEARCH 

The ultimate purpose of research such as that described in this thesis is 

an improvement in the understanding of a material’s behaviour. Where this 

research ends is therefore somewhat arbitrary, since a perfect understanding of 

the behaviour would require an infinite amount of studying, not including any 

research that might be focussed on possible applications for the material. 

However, in the reasonably short term a number of goals can be defined. 

The first set of research goals involves perfecting and completing the 

models already developed. The simulations investigated in this thesis only 

considered the sphere and cylindrical shapes as the stiffer or stronger phase, 

never as the surrounding material. Without much difficulty, simulations could be 

completed so that the more flexible or weaker phase was the sphere or cylinder 

shape. For some IPCs currently being developed, data such as these would be 

more representative than those produced as part of this study. The IPCs were 

also always modelled as two ductile phases, but there is a growing use of brittle 

phases in such groups as metal matrix composites (MMCs) and ceramic matrix 

composites (CMCs). Many of the composites within these groups either have 

interpenetrating microstructures or could have them, making it useful to provide 

data on the behaviour of a brittle/ductile IPC. This could be done by changing 

the non-linear portion of the models so that one phase behaved completely 

elastically (similar to a brittle constituent) while the other continued to have a 

ductile elasto-plastic response. 

If the complete elastic behaviour of the IPCs studied here is particularly 

important, it would be valuable to define all the elastic constitutive properties. 

For an isotropic material, this requires finding only one additional elastic 

constant, since the effective Young’s modulus has already been found as part 
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of the current study. It is possible that the effective Poisson’s ratio could be 

calculated from the current uniaxial tension simulations or the effective bulk 

modulus could be found by simulating a state of hydrostatic pressure. 

Finally, the geometry of each model should be improved or a more 

flexible discretisation algorithm found to ensure that numerical failure of the 

FEM simulations does not occur prior to failure of the material. This problem is 

likely to be more difficult, but if it is solved it would allow much more extensive 

study of plastic behaviour. This could include the definition of more basic 

properties such as the ultimate strength and toughness, and further 

modifications might produce results regarding fracture and fatigue. 

Within the short term, but beyond the models already developed, would 

be the development of simple mechanistically based analytical relationships for 

IPC elastic and plastic behaviours. Such relationships would require additional 

understanding of how microstructural parameters affect behaviour. Besides the 

amount and shape of the phases, the influence of the spatial distribution and 

size distribution needs to be established. The size distribution could be studied 

by varying the size of the two cylinders in the cylindrical model. Geometry 

problems may occur, requiring a new discretisation, but the model should 

otherwise work relatively easily. The spatial distribution needs a different 

periodic microstructure to compare to the hexagonal close-packed (HCP) 

system already studied. An isotropic microstructure could be created using the 

diamond crystal lattice with its carbon tetrahedrons as a basis, although it will 

likely also be desirable to study anisotropic periodic microstructures in order to 

obtain more generalised data. This step is more difficult than the size 

distribution analysis since a completely new unit cell will need to be developed 

and perfected. 

It is important to note that the size and spatial distribution parameters, as 

well as the phase shape and amount, affect the topological parameters of 

volume fraction and contiguity that are likely to appear as variables within a 

behaviour equation. It is therefore necessary to determine a generalised 
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definition for contiguity that may be applied universally. This means that besides 

being applicable to numerical models, it should be a useful, relatively easy 

measurement for experimental IPCs so that it does not remain confined to 

theoretical research. Taking into account the thermal residual stresses and 

other effects of processing, an approximate equation for the prediction of IPC 

behaviour should be possible. Although the equation would be based on data 

from ordered periodic microstructures, it is probable that the behaviour of IPCs 

with random microstructures would be similar to those with periodic 

microstructures on average. This would make the equation completely 

applicable to any general IPC and valuable for the prediction of both elastic and 

plastic behaviour. 
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APPENDIX A 

VOLUME FRACTION OF SPHERE MATERIAL WITHIN 
THE HALF PRISM UNIT CELL 

The following calculations illustrate how Equation 3.1, describing the 

volume fraction of sphere material within the half prism unit cell, was derived. It 

was desirable to consider a range of volume fractions based on changing the 

size of the spheres within the unit cell. These requirements were 

accommodated by solving for the volume fraction in terms of the spheres’ radii 

and the centre-to-centre distance between spheres. The derivation is actually 

solved by considering the geometry of the prism unit cell (see Fig. A.1); 

however, since the ratio of sphere volume to unit cell volume is the same 

between the prism and half prisms their volume fractions are also the same. 

• Volume of sphere material in the prism unit cell (see Fig. A.2): 

)()( loststotalss VVV −=  (A.1) 

Figure A.1:  Pr ism unit cell of spher ical HCP 

system 
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Vs(total): volume of sphere in unit cell ignoring the intersection 
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Vs(lost): volume of sphere lost due to the intersections (of the total volume 

lost half is from region i and a quarter from each of regions ii and iii, 

see Fig. A.1) 
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• Volume of prism unit cell (see Fig. A.1 and A.3): 

trianglep AhV ⋅=  (A.5) 

 Atriangle: area of the top or bottom sides of the prism unit cell 

  ( ) 


=
22

1 a
b  

  





=
232

1 aa
 

  
34

2a=  (A.6) 

 h: height of prism unit cell 
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• Volume fraction of sphere material in the prism or half prism unit cells: 
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Figure A.3: Plan view of spher ical 

HCP system 
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APPENDIX B 

VOLUME FRACTION OF CYLINDER MATERIAL WITHIN 
THE HALF PRISM UNIT CELL 

The volume fraction of the cylinder material within the half prism unit cell 

was determined through the use of a Monte Carlo simulation (also known as a 

single point probability function). This appendix includes the development of this 

Monte Carlo simulation, as well as the C++ program that was created to run it. 

B.1  DEVELOPMENT OF THE MONTE CARLO SIMULATION 

 B.1.1 Surface Conditions for the Half Prism Unit Cell 

The simulation generates groups of three random numbers that are used 

to define the coordinates of points within a space represented by the box shown 

in Figure B.1. The box dimensions are set such that the half prism unit cell lies 

completely within it, see Figure 3.8 for the coordinates of points 1 to 6. The 

relationship between points a, b and h are shown in Figures B.2 and B.3. All the 

generated random points must fall within the box but their coordinates must be 

tested against the following five surface criteria to determine if they are also 

within the half prism unit cell: 

Top surface:  hz ≤  (B.1) 

Back surface:  0≥y  (B.2) 

Left-front surface: xy 3≤  (B.3) 

Right-front surface: ( )xby −≤ 3  (B.4) 

Bottom surface: 
222

3 xb
z −≥  (B.5) 

x, y, z: coordinates of the random points to be tested 

h: height of the prism unit cell as defined in Figure B.2 or B.3 

b: base edge length of prism unit cell as defined in Figure B.2 

or B.3 
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The first two conditions (Equations B.1 and B.2) are ensured because of the 

dimensions of the box; however, the other three conditions may or may not be 

met so only a certain percentage of the random points fall within the unit cell. 

B.1.2 Surface Conditions for the Back Cylinder 

If a point falls within the half prism unit cell it then needs to be 

determined if it also falls within one of the cylinders. The conditions that define 

the surfaces of the cylinders are more complex than those of the half prism unit 

cell, so a detailed derivation is provided below. To start with, it is important to 

remember that if a coordinate system is such that one axis lines up with the 

longitudinal axis of the cylinder then the equation of the cylinder is simply that of 

a circle. For the back cylinder, consider Figure B.2, where the local z-axis 

coincides with the axis of the cylinder. The equation for the back cylinder is then 

simply: 

( ) ( ) 222 ρ=′+′ yx  (B.6) 

x’, y’: coordinates in terms of the local axes defined in Figure B.2 

Figure B.1: Box for  Monte Car lo simulation with half pr ism unit cell inside 

Right-front
surface

Top surface

Left-front
surface

Back
surface

Bottom
surface

b
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2

3
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ρ: radius of cylinders as defined in Figure B.2 

In order to use Equation B.6 in the Monte Carlo simulation it is necessary to 

relate it to the random points which reference the global coordinate system. 

This may be done by applying the normal laws for coordinate transformation to 

determine the local coordinates in the global system. The relationship between 

the local x and y-axes to the global axes in Figure B.2 is: 

yy =′  (B.7) 

z
a

b
x

a

h
x 


−


=′  (B.8) 

Substituting Equations B.7 and B.8 into Equation B.6, the following 

transformation of the equation for the back cylinder is found: 

[ ] 22
2

ρ=+


 


−



yz

a

b
x

a

h
 

222
2

2
2

2

2 ρ=+


+⋅


 ⋅−



yz

a

b
zx

a

bh
x

a

h
 

Figure B.2:  Unit cell showing global axes and local 
axes for  back cylinder  
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



 


+⋅


 ⋅−


−≤ 2

2

2
2

2
2 2 z

a

b
zx

a

bh
x

a

h
y ρ  (B.9) 

In the Monte Carlo simulation the x and z-coordinates for each random point 

are inserted into Equation B.9 and a maximum y-coordinate calculated. If the 

actual y-coordinate for a tested point is less than the limiting value it is within 

the back cylinder and if it is greater than the limiting value it is not.  

B.1.3 Surface Conditions for the Top Cylinder 

The procedure for finding the condition for a point to lie within the top 

cylinder is similar to that just given for finding a point within the back cylinder. 

Consider Figure B.3 where the x’ axis is aligned with the longitudinal axis of the 

top cylinder so that the equation for the top cylinder becomes: 

( ) ( ) 222 ρ=′+′ zy  (B.10) 

y’, z’: coordinates in terms of the local axes defined in Figure B.3 

The transformation equations from Figure B.3 between the local to the global 

axes in this case are: 

hzz −=′  (B.11) 




−





+


=′ byxy
2

1

2

3

2

1
 (B.12) 

Substituting Equations B.11 and B.12 into Equation B.10, the equation for the 

top cylinder can be determined: 

( ) 22

2

2

1

2

3

2

1 ρ=−+



 


−





+



hzbyx  

( ) 222222

4

1
2

2

3

2

1

2

3

4

3

4

1 ρ=+


+−





−


−⋅





++


+



hbzhybxbyxzyx  

( ) ( ) ( ) 2222 4322323
2

1 ρ+−++⋅−−−−≥ bybxbyxyxhz  (B.13) 
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Equation B.13 is therefore the condition determining if a random point is within 

the top cylinder or not. It is also important to note that for a point to fall within 

the intersection region of the top cylinder and back cylinder it must meet the 

conditions of Equations B.9 and B.13. 

B.1.4 Volume Fraction of Cylinder Material 

Calculation of the volume fraction of the cylinders within the half prism 

unit cell is based on the direct relationship between the volume fraction and the 

number fraction of the random points. The solution can be found by counting 

the number of random points that passed the cylinder test criteria and dividing 

this number by the total number of points that passed the half prism unit cell 

criteria. Note that it is necessary to subtract from the number of random points 

within the cylinders the number of points at the cylinders’ intersection, since 

these points are counted once in the top cylinder and once in the back cylinder. 

The volume fraction of cylinders in the half prism unit cell is then: 

100⋅





=
hp

c
c n

nφ  (3.27) 

Figure B.3:  Unit cell showing global axes and local 
axes for  the top cylinder  
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itcbcc nnnn −+=  (3.28) 

φc: volume fraction of cylinders in half prism unit cell 

nhp: number of points in half prism unit cell 

nc: number of points in cylinders 

nbc: number of points in back cylinder (Eq. B.9) 

ntc: number of points in top cylinder (Eq.B.13) 

ni: number of points in the intersection (Eq. B.9 and B.13) 

B.2  C++ PROGRAM TO RUN THE MONTE CARLO 
SIMULATION 

/ / CHCP_VF 1.1: Volume Fraction of Cylindrical HCP Model using Single 
/ / Point Probability 
/ /  
/ /    Last  Modi f i ed:  Apr . 8,  2004 
 
/ / Step 1: Preprocessor Directives 
#i ncl ude <i ost r eam> 
#i ncl ude <f st r eam> 
#i ncl ude <st dl i b. h> 
#i ncl ude <mat h. h> 
#i ncl ude <i omani p> 
#i ncl ude <t i me. h> 
 
usi ng namespace st d;  
 
i nt  mai n( )  
{  
 / / Step 2: Initial Information 
     / / Step 2.1: Variable Declarations 
  i nt  i ;  
  i nt  nhp,  nbc,  nt c,  ncr ,  nmat ,  max;  
  doubl e r ho1,  r ho2;  
  doubl e x,  y,  z;  
  doubl e zmi n,  zmax;  
  doubl e yf ,  zbot ;    
  doubl e x1,  x2,  y1,  y2;  
  doubl e ybc1,  ybc2,  zt c1,  zt c2;  
  doubl e vf hp,  vf cyl ,  v f t b,  vf cr ,  v f mat ;  
 
  / / Step 2.2: Initialize Variables 
  i  = 0;  
  x  = y = z = 0;  
  zmi n = 1. 0/ sqr t ( 2. 0) ;  
  zmax = 2. 0 *  sqr t ( 2. 0) ;  
   
  nhp = nbc = nt c = ncr  = nmat  = 0;  
   
  x1 = x2 = y1 = y2 = 3. 0;  



  

 151 

  y f  = 0. 0;  
  zbot  = 3. 0;  
  ybc1 = ybc2 = - 0. 1;  
  z t c1 = zt c2 = 3. 0;  
 
  / / Step 2.3: Input from User 

cout  << " CHCP_VF 1. 1:  Vol ume Fr act i on of " << endl   
<< "  Cyl i ndr i cal  HCP Model  usi ng "  << endl  
<< "  Si ngl e Poi nt  Pr obabi l i t y" ;  
<< endl  << endl ;  

 
cout  << " ( a)  Pr ovi de t he number  of  val ues"  << endl  

<< "     pseudo- r andom t hat  shoul d be gener at ed:   " ;  
  c i n >> max;  

cout  << " ( b)  Pr ovi de t he r adi us of  t he back"  << endl   
<< "  cy l i nder "  << endl  
<< " ( val ue bet ween 0 and 1. 0) :   " ;  

  c i n >> r ho1;  
cout  << " ( c)  Pr ovi de t he r adi us of  t he t op << endl  

<< "  sur f ace cyl i nder "  << endl  
<< "  ( val ue bet ween 0 and 1. 0) :   " ;  

  c i n >> r ho2;  
 
 
 / / Step 3: Generate Random Numbers and Locate their Positions 
 sr and( t i me( NULL) ) ;  
 f or  ( i  = 1;  i  <= max;  i ++)  
 {  
  x  = doubl e( r and( ) ) / RAND_MAX *  2. 0;  
  y  = doubl e( r and( ) ) / RAND_MAX *  sqr t ( 3. 0) ;  
  z  = zmi n + doubl e( r and( ) ) / RAND_MAX *  ( zmax -  zmi n) ;  
 
  / / Step 3.1: Find Points within Half Prism Unit Cell 
  i f  ( x  <= 1. 0)  
   y f  = sqr t ( 3. 0)  *  x;  
  el se 
   y f  = sqr t ( 3. 0)  *  ( 2. 0 -  x) ;  
 
  zbot  = ( 1. 0/ sqr t ( 2. 0) )  *  ( 3. 0 -  x) ;  
  
  i f  ( y  <= yf  && z >= zbot )  
  {  
   nhp = nhp + 1;  
      
   / / Step 3.2: Find Points within Back Cylinder 
   x1 = ( 1. 0/ sqr t ( 2. 0) )  *  z;  
   x2 = x -  x1;  
    
   ybc1 = ( r ho1 *  r ho1)  -  ( 2. 0/ 3. 0)  *  ( x2 *  x2) ;  
 
   i f  ( ybc1 < 0. 0)  
    ybc2 = ybc1;  
   el se 
    ybc2 = sqr t ( ybc1) ;  
 
   i f  ( y  <= ybc2)  
   {  
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    nbc = nbc + 1;  
   }  
 
   / / Step 3.3: Find Points within Top Cylinder 
   y1 = ( sqr t ( 3. 0) / 3. 0)  *  ( 2. 0 -  x) ;  
   y2 = y -  y1;  
 
   z t c1 = ( r ho2 *  r ho2)  -  ( 3. 0/ 4. 0)  *  ( y2 *  y2) ;  
 
   i f  ( z t c1 < 0. 0)  
    z t c2 = 3. 0;  
   el se 
    z t c2 = ( 2. 0 *  sqr t ( 2. 0) )  -  sqr t ( zt c1) ;  
 
   i f  ( z  >= zt c2)  
   {  
    nt c = nt c + 1;  
    

/ / Step 3.4: Find Points within Intersection of 
Cylinders 

    i f  ( y  <= ybc2)  
    {  
     ncr  = ncr  + 1;  
    }  
   }  
 
   i f  ( z  < zt c2 && y > ybc2)  
    nmat  = nmat  + 1;  
  }  
  
 / / Step 4: Calculations and Output 
 v f hp = ( ( doubl e) nhp/ ( doubl e) max)  *  100;  

vf cyl  = ( ( ( doubl e) nbc + ( doubl e) nt c -  ( doubl e) ncr ) / ( doubl e) nhp)  
*  100;  

 
cout  << " Vol ume Fr act i on of  Box t hat  i s  t he Hal f  Pr i sm"  << endl  

<< "    Uni t  Cel l :   " ;  
 cout  << vf hp << endl ;  
 

cout  << " Vol ume Fr act i on of  Hal f  Pr i sm Uni t  Cel l  t hat "  << endl  
<< "  i s  Cyl i nder :   " ;  

 cout  << vf cyl  << endl ;  
  
 r et ur n 0;  
}  
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APPENDIX C 

BOUNDARY CONDITIONS FOR A HEXAGONAL 
CLOSED-PACKED UNIT CELL 

The boundary conditions for both the spherical and cylindrical models 

were the same since they were based on the constant spatial distribution of the 

phases. In this thesis, the spatial distribution chosen was the hexagonal closed-

packed system. The material in this appendix provides the C++ computer 

program used to create a text file that applies the boundary conditions to the 

non-linear plastic models in ADINA. A similar program was used for producing a 

text file for the conditions of the linear elastic models. In order to change the 

following program so that it produces linear elastic text files, it is necessary to 

delete the lines that are italicised in Steps 2.1, 2.5 and 6.1. Greater detail about 

the use of these boundary conditions may be found in Section 3.3. 

C.1  C++ PROGRAM TO APPLY BOUNDARY CONDITIONS 

/ / HCPP_BC_1.0: Boundary Conditions for Hexagonal-Closed-Packed Model 
/ /  
/ /    Last  Modi f i ed:  Jul . 23, 2003 
 
/ / Step 1: Preprocessor Directives 
#i ncl ude <i ost r eam> 
#i ncl ude <f st r eam> 
#i ncl ude <st dl i b. h> 
#i ncl ude <mat h. h> 
#i ncl ude <i omani p> 
 
usi ng namespace st d;  
 
i nt  mai n( )  
{  
 / / Step 2: Initial Information 
  / / Step 2.1: Variable Declarations 
         const  i nt  MAX1 = 35000;  
         const  i nt  MAX2 = 2000;  
         const  i nt  MAX3 = 7000;  
         const  i nt  MAXNAME = 80;  
         char  dat e[ MAXNAME] ;  
         char  gmd[ MAXNAME] ;  
         char  nodef i l e[ MAXNAME] ;  
         char  model [ MAXNAME] ;  
 i nt  nst ep;  
 doubl e f act or ;  
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            / / ( 3:  Read Node Coor di nat es)  
            s t at i c  doubl e x[ MAX1] ,  y[ MAX1] ,  z[ MAX1] ;  
            i nt  n[ MAX1] ;  
            i nt  check,  nt ot ;  
            i f s t r eam i nf i l e;  
            / / ( 4:  Fi nd Posi t i ons of  Nodes)  
            i nt  i ,  k ;  
            doubl e t ol er ;  
                / / ( Count  Var i abl es)  
                i nt  ALcnt ,  Tcnt ,  LFcnt ,  RFcnt ;  
                i nt  Bcnt ,  LBcnt ,  RBcnt ;  
                i nt  Fcnt ,  BLFcnt ,  BRFcnt ;  
                i nt  APcnt ,  TLBcnt ;  
                i nt  OTcnt ,  OLFcnt ,  ORFcnt ;  
                / / ( Fl ag Var i abl es)  
                i nt  ALf l ag[ MAX3] ,  Tf l ag[ MAX3] ;  

    i nt  LFf l ag[ MAX3] ,  RFf l ag[ MAX3] ;  
                i nt  LBf l ag[ MAX3] ,  RBf l ag[ MAX3] ;  
                i nt  BLFf l ag[ MAX3] ;  
                i nt  TLBf l ag[ MAX3] ;  
                / / ( Li st  Var i abl es)  

    i nt  AL[ MAX2] ,  T[ MAX2] ,  LF[ MAX2] ,  RF[ MAX2] ;  
      i nt  B[ MAX2] ,  LB[ MAX2] ,  RB[ MAX2] ;  
      i nt  F[ MAX2] ,  BLF[ MAX2] ,  BRF[ MAX2] ;  
      i nt  AP[ MAX2] ,  TLB[ MAX2] ;  
      i nt  OT[ MAX2] ,  OLF[ MAX2] ,  ORF[ MAX2] ;  
      / / ( Di f f er ence Var i abl es)  
     doubl e dx1,  dy1,  dz1,  dz2;      
 / / ( 5:  Pai r  Nodes on Bot t om Sur f ace)  

i nt  j ,  pai r cnt ;  
  i nt  pai r [ MAX2] ;  
  / / ( 6:  Appl y Boundar y Condi t i ons)  
  i nt  const r ai nt name;  
  doubl e bet acoef f 1,  bet acoef f 2;  
 
 / / Step 2.2: Initialize Variables 
  / / ( 3:  Read Nodal  Coor di nat es)  
  f act or  = nst ep = nt ot  = 0;  
  k  = 0;  
  / / ( 4:  Fi nd Nodal  Posi t i ons)  
  t ol er  = 0. 0001;  
  ALcnt  = Tcnt  = 0;  
  LFcnt  = RFcnt  = 0;  
   Bcnt  = LBcnt  = RBcnt  = 0;  
   Fcnt  = BLFcnt  = BRFcnt  =0;  
   APcnt  = TLBcnt  = 0;  
   OTcnt  = OLFcnt  = ORFcnt  = 0;  
  / / ( 5:  Pai r  Nodes on Bot t om Sur f ace)  
  pai r cnt  = 0;     
  f or  ( i  = 1;  i  <= MAX3;  i ++)  
  {  
  ALf l ag[ i ]  = 0;  
  Tf l ag[ i ]  = 0;  
  LFf l ag[ i ]  = 0;  
  RFf l ag[ i ]  = 0;  
  LBf l ag[ i ]  = 0;  
  RBf l ag[ i ]  = 0;  
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  BLFf l ag[ i ]  = 0;      
  TLBf l ag[ i ]  = 0;  
  }  
 
 / / Step 2.3: Open Output File 
  cout  << " HCPP_BC_1. 0:  Boundar y Condi t i ons f or ”  

  << “  Hexagonal  Cl osed- Packed Model "  
  << endl  << endl ;  
 
  cout  << "   ( a)  Pr ovi de t he dat e ( M. D, Y) :   " ;  
  c i n >> dat e;  
  cout  << endl ;  
  cout  << "   ( b)  Pr ovi de t he model  out put "  << endl  
  << "       f i l e name:   " ;  
  c i n >> model ;  
  cout  << endl ;  
     
  of st r eam out f i l e;  
  out f i l e. open( model ) ;  
 
  i f  ( out f i l e. f ai l ( ) )  
  {  
   cout  << " WARNI NG:  The f i l e i n St ep 2. 3 was not ”  
 << “  opened. "  << endl ;  
   ex i t ( 1) ;  
  }  
 
  out f i l e << set i osf l ags( i os: : f i xed)  
 << set i osf l ags( i os: : showpoi nt )  
 << set pr eci s i on( 7) ;  
   
