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Abstract

Since 2010, the smart device has become an integral part of people’s daily lives. The popularity of smart

devices has increased dramatically. However, as the number of devices owned by an individual user increases,

so does the risk of data leakage and loss. This problem has started to draw attention because the data

contained on smart devices tends to be personal or sensitive in nature. Many people have so much data

on their devices that they have no idea as to what they are missing when a device is lost. Although there

are already some solutions for data recovery, a data backup system on a remote server, these solutions are

not accessible in the non-Internet environment. Development of a data recovery system that is accessible

in the non-Internet environment is essential because of the constraints of mobile devices, such as unreliable

network. This research proposes an architecture that allows the data recovery in both Internet (cloud) and

Non-Internet (local) network by using different connection technologies. A data tracking mechanism has also

been designed to monitor data flow among multiple devices, such as the cloud server, mobile devices, and

tablets. Additionally, a synchronization system has been developed to ensure the consistency of tracking

information. By designing and implementing this architecture, the two problems regarding to the data:

"what is where" and "who has what" are resolved.
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Chapter 1

INTRODUCTION

The usage of smart phones and tablet devices by a single user is on the rise. In fact, in 2016, the Global

Web Index found that, on average, most internet users aged from 16 to 64 were using multiple devices. Figure

1.1 shows that, globally, most people own and are using 3.64 different mobile devices [7].

Figure 1.1: Number of devices owner by a user [7]

Many devices have the same applications installed so that the user can store and retrieve data anywhere

and at anytime via different devices. However, tracking where the data is and, more importantly, who has

access to these data is challenging. It is difficult for a user to recover their data if a device is lost. Moreover,

complicating data transaction is the issue of intermittent connectivity of mobile devices. As soon as a user’s

mobile devices have lost their Internet connection, they are unable to transfer data.

The situation of data transmission is demonstrated in figure 1.2, which depicts a central server with three

1



different stored medical files for patients: Alex, Bob, and Charlie.

Figure 1.2: Architecture concept demonstration

In this example, a user has three devices that can retrieve the three medical files from the server. Device

A requests all three files. Device B retrieves the files for Alex and Bob, while device C requests the files for

Bob and Charlie. Each device stores the files locally for later access. However, the connection to the server

is not permanent. If the Internet or the central server is down, it is nearly impossible for devices B and C

to retrieve additional files from the server. Despite the connectivity interruptions of devices B and C to the

Internet and central server, an alter way of retrieving file is to connect them directly to device A.

The example of data transmission and retrieval between three different devices demonstrates the need

for the design of a file tracking architecture that addresses specific concerns of non-Internet networks. These

concerns regarding file transaction in non-Internet networks also include addressing the challenge of a user to

remember which file is stored on what device, or which devices have accessed certain files. Another concern

specific to these devices is if they are lost or stolen since the chance of data recovery is extremely unlikely.

To design such a high-performance system, using different technologies, protocols, and mechanisms has been
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designed and applied.

The remainder sections of this thesis are structured as follow:

• Chapter 2 defines and explains the research problem,

• Chapter 3 reviews related protocols, technologies, and research,

• Chapter 4 demonstrates the architecture design in detail,

• Chapter 5 discusses implement specifications,

• Chapter 6 evaluates the performance of the designed architecture,

• Chapter 7 concludes this research and its expected contribution, and

• Chapter 8 addresses the future work that can be done.
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Chapter 2

PROBLEM DEFINITION

Figure 2.1: Device Connection in Cloud Based Network

Currently, there are two main models of mobile device connection: the Internet client-server based and

non-Internet based (e.g. Personal Area Network, Local Area Network.) For the client-server based network,

as depicted in figure 2.1, all data is stored on the central server. Each client can push as well as retrieve data

to the central server. In this centralized network, each node must have an Internet connection to commu-

nicate. Conversely, non-Internet based network, figure 2.2, provides communication between devices when

the Internet is not available. In non-Internet based networks, device uses specific technology to communicate

directly with other devices - without the router.

2.1 Problem Description

From an individual perspective, as discussed in Chapter 1, most people personally own multiple mobile

devices like smart phones, tablets, smart watches. Moreover, from an organizational perspective, businesses

4



Figure 2.2: Multiple Connection in Local Network

Figure 2.3: Device Disconnected from Network

are moving away from the traditional office setup with a desktop computer to mobile side in order to give

employees greater flexibility accessing data. The tradeoff for improved flexibility is that data is transferred

more frequently. An increase in the frequency of data transfers in turn increases the chance of data loss.

Tracking where the data is and who has access to it becomes more difficult. The issue of tracking data

exposes a fundamental problem: "what is where" and "who has what". If there is something wrong with the

data, or any leak of data, it is difficult for the user to find out the source of the problem. Moreover, as shown

in figure 2.3, the inability of users to know what data has been lost when a device goes missing increases the

risk of permanent and irreversible data loss.

For example, a doctor takes a flight from Vancouver to Toronto for a medical consultation. Before he goes

to the airport, he did some research on line, and retrieved all the related medical data from the hospital’s

cloud server to his tablet. However, when he arrived at the hospital in Toronto, he realized that his tablet
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is lost. In this case, either he is lucky enough to get his tablet back, or he will lose all the data he gathered

from the hospital in Vancouver. All of the effort and time are wasted.

Moreover, due to the intermittent connectivity of the mobile network, the Internet connection among

multiple mobile devices is unstable. Once the Internet service is unavailable, the file transaction cannot be

performed, potentially resulting in a serious consequence during an emergency.

2.2 Research Goal

Most data management systems focus on the ideal situation where Internet access is available. But the data

transactions cannot be achieved if the Internet connection is lost or unstable. Therefore, in this research,

we designed and implemented a new architecture to track data among multiple mobile devices in both the

Internet and non-Internet environment. We can reduce the risk of data loss and also monitor the data access

by tracking the data among mobile devices. The data availability can be improved by allowing the data

transaction in the non-Internet environment.

2.3 Research Challenge

There are a few challenges need to be solved in order to construct this new architecture.

• Challenge 1: Device connection in the non-Internet environment

In [18], the connectivity of mobile devices in the network can be categorized as connected or as dis-

connected. Devices communicate via the Internet in most connected situations. In this architecture,

the mobile devices need to communicate to others directly when the Internet service is not available.

How the devices are connected in the non-Internet environment is critical as the connection method

can influence the performance of the architecture.

• Challenge 2: Data consistency in the intermittent network

The mobile device usually has unstable network connectivity and the timing of the Internet discon-

nection is unpredictable. The solution to the file tracking is explicit when the Internet is available.

However, file transactions in the non-Internet environment needs to be considered in this research ar-

chitecture. The architecture allows a device to transfer files to other devices while it is disconnected

from the server. In this case, the way in which server tracks the data transactions on disconnected

devices is addressed. The data integrity and consistency need to be ensured in this situation.

• Challenge 3: Bandwidth

Low bandwith is a challenge for mobile devices and can be caused by various reasons, such as the number

of devices in the network and the data transmission protocol. The architecture needs to minimize the

amount of data transferred over the connection to improve the efficient of device communication.
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Chapter 3

LITERATURE REVIEW

In this chapter, I will review some related research and technologies that can be included in the design of

the architecture to overcome the three challenges mentioned in Chapter 2.

Challenges Related Technologies

Device connection in the non-Internet

environment • Mobile Peer-to-Peer technology

• Local Area Network

Data consistency

• Data synchronization patterns

• Data replication mechanism

Network bandwidth

• Lightweight web service

• Proper synchronization mechanism

Data Availability and architecture

scalability • Cloud computing

• Scalable database

Table 3.1: Related technologies to overcome challenges

3.1 Mobile Cloud Computing

Tree main computing trends will be covered in this section: 1) mobile computing, 2) cloud computing, and 3)

mobile cloud computing. Mobile cloud computing is a relatively new concept. It is a combination of mobile

computing and cloud computing that aims to provide better availability and accessibility for mobile users.
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3.1.1 Mobile Computing

"Mobile computing technology enables the mobile worker to create, access, process, store and communicate

information without being constrained to a single location"[18]. The goal of mobile computing is to provide a

medium between people and information without spatial and temporal constraints. There are some features

of mobile computing mentioned in by Qi and Gani in [42]:

• Mobility

Each mobile node can easily connect to others in a wired or wireless network during their movement.

• Diversity of network conditions

The mobile device can exist in various kinds of networks, such as a wired network with high bandwidth,

wireless personal area network, wireless local area network, and wireless wide area network. Some details

about these networks will be covered in the later sections.

• Frequent disconnection and consistency

Due to the limitation of battery power and network conditions, the mobile device cannot connect to

others all the time. However, mobile devices can reconnect and remain consistent with the network by

following a specific protocol.

• Low reliability

A mobile computing network must address the security issues from the terminals, database, and appli-

cation development because the signal is easily susceptible to interference.

According to Deepak and Dradeep[18], the author mentioned three main concepts of mobile computing:

• Hardware

Mobile hardware contains two main categories: mobile devices or device components [53]. The mobile

devices are defined as handheld computers such as smartphones, tablets, and PDAs. The device com-

ponents are "defined by the size and form factor, weight, microprocessor, primary storage, secondary

storage, screen size and type, means of input, means of output, battery"[18].

• Software

Mobile software is a computer system or application designed to run on handheld computers. The

common operating systems running on mobile devices includes Apple IOS, Android, Nokia Symbian,

Windows. The operating system is the essential software component required to operate mobile devices.

Additionally, there are varieties of mobile applications that run on mobile devices in order to provide

different functionalities.Typically, there are two formats of mobile applications: native apps and web

apps [34].

8



1. Native Apps

A native app is programmed and designed for a specific operating system. The user downloads an

app from a web store and installs it on the device. The most common stores on the market are

the Apple Store and Google Play. There are two main advantages of the native app: 1) powerful

user experience and 2) the ability to run offline. First, because the native app is downloaded from

the app store, it can leverage the specific hardware (GPS, camera and Bluetooth) and software

(picture gallery and contact list.). Second, The native app remains installed on the device and

possesses the ability to run offline. There is no Internet requirement to launch the app, and the

user can pause or resume the app at anytime. On the other hand, there are also some drawbacks of

the native app. The biggest drawback is the incompatibility for multiple platforms. As mentioned

above, beacuse there are many mobile operation systems available, each platform has its own

language and tools to build an app, figure 3.1. A native app therefore requires more work and

more money to meet all its needs [34].

Figure 3.1: Multiple Mobile Platforms [31]

2. Web Apps

A web app is a web based application that is formatted for various smartphones and tablets.

The common way to access the web app is via the device’s web browser. There are three main

technologies used for web app development: HTML, CSS, and JavaScript. Due to the fact that

web apps are developed based on a web browser, they are independent of different platforms.

However, a typical web app needs to be downloaded from a web server each time it is run [34].

• Communication

"The ability of a mobile computer to communicate in some fashion with a fixed information system is

a defining characteristic of mobile computing" [18]. The type and availability of communication media

determines the type of the mobile applications. Deepak and Pradeep describe in [18], mobile device

communication is divided into four categories:

1. Connected

The connected status implies a continuously high-speed connection between a mobile device and

an information system (e.g. server) for data transfer.

2. Weakly connected
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In this situation, the mobile device and the information system communicate continuously with

low speed.

3. Batch

The mobile device is not continuously connected to the information system. The connection is

established randomly to exchange data.

4. Disconnected

Under this mode, the mobile device is incapable of communicating with the information system.

The user can only access the local storage to retrieve data.

3.1.2 Cloud Computing

Mobile device hardware is not as powerful as desktops so it needs an external resource to supply additional

complex computing work. This particular requirement has led to a leap in development of cloud computing.

According to Rajkumar et al[8] cloud computing is:

A type of parallel and distributed system consisting of a collection of interconnected and virtual-
ized computers that are dynamically provisioned and presented as one or more unified computing
resource(s) based on service-level agreements established through negotiation between the service
provider and consumers.

The authors emphasize that the Cloud is a new generation of data centers that allocates resources to each

device on demand. Therefore, cloud computing is also called on-demand computing.

Peter and Tim proposed in [37] that the cloud computing provides two main groups of models: service

models and deployment models.

• Service Models

1. Software as a Service (SaaS): is usually delivered as pay-per-use subscription, and is therefore

also called "on-demand software". In this service model, a service provider develops and runs the

application software in the cloud so that the consumer can access it through web portals. The

consumer doesn not need to manage the fundamental cloud infrastructures like network, servers,

database, which simplifies the hardware maintenance [37] [58].

2. Platform as a Service (PaaS): in this models, the service provider offers a specific development

environment for the consumers, who are the application developers. The consumers can create and

deploy their applications onto the cloud infrastructure as long as they follow the standard API,

libraries and languages that are supported by the provider. The developers only need to focus on

the application development and do not need to worry about the hardware layers [58] [37].

3. Infrastructure as a Service (IaaS): this model offers virtualized resources to consumers. The

developers can choose the different operating systems and software running on the servers. IaaS

is considered the bottom layer of cloud computing systems [58] [37].
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• Deployment Models [58]

1. Public/Internet Cloud: the cloud service is made available as a pay-as-you-go pattern to the public.

2. Private/Enterprise Cloud: the cloud service runs within an individual or organization’s own data

center for internal use.

3. Community Cloud: the cloud service is used by multiple organizations who share the same concerns

or purposes.

3.1.3 Summary

To sum up, mobile computing has brought about a change in lifestyle in which mobile devices have become

an essential part. Although mobile computing has many advantages as compared to the traditional PCs from

the mobility and flexibility, the constraints also need to be considered when designing a mobile architecture

[22]:

• Limited Resource

Mobile devices have less computational performance, storage capacity, and battery power as compared

to PCs.

• Network Bandwidth

It is easier to cause lower or no signal conditions that result in low bandwidth because mobile devices

have higher mobility.

• Intermittent Connectivity

In mobile computing, the continuous connection is extremely difficult because of the unreliable network

connection.

