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ABSTRACT 

Replication-defective and replication-competent recombinant human adenovirus 

type 5 vectors efficiently expressed the glycoprotein D (gD) or the transmembrane anchor 

truncated gD (tgD) of bovine herpesvirus type 1 (BHV-I) in v i m .  To facilitate the 

evaluation of the efficacy of immunisation with these recombinant adenoviruses in 

conferring protection against BHV-1 infection, a cotton rat (Sigmodon hispidus) model for 

intranasal BHV-1 challenge was developed. I used this model to assess the ability of 

different routes of immuaisation with the recombinant adenoviruses to elicit @specific 

systemic and mucosal immunity and confer protection against BHV-I challenge. 

[mmunisation with gD-expressing vectors induced better immunity and protection than 

immunisation with tgD-expressing viruses. Mucosal immunisation with the replication- 

competent virus was more efficient than that with the replication-defective vector in 

inducing @-specific antibody in the serum and the respiratory tract. In contrast, systemic 

immunisation with the two vectors stimulated similar @-specific antibody levels. These 

results indicate that the route of imrnunisation was crucial when assessing the efficacy of 

recombinant adenoviruses as vaccine vectors. The importance of the route of 

administration was further demonstrated by the finding that intranasal immunisation with 

the replication-competent vector stimulated higher antigen-specific IgA levels and 

antibody-secreting cell numbers in the respiratory tract than intradermal, intraperitoneal or 

enteric irnmunisation. Protection correlated with gD-specific antibody levels such that 

intranasal immunisation, even 3 months following vaccination, conferred complete, while 

intraderrnal or enteric immunisation conferred partial protection of the lungs of cotton rats 

dgainst intranasal BHV-1 challenge. Pre-existing active adenovirus-specific immunity 

stimulated by intranasal administration of wild type adenovirus significantly inhibited the 

development of @-specific antibody responses and protection against BHV- I challenge 



following imrnunisation with recombinant adenovirus. In contrast, passive transfer of 

adenovirus-specific antibody caused only a slight inhibition. Overall, mucosal and systemic 

immunisation with adenovirus vectors could induce antigemspecific immunity and 

protection against BHV-1 challenge. The level of @-specific immune responses and 

protection f?om challenge were, however, dependent on the characteristics of the 

heterologous protein, the replication-capability of the viruses, the route of immunisation 

and the presence or absence of preexisting adenovirus-specific immunity in the cotton rat. 
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Live recombinant human adenoviruses are an excellent delivery system for viral 

vaccine antigens (hder, 1995, Rosenthal et al., 1996). A great advantage of recombinant 

adenoviruses over other vaccination strategies is their capability to express large quantities 

of heterologous viral antigen in vivo in a similar manner as during a natural viral infection. 

Furthermore, adenoviruses naturally infect mucosaI tissues, and therefore can induce 

mucosal immunity. 

Induction of mucosal immunity is crucial in protecting against infections with 

mucosal pathogens such as bovine herpesvirus type 1 (BHV-1). Therefore, mucosal 

immunisation with recombinant adenoviruses that express BHV-1 proteins capable of 

inducing neutralising antibodies has the potential to serve as an effective vaccine strategy 

against infection and disease caused by BHV-1. Since immunisation of cattle with purified 

glycoprotein D (gD) of BHV-1 stimulates protective immunity against BHV-1 infection 

(Babiuk ef al., 1 987), gD expressed by adenovirus vectors would serve as  a good vaccine 

model to investigate mucosal immunity induced by recombinant adenoviruses. 

Cotton rats (Sigmodon hispidur) have been widely used in immunisation and gene- 

therapy research involving recombinant human adenoviruses because cotton rats support 

human adenovirus replication (Pacini et al., 1984). However, for evaluating gD-expressing 

adenovirus vectors in inducing protection against BHV- 1 challenge, the animal model must 

also support BW-1  replication. The development of a rodent model that supported the 

replication of both HAdS and BHV-1 made it possible to investigate the efficacy of 

different routes of immunisation with replication-defective and replication-competent 

recombinant adenoviruses expressing gD in inducing @-specific rnucosal immunity and 

protection against mucosal BHV- 1 infection. 



2.0 LITERATURE REVIEW 

2.1 Bovine herpesvirus type 1 and its control 

Bovine herpesvirus type 1 (BHV-I), a member of the Alphaherpesviridae 

subfamily, can cause a variety of diseases in cattle including infectious bovine 

rhinotracheitis (IBR), infectious pustular vulvovaginitis, conjunctivitis, encephalitis, 

generalised systemic infections, and abortions (Gibbs & Rweyemamu, 1977, Yates, 1982). 

In addition, BHV-1 infection of the respiratory tract may render cattle susceptible to 

potentially fatal secondary bacterial pneumonia, a respiratory disease syndrome called 

"shipping fever" (Yates, 1982). 

2.1.1 Conventional vaccines against BHV- 1 

Inactivated whole virus or attenuated live virus vaccines have been used 

commercially in the past decades to reduce economic losses due to BHV-1 infection 

(Tikoo et al., 1995a). Killed virus preparations may be safer than attenuated live vaccines; 

one of their disadvantages has been, however, the need to combine them with strong 

adjuvants in order to induce protective immune responses. In addition, immunity to killed 

vaccines is usually of short duration. 

Modified live virus vaccines have been developed by passage in vitro to produce 

attenuated isolates or by mutagenesis to produce temperature-sensitive mutants. They are 

used to control IBR in canle and appear to induce some level of protective immunity to 

B W -  1 without the use of adjuvants (Gerber et a!., 1978, Jericho & Babiuk, 1983). They 

can be administered not only systemically, but also intranasally (i.n.) (Crerber et al., 1978), 

providing the potential to induce strong local immunity in the respiratory tract. However, 



these vaccines do not prevent the establishment of a latent infection or reinfection with 

wild type virus (Kahrs, 1976, Nettleton & Sharp, 1980, Pastoret et al., 1980). Furthermore, 

they may induce abortions and adverse post-vaccinal reactions (Hyland et a[., 1974, 

Mitchell, 1 974). An additional disadvantage of conventional killed or live attenuated 

vaccines is that it is impossible to difkentiate, by serodiagnosis, between vaccinated and 

infected (e.g., latent carrier) animals, which may be crucial for eradication purposes. 

2.1.2 New generation BHV- 1 vaccines 

Since conventional vaccines do not always prevent infection or disease, new 

strategies of vaccination have been investigated. Advanced molecular biological and 

biochemical techniques have enabled us to develop genetically engineered modified live 

virus vaccines, subunit protein vaccines, recombinant live viral vectors and polynucleotide 

vaccines. All these new generation vaccination strategies provide the means to differentiate 

between vaccinated and naturally infected, carrier animals. 

Having identified viral encoded genes that influence the virulence of BHV-1, 

genetically engineered modified live viruses have been constructed by altering or deleting 

these genes (Tikoo et al., 1995a). The advantages of this approach over conventional live 

viral vaccines are that the virus is attenuated without the possibility of backmutation. 

Advances in protein chemistry and molecular biology have also resulted in the 

ability to identify, produce and purify large quantities of individual viral components 

necessary to elicit a protective immune response against the virus. It has been shown that a 

subunit vaccine consisting of one or several of the three major BHV-1 envelope 

glycoproteins (gB, gC and gD) induced a better level of immunity than a killed virus 

vaccine. This resulted in protection of all vaccinated cattle fiom mortality following 

challenge with BHV- I and PusteureIZa haemolytica (Babiuk et al., 1987). To enhance the 

protective immune responses induced by subunit BHV-I vaccines and to enable mucosal 

administration, lipid-based vehicles (e.g., liposomes) as delivery systems have also been 

investigated (Baca-Esaada et a[., 1997). 



Delivering the purified subunit protein to the animal is not the only way to induce 

immunity to one particular viral component. A viral protein can also be delivered by using 

live recombinant viml vectors expressing the gene for the desired protein (Perkus & 

Paoletti, 1996). Depending on the choice of the live vector, this strategy often has the 

advantage of inducing strong mucosal immune responses following mucosal 

administration of the recombinant virus (discussed in more detail in 2.4). 

Finally, the technique of DNA immunisation involves the in vivo delivery of the 

gene of a certain viral protein, usually in a circular plasmid form. DNA vaccines have 

induced cellular and humoral immune responses against different antigens, and protection 

against different diseases in animals (Hassett & Whitton, 1996, Shiver et al., 1 996). Genes 

of BHV-1 glycoproteins delivered intramuscularly (i.m.) or intrademally (i.d.) have also 

been shown to stimulate antigen-specific immune responses in cattle and mice (Cox et al., 

1993, Lewis et al., 1997; Ralph Braun and Syivia van h e n  Littel-van den Hurk 

personal communication). 

2.2 BEN-1 glycoproteins gD and tgD 

Protection of cattle firom disease following challenge with BHV-1 and Pastewella 

haemolytica has been achieved by immunisation with a subunit vaccine consisting of 

BHV- 1 gD (van Drunen Littel-van den Hurk et al., 1993). Immunisation with gD was 

found to be more efficient in reducing virai replication and clinical signs, and inducing 

cellular immune responses than vaccination with other BHV- 1 glycoproteins, such as gl3 

and gC (Babiuk et al., 1987, Hutchings et al., 1990, van Druneo Littel-van den Hurk ef al., 

1990, van Drunen Littel-van den Hurk et a/., 1993). Therefore, investigations have been 

concentrated on the further characterisation of gD in vitro and in vivo as a potential vaccine 

candidate against BHV- I .  



2.2.1 The characteristics of gD and its roles in wal replication 

Glycoprotein D is a homologue of herpes simplex virus 1 (HSV-1) gD (Leung- 

Tack et al., 1994, Tikoo et al., 1990) and is one of the major glycoproteins present in the 

envelope of BHV-I virions and plasma membrane of virus-infected cells (Marshall et al., 

1986, van Drunen Littel-van den Hurk et al., 1984). Its gene maps to the early transcription 

region of the BHV-1 genome and encodes a polypeptide of 41 7 amino acids (Tikoo et al., 

1990). Glycoprotein D is synthesised as a 63-kDa partially glycosylated precursor that 

leads to the formation of a 71 kDa mature protein, containing both N-linked and 0-linked 

oligosaccharides (van Drunen Littel-van den Hurk & Babiuk, 1 986). Analysis of purified 

gD by immunoprecipitation and Western blot assays indicated that gD produced by 

different mammalian expression systems can form dimers (Hughes et al., 1988, van 

&men Littel-van den Hurk et al., 1993, van h e n  LitteI-van den Hurk et al., 1997, van 

Drunen Littel-van den Hurk et al., 1984). Glycoprotein D is essential for viral replication 

(Fehler et aL, 1992). It may be involved in attachment (Liang et al., 199 1 ), penetration 

(Chase & Letchworth ID, 1994, Fehler et al., 1992), and h i o n  with cells (Tikoo et al., 

1990). Some B lymphocyte (Tikoo et al., 1993) and T lymphocyte epitopes (Leary & 

Splitter, 1990, Tikoo et al., 199%) have been identified on gD. 

2.2.2 The rationale for the construction of truncated gD 

Since gD remains mainly cell-associated following its production in BHV-I 

infected cells, it must be extensively purified to be used as a vaccine. In addition, effective 

production of gD is problematic since g D  is toxic to cells expressing it (Tikoo et al., 1990). 

Recently, an economical method to produce gD has been developed by engineering the gD 

gene to function under the control of a bovine heat-shock protein 70 gene promoter, which 

regulates the expression of gD in transfated Madin Darby bovine kidney (MDBK) cells 

(Kowalski et al., 1993). This system was designed to produce a transmembrane anchor 

truncated version of gD (truncated gD, tgD) in an expression system that is not cell- 

destructive. Truncated gD could be efficiently secreted into the medium of transfected 



MDBK cells. The tgD produced by the heat-shock system is 61 kDa in molecular weight 

and is antigenically similar to the authentic gD glycoprotein when analysed in vitm by a 

panel of gD-specific monoclonal antibodies (mAb) (Kowdski et al., 1 993). Furthermore, 

irnmunisation of cattle with tgD conferred protection against BHV- 1 challenge (van 

Drunen Littel-van den Hurk et al., 1994). 

The different cellular localisation of gD and tgD may result in different induction of 

immune responses. Questions about the influence of the antigen form on the induction of 

immune responses have been investigated in non-challenge mouse models: adjuvant 

formulation with the two subunit glycoproteins (Baca-Estrada et al., 1996), DNA 

imrnunisation with the genes of gD and tgD (Lewis et al., 1997; Braun, personal 

communication), and adenovirus-expressed tgD or gD (Papp et al., manuscript in 

preparation). 

2.3 Recombinant adenovirus vectors 

Live viral vectors provide an alternative for the delivery of individual viral antigens 

without the need for producing large quantities of purified protein. In addition, live 

recombinant viruses offer several other advantages compared to conventional or subunit 

vaccines. Most importantly, they provide the expression of the required antigen 

intracellularly - analogous to infection by the viral pathogen - without the danger of 

disease through loss of attenuation or improper inactivation of the vaccine. 

Among the different viral vectors available (e.g., pox, polio, adeno), adenovirus 

(Ad) vectors are often preferred because of their relatively low pathogenicity, stability, 

efficient large-scale production and the ease of manipulation of their genomes. They may 

also be more efficacious than poxvirus vectors (vaccinia) in inducing mucosal immunity 

(Gonin et aL, 1 996). Since adenoviruses are common in not only human but also in animal 

populations, research on their use may provide a potentially widely applied strategy for 

foreign gene delivery. 



2.3.1 [nfections caused by wild-type human adenoviruses 

Adenoviruses constitute a large group of DNA viruses that infect mammals and 

birds. Human adenoviwes (HAd) are endemic in human populations around the world, 

with about a dozen out of the hown 47 serotypes responsible for epidemic outbreaks of 

mainly respiratory and ocular infections. By the age of one year, more than 60 % of 

children have antibodies against at least one HAd serotype. By adulthood, 99% of the 

people are seropositive for HAd (for a review see Straus, 1984). The various Ad serotypes 

can infect and replicate at a number of locations in the body including the respiratory tract, 

the gastrointestinal tract, the eye and the urinary bladder (Horwitz, 1996, Straus, 1984). 

Adenovirus infection typically exhibits a short incubation period of 5- 10 days, but in more 

than 30 % of the cases, Ad continue to be excreted in the feces for months or years 

following the initial infection (Fox et a/., 1969). It is not known whether abortive infection 

of certain cell types such as fleshly isolated peripheral blood lymphocytes by Ad 

(Flomenberg et al., 1 997, Schranz et al., 1 979, Silver & Anderson, 1 9 88) may be related to 

persistence or latency in viva Nevertheless, Ad infections often remain subclinical, rarely 

spreading beyond the draining lymph nodes (LN) of the site of primary infection. On rare 

occasions, however, patients have died fiom acute infixtion of the lungs or liver, or from 

widely disseminated infection. 

Research interest began to focus on human adenoviruses after the finding that some 

serotypes were turnongenic in rodent models; no association between Ad infection and 

human turnours, however, has been detected to date. Subsequent studies lead to the use of 

adenoviruses as the model of choice for molecular biologists to study DNA replication, 

RNA transcription and splicing, and the molecular basis of cell transformation. Hence the 

biology of these viruses is well known (Shenk, 1996). 

2.3.2 Biology of human adenoviruses 

Adenoviruses contain a single, double-stranded, linear DNA genome of 

approximately 3040 kilobase pairs within a nonenveloped, icosahedral capsid. The 



replication cycle of the virus can be divided into two phases. The early phase corresponds 

to events occurring before the onset of viral DNA replication, while the late phase 

corresponds to the period afier initiation of DNA replication. During infection, the Ad 

virion enters the cell through receptor-mediated endocytosis and replication occurs in the 

nucleus, usually without integration of the viral DNA into the host genome. Late gene- 

expression occurs at approximately 8 hr post-infection (pi.). Transcription of the genes of 

most of the viral struchlml proteins is mainly driven by the major late promoter (MLP). 

Although adenoviruses do not lyse infected cells, one cell can often produce 10,000 virions 

(Shenk, 1996). Cultured human cells generally support the complete HAd infectious cycle; 

most simian and rodent cells do not (Blair et ab, 1989). Interestingly, infection of monkey 

and rodent czlls with HAd has shown that this restricted host range is not due to a lack of 

receptors. It is rather due to intracellular blocks arising tiom inappropriate interactions 

between cellular and viral components, for example, a block of an early step of viral DNA 

replication (Lucher, 1995). Therefore, early proteins are usually still expressed in cells of 

semipermissive species. 

Human adenovirus type 5 (HA&) possesses several advantages, which renders it a 

generally useful vector to express foreign genes in different mammalian systems. First, it 

replicates to high titres in human cells in vitro. The virions remain cell-associated well after 

the production of new virus is completed, which makes the concentration of large volumes 

of virus possible, simply by sedimenting infected cells. The handling and storage of 

adenoviruses are not difficult since the Ad virion is relatively stable. Furthermore, inserts 

of foreign genes are generally maintained without change through successive rounds of 

viral replication (Graham & Prevec, 1992). 

2.3.3 Replication-defective and replication-competent HAd5 vectors 

Recombinant human adenoviruses have become an attractive gene delivery system 

because of the ease of manipulation of their genome and the well-characterised methods for 

generating recombinant Ad vectors. To render the Ad virion capable of accommodating 

larger than 2 kbp of foreign DNA, either the early transcription region 1 or 3 (E 1 and E3, 



respectively) is most commonly deleted (Graham & Prevec, 199 1, Graham & Prevec, 

1992). Deletion of the E 1 region results in a vector (dE 1) that is replication-defective since 

E l  gene products are essential for the onset of DNA replication. Therefore, the vector can 

be propagated only in a cell line, which contains and expresses the left end of the Ad 

genome thus complementing the deficiency. Approximately 3 kbp can be deleted from E 1, 

with a replacement insertion of up to 5 kilobase-pairs (kbp) of foreign DNA. Transcription 

of foreign genes inserted in the E 1 deletion must be driven by a promoter introduced as part 

of the insert (Graham & Prevec, 1992). Since transcription of the foreign gene is completed 

before DNA replication, these vectors efficiently express their inserts in any normally 

HAdS permissive or semi-permissive cell without the need for viral replication. 

Deletion of the E3 region (dE3) does not dicrease the replication-competency of the 

vector in vitro, since E3 is not required for viral replication. E3-deleted vectors, therefore, 

can be propagated in any normally HA&-permissive cells. The function of E3 region 

proteins is not known; they probably play a role in modulating the host immune response. 

For example, infection with dE3 vectors results in an increased inflammatory response in 

the lungs of cotton rats compared to inoculation with HA& that contains the E3 region 

(Berencsi et al., 1994, Ginsberg et al., 1990, Ginsberg et al., 1989). It is possible that the 

absence of the 19 kDa glycoprotein encoded by the E3 region of HAd5, which is known to 

downregulate expression of MHC-I molecules on the surface of infected cells, results in an 

increase in the Ad-specific cytotoxic lymphocyte (CTL) response (Burgert & Kvist, 1987). 

Generally, dE3 vectors can accommodate 4 kbp of foreign DNA in their genome. In many 

replicationcompetent vectors used today, an SV40 promoter is introduced as part of the 

expression cassette. A heterologous promoter is not usually required, however, since 

expression of the foreign gene is efficiently driven by the MLP or E3 promoters (Graham 

& Prevec, 1992). Recombinant HAdS systems are also used in which both E 1 and E3 

regions are deleted (dE 1E3 vectors). They may accommodate up to 8 kbp of foreign DNA 

(Bett et al., 1 994, Bett et a[., 1993). 

Recombinant HAd5 vectors have been used to express antigens from a wide variety 

of heterologous viruses (Perkus & Paoletti, 1 996). High-level expression of foreign genes 

has been obtained from both dividing and quiescent cells of a variety of animal species, 



including human and other primates, rodent, canine and bovine cells infected with HAd5 

vectors. In recent years, Ad vectors have been studied as a recombinant vaccine delivery 

system against viral diseases (Imler, 1995) and turnours (Bischoff et al., 1996, Chen et al., 

1996, Zhai et al., 1996), and as gene transfer vectors for gene therapy (Bramson et a!., 

1 995, Brody & Crystal, 1 994, Rosenfeld et al., 199 1 ). 

2.3.4 Recombinant human adenoviruses as vaccine vectors 

The popularity of human adenovirus as a vaccine delivery system is largely due to 

the successful and safe immunisation of millions of US military recruits with enteric coated 

wild-type (wt) HAd4 and HAd7 as a prevention against acute respiratory disease outbreaks 

(Top et al., 197 1 a, Top et al., 1 97 1 b). Following these first trials, a number of recombinant 

adenoviruses have been constructed and tested in animals. Since HA& has been studied 

extensively and is less pathogenic compared to HAd4 and HAd7, it is often the strain of 

choice for the development of recombinant vaccines. 

Recombinant HAd5 vectors - even if unable to replicate - have proven to be 

effective in expressing foreign genes in vitro and in vivo. Systemic immunisation with both 

replication-competent and replicationdefective Ad vectors has induced humoral and cell 

mediated immune responses to the expressed viral antigen (Table 2.1), W e r ,  1995). In 

many cases, irnmunisation resulted in protection fiom viral challenge (Table 2.1 ). 

Immunisation with recombinant HAdS has even induced CTL to an intracellular parasite 

(malaria) antigen and protected mice against parasite challenge (Rodrigues et al., 1997). 

Systemic immunisation alone, with recombinant HAdS vectors, however, did not induce 

effective mucosal immune responses and protection fiom mucosal challenge (Table 2.1) 

(Gallichan et al., 1993, Rosenthal et al., 1996). 

Since it is important to induce local immunity at the site of pathogen entry, it may 

be necessary to administer recombinant adenoviruses to mucosal surfaces. A great 

advantage of HAdS vectors as a delivery system is that they naturally infect mucosal tissues 

(Prince et al., 1993, Rosenfeld et a[-, 199 1); therefore, they have the potential to deliver the 

foreign gene effectively to mucosal induction sites. Indeed, imunisation with recombinant 





Table 2.1 (cont) 
antigen vector animal rcpl. admin. immunc rcsponsc challcngc protect. rcfcrencc 

route to antigen (route) 

HSV gD epi. dE3 mouse i.p. serum Ab i.p. partial, d (Zheng er nl., 1993) 

rabies gp dElE3 mouse S.C. serum Ab, CTL S.C. yes, d (Xiang er a/., 1996) 

in.  serum Ab, CTL S.C. yes, d (Xiang et a!., 1996) 

oral no Ab S.C. no (Xiang et al., 1996) 

dE3 mouse oml serum Ab in some animals i.ccrcbr partial, d (Prevec et a/.,  1990) 

i. p. serum Ab 

skunk oral serum Ab 

i.cerebr yes, d (Prcvcc et al., 1990, 

Yarosh et al., 1996) 

i.ccrebr yes, d (Charlton et a/., 1992, 

Yarosh et a/., 1996) 

i.m. serum Ab ixerebr yes, d (Charlton et al., 1992) 

fox oral scrum Ab i.cerebr yes, d (Charlton et al., 1992) 

dog S.C. serum Ab (Prevec er al., 1990) 

in. serum Ab 

HCMVgB dE3 mouse i.p. CTL 

BCV HE dE3 cotton rat + i.n. serum and lung Ab, CTL, - 
spleen cell proliferation 

(Prevec et al., 1990) 

(Berencsi et al,, 1993) 

(Baca-Estrada et al., 1995) 

Lduod serum and intestinal Ab (Baca-Estmda er al., 1995) 

HRV VP7 dE3 mouse i.n. serum Ab in dams and oral yes, d (Both et a/.,  1993) 
suckling neonates 

i.v., i.p., serum Ab (Both et al., 1993) 
oral 

bPlV F, I-IN dE3 cotton mt + i.n. serum Ab i.n. yes, i of (Brckcr-Klassen er ul., 1995) 
l u n ~ s  



Table 2.1 (cont) 

ant igcn vector animal rcpl. admin. imn~unc response challenge protect. refcrcnce 

route to antigen (route) 

HIVEnv, Gag dE3 chimpanzee + i.n. serum, nasal, vaginal, - (Lubcck et al., 1994, 

PRV gD 

salivary Ab, spleen cell 
proliferation, PBL CTL 

i.v, 

dog +/- i . t .  serum Ab 

dE3 cotton rat + i.111. serum Ab 

mouse i.m. serum Ab 

dEIE3 cotton rat - i.m. serum Ab 

mouse i.m. serum Ab 

i.p. serum Ab 

1.n. serum Ab 

dElE3 rabbit ism., i.n. serum Ab 

yes, i 

yes, d** 

yes, d 
yes, d 
yes, d 

partial 

yes, d 

partial 

Natuk et al., 1993) 

(Lubcck et al., 1997) 

(Natuk et al., 1992) 

(Eloit & Adam, 1995) 

(Eloit & Adam, 1995) 

(Eloit & Adam, 1995) 

(Eloit & Adam, 1995, 

Gonin et al,, 1996) 

(Ganne el al., 1994) 

(Gonin et a/., 1996) 

(Eloit et al., 1990) 

TBEV NS1 dE1E3 mouse i . p  no Ab S.C. yes, d (Jacobs et al., 1994) 

MV N dElE3 mouse i.p. serum Ab, CTL 

EBV env dEIE3 cottontop - i.m. serum Ab 
tamarin 

i.cerebr partial, d (Fooks el al., 1995) 

i.m., i.p. yes, d (Ragot et al., 1993) 

HBsAg dElE3 chimpanzee - i.v. no Ab, only priming i.v. partial (Levrero et al., 199 1)  

HC ag-s dElE3 mouse i.p. serum Ab (Makimum et ul., 1996) 

i.p. CTL 

malaria CSP dE 1 E3 mouse s.c, i..m. Ab, CD8' IFN-y SC i.v. 

(Bruna-Romero er al., 1997) 

(Rodrigucs et al,, 1997) 

ip. iv, i.n. low Ab, no CDX' 1FN-y SC - (Rodrigucs et al., 1997) 

rcpl. = replication-capnbility of vector in the animal; d = protection (protecl.) from disease or death; i = protection from infection measured by viral recovery 
* better and longer lasting protection than ancr i.p. immunisation; ** lower doses protect than dE 1 E3 immunisation or imm. in mice 



adenoviruses in the respiratory as well as in the gastrointestinal tract has stimulated not 

only systemic but also mucosal immune responses to several foreign viral antigens (Table 

2.1). Most of the studies using rnucosal immunisation with recombinant viral vectors have 

focused on the generation of serum neutralising antibodies and short-term protection 

against challenge. Gailichan and co-workers (Gallichan et al., 1993) also investigated the 

generation of herpesvirus-specific CTL and the duration of immune responses following 

imrnunisation with a dE3 recombinant HAd5 expressing gB of HSV- 1. Long term HSV 

serum neutralising antibody responses were induced by both intraperitoneal (i.p.) and 

intranasal (i.n.) immunisation with the recombinant Ad, and splenic CTL responses were 

maintained for as long as 58 weeks following i.p. imrnunisation. They also found that i.n. 

administration was more efficient than i.p. immunisation in inducing mucosal IgA 

responses and protection against i.n. HSV challenge. In other studies, i .n. immunisation 

was more effective than systemic immunisation in inducing local Ad- and P-galactosidase- 

specific antibody production in the respiratory tract (van Ginkel et al., 1995). The 

importance of local stimulation in the mucosa is M e r  indicated by the finding that i.n. 

administration of recombinant HA& was more effective than gastrointestinal (g . i .) 
inoculation in inducing immunity in the respiratory tract (Collins et al., 1990). However, 

immunisation with recombinant Ad at a distant rnucosal site can be more effective than 

local stimulation. Intravaginal imrnunisation with recombinant Ad expressing HSV gB was 

less effective than i.n. imrnunisation in inducing vaginal @-specific antibodies (Gallichan 

& Rosenthal, 1995). 

2.4 The efficacy of recombinant viral vectors in the presence of antigen-specific 

immunity 

Immunity to a pathogen can be passively derived ( m a t e d  antibodies) or actively 

acquired (natural infection). Both passive and active immunity can significantly modify 

infection, viral gene expression, and disease caused by viruses (Renegar & Small, 1 994, 

Zinkernagel, 1993). Since the success of imrnunisation with recombinant live viral vectors 



depends on infection with the virus followed by foreign gene expression, immunity to the 

vector is expected to influence the efficacy of vaccination with recombinant viral vectors. 

2.4.1 Passive immunity to viral vectors 

The level of both mucosal and systemic antibody responses to a viral infection that 

takes place in the presence of passively acquired IgG can be reduced significantly 

(Kimman et al., 1987, Murphy et nl., 1986, Sabin et a[., 1963, Xiang & Ertl, 1992). The 

suppressive effect of virus-specific serum antibody on the induction of resistance to 

challenge is greatest when the virus vaccine is administered parenterally rather than 

mucosally (Murphy et al., 1989). One possible explanation for less inhibition following 

mucosal imrnunisation is that senun igG is less efficient in blocking mucosal than systemic 

viral infections. Therefore, the local induction of a mucosal IgA response, by mucosal 

infection, is less suppressed than is the induction of systemic IgG responses (Jayashree et 

al., 1 988, Kimman & Westenbrink, 1990). 

Similar to the neutralisation of any virus by virus-specific antibodies, live 

recombinant viruses may be inactivated by antibodies before they could enter cells and 

express their foreign gene. Studies with recombinant adenoviruses in mice showed that 

passive transfer of Ad-speci fic antibody into the venous circulation blocked the expression 

of the heterologous gene in hepatocytes, but did not affect gene-transfer into the lung 

(Yang el al., 1995a). In contrast, instillation of Ad-specific antiserum into the trachea 

blocked gene transfer to ainvay epithelia without affecting gene transfer to hepatocytes. 

Therefore, passively derived antibody is effective in neutralising virus depending on the 

site of the antibody transfer and virus idkction. 

Since neutralising antibody to the virus vector suppresses the expression of the 

foreign gene, it is likely that the induction of immune responses to the foreign gene product 

will be suppressed as well. Intraperitoneally administered vaccinia virus-speci fic antibodies 

inhibited, in a dose-dependent manner, HA-specific CTL responses following intravenous 

(i-v.) administration of a recombinant vaccinia virus expressing the HA protein of influenza 

(Johnson et al., 1993). They had no effect on the humoral response to HA or vaccinia, 



although inhibition was shown in a previous study (Johnson et al., 1988). The effect of Ad- 

specific passive antibody immunity on immunisation with recombinant adenoviruses 

remains to be determined. 