  / / Step 2.4: Initial Formatting 
 out f i l e << " * "       << endl  
 << " *    Hexagonal - Cl osed- Packed Pl ast i c  Model "  << endl  
 << " * "        << endl  
 << " *    Cr eat ed on:   "  
 << dat e       << endl  
 << " * "        << endl  
 << " Dat abase New   Save = No   Pr ompt  = No"  << endl  
 << " FEPr ogr am ADI NA"      << endl  
 << " Cont r ol  Fi l ever s i on = v75"    << endl  
 << " FEPr ogr am   Pr ogr am = ADI NA"    << endl  
 << " Mast er    Anal ysi s = St at i c , "    << endl  
 << "          I DOF = 000111, "     << endl  
 << "          React i ons = Yes, "    << endl  
 << "          Sol ver  = I t er at i ve"    << endl ;  
 
  / / Step 2.5: Non-Linear Solution Data  
 out f i l e << " * "  << endl  
 << " *    Non- Li near  Sol ut i on Dat a"    << endl  
 << " Ki nemat i cs Di spl acement s = Lar ge St r ai ns = Lar ge"   
 << endl  
 << " I t er at i on   Met hod = Ful l - Newt on"   << endl  
 << " Tol er ances I t er at i on  ETOL = 0. 001"   << endl ;  
   
  cout  << "   ( c)  Number  of  Sol ut i on St eps:  " ;  
  c i n >> nst ep;  
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  cout  << endl ;   
   
 out f i l e << " Ti mest ep      Name = 1"    << endl  
 << set w( 5)  << nst ep << set w( 5)  << 1 << endl  
 << " Ti mef unct i on Name = 1"   << endl ;  
     

cout  << "   ( d)  Mul t i pl i cat i on Fact or  f or  Di spl acement :  "  
<< endl ;  

  out f i l e << set w( 5)  << 0 << set w( 15)  << 0 << endl ;  
  f or  ( i  = 1;  i  <= nst ep;  i ++)  
  {  
   out f i l e << set w( 5)  << i ;  
   cout  << "       Fact or  f or  St ep "  << i  << " :  " ;  
   c i n >> f act or ;  
   out f i l e << set w( 15)  << f act or  << endl ;  
  }  
  cout  << endl ;  
 
  / / Step 2.6: Read Geometry - Material - Discretization Data 

cout  << "   ( e)  Pr ovi de geomet r y- mat er i al - di scr et i zat i on"  
 << endl  

 << "       f i l e name:   " ;  
  c i n >> gmd;  
  cout  << endl ;  
 

out f i l e << " * "         
 << endl  

 << " *  Read Geomet r y- Mat er i al - Di scr et i zat i on”  
<< “  Fi l e"  << endl  

 << " Read Fi l e = "  
 << gmd      << endl ;  
 
 / / Step 3: Read Node Coordinates 
 cout  << "   ( f )  Pr ovi de t he node coor di nat e"     
 << endl     
  << "       f i l e name:   " ;  
 c i n >> nodef i l e;  
 cout  << endl ;  
 
 i nf i l e. open( nodef i l e) ;  
 
 i f  ( i nf i l e. f ai l ( ) )  
 {  

cout  << " WARNI NG:  The f i l e was not  successf ul l y  opened. "  
<< endl  
<< "  Pl ease check t hat  t he f i l e cur r ent l y  exi st s. "  
<< endl ;  

  ex i t ( 1) ;  
 }   
  
 whi l e ( ( check = i nf i l e. peek( ) )  ! = EOF)  
 {  
  k  = k + 1;  
  i nf i l e >> n[ k] ;  
  i nf i l e >> x[ n[ k] ]  >> y[ n[ k] ]  >> z[ n[ k] ] ;  
 
  nt ot  = nt ot  + 1;  



  

 157 

 }  
 

 cout  << " I nput  Model  I nf or mat i on t o ADI NA: "     << endl  
 << " Tot al  Nodes:                  "  << nt ot   << endl ;  
 
 i nf i l e. c l ose( ) ;  
 
 / / Step 4: Find Positions of Nodes 
 f or  ( i  = 1;  i  <= nt ot ;  i ++)  
 {  
  / / Step 4.1: Axis of Anti-symmetry 
  dx1 = f abs( x[ n[ i ] ]  -  1. 0) ;  
  dz1 = f abs( z[ n[ i ] ]  -  sqr t ( 2. 0) ) ;  
 
  i f  ( dx1 <= t ol er  && dz1 <= t ol er )  
  {  
   ALf l ag[ i ]  = 1;  
   ALcnt  = ALcnt  + 1;  
   AL[ ALcnt ]  = n[ i ] ;  
  }  
     
  / / Step 4.2: Top Surface 
  dz1 = f abs( z[ n[ i ] ]  -  ( 2 *  sqr t ( 2. 0) ) ) ;  
  
  i f  ( dz1 <= t ol er )  
  {  
   Tf l ag[ i ]  = 1;  
   Tcnt  = Tcnt  + 1;  
   T[ Tcnt ]  = n[ i ] ;  
  }  
    
  / / Step 4.3: Left-Front Surface 
  dy1 = f abs( y[ n[ i ] ]  -  ( sqr t ( 3. 0)  *  x[ n[ i ] ] ) ) ;  
    
  i f  ( dy1 <= t ol er )  
  {  
   LFf l ag[ i ]  = 1;  
   LFcnt  = LFcnt  + 1;  
   LF[ LFcnt ]  = n[ i ] ;  
  }  
   
  / / Step 4.4: Right-Front Surface   
  dy1 = f abs( y[ n[ i ] ]  -  ( sqr t ( 3. 0)  *  ( 2. 0 -  x[ n[ i ] ] ) ) ) ;  
   
  i f  ( dy1 <= t ol er )  
  {  
   RFf l ag[ i ]  = 1;  
   RFcnt  = RFcnt  + 1;  
   RF[ RFcnt ]  = n[ i ] ;  
  }  
   
  / / Step 4.5: Back Surface 
  i f  ( y [ n[ i ] ]  <= t ol er )  
  {  
   Bcnt  = Bcnt  + 1;  
   B[ Bcnt ]  = n[ i ] ;  
  }  
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  / / Step 4.6: Bottom Surface 
 dz1 = f abs( z[ n[ i ] ]  -  ( ( 3. 0/ sqr t ( 2. 0) )  -  ( x[ n[ i ] ] / sqr t ( 2. 0) ) ) ) ;  
 
  i f  ( dz1 <= t ol er  && ALf l ag[ i ]  == 0)  
  {  
   dz2 = ( z[ n[ i ] ]  -  sqr t ( 2. 0) ) ;  
 
   i f  ( dz2 > t ol er )  
   {  
    LBf l ag[ i ]  = 1;  
    LBcnt  = LBcnt  + 1;  
    LB[ LBcnt ]  = n[ i ] ;  
   }  
 
   i f  ( dz2 < t ol er )  
   {  
    RBf l ag[ i ]  = 1;  
    RBcnt  = RBcnt  + 1;  
    RB[ RBcnt ]  = n[ i ] ;  
   }  
  }  
   
  / / Step 4.7: Front Line 
  dy1 = f abs( y[ n[ i ] ]  -  sqr t ( 3. 0) ) ;  
   
  i f  ( dy1 <= t ol er )  
  {  
   Fcnt  = Fcnt  + 1;  
   F[ Fcnt ]  = n[ i ] ;  
  }    
 
  / / Step 4.8: Bottom Left-Front Line 
  i f  ( LFf l ag[ i ]  == 1 && LBf l ag[ i ]  == 1)  
  {  
   BLFf l ag[ i ]  = 1;  
   BLFcnt  = BLFcnt  + 1;  
   BLF[ BLFcnt ]  = n[ i ] ;  
  }  
 
  / / Step 4.9: Bottom Right-Front Line 
  i f  ( RFf l ag[ i ]  == 1 && RBf l ag[ i ]  == 1)  
  {  
   BRFcnt  = BRFcnt  + 1;  
   BRF[ BRFcnt ]  = n[ i ] ;  
  }  
  
  / / Step 4.10: Axis Point 
  i f  ( ALf l ag[ i ]  == 1 && y[ n[ i ] ]  <= t ol er )  
  {  
   APcnt  = APcnt  + 1;  
   AP[ APcnt ]  = n[ i ] ;  
  }  
 
  / / Step 4.11: Top Left Back Corner (Master Node) 
  i f  ( x [ n[ i ] ]  <= t ol er  && y[ n[ i ] ]  <= t ol er  && Tf l ag[ i ]  == 1)  
  {  
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   TLBf l ag[ i ]  = 1;  
   TLBcnt  = TLBcnt  + 1;  
   TLB[ TLBcnt ]  = n[ i ] ;  
  }  
 
  / / Step 4.12: Other Top Surface 
  i f  ( Tf l ag[ i ]  == 1 && TLBf l ag[ i ]  == 0)  
  {  
   OTcnt  = OTcnt  + 1;  
   OT[ OTcnt ]  = n[ i ] ;  
  }  
 
  / / Step 4.13: Other Left-Front Surface 
  i f  ( LFf l ag[ i ]  == 1 && TLBf l ag[ i ]  == 0 && dy1 > t ol er )  
  {  
   OLFcnt  = OLFcnt  + 1;  
   OLF[ OLFcnt ]  = n[ i ] ;  
  }  
 
  / / Step 4.14: Other Right-Front Surface 
  i f  ( RFf l ag[ i ]  == 1 && dy1 > t ol er  && RBf l ag[ i ]  == 0)  
  {  
   ORFcnt  = ORFcnt  + 1;  
   ORF[ ORFcnt ]  = n[ i ] ;  
  }  
 }  
   
 / / Step 5: Pair Nodes on Bottom Surface   

/ / Step 5.1: Check if Equal Number of Nodes on Upper and  
/ /  Lower Parts 

  i f  ( LBcnt  == 0 && RBcnt  == 0)  
  {  
   cout  << " WARNI NG:  St ep 5. 1 Check:  No nodes on”  

<< “  ant i - symmet r i c pl ane. "  << endl  
    << "          DI SCRETI ZATI ON ERROR"  << endl ;  
   ex i t ( 1) ;  
  }  
 
  i f  ( LBcnt  ! = RBcnt )  
  {  
   cout  << " WARNI NG:  St ep 5. 1 Check:  Number  of  nodes”   

<< “  on upper  par t  of  pl ane does not  "  
    << " equal  number  on l ower . "  << endl  
    << "          DI SCRETI ZATI ON ERROR"  << endl ;  
   ex i t ( 1) ;  
  }  
  

/ / Step 5.2: Pair Nodes for Anti-symmetric Boundary  
/ /  Condition 

  f or  ( i  = 1;  i  <= RBcnt ;  i ++)  
  {  
   f or  ( j  = 1;  j  <= LBcnt ;  j ++)  
   {  
     dz1 = f abs( ( z[ RB[ i ] ]  + z[ LB[ j ] ] ) / 2. 0 -  sqr t ( 2. 0) ) ;  
     dy1 = f abs( y[ RB[ i ] ]  -  y [ LB[ j ] ] ) ;  
     
    i f  ( dz1 <= t ol er  && dy1 <= t ol er )  
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    {  
     pai r cnt  = pai r cnt  + 1;  
     pai r [ i ]  = LB[ j ] ;  
    }  
   }   
  }  
 
  i f  ( pai r cnt  ! = RBcnt )  
  {  
   cout  << " WARNI NG:  St ep 5. 2 Check:  I nsuf f i c i ent ”  

<< “  node pai r s. "  << endl  
    << "          DI SCRETI ZATI ON ERROR"  << endl ;  
   ex i t ( 1) ;  
  }  
 
  cout  << " Mast er s f or  Sl aves on Bot t om ( pai r cnt ) : "   

<< pai r cnt  << endl  
   << endl ;  
 
 / / Step 6: Apply Boundary Conditions 
 out f i l e << " * "        << endl  
    << " *    Boundar y Condi t i ons"     << endl ;   
  
  / / Step 6.1: Top Left Back Corner (Master Node) 
  out f i l e << " * "          << endl  
     << " *    Top Lef t  Back Cor ner  ( Mast er  Node) " << endl  
     << " Appl y Di spl acement    Subst r uct ur e = 0”  

  << “  Reuse = 1"  << endl  
     << " * Node     Di r ect i on    Fact or     Ncur " << endl ;  
 
  out f i l e << set w( 5)   << TLB[ 1]  
     << set w( 10)  << 3 
     << set w( 16)  << 0. 0014142 
     << set w( 5)  << 1 << endl ;  
 
  / / Step 6.2: Back Surface 
  out f i l e << " * "       << endl  
     << " *    Back Sur f ace"     << endl  
     << " Boundar i es   Subst r uct ur e = 0"  << endl  
     << " * Node     ux     uy     uz"   << endl ;  
  
  f or  ( i  = 1;  i  <= Bcnt ;  i ++)  
  {  
   out f i l e << set w( 5)  << B[ i ]  
           << set w( 9)  << " f r ee"  
      << set w( 8)  << " f i xed"  
      << set w( 6)  << " f r ee"  << endl ;  
  }  
 
  / / Step 6.3: Front Line 
  out f i l e << " * "       << endl  
     << " *    Fr ont  Li ne"     << endl  
     << " Boundar i es   Subst r uct ur e = 0"  << endl  
     << " * Node     ux     uy     uz"   << endl ;  
 
  f or  ( i  = 1;  i  <= Fcnt ;  i ++)  
  {  
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   out f i l e << set w( 5)  << F[ i ]  
      << set w( 9)  << " f i xed"  
      << set w( 7)  << " f r ee"  
      << set w( 7)  << " f r ee"  << endl ;  
  }  
   
  / / Step 6.4: Axis of Anti-symmetry 
  out f i l e << " * "       << endl  
     << " *    Axi s of  Ant i symmet r y"   << endl  
     << " Boundar i es   Subst r uct ur e = 0"  << endl  
     << " * Node     ux     uy     uz"   << endl ;  
 
  f or  ( i  = 1;  i  <= ALcnt ;  i ++)  
  {  
   out f i l e << set w( 5)   << AL[ i ]  
      << set w( 10)  << " f i xed"  
      << set w( 8)   << " f r ee"  
      << set w( 8)   << " f i xed"  << endl ;  
  }  
 
  / / Step 6.5: Axis Point 
  out f i l e << " * "       << endl  
     << " *    Axi s Poi nt "     << endl  
     << " Boundar i es   Subst r uct ur e = 0"  << endl  
     << " * Node     ux     uy     uz"   << endl ;  
   
  out f i l e << set w( 5)   << AP[ 1]  
     << set w( 10)  << " f i xed"  
     << set w( 8)   << " f i xed"  
     << set w( 8)   << " f i xed"  << endl ;  
  
  / / Step 6.6: Top Surface 
  bet acoef f 1 = 1. 0;  
  const r ai nt name = 1;  
  
  out f i l e << " * "        << endl  
     << " *    Top Sur f ace"      << endl  
     << " Const r ai nt - Node"  
     << "    Name = "  << const r ai nt name 
     << "    Sl aveNode = "  << OT[ 1]  
     << "    Sl aveDOF = "  << " ' Z- Tr ansl at i on' "  << endl ;
      
  f or  ( i  = 1;  i  <= OTcnt ;  i ++)  
  {  

out f i l e << set w( 5)  << TLB[ 1]  << "  ' Z- Tr ansl at i on'  "    
<< bet acoef f 1 << "  "  
<< set w( 5)  << OT[ i ]   << "  ' Z- Tr ansl at i on'  "  
<< endl ;  

  }  
 
  / / Step 6.7: Bottom Surface 
  bet acoef f 1 = - 1. 0;  
  bet acoef f 2 = - 1/ sqr t ( 3. 0) ;  
  const r ai nt name = 2;  
 
  out f i l e << " * "        << endl  
     << " *    Bot t om Sur f ace"     << endl  
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     << " Const r ai nt - Node"  
     << "    Name = "  << const r ai nt name 
     << "    Sl aveNode = "  << RB[ 1]  
     << "    Sl aveDOF = "  << " ' X- Tr ansl at i on' "  << endl ;  
  
  f or  ( i  = 1;  i  <= pai r cnt ;  i ++)  
  {  
  dy1 = f abs( y[ RB[ i ] ]  -  ( sqr t ( 3. 0)  *  ( 2. 0 -  x[ RB[ i ] ] ) ) ) ;  
    
   i f  ( dy1 <= t ol er )  
   {  
     out f i l e << set w( 5)  << TLB[ 1]   

<< "  ' X- Tr ansl at i on'  "  << bet acoef f 1 << "  "  
<< set w( 5)  << RB[ i ]    << "  ' X- Tr ansl at i on'  "  
<< endl  
<< set w( 5)  << pai r [ i ]  << "  ' Y- Tr ansl at i on'  "  
<< bet acoef f 2 << "  "  
<< set w( 5)  << RB[ i ]    << "  ' X- Tr ansl at i on'  "  
<< endl ;  

   }  
 
   i f  ( dy1 > t ol er )  
   {  
     out f i l e << set w( 5)  << pai r [ i ]   

<< "  ' X- Tr ansl at i on'  "  << bet acoef f 1 << "  "   
<< set w( 5)  << RB[ i ]    << "  ' X- Tr ansl at i on'  "  
<< endl ;  

   }  
  }  
 
  bet acoef f 1 = 1. 0;  
  const r ai nt name = 3;  
 
  out f i l e << " * "        << endl  
     << " Const r ai nt - Node"  
     << "    Name = "  << const r ai nt name 
     << "    Sl aveNode = "  << RB[ 1]  
     << "    Sl aveDOF = "  << " ' Y- Tr ansl at i on' "  << endl ;  
 
  f or  ( i  = 1;  i  <= pai r cnt ;  i ++)  
  {  
    out f i l e << set w( 5)  << pai r [ i ]   

    << "  ' Y- Tr ansl at i on'  "  << bet acoef f 1 << "  "  
       << set w( 5)  << RB[ i ]    << "  ' Y- Tr ansl at i on'  "   

    << endl ;  
  }  
 
  bet acoef f 1 = - 1. 0;  
  const r ai nt name = 4;  
 
  out f i l e << " * "        << endl  
     << " Const r ai nt - Node"  
     << "    Name = "  << const r ai nt name 
     << "    Sl aveNode = "  << RB[ 1]  
     << "    Sl aveDOF = "  << " ' Z- Tr ansl at i on' "  << endl ;  
 
  f or  ( i  = 1;  i  <= pai r cnt ;  i ++)  
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  {  
    out f i l e << set w( 5)  << pai r [ i ]   

    << "  ' Z- Tr ansl at i on'  "  << bet acoef f 1 << "  "  
       << set w( 5)  << RB[ i ]    << "  ' Z- Tr ansl at i on'  "   

    << endl ;  
  }  
 
  / / Step 6.8: Left-Front Surface 
  bet acoef f 1 = 1. 0;  
  bet acoef f 2 = 1/ sqr t ( 3. 0) ;  
  const r ai nt name = 5;  
  
  out f i l e << " * "        << endl  
     << " *    Lef t  Fr ont  Sur f ace"     << endl  
     << " Const r ai nt - Node"  
     << "    Name = "  << const r ai nt name 
     << "    Sl aveNode = "  << OLF[ 1]  
     << "    Sl aveDOF = "  << " ' X- Tr ansl at i on' "  << endl ;
   
  f or  ( i  = 1;  i  <= OLFcnt ;  i ++)  
  {  
    out f i l e << set w( 5)  << TLB[ 1]   

    << "  ' X- Tr ansl at i on'  "  << bet acoef f 1 << "  "   
       << set w( 5)  << OLF[ i ]  << "  ' X- Tr ansl at i on'  "   

    << endl  
       << set w( 5)  << OLF[ i ]   

    << "  ' Y- Tr ansl at i on'  "  << bet acoef f 2 << "  "  
       << set w( 5)  << OLF[ i ]  << "  ' X- Tr ansl at i on'  "   

    << endl ;  
  }  
 
  / / Step 6.9: Right-Front Surface 
  bet acoef f 1 = - 1. 0;  
  bet acoef f 2 = - 1. 0/ sqr t ( 3. 0) ;  
  const r ai nt name = 6;  
   
  out f i l e << " * "        << endl  
     << " *    Ri ght  Fr ont  Sur f ace"    << endl  
     << " Const r ai nt - Node"  
     << "    Name = "  << const r ai nt name 
     << "    Sl aveNode = "  << ORF[ 1]  
     << "    Sl aveDOF = "  << " ' X- Tr ansl at i on' "  << endl ;
  
  f or  ( i  = 1;  i  <= ORFcnt ;  i ++)  
  {  
    out f i l e << set w( 5)  << TLB[ 1]   

    << "  ' X- Tr ansl at i on'  "  << bet acoef f 1 << "  "  
       << set w( 5)  << ORF[ i ]  << "  ' X- Tr ansl at i on'  "   

    << endl  
       << set w( 5)  << ORF[ i ]   

    << "  ' Y- Tr ansl at i on'  "  << bet acoef f 2 << "  "  
       << set w( 5)  << ORF[ i ]  << "  ' X- Tr ansl at i on'  "   

    << endl ;  
  }  
 
  / / Step 6.10: Front Line 
  bet acoef f 1 = - sqr t ( 3. 0) ;  
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  const r ai nt name = 7;  
 
  out f i l e << " * "                                     << endl  
     << " *    Fr ont  Li ne"                        << endl  
     << " Const r ai nt - Node"  
     << "    Name = "       << const r ai nt name 
     << "    Sl aveNode = "  << F[ 2]  
     << "    Sl aveDOF = "   << " ' X- Tr ansl at i on' "  << endl ;  
 
  f or  ( i  = 1;  i  <= Fcnt ;  i ++)  
  {  
   out f i l e << set w( 5)  << TLB[ 1]   

  << "  ' X- Tr ansl at i on'  "  << bet acoef f 1 << "  "  
<< set w( 5)  << F[ i ]    << "  ' Y- Tr ansl at i on'  "       
<< endl ;  

  }  
   
 out f i l e. c l ose( ) ;  
  
 r et ur n 0;  
}  
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APPENDIX D 

DISCRETISATION OF UNIT CELL GEOMETRY FOR THE 
SPHERICAL MODEL 

To use the finite element method (FEM) it is necessary to break models 

of continuous objects into a number of smaller pieces, or to discretise them. For 

the spherical model, the initial discretisation of the unit cell geometry was 

carefully completed in order to prevent the creation of elements with boundaries 

that overlap. This is done for points in Steps 3 and 4 of the program listed below 

for the surrounding (matrix) phase and the sphere phase, respectively. Arc lines 

to provide the base for curved surfaces are defined in Step 5 and the volumes 

supplying the initial elements in Step 6. The constituent material properties data 

is defined in Step 7. The programming for the elastic case is shown in this 

appendix with the spherical model and the programming for the plastic case is 

shown with the cylindrical model in Appendix E. Both cases are, however, 

applicable to both models and the parts that need to be changed to switch 

between the two are shown in italics (in Steps 2.1, 2.3 and 7). Steps 8, 9 and 10 

are then used to define the elements to be used, the number of subdivisions 

into which the initial volumes may be broken and the generation of these 

elements. The final step then simply provides a listing of all the nodes created 

by the program. The overall purpose of this program and the source of its 

development are discussed in Sections 3.1 and 3.4. 