Cloud computing seeks to deal with data manipulation, and to provide alternative application solutions for

different user levels. The combination of mobile computing and cloud computing have generated a new

computing trend: mobile cloud computing. The purpose of mobile cloud computing is to improve mobile

device performance by processing large and complicated computation in the cloud. In this research, the file

objects and tracking information are stored on the cloud server so that the mobile devices can retrieve files

when the Internet is available.

3.2 Computer and Mobile Network

Computer networks are used to allow computers to exchange information among themselves. Each device in

the network is directly or indirectly connected with a specific communication technology. The most common
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computer network is the Internet. In this section, some network terminologies and the different types of

networks will be reviewed.

There are several various kinds of networks that are differentiated based on various functionalities. The two

common classification standards are based on the size and the architecture of the network. Olivier [6] addresses

two primary network architectures: the client-server and the peer-to-peer models. In Tutorialspoint[52], the

network can also be distinguished based on their geographical span. There are four main categories: 1)

Personal Area Network (PAN), 2) Local Area Network (LAN), 3) Metropolitan Area Network (MAN), and

4) Wide Area Network (WAN). More details will be covered in the following sections.

3.2.1 Architecture Classification

• Client-Service Model

The client-server model is the most common network model. Each computer is either a client or a

server in this kind of network. Normally, servers are powerful computers or processes that are used to

manage files, database, or network traffic. Clients are the PCs or mobile devices on which users can

run applications [35]. In this model, the client (service requesters) send requests to the server (resource

provider), and then the server performs actions and returns the corresponding responses. The server

and the client much follow the specific protocols in order to ensure they both understand the messages

sent from each other [33].

• Peer-to-Peer Model

In [1], Stephanos and Diomidis defined peer-to-peer network as the following:

Peer-to-peer systems are distributed systems consisting of interconnected nodes able to self-
organize into network topologies with the purpose of sharing resources such as content, CPU
cycles, storage and bandwidth, capable of adapting to failures and accommodating transient
populations of nodes while maintaining acceptable connectivity and performance, without
requiring the inter mediating or support of a global centralized server or authority.

This definition encompasses two different peer-to-peer architectures based on the degree of central-

ization: a completely decentralized system or a hybrid decentralized structure. In the completely

decentralized peer-to-peer architecture, which is also called pure peer-to-peer, each peer is an equal

participant in the network. There is no administrative role. No central server is required to to manage

and coordinate the connections. Each node has to self-organize themselves to communicate with other

nodes [35].

The hybrid decentralized peer-to-peer architecture incorporates some of the features of the client-server

model. Moreover, Some of the nodes in the network are assigned a more important role and acts as a

local central server for facilitating the interaction between peers [1].

Each client in the network stores data locally that can be shared with the rest of the peers. All clients

connect to a central server who contains two pieces of information [1]:
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– Registered user connection information (IP address, time of connection, etc.), and

– A database table which lists the data that each client holds in the network.

A new peer connects to the central server and provides the data information the peer needed in order

to join the group. The peer sends a request to the server for searching and sharing the data. The server

searches through the database and returns a list of users that hold the matching information. The peer

then establishes a direct connection with the specific nodes [1].

The advantage of this hybrid decentralized architecture is that it is easy to implement, and it can

efficiently search and locate data. On the other hand, the main disadvantage of this architecture is

scalability since there are limitations to the size of the server database and its restricted capacity.

Moreover, because the whole network is connected to the local server, if the master peer abandons the

system, then the services will not be available to anyone [35] [1].

3.2.2 Size Classification

• Personal Area Network (PAN)

A Personal Are Network is the smallest network that is designed to satisfy personal needs. The PAN

includes Bluetooth or Wi-Fi enabled devices such as smartphones, tablets, and wireless printers.

• Local Area Network (LAN)

Figure 3.2: Local Area Network Coverage [52]

As defined in Tutorialspoint[52], a network that is contained in a relatively small area, like school or

single building, is termed as a LAN, as shown in figure 3.2. Normally, this type of network is easy and

inexpensive to install. A LAN provides a useful and efficient way of sharing the resources among the

end users while it works under its local domain and does not involve any heavy routing. Some LANs

may contain local servers for file storage and local applications.

• Metropolitan Area Network (MAN)
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Figure 3.3: Metropolitan Area Network [52]

The MAN is more like an expansion of a LAN. The MAN generally spans throughout a metropolitan

city. It can be in the form of an Ethernet, cable TV, or ATM. Much of the technologies, like fast

network components as well as the connection equipment, used in LANs can also be used in MANs but

with more requirements. By applying the ISPs (Internet Service Provider) [27] in the MAN, the users

can expand their LAN to larger ones, as shown in figure 3.3 [52].

• Wide Area Network (WAN)

Figure 3.4: Wide Area Network [52]

When the network expands beyond the range of the MAN, a larger network is introduced and is referred

to as a Wide Area Network (WAN), figure 3.4. Normally, a WAN provides connection among MANs

and LANs so that everything in the network can be connected.

3.2.3 Summary

Networks can be classified according to their different component roles, client-server based and peer-to-peer

based. In the client-server model, each device only has one role as either client or server. The client-server
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model offers centralized control that can cause the whole system to suffer heavy delays or to completely

break down when the server is offline. In the Peer-to-Peer model, two types were discussed: the completely

decentralized system and the hybrid decentralized architecture. In the completely decentralized P2P system,

each node is equal, in the network, and there is no master node. Conversely, in the hybrid decentralized

network, some features of the client-server model are encompassed. Some peer nodes perform as the local

central server in in the network.

Moreover, four categories of networks, classified based on their geography, were included: PAN, LAN,

MAN, and WAN. PAN and LAN present small networks that only cover up to one floor or a building. The

PAN is designed for a single person purpose of usage within 10 meters, and the LAN is more typically used

by an organization or a company. Additionally, MAN and WAN refer to the larger networks that often cover

a city or even an entire country. The Internet is one example of a WAN.

In this research, the goal is to design and implement an architecture that can transfer file and track file in

the Internet and non-Internet environment. When the Internet is available, the client-server based network

structure is applied. On the other hand, the combination of a Peer-to-Peer model and a Local Area Network

will satisfy the architecture’s needs in the non-Internet network.

3.3 Short-Range Mobile Peer-to-Peer Technology

Debopriyo states:"the peer-to-peer networking has shifted focus away from the static architectures of client-

server model that characterised the early Internet, towards more, dynamic, mobile networks." [23] Mobile

Peer-to-Peer technology is an essential part of mobile communication. Most people use mobile technologies

to share information via the Internet when they are apart. The signal from the device is sent to the cell tower

before a connection is made. However, this type of communication is a waste of resources if two devices are

in a short distance from one another. Additionally, if one of the device is not able to connect to the Internet,

then the connection between the two devices cannot be made. Therefore, the short-range mobile peer-to-peer

technology is relied on to address these situations. The two main technologies that have been used widely in

short-range mobile P2P networks are Bluetooth and Wi-Fi Direct.

3.3.1 Bluetooth

"Bluetooth is the connection technology which can be used as link to share data among devices within a

Personal Area Network (PAN)" [50]. Bluetooth is a ubiquitous, low energy wireless link that is available

in most of the mobile devices and tablet computers. The first version of Bluetooth was invented by the

telecom vendor Ericsson in 1994. Overall, there have been versions released since the Bluetooth was initially

developed. The two most widely used implementations are Bluetooth Basic Rate/Enhanced Data Rate

(BR/EDR) as version 2.0/2.1, which is known as Classic Bluetooth and Bluetooth with Low Energy (LE) as

version 4.x. Each of these versions has different usages.
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Power Class Transmission Power Level Advertised Range

1 100 mW 100 meters

2 2.5 mW 10 meters

3 <1 mW < 1 meters

Table 3.2: The Bluetooth Power Class [28]

• Characteristics

The BR/EDR or Classic Bluetooth is typically used when the user needs to set up a relatively short-

range and continuous connection. The key feature of classic Bluetooth is the pairing procedure. The

pairing procedure requires user interaction to make a simple passkey. Conversely, the Bluetooth Low

Energy was originally built for the Internet of Things (IoT) [13], which requires low energy consumption

and an instant connection setup. The main advantages of classic Bluetooth are [3]:

– Multiple-vendor interoperability.

– Ultra-low power consumption which enables the devices to run for months with standard coin-cell

batteries, and

– Standard application development architecture which can reduce operational costs

Moreover, in most Bluetooth Low Energy devices, there are two modes implemented: single mode and

dual mode. In single mode, only the low energy protocol stack is included. In dual mode, it includes

Classic Bluetooth, Bluetooth High Speed (Bluetooth 3.x), and Bluetooth Low Energy protocols so that

the Bluetooth enabled devices can access any versions of Bluetooth devices. For most new generations

of mobile devices, they are all embedded with Bluetooth 4.x chips.

• Cover Range

As the Bluetooth uses radio transmissions for data exchange, the range is determined by the transmis-

sion power levels. Table 3.2 summarizes their range differences based on the various power levels.

For most of the Bluetooth-enabled devices such as cell phones, tablets, and laptops are class 2 devices.

If there is a connection setup between different classes, the range is limited by the less power level [28].

• Topology In Bluetooth network, the physical channel that connects two or more devices called piconet.

In a piconet, the device which scans for other devices is called "slave", and the advertising device is

called "master." Each piconet consists of one master and up to seven slaves. Any Bluetooth device can

function as master or slave. While Bluetooth devices are connected, they communicate on the same

physical channel by synchronizing with the common clock and hopping sequence. The common clock

is identical to the master’s Bluetooth clock, and the hopping sequence is generated from the Bluetooth

clock and the master’s Bluetooth address [4].
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One Bluetooth device can participate to two or more piconets simultaneously which needs to do on

a time-division multiplexing basis [2]. However, a device can never be the master of more than one

piconet as the piconet is defined by the master’s Bluetooth clock. For the Bluetooth device that is the

member of two or more piconets is said to be connected in a scatternet as shown in figure 3.5 and figure

3.6 which are topologies of Bluetooth BR/EDR and Bluetooth Low Energy respectively [51] [4].

Figure 3.5: Bluetooth BR/EDR Topology [4]

In figure 3.5, it shows an example topology of Classic Bluetooth. Device A is a master device in a

piconet, which is the shaded area, with device B, C, D, and E as slaves. Meanwhile, there are two

more piconets: one piconet with device F as the master and device E, G, H as slaves, and the other

piconet with device D as the master and device J as a slave to it. In piconet A, there are two physical

channels. B and C use the basic channel to communicate with A as they are only involved in one

piconet. D and E are using adapted physical channel as this kind of channel allows them to spare some

radio frequencies for different piconets.

In figure 3.6, it demonstrates the topology of Bluetooth Low Energy. Device A acts as a master in a

piconet which has device B and C as slaves. The difference of these two topologies is the number of

physical channels needed for different slaves. In Classic Bluetooth, each slave in one piconet commu-

nicates with the master on a common physical channel. On the other hand, in Bluetooth Low Energy,

each slave connect to the master on a separate channel.

3.3.2 Wi-Fi Direct

Wi-Fi Direct is also called Wi-Fi P2P which is defined and developed by Wi-Fi Alliance. Normally, Wi-Fi is

the most common way to access the Internet. However, as people’s demand increasing, the Wi-Fi technology
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Figure 3.6: Bluetooth Low Energy Topology [4]

needs evolve into a new stage; therefore, the Wi-Fi Direct came out. It aims at enhancing device to device

communications in Wi-Fi environment.

• Architecture

As mentioned by Daniel et al in[9], the typical Wi-Fi Local Area Network is created and broadcasted

by Access Point (AP). Therefore, in this network, a device is clearly defined either as an AP or a client,

and each of these roles has the different set of functionalities. However, these roles in Wi-Fi Direct

are defined dynamically, and a Wi-Fi Direct device has to implement the functionalities of both roles:

client and AP. Meanwhile, these roles could also be executed simultaneously by the same device with

different frequencies.

Figure 3.7: Wi-Fi Direct Topology [62]

The networks formed by Wi-Fi Direct devices are known as P2P Groups. There are two main device

roles in the group: P2P Group Owner (GO) act as an AP and P2P Clients. As mentioned above,

these two roles are not static in the group; therefore, when these two devices discover each other, they

need to negotiate to determine which one of them to be the GO. The details of the negotiation will be

covered later. Once the group is established, other devices can join the group by connecting to the GO
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as connecting to the AP in the traditional Wi-Fi network as shown in figure 3.7 [62].

The default Wi-Fi Direct architecture for Android is designed for 1:N devices which means that the

devices can only communicate within the same group [11]. However, the alternative architecture for

inter-group communication has already be proposed by Casetti et al in [10].

In the group, the GO has to run a Dynamic Host Configuration Protocol (DHCP) server application in

order to provide P2P Clients with IP addresses. Moreover, the P2P GO is the only device in the group

that is allowed to cross-connect the P2P clients to an external network [9].

• Group Formation

There are three main types of group formation in Wi-Fi Direct: standard, autonomous and persistent.

Which type of formations is used depending on various situations, e.g. if the devices have been connected

before, or if there are pre-shared security information available [9].

Each of these types have different phases [29]:

– Discovery Device

Scan for existing P2P groups and Wi-Fi networks to establish connection

– Determination of GO

∗ devices negotiate for GO based on capabilities.

∗ One device is selected as GO at formation.

– Provisioning of the group

∗ Appropriate credentials are used for group establishment.

∗ Exchange credentials using Wi-Fi simple configuration.

More details about the security will be covered in the later section.

– Address Configuration

The GO provides IP address to a client in the group using DHCP.