2.4.2 Active immunity to viral vectors 

Active immunity to a virus develops following natural mfection or experimental 

administration of the virus to the host. It involves the stimulation of different regulatory 

and effector immune responses including the expansion of antigen-speci fic lymphocytes 

and the development of immunological memory. Active immune responses specific for a 

virus vector may inhibit the foreign gene expression following administration of 

recombinant virus more than passive vector-specific antibody discussed earlier. First, 

active immunity is longer lasting than passively acquired antibody. Second, local 

production of antibodies following infection by the virus may be more effective in 

inhibiting viral infection than passively transferred antibody. Third, a virus infection 

induces not only humoral but also cell mediated immune responses. In accordance, 

adenoviruses have been shown to induce not only Ad-specific serum antibody, but also 

mucosal antibody responses (van Ginkel et al., 1 995, Yang et al., 1 995b) and cell mediated 

immue responses. Adenoviruses are able to stimulate T cell proliferative responses, MHC 

class 11-restricted C D ~ '  cells of the Thl subset, MHC class-I restricted CD4' and C D ~ '  

CTL (Flomenberg et al., 1995, Ginsberg & Prince, 1994, Rawle et nl., 1989, Sparer et al., 

1997, van Ginkel et al., 1997, Yang et aL, 1995% Yang ei aL, 1994, Yang ei al., 1995b, 

Yang & Wilson, 1995). 

Since adenoviruses are very common pathogens, it is very likely that many 

individuals (animals or humans) have developed some level of Ad-specific immunity by 

natural infection. Furthermore, if repeated administration of Ad vectors is necessary for 

optimal vaccination or gene therapy results, the host may develop substantial levels of Ad- 

specific immunity by the time of second administnition of the recombinant virus. 

Therefore, it is important to investigate the effect of active Ad-specific immunity on the 

efficacy of irnmunisation and gene-transfer by recombinant adenoviruses. 



Immune responses induced by administration of adenovirus can substantially 

diminish the efficiency of gene transfer following a second administration of recombinant 

Ad (Dong et a/., 1996, Kozarsky ef al., 1994, Mittal et al., 1993, Setoguchi et al., 1994, 

Smith et al., 1993, Yang et aL, 1995% Yei et al-, 1994). In spite of Ad-specific immunity, 

however, repeated administrations have been successful in expressing foreign genes in vivo 

(Bout et al., 1994% Crystal et al., 1995, Mastrangeli et al., 1993, Setoguch et al., 1994, 

Zabner et al., 1994). The level of Ad-specific immunity at the site of the second 

administration of the virus largely depends on the route and dose of, and the time passed 

since the first administration of the virus. Intraperitoneal immunisation with Ad did not 

affect foreign gene expression following administration of the vector to the lung (Setoguchi 

et ab, 1 994). In addition, inhibition of second foreign gene expression was less evident 3 

months after the first administration compared to 1 month later (Setoguchi et aL, 1994). 

The level of adenoviral gene expression may also influence the induction of Ad-specific 

immunity. Schulick et al. (1997) showed that i.v. pre-exposure to ultraviolet light 

0- i r rad ia ted  adenoviral vectors (with reduced viral gene expression but preserved 

capsid function) did not block foreign gene expression following subsequent i.v. 

administration of recombinaut Ad as much as pre-exposure to intact virus. 

Several immune effector mechanisms may be responsible for the elimination of 

Ad-infected cells. Transgene expression was shown to be completely or partly diminished 

as a result of destruction of virus-infected cells by MHC class I-restricted CTL O(ap1a.n et 

al., 1997, Yang et al., 1995a). In accordance, C D ~ '  T cell-deficient mice had prolonged 

transgene expression in hepatocytes (DeMatteo et al., 1997). Adenovirus-specific 

neutralising antibody in the ainvays, however, was sufficient to hlly block gene transfer to 

the airways (Yang et al., 1995a). Furthennore, it is not surprising that mice transiently 

depleted of c D ~ '  T cells before first administration supported longer expression of the 

foreign gene following second administration of the vector than control mice (Yang et al., 

1995b, Yang & Wilson, 1995), since CD4+ T cells are important in the development of 

both humoral and cellular effector mechanisms against adenoviruses (Yang et al., 1 995% 

Yang et al., 199%). 



The role of Ad-specific mucosal IgA in blocking gene-transfer to the lung of mice 

has been suggested. Yang et al. (199%) showed that tr;tilsient cD~+ cell depletion and 

intratracheal (it.) interleukin m)- 12 or interferon 0 - y  administration completely 

inhibited the formation of Ad-speci fic IgA following Ad administration. These treatments 

caused more efficient gene transfer to occur following a second administration of 

recombinant adenovirus. C D ~ +  T cell depletion did not affect the development of systemic 

CTL, responses and only partially inhibited Ad-specific IgG responses in the lung. 

Intratracheal IL-12 and IFN-y administration did not inhibit the levels of lung IgG. These 

results may suggest that Ad-specific mucosal IgA may be primarily responsible for the 

blockade of foreign gene expression by recombinant Ad in the mouse lung. 

Most research groups investigating the inhibitory effect of active vector-specific 

immunity on the efficacy of foreign gene-delivery have been mainly concerned about the 

level of expression of the foreign gene. Only a few have studied how immune responses 

induced by the foreign gene may be influenced by pre-existing vector-specific immunity. 

Kundig and co-workers (1993) irnmuised mice by the i.v. route with a recombinant 

vaccinia virus expressing 1 ymp hoc ytic choriomeningi tis virus (LCMV) nucleoprotein (NP). 

At different timepoints following first immunisation, they i.v. inoculated the animals with 

another recombinant vaccinia virus expressing vesicular stomatitis virus (VSV) 

glycoprotein (GP). They found that GP-specific B cell responses were suppressed for more 

than 9 months. The level of suppression depended on the dose of the first vaccinia virus 

administration (Kundig el al., 1993). Others infected mice i.v. with different doses of 

vaccinia virus, and later immunised them i.v. with recombinant vaccinia virus expressing 

haemagglutinin (HA) of influenza virus. Antibody titres specific for HA and survival rate 

after i.n. influenza challenge were reduced the greatest in mice infected with a high dose of 

non-recombinant vaccinia compared with titres in the control group (Andrew, 1989). 

Interestingly, there was no difference in vaccinia-specific CTL activity following infection 

with high or low dose of non-recombinant vaccinia virus, which supports the idea that the 

protective efficacy of the recombinant vector is dependent upon the level of pre-existing 

vaccinia-specific antibody? rather than CTL. 



The effect of active vector-specific immunity on iinmunisation with recombinant 

Ad was also investigated. Systemic pre-infection of mice with 10' plaque forming units 

@fL) of HAdS slightly inhibited antibody and CTL responses specific for the expressed 

foreign gene induced by a subsequent systemic administration of recombinant Ad (Xiang el 

al., 1 996). The possible inhibitory effect of infection with higher doses of Ad has not been 

investigated. It appears important to perform these experiments, since the usual dose of 

recombinant Ad used for immunisations or gene therapy experiments is 10' to 1 o9 pfu per 

animal (see references in Table 2.1). 

2.4.3 Immunity to the expressed antigen 

Both active and passive immunity to the expressed foreign gene may also inhibit 

the efficacy of immunisation with recombinant viral vectors. Indeed, immune responses to 

transgene-encoded proteins limited the stability of gene-expression after injection of 

replication-defective Ad vectors (Tri pathy et al., 1 996). Passive transfer of respiratory 

syncytial virus (RSV) antiserum suppressed the hurnoral immune response to RSV proteins 

expressed by recombinant vaccinia viruses (Gdetti et al., 1995, Murphy el a/., 1988), but 

did not inhibit CTL responses to the proteins (Galetti et al., 1995). In contrast, vaccination 

with recombinant vaccinia viruses has been successll despite existing active immunity to 

the expressed antigens (Flexner et al., 1988). In addition, the efficacy of vaccination of 

Iambs in surgically created gut-loops with HAdS expressing gD of BHV-1 was not 

inhibited by the presence of maternal antibodies to gD and Ad (Philip Griebel, manuscript 

in preparation). Data in the literature, therefore, seem contradictory but indicate that not 

only immunity to a viral vector but also to the foreign protein can cause suppression of the 

efficacy of vaccination with recombinant virus. 

2.5 Concerns about the safety of recombinant adenoviruses 

There are two main issues identified up to date regarding the limitation of 

application of recombinant adenovirus vectors. One, their efficacy in the presence of 



Ad-specific immunity, has been discussed. Another issue is their safety; it is important that 

recombinant adenoviruses do not shed extensively following in vivo administration. This 

would increase the possibility of infection of individuals and the recombination with wild 

type viruses. For gene therapy purposes, it is also desimble to maintain control over the 

extent of foreign gene expression. 

Replication-defective recombinant adenovimses are often considered safer than 

replicationcompetent vectors because foreign gene expression by replication-defective 

dE 1 viruses always correlates with the infectious viral dose. Furthermore, their spread in 

vivo and shedding to the environment have been suggested to be more limited than that of 

dE3 adenoviruses (Oualikene et al., 1 994). However, replication of a dE 1 virus may also 

take place during a simultaneous infection with wt HAdS, which theoretically raises similar 

safety concerns as administration of a replication-competent virus. Evidence for phenotypic 

complementation of recombinant dEl adenovirus expressing the cystic fibrosis 

transmembrane conductance regulator (CFTR) or P-galactosidase with wt HA& was found 

in human cells in v i m  (Imler et al., 1995, Oudikene et al., 1995) and in vivo following i.n. 

administration of the viruses to cotton rats (Imler et al., 1995). No in vivo trans- 

complementation of the recombinant Ad with wt HAG was observed, however, when 

recombinant virus was delivered i-v. or i.m. and wt HAdS was administered i.n. (Oualikene 

et al., 1995). 

In vivo spreading and shedding to the environment of both replication-competent 

and replication-defective adenoviruses can take place, even though replication-defective 

vectors have been suggested to be limited in their capability of in vivo dissemination. 

Replication-defective dEIE3 virus was not isolated from any organs of the cotton rat 

following i.m. delivery (Oualikene et al., 1994, Oualikene et a[., 1995), although foreign 

gene expression was found at the site of administration in the muscle (Huard et al., 1995). 

Following i.v. inoculation in the tail, no dEIE3 vector was isolated from any organ 

(Oualikene et al., 1995), although others detected foreign gene expression in the liver, 

kidney, tail and some muscles (Bout et ol., 1994b, Brody et al., 1994, Goldman et al., 

1995, Huard et aL, 1995). Following i-n. delivery, no virus was found in tissues other than 

those of the respiratory tract (Yei et aL, 1994). Others, however, found dElE3 virus 



following i.n. inoculation in both the respiratory tract and in the small bowel or faeces 

(Bout et al., 1994% Zabner et a!., 1994), in kidneys and liver (Oualikene et al., 1994) and 

in the oesophagus and spleen (Imler et aL, 1993). Foreign gene expression following i.n. 

inoculation of recombinant ciElE3 was also detected in the lung, liver and heart (Huard et 

al., 1995). Huard et al. (1995) also investigated many other routes of administration of a 

dElE3 vector: they found foreign gene expression in the heart, liver, lung, thymus and 

muscles following intracardiac delivery, in the peritoneum, diaphragm and liver following 

i.p. inoculation; in the lung, heart and thymus following buccal administration; and in liver, 

spleen, kidney, peritoneum, stomach, rectum, thymus and muscles following gastric-rectal 

inoculation. Thus, spreading of replicationdefective viruses is not always limited to the 

site of infection as generally believed, even following mucosal administration. 

Dissemination of replication-competent and replicationdefective adenoviruses 

were compared in only one detailed investigation, using im. and i.n. administration of 

adenoviruses in cotton rats (Oualikene et al., 1994). Following i.m. delivery, they detected 

dE3 virus in the liver, spleen, lungs, nasal-washes, poplietal and inguinal LN, while dE 1 E3 

virus was not isolated fiom any organs. Following i.n. administration of the dE3 vector, all 

tested samples (I iver, spleen, kidneys, lungs, nasal-wash, brain, gut, pop1 ietal and inguinal 

LN) were positive for adenovirus. In contrast, dElE3 was found only in the lungs, nasal- 

wash, kidneys and LN after i.n. administration of the virus. Others have shown that 

following i.p. inoculation of the dE3 vector, adenovirus could be detected in the liver, 

kidneys, spleen and lungs (Mittal et al., 1993). 

Oualikene et al. (1994) found that wt HAdS disseminated similarly to dE3 HAd5 

virus in the cotton rat. While wt HAdS was detected in every organ tested 3 days following 

i.n. delivery, at 7 days following inoculation it was found only in the lungs and nasal- 

washes (Oualikene et al., 1995). Interestingly, in a previous experiment, they detected 

HAdS in every organ tested 28 days following i.n. inoculation (Oualikene et al., 1994). 

In people, wt HA&, HAd7 and recombinant dl33 viruses were shed in the stool and 

also in the pharynx following oral hunisat ion (Schwartz et al., 1974, Tacket et al., 1992, 

Top et al., 197 1 b). In contrast, no evidence for Ad dissemination to the throat was found 

following oral administration of type 2 1 HAd in humans (Dudding et al., 1972). Extensive 



investigations and many years of experience with oral vaccination using HAd type 4 and 7 

in military recruits showed that replication-competent Ad can be used safely to imrnunise 

humans (Top ef al., 197 1 b). Dissemination of recombinant dE3 adenoviruses to different 

tissues in either humans or animals, however, has not been studied following 

gastrointestinal routes of administration. Furthermore, since different routes of 

administration, dose, detection systems and animal models have provided contradictory 

data (as described above), further studies are necessary to determine the capability of 

adenoviruses to disseminate following different routes of administration. 

2.6 Mucosal immunity and protection against viral infection 

It is important to discuss what elements may constitute protective immune 

responses against viruses, for two reasons. First, the immunisation strategy has to be such 

that the foreign gene expressed by the live vector would induce protective immunity 

against the respective mucosal viral infection. Second, understanding what the protective 

immune responses are against the viral vector itself, one may be able to design strategies to 

optimise the efficiency of vaccination using the viral vector. Since both BHV-I and HAd5 

primarily infect mucosal surfaces, it is important to investigate the induction and effector 

mechanisms of immune responses that protect the mucosa against viruses. 

2.6.1 Inductive and effector mechanisms of mucosal immunity 

The first line of defence against mucosal pathogens involves mechanical and 

physicocbernical cleansing mechanisms such as peristalsis or ciliary movement, mucous 

coat, proteolytic enzymes, innate humoral factors, and the physical characteristics of 

mucosal epithelial cells and junctions, which degrade and repel most pathogens. In 

addition, a large and highly specialised immune system protects the mucous membranes, 

and thereby also the body's interior, against potential insults from the environment 

(Sanderson & Walker, 1994). Since the aim of vaccination is to stimulate antigen-specific 

host-defenses, this section will address the inductive and effector mechanisms of antigen- 



specific mucosal immune responses and their role in protection against mucosal viral 

infection. 

A mucosal immune response involves priming at inductive sites, dissemination in 

the circulation and homing to effector sites of antigen-specific lymphocytes (for a review 

see Tomasi, 1994). These events are studied in the most detail for the gut-associated 

lymphoid tissue (GALT) but are thought to be similar for the organised mucosa-associated 

lymphoid tissues (MALT) of the respiratory tract. Briefly, live replicating and dead 

particulate antigens are thought to be taken up fiom the lumen of the gut or airways 

through specialised areas, microfold OM) cells, of the follicle associated epithelium. The 

antigen, usually unaltered in M cells, is then transported into the underlying lymphoid 

tissue containing professional antigen presenting cells (APC) and B and T cells, where 

antigen-priming of the lymphocytes takes place. M e r  antigen-induced activation, 

proliferation, and partial differentiation, both B and T cells migrate to the regional LN, 

fiom which - probably after further differentiation - they go via the lymph into the 

peripheral blood. These stimulated memory cells migrate to intestinal lamina propria (LP) 

or to mucosal tissues and exocrine glands outside the gut, notably also in the respiratory 

tract and in lactating mammary glands (Phillips-Quagliata & Lamm, 1994). The integrated 

dissemination of immune cells from GALT to all exocrine sites, the so called common 

mucosal immune system (CMIS), is the functional basis for oral vaccines. Evidence for the 

existence of a CMIS comes fiom studies of cell trafficking and from the observation that 

immunisation of one mucosal site often leads to detectable immune responses at distant 

mucosal sites (McDemoa & Bienenstock, 1979, Mestecky ef a/., 1994). In addition to 

lymphocyte activation in MALT, antigen taken up at mucosal surfaces may be directly 

transferred to draining LN and other peripheral lymphoid tissue, where activation of 

antigen-speci fic lymphocytes may occur @harakul et al., 1 98 8, Phillips-Quagliata & 

Lamm, 1994). Immune induction by antigen at these sites may contribute to the 

development and regulation of systemic and mucosal immunity following mucosal viral 

infection. 

Effector immune mechanisms against viruses that infect mucosal surfaces include 

both cell-mediated and humoral immune responses. Cellular elements such as natural killer 



cells, cD8+ and c D ~ "  T cells residing in the LP or as intraepithelial lymphocytes (EL)  

have been proposed to play a role in the clearance of virus infected cells (Kiyono & 

McGhee, 1 994, London, 1 994). C ytotoxic lymphocytes are induced following viral 

infection of the mucosa and are able to mediate protection against viral induced disease 

(Murphy, 1994). However, for viruses that replicate rapidly at mucosal surfaces, such as  

BHV- 1 and adenoviruses, the proliferaton of memory CTL may not be sufficiently rapid to 

alter significantly the peak titre of virus in the respiratory tract. Since disease is usually 

experienced when peak titres of viruses are attained, imrnunisation with antigens that 

induce predominantly C n  activity in the absence of antibody is expected to be less 

successful in restricting replication of challenge virus at mucosal surfaces than vaccination 

that induces sustained antibody response as well (London, 1994, Murphy, 1994). 

Furthermore, antibodies are thought to play an important role not only as a first line of 

defence in preventing viral infection of the mucosal epithelium and underlying tissues, but 

also in the induction of immune responses (uptake of viral antigens via immunoglobulin 

receptors on M cells) and in the clearance of viral infections (e.g., antibody dependent 

cellular cytotoxicity) (Kilian & Russell, 1994). 

2.6.2 Effector mechanism of antigen-specific antibodies at mucosal surfaces 

At rnucosal surfaces, antibodies may neutralise the infectivity of viruses by 

aggregation of virus (immune exclusion) or by prevention of their attachment and 

penetration to target cells. In addition, both IgG and IgA antibodies may act to neutralise 

viruses after their penetration to the host cell (Outlaw & Dimmock, 199 1). The major viral 

antigens that induce neutralising antibody responses are the surface proteins and 

glycoproteins of viruses. Although the same antigens and epitopes appear to be recognised 

by different classes of antibodies, IgA and IgG are more efficient than IgM in neutralising 

virus (Murphy, 1 994). 

In primates and rodents, antiviral IgA is likely to play the major role in clearance of 

primary viral infections and prevention of infection on re-exposure to virus. Compared to 

IgG, IgA is actively transported through the mucosal epithelium to the lumen, is less likely 



to cause 1 0 4  inflammation and is more stable at mucosal surfaces. These characteristics 

are likely due to IgA's secretory component a c w e d  in the epithelium, its poor capability 

to fix complement and to its polymeric nature (Underdown & Mestecky, 1994). 

Although serum IgG of primates and rodents is not transported actively across 

epithelium, IgG antibodies may gain excess to mucosal surfaces by passive diffusion 

(transudation). This is suggested by the correlation between serum and mucosal IgG titres 

(Wagner ei al., 1987) and by the observation that parenterally transferred IgG antibody can 

protect mice from mucosal virus infection (Eis Hubinger et al., 1993). In addition, virus- 

specific IgG produced by mucosal B cells may also contribute to total antiviral activity in 

mucosal secretions (Fazekas et al., 1 994). 

Evidence for the association of mucosal antibodies with resistance to viral 

infections have been provided by studying the effect of passively transferred and host 

derived antibodies on virus infection (Murphy, 1994, Renegar & Small, 1994). 

Furthermore, IgG and IgA antibodies have been compared for their efficacy in vivo. In one 

study, using monoclonal antibodies that recognise the same viral glycoprotein, mice 

passively imrnunised i.n. with IgG or IgA were protected equally against pulmonary Sendai 

virus infection (Mazanec et al., 1992). Monomeric and polymeric IgA were equally 

efficacious. These data are consistent with the similarities of IgG and IgA in their in vitro 

neutralising activities. In contrast, a neutralising polymeric IgA mAb specific for influenza 

HA, transferred systemically, was more effective in restricting the replication of influenza 

virus in the upper respiratory tract of the mouse than a comparable amount of IgG mAb of 

the same specificity (Renegar & Small Jr., 199 1). An important advantage of IgA 

antibodies in protecting against mucosal infections of the respiratory tract appears to be 

their abundance at mucosal surfaces due to their selective induction and their ability to be 

transported selectively across mucosal surfaces, rather than an inherently greater antiviral 

activity than that of IgG. 



2.6.3 Immunisation at mucosal surfaces 

Evidence strongly supports the concept of relative compartmentalisation of 

systemic and mucosal immune responses in mammalian species (Tomasi, 1994). Many 

experimental results have shown that mucosal immunisation is superior to parented 

immunisation in inducing immunity and protection at mucosal surtaces (Moldoveanu et al., 

1993, Ogra, 1996, Tamura & Kurata, 1996). Mucosal immunisation with live viruses is 

able to stimulate strong mucosal IgA responses in rodents and humans, which usually 

correlate better than serum antibody induced by systemic imrnunisation with protection 

against mucosal viral mfections. 

In addition, compartmentalisation also exists within the common mucosal immune 

system. There is especially a dichotomy between the gut and the upper aerodigestive tract 

with regard to homing properties and terminal differentiation of B cells (Mestecky et al., 

1994, Phillips-Quagliata & Lamm, 1994). Such a disparity may be explained by 

microenvironmental differences in the antigenic repertoire, or by differences in the 

lymphoid and vascular adhesion molecules involved in local B-cell extravasation. For 

example, although traffickmg of B cells between mucosal sites occurs, the concentration of 

virus-specific IgA-producing B cells at the site of antigenic stimulation is often much 

higher than that at more distant sites (Dharakul et al., 1988, Kantele et al., 1997). Such 

compartmentalisation within the CMIS may provide answers to why local immunisation of 

the respiratory tract is usually more efficacious than immunisation at a distant mucosal site 

such as the gut in inducing respiratory mucosal immunity and protection against challenge 

(Brownlie et al., 1993, McLean et al., 1996, Collins et al., 1990). There are exceptions, 

however: mucosal immunisation in the respiratory tract is sometimes more effective than 

local inoculation of liposome-vaccine or recombinant Ad in the vagina (de Haan et al., 

1995, Gallichan & Rosenthal, 1995). 

Mucosal adidstration of live replicating viral vaccines has been found to induce 

stronger mucosal immune responses and protection against challenge than inactivated 

vaccines (Couch et al., 1996, Ogra, 1996, Tamura & Kuata, 1996, Weeks-Levy & Ogra, 

1996). Non-replicating viruses usually induce immunity only following systemic 



immunisation (Momson & Knipe, 1996, Xiang et al., 1996; and see Table 2.1 .), although 

there are a few reports for replicationdefective viruses inducing immunity following 

mucosal administration (Bender et al., 1996, Gonin et al., 1996). Inactivated viral or 

subunit vaccines usually induce immune responses following mucosal vaccination only if 

combined with strong adjuvants such as cholera toxin or if delivered by liposomes 

(Michalek et al., 1994). It is possible that the MALT possesses selective regulatory and 

effector mechanisms to recognise and respond with induction of immunity only to 

potentially dangerous agents to avoid bystander tissue damage and immunologic 

exhaustion. 

The mucosal immune system is thought to be not only hyporesponsive compared to 

the systemic immune system but mucosal immune responses are also considered shorter 

lived than serum antibody responses (Slifka & Ahmed, 1996). However, mucosal 

immunisation of mice with high doses of live virus may result in long-term antibody 

production both in the serum (Irie et al., 1992, McNeal & Ward, 1995) and the respiratory 

tract (Hyland et al., 1994, Jones & Ada, 1987, Liang et al., 1994). Furthermore, 

recombinant HAd5 expressing gE3 of HSV-1 was capable of inducing long term humoral 

and cellular immunity to gE3 and protection against lethal doses of i n .  HSV-I challenge in 

mice (Gallichan et al., 1993). 

2.7 The cotton rat as a model for mucosal adenoviral infections 

The cotton rat (Sigmodon hispidus) has been used as an animal model to study the 

pathogenesis of various human and animal respiratory viruses such as human parainfluenza 

virus type 3 (HPW3), bovine parainfluenza virus type 3 @PU), human respiratory syncytial 

virus (KRSV), HAdS and bovine adenovirus @Ad) (Breker-Klassen et al., 1995, Mittal el 

a[., 1995, Murphy et al., 1981, Pacini et al., 1984, Porter et a/., 1991, Prince et al., 1978, 

Prince a al., 1993). In fact, the only rodents known to support HAd5 replication are cotton 

rats and hamsters (Hjorth et al., 1988). Mice are only semi-permissive for HAdS 

replication (Blair et al., 1989, Ginsberg et al., 1991). Using an i.n. challenge model in the 

cotton rat, HAdS replication in the lungs was shown to peak between day 2 and 5 p i .  



depending on the dose of virus administered intranasally (Pacini et al., 1984, Prince el al., 

1993). Irnrnunofluorescent and electronmicroscopic studies demonstrated that the virus 

primarily replicated in the bronchiolar epithelial cells of cotton rats (Prince et al., 1993). 

Histopathological changes were also observed. These changes could be divided into two 

phases: early, non-specific infiltration of neutrophils, macrophages and lymphocytes to the 

peribronchiolar and alveolar regions, and a later phase of the disease, which consisted 

almost exclusively of infiltration of lymphocytes (Prince et al., 1993). The molecular 

basis of adenovirus pathogenesis has been studied in cotton rat and mouse models 

(Ginsberg & Prince, 1 994). 

With the establishment of the i.n. HA& infection model, the cotton rat has become 

available for the preliminary evaluation of recombinant HA& vectors as vaccine delivery 

systems. Although recombinant adenoviruses have successfiAly delivered vaccine antigens 

to several mammals (primates, monkeys, carnivores, ruminants and rodents) (Graham & 

Prevec, 1992, Mer,  1995, Rosenthal et aL, 1996), only the species which are permissive 

for HAd5 replication, such as cotton rats, hamsters, cattle and primate species, are suitable 

for studies comparing replicationdefective and replication-competent HAd5 vectors. 



3.0 HYPOTHESES AND OBJECTIVES 

A laboratory rodent that supports the replication of both adenovirus and bovine 

herpesvirus type 1 (BHV-1) would provide a model to evaluate the efficacy of replication- 

defective and replicationcompetent adenovirus vectors expressing the glycoprotein D (@) 

of BHV- 1 in inducing @-specific immunity and protection against BHV- I challenge. 

Cotton rats are already known to support the replication of hurnan adenovirus. Since the 

cotton rat (Sigmodon hz3pidu.s) has served as a rodent model for many viral pathogens, the 

first hypothesis was that cotton rats can be used as a model for experimental BHV-1 

infection as well. 

lmmunisation of cattle with purified gD and transmembrane anchor truncated gD 

(tgD) of BHV-1 stimulates protective immunity against BHV-1 infection. These 

glycoproteins expressed by a recombinant adenovirus, therefore, have the potential to serve 

as a vaccine model to investigate mucosal immunity induced by recombinant adenoviruses. 

The second hypothesis was that recombinant human adenoviruses expressing gD or tgD of 

BHV-1 can induce mucosal immunity and protection against BHV-1 challenge in cotton 

rats. 

For @-specific immunity to develop it is crucial that cotton rat cells become 

infected with recombinant adenovirus and express the gD or tgD protein. Since adenovirus- 

specific immunity can prevent an infection or effective foreign gene expression by 

recombinant adenovirus, the third hypothesis was that pre-existing adenovirus-speci fic 

immunity inhibits the efficacy of immunisation with recombinant adenovirus. 



To examine whether the above hypotheses were correct, the following objectives 

were set: 

1. To investigate the capability of BHV-1 to replicate and cause pathological 

changes in cotton rats 

2. To determine the in virro expression of gD and tgD in cotton rat cells infected 

with recombinant adenoviruses 

3. To assess the ability of recombinant adenoviruses expressing gD or tgD to elicit 

@specific systemic and mucosal immunity and conk protection against intmasal BHV- 

1 challenge 

4. To determine the effect of adenovirus-specific active immunity and passive 

antibody-transfer on immunisation with recombinant adenovirus 



4.0 MATERIALS AND METEODS 

4.1 Virological assays 

4.1.1 Cell lines 

Cotton rat lung (CRL) cells were cultured and maintained as a stable cell line as 

previously described (Baca-Estrada et al., 1995). Madin Darby bovine kidney (MDBK) 

cells were obtained from the American Type Culture Collection (Rockville, MD, USA). 

The 293 cell line, which is a human embryonic kidney derived, human adenovirus type 5 

(HAd.5) transformed cell line expressing the El  region proteins of HAdS, was a gift fiom 

Dr. Frank L. Graham (McMaster University, Hamilton, ON). All three cell lines were 

propagated in minimal essential medium (MEM; with Earle's salts; Gibco/BRL 

Laboratories, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS; 

Gibco/BFU), 2mM L-glutarnine and penicillin streptomycin solution (Sigma Chemical 

Co., St. Louis, MO) (growth medium). Each cell line was used up to passage number 50. 

4.1.2 Stock virus preparation and purification of BHV- 1 

The Cooper strain of BHV- 1 was obtained fiom the National Veterinary Services 

Laboratories, Ames, Iowa, USA, and propagated in MDBK cells. The field isolate 108 

strain of BHV-1 was obtained fiom Animal Diseases Research Institute (ADRI), 

Lethbridge, Alberta, Canada and passaged twice in MDBK cells. 

For use in vivo and most in vino experiments, the Cooper strain of BHV-I was 

concentrated by ultracentrifuging the culture supernatant of infected cells through a sucrose 

cushion. The pelleted virus was resuspended in phosphate buffered saline (PBS). For 



infection of CRL cells and cotton rats with BHV-1 108 strain, the culture supernatant of 

infected cells was used. For enzyme-linked immunosorbent assay (ELISA), BHV-1 was 

purified by ultracentri fbga tion on discontinuous NaK tartrate gradients as described (Misra 

et al., 198 1). Total protein content of the purified virus preparation was estimated by a Bio- 

Rad (Cambridge, MA) protein assay. Stocks of both strains of BHV- 1 were titrated on 

MDBK cells and were stored in small aliquots at -70 OC. 

4.1.3 Lnfection of CRL cells and MDBK cells with BHV- 1 

To determine the kinetics of BHV-1 growth, different multiplicity of infection 

(MOO of BHV-1 were added to CRL or MDBK cell monolayers. After 1 hour (h) of 

adsorption at 37 OC, excess virus was removed by washing cells twice with PBS and 

replaced with MEM supplemented with 2% FBS (Gibco/BRL) . At various timepoints 

postinfection @.is), cells and culture supernatants were harvested and stored at -70 O C .  All 

samples were further processed and analysed simultaneously. 

