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ABSTRACT

Glutathione S-transferase GSTπ has been one of the significant targets for cancer treatment in the 

past several years. The reason behind that is 1) its overexpression in some cancer cells compared 

to normal ones 2) its ability to cause resistance against cancer chemotherapeutics and 3) its 

protective role against reactive oxygen species (ROS). We have synthesized a large number of 

compounds which have strong potency against different cancer cell lines. These compounds 

possess a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore. In the present study some 

investigations as to the way in which cytotoxicity is mediated was undertaken. Our results have 

demonstrated that the analogs NC 2067 and NC 2081 behaved as substrates for GSTπ and 

reduced the level of GSH. This was apparent by the decrease in the concentrations of both 

compounds after the addition of GSTπ and GSH. In addition, both agents caused about 3-7 folds 

increase in ROS levels. The dichlorodihydrofluorescein dye was used for this purpose due to its 

fluorescence characteristic after being oxidized by ROS. High levels of these species cause a 

drop in the mitochondrial membrane potential. This phenomenon was detected when the 

monomeric form of JC-1 levels were increased after treatment. The reduction of 2-3 folds was 

seen when the cells were treated with the IC50 values of both compounds. In addition, both 

agents inhibited oxygen consumption implicating their ability to inhibit oxidative 

phosphorylation. We also evaluated  the effect of both agents on mitochondrial swelling. NC 

2081 caused swelling using concentrations of 10 µM and 50 µM. This was apparent when the 

absorption of an isolated rat liver mitochondrial solution decreased after the addition of the 

compound. The addition of the higher concentration caused about 2 fold greater effect than the 

lower one. On the other hand, compound NC 2067 produced minimal swelling only at a 

concentration of 50 µM.
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1. INTRODUCTION

Cancer is recognized as one of the main causes of death. Numerous efforts have been

taken to study the biochemical differences between cancer and normal cells in order 

to design agents that would have the ability to treat this disease. In the past decades, 

these efforts resulted in new agents finding their place into clinical practice. Both 

pharmacological and non-pharmacological approaches are used in cancer treatment, 

each associated with significant limitations. One major drawback of the currently 

available pharmacological approaches is the serious adverse effects accompanying 

the use of anticancer drugs, due mainly to their potential to harm normal cells and 

not just malignant ones. Consequently, there is an urgent need to identify new agents 

that have the ability to target cancer cells and have minimal or no effects on normal 

healthy cells. The established differences in the biochemical behavior of both cell 

types have made such options achievable. 

In this thesis work I investigated two novel cytotoxic agents, namely, 1-[4-[2-

dimethylaminoethoxy]phenylcarbonyl]-3,5-bis[phenylmethylene]-4-piperidone 

hydrochloride (NC 2067) and 1-[4-{2-[4-morpholinyl]ethoxy}phenylcarbonyl]-3,5-

bis[phenylmethylene]-4-piperidone hydrochloride hemihydrate (NC 2081) for their

ability to selectively inhibit the growth of cancer cells and to understand their

mechanisms of action. 
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Figure 1.1: A. The structure of NC 2067, B. The structure of NC 2081
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2. BACKGROUND

2.1 Cancer biology 

Cancer is characterized by the abnormal growth of cells that tend to proliferate

continuously without control. (Kleinsmith, 2006). In the United States it is estimated 

that one out of four deaths is due to cancer (Jemal et al., 2007). Cancer is now 

recognized as the leading cause of death in Canada according to the Canadian Cancer 

Society (Canadian cancer statistics, 2011)

 Cancers are formed from cells that have a defective DNA structure, which leads to 

abnormality in the function(s) and reproduction of cells. It is generally accepted that 

a single abnormality in one of these events is insufficient to cause cancer (Croce, 

2008) since cancer is a multi-step process. Genetic abnormalities may occur in proto-

oncogenes, which regulate cell growth, or tumor suppressor genes which normally 

favor growth inhibition. Mutations that lead to an induction in the activity of proto-

oncogenes, or inhibition of the tumor suppressor genes, are initial steps for cancer 

development. Examples of oncogenes include transcription factors, growth factors, 

growth factor receptors and apoptosis regulators. Tumor suppressor genes function 

alongside proto-oncogenes but with an opposite effect. Such genes tend to suppress 

cell division when DNA is damaged until it is repaired. If repair is not possible, 

tumor suppressor genes such as p53 induce apoptosis (Croce, 2008). Cancer cells can 

also be classified into malignant or benign forms. Malignant cancers have the ability 

to invade and destroy other cells and even undergo metastasis to other parts of the 
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body, whereas benign tumors grow only in specific locations and have a lower 

possibility to invade other tissues.

2.2 Cancer treatment methods

In clinical practice, physicians use regimens that combine two or more 

methods/drugs for cancer treatment. Different approaches are usually needed in order

to give maximal potency against cancer cells while minimizing drug resistance and 

adverse effects. The usual treatment approaches for cancer include surgery, 

radiotherapy, hormonal therapy, immunotherapy and chemotherapy.

2.2.1    Hormonal therapy

Certain types of cancer cells require specific hormones to grow. Estrogen for 

example is involved in the pathogenesis of estrogen receptor positive (ER+) breast 

cancer. Treatment options for such cancers involve blocking estrogen receptors by 

tamoxifen (Zilli et al., 2009), which has been a mainstay therapy for post-

menopausal women having breast cancer for many years (Zilli et al., 2009). Another 

type of hormone-dependent cancer is prostate cancer which depends on androgens

for its development. For this reason, androgenic blockers are used as a treatment 

method for prostate cancer. It is evident that blocking these receptors by agents such 

as flutamide can be used as a first line therapy for prostate cancer which is effective 

by regulating its growth (Beekman and Hussain, 2008).
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2.2.2    Anti-Angiogenesis therapy

Angiogenesis is the process of new blood vessel development. This phenomenon 

normally occurs normally during wound healing processes or in the placenta. Cancer 

cells have the ability to stimulate the formation of new vessels towards the tumor in 

order to supply itself with nutrients. The idea of anti-angiogenesis as cancer therapy 

was proposed several decades ago (Folkman, 1971). The approval of bevacizumab

(Avastin) for cancer treatment has encouraged researchers to start focusing on 

angiogenesis as a new treatment. Nowadays, it is becoming accepted as a treatment 

for cancer (Ferrara et al., 2005). 

2.2.3    Immunotherapy

Immunotherapy is the use of the immune system to fight cancer. For the past few 

decades, the term immunotherapy has been widely popularized. It was thought earlier 

that the immune system is limited to fighting infections. Recently several important 

discoveries have shown its role in perturbing cancer  progression (Keibel et al, 2009).

           These observations and theories have encouraged scientists to develop this relatively 

new strategy for fighting cancer commonly termed as either active or passive 

immunotherapy. Active immunotherapy can be subdivided into specific and non-

specific therapy. Specific therapy involves designing active immunotherapy agents to 

induce certain immune cells for attacking various antigens on cancer cells

(Lesterhuis et al., 2011). On the other hand, non-specific active immunotherapy 

utilizes the broad activation of the immune system cells by certain agents. These 
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agents include cytokines such as interferon and interleukins (IL-2, IL-12). They 

regulate both adaptive and passive immune systems. Interferon and interleukin have 

been approved by the FDA for certain cancer types, such as the approval of IL-2 for 

renal cell carcinoma and leukemia (Hurley and Chapman, 2005; Yang et al., 2003;

Schuster et al., 2006).

2.2.4 Chemotherapeutic agents

Most of the previously mentioned treatments can be used only for local tumors. Once 

metastasis occurs, a systemic treatment needs to be undertaken which uses 

chemotherapeutics.  These compounds are used to kill cells or stop their growth in 

order to treat cancer. Chemotherapy is widely used in clinical practice. 

Unfortunately, drugs have dose limiting toxicity particularly on cells that divide 

rapidly such as hemopoietic and mucosal cells on the gastrointestinal lining. Of 

particular concern is the effect of cytotoxic chemotherapeutic agents on stem cells. 

Agents with cytotoxic activity function in several ways with DNA being the favorite 

target. Some agents are able to attack DNA and inhibit its replication while others 

can prevent DNA synthesis. However, attacking the mitochondria and mitotic 

spindle are two other mechanisms in which some agents exert their activity (Lind, 

2011). 

Attacking DNA directly is the principal approach amongst most chemotherapeutic 

agents which tend to cause DNA damage and cell death. Agents can achieve this by 

alkylation of key atoms located on the DNA structure thereby forming strong 
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covalent bonds. This mode of action is known to cause potent cytotoxicity in general 

and operates in such drugs as mitomycin, cyclophosphamide, and cisplatin (Lind, 

2011). Other agents perturb the DNA structure through electrostatic forces (Lind, 

2011), intercalation with DNA or binding to DNA grooves. A number of 

chemotherapeutic compounds act by inhibiting the synthesis of DNA such as 

antimetabolites which include methotrexate, 6-mercaptopurine and 6-thioguanine

(Lind, 2011).

2.2.4.1 DNA Groove binders

Apart from alkylation, chemotherapeutic agents can also target DNA via noncovalent 

bonding which can occur at the minor groove region of DNA or in between DNA 

nucleotides. Non-covalent binding to DNA involves electrostatic (e.g., hydrogen 

bonding) and/or van der Waals’ interactions which are the two major forces that 

govern ligand-DNA binding activity.

Sequence specificity is an important criterion when targeting DNA as this will 

reduce the potential side effects caused by chemotherapeutic compounds. A ligand 

needs to cover a minimum of 16 to18 nucleotide binding sites in order to have good 

selectivity at the genomic level (Neidle, 2001). This requirement may present a 

challenge as the larger the molecule the less stable it becomes and the likelihood of 

its contact surfaces to become “out of phase” tends to increase causing a decrease in 

the binding affinity. Sequence selective agents prefer specific DNA sequences 

compared to others. Examples of such agents include pyrrolo[1,4]benzodiazepinone 
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antibiotics (Hurley et al., 1988), netropsin and distamycin (Zimmer and Wahnert, 

1986) and bleomycin (Stubbe and Kozarich, 1987). These agents were found to 

target specific DNA sequences. Netropsin and distamycin prefer AT rich sequences, 

while bleomycin prefers GCs sequences (Povirk et al., 1989).

2.2.4.2 Intercalation

Intercalating agents bind non-covalently and reversibly with nucleic acids. A number 

of intercalating chemotherapeutic agents are now employed clinically for ovarian 

cancer, breast cancers and acute leukemia, while others are still in clinical trials

(Brana et al., 2001). Ethidium bromide, doxorubicin, daunomycin and thalidomide

are examples of DNA intercalators.

Intercalation occurs when a ligand aligns itself between the DNA adjacent bases. 

Usually the compound has a flat planar aromatic structure (Sinha et al., 2006) which 

allows it to slide easily within the narrow space that exists between adjacent DNA 

bases. These agents can cause structural changes to the DNA topology and cause 

genotoxicity (Mortelmans and Zeiger, 2000).