In the standard case, all these four phases are included. At the beginning, the discovery phase is ini-

tialized. After the scan, a discovery algorithm is executed. A device selects one of the social channels,

channel 1, 6 or 11, in the 2.4 GHz band as a listen channel; then the device switches its status between

two states: search state and listen state. In search state, the device scans other devices by sending

Probe Requests in its social channels. In the listen state, the device listens for the Probe Requests sent

from other devices, and then responses to it with Probe Responses. Once the two devices found each

other, the GO negotiation phase is triggered. This is a three-way handshake process: Request/Respon-

se/Confirmation. In this step, the two devices agree on which one will act as GO [29]. "The primary

purpose of Group Owner Negotiation is to exchange the Group Owner Intent attribute to communicate

19



a measure of desire to be P2P Group Owner" [62]. The device that declares the highest Intent value

becomes the GO. Besides, if one device must be the GO, the Group Owner Intent attribute has to be

set to 15 as demonstrate in figure 3.8.

Figure 3.8: Group Owner Determination Flowchart [62]

In order to prevent the conflicts when two devices declare the same GO Intent value, a tie-breaker bit

is included in the GO Negotiation Request. It is set randomly whenever the request is sent [29].

In the autonomous group formation, a P2P device may be able to create a group autonomously, and

it becomes the GO. As there is only one device participate when the group is forming, the search and

GO Negotiation steps are omitted. Other devices can discover the established group using traditional

Wi-Fi scanning procedure, then proceed to the WPS Provisioning and Address Configuration phases

[9].

The last group formation type is persistent. In this formation, P2P devices can establish a group as

persistent by using a parameter in the P2P Capability attribute which contains multiple indicators [62].

In this status, the group stores network credentials which are assigned to GO and client for subsequent

re-instantiations of the group. More specifically, if a device recognizes that it has formed a persistent

group with the corresponding device before, then any of them can use the Invitation Procedure [62] to

quickly re-connect. The standard GO Negotiation is replaced by the invitation procedure. Moreover,

the provision steps are reduced as the credentials can be reused [9].

Despite which type the group formation is, each of them involves in the WPS. It is short for Wi-Fi

Protected Setup [61] which is implemented to support secure connection with minimal user intervention.

The WPS establishes a secure connection by generating a PIN in the client, or pressing a button in

both GO and client devices. There are two parts in the operation of WPS. In the first part, the GO

needs to generate and issue the network credential such as security keys to the client. In the second
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part, the client disassociates and reconnects with its new authentication credentials. By doing so, if

these two devices form group in the way of the persistent group, it is not necessary to go through the

first phase [9].

3.3.3 Comparison

As reviewed in the previous section, Bluetooth and Wi-Fi Direct are explained in details from the aspects of

characteristic, architecture, and topology. Each of them has their own advantages and drawbacks. In this

section, the comparison between these two technologies will be covered.

• Network Size

As mentioned above, the maximum number of devices for a Bluetooth piconet is eight (seven slaves

and one master). It is possible to extend this number to 255 while each device does not participate

in data exchange but only keep synchronization with the master’s transmissions. On the other hand,

according to the Wi-Fi Alliance, a Wi-Fi Direct network can be one-to-one or one-to-many. The number

is expected to be smaller than the traditional access points, which is 2007 for a structured BSS (Basic

Service Set [56]). Connection to multiple devices is an additional feature. The size is depending on the

device manufacture [43] [60].

• Speed

Based on the information from [5], the data rate of Bluetooth Basic Rate is 1 Megabit per second

(Mb/s) and the Enhanced Data Rate is 2 or 3 Mb/s. For Bluetooth 3.0 which is designed for high-

speed transfer, the speed can be up to 25 Mb/s. However, since the Bluetooth Low Energy is designed

for use cases that require low data rate and has lower duty cycles, the speed for it is 1 Mb/s. On the

other hand, the Wi-Fi Alliance mentioned on their website: Wi-Fi Direct supports typical Wi-Fi speed

which can be as high as 250 Mb/s, but this speed depends on which protocols the devices follow e.g.

802.11 a, g, or n as well as the physical environment of devices [60].

• Compatibility

As stated in 3.3.1, the Bluetooth Low Energy has single and dual modes. For single mode device, it

is not backward compatible with Classic Bluetooth protocol. For dual mode implemented device, it is

allowed to connect with both Classic Bluetooth and new Low Energy devices. For the Wi-Fi Direct

device, it is not only compatible with the same certificated Wi-Fi Direct, it can also communicate with

legacy Wi-Fi devices which are not implemented with Wi-Fi Direct.

3.3.4 Conclusion

These two technologies have been widely used by electronic devices. In this research, we are focusing on

designing an architecture that can track mobile application data in the Local Area Network. Our architecture
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requires high scalability whenever a new device joins the group. Moreover, the transmission rate is also critical

for this research as it requires a high frequency of data transaction. Therefore, after considering these factors,

Wi-Fi Direct is applied to our architecture as the communication technology in the non-Internet environment.

3.4 Web Service

Web Service (WS) is a collection of protocols, and that can be used to exchange data between applications

over a network despite which programming languages the applications written in or the platforms the systems

are running on [55].

There are four steps in the Web Service process [59]:

• The service provider and requester become known to each other. By known, it means these two

components have the awareness of each other’s existence.

• These two entities agree on the service description and semantics that will manage the interaction

between them. "The semantics of a web service is the shared expectation about the behavior of the

service, in particular in response to messages that are sent to it." The web service description is a

specification of the web service interface. It defines the message formats, datatypes, etc.

• The service description and semantics are input to the requester and the provider.

• These two entities exchange messages and data.

There are two main Web Services that are used broadly: the Representational State Transfer (RESTful) and

the Simple Object Access Protocol (SOAP). In the following sections, these two services will be explained

and compared from different aspects.

3.4.1 RESTful

RESTful stands for Representational State Transfer. It was first introduced by Roy Fielding in [20] in 2000. It

is normally, but not always, communicate over the HTTP protocol which is a stateless, client-server protocol.

As stated by Elkstein[19], "despite being simple, REST is fully-featured; there’s basically nothing you can do

in Web Services that can’t be done with a RESTful architecture." The way RESTful works is demonstrated

in figure 3.9. The consumer sends request to the provider which is usually the web server; then the server

sends back the response in XML.

In one paper of Cesare [40], he mentioned that REST architecture is based on four principles:

• Resource identification through URI

Each resource can be referred by a unique universal resource identifier (URI) which provide a global

addressing space for resources.
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Figure 3.9: REST Message Exchange [44]

• Uniform interface

Resources use four main standard HTTP operations: PUT (create), GET (read), POST (update),

DELETE (delete). Each of these operations has different functionalities. PUT creates a new resource

which can be removed by DELETE or transferred to a new state by POST, and GET is for retrieving

current stat of a resource.

• Self-descriptive message

In order to access the resource with more efficient way, REST decouples them from their representation

to a variety of formats (HTML, XML, plain text, etc.).

• Stateful interaction through hyperlinks

Each interaction between the client and the resources is stateless, i.e., request messages send from the

client are self-contained which means that no client context is stored on the server between requests.

All the information needed to service the request is included in each request from the client.

The main strengthes of REST described in [40]:

• It has already been well-known by W3C/IETF and the infrastructure has become pervasive. Clients

and servers based on HTTP protocol are widely available for all primary programming languages

and operation systems. Additionally, the HTTP port 80 is commonly left usable in most firewall

configurations.

• It is inexpensive to acquire because of its lightweight. The requirement needed to build an interaction

using RESTful is slight as developers only need a traditional web browser to do tests instead of a

well-developed software.
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• Efficiency in processing messages. As the REST choices lightweight message formats such as JavaScript

Object Notation (JSON) [16], or plain text (for very simple data types), which can optimize the

performance of a web service.

3.4.2 SOAP

SOAP is the abbreviation for Simple Object Access Protocol, which is a protocol specification for exchanging

information in the implementation of Web Service between the service consumer and provider over the

network. It uses XML as its message format. Normally, it is used over HTTP the same as the RESTful, but

other protocols may also be used, i.e. Simple Mail Transfer Protocol (SMTP) [14].

Figure 3.10: SOAP Message Elements [45]

The SOAP message is consisted of four XML elements as shown in figure 3.10. The top level element

is called envelope which contains a header and a body. The envelope normally identifies the document as a

SOAP message and also defines the message structure. The header in the envelope is an optional element

to provide additional message-layer infrastructure information such as authentication, encoding data and

Quality of Service (QoS) configuration. The body contains the payload of the message which can be defined

using the Web Service Description Language (WSDL) [54] specification. The last element is the fault which

carries a client or server error information. [40][45]

Comparing to the REST, the SOAP also has some advantages points [49]:

• Protocol Transparency and independence. While using SOAP, the same message can be transported

across different middleware systems via different protocols not only HTTP.

• Interoperability. SOAP can work between different platforms and operating systems. Therefore, the

data can be retrieved from the legacy systems via SOAP as long as the data is encoded in XML or

other readable formats.
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3.4.3 Summary

As stated above, both SOAP and RESTful have their own strengths that allow them to meet the different

needs of applications. Nevertheless, in this research, RESTful is more suitable for use as the communication

protocol between the service consumer and provider because it requires less bandwidth in data transactions.

There are two main factors that are considered:

• Packet Size

As this research aims to design an architecture based on the mobile environment, which may have

limited network bandwidth and CPU performance than that of PCs, the size of the packet becomes an

essential element. According to Brian [49], a SOAP message has a large amount of overhead because

of the XML and the protocol design. Generating and parsing an XML message is a time-consuming

task. In fact, the message generating and parsing can consume a lot of bandwidth, and the data

transmission may lead to network latency. However, REST can decouple the resources for lightweight

message formats such as JSON, which is easier to parse.

• Interoperability

Since there are large number of different versions of SOAP that were developed. It is often that one

vendor will use a version of SOAP that is slightly different from another vendor’s. This mismatch in

versions causes a problem when the cross-platform application is developed. On the other hand, REST

has the advantage over SOAP because all developers must use it as an HTTP stack, which can be

hosted on most devices today. Therefore, REST has better interoperability than SOAP. [21]

3.5 Data Synchronization

In a well-developed network, which can contains hundreds of devices, some identical pieces of data may be

stored on each of these devices so that more stable data processing can be achieved. However, many data

processing tasks are been done while the devices are disconnected from the network. Therefore, some data

inconsistences can occur in the network. Due to the possibility of data inconsistency, the data synchronization

and replication absolutely required in order to ensure data integrity, reliability and availability [32]. In order

to keep the data consistent, as well as to overcome the limited mobile bandwidth, there are two categories of

synchronization patterns that have been reviewed: data storage and availability patterns, and data transfer

patterns [63].

3.5.1 Data Storage Patterns

In this pattern, the questions: "how much data should be stored?" and "how much data should be available

without further transfer of data?" are addressed. Usually, mobile devices have limited resources (local storage
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capacity, power, and processing capabilities) and some network constraints, which is why these two questions

become the main concerns. There are two forms of storage included in this section: Partial Storage and

Complete Storage [36].

• Partial Storage

In this pattern, the device only synchronizes and stores data as needed to enhance the network perfor-

mance and storage capacity. It is used in two main scenarios: the data set is either too large to store or

is not needed in the application. The major advantage of this is the reduction of locally storage space

as only needed data is stored. However, the weakness is also critical. If the network is lost, the data

loading can fail and result in the termination of application [36].

• Complete Storage

This storage pattern stores data on each device before it is needed. This storage pattern is desired

while the network connection is not available or not stable. Nevertheless, while synchronizing the

whole dataset to each device, the device storage usage is increased as well as the bandwidth [36].

3.5.2 Data Transfer Patterns

This pattern addresses the problem of data transfer quantity: "how can we synchronize between sets of

data to minimize the data flow?" As discussed already, the network bandwidth is one of the main concerns

of the mobile application. Thus, the data flow between mobile devices needs to be minimized to optimize

the mobile network performance. There are three data transfer categories are covered in this section: Full

Transfer, Timestamp Transfer, and Mathematical Transfer [36].

• Full Transfer

In this transfer category, the whole dataset is transferred once the synchronization event is triggered.

It is designed to satisfy the demand of the application which has a small dataset. The benefit of this

pattern is the data consistency. Either the client or the server device sends the entire data to the other

one, whose dataset is then replaced. In this way, the data on both devices can be identical. On the

other hand, the data redundancy is the disadvantage. The whole data is sent no matter how much data

is modified. Sending unchanged data can waste the network bandwidth and device storage.

• Timestamp Transfer

The goal of this transfer pattern is to reduce the data redundancy and improve the network performance.

During data synchronization, only those changed data since the last synchronization are sent according

to the last-changed timestamp. Though this pattern can boost the network performance, the database

design and synchronization implementation can be more complicated than Full Transfer. Moreover, the

data deletion is not handled well in this model.
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• Mathematical Transfer

This pattern also only synchronizes parts of the data that are changed since the last synchronization,

but with a mathematical method. This form of transfer is more efficiently than the timestamps, which

should be used in the application that requires for absolute minimum bandwidth. However, it is a highly

context-dependent method, different codes may be used for various types of data, and the process of

reconciliation can be much more complex than Timestamp Transfer.

3.5.3 Mobile Data Replication

In many cases, a mobile device often only accesses to its local data, and most of these data are retrieved

from other devices. Due to the constraints of the mobile device such as weak or intermittent connectivity

and security vulnerabilities, data replication is essential for mobile data management to increase availability

and cut communication costs [46].

The primary question in mobile replicated data system is how to handle data updates and synchronization

in multiple replicas in different devices. All the updates to different replicas can be rejected if the connectivity

is weak or not exist. Therefore, an appropriate data replication strategy should be adopted in this research.

In [46] and [25], the data replication can be divided into different groups based on the update modes

(synchronous replication, asynchronous replication, and two-tier replication) and sources of updates (single-

master and a group of masters).

3.5.3.1 Synchronous Data Replication

In synchronous data replication (SDR), data updates are applied to all replicas at all nodes as part of one

atomic transaction, which means when one data copy is updated, all other replicas need to be synchronized

concurrently. This replication can avoid data conflict and ensure serializable execution. However, it comes

with several costs. Since the additional messages are included in the transaction, the replication process

can result in a bad performance as well as more transaction response time. Moreover, if one replica is not

available during the replication procedure, it may cause failure of a commit. Though, a technique called

voting [57] can be used to solve this problem, it is very slow and can cause deadlocks. Due to the mobile

device has limited bandwidth and unstable network connectivity, this replication is not applicable for mobile

environment [46][25].