4.1.4 BHV- 1 titration 

Quantification of BHV-1 was performed by a plaque assay. Samples obtained 

following in vitro (cell culhlre inoculum) or in vivo (lung and trachea extracts) infection 

with BHV-1 were serially diluted in PBS, absorbed onto MDBK cell monolayers for 1 h, 

then overlaid with growth medium containing 1% agarose. Afler 3 days of incubation at 37 

"C, plaques were counted, and titres expressed as plaque forming units @fb) per ml of 

culture inoculum or per gram of tissue. 

4.1.5 Preparation and purification of adenoviruses 

The construction of HAdS vectors containing the gene of BHV- I gD or tgD in the 

El (gD-dElE3 and tgD-dElE3, respectively) or the E3 regions (gD-dE3 and tgD-dE3, 

respectively) were described previously (Mittal et al., 1996, van h e n  Littel-van den 



Hurk et al., 1993). The characteristics of these vectors are summarised in Table 4.1. 

Adenoviruses were propagated in 293 cells, and released from infected cells by 3 rounds of 

hezing and thawing. The cell debris was removed by centrifugation. The supernatant was 

used for admimstration to cotton rats in experiments described in sections 5.3.4, 5.3.5, 5.4, 

5.5.1, 5.5.2, 5.5.3, 5.5.5. In other experiments, the recombinant vectors were partially 

purified by centrifbgation in a discontinuous cesium chloride gradient. Adenoviruses were 

titrated by plaque assay and stored at -70 O C .  The adenovirus preparations contained no 

more than 0.1 pg gD per lo8 pfu virus, as measured by capture ELISA. For the in vie0 

assays the wild type (wt) HAd5 was purified by two rounds of continuous cesium chloride 

gradient centrifbgation (Graham & Prevec, 1991). Total protein content of each purified 

virus preparation was estimated by a Bio-Rad protein assay. For experiment 5.3.1, the 

purified adenoviruses were provided by Suresh K. Mittal. 

4.1.6 Titration of adenoviruses 

To quantify the amount of adenovirus in culture-inoculum or in tissue samples, 

adenovirus was titrated on 293 cells under a 1 % agarose overlay (Graham & Prevec, 199 1 ). 

Afier 5-8 days of incubation at 37 O C ,  plaques were counted, and titres were expressed as 

pfu per ml of culture inocuium or per gram of tissue. 

4.1.7 Immunoprecipitation and gel-electrophoresis 

Glycoprotein D and tgD expression by CRL cells infected by recombinant 

adenoviruses was determined by immunoprecipitation and gel-electrophoresis. 

Adenoviruses were adsorbed onto CRL cells for 1 h at 37 OC. Then the inoculurn was 

removed and replaced with methionine-free MEM (ICN Biomedicals Inc., Mississauga, 

ON). CEU cells infected with BHV-1 were used as a positive control. At 3 h pi .  75 pCi of 

EXPRESS Protein Labelling Mix containing L-[~~s] -methionhe (NEN Life Science 



Table 4.1 Recombinant human adenoviruses used in the studies 

HAd5 gD or tgD deletion regulatory sequences references: 
virus: gene: insertion in: in: promoter: poly A: 

-- - 

dE I E3 - - E l ,  E3 - - Graham and Prevec, 1992 

dE3 - - E3 SV40 SV40 Mittal et al., 1996 

gD-dElE3 gD El  region E l ,  E3 MLP multiple van Drunen Littel van den Hurk et al., 1993 

tgD-dE 1 E3 tgD E 1 region E I ,  E3 MLP multiple Mittal et al., 1996 

gD-dE3 gD E3 region E3 SV40 SV40 Mittal et al., 1996 

tgD-dE3 tgD E3 region E3 SV40 SV40 Mittal et al., 1996 



Products, Boston, MA) in 1.5 mI methionhe-fke medium was added to the plates. At 36 h 

or 20 h p.i. with adenoviruses and BEN- 1, respectively, supernatants were collected and 

cells were harvested and pelleted by centrifugation. Samples were mixed with RIPA buffer 

(150 mM NaCI; 50 mM Tris-HC1, pH 7.5; 10 mM EDTA; 1 % v/w sodium deoxycholate; 

I % V/V Triton X-100; 0.5 % w/v sodium dodecyl sulphate (SDS)) containing pooled gD- 

specific mAb and incubated on a rocker for 2 h at room temperature. Protein A coupled 

Sepharose beads (Pharmacia, Uppsda, Sweden), 100 mg/ml in RIPA buffer, were added 

and the mixture incubated on a rocker at 4 *C overnight The protein A Sepharose was 

pelleted by centrifugation and the pellet washed 5 times with RIPA buffer. Thirty pl 

sample buffer (70 rnM Tris-HC1, pH 6.8; 10 % v/v glycerol; 2 % w/v SDS; 2 % J3- 

mercaptoethanol; 0.05 % w/v bromophenol blue) was added to the pellet. Protein samples 

were boiled for 5 minutes before separation by gel-electrophoresis. Polyacrylarnide gel- 

electrophoresis (PAGE) was performed by using denaturing, discontinuous Laernmli gels 

(Laernmli, 1970). A stacking gel of 4 % and a separating gel of 10 % were used. Afier the 

separation was complete, the gel was fixed (methanol:water:acetic acid = 25:65: 10) and 

soaked in Amplify (Amersham Canada, Inc., Oakville, ON) prior to drying. The dried gel 

was then exposed to X-ray film (Eastman Kodak Company, Rochester, NY) at -70 "C. 

4.1.8 Immunoc ytochemistry 

Lmmunocytochernical staining of CRL cells infected with recombinant 

adenoviruses was used to demonstrate in situ expression of gD and tgD in vitro. Infection 

of CRL cells with BHV-1 at an MOI of 1 was used as a positive control. CRL cells were 

grown to confluence on LAB-TEK chamber slides (Nunc Inc., Naperville, E, USA) and 

incubated with virus at an MOI of 5 for 1 hour. Non-adsorbed virus was removed by 

washing with MEM and the slides were fiuther incubated with growth medium. Slides 

were fixed in cold acetone at different time points p.i., air dried, then incubated for 30 min 

with MEM with 1 % horse serum (Gibco). Slides were washed with PBS between each 

following step. Slides were incubated for 1 h at room 

monoclonal antibodies (rnAb) specific for gD, described by 

temperature with a 

Hughes et a/. (1 988) 

pool of 

and van 



Drunen Littel-van den Hurk & Babiuk (1986). Then, biotinylated horse anti-mouse IgG 

(Vector Laboratories, Burlingame, CA, USA) was added for 1 hour. Detection of bound 

antibody was performed by adding an avidin biotin complex (ABC)-horseradish peroxidase 

(HRP) (ABC-HRP kit, Vector). Slides were developed by a peroxidase substrate kit (DAB, 

Vector), counterstained with toluidine blue (Aldrich, Milwaukee, WI, USA), rinsed with 

distilled water and air dried. Brown staining indicating the presence of gD was examined 

by a light microscope (Olympus AH2). 

4.1.9 Quantification of gD and tgD by ELISA 

CRL cells were infected with recombinant adenoviruses to assess the kinetics of gD 

and tgD expression in vitro. Adenoviruses were adsorbed onto CRL cell monolayers at an 

MOI of 10 for 1 hour at 37 OC. Excess virus was removed by washing cells twice with 

PBS, followed by the addition of MEM supplemented with 2% FBS (GibcoEiRL). Cell 

monolayers were observed visually with the aid of a dissecting microscope. Cells and 

culture supernatants were harvested at various time-points p.i. and were frozen at -70 O C  

until all the samples could be processed simultaneously. 

The amount of gD and tgD in the samples was measured by ELISA. Cell pellets 

were mixed with 2x volume of RIPA buffer, centrifuged and the supernatants containing 

the cell extracts were used in the assay. Immulon-2 microtiter plates (Dynatech 

Laboratories, hc., Chantilly, Va.) were coated overnight at 4 O C  with a pool of mAb 

specific for gD in coating buffer (50 mM NaHCOfla2C03, pH 9.6). Between each step, 

plates were washed three times with PBS containing 0.05 % Tween-20 (Sigma; PBS-T). 

Culture supernatants and cell extracts were serially diluted in PBS containing 0.5 % bovine 

serum albumin (BSA; Boehringer-Maanheirn, Quebec, Canada) (PBS-BSA) and incubated 

for two hours at 37 OC. Purified gD was used as a positive control (a gift from Sylvia van 

Drunen Littel-van den Hurk). Plates were incubated with @-specific plyclonal rabbit IgG 

(a gift fmm Sylvia van Drunen Littel-van den Hurk), then with horseradish peroxidase- 

conjugated goat anti-rabbit IgG (Gibco5RL) for 2 h at room temperature for each step. 

Colour was developed using 0.15 mg/ml of 2,2'-azino-di-{3-ethyl-beIlZthiazoline 



Colour was developed using 0.15 m g m l  of 2.2'-azino-di-~3-rthyl-benzthi~oline 

sul fortatel ( ABTS: Borhringr-Mannhrirn) as a substrate. Absorbance was read at 405 nm 

~ v i t h  a reftrencr wavelength at 490 nrn using a microplate reader ( Bio-Rad model 3550). 

4.2 In vivo procedures 

4.1.2 Cotton rats 

Inbred male and female hispid cotton rats (Sig~~rodot~ hispidils). (Figure -I. 1 ). 3-5 

months of a g  and seronegative to adenovirus and BHV- 1. were obtained from bamer- 

mainraincd pathogen-free colonies at the Veterinary hfectious Disease Organization 

(VIDO. University of Saskatchewan) or from Virion Systems. Inc. (Rockcills. MD). 

Animals were handled according to the guidelines of the Canadian Council on Animal 

Care and the University of SasLatcheafan Commirtec on Animal Care and Supply. 

Figure 4.1 Cotton rat (Signtodon hispidus) 

37 



4.2.2 Immunisation and challenge protocols 

Cotton rats were anaesthetised with nitrous oxide-halothane (MTC 

Pharmaceuticals, Cambridge, Canada) (1 :2) during all immunisations and challenges. 

Blood samples were obtained by cardiac puncture. Animals were euthanised by a halothane 

overdose. 

For intranasal (i-n.) irnmunisation and challenge, viruses were administered in 50 p1 

volumes into the nares of cotton rats. Intraderma1 (i.d-) immunisation was performed by 

injecting 2 x 25 p1 virus suspension into two spots of the back skin of cotton rats. 

htraperi toned (i-p.) administration was given by injecting 500 pl virus inoculum into the 

peritoneal cavity. For the primary enteric imrnunisation, the duodenum was surgically 

exposed and lo8 pfu of adenovirus (500 pl), or PBS as  a control, was injected into the 

duodenum. The incisions were closed upon completion of the procedure. The animals were 

allowed to recover and were housed under normal conditions. The secondary, oral 

imrnunisation was perFormed by delivering lo8 pf3 of virus suspended in 500 p1 of 0 4  M 

NaHC03 into the oesophagus with a 20 gauge gavage needle. Evans blue dye was used to 

confirm that the inoculum was restricted to the site of administration and did not spread to 

the peritoneum or the respiratory tract following intraduodenal or oral delivery, 

respectively. Before intraduodenal or intragastiic imrnunisation, cotton rats were starved 

overnight. 

4.2.3 Production of adenovirus-specific hyperimmune serum 

Adenovirus-specific serum was raised in cotton rats by subcutaneous (s.c.) 

inoculation with complete Freund's adjuvant containing 10' pfu of HAd5. Animals were 

reimmunised with the same amount of virus in incomplete Freund's adjuvant four weeks 

later. Four weeks afier the second immunisation, serum from all animals was collected and 

pooled. The titre of Ad-specific antibodies was 2 x lo5, as determined by ELISA. The 

serum was stored at -20 "C until it was used in passive transfer experiments. 



4.3 Assessment of viral replication and spread in vivo 

4.3.1 Histopathology and immunohistochemistly 

The left lung of cotton rats was fixed in 10% neutral buffered formalin, processed 

routinely and embedded in paraffin wax. For histological evaluation, 5 p sections were 

cut and stained with hematoxylin and eosin (H&E). 

Unstained sections of fomalin-fixed lung f?om the same blocks were stained 

immuno- histochemically using an avidin-biotin complex method (Haines & C helack, 

1991). The slides (three per animal) were incubated with 1/5000 or 1/10000 dilutions of a 

pool, three parts to one, of two monoclonal antibodies directed against BHV- 1 gB (3F 11) 

and gC (1H6) glycopmteins respectively (gift from Dr. V. Misra) or with normal mouse 

serum at a 1f5000 dilution as a negative control. Formalin-fixed bovine fetal liver from a 

case of natural BHV- 1 infection was used as a positive control. Slides were treated with 

3,3'diaminobenzidine-HA solution as chrnogen and counterstained with hematoxylin. 

A positive reaction consisted of brown deposits, indicating the presence of BKV-1 

antigens. 

A scoring system of 0 (normal), 1 (mild), 2 (moderate), and 3 (severe) based on the 

severity of lesions in the lower respiratory tract was used for histological evaluation of the 

lungs. Lesions were graded separately for the bronchioles and alveoli. Bronc hiolar lesion 

scores considered the development of intranuclear inclusion bodies, degree and extent of 

epithelial necrosis and inflammation. Alveolar lesion scores were based on intranuclear 

inclusion bodies, necrosis, neutrophils and macrophages in alveolar septa, and type CI 

pneumocyte hyperplasia- 

4.3.2 Preparation of trachea and lung extracts 

One or three days after challenge with BHV-I, trachea and lungs were aseptically 

removed from euthanized cotton rats, placed in 1 ml MEM and fkozen at -70 "C. When all 

samples were collected, they were thawed, weighed and homogenised (Polytron 



hornogeniser, Brinkman Industries, Rexdale, Canada). Lungs were homogenised for 2 x 1 0 

seconds, while tracheae were homogenised for 3 x 10 s. Tissue-homogenates were 

centrihged to remove debris. Supernatants were collected and analysed for the presence of 

BHV- 1 by plaque assay or the presence of antigen-specific antibodies by ELISA. 

4.3.3 Adenovirus isolation fiom cotton rat tissues 

One or three days after inoculation of cotton rats with recombinant adenoviruses, 

various organs and tissues were removed under aseptic conditions and placed in MEM. All 

samples were frozen and kept at -70 OC until they could be processed simultaneously. All 

samples were then thawed, homogenised by a Polytron homogeniser (B-an Industries) 

and centrifuged to remove debris. To quantify adenovirus, the supernatants were analysed 

by plaque assay. Samples with no plaques were incubated on 293 cells in 6 well tissue 

culture plates and cells were observed daily for 7 days for plaque-formation. In case of 

negative results, cultures were frozen and thawed 3 times to release any adenovirus. The 

resulting crude cell suspensions were passaged in 293 cells one more time. If no plaque 

formation was noted 7 days pi. following the second passage, the sample was considered 

to be negative for adenovirus. 

4.4 Assessment of immune responses 

4.4.1 Isolation of lymphocytes 

Spleens, lymph nodes and bone marrow were removed aseptically, chopped, then 

gently pushed through a fine plastic mesh. Erythrocytes were lysed by Tris-buffered 0.83% 

N&CI and the resulting lymphocyte suspensions were washed twice with MEM. Lung 

lymphocytes were isolated from a piece of tissue that contained the right lung, the bronchi 

and the lower part of the trachea, which remained following separation of most of the 

trachea and the left lung for other assays. The tissue was cut into small pieces and 

incubated for 1 h in complete medium W M  supplemented with 10% FBS (Sigma), 2 



rnM L-glutamine (Gibco/BRL), 1 mM sodium pyruvate (Gibco/BRL), 100 pM non- 

essential amino acids (Gibco/BRL), 10 mM HEPES buffer, and LOO U/ml penicillin G, 100 

pglml streptomycin solution (Sigma), final pH of 7.21 containing 150 U/ml collagenase A 

(Wortkington Biochemical Co., Freehold, NJ) and 50 U/ml DNase I (Sigma). The digested 

lung tissue was then gently pushed through a plastic mesh. The lung cell suspension was 

centrifuged through a discontinuous Percoll (Pharrnacia) gradient and washed twice with 

MEM. Cells were resuspended in complete medium and incubated for one hour in a tissue 

culture flask to remove the adherent cell population. The purified lymphocyte population 

was then collected, washed, resuspended in complete medium containing 50 pM 2-ME 

(Sigma) and used in the ELISPOT and proliferation assays. 

4.4.2 Lymphocyte proliferation assay 

Antigen-specific T cell function in spleens was measured by lymphocyte 

proliferation assay. Lymphocytes were dispensed in 100 pl volumes (2 to 4 x 10' 

cells/well) into 96 well tissue culture treated plates (Costar, Cambridge, MA). Irradiated 

BHV- I ,  HAdS (20 mWlcmL W irradiation for 8 min, 1000 mT) or various concentrations 

of purified gD (0.1- 1 @ml) were added in 100 pl to triplicate wells. After 2 days in 

culture, 0.4 pCi [methyl-'~]-th~midine (Amersharn Canada, hc.) was added to all wells 

for the last 24 h of culture. Incorporation of thymidine into cellular DNA was assessed by 

harvesting cells onto glass fibre filter mats (Salctron, Sterling, VA) and the radioactivity 

determined using a J3 scintillation counter (Beckman, Richmond, BC). Proliferative 

responses were expressed as stimulation indices (So. 

counts per minute in the presence of antigen 
SI = 

counts per minute in the absence of antigen 



4.4.3 Antigen-specific ELISPOT assay 

An enzyme-linked immunospot (ELISPOT) assay was used to determine the 

number of gD- and adenovirus-specific antibody-secreting cells (ASC) in the spleen, bone 

marrow and the right lung. Nitro-cellulose based, hydrophobic, 96-well microtiter plates 

(Polyfiltronics, Rockland, MA) were coated overnight with purified gD (0.3 pg/well) or 

purified hAd5 (1 pglwell) in coating buffer at 4 O C .  Mer being washed three times with 

PBS under sterile conditions, plates were incubatd with complete medium for one hour at 

room temperature. Lymphocytes were then added to the plates (5 to 100 x 1 o4 cells/well) 

and incubated in complete medium for 8 hours at 37 OC. Following incubation, cells were 

removed by washing the plates with cold distilled water and PBS-T. The plates were 

extensively washed between each following step. To detect bound IgG, biotinyiated anti-rat 

IgG (Zymed, Mississauga, Ontario, Canada) in PBS-BSA was added to the plates for a 2 h 

incubation at room temperature. To detect bound IgA, rabbit anti-rat IgA (a gift from Dr. B. 

Underdown, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada) 

was added for 2 4 followed by incubation with biotinylated goat anti-rabbit antibody 

(Z ymed). Ali plates were then incubated with streptavidin-alkaline phosphatase, followed 

by spot development with 5-bromo4chloro-3-indolyl phosphate (BC1P)-Nitro Blue 

Tetrazolium (NBT) substrate. The numbers of spots in triplicate cultures were counted with 

the aid of a dissecting microscope. 

4.4.4 Collection of nasal- and lung-washes 

Nasal- and lung-washes were collected by using 2 crn long pieces of Teflon TFE 16 

TW Natural tubes (Cole-Parmer Instrument Company, Niles, IL) connected to 16 gauge 

needles (Baca-Estrach, personal communication). Cotton rats were euthanised before the 

procedure. For the nasal-wash, the tube was placed into an incision of the trachea and 0.3 

ml PBS was flushed through and collected at the nares. To obtain lung-washes, the tube 

was inserted in the trachea and 1 ml PBS was flushed in and out of the lungs 2 times. Wash 

samples were stored at -20 O C  until they were analysed simultaneously with serum samples. 



4.4.5 Antigen-specific ELISA 

Antibody levels specific for BHV-I and adenovirus in sera, washes or extracts From 

the lung and trachea were determined by ELISA. Immdon-2 microtiter plates (Dynatech 

Laboratories, Alexandria, VA) were coated overnight with purified tgD (0.05 pg/weIl), 

purified BHV- 1 or purified HAd5 (0.5 Mwell) in coating buffer at 4 OC. The plates were 

washed three times with PBS-T between each step. The plates were incubated with PBS- 

BSA for 1 hour at room temperature, then all the samples were serially diluted in PBS- 

BSA and incubated overnight at 4 OC. Bound IgG was detected using horseradish 

peroxidase-conjugated goat anti-rat IgG (Zymed). Bound IgA was measured by rabbit anti- 

rat IgA (a gift from Dr. B. Underdown), followed by incubation with horseradish 

peroxidase-conjugated goat anti-rabbit IgG (Gibco/BRL). Colour was developed using 0.15 

m g l d  of 2,2'-azino-di-[3-ethyl-behazoline sulfonate] (ABTS; Boehringer-Mannheim) 

as a substrate. Absorbance was determined at 405 nm with a reference wavelength at 490 

nm using a microplate reader (Bio-Rad model 3550). In experiments 5.3.1 ., antibody levels 

were expressed as the optical density (OD) at 405 nm. In other experiments, antibody titres 

represent the loglo of the inverse of the last dilution that resulted in an absorbance which 

was greater than the sum of the mean background absorbance plus 3 standard deviations 

(SD). Antibody titres specific for gD were identical regardless of whether purified BHV- 1, 

gD or tgD was used to coat the ELISA plates. 

4.4.6 BHV- I serum neutralisation assay 

BHV-1 neutralising assays were performed as described by van Drunen Littel-van 

den Hurk et al. (1984). Briefly, doubling dilutions of heat inactivated (56 O C ,  30 minutes) 

serum samples were mixed with 100 pfb of BHV-I and incubated for 1 hour at 37 OC. The 

virus-sample mixture was then plated on confluent MDBK cells in 96 well microtiter 

plates and incubated for 2 days. Serum neutralking (SN) titre was defined as the reciprocal 

of the highest serum dilution resulting in reduction of virus plaque formation by at least 

50% relative to the virus control. 



4.4.7 HA& serum neumlisation assay 

Ademvirus-neuaalising assays were performed as described previously by MittaI 

et al., 1 993, with minor modifications. Briefly, ten-fold dilutions of heat inactivated (56 O C ,  

30 minutes) serum samples were mixed with 100 pfb of hAd5 and incubated for I hour at 

37 O C .  The virus-sample mixture was then plated on confluent 293 cells in 24 well plates, 

incubated for 1 hour, then incubated for 8 days under a 1% agarose overlay until plaques 

were formed. Serum neutralising titre was defined as the reciprocal of the highest serum 

dilution resulting in reduction of virus plaque formation by at least 50% relative to the 

virus control. 

4.4.7 Statistical analysis 

Statistical analysis of the data was performed using a Student t-test. 



5.0 RESULTS 

5.1 Establishment of an intranasal BHV-1 challenge model in cotton rats 

The primary goal of this thesis was to assess mucosal and systemic immune 

responses induced by replication-defective and replication-competent recombinant HAdS 

vectors expressing gD of BHV-1. Since cotton rats support HAd5 replication, they provide 

a suitable model for such a project. However, to evaluate the efficacy of imrnunisation with 

recombinant adenoviruses in confaring protection against BHV- I challenge, a laboratory 

animal that supported BHV-I replication was necessary. The first objective of this thesis 

was to find out whether cotton rats are a suitable laboratory animal model for BHV-1 

infection. 

5.1.1 BHV- 1 glycoprotein expression in CRL cells following infection 

Viral replication can take place only if the cell becomes infected with the virus and 

viral proteins are appropriately expressed. To find out whether CRL cells expressed a 

major glycoprotein of BHV-L following adsorption of the virus, gD expression in CRL 

cells was monitored by imrnunoprecipitation, irnmunocytochemistry and ELISA. Results of 

imrnunoprecipitation provided evidence that gD was synthesised de novo in BHV-1 

infected CRL cells (see next section, Fig. 5.2.1). lmrnunocytochemical staining of BHV-I 

infected CRL cells indicated that gD was abundant in the perinuclear region as early as 2 h 

p.i. (Fig. 5.1.1 .a). The cell membrane stained positive for gD fiom 4 h p.i. on (data not 

shown). The peak production of gD was at 24 h pi., as measured by ELISA (Fig. 5.1. I .b). 
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Figure 5.1.1 gDexpression by BEN-1 infected CRL cells. CRL cell monolayers were 
infected with the Cooper strain of BHV-I at an MOI of 1. (a) At 2 h pi.,  gD-expression 
was detected by imunocytochemistry. Dark precipitation in the perinuclear region indicates 
@-specific staining (arrow). @) @-production in culture supernatants and cells was 
measured by ELISA at different timepoints p.i. Data are expressed as pg @/I o6 CRL cells 
in single cultures, and represent results from 2 experiments. 



5.1.2 BHV-I replication in CRL cells in vino and in cotton rats in vivo 

To determine whether BHV-I could replicate in CRL cells in vitro, the kinetics of 

virus production was monitored. The growth of BHV-1 in CRL cells was similar to that 

observed in MDBK cells (Fig. 5.1.2). In both cell lines, isolate 108 replicated to a slightly 

higher titre than the laboratory Cooper strain (Fig. 5.1.2). 

Since BHV-1 could replicate efficiently in CRL cells in vitro, next I assessed the 

capability of BHV-1 to replicate in vivo. Cotton rats were inoculated i.n. with the two 

different strains of BHV-1 and virus growth was monitored in the respiratory tract. Viral 

recovery from the trachea and lung increased compared to that at the beginning of 

inf~tion. BHV-1 titres peaked between day I and 2 postinfection (Fig. 5.1.3). Although 

both strains could replicate in the cotton rat, the 108 strain replicated to higher titres than 

the Cooper strain. From day 2 on, viral titres declined and virus was completely cleared 

from all animals by day 8. 

Cotton rats developed cellular and humoral immune responses to BHV-1 

glycoproteins. (Table 5.1.1). By day 8 pi., both the Cooper and 108 strains induced gD- 

and gB-specific antibody in the serum (Table 5.1.1 ) and the lung- and trachea-extracts (data 

not shown). The animals did not show any apparent signs of disease or changes in 

behaviour at any stage of the BHV- I infection period. 

5.1.4 Histopathological and irnrnunohistochemical evaluation of BHV- I infected 

cotton rat lungs 

To examine whether BHV-1 infection and replication caused any cell damage in 

the lung, sections of lungs from infected cotton rats were examined histologically. The 

results of histological evaluation of cotton rat lungs infected with the Cooper and 108 

strains of BHV-I are summarised in Fig. 5.1.4. No lesions were seen in the lungs of rats 

killed at 6 hours following infection. Randomly, rare intra-alveolar macrophages and 

indistinct intranuclear inclusion bodies in bronchiolar epithelial cells were seen on day 1 

postinfection. By day 2 p.i., rats infected with the 108 strain exhibited multifocal moderate 
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Figure 5.1.2 Kinetics of in vitro replication of BHV-I in cotton rat and bovine cells. 
CRL and MDBK cells were infected with the Cooper (a) and 108 @) strains of BHV- 1 at 
an MOI of 1 .  Total virus production at different timepoints pi .  was measured by plaque 
assay on MDBK cells. Data are expressed as the mean * SD pWrd of triplicate cultures. 
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Figure 5.1.3 Replication of BHV-1 in the respiratory tract of cot&on rats. Viral titres 
in the trachea (a) and the lung (b) were determined by plaque assay at different timepoints 
after i.n. inoculation of 5x10' pfu of the Cooper and the 108 strains. Results are expressed 
as  the mean pWg tissue fiom 2 or 3 animals per group. 



Table 5.1.1 Immune responses induced by intranasal inoculation of 
BHV-1 in cotton rats 

virus gDspeci fic gB-speci fic gD-speci fic BHV- 1 
serum Ab serum Ab spleen specific spleen 

lymphocyte lymphocyte 
IgG / k G  proliferation proliferation 

- - - -- -- - . -- - -- - - 

Cooper 0.57 / 0.09 0.365 / 0.09 2.9 6.0 1 

108 0.61'/0.13 0.465/0.154 3.05 6.49 

control 0.05 / 0.08 ' 0.05 / 0.08 1.1 f 0.3 t 1.1 + 0.4 : 

Conon rats were inoculated with 5 x 10' pfu of the Cooper or 108 strains of 
BHV- 1. Spleen lymphocyte proliferative responses and serum antibody responses 
specific for BHV-I or BHV-I glycoproteins were determined at 8 days post- 
challenge. 

* Mean OD-s at 1 : 10 dilution of serum samples measured by ELISA. 
** Mean stimulation index ( S o  at 1 pg gD/ml and 0.5 pg BHV-l/ml 
concentrations from 2 animals/group. In vitm stimulation was performed at 
different antigen concentrations with similar results. ' OD of 0.6 1 value was equivalent with @-specific serum titre of 500. 
t Mean OD-s of samples on day 0 or day 2 p.i. (controls) at 1 : 10 dilution. 
: Mean stimulation index + SD of PBS controls or non-immunised animals as 
determined by experimental data from numerous experiments. 
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Figure 5.1.4 Quantitation of histological changes in the lungs of cotton rats 
inoculated with BHV-1. Lungs were collected at various time pints after i.n. infection 
with sx 10' p h  of the Cooper or the 108 strains and evaluated for histological lesions in the 
bronchioli (a) and alveoli (b). Lesions were scored according to the severity on a scale of 0 
(normal) to 3 (severe). Each bar denotes a mean of scores for 3 animals at 6 h, day 1 and 
day 4 p.i. and for 2 animals at day 2 and day 8 pi. 



bronchiolitis with the presence of intranuclear inclusion bodies in bronchiolar epithelial 

cells, epithelial cell necrosis and infiltration of neutrophils into the mucosa and lumen (Fig. 

5.1.5 .a.). Mu1 ti focal, moderate interstitial pneumonia with macrophage and neutrophil 

infiltration of alveolar septa, along with a few inclusion bodies in alveolar epithelial cells 

and occasional intra-lurninal cells were also seen (Fig. 5.1 -5 .b.). An inflammatory response, 

mild within the airways (1 of 3 rats) and moderate in the alveoli (3 of 3 rats), was present at 

day 4 p.i. Type II pneumocyte hyperplasia and macrophage infiltration of the septa were 

evident but inclusion bodies were absent. By day 8, a mild peribronchiolar lymphocytic 

infiltration was present along with alveolar septa1 infiltration of macrophages or 

macrophages and lymphocytes. The Cooper strain was less pathogenic for the cotton rats 

than the 108 strain, producing only mild focal lesions. Lesions persisted through day 4 and 

waned by day 8 p.i. 