2.2.4.3 Mitotic/spindle and topoisomerase inhibitors 

These agents have the ability to either stabilize the microtubules once they are 

formed or inhibit their formation. Either mechanisms cause a limited flexibility in 

these organelles which results in retardation in chromosomal alignments and 
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inhibition of cell growth.  Examples of these agents are paclitaxel, vincristine and 

vinblastine (Lind, 2011).

Proteins, such as topoisomerases, which are important in cell division, are also

targets for anti-cancer agents. Proteins which play a role in the last stage before cell 

division can be attacked by cytotoxic drugs to inhibit cell division (Lind, 2011).

2.3 Thiol alkylators

2.3.1 Overview 

As explained above, most treatment options involving chemotherapy have serious 

side effects and limitations. Therefore, there is an urgent need to develop novel 

anticancer agents which display high selective toxicities towards neoplasms rather 

than affecting the normal cells. 

Over the last several years we have focused on developing a number of cyclic and 

acyclic conjugated unsaturated dienone derivatives possessing the 1,5-diaryl-3-oxo-

1,4-pentadienyl pharmacophore as tumor selective cytotoxins, Figure 2.1. Generally 

these agents show high selectivity towards cancer cells. The pharmacophore is 

known to interact with cellular thiols (Mutus et al., 1989; Das et al., 2009). Since 

thiol groups are not present in DNA, these agents may lack the ability to interact with 

DNA thereby limiting or eliminating genotoxicity. This property is a significant 

benefit over other chemotherapeutic agents since attacking DNA may result in potent 

cytotoxicity but it may also induce mutations that might be passed to daughter cells. 



10

Therefore, having a strategy which would achieve high potency without genotoxicity

is desirable.  

                                                                   1,5-diaryl-3-oxo-1,4-pentadienyl group                                                                                                                                   

Figure 2.1:  Structure of cytotoxic 3,5-bis(benzylidene)-4-piperidones

Designing agents that exert their cytotoxicity in different pathways have shown great 

benefit over agents acting on a single pathway. This can be due to different reasons. 

Targeting different mechanisms would enhance the potency and minimize the chance 

of drug resistance. This is used for various serious illnesses to minimize drug 

resistance development and increase effectiveness (Espinoza-Fonseca, 2006). For 

example, when treating certain bacterial infections, a multi-drug regimen is usually 

used with each agent having its own mechanism of action. The same principle is used 

for cancer treatment. Instead of administering several drugs with different targets, 

having a single drug with different targets might be more convenient and yet 

effective. 

2.3.2 Curcumin
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Curcumin, (Figure 2.2) is extracted from Curcuma longa Linn roots. The reason 

behind our interest in curcumin is it having similar structural features as our 

compounds. Curcumin contains two 3-aryl-2-propenoyl groups. Figure 2.2 shows the 

pharmacophore of interest contained in the structure. However, the main difference 

found between its structure and our agents is the presence of the piperidine ring in 

our compounds rather than being an acyclic moiety. This heterocyclic scaffold was 

introduced to minimize the flexibility of the acyclic molecules. In addition, the 

presence of nitrogen allows the addition of other side chains to be placed on the 

piperidyl nitrogen atom.

O O

OH

OCH3

OH

OCH3

Figure 2.2: Structure of curcumin

Curcumin has been used for various medical conditions and has an established safety 

profile (Aggarwal et al., 2003). Curcumin is used for such conditions as rheumatoid 

arthritis, liver disease and urinary tract infections (Adams et al., 2004). It is also 

known for its anti-inflammatory and antioxidant properties. Some antiviral, 

antibacterial and antifungal activities were also observed for curcumin (Aggarwal et 

al., 2007).
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Curcumin has also showed some anticancer properties (Sa and Das, 2008) and it’s in 

vitro antiproliferative (Mehta et al., 1997) and apoptotic induction behavior has been 

investigated (Kuo et al., 1996; Liao et al., 2008). In addition, curcumin has showed 

some antiangiogenic effects when tested in vivo and in vitro (Lin et al., 2007). Due to 

these factors, curcumin is of major interest in the battle against cancer. It was 

previously shown that curcumin can exert its biological activity by down regulating 

the expression of several proteins such as NF-kappa B, lipoxygenase (LOX), 

cyclooxygenase (COX2), tumor necrosis factor (TNF) and others. It also inhibits the 

activity of the protein tyrosine kinases c-Jun N-terminal kinase (JNK) and 

serine/threonine kinases (Aggarwal et al., 2003).

However, its high lipophilic nature has limited its use for cancer treatment. It has a 

high first pass effect and therefore low bioavailability (Shoba et al., 1998).

Therefore, it is important to synthesize analogs of curcumin that have the safety 

profile of curcumin but with an improved pharmacokinetic behavior.

2.3.3 Acyclic Mannich bases

The Mannich bases initially prepared in our laboratory have a conjugated styryl

group attached to a keto function. These compounds had only one conjugated 

unsaturated keto group, Figure 2.3. A large number of compounds derived from these 

bases were synthesized with different functional groups. When the acyclic Mannich

compounds were evaluated for biological activity, they showed high cytotoxicity 

against cancer cells (Dimmock and Taylor, 1975; Das et al., 2009). As anticipated, 

they also showed high rates of reactions with a model thioalkyl compound
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(Dimmock et al, 1980). However, when tested in vivo they had high murine toxicity

(Dimmock et al., 1991) which led to alternate strategies being implemented. 

O

C5H11

N
CH3

CH3

R
1

R
2

HCl

Figure 2.3: Structure of acyclic Mannich bases

2.3.4 Cyclic Mannich bases

The incorporation of the acyclic component of acyclic Mannich bases into a

piperidine ring limited the flexibility possible with the acyclic Mannich compounds. 

Such a limitation was hoped to reduce the toxicity probably caused by certain 

conformations of the acyclic agents. Based on such a hypothesis, cyclic Mannich 

bases were synthesized. In addition to the limited flexibility, cyclic Mannich bases 

with two instead of one conjugated styryl keto groups were prepared, vide infra 

(Figure 2.4). Although less cytotoxicity was observed for the cyclic Mannich 

compounds compared to acyclic compounds (Figure 2.4), they still retained 

appreciable cytotoxic activity (Dimmock et al., 1990).

                               
N
H

O
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Figure 2.4: Structure of a cyclic Mannich base (compound 1)

In a detailed study showing the activity of a wide range of compounds, the following 

conclusions were drawn. Compared to compound 1, the lack of flexibility in the 

cyclic analogs lowered the cytotoxic potency; however it also reduced in vivo

toxicity. Cyclic or acyclic compounds having a quaternary ammonium group resulted 

in high potency. However, a disadvantage was their DNA binding capability. This 

could result in mutagenicity (Dimmock et al., 1990).

2.4 Some structure-activity relationships

2.4.1 The central ring

The cytotoxic potencies of some acyclic Mannich bases were higher than curcumin 

itself. Two factors might have affected the potency. The distance between the two 

aryl rings in curcumin is longer than the distance between same aryl rings in 

compound 1 (Adams et al., 2004). In addition, the different substitutions on the aryl 

ring likely have some influence on the activity.  

N
H

O

      

Compound 1
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O

H3CO OCH3

Compound 2

O

H H

Compound 3

The replacement of the secondary amino group in compound 1 by a methylene group

in 3 caused a significant decrease in cytotoxic potency. However, 3 was still 

appreciably potent. Compound 1 showed limited activity in vivo but it did not cause 

any animal mortalities. This is probably due to the reduced hydrophilicity compared 

to the acyclic Mannich bases and the accumulation of the agent in adipose tissue 

(Dimmock et al., 1990).

2.4.2 N-Acyl groups

After establishing the activity of the 3,5-bis(benzylidene)-4-piperidones, some side 

chains were proposed to be placed on the piperidyl nitrogen atom. As explained 

above, the high lipophilicity was likely a major reason for the limited in vivo activity. 

Therefore, introducing a hydrophilic group at this site might increase the activity in 

vivo (Lipinski et al., 2001). In addition, it was proposed that these substitutions may
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interact at an auxiliary binding site. Although this latter hypothesis was not proven, 

such side chains had a significant effect on the potency (Dimmock et al., 1992). For 

example, compound 1 with no N-acyl group and 4 with an added N-acyl group, 

differed significantly in their cytotoxicity against L1210 leukemia cells. Generally, 

N-acyl substitution caused a significant increase in potency on a wide range of cell 

lines. This is probably due to the introduction of an additional conjugated system 

capable of reacting with cellular thiols (Dimmock et al., 2001).

In addition, it was also proposed that the torsion angles (θ) between the aryl ring and 

the adjacent olefinic group has may some have impact on cytotoxic potency. In the 

case of compound 4, the introduction of an acyl group caused about a 24% increase 

in the torsion angle compared to the non-acylated analog (Dimmock et al., 2001).  

N

O

CH2
O

Compound 4
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The difference in potencies between compound 5 and 6 (Jha et al., 2007) are as 

follows. When evaluated against human Molt 4/C8 and CEM T-lymphocytes and

murine L1210 leukemia cells, the results have shown the greater potency of 

compounds possessing the Z conformation in compound 5 rather than 6 in which the 

double bond in the N-acyl group adopts the E conformation (Jha et al., 2007). This 

behavior was generally observed in all related compounds. This implies that the side 

chain is in a preferred location in relation to the substituted piperidine ring.

The introduction of the side chain in compound 6 led to a great increase in potency 

compared to compound 1 (Jha et al., 2007). Introducing a nitro group on rings A and 

B also caused a greater increase in potency for compound 7 compared to compound 

6 (Jha et al., 2007). This might be due to two reasons. Introducing an electron-

withdrawing group would result in decreasing the electronegativity of the olefinic

groups adjacent to the aryl rings which might cause a stronger electrophilic attack 
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with thiols. In addition, having a nitro group at such positions might cause some 

hydrogen bond formations with a binding site.

2.4.3 Substitutions on the aryl rings 

Some derivatives of compound 1 were evaluated. All analogs had the same core 

structure except for the substitutions on the aryl rings. The insertion of substituents 

on the aryl ring caused different effects depending on the group added. The chloro

and the methoxy substitutions caused a great decrease in potency when screened 

against HSC-2, HSC-4 and HL-60 cell lines. Other substitutions such as nitro caused 

an increase in potency (Pati et al., 2008).

2.5 NC 2067 and NC 2081

After showing that compounds having the 1,5-diaryl-3-oxo-1,4-pentadienyl 

pharmacophore are potent agents targeting cancer cells, we were interested in 

studying the mechanisms by which these agents exert their biological activity. In this 

regard we chose two representative compounds designated NC 2067 and NC 2081. 

A brief description of their biological and chemical characteristics is presented here.   