3.5.3.2 Asynchronous Data Replication

Under asynchronous data replication algorithm, the data updates are done on one single node in the network.

After the transaction is committed, the replica update is propagated to other nodes. In this way, the update

transaction requires less networking resources than the synchronous replication. Nevertheless, it also has

some shortcomings. Since the data updates are committed by various transactions, the data consistency can

be a challenging, and a conflict might occur [46][25].
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Each of these two replication models can be used in different update control mechanisms as described

following. There is no difference for synchronous replication in these two mechanisms as it does not matter

on which device the data is modified. On the other hand, there are critical differences for asynchronous

replication.

3.5.3.3 Group Update (Non-Master)

In the group update mechanism, which is also called multi-master model, the data can be modified by any

nodes in the network. For the asynchronous replication in this model, the update transaction is sent to every

node after the transaction committed on the update origination device. However, there is a possibility that

two nodes may modify the same data object locally. In this case, a reconcile protocol should be applied.

Normally, timestamps are the most common approach to sequence the updates. Each update request carries

new data and the timestamp of the old object. A transaction is committed when the timestamp in the request

is the same as the local timestamp of replicas. On the other hand, if these two values are not the same,

which means the object might be modified by more than one node, then the update transaction is rejected,

and update reconciliation is submitted. This can cause waits in the whole network. The waiting time is a

variable which depends on the reconciliation frequency [25].

3.5.3.4 Single-Master Update

As mentioned above, in [25], Jim et al brought up two main updates originations: single-master and group.

In the single-master model, each node in the network has a master node who is the only device that has the

authorization to update the primary copy of the data object. All other replicas can only read the data. If

any of the replicas wants to modify the object, it needs to send a request to the master node. Since this

single-master property, there are no conflicts in the system which can ensure the data consistency. For the

asynchronous replication in this model, the master node broadcasts the replica updates to all the slave nodes

after the master transaction commits. After the slave nodes receive the updates, they use the timestamp,

which is the same as in the multi-master, to ensure that all the replicas are in the same state. If the slave’s

local timestamp is older than the incoming one, the transaction will proceed. Otherwise, it will ignore the

updates. To sum up, the asynchronous replication in single-master has better response time comparing to

the asynchronous replication in a multi-master network as the previous replication pattern sends out fewer

messages. However, single-master mechanism requires the slave to connect the master node and participate in

an atomic data transaction as long as there is an update. Therefore, it is not a suitable for mobile applications

[25].

3.5.3.5 Two-Tier Data Replication

In [48] and [41], both of these paper brought up a protocol called Two-tier Replication to ensure the data

consistency in mobile networks. This protocol was first introduced by Gray et al in [25]. The main idea is
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simple; each data object is mastered by a node in the system, whenever there is a modification made on

the mobile nodes, they can make a tentative update, and then check if the update is acceptable by the base

nodes.

In the two-tier replication protocol, there are two varieties of nodes (mobile and base), two data versions

on mobile nodes (master and tentative), and two types of data transactions (base and tentative) [25]:

• Mobile Nodes

The set of nodes that are disconnected from the network often. They have a replica of the database

stored locally which can be modified while they are offline.

• Base Nodes

The set of nodes that are always connected to the system. They also have a replica of the database

stored but with the most updated version.

• Master Version

The latest data value retrieved from the object master while it was connected. The mobile nodes may

have different versions as the object master has.

• Tentative Version

The local data object that is updated by the tentative transactions while the node is disconnected.

• Base Transactions

The collection of transactions that only work on master data, and they generate a new version of master

data. They only involve the connected nodes.

• Tentative Transactions

The collection of transactions that work on the local tentative version of data and produce new tentative

versions. They also generate base transactions to be committed on the base nodes while they are

reconnected.

This replication model can handle both device connected and disconnected cases. In the connected scenario,

the two-tier system will run as an asynchronous replication in single-master condition. However, the procedure

in the disconnected case is more complex. In the beginning, a mobile node has a replica of the master data

from a base node. After it loses the connection to the base node, it can make tentative transactions on that

master data locally. These transactions generate a tentative data version locates on the mobile node. After

the mobile node reconnects to the base node, there are several processes for mobile node to operate [25]:

• The tentative data versions are omitted as they will be refreshed after the connection.

• All the local replica updates and tentative transactions are sent to the base node for synchronization.
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• Receive all the replica updates from the base node and the feedback of each tentative transaction sent

before.

On the other hand, the base node also has some operations to run corresponding to the mobile nodes [25]:

• Send all the updated data objects to the reconnected mobile nodes.

• Receive the replica update and tentative transactions from the mobile nodes.

• Rerun the tentative transactions in the order they were committed on the mobile node, and then it will

send the results to the mobile node.

• After the base transactions are committed without conflicts, all the updates will be propagated to all

replica nodes.

3.5.4 Summary

Normally, the solution of data storage and transfer for a large system on PCs would be to increase the

network performance and extend the storage space. However, extending the storage space is impractical on

mobile devices. Therefore, how the data is stored and transferred in a mobile network becomes a critical

question. Regarding, the storage pattern in data synchronization, the exact type to use in the mobile device

can be ambiguous. The storage pattern is therefore determined by the size of datasets and the device storage

capacity. The timestamp works the best for a mobile application’s transfer pattern. The full transfer can

affect the network’s bandwidth and occupy extra mobile storage. Although, the mathematical pattern can

enhance the network performance, but it is not reusable for different data types.

Moreover, in the previous analysis, there different data replication architecturse were compared: syn-

chronous replication, asynchronous replication in both single-master and multi-master, and two-tier repli-

cation. In both synchronous and asynchronous replication, nodes are required to be connected in order

to update the replicas. Furthermore, the synchronous replication and asynchronous replication in multi-

master condition can cause a long-time waits and deadlock; although, the asynchronous replication in the

single-master model may have better performance than the synchronous replication. For two-tier replication,

it supports data updates while mobile devices are disconnected, and it combines the advantages of both

synchronous and asynchronous replication [25].

3.6 Database

Generally, databases refer to the organized collections of data so that it can easily be accessed and managed.

The database can be classified based on their organizational approach. The most common style is the

relational database which is opposing to the non-relational database. In this section, the two main prevalent

databases: SQL and NoSQL (Not-only SQL) will be presented and compared.
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3.6.1 Relational Database / SQL

SQL stands for Structured Query Language. It is an interface language that is used for relational database

applications. In a relational database, a table is used to organize the different set of data. In a table, each

row represents a record and each column represents a field of that record.

Each record in the table can be retrieved by a primary key which uniquely identifies each record in a

table; the primary key can avoid the data redundant in a table. Additionally, there are some relations among

different tables in a database schema. The linkage is connected by the foreign key. "A foreign key value

represents a reference to the tuple containing the matching candidate key value (The referenced tuple)" [17].

In [26], Christoforos states that the normalization of the schema is an important design aspect of a relation

database. There are three steps are described in [15] [17]:

• First Normal Form (1NF): Create a new table for each set of related data to avoid repeating data so

that all tuples in a table are unique.

• Second Normal Form (2NF): If a set of values are the same for various records in a table, then transfer

them to a new table and link them via a foreign key.

• Third Normal Form (3NF): Those columns that do not depend on the primary key should be removed.

In a relational database, the ACID transaction properties are used to ensure the reliability: Atomicity,

Consistency, Isolation, and Durability.

• Atomicity

All or none of the transactions are finished. If one of the transaction operations fails, the entire

transaction fails.

• Consistency

The database needs to remain consistent before and after the transaction commits.

• Isolation

Each transaction needs to be completed serially so that the associated data does not affect others.

• Durability

After a transaction is committed, the data will remain in the state.

Despite the high usage of the relational database system, it has shortcomings. The biggest problem

is horizontal scalability. "Traditional database products have comparatively little or no ability to scale

horizontally on these applications." [12]. As explained by Rick [12], the term "horizontal scalability" refers

to the capability to distribute both the data and data operations over a large number of servers without

RAM or disk sharing. It differs from the "vertical scalability" which is the ability to utilize multiple cores
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that share RAM and disks. This problem gets more critical in a Peer-to-Peer system as the data is spread on

different nodes. Once a tuple of the table is changed on one node, then the update is needed on each node

on which the data is located. If the node is offline, then the data inconsistency may occur [47].

3.6.2 Non-Relational Database / NoSQL

As the constraints of relational database mentioned above, NoSQL, which is also known as "not only SQL"

or non-relational database, has started exploding during the late 90s to early 2000s. The goal of developing

NoSQL database is to provide high availability, flexibility, and performance for large-scale Internet applica-

tions. Normally, NoSQL is the term used to include all the non-relational databases. As the data types and

user cases can be very wildly in these databases, the NoSQL databases are induced into four types [30]:

• Key-Value stores

In these databases, the data values are paired by keys, like a hash table. A good example to explain

this is a file system where the path acts as the key and the file acts as the data contents. If there is a

change been made, the entire value other than the key needs to be updated.

• Graph stores

This type of database specializes in handling interconnected data. The nodes and edges are the primary

concepts in the graph database. The nodes correspond to the data record, and the edges present the

relations between the nodes. "The strength of a graph database is in traversing the connections between

nodes" [30].

• Column Stores

In a relational database, all the data are stored in a specific table’s row. In a column database, it

normally serializes all the values of the same column together so that the retrieval of an aggregated

data on a particular attribute fast[30].

• Document Stores

In this database, the data record is stored as a document on the disk. The document can be thought

as collections of key-value pairs where keys are normally strings and values can be different data types

(strings, numeric, Booleans, arrays, and other key-value pairs, etc.). The popular syntaxes for document

database are XML and JSON.

Rick [12] states that the NoSQL databases normally have six features as following:

• The ability to scale "simple operation" (key lookups, read and writes of one data record or a small

amount of records) horizontally over many servers.

• The ability to replicate and distribute data through large number of servers.
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• Simple call level interface compare to the SQL.

• A weaker transaction properties than the ACID.

• Distributed index and RAM are efficiently used.

• Strong ability to dynamically add new attributes to existing data records.

Apparently, the most important feature of NoSQL is the horizontal scaling. This allows the database to

support a large amount of data read/write operations. Meanwhile, as mentioned in the fourth feature above,

NoSQL databases generally do not support the ACID properties; instead, the BASE is brought up [47] [39]:

• Basically Available

Use replication technique to minimize the possibility of data unavailability, and partitioning the data

into smaller parts on multiple storage servers to reduce the failure risk.

• Soft State

In ACID, the database requires all data to remain consistent. For the NoSQL database, it allows the

data to be inconsistent and turns over the data consistent designing to developers.

• Eventually Consistent

In the NoSQL database, the data consistency is achieved eventually at some future point in contrast

to ACID, which enforces the consistency as soon as the transaction is committed.

By promoting BASE instead of ACID, better performance, availability, and scalability can be achieved.

However, the instantaneous consistency is traded for availability in CAP [22]. In the CAP theorem [24], it

states that a system can only achieve two out of three of the following properties: consistency, availability, and

partition-tolerance. According to Fu[22], due to the requirement of different applications, the CAP trade-off

is different. In the mobile environment, as the network connection is unpredictable, the partition-tolerance

is required to prevent message loss.

3.6.3 Summary

In conclusion, the relational database has been the most dominant database system for decades. However,

as the number of web and mobile applications dramatically increases, more and more data is generated.

Therefore, a more flexible and stable database solution is required. For this reason, the NoSQL database has

been brought up. Compared to an SQL database, the NoSQL database system has the following advantages

[30]:

• Flexibility

In a relational database, the data values are referenced by an attribute that is pre-defined in a schema,

which can be a constraint for a developer when a new attribute needs to be added. For NoSQL,
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"schema flexibility and intuitive data structures are key features" [30]. Schema updates are generally

not required in NoSQL database, and complex database schema changes are eliminated by codebase

modifications.

• Scalability

As stated in section 3.6, database scale refers to both vertical scale and horizontal scale. NoSQL

databases are more specialized to horizontal scale, which can spread the data across a cluster of nodes

more easily than the relational databases.

• Availability

The downtime of a database can result in both customer and data loss. In some NoSQL databases,

different data replication architectures are offered, which provide high availability for data reads and

writes. In NoSQL, even if one or more nodes goes down, the other nodes in the network can continue

data operations without influence.

3.7 Conclusion

In this chapter, numerous approaches were described in order to solve the key challenges that were mentioned

in Chapter 2, and these are:

• Device Connection in the non-Internet network

Mostly, device connections can be made via the Internet. When Internet service is available, mobile

devices can send requests to the cloud server. Various technologies have been brought up for the non-

Internet environment, but Wi-Fi Direct and Bluetooth are the most dominant technologies. Through

comparison of these two technologies from different aspects, Wi-Fi Direct was found to be more suitable

for this research due to its network capacity, compatibility, and transmission speed.

• Tracking information consistency in the intermittent network

The file tracking information is stored on the cloud server database when the Internet is available.

However, as the architecture permits mobile devices to transfer files in a non-Internet network, the file

also needs to be tracked when the Internet connection is lost. Therefore, a synchronization mechanism

needs to be designed to ensure the integrity and consistency of the tracking information. In section 3.5,

several data replications were reviewed. Two-tier replication was determined to be the most applicable

synchronization model for the mobile device. It can ensure the data consistency while the devices are

disconnected from the server.