D.1  C++ PROGRAM FOR DISCRETISATION OF SPHERICAL 
MODEL 

/ / SHCPE_GMD_1.2: Geometry-Material-Discretisation for Spherical 
/ /                Hexagonal-Closed-Packed Model 
/ /  
/ /      Last  Modi f i ed:  Aug.  10,  2004 
 
/ / Step 1: Preprocessor Directives 
#i ncl ude <i ost r eam> 
#i ncl ude <f st r eam> 
#i ncl ude <st dl i b. h> 
#i ncl ude <mat h. h> 
#i ncl ude <i omani p> 



  

 166 

 
us i ng namespace st d;  
 
i nt  mai n( )  
{  
 / / Step 2: Initial Information 
  / / Step 2.1: Variable Declarations 
   / / ( Const ant s)  
   const  doubl e PI  = 3. 14159265359;  
   const  i nt  MAX = 500;  
   const  i nt  MAXNAME = 80;  
   / / ( Basi c Var i abl es)  
   i nt  i ,  k ;  
   char  dat e[ MAXNAME] ;  
   char  gmd[ MAXNAME] ;  
   char  node[ MAXNAME] ;  
   / / ( 3&4:  Geomet r y Poi nt  Var i abl es)  
   doubl e x[ MAX] ,  y[ MAX] ,  z[ MAX] ;  
   doubl e r ,  r ho,  r hop,  r hopp;  
   doubl e al pha1p,  al pha1,  al pha2,  al pha3,  al pha4p;  
   doubl e bet a1,  bet a2,  bet a3;  
   doubl e gamma1,  gamma2;  
   doubl e del t a;  
   doubl e a,  b,  c,  s;  
   / / ( 5:  Li ne Ar c Var i abl es)  
   i nt  p1[ MAX] ,  p2[ MAX] ,  p3[ MAX] ;  
   / / ( 6:  Vol ume Var i abl es)  
   i nt  v1[ MAX] ,  v2[ MAX] ,  v3[ MAX] ,  v4[ MAX] ,  v5[ MAX] ;   

i nt  v6[ MAX] ,  v7[ MAX] ,  v8[ MAX] ;  
   / / ( 7:  Mat er i al  Pr oper t y Var i abl es)  
   doubl e E1,  E2,  nu1,  nu2;  
   / / ( 9&10:  Di scr et i sat i on Var i abl es)  
   i nt  ndi v1,  ndi v2,  ndi v3,  el emnodes;  
  
  / / Step 2.2: Open Output File 

cout  << " SHCPE_GMD_1. 2:  Geomet r y- Mat er i al - Di scr et i sat i on”   
<< “  f or  Spher i cal  Hexagonal  Cl osed- Packed Model "   
<< endl  << endl ;  

 
  cout  << " STEP 1:  I ni t i al  I nf or mat i on"  << endl  
       << "     ( a)  Pr ovi de t he dat e ( M. D, Y) :   " ;  
  c i n >> dat e;  
  cout  << "     ( b)  Pr ovi de t he geomet r y- mat er i al - “   
                 << “ di scr et i sat i on: "  << endl  
       << "         f i l e name:   " ;  
  c i n >> gmd;  
  cout  << "     ( c)  Pr ovi de t he node coor di nat e"  << endl  
       << "         f i l e name:   " ;  
  c i n >> node;  
  cout  << endl ;  
 
  of st r eam out f i l e;     
  out f i l e. open( gmd) ;  
  
  i f  ( out f i l e. f ai l ( ) )  
  {  
   cout  << " WARNI NG:  The f i l e i n St ep 2. 2 was not ”  
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     << “  opened. "  << endl ;  
   ex i t ( 1) ;  
  }  
  
  out f i l e << set i osf l ags( i os: : f i xed)  
     << set i osf l ags( i os: : showpoi nt )  
     << set pr eci s i on( 7) ;  
 
  out f i l e << " * "        << endl  
     << " *  GMD Fi l e cr eat ed on:  "   
     << dat e       << endl ;  
 
  / / Step 2.3: Input from User 
  cout  << " STEP 2:  Vol ume Fr act i on I nf or mat i on f r om Radi i ”  

     << “  of  Spher es"  << endl  
       << "     I nput  t he r adi i  of  t he spher es:   " ;  
  c i n >> r ;  
  cout  << endl ;  
 
  cout  << " STEP 3:  Mat er i al  Pr oper t i es"   << endl  
       << "     ( a)  The Mat r i x  Mat er i al "   << endl  
       << "         ( i )  I nput  t he Young' s Modul us:   " ;  
  c i n >> E1;  
  cout  << "         ( i i )  I nput  t he Poi sson' s Rat i o:  " ;  
  c i n >> nu1;  
  cout  << "     ( b)  The Spher e Mat er i al "   << endl  
       << "         ( i )  I nput  t he Young' s Modul us:   " ;  
  c i n >> E2;  
  cout  << "         ( i i )  I nput  t he Poi sson' s Rat i o:  " ;  
  c i n >> nu2;  
  cout  << endl ;  
 
  cout  << " STEP 4:  Di scr et i sat i on of  t he Model "  << endl  
       << "     ( a)  Subdi v i s i on Dat a"    << endl  
       << "         ( i )  I nput  f or  di r ect i on 1:          " ;  
  c i n >> ndi v1;  
  cout  << "         ( i i )  I nput  f or  di r ect i on 2:         " ;  
  c i n >> ndi v2;  
  cout  << "         ( i i i )  I nput  f or  di r ect i on 3:        " ;  
  c i n >> ndi v3;  
  cout  << "     ( b)  I nput  number  of  nodes per  el ement :  " ;  
  c i n >> el emnodes;  
  cout  << endl ;  
 
  / / Step 2.4: Initialize Variables 
  i  = k = 0;  
   
  al pha1p = at an( sqr t ( 2. 0) / 2) ;  
  al pha1 = ( PI / 2)  + al pha1p;  
  al pha2 = ( PI / 2)  -  al pha1p;  
  al pha3 = at an( 2 /  ( sqr t ( 2. 0) / 2) ) ;  
  al pha4p = at an( ( sqr t ( 2. 0) / 2)  /  2) ;  
  a = b = c = 0;  
  s  = 0;  
   
  r ho = sqr t ( pow( r , 2. 0)  -  3) ;  
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  bet a1 = 60 *  ( PI / 180) ;  
  bet a2 = 30 *  ( PI / 180) ;  
  bet a3 = 75 *  ( PI / 180) ;  
  gamma1 = ( PI / 2)  -  at an( ( 3/ ( 2 *  sqr t ( 2. 0) ) ) / sqr t ( 3. 0) ) ;  
  gamma2 = ( PI / 2)  -  at an( ( ( 5/ sqr t ( 2. 0) ) / 2) / ( 2/ 2) ) ;  
 
 / / Step 3: Surrounding Phase (Matrix) Points 
  / / Step 3.1: Outer Layer 
  x [ 1]  = 0;  
  y [ 1]  = 0;  
  z [ 1]  = 2 *  sqr t ( 2. 0) ;  
   
  x [ 2]  = 0;  
  y [ 2]  = 0;  
  z [ 2]  = 3/ sqr t ( 2. 0) ;  
 
  x [ 3]  = 1;  
  y [ 3]  = sqr t ( 3. 0) ;  
  z [ 3]  = 2 *  sqr t ( 2. 0) ;  
 
  x [ 4]  = 1;  
  y [ 4]  = sqr t ( 3. 0) ;  
  z [ 4]  = sqr t ( 2. 0) ;  
 
  x [ 5]  = 2;  
  y [ 5]  = 0;  
  z [ 5]  = 1/ sqr t ( 2. 0) ;  
 
  x [ 6]  = 3. 0/ 2. 0;  
  y [ 6]  = sqr t ( 3. 0) / 2;  
  z [ 6]  = ( 3/ sqr t ( 2. 0) ) / 2;  
 
  x [ 7]  = 1. 0/ 2. 0;  
  y [ 7]  = sqr t ( 3. 0) / 2;  
  z [ 7]  = ( 5/ sqr t ( 2. 0) ) / 2;  
 
  / / Step 3.2: Sphere Layer 
  x [ 8]  = 2 -  r ;   
  y [ 8]  = 0;  
  z [ 8]  = 2 *  sqr t ( 2. 0) ;  
 
  x [ 9]  = 2 -  r  *  cos( bet a1) ;  
  y [ 9]  = r  *  s i n( bet a1) ;  
  z [ 9]  = 2 *  sqr t ( 2. 0) ;  
 
  x [ 10]  = 2;  
  y [ 10]  = 0;  
  z [ 10]  = ( 2 *  sqr t ( 2. 0) )  -  r ;  
 
  x [ 11]  = 2 -  ( r  *  s i n( al pha2)  *  cos( bet a1) ) ;  
  y [ 11]  = r  *  s i n( al pha2)  *  s i n( bet a1) ;  
  z [ 11]  = ( 2 *  sqr t ( 2. 0) )  -  ( r  *  cos( al pha2) ) ;  
 
  x [ 12]  = 2 -  ( r  *  s i n( gamma2)  *  cos( bet a1) ) ;  
  y [ 12]  = r  *  s i n( gamma2)  *  s i n( bet a1) ;  
  z [ 12]  = ( 2 *  sqr t ( 2. 0) )  -  ( r  *  cos( gamma2) ) ;  
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  x [ 13]  = 2 -  ( r  *  s i n( al pha3) ) ;  
  y [ 13]  = 0;  
  z [ 13]  = ( 2 *  sqr t ( 2. 0) )  -  ( r  *  cos( al pha3) ) ;  
 
  x [ 14]  = 2 -  ( r  *  s i n( gamma1)  *  cos( bet a2) ) ;  
  y [ 14]  = r  *  s i n( gamma1)  *  s i n( bet a2) ;  
  z [ 14]  = ( 2 *  sqr t ( 2. 0) )  -  ( r  *  cos( gamma1) ) ;  
 
  / / Step 3.3: Centre of Sphere 
  x [ 15]  = 2;  
  y [ 15]  = 0;  
  z [ 15]  = 2 *  sqr t ( 2. 0) ;  
 
  / / Step 3.4: Bottom Intersecting Circle 
  x [ 16]  = 1;  
  y [ 16]  = 0;  
  z [ 16]  = sqr t ( 2. 0) ;  
 
  f or  ( i  = 17;  i  <= 21;  i ++)  
  {  
    del t a = ( i  -  17)  *  ( PI / 4) ;  
     x [ i ]  = 1 -  ( r ho *  cos( del t a)  *  cos( al pha1p) ) ;  
     y [ i ]  = r ho *  s i n( del t a) ;  
     z [ i ]  = sqr t ( 2. 0)  + ( r ho *  cos( del t a)  *  s i n( al pha1p) ) ;  
  }  
 
  / / Step 3.5: Bottom (Lower-Outer) Intersecting Circle 
    s  = asi n( s i n( 1/ cos( al pha1p) ) * ( s i n( bet a1) / s i n( bet a3) ) ) - r ho;  
  r hop = r ho + ( s) / 3;  
     
  f or  ( i  = 22;  i  <= 26;  i ++)  
  {  
    del t a = ( i  -  22)  *  ( PI / 4) ;  

   x [ i ]  = 1 -  ( r hop *  cos( del t a)  *  cos( al pha1p) ) ;  
     y [ i ]  = r hop *  s i n( del t a) ;  
     z [ i ]  = sqr t ( 2. 0)  + ( r hop *  cos( del t a)  *  s i n( al pha1p) ) ;  
  }  
 
  / / Step 3.6: Bottom (Upper-Outer) Intersecting Circle 
  r hopp = r ho + ( s) / 6;  
  a = 1;  
  b = - ( 4 *  sqr t ( 2. 0) ) ;  
   
  f or  ( i  = 27;  i  <= 31;  i ++)  
  {  
       del t a = ( i  -  27)  *  ( PI / 4) ;  
     x [ i ]  = 1 -  ( r hopp *  cos( del t a)  *  cos( al pha1p) ) ;  
     y [ i ]  = r hopp *  s i n( del t a) ;  
       c  = ( pow( ( x[ i ]  -  2) , 2)  + pow( y[ i ] , 2)  -  pow( r , 2)  + 8) ;   
     z [ i ]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a *  c) ) / ( 2 *  a) ;  
  }  
 
  / / Step 3.7: Left Intersecting Circle 
  x [ 32]  = ( x[ 1]  + x[ 3] ) / 2;  
  y [ 32]  = ( y[ 1]  + y[ 3] ) / 2;  
  z [ 32]  = 2 *  sqr t ( 2. 0) ;  
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  f or  ( i  = 33;  i  <= 37;  i ++)  
  {  
    del t a = ( i  -  33)  *  ( PI / 4) ;  
   x [ i ]  = ( 1 + r ho *  cos( del t a) )  *  cos( bet a1) ;  
   y [ i ]  = ( 1 + r ho *  cos( del t a) )  *  s i n( bet a1) ;  
   z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r ho *  s i n( del t a) ) ;  
  }  
 
  / / Step 3.8: Left (Lower-Outer) Intersecting Circle 
  s  = 1 -  r ho;  
  r hop = r ho + ( s) / 3;  
     
  f or  ( i  = 38;  i  <= 42;  i ++)  
  {  
    del t a = ( i  -  38)  *  ( PI / 4) ;  
   x [ i ]  = ( 1 + r hop *  cos( del t a) )  *  cos( bet a1) ;  
   y [ i ]  = ( 1 + r hop *  cos( del t a) )  *  s i n( bet a1) ;  
   z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r hop *  s i n( del t a) ) ;  
  }  
 
  / / Step 3.9: Left (Upper-Outer) Intersecting Circle 
  r hopp = r ho + ( s) / 6;  
  a = 1;  
  b = - 4;  
 
  f or  ( i  = 43;  i  <= 47;  i ++)  
  {  
       del t a = ( i  -  43)  *  ( PI / 4) ;  
     y [ i ]  = ( 1 + r hopp *  cos( del t a) )  *  s i n( bet a1) ;  
     z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r hopp *  s i n( del t a) ) ;  

c  = ( pow( y[ i ] , 2) +pow( ( z[ i ] - ( 2* sqr t ( 2. 0) ) ) , 2) - pow( r , 2) +4) ;  
     x [ i ]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
  }  
   
  / / Step 3.10: Intermediate Points 
  x [ 48]  = x[ 1]  + ( ( x[ 8]  -  x [ 1] )  *  ( 1. 0/ 4. 0) ) ;  
  y [ 48]  = y[ 1] ;  
  z [ 48]  = z[ 1] ;  
   
  x [ 49]  = x[ 2]  + ( ( x[ 13]  -  x [ 2] )  *  ( 1. 0/ 4. 0) ) ;  
  y [ 49]  = y[ 2] ;  
  z [ 49]  = z[ 2]  + ( ( z[ 13]  -  z [ 2] )  *  ( 1. 0/ 4. 0) ) ;  
 
  x [ 50]  = x[ 3]  + ( ( x[ 9]  -  x [ 3] )  *  ( 1. 0/ 4. 0) ) ;  
  y [ 50]  = y[ 3]  -  ( ( y[ 3]  -  y [ 9] )  *  ( 1. 0/ 4. 0) ) ;  
  z [ 50]  = z[ 3] ;  
 
  x [ 51]  = x[ 4]  + ( ( x[ 11]  -  x [ 4] )  *  ( 1. 0/ 4. 0) ) ;  
  y [ 51]  = y[ 4]  -  ( ( y[ 4]  -  y [ 11] )  *  ( 1. 0/ 4. 0) ) ;  
  z [ 51]  = z[ 4]  + ( ( z[ 11]  -  z [ 4] )  *  ( 1. 0/ 4. 0) ) ;  
 
  x [ 52]  = x[ 6]  + ( ( x[ 12]  -  x [ 6] )  *  ( 1. 0/ 4. 0) ) ;  
  y [ 52]  = y[ 6]  -  ( ( y[ 6]  -  y [ 12] )  *  ( 1. 0/ 4. 0) ) ;  
  z [ 52]  = z[ 6]  + ( ( z[ 12]  -  z [ 6] )  *  ( 1. 0/ 4. 0) ) ;  
 
  x [ 53]  = x[ 5] ;  
  y [ 53]  = y[ 5] ;  
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  z [ 53]  = z[ 5]  + ( ( z[ 10]  -  z [ 5] )  *  ( 1. 0/ 4. 0) ) ;  
 
  x [ 54]  = x[ 7]  + ( ( x[ 14]  -  x [ 7] )  *  ( 1. 0/ 4. 0) ) ;  
  y [ 54]  = y[ 7]  -  ( ( y[ 7]  -  y [ 14] )  *  ( 1. 0/ 4. 0) ) ;  
  z [ 54]  = z[ 7]  + ( ( z[ 14]  -  z [ 7] )  *  ( 1. 0/ 4. 0) ) ;  
 
  / / Step 3.11: Output for Matrix Geometry Points 
  out f i l e << " * "       << endl  
     << " *    Geomet r y Poi nt s"    << endl  
     << " Coor di nat es Poi nt  Syst em = 0"  << endl  
     << " *  Poi nt "   
     << set w( 10)   << " X"  
     << set w( 13)  << " Y"   
     << set w( 15)  << " Z"     << endl  
     << " *       Mat r i x  Poi nt s"    << endl ;  
  
  f or  ( i  = 1;  i  <= 54;  i ++)  
  {  
   out f i l e << set w( 5)   << i   
      << set w( 15)  << x[ i ]   
      << set w( 15)  << y[ i ]   
      << set w( 15)  << z[ i ]  << endl ;  
  }  
 
 / / Step 4: Interior Sphere Points 
  //Step 4.1: Bottom Inner Intersecting Circle 
  f or  ( i  = 55;  i  <=59;  i ++)  
  {  
    del t a = ( i  -  55)  *  ( PI / 4) ;  
     x [ i ]  = 1 -  ( ( r ho/ 2)  *  cos( del t a)  *  cos( al pha1p) ) ;  
     y [ i ]  = ( r ho/ 2)  *  s i n( del t a) ;  
     z [ i ]  = sqr t ( 2. 0) +( ( r ho/ 2) * cos( del t a) * s i n( al pha1p) ) ;  
  }  
   
  / / Step 4.2: Bottom (Upper-Inner) Intersecting Circle 
  x [ 60]  = 1 + ( ( r / 10)  *  cos( al pha2) ) ;  
  y [ 60]  = 0;  
  z [ 60]  = sqr t ( 2. 0)  + ( ( r / 10)  *  s i n( al pha2) ) ;  
   
  f or  ( i  = 61;  i  <= 65;  i ++)  
  {  
    del t a = ( i  -  61)  *  ( PI / 4) ;  
     x [ i ]  = x[ 60]  -  ( ( r ho/ 2)  *  cos( del t a)  *  cos( al pha1p) ) ;  
     y [ i ]  = ( r ho/ 2)  *  s i n( del t a) ;  
     z [ i ]  = z[ 60]  + ( ( r ho/ 2)  *  cos( del t a)  *  s i n( al pha1p) ) ;  
  }  
   
  / / Step 4.3: Left Inner Intersecting Circle 
  f or  ( i  = 66;  i  <= 70;  i ++)  
  {  
    del t a = ( i  -  66)  *  ( PI / 4) ;  
   x [ i ]  = ( 1 + ( r ho/ 2)  *  cos( del t a) )  *  cos( bet a1) ;  
   y [ i ]  = ( 1 + ( r ho/ 2)  *  cos( del t a) )  *  s i n( bet a1) ;  
   z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( r ho/ 2)  *  s i n( del t a) ) ;  
  }  
 
  / / Step 4.4: Left (Upper-Inner) Intersecting Circle 
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  x [ 71]  = cos( bet a1)  + ( ( r / 10)  *  cos( bet a2) ) ;  
  y [ 71]  = s i n( bet a1)  -  ( ( r / 10)  *  s i n( bet a2) ) ;  
  z [ 71]  = 2 *  sqr t ( 2. 0) ;  
 
  f or  ( i  = 72;  i  <= 76;  i ++)  
  {  
    del t a = ( i  -  72)  *  ( PI / 4) ;  

x [ i ]  = ( ( 1+( r ho/ 2) * cos( del t a) ) * cos( bet a1) ) +( ( r / 10) *   
cos( bet a2) ) ;  

y [ i ]  = ( ( 1+( r ho/ 2) * cos( del t a) ) * s i n( bet a1) ) - ( ( r / 10) *  
s i n( bet a2) ) ;  

     z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( r ho/ 2)  *  s i n( del t a) ) ;  
  }  
   
  / / Step 4.5: Top Back Row 
  k  = 0;  
 
  f or  ( i  = 77;  i  <= 82;  i ++)  
  {  
    k  = k + 1;  
   x [ i ]  = 2 -  ( k *  ( r / 7) ) ;  
   y [ i ]  = 0;  
   z [ i ]  = 2 *  sqr t ( 2. 0) ;  
  }  
 
  / / Step 4.6: Top Right Row 
  x [ 83]  = 2 -  ( ( 6. 0/ 7. 0)  *  r )  *  cos( bet a1) ;  
  y [ 83]  = ( ( 6. 0/ 7. 0)  *  r )  *  s i n( bet a1) ;  
  z [ 83]  = 2 *  sqr t ( 2. 0) ;  
 
  x [ 84]  = ( x[ 15]  + x[ 83] ) / 2. 0;  
  y [ 84]  = ( y[ 15]  + y[ 83] ) / 2. 0;  
  z [ 84]  = 2 *  sqr t ( 2. 0) ;  
 
  / / Step 4.7: Intermediate Back Row 
  x [ 85]  = 2;  
  y [ 85]  = 0;  
  z [ 85]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( 3. 0/ 4. 0)  *  r ) ;  
 
  f or  ( i  = 86;  i  <= 90;  i ++)  
  {  
   x [ i ]  = x[ i  -  9] ;  
   y [ i ]  = 0;  
   z [ i ]  = z[ i  -  1]  + ( ( 1. 0/ 7. 0)  *  r )  *  t an( al pha1p) ;  
  }  
  
  x [ 91]  = x[ 82]  + ( ( x[ 81]  -  x [ 82] ) / 4) ;  
  y [ 91]  = 0;  
  z [ 91]  = z[ 90]  + ( x[ 81]  -  x [ 91] )  *  t an( al pha1p) ;  
   
  / / Step 4.8: Intermediate Right Row 
  x [ 92]  = x[ 84] ;  
  y [ 92]  = y[ 84] ;  
  z [ 92]  = z[ 85]  + ( ( y[ 84] / s i n( bet a1) )  *  t an( al pha4p) ) ;  
 
  x [ 93]  = x[ 83]  + ( ( x[ 84]  -  x [ 83] ) / 4) ;  
  y [ 93]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ 93] ) ;  
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  z [ 93]  = z[ 85]  + ( ( y[ 93] / s i n( bet a1) )  *  t an( al pha4p) ) ;  
 
  / / Step 4.9: Intermediate Inner Circle 
  f or  ( i  = 94;  i  <= 96;  i ++)  
  {  
    del t a = ( i  -  93)  *  ( PI / 4) ;  
     x [ i ]  = x[ 88]  -  ( ( 1. 0/ 7. 0)  *  r )  *  cos( del t a) ;  
     y [ i ]  = ( ( ( 1. 0/ 7. 0)  *  r ) / cos( al pha1p) )  *  s i n( del t a) ;  
     z [ i ]  = z[ 88] +( ( 1. 0/ 7. 0) * r ) * cos( del t a) * t an( al pha1p) ;  
  }  
 
  / / Step 4.10: Intermediate Circle 
  f or  ( i  = 97;  i  <= 99;  i ++)  
  {  
    del t a = ( i  -  96)  *  ( PI / 4) ;  
     x [ i ]  = x[ 88]  -  ( 2 *  ( 1. 0/ 7. 0)  *  r )  *  cos( del t a) ;  
     y [ i ]  = ( ( 2 *  ( 1. 0/ 7. 0)  *  r ) / cos( al pha1p) )  *  s i n( del t a) ;  
     z [ i ]  = z[ 88] +( 2* ( 1. 0/ 7. 0) * r ) * cos( del t a) * t an( al pha1p) ;  
  }  
 