As explained above, a wide range of compounds were evaluated and relatively clear

ideas of the structures required for optimal activity were drawn. Therefore, these 

observations lead to the synthesis of compounds NC 2067 and NC 2081. NC 2067

and NC 2081 were evaluated here as two representative agents. Other compounds

with similar structures might have the same or better cytotoxic potencies. However,
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NC 2067 and NC 2081 already have established biological activities. In addition, 

using ChemBioDraw program (version 12), the calculated logP (clogP) value for 

both compounds ranged between 4 and 5 and this is suitable for the biological 

activity (Lipinski et al., 2001). The logP value is used to determine the lipophilicity 

(or hydrophilicity) of a compound. Instead of measuring logP experimentally, clogP 

is determined using some programs. Both agents had no substitutions on the aryl 

rings. We wanted to establish the activity of agents lacking aryl substitutions as a 

first step. Later, other agents with substitutions can be evaluated. Both compounds

have a basic group at their side chain, namely dimethylamino and 4-morpholinyl

substituents. In addition, the torsion angle (�) between the enone group and the aryl 

rings varied significantly. The effects of these differences were studied.

A detailed study using both compounds and other analogs revealed some interesting

structure-activity relationships. When comparing the activity of NC 2067 with 1, the 

activity of NC 2067 was either double or similar potency compared with 1, 

depending on the cell line. These results encouraged the synthesis of other 

derivatives such as NC 2081, 8 and 9 with different substitutions. The activities of 

these compounds were increased when compared to compound 1 (Das et al., 2007).

NC 2067
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  Compound 8

  NC 2081

Compound 9

It is noticed that the 4-nitro substitution on the arylidene aryl rings caused a 

remarkable increase in potency in the analogs of NC 2067, 8, 9 and NC 2081

compounds. These latter compounds had similar IC50 values against Molt 4/C8 and 

CEM cell lines despite the difference in their side chains.

In general, potency was favored when a strong basic group was found at the side 

chain and methyl or nitro substituents were placed on the aryl rings. 
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Using different colon cell lines, namely COLO205, HCT-166, HCT-15, KM12, SW-

620 and HCC-2998 the activity of the same compounds was also measured. 

Compound NC 2081 generally showed high potency against some of these cell lines 

and the average IC50 values were lower than that of other compounds including the 

parent compound 1. Unfortunately, compound NC 2067 was not tested on these cell 

lines (Das et al., 2007).

2.6 Mannich–chalcones as a potential prodrugs 

Using a different approach, Mannich bases were combined with a known cytotoxic 

group namely chalcones. The basis for this is the possibility of these agents to 

liberate 3,5-bis(benzylidene)-4-piperidones and a chalcone (Figure 2.5). Both of 

these groups of compounds are known to have cytotoxic properties (Ducki, 2007). 

The complexes formed had only limited potency which could have been due to the

large bulkiness of the molecules or difficulty in penetrating the cell membrane.  In 

addition, the smaller side chains in these compounds did not have strong potency 

either (Dimmock et al., 2002).
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Figure 2.5: The proposed dissociation of a Mannich-chalcone compound to a
cytotoxic Mannich base and chalcone intracellularly.

2.7 Mitochondria

Recently, interest in mitochondrial targeted therapy has been shown. Targeting 

mitochondria can be accomplished via different pathways. For example, targeting the 

mitochondrial DNA, mitochondrial metabolic pathways, mitochondrial membrane 

has been suggested and reveals promising results (Armstrong, 2006). In this work we 

are interested in studying the effect of some compounds on mitochondria in a 

detailed manner. Previously, some work was performed to evaluate some unsaturated 

compounds synthesized in Dimmock’s lab on mitochondrial functions (Dimmock et 

al., 1976). In concert with this, we intend here to further study the effect of 

unsaturated compounds on the mitochondria. Therefore, in this section, a complete 
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description of the mitochondrial function and importance to cancer cells will be 

attempted. This will explain our rationale in targeting this organelle.   

2.7.1 Anatomy and physiology of mitochondria

The mitochondrion is a spherical shaped organelle distributed in the cytosol. It is 

composed of three main parts. First the external mitochondrial membrane encloses 

the mitochondrion large pores that would allow molecules having molecular weights

of 5000 Dalton or less to cross freely from cytoplasm to the inner space. Proteins and 

phospholipids are the main components found in the outer membrane. Second, the 

inner mitochondrial membrane is located beneath the outer membrane. The inner 

membrane is folded to increase the area in which oxidative phosphorylation occurs.

Third, there is space between both membranes which is called the inter membrane 

space.

Figure 2.6: Structure of mitochondria 

The electron transport chain is one of the most important biochemical cascades

occurring in cells. The protein complexes involved in this chain are located in the 
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mitochondrial inner membrane (Rouslin, 1983) A proton concentration gradient 

across the inner membrane is generated while electrons from NADH and succinate

are shuttled from complexes I and II through complex III and finally complex IV. 

Complex V (ATP synthase) uses the difference in proton concentrations to generate

ATP (Ide et al., 2001; Aloysius et al., 2010).

2.7.2 Mitochondria and apoptosis

Apoptosis is a process of programmed cell death in which the cells commit suicide. 

This mechanism is necessary for healing, growth, embryo development and other 

physiological events (Elmore, 2007; Greenhalgh, 1998). Abnormal apoptosis may 

result in various diseases including cancer, neurodegenerative and cardiovascular

diseases and other health problems (Lowe and Lin, 2000; Mattson, 2000). In the past 

decade, researchers have been able to identify the mechanism of apoptosis in detail

(John, 2000). It has been observed that the mitochondrion has a substantial role in 

this process. 

Apoptosis mainly depends on caspases. They are involved in a cascade of events

which happen in a sequential manner so that once activated the cell usually dies. The 

activation of these proteins can occur due to several factors such as DNA damage, 

extrinsic signals, and mitochondrial membrane opening which are all different 

mechanisms for initiating apoptosis. Each one of these processes has the ability to 

stimulate the cascade (Figure 2.6). 
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Figure 2.7: Initiation  of apoptosis. The critical involvement of mitochondria is 
presented here. Apoptosis can be triggered by an intrinsic or extrinsic pathway. The 
extrinsic pathway is activated when ligands bind to Fas receptors causing an 
initiation of a cascade of caspases which will lead to apoptosis. The extrinsic 
pathway may or may not involve the mitochondria. The intrinsic pathway may be 
triggered when damage occurs to an important compartment of the cell. DNA 
damage, high ROS levels, mitochondrial damage by direct insult can all lead to 
intrinsic apoptosis initiation (Green and Reed, 1998).     

Mitochondria play a very significant role in apoptosis. That is DNA damage, 

oxidative stress, Ca+2 overload and ATP depletion (Brookes et al., 2004; Roy et al., 

2008) can all lead to a mitochondrial effect that leads to apoptosis.. These incidents

cause an increase in the mitochondrial membrane permeability (Crompton, 1999)

which results in the swelling of the mitochondrial matrix causing the opening of 

pores through the outer membrane and release of cytochrome c (Green and Kroemer, 

2004). This will result in the activation of all caspases and induces apoptosis. These 
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processes can occur due to covalent binding of compounds with some critical thiols. 

These thiol groups are found in important cysteine residues in proteins regulating the 

permeability of the mitochondrial membrane.  For example, alkylation occurring at 

the thiol group in Cys 56 in the adenine nucleotide transporter  (ANT) protein results 

in the opening of the pores which lead to the entrance of solute (water) causing 

rupture of the mitochondria (Costantini, et al 2000).

The permeability of the mitochondrial membrane is regulated by the permeability 

transition pore (PT) located on the outer membrane of the mitochondria. This pore is 

composed of three main proteins: cyclophilin D (cyp D) found in the matrix,  ANT

found in the inner membrane, and the voltage dependent anion channel

(VDAC) found in the outer membrane (Green and Kroemer, 2004). Figure 2.7 shows

the structure of the pore. 

Figure 2.8: The structure of the permeability transition pore and the mitochondrial 
membranes. The structure includes VDAC, ANT and cyp D. Thiol alkylating agents, 
calcium overload and reactive oxygen species (ROS) are three main agents that
affect the VDAC function (Green and Kroemer, 2004).
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2.7.3 Differences between mitochondria in cancer and non-malignant cells

In order to design agents that have the ability to target cancer cells only, it is 

important to study the differences between both malignant and non-malignant cell 

types. After studying the biochemistry of cancer and normal cells, a large number of 

differences were noted such as differences in the proteins expressed on the cell 

membrane, inside the nucleus and in mitochondria. Here, I present the most 

significant ones related to mitochondria.  

Cancer cells are able to survive in hypoxic conditions. Several pathways have been 

proposed to accomplish this, for example by activation of the hypoxia-inducible 

factor 1 (HIF-1). These proteins are overexpressed when the cells are in a hypoxic 

environment (Ke and Costa 2006). The proteins cause an increase in the glycolytic 

pathway flux which implies less dependence on oxidative phosphorylation (Ke and 

Costa 2006). Hypoxic conditions also induce the expression of the vascular 

endothelial growth factor (VEGF) (Ke and Costa 2006). This protein causes the 

growth of blood vessels towards the cancer cells. The enzyme hexokinase II also has 

an important role in cancer cells. This overexpressed enzyme catalyzes the rate 

limiting step in glycolysis which phosphorylates glucose. As a result, glycolysis is

over activated in tumors (Chen et al., 2009). In cancer cells, these enzymes are 

associated with the mitochondrial membrane and use the ATP synthesized in the 

mitochondria to produce glucose-6-phosphate. The actions are preferred because 
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cancer cells tend to inhibit the oxidative phosphorylation pathway and induce 

glycolysis (Ralph and Neuzil, 2009).        

Protons are pumped across the inner membrane to the inter membrane space. These 

positively charged particles cause a difference in potential across the membrane 

called the mitochondrial membrane potential (Chen, 1988). This potential is the 

reason for the accumulation of positively charged lipophilic molecules in the 

mitochondrion. Interestingly, the potential across the membrane in cancer cells is 

higher than normal cells by up to 60mV (Chen, 1988; Modica-Napolitano and 

Aprille, 1987). This would cause the attraction of positively charged lipophilic agents 

more towards cancer cells than normal ones. The exact mechanism for such an 

increase in cancer cells is unknown. Some proposed explanations include the 

variations in the respiratory complexes, ATP synthases or even proton conduction.

Lactic acid is the end product of the glycolysis process in the absence of oxygen. 

Cancer cells tend to increase the production of lactic acid by various means

(Yamagata et al., 1998) which are required to kill normal cells and facilitate

metastases (Gatenby and Gillies, 2004). However, in order to survive in such 

conditions, they overexpress proton pumps which keep protons outside the cells. 

Targeting these pumps can caused great damage to cancer cells (Morimura et al., 

2008; De Milito and Fais, 2005).

The lower dependence on the electron transport chain causes oxygen accumulation. 