• Bandwidth

Based on the reviews in section 3.1, limited resources, network bandwidth, and intermittent connectivity

are the three main constraints that mobile computing has. The constraints of limited resources can be
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solved by good database model and design. Unstable connectivity causes data inconsistency, which can

be resolved by a proper synchronization pattern. The architecture can achieve high network bandwidth

from two aspects:

– Restful lightweight data transmission technique, and

– Proper synchronization mechanism to minimize the transferred updates

Besides the reviews of technologies that can be used to solve this research’s challenges, some other research

was analyzed for the purpose of improving the scalability and availability of the architecture:

• Mobile cloud computing

Mobile cloud computing combines the advantages of mobile computing and cloud computing. The native

application of mobile cloud computing can achieve high computation capacity as well as optimized local

storage space. In this research, the file objects and file tracking information are stored on the cloud

server for mobile devices to access.

• Scalable database

Our architecture needs to have the ability to scale well because devices can, at any time, join or leave

the network. NoSQL database is broadly used due to its advantages in availability and horizontal

scalability compared to the relational database. Therefore, it is desired for the local data storage to

store tracking information.
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Chapter 4

DESIGN AND ARCHITECTURE

Overall, there are five essential technologies in the design of the file tracking architecture:

• Mobile Peer-to-Peer (P2P),

• Mobile cloud computing,

• Web service,

• Different synchronization mechanisms, and

• Scalable database.

These five technologies were reviewed and compared in Chapter 3. The review showed that, when comparing

them from various aspects, such as the maximum number of devices in the network, compatibility, and data

transmission speed, Wi-Fi Direct is more advantageous than Bluetooth for mobile P2P technology in the non-

Internet environment. With respect to synchronization mechanisms, a proper synchronization mechanism

is needed in order to keep the tracking information consistency on the mobile device. The synchronization

mechanism that was used included two-tier replication pattern and time stamp pattern because they allow

better consistency and lower bandwidth usage. RESTful, a lightweight protocol that can achieve lower

bandwidth usage than SOAP, was utilized for data transmission protocol between multiple devices. Finally,

scalability is a valuable property in a distributed system. In our file tracking architecture, a NoSQL database

was used because it is more specialized to horizontal scalability than the traditional relation database. In

this chapter, an architecture that integrates these four technologies to track data in mobile networks will be

designed and proposed.

4.1 Overview

As stated in chapter 3, there are two main types of networks that have been widely used: Local Area Network

(LAN) and Wide Area Network (WAN). The LAN is usually constructed on the P2P network architecture

for connection setup. On the other hand, the Internet is the representative of WAN. The data tracking

mechanism in these two networks was implemented in our architecture.
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4.1.1 Data Tracking in WAN

In the WAN network, there are two primary roles: server and client. The server and client have different

jobs and responsibilities as shown in figure 4.1.

Figure 4.1: Basic Cloud Server and Clients Architecture

• Client

The clients in this network are usually the mobile devices. The clients do not need to do the cumbersome

computation process as the cloud server can handle the majority of the data manipulations. The primary

responsibility of the client device is to send requests to the server and retrieve data from the server. It

acts as the medium between the user and the cloud.

• Cloud Server

The main responsibility of the cloud server is to provide file storage, and to store the tracking informa-

tion in the database. There are two different sets of data in the cloud database: 1) track first and 2)

recover first. More details about this will be covered in the later sections.

4.1.2 Data Tracking in LAN

The Local Area Network (LAN) is typically used for device communication when the Internet is unavailable

or not needed. The Peer-to-Peer technology was used to setup a network in the non-Internet environment.

After comparing the different technologies, we found that Wi-Fi Direct could meet most of our requirements.

The device in the proposed Wi-Fi Direct network has three primary roles of: the local master, the group

owner (GO), and the client devices. Each role has different functionalities, as shown in figure 4.2:

• Local Master
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Figure 4.2: Basic Tracking Architecture Design

The local master’s job is to provide the file access when the cloud server is not available. The local master

has the same file objects and tracking information as the cloud server. The tracking information will

be synchronized by the synchronization mechanism whenever the connection between the local master

and cloud server is reestablished.

• Client Devices

The client devices serve as slave devices in the group. The client devices can retrieve a file from the

local master when the cloud server is not available. Moreover, each client can also send the received

files to other devices with two restrictions:

1. The client device of the local master can only send the file to one single device once, and

2. The device which received the file from a client device instead of the local master cannot broadcast

the file again - they can only read.

The goal of these constraints is to protect data privacy as well as the consistency of tracking information.

• Group Owner
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There are two types of group owner (GO) devices In the proposed architecture.

1. The GO is the local master. When the local master connects to client devices, it acts as the GO

in the network. The GO has the authorization to send the file objects as well as manage the file

flow in the network for later synchronization.

2. The GO is a client device. This type of GO is depicted as client devices 1 and 2 in figure 4.2. There

is one and only one GO in a single group due to the design of Android Wi-Fi Direct architecture.

After a client device disconnects from the local master, it can be the GO in other groups (group X

and Y in figure 4.2). However, the restriction of the client devices, mentioned above, are applied.

Moreover, this type of GO device keeps tracking the data flow locally for tracking information

updates when the connection to the cloud server or the local master is available. More details will

be covered in the next section.

4.2 Architectures Details and Functionality

Different architecture designs are necessary for the different roles of the devices in the system. Each of the

architecture design follows the standard Model-View-Controller (MVC) pattern.

• Group Owner Architecture

As stated in the section 4.1.2, there are two types of GO, and each of them has different functionality

and design.

1. Local Master as GO (figure 4.3)

– Model

The local master’s model has a File Storage Database (FSD) to store all the file documents.

Moreover, it also has a File Track Storage (FTS) which is defined as the master version in

the two-tier replication, and To Be Updated Transaction (TBUT) which is demonstrated as

a tentative version in the two-tier replication. In FTS, it stores all the data tracking records

in a key-value NoSQL database. There are two primary purposes of FTS:

∗ Track Data (Track-first)

In this group of FTS, the name of file object acts as the unique key of a data attribute.

The information of the device, which requested the corresponding file, is stored in the

value field. Every time a client device retrieves a file, the Tracking Manager triggers the

push (the file is retrieved the first time) or update (the file has been requested before)

event on the database. This database mainly focuses on solving the problem "What is

where." The local master can easily find out which data objects have been requested, and

also the detail information about the devices by generating the tracking information. The
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Figure 4.3: Local Master Model-View-Controller Architecture

format of the data structure is as follows: File Name:{Timestamp:{device information}}.

The data structure is a nested JSON object which contains three levels:

· First level: file Name. The file name is a nested JSON object which uses the name of

the requested file as the key, and the second level as the value.

· Second level: timestamp. The timestamp is the JSON object which is contained under

the first level. It uses the current timestamp as the key, and the device information as

the value. The purpose of this level is to avoid data conflict by using different timestamp.

· Third level: device information. This level stores all of the information of the device

that has requested the file, which is stored in the first level.

∗ Recover Data (Recover-first)

The second group of FTS is used to solve the problem "Who has what." It can help the

local master to recover the file objects on the client devices. The MAC address of the client

device is stored as the key field, and the file information stored as the value. A new data

set is generated in the database when a device retrieves a file object from the host device.

The format of this data set is as follows: Device MAC:{Timestamp:{file information}}.

The data structure also has three levels of JSON objects:

· First level: device MAC. In this level, it takes the MAC address of a mobile device as

the key, and a JSON object as the value.

· Second level: timestamp. This level is the same as the second level of Track-first, but
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it takes the file information as the value.

· Third level: file information. This level stores all the files that have been requested by

the device which is denoted in the first level.

Additionally, the TBUT collects all of tracking information that has been generated since the

device has disconnected from the cloud server. The data structure is the same as the FTS.

– View

The view object handles all the mobile interfaces and human interactions. Since the client is

allowed to receive and view the file locally, it has

∗ File View (for the user to browse files),

∗ Request View (for sending out requests), and

∗ Connection View (for connection setup between the client and the host devices).

The local master also has an interface view that is used to browse the file tracking information,

such as the list of devices on which the files are stored since it has the authorization to track

data. A synchronization view is necessary as well because the tracking information needs to

be updated on both the local master and cloud server after they are reconnected.

– Controller

This object accepts the user’s input as events. The controller notifies the corresponding

functions to run as soon as there is an event from the views. There are five leading managers

to take care of different user interactions in this architecture:

∗ Storage Manager (FSM),

∗ Connection Manager (CM),

∗ Data Transmission Manager (DTM),

∗ Local Master Tracking Manager (LMTM), and

∗ Information Synchronization Manager (ISM).

The FSM manages all the file storing on the device. The FSM notifies the FSD to store the

objects in the local directory once a file is received. The CM is used to deal with the Wi-Fi

Direct connection/disconnection events between two devices. The DTM manages the requests

and response between the client and master device. The LMTM is used to deal with all of the

data tracking events. It updates File Track Storage whenever there is a file transaction in the

network. Moreover, the local master also has Information Synchronization Manager (ISM)

to ensure the consistency of tracking information on the local master and cloud server. The

primary duty of ISM is to generate the To Be Updated Transaction whenever there is a file

flow after disconnection. The synchronization details will be covered in the workflow section.

2. Client Architecture (figure 4.4)

– Model
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Figure 4.4: Client Model-View-Controller Architecture

The model deals with the data store and manipulation in the system. For a client device, the

model only has a file storage Database (FSD) that stores all of the file objects received from

the host devices.

– View

The view object of client contains three primary interfaces: File View (for the user to browse

files), Request View (for sending out requests), and Connection View (for connection setup

between client and GO or cloud server).

– Controller

There are four leading managers to take care of different user interactions: File Storage Man-

ager (FSM), Connection Manager (CM), Data Transmission Manager (DTM) and Information

Synchronization Manager (ISM). These four managers have the same functions as the local

master’s.

3. Client device as GO architecture (client 1 and 2 in figure 4.2) in figure 4.5.

– Model

The model for this type of GO is slightly different from the local master. Similarly, this model

has the FSD to store all the files received. It only has the TBUT data structure to store all

the offline file transactions that have performed rather than the permanent File Track Storage

on the local master. The data in the TBUT will be wiped by certain events which will be

explained later.
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Figure 4.5: Client as GO Model-View-Controller Architecture

– View

With the exception of the Track Data View, the views for the client device as the GO are

almost identical to the local master. Since the track information on this device is temporary,

the Track Data View is not needed under this situation.

– Controller

The controller for this GO is the same as the controller for the local master. Additionally, the

information synchronization manager needs to deal with the clearance of the TBUT.

• Cloud Server Architecture

The basic architecture of cloud server is the same as the local master since they share the same models

and controllers. The only difference between the basic architecture of the cloud server and the local

master is the view. In the cloud server, it does not need the mobile interfaces to interact. On the other

hand, the cloud has a web interface for the administrator to manage data.

4.3 File Track Workflow

In reviewing the concept of mobile computing in section 3.1, it was found that the two major mobile device

communication states are connected and disconnected. The file tracking for disconnected devices is the key

challenge in this research. For example, the local master or a client can be disconnected from the cloud server

due to the intermittent Internet connection; a client device can be disconnected from the local master when
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it is out of the network range. Therefore, in the proposed architecture, both of connected and disconnected

scenarios were taken into consideration. In this section, the workflow of the architecture will be explained.

4.3.1 Cloud Server is Connected

Figure 4.6: Cloud Server File Tracking Workflow

The file tracking process when the cloud server and client devices are connected is straightforward, as

demonstrated in figure 4.6. The first step in the procedure is to set up a connection between the cloud and

clients. As soon as the connection is established, the client device can send a retrieve request to the server.

Once the server finds the matched file object, it sends the file back to the client device, Meanwhile, the File

Track Storage records all of the tracking information: track first and recover first. The details of track data

and recover data were explained in the model of local master architecture in section 4.2. The client can

browse the file locally via the file view after. Simultaneously, the tracking information is stored in the TBUT

of the cloud server. Whenever, the local master is connected, the tracking information will be synchronized.

4.3.2 Cloud Server is not Connected

This section explains how the architecture handles the situation when the cloud is not available. The local

master acts as the host device in the mobile network and records all the tracking information.

4.3.2.1 Local Master can be Connected

The client can retrieve files via the local master as long as they are within the range of Wi-Fi Direct network

in the case of the cloud server being offline. In this situation, the challenge becomes tracking information’s
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Figure 4.7: Local Master File Tracking Workflow

integrity and consistency in the intermittent network, as discussed in Chapter 2. The major responsibility of

the local master is to keep file available as well as maintain its local file and tracking information consistent

with the cloud server. There are several steps that need to be accomplished in order to ensure the consistency

and integrity of tracking information (demonstrated in figure 4.7):

1. Local master retrieves all the files and tracking information at the first connection with the cloud server.

2. When a client needs to retrieve a file remotely, it will check if the cloud server is available. If the

connection can be established, then the architecture will handle the file tracking in the connected

situation as described in section 4.3.1. Otherwise, the client checks if its distance between the local

master is within the coverage of Wi-Fi Direct. If the local master can be reached, then the system

follows the next steps, otherwise the situation where a client device is the GO (explained in the 4.3.2.2)

will be applied.

3. The local master can send desired files to the clients as soon as the local master and client devices are

connected. Meanwhile, the local master’s Tracking Manager triggers an event which notifies the File

Track Storage to push or update the tracking data objects depends on the file request appearance. The
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To Be Updated Transaction, which records all the tracking information in offline condition, will also be

generated.

The following procedures describe the tracking information synchronization when the cloud server and

local master are reconnected again. The workflow is presented in figure 4.8.

Figure 4.8: File Tracking Information Synchronization Workflow

4. The architecture checks the TBUT on each of these two nodes as soon as the local master is reconnected

to the cloud server. The following steps will be processed if either one is not empty; otherwise, an empty

TBUT means there is no file transaction during the disconnected time.

There are two situations where file transactions can occur when the local master and cloud server are

disconnected:

(a) Either the local master or the cloud server has transferred files to other devices during disconnection

period. In this case, it does not matter which one did the transaction as the solution is the same.

The local master will be an example explained below.
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i. The local master’s data objects in TBUT of are sent to the cloud server. In TBUT, there are

two main key-value data sets:

• The key is file’s unique id, and the value is the device information.