To correlate histological changes with BHV-1 infection and replication, lung 

sections were examined by immunohistochemical staining for the presence of BHV-1 

antigens. In the lungs of cotton rats infected with the Cooper strain, only a few cells, 

randomly distributed throughout the alveoli, stained positively for BHV-1 antigens at 6 

hours. By day 1, in all three infected rats, there were several small positively-staining foci 

of bronchiolar epithelial cells, and in one animal alveolar epithelial cells were also positive. 

Such foci were moderately numerous by day 2, involving both bronchiolar and alveolar 

epithelium. They were also present in similar numbers and distribution on day 4, but were 

absent by day 8. 

Lungs of cotton rats infected with the 108 strain did not contain any detectable 

BHV-1 antigens at 6 h postinfection. Several moderately-sized foci of positive staining 

cells within the bronchiolar and alveolar epithelial cell population were found at day 1. 

Staining was widespread with moderate to large-sized bronc hiolar and alveolar positive 

foci by day 2 (Fig. 5.1.5. a & b). Many moderately sized foci were still present on day 4 but 

were absent by day 8. Specific staining was generally cytoplasmic in distribution and 

corresponded for the most part with histological lesions. 



Figure 5.1.5 Histological lesions in a BHV-I infected cotton rat lung. Lesions shown 
are at day 2 p-i. with the 108 strain. Note: (a) epithelial necrosis and luminal debris in a 
bronchiole (Bar, 10 pm) and (b) marked cellular infiltration of alveolar septa (Bar, 40 pm). 
Inset: intranuclear inclusion body in a desquamated alveolar epithelial cell (Bar. 5 pm). 



Figure 5.1.6 Immunohistochemical staining in a BElV-1 infected cotton rat lung. 
Immunohistochemical staining s h o w  is at day 2 pi .  with the I08 strain. Positive 
immunohistochemical staining (arrows) was noted multifocally in (a) the bronchiolar 
epithelium and @) the alveolar walls (Bars, 150 pm). 



5.1.5 Conclusions 

A BHV-I i.n. challenge model in cotton rats was established by demonstrating that 

BHV-1 replicated in CRL cells in vitro and in the respiratory tract of cotton rats in vivo 

without requiring prior adaptation of the virus. The 108 strain of  BHV- 1 replicated better 

than the Cooper strain both in vino and in vivo. Furthermore, lesion development was 

greater and viral antigen was more widespread in the lungs of animals challenged with the 

108 strain than in those challenged with the Cooper strain. Based on the observed 

differences between the two strains, I used the 108 strain in the majoriry of  the challenge 

experiments. 



5.2 In v i m  characterisation of recombinant adenoviruses 

Replication-competent and replication-defective recombinant adenoviruses 

carrying the gD or the tgD gene of BHV-1 were planned to be used for studying mucosal 

immune responses induced by adenovirus vectors in cotton rats. Since the level of gD or 

tgD expression, and the replication capability of the vector may influence the induction of 

immune responses, it was important to characterise the vectors in vitro. 

5.2.1 Replication capability of recombinant HAd5 vectors 

Although the capability of adenovirus vectors to replicate in CRL cells had been 

previously determined (Mittal et al., 1996), it was necessary to confirm these results for the 

new stocks of adenoviruses that were to be used in the following experiments. Such studies 

were important because of the theoretical possibility of the replication-defective viruses 

(gD-dE 1 E3 and tgD-dE 1 E3) rescuing the E 1 region during propagation in 293 cells. Table 

5.2.1 summarises the replicative capability of recombinant adenoviruses in different cells. 

Both gD-dE3 and tgD-dE3 viruses formed plaques on CRL cells, although the number of 

pfu as determined on CRL cells was 2-4 times lower than on 293 cells. The gD-dE 1 E3 and 

tgD-dE 1 E3 constructs did not form any detectable plaques on CRL cells. 

Table 5.2.1 Replicative capability 
of recombinant adenoviruses in cells 
of different species. 

CRL : cotton rat lung 
MDBK: Madin Darby bovine kidney 
293 : human embrionic kidney cells 

expressing E 1 proteins 

HAd5 replicates in 
recombinant 293 CRL MDBK 
virus cells cells cells 



5.2.2 gD and tgD expression by CRL cells infected with adenovirus vectors 

Expression of gD or tgD by 293 and CRL cells infected with recombinant 

adenoviruses has been previously shown (Mittal et al., 1996). It was important, however, to 

confirm expression of the foreign genes by the new virus stocks, after a few passages of the 

viruses in 293 cells. Expression of the foreign genes in CRL cells was also fkther 

characterised for the kinetics of expression and localisation of the foreign protein to 

provide background information for later in vivo experiments. All vectors expressed the 

appropriate foreign glycoproteins, detected by immuuoprecipitation and SDS-PAGE (Fig. 

5.2.1). Furthermore, gD was abundant in the pellet fiaction of CRL cell cultures infected 

with gD& 1E3 and gDdE3 vectors, while tgD expressed by the t g P d E  1E3 and tgD-dE3 

vectors was only detectable in the culture supernatants. 

@-specific irnmunocytochemical staining was used to determine the localisation of 

gD in CRL cells at different timepoints pi. with the gD-dE lE3 or gD-dE3 viruses. Cells 

infected by gD-dE3 expressed gD in different membrane compartments of the cells, and in 

the cell membrane, by 8 h psi. (Fig. 5.2.2.a). However, expression of gD in CRL cells 

infected with gDdE1 E3 was evident later and at lower levels than gD-expression 

following gD-dE3 infection (Figure 5.2.2). Furthermore, infection with gD-dE1 E3 caused 

significantly less cytopathic effect on CRL cells than infection with gD-dE3 at 22 h (Fig. 

5.2.2) and at 48 h p.i. (evaluated by visual observation of numerous cultures, data not 

shown). In contrast to @-expression, tgD expressed by tgD-dE 1 E3 or tgD-dE3 was hardly 

detectable; the cell-cultures appeared similar to the ones with gD-dE 1 E3 at 8 h p.i. (results 

not shown). However, flow cytometric analysis of CRL cells infected with recombinant 

adenoviruses showed that not only gD, but also tgD (although at lower levels) was present 

on the cell surface (data not shown). Interestingly, infection with tgD-dElE3 did not cause 

any cytopathic effect on CRL cells, while infection with tgD-dE3 caused a cytopathic effect 

by 48 h pi., similar to that following gD-dE 1 E3 infection (data not shown). 
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Figure 5.2.2 Expression of gD in CRL cells infected with recombinant adenoviruses. 
CRL cells were infected with gDdE lE3 or -3 viruses at an MOI of 5. At different 
times p.i., expression of gD was demonstrated by immunocytochemistry using a pool of 
gD-specific mAbs. Infection with a) gD-dE3, 8 h p.i. b) gD-dE 1 E3, 8 h p.i. c )  gD-dE3, 22 
h pi.  d) gD-dE 1 E3,22 h pi. Dark precipitation (full arrows) indicate presence of gD in the 
cells. Non-infected controls did not show gD-specific staining, similarly to the cell 
indicated with open arrow on (c). 



5.2.3 Kinetics of gD- and tgD-expression 

Immunocytochernical staining had suggested that differences in the kinetics of gD 

expression may exist between gD-dElE3- and gD-dE3-infected CRL cells. Furthermore, 

the total amount of tgD appeared less than that of gD following infection of CRL cells with 

the different adenoviruses. Such differences in the kinetics and quantity of foreign gene 

expression may influence the induction of immune responses in vivo; therefore, the 

production of gD and tgD at different timepoints p.i. with the recombinant adenoviruses 

was quantified by ELISA. While a hundred times more gD was produced by gD-dE3 than 

by gD-dE 1 E3 at 12 h pi., similar amounts of gD were found in the cell cultures at 48 h p.i. 

(Fig. 5.2.3. a & b). Therefore, as the immunocytochemical staining indicated, the kinetics 

of @-expression was slower in the gDaElE3- than in gD-dE3-infected CRL cells. 

Furthermore, the total production of gD by either gD-dE 1 E3- or gD-dE3-infected cells was 

higher than the production of tgD by the tgD-expressing vectors (Fig. 5.2.3). Interestingly, 

the supernatant and the cell fraction of cultures contained similar amounts of tgD. 

5.2.4 Conclusions 

The above results confirmed the replication-competence of dE3 and replication- 

deficiency of dEIE3 viruses in CRL cells. Furthermore, expression of gD and tgD was 

demonstrated in CRL cells following infection with the recombinant adenoviruses. 

Although higher total quantities of gD than tgD were produced, gD and tgD were found 

both cell-associated and in the culture medium. As expected, gD was more abundant in the 

cell fraction than in the supernatant of CRL cell-cultures. The kinetics of gD-expression by 

CRL cells infected with gD-dElE3 was slower compared to that following infection with 

gD-dE3. In addition, the gD-expressing vectors and the replicating vectors caused more 

severe cytopathic effect on CRL cells following infection than tgD-expressing and non- 

replicating vectors. The characterisation of foreign gene expression and capability of 

replication is important because these features may influence the induction of immune 

responses by recombinant adenoviruses. 
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Figure 5.2.3 Kinetics of g D  and gD-expression by CRL cells infected with recombinant adenoviruses. CRL cells were infected 
with gD-dE I E3 or gD-dE3 (a & b) and tgD-dEI E3 or tgD-dE3 (c & d) viruses at an MOI of 5. At different times pi. ,  yD or tgD in the cell 
pellet (a and c) and the culture supernatant (b and d) were detected by ELISA. Values represent pg gD or tgD/ 1 o6 cells. 



5.3 Immunity induced by recombinant adenoviruses in cotton rats 

Recombinant adenoviruses gPdE 1 E3, tgD-dE 1 E3, 0 - d E 3  and tgD-dE3 were 

shown to express their foreign genes in CRL cells in vitro. Furthermore, an i.n. BHV- 1 

infection model was established in cotton rats, which provided a means of assessing the 

ability of imrnunisation to confer protection against BHV-I challenge in a laboratory 

animal model. Therefore, the next objective was to investigate the capability of 

recombinant HAd5 vectors expressing gD or tgD to induce immunity to BHV-1 and to 

confer protection against i.n. BHV-1 challenge in cotton rats. Since the induction of 

mucosal immunity is crucial in protection against infection with mucosal pathogens, the 

most important goal was to measure mucosal immune responses induced by recombinant 

adenoviruses. 

5.3.1 Immunity induced by recombinant adenoviruses expressing gD and tgD 

The first experiment was designed to compare the efficacy of gD- and tgD- 

expressing recombinant adenoviruses in inducing @specific immune responses and 

protection against BHV- 1 challenge. Furthermore, it was important to determine whether 

both replication-defective and replication-competent vectors could induce antigen-specific 

immune responses. To induce both systemic and mucosal immunity, adenoviruses were 

administered i.d. followed by an i.n. boost 3 weeks later. Figure 5.3.1 describes the 

experimental design. 

5.3.1 - 1  Systemic immune responses 

Antigen-specific systemic humoral immune responses in cotton rats were assessed 

by measuring serum antibody responses by ELISA. Both serum !gG and IgA specific for 

gD were induced by imrnunisation with gD- and to-expressing recombinant adeno- 

viruses, but not with dE3, dElE3 and PBS controls (Figure 5.3.2). The levels of these 

responses were higher following the secondary (day 42) than after the primary (day 21) 
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Figure 5.3.1 Experimental design: immunity induced by recombinant 
adenoviruses expressing gD and tgD. In the flowchart, arrows above the timescale 
indicate the time of treatment while arrows below indicate the time of serum 
sampling. The symbol t represents tissue samples collected From euthanised animals. 
i.n. = intranasal; i.d. = intradermal. 
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Figure 53.2 gD-specific serum antibody responses in cotton rats immuaised with 
recombinant adenoviruses. Cotton rats were inoculated with recombinant adenoviruses 
expressing gD or tgD, or with PBS by the intradermal route and boosted intranasally 3 
weeks later. gD-specific (a) IgG and (b) IgA levels in the serum at 3 and 6 weeks following 
the primary immunisation were measured by ELISA. The graphs show OD-s at 150 
dilution of the samples. Bars represent the mean OD * SD for 3-6 animals per group. 



immunisation. Imrnunisation with the gD-expressing vectors induced significantly higher 

serum IgG at day 42 than immunisation with the tgD-expressing vectors (P < 0.0 1 for gD- 

dE 1 E3 vs. tgD-dE 1 E3; P c 0.05 for gD-dE3 vs. tgD-dE3). The levels of @-specific serum 

IgA were not significantly different between groups immunised with any of the four gD- or 

tgD-expressing vectors, but they were all significantly higher than those of the PBS and 

control Ad groups. The recombinant adenoviruses induced similar Ad-speci fic serum I@ 

and IgA responses (Fig. 5.3.3). 

To determine the biological activity of antigen-specific serum antibody, BHV- 1 - 
and Ad-neutralising antibody assays were performed. hunisa t ion  with all Ad vectors 

resulted in Ad-neucralising antibody in the serum but only immunisation with gD- 

expressing vectors induced BHV- 1 SN titres significantly different from contro Is (Figure 

5.3 -4). SN titres induced by irnrnunisation with gDdE 1 E3 and gD-dE3 were significantly 

higher (P < 0.05) than those by tgD-dE 1E3 and tgD-dE3 (Fig. 5.3.4). 

Another way of evaluating systemic antibody responses is quantification of antigen- 

specific antibody-secreting B cells in the spleen. In addition, such information would help 

more accurately describe immune responses induced by the different recombinant 

adenoviruses. Therefore, the frequency of gD- and Ad-specific IgA and IgG secreting cells 

in the spleen were measured by ELISPOT. As expected, only those animals inoculated with 

gD- or tgD-expressing vectors had gD-specific ASC in their spleens, while all contained 

Ad-specific ASC, except for the PBS control (Fig. 5.3.5). Interestingly, the replication- 

competent vectors induced higher frequency of @-specific ASC in the spleen than did the 

replicationdefective adenoviruses (Fig. 5.3.5). The difference between gD-dE1 E3 and gD- 

dE3 groups was statistically significant (P < 0.01) for both IgG and IgA ASC frequencies 

(Fig. 5.3.5). 

Serum antibody and ELISPOT assays were performed on samples taken at both day 

42 (no challenge) and 44 (after challenge). The results were equivalent at these two 

timepoints. 
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Figure523 Adenovirus-specific serum antibody responses in cotton rats 
immunised with recombinant adenoviruses. Cotton rats were inoculated with 
recombinant adenoviruses expressing gD or tgD, or with PBS by the intraderma1 route and 
boosted intranasally 3 weeks later. Ad-specific (a) IgG and (b) IgA levels in the serum at 3 
and 6 weeks following the primary immunisation were measured by ELISA. The graphs 
show OD-s at 150 dilution of the samples. Bars represent the mean OD * SD for 3-6 
animals per group. 
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Figure 5.3.4 BW-1- and Ad-neutralising antibody titres in sera of cotton rats 
immunised with recombinant adenoviruses. Cotton rats were inoculated with 
recombinant adenoviruses expressing gD or tgD, or with PBS by the intraderma1 route and 
boosted intranasally 3 weeks later. Serum samples collected at 3 and 6 weeks following 
primary immunisation were analysed for (a) BHV-1- and @) HAdS-neutralking antibodies 
by virus neutralisation assays. Bars represent the mean value for 3 animals per group * SD. 



Figure 53.5 Frequency of gD- and Ad-specific antibody-secreting cells in the spleen 
of cotton rats immunised with recombinant adenoviruses. Cotton rats were inoculated 
with recombinant adenoviruses expressing gD or tgD, or with PBS by the intradermal route 
and boosted intranasally 3 weeks later. The frequency of (a) IgG and @) IgA antibody- 
secreting cells (ASC) in spleen lymphocytes isolated 3 weeks after the secondary 
irnmunisation were determined by ELISPOT assay. Bars represent the mean number of 
ASC/million lymphocytes * SD for 3 animals per group. 



Antigen-specific T cell activation induced by immunisation with recombinant 

adenoviruses was measured by spleen cell proliferation assays. At day 42, spleen cells of 

only those animals immunised with gD-expressing vectors responded with proliferation to 

in vitm stimulation with gD (Fig. 5.3.6). The stimulation indices (SI) in the gD-dE L E3 and 

gD-dE3 groups were higher than those in other groups (P c 0.01). In addition, Ad-specific 

proliferation of spleen cells was observed in all Ad-irnrnunised groups, with statistically 

higher stimulation indices than the PBS control (Fig. 5.3.6). At day 44, antigen-specific 

proliferative responses were similar to those detected at day 42, except for the mean gD- 

specific SI in the tgD-dE 1 E3 group, which was not statistically different from SI in the gD- 

dE3 and gD-dE 1 E3 groups at this later timepoint (data not shown). 

5.3.1.2 Antibody levels in the respiratory tract 

Local mucosd immune responses play a significant role in protection against 

respiratory viral infections; therefore, it was important to determine gD-specific antibody 

levels in the respiratory tract Animals that received @-expressing adenoviruses developed 

significantly higher levels of gD-specific IgG and IgA in the lung-washes (P < 0.05) and 

@-specific IgA in the nasal-washes (P < 0.001) than the other groups (Figure 5.3.7). No 

animals contained @-specific IgG in nasal-washes (Fig. 5.3.7.a.). In contrast to gD- 

specific antibody responses, Ad-specific IgG and IgA levels in the lung- and nasal-washes 

did not differ significantly between all groups immunised with recombinant adenoviruses 

(Fig. 5.3.8), but were significantly higher than those in the PBS group. BHV-I neutralising 

antibody titres in the lung- and nasal-washes were below detection level. 



Figure 53.6 g D  and HAd5 specific proliferative responses of spleen-lymphocytes of 
cotton rats immunised with recombinant adenoviruses. Cotton rats were immunised 
with recombinant adenoviruses expressing gD or tgD or inoculated with PBS by the 
intradermal route and boosted intranasally 3 weeks later. Spleen lymphocytes isolated 3 
weeks after the secondary imrnunisation were cultured in the presence of 0.05 pg/ml 
purified gD or 2.5 pg/ml UV-inactivated HA#. Bars represent the mean stimulation index 
(SI) * SD for 3 animals per group. 
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Figure 5.3.7 gD-specific antibody levels in nasal- and lung-washes in cotton rats 
immunised with recombinant adenoviruses. Cotton rats were immunised with 
recombinant adenoviruses expressing gD or tgD or inoculated with PBS by the intraderma1 
route and boosted intrauasally 3 weeks later. Washes were collected at 3 weeks after the 
secondary immunisation. gD-specific (a) IgG and (b) IgA levels at different dilutions were 
measured by ELISA. The graphs show OD-s at 1 :5 dilution of the samples. Bars represent 
the mean OD * SD for 3 animals per group. 





5 -3.1.3 Protection against BHV- 1 challenge 

Since irnmunisation of cotton rats with various HAd5 vectors expressing gD or tgD 

resulted in gD-specific immune responses, next, protection of the lungs against BHV-1 

challenge was evaluated. Titres of infectious BHV-1 recovered from the lungs were lower 

in all groups imrnunised with gD- or tgD-expressing vectors than in the lungs of the dE3, 

dElE3 and PBS control p u p s  (P < 0.05) (Table 5.3.1). There was more than a 2 loglo 

decrease in virus titres from the lungs of cotton rats imrnunised with the @-expressing 

vectors, and approximately a 1 loglo reduction in animals inoculated with the tgD- 

expressing vectors. BHV- 1 titres were significantly lower in the gD-dE 1 E3 and gD-dE3 

groups compared to the tgD-E 1E3 and tgD-dE3 groups (P < 0.05). 

Table 53.1 B W - I  recovery from lungs of cotton rats imrnunised 
with recombinant adenoviruses expressing gD and tgD and 
challenged with BHV-1- 

Lmmunisation with: Virus recovery (pWg lung tissue) 

dE1 E3 

dE3 

gD-dE 1 E3 

tgD-dE 1 E3 

gD-dE3 

tgD-dE3 

PBS 

Cotton rats were inoculated with 10' pfu of recombinant adenoviruses 
twice, 3 weeks apart by the intradermal and intranasal routes, 
respectively. One group was similarly inoculated with PBS. At 6 weeks 
after primary inoculation, animals were challenged with 10' pfb of 
BHV-1. Lungs were collected at 42 h post-challenge for virus isolation. 
Values are the means + SD for 3 animals per group. 



5.3.1.4 Immunity induced by UV-irradiated recombinant adenovirus 

To investigate whether BHV- 1 -specific immune responses observed in vivo could 

be the result of the administration of residual gD present in Ad preparations (even 

following purification), groups of cotton rats were inoculated i.p. with gD-dE3 or UV 

irradiated gD-dE3, both containing the same amount of gD (0.1 &animal). Immunisations 

were repeated 20 days later. Serum antibody responses specific for gD and Ad were 

measured by ELISA 20 and 27 days following the fvst immunisation. Intraperitoneal 

immunisation with intact gD-dE3 induced both gD- and Ad-specific serum IgG while the 

irradiated gD-dE3 preparation induced only Ad-speci fic antibody (Figure 5.3.9). Since 

protein antigens alone are even poorer immunogens following rnucosal imrnunisation than 

systemic immunisation, intranasal immunisation with 0.1 pg gD was not performed. 

Instead, cotton rats were inoculated by the i.n. route with irradiated non-purified gD-dE 1 E3 

containing a higher amount of gD (4 pg gD per cotton rat). Neither gD- nor Ad-specific 

serum antibody responses developed following i.n. administration with such inoculurn 

(data not shown). These results suggested that residual gD glycoprotein delivered together 

with adenovirus did not induce detectable @-specific antibody responses. 
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Figure 53.9 Antigen-specific serum antibody responses in cotton rats immunised 
with Live and ZTV-irradiated r~ombinant adenovirus. Cotton rats were imrnunised 
intraperitoneally with gD-dE3 (10' pfb) and boosted i.p. 20 days later (lo8 ph).  For the 
inoculation of another group of cotton rats, equivalent amounts of gD-dE3 were exposed to 
20 mwlcm2 W-radiation for 8 min before administration to animals. Serum levels of (a) 
@-specific and (b) Ad-specific IgG at day 20 and 27 following primary irnmunisation 
were detected by ELISA. The graphs show OD-s at 150 dilution of the samples. Bars 
represent the mean OD * SD for 3 animals per group. 



5.3.2 Immunity induced by mucosal administration of replication-defective and 

replication-competent recombinant adenoviruses 

Recombinant adenoviruses expressing gD were shown to induce higher levels of 

immunity and better protection against BHV-1 challenge than tgD-expressing vectors. 

Therefore, gD-expressing adenoviruses were used to address further questions about the 

induction of mucosal immunity in this thesis. Following i.d.-i.n. immunisation the 

replication-defective vectors induced similar antibody levels as the replicationcompetent 

vectors. Next, I investigated the capability of replicationdefective and replication- 

competent adenoviruses following only mucosal administration to induce gD-specific 

immunity and protection against BHV- 1 challenge. Cotton rats were imrnunised with gD- 

dE 1 E3 or gD-dE3 either by the i.n. or gastrointestinal (g.i.) route followed by i.n. BKV- I 

challenge (Figure 5.3.1 O), and systemic and mucosal immune responses were determined. 

5.3.2.1 Serum antibody responses 

To determine antigen-specific humoral responses, serum antibody titres specific for 

gD and Ad were measured 3 weeks after the primary intranasal or intraduodenal 

irnrnunisation and 3 weeks after the secondary i.n. or oral boost. Both gD-dE3 and gD- 

dEIE3 vectors induced gD-specific IgG and IgA in the serum following primary 

immunisation (Fig. 5 -3.1 1). Titres increased or decreased in some animals by 3 weeks after 

the boost, but the mean titres within a group did not change significantly (Fig. 5.3.1 1 ). The 

@-dl33 vector induced significantly higher levels of gD specific IgG than the gD-dEl 

vector (P < 0.001). All four imrnunisation regimens stimulated similar levels of Ad- 

specific IgG in the s e w ;  i.n. irnrnunisation, however, stimulated higher Ad-specific IgA 

than g.i. immunisation (data not shown). 

To measure biological activity of the gD-specific serum antibody, BHV-1 SN titres 

were determined. Immunisation by the i.n. and the g.i. routes with the gD-dE3 vector 

induced significantly higher BHV-1 SN titres than either irnmunisation regimen with the 

gD-dE 1 E3 vector or the PBS control (Fig. 5.3.12). 
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day 0 day 2 1 day 4 1 

.1 .1 5 - ,  

day 42 
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1 3 gD-dElE3 lo8 i n  i.n. 108 5 x 1 0 ~  

2 4 gD-dE 1 E3 1 o8 i.duod. oral 108 5x10'  

3 3 gD-E3 1 o8 i.n. i.n. 108 5x10 '  

4 4 gD-dE3 lo8 i-duod. oral 108 5 x 1 0 ~  

5 4 PBS - i.n. i n .  108 5 x 1 0 '  
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Figure 5.3.10 Experimental design: immunity induced by rnucosal administration 
of replication-defective and replication-eompetent recombinant adenoviruses. In the 
flowchart, arrows above the timescale indicate the time of treatment while arrows 
below indicate the time of serum sampling. The symbol t represents tissue samples 
from euthanised animals. 
i.n. = intranasal; i.duod. = intraduodenal. In the text, tables and other figures 
intraduodenai-oral irnmunisation is referred to as gastrointestinal (g-i.) irnmunisation. 
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Figure5.3.11 Antibody responses in cotton rats immunised with recombinant 
adenoviruses by rnucosal routes. Cotton rats were inoculated with recombinant 
adenoviruses gD-dElE3, @-dl33 or with PBS twice, 3 weeks apart by intranasal (i.n.) or 
gastrointestinal (g.i.) routes. @-specific (a) IgG and (P) IgA levels 3 weeks after the 
primary imrnunisation, and gD-specific (a) IgG and (b) IgA titres 3 weeks after the 
secondary immunisation in trachea-, lung-extrac ts and serum were measured by ELISA. 
Bars represent the mean loglo antibody titre for 3-4 anirnals/group * standard error of the 
mean. 
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Figure 5.3.12 BW-1-neutralising antibody titres in sera of cotton rats immunised 
with recombinant adenoviruses by different mucosal routes. Cotton rats were 
inoculated with recombinant adenoviruses gD-dE 1 E3, @-dE3 or with PBS twice, 3 weeks 
apart by intranasal (i.n.) or gastrointestinal (g.i.) routes. Serum samples collected at 6 
weeks following primary imrnunisation were analysed for BHV- 1-neutralising antibodies 
by virus neutralisation assay. Bars represent the mean logIo SN titre * SD for 3-4 animals 
per group. 



5.3.2.2 Antibody levels in the respiratory tract 

To determine the ability of the different immunisation regimens to induce antigen- 

specific humoral immune responses in the respiratory tract, lung- and trachea-extracts were 

analped for the presence of gD- and Ad-specific antibody. Immunisation with the gD-dE3 

vector induced significantly higher @-specific IgA and IgG in the lung (P < 0.00 1 ) and 

trachea (P < 0.0 I) than imrnunisation with the gD-dE 1 E3 virus and the PBS control (Figure 

5.3.1 1 ). Titres of gD-specific IgG in the respiratory tract correlated with those in the serum, 

while the relative ratio of lung/serurn @-specific IgA compared to lungherum IgG 

suggested that IgA was locally produced in the lung (Figure 5.3.1 1). gD-specific ASC were 

found in the lungs and mediastinal LN of animals immunised i.n. with gDdE3 but not with 

gD-dE 1 E3 (data not shown). BHV-1 neutralking antibody titres in the lung- and trachea- 

extracts were below detection Ievel. 

5.3.2.3 Protection against BHV- 1 challenge 

Since mucosal imrnunisation with the adenovirus vectors induced irnmune 

responses in the serum and the respiratory tract, we assessed the ability of these immune 

responses to confer protection against i.n. BHV-I challenge. Table 5.3.2 shows the results 

of BHV-I recovery from the trachea and lungs 24 hours after i.n. BHV-1 challenge. 

Intranasal imrnunisation with the gD-dE3 vector resulted in BHV-I titres in the lung below 

detection limit in 2 of 3 animals and a minimal titre in one animal: the mean virus titre was 

significantly different fiom that in the gD-dEIE3 i.n. and the PBS control groups (P < 

0.00 1 ). In addition, g.i. immunisation with the gD-dE3 vector partially reduced BHV- 1 

titres in the lung of 3 out of 4 animals. In the trachea, BHV-1 titres were only partially 

reduced in each imrnunisation group with the vectors, and means were not significantly 

different fiom the PBS control. 



Table 53.2 BHV-1 recovery from the trachea and lung of cotton rats 
imrnunised with recombinant adenoviruses by the mucosal route and 
challenged with BHV-I 

immunisation mean & s.E.' logio BHV-I titres 

vector route trachea lung 

PBS control intranasal 4.68 + 1.15 5.12 k 0.15 

gD-dE 1 E3 in tranasal 2.79 k 0.55 5.22 2 0.18 

gD-dE 1 E3 gastrointestinal 3.09 ,+ 0.45 5.10 k 0.27 

gD-dE3 in tranasal 1 .OO + 1.22 0.70 + 0.86 

gD-dE3 gastrointestinal 2.89 + 1.22 3.48 + 0.76 

Animals were imrnunised twice with recombinant adenovirus or PBS and 
challenged with BHV- I .  Trachea and lung homogenates obtained one day after 
challenge were tested for the presence of BHV-I by plaque assay. 's.E. = standard 
error of the mean 



53.3 Immunity induced by different routes of immunisation with gD-dE3 

The results of the previous experiment indicated that following mucosal 

administration, the replication-competent Ad was more efficient in inducing immunity to 

BHV-I than the replication-defective vector. In the following studies, therefore, the gD- 

dE3 virus was used to investigate the potential of different routes of imrnunisation with 

recombinant Ad to induce @-specific immune responses in the respiratory tract. Cotton 

rats were inoculated with gD-dE3 by the i-d., i.n. and g.i. routes (Figure 5.3.13) and both 

systemic and mucosal immunity were determined. 

irnmunisation immunisation BHV-1 boost 
day 0 day 24 day 4 1 

3. 5- J, 

day 45 
group 1-4 

1 5 gD-dE3 2 x lo7 i.n. i-n. Cooper lo4 ; 5 

2 5 gD-dE3 2 x 1 o8 i-duod. oral Cooper 10" 5 

3 4 gD-dE3 2 x 10' i.d. i.d. Cooper lo4; 5 

4 5 PBS - i.n. i.n. Cooper 10"; 5 

group 
# 

Figure 5.3.13. Experimental design: immunity induced by different routes of 
immunisation with gDdE3. In the flowchart, arrows above the timescale indicate the 
time of treatment while arrows below indicate the time of serum sampling. The symbol t 
represents tissue samples from euthanised animals. 
i.n. = intranasal; i.duod. = intraduodenal. In the text, tables and other figures 
intraduodenal-oral immunisation is referred to as gastrointestinal (g.i.) immunisation 
* Pwified BHV- I was used for this inoculation. 
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5.3.3.1 Serum antibody responses 

Serum antibody titres specific for gD and Ad 3 weeks following secondary 

immunisation were determined by ELISA. All routes of immunisation with gD-dE3 

induced @-specific IgG and IgA in the serum, which were significantly different from the 

PBS control (P < 0.001) (Figure 5.3.14). Serum @-specific IgG levels were not different 

between groups imunised by different routes. However, the mean @-specific IgA titre in 

the serum of i.n. h u n i s e d  animals was higher than that in the i.d. group (P < 0.02), 

(Figure 5.3.14). In contrast, all three immunisation regimens stimulated similar levels of 

Ad-specific IgG and IgA in the serum (data not shown). 