This can lead to superoxide O2
.- production. Although reactive oxygen species cause
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a great deal of damage to cellular DNA and proteins, cancer cells intentionally keep 

these compounds in high concentrations by the continuous inhibition of oxidative

phosphorylation. This state is called oxidative stress (Pelicano et al., 2004). Reactive 

oxygen species (ROS) are important in cancer cells as they cause further DNA 

mutations whether in the nucleus or in the mitochondria. In addition, ROS functions 

as an intracellular signal (Waris and Ahsan, 2006). ROS should always remain under 

certain threshold concentrations. Exceeding these levels, by for example, inhibiting 

the electron transport chain, will cause cell death by inducing apoptotic proteins. It 

was recognized that agents which cause an increase in the ROS levels induce cancer 

cells to die. Examples of these agents include betulinic acid and menadione (Sasaki 

et al., 2008). These agents can target one of the respiratory complexes, the 

mitochondrial inner membrane or DNA polymerase γ in mitochondria (Ralph and 

Neuzil, 2009).     

A fifth difference between normal and cancer cells is the overexpression of 

antioxidant enzymes (Pelicano et al., 2004; Trachootham et al., 2009) and GST 

(Laborde, 2010) in cancer cells. As explained in the section outlining some of the 

differences between cancer and normal mitochondria, cancer cells are in a state of 

continuous oxidative stress (Schumacker, 2006). Cancer cells manage to adapt 

to such an increased stress by overexpressing antioxidant proteins and peptides such 

as GSH (Pelicano et al., 2004; Trachootham et al., 2009) as well as GST (Laborde, 

2010; Wang et al., 2009; Wang et al., 1997). Their overexpression is at the levels 

required to scavenge the high levels of ROS (Pelicano et al., 2004; Trachootham et 
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al., 2009). The enzyme GST can also help to decrease oxidative stress by reducing 

electrophiles such as aldehydic lipid peroxidation products (Hayes and Strange, 

1995) and by influencing cellular redox homeostasis (Tew, 2007). On the other hand, 

non-malignant cells have normal antioxidant enzyme levels that keep cells in normal 

stress conditions with minimal ROS accumulation (Pelicano, 2004). A slight 

inhibition of antioxidant enzymes will lead to a greater increase in ROS in cancer 

cells (Pelicano, 2004). Unlike cancer cells, a slight inhibition of antioxidant enzymes

in normal cells means that these cells still retain antioxidant enzyme levels 

significantly higher than is needed to scavenge the ROS . Hence inhibition of 

antioxidant enzymes and GST emerges as a potential therapeutic strategy for 

designing anticancer agents (Pelicano, 2004).

The GST enzyme family is present in at least 8 classes (Ricci et al., 2005; Trute et 

al., 2007). The GST enzyme has two main domains. The G-site, which is the 

hydrophilic N-terminal that binds glutathione and the H-site, which is the

hydrophobic C-terminal side that binds to the substrate (Tew and Gate, 2001). A 

tyrosine amino acid is very important for the activity since it accepts a proton 

released by the thiol glutathione. Replacing this amino acid by phenylalanine, for 

example, greatly reduced the activity of the enzyme (Tew and Gate, 2001). 

GST classes differ in their amino acid sequences at the H-site, causing a variation in 

substrate specificities (Tew and Gate, 2001). These differences might be used to 

design compounds that target a specific isozyme.
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Chemotherapy agents were found to have high efficiency but their use is 

compromised by certain shortcomings. One of the main issues regarding the 

available chemotherapeutic agents is the development of resistance. Cancer cells can 

employ different mechanisms to accomplish this. Increasing the expression of the 

targeted protein is one mechanism. A second approach is changing the conformation 

of the protein. The third approach which is the most commonly employed approach 

is the overexpression of the transporters, called ATP-binding-cassettes (ABC), which 

would efflux chemotherapeutics from the cell (Gottesman, 2002).

Despite these issues, chemotherapy remains the most important approach. Therefore, 

restoring the chemosensitivity of tumor cells to chemotherapeutics might be one 

approach to enable these agents to restore their effectiveness. Depending on the 

mechanism of the resistance developed, different approaches have been employed. 

For example, increasing the dose administered may help overcome the problem of 

highly expressed proteins (Basholt, et al 1996). However, this is limited by the 

toxicity seen when high doses are used. Changing the conformation of the protein 

targeted can only be solved by employing different agents that target different 

proteins. This would explain the need for various agents for the treatment of cancer 

(Golan and Tashjan, 2012). ABC overexpression can theoretically be overcome by 

inhibiting these transporters. In order for ABC transporters to efflux a compound, a 

conjugation should occur between the toxin and GSH via GST. Therefore, most 

cancer cell lines overexpress GSTπ compared to normal cells (Laborde, 2010;

Mannervik et al., 1987). GST plays an important role in drug resistance (Cui et al.,
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2008; Townsend and Tew, 2003; van Bladeren and van Ommen, 1991). GST 

catalyzes the conjugation of GSH with a cytotoxic agent and subsequently the GSH 

conjugate can be effluxed from the cells (Cui et al., 2008). The role of GST in drug 

resistance makes it an attractive chemotherapeutic target (Tew and Gate, 2001;

Townsend and Tew, 2003; Laborde, 2010), and inhibition of GSTπ has induced cell 

death selectively in cancer cells (Cui et al., 2008).

In addition, it has been noticed that the inhibition of the GST enzyme has been 

shown to reduce resistance to chemotherapeutic agents (Balendiran et al., 

2004). Attempts to inhibit these proteins have received great success in vitro

(Balendiran et al., 2004; Cui et al., 2008; Garcia-Rui. et al., 2000; O'Dwyer et al., 

1991). 

Among other sources, ROS is produced in the electron chain transport which is 

located in mitochondria. Therefore, it can be assumed that an increase in 

mitochondrial ROS levels will have its first effect on the mitochondrial membrane. 

GST works in conjunction with other ROS scavengers to reduce the electrophiles 

(including ROS), Figure 2.8.



34

Figure 2.9: A general scheme showing the role of GST in detoxification mechanisms.

2.8 GST inhibition

Most tumor cells have higher GST than the corresponding normal cells. Therefore, 

GST inhibition may be more detrimental to tumors than normal cells. One example 

of agents having the potential ability to inhibit GST is those with the α,β-unsaturated 

keto group. 

Our limited knowledge of the active site of GST has made it difficult to design 

agents that selectively and strongly bind to a specific class (Mahajan and Atkins, 

2005). The electrophilic nature of GST substrates is a common phenomenon. This 

electrophilic group attacks the electron rich sulfur atom in GSH. Although GST 

can facilitate this reaction, it might also occur in the absence of the enzyme. As an 

example, chlorambucil forms an ion in cells. This is quenched by GSH which 

attaches to the electron deficient carbonium ion of the drug to prevent it from 

reacting with DNA. The reaction is a typical electrophilic-nucleophilic reaction,

Figure 2.9 (Tew and Gate, 2001).
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Figure 2.10: Mechanism of chlorambucil binding with GSH  

Ethacrynic acid, a loop diuretic (Goldberg, 1966), was found to have GST inhibitory 

activity (Ploemen et al., 1993). It has been shown to inhibit GST –α, -π and -µ. 

Ethacrynic acid can exert such inhibition by binding to the active site, competitively 

and non-competitively. Non-competitive binding occurs when an electrophilic attack 

takes place (Ploemen et al., 1990; Tew et al., 1997; Zhao and Wang, 2006; Tew and 

Gate, 2001). It is also known for its depletion of GSH by conjugating its alkene 

group to the thiol group via a Michael addition, Figure 2.10. Such conjugation may 
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occur spontaneously or mainly with GST catalytic activity (Esterbauer et al., 1991; 

Lagisetty et al., 2010; Zhao and Wang, 2006).
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Figure 2.11: Formation of the complex between GSH and ethacrynic acid (EA)   

In order to study the importance of structural features, the binding of ethacrynic acid 

and its derivatives to GSTπ has been undertaken. It was noticed that the replacement of 
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the chloro atom by methyl, bromo or fluoro substituents at position 3 of the aryl ring did 

not have any effect on the GSTπ inhibition (Zhao and Wang. 2006).

Other agents which inhibit GST are known as glutathione analogs. γ-Glutamyl-

benzylcysteinylphenylglycyl diethyl ester (TLK199) inhibits GST and particularly 

GSTπ. TLK199 can also inhibit the multidrug resistance-associated protein-1 (MRP-1)

(Zhao and Wang, 2006).

Studies of the binding of a series of chalcone derivatives to GSTπ

revealed differences in their binding ability depending on the chemical structure. The 

majority of the compounds inhibited GSTπ. Interestingly, these 

chalcone derivatives have a carboxylic acid group attached at the α position of the 

unsaturated ketone. A Michael addition reaction is expected to occur between the 

olefinic group and the thiol moiety at the H-site of the enzyme (Wang et al., 

2009). From studying the compound-GST interactions, it is clear that strong 

interactions are occurring with the carboxylic acid. Moderate interactions are noted at 

the α,β- unsaturated carbonyl group and the hydrophobic fields (Wang et al., 

2009). Methyl and methoxy groups found at the aryl ring (R1) seem to have minimal 

effect on the activity (Figure 2.11).

COOH

O

R
1

R
2
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Figure 2.12: Structure of chalcones

Various different Mannich compounds were synthesized and evaluated for their 

activity against GSTπ. Compounds 10a and 10b did not show any significant effect. 

These agents have no 2-alkylaminomethyl group on the cyclopentanone ring (Wang 

et al., 2005). Compounds which have a dimethylaminomethyl and 4-

morpholinylmethyl groups at position 2 of the cyclopentyl ring (11a and 11b, 

respectively) had greater ability to inhibit GSTπ than 10a. This would imply the 

importance of the aminomethyl group on the cyclopentyl ring (Wang et al., 2005).

R
1

R
1

O

Compound 10a: R1= H      10b: R1=CH3

Compounds 11a: R1= dimethylamino    11b: R2= 4-morpholinyl   11c: R3= 1-
piperidyl      11d: R4= 1 –pyrrolidinyl
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Compound 11a with the dimethylaminomethyl group had the highest potency in 

reducing GSH levels compared to derivatives 11b, 11c and 11d which contained 4-

morpholino, pyrrolidino, or piperidino-methyl groups (Wang et al., 2005).  The 

reduction of the ketone group in compound 12a to compound 13 reduced 

the inhibitory activity (Wang et al., 2005).  It is noticed that compounds 10a and 13

have limited ability in inhibiting GSH.  This reveals the importance of the 2-

alkylamino structure and the cyclopentanone group in these compounds (Wang et al., 

2005). Comparing the activities of compounds 11 and 12 reveal that the α,β-
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unsaturated bonds are not crucial for the activity since both derivatives have the same 

GST inhibiting ability (Wang et al., 2005).

2.9. Rationale

The presence of an electrophilic group on the unsaturated compounds presents them 

as a potential target for the thiol group in GST enzyme and GSH peptide (Shiraki, et 

al, 2005). Both are elevated in most cancer cells compared to normal cells. The 

inhibition of GST or the depletion of GSH will indirectly increase ROS levels. In 

addition, the production of ROS may increase by inhibiting one of the electron 

transport chain complexes. These complexes contain some thiol groups (Cortes-Rojo

et al., 2011) which can be alkylated by the unsaturated ketones. Based on this 

rationale, we established our hypothesis and objectives. 
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3. HYPOTHESIS AND OBJECTIVES

3.1 Hypothesis

a. NC 2067 and NC 2081 inhibit GST by acting as a competitive substrate, 

which in turn, depletes cellular GSH content and increases ROS levels. 

b. NC 2067 and NC 2081 exhibit selective cytotoxicity to colon cell lines.

c. NC 2067 and NC 2081 interfere with the electron transport chain to affect 

mitochondrial membrane function leading to cellular death.  