• Conversely, the second data set takes the device’s MAC address as the key and the file

information as the value.

Each of the two key-value data sets have the timestamp attribute in order to avoid data

conflicts during the synchronization process.

ii. The cloud server compares the incoming data objects’ first level, which is the key, with those

keys in the File Track Storage of the cloud.

iii. If the same key is found, then the corresponding data in the cloud server’s FTS will be updated.

iv. On the other hand, the cloud needs to push a new set of data in TFS if there is no identical

data object key is found.

(b) Both of the local master and cloud server transferred files to clients during the disconnection. In

this case, the following processes will be performed:

i. The local master’s data objects in TBUT are sent to the cloud,

ii. The cloud server compares the incoming data objects’ keys with those in its File Track Storage,

iii. If an identical data object is found, the corresponding data in the cloud server’s FTS will be

updated,

iv. The TBUT data of cloud is sent to the local master, and

v. TFS of each master hosts updates its data based on the received data.

Device MAC File Name Actions Time

client 1 File A Retrieved 2:00

Table 4.1: Recovery-first of client’s TBUT

File Name Device MAC Actions Time

File A client 1 Retrieved 2:00

Table 4.2: Track-first of client’s TBUT

The medical reports example will be used to explain these processes in details. The hospital’s cloud

server stores the medical files of its patients Alex, Bob, and Charlie. The local master device downloads the

patients’ files immediately as soon as the cloud generates their files. One day, Alex experiences a medical

emergency. However, the Internet service in the area is down for maintenance, and the cloud server cannot

be accessed. So the doctor, Emily, downloads Alex’s file from the local master to her tablet for analysis. At
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this time, the MAC address of Emily’s devices is recorded in File Track Storage of local master and the To Be

Updated Transaction is generated (shown in table 4.1 and 4.2.) When the maintenance of the could server is

finished, the local master sends the data objects in TBUT to the cloud which contains two main data sets:

• Alex’s file name is the key attribute, and the information of doctor’s device are stored as values. These

values are stored in order to track where the data is located.

• The MAC address of the physician’s device is the key attribute, and Alex’s file information are the

value field. The data stored are used for recovering data from the doctor’s device if it is lost.

After the cloud receives the data from the local master, it looks up its TFS to find out if it contains the

data objects which take Alex’s file or the MAC address of Emily’s device as keys. In the case that nothing

is found, the cloud creates a set of new data objects in the File Track Storage. However, if there is a data

object found in the cloud’s TFS, the existing data objects will be updated.

4.3.2.2 Local Master can not be connected

The previous steps explained how the file flow is tracked when the local master is the GO of Wi-Fi Direct

network. However, the connection between clients and the local master cannot be persistent. A device may

not be able to connect to the local master when it is out of the range, or the local master is down. In this

case, neither cloud nor local master is available. Therefore, another scenario, where the client device of the

local master acts as the GO, is taken into consideration.

1. If a client device needs to retrieve a file when the local master and the cloud are both offline, the user

will need to check if the nearby devices have the desired file. If any nearby devices have the desired file,

then the next few steps will proceed; otherwise, the client device waits until the local master or cloud

is back online.

2. The nearby device establishes a Wi-Fi Direct network, and acts as the GO; the requested device can

join the group as a slave.

3. The GO can send a file to one slave device in the network with certain limitations, as mentioned in

section 4.1.2.

4. The TBUT of the GO stores the tracking information.

5. Every time it launches, the system checks if the local master or the cloud server is available. If either

of the local master or the cloud server is found, then the data objects in GO’s TBUT are sent to the

available node. An available node, for example, is the local master.

6. The local master compares the incoming data objects’ keys with those in its File Track Storage.

7. If the same key is found, then the corresponding data in the local master’s FTS will be updated.
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8. If there is no identical data object key is found in TFS, then the local master needs to push a new set

to TFS.

9. The TBUT of local master records the incoming tracking data for synchronization.

10. After the local master generate its TBUT, the synchronization processes, as described in step (4) of

4.3.2.1 will be executed in order to ensure the tracking information consistency in the cloud and local

master.

The continuous medical report example is demonstrated to explain this situation more clearly. The

previous example describes the scenario when the local master is available. However, when Emily goes back

to her apartment, the distance between her device and the local master in the hospital is too far to establish

a connection. But Emily’s neighbor, David, is an expert on Alex’s disease. Emily uses her tablet to transfers

Alex’s medical report to David so that he can help her treat Alex. However, due to hospital’s privacy policy,

David cannot share this report with anyone else. The next day, when Emily goes back to the hospital, the file

transaction that was made last night is synchronized to the local master as soon as she launches the system.

4.4 Network Bandwidth

As mentioned in Chapter 2 and 3, the mobile network bandwidth is constrained due to intermittent connec-

tivity, and it is a challenge to this research. Therefore, maximizing the efficient use of the limited bandwidth

resource is valuable.

In the proposed architecture, the efficient bandwidth consumption is achieved by applying three aspects:

• Connection technology. After comparing different connection technologies, Wi-Fi Direct became the

first choice because of its high transfer speed, which is nearly ten times faster than Bluetooth. Moreover,

the maximum number of devices that can be connected in the network is more flexible.

• Appropriate synchronization patterns. As described in section 3.5.2 and 3.5.3, there are several transfer

and storage patterns that occur during the synchronization process. In this architecture, the timestamp

pattern is more suitable. Meanwhile, we proposed a data set called To Be Updated Transaction, which

is based on the two-tire replication, so that only the necessary data is sent. Sending only the data

necessary for the synchronization can help to reduce the data flow in synchronization procedures.

• Lightweight web service protocol. In the proposed architecture, we used the RESTful web service which

is a more lightweight protocol as it supports multiple message format. It reduced the data load sent

between devices.

4.5 Summary

In this chapter, we designed an architecture which can achieve the following objectives:
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1. The mobile devices can be connected in the Internet and non-Internet environment,

2. Ensuring file tracking information consistency in mobile networks,

3. Integrity of file tracking information is achieved in mobile networks, and

4. Improve network bandwidth by using appropriate web service protocol, connection technologies, and

synchronization patterns.

To ensure the tracking information consistency, the architecture constructs a replication mechanism based

on the two-tier replication model which supports data update when the device is offline.

For the data tracking, two data storage patterns were designed: track first and recover first. In the track

first mode, the architecture deals with the question "What is where" to improve the data management and

supervise. In the recover first mode, the architecture focuses on the question "Who has what." The solution

to this question can help the user to recover data from lost devices.

To overcome the bandwidth limitation of mobile networks, the architecture uses Wi-Fi Direct for device

connection in the non-Internet network, the RESTful web service for data transmission, and timestamp

synchronization pattern to reduce the amount of data transferred.
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Chapter 5

IMPLEMENTATION

There are three different implementation designs in the architecture: the local master, the client device,

and the cloud server in the architecture. Each of these three roles follows the Model-View-Controller design

pattern. In this chapter, it covers how the different components are integrated and implemented.

5.1 Local Master Design

The local master is the local host device while the cloud is not available. The model and controller are the

most important parts. The details of implementation are as following:

5.1.1 Model of the Local Master

Figure 5.1: Local Master Model-View-Controller Architecture

In figure 5.1, there are three main data objects in the model: File Track Storage (master version), To Be
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Updated Transaction (tentative version), and File Storage. The FTS stores all of the tracking information

that is identical to the information on the cloud server. The TBUT stores the most updated information that

has not yet been synchronized. Both the FTS and TBUT are stored in the Couchbase Lite NoSQL database

locally. The file objects are stored in the application’s directory on the device. There are several procedures

to store the file tracking information based on the file transactions, they are:

1. Create File Track Storage database document.

pub l i c void createLocalTrackDocument ( )

{

localTrackFi leDocument = new Document ( loca lDatabase , " LocalMasterTrack " ) ;

Log . d(" l o c a l t rack document " , " l o c a l t rack document c rea ted with id : "

+localTrackFi leDocument . ge t Id ( ) ) ;

}

This class defines a local database document with the ID "LocalMasterTrack." The localDatabase is

an instance of the local Couchbase Lite database. The code snippet is called at the first time the user

runs the application.

2. The local TBUT database document is created to store all the tentative data versions.

pub l i c void generateLocalTbut ( )

{

Document loca lTbut = new Document ( loca lDatabase , localTBUTId ) ;

Log . d(" c r e a t e l o c a l tbut " ," l o c a l tbut i s c r ea ted with id : " + loca lTbut . ge t Id ( ) ) ;

}

This class defines a TBUT database with the ID "LocalTBUTId". It uses the same database instance

as the FTS database document. It is also called at the first time the user launches the application.

3. Define and store the data attributes for the FTS and the TBUT database.

The data objects are stored as a key-value data structure in which each key is mapped to a single

value. The values, in this case, are nested JSON objects which contain multiple JSON strings. The

code below demonstrates the steps of storing tracking information to the FTS. The infoJson stores all

the tracking information, including action type, device MAC address, timestamp, and file name. This

JSON object is then stored as the value in the timeKey JSON, which takes timestamp as the key.

Afterward, the timeKey is put into the value fields of the deviceKey JSON, which takes device MAC

address as the key. Finally, the deviceKey JSON is passed to the recoverKey HashMap data structure

that uses "Recover First" as the static key. After the data object is stored in the Map data structure,

it will then be passed to the local database document by providing the document Id.
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Map<Str ing , Object> FTS = new HashMap<Str ing , Object >() ;

JSONObject deviceKey = new JSONObject ( ) ;

JSONObject timeKey = new JSONObject ( ) ;

JSONObject in f oJ son = new JSONObject ( ) ;

t ry {

in f oJ son . put (" Action " , " t e s t " ) ;

i n f oJ son . put (" Device MAC Address " , " dev i ce " ) ;

i n f oJ son . put ("Timestamp" , "20111111") ;

i n f oJ son . put (" F i l e Name" , "Test F i l e " ) ;

timeKey . put ("20111111" , t e s tJ son ) ;

deviceKey . put (" dev i ce " , t imeTest ) ;

FTS. put (" Recover_First " , dev iceTest ) ;

l oca lDatabase . getDocument ( localTrackDocumentId ) .

putProper t i e s (FTS) ;

l oca lDatabase . getDocument ( localTBUTId ) .

putProper t i e s (FTS) ;

} catch ( JSONException e ){

e . pr intStackTrace ( ) ;

}

The data pushing in TBUT follows the same process as the code snippet above but with a different

document ID.

5.1.2 Controller of Local Master

In this component, the controller of the local master contains all the event listeners that will be triggered

once the specific actions are performed. There are five managers on the local master that handle all the

events.

File Storage Manager

The file storage manager deals with the file download actions. It is triggered once the file download event

has been performed.

pro tec ted St r ing doInBackground (Void . . . params ) {

F i r ebaseStorage mFirebaseStorage = Fi rebaseStorage . g e t In s tance ( ) ;

f i n a l F i l e l o c a l F i l e = new F i l e (

Environment . ge tExte rna lS to rageDi r ec to ry ( ) .
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getPath ()+"/"+ ge tAc t i v i t y ( ) .

getPackageName()+"/"+ fi leName ) ;

StorageRefe rence s to rageRe f = mFirebaseStorage .

getReferenceFromUrl (

" gs : // t e s t−c4 f e2 . appspot . com/" + fi leName ) ;

s to rageRe f . g e tF i l e ( l o c a l F i l e ) . addOnSuccessListener (new OnSuccessListener<FileDownloadTask . TaskSnapshot >() {

@Override

pub l i c void onSuccess ( FileDownloadTask . TaskSnapshot taskSnapshot ) {

SimpleDateFormat fo rmatte r =

new SimpleDateFormat (" yyyy−MM−dd_HH−mm−ss_SSS " ) ;

S t r ing dateSt r ing = formatte r .

format (new java . u t i l . Date ( ) ) ;

}

} ) . addOnFai lureListener (new OnFai lureL i s tener ( ) {

@Override

pub l i c void onFa i lure (@NonNull Exception e ) {

Log . d("main " , " f i l e downloads f a i l e d " ) ;

}

} ) ;

r e turn l o c a l F i l e . getAbsolutePath ( ) ;

}

Once the file storage manager has been triggered, the code snippet above is activated. A Firebase storage

instance is created when the code snippet first runs. The Firebase instance is used to retrieve the database

reference on the cloud server. Afterward, a GET request is sent to the Firebase to obtain the desired file by

providing the file name. Once the file is targeted successfully, the file is then stored under the application

directory.

Connection Manager (CM)

The connection manager deals with the Wi-Fi direct connection while the cloud is not available. The ar-

chitecture implements the WifiP2pManager to enable the P2P service in each device. After the devices

are connected, all the device information, such as MAC address and IP address can be retrieved via the

WifiP2pInfo.

File Transmission Manager (FTM)

The file transmission manager is performed when the file is transferred between the client device and the local

master. The file will be transferred via the socket stream to the client devices once the action is triggered
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Local Master Tracking Information Manager (TIM)

The TIM of the local master ensures all the file flows between the local master and client devices can be

recorded precisely. After a file is transferred to a client device, the local master manipulates the codes snippet

demonstrated in the third step of section 5.1.1.

Information Synchronization Manager (ISM)

The ISM deals with the tracking information synchronization between the local master and the cloud server.

The ISM is triggered once the connection between the local master and cloud is reestablished. There are two

cases that are considered:

1. The local master sent files to client devices during the disconnection period.

In this case, the ISM of local master sends its local TBUT (tentative version) to the cloud server, and

the cloud server updates its File Track Storage.