  / / Step 4.11: Top Inner Circle 
  f or  ( i  = 100;  i  <= 102;  i ++)  
  {  
    del t a = ( i  -  99)  *  ( PI / 4) ;  
   x [ i ]  = x[ 79]  -  ( ( 1. 0/ 7. 0)  *  r )  *  cos( del t a) ;  
   y [ i ]  = ( ( 1. 0/ 7. 0)  *  r )  *  s i n( del t a) ;  
   z [ i ]  = 2 *  sqr t ( 2. 0) ;  
  }  
 
  / / Step 4.12: Top Circle 
  f or  ( i  = 103;  i  <= 105;  i ++)  
  {  
    del t a = ( i  -  102)  *  ( PI / 4) ;  
   x [ i ]  = x[ 79]  -  ( 2 *  ( 1. 0/ 7. 0)  *  r )  *  cos( del t a) ;  
   y [ i ]  = ( 2 *  ( 1. 0/ 7. 0)  *  r )  *  s i n( del t a) ;  
   z [ i ]  = 2 *  sqr t ( 2. 0) ;  
  }  
 
  / / Step 4.13: Intermediates of Circles 
  x [ 106]  = ( x[ 82]  + x[ 83] ) / 2;  
  y [ 106]  = ( y[ 82]  + y[ 83] ) / 2;  
  z [ 106]  = 2 *  sqr t ( 2. 0) ;  
 
  x [ 107]  = ( x[ 91]  + x[ 93] ) / 2;  
  y [ 107]  = ( y[ 91]  + y[ 93] ) / 2;  
  z [ 107]  = ( z[ 91]  + z[ 93] ) / 2;  
 
  / / Step 4.14: Output for Interior Sphere Geometry Points
  out f i l e << " *       I nt er i or  Spher e Poi nt s"  << endl ;  
 
  f or  ( i  = 55;  i  <= 107;  i ++)  
  {  
   out f i l e << set w( 5)   << i  
      << set w( 15)  << x[ i ]  
      << set w( 15)  << y[ i ]  
      << set w( 15)  << z[ i ]  << endl ;  
  }  
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 / / Step 5: Line Arcs 
  / / Step 5.1: Line Arcs in Matrix 
  f or  ( i  = 1;  i  <= 5;  i ++)  
  {  
    k  = i  -  1;  
   p1[ i ]  = 47 -  k;  
   p2[ i ]  = 37 -  k;  
   p3[ i ]  = 15;  
 
   p1[ i  + 25]  = 31 -  k;  
   p2[ i  + 25]  = 21 -  k;  
   p3[ i  + 25]  = 15;  
  }  
 
  f or  ( i  = 6;  i  <= 9;  i ++)  
  {  
    k  = i  -  6;  
   p1[ i ]  = 42 -  k;  
   p2[ i ]  = 41 -  k;  
   p3[ i ]  = 32;  
 
   p1[ i  + 4]  = 47 -  k;  
   p2[ i  + 4]  = 46 -  k;  
   p3[ i  + 4]  = 32;  
 
   p1[ i  + 8]  = 37 -  k;  
   p2[ i  + 8]  = 36 -  k;  
   p3[ i  + 8]  = 32;  
 
   p1[ i  + 12]  = 31 -  k;  
   p2[ i  + 12]  = 30 -  k;  
   p3[ i  + 12]  = 16;  
 
   p1[ i  + 16]  = 26 -  k;  
   p2[ i  + 16]  = 25 -  k;  
   p3[ i  + 16]  = 16;  
 
   p1[ i  + 25]  = 21 -  k;  
   p2[ i  + 25]  = 20 -  k;  
   p3[ i  + 25]  = 16;  
  }  
 
  f or  ( i  = 35;  i  <= 36;  i ++)  
  {  
    k  = i  -  35;  
   p1[ i ]  = 46 -  k;  
   p2[ i ]  = 13 + k;  
    
   p1[ i  + 2]  = 44 -  k;  
   p2[ i  + 2]  = 11 -  ( 2 *  k) ;  
    
   p1[ i  + 5]  = 14 -  ( 3 *  k) ;  
   p2[ i  + 5]  = 11 -  ( 2 *  k) ;  
    
   p1[ i  + 7]  = 14 -  k;  
   p2[ i  + 7]  = 13 -  ( 5 *  k) ;  
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   p1[ i  + 9]  = 28 -  k;  
   p2[ i  + 9]  = 14 -  k;  
    
   p1[ i  + 11]  = 30 -  k;  
   p2[ i  + 11]  = 12 -  k;  
 
   p1[ i  + 13]  = 12;  
   p2[ i  + 13]  = 11 -  k;  
  }  
 
  p1[ 39]  = 47;  
  p2[ 39]  = 8;  
   
  p1[ 50]  = 31;  
  p2[ 50]  = 10;  
 
  f or  ( i  = 35;  i  <= 50;  i ++)  
   p3[ i ]  = 15;  
 
  / / Step 5.2: Line Arcs in Interior Sphere 
  f or  ( i  = 51;  i  <= 54;  i ++)  
  {  
    k  = i  -  51;  
   p1[ i ]  = 76 -  k;  
   p2[ i ]  = 75 -  k;  
   p3[ i ]  = 71;  
 
   p1[ i  + 4]  = 70 -  k;  
   p2[ i  + 4]  = 69 -  k;  
   p3[ i  + 4]  = 32;  
 
   p1[ i  + 8]  = 65 -  k;  
   p2[ i  + 8]  = 64 -  k;  
   p3[ i  + 8]  = 60;  
 
   p1[ i  + 12]  = 59 -  k;  
   p2[ i  + 12]  = 58 -  k;  
   p3[ i  + 12]  = 16;  
  }  
   
  f or  ( i  = 67;  i  <= 68;  i ++)  
  {  
    k  = i  -  67;  
   p1[ i ]  = 99 -  k;  
   p2[ i ]  = 98 -  k;  
    
   p1[ i  + 2]  = 96 -  k;  
   p2[ i  + 2]  = 95 -  k;  
    
   p1[ i  + 4]  = 99 -  ( 2 *  k) ;  
   p2[ i  + 4]  = 86 + ( 4 *  k) ;  
    
   p1[ i  + 6]  = 96 -  ( 2 *  k) ;  
   p2[ i  + 6]  = 87 + ( 2 *  k) ;  
    
   p1[ i  + 8]  = 105 -  k;  
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   p2[ i  + 8]  = 104 -  k;  
    
   p1[ i  + 10]  = 102 -  k;  
   p2[ i  + 10]  = 101 -  k;  
 
   p1[ i  + 12]  = 105 -  ( 2 *  k) ;  
   p2[ i  + 12]  = 77 + ( 4 *  k) ;  
 
   p1[ i  + 14]  = 102 -  ( 2 *  k) ;  
   p2[ i  + 14]  = 78 + ( 2 *  k) ;  
  }  
 
  f or  ( i  = 67;  i  <= 74;  i ++)  
   p3[ i ]  = 88;  
 
  f or  ( i  = 75;  i  <= 82;  i ++)  
   p3[ i ]  = 79;  
 
  / / Step 5.3: Output for Line Arcs 
  f or  ( i  = 1;  i  <= 82;  i ++)  
  {  
   out f i l e << " Li ne Ar c"  
      << "    Name = "     << i  
      << "    P1 = "       << p1[ i ]  
      << "    P2 = "       << p2[ i ]  
      << "    Cent r e = "   << p3[ i ]   
      << endl ;  
  }  
 
 / / Step 6: Volumes 
  / / Step 6.1: Bottom Layer of Matrix Volumes 
  f or  ( i  = 1;  i  <= 4;  i ++)  
  {  
    k  = i  -  1;  
   v2[ i ]  = 42 -  k;   
   v3[ i ]  = 41 -  k;  
   v1[ i  + 4]  = 22 + k;  
   v4[ i  + 4]  = 23 + k;  
  }  
 
  f or  ( i  = 1;  i  <= 2;  i ++)  
  {  
    k  = i  -  1;  
   v4[ i ]  = v2[ i  + 4]  = 2 + ( 5 *  k) ;  
   v1[ i  + 2]  = v3[ i  + 4]  = 7 -  ( 3 *  k) ;  
   v6[ i ]  = v5[ i  + 4]  = 49 + ( 5 *  k) ;  
   v5[ i  + 2]  = v6[ i  + 4]  = 54 -  ( 3 *  k) ;  
    
   v1[ i ]  = 1 + k;  
   v5[ i ]  = 48 + k;  
   v4[ i  + 2]  = 4 -  k;  
   v6[ i  + 2]  = 51 -  k;  
   v2[ i  + 6]  = 4 + ( 2 *  k) ;  
   v3[ i  + 6]  = 6 -  k;  
   v5[ i  + 6]  = 51 + k;  
   v6[ i  + 6]  = 52 + k;  
  }  
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  / / Step 6.2: Top Layer of Matrix Volumes 
  f or  ( i  = 9;  i  <= 12;  i ++)  
  {  
    k  = i  -  9;  
   v1[ i ]  = 42 -  k;  
   v2[ i ]  = 37 -  k;  
   v3[ i ]  = 36 -  k;  
   v4[ i ]  = 41 -  k;  
   v5[ i ]  = 47 -  k;  
   v6[ i ]  = 46 -  k;  
   v2[ i  + 4]  = 42 -  k;  
   v3[ i  + 4]  = 41 -  k;  
   v6[ i  + 4]  = 47 -  k;  
   v7[ i  + 4]  = 46 -  k;  
   v1[ i  + 8]  = 22 + k;  
   v4[ i  + 8]  = 23 + k;  
   v8[ i  + 8]  = 28 + k;  
   v5[ i  + 8]  = 27 + k;  
   v1[ i  + 12]  = 17 + k;  
   v2[ i  + 12]  = 22 + k;  
   v3[ i  + 12]  = 23 + k;  
   v4[ i  + 12]  = 18 + k;  
   v5[ i  + 12]  = 27 + k;  
   v6[ i  + 12]  = 28 + k;  
  }  
 
  f or  ( i  = 13;  i  <= 14;  i ++)  
  {  
    k  = i  -  13;  
   v4[ i ]  = v2[ i  + 4]  = 49 + ( 5 *  k) ;  
   v1[ i  + 2]  = v3[ i  + 4]  = 54 -  ( 3 *  k) ;  
   v8[ i ]  = v6[ i  + 4]  = 13 + k;  
   v5[ i  + 2]  = v7[ i  + 4]  = 14 -  ( 3 *  k) ;  
    
   v1[ i ]  = 48 + k;  
   v5[ i ]  = 8 + ( 5 *  k) ;  
   v4[ i  + 2]  = 51 -  k;  
   v8[ i  + 2]  = 11 -  ( 2 *  k) ;  
   v2[ i  + 6]  = 51 + k;  
   v3[ i  + 6]  = 52 + k;  
   v6[ i  + 6]  = 11 + k;  
   v7[ i  + 6]  = 12 -  ( 2 *  k) ;  
  }  
 
  / / Step 6.3: Intersecting Circle Layer of Sphere Volumes 
  f or  ( i  = 25;  i  <= 26;  i ++)  
  {  
    k  = i  -  25;  
   v1[ i ]  = 70 -  ( 38 *  k) ;  
   v2[ i ]  = 32 + ( 34 *  k) ;  
   v3[ i ]  = 68 -  k;  
   v4[ i ]  = 69 -  k;  
   v5[ i ]  = 76 -  ( 5 *  k) ;  
   v6[ i ]  = 71 + k;  
   v7[ i ]  = 74 -  k;  
   v8[ i ]  = 75 -  k;  
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   v1[ i  + 6]  = 16 + ( 43 *  k) ;  
   v2[ i  + 6]  = 55 -  ( 39 *  k) ;  
   v3[ i  + 6]  = 56 + k;  
   v4[ i  + 6]  = 57 + k;  
   v5[ i  + 6]  = 60 + ( 5 *  k) ;  
   v6[ i  + 6]  = 61 -  k;  
   v7[ i  + 6]  = 62 + k;  
   v8[ i  + 6]  = 63 + k;  
  }  
 
  f or  ( i  = 27;  i  <= 30;  i ++)  
  {  
    k  = i  -  27;  
   v1[ i ]  = 37 -  k;  
   v2[ i ]  = 70 -  k;  
   v3[ i ]  = 69 -  k;  
   v4[ i ]  = 36 -  k;  
   v5[ i ]  = 47 -  k;  
   v6[ i ]  = 76 -  k;  
   v7[ i ]  = 75 -  k;  
   v8[ i ]  = 46 -  k;  
   v1[ i  + 6]  = 55 + k;  
   v2[ i  + 6]  = 17 + k;  
   v3[ i  + 6]  = 18 + k;  
   v4[ i  + 6]  = 56 + k;  
   v5[ i  + 6]  = 61 + k;  
   v6[ i  + 6]  = 27 + k;  
   v7[ i  + 6]  = 28 + k;  
   v8[ i  + 6]  = 62 + k;  
  }  
 
  / / Step 6.4: Surface Layer of Interior Sphere Volumes 
  f or  ( i  = 37;  i  <= 40;  i ++)  
  {  
    k  = i  -  37;  
   v2[ i ]  = 47 -  k;  
   v3[ i ]  = 46 -  k;  
   v6[ i ]  = 76 -  k;  
   v7[ i ]  = 75 -  k;  
   v1[ i  + 6]  = 27 + k;  
   v4[ i  + 6]  = 28 + k;  
   v1[ i  + 10]  = 61 + k;  
   v2[ i  + 10]  = 27 + k;  
   v3[ i  + 10]  = 28 + k;  
   v4[ i  + 10]  = 62 + k;  
  }  
 
  f or  ( i  = 37;  i  <= 38;  i ++)  
  {  
    k  = i  -  37;  
   v8[ i ]  = v1[ i  + 4]  = v6[ i  + 6]  = 91 + ( 16 *  k) ;  
   v5[ i  + 2]  = v4[ i  + 4]  = v7[ i  + 6]  = 107 -  ( 14 *  k) ;  
   v4[ i ]  = v2[ i  + 6]  = 13 + k;  
   v1[ i  + 2]  = v3[ i  + 6]  = 14 -  ( 3 *  k) ;  
    
   v1[ i ]  = 8 + ( 5 *  k) ;  
   v5[ i ]  = 82 + ( 9 *  k) ;  
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   v4[ i  + 2]  = 11 -  ( 2 *  k) ;  
   v8[ i  + 2]  = 93 -  ( 10 *  k) ;  
   v2[ i  + 4]  = 75 -  k;  
   v3[ i  + 4]  = 74 -  k;  
   v5[ i  + 4]  = 82 + ( 24 *  k) ;  
   v6[ i  + 4]  = 76 -  ( 5 *  k) ;  
   v7[ i  + 4]  = 71 + k;  
   v8[ i  + 4]  = 106 -  ( 23 *  k) ;  
   v2[ i  + 8]  = 11 + k;  
   v3[ i  + 8]  = 12 -  ( 2 *  k) ;  
   v6[ i  + 8]  = 93 -  k;  
   v7[ i  + 8]  = 92 -  ( 7 *  k) ;  
   v1[ i  + 14]  = 61 -  k;  
   v2[ i  + 14]  = 62 + k;  
   v3[ i  + 14]  = 63 + k;  
   v4[ i  + 14]  = 60 + ( 5 *  k) ;  
   v5[ i  + 14]  = 89 -  k;  
   v6[ i  + 14]  = 94 + k;  
   v7[ i  + 14]  = 95 + k;  
   v8[ i  + 14]  = 88 -  k;  
  }  
 
  f or  ( i  = 37;  i  <= 39;  i ++)  
  {  
    k  = i  -  37;  
   v5[ i  + 7]  = v8[ i  + 6]  = v6[ i  + 11]  = v7[ i  + 10]  = 97 + k;  
   v5[ i  + 11]  = v8[ i  + 10]  = 94 + k;  
  }  
   
  v5[ 43]  = 90;  
  v8[ 46]  = v7[ 50]  = 86;  
  v5[ 47]  = 89;  
  v6[ 47]  = 90;  
  v8[ 50]  = 87;  
 
  / / Step 6.5: Core Layer of Interior Sphere Volumes 
  f or  ( i  = 53;  i  <= 55;  i ++)  
  {  
    k  = i  -  53;  
   v1[ i  + 1]  = v4[ i ]  = v3[ i  + 4]  = 97 + k;  
   v5[ i  + 1]  = v8[ i ]  = v6[ i  + 5]  = v7[ i  + 4]  = 103 + k;  
   v1[ i  + 5]  = v4[ i  + 4]  = 94 + k;  
   v2[ i  + 5]  = 97 + k;  
   v5[ i  + 5]  = v8[ i  + 4]  = 100 + k;  
  }  
   
  f or  ( i  = 53;  i  <= 54;  i ++)  
  {  
    k  = i  - 53;  
   v2[ i ]  = 91 + ( 16 *  k) ;  
   v3[ i ]  = 107 -  ( 14 *  k) ;  
   v6[ i ]  = 82 + ( 24 *  k) ;  
   v7[ i ]  = 106 -  ( 23 *  k) ;  
   v2[ i  + 2]  = 93 -  k;  
   v3[ i  + 2]  = 92 -  ( 7 *  k) ;  
   v6[ i  + 2]  = 83 + k;  
   v7[ i  + 2]  = 84 -  ( 69 *  k) ;  
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   v1[ i  + 8]  = 89 -  k;  
   v2[ i  + 8]  = 94 + k;  
   v3[ i  + 8]  = 95 + k;  
   v4[ i  + 8]  = 88 -  k;  
   v5[ i  + 8]  = 80 -  k;  
   v6[ i  + 8]  = 100 + k;  
   v7[ i  + 8]  = 101 + k;  
   v8[ i  + 8]  = 79 -  k;  
  }  
 
  v1[ 53]  = 90;  
  v4[ 56]  = v3[ 60]  = 86;  
  v5[ 53]  = v6[ 57]  = 81;  
  v8[ 56]  = v7[ 60]  = 77;  
  v1[ 57]  = 89;  
  v2[ 57]  = 90;  
  v4[ 60]  = 87;  
  v5[ 57]  = 80;  
  v8[ 60]  = 78;  
   
  / / Step 6.6: Output for Volumes 
  f or  ( i  = 1;  i  <= 12;  i ++)  
  {  
   out f i l e << " Vol ume"  << "  Ver t ex"  << "  Shape = Pr i sm"  
      << "    Name = "  << i  << " , "  << endl   
      << "          ver t ex1 = "  << v1[ i ]  
      << "    ver t ex2 = "  << v2[ i ]  
      << "    ver t ex3 = "  << v3[ i ]  
      << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
      << "          ver t ex5 = "  << v5[ i ]  
      << "    ver t ex6 = "  << v6[ i ]  
      << endl ;  
  }  
    
  f or  ( i  = 13;  i  <= 20;  i ++)  
  {  
   out f i l e << " Vol ume"  << "  Ver t ex"  << "  Shape = Hex"   
      << "    Name = "  << i  << " , "  << endl  
      << "          ver t ex1 = "  << v1[ i ]  
      << "    ver t ex2 = "  << v2[ i ]  
      << "    ver t ex3 = "  << v3[ i ]  
      << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
      << "          ver t ex5 = "  << v5[ i ]  
      << "    ver t ex6 = "  << v6[ i ]  
      << "    ver t ex7 = "  << v7[ i ]  
      << "    ver t ex8 = "  << v8[ i ]  
      << endl ;  
  }  
 
  f or  ( i  = 21;  i  <= 24;  i ++)  
  {  
   out f i l e << " Vol ume"  << "  Ver t ex"  << "  Shape = Pr i sm"   
      << "    Name = "  << i  << " , "  << endl  
      << "          ver t ex1 = "  << v1[ i ]  
      << "    ver t ex2 = "  << v2[ i ]  
      << "    ver t ex3 = "  << v3[ i ]  
      << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
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      << "          ver t ex5 = "  << v5[ i ]  
      << "    ver t ex6 = "  << v6[ i ]  
      << endl ;  
  }  
 
  f or  ( i  = 25;  i  <= 62;  i ++)  
  {  
   out f i l e << " Vol ume"  << "  Ver t ex"  << "  Shape = Hex"   
      << "    Name = "  << i  << " , "  << endl  
      << "          ver t ex1 = "  << v1[ i ]  
      << "    ver t ex2 = "  << v2[ i ]  
      << "    ver t ex3 = "  << v3[ i ]  
      << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
      << "          ver t ex5 = "  << v5[ i ]  
      << "    ver t ex6 = "  << v6[ i ]  
      << "    ver t ex7 = "  << v7[ i ]  
      << "    ver t ex8 = "  << v8[ i ]  
      << endl ;  
  }  
    
 / / Step 7: Material Properties 
  out f i l e << " Mat er i al  El ast i c"  
   << "     Name = "  << 1 
   << "     E = "     << E1 
   << "     Nu = "    << nu1 
   << endl ;  
 
 out f i l e << " Mat er i al  El ast i c"  
   << "     Name = "  << 2 
   << "     E = "     << E2 
   << "     Nu = "    << nu2 
   << endl ;  
 
 / / Step 8: Element Groups 
 f or  ( i  = 1;  i  <= 2;  i ++)  
 {  
  out f i l e << " EGr oup Thr eeDSol i d"  
     << "     Name = "      << i  
     << "     Mat er i al  = "  << i  
     << endl ;  
 }  
 
 / / Step 9: Subdivision Data 
 out f i l e << " Subdi v i de Vol ume"  
    << "     Name = "   << 1 
    << "     NDi v1 = "  << ndi v1 
    << "     NDi v2 = "  << ndi v2 
    << "     NDi v3 = "  << ndi v3 
    << endl ;  
 
 f or  ( i  = 2;  i  <= 62;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 / / Step 10: Generate Elements 
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  / / Step 10.1: Surrounding Material (Matrix) 
  out f i l e << " GVol ume"  
     << "     Name = "   << 1 
     << "     Nodes = "  << el emnodes 
     << "     Gr oup = "  << 1 
     << "     Pr ef Shape = Hexahedr al "  
     << endl ;  
  
  f or  ( i  = 2;  i  <= 24;  i ++)  
  {  
   out f i l e << "     "  << i  
      << endl ;  
  }  
 
  / / Step 10.2: Interior Sphere 
  out f i l e << " GVol ume"  
     << "     Name = "   << 25 
     << "     Nodes = "  << el emnodes 
     << "     Gr oup = "  << 2 
     << "     Pr ef Shape = Hexahedr al "  
     << endl ;  
  
  f or  ( i  = 26;  i  <= 62;  i ++)  
  {  
   out f i l e << "     "  << i  
      << endl ;  
  }  
 
 / / Step 11: List Node Coordinates 
 out f i l e << " Fi l eLi st    Opt i on = Fi l e, "   << endl  
    << "            Fi l e = "    
    << node      << endl ;  
 
 out f i l e << " Li st  Coor di nat es Node   Fi r st  = 1   Last  = Al l , "
    << endl  
    << "                         Syst em = 0  Gl obal  = Yes"
    << endl ;  
     
 r et ur n 0;  
}  
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APPENDIX E 

DISCRETISATION OF UNIT CELL GEOMETRY FOR THE 
CYLINDRICAL MODEL 

The procedure used to discretise the geometry of the cylindrical model is 

the same as that used to discretise the spherical model. Steps 3 and 4 define a 

number of initially mapped points. Step 5 describes complex lines such as arcs 

and splines, and Step 6 defines the initial volumes. The constituent material 

properties are listed in Step 7, just as they are with the spherical model. In this 

appendix, however, plastic conditions are considered, while elastic conditions 

were studied in Appendix D. The commands that need to be changed in order 

to switch between plastic and elastic conditions are shown in italics (Sec. 2.1, 

2.3, 7). Finally, Steps 7, 8 and 9 describe the creation and generation of 

elements. It should be noted that this program does not produce a list of nodes 

useful for applying the boundary conditions of Appendix C to the final text file for 

ADINA. These commands may be found in Step 11 of Appendix D. 