3.2 Objectives

Objective 1: To establish the activity of two agents, namely, [4-[2-

dimethylaminoethoxy]phenylcarbonyl]-3,5-bis[phenylmethylene]-4-piperidone 

hydrochloride (NC 2067) and 1-[4-{2-[4-morpholinyl]ethoxy}phenylcarbonyl]-3,5-

bis[phenylmethylene]-4-piperidone hydrochloride hemihydrate (NC 2081) against 

one colon cancer cell line (HCT-116). This was followed by an evaluation of their

activity against one normal cell line (CRL-1790).   

Objective 2: To evaluate the effect of both agents on the activity of GSTπ.

Objective 3: To investigate the effects of these agents on different mitochondrial 

processes including membrane potential, electron transport chain and mitochondrial 

swelling. 
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4. MATERIALS AND METHODS

HCT-116, CRL-1790 cell lines, McCoy’s and Minimum Essential Media were all 

purchased from ATCC (Burlington, Ontario). 5-Fluorouracil, carbonylcyanide 3-

chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol, sulforhodamine B, JC-1, 1-

chloro-2,4-dinitrobenzene  (CDNB) and DMSO were all purchased from Sigma-

Aldrich, (Oakville, Ontario).

4.1 Anti-proliferation assay

The purpose of this experiment was to determine the potency of both agents on HCT-

116 and CRL-1790 cells. HCT-116 cells used for the cytotoxicity evaluation were

between passages 42 to 44. Passages for CRL-1790 were between 10 and 12. The 

cells were cultured in their respective growth medium supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin. The colon HCT-116 cells were 

cultured in McCoy's medium while CRL-1790 cells were grown in Minimum 

Essential Media.

The method of the National Cancer Institute, USA for determining the IC50 values 

was used (Voigt, 2005).  Cells were plated at 5x104 cell/ml concentration in 100 µL 
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and left for 24h to attach. Then the agents were added using concentrations ranging 

between 0.0095-20 µM for the HCT-116 neoplasm and 0.06-50 µM for CRL-1790 

cells and incubated for 48h. The experiment was conducted in triplicate on three 

separate occasions and standard deviations were less than 10%. The concentration of

DMSO was 1% when HCT-116 was used and 0.5% for CRL-1790. 5-Fluorouracil

(5-FU) was used as a positive control. Concentrations used for 5-FU ranged from 

0.001 to 100 µM.

After 48h the cells were fixed on a plate in each well using 50 µL (50% w/v)

trichloroacetic acid. Cells were incubated for 1 h at 4oC. Then the cells were washed 

and left to dry. Sulforhodamine B (SRB) was used to monitor the change in cell 

viability. It was prepared first in 1% acetic acid at a concentration of 1mg/ml as a 

stock solution. Addition of 100 µL of this solution to cells in each well was 

performed and incubated for 10 min at room temperature. Cells were washed using 

1% acetic acid and left to air dry. The remaining dye was dissolved in 200µL of 10 

mM Trizma base. A Biotek spectrometer was used to measure the absorption at 515

nm. On day one when the drugs were added, one extra plate was treated with 

trichloroacetic acid and sulforhodamine B as indicated previously. This plate will be 

referred to as the Tz plate. It represents the number of cells on the day when the 

drugs were added. Cell growth was then calculated using the following formula: 

                            ODsample - ODTz

%Cell growth =   
                             ODcontrol - ODTz
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Three different cell batches were used and for each batch the experiment was 

conducted in triplicate.   

4.2 Evaluation of ROS levels in cancer cells

The main intention behind performing this assay was to evaluate the effect of both 

agents on ROS levels. Dichlorodihydrofluorescein diacetate dye was used to 

determine such levels. The HCT-116 cells were cultured in 96-well plates. The 

number of cells seeded was 5x103 and left for 24h to attach. Compounds were 

prepared in DMSO at 5 mM concentration. Dilutions were made using media to a 

concentration of 10 µM. Then, 94 µL media were added to 5 µL of the previous 

drug/media solution. By the addition of 1 µL DMSO, the required concentration will 

results in 1% DMSO. Some volumes adjustments were required for each compound. 

Then, the cells were incubated with IC50 concentrations of NC 2067 and NC 2081

(0.571 µM for NC 2067 and 0.503 µM for NC 2081) for 48h. 5-Fluorouracil was 

used as the positive control (Hwang et al., 2007) using its IC50 value of 3.5 µM. 

Subsequently, dichlorodihydrofluorescein diacetate was added and incubated with 

the cells for 30 min at a final concentration of 5 µM. Once inside cells, it is 

hydrolyzed by esterases to produce 2',7'-dichlorodihydofluorescein which is then 

oxidized by ROS to produce a fluorescent product (2’,7’-dichlorofluorecein) which is 

excited at 483 nm to emit light at a wavelength of 530 nm. Higher intensities indicate 

high ROS levels. The media was removed and the cells were washed twice with 100 

µL phosphate buffered saline (PBS). This was performed to remove extracellular 
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probe, and to minimize interference from phenol red. PBS (100 µL) was finally 

added and the fluorescence was measured [excitation at 483nm, emission at 530nm] 

using a Biotek fluorometer. Three different cell batches were used and for each batch 

the experiment was conducted in triplicate.   

4.3 Mitochondrial membrane potential

Our main intention behind this assay is to measure the effect of both agents on the 

mitochondrial membrane potential. For this purpose we used the JC-1 dye. The idea 

behind using this dye is that it forms monomers in cells with low mitochondrial 

membrane potential (unhealthy cells). It forms J-aggregates in the mitochondria of

healthy cells which have a high mitochondrial membrane potential. Therefore, agents 

expected to have an effect of MMP will cause an increase in the monomeric form 

and reduce the J-aggregates. However, the formation of monomers is usually easier 

to detect compared to J-aggregates especially when the decrease in membrane 

potential is relatively minimal (Di Lisa et al., 1995). Three different cell batches 

were used and for each batch the experiment was conducted in triplicate.   

The experiment was conducted based on previous publications (Salvioli et al., 1997; 

Cayman Chemical Company, 2011). HCT-116 cells 5X103 cell/ml were cultured in 96-

well black plates. The lower side was transparent.  After letting the cells attach for 24

h the cells were treated with the IC50 concentrations of NC 2067 and NC 2081. As 

explained above for compound preparation, the same steps were followed here. 
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Compounds were prepared in DMSO at 5 mM concentration. Dilutions were made 

using media to a concentration of 10 µM. Then, 94 µL media were added to 5 µL of 

the previous drug/media solution. By the addition of 1 µL DMSO, the required 

concentration results in 1% DMSO. Some volume adjustments were required for 

each compound. The concentration of CCCP and 2,4-dinitrophenol was 1 µM. They 

were used as positive controls. The JC-1 dye was prepared in the media as a stock 

solution at concentration 20 µg/ml. After 48 h, 10µL of JC-1 were added to each well 

and mixed.  Cells were incubated for 30 min at 37oC and 5% CO2. The cells were 

centrifuged at 400x g and the media was removed. Phosphate buffered saline (PBS) 

(100 µL) was added and again centrifuged. This process was performed twice until 

there was complete removal of the excess dye. 100 µL PBS was added to each well. 

Fluorescence was measured [Ex 485 and Em: 535 for monomeric JC-1 detection] 

using a Biotek spectrometer. 

4.4 GSTπ inhibitory activity

We intended to study to binding ability of both compounds to behave as substrates 

for GSTπ. Our preliminary experiments were performed based on the published 

method (Appiah-Opong et al., 2009). Pure GSTπ was from the Vaccine and 

Infectious Disease Organization-International Vaccine Centre, Saskatoon, 

Saskatchewan (VIDO-InterVac). GSH and CDNB were used to monitor its activity. 

A binding between GSH and CDNB in the presence of GST would result in the 

conjugate form that absorbs UV light at 340 nm. Unfortunately, both NC
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2067 and NC 2081 have maximum absorptions close to a wavelength of 340 nm. 

Therefore, we decided to employ a different approach. First, the absorption of 25 µM 

of NC 2067 and 250 µM of GSH was determined. This results in a GSH:compound 

ratio of 10. Then GST was added to the solution making its final amount 1.2 µg. This 

amount was used based on previous data which showed the optimal rate of 

absorption decrease. The addition of GST was found to increase the volume by 2% 

and it had a minimal effect on the volume increase. The reduction in absorption over 

time was determined for both agents. After the addition of GST, absorption readings 

were taken after 0, 2, 4, 6 and 10 min until no change in absorption was seen. The 

same steps were followed for NC 2081 except that the concentrations used were 

different. The absorption of 30 µM NC 2081 and 300 µM GSH was determined. This 

still gave the same GSH:compound ratio of 10. 

Solutions of GST and GSH were prepared in phosphate buffer pH = 7. Temperature 

was kept at room temperature. The drugs were first prepared in DMSO and the total 

DMSO in the mixture was 1%. The experiment was conducted in triplicate.    

4.5 Oxygen consumption assay

We intend to study the effect of both agents on the rate of oxygen consumption. This 

can be measured by determining the change in oxygen concentration with time. 

After detaching all cells from a flask, 4x106 cells/ml were prepared. The oxygen 

concentration was determined by instilling 1 ml cells in the oxymeter chamber to 

measure the oxygen concentration. The measurement was taken for 2 min.  CCCP 
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was then added at concentration 5 µM. This was performed by preparing CCCP in 

DMSO at concentration 1 mM, then 5 µL was added to cells to obtain the right 

concentration. After observing the oxygen level changes for 5 min, one of the 

compounds was added. This was performed by preparing a stock solution of 1 mM in 

DMSO, then 10 µL to obtain the concentration of 10 µM which was followed by 

another 40 µL of the same stock as explained below. The effect of the agents was 

observed by indicating a change in the oxygen consumption rate. The initial 

concentration of NC 2067 and NC 2081 was 10 µM, subsequently an additional 40 

µM was added. Three different cell batches were used and for each batch the 

experiment was conducted in triplicate.   