2. The cloud sent files to the client devices during disconnection period.

Under this scenario, the local master retrieves TBUT data objects from the cloud. The implementations

are shown below:

i f ( l oca lDatabase . getDocument ( localTrackDocumentId ) != nu l l ) {

i f ( l oca lDatabase . getDocument ( localTrackDocumentId ) . g e tP rope r t i e s ( ) != nu l l ){

j = new JSONObject ( loca lDatabase . getDocument ( localTrackDocumentId ) .

g e tP rope r t i e s ( ) . t oS t r i ng ( ) ) ;

}

}

myRef . c h i l d ("TBUT" ) . addListenerForSing leValueEvent (new ValueEventListener ( ){

@Override

pub l i c void onDataChange ( DataSnapshot dataSnapshot ) {

i f ( dataSnapshot . e x i s t s ( ) && ( dataSnapshot . hasChi ld (" Recover_First ")

| | dataSnapshot . hasChi ld (" Track_First " ) ) ) {

t ry {

St r ing j son = new Gson ( ) . toJson ( dataSnapshot . c h i l d (" Recover_First " ) .

getValue ( ) ) ;

JSONObject fromTbutJson = new JSONObject ( j son ) ;

JSONObject toLocalDeviceJSON = nu l l ;

I t e r a t o r dev i c eT imeI te ra to r = nu l l ;

JSONObject recoverTempJson = fromTbutJson ;

I t e r a t o r r e c o v e r I t e r a t o r = fromTbutJson . keys ( ) ;
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whi le ( r e c o v e r I t e r a t o r . hasNext ( ) ) {

St r ing deviceKey = ( St r ing ) r e c o v e r I t e r a t o r . next ( ) ;

toLocalDeviceJSON = recoverTempJson . getJSONObject ( deviceKey ) ;

dev i c eT imeI te ra to r = toLocalDeviceJSON . keys ( ) ;

i f ( j != nu l l ) {

i f ( ( ( JSONObject ) j . get (" Recover_First " ) ) . has ( deviceKey ) ) {

whi l e ( dev i c eT imeI t e ra to r . hasNext ( ) ) {

St r ing Timekey = ( St r ing ) dev i c eT imeI t e ra to r . next ( ) ;

( ( JSONObject ) j . get (" Recover_First " ) ) .

getJSONObject ( deviceKey ) . put (Timekey ,

toLocalDeviceJSON . get (Timekey ) ) ;

}

} e l s e {

whi l e ( dev i c eT imeI t e ra to r . hasNext ( ) ) {

St r ing Timekey = ( St r ing ) dev i c eT imeI t e ra to r . next ( ) ;

t imeJson . put (Timekey , toLocalDeviceJSON .

getJSONObject (Timekey ) ) ;

}

( ( JSONObject ) j . get (" Recover_First " ) ) . put ( deviceKey , timeJson ) ;

}

} e l s e {

JSONObject tempDeviceJson = new JSONObject ( ) ;

JSONObject tempTimeJson = new JSONObject ( ) ;

whi l e ( dev i c eT imeI t e ra to r . hasNext ( ) ) {

St r ing Timekey = ( St r ing ) dev i c eT imeI t e ra to r . next ( ) ;

tempTimeJson . put (Timekey , toLocalDeviceJSON . get (Timekey ) ) ;

}

tempDeviceJson . put ( deviceKey , tempTimeJson ) ;

JSONObject r = new JSONObject ( ) ;

r . put (" Recover_First " , tempDeviceJson ) ;

j = new JSONObject ( r . t oS t r i ng ( ) ) ;

}

}

} catch ( JSONException e ) {

e . pr intStackTrace ( ) ;

}
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Map<Str ing , Object> combine = new HashMap<Str ing , Object >() ;

combine . put (" Recover_First " , j . get (" Recover_First " ) . t oS t r i ng ( ) ) ;

l oca lDatabase . getDocument ( localTrackDocumentId ) . putProper t i e s ( combine ) ;

The code snippet above first determines if there is any tracking information in the database document

of the local master. If the database is not null, then the local database’s data objects will be stored in

a JSON object. After this has been completed, there are a few steps to transfer the TBUT from the

cloud to the local master’s tracking database:

(a) The local master reads the data objects from the cloud’s TBUT, and stores everything in a JSON

object called "fromTbutJson".

(b) The system goes through the received data objects and the local tracking information to check

if there is any identical object (device’s MAC address in the shown codes) is found. In the case

where an identical key is found, the existing data objects will be updated; otherwise, if the local

tracking information doesn’t contain any of the TBUT’s keys, a new data set will then be pushed

to the local tracking database.

5.2 Client Device Design

Figure 5.2: Client as GO Model-View-Controller Architecture

As described in the Chapter 4, the architecture of the client device is a sub-component of the local master.

The client device contains fewer functions than the local master device.
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As shown in figure 5.2, the client device only has two data storage: file storage and TBUT. The file storage

and TBUT use the same implementations as the local master. The controller in the client device design shares

some common managers with the local master, such as File Storage Manager, Connection Manager, and File

Transmission Manager. The only difference between the controller of the local master and the client device

is the Information Synchronization Manager. In the client device, the synchronization manager updates its

TBUT to the local master or the cloud server. The update is a one way transmission (client to the host).

Conversely, the local master’s ISM updates the TBUT to the cloud or receives new data objects from the

cloud, which is a two way communication (local master to the cloud or cloud to the local master.)

5.3 Cloud Server

The architecture’s cloud server is hosted on the Firebase mobile platform because of its high scalability and

availability. The Firebase Realtime Database, which is a NoSQL data storage, is used to store all the tracking

information as well as the TBUT information. The Firebase Storage, which is backed by the Google Cloud

Storage, handles all of the file storage on the server.

Figure 5.3: JSON objects in the Firebase database

The data on the Firebase Realtime Database, stored as a JSON object, can synchronize to each connected

devices in real-time. Figure 5.3 presents the database structure on the cloud server. Both the data storage

components, File Track Storage and TBUT, have the same structure as those in the local master. The File

Track Storage has two children paths: Recover First and Track First. Each of these paths are used for

different purposes and is described in Chapter 4. The Recover First takes the device MAC as the key to store

the tracking information. Track First, on the other hand, uses the file name as the key for data objects. In

order to implement the database, the system follows the code snippet below:
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myRef . c h i l d (" File_Track_Storage " ) . c h i l d (" Track_First " ) .

c h i l d (" F i l e Name" ) . setValue (mFileName ) ;

myRef . c h i l d (" File_Track_Storage " ) . c h i l d (" Track_First " ) .

c h i l d (" Device MAC Address " ) . setValue (macAddress ) ;

myRef . c h i l d (" File_Track_Storage " ) . c h i l d (" Track_First " ) .

c h i l d (" Action " ) . setValue (" Retr i eve " ) ;

myRef . c h i l d (" File_Track_Storage " ) . c h i l d (" Track_First " ) .

c h i l d ("Timestamp " ) . setValue ( dateSt r ing ) ;

The meRef is the Firebase database instance that is acquired by calling the Firebase.getReference() function.

The myRef.child)() function can retrieve the reference of the given location if any exists; otherwise the

function will create a new path.

As shown in figure 5.4, file uploading on the Firebase is straightforward. The administrator can simply

update the file to the storage by clicking the Upload File button. For file downloading, however, the client

side needs to provide the URL shown in the figure 5.4 with the additional file name.

Figure 5.4: Firebase file storage

5.4 Conclusion

In this chapter, the details of architecture implementation have been explained based on different roles of

devices in the system: the local master, the client device, and the cloud. The core part of the architecture is the

local master. The model of the local master consists of two main parts: TBUT and File Track Storage. Each

of these parts stores tracking information for different purposes. Each manager in the controller of the local

master handles different action events. The file storage manager deals with all the file objects downloads, the

connection manager deals with the Wi-Fi direct connection event, the file transmission manager is triggered

when a file is transferred between the host device and client devices, the tracking information manager is used
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to ensure the integrity of the tracking information, and the information synchronization manager handles

the information synchronization process between the local master and the cloud server. For the cloud server

design, the Firebase realtime database and file storage were used. The tracking information is stored in the

database, which is constructed as two parts that consists of track first and recover first. The file storage

keeps all the file objects available.
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Chapter 6

EXPERIMENT

In this chapter, the proposed architecture’s functionality and performance was evaluated. In order to

address the challenges described in Chapter 2 as well as examining the architecture’s feasibility in vari-

ous circumstances, the following aspects were assessed: file transmission performance, tracking information

consistency and integrity, and synchronization mechanism performance.

• The file transmission performance experiment examines the device connection performance in the non-

Internet environment.

• The information consistency and integrity experiment verifies the effectiveness of the designed data

tracking architecture. By doing this experiment, the data consistency challenge can be verified.

• The data synchronization performance experiment tests the amount of data transferred between mul-

tiple mobile devices when a synchronization event was triggered. The result of the experiment was

then compared to the basic synchronization strategy. The purpose of this experiment is to examine the

network bandwidth efficiency in the architecture.

6.1 Experiment Setup

This research proposes a new architecture that can be embedded in the mobile network whether the Internet

is available or not. The Android mobile peer-to-peer (Android Wi-Fi Direct) network was implemented for

the non-Internet environment. Conversely, the Firebase Cloud Service was applied as the backend server for

the Internet situation. To evaluate different functionality and performance, various devices were needed:

Hardware Components Specification Details

Platform (OS) Android 5.1

CPU Quad-core 1.5 GHz Krait

Storage Capacity 32 GB (2 GB RAM)

Wireless Communication Wi-Fi 802.11 a/b/g/n, dual-band,

Wi-Fi Direct

Table 6.1: Hardware specification of Nexus 7 (local master)
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• Nexus 7 (Local Master)

• Nexus 7 (Client device)

Hardware Components Specification Details

Platform (OS) Android 5.1

CPU Quad-core 1.5 GHz Krait

Storage Capacity 16 GB (2 GB RAM)

Wireless Communication Wi-Fi 802.11 a/b/g/n, dual-band,

Wi-Fi Direct

Table 6.2: Hardware specification of Nexus 7 (client device)

• Samsung Galaxy Note II (Client device)

Hardware Components Specification Details

Platform (OS) Android 4.4

CPU Quad-core 1.6 GHz Cortex-A9

Storage Capacity 16 GB (2 GB RAM)

Wireless Communication Wi-Fi 802.11 a/b/g/n, dual-band,

Wi-Fi Direct

Table 6.3: Hardware specification of Samsung Note II (client device)

Each device represents different roles in the network: local master, the client devices, and the cloud server.

As described before, the local master acts as host device when the cloud server is not available. The local

master contains the same file objects as the cloud server. The client devices retrieve files from either the

cloud server or the local master depends on the availability of the Internet.

6.2 File Transmission Performance

As described in chapter 2 and 3, mobile bandwidth is a major challenge because of the high mobility and

intermittent connection of mobile devices. Wi-Fi Direct follows the standard Wi-Fi speed which can be up

to 250 Mb/s. The file transmission speed in the Android P2P network was examined in this experiment.

Experiment

The bandwidth was reviewed by sending the different size of the files between the client device and the local

master. In this experiment, the relationship between the size of the archive and one-way transmission time

in the network was analyzed. Figure 6.1 shows the experiment demonstration. To calculate the length of
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time, a timer was triggered when the file was sent out and then ended as soon as the client device finished

downloading.

Figure 6.1: File Transmission among multiple devices

Figure 6.2: File Transmission Time

Result

Figure 6.2 shows a proportional relationship between the file size and transmission time. The file required

more time to transfer as the file size increased. However, when the experimental data is compared to the

theoretical Wi-Fi direct speed in figure 6.3. The blue bar stands for the transmission time of the proposed

architecture; on the other hand, the red bar means the theoretical time. The standard speed is almost eight-

times faster than the examined data. After taking several factors into consideration, it was suspected that

the file writing time could be the reason that caused this difference. After running a benchmark test on the

experiment device, the average writing time was concluded and is shown in table 6.4. Figure 6.4 shows the

relationship between the theoretical transmission time and actual transmission time - this was arrived at by

subtracting the writing time from the experimental transmission time. The difference in transmission time

reduces as the size of file increases. This reduction in transmission time means that as the file size gets larger,

the experiment transmission time approaches the theoretical time infinitely. This result means that Wi-Fi
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Figure 6.3: Experiment time VS theoretical time

File Size Writing Time

(Milliseconds)

Wi-Fi Standard Time

(Milliseconds)
128 KB 6.834 4

256 KB 13.678 8

512 KB 27.35 16

1024 KB 54.70 32

2048 KB 109.41 64

4096 KB 218.82 128

8192 KB 437.64 256

Table 6.4: Device File Writing Time

direct performs faster in the architecture than the Bluetooth, whose theoretical speed is 25 Mb/s.

6.3 Tracking Information Consistency and Integrity

The architecture’s primary element is the tracking mechanism. Both the local master and cloud server have

the capacity to store tracking information locally. The tracking information can be synchronized instanta-

neously when these two nodes are connected. However, either host may update its tracking data during

the disconnection period since the Internet service can be down for unforeseen reasons. Therefore, the data

consistency and integrity need to be verified under this circumstance. In this section, the tracking mechanism

was evaluated in several situations:
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Figure 6.4: File Transmission Time without file writing time

Experiment

• The cloud server is available

– Case one: two devices retrieve different files from the cloud server. as shown in figure 6.5.

Figure 6.5: Different file retrieval

– Case two: two devices retrieve the same file from the server, as shown in figure 6.6.

The tracking information on the local master and the cloud was verified after the experiment was carried

out for these two cases.
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Figure 6.6: Same file retrieval

• The cloud server is unavailable

– Case one: two client devices connect to the local master, and retrieve different files from it. The

procedures is identical to the one shown in figure 6.5.

– Case two: two client devices connect to the local master, and retrieve the same file from it. The

process follows the same steps as shown in figure 6.6.

The local master connected to the cloud server for data synchronization after each of these two cases

were completed. The tracking information for the local master and the cloud server will then be

compared.

• Neither the cloud server nor the local master is available.

One client device can be the group owner of a Wi-Fi Direct network when the local master and cloud

are not available. The client device can transfer a file to its slave device, as shown in figure 6.7. There

were three steps in this experiment:

1. The GO device sends several files to its client devices,

2. The GO reconnects to the local master or the cloud server, whichever one is available, and

3. Synchronize the tracking information on the local master and the cloud server when they are

reconnected.