To measure biological activity of the gD-specific serum antibody, BHV- 1 SN titres 

were determined. Immunisation by each regimen induced similar BHV- 1 SN titres, which 

were significantly higher than that in the PBS control (P < 0.01), (Figure 5.3.15). 

5 -3.3.2 Antibody levels in the respiratory tract 

To determine the ability of the different immunisation regimens to stimulate 

antigen-specific humoral immune responses in the respiratory tract, lung- and nasal-washes 

were analysed for the presence of gD- and Ad-specific antibodies. Each route of 

immunisation with the gD-dE3 vector induced significantly higher titres of @-specific IgA 

and IgG in the lung than the PBS control (P < 0.001); (Figure 5.3.14). However, only 

mucosal immunisation, and not i .d. immunisation, resulted in significantly higher levels of 

antibody in the nasal-washes than the PBS control (P < 0.01), (Figure 5.3.14). Both 

regimens of mucosal immunisation induced significantly higher levels of @-specific IgA 

in the lung- and nasal-washes than the i.d. route of immunisation (P < 0.001), (Figure 

5.3.14). Similarly, both i.n. and g.i. immunisation induced higher titres of Ad-specific IgA 

in the lung- and nasal-washes than the i.d. immunisation (P < 0.05), (data not shown). 

BHV- 1 neutralking antibody titres in the lung- and nasal-washes were below detection 

level. 
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Figure 53.14 Antibody responses in cotton rats immunised with recombinant 
adenovirus by different routes. Cotton rats were inoculated with recombinant adenovhs 
gD-dE3 or with PBS twice7 3 weeks apart by htranasal (i.n.), gastrointestinal (g.i.) or 
intradermal (i.d.) routes. @-specific (a) IgG a d  (b) IgA titres in nasal-, lung-washes and 
serum at 6 weeks after primary imrnunisation were measured by ELISA. Bars represent the 
mean loglo * SD antibody titre for 4-5 animals/group. 
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Figure53.15 BHV-1-neutralising antibody titres in sera of cotton rats 
immunised with recombinant adenovims by different routes. Cotton rats were 
inoculated with recombinant adenovirus gD-dE3 or with PBS twice, 3 weeks apart 
by intranasal (i.n.), gastrointestinal (g-i.) or intradermd (i.d.) routes. Senun samples 
collected at different timepoints were analysed for BHV- l -neutralking antibodies 
by virus neutralisation assay. Bars represent the mean loglo * SD SN titre for 4-5 
animals per group. 

The higher ratio of lung/serum @-specific IgA compared to lunglserum gD- 

specific IgG levels indicated that antibody may be locally produced in the lung of cotton 

rats irnmunised by the mucosal route but not of those inoculated intrademally. Therefore, 

the frequency of gD- and Ad-specific ASC in lung lymphocytes as well as in the 

mediastinal LN and spleen was determined by ELISPOT assay. The frequency of antigen- 

specific IgG and IgA secreting cells in the lung was higher following mucosal than i.d. 

irnmunisation (Table 5.3.3). There was no statistical difference in the numbers of ASC in 

the spleen between the gD-dE3 -imrnunisation groups. Mediastinal lymph nodes contained 

only a low number of antigen-specific IgA secreting cells from cotton rats immunised with 

gD-dE3 by every route. Generally, the &equency of IgA committed ASC was higher than 

that of IgG producing ASC in each lymphocyte population examined (Table 5.3.3). 



Table 5.3.3 Frequency of gD- and adenovirus-specific antibody-secreting 
cells in lymphocytes from tissues of cotton rats immunised with recombinant 
adenovirus by different routes 

lympho- immunisation gD-speci fic ademvirus-specific 

CYte 
ASC/million* ASC/million* 

source w kA k A  

lung gD-dE3 / i.n. 95 460 44 900 

gD-dE31 g.i. 140 400 32 900 

gD-dE31 i.d. 17 25 2.5 59 

PBS 1 i.n. 4 22 2 22 

MLN gD-dE3/ i.n. nd 1 nd 7 t 

gD-dE31 g.i. nd 4.5 nd 10 

gD-dE3/ i.d. nd 2.5 nd 3 

PBS I i.n. nd nd nd 1 
. pp - - - - -- 

spleen : gD-dE3/ in .  nd 5.1 k 2  3.4 k 3.2 15 + 5.6 

gD-dE31 g.i. 6 k 8 . 8  26k24-6 31.7k28.1 59+,58 

gD-dE31i-d. 2.2k3.86 7i-5.2 I 1  k4.5 21 ,+ 9.3 

PBS / i.n. nd nd nd nd 

Cotton rats were inoculated with gD-dE3 or with PBS twice, 3 weeks apart by the 
intranasal (in.), gastrointestinal (g.i.) or intraderma1 (i.d.) route. Six weeks after the 
primary irnmunisation spleen, lung and medias~al  lymph node (MLN) 
lymphocytes were isolated and used in the ELISPOT assays. 
*Mean values of the number of antigen-specific antibody-secreting cells (ASC) 
per million lymphocytes in the lung and the MLN were determined in cultures of 
pooled cell populations. 
: Mean f: SD of ASCImillion lymphocytes from individual spleen cell 
populations. 
t nd = not detected (less than 1 ASC/million) 



5.3.4 Immunity and protection induced by different routes of irnmunisation 

Results of the previous experiment suggested that i.n. immunisation with gD-dE3 

induced better BHV-1-specific immunity in the respiratory tract of cotton rats than i.d. 

imrnunisation. The next experiment was designed to determine whether different routes of 

immunisation with gD-dE3 resulted in different protection of the cotton rat respiratory tract 

against BHV-1 challenge. Cotton rats were inoculated with gD-dE3 i.n. or id. followed by 

i.n. BHV- I challenge (Figure 5.3.16). 

immunisation immunisation challenge 
day 0 day 28 day 49 

5- 5- 
.It 

day 50 
group 1-3 

group 
# 

# of 
cotton 
"tS Per 
group 

inoculum dose route Istrain dose 1 

imrnunisation 

@ fu) primary secondary 

i.n. BHV- 1 
challenge 

gD-dE3 2 x 10' i.n. r.n. 108 5 x 1 0 ~  

gD-dE3 2 x 10' i.d. i.d. 108 5 x lo7 

PBS - i.n. i.n. 108 5 x 1 0 ~  

Figure 5.3.16. Experimental design: immunity and protection induced by different 
routes of immunisation. In the flowchart, arrows above the timescale indicate the time 
of treatment while arrows below indicate the time of serum sampling. The symbol t 
represents tissue samples collected From euthanised animals. 
in .  = intranasal; i.d. = intradermal. 



5.3.4.1 Antibody responses in the serum and the respiratory tract 

To confirm the results of the previous experiment, gD- and Ad-specific antibody 

responses were measured in the serum and lung- and trachea-extracts of cotton rats 

imrnunised with gD-dE3 by the i-n. and i.d. routes. Similarly to earlier data, @-and Ad- 

specific serum IgG levels in animals imrnunised i.n. did not differ from those immunised 

by the inndermal route; however, @-specific IgA levels in the respiratory tract were 

significantly higher in animals immunised intranasally compared to those inoculated 

intradermally (P < 0.00 1); (Fig. 5.3.17). 

5 -3 -4.2 Antigen-specific antibody-secreting cells in different tissues 

To identify potential sites for antibody production in the cotton rat following 

different routes of immunisation with gD-dE3, the Frequencies of gD- and Ad-specific 

ASC in lung, mediastinal LN, bone marrow and spleen lymphocytes were determined. In 

the lung, frequencies of antigen-specific IgG and IgA secreting cells were higher following 

i.n. immunisation than i.d. immunisation (Table 5.3.4), similarly to previous observations. 

Mediastinal lymph nodes also contained higher number of antigen-specific IgG secreting 

cells from cotton rats immunised i.n. compared to those inoculated intradennally. In 

contrast, spleens contained higher numbers of antigen-specific ASC following i.d. 

immunisation than i.n. inoculation. Both routes of immunisation with gD-dE3 resulted in 

gD- and Ad-specific IgA and IgG secreting cells in the bone marrow, while inoculation 

with PBS did not. 

5.3.4.3 Protection of cotton rats against B W -  1 challenge 

Since both routes of immunisation with gD-dE3 induced immune responses in the 

serum and the respiratory tract, we assessed the ability of these immunisation protocols to 

confer protection against BHV-1 challenge. Table 5.3.5 shows the results of BHV-I 

recovery from the trachea and the lung one day after intranasal BHV-1 challenge. 
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Figure 5.3.17 Antibody responses in cotton rats immunised with recombinant 
adenovims by different routes. Cotton rats were inoculated with recombinant adenovirus 
gD-dE3 or with PBS twice, 3 weeks apart by intranasal (in.) or intraderma1 (id.) routes. 
@specific (a) IgG and (b) IgA titres in trachea-, lungextracts and serum at 6 weeks after 
primary immunisation were measured by ELISA. Bars represent the mean loglo * SD 
antibody titre for 4-5 animals/group. 



Table 5.3.4 Frequency of gD- and adenovirus-specific antibody-secreting 
cells in lymphocytes from tissues of cotton rats immunised with recombinant 
adenovirus intranasally or intradermdy 

lymphocyte imrnunisation @specific adenovirus-specific 
source ASC/million* ASC/million* 

gD-dE3 / i.n. 46 600 62 1600 

gD-dE3 I i.d. 'nd 35 15 200 

PBS I i.n. nd nd nd 20 

MLN gD-dE3 1 i.n. 25 40 10 30 

gD-dE3 / i.d. nd 40 nd 20 

PBS / i.n. nd 20 nd 5 

bone marrow gD-dE3 I i.n. 4.5 3 9 23 

gD-dE3 I i.d. 3 2 17 3 

PBS 1 i.n. nd nd nd nd 

spleen gD-dE3 / i.n. nd 1 5.5 9 

gD-dE3 /id. 35 10 35 5 

PBS I i.n. nd nd nd nd 

Cotton rats were inoculated intranasally (in.) or intrademally (i.d.) twice, 3 weeks 
apart, with recombinant adenovirus gD-dE3 or PBS as a control. Six weeks after the 
primary irnrnunisation all animals were challenged i.n. with BHV-1. Spleen, bone 
marrow, lung and mediastinal lymph node (MLN) lymphocytes, isolated 1 day after 
challenge, were used in the ELISPOT assay. 
*Mean values of the number of antigen-specific antibody-secreting cells (ASC) 
per million lymphocytes were determined in cultures of pooled cell populations of 
5 animalslgroup. 
'nd = not detected (less than 1 ASC/million) 



Table 5.3.5 Effect of the route of immunisation with gDE3 recombinant 
adenovirus on the protection of cotton rats against intranasal BW-1 
challenge 

immunisation / route virus isolation (loglo pfdg tissue) 

trachea lung 

gD-dE3 / i.n. 

gD-dE3 / i-d. 

PBS 1 i n  

Cotton rats were inoculated intranasally ( i n )  or intradermally (i.d.) twice, 3 
weeks apart with gD-dE3 or PBS as a control. Six weeks after the primary 
immunisation animals were challenged with BHV-1 intranasally. One day 
post-challenge trachea and lung were removed, homogenised and tested for the 
presence of BHV-1 by plaque assay. 
* Significant difference from other groups (P < 0.05) 

Intranasal immunisation with the gD-dE3 vector resulted in BHV- 1 titres below 

detection limit in the lung of 4 of 5 animals and a minimal titre in one animal; the mean 

virus titre was significantly different fiom the PBS control group (P < 0.001). The i.d. 

immunisation also resulted in reduced BHV-1 titres in the lung compared to the PBS 

control (P < 0.01) (Table 5.3.5). The level of protection in id. immunised groups was 

similar to that determined in a separate experiment (data not shown). BHV-1 titres in the 

lung were significantly lower in animals immunised i.n. than in those inoculated i.d. (P < 

0.001). BHV-1 titres in the trachea were partially reduced in the i.n. imrnunisation group 

compared to the i.d and PBS groups (P < 0.05). 



5.3.5 Duration of immunity induced by intranasal administration of gD-dE3 

In order to confirm protection of the lungs against BHV-1 challenge histologically 

and to W e r  characterise the kinetics and duration of antigen-specific immunity induced 

by i.n. administration of gD-dE3, cotton rats were immunised i.n. with gD-dE3 followed by 

i n .  BHV-1 challenge 6 and 15 weeks following primary immunisation (Figure 5.3.18). 

challenge 
immunisation imrnunisation group 1 & 2 

challenge 
group 3 & 4 

day 0 day 2 1 day 42 day 102 
.1 4 .1 5 - ,  

day 45 day 70 day 105 
group 1 & 2 group 3 & 4 

imunisation 

- - - - - - - - - - .- - pp 

1 7 gD-dE3 lo8 i n .  i.n. 108 5 x 1 0 '  

2 7 PBS - i.n. i.n. 108 5 x 10' 

3 7 gD-dE3 lo8 i.n. i.n. 108 5x10' 

4 5 PBS - i.n. i.n. 108 5 x 1 0 '  

i.n. BHV-1 
challenge 

inoculum dose route 
@fU) primary secondary 

Figure 5.3.18 Experimental design: duration of immunity induced by intranasal 
administration of g W 3 .  In the flowchart, arrows above the timescale describe time of 
treatment while arrows below describe time of serum sampling. The symbol 1. represents 
tissue samples collected from euthanised animals. 
in. = intranasal 

strain dose 
(pfu) 



5.3.5.1 Kinetics of serum antibody responses 

Figure 5.3.19 shows gD- and Ad-specific serum IgG and IgA levels at different 

time points following i.n. irnmunisation with gD-dE3. Serum antibody specific for gD 

(Figure 5.3. Wa) and BHV-I SN antibodies (Fig. 5.3.20) were induced by the primary 

immunisation with gD-dE3 and their levels increased following secondary immunisation. 

These levels were maintained for at least 3 months. The kinetics of Ad-specific responses 

were similar to gD-specific antibody responses (Figure 5.3.1 9.b). 

5.3 S.2 Duration of antibody responses in the respiratory tract 

Interestingly, not only the levels of antigen-speci fic serum anti bodies were 

maintained, but the titres of antibodies in lung-extracts were similar at 3 weeks and at 12 

weeks following secondary immunisation (data not shown). To determine whether antigen- 

specific ASC were maintained locally in the lung and in peripheral lymphoid tissues, 

ELISPOT assays were performed 15 weeks following primary immunisation. Both gD- and 

Ad-specific ASC were found in the lung, bone marrow and spleen of gD-dE3-immunised 

animals (Table 5.3.6). The numbers of antigen-specific ASC in the lungs at 15 weeks 

following primary immunisation were similar to those at 6 weeks after immunisation 

determined in previous experiments (5.3.3; 5 -3.4). 

5.3.5.3 Protection against BHV- 1 challenge determined histologically 

Previous results of BHV-1 recovery from the respiratory tract have indicated that 

protection of the lungs against BHV-1 challenge was achieved by i.n. immunisation with 

gD-dE3. However, evidence for the lack of infection of cotton rat lungs in situ was 

necessary to confirm the protective ability of i.n. immunisation with gD-dE3 against 

BHV-I infection. Therefore, lungs of cotton rats were examined by histological and 

immunohistochemical methods for evidence of virus-associated tissue damage and BHV- 1 

replication 3 days after challenge. Lungs of cotton rats in the control groups had lesions of 
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Figure5.3.19 Kinetics of gD- and Ad-specific antibody responses in the serum of 
cotton rats immunised intranasally with recombinant adenovims. Cotton rats were 
inoculated with gDdE3 or with PBS twice, 3 weeks apart. Titres of IgG and IgA 
antibodies specific for (a) gD and (b) HAdS at different timepoints p.i. were determined by 
ELISA. Error bars represent the SD of loglo antibody titres for 7 animals/group. Control 
animals maintained background levels of antibody during the study (not shown). 
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Figure 5.3.20 Kinetics of BHV-1-neutralising antibody titres in the 
serum of cotton rats immunised with recombinant adenovirus intranasally. 
Cotton rats were inoculated with gD-dE3 or PBS twice, 3 weeks apart. Serum 
samples collected at different timepoints following immunisation were analysed 
for BHV- 1 -neutralking antibodies by virus neutralisation assay. Points represent 
the mean loglo SN titre, while enor bars show the SD for 7 animals per group * 
SD. Control animals maintained background levels of SN antibody during the 
study (not shown). 



Table 5.3.6 Frequency of gD- and adenovirus-specific antibody-secreting 
cells in lymphocytes from different tissues of cotton rats immunised 
intranasally with recombinant adenovirus 

lymphocyte immunisation @-specific adenovirus-specific 
source ASC/million* ASC/million* 

- - -  

lung gD-dE3 600 16 I100 36 

PBS I4 ndt 19 nd 
- -- - - 

bone marrow gD-dE3 4 2 29 17 

PBS nd nd 2 nd 

spleen gD-dE3 2 nd 7 I 1  

PBS nd nd nd nd 

Cotton rats were inoculated intranasdy twice, 3 weeks apart, with recombinant 
adenovirus gD-dE3 (7 animals) or PBS as a control (5 animals). Twelve weeks after 
the secondary immunisation all animals were challenged intranasally with BHV- I .  
Spleen, bone marrow and lungs lymphocytes were isolated 3 days after challenge 
and used in the ELISPOT assays. 
*Mean values of the number of antigen-specific antibody-secreting cells (ASC) 
per million lymphocytes were determined in cultures of pooled cell populations. 
'nd = not detected (less than 1 ASC/milIion) 



a multifocal mild interstitial pneumonia with type II pneurnocyte proliferation and 

infiltration of few macrophages (Table 5.3.7). Small foci involving one or two cells 

positive for BHV-1 antigen were also demonstrated, usually associated with foci of 

interstitial pneumonia. in contrast, lungs from the two groups of immunised cotton rats did 

not have any lesions or BHV- 1 replication foci, indicating significant protection following 

vaccination. In contrast to the lung, no lesions associated with BHV-1 infection were found 

in the lower part of the trachea of either immunised or control animals. 

In accordance with the results of in situ lung examination, BHV- 1 was isolated only 

from lungs of control animals but not from lungs of immunised animals, challenged at 

either 6 or 15 weeks following the primary immunisation (Table 5.3.7). In addition, mean 

virus titre in the trachea of imrnunised animals was significantly lower than that in PBS 

controls (P < 0.01 ) (data not shown). 

Tabte 5.3.7. Effect of intranasal immunisation with recombinant 
adenovirus on the protection of the lungs of cotton rats against intranasal 
BHV-1 challenge 

weeks immunisation virus isolation BHV- 1 interstitial 
following first (pfidg lung specific foci pneumonia 
immunisation tissue k SD) 

- -  - -  -- - 

6 gD-dE3 nd' 0/7 0/7 

6 PBS control 5.086 f 0.286 717 7/7 

15 gD-dE3 nd 0/7 017 

15 PBS control 3.8 15 k 0.94 1 4/5 515 

Cotton rats were inoculated intranasally twice, 3 weeks apart with gDaE3 or 
PBS as a control. Six or fifteen weeks after the primary imrnunisation animals 
were challenged with BHV-1 intranasally. Three days post-challenge lungs 
were removed and were tested for BHV-1 replication (virus isolation and 
BHV-I specific foci) and pathological changes (interstitial pneumonia) in the 
lungs. 
*nd = not detected (c 10 pfuflung) 



5.3.6 Conclusions 

Results in sections 5.3.1 - 5.3.5 indicated that immunisation with recombinant 

adenovirus vectors expressing BHV-1 gD or tgD was capable of inducing gD-specific 

immune responses in the cotton rat. Furthemore, immunisation by the i.d.-i.n. route 

resulted in partial protection of the lungs of cotton rats against i.n. BHV-1 challenge. 

Immunisation with @expressing vectors induced better immunity and protection than 

@-expressing recombinant adenoviruses. Results from these experiments also showed 

that after mucosal administration, the replication-competent gD-dE3 vector induced higher 

levels of @-specific immunity and reduced BHV-1 titres from the respiratory tract after 

challenge to a higher degree than the replicationdefective gPdE I E3 vector. 

Different routes of irnrnunisation with gD-dE3 (i.p., i.d., i-n., g-i.) were capable of 

inducing antigen-specific immune responses. The highest level of immunity in the 

respiratory tract and protection against i.n BHV- 1 challenge was achieved by the i.n. route 

of immunisation. Furthermore, the immunity induced by i.n. administration of gD-dl53 may 

have been long-lasting as indicated by the fact that antigen-specific immune responses 

were maintained at high levels for at least 12 weeks following secondary irnmunisation. 



5.4 Adenovirus dissemination following different routes of delivery 

In the previous experiments, several interesting findings appeared regarding the 

induction of immune responses following inoculation with recombinant adenoviruses. 

First, the replicationdefective gD-dElE3 virus was less efficient than the replication- 

competent gDdE3 vector in inducing immunity following mucosal administration, while 

they were equally efficient following systemic inoculation. Second, intraderma1 

immunisation with recombinant adenovirus induced @-specific immunity in the 

respiratory tract, even though systemic immunisation with protein antigens rarely induces 

mucosal immunity (Michalek et al., 1994). Third, intraduodenal-oral immunisation induced 

almost equivalentJevels of antibody in the respiratory tract as did the i.n. immunisation, 

although enteric irnrnunisation is usually less efficacious in inducing immunity in the 

respiratory tract than i.n. immunisation (Mestecky et al., 1994). 

Based on these observations one of my hypotheses was that replication-defective 

and replication-competent vectors had different capabilities of spreading systemically 

following mucosal immunisation. Furthermore, adenovirus may be able to spread to the 

respiratory tract following intmdermal, intraduodenal and oral immunisation, thereby 

inducing local immunity directly in the respiratory tract. Therefore, the next objective was 

to determine the capability of replication-defective and replication-competent adenoviruses 

to disseminate in the cotton rat following different routes of inoculation. 

5.4.1 Adenovirus isolation from different organs 

Tissues of cotton rats were examined for the presence of adenovirus following 

administration of gD-dE 1 E3 or gD-dU by different routes. Cotton rats received 1 pfb of 

adenovirus by the i.d., i.n., oral or intraduodenal route. Tissues were collected at day 3 

following inoculation with gD-dE3, because the peak of adenovirus replication in cotton 

rats has been determined to be around day 3 following i.n. inoculation (Pacini et al., 1984). 

Both day 1 and day 3 samples were collected following inoculation with gD-dElE3, 



because more virus was expected to be present in the tissues at an earlier timepoint pi. in 

the case of a non-replicating adenovirus (Ginsberg et al., 199 1 ). Following isolation from 

tissues, adenoviruses were detected by plaque assay on 293 cells. Results are shown in 

Tables 5.4.1, 5.4.2 and 5.4.3. The day 1 and day 3 data for gD-dE 1 E3 are described 

together, because the main interest of this study was to provide evidence for the presence of 

adenovirus in tissues, and not the kinetics of spreading of adenovirus. 

Following intradermal inoculation with gD-dE lE3, adenovirus was isolated fiom 

most samples except for the alimentary tract and spleen (Tables 5.4.1 and 5.4.2). 

Intradermal administration of gD-dE3 resulted in virus spread to most tissues except for the 

alimentary tract and nasal-washes (Table 5.4.3). 

Following intranasal inoculation with gD-dE 1 E3, adenovirus was isolated from all 

tested samples at either day 1 or day 3 (Tables 5.4.1 and 5 A.2). lntrmasal administration of 

gD-dE3 provided similar results at day 3 (Table 5.4.3). Data obtained at day 1 following 

in. inoculation with gD-dE3 were similar to those at day 3 (results not shown). In a 

separate experiment, adenovirus was isolated fkom the lung in 2 of 7 animals even at 3 

weeks following i.n. inoculation with gD-dE3. Intranasal inoculation of wild type KAd5 

provided similar results at day 3 to those obtained by i.n. administration of gD-dE3 at day 3 

p.i. (data not shown). 

AAer intragastric inoculation with gD-dElE3, adenovirus was isolated from most 

tested organs except for the mediastinal LN, ileum, liver and the skin (Tables 5.4.1 and 

5.4.2). All tested samples proved to be positive for adenovirus following intragastric 

delivery of gD-dE3 (Table 5.4.3). However, the stomach of babies suckling a mother 

infected by the intragastric route by gD-dE3 did not contain detectable adenovirus (data not 

shown). 

Intraduodenal inoculation of cotton rats with gD-dE 1E3 resulted in adenovirus 

spread to each tested organ (Tables 5.4.1 and 5.4.2). Adenovirus was even detected in the 

vaginal wash fiom one animal (data not shown). Following intraduodenal administration 

with gD-dE3, adenovirus was isolated fiom all samples except for nasal-washes or only 

fiom the duodenum and the rnesenteric LN in one animal (Table 5.4.3). 



Table 5.4.1 Adenovirus isolation from tissues of cotton rats 1 day following 
inoculation with gPdElE3 by different routes 

tissue pfidg tissue adenovirus following (route of inoculation) 

- 

nasal-wash ndhd 3000 500 ndhd 

trachea 20lnd 1 lo5 3000 ndnd 

lung ndhd 200 1600 ndnd 

rnediastinal LN ndhd + nd ndnd 
- - - 

oesophagus ndhd 3000 20 ndhd 

stomach ndnd nd nd ndnd 

duodenum ndhd + + +/+ 

ileum ndhd + nd +/+ 

feces ndhd nottested + +/+ 

mesenteric LN ndhd + 20 +/+ 

spleen nd nd 50 ndhd 

liver nd/200 nd nd ndnd 

skin injection site 1000/2000 n.a. n.a. n.a. 

skin +I1 00 nd nd +/+ 

Values are from individual animals (animal #1  / #2 in the same group). 
+ = First or second passage was positive for adenovirus 
nd = not detected (second passage was negative for adenovirus) 
n.a. = not applicable 



Table 5.4.2 Adenovirus isolation from tissues of cotton rats 3 days 
following inoculation with gDaEIE3 by Werent routes 

tissue pWg tissue adenovirus following (route of inoculation) 
-- - - 

intraderma1 intranasal intragastric intraduodenal 

nasal-wash + 4000 nd nd/+/nd 

trachea + 2000 + nd/ 1 00/+ 

lung + 1 lo5 100 nd/+/+ 

medias tinal LN + + nd nd/70/nd 

oesophagus 10 2000 20 nd/+/nd 

stomach nd + + nd/1 00/500 

duodenum nd + nd 200/500/ 1000 

ileum nd + nd nd/+/nd 

feces nd 20 nd nd/+!nd 

mesenteric LN + nd nd +/+/nd 
- - . - -. - - 

spleen nd 100 10 nd/+/+ 

liver 30 40 nd nd/+/+ 

skin injection site 50 n.a. n-a. n.a. 

skin nd + nd nd/+/+ 

Values are from individual animals (animal #11#2 / #3 in the same group). 
+ = First or second passage was positive for adenovirus 
nd = not detected (second passage was negative for adenovirus) 
n.a. = not applicable 



TabIe5.4.3 Adenovirus isolation from tissues of cotton rats 3 days 
following inoculation with gD-dE3 by different routes 

tissue pWg tissue adenovirus following (route of inoculation) 

intradennal intmasal intragas tric intraduodenal 

nasal-wash ndhd 3000/3000 400/2000 nd/nd/nd/nd 

trachea n d 2  0 3 0001 1000 200012000 20/nd/20/20 

lung 2 0/40 10% o5 1 0*/ 1.2 x 1 0' nd/nd/+RO 

mediastinal LN +/nd +I+ nd/+ 1 O/nd/200/200 

oesophagus +/ 10 300/200 1500140 nd/nd/ 1 012 0 

stomach ndnd 1 O/+ nd/+ ndhd13 0012000 

duodenum ndhd +/+ nd/+ +/+/ 1 0012000 

ileum ndhd nd/+ +/+ + h i /  1 01 1 000 

feces ndhd nd/+ ndhd ndlnd/ 1001 1 000 

rnesenteric LN 201 10 501 1 000 20/40 +/+/2 OO/+ 
- - - - - - - - - 

spleen 100/80 nd/+ nd/+ nd/nd/20/ 1 000 

liver 50/30 1 O/+ nd/ 10 nd/nd/500/+ 

skin injection site 1 000140 n.a. ma. ma. 

skin +/nd nd/+ nd/+ ndnd  1 0140 

Values are from individual animals (animal #1 1 #2 / #3 / #4 in the same group) 
+ = first or second passage was positive for adenovirus 
nd = not detected (second passage was negative for adenovirus) 
n.a. = not applicable 



5.4.2 Conclusions 

Results of adenovirus isolation following inoculation of gD-dE 1 E3 or gD-dE3 

indicated that both recombinant adenoviruses are capable of systemic dissemination 

following different routes of administration. As a result, adenovirus could be found in the 

respiratory tract even following inoculation at a distant site (intradermal or intraduodenal). 

Higher levels of adenovirus were found in the respiratory tract following intragastric 

administration than after intraduodenal administration. This observation indicated that 

adenovims may have spread to the airways following administration of the virus to the 

oesophagus. Therefore, this method of inoculation may not exclusively involve the delivery 

of adenovirus to the alimentary tract. 



5.5 Effect of adenovirus-specific immunity on imrnunisation with recombinant 

adenovirus 

As described in section 5.3, imrn~sat ion with recombinant adenovirus vectors 

expressing gD induced @-specific immunity and partial protection of cotton rats against 

i.n. BHV-1 challenge. Outside laboratory conditions, however, one has to take into 

consideration the possibility that the vaccinee population may have acquired Ad-specific 

active or passive immunity prior to immunisation. Furthermore, the efficacy of repeated 

administration of adenovirus in inducing immunity to the heterologous protein may be 

limited because of Ad-specific immunity, which developed following a previous 

immunisation. Therefore, it is important to investigate the effect of immunity to HAd5 on 

the efficacy of imrnunisation with recombinant HAd5 vectors. The cotton rat model is 

especially suitable to conduct these studies because these laboratory animals support HAd5 

replication. 