4.6 Mitochondrial swelling assay

Our main rationale behind performing this assay was to establish the effect of both 

agents on mitochondrial swelling. This assay depends on the fact that once 

mitochondria swell more UV light passes through. After removing the liver from a 

rat, mitochondria were isolated from the liver using conventional differential 

centrifugation (Kowaltowski et al., 1996). Wistar male rats between 250 and 350g 

weight were used. This work was approved by the University of Saskatchewan’s 

Animal Research Ethics Board, and adherence to the Canadian Council on Animal 

Care guidelines fr humane animal use. Prior to the absorbance measurement, isolated 

mitochondria were diluted in swelling buffer containing 125 mM sucrose, 65 mM 

KCl, 10 mM HEPES, 5 mM potassium phosphate, 1 mM MgCl, pH 7.2, with 5 mM 
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succinate. In order to measure the amount of swelling in the mitochondria, the light 

scattered was determined at a wavelength of 520 nm. Mitochondria were suspended 

to an initial absorbance close to 1.5. A kinetic mode sampling the absorbance every 

10 sec was performed to monitor changes in absorption. Once a steady absorbance 

line was noticed, Ca++ was added to induce swelling in the mitochondria at 

concentration of 50 µM. This resulted in a significant drop in the UV absorbance. 

After confirming the responsiveness of the isolated mitochondria, the effect of our 

compound on mitochondrial swelling was examined. 20µL of the suspension in 1 ml 

resulted in about 1.5 absorbance value.  NC 2067 and NC 2081 were added 

separately at concentrations of 10µM and 50µM. The kinetic mode absorbance 

was recorded for 10 min while observing the change in its values. Two rats were 

sacrificed; the experiment was conducted in triplicate for each liver sample. 

4.7 Statistics

One way ANOVA with Dunnett’s multiple comparison post-hoc analysis was used to 

determine the significance of the effects between treatment groups and control. A p

value below 0.05 was considered significant.  
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5. RESULTS

5.1 Anti-proliferative assay

After conducting the antiproliferative assay we managed to plot a graph describing 

the effect of different concentrations on the proliferation of HCT-116 and CRL-1790. 

Anti-proliferative assay was performed using the SRB dye. Log concentrations were

plotted against the percentage of inhibition for the IC50 calculations. A sigmoidal 

graph was observed. IC50 was determined at the concentration at which the effect is 

half between the maximum (100% inhibition) and the minimum (0% inhibition). 
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This would determine the concentration at which number of cells was reduced by 

half after the incubation period compared to control. 

The anti-proliferative assay reveals the high cytotoxic potencies of both NC 2067

and NC 2081 against the human HCT-116 colon cancer cell line (Figure 5.1). The 

IC50 values were near 0.5 M, and displayed more than 5-fold greater potencies than 

5-FU (Table 5.1). On the other hand, both compounds showed weak growth 

inhibition against normal CRL-1790 cells (Figure 5.2 and Table 5.1). (The cell 

growth inhibition was 31% and 16% at concentrations 25 µM for NC 2067 and NC 

2081, respectively). IC50 for 5-FU against CRL-1790 could not be determined 

because a maximum inhibition of 100% was not reached. These IC50 values were 

used for ROS and membrane potential assays. 
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NC2081
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Figure 5.1: a: The anti-proliferative activity of NC 2067 against HCT-166 cells b. 
The anti-proliferative activity of NC 2081 against HCT-166 cells c. The anti-
proliferative activity of 5-FU against HCT-166 cells. IC50 could not be determined 
form experiment 1. Only Experiments 2 and 3 were used to calculate the average. 
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Figure 5.2: CRL-1790 cell growth inhibition related to concentration. Incubation was 
performed for 48h after which sulforhodamine B SRB was added Concentrations 
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higher than 50µM were not soluble in media and 0.5% DMSO. The experiment was 
performed three times, in each experiment each concentration was made in triplicate

  Table 5.1. Anti-proliferative activities of NC 2067 and NC 2081. IC50 of both 
agents on HCT-116 cells ranged from 0.5 to 0.6 µM. IC50 of both agents on CRL-

1790 was above 25µM.   

Compound IC50 µM+SD*

HCT-116 cell 
line

CRL-1790 cell 
line

NC2067 0.571+0.105 > 25
NC2081 0.503 +0.081 > 25

5-FU 3.558+1.06 >25

* SD= Standard deviation 

5.2 ROS evaluation

The increase in ROS levels was apparent after cells were treated to both agents. This 

was concluded after observing an increase in fluorescence intensities of 

Dichlorodihydrofluorescein. The average increase of fluorescence intensities 

represents an increase in ROS. One may conclude from Table 5.2 that both agents 

caused a 3-7 fold increase in fluorescence intensity when HCT-116 cells were treated 

with the IC50 concentrations of NC 2081 and NC 2067 for 48 h. The difference in 

ROS induction between each compound and DMSO was significant with a p value 

less than 0.05 (Appendix 1). It should also be noted that the number of cells was 

reduced by half after the incubation, therefore, the intensities (fluorescence units) 

were doubled for all three agents to be comparable with the number of cells in the 

DMSO condition.
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Table 5.2. Effect of cytotoxic agents on ROS levels in HCT-116 cells. Both agents, 
and 5-FU were able to induce ROS about 3-7 fold. The average increase of 
fluorescence intensities represents an increase in ROS. 5-FU was used as a positive 
control. The value of p was less than 0.05 when the effect of each agent was 
compared with DMSO. Each experiment was conducted in triplicate.

Compound Average 
intensities+SD*

NC 2067 9946+252
NC 2081 5036+994

5-FU 7298+560
DMSO 1387+55

* SD= Standard deviation 

5.3 Mitochondrial membrane potential

After performing this assay we were able to observe the effect of agents on MMP. 

Table 5.3 reveals the ability of both the agents to increase the levels of the 

monomeric form of JC-1 in HCT-116 cells about 2 fold which indicates that NC 

2067 and NC 2081 reduce the mitochondrial membrane potential in these cancer 

cells. The p value was found to be less than 0.05 for all agents when compared with 

DMSO. The monomeric form was measured at Ex of 485 nm and Em of 535 nm. 

The monomeric form tends to accumulate in unhealthy cells with lower 

mitochondrial membrane potential. For NC 2067 and NC 2081, the number of cells 

were reduced by half after 48 h. Therefore, the intensities were doubled for both 

agents to be comparable with the number of cells in the DMSO condition.

Table 5.3. Evaluation of the mitochondrial membrane potential of HCT-116 cells 
after treatment with NC 2067, NC 2081 and positive controls CCCP and 2,4-
dinitrophenol.. JC-1 was added after incubation with the test compound for 48 h. The
p value when comparing between both agents and DMSO was less than 0.05.  Each 
experiment was conducted in triplicate. 
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Compound Average+SD*
NC 2067 6074+456
NC 2081 6376+509

2,4-dinitrophenol 7541+769
CCCP 7277+519
DMSO 3069+20

*SD= Standard deviation

5.4 GST activity

After conducting the explained experiment it was revealed that both compounds NC 

2067 and NC 2081 behave as substrates for GSTπ. The top curve indicates the 

absorption of one compound alone. The addition of GSH and GSTπ caused a great 

drop in absorption. Decrease in absorption continued when it was measured every 2 

min. This reduction was stopped after 10 min indicating that agent’s concentration is 

steady. The decrease seen at the beginning implied a decrease in drug concentration 

caused by the removal of agents or binding molecules with other compounds (GSH). 

Such binding will cause a change in chemical structure and therefore change in 

λmax. The concentration of both compounds was not affected by the addition of 

GSH nor GST individually, and in these conditions the compounds were stable

during the period of the experiment.   
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Figure 5.3: Absorbance for NC2067 with time after the addition of GSH and GST. 
The decrease in absorbance at ~314 nm implies a decrease in concentration which is 
the result of the attachment of the agent with GSH. GSTπ was required for this 
attachment. A decrease in absorbance was measured with time until about 10 min. 

Figure 5.4: Absorbance for NC2081 with time after the addition of GSH and GST. 
The decrease in absorbance at ~319 nm implies a decrease in concentration which is 
the result of the attachment of the agent with GSH. GST was required for this 
attachment. A decrease in absorbance was measured with time until about 10 min. 

5.5 Oxygen consumption assay
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Measuring the oxidative phosphorylation activity can be conducted by determining 

the changes in oxygen concentration over a period of time. The measurement of 

oxygen concentration over time determines the rate of concentration change. This 

value is represented by the slope produced when the oxygen concentration is plotted 

against time. Treating the cells with 5 M CCCP caused an increase in the oxygen 

consumption rate from 2 to 7 M/min (Figure 5.5 and Table 5.4). However, adding 

NC 2067 or NC 2081 caused a significant inhibition in the oxygen consumption rate.

The addition of both agents was conducted in two phases. The first phase involved

the addition of 10 µM. This caused about a 50% decrease in the respiratory rate for 

both agents. When 40 µM were added, the rate decreased by about 50% again for 

both agents. The oxygen consumption of untreated cells was measured for about 10 

min. The rate was steady for that period and equaled 2 M/min. The addition of 

CCCP caused about a 4 fold increase in the consumption rate. 

Figure 5.5: Oxygen consumption with the addition of CCCP, NC 2067 and NC 2081. 
The purple line represents the cells alone respiration. CCCP was added at 5 µM at 
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the beginning as indicated in the figure. Both agents were added 2 min after the 
addition of CCCP at concentrations of 10 µM as indicated in the figure. After 
recording the oxygen consuption for 2-3 min, another 40 µM of each agent was 
added making the final concentration 50 µM.    

Table 5.4: Oxygen consumption in response to the addition of compounds NC 2067
and NC 2081. The inhibition or stimulation percentage compared to the column 
before the addition. The addition of CCCP caused an increase in oxygen 
consumption rate while the addition of the compounds caused a decrease in the rate. 
Percentage of inhibition after CCCP was added was related to the rate when nothing 
was added. 

Addition of CCCP (5 µM)
(% stimulation +S.D.)

Addition of NC2067 
(10 µM) (%  inhibition
+S.D.)

Addition of NC2067 
(50 µM) (% inhibition
+S.D.)

Percentage 
change

69.4+12.6 51.54+8.52 27.65+3.04

Addition of CCCP (5 µM)
(% stimulation +S.D.)

Addition of NC2081 (10 
µM)
(%  inhibition +S.D.)

Addition of NC2081 (50 
µM)
(% inhibition +S.D.)

Percentage 
change

55.93 + 2.69 59.52+6.68 31.56+13.88

5.6 Mitochondrial swelling assay 

Compound NC 2081 produced some swelling of mitochondria when treated with 10 

and 50 µM of the compound (Figure 5.6). This was represented by a decrease in 

absorption with time. The decrease in absorbance was measured until a steady line 

was seen. The absorbance was taken every 10 sec for about 10 min. The addition of 

10 and 50 µM of NC 2081 caused swelling as shown in the figure. The addition of 

the higher concentration caused about 2 fold more than the lower one. A decrease in 

absorbance from 1.5 to 1.3 for the higher concentration was noted.  A decrease of 0.1 
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absorbance unit was observed when 10 µM was added. On the other hand, compound 

NC 2067 produced swelling only at a concentration of 50 µM (Figure 5.7). The 

absorbance decreased from 1.5 to 1.37 over the time period measured. No change in 

absorbance over this time period was seen using 10 µM NC 2067. This would imply 

that NC 2067 has minimal effect on mitochondrial swelling. A solution of Ca+2 ions 

was used as a positive control at 50µM concentration (Figures 5.6 and 5.7). This 

caused a significant decrease in absorbance implying that a rapid and substantial

amount of swelling was induced.