E.1  C++ PROGRAM FOR DISCRETISATION OF CYLINDRICAL 
MODEL 

/ / CHCPP_GMD_1.1: Geometry-Material-Discretisation for Cylindrical 
/ /                Hexagonal-Closed-Packed Model 
/ /  
/ /      Last  Modi f i ed:  Aug.  10,  2003 
 
/ / Step 1: Preprocessor Directives 
#i ncl ude <i ost r eam> 
#i ncl ude <f st r eam> 
#i ncl ude <st dl i b. h> 
#i ncl ude <mat h. h> 
#i ncl ude <i omani p> 
 
usi ng namespace st d;  
 
i nt  mai n( )  
{  
 / / Step 2: Initial Information 
 / / Step 2.1: Variable Declarations 
 / / ( Const ant s)  
 const  doubl e PI  = 3. 14159265359;  
 const  i nt  MAX = 500;  
 const  i nt  MAXNAME = 80;  
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 / / ( Basi c Var i abl es)  
 i nt  i ,  k ;  
 char  dat e[ MAXNAME] ;  
 char  gmd[ MAXNAME] ;  
 / / ( 3&4:  Geomet r y Poi nt  Var i abl es)  
 doubl e x[ MAX] ,  y[ MAX] ,  z[ MAX] ;  
 doubl e r ho,  r hop;  
 doubl e al pha1p,  al pha1,  al pha2,  al pha3,  al pha4p;  
 doubl e bet a1,  bet a2,  bet a3;  
 doubl e gamma1,  gamma2,  gamma3,  gamma4,  gamma5,  gamma6;
 doubl e del t a;  
 doubl e a,  b,  c,  s,  c1,  c2,  c3;  
 doubl e x1,  x2,  z1,  z2;  
 doubl e zmi n,  ymi n,  xmi n,  ami n,  bmi n,  cmi n;  
 / / ( 5:  Li ne Ar c Var i abl es)  
 i nt  p1[ MAX] ,  p2[ MAX] ,  p3[ MAX] ;  
 / / ( 6:  Vol ume Var i abl es)  
 i nt  v1[ MAX] ,  v2[ MAX] ,  v3[ MAX] ,  v4[ MAX] ;  
 i nt  v5[ MAX] ,  v6[ MAX] ,  v7[ MAX] ,  v8[ MAX] ;  
 / / ( 7:  Mat er i al  Pr oper t y Var i abl es)  
 doubl e E1,  E2,  nu1,  nu2,  Y1,  Y2;  
 doubl e ET1,  ET2,  EPA1,  EPA2;  
 / / ( 9&10:  Di scr et i sat i on Var i abl es)  
 i nt  ndi v1,  ndi v2,  ndi v3,  el emnodes;  
  
 / / Step 2.2: Open Output File 
 cout  << " CHCPP_GMD_1. 1:  Geomet r y- Mat er i al - Di scr et i sat i on”  
           << “  f or  Cyl i ndr i cal  Hexagonal - Cl osed- Packed Model "  
         << endl  << endl ;  
 
 cout  << " STEP 1:  I ni t i al  I nf or mat i on"  << endl  
      << "     ( a)  Pr ovi de t he dat e ( M. D, Y) :   " ;  
 c i n >> dat e;  
 cout  << "     ( b)  Pr ovi de t he geomet r y- mat er i al -  
           << “ di scr et i sat i on f i l e name:   " ;  
 c i n >> gmd;  
 cout  << endl ;  
 cout  << "     NOTE:  Thi s f i l e does not  ask f or  a l i s t i ng”  

     << “  of   nodes. "  <<endl ;  
 cout  << endl ;  
 
 of st r eam out f i l e;     
 out f i l e. open( gmd) ;  
  
 i f  ( out f i l e. f ai l ( ) )  
 {  
 cout  << " WARNI NG:  The f i l e i n St ep 2. 2 was not ”  

  << “  opened. "  << endl ;  
    ex i t ( 1) ;  
 }  
  
 out f i l e << set i osf l ags( i os: : f i xed)  
    << set i osf l ags( i os: : showpoi nt )  
    << set pr eci s i on( 7) ;  
 
 out f i l e << " * "        << endl  
    << " *  GMD Fi l e cr eat ed on:  "   
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    << dat e       << endl ;  
 
 / / Step 2.3: Input from User 
 cout  << " STEP 2:  Vol ume Fr act i on I nf or mat i on f r om Radi i ”  
           << “  of  Cyl i nder s"  << endl  
      << "     I nput  t he r adi i  of  t he cyl i nder s:   " ;  
 c i n >> r ho;  
 cout  << endl ;  
 
 cout  << " STEP 3:  Mat er i al  Pr oper t i es"   << endl  
      << "     ( a)  The Mat r i x  Mat er i al "   << endl  
      << "         ( i )  I nput  t he Young' s Modul us [ MPa] :   " ;  
 c i n >> E1;  
 cout  << "         ( i i )  I nput  t he Poi sson' s Rat i o:        " ;  
 c i n >> nu1;  
 cout  << "         ( i i i )  I nput  t he Yi el d St r engt h [ MPa] :  " ;  
 c i n >> Y1;  
 cout  << "     ( b)  The Cyl i nder  Mat er i al "   << endl  
      << "         ( i )  I nput  t he Young' s Modul us [ MPa] :   " ;  
 c i n >> E2;  
 cout  << "         ( i i )  I nput  t he Poi sson' s Rat i o:        " ;  
 c i n >> nu2;  
 cout  << "         ( i i i )  I nput  t he Yi el d St r engt h [ MPa] :  " ;  
 c i n >> Y2;  
 cout  << endl ;  
 
 cout  << " STEP 4:  Di scr et i zat i on of  t he Model "  << endl  
      << "     ( a)  Subdi v i s i on Dat a"    << endl  
      << "         ( i )  I nput  f or  di r ect i on 1:             " ;  
 c i n >> ndi v1;  
 cout  << "         ( i i )  I nput  f or  di r ect i on 2:            " ;  
 c i n >> ndi v2;  
 cout  << "         ( i i i )  I nput  f or  di r ect i on 3:           " ;  
 c i n >> ndi v3;  
 cout  << "     ( b)  I nput  number  of  nodes per  el ement :     " ;  
 c i n >> el emnodes;  
 cout  << endl ;  
 
 / / Step 2.4: Initialize Variables 
 i  = k = 0;  
 a = b = c = c1 = c2 = c3 = s = 0;  
 ymi n = xmi n = ami n = bmi n = cmi n = 0;  
 x1 = x2 = 2. 0;  
 z1 = z2 = 0;  
 zmi n = 2 *  sqr t ( 2. 0) ;  
 
 al pha1p = at an( sqr t ( 2. 0) / 2) ;  
 al pha1 = ( PI / 2)  + al pha1p;  
 al pha2 = ( PI / 2)  -  al pha1p;  
 al pha3 = at an( 2 /  ( sqr t ( 2. 0) / 2) ) ;  
 al pha4p = at an( ( sqr t ( 2. 0) / 2)  /  2) ;  
       
 bet a1 = 60 *  ( PI / 180) ;  
 bet a2 = 30 *  ( PI / 180) ;  
 bet a3 = 75 *  ( PI / 180) ;  
 / / gamma1:  Def i ned i n St ep 4. 12  
 gamma2 = at an( sqr t ( 3. 0) / ( 1. 0/ cos( al pha1p) ) ) ;  
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 / / gamma3:  Def i ned i n St ep 4. 20,  gamma4:  Def i ned i n St ep 4. 20 
 / / gamma5:  Def i ned i n St ep 3. 9,  gamma6:  Def i ned i n St ep 3. 9 
  
 / / Step 3: Surrounding Phase (Matrix) Points 
 / / Step 3.1: Outer Points 
 x [ 1]  = 0;  
 y [ 1]  = 0;  
 z [ 1]  = 2 *  sqr t ( 2. 0) ;  
   
 x [ 2]  = 0;  
 y [ 2]  = 0;  
 z [ 2]  = 3/ sqr t ( 2. 0) ;  
 
 x [ 3]  = 1;  
 y [ 3]  = sqr t ( 3. 0) ;  
 z [ 3]  = 2 *  sqr t ( 2. 0) ;  
 
 x [ 4]  = 1;  
 y [ 4]  = sqr t ( 3. 0) ;  
 z [ 4]  = sqr t ( 2. 0) ;  
 
 x [ 5]  = 2;  
 y [ 5]  = 0;  
 z [ 5]  = 1/ sqr t ( 2. 0) ;  
 
 x [ 6]  = 3. 0/ 2. 0;  
 y [ 6]  = sqr t ( 3. 0) / 2;  
 z [ 6]  = ( 3/ sqr t ( 2. 0) ) / 2;  
 
 x [ 7]  = 1. 0/ 2. 0;  
 y [ 7]  = sqr t ( 3. 0) / 2;  
 z [ 7]  = ( 5/ sqr t ( 2. 0) ) / 2;  
 
 x [ 8]  = 2;  
 y [ 8]  = 0;  
 z [ 8]  = 2 *  sqr t ( 2. 0) ;  
 
 / / Step 3.2: Outer Circle of Top Cylinder on Left-Front Surface 
 x [ 101]  = ( x[ 1]  + x[ 3] ) / 2;  
 y [ 101]  = ( y[ 1]  + y[ 3] ) / 2;  
 z [ 101]  = 2 *  sqr t ( 2. 0) ;  
 
 s  = 1 -  r ho;  
 r hop = r ho + ( s/ 3) ;  
 
 f or  ( i  = 9;  i  <= 13;  i ++)  
 {  
  del t a = ( i  -  9)  *  ( PI / 4) ;  
    x [ i ]  = ( 1 + r hop *  cos( del t a) )  *  cos( bet a1) ;  
    y [ i ]  = ( 1 + r hop *  cos( del t a) )  *  s i n( bet a1) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r hop *  s i n( del t a) ) ;  
 }  
 

/ / Step 3.3: Points at Two-Thirds between Left-Front &  
/ /   Intersection 

 x [ 129]  = ( 3. 0/ 2. 0)  -  r ho;  
 y [ 129]  = ( sqr t ( 3. 0) / 6. 0)  *  ( 1. 0 + 2 *  r ho) ;  
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 z [ 129]  = 2 *  sqr t ( 2. 0) ;  
   
 x [ 14]  = x[ 15]  = ( 4. 0/ 3. 0)  *  ( 1. 0 -  r ho) ;  
 x [ 16]  = x[ 17]  = ( 1. 0/ 3. 0)  *  ( 5. 0 -  2 *  r ho) ;  
 x [ 18]  = x[ 129] ;  
 
 y [ 14]  = y[ 15]  = 0;  
 y [ 16]  = y[ 17]  = ( sqr t ( 3. 0) / 3. 0)  *  ( 1. 0 + 2 *  r ho) ;  
 y [ 18]  = y[ 129] ;  
 
 z [ 14]  = z[ 16]  = 2 *  sqr t ( 2. 0) ;  
 z [ 15]  = ( 1. 0/ ( 2 *  sqr t ( 2. 0) ) )  *  x[ 15]  + ( 3. 0/ sqr t ( 2. 0) ) ;  
 z [ 17]  = sqr t ( 2. 0)  *  x[ 17] ;  
 z [ 18]  = ( z[ 15]  + z[ 17] ) / 2. 0;  
 
 / / Step 3.4: Outer Circle at One-Third between Left-Front & 

/ /   Intersection 
 x [ 118]  = ( 1. 0/ 2. 0)  *  ( 2. 0 -  r ho) ;  
 y [ 118]  = ( sqr t ( 3. 0) / 6. 0)  *  ( 2. 0 + r ho) ;  
 z [ 118]  = 2 *  sqr t ( 2. 0) ;  
 
 f or  ( i  = 19;  i  <= 23;  i ++)  
 {  
  del t a = ( i  -  19)  *  ( PI / 4) ;  
    x [ i ]  = x[ 118]  + ( r hop *  cos( del t a)  *  cos( bet a1) ) ;  
    y [ i ]  = y[ 118]  + ( r hop *  cos( del t a)  *  s i n( bet a1) ) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r hop *  s i n( del t a) ) ;  
 }  
 
 / / Step 3.5: Points at One-Third between Left-Front Surface & 

/ /   Intersection 
 x [ 24]  = x[ 25]  = ( 2. 0/ 3. 0)  *  ( 1. 0 -  r ho) ;  
 x [ 26]  = x[ 27]  = ( 1. 0/ 3. 0)  *  ( 4. 0 -  r ho) ;  
 x [ 28]  = x[ 118] ;  
   
 y [ 24]  = y[ 25]  = 0;  
 y [ 26]  = y[ 27]  = ( sqr t ( 3. 0) / 3. 0)  *  ( 2. 0 + r ho) ;  
 y [ 28]  = y[ 118] ;  
 
 z [ 24]  = z[ 26]  = 2 *  sqr t ( 2. 0) ;  
 z [ 25]  = ( ( 1. 0/ ( 2 *  sqr t ( 2. 0) ) )  *  x[ 25] )  + ( 3. 0/ sqr t ( 2. 0) ) ;  
 z [ 27]  = sqr t ( 2. 0)  *  x[ 27] ;  
 z [ 28]  = ( z[ 25]  + z[ 27] ) / 2. 0;  
 
 / / Step 3.6: Points at One-Third between Bottom & Intersection 
 x [ 160]  = 2. 0;  
 y [ 160]  = 0;  
 z [ 160]  = ( 2 *  sqr t ( 2. 0) )  -  ( sqr t ( 3. 0)  *  r ho) ;  
 
 x [ 144]  = ( 2. 0 *  sqr t ( 3. 0)  -  r ho) / sqr t ( 3. 0) ;  
 y [ 144]  = r ho;  
 z [ 144]  = sqr t ( 2. 0)  *  x[ 144] ;  
 
 a = ( 1. 0/ 3. 0) ;  
 zmi n = 2 *  sqr t ( 2. 0) ;  
 z1 = 0;  
 x1 = 2. 0;  
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 whi l e ( z1 < zmi n)  
 {  
    x2 = x1;  
    x1 = x1 -  0. 01;  
 
    b = - ( ( ( 2 *  sqr t ( 2. 0) ) / 3. 0)  *  x1) ;  
    c  = ( ( 11. 0/ 3. 0)  *  pow( x1, 2) )  -  ( 12. 0 *  x1)  + 12 -  pow( r ho, 2) ;  
    z1 = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 
    i f  ( z1 < zmi n)  
    {  
  zmi n = z1;  
  z1 = 0;  
    }  
 }  
 / / The mi ni mum poi nt  val ues ar e zmi n and:  
 xmi n = x2;  
 ymi n = sqr t ( 3. 0)  *  ( 2. 0 -  x2) ;  
 
 z [ 161]  = zmi n + ( z[ 144]  -  zmi n) / 10. 0;  
 a = ( 11. 0/ 3. 0) ;  
 b = - ( ( ( 2 *  sqr t ( 2. 0) ) / 3. 0)  *  z[ 161]  + 12) ;  
 c  = ( 1. 0/ 3. 0)  *  pow( z[ 161] , 2)  + 12 -  pow( r ho, 2) ;  
 x [ 161]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 y [ 161]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ 161] ) ;  
   
 x [ 29]  = 2. 0;  
 y [ 29]  = 0;  
 z [ 29]  = z[ 5]  + ( 7. 0/ 24. 0)  *  ( z[ 160]  -  z [ 5] ) ;  
 
 x [ 30]  = ( 7. 0/ 24. 0)  *  ( x[ 161]  -  x [ 6] )  + x[ 6] ;  
 y [ 30]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ 30] ) ;  
 z [ 30]  = ( 7. 0/ 24. 0)  *  ( z[ 161]  -  z [ 6] )  + z[ 6] ;  
 
 / / Step 3.7: Points at Two-Thirds between Bottom & Intersection 
 x [ 31]  = 2. 0;  
 y [ 31]  = 0;  
 z [ 31]  = z[ 5]  + ( 7. 0/ 12. 0)  *  ( z[ 160]  -  z [ 5] ) ;  
 
 x [ 32]  = ( 7. 0/ 12. 0)  *  ( x[ 161]  -  x [ 6] )  + x[ 6] ;  
 y [ 32]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ 32] ) ;  
 z [ 32]  = ( 7. 0/ 12. 0)  *  ( z[ 161]  -  z [ 6] )  + z[ 6] ;  
 
 / / Step 3.8: Outer Circle of Back Cylinder on Bottom Surface 
 x [ 149]  = 1. 0;  
 y [ 149]  = 0;  
 z [ 149]  = sqr t ( 2. 0) ;  
   
 s  = ( s i n( gamma2) / cos( al pha1p) )  -  r ho;  
 r hop = r ho + ( s) / 3;  
     
 f or  ( i  = 33;  i  <= 37;  i ++)  
 {  
  del t a = ( i  -  33)  *  ( PI / 4) ;  
    x [ i ]  = x[ 149]  + ( r hop *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 149]  + ( r hop *  s i n( del t a) ) ;  
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    z [ i ]  = z[ 149]  -  ( r hop *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
 
 / / Step 3.9: Outer Circle of Back Cylinder at One-Third between 

/ /   Bottom & Intersection 
 a = 9. 0/ 4. 0;  
 b = - ( 9 -  2 *  sqr t ( 6. 0)  *  r ho) ;  
 c  = ( 2 *  pow( r ho, 2) )  -  ( 4 *  sqr t ( 6. 0)  *  r ho)  + 9. 0;  
 x [ 141]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 z [ 141]  = ( sqr t ( 2. 0)  *  x[ 141] )  + ( sqr t ( 3. 0)  *  r ho) ;  
 y [ 141]  = 0;  
   
 x [ 164]  = ( x[ 141]  + x[ 160] ) / 2. 0;  
 y [ 164]  = 0;  
 z [ 164]  = ( z[ 141]  + z[ 160] ) / 2. 0;    
   
 ami n = sqr t ( pow( ( 2. 0 -  xmi n) , 2. 0)  + pow( ymi n, 2. 0) ) ;  
 gamma5 = at an( ami n/ ( zmi n -  z[ 5] ) ) ;  
 gamma6 = al pha3 -  gamma5;  
 bmi n = ( 1/ sqr t ( 2. 0) )  *  t an( gamma6) ;  
 cmi n = ( bmi n *  s i n( gamma6 + al pha4p) ) / s i n( al pha2) ;  
     
 x1 = x[ 149]  + ( 1. 0/ 3. 0)  *  cmi n *  cos( al pha2) ;  
 z1 = z[ 149]  + ( 1. 0/ 3. 0)  *  cmi n *  s i n( al pha2) ;  
 
 x2 = x[ 149]  + ( 1. 0/ 3. 0)  *  ( x[ 164]  -  x [ 149] ) ;  
 z2 = z[ 149]  + ( 1. 0/ 3. 0)  *  ( z[ 164]  -  z [ 149] ) ;  
   
 i f  ( x1 <= x2)  
 {  
    x [ 170]  = x1;  
    z [ 170]  = z1;  
 }  
 el se 
 {  
    x [ 170]  = x2;  
    z [ 170]  = z2;  
 }  
 y [ 170]  = 0;  
 
 f or  ( i  = 38;  i  <= 42;  i ++)  
 {  
  del t a = ( i  -  38)  *  ( PI / 4) ;  
    x [ i ]  = x[ 170]  + ( r hop *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 170]  + ( r hop *  s i n( del t a) ) ;  
    z [ i ]  = z[ 170]  -  ( r hop *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
   
 / / Step 3.10: Output for Matrix Geometry Points 
 out f i l e << " * "        << endl  
    << " *    Geomet r y Poi nt s"     << endl  
    << " Coor di nat es Poi nt  Syst em = 0"  << endl  
    << " *  Poi nt "   
    << set w( 10)   << " X"  
    << set w( 13)   << " Y"   
    << set w( 15)   << " Z"      << endl  
    << " *       Mat r i x  Poi nt s"     << endl ;  
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 f or  ( i  = 1;  i  <= 42;  i ++)  
 {  
  out f i l e << set w( 5)   << i   
     << set w( 15)  << x[ i ]   
     << set w( 15)  << y[ i ]   
     << set w( 15)  << z[ i ]     << endl ;  
 }  
 
 / / Step 4: Cylinder Points 
 / / Step 4.1: Circle of Top Cylinder on Left-Front Surface 
 / / Not e:  Poi nt  101 was i nput  i n St ep 3. 2 
 f or  ( i  = 102;  i  <= 106;  i ++)  
 {  
     del t a = ( i  -  102)  *  ( PI / 4) ;  
  x [ i ]  = ( 1 + r ho *  cos( del t a) )  *  cos( bet a1) ;  
  y [ i ]  = ( 1 + r ho *  cos( del t a) )  *  s i n( bet a1) ;  
  z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r ho *  s i n( del t a) ) ;  
 }  
   
 / / Step 4.2: Inner Circle of Top Cylinder on Left-Front Surface 
 f or  ( i  = 107;  i  <= 111;  i ++)  
 {  
  del t a = ( i  -  107)  *  ( PI / 4) ;  
    x [ i ]  = ( 1 + ( r ho/ 2. 0)  *  cos( del t a) )  *  cos( bet a1) ;  
    y [ i ]  = ( 1 + ( r ho/ 2. 0)  *  cos( del t a) )  *  s i n( bet a1) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
 }  
   
 / / Step 4.3: Inner Circle of Top Cylinder at Intersection 
 x [ 112]  = 2. 0 -  ( 3. 0/ 2. 0)  *  r ho;  
 y [ 112]  = ( sqr t ( 3. 0) / 2. 0)  *  r ho;  
 z [ 112]  = 2 *  sqr t ( 2. 0) ;  
   
 f or  ( i  = 113;  i  <= 117;  i ++)  
 {  
  del t a = ( i  -  113)  *  ( PI / 4) ;  
    x [ i ]  = x[ 112]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( bet a1) ) ;  
    y [ i ]  = y[ 112]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( bet a1) ) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
 }  
 
 / / Step 4.4: Circle of Top Cylinder at One-Third between Left- 

/ /   Front & Intersection 
 / / Not e:  Poi nt  118 was i nput  i n St ep 3. 4 
 f or  ( i  = 119;  i  <= 123;  i ++)  
 {  
  del t a = ( i  -  119)  *  ( PI / 4) ;  
    x [ i ]  = x[ 118]  + ( r ho *  cos( del t a)  *  cos( bet a1) ) ;  
    y [ i ]  = y[ 118]  + ( r ho *  cos( del t a)  *  s i n( bet a1) ) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r ho *  s i n( del t a) ) ;  
 }  
   
 / / Step 4.5: Inner Circle of Top Cylinder at One-Third between 

/ /   Left-Front & Intersection 
 f or  ( i  = 124;  i  <= 128;  i ++)  
 {  
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  del t a = ( i  -  124)  *  ( PI / 4) ;  
    x [ i ]  = x[ 118]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( bet a1) ) ;  
    y [ i ]  = y[ 118]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( bet a1) ) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
 }  
 
 / / Step 4.6: Circle of Top Cylinder at Two-Thirds between Left- 

/ /   Front & Intersection 
 / / Not e:  Poi nt  129 was i nput  i n St ep 3. 3 
 f or  ( i  = 130;  i  <= 134;  i ++)  
 {  
  del t a = ( i  -  130)  *  ( PI / 4) ;  
    x [ i ]  = x[ 129]  + ( r ho *  cos( del t a)  *  cos( bet a1) ) ;  
    y [ i ]  = y[ 129]  + ( r ho *  cos( del t a)  *  s i n( bet a1) ) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( r ho *  s i n( del t a) ) ;  
 }  
 