5.5.1 Effect of HAd5-specific active immunity on intranasal and 

gastrointestinal immunisation with recombinant adenovirus 

The most common way for an animal or human to acquire Ad-specific immunity is 

to be naturally infected by the virus through the respiratory tract. Following infection, 

memory type Ad-specific active immunity develops. Since HA& preferentially targets 

respiratory mucosal tissues in cotton rats, intranasal infection with wt HAdS in cotton rats 

was chosen as a model to induce active Ad-specific immunity. The experiment described in 

Figure 5.5.1 was designed to assess whether i.n. infection of naive cotton rats with wt 

HAd5 had an effect on the immunity induced by i.n. immunisation with recombinant 

adenovirus. Considering the importance of local mucosal stimulation, I also wanted to find 

out whether imrnunisation at a different mucosal site (enteric) would be affected by i.n. 

infection with wt adenovirus. Animals were infected with wt HAdS 2 weeks before 

imrnunisation with gD-dE3 in order to induce strong cellular and humoral immunity 



against Ad by the time of immunisation. The efficacy of immunisation with gD-dE3 by the 

i.n. and gi. mutes was then assessed by measuring gD- and Ad-specific immune responses 

and protection of lungs against BHV- 1 challenge. 

wt HAdS 
groups I L 2 immunisation (groups 1-5) challenge 
day -13 day 0 day 8 day 23 

4 1 .1 1, 
J 5- 1 t 

i-n. HAd5 
infection 

dose 
(P~U) 

group 
# 

day 24 
groups 1-5 

# of 
cotton 
rats Per 
group 

inocu- dose route of 
Ium Oh) primary second. 

- -  - 

i.n. BHV-1 
challenge 

strain dose 
@fU) 

- 

gD-dE3 5 x lo7 i.n. i.n. 108 5x lo7 
gD-dE3 5 x LO' i.duod. oral 108 5 ~ 1 0 '  

gD-dE3 5 x 10' i.n. i.n. 108 5x10' 

gD-dE3 5 x 10' i.duod. oral 108 5x10' 

PBS - i n .  i.n. 108 5x10' 

Figure 5.5.1 Experimental design: effect of HAdS-specific active immunity on 
intranasal and gastrointestinal immunisation with recombinant adenovirus. In the 
flowchart, arrows above the timescale indicate the time of treatment while arrows below 
indicate the time of serum sampling. The symbol t represents tissue samples collected 
fiom euthanised animals. 
i.n. = intranasal; i.duod. = intraduodenal. In the text, tables and other figures 
intraduodenal-oral immunisation is referred to as gastrointestinal (g.i.) immunisation. 



5.5.1.1 Serum antibody responses 

At the time of immunisation with gD-dE3, 2 weeks following HAdS-infection, all 

HAd5-infected animals developed Ad-speci fic serum antibody responses similar to those in 

Figure 5.5.10. These results indicate that cotton rats were successfully infected with H A 6  

and induced Ad-specific immune responses. Furthermore, Ad-specific IgG and IgA titres 

were significantly higher in the serum of HA&-infected cotton rats compared to non- 

infected animals at all timepoints following imrnunisation with gD-dE3, as expected 

(Figure 5.5.2). 

Three weeks after primary hun i sa t ion  with gD-dE3, all immunised animals 

developed significantly higher levels of @-specific IgG and IgA in the serum than those 

measured in the serum of PBS-control animals (P < 0.001) (Figure 5.5.2). Non-infected 

cotton rats, however, developed higher mean @-specific antibody titres than HAd5- 

infected animals when the route of gD-dE3 immunisation was i-n. (P < 0.0 1 ). In contrast, 

mean $-specific antibody titres were not significantly higher in non-infected compared to 

HAd5-infected groups, when immunised with gD-dE3 by the gastro-enteric route (Figure 

5.5.2). 

To measure the biological activity of the @-specific antibody, BHV-1 SN titres 

were determined. BHV-I SN titres were significantly lower in HA&-infected than in non- 

infected animals between groups irnrnunised with gD-dE3 by the same route (P e 0.00 1 ) 

(Figure 5.5.3). 

5 -5.1.2 Antibody responses in the respiratory tract 

To determine the ability of the different immunisation regimens to induce antigen- 

specific humoral immune responses in the respiratory tract, lung and trachea extracts were 

analysed for the presence of gD- and Ad-specific antibody. Intranasal immunisation with 

gD-dE3 induced significantly lower gD-specific IgG and IgA levels in the trachea of 

HAdS-infected than non-infected animals (P < 0.001) (Figure 5.5.4). In contrast, gD- 

specific tracheal antibody levels induced by g.i. inoculation were not significantly affected 



+, i.n. +, g.i. - y  1.n. -y  g.1. PBS 

Figure5.5.2 gD- and Ad-specific serum antibody responses in cotton rats 
immunised with gD-dE3 by different routes following HAd5 infection. Cotton rats 
were intranasally inoculated with wt HAd5 (+ symbol) or PBS (- symbol) as a control. Two 
and three weeks following infection, cotton rats were immunised with gD-dE3 by the 
intranasal ( i n )  or gastrointestinal (g.i.) routes or with PBS as a control. gD- and Ad- 
specific (a) IgG and (b) IgA levels in the serum at 3 weeks following the primary 
irnmunisation were measured by ELISA. Bars represent the mean loglo * SD antibody titre 
for 3-4 animalslgroup. 



-, g.i. -, PBS 

Figure 5.53 BHV-1-neutralising antibody titres in the sera of cotton rats 
irnmunised with g W 3  by different routes following aAdS infection. Cotton rats 
were intranasally inoculated with wt HAd5 (+ symbol) or with PBS as a control (- symbol). 
Two and three weeks following infection the animals were immunised with gD-dE3 by the 
inhanasal (i.n.) or gastrointestinal ( g i . )  routes or with PBS as a control. Serum samples 
collected at 3 weeks following primary irnmunisation were analysed for BHV- I - 
neutralking antibodies by virus neuhalisation assay. Bars represent the mean loglo SN titre 
* SD for 3-4 animals per group. 
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Figure 5.5.4 gD- and Ad-specific antibody responses in the trachea of cotton rats 
immunised with gDdE3 by different routes following BAdS infection. Cotton rats 
were intranasally inoculated with wt HAdS (+ symbol) or with PBS as a control (- symbol). 
Two and three weeks following infection cotton rats were irnmunised with gD-dE3 by the 
inhanasal (i.n.) or gastrointestinal (g.i.) routes or with PBS as a control. gD- and 
Ad-specific (a) IgG and @) IgA levels in tracheal-extracts at 3 weeks following the primary 
irnrnunisation and 1 day after BHV-I challenge were measured by ELISA. Bars represent 
the mean loglo * SD antibody titre for 3-4 animalslgroup. 



by pre-infection with HA&. Interestingly, higher Ad-specific IgG levels were detected in 

the trachea of g.i. immunised, than i.n. immunised HA&-infected animals (P < 0.0 1 ). 

The mean of @-specific lung-IgG titres in each immunisation group was higher 

than that in the PBS controls (P < 0.01); (Figure 5.5.5). However, HAd5-infected animals 

had significantly lower gD-specific IgG levels in their lungs than non-infected animals (P < 

0.0 1 ). Furthermore, gD-speci fic lung IgA was induced only in non-HAd5-infec ted animals, 

with significantly higher titres than those in the HAdS-infected and PBS control groups (P 

< 0.01); (Figure 5.5.5). In accordance, only non-iofected animals contained @-specific 

IgA and IgG ASC in the lung tissue (similar numbers in the i.n. and g.i. immunisation 

groups) as determined by ELISPOT (data not shown). Adenovirus-specific IgG and 1gA 

levels in the lung, measured by ELSA, resembled those observed in the serum (Figures 

5.5.2 and 5.5.5). 

5.5.1 -3 BHV- 1 recovery from lungs following challenge 

Since HAd5 infection affected antigen-specific immune responses induced by a 

subsequent irnrnunisation with gD-dE3, its effect on protection of lungs against BHV-1 

challenge was investigated. Indeed, significantly more BHV- l was isolated from the lungs 

of HAd5 -infected than non-infected animals imrnunised with gD-dE3 ; (Figure 5.5 -6). 

BHV- 1 titres in the gastro-intestinal immunisation group were not significantly affected by 

pre-infection with HAd5. Each immunisation group contained less BHV- I in the lung than 

the PBS control (P < 0.05). 



+, i.n. +, g.i. . * -, i n .  -, g.1. -, PBS 

Figure 5.5.5 g D  and Ad-specific antibody responses in the lung of cotton rats 
immunised with gD-dE3 by different routes following HAd5 infection. Cotton rats 
were inoculated intranasally with wt HAdS (+ symbol) or with PBS as a control (- symbol). 
Two and three weeks afier infection cotton rats were immunised with gD-dE3 by the 
intranasal (i.n.) or gastrointestinal (g.i.) routes or with PBS as a control. gD- and Ad- 
specific (a) IgG and (b) IgA levels in lung-extracts at 3 weeks following the primary 
immunisation and 1 day after BHV- 1 challenge were measured by ELISA. Bars represent 
the mean logl antibody titre * SD for 3 -4 animaIs/group. 
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Figure 5.5.6 BHV-1 recovery from lungs of cotton rats immunised with gD-dE3 by 
different routes following EAdS infection. Cotton rats were inoculated intranasally with 
wt HAd5 (symbol +) or with PBS as controls (symbol -). Two and three weeks following 
infection the animals were immunised with gD-dE3 by the intranasal (i-n.) or 
gastrointestinal (g.i.) routes or with PBS as a control. Three weeks after the primary 
immunisation with gD-dE3 animals were challenged with BHV- 1 intranasally. One day 
post-challenge lungs were homogenised and tested for the presence of BHV-I by plaque 
assay. Bars represent the mean logl antibody titre * SD for 3 -4 animals per group. 



5.5.2 EfEect of active HAdS-specific immunity on intraduodenal immunisation 

with recombinant adenovirus 

Results described in section 5.4 suggested that it is more appropriate to administer 

adenoviruses intraduodenally rather than orally if one wants to study the induction of 

immune responses induced by immunisation in the alimentary tract. By doing so, direct 

spread of adenovirus to the respiratory tract can be avoided. Therefore, the next experiment 

had two aims: first, to study gD-specific immune responses induced by intraduodenal 

immunisation alone; second, to determine the effect of Ad infection on the efficacy of a 

subsequent intraduodenal immunisation with gD-dE3 (Figure 5.5.7). HA&-infected and 

uninfected cotton rats were immunised with gD-dE3 by the intraduodenal route and 

challenged with BHV-1 3 weeks following secondary immunisation. gD- and Ad-specific 

immune responses and protection against B W -  1 infection were determined. 

wt HAd5 
P U P  1 imrnunisation (groups 1-3) challenge 
day -14 day 0 day 2 1 day 40 

4 5- 5. i, 

# of I i.n. H A ~ S  I immunisation 
cotton 1 infection I 
rats per I dose I inocu- dose route of 

(PW primary second. 

.It 
day 43 
group 1-3 

i.n. BHV-I 
challenge 

strain dose 
@fu) 

Figure 5.5.7 Experimental design: effeet of active EIAd5-specific immunity on 
intraduodenal immunisation with recombinant adenovirus. In the flowchart, arrows 
above the timescale indicate the time of treatment while arrows below indicate the time 
of serum sampling. The symbol t represents tissue samples from euthanised animals. 



5.5.2.1 Antibody responses 

At the time of irnmunisation with gD-dE3, HA&-infected animals developed Ad- 

specific serum antibody responses similar to those in Figure 5.5.1 1, 2 weeks following 

HA&-infection. These animals did not develop gD-speci fic antibody responses (Fig. 5.5.8) 

or BHV-1 SN titres (background level of 0.3 loglo titre) following intraduodenal 

immunisation with gD-dE3. Intraduodenal immunisation with gD-dE3, however, induced 

@-specific IgG and I g A  titres in the serum, lung- and nasal-washes (Fig. 5.5.8) and 

BHV-1 SN titres (loglo titre 1.29 * 0.41 5, significantly different from background) in those 

animals that were not pre-infected with HAdS. Interestingly, the two immunisation groups 

had similar levels of Ad-specific lung IgG and serum IgA following immunisation with 

gD-dE3 (Fig. 5.5.9). Serum antibody responses including SN titres were almost identical 

following primary and secondary imrnunisations (data not shown). 

Both gD-specific (Figure 5.5.8) and Ad-specific (not shown) antibody levels in 

lung- and nasal-washes correlated with those measured in lung- and tracheal-exmcts 

prepared from the same animals, respectively. These observations confirmed that the two 

methods for assessing antibody levels in the respiratory tract are equally appropriate. 

To determine local immune responses in the gut, the frequency of gD- and Ad- 

specific ASC in the mesenteric LN was measured by ELISPOT. Interestingly, significant 

numbers of gD- and Ad-specific ASC in the mesenteric LN were detected in only those 

animals that were not infected with HAdS before immunisation with gD-dE3 (Table 5.5.1 ). 

These results are in accordance with ELISPOT data obtained from animals of the previous 

experiment (data shown here, in Table 5.5.1). The frequency of antigen-specific ASC in the 

spleens was not different between infected and non-infected groups (Table 5.5.1). 
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Figure 5.5.8 Effect of adenovirus-specific active immunity on the induction of gD- 
specific antibody responses following immunisation with gD-dE3 by the 
intraduodenal route. Cotton rats were inoculated i.n. with wt HAdS (+ symbol) or with 
PBS as controls (- symbol). Two and five weeks following infection the animals were 
immunised with gD-dE3 or with PBS as a control by the intraduodenal route. gD-specific 
(a) IgG and @) IgA levels in the nasal- and lung-washes and the serum at 6 weeks 
following the primary imrnunisation were measured by ELISA. Insets: (a) trachea-, lung- 
extract and serum IgG; (P) trachea-, lung-extract and serum IgA. Bars represent the mean 
logl antibody titre * SD for 6 animals/group. 
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Figure 5.5.9 Adenovirus-specific antibody responses in cotton rats immunised with 
gD-dE3 by the intraduodenal route following i.n. aAdS infection. Cotton rats were 
inoculated i.n. with wt HAd5 (+ symbol) or with PBS as controls (- symbol). Two and five 
weeks following infection the animals were immunised with gD-dE3 or with PBS as a 
control by the intraduodenal route. Ad-specific (a) IgG and @) IgA levels in the nasal- and 
lung-washes and the serum at 6 weeks following the primary immunisation were measured 
by ELISA. Bars represent the mean loglo antibody titre * SD for 6 animaldgroup. 



Table 5.5.1 Effect of active adenovirus-speciiic immunity on the frequency of 
gD- and adenovirus-specific antibody-secreting cells in lymphocytes of cotton rats 
immunised with recombinant adenovimses 

experiment immunisation gD-specific 1gGAg.A HAd5-specific IgGAgA 
~ ~ ~ l m i l l i o n '  ~ ~ ~ l r n i l l i o n *  

mes LN spleen mes LN spleen 

- - - 

5.5.1. -5.5.2. - ,  PBS nd I nd nd I nd nd I nd nd I nd 

Cotton rats were inoculated with wild type HAd5 (+ symbol) or with PBS as controls 
(- symbol) intranasally. 
' Two and three weeks after infection with HAd5 the animals were immunised with 
gD-dE3 by the gastrointestinal route (intraduodenal-oral). Three weeks after the 
primary imrnunisation animals were challenged with BHV-I intranasally. One day 
post-challenge mesenteric LN and spleen lymphocytes were isolated and used in the 
ELISPOT assays. 

Two and five weeks after infection with HAd5 cotton rats were immunised by the 
intraduodenal route with gD-dE3 or PBS as a control. Three weeks after the secondary 
irnrnunisation animals were challenged with BHV-1 intranasally. Three days post- 
challenge mesenteric LN and spleen lymphocytes were isolated and used in the 
ELISPOT assays. 

Mean values of the number of antigemspecific antibody-secreting cells (ASC) per 
million lymphocytes were determined in cultures of pooled cell populations from 4-8 
animals. 
nd = not detected (less than 1 ASC/million) 
n = not tested 



5.5 -2.2 Protection against BHV- 1 challenge 

Since KAdS infection affected antigen-specific immune responses, I investigated 

whether it affected protection of the respiratory tract against BHV-1 challenge. 

Significantly less BHV- I was isolated &om the lungs of animals that were not pre-immune 

to HAdS before gD-dE3 immunisation compared to those that were (Table 5.5.2). Virus 

titres in the trachea, however, were not decreased by either immunisation regimen 

compared to the control. 

Table 5.5.2 Effect of adenovirus-specific immunity on immunisation 
with gDdE3 as reflected in BHV-1 recovery following challenge 

immunisation virus isolation (loglo pWg tissue) 

trachea lung 

+ , gD-dE3 intraduodenal 2.942 -t 0.533 2.997 +_ 0.7 15 

- , gD-dE3 intraduodenal 2.756 +, 0.381 < 1 .O +_ 0.0 

- , PBS 2.494 + 0.275 4.06 1 + 0.430 

Cotton rats were inoculated intranasally with 2 x 10' pfb wt HAd5 (+ symbol) 
or with PBS as controls (- symbol). Two and five weeks later cotton rats were 
irnmunised with -3 or PBS as a control intraduodenally. Three weeks after 
the secondary immunisation animals were challenged with BHV- I intranasally. 
Three day post-challenge trachea and lung were removed, homogenised and 
tested for the presence of BHV- I by plaque assay. 
Significant difference from other groups (P < 0.00 1). 



5.5.3 Long-term effect of infection with HAd5 on intranasal immunisation with 

recombinant adenovirus 

The previous experiments have shown that active immunity to HAdS inhibited the 

efficacy of different routes of imrnunisation with gDdE3. It is possible, however, that by a 

later timepoint p.i. with HA&, some components of Ad-specific cellular or humoral 

immunity decline resulting in less inhibition of the induction of @-specific immunity by 

immunisation with gD-dE3. To test this hypothesis, cotton rats were infected with HAd5 

13 weeks before immunisation with gDdE3 (Fig. 5.5.10) and the effect of HAd5-infection 

on the level of immunity induced by recombinant adenovirus was assessed. 

wt HAd5 
group 1 immunisation (groups 1 -3) challenge 
day 0 day91 day112 day132 

3. 5. .1 i ,  
.It 

day 133 
group 1-3 

.1 5- 5- 
day 14 day 25 

.1 4 .1 
day 58 

immunisation 

group inocu- dose route of 
h l  @fu) primary second. 

. -- 

gD-dE3 5 x  lo7 i.n. i.n. 

gD-dE3 5 x 10' i.n. i.n. 

dE3 5 x 1 0 ~  r .n. i.n. 

PBS - i n  i s .  

# of 
cotton 
rats Per 

i-n. BHV-1 
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Figure 5.5.10 Experimental design: long-term effect of infection with EAd5 on 
intranasal immunisation with recombinant adenovirus. In the flowchart, mows 
above the timescale indicate the time of treatment while arrows below indicate the time 
of serum sampling. The symbol t represents tissue samples from euthanised animals. 
i.n. = intranasal 



5.5.3.1 Kinetics of adenovirus-specific serum antibody responses 

To determine the levels of Ad-specific serum antibody at 13 weeks compared to 

that at 2 weeks following in. infection with HA*, Ad-specific IgG and IgA titres in the 

s e m  were measured by ELISA. Ad-specific IgG titres continually increased during the 

study (Figure 5.5.11). IgA titres did not rise further following the eighth week of the 

experiment (Figure 5.5.1 1 ). Mean Ad-specific antibody titres were significantly higher at 

week 13 compared to those at week 2 pi. (P < 0.00 1). 

-+-  IgA 

Weeks postinfection 

Figure 5.5.11 Kinetics of adenovirus-specific serum antibody responses in cotton rats 
infected with wild type HAdS. Sera collected at different timepoints p.i. in. with 10' pfb 
of HAdS were analysed for Ad-specific (a) IgG and (b) IgA by ELISA. Values represent 
the mean loglo antibody titre * SD for 10 animals. 



5.5 -3 -2 Antibody responses following immunisation with gD-dE3 

Although immunisation with gD-dE3 induced @-specific IgG and I g A  antibodies 

in the serum, lung- and tracheal-extncts in both HAdS-infected and non-infected animals 

(significantly higher titres than the PBS control, P < 0.001), HAdS-infected animals 

developed significantly lower @-specific antibody than non-infected cotton rats (P < 

0.01). IgA levels in the trachea were not significantly different between the two 

immunisation groups (Figure 5.5.12). BHV-1 neutdising titres in the serum were also 

lower in the HAdS-infected group than in the non-idkcted group (P c 0.001); (Figure 

5.5.12). As expected, imrnunisation with dE3 control virus did not induce any gD-specific 

antibody (data not shown). In contrast to gD-specific humoral responses, all animals 

immunised with adenovirus developed similar levels of Ad-specific antibody by week 1 9 

(data not shown). 

5.5.3.3 Antibody-secreting cell frequencies 

To determine whether the frequencies of gD- and Ad-specific ASC were affected 

by a previous HAd5 infection, ELISPOT assays were performed. Although immunisation 

with gD-dE3 induced antigen-specific ASC in the lung, bone marrow and spleen of both 

HAdS-infected and non-infected animals, @-specific ASC frequencies in the lung were 

higher in the non-infected compared to the HA&-infected group (Table 5.5.3). 

.4denovirus-specific ASC frequencies were similar or higher in the HA&-preinfected 

group compared to other groups. 
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Figure 5.5.12 Effect of adenovirus-specific active immunity stimulated 13 weeks 
earlier on the induction of gDspecfic antibody responses. Cotton rats were inoculated 
with wt HAdS (+ symbol) or PBS as a control (- symbol) hiranasally. Thirteen and sixteen 
weeks following infection the animals were immunised in. with gD-dE3 or with PBS as a 
control. @specific (a) IgG and @) IgA levels in the trachea- and lung-extracts and the 
serum at 6 weeks following the primary immunisation with gD-dE3 were measured by 
ELISA. (c) Serum samples collected at 6 weeks following primary immunisation with 
gD-dE3 were anal ysed for BHV- l -neutralking antibodies by virus neutralisation assay. 
Bars represent the mean logl antibody titre * SD for 5-8 animals/group. 



Table 5-53 Effect of active adenovirus-specific immunity on the frequency of 
gD- and adenovirus-specific antibody-secreting cells in lymphocytes of cotton rats 
immunised with recombinant adenoviruses 

lymphocyte immunisation @-specific adenovirus-specific 
source  million*  mil million' 

lung + , gD-dE3 4 26 280 4600 

- , gD-dE3 20.5 186 100 1940 

- , dE3 not tested 

- , PBS nd nd nd nd 

bone + , gD-dE3 nd 1.3 30 4 1 

marrow - , gD-dE3 nd 2 4.5 18 

- , PBS nd nd nd I 
- - 

spleen + , gD-dE3 1.7 nd 8 20 

- , gD-dE3 1 1.7 14 9 

- , dE3 nd nd 14 1 1.5 

- , PBS nd nd nd nd 

Cotton rats were inoculated with wild type HAd5 (+ symbol) or with PBS as a 
control (- symbol) intranasally. Thirteen and sixteen weeks later the animals were 
irnmunised i.n. with gD-dE3 or with PBS. Three weeks after the secondary 
immunisation animals were challenged with BHV-1 intranasally. One day post- 
challenge lung, bone marrow and spleen lymphocytes were isolated and used in the 
ELISPOT assays. 
' Mean values of the number of antigen-specific antibody-secreting cells (ASC) 
per million lymphocytes were determined in cultures of pooled cell populations 
from 3-8 animals. 
nd = not detected (less than 1 ASC/million) 



5.5.3.4 B HV- 1 recovery after challenge 

Since antigen-specific immune responses induced by immunisation with gD-dE3 

were affected by a previous i.n. HA# infection, we investigated whether protection of the 

respiratory tract against BHV-1 challenge was different between the immunisation groups. 

Table 5.5.4 shows that hunisat ion with gD-dE3 significantly reduced BHV-1 titres in 

the lung compared to the dE3 and PBS controls. Infection with HAd5 before immunisation 

with gD-dE3, however, resulted in significantly more BHV-1 in the lungs compared to 

those in animals irnmunised with gD-dE3 alone. In addition, virus titres in the trachea were 

lower compared to the controls only in those animals that had not received HAd5 infection 

before gD-dE3 immunisation (P < 0.00 1); (Table 5.5.4). 

Table 5.5.4 Effect of adenovirus-specific immunity on immunisation with 
recombinant adenovirus as reflected in BW-1 recovery following challenge 

irnmunisation virus isolation (loglo pfdg  tissue) 

trachea lung 

+ , gDE3 intranasal 

- , gDE3 intranasal 

- , dE3 

- , PBS 

Conon rats were inoculated with wt HAdS (+ symbol) or PBS (- symbol). Thirteen 
and sixteen weeks later the animals were imrnunised intramsally with gD-dE3, dE3 
or with PBS. Three weeks after the secondary irnmunisation animals were 
challenged with BHV- 1 iatranasally. One day postchallenge trachea and lung were 
removed, homogenised and tested for the presence of BHV- 1 by plaque assay. 

Significant difference from other groups (P < 0.001) 



5.5.4 Effect of adenovirus-specific passive immunity on systemic and rnucosal 

immunisation with recombinant adenovinrs 

Previous results showed that i.n. iafection with HA& had an inhibitory effect on 

@-specific humoral immune responses and protection against BHV- 1 infection induced by 

imrnunisation with gD-dE3. Infection with a pathogen, however, is not the only way to 

acquire immunity to the pathogen. Young animals, for example, may have obtained Ad- 

specific antibodies from their mother without having been infected with adenovirus. To 

investigate the effect of passive Ad-specific immunity on subsequent immunisation with 

recombinant adenovirus by different routes, serum-mfer experiments were designed. In 

the first experiment, cotton rats were inoculated with Ad-hyperimmune or normal cotton 

rat senun i.p., followed by i.n. and i.p. immunisation with gD-dE3 (Fig. 5.5.13). Induction 

of antigen-specific immune responses and protection against BHV- 1 challenge were 

determined. 

5.5.4.1 Haiflife of adenovirus-specific antibodies following passive transfer 

Before imrnunisation with gD-dE3, it was important to examine whether cotton rats 

contained Ad-specific antibody following i.p. passive transfer of Ad-specific hyperimmune 

serum. Furthermore, knowing the kinetics of the decay of this antibody would help 

interpret results and facilitate future studies. Figure 5.5.14 shows Ad-specific IgG and IgA 

titres in the serum at different timepoints after inoculation of Ad-specific hyperimmune 

senun. At day 1 after the passive transfer, both IgG and IgA, specific for HAdS, were 

detected in the serum. These titres were higher than those detected in the serum of cotton 

rats 2 weeks following i.n. infection with HA& (see 5.5.3.1). The halflife of both serum 

IgG and IgA of the cotton rat was estimated to be 6-7 days. 
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Figure 5.5.13 Experimental design: effeet of adenovirus-specific passive immunity 
on the efficacy of immunisation with recombinant adenovirus. In the flowchart, 
arrows above the timescale indicate the time of treatment while arrows beiow indicate 
the time of serum sampling. The symbol f- represents tissue samples from euthanised 
animals. 
i.n. = intranasal; i.p. = intraperitoneal. 
* Transfer of adenovirus-specific hyperimmune cotton rat serum. 
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Figure 5.5.14 Kinetics of the decay of adenovirus-specific antibodies in the serum of 
cotton rats following passive transfer of adenovirus-specific serum. Two animals were 
i.p. injected with 1 ml of pooled Ad-specific hyperimmune serum. Adenovirus-specific 
serum anti body levels at different timepoints following passive transfer were measured by 
ELISA. Values represent the mean titre from 2 animals. 



5.5 -4.2 Antibody responses following imrnunisation with gD-dE3 

To determine whether the presence of Ad-specific antibodies in the cotton rat 

affected the levels of gD-specific antibody responses induced by immunisation with gD- 

dE3, antigen-specific antibody titres in the senun, trachea- and lung-extracts were 

measured. Each immunisation regimen resulted in gD- and Ad-specific antibodies in the 

senun and the lung-extract, as well as BHV-I SN antibodies, of significantly different 

mean titres fiom PBS controls (Table 5.5.5). Serum neutmlising antibody titres and gD- 

specific IgG levels, however, were significantly higher in those animals that had received 

control serum compared to those that had been injected with Ad-immune serum before the 

i.n. immunisation with gD-dE3. In addition, there was a trend in all other samples that Ad- 

specific antibody inhibited the induction of @-specific immunity, even though these 

differences were not significantly different (Table 5 -5 -5). 

5.5.4.3 BHV- I recovery following challenge 

Since the presence of Ad-specific antibodies in the cotton rat slightly affected gD- 

specific immune responses, I investigated whether it affected protection of the respiratory 

tract against BHV- 1 challenge. BHV- I titres in both the lung and trachea were significantly 

lower in those i-p. immunised animals that were naive for adenovirus compared to those 

that had received Ad-specific senun (P < 0.0 1) (Figure 55-15), In addition, BHV- 1 titres in 

the trachea were significantly lower in those i.n. immunised cotton rats that had been 

injected with control serum compared to those with Ad-specific senun (P < 0.01); (Figure 

5.5.15). However, mean virus titres from the lungs were lower in each immunisation group 

than in the PBS control. In addition, the mean BHV-1 titre in the trachea was significantly 

lower in animals immunised intranasdly with gD-dE3 than in the PBS control (P < 0.05). 