Figure 5.6: Mitochondrial swelling after the addition of NC 2081 and Ca++. The 
compound was added after measuring the steady absorbance of mitochondria for 
about 20 to 40 sec. 
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Figure 5.7.: Mitochondrial swelling after the addition of NC 2067 and Ca++. The 
compound was added after measuring the steady absorbance of mitochondria for 
about 20 to 40 sec. 

6. DISCUSSION 

The main objective of our laboratory is to synthesize anticancer agents that interact 

with thiols rather than having DNA as the main target as is the case with many 

contemporary antineoplastic drugs. The compounds of major interest in our 

laboratory contain the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore which are 

believed to have a high potential for targeting thiols which may include GST and 

GSH (Das et al., 2007). Therefore, we conducted a series of experiments to 

determine some of the modes of action of NC 2067 and NC 2081. Both compounds 
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have the pharmacophore of interest with different N-acyl side chains. We chose these 

compounds because they possess potent cytotoxic properties towards a number of 

cancer cell lines (Das et al., 2007).

Cancer cells tend to shift their energy dependency to glycolysis (Van der Heiden et 

al., 2009). This change in metabolism reduces the efficiency of respiratory oxidation 

which in turn results in ROS accumulation (Hileman et al., 2004). Malignant cells 

have managed to adapt to such an increase in elevating ROS concentrations by 

overexpressing GST (Mannervik et al., 1987; Laborde, 2010), GSH and antioxidative 

enzymes (Estrela et al, 2006). These proteins act in conjunction with other 

antioxidants as electrophilic and reactive oxygen species scavengers (Figure 2.6). 

However, to maintain the state of oxidative stress in cancer cells, antioxidative 

enzymes are found in certain levels which cause the ROS concentrations to remain 

relatively high. High ROS levels are required for cell proliferation and signaling in 

tumors. However, extremely high concentrations of ROS can initiate apoptosis 

(Trachootham et al., 2009;Toyokuni et al., 1995). An increase in ROS levels is also 

expected to have an immediate effect on the mitochondrial membrane.

In general, we have evaluated the effect of both agents on cell proliferation, ROS 

levels, mitochondrial membrane potential and GST. In addition, we also determined 

the effect of both agents on cellular oxygen consumption and mitochondrial swelling.

The anti-proliferative results were anticipated because previous reports have

established the high potency against cancer cells for NC 2067 and NC 2081 and 

some related compounds (Das et al., 2007). 
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This antineoplastic effect might be the result of targeting GST. As explained above, 

high GST and GSH concentrations compared to ROS levels in normal cells allow a 

slight reduction in GSH’s levels without affecting ROS concentrations. This is 

presumably because normal cells have low oxidative stress conditions (Schumacker, 

2006). On the other hand, cancer cells remaining in a continuous oxidative stress 

have sufficient GSH and antioxidative enzyme concentrations to scavenge ROS. 

Therefore, a slight reduction in GSH would render the ROS levels higher than the 

cancer cells can accomodate. As a result, the mitochondrial membrane potential in 

tumors will be reduced to levels at which apoptosis can be initiated.

6.1 Anti-proliferative determinations 

As indicated previously, both agents cause potent inhibition of the growth of HCT-

116 cancer cells. They also had a much less cytotoxic effect on normal cells (CRL-

1790) with an IC50 value above 25 µM. The exact IC50 figures for the normal cell line 

were not achievable since a plateau at high concentrations was not observed. That is, 

in order to obtain an IC50 a complete sigmoidal curve should be present which would 

have a steady mimimum at inhibition and a steady maximum inhibition. As shown in 

Figure 5.1 at high concentrations the effect of the compounds was not maximized. 

Higher concentrations would be necessary to in order to establish such relationship.   

With the normal cell line, the maximum concentration used was 50 µM. Higher 

concentrations of solutions were not possible when a maximum of 0.5 % DMSO was 

used. This concentration of DMSO was used after optimization experiments 
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conducted with different DMSO concentrations revealed that 0.5% DMSO did not 

affect the viability of the cells.     

Although the SRB assay is widely used it has some disadvantages. The SRB dye is 

used to measure the proteins in cells. Thus, the exact number of healthy cells cannot 

be determined using this dye. For example, proteins in cells going through apoptosis 

might be detected and show a falsely high number of living cells.    

6.2 GST and GSH

Agents with high potency on cancer cells exert their action by various mechanisms. 

Our first intention was to provide more evidence to our hypothesis in which such 

specificity is mainly caused by inhibiting key mechanisms critical in cancer cells and 

not normal ones. Therefore, we first showed the ability of agents to act as substrates 

for GST activity and thereby decrease GSH levels.   

In order to evaluate our hypothesis, we determined the effect of both agents on 

GSTπ, a class that is usually overexpressed in cancer cells (Mannervik et al., 1987; 

Laborde, 2010). The results revealed the ability of GST in conjugating both agents to 

GSH. This observation implies that both compounds behave as substrates for GSTπ. 

Also, as substrates of GST these compounds would deplete GSH and render the cells 

less protected from reactive species. This effect will contribute to an increase in ROS 

levels leading to mitochondrial membrane potential reduction and cell death.

The results show a reduction in the absorbance of the compounds until a certain 

absorbance is reached. Not reaching an absorbance of zero, despite the use of 1:10
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ratio of GSH:compound, would imply the formation of a GS-compound complex,

which might inhibit the enzyme by product inhibition. This result was also observed 

for other compounds such as ethacrynic acid (Awasthi et al., 1993). To confirm this 

behavior, the GS-compound complex should be synthesized and evaluated against 

GST activity. The synthesis of the GS-compound complex may reveal that the 

compound is likely to bind to the enzyme’s H-site. 

One of the main disadvantages of the method used here was the lack of the ability to 

determine the exact amounts of the products formed. Determining these data would 

enable us to quantify the binding strength and obtain other pharmacokinetic data. 

Two agents were tested in my work which are representative of several series of 1-

acyl-3,5-bis(benzylidene)-4-piperidones. It is conceivable that other members of this 

group of compounds will also react with GSH and GST in the same way. However, 

other factors such as the bulkiness and accessibility of the 1,5-diaryl-3-oxo-1,4-

pentadienes to interact with the binding site will also influence the rate and extent of 

thiol depletion. 

Both agents did not bind with GSH without the presence of GST. This would imply 

that GST is required to activate GSH or the compound in order to link both together. 

GSH is known to be activated by deprotonating the thiol group in the portion of GSH 

leaving a negatively charged sulfur atom. The electrons in α,β-unsaturated ketones 

are polarized as shown in Figure 6.1 and hence nucleophilic attack occurs at the beta

carbon atoms of the cytotoxin. 
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Figure 6.1: The reaction of thiols with α,β-unsaturated ketones

The main limitation to this technique as explained previously is the overlapping of 

the absorption peaks with each other. One other issue is the presence of all of the 

compounds (reactants and products) in the same vessel. Therefore, the exact effect of 

each compound is not achievable. A solution to this problem might be using HPLC 

after the reaction had reached equilibrium. Each separated fraction can then be 

analyzed. 

In addition, the possibility of the binding between GST and the compounds was also 

studied. When GST and the compounds were both incubated for 20 min, no decrease 

in the absorption of the compounds was seen. This observation confirms that the 

compounds do not bind with GST covalently. Non-covalent interactions do occur 

because the enzyme is able to combine the compounds with  GSH.   

In summary, we have shown the conjugation of the compounds was obtained only 

after the addition of both GSTπ and GSH which may be explained as the catalytic 

ability of GST in binding GSH with the compounds. Therefore, the use of LC-MS is 

recommended for the exact detection of the products.   

6.3 Reactive oxygen species 
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About a 3-7 fold increase in ROS was measured after the treatment of HCT-116 cells 

with both agents. One reason for this increase in ROS levels may be due to the 

depletion of GSH when acting as a substrate of GST. However, another factor which 

may lead to ROS induction is the inhibition of the oxidative phosphorylation 

pathway (Mattiazzi, el at, 2004). Therefore, the possible effect of both agents on 

these pathways is explained in the next sections. 

ROS elevation is linked to several consequences. These molecules have the ability to 

react with macromolecules in cells which would damage proteins, DNA and induce 

some apoptotic signals (Benhar et al., 2001; Benhar et al., 2002). Because ROS is 

mainly produced by respiration processes, it is reasonable to assume their effect will 

initially be exerted on mitochondria. In the present case, we used the dye 

dichlorodihydrofluorescein diacetate to detect ROS. 

The IC50 values of both compounds against HCT-116 were used throughout the mode 

of action investigations, unless indicated otherwise. After 48 h the number of cells 

was reduced to half in the treated wells compared to DMSO treated. Therefore, after 

measuring the fluorescence in each well, the value was multiplied by 2 for the treated 

wells to compensate for the drop in cell number.

One major limitation of this technique is the inability to distinguish between the 

different types of ROS (H2O2, O-, OH.) although it is claimed that the 2’.7’-

dichlorodihydrofluorescein assay has some specificity towards H2O2 (Rhee et al, 
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2010) . In our case, we were interested in knowing the effect of the agents on ROS in 

general.

6.4 Mitochondrial membrane potential

The MMP is the result of the difference between the proton concentrations across the 

inner mitochondrial membrane. Protons are highly concentrated in the inter 

membrane space compared to the matrix. This difference is caused by pumping 

protons into that space by respiratory complexes (I-IV). This potential is used by 

complex V (ATP synthase) to synthesize ATP when using the energy derived by a 

downhill flow of protons (Chen, 1988). This potential is critical for cellular survival 

for several reasons. As explained previously, the synthesis of ATP directly depends 

on the MMP. Reducing the MMP might cause a reduction in ATP production and be 

the reason why bringing MMP to zero will induce apoptosis. On the other hand, 

affecting the electron flow by attacking one of the complexes directly will cause a 

blockage of flow to complex IV leading to oxygen accumulation which causes ROS 

production (Ricci et al, 2003; Chen et al, 2007).    

The MMP is known to be affected by various causes. ROS leads to direct damaging 

effects on membranes, opening of the MPT pore and collapse of the MMP (Vercesi 

et al., 1997). ROS can also cause mutations in mitochondrial DNA which would 

cause structural deformities in membranes (Ehlers et al., 1999).

After showing that both agents were able to induce ROS, we wanted to determine if 

such increases would cause any effect on the MMP. Our results have shown some 

ability for both agents to reduce the MMP. Because our results suggest that the 
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agents can directly deplete GSH, it can then be proposed that the consequent increase 

in ROS caused the effect on mitochondrial membrane potential. 

JC-1 was used as a dye to measure the membrane potential. Healthy cells have a high 

MMP and in such cells, JC-1 forms J-aggregates that are excited and emit light at 

wavelengths of 560 nm and 595 nm, respectively. In unhealthy cells with altered 

MMP, JC-1 forms monomers that are excited and emit light at wavelengths of 485 

nm and 535 nm, respectively. 