 / / Step 4.7: Inner Circle of Top Cylinder at Two-Thirds between 

/ /   Left-Front & Intersection 
 f or  ( i  = 135;  i  <= 139;  i ++)  
 {  
  del t a = ( i  -  135)  *  ( PI / 4) ;  
    x [ i ]  = x[ 129]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( bet a1) ) ;  
    y [ i ]  = y[ 129]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( bet a1) ) ;  
    z [ i ]  = ( 2 *  sqr t ( 2. 0) )  -  ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
 }  
   
 / / Step 4.8: Pseudo-Circle of Top Cylinder at Intersection 

/ / Not e:  Poi nt  144 was i nput  i n St ep 3. 6 & Poi nt  141 was i nput  i n 
/ /    St ep 3. 9   

 x [ 140]  = 2 *  ( 1 -  r ho) ;  
 y [ 140]  = y[ 142]  = 0;  
 z [ 140]  = z[ 143]  = 2 *  sqr t ( 2. 0) ;  
 
 a = 1. 0/ 4. 0;  
 b = - 1. 0;  
 z [ 142]  = ( z[ 140]  + z[ 141] ) / 2. 0;  
 c  = pow( z[ 142] , 2)  -  ( 4 *  sqr t ( 2. 0)  *  z[ 142] )  + 9. 0 -  pow( r ho, 2) ;  
 x [ 142]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 
 x [ 143]  = 2. 0 -  r ho;  
 y [ 143]  = sqr t ( 3. 0)  *  r ho;  
 
 a = 1. 0;  
 b = - 4. 0;  
 z [ 145]  = ( z[ 143]  + z[ 144] ) / 2. 0;  

c = pow( z[ 145] , 2) - ( 4 *  sqr t ( 2. 0)  *  z[ 145] )  + 12. 0 -  pow( r ho, 2) ;  
 x [ 145]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 y [ 145]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ 145] ) ;  
 
 y [ 146]  = 0. 82 *  r ho;  
 y [ 147]  = 0. 41 *  r ho;  
 y [ 148]  = 0. 94 *  r ho;  
 
 f or  ( i  = 146;  i  <= 148;  i ++)  
 {  
    a = 2 -  ( sqr t ( 3. 0) / 9. 0)  *  y[ i ] ;  
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    c1 = - 3 *  pow( y[ i ] , 2) ;  
    c2 = 2* pow( ( c1+3* pow( r ho, 2) ) , 0. 5) * sqr t ( 2. 0) * sqr t ( 3. 0) * y[ i ] ;  
    c3 = 6 *  pow( r ho, 2) ;  
    b = - ( 4. 0/ 9. 0)  *  pow( ( c1 + 3 *  pow( r ho, 2) ) , 0. 5)  *  sqr t ( 2. 0) ;  
    c  = - ( 2. 0/ 9. 0)  *  pow( ( c1 + c2 + c3) , 0. 5) ;  
    
    x [ i ]  = a + b + c;  
    z [ i ]  = sqr t ( 2. 0)  *  x[ i ]  + pow( ( c1 + 3 *  pow( r ho, 2) ) , 0. 5) ;  
 }  
 / / Step 4.9: Circle of Back Cylinder on Bottom Surface 
 / / Not e:  Poi nt  149 was i nput  i n St ep 3. 8 
 f or  ( i  = 150;  i  <= 154;  i ++)  
 {  
  del t a = ( i  -  150)  *  ( PI / 4) ;  
    x [ i ]  = x[ 149]  + ( r ho *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 149]  + ( r ho *  s i n( del t a) ) ;  
    z [ i ]  = z[ 149]  -  ( r ho *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
 
 / / Step 4.10: Inner Circle of Back Cylinder on Bottom Surface 
 f or  ( i  = 155;  i  <= 159;  i ++)  
 {  
  del t a = ( i  -  155)  *  ( PI / 4) ;  
    x [ i ]  = x[ 149]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 149]  + ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
    z [ i ]  = z[ 149]  -  ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
 
 / / Step 4.11: Pseudo-Circle of Back Cylinder at Intersection 
 / / Not e:  Poi nt s 160 & 161 wer e i nput  i n St ep 3. 6 
 x[ 162]  = ( x[ 160]  + xmi n) / 2. 0;  
 a = ( 1. 0/ 3. 0) ;  
 b = - ( ( ( 2 *  sqr t ( 2. 0) ) / 3. 0)  *  x[ 162] ) ;  
 c  = ( ( 11. 0/ 3. 0) * pow( x[ 162] , 2) ) - ( 12. 0* x[ 162] ) +12- pow( r ho, 2) ;  
 z [ 162]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 
 z [ 163]  = ( z[ 144]  + zmi n) / 2. 0;  
 a = ( 11. 0/ 3. 0) ;  
 b = - ( ( ( 2 *  sqr t ( 2. 0) ) / 3. 0)  *  z[ 163]  + 12) ;  
 c  = ( 1. 0/ 3. 0)  *  pow( z[ 163] , 2)  + 12 -  pow( r ho, 2) ;  
 x [ 163]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 
 f or  ( i  = 162;  i  <= 163;  i ++)  
  y [ i ]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ i ] ) ;  
 
 / / Step 4.12: Inner Circle of Back Cylinder at Intersection 
 / / Not e:  Poi nt  164 was i nput  i n St ep 3. 9   
 gamma1 = at an( ( z[ 141]  -  z [ 160] ) / ( x[ 160]  -  x [ 141] ) ) ;  
 
 f or  ( i  = 165;  i  <= 169;  i ++)  
 {  
  del t a = ( i  -  165)  *  ( PI / 4) ;  
    x [ i ]  = x[ 164]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( gamma1) ) ;  
    y [ i ]  = y[ 164]  + ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
    z [ i ]  = z[ 164]  -  ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( gamma1) ) ;  
 }  
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 / / Step 4.13: Circle of Back Cylinder at One-Third between Bottom 
/ /    & Intersection 

 / / Not e:  Poi nt  170 was i nput  i n St ep 3. 9 
 f or  ( i  = 171;  i  <= 175;  i ++)  
 {  
  del t a = ( i  -  171)  *  ( PI / 4) ;  
    x [ i ]  = x[ 170]  + ( r ho *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 170]  + ( r ho *  s i n( del t a) ) ;  
    z [ i ]  = z[ 170]  -  ( r ho *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
 
 / / Step 4.14: Inner Circle of Back Cylinder at One-Third between 

/ /    Bottom & Intersection 
 f or  ( i  = 176;  i  <= 180;  i ++)  
 {  
  del t a = ( i  -  176)  *  ( PI / 4) ;  
    x [ i ]  = x[ 170]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 170]  + ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
    z [ i ]  = z[ 170]  -  ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
 
 / / Step 4.15: Circle of Back Cylinder at Two-Thirds between 

/ /    Bottom & Intersection 
 x1 = x[ 149]  + ( 2. 0/ 3. 0)  *  cmi n *  cos( al pha2) ;  
 z1 = z[ 149]  + ( 2. 0/ 3. 0)  *  cmi n *  s i n( al pha2) ;  
 
 x2 = x[ 149]  + ( 2. 0/ 3. 0)  *  ( x[ 164]  -  x [ 149] ) ;  
 z2 = z[ 149]  + ( 2. 0/ 3. 0)  *  ( z[ 164]  -  z [ 149] ) ;  
 
 i f  ( x1 <= x2)  
 {  
  x [ 181]  = x1;  
  z [ 181]  = z1;  
 }  
 el se 
 {  
  x [ 181]  = x2;  
  z [ 181]  = z2;  
 }  
 y [ 181]  = 0;  
 
 f or  ( i  = 182;  i  <= 186;  i ++)  
 {  
  del t a = ( i  -  182)  *  ( PI / 4) ;  
    x [ i ]  = x[ 181]  + ( r ho *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 181]  + ( r ho *  s i n( del t a) ) ;  
    z [ i ]  = z[ 181]  -  ( r ho *  cos( del t a)  *  s i n( al pha1p) ) ;  
 }  
 
 / / Step 4.16: Inner Circle of Back Cylinder at Two-Thirds between 

/ /    Bottom & Intersection 
 f or  ( i  = 187;  i  <= 191;  i ++)  
 {  
  del t a = ( i  -  187)  *  ( PI / 4) ;  
    x [ i ]  = x[ 181]  + ( ( r ho/ 2. 0)  *  cos( del t a)  *  cos( al pha1p) ) ;  
    y [ i ]  = y[ 181]  + ( ( r ho/ 2. 0)  *  s i n( del t a) ) ;  
    z [ i ]  = z[ 181]  -  ( ( r ho/ 2. 0)  *  cos( del t a)  *  s i n( al pha1p) ) ;  
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 }  
 
 / / Step 4.17: First Layer of Cylinder Intersection 
 x [ 192]  = 2. 0 -  ( r ho/ 2. 0)  *  ( 2. 0 + sqr t ( 3. 0/ 2. 0) ) ;  
 y [ 192]  = 0;  
 z [ 192]  = 2 *  sqr t ( 2. 0) ;  
 
 x1 = ( r ho/ 2. 0)  *  ( 2. 0 + sqr t ( 3. 0/ 2. 0) ) ;  
 a = 9. 0;  
 b = - ( 36. 0 -  ( 8 *  sqr t ( 6. 0)  *  r ho) ) ;  
 c  = ( ( 12* pow( r ho, 2) ) - ( 16* sqr t ( 6. 0) * r ho) +36. 0- pow( x1, 2) ) ;  
 x [ 193]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a * c) ) / ( 2 *  a) ;  
 y [ 193]  = 0;  
 z [ 193]  = ( sqr t ( 2. 0)  *  x[ 193] )  + ( sqr t ( 3. 0)  *  r ho) ;  
 
 z [ 194]  = ( z[ 192]  + z[ 193] ) / 2. 0;  
 a = 1. 0;  
 b = - 4. 0;  
 c  = ( ( 4* pow( z[ 194] , 2) ) - ( 16* sqr t ( 2. 0) * z[ 194] ) +36. 0- pow( x1, 2) ) ;  
 x [ 194]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a *  c) ) / ( 2 *  a) ;  
 y [ 194]  = 0;  
 
 x [ 195]  = 2. 0 -  ( r ho/ 2. 0)  *  ( 1. 0 + sqr t ( 3. 0/ 11. 0) ) ;  
 y [ 195]  = ( sqr t ( 3. 0) / 2. 0)  *  r ho *  ( 1. 0 + sqr t ( 3. 0/ 11. 0) ) ;  
 z [ 195]  = 2 *  sqr t ( 2. 0) ;  
 
 x [ 196]  = 2. 0 -  ( sqr t ( 3. 0/ 11. 0)  *  r ho) ;  
 y [ 196]  = 3. 0/ sqr t ( 11. 0)  *  r ho;  
 z [ 196]  = ( ( 2 *  sqr t ( 2. 0) )  + z[ 144] ) / 2. 0;  
 
 z [ 197]  = z[ 196]  + ( z[ 195]  -  z [ 196] ) / 4. 0;  
 x1 = r ho *  ( 1. 0 + sqr t ( 3. 0/ 11. 0) ) ;  
 a = 1. 0;  
 b = - 4. 0;  
 c  = ( pow( z[ 197] , 2) - ( 4. 0* sqr t ( 2. 0) * z[ 197] ) +12. 0- pow( ( x1/ 2. 0) , 2) ) ;  
 x [ 197]  = ( - b -  sqr t ( pow( b, 2. 0)  -  4 *  a *  c) ) / ( 2 *  a) ;  
 y [ 197]  = sqr t ( 3. 0)  *  ( 2. 0 -  x[ 197] ) ;  
 
 x [ 198]  = ( x[ 193]  + x[ 196] ) / 2. 0;  
 y [ 198]  = ( y[ 193]  + y[ 196] ) / 2. 0;  
 z [ 198]  = ( z[ 193]  + z[ 196] ) / 2. 0;  
 
 / / Step 4.18: Third Layer of Cylinder Intersection 
 x [ 199]  = 2. 0 -  sqr t ( 3. 0/ 2. 0)  *  r ho;  
 y [ 199]  = 0;  
 z [ 199]  = z[ 200]  = z[ 201]  = 2 *  sqr t ( 2. 0) ;  
 
 x [ 200]  = 2. 0* ( 1. 0- ( sqr t ( 3. 0) / sqr t ( 11. 0) ) * r ho* cos( bet a1) ) ;  
 y [ 200]  = 2. 0 *  ( sqr t ( 3. 0) / sqr t ( 11. 0) )  *  r ho *  s i n( bet a1) ;  
   
 x [ 201]  = ( x[ 199]  + x[ 200] ) / 2. 0;  
 y [ 201]  = ( y[ 199]  + y[ 200] ) / 2. 0;  
   
 / / Step 4.19: Fourth Layer of Cylinder Intersection 
 x [ 202]  = 2. 0 -  ( sqr t ( 3. 0) / sqr t ( 11. 0) )  *  r ho *  cos( bet a1) ;  
 y [ 202]  = ( sqr t ( 3. 0) / sqr t ( 11. 0) )  *  r ho *  s i n( bet a1) ;  
 z [ 202]  = z[ 203]  = 2 *  sqr t ( 2. 0) ;  
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 x [ 203]  = 2. 0 -  sqr t ( 3. 0/ 2. 0)  *  ( r ho/ 2. 0) ;  
 y [ 203]  = 0;  
 
 f or  ( i  = 204;  i  <= 208;  i ++)  
 {  
  del t a = ( i  -  204)  *  ( PI / 4) ;  
    x [ i ]  = x[ 203]  + ( r ho/ 3. 0)  *  cos( del t a) ;  
    y [ i ]  = y[ 203]  + ( r ho/ 3. 0)  *  s i n( del t a) ;  
    z [ i ]  = z[ 203] ;  
 }  
 
 / / Step 4.20: Second Layer of Cylinder Intersection 
 x [ 209]  = 2. 0;  
 y [ 209]  = 0;  
 z [ 209]  = ( z[ 8]  + z[ 160] ) / 2. 0;  
 
 x [ 210]  = ( x[ 196]  + x[ 209] ) / 2. 0;  
 y [ 210]  = ( y[ 196]  + y[ 209] ) / 2. 0;  
 z [ 210]  = ( z[ 196]  + z[ 209] ) / 2. 0;  
 
 x [ 211]  = ( x[ 193]  + x[ 209] ) / 2. 0;  
 y [ 211]  = 0;  
 z [ 211]  = ( z[ 193]  + z[ 209] ) / 2. 0;  
 
 gamma3 = at an( ( z[ 193]  -  z [ 209] ) / ( x[ 209]  -  x [ 193] ) ) ;  
 c  = sqr t ( pow( ( y[ 144] - y[ 209] ) , 2. 0) +pow( ( x[ 209] - x[ 144] ) , 2. 0) ) ;  
 gamma4 = at an( ( z[ 196]  -  z [ 209] ) / c) ;  
 
 f or  ( i  = 212;  i  <= 216;  i ++)  
 {  
  del t a = ( i  -  212)  *  ( PI / 4) ;  
    x [ i ]  = x[ 211]  + ( ( r ho/ 3. 0)  *  cos( del t a)  *  cos( gamma3) ) ;  
    y [ i ]  = y[ 211]  + ( ( r ho/ 3. 0)  *  s i n( del t a)  *  cos( gamma4) ) ;  
    c1 = ( r ho/ 3. 0)  *  cos( del t a)  *  s i n( gamma3) ;  
    c2 = ( r ho/ 3. 0)  *  s i n( del t a)  *  s i n( gamma4) ;  
    z [ i ]  = z[ 211]  -  ( c1)  + ( c2) ;  
 }  
 
 / / Step 4.21: Output for Cylinder Geometry Points 
 out f i l e << " *       Cyl i nder  Poi nt s"  << endl ;  
 
 f or  ( i  = 101;  i  <= 216;  i ++)  
 {  
  out f i l e << set w( 5)   << i  
          << set w( 15)  << x[ i ]  
     << set w( 15)  << y[ i ]  
     << set w( 15)  << z[ i ]  << endl ;  
 }  
      
 / / Step 5: Arc Lines and Splines 
 / / Step 5.1: Block Layers along Top Surface 
 f or  ( i  = 1;  i  <= 4;  i ++)  
 {  
  k  = i  -  1;  
    p1[ i ]  = 102 + k;  
    p2[ i ]  = 103 + k;  
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    p3[ i ]  = 101;  
    
    p1[ i  + 4]  = 107 + k;  
    p2[ i  + 4]  = 108 + k;  
    p3[ i  + 4]  = 101;  
    
    p1[ i  + 8]  = 113 + k;  
    p2[ i  + 8]  = 114 + k;  
    p3[ i  + 8]  = 112;  
 
    p1[ i  + 12]  = 119 + k;  
    p2[ i  + 12]  = 120 + k;  
    p3[ i  + 12]  = 118;  
   
    p1[ i  + 16]  = 124 + k;  
    p2[ i  + 16]  = 125 + k;  
    p3[ i  + 16]  = 118;  
 
    p1[ i  + 20]  = 130 + k;  
    p2[ i  + 20]  = 131 + k;  
    p3[ i  + 20]  = 129;  
 
    p1[ i  + 24]  = 135 + k;  
    p2[ i  + 24]  = 136 + k;  
    p3[ i  + 24]  = 129;  
 }  
 
 p1[ 29]  = p1[ 31]  = 141;  
 p1[ 30]  = p3[ 32]  = 144;  
 p1[ 32]  = p3[ 31]  = 146;  
 
 p2[ 29]  = 142;  
 p2[ 30]  = 145;  
 p2[ 31]  = 147;  
 p2[ 32]  = 148;  
 
 p3[ 29]  = 140;  
 p3[ 30]  = 143;  
 
 / / Step 5.2: Block Layers along Back Surface 
 f or  ( i  = 33;  i  <= 36;  i ++)  
 {  
  k  = i  -  33;  
    p1[ i ]  = 150 + k;  
    p2[ i ]  = 151 + k;  
    p3[ i ]  = 149;  
 
    p1[ i  + 4]  = 155 + k;  
    p2[ i  + 4]  = 156 + k;  
    p3[ i  + 4]  = 149;  
 
    p1[ i  + 10]  = 165 + k;  
    p2[ i  + 10]  = 166 + k;  
    p3[ i  + 10]  = 164;  
 
    p1[ i  + 14]  = 171 + k;  
    p2[ i  + 14]  = 172 + k;  
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    p3[ i  + 14]  = 170;  
 
    p1[ i  + 18]  = 176 + k;  
    p2[ i  + 18]  = 177 + k;  
    p3[ i  + 18]  = 170;  
 
    p1[ i  + 22]  = 182 + k;  
    p2[ i  + 22]  = 183 + k;  
    p3[ i  + 22]  = 181;  
 
    p1[ i  + 26]  = 187 + k;  
    p2[ i  + 26]  = 188 + k;  
    p3[ i  + 26]  = 181;  
 }  
   
 f or  ( i  = 41;  i  <= 42;  i ++)  
 {  
  k  = i  -  41;  
    p1[ i ]  = 160 + k;  
    p2[ i ]  = 162 + k;  
    p3[ i ]  = 161 -  ( 17 *  k) ;  
 }  
 
 / / Step 5.3: Block Layers at Cylinder Intersection 
 f or  ( i  = 63;  i  <= 66;  i ++)  
 {  
  k  = i  -  63;  
    p1[ i ]  = 212 + k;  
    p2[ i ]  = 213 + k;  
    p3[ i ]  = 211;  
 
    p1[ i  + 4]  = 204 + k;  
    p2[ i  + 4]  = 205 + k;  
    p3[ i  + 4]  = 203;  
 }  
 
 / / Step 5.4: Extra Arcs to Solve a Problem 
 f or  ( i  = 71;  i  <= 74;  i ++)  
 {  
  k  = i  -  71;  
    p1[ i ]  = 9 + k;  
    p2[ i ]  = 10 + k;  
    p3[ i ]  = 101;  
 
    p1[ i  + 4]  = 19 + k;  
    p2[ i  + 4]  = 20 + k;  
    p3[ i  + 4]  = 118;  
 
    p1[ i  + 8]  = 33 + k;  
    p2[ i  + 8]  = 34 + k;  
    p3[ i  + 8]  = 149;  
 
    p1[ i  + 12]  = 38 + k;  
    p2[ i  + 12]  = 39 + k;  
    p3[ i  + 12]  = 170;  
 }  
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 / / Step 5.5: Output for Arc Lines & Splines 
 f or  ( i  = 1;  i  <= 28;  i ++)  
 {  
  out f i l e << " Li ne Ar c"  
     << "    Name = "     << i  
     << "    P1 = "       << p1[ i ]  
     << "    P2 = "       << p2[ i ]  
     << "    Cent r e = "   << p3[ i ]   
     << endl ;  
 }  
 
 f or  ( i  = 29;  i  <= 32;  i ++)  
 {  
  out f i l e << " Li ne Pol y l i ne"  
     << "    Name = "    << i  
     << "    Type = Spl i ne"   << endl  
     << p1[ i ]     << endl  
     << p2[ i ]     << endl  
     << p3[ i ]     << endl ;  
 }  
 
 f or  ( i  = 33;  i  <= 40;  i ++)  
 {  
  out f i l e << " Li ne Ar c"  
     << "    Name = "     << i  
     << "    P1 = "       << p1[ i ]  
     << "    P2 = "       << p2[ i ]  
     << "    Cent r e = "   << p3[ i ]   
     << endl ;  
 }  
 
 f or  ( i  = 41;  i  <= 42;  i ++)  
 {  
  out f i l e << " Li ne Pol y l i ne"  
     << "    Name = "    << i  
     << "    Type = Spl i ne"   << endl  
     << p1[ i ]     << endl  
     << p2[ i ]     << endl  
     << p3[ i ]     << endl ;  
 }  
 
 f or  ( i  = 43;  i  <= 86;  i ++)  
 {  
  out f i l e << " Li ne Ar c"  
     << "    Name = "     << i  
     << "    P1 = "       << p1[ i ]  
     << "    P2 = "       << p2[ i ]  
     << "    Cent r e = "   << p3[ i ]   
     << endl ;  
 }  
 
 / / Step 6: Volumes 
 / / Step 6.1: First Matrix Block Layer along Top Surface 
 f or  ( i  = 1;  i  <= 4;  i ++)  
 {  
  k  = i  -  1;  
    v1[ i ]  = v5[ i  + 4]  = 9 + k;  
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    v2[ i ]  = v6[ i  + 4]  = 10 + k;   
    v3[ i ]  = v7[ i  + 4]  = 20 + k;  
    v4[ i ]  = v8[ i  + 4]  = 19 + k;  
 }  
 
 f or  ( i  = 1;  i  <= 2;  i ++)  
 {  
  k  = i  -  1;  
    v5[ i ]  = 3 + k;  
    v6[ i ]  = 4 + ( 3 *  k) ;  
    v7[ i ]  = 27 + k;  
    v8[ i ]  = 26 + k;  
    v5[ i  + 2]  = 7 -  ( 5 *  k) ;  
    v6[ i  + 2]  = 2 -  k;  
    v7[ i  + 2]  = 25 -  k;  
    v8[ i  + 2]  = 28 -  ( 3 *  k) ;  
 }  
 
 f or  ( i  = 5;  i  <= 8;  i ++)  
 {  
  k  = i  -  5;  
    v1[ i ]  = 102 + k;  
    v2[ i ]  = 103 + k;  
    v3[ i ]  = 120 + k;  
    v4[ i ]  = 119 + k;  
 }  
 
 / / Step 6.2: First Cylinder Block Layer along Top Surface 
 f or  ( i  = 9;  i  <= 12;  i ++)  
 {  
  k  = i  -  9;  
    v1[ i ]  = 107 + k;  
    v2[ i ]  = 108 + k;  
    v3[ i ]  = 125 + k;  
    v4[ i ]  = 124 + k;  
    v5[ i ]  = 102 + k;  
    v6[ i ]  = 103 + k;  
    v7[ i ]  = 120 + k;  
    v8[ i ]  = 119 + k;  
 }  
 
 f or  ( i  = 13;  i  <= 14;  i ++)  
 {  
  k  = i  -  13;  
    v1[ i ]  = 101 + ( 10 *  k) ;  
    v2[ i ]  = 109 + k;  
    v3[ i ]  = 126 + k;  
    v4[ i ]  = 118 + ( 10 *  k) ;  
    v5[ i ]  = 107 -  ( 6 *  k) ;  
    v6[ i ]  = 108 + k;  
    v7[ i ]  = 125 + k;  
    v8[ i ]  = 124 -  ( 6 *  k) ;  
 }  
 