Table 5.5.5 Effect of adenovirus-specific passive immunity on antigen-specific 
antibody titres from cotton rats immunised with gD-dE3 

sample immuni gD-speci fic logl adenovirus-specific logl BHV- I 
-sation ELISA titre f SD ELISA titre loglo SN 

serum + , i.p. 3.3 k 0- 17 0.76 t 0.4 3.2 * 0.0 1.8 f 0.18 0.6 + 0.0 

+ , i.n. 2.9 k 0.3* 1.33 + 0.9 3.5 + 0.0 1.69 2 0.0 0.6 + O.O* 

-, i.p. 3.8 k 0.8 1.235 0.8 3.4 f 0.17 1.83 2 1.15 1.2 + 0.5 

- , 1.n. 3.8 t, 0.52* 1.76 f 0.7 3.6 + 0.17 2.2 + 0.17 1.2 f 0.3* 

- , PBS 1.0 + 0.0 0.3 + 0.0 1.0 + 0.0 0.3 -t- 0.0 0.3 t 0.0 

lung + , i.p. 1.5k0.17 0.9-t-0.17 1.83k0.23 1.7 +_ 0.0 0.3 * 0.0 

extract + , i.n. 1.39 -t 0.0 1.46 f 0.4 2.2 2 0.17 1.7 + 0.0 0.3 k 0.0 

- , i.p. 1.7k0.35 1.13k0.5 2.3 f 0.55 1.23 -t 0.4 0.3 + 0.0 

- , 1.n. 2.0 + 0.57 2.16 k 0.4 2.86 .t 0.4 3.13 k 0.63 0.3 f 0.0 

- , PBS 0.3 k 0.0 0.3 k 0.0 0.3 k 0.0 0.3 f 0.0 0.3 + 0.0 

trachea + , i .p. 0.3 k 0.0 0.3 + 0.0 0.8 k 0.55 1.0 k 0.7 0.3 t 0.0 

extract + , i.n. 0.3 + 0.0 0.3 k 0.0 1.0 + 0.0 0.77 t 0.8 0.3 k 0.0 

- , p 0.67 k 0.3 0.3 k 0.0 1.36 + 0.35 0.77 f 0.4 0.3 k 0.0 

- , 1.n. 0.77 + 0.4 0.3 k 0.0 1.5 k 0.17 1.6 + 0.17 0.3 2 0.0 

- , PBS 0.3 k 0.0 0.3 + 0.0 0.3 + 0.0 0.3 + 0.0 0.3 + 0.0 

Cotton rats were inoculated with hyperimmune adenovirus-specific (+ symbol) or 
normal (- symbol) cotton rat serum. One day later the animals were immunised with gD- 
dE3 intranasally (i.n.) or intraperitoneally (i.p.) or with PBS as a control. Three weeks 
after immunisation animals were challenged with BHV-1 intranasally. One day post- 
challenge trachea and lung were removed, homogenised and tested for the presence of 
antigen-specific antibody simultaneously with serum samples by ELISA or serum 
neutralisation assay. 
* Significant difference between the two groups (P < 0.05) 
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Figure 5.5.15 Effect of adenovirus-specific passive immunity on the protection of 
cotton rats imrnunised with gD-dE3 against B W - 1  infection. Cotton rats were 
inoculated intraperitoneally with Ad-specific (+ symbol) or normal (- symbol) cotton rat 
serum. Twenty-four hours later cotton rats were irnrnunised by the i.n. or the i.p. routes 
with gD-dE3 or with PBS as a control. Three weeks after irnmunisation with gD-dE3 
animals were challenged with BHV-1 intranasally. One day postchallenge lungs and 
tracheae were homogenised and analysed for the presence of BHV-1 by plaque assay. Bars 
represent the mean loglo antibody titre * SD for 3 animals per group. 
*Significantly different fiom PBS controls (P < 0.001) 



5.5.5 Effect of adenovirus-specific passive immunity on different routes of 

mucosal immunisation with recombinant adenovirus 

Results of the previous experiment indicated that pre-existing Ad-specific passive 

immunity inhibited @-specific immune responses induced by irnmunisation with gD-dE3 

in some animals. Furthermore, there was iess protection against BHV-1 infection in 

Ad-immune compared to naive animals. To confirm these results and to determine whether 

the route of immunisation influenced the level of @-specific immunity in animals with 

passive immunity to Ad, cotton rats were imrnunised with gD-dE3 by the i.n. and the 

intraduodenal routes following passive transfer of Ad-specific or normal cotton rat senun 

(Figure 55-16). Induction of antigen-specific immune responses and protection against 

BHV- 1 challenge were determined. 

5.5.5.1 Antibody responses 

Interestingly, no statistical differences were observed 3 weeks following 

immunisation with gD-dE3 between the means of gD-specific antibody titres from animals 

that had received normal cotton rat serum before immunisation compared to those that 

received Adspecific serum (Figure 5.5.1 7). Intranasal irnmunisation with gD-dE3 in both 

groups induced gD-specific IgG and IgA in the serum and lung-washes and IgA in the 

nasal-washes. However, there was a trend that animals that recieved Ad-specific 

hyperimmune sera had less @-specific antibodies. Intraduodenal irnmunisation also 

induced gD-specific serum IgG but it did not stimulate IgA in any of the samples. 

Adenovirus-specific antibodies were detected in each gD-dE3-immunised group. However, 

the mean Ad-specific titres were higher in the samples from intramsally immunised 

animals (Figure 5.5.18). 
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Figure 5.5.16 Experimental design: effect of adenovirus-specific passive immunity 
on different routes of mucosal immunisation with recombinant adenovirus. In the 
flowchart, arrows above the timescale indicate the time of treatment while arrows below 
indicate the time of serum sampling. The symbol t represents tissue samples collected 
from euthanised animals. 
i.n. = intranasal; i.duod. = intraduodenal; i.p. = intraperitoneal. 
* Transfer of adenovirus-specific hyperimmune cotton rat serum. 
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Figure 5.5.17 Effect of adenovirus-specific passive immunity on the induction of g D  
specific antibody responses in cotton rats immunised with gIME3 by different 
mucosal routes. Cotton rats were inoculated intraperitoneally with Ad-specific (+ symbol) 
or normal (- symbol) cotton rat serum. Twenty four hours later cotton rats were imrnunised 
with gD-dE3 by the inhanasal (i.n.) or the intraduodenal (i.duod.) routes or with PBS as a 
control. @-specific (a) IgG and (b) IgA levels in the nasal- and lung-washes and the serum 
at 3 weeks following immunisation with gD-dE3 were measured by ELISA. Bars represent 
the mean logl antibody titre * SD for 4-5 anirnals/group. 
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Figure 5.5.18 Adenovirus-specific antibody responses in cotton rats immunised with 
recombinant adenovirus by the intraduodenal route following passive transfer of 
adenovims-specific serum. Cotton rats were inoculated intraperitoneally with Ad-specific 
(+ symbol) or normal (- symbol) cotton rat serum. Twenty four hours later the animals 
were immunised with gD-dE3 by the intranasal (i.n.) or the intraduodenal (i.duod.) routes 
or with PBS as a control. Adenovirus-specific (a) IgG and (b) IgA levels in the nasal- and 
lung-washes and the serum at 3 weeks following imrnunisation with gD-dE3 were 
measured by ELISA. Bars represent the mean loglo antibody titre * SD for 4-5 
anirnals/group. 



5.5.5 -2 Antibody-secreting cell frequencies 

To determine whether the frequency of antigen-specific ASC in the lung and the 

spleen were affected by passive immunity against adenovirus, ELISPOT assays were 

performed. Each immunisation regimen induced gD- and Ad-specific lung-ASC while the 

PBS control did not (Table 5.5.6). Intraduodenal irnmunisation induced only IgA secreting, 

but not IgG secreting cells in the lung. In contrast, i.n. immunisation induced high numbers 

of both IgA and IgG gD- and Ad-specific ASC in the lung. These numbers were somewhat 

lower in the Ad-specific serum-transfer groups than in the normal imrnunised groups. 

Spleens contained only a low Frequency of antigemspecific ASC (Table 5.5.6). 

5.5 25.3 BHV- 1 recovery after challenge 

To determine whether Ad-specific passive immunity influenced the protection of 

the respiratory tract against BHV- 1 infection, BHV- I titres were measured in the lung and 

trachea I day after viral challenge. htranasal immunisation with gD-dE3 resulted in 

reduced B W -  I titres from the respiratory tract compared to the PBS control (P < 0.0 l), 

while intraduodend immunisation did not (Fig. 5.5.19). Interestingly, animals inoculated 

with Ad-specific serum contained significantly higher BHV-I titres in their lungs than 

animais that received normal cotton rat senun before i.n. immunisation with gD-dE3 (P < 

0.05), despite no significant differences in @-specific and BHV- 1 SN antibody levels (Fig. 

5.5.17). 



Table 5.5.6. Effect of passive adenovirus-specific immunity on the frequency 
of gD- and adenovirus-spedfic antibody-secreting cells in lymphocytes of 
cotton rats hmunised with recombinant adenoviruses 

lymphocyte immunisation @-specific adenovirus-specific 
source ~ ~ ~ / r n i l l i o n '  ~ ~ ~ / r n i l l i o n *  

l u g  + , gD-dE3 i.n. 200 900 3 70 1050 

+ , gD-dE3 i-duod nd 2.5 nd 6 

- , gD-dE3 i.n. 510 1250 360 460 

- , gD-dE3 Lduod. nd 20 nd 25 

- , PBS c. nd nd nd nd 

spleen + , gD-dE3 i n .  1.5 nd 10 8.3 

+ , gD-dE3 i.duod 1 nd 1.2 nd 

- , gD-dE3 i.n. 1 nd 22 4.8 

- , gD-dE3 i-duod. nd nd nd nd 

- , PBS c. nd nd nd nd 

Cotton rats were inoculated intraperitoneally with hyperimmune Ad-specific (+ 
symbol) or normal (- symbol) cotton rat serum. One day later the animals were 
immunised with gD-dE3 intranasall y (i.n.) or intraduodenally (i.duod.) or with PBS 
as a control. Three weeks after immunisation the animals were challenged with 
BHV- I intranasally. One day post-challenge lung and spleen lymphocytes were 
isolated and used in the ELISPOT assays. 

Mean values of the number of antigen-specific antibody-secreting cells (ASC) 
per million lymphocytes were determined in cultures of pooled cell populations 
from 4-5 animalslgroup. 
nd = not detected (less than 1 ASC/million) 



trachea 

Figure 5.5.19 Effect of adenovirus-specific passive immunity on the protection 
against BHV-1 infection in cotton rats immunised with recombinant adenovirus. 
Cotton rats were inoculated intraperitoneally with adenovirus-specific (+ symbol) or 
normal (- symbol) cotton rat serum. Twenty four hours later the animals were immunised 
with gD-dE3 by the intnmasal (i.n.) or the intraduodenal (Lduod.) routes or with PBS as a 
control. Three weeks after imrnunisation with gD-dE3 animals were challenged with BHV- 
1 intranasally. One day post-challenge lungs and tracheae were homogenised and tested for 
the presence of BHV-1 by plaque assay. Bars represent the mean loglo antibody titre * SD 
for 4-5 animals per group. 



5.5.6 Conclusions 

Results indicate that immunity to adenovirus may inhibit @-specific antibody 

responses induced by subsequent immunisation with gD-dE3. Pre-infection with HAd5 i.n. 

negatively affected the efficacy of i.n. imrnunisation not only at 2 weeks, but also at 13 

weeks after HAd5 infection. At 13 weeks following infection, however, this inhibitory 

effect was smaller than at 2 weeks after HAd5-infection. Inhibition of gD-specific antibody 

responses and protection against BHV- 1 challenge was also observed after intraduodenal- 

oral and intraduodenal immunisahons following HAdS-infection. 

In contrast to active immunity, passively acquired Ad-specific antibody had little 

inhibitory effect on the level of immune responses induced by irnmunisations with gD-dE3 

by different routes. Interestingly, however, protection against BHV- 1 challenge was 

significantly inhibited by passive transfer of Ad-specific antibody. 

Results also indicate that even one i.n. immunisation with gD-dE3 induced gD- 

specific antibody responses in the respiratory tract and partial protection against i.n. BHV- 1 

challenge. Furthermore, intraduodenal immunisation alone was able to induce gD-specific 

immunity in the serum and the respiratory tract. 



6.0 DISCUSSION 

6.1 Establishment of an intranasal B E N 4  challenge model in cotton rats 

Cotton rats provide an excellent model for investigating immune responses induced 

by recombinant HA& vectors because they support HAd5 replication. However, to 

evaluate the protective efficacy of immunisation with recombinant HA& expressing gD of 

B W -  I ,  an animal model that supports BHV- 1 replication is necessary. Since cotton rats 

have served as a rodent model for many viral pathogens, there was a probability that they 

could also support BHV- I replication. 

BHV- I replicated in the respiratory tract of cotton rats without requiring prior 

adaptation of the virus. The histological lesions seen in the lung of each rat, namely 

necrotising bronchiolitis with the presence of intmnuclear inclusion bodies in epithelial 

cells, were consistent with lesions observed following BHV- I infection in cattle (Jericho & 

Darcel, 1978). Pulmonary lesions in cattle are highly variable and inconsistently present, 

both in natural and experimental infections (Yates, 1982). In the cotton rats, 

irnmunohistochernical staining confirmed that BHV-1 became established in the lung and 

was the cause of the pathological changes as specific viral staining was demonstrated in the 

lesions in the terminal bronchioles and alveoli. The normal behaviour and absence of 

clinical signs in the corton rats indicated that while BHV-1 became established and could 

replicate within the respiratory tract, the infection was mild and subclinical. Nevertheless, 

the fact that BHV-1 infection in cotton rats mimics the disease in cattle in terns of 

pathology suggests that this may be a valid laboratory animal model for use in development 

and evaluation of new vaccination strategies against BHV-1. 

I have not investigated whether in vivo passage of BHV-1 in cotton rats would 

increase BHV-1 infectivity in these animals. I have shown, however, that different BHV-1 



strains have slightly different capabilities to replicate in cotton rats. The 108 strain 

replicated better than the Cooper strain in both CRL cells and in cotton rats. Lesion 

development was greater, viral antigen was more widespread and higher titres of BHV-1 

were evident in the lungs of animals challenged with the 108 strain than with the Cooper 

strain. The more virulent nature of the 108 strain as compared to the Cooper strain in cattle 

has been previously suggested (unpublished observation), further supporting the similarity 

of the cotton rat model to bovine disease. Considering the observed differences between 

the two strains, I used the 108 strain in most of the challenge experiments. 

Since vaccination-challenge studies are very expensive in cattle, a useful model for 

i.n. BHV-I infection was established by determining that BHV-I can replicate in cotton 

rats. Furthermore, since no other laboratory rodent has been shown to support the 

replication of both HAd5 and BHV-I, the cotton rat became the most appropriate small 

animal model for comparing replication-defective and the replication-competent vectors 

regarding their effectiveness in inducing immunity to gD and conferring protection against 

BHV- 1 challenge. 

6.2 Immunity induced by recombinant adenoviruses in cotton rats 

Immunisation of cotton rats with recombinant adenoviruses induced protective 

immune responses against i.n. BHV-I challenge. Protection of the lung from infection 

measured by BHV-I recovery correlated with the absence of BHV-1 replication in situ 

(Table 5.3.7), which provided evidence that measuring BHV-1 titres in the lung is a 

satisfactory method to assess protection from infection. The level of gD-specific immune 

responses and protection from BHV- 1 challenge were dependent, however, on the type of 

foreign gene expressed by the vectors, the replication-capability of the viruses and the route 

of irnrnunisation. These differences and the possible mechanisms involved are discussed 

below. 



6.2.1 Immunity induced by tgD- and gD-expressing recombinant adenoviruses 

Expression of the foreign gene is a prerequisite for the development of an antigen- 

specific immune response. Therefore, before immunising cotton rats, I tested the ability of 

recombinant adenoviruses to express gD or tgD in CRL cells in vib-o. All vectors expressed 

the appropriate foreign gene. The total production of gD was higher, however, than that of 

tgD by 3 days pi. (Fig. 5.2.3.). Furthennore, the majority of gD was cell associated, while 

tgD was found in similar amounts in the culture-supernatant and in the cell pellet (Fig. 

5.2.1-3). Glycoprotein D has been known to be abundant in membrane compartments of 

cells it is expressed by (van Drunen Littel-van den Hurk et al., 1990, van Drunen Littel-van 

den Hurk et a[., 1984) while tgD is efficiently secreted into the medium (Kowalski et al., 

1993). The more efficient accumulation of gD in cells was expected since authentic gD 

contains a trammembrane anchor region while tgD does not. Finally, infection with tgD- 

expressing adenoviruses caused less cytopathic changes than @-expressing adenoviruses 

in CRL cells. This could be the reflection of the toxic nature of gD described before (Tikoo 

ef nl., 1 990). 

To determine whether differences between tgD- and gD-expressing vectors 

observed in vitro influenced @-specific irnmune responses and protection against BHV- 1 

challenge in vivo, cotton rats were imrnunised with recombinant adenoviruses and then 

challenged with BHV- I . @-specific antibody levels, spleen cell proliferative responses 

and protection against BHV-1 challenge were lower in animals imrnunised with tgD- than 

@-expressing vectors (Fig. 5.3.2-8). These results may simply be explained by lower 

levels of expression of tgD than gD following immunisation, suggested by in vim data 

(Fig. 5.2.3). Such an explanation is plausible since a high dose of subunit gD vaccine 

induced higher levels of antigen-specific immune responses than a low dose of gD (Baca- 

Estrada et al., 1996). However, the actual amount of gD expressed in vivo following 

immunisation with live vectors is not known. It is possible that the cumulative production 

of tgD (Fig. 5.2.3) resulted in similar total amounts of tgD as gD in the cotton rat. 

Furthermore, several observations and published data suggest that the antigen-dose is not 



the only explanation for the lower immunogenecity of secreted molecules compared to cell- 

associated proteins. There are examples in the literature demonstrating that the cellular 

localisation of an antigen - whether it is retained intracellularly, expressed on the surtace 

of cells or secreted into the medium - influenced its immunogenicity. Cell surface 

anchoring increased the level of immune responses induced by VP7 of rotavirus compared 

to those stimulated by a genetically engineered secreted form of the protein, or the 

authentic form, which is retained in the endoplasrnic reticulum (Andrew et al., 1990). Cell 

surface expression of a dengue virus and a bovine leukaemia virus (BLV) envelope protein 

resulted in enhanced irnmunogenicity of the protein compared to the authentic form which 

is retained iotracellularly (Gatei et al., 1993, Men et al., 199 1 ). In addition, a cell surface- 

anchored and a secreted protein may stimulate different levels of antigen-specific antibody 

isotypes and cytokines (Cardoso et al., 1996, Inchaupse et a!., 1997). Immunisation of mice 

with recombinant adenoviruses expressing gD induced higher @-specific IgGZa and I M - y  

production than immunisation with vectors expressing tgD. In contrast, vaccination with 

both recombinants induced similar levels of gD-specific IgGl (Papp et al., manuscript in 

preparation). Lewis et al. (1997) obtained similar results following immunisation with 

poiynucleotides. In this case, i.m. inoculation of plasmids encoding gD induced 

predominantly IgG2a isotype responses, while plasmids encoding tgD stimulated mainly 

IgGl antibodies. This reference is especially noteworthy since the level of expression of 

tgD was equivalent to that of gD following in v i m  transfection of mouse cells (Jeffrey 

Lewis, personal communication). However, the most clear evidence against the exclusive 

influence of the dose of the antigen on the level of immune responses was obtained by 

imrnunisation of mice with purified gD and tgD proteins. Hundred times as much tgD 

induced similar levels of @-specific IgG and BHV-1 neutralising serum Ab responses as 

gD (Baca-Estrada et al., 1996). In vivo results described in this thesis and the above 

references are also in accordance with in vitro experimental data showing that purified tgD 

is less efficient than gD in stimulating proliferative responses of spleen cells from gD- or 

tgD-immunised mice or cattle (Baca-Estrada et aL, 1996, Tikoo et a!., 1995b). These 

results suggest that not only the amount, but also the characteristics of the protein may 



affect immune responses to an antigen. Authentic gD can, perhaps, induce higher antibody 

levels than tgD because extracellular @-aggregates or gD accumulated in cell membranes 

might form repeated B-cell epitopes which could trigger T-cell independent B-cell 

responses. Particulate antigens and highly organised viral envelope structures bearing 

repeated B cell epitopes, indeed, are more likely to stimulate efficient B cell responses than 

soluble antigens (Bachmann & Zinkernagel, 1996). Alternatively, gD's capability to form 

dirners and to concentrate in cell membranes may make it more accessible for professional 

APC such as dendritic cells. The more efficient uptake of gD than that of tgD by these 

APC may lead to more efficient presentation and processing, and subsequently higher 

levels of immune responses induced by gD than tgD. Better presentation of professional 

APC might also lead to stronger Thl type responses, often characterised by the 

predominance of IgG2a and IFN-y, and better protection than presentation by mainly B 

cells (Rossi-Bergmann el al., 1993). There is evidence that IgGZa provides better 

protection against viral challenge than the presence of other isotypes (Ishizaka et al., 1995). 

Furthermore, live respiratory tract virus infections usually induce strong IgG2a and IFN-y 

levels, which correlate with protection against a second viral challenge (Zinkemagel, 

1993). 

Inflammation is often necessary for the induction of immune responses. The need 

for adjuvants in most protein based vaccines can also be explained by the capability of the 

adjuvant to induce an inflammatory response. Since gD-expression resulted in a stronger 

cytopathic effect than tgD-expression (section 5.2.2), it is possible that gD-expression 

caused stronger inflammation than tgD-expression at the site of inoculation. The potential 

of gD to elicit strong inflammation and to be presented effectively by professional APC 

may explain why irnrnunisation with recombinant adenoviruses expressing gD induced 

better antigen-specific immune responses than immunisation with adenoviruses expressing 

tgD. The above information and data in the literature suggest that gD may be a more 

suitable vaccine antigen than tgD following administration by a delivery system based on 

the in vivo expression of antigen, such as Ad vectors and DNA immunisation. 



6.2.2 Immunity induced by replication-defective and replication-competent 

recombinant adenoviruses 

Replication-defective and replication-competent adenoviruses were both 

efficacious, following id.-i.n. immunisation, in inducing immunity to gD and conferring 

protection against BHV-1 challenge (Fig. 5.3.4). The gD-dE3 vector was more efficient, 

however, than gD-dEIE3 in stimulating @-specific ASC in the spleen than gD-dE1E3 

(Fig. 5.3 S). The difference between the capacity of replication-defective and replication- 

competent adenoviruses to induce gD-speci fic immunity was further demonstrated 

following mucosal administration. The gDdE3 virus was more effective than gD-dE 1 E3 in 

inducing systemic and mucosal antibody responses following mucosal immunisation alone 

(Figures 5.3.1 1 - 12). 

The dose of adenoviruses used in my studies (1 0' to 1 0' pfu/animal) was based on 

information in the literature. It is possible that mucosal administration of a higher dose of 

gD-dE 1 E3 could induce comparable immune responses to those induced by a Low dose of 

gDdE3. Data in the literature indicate, however, that replication-defective and replication- 

competent adenoviruses usually induce different levels of immunity or protection, 

especially following mucosal administration. For example, although im. immunisation 

with both dE3 and dE 1 E3 vectors expressing gD of pseudorabies virus (PRV) could induce 

antibody responses against gD of PRV (Eloit & Adam, 1995), protection against viral 

challenge required irnmunisation with a hundred times as much dE 1 E3 as dE3 (Eloit & 

Adam, 1995). Moreover, oral administration of a dE3 vector expressing a rabies 

glycoprotein induced immunity to rabies glycoprotein while dE 1 E3 virus did not (Prevec et 

al., 1990, Xiang et al., 1996). Intranasal immunisation with a dE 1 E3 vector induced few 

antigen-specific C D ~ +  T cells and low s e m  antibody responses, while i.m. or S.C. 

immunisation induced strong immune responses (Rodrigues et aL. 1997). In general, 

replication-defective dElE3 vectors have rarely been reported to be effective following 

rnucosal adrninistration, while such references are plentiful using replication-competent 

dE3 vectors (Table 2.1). All these data in the literature are consistent with my findings, and 



indicate that the route of immunisation is crucial when assessing the efficacy of 

recombinant adenoviruses as vaccine vectors. 

There are several possibilities as to why systemic, but not mucosal immunisation 

with the replicationdefective vectors induced high levels of @-specific antibody 

responses. First, systemic spread of Ad vectors may have been necessary for the induction 

of efficient @-expression and induction of gD-specific immunity. In this case, only low 

@-specific immunity could have developed following irnmunisation with gD-dE I E3 

because the mucosal barrier would limit the systemic spread of the non-replicating vector. 

In contrast, a replicationcompetent Ad may disseminate equally well following mucosal 

and systemic immunisation due to replication. Indeed, replication-competent dE3 Ad has 

been isolated from more organs than replication-defective dElE3 Ad following i n  

administration to cotton rats (Oualikene et al., 1994). According to other data, however, the 

dE I E3 vector expressed foreign genes very efficiently in different tissues following 

mucosal administration @-hard et al., 1995). Information in the literature about the 

capability of replicationdefective Ad to disseminate systemically is controversial and 

seems to be a function of the route and dose of Ad inoculation, detection assays and animal 

model. Moreover, information regarding the spread of adenoviruses following i.d. 

administration has not been reported. My data indicate that the dissemination of both 

gD-dE3 and gD-dE 1 E3 is similar following i.d., i.n. and intraduodenal inoculation (Table 

5.4.1 .-3.). In addition, the two vectors stimulated similar Ad-specific immune responses 

following both systemic and mucosal administration (data not shown) suggesting that both 

vectors were accessible to all compartments of the immune system. Nevertheless, it is 

possible that gD4.E lE3 induced better immunity following systemic than mucosal 

administration because it may have more easily accessed tissues in which it could express 

gD effectively after systemic immunisation. 

Alternatively, the dE3 virus may have caused more severe inflammation in the 

mucosa than the dEIE3 vector (more severe cytopathic changes in vitro; section 5.2.2). 

This could result in stronger signals for an immune response to develop or a more effective 

uptake of gD by APC in the mucosa or the draining LN-s due to higher cellular infiltration. 



Indeed, exposure of the mucosa to non-inflammatory doses or type of antigen, such as 

soluble antigens and inactivated viruses, often fails to induce immune responses (Lipscomb 

et a/., 1995)- while live replicating pathogens usually stimulate both mucosal and systemic 

immunity following mucosal administration (Ogra, 1996). The systemic immune system 

may be less able to distinguish between harmless antigens and potentially dangerous 

sources of antigen and may respond to weaker immunostimulatory signals as well. For 

example, systemic immunisation with either killed or replicating particulate antigens often 

induces good immune responses (Momson & Knipe, 1996). Therefore, systemic 

immunisation with gD-dE lE3 may have been able to induce better immunity than mucosal 

immunisation. 

Another possibility is that the replicationdefective gD-dE 1 E3 adenovirus might 

not had a chance to express enough g D  in vivo in the mucosa to induce @-specific 

immunity. This may be because the natural early clearance of Ad is very effective (Worgall 

et al., 1997) and the expression of gD is driven by a late promoter. A more invasive 

infection by gD-dE3, due to replication, could have overcome the fast clearance 

mechanisms because it probably resulted in increasing number of cells expressing gD. This 

could result in a higher amount of gD available for uptake by APC in the MALT and the 

draining LN following mucosal infection. Furthermore, the ability of gD-dE3 to produce 

higher amounts of gD during the first day pi.  than the gD-dE lE3 virus (Fig. 5.2.1. 5.2.2, 

5.2.3) may have resulted in very different kinetics of gD-expression in vivo by gD-dE3 and 

gD-dE 1 E3. Consequently, higher levels of gD-specific antibody responses would be 

induced by gD-dE3 compared to gD-dE 1 E3 following mucosal administration (Fig. 5.3.1 1 - 
12). In contrast to rnucosal administration, the replicationdefective virus may have 

induced immunity following systemic administration because the systemic immune system 

may have a lower threshold for the dose of gD it responds to. The above mechanisms could 

explain the efficacy of the replication-defective gD-dE1 E3 virus to induce good 

@-specific immunity following systemic, but not following solely mucosal immunisation. 



6.2.3 Mucosal antibody responses induced by mucosal and systemic 

immunisation with recombinant adenoviruses 

I have shown that both mucosal (i.n. and g.i.) and systemic (i-p. and i.d.) routes of 

immunisation with gD-dE3 were capable of inducing @-specific immune responses. 

However, the different routes stimulated different levels of antibody responses, especially 

with regard to respiratory tract IgA. For example, i.n. immunisation with gD-dE3 was more 

effective than i.d. or i.p. immunisation in inducing respiratory tract IgA responses. In 

contrast, in., i.d. and i.p. immunisation induced similar levels of gD-specific IgG antibody 

in the serum and lung-washes (Figures 5.3.14 & 1 7, Tables 5.3.3, 5.3.4 & 5.5.5). The high 

levels of IgA in the respiratory tract compared to those in the serum following i-n., but not 

after systemic immunisation, and the correlation between the level of IgA in lung-washes 

and the number of IgA ASC in the lung indicated that IgA was mainly locally produced in 

the respiratory tract (Fig. 5.3.14 & Table 5.3.3, Fig. 5.3.17 & Table 5.3.4). Local gD- 

specific IgA levels and the number of gD-specific ASC in the lung correlated with 

protection of the lungs against i.n. BHV-1 challenge. Cotton rats that contained the highest 

levels of respiratory tract IgA in the lung were best protected against i.n. BHV- 1 challenge, 

while the lack of IgA in the respiratory tract corresponded with low levels of protection. 

Intranasal immunisation resulted in better protection against i-n. BHV- 1 challenge than i .d. 

or i.p. inoculation (Fig. 5.5.15 & Table 5.3.5). These findings are consistent with other 

reports and suggest that mucosal IgA is important in protecting the host from a mucosal 

viral infection (reviewed by Murphy, 1994). However, partial protection was sometimes 

observed in the presence of very low levels of mucosal IgA (Figures 5.3.1 1, 5.3.14, 5.5.5, 

5.5.8, etc.). In addition, the titre of @-specific IgA in the lung, and especially in the 

trachea, did not always directly correspond with the number of BHV-1 pfu recovered 

following challenge. These observations suggest that effector mechanisms other than I g A  

may play a role in protection of cotton rats against i n  BHV-1 challenge. 

Antigen-specific IgG can bind and inactivate viruses before they infect the mucosal 

epithelium (Murphy, 1994). Intraderma1 irnrnunisation induced @-specific IgG in the 



serum and the lung (Figures 5.3.14 and 5.3.17), which correlated with partial protection of 

the lung against i.n. BHV-1 challenge (Table 5.3.5). The presence of IgG at mucosal 

surfaces in my experiments, following any route of irnrnunisation, is probably largely due 

to exudation of serum IgG to mucosal surfaces. This is likely since gD-specific IgG levels 

in the respiratory tract of cotton rats correlated with @-specific IgG levels in the serum, 

but not with the number of @-specific IgG ASC in the lung (Fig. 5.3.14 & Table 5.3.3, 

Fig. 53-17 & Table 5.3.4). Several findings in mice support this hypothesis (Papp et al., 

manuscript in preparation; Baca-Estrada, manuscript in preparation; Eis Hubinger et al., 

1993, Wagner er al., 1987). The presence of a few IgG ASC in the lung of cotton rats 

indicated, however, that some of the IgG at mucosal surfaces may have been locally 

produced. In addition, lower levels of IgG in nasal than lung-washes indicated that IgG 

may have more easily transudated through the lung epithelium than the nasal and tracheal 

mucosa. This may be an explanation for why serum antibody is usually more protective 

against pulmonary than nasal infection (Graham et a/., 1993, Mmphy, 1994). Therefore, 

the usually better protection of lungs than of tracheae following immunisation suggest that 

IgG may play a role in the protection of the cotton rat lung against i.n. BHV- 1 challenge. In 

addition, other effector immune mechanisms such as cell-mediated immunity (CMD might 

play a role in an accelerated clearance of B W -  1 from the respiratory tract. 