The data integrity and consistency of the tracking information on the local master and cloud server

were then verified.
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Figure 6.7: Client of local master acts as group owner in a network

Result

• The cloud server is available

– Case one: Retrieve different files

∗ Integrity results

There were two client devices (Nexus 7 and Samsung Note II) in the experiment. The Sam-

sung Note II with the MAC address: 90:18:7C:20:23:F5 retrieved the file named "256kb.txt"

from the cloud, and Nexus 7 with the address of d8:50:e6:74:16:80 requested the file called

"128kb.txt". After inspecting the cloud’s tracking data objects, as shown on the left-hand side

of figure 6.8, we concluded that the implemented architecture ensured tracking data integrity

in this case.

Figure 6.8: File Tracking Storage comparison while retrieving different files
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∗ Consistency results

The data objects, in figure 6.8, were compared to examine the consistency of tracking in-

formation. The left-hand side shows the cloud server’s database, while the right-hand side

demonstrates the JSON object of the local master’s local tracking information. The JSON

object was generated based on the To Be Updated Transaction of the cloud after the synchro-

nization event was triggered, and the red contexts represents the keys of each nested data.

The architecture ensured the data consistency in this scenario by matching the data objects

on the two sides.

– Case two: Retrieve same files

Figure 6.9: File Tracking Storage comparison while retrieving same file

∗ Integrity results

The two client devices sent requests to the cloud to retrieve the same file by providing the file

name from the user interface. The left hand side of figure 6.9 presents the data objects on the

cloud server. The data integrity is guaranteed by manually verifying the data contents.

∗ Consistency results

The data consistency experiment was identical to the case one experiment. The data values

of each key were duplicated by comparing the data objects on the cloud (left-hand side) and

local master (right-hand side), in figure 6.9. Therefore, the data consistency was ensured in

this case.

• The cloud server is not available

As described in the experiment section, the processes to examine the data integrity and consistency

were identical whether the cloud was available or not. The only dissimilarity was the host device. In

this section, the local master acted as the master device which sent files to clients. The experiment

results were analyzed as following:

– Case one: Retrieve different files from the local master
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∗ Integrity results

Two client devices retrieved different files, named: "1mb.txt" and "2mb.txt", from the local

master. The tracking information was stored as a JSON object, figure 6.10. The JSON object

indicated that the two file transactions had been recorded accurately in the File Track Storage

of the local master with the desired formats and values.

Figure 6.10: File Tracking Storage comparison while retrieving different files from local master

∗ Consistency results

In the consistency test, the local master updated the file transactions to the cloud’s File Track

Storage. The latest data objects on the server side were presented as the left-hand portion

of the figure 6.10. The information consistency was verified by comparing the data objects of

the cloud and local master.

– Case two: Retrieve same files from the local master

∗ Integrity results

Figure 6.11: File Tracking Storage comparison while retrieving the same from local master
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As before, the integrity test was verified by inspecting the File Track Storage of the host

devices. The right-hand side of the figure 6.11 presents the JSON object of the local master’s

tracking data. All of the information had been stored correctly.

∗ Consistency results

To examine the data consistency, the local master updated its tracking information to the

cloud as before. After reviewing the File Track Storage of both host devices, figure 6.11, the

data objects were considered consistent.

• Neither the cloud server nor the local master is available

In this experiment, a client device from the previous two tests acted as the group owner in a Wi-Fi

Direct network. The client device could send files to its slave device in the group. Two situations were

simulated after the file transactions: the GO reconnected to the local master first, or the cloud server

first. The synchronization procedures are slightly different for these two situations. If the local master

was reconnected first, it generated the TBUT, which could then be sent to the cloud server. On the

other hand, if the cloud was available first, the local master would synchronize its File Track Storage

based on the server’s TBUT. The details are shown below:

– Reconnected to the local master first

1. Local master sends a file named "256kb.txt" to a client device. The data objects in the local

master’s File Track Storage is shown in the figure 6.12a.

(a) File Track Storage for the local master (b) TBUT for a client device

Figure 6.12: File Transactions among multiple client devices

2. The client device disconnected with the local master and acted as the group owner of another

Wi-Fi Direct network. The client device sent the file received from the local master to its

slave device. Afterward, the file flow was recorded in its temporary TBUT, as shown in figure

6.12b.
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3. The simulations of reconnecting the local master and the client devices were performed. The

client device updated its TBUT to the local master once the re-connection was finished. This

action generated some data objects to the TBUT and File Track Storage of the local master.

The demonstration is presented in figure 6.13. In this case, the data objects of this two storage

are the same because the local master did not synchronize its tracking information with the

cloud after the step 1.

(a) File Track Storage of the local master (b) TBUT of the local master

Figure 6.13: File Transactions among multiple client devices

4. After running the synchronization procedure, the tracking information on the cloud and local

master were verified by analyzing the figure 6.13a and 6.14.

Figure 6.14: Cloud’s database after synchronization

– Reconnect to the cloud server first
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In this case, steps of file transaction are the same as previous situation. The only difference is the

synchronization procedure. In the last scenario, the updates were sent from the local master to

cloud. Nevertheless, in this circumstance, the cloud server needs to send its TBUT (figure 6.15)

to the local master. It was generated from the TBUT (figure 6.16) of client device which was

the GO of a Wi-Fi direct network. To check if the local master updates all tracking information

accurately, the data objects in the local master’s File Track Storage were compared (figure 6.17).

Figure 6.15: Cloud’s TBUT from a client device

Figure 6.16: Clients’s local TBUT

To sum up, the experiments that have been done in this section examined the proposed architecture from

various circumstances. Most of the connection situations have been taken into consideration. For each of the

experiments, the architecture was found to have ensured the integrity and consistency of tracking information

in the Internet and non-Internet environment.
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(a) FTS on local master before sync (b) FTS on local master after sync

Figure 6.17: File Track Storage of local master

6.4 Data Synchronization Performance

The consistency of tracking information was the core part of this research. Additionally, the performance

of the synchronization procedure was critical because it could affect the bandwidth performance of mobile

devices.

Experiment

Normally, the performance of the architecture was determined by the size of the tracking data that needs to

be updated. Therefore, the following experiments were repeated with the different number of file requests:

10 requests, 20 requests, 40 requests, and 80 requests.

1. The local master sends ten files to the client devices while it is disconnected from the cloud.

2. Reconnect the local master and the cloud server, and synchronize the tracking information.

3. Disconnect the local master and cloud again, then sends twenty files from the local master to the client

devices.

4. Repeats the previous steps until the number of file requests reaches to 80.

Meanwhile, the same experiment was applied to a basic synchronization strategy. This synchronization

algorithm deleted all of the local tracking information first and then retrieves every piece of tracking infor-

mation from the connected node. The sizes of the updated data objects in both strategies were recorded and

compared. The details are presented in the results.
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Results

In the experiments, the performance was examined by calculating the size of transferred data objects. In

figure 6.18, the blue bar represents the size of total downloaded data of the basic synchronization strategy,

the red stands for the examined architecture, and the green bar indicates the difference of downloaded data

size between these two strategies. As the number of file requests increased during the disconnection time,

the size of downloaded data of the basic strategy rose dramatically. However, the proposed architecture’s

synchronization mechanism takes up half of the bandwidth, meaning that the more files transferred, the more

bandwidth the architecture saves. This space saving can lead to the reduction of synchronizing time. Thus,

the proposed synchronization mechanism can provide a more efficient procedure for data updates.

Figure 6.18: Synchronization performance comparison

6.5 Conclusion

To sum up, by examining our proposed architecture based on the above experiments, we verified that the

architecture resolved all the challenges described in Chapter 2. The file transmission performance experiment

tested the transmission performance of the proposed architecture. Even though the data I used was not as

fast as the theoretical Wi-Fi direct speed, I found that as the size of the file transferred was increased, the

transmission rate of proposed architecture also increased. Moreover, the proposed architecture’s rate was

found to be infinitely close to the standard speed if the file was large enough. By verifying the data integrity

and consistency, the tracking information on local master and cloud server was considered identical. Several
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different situations have been exposed in the experiments. In each of these cases, the tracking information

was fully recorded and synchronized without exceptions. In the last experiment, I examined the performance

of synchronization mechanism in the architecture. The synchronization mechanism provided a more efficient

procedure that can reduce the redundant of data updates.

75



Chapter 7

SUMMARY AND CONTRIBUTION

7.1 Summary

With the dramatic rise of mobile computing development, personal smart devices have become an essential

part of people’s daily lives. This integration with daily life has led to millions of mobile applications developed.

A large amount of data, such as contact list, photos, and emails just to name a few, are generated through

the use of these applications. Furthermore, people are able to send these data to any devices at anytime via

the Internet. Under this circumstance, data management is utterly essential.

This research focused on solving file tracking problem in mobile networks. The client side of the archi-

tecture was based on the Android platform, and the file storage and database storage were hosted on the

Firebase cloud platform. Generally, the application will work regardless of the availability of the Internet.

When the Internet connection was available, the mobile device could then send requests to the cloud server

directly to retrieve files. The cloud would then store the tracking information in its database. However, when

the cloud server was not available, a mobile device acted as the local master to handle clients’ requests. Each

client device was able to connect to the local master via the Wi-Fi direct technology. All of the file tracking

information in this situation was stored on the local master, and then was synchronized with the cloud server

via the designed synchronization mechanism. When neither the cloud nor the local master was available, all

the file transactions were stored on the group owner of the present Wi-Fi direct network. These transactions

were then synchronized with either the local master or the cloud. Therefore, the tracking information’s

consistency was ensured from different situations.

Moreover, to overcome the mobile device limitations mentioned in Chapter 2, the designed architecture

contained following main components:

• The Wi-Fi Peer-to-Peer technology was applied in the architecture in order to ensure the device con-

nection in the non-Internet network. The Wi-Fi P2P technology has standard Wi-Fi transfer speed,

with a maximum speed up to 250 Mb/s.

• A synchronization mechanism was embedded into the architecture in order to overcome the tracking in-

formation consistency problem in the intermittent connectivity environment. Different synchronization

procedures were applied based on the network situations.
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• The RESTful protocol and the timestamp transfer pattern were implemented to solve the bandwidth

constraint of the mobile device. RESTful is a lightweight web service protocol. It can pass light message

formats such as JSON and plain text. Additionally, the timestamp transfer pattern only transfers data

changed since the last synchronization among the mobile devices.

There were three factors that were analyzed in the experiments: file transmission performance, tracking

consistency and integrity, and synchronization mechanism performance. Through the examination of these

three factors, the proposed architecture was verified from three essential aspects: transmission rate, data

consistency and data integrity, and synchronization bandwidth.

• Transmission rate

Different files were sent from the local master to client device. The relationship between the transmission

time and file size were compared. The experimental time approached to the theoretical data infinitely

as the size of file getting larger.

• Data consistency and integrity

There are several situations that were considered in the experiments in order to verify the effectiveness

of the architecture:

– The cloud server was available

1. Two devices retrieved the different files.

2. Two devices retrieved the same file.

– The cloud server was not available

1. Two devices retrieved the different files from the local master.

2. Two devices retrieved the same file from the local master.

– Neither the cloud server nor the local master was available

In this case, one client device acted as group owner of a Wi-Fi direct network. The client device

sent its retrieved files to the other device. Afterwards, the client device needed to reconnect to

the host device for information synchronization.

1. The group owner reconnected to the local master first.

2. The group owner reconnected to the cloud server first.

The data consistency and integrity were guaranteed after performing each of the experiments.

• Synchronization mechanism performance

Multiple files were sent from the host device to the client devices to verify the performance of the

architecture. After comparison it with the basic synchronization mechanism, the architecture only

transferred the most updated data.
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7.2 Contribution

Though there are already some data management systems available, most of them are only supported by

desktop computers. For those management systems that are compatible with mobile devices, the users have

to connect their devices to the Internet in order to share data with other personal devices. The performance

of this kind of architecture can be crucial when the Internet connection is unavailable. Therefore, in this

research, a new architecture was designed and implemented. The architecture supports data transaction and

tracking in both the Internet and non-Internet environment. By enabling the file transaction in the non-

Internet environment, the user would be able to share files without being constrained to the availability of the

Internet. Moreover, by providing the functionality of the file tracking, the chance of file loss can be reduced;

also, the file transactions that have been made in the network can be retrieved so that the administrator can

improve the management efficiency. For instance, by applying the file tracking architecture to the medical

example mentioned in Chapter 2, if the doctor has the proposed architecture implemented on his tablet, he

can simply logins the hospital’s cloud server to retrieve the file transactions that were made on his tablet.

By doing so, the doctor wouldn’t waste time to look for the tablet and all of his efforts can be retained.
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Chapter 8

FUTURE WORK

The proposed architecture achieves file tracking in both the Internet and non-Internet environment.

However, the architecture can be improved in four ways:

• Multiple file formats

Currently, the only file format supported by the architecture is the image file, which can be downloaded

and browsed in the application. Support for the pdf and other common file formats have not yet been

implemented. By achieving this feature, the architecture will compatible with more document types.

• Data tracking in the IoT application

The IoT, which stands for the Internet of Things, aims to make physical devices (i.e. sensors) available

in the virtual world so that they can be connected by the Internet. These sensors continuously receive

and generate huge amounts of data for analysis, which can cause an increase in the number of data

errors. In this scenario, the proposed architecture can be modified and integrated into IoT applications

to track data flows. By doing so, the administrator will be able to figure out the source of the data

problem as soon as a warning appears.

• Cross-platform

In the architecture, the mobile device only supports the Android platform. As mentioned in Chapter 3,

there are many other operating systems. In the future, a cross-platform application should be designed

and implemented.

• Security

The user has to acquire the authorization from the Firebase cloud server in order to establish connection

to the database and file storage of the cloud in the present architecture. However, the local database

and file objects of the mobile devices have not been encrypted. The next step of the architecture’s

development is to construct an encryption algorithm to ensure the security of the local files.
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