Other dyes such as DiOC6(3) and rhodamine 123 can be used for the same purpose. 

However, JC-1 seems to be more selective towards changes in the MMP rather than 

the cellular membrane potential (Salvioli et al., 1997). Despite this advantage, JC-1 

had low solubility in media which causes difficulty in dissolving it while it is 

incubated with cells. One other issue is the low sensitivity of the monomeric forms. 

In other words, in order to form the  J-aggregates, MMP should be greatly decreased 

(Di Lisa et al., 1995). In our results, the J-aggregates form was not altered perhaps 

because of the lack of any large drop of the MMP. 

Carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol were 

both used as positive controls. Both agents are uncouplers that cause a decrease in 

the difference in the proton concentrations. This is achieved by the attachment of the 

agents to a proton from the intermembrane space and bringing it across the inner 

membrane to the matrix (Korde et al., 2005). Performing this would bypass the ATP 

synthase producing heat rather than ATP. 
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6.5 Oxygen consumption

After evaluating the effects of the agents on cell proliferation, ROS and MMP, we 

wanted to determine if there was any effect of these compounds on oxygen 

consumption. In mitochondria, ROS are mainly produced by the inhibition of 

oxidative phosphorylation. Hence the effect of the agents on oxidative

phosphorylation was a reasonable approach. 

Using an oxymeter, the levels of oxygen in solution were measured. The oxygen 

consumption rate was increased by the addition of a known uncoupler (CCCP). The 

subsequent addition of agents caused an inhibition in oxygen consumption. This was 

determined by the decrease in the oxygen consumption rate. The range of reduction 

in phosphorylation is 2 to 3 fold, depending on the agents and concentrations. 

These results imply that both agents inhibit the electron transport chain. The exact 

protein(s) inhibited is/are yet to be identified. 

Complex I is believed to be the rate limiting step in the electron transport chain 

which can be inhibited by rotenone. It reduces NADH to NAD+ in the first step in 

the chain. When inhibited by rotenone (Li et al, 2002) the entire chain is not 

completely blocked. This complex, in addition to complex III, is believed to be the 

main generators for ROS (Turrens, 1997). Complex II is another electron supplier 

which also delivers an electron to complex III. The reduction of succinate to 

fumarate accompanies this process. 
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Complex III is oxidized when it receives electrons from the previous complexes (I 

and II) and delivers these electrons to complex IV via cytochrome c. Antimycin and 

cyanide are two agents that inhibit complex III and IV, respectively (Huang et al., 

2005; Ricci et al., 2003) Inhibiting the oxygen consumption causes the cessation of 

ATP production and cell death. In addition, increases in ROS levels can be seen 

when some complexes are inhibited, Figure 6.2 shows these processes. 

�

Figure 6.2: Structure of the electron transport chain in the mitochondria. Rotenone, 
malonate, antimycin, cyanide and oligomycin are inhibitors and are shown near the 
protein they block. Δψ: mitochondrial membrane potential (Ricci et al., 2003).

Using this method we will not be able to determine which complex is inhibited. 

Other techniques such as measuring specific complex activities are needed for such a 

purpose.
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6.6 Mitochondrial swelling assay

Inducing mitochondrial swelling can be achieved by the alkylation of the sulfhydryl 

groups on the mitochondrial membrane (Costantini et al., 2000). In addition, swelling 

can occur as a result of GSH depletion and ROS elevation (Galindo et al., 2003).

Since both agents have the ability to deplete GSH and elevate ROS, we wished to 

determine the effect of these agents on mitochondrial swelling. As explained 

previously, NC 2081 had some mitochondrial swelling induction ability at 

concentrations of 10 µM and 50 µM. NC 2067 has an effect on mitochondrial 

swelling when 50 µM concentration was used but no effect at a concentration of 10 

µM. The concentrations used were quite high since the incubation time is only 10

min. The ability in causing swelling was also observed previously for related 

compounds (Das et al., 2008). 

Apparently, inducing mitochondrial swelling by depleting GSH gives only a weak 

response. On the other hand, alkylation of the mitochondrial membrane pore leads to 

a opening which causes significant swelling. Alkylation occurs at the thiol group in 

Cys 56 in the ANT protein. Examples of such thiol cross-linking agents are 

dithiodipyridine, bismaleimidohexane and others. Although some of these agents 

lack the unsaturated keto group, they have the ability to oxidize the critical amino 

acid (Cys 56) in ANT. 

Ca+2 is known as a mitochondrial swelling inducer (Chappell and Crofts, 1965). Its 

role in mitochondria has been established for the past two decades. Transporters to 
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organize the entry to and from the mitochondria include Ca+2 uniporter, Na+/Ca+2

carrier, Na+/H+ antiporter and Na+-independent efflux of Ca+2. High Ca+2 

concentrations can induce the opening of the permeability transition pore (PTP) 

(Picard et al., 2008). 

The mechanism in which the PTP is opened is not fully understood. Cyclophilin D is 

believed to bind with the pore protein in the ANT matrix side which would open the 

pore protein (Woodfield et al, 1998). Ca+2 is one substance that induces cyclophilin 

D to bind to the PTP. Opening these pores allows water to flow in and cause 

mitochondrial swelling which, depending on how severe, will cause rupture of the 

mitochondrial outer membrane. 

Both cytotoxins inhibited the respiratory chain. As previously indicated, neither 

agent showed the ability to bind to the sulfhydryl group on GSH without GST as the

catalyst. GSH and the sulfhydryl groups in the mitochondrial membrane might have 

different characteristics. However, it is still reasonable to suggest the ability of the 

agents to bind with the mitochondrial membrane.

The difference in activity between both compounds can be attributed to the following 

reasons. Both compounds contain a nitrogen base in their side chains. However, the 

basicity of the nitrogen atom in NC 2067 is more than 100 fold greater then the 

basicity of the morpholine group of NC 2081. As shown in the figures presenting the 

structures of NC 2067 and NC 2081, the torsion angels between the aryl rings and 

the olefinic carbon are different in each compound. That is �1 and �2 in compound 

NC 2067 are +17 and -42 respectively. However, in NC 2081, �1 and �2 when 
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measured simply by using Polymol program are-18 and -27. Such differences might 

also have some effect of the binding of agents to certain proteins affecting the 

membrane permeability. However, these differences in structure did not cause major

differences in activity in the other assays reported here.    

6.7 Future work

For future work, it would be interesting to establish whether a wider range of analogs 

act by the same mechanisms. This may suggest that not only these two compounds 

are able to cause these effects, but all compounds possessing the 1,5-diaryl-3-oxo-

1,4-pentadienyl pharmacophore would act in the same manner. In addition, a strong 

structure-activity relationship may be established. The GST and GSH results should 

encourage us to study the kinetic studies in depth. The use of HPLC and mass 

spectrometry are two techniques proposed to isolate all compounds and then 

determine the quantity of each.

These results showed that these agents have some effect on mitochondria; however, 

the exact mechanism of involvement is yet to be addressed. Different pathways can 

be affected and result in cell death. For example, affecting an electron respiratory 

complex is one mechanism for cell death. The exact complex inhibited should be 

determined. In addition, the influence of other mechanisms may involve the 

alkylation of ANT, damaging mitochondrial DNA and affecting the Krebs cycle. The 

effect of these compounds on these mechanisms has not been evaluated yet. 
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After the evaluation of the effect of both compounds, NC 2067 and NC 2081, other 

compounds, possessing the same pharmacophore, will be evaluated against the same 

mechanisms. This will reveal if these pathways are affected by compounds having 

the same structures.   

Later, after confirming the activity of these compounds  in vitro we would like to 

evaluate their activity  in vivo. A previously evaluated compound possessing the 

same pharmacophore was evaluated and was unsuccessful in vivo (Dimmock et al., 

1990). However, compounds NC 2067 and NC 2081 have not been evaluated in 

vivo. These compounds have different physicochemical properties which would 

encourage the evaluation in mice. For example, they have lower logP than the 

previously evaluated compounds. This would improve the biodistribution rather than 

residing in the adipose tissues. In addition, both compounds lack the quaternary

ammonium ion which is probably the main reason for the neurotoxicity seen in 

previous evaluations. 
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7. CONCLUSIONS

NC 2067 and NC 2081 possessing the 1,5-diaryl-3-oxo-1,4-pentadienyl 

pharmacophore inhibit the proliferation of HCT-116 cancer cells while exerting 

minimal effect on normal ones. The IC50 values for both agents ranged from 0.5 - 1

µM and above 25 µM for cancer and normal cells, respectively.  One proposed 

mechanism of action is their being substrates of GST and thus depleting GSH levels. 

This will cause two main actions. The first is the increase in ROS levels and the 

second is the lowering of the cancer cell’s ability in developing resistance to certain 

chemotherapeutics. Both agents were able to increase ROS levels by 3-7 fold.  

A second mechanism which might also lead to the induction of ROS levels is the 

inhibition of the electron transport chain which was determined as the inhibition of 

oxygen consumption. Both agents inhibit oxygen consumption implying that this 

might be another mechanism for ROS induction. 

The increase in ROS levels caused by both agents is one mechanism to decrease the 

potential around the mitochondrial inner membrane. As explained, these agents seem 
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to increase ROS by two mechanisms, the first is the decrease in GSH and the second 

is the blockage of oxygen consumption. These mechanisms were proved 

experimentally and seem to be the most likely pathway for ROS increase. In 

addition, it is reasonably assumed covalent interactions are not happening between 

the agents and the mitochondrial membrane.

NC 2081 had mitochondrial swelling induction ability at a concentrations of 10 µM 

and 50 µM. NC 2067 has an effect on mitochondrial swelling when 50 µM is used 

but no effect at a concentration of 10 µM. The increase in ROS levels might cause 

some mitochondrial swelling but in this case the increase was not severe enough to 

produce a large effect. 
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APPENDIX

Appendix 1: Table showing post-hoc results when comparing the effect of each 
compound and the effect of DMSO on ROS levels. Significant effect was seen when 
these comparisons were made. GraphPad Prizm program was used to preform one 
way ANOVA -Dunnett’s multiple comparison test.
   

Dunnett's Multiple Comparison 
Test Mean Diff. Significant? P < 0.05? 95% CI of diff

DMSO vs NC2067 8559 Yes 9684 to 7434
DMSO vs NC2081 3500 Yes 4625 to 2375

DMSO vs 5-FU 5911 Yes 7036 to 4786

Appendix 2: Table showing post-hoc results when comparing the effect of each 
compound and the effect of DMSO on MMP. Significant effect was seen when these 
comparisons were made. GraphPad Prizm program was used to preform one way 
ANOVA -Dunnett’s multiple comparison test.

Dunnett's Multiple Comparison Test Mean Diff. Significant? P < 0.05? 95% CI of diff
DMSO vs NC2067 -3005 Yes -4221 to -1789
DMSO vs NC2081 -3307 Yes -4523 to -2091

DMSO vs 2,4-Dinitrophenol -4472 Yes -5688 to -3256
DMSO vs CCCP -4208 Yes -5424 to -2992
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