Data in the literature are consistent with my results regarding the capability of i-n. 

immunisation to induce similar systemic, but better mucosal immunity and protection 

against respiratory mucosal viral challenge than systemic irnmunisation (Gallichan et al., 

1993, McGhee el al., 1 992, Michalek et al., 1994, Tarnura & Kurata, 1996). The reason for 

this observation probably is that following i.n. immunisation, specialised lymphoid tissues 

in the respiratory tract of rodents such as nasal- and bronchus-associated lymphoid tissues 

and lung-associated LN-s serve as inductive sites for antigen-specific immune responses by 

local stimulation with antigen. Antigen-specific lymphocytes stimulated locally are thought 

to leave these inductive sites, enter the systemic circulation and then return to the area of 

stimulation as effector cells. Inflammation may be important in the recruitment of activated 

lymphocytes, while the continued presence of specific antigens within the tissue would 



help retaining recruited antigen-specific cells (Lipscomb et al., 1995). It is not surprising 

therefore, that i.n. immunisation resulted in a higher number of @-specific ASC in the 

lung than i.d. inoculation since persistence of gD in the lung and lung-associated LN is 

more likely following administration of antigen to the respiratory tract. In addition, 

memory lymphocytes stimulated in the respiratory tract may have unique homing 

specificities that favour their entry into the site of stimulation (Lipscomb el al., 1995, 

McDermott & Bienenstock, 1 979, Picker, 1994). 

Although systemic irnmunisation usually does not induce local respiratory tract 

immune responses, i-d. imrnunisation with recombinant Ad induced a few @-specific IgG 

and IgA secreting cells in the lung (Tables 5.3.3-4). It is possible, that local stimulation of 

@-specific lymphocytes could take place in the lung even following i.d. inoculation of 

cotton rats with gD-dE3, since adenoviruses are able to spread systemically to the lung 

tissue following systemic innunisation (Table 5.4.3 and Mittal et al., 1993). Alternatively, 

mild inflammation in the lung caused by a low level of Ad persistence or i.n. BHV-1 

challenge may be enough to recruit gD- and Ad-specific lymphocytes to the lung induced 

in systemic lymphoid tissues. In fact, initiation of a mild inflammatory response in the lung 

can result in the accumulation of antigen-specific lymphocytes in the lungs of animals 

immunised via an extrapulmonary route (Hillam et al., 1985, Lipscomb et al., 1995). 

Despite the presence of gD-specific antibodies in the respiratory tract following i.d. 

and i.p. inoculation, intranasal immunisation better protected cotton rats against i.n. BHV- I 

challenge than systemic imrnunisation. This protection correlated with high levels of gD- 

specific IgA in the respiratory tract following i.n. administration of the recombinant 

adenovirus. Therefore, although I can not exclude the possibility that gD-specific CMI may 

have played a role in protection of the lungs against BHV-I challenge, it is likely that the 

mechanism of protection against i.n. BHV-1 challenge involved @-specific antibodies, 

especially mucosal IgA. 



6.2.4 Mucosal antibody responses induced by the gastrointestinal route of 

immunisation 

Based on the concept of the common mucosal immune system (CMIS) (Mestecky 

et al., 1994) and the success of oral adenoviral immunisation of military recruits against 

acute respiratory distress syndrome (ARDS) (Top et al., 1 97 1 a), g.i. irnmunisation with 

recombinant Ad expressing gD was expected to induce mucosal immunity and protection 

of the cotton rat respiratory tract against i.n. BHV-1 challenge. Indeed, administration of 

gD-dE3 by the oral and intraduodenal routes induced @-specific antibody in the serum 

and the respiratoly tract (Figures 5.3.1 1 & 5.5.4). In addition, intraduodenal-oral (Table 

5.3.3) and intraduodenal (Table 5.5.6) administration of gD-dE3 could also induce gD- 

specific ASC in the lung. I found no other report in the literature on induction of immunity 

to a foreign protein in the respiratory tract following g.i. irnmunisation with recombinant 

adenovirus. However, wt HAd and other viruses have been shown to induce immunity in 

the respiratory tract following g-i. irnmunisation (Bender et al-, 1996, VanCott et al., 1994; 

reviewed by Mestecky et ol., 1994). 

According to the concept of the CMIS, antigen-specific lymphocytes stimulated in 

the gut following enteric irnmunisation would disseminate systemically and seed distant 

mucosal sites such as the respiratory tract. Before discussing the CMIS as a mechanism of 

induction of @-specific immunity in the respiratory tract, it is important to consider that 

gD antigen may not have exclusively stimulated lymphocytes in the gut mucosa. First, I can 

not exclude the possibility that a low amount of Ad may have directly entered the 

peritoneum fiom the surface of the needle used in an intraduodenal injection, even though 

there was no evidence of virus inoculum leaking fiom the gut dwing or following injection 

to the duodenum (Evans blue dye). Even if minimal leakage took place, virus could access 

and express gD in different organs, inducing systemic gD-specific immune responses. 

Although the procedure of intraduodenal imrnunisation is widely used in rodents, I have 

not seen this issue addressed. This possibility could be examined by administering traces of 

recombinant Ad i.p. and monitoring whether any immune response develops. In addition, 



there is a possibility that animals that had received intragastric inoculation regurgitated 

some virus, resulting in exposure of the respiratory tract to infection and foreign gene 

expression. Although there was no evidence of virus suspension in Evans blue dye 

spreading to the pharynx or further into the respiratory tract following administration of the 

virus in the oesophagus, adenovirus isolation results indicated that gD-dE3 may have 

spread to the respiratory tract. The amount of gD-dE3 virus in the lung 3 days following 

intragastric immunisation was similar to that following i.n. inoculation (Tables 3.4.1-3). 

Others have also suggested that live virus may have spread to the respiratory tract 

following oral or intragastric administration (Huard et al., 1995, Kanesaki et al., 199 1, 

Schwartz et al., 1974, Tacket et al., 1992). Therefore, an oral capsule that delivers Ad 

directly into the stomach, and does not release virus till the capsule enters the gut may be 

necessary if one needs to use a completely enteric immuaisation procedure. This way the 

possibility of regurgitation of virus from the stomach would be reduced. Even then, 

however, systemic adenoviral dissemination may take place following enteric 

administration, which would result in @-expression not only in the gut mucosa, but also in 

systemic lymphoid tissue. My results clearly demonstrated that adenovirus spread 

systemically following either intranasal, intraduodenal or oral routes of administration with 

gD-dE 1 E3 and gD-dE3. This resulted in live infectious Ad (and potentially @-expression) 

in the lungs as well as other organs (Table 3.4.1-3). These data suggest that both 

replication-defective and replication-competent adenoviruses have the capability to cross 

the mucosal (or lung) barrier and potentially infect other mucosal or systemic sites. It is 

possible, that many viruses have such capabilities for dissemination, such as rotavirus 

(Uhnoo el al., 1 990). This issue should be fiuther investigated in vaccination and in tumor- 

and gene-therapy research to address safety concerns and to understand basic 

immunological mechanisms of induction of mucosal immunity. 

Although gD-speci fic antibody induced in the respiratory tract, after g. i. 

immunisation with recombinant Ad, can not be exclusively explained by the migration of 

an tigen-speci fic lymphocyte precursors to 

CMIS was, at least partly, responsible for 

remote mucosal sites, it is very likely that the 

the presence of mucosal antibody responses in 



the respiratory tract following intraduodenal inoculation (Fig. 5 S.8 and Table 5.5.6). 

Adenoviw- and @-specific ASC were induced in the mesenteric LN (Table 5.5.1) and 

Ad-specific antibodies were detected in gut washes (data not shown) following g.i. 

inoculation with recombinant adenovirus. It is possible that gD- and Ad-specific 

lymphocytes primed in the Peyer's patches of the gut or in the mesenteric LN rmgrated to 

the lung where they became plasma cells. It would be interesting to find out whether gD- 

specific ASC or memory T cells can be recruited into the lung without the presence of 

BHV-1, gD or local inflammation caused by virus infection in the lung. Such research 

would clarify whether antigen persistence, local inflammation or the homing specificities 

of lymphocytes are more important in the accumulation of antigen-specific lymphocytes in 

the lung. Whether immune responses in the respiratory tract induced by the g.i. route of 

immunisation with gD-dE3 are mainly due to the migration of lymphocytes induced in the 

gut or also to the spread of the virus itself to other mucosal sites also require fbther 

studies. 

Local stimulation of @-specific immunity in the respiratory tract seems very 

important in the protection of cotton rats against in. BHV-1 challenge. In contrast to 

complete protection following i.n. imrnunisation, only partial protection of the lung was 

observed against BHV-1 challenge in most animals imrnunised by the g.i. route (Table 

5.3.2). Protection results varied following intmduodenal immunisation depending on the 

experimental design (Table 5.5.2 and Fig. 5.5.19). My findings are in accordance with 

other reports showing that i.n. delivery of live vaccines is often more effective than 

gastroenteric administration in protecting the respiratory tract against challenge (Brownlie 

el al., 1993, Collins et al., 1990, Couch el al., 1996, McLean et a[., 1996, Meitin et al., 

1994, Tamura & Kurata, 1996). It is possible that following g.i. immunisation only a few 

viruses could access mucosal inductive sites due to dilution of the inoculum and effective 

non-immune exclusion of the virus in the gut. I used high (lo8) pfu of gD-dE3 for g.i. 

inoculation of cotton rats to overcome such effective clearance; however, even more virus 

or the development of new delivery techniques may be necessary to obtain similar levels of 

immunity and protection in the lung following g.i. as those following i.n. inoculation. It is 



also possible that human adenovirus, especially the dE3 vector, does not replicate as well 

in the cotton rat gut (no data available) as in the respiratory tract (Pacini et a/., 1984). 

Nevertheless, the capability of g.i. immunisation to induce immunity in the respiratory tract 

is remarkable and has a great potential as a vaccine strategy against respiratory tract 

diseases. It would be important, however, to further explore what the mechanism of 

induction of immunity is at a distant mucosal site. 

6.2.5 The duration of antibody responses induced by recombinant adenovirus 

An important requirement fkom a good vaccine is that it should induce long-lasting 

protective immune responses. Antibody responses induced by immunisation with subunit 

protein vaccines are usually of short duration and repeated inoculations are necessary to 

maintain high antibody levels. One great advantage of recombinant adenoviruses over other 

vaccination strategies is their capability to deliver subunit viral proteins in vivo in such a 

manner that the antigens will be presented to the immune system similar to that following 

natural viral infection. This may change the regulation, and increase the levels and duration 

of immune responses to the heterologous antigen. 

Although mucosal viral infections usually stimulate immunity of shorter duration 

than systemic infections (Slifka & Ahmed 1996), long term humoral responses and 

protection fkom mucosal viral challenge have been reported following mucosal 

administration of live viruses or viral vectors (Gallichan el a[., 1993, Hyland et nl., 1994, 

McNeal & Ward, 1995). My results also suggest that immunity induced by i.n. 

administration of gDdE3 in cotton rats may be long lasting: gD- and Ad-specific antibody 

responses were maintained at high levels for at least 12 weeks following immunisation 

(Figures 53-19 & 5.5.1 1). Antigen-specific ASC in the lung and the bone marrow were 

present at similar levels at 12 weeks as at 3 weeks following immunisation (Tables 5.3.6 & 

5.3.4). Furthermore, complete protection of the lungs was achieved at 3 and 12 weeks 

following immunisation. It would be interesting to determine the capability of recombinant 



human adenoviruses to induce long term immunity in an animal model with a longer life- 

span than that of rodents. 

Long term antibody responses and protection against challenge may be due to the 

presence of ASC maintained for a long period of time in the bone marrow, draining 

mediastinal LN or the lung following respiratory viral infection (Hyland et al., 1994, Jones 

& A&, 1987, Liang et al., 1994). My results indicate that significant numbers of 

@-specific ASC persisted for at least 3 months in cotton rats following i.n. immr;nisation 

with gD-dE3 (approximately lo3 in the lung, lo3 in the bone marrow and 10' in the 

spleen). The numbers were calculated by assuming that there are approximately 2 million 

lymphocytes in the lung, 150 million in the bone marrow and 50 million in the spleen of 

cotton rats. These data suggest that at least as many gD-specific ASC seed systemic sites 

following i.n. immunisation with gD-dE3 as those retained in the lung. 

Antigen-specific antibody continues to be produced in the bone marrow and in the 

lung for several years after the last exposure to antigen (Bice et al., 1993, Bice et at., 199 1, 

Slifka & Ahmed, 1996). It is possible that the microenvironment of the bone marrow and 

the lung can provide the right signals and cytolunes to sustain antibody-secreting plasma 

cells for long periods, even for years. In fact, antibody-secreting plasma cells from the bone 

marrow are as long lived as memory B cells (Manz et al., 1997). ASC are known to 

selectively express syndecan, which binds collagen and fibronectin (Lalor et al., 1992). 

This may help retain ASC in the lung interstitiurn, alveoli, alveolar septa or pleura or to be 

scattered in the mucosa of the upper respiratory tract (Bice el al., 1 987). It is more likely, 

however, that memory B cells are involved in the mechanism of maintenance of long-term 

antibody responses. Memory B lymphocytes induced by immunisation with gD-dE3, 

recirculating throughout the lymphoid system, are perhaps exposed to persisting antigen in 

the lung, lung-associated LN, mediastinal LN or systemic lymphoid tissue. They would 

then proliferate, develop into ASC and plasma cells. In the meantime they would lose their 

capability to repeatedly recirculate in the lymphoid system and to enter lymph nodes via 

high endothelial venules: they would rather enter the bone marrow or the lung, which lack 

such venules. It has been suggested that ASC preferentially migrate to the bone marrow or 



remain restricted to the site of persisting antigen, while memory B cells freely recirculate 

(Bachmann et al., 1994). Although inflamed lungs non-specifically recruit both T and B 

cells, the presence of specific antigens within the tissue is an important factor in retaining 

recruited immune cells in the lung (Lipscomb et ol., 1995). 

The mechanism of maintaining antibody levels and the number of antigen-specific 

ASC in the lung may be the result of the continuing presence of gD in the lung or draining 

LN. Indeed, 2 out of 7 cotton rats tested contained infectious adenovirus 3 weeks following 

i.n. immunisation with gD-dE3. In addition, the capability of certain viruses, such as 

adenoviruses, to induce long-term systemic immune responses following mucosal 

administration may be associated with their ability to spread systemically (Oualikene et al., 

1994, SIiflca & Ahrned, 1996; and Tables 5.4.1-3). Therefore, adenovirus - and 

consequently gD - may persist at different sites in the systemic lymphoid tissue. Indeed, 

infectious dE3 Ad was isolated fiom different tissues 4 weeks following i n .  inoculation of 

cotton rats (Ouaiikene et a[., 1994). Adenoviral DNA was detected in the nasal mucosa for 

70 days p.i., while foreign gene expression continued for 18 days following i.n. 

administration of a replication-defective recombinant Ad2 virus (Zabner et al., 1994). In 

some cases, expression of the foreign gene was observed for 12 months in skeletal muscle 

of mice following i.m. administration of Ad (Stratford-Perricaudet et al., 1990). Moreover, 

HAd shedding has been observed for several months following infection (Fox et al., 1969, 

Fox et a!., 1977). The site of adenoviral persistence is not known. Adenoviruses may be 

able to persist in vivo in lymphocytes (Flornenberg et al., 1997) such as they do in vipo 

(Hornenberg et al., 1996, Silver & Anderson, 1988). In addition, antigens such as 

adenoviral proteins and gD may be associated with dendritic cells in the form of antigen- 

antibody complexes (Tew et al., 1980, Unanue, 1993). 

Direct evidence that maintenance of B cell memory depends on antigen persistence 

has come fiom the finding that memory responses decay rapidly when primed lymphocytes 

are adoptively transferred in the absence of antigen; cotransfer with antigen lead to 

maintenance of memory (Gray, 1994, Gray & Skarvall, 1988). However, antigen 

persistence is not the only possible mechanism to explain long term immunological 



memory. There is evidence that qualitatively special long tern memory B and T cells may 

exist, independently of persisting antigen (Sprent, 1 994). Maybe, such memory B cells 

would be restimulated by local antigenic challenge, proliferate and become plasma cells in 

the lung. Understanding the mechanism of maintenance of long tern immunological 

memory is important for the development of more efficacious vaccines. 

Studies about immunity induced by recombinant adenoviruses has only recently 

been started in animals of long life-span or in humans (Table 3.1). It is not known whether 

mucosal or systemic irnmunisation with recombinant adenoviruses can induce long-term 

immune responses in such species. Studying the mechanism of immunological memory 

should help design appropriate vaccination protocols to utilise the potential of recombinant 

adenoviruses expressing gD in inducing long-term protection against BHV- 1 infection in 

cattle. 

6.2.6 gD-specific T cell responses induced by recombinant adenoviruses 

Virus-specific humoral immune responses are known to play an important role in 

preventing secondary viral infections and extracellular spread of virus within the host, 

while cell mediated immunity usually contributes to the control and resolution of already 

established infections. Cytotoxic T cells have been shown to reduce the replication of 

certain viruses and protecting animals f?om disease caused by mucosal or systemic viral 

challenge (Zinkernagel, 1993). In some viral infections, CD4+ T cells play a relatively 

minor role in the protection against disease (Zinkernagel, 1993). However, the induction of 

antigen-specific c D ~ +  T cells is essential for inducing humoral immunity against most 

protein antigens since B cell responses to most viral antigens are T cell dependent 

(Bachrnann & Zinkemagel, 1996, Zinkemagel, 1993). T cells also produce cytokines and 

are able to provide help for CTL (Fitch et a/., 1993). 

Antigen-specific T lymphocytes are known to proliferate in vine upon presentation 

of antigen. Although proliferation is not a specific effector function of T cells, proliferation 

assays have been widely used to assess the overall imrnunocompetence of an animal. Data 

obtained from such assays may reflect proliferation of CTL, cytokine-producing c D ~ +  T 



cells or bystander B cells. Nevertheless, the population that constitutes proliferating spleen 

cells is usually antigen-speci fic C D ~ +  lymphocytes. They can also amplify bystander 

proliferation in an antigen-specific manner. 

I was able to consistently demonstrate low and not always significant, levels of gD- 

specific proliferative responses of spleen cells in every experiment following immunisation 

with gD-expressing recombinant adenoviruses (Fig. 5.3.6 or not shown). To optimise the 

conditions for proliferative responses of cotton rat spleen cells, many culture-conditions 

and antigen doses were tested. Proliferative responses to Concanavalin A and antigen- 

specific proliferative responses to the Ad vector itself were good, showing that the cause of 

low gD-specific proliferative responses was not unsatisfactory in vino culhxe conditions. 

Instead, the proliferation assay simply may not be an optimal assay for assessing the level 

of @specific T-cell activation. Cytokine production by T lymphocytes may better 

represent the potential of immunisation to induce gD-speci fic CMI. Indeed, immunisation 

of mice with gD-dE3 induced only low or no proliferative responses but high numbers of 

gD-specific IFN-y cytokine producing cells in the spleen and the lungs (Papp et al., 

manuscript in preparation). Immunisation of mice with plasmids carrying the gene of gD 

was also able to induce only low @-specific proliferative responses, while they induced 

high IFN-y production of spleen and LN cells (Lewis et al., 1997). In contrast, purified gD 

in an oil-based adjuvant formulation was capable of consistently inducing higher 

proliferative responses and IL-4 pioduction by spleen cells of mice than control-inoculation 

(Baca-Estrada et al., 1996). In cattle, immunisation with the gD or tgD protein usually, but 

not always, induces @-specific proliferative responses in spleen cells (Tikoo et al., 1995b, 

Baca-Estrada and Marlene Snider, personal communication). In sheep, i.d. or intrajejunal 

immunisation with gD-dE3 induced Peyer's patch and spleen cell proliferative responses of 

high SI in some animals and lower or none in others (Philip Griebel et al., manuscript in 

preparation). These references indicate that gD is capable of inducing T cell proliferative 

responses, but depending on the experimental set-up and the animal model used, this assay 

may not reflect the differences in gD-specific T cell induction between immunised and 

control groups. 



It is also possible that, the genetic background of cotton rats is such that certain 

antigens such as gD, may induce low proliferative responses of their spleen cells, and 

maybe low T cell activation in general. Certain individual cattle and sheep, and certain 

strains of mice are low-responders to gD antigen (Philip Griebel, Sylvia van Drunen-Littel 

van den Hurk Maria Baca-Estrada and Jeffrey Lewis, personal communication). 

Immunisation of cotton rats with recombinant Ad expressing haemagglutinin (HE) of 

coronavirus also induced very low spleen cell proliferative responses in cotton rats (Baca- 

Estrada et al., 1 995). To test whether gD expressed by adenoviruses in vivo can induce 

CMI, reagents for measuring cytokine production or development of other assays (e.g., 

delayed-type hypersensitivity assay) in coaon rats would be necessary. 

Although gD of herpesviruses is known to induce proliferative responses and gD- 

specific cytokine production in different animal models (mentioned above), no @-specific 

CTL responses has been demonstrated following either HSV or BHV infection, or 

immunisation with gD using different delivery systems (Johnson, 199 1, and Baca-Estrada, 

Jeffrey Lewis and Sylvia van Drunen-Littel van Den Hurk, personal communication). I 

could not detect @-specific C'TL responses from spleens of cotton rats immunised with 

gD-dE3 either (data not shown). In contrast, gB of BHV-1 (Maria Baca-Estrada, personal 

communication) and gB and gC of HSV (Gallichan et al., 1993, Witrner et a/., 1990) can 

stimulate CTL responses in mice. To understand why measuring @-specific CTL 

responses has been unsuccessful needs fiu-ther investigations. In addition, the role of gD- 

specific CMI in the protection against infection or disease caused by BHV-1 in cotton rats 

and cattle remains to be studied. 

6.3 Effect of pre-existing adenovirus-specific immunity on immunisation with 

recorn binant adenovirus 

For gD-specific immunity to develop it is crucial that cotton rat cells become 

infected with recombinant adenovirus and express the gD protein. Since Ad-speci fic 

neutralising antibody can prevent an infection by adenovirus and Ad-specific CMI may 



limit the duration of foreign gene expression, it is not surprising that pre-existing Ad- 

specific immunity reduced the efficacy of immunisation with gD-dE3 in cotton rats. Active 

Ad-specific immunity significantly inhibited the development of @-specific antibody 

responses following immunisation with gD-dE3 and the protection of cotton rats against 

BHV-I challenge, while only a slight inhibition of the efficacy of immunisation was 

observed by passive transfer of Ad-speci fic antibody. 

These results are consistent with data in the literature. Although the effect of 

passive and active vector-specific immunity has rarely been compared, observations 

indicate that active immunity to a live vector usually more significantly reduces the 

efficiency of foreign gene-expression or the development of antigen-specific immune 

responses than passive transfer of Ad-specific serum antibodies (Andrew, 1989, Johnson et 

a[., 1993, Kundig el al., 1993, Yang et aL, 1995a). It would be interesting to determine 

whether passive transfer of vector-specific antibody in a natural situation (maternal 

antibody) would inhibit the efficacy of imrnunisation with live recombinant vectors in new- 

born cotton rats. In this case, maternal antibody would be transferred both through the 

placenta (mainly IgG) and through milk (mainly IgA) and may affect immunisation with 

recombinant Ad differently than passive transfer of merely serum IgG into an adult rat. In 

addition, pre-immunisation with lower doses of HAdS, which probably resembles a natural 

infection better than that with high doses used in my experiments, may not interfere with 

the success of imrnunisation with recombinant adenovirus vaccines (such as in Xiang et al., 

1996). 

Intranasal administration of 2 x 10' pfi  wt HAd5 almost completely blocked the 

development of @-specific immune responses following i.n. imrnunisation with gD-dE3. 

This suggests that in each experiment where I used the same route for a secondary 

imrnunisation as for a primary immunisation with gD-dE3, the second immunisation might 

have not provided much booster effect. Although gD-specific serum antibody levels were 

sometimes slightly higher following a second immunisation than those following primary 

immunisation (data not shown), this increase may only reflect the kinetics of the immune 

responses developing following the first imrnunisation. In fact, both gD- and Ad-specific 



serum-IgG levels kept rising beyond the timepoint when primary antibody responses were 

assessed 3 weeks following immunisation (Figures 5.3.19 and 5.5.1 t ). Whether the affinity 

of mucosal antibody was significantly increased by a second mucosal immunisation with 

recombinant Ad remains to be further investigated. 

There are several possibilities to improve the efficacy of a second immunisation 

with gD. First, a primary immunisation with recombinant Ad later followed by 

immunisation with gD using a different delivery system (liposomes, DNA, etc.) may give 

better results than immunisation twice with recombinant Ad by the same route. Second, 

Ad-specific neutralising immunity may be circumvented by the administration of a second 

adenovird vector of an alternate serotype (Mack et a!., 1997, Mastrangeli et al., 1996). 

Third, a primary oral and a secondary i.n. immunisation might provide better immune 

responses than immunisation twice intranasally. Fourth, if the immunisations with gD-dE3 

are far apart in time, expression of gD following the second imrnunisation may not be 

blocked and @-specific immune responses may be enhanced. Iwnunisation with gD-dE3 

twice, several months apart were not performed, but my results suggest that by 3 months 

following the first imrnunisation with adenovirus the inhibitory effect of Ad-specific active 

immunity decreased even if the two immunisations are performed by the same route (Fig. 

5.5.12). 

The mechanism by which Ad-specific immunity inhibits the efficacy of 

immunisation with recombinant adenovirus may involve neutralisat ion of the recombinant 

adenovirus or accelerated elimination of recombinant Ad-infected cells by HAdS-specific 

CTL. Since neither serum nor lung antibody levels were found to decrease during a 3 

month period following immunisation (section 5.3.5.2), it is possible that other Ad-specific 

effector immune responses declined in the respiratory tract, allowing more extended gD- 

expression following immunisation with gD-dE3. For example, gB-specific Cm responses 

in the spleen declined following i.n. immunisation of mice with recombinant Ad 

expressing gB (Gallichan er a!., 1993) even though @-specific memory CTL were present 

in the lymph nodes draining the vagina for more than a year. The duration of Ad-specific 

CTL responses in the respiratory tract is not known. 



Data in the literature support the notion that immune responses specific for live 

viral vectors decline with time. Although the efficacy of imrnunisation with recombinant 

vaccinia virus was inhibited for at least 9 months following the first infection with 

vaccinia, the level of inhibition was lower at 5-9 months than at 7-42 days following 

infection (Kundig er a[., 1993). In addition, although the efficiency of heterologous gene- 

expression in the lung or liver was lower following the second administration of 

recombinant adenovirus, inhibition of foreign gene expression was less evident 12 weeks 

than 4 weeks after the first administration of recombinant adenovirus (Setoguchi et a!., 

1994). Therefore, it may be more efficacious to apply a booster immunisation with 

recombinant Ad at a later timepoint following the first immunisation to achieve high levels 

of immune responses to the vaccine antigen. 

Considering the importance of local mucosal immunity in protection against 

viruses, the possibility existed that i.n. exposure to wt HAd5 would not inhibit 

immunisation by the g.i. or intraduodenal route as much as it inhibits i.n. immunisation. 

Interestingly, the efficacy of intraduodenal-oral and intraduodenal immunisation was also 

decreased by pre-imrnunisation with wt HAd5 (Figures 5.5.4 and 5.5.8). The most likely 

explanation for such distant inhibition is that some wt Ad was swallowed during i.n. 

immunisation or was transported to the gut through the circulation, which then induced 

Ad-specific immunity in the GALT and mesenteric LN. Indeed, adenovirus was detected in 

the gut and mesenteric LN following i.n. administration of adenovirus (Table 5.4.3). 

Adenovirus-specific neucralising antibody in the gut could reduce infection of the gut with 

gD-dE3 following g.i. immunisation. Alternatively, Ad-specific CMI may have restricted 

both the quantity and duration of gD-expression. This may have caused the presence of less 

gD-specific ASC in the rnesenteric LN than in animals without pre-existing HAd5-specific 

immunity (Table 5.5.1). It is also possible that Ad-specific immunity in the gut or 

antibodies in the serum have inhibited the systemic dissemination of gD-dE3 following g.i. 

administration, which, as I have suggested before, may have played a role in the induction 

of systemic and respiratory mucosal immunity. Another explanation for the inhibitory 

effect of i.n. administration of wt HA& on immunisahon by the g.i. route is that i.n. 



HA&-infection induced Ad-specific immunity in the gut by the common mucosal immune 

system. Lymphocytes specific for Ad induced in the lung- or nasal-associated lymphoid 

tissue or draining LN-s of the respiratory tract may have migrated to the gut and mediated 

Ad-specific immunity against gD-dE3 infection in the gut. 

In summary, passive transfer of Ad-specific antibodies had a lower inhibitory effect 

than active Ad-specific immunity on the development of @-specific immunity induced by 

immunisation with gD-dE3. Therefore, a recombinant adenovirus vaccine may be more 

efficacious in young animals, which only have maternal antibodies, than in older animals, 

which may have encountered live Ad and have developed active Ad-specific immunity by 

the time of immunisation. 

6.4 General conclusions and future applications 

Recombinant adenoviruses have a great potential to induce mucosal immunity and 

protection against respiratory viral infections. Replication-defective and replication- 

competent recombinant adenoviruses expressing gD or tgD of BHV-1 could induce @- 

specific systemic and mucosal immune responses and confer at least partial protection 

against i.n. BHV-1 challenge in the cotton rat. However, the characteristics of the antigen, 

the replication capability of the vector and the route of immunisation had a significant 

impact on the level of immune responses. The highest levels of immunity and protection 

were achieved by i.n. irnrnunisation with the replication competent vector expressing the 

authentic form of gD. Pre-existing active Ad-specific immunity significantly inhibited the 

efficacy of immunisation while passive Ad-specific antibody interfered less with the 

success of immunisation. 

The information in this thesis should be helpful in designing and testing 

recombinant adenovirus vaccines used in the cattle industry. Application of live human 

Ad-based vaccines may be somewhat limited, however, because of safety concerns for the 

human population. To partly overcome safety problems in cattle, a bovine adenovirus 

vector expressing gD of BHV-1 has been constructed (Suresh Tikoo, manuscript in 



preparation) and will soon be assessed for its capability to induce immunity and protection 

against BHV- 1 challenge in cotton rats, sheep and cattle. Similar safety concerns to human 

adenoviruses wilI have to be addressed, however, to use the bovine live vector as a 

commercial vaccine in the fbture. 

The results of my studies may also be usefid for vaccine research in other animal 

species and humans. Although the immune system of every species is somewhat different, I 

may have been able to identify and confirm basic feahues of adenovims vector-induced 

immunity that could be applied to different biological systems. Funhennore, results in this 

thesis may also contribute to other applications of human adenoviruses since the influence 

of Ad-specific immunity on the efficacy of recombinant human adenovimses and the 

systemic dissemination of Ad vectors raise a great concern in both gene- and tumor-therapy 

research. 
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