 / / Step 6.3: Second Matrix Block Layer along Top Surface 
 f or  ( i  = 15;  i  <= 18;  i ++)  
 {  
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  k  = i  -  15;  
    v2[ i ]  = 19 + k;  
    v3[ i ]  = 20 + k;     
 }  
 
 f or  ( i  = 15;  i  <= 16;  i ++)  
 {  
  k  = i  -  15;  
    v1[ i ]  = 16 + k;  
    v4[ i ]  = 17 + k;  
    v5[ i ]  = 26 + k;  
    v6[ i ]  = 27 + k;  
    v1[ i  + 2]  = 18 -  ( 3 *  k) ;  
    v4[ i  + 2]  = 15 -  k;  
    v5[ i  + 2]  = 28 -  ( 3 *  k) ;  
    v6[ i  + 2]  = 25 -  k;  
    v7[ i  + 4]  = 17 + k;  
    v8[ i  + 4]  = 16 + k;  
    v7[ i  + 6]  = 15 -  k;  
    v8[ i  + 6]  = 18 -  ( 3 *  k) ;  
 }  
 
 f or  ( i  = 19;  i  <= 22;  i ++)  
 {  
  k  = i  -  19;  
    v1[ i ]  = 119 + k;  
    v2[ i ]  = 120 + k;  
    v3[ i ]  = 131 + k;  
    v4[ i ]  = 130 + k;  
    v5[ i ]  = 19 + k;  
    v6[ i ]  = 20 + k;  
 }  
 
 / / Step 6.4: Second Cylinder Block Layer along Top Surface 
 f or  ( i  = 23;  i  <= 26;  i ++)  
 {  
  k  = i  -  23;  
    v1[ i ]  = 124 + k;  
    v2[ i ]  = 125 + k;  
    v3[ i ]  = 136 + k;  
    v4[ i ]  = 135 + k;  
    v5[ i ]  = 119 + k;  
    v6[ i ]  = 120 + k;  
    v7[ i ]  = 131 + k;  
    v8[ i ]  = 130 + k;  
 }  
 
 f or  ( i  = 27;  i  <= 28;  i ++)  
 {  
  k  = i  -  27;  
    v1[ i ]  = 118 + ( 10 *  k) ;  
    v2[ i ]  = 126 + k;  
    v3[ i ]  = 137 + k;  
    v4[ i ]  = 129 + ( 10 *  k) ;  
    v5[ i ]  = 124 -  ( 6 *  k) ;  
    v6[ i ]  = 125 + k;  
    v7[ i ]  = 136 + k;  
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    v8[ i ]  = 135 -  ( 6 *  k) ;  
 }  
 
 / / Step 6.5: Third Matrix Block Layer along Top Surface 
 f or  ( i  = 29;  i  <= 30;  i ++)  
 {  
  k  = i  -  29;  
    v1[ i ]  = 143 + k;  
    v2[ i ]  = 130 + k;  
    v3[ i ]  = 131 + k;  
    v4[ i ]  = 144 + ( 2 *  k) ;  
    v5[ i ]  = 16 + k;  
    v6[ i ]  = 17 + k;  
    v1[ i  + 2]  = 146 -  ( 5 *  k) ;  
    v2[ i  + 2]  = 132 + k;  
    v3[ i  + 2]  = 133 + k;  
    v4[ i  + 2]  = 141 -  k;  
    v5[ i  + 2]  = 18 -  ( 3 *  k) ;  
    v6[ i  + 2]  = 15 -  k;  
 }  
 
 / / Step 6.6: Third Cylinder Block Layer along Top Surface 
 f or  ( i  = 33;  i  <= 36;  i ++)  
 {  
  k  = i  -  33;  
    v1[ i ]  = 135 + k;  
    v2[ i ]  = 136 + k;  
    v3[ i ]  = 114 + k;  
    v4[ i ]  = 113 + k;  
    v5[ i ]  = 130 + k;  
    v6[ i ]  = 131 + k;  
 }  
 
 f or  ( i  = 33;  i  <= 34;  i ++)  
 {  
  k  = i  -  33;  
    v7[ i ]  = 144 + ( 2 *  k) ;  
    v8[ i ]  = 143 + k;  
    v7[ i  + 2]  = 141 -  k;  
    v8[ i  + 2]  = 146 -  ( 5 *  k) ;  
    v1[ i  + 4]  = 129 + ( 10 *  k) ;  
    v2[ i  + 4]  = 137 + k;  
    v3[ i  + 4]  = 115 + k;  
    v4[ i  + 4]  = 112 + ( 5 *  k) ;  
    v5[ i  + 4]  = 135 -  ( 6 *  k) ;  
    v6[ i  + 4]  = 136 + k;  
    v7[ i  + 4]  = 114 + k;  
    v8[ i  + 4]  = 113 -  k;  
 }  
 
 / / Step 6.7: First Matrix Block Layer along Back Surface 
 f or  ( i  = 39;  i  <= 42;  i ++)  
 {  
  k  = i  -  39;  
    v1[ i ]  = v5[ i  + 4]  = 42 -  k;  
    v2[ i ]  = v6[ i  + 4]  = 37 -  k;  
    v3[ i ]  = v7[ i  + 4]  = 36 -  k;  
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    v4[ i ]  = v8[ i  + 4]  = 41 -  k;  
 }  
 
 f or  ( i  = 39;  i  <= 40;  i ++)  
 {  
  k  = i  -  39;  
    v5[ i ]  = 25 + ( 3 *  k) ;  
    v6[ i ]  = 2 + ( 5 *  k) ;  
    v7[ i ]  = 7 -  ( 3 *  k) ;  
    v8[ i ]  = 28 -  k;  
    v5[ i  + 2]  = 27 + ( 3 *  k) ;  
    v6[ i  + 2]  = 4 + ( 2 *  k) ;  
    v7[ i  + 2]  = 6 -  k;  
    v8[ i  + 2]  = 30 -  k;  
 }  
 
 f or  ( i  = 43;  i  <= 46;  i ++)  
 {  
  k  = i  -  43;  
    v1[ i ]  = 175 -  k;  
    v2[ i ]  = 154 -  k;  
    v3[ i ]  = 153 -  k;  
    v4[ i ]  = 174 -  k;  
 }  
 
 / / Step 6.8: First Cylinder Block Layer along Back Surface 
 f or  ( i  = 47;  i  <= 50;  i ++)  
 {  
  k  = i  -  47;  
    v1[ i ]  = 180 -  k;  
    v2[ i ]  = 159 -  k;  
    v3[ i ]  = 158 -  k;  
    v4[ i ]  = 179 -  k;  
    v5[ i ]  = 175 -  k;  
    v6[ i ]  = 154 -  k;  
    v7[ i ]  = 153 -  k;  
    v8[ i ]  = 174 -  k;  
 }  
 
 f or  ( i  = 51;  i  <= 52;  i ++)  
 {  
  k  = i  -  51;  
    v1[ i ]  = 170 + ( 6 *  k) ;  
    v2[ i ]  = 149 + ( 6 *  k) ;  
    v3[ i ]  = 157 -  k;  
    v4[ i ]  = 178 -  k;  
    v5[ i ]  = 180 -  ( 10 *  k) ;  
    v6[ i ]  = 159 -  ( 10 *  k) ;  
    v7[ i ]  = 158 -  k;  
    v8[ i ]  = 179 -  k;  
 }  
 
 / / Step 6.9: Second Matrix Block Layer along Back Surface 
 f or  ( i  = 53;  i  <= 56;  i ++)  
 {  
  k  = i  -  53;  
    v2[ i ]  = v6[ i  + 4]  = 42 -  k;  
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    v3[ i ]  = v7[ i  + 4]  = 41 -  k;  
    v1[ i  + 4]  = 186 -  k;  
    v2[ i  + 4]  = 175 -  k;  
    v3[ i  + 4]  = 174 -  k;  
    v4[ i  + 4]  = 185 -  k;  
 }  
 
 f or  ( i  = 53;  i  <= 54;  i ++)  
 {  
  k  = i  -  53;  
    v1[ i ]  = v5[ i  + 4]  = 15 + ( 3 *  k) ;  
    v4[ i ]  = v8[ i  + 4]  = 18 -  k;  
    v5[ i ]  = 25 + ( 3 *  k) ;  
    v6[ i ]  = 28 -  k;  
    v1[ i  + 2]  = v5[ i  + 6]  = 17 + ( 15 *  k) ;  
    v4[ i  + 2]  = v8[ i  + 6]  = 32 -  k;  
    v5[ i  + 2]  = 27 + ( 3 *  k) ;  
    v6[ i  + 2]  = 30 -  k;   
 }  
 
 / / Step 6.10: Second Cylinder Block Layer along Back Surface  
 f or  ( i  = 61;  i  <= 64;  i ++)  
 {  
  k  = i  -  61;  
    v1[ i ]  = 191 -  k;  
    v2[ i ]  = 180 -  k;  
    v3[ i ]  = 179 -  k;  
    v4[ i ]  = 190 -  k;  
    v5[ i ]  = 186 -  k;  
    v6[ i ]  = 175 -  k;  
    v7[ i ]  = 174 -  k;  
    v8[ i ]  = 185 -  k;  
 }  
 
 f or  ( i  = 65;  i  <= 66;  i ++)  
 {  
  k  = i  -  65;  
    v1[ i ]  = 181 + ( 6 *  k) ;  
    v2[ i ]  = 170 + ( 6 *  k) ;  
    v3[ i ]  = 178 -  k;  
    v4[ i ]  = 189 -  k;  
    v5[ i ]  = 191 -  ( 10 *  k) ;  
    v6[ i ]  = 180 -  ( 10 *  k) ;  
    v7[ i ]  = 179 -  k;  
    v8[ i ]  = 190 -  k;  
 }  
 
 / / Step 6.11: Third Matrix Block Layer along Back Surface 
 f or  ( i  = 67;  i  <= 70;  i ++)  
 {  
  k  = i  -  67;  
    v2[ i ]  = 186 -  k;  
    v3[ i ]  = 185 -  k;  
 }  
 
 f or  ( i  = 67;  i  <= 68;  i ++)  
 {  
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  k  = i  -  67;  
    v1[ i ]  = 141 + ( 5 *  k) ;  
    v4[ i ]  = 146 -  ( 2 *  k) ;  
    v5[ i ]  = 15 + ( 3 *  k) ;  
    v6[ i ]  = 18 -  k;  
    v1[ i  + 2]  = 144 + ( 17 *  k) ;  
    v4[ i  + 2]  = 161 -  k;  
    v5[ i  + 2]  = 17 + ( 15 *  k) ;  
    v6[ i  + 2]  = 32 -  k;  
 }  
 
 / / Step 6.12: Third Cylinder Block Layer along Back Surface 
 f or  ( i  = 71;  i  <= 74;  i ++)  
 {  
  k  = i  -  71;  
    v1[ i ]  = 169 -  k;  
    v2[ i ]  = 191 -  k;  
    v3[ i ]  = 190 -  k;  
    v4[ i ]  = 168 -  k;  
    v6[ i ]  = 186 -  k;  
    v7[ i ]  = 185 -  k;  
 }  
 
 f or  ( i  = 71;  i  <= 72;  i ++)  
 {  
  k  = i  - 71;  
    v5[ i ]  = 141 + ( 5 *  k) ;  
    v8[ i ]  = 146 -  ( 2 *  k) ;  
    v5[ i  + 2]  = 144 + ( 17 *  k) ;  
    v8[ i  + 2]  = 161 -  k;  
    v1[ i  + 4]  = 164 + k;  
    v2[ i  + 4]  = 181 + ( 6 *  k) ;  
    v3[ i  + 4]  = 189 -  k;  
    v4[ i  + 4]  = 167 -  k;  
    v5[ i  + 4]  = 169 -  ( 5 *  k) ;  
    v6[ i  + 4]  = 191 -  ( 10 *  k) ;  
    v7[ i  + 4]  = 190 -  k;  
    v8[ i  + 4]  = 168 -  k;  
 }  
 
 / / Step 6.13: First Layer of Cylinder Intersection 
 f or  ( i  = 77;  i  <= 80;  i ++)  
 {  
  k  = i  -  77;  
    v2[ i ]  = 113 + k;  
    v3[ i ]  = 114 + k;  
 }  
 
 f or  ( i  = 77;  i  <= 78;  i ++)  
 {  
  k  = i  -  77;  
    v1[ i ]  = 195 + k;  
    v4[ i ]  = 197 + k;  
    v5[ i ]  = 143 + k;  
    v6[ i ]  = 144 + ( 2 *  k) ;  
  
    v1[ i  + 2]  = 198 -  ( 4 *  k) ;  
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    v4[ i  + 2]  = 193 -  k;  
    v5[ i  + 2]  = 146 -  ( 5 *  k) ;  
    v6[ i  + 2]  = 141 -  k;  
 }  
 
 v1[ 81]  = 197;  
 v2[ 81]  = 114;  
 v3[ 81]  = 196;  
 v4[ 81]  = 144;  
 v1[ 82]  = 193;  
 v2[ 82]  = 194;  
 v3[ 82]  = 116;  
 v4[ 82]  = 141;    
 
 / / Step 6.14: Second Layer of Cylinder Intersection 
 f or  ( i  = 83;  i  <= 86;  i ++)  
 {  
  k  = i  -  83;  
    v1[ i ]  = 216 -  k;  
    v2[ i ]  = 169 -  k;  
    v3[ i ]  = 168 -  k;  
    v4[ i ]  = 215 -  k;  
 }  
 
 f or  ( i  = 83;  i  <= 84;  i ++)  
 {  
  k  = i  -  83;  
    v5[ i ]  = 193 + ( 5 *  k) ;  
    v6[ i ]  = 141 + ( 5 *  k) ;  
    v7[ i ]  = 146 -  ( 2 *  k) ;  
    v8[ i ]  = 198 -  ( 2 *  k) ;  
    v5[ i  + 2]  = 196 + ( 14 *  k) ;  
    v6[ i  + 2]  = 144 + ( 17 *  k) ;  
    v7[ i  + 2]  = 161 -  k;  
    v8[ i  + 2]  = 210 -  k;  
    v1[ i  + 4]  = 211 + k;  
    v2[ i  + 4]  = 164 + k;  
    v3[ i  + 4]  = 167 -  k;  
    v4[ i  + 4]  = 214 -  k;  
    v5[ i  + 4]  = 216 -  ( 5 *  k) ;  
    v6[ i  + 4]  = 169 -  ( 5 *  k) ;  
    v7[ i  + 4]  = 168 -  k;  
    v8[ i  + 4]  = 215 -  k;  
 }  
 
 / / Step 6.15: Third Layer of Cylinder Intersection 
 f or  ( i  = 89;  i  <= 90;  i ++)  
 {  
  k  = i  -  89;  
    v1[ i ]  = 112 + ( 5 *  k) ;  
    v2[ i ]  = 115 + k;  
    v3[ i ]  = 198 -  ( 5 *  k) ;  
    v4[ i ]  = 201 -  ( 2 *  k) ;  
    v5[ i ]  = 113 -  k;  
    v6[ i ]  = 114 + k;  
    v7[ i ]  = 196 + ( 2 *  k) ;  
    v8[ i ]  = 200 + k;  
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    v1[ i  + 2]  = 200 -  k;  
    v2[ i  + 2]  = 113 + ( 4 *  k) ;  
    v3[ i  + 2]  = 114 + ( 2 *  k) ;  
    v4[ i  + 2]  = 196 -  ( 3 *  k) ;  
    v5[ i  + 2]  = 195 -  ( 3 *  k) ;  
    v6[ i  + 2]  = 197 -  ( 3 *  k) ;  
 }  
 
 / / Step 6.16: Fourth Layer of Cylinder Intersection 
 f or  ( i  = 93;  i  <= 96;  i ++)  
 {  
  k  = i  -  93;  
    v1[ i ]  = 208 -  k;  
    v2[ i ]  = 216 -  k;  
    v3[ i ]  = 215 -  k;  
    v4[ i ]  = 207 -  k;  
 }  
 
 f or  ( i  = 93;  i  <= 94;  i ++)  
 {  
  k  = i  -  93;  
    v5[ i ]  = 199 + ( 2 *  k) ;  
    v6[ i ]  = 193 + ( 5 *  k) ;  
    v7[ i ]  = 198 -  ( 2 *  k) ;  
    v8[ i ]  = 201 -  k;  
    v5[ i  + 2]  = 200 + ( 2 *  k) ;  
    v6[ i  + 2]  = 196 + ( 14 *  k) ;  
    v7[ i  + 2]  = 210 -  k;  
    v8[ i  + 2]  = 202 -  ( 194 *  k) ;  
    v1[ i  + 4]  = 203 + k;  
    v2[ i  + 4]  = 211 + k;  
    v3[ i  + 4]  = 214 -  k;  
    v4[ i  + 4]  = 206 -  k;  
    v5[ i  + 4]  = 208 -  ( 5 *  k) ;  
    v6[ i  + 4]  = 216 -  ( 5 *  k) ;  
    v7[ i  + 4]  = 215 -  k;  
    v8[ i  + 4]  = 207 -  k;  
 }  
 
 / / Step 6.17: Output for Volumes 
 f or  ( i  = 1;  i  <= 14;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 15;  i  <= 18;  i ++)  
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 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Pr i sm"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 19;  i  <= 28;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 29;  i  <= 32;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Pr i sm"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 33;  i  <= 52;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 53;  i  <= 56;  i ++)  
 {  
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  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Pr i sm"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 57;  i  <= 66;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 67;  i  <= 70;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Pr i sm"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 71;  i  <= 76;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 77;  i  <= 80;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Pr i sm"  
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     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 81;  i  <= 82;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Tet r a"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 83;  i  <= 90;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 91;  i  <= 92;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Pr i sm"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << endl ;  
 }  
 
 f or  ( i  = 93;  i  <= 98;  i ++)  
 {  
  out f i l e << " Vol ume"  << "    Ver t ex"  << "    Shape = Hex"  
     << "    Name = "  << i  << " , "  << endl   
     << "          ver t ex1 = "  << v1[ i ]  
     << "    ver t ex2 = "  << v2[ i ]  
     << "    ver t ex3 = "  << v3[ i ]  
     << "    ver t ex4 = "  << v4[ i ]  << " , "  << endl  
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     << "          ver t ex5 = "  << v5[ i ]  
     << "    ver t ex6 = "  << v6[ i ]  
     << "    ver t ex7 = "  << v7[ i ]  
     << "    ver t ex8 = "  << v8[ i ]  
     << endl ;  
 }  
 
   
 / / Step 7: Material Properties 
 ET1 = ET2 = 0. 001;  
 EPA1 = EPA2 = 0. 2;  
  
 out f i l e << " Mat er i al  Pl ast i c- Bi l i near "  
      << "     Name = "  << 1 
      << "     E = "     << E1 
      << "     Nu = "    << nu1 
      << "     Y = "     << Y1 
      << "     ET = "    << ET1 
      << "     EPA = "   << EPA1 
      << endl ;  
 
 out f i l e << " Mat er i al  Pl ast i c- Bi l i near "  
      << "     Name = "  << 2 
      << "     E = "     << E2 
      << "     Nu = "    << nu2 
      << "     Y = "     << Y2 
      << "     ET = "    << ET2 
      << "     EPA = "   << EPA2 
      << endl ;  
 
 / / Step 8: Element Groups 
 f or  ( i  = 1;  i  <= 2;  i ++)  
 {  
 out f i l e << " EGr oup Thr eeDSol i d"  
    << "     Name = "      << i  
    << "     Mat er i al  = "  << i  
    << endl ;  
 }  
 
 / / Step 9: Subdivision Data 
 out f i l e << " Subdi v i de Vol ume"  
      << "     Name = "   << 1 
      << "     NDi v1 = "  << ndi v1 
      << "     NDi v2 = "  << ndi v2 
      << "     NDi v3 = "  << ndi v3 
      << endl ;  
 
 f or  ( i  = 2;  i  <= 98;  i ++)  
 {  
 out f i l e << "     "  << i  
    << endl ;  
 }  
 
 / / Step 10: Generate Elements 
 / / Step 10.1: Surrounding Material (Matrix) 
 out f i l e << " GVol ume"  
    << "     Name = "   << 1 
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    << "     Nodes = "  << el emnodes 
    << "     Gr oup = "  << 1 
    << "     Pr ef Shape = Hexahedr al "  
    << endl ;  
  
 f or  ( i  = 2;  i  <= 8;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 15;  i  <= 22;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 29;  i  <= 32;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 39;  i  <= 46;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 53;  i  <= 60;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 67;  i  <= 70;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
   
 
 / / Step 10.2: Cylinder 
 out f i l e << " GVol ume"  
    << "     Name = "   << 9 
    << "     Nodes = "  << el emnodes 
    << "     Gr oup = "  << 2 
    << "     Pr ef Shape = Hexahedr al "  
    << endl ;  
  
 f or  ( i  = 10;  i  <= 14;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 23;  i  <= 28;  i ++)  
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 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 33;  i  <= 38;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 47;  i  <= 52;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 61;  i  <= 66;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
 
 f or  ( i  = 71;  i  <= 98;  i ++)  
 {  
  out f i l e << "     "  << i  
     << endl ;  
 }  
     
 r et ur n 0;  
}  
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APPENDIX F 

RAW DATA FOR THE MACROSCOPIC BEHAVIOUR 
DISCRETISATION VALIDATION 

The data provided in this appendix shows how increasing the level of 

discretisation refinement leads to the convergence of the macroscopic 

behaviour to the exact solution. This validation was completed for both the 

spherical and cylindrical models simulating linear elastic conditions. It was 

assumed that results for non-linear plastic conditions would follow a similar 

trend. Table F.1 presents the results for the spherical model and Table F.2 

presents the results for the cylindrical model. For a discussion of these results 

see Section 4.1.2. Note that the effective Young’s modulus of each model was 

calculated using Equations 3.16 and 3.17 with the top surface area of 1.732 

mm2 and the applied strain of 0.001. 

 
 
 
 

Table F.1:  Raw Data for  the Validation of the Spher ical Model 
(elastic modular ratio = 1.9) 

Volume Fraction Level of Reaction at Effective Young's
of Spheres Refinement Master Node Modulus Difference

[%] [N] [GPa] [%]
75 1-1-1 311.080 179.602 n/a

2-2-2 311.018 179.566 0.0199
3-3-3 311.011 179.562 0.0023

80 1-1-1 320.971 185.313 n/a
2-2-2 320.933 185.291 0.0118
3-3-3 320.928 185.288 0.0016

83.2 1-1-1 327.515 189.091 n/a
2-2-2 327.479 189.070 0.0110
3-3-3 327.473 189.067 0.0018

85 1-1-1 331.255 191.250 n/a
2-2-2 331.218 191.229 0.0112
3-3-3 331.211 191.225 0.0021

90 1-1-1 341.812 197.345 n/a
2-2-2 341.774 197.323 0.0111
3-3-3 341.763 197.317 0.0032

95 1-1-1 352.641 203.597 n/a
2-2-2 352.607 203.578 0.0096
3-3-3 352.598 203.573 0.0026
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Table F.2:  Raw Data for  the Validation of the Cylindr ical Model 
(elastic modular ratio = 2) 

Volume Fraction Level of Reaction at Effective Young's
of Cylinders Refinement Master Node Modulus Difference

[%] [N] [GPa] [%]
2.09 1-1-1 175.830 101.515 n/a

2-2-2 175.800 101.498 0.0171
3-3-3 175.792 101.494 0.0046

16.45 1-1-1 194.905 112.528 n/a
2-2-2 194.814 112.476 0.0467
3-3-3 194.806 112.471 0.0041

39.11 1-1-1 229.124 132.285 n/a
2-2-2 228.981 132.202 0.0624
3-3-3 228.973 132.198 0.0035

63.77 1-1-1 272.271 157.196 n/a
2-2-2 272.081 157.086 0.0698
3-3-3 272.069 157.079 0.0044

84.14 1-1-1 312.507 180.426 n/a
2-2-2 312.224 180.263 0.0906
3-3-3 312.199 180.248 0.0080
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APPENDIX G 

RAW DATA FOR THE LINEAR ELASTIC MACROSCOPIC 
BEHAVIOUR 

The linear elastic macroscopic behaviour analysis in Section 4.2.1 is 

based on the effective Young’s moduli of the composites. This data was 

obtained from the simulation of the two unit cell models to a uniaxial tension test 

in the finite element program ADINA (ADINA R&D, Inc., 2002a). ADINA 

provided the reactions of each simulation at the master node from which the 

effective Young’s moduli could be calculated (see Section 3.6). The data for the 

spherical model is listed in Table G.1 and the data for the cylindrical model in 

Table G.2. 

 
 
 
 

 
 
 
 
 
 

Table G.1:  Raw Data for  the L inear  Elastic Macroscopic Analysis of the Spher ical Model 

Modular Volume Fraction Contiguity of Reaction at Effective Young's
Ratio of Spheres Spheres Master Node Modulus

[%] [%] [N] [GPa]
2 75 5.00 292.127 168.660

80 28.17 302.303 174.535
85 47.48 312.875 180.638
90 64.70 323.749 186.917
95 82.27 334.928 193.371

10 75 5.00 182.056 105.110
80 28.17 214.401 123.784
85 47.48 246.722 142.445
90 64.70 279.684 161.476
95 82.27 313.161 180.804

100 75 5.000 79.092 45.663
80 28.174 147.272 85.028
85 47.484 201.591 116.389
90 64.702 252.570 145.821
95 82.27 301.121 173.852
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Table G.2:  Raw Data for  the L inear  Elastic Macroscopic Analysis of the Cylindr ical Model 

Modular Volume Fraction Contiguity of Reaction at Effective Young's
Ratio of Cylinders Cylinders Master Node Modulus

[%] [%] [N] [GPa]
2 2.09 5.97 175.792 101.494

16.45 19.19 194.806 112.471
39.11 34.45 228.973 132.198
63.77 52.27 272.069 157.079
84.14 73.35 312.199 180.248

10 2.09 5.97 36.954 21.335
16.45 19.19 56.310 32.511
39.11 34.45 99.800 57.619
63.77 52.27 173.365 100.092
84.14 73.35 263.119 151.912

100 2.09 5.97 5.198 3.001
16.45 19.19 20.572 11.877
39.11 34.45 59.150 34.150
63.77 52.27 134.346 77.565
84.14 73.35 242.527 140.023
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APPENDIX H 

CONTIGUITIES OF SPHERICAL AND CYLINDRICAL 
MODELS 

The methodology for calculating the contiguities of the spherical and 

cylindrical models using Equation 4.1 was described in Section 4.2.1. While this 

information was sufficient to allow the reader to understand the physical 

meaning of contiguity, it was much too simplified to describe how the 

contiguities were actually calculated. The geometry of the spherical model 

makes the calculation of its contiguity relatively simple so that it is possible to 

determine an exact solution. This is not the case for the cylindrical model where 

determining the surface areas of the cylinders within the half prism unit cell and 

within the intersection is particularly difficult. An approximate solution was 

therefore derived for the cylindrical model. The calculations for each model are 

described in the following two sections: Section H.1 for the spherical model and 

Section H.2 for the cylindrical model. 

H.1   CONTIGUITY OF THE SPHERICAL MODEL 

• Parameters of the geometry (see Fig. H.1): 

312 22 =+=c         

32 −= rρ  

crh −=   

r: radius of sphere 

c: distance from centre of sphere to edge of section 

ρ: radius of contact area 

h: height of sphere section 

• Surface area between adjacent spheres (Sv
αα): 

2ρπαα ⋅=vS  (H.1) 
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• Surface area between phases (Sv
αβ): 

( )24
12

1
rAsphere ⋅⋅= π   

hrAsection ⋅⋅⋅= π2   

Asphere: surface area of sphere within unit cell assuming none is outside 

Asection: surface area of sphere that is outside unit cell   

sectionspherev AAS −=αβ  (H.2) 

Equations H.1 and H.2 may now be inserted into Equation 4.1 to determine the 

contiguity of the spherical model for any interpenetrating volume fraction. 

H.2   CONTIGUITY OF THE CYLINDRICAL MODEL 

For the cylindrical model it is necessary to integrate the surface area of a 

cylinder. Given the function of a cylinder; 

( )yxfz ,= , (H.3) 

the surface area is; 

yx
y

z

x

z
S ∂∂




∂
∂+




∂
∂+= ∫ ∫

22

1 . (H.4) 

• Parameters of the geometry (see Fig. H.2): 

312 22 =+=l  

(a) 

2 

1 

c 

h ρ 

c 

r 

(b) 

Figure H.1:  Spher ical Model 
(a) Top view of the unit cell showing the piece of sphere 
(b) Circle showing the variables used in the calculations 
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ρ: radius of a cylinder 

l: length of a cylinder on its centreline [ ]3=l  

b: length of each horizontal edge for the unit cell [ ]2=b  

h: height of full prism unit cell (see Fig. H.4) [ ]22=h  

c1: distance from top-right-back corner to where top cylinder intercepts the top-back 

edge and the top-right edge [ ]ρ21 =c  

c2: distance from top-right-back corner to where back cylinder intercepts the top-

back edge 



= ρ

2

3
2c  

c3: distance from top-right-back corner to where back cylinder intercepts the top-right 

edge 



= ρ

11

32
3c  

c4: distance from top-right-back corner to where back cylinder intercepts the right-

back edge [ ]ρ34 =c  

• Surface area between cylinders inside and outside of unit cell (Sv
αα): 

2ρπαα ⋅=vS  (H.5) 

• Surface area between phases (Sv
αβ): 

o Surface area of a cylinder if its entire length was within the unit cell: 

c1 

b 

ρ 

c3 60o 

l 

(a) 

c2 

c4 

l 

ρ 

54.7356o 

35.6644o 

(b) 

Figure H.2:  Cylindr ical Model 
(a) Top view of the unit cell showing the top cylinder 
(b) Back view of the unit cell showing the back cylinder 
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( )lAtotal ⋅⋅⋅= ρπ2
2

1
 

o Surface area of top cylinder: 

a) Remove surface area that is beyond back surface and right front 

surface (see Fig. H.3): 

- Equation of top cylinder: 22 xz −= ρ  

( ) ( )22

22
22

2

x

x
x

xx

z

−
=


 −
∂
∂=




∂
∂

ρ
ρ  

( ) 0
2

22

2

=



−

∂
∂=




∂
∂

x
yy

z ρ  

- Equation of back surface: xy 3=  

- The surface area goes between 0 and ρ in the x-direction, and 0 

and x3  in the y-direction. 

( ) ( ) xy
x

x
A

x

atop ∂∂+



−

+= ∫ ∫ρ

ρ0

3

0
22

2

)( 01  

b) Remove approximate surface area that enters the cylinder 

intersection (see Fig. H.3):  

- Location of point 141 based on global axes (see Fig. H.4): 

x 

y 

z 
Local axes 

(a) 

Local axes 
Point 141 

Point 144 

x 

y 

z (b) 

Figure H.3:  Top par t of unit cell showing the top cylinder  
(a) Surface areas of top cylinder removed in step (a) shown in red 
(b) Surface area of top cylinder removed in step (b) shown in red, 

important geometry points shown in blue 
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( ) ( ) 09642629
4

9 22 =+−+′−−′


 ρρρ xx  

ρ6
3

2
2141 −=′x  

- Location of point 141 based on local axes (see Fig. H.3): 

141xbd ′−=  

( )60cos141 ⋅= dx  ( )60sin141 ⋅= dy  

- Location of point 144 based on global axes (see Fig. H.4): 

3

32
144

ρ−=′x  ( )144144 3 xby ′−=′  

- Location of point 144 based on local axes (see Fig. H.3): 

( ) ( )2
144

2
1442 yxd ′+′−=  

( )60cos144 ⋅−= dx  ( )60sin144 ⋅= dy  

- Upper bound in y-direction: 

( )
( )
( )144141

144141
 xx

yy
m btop −

−=  ( ) ( )( )0141 141 −−= xmyn btopbtop  

( )( ) ( )btopbtopbtopup nxmy   ) ( +=  

- The surface area goes between x144 and x141 in the x-direction, 

and 0 and ) ( btopupy  in the y-direction. 

( ) ( )
( )

xy
x

x
A

x

x

y

btop

btopup

∂∂+



−

+= ∫ ∫141

144

 

0
22

2

)( 01
ρ

 

Therefore the surface area of the top cylinder is: 

)2( )()( btopatoptotaltop AAAA +−=  (H.6) 

o Surface area of back cylinder: 

a) Remove surface area that is beyond the top surface (see Fig. H.4): 
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- The equation for the back cylinder is the same as it was for the top 

cylinder based on the change in the local axes. The derivatives 

are also the same. 

- Equation for top surface: xy
2

1=  

- The surface area goes between -ρ and 0 in the x-direction, and 0 

Figure H.4:  Unit cell showing the back cylinder  
(a) Prism unit cell showing axes and back cylinder 
(b) Piece of unit cell showing the surface area removed in step (d) in red with 

important geometry points shown in blue 
(c) Back cylinder showing surface areas removed in step (a) in red, step (b) in 

blue, and step (c) in orange 
(d) Top view showing intersection with back cylinder and lower bound for x-

direction used in step (c) 

(a) 

(d) 

x 

y 

z 

Local axes 

z’  

y’  

x’  
Global axes 

h 

Top surface 

Right-back 
edge 

Right-front 
surface 

y 

ρ 

−ρ 

x 

z 

Local axes 

Top-back edge 

Top-right edge 

Right-back edge (c) 

b 

xlow(back c) 

c3 

(b) 

Local axes 

Point 141 
Point 
144 

x 
y 

z 
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and x
2

1
 in the y-direction. 

( ) ( ) xy
x

x
A

x

aback ∂∂+



−

+= ∫ ∫
−

−
0 2

1

0
22

2

)( 01
ρ ρ

 

b) Remove surface area that is beyond the right-back edge (see Fig. 

H.4): 

- Equation for right-back edge: xy 2=  

- The surface area goes between 0 and ρ in the x-direction, and 0 

and x2  in the y-direction. 

( ) ( ) xy
x

x
A

x

bback ∂∂+



−

+= ∫ ∫ρ

ρ0

2

0
22

2

)( 01  

c) Remove surface area that is beyond the right-front surface (see Fig. 

H.4): 

- Equation for right-front surface based on global axes: 

( )xy ′−=′ 23  

- Equation for back cylinder based on global axes: 

2222

3

1

3

22

3

2 ρ=′+′+′′−′ yzzxx  

22 332 ρ+′−−′=′ yxz  

( ) 2332
2

22
2

=


 +′−−′
′∂

∂=



′∂
′∂ ρyx

xx

z
 

( ) ( )22

22

22

2

33

9
332

ρ
ρ

+′−
′

=



+′−−′

′∂
∂=




′∂
′∂
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y
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yy

z
 

- Lower bound in x-direction: 
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)60cos(3) ( cbx cbacklow −=  

- The surface area goes between xlow(back c) and 0 in the x-

direction, and 0 and ( )x′−23  in the y-direction. 

( ) ( )
( )

xy
y

y
A

c backlowx

x

cback ′∂′∂+



+′−
′

+= ∫ ∫
′−0 23

0
22

2

)(

)(

2
33

9
1

ρ
 

d) Remove approximate surface area that enters the cylinder 

intersection (see Fig. H.4): 

- Location of point 141 based on global axes: 

ρ6
3

2
2141 −=′x  ρ32 141141 +′=′ xz  

- Location of point 141 based on local axes: 

( ) ( )2
141

2
141 zhxbd ′−+′−=  

ρ−=141x  
2

141
2

141 xdy −=  0141 =z  

- Location of point 144 based on global axes: 

3

32
144

ρ−=′x  144144 2xz ′=′  

- Location of point 144 based on local axes: 

( )
)60cos(

144xb
d

′−=′  ( )144
2 zhdd ′−+′=  

0144 =x  
2

144
2

144 zdy −=  ρ=144z  

- Upper bound in y-direction: 

( )
( )
( )141144

144141

xx

yy
m back d −

−=  ( ) 144 yn dback =  

( )( ) ( )dbackback ddbackup nxmy  ) ( +=  
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- The surface area goes between x141 and x144 in the x-

direction, and x
2

1
 (the equation of the top surface) and 

) ( dbackupy  in the y-direction. 

( ) ( )
( )

xy
x

x
A

x

x

y

x

dback

dbackup

∂∂+



−

+= ∫ ∫144

141

 

2

1
22

2

)( 01
ρ

 

Therefore the surface area of the back cylinder is: 

( ))()()()( dbackcbackbbackabacktotalback AAAAAA +++−=  (H.7) 

Therefore the approximate surface area between the phases for the 

cylinder model is: 

backtopv AAS +=αβ  (H.8) 

Note that the approximations for the surface areas that needed to be removed 

from the intersection region for both cylinders are both slightly low. Had more 

exact surfaces been calculated the areas removed this region would have been 

higher. This means that the surface areas between the phases for the top and 

back cylinders (Atop and Aback) would have been lower. The total surface area 

between phases would then also be lower (Sv
αβ), and this would cause the 

contiguities calculated to be slightly greater than they are with this approximate 

method.  
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APPENDIX I 

STRESS DISTRIBUTION PLOTS FOR THE LINEAR 
ELASTIC MICROSTRUCTURAL ANALYSIS 

In the linear elastic investigation for microstructural mechanisms in 

Section 4.2.2, qualitative and quantitative analyses of the stress distributions in 

both models were undertaken. The qualitative analysis was based on contour 

and vector plots of the first principal stresses at three different volume fractions, 

and the quantitative analysis on these stresses at each element integration 

point (from which the plots were derived). The volume fractions based on the 

stiffer phase were the 75%, 85% and 95% for the spherical model, and for the 

cylindrical model were the 2%, 39% and 84%. All of this information came from 

simulations performed using ADINA (ADINA R&D, Inc., 2000a), a computer 

software application of the finite element method. The contour and vector plots 

of the first principal stresses in each model are shown below. 

I.1  FIRST PRINCIPAL STRESS DISTRIBUTION FOR THE 
SPHERICAL MODEL 

 
 
 
 

 
 

(a) (b) (c) 

Figure I .1:  Stiffer  phase (φφφφ = 75%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 
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(a) (b) (c) 

Figure I .2:  More flexible phase (φφφφ = 75%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 

(a) (b) (c) 

Figure I .3:  Stiffer  phase (φ φ φ φ = 85%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 

 

(a) (b) (c) 

Figure I .4:  More flexible phase (φφφφ = 85%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 
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(a) (b) (c) 

Figure I .5:  Stiffer  phase (φφφφ = 95%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 

 

(a) (b) (c) 

Figure I .6:  More flexible phase (φφφφ = 95%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 
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I.2  FIRST PRINCIPAL STRESS DISTRIBUTION FOR THE 
CYLINDRICAL MODEL 

 

 
 

(a) (b) (c) 

Figure I .7:  Stiffer  phase (φ φ φ φ = 2%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

 

(a) (b) (c) 

Figure I .8:  More flexible phase (φφφφ = 2%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

 

(a) (b) (c) 

Figure I .9:  Stiffer  phase (φ φ φ φ = 39%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

 



  

 230 

 
 
 
 

 
 
 

(a) (b) (c) 

Figure I .10:  More flexible phase (φ φ φ φ = 39%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

 

(a) (b) (c) 

Figure I .11: Stiffer  Phase (φφφφ = 84%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

(a) (b) (c) 

Figure I .12: More flexible phase (φ φ φ φ = 84%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 
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APPENDIX J 

RAW DATA FOR THE NON-LINEAR PLASTIC 
MACROSCOPIC BEHAVIOUR 

This appendix contains the raw data taken from the finite element 

method program ADINA used to determine the non-linear plastic macroscopic 

behaviour of the interpenetrating phase composites (IPCs). The IPCs were 

tested in a simulated uniaxial tension test in which the strain increment was 

slowly increased and the resulting stress calculated. From this data the figures 

for the stress-strain behaviour of each IPC were determined. The yield 

strengths for these IPCs were then determined using the standard definition of 

the 0.2% strain offset or the highest stress the model reached if it failed prior to 

the offset. The simulated tension test strain increments and strain offsets for the 

stress-strain behaviour are provided here with the effective yield strengths listed 

in Table 4.5.  

 

 

Volume Fraction
of Stronger Phase 75 80 85 90 95

[%]
Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.0750 0.0750 0.0750 0.0750 0.0750

 [%] 0.1000 0.1000 0.1000 0.1000 0.1000
0.1150 0.1250 0.1250 0.1250 0.1250
0.1300 0.1500 0.1500 0.1500 0.1500
0.1350 0.1750 0.1750 0.1750 0.1750
0.1400 0.2000 0.2000 0.2000 0.2000
0.1450 0.2250 0.2250 0.2250 0.2250

0.2350 0.2500 0.2500 0.2500
0.2450 0.2750 0.2750 0.2750

0.2870 0.3000 0.3000
0.3000 0.3250 0.3120

0.3370 0.3250
0.3500
0.3620

Table J.1: Simulated tension test strain increments for  the spher ical model with 
a yield strength ratio of 2 
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Volume Fraction
of Stronger Phase 75 80 85 90 95

[%]
Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.0750 0.0750 0.0750 0.0750 0.0750

 [%] 0.1000 0.1000 0.1000 0.1000 0.1000
0.1250 0.1250 0.1250 0.1250 0.1250
0.1500 0.1500 0.1500 0.1500 0.1500
0.1650 0.1750 0.1750 0.1750 0.1750
0.1750 0.2000 0.2000 0.2000 0.2000
0.1850 0.2250 0.2250 0.2250 0.2250

0.2500 0.2500 0.2500 0.2500
0.2750 0.2750 0.2750 0.2750
0.3000 0.3000 0.3000 0.3000

0.3250 0.3250 0.3250
0.3500 0.3500 0.3370
0.3620 0.3750 0.3500
0.3750 0.4000

0.4250

Table J.2: Simulated tension test strain increments for  the spher ical model with 
a yield strength ratio of 10 

Volume Fraction
of Stronger Phase 2.09 16.45 39.11 63.77 84.14

[%]
Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.1000 0.1000 0.1000 0.1000 0.1000

 [%] 0.2000 0.2000 0.2000 0.1250 0.1250
0.3000 0.3000 0.3000 0.1500 0.1500
0.4000 0.4000 0.4000 0.1750 0.1750
0.5000 0.5000 0.5000 0.2000 0.2000

0.2250 0.2250
0.2500 0.2500
0.2750 0.2750
0.3000 0.3000
0.3250 0.3250
0.3500 0.3500
0.3750 0.3750
0.4000 0.4000
0.4250 0.4250
0.4500 0.4500
0.4750 0.4750
0.5000 0.5000

Table J.3: Simulated tension test strain increments for  the cylindr ical model 
with a yield strength ratio of 2 



  

 233 

 
 
 
 
 
 

 
 
 
 
 
 
 

0

50

100

150

200

250

0.00 0.10 0.20 0.30 0.40 0.50

Strain [%]

S
tr

es
s 

[M
P

a] φ = 75%

φ = 80%

φ = 85%

φ = 90%

φ = 95%

*

*

*

Figure J.1:  Stress-strain behaviour  of spher ical models for  a yield strength ratio of 2 
Note: - Asterisks indicate failure to converge prior to reaching yield strength. 

- 0.2% strain offsets shown in colour of their simulation. 

Volume Fraction
of Stronger Phase 2.09 16.45 39.11 63.77 84.14

[%]
Applied Strain 0 0 0 0 0
for Uniaxial 0.0500 0.0500 0.0500 0.0500 0.0500
Tension Test 0.1000 0.1000 0.1000 0.1000 0.1000

 [%] 0.2000 0.2000 0.2000 0.2000 0.1500
0.3000 0.3000 0.3000 0.3000 0.2000
0.4000 0.4000 0.4000 0.4000 0.2500
0.5000 0.5000 0.5000 0.5000 0.3000

0.3500

Table J.4: Simulated tension test strain increments for  the cylindr ical model 
with a yield strength ratio of 10 
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Figure J.2:  Stress-strain behaviour  of spher ical models for  a yield strength ratio of 10 
Note: - Asterisks indicate failure to converge prior to reaching yield strength. 

- 0.2% strain offsets shown in colour of their simulation. 
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Figure J.3:  Stress-strain behaviour  of cylindr ical models for  a yield strength ratio of 2 
Note: - Asterisks indicate failure to converge prior to reaching yield strength. 

- 0.2% strain offsets shown in colour of their simulation. 
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Figure J.4:  Stress-strain behaviour  of cylindr ical models for  a yield strength ratio of 10 
Note: - Asterisks indicate failure to converge prior to reaching yield strength. 

- 0.2% strain offsets shown in colour of their simulation. 
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APPENDIX K 

STRESS DISTRIBUTION PLOTS FOR THE NON-LINEAR 
PLASTIC MICROSTRUCTURAL ANALYSIS 

The study into the microstructural mechanisms affecting non-linear 

plastic behaviour quantified the stress distributions of the spherical and 

cylindrical models through a similar procedure as described for the linear elastic 

investigation. The effective stress distribution plots shown in this appendix are 

for the stronger phase volume fractions of 75%, 85% and 95% with the 

spherical model, and 2%, 39% and 84% with the cylindrical model. All the 

contour and vector plots were taken from the final strain increment which each 

of the models reached. To determine the final strain increment of any one 

model, see the tables in Appendix J. 

K.1  EFFECTIVE STRESS DISTRIBUTION FOR THE 
SPHERICAL MODEL 

 
 
 

 
 
 
 
 
 
 
 

(a) (b) (c) 

Figure K.1:  Stronger  phase (φφφφ = 75%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 
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(a) (b) (c) 

Figure K.2:  Weaker  phase (φφφφ = 75%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 

 

(a) (b) (c) 

Figure K.3:  Stronger  phase (φφφφ = 85%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 

 

(a) (b) (c) 

Figure K.4:  Weaker  phase (φφφφ = 85%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 
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(a) (b) (c) 

Figure K.5:  Stronger  phase (φφφφ = 95%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 

(a) (b) (c) 

Figure K.6:  Weaker  phase (φφφφ = 95%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from back 
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K.2  EFFECTIVE STRESS DISTRIBUTION FOR THE 
CYLINDRICAL MODEL 

 
 

(a) (b) (c) 

Figure K.7:  Stronger  phase (φ φ φ φ = 2%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

(a) (b) (c) 

Figure K.8:  Weaker  phase (φφφφ = 2%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

(a) (b) (c) 

Figure K.9:  Stronger  phase (φ φ φ φ = 39%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 
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(a) (b) (c) 

Figure K.10:  Weaker  phase (φφφφ = 39%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

(a) (b) (c) 

Figure K.11:  Stronger  phase (φ φ φ φ = 84%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 

(a) (b) (c) 

Figure K.12:  Weaker  phase (φφφφ =84%) 
(a) Contour plot with view from top-right-back corner 
(b) Contour plot with view from bottom-left-back corner 
(c) Vector plot with view from bottom-left-back corner 


