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ABSTRACT 

The fungus Colletotrichum truncatum (Schw.) Andrus and Moore causes lentil 

anthracnose, which is a major challenge to lentil production in western Canada. The 

pathogen infects leaves and stems, resulting in defoliation, stem girdling, plant wilting, 

and possibly plant death. Two races, Ct0 and Ct1, have been identified in the pathogen 

population in Canada. However, the differences in the infection process between the two 

races have not been described in detail. Currently, several lentil cultivars, such as CDC 

Redberry, CDC Robin, CDC Rosetown, CDC Rouleau, and CDC Viceroy, have 

resistance against race Ct1, whereas there are no cultivars showing resistance to race Ct0. 

The objective of this study was to investigate differences in the infection process between 

race Ct0 and race Ct1 using the fully susceptible cultivar Eston and the race Ct1-resistant 

cultivar CDC Robin. Experiments on glass well slides showed that race Ct0 had no 

inherently different conidium germination rate compared to race Ct1, and that differences 

in conidium germination between the two races on lentil plants were the result of specific 

interactions between the two races and lentil resistance. Investigations of the infection 

process of the two races on detached and attached leaves of both lentil cultivars were 

conducted starting 12 h postinoculation (hpi) until 72 hpi, including conidium 

germination, appressorium formation, and leaf penetration. Results indicated that 

differences in virulence of the two races may be related to the ability of conidia to 

germinate and form appressoria, as well as the ability of primary infection hyphae to 

grow in response to cues from the lentil cultivars. Furthermore, resistance of lentil to 

isolates of race Ct1 appeared to involve an inhibition in and/or delay of the spread of 

primary infection hyphae inside the plant tissue. Results of infection studies of one isolate 

from each race on attached leaves did not completely agree with results of the same 

isolates on detached leaves. Based on this study, race Ct0 and race Ct1 do not appear to 

be classical physiological races, but may represent aggressive races or some intermediate 

forms. 
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1. Introduction 

 
Lentil (Lens culinaris Medikus) is originally from the Near East and has a long 

history of cultivation as a food crop (Webb and Hawtin, 1981). In Canada the history of 

lentil cultivation began in 1969 (Morrall, 1997), and the harvested area of lentil reached 

532,200 ha in 2007 (FAO, 2009). In 2005, the harvested area even reached 785,000 ha 

which were the highest during the period of 2002-2007 in Canada (FAO, 2009). As one 

of the main export crops, Canadian lentil exports reached 683,022 tonnes in 2006 which 

were 106,144 tonnes more than those in 2005 (FAO, 2009). In 2007, Canadian lentil was 

mainly exported to India, Bangladesh, Algeria, Colombia, United Arab Emirates, 

Pakistan, Turkey, and Egypt (Agriculture and Agri-Food Canada, 2008b).  

As a food, lentil seeds are characterized by their high protein content, which is the 

reason why lentil seeds are consumed as a substitute for meat (Agriculture and Agri-Food 

Canada, 2008b). Other nutrients identified include starch, fat, fibre, and minerals (Solanki 

et al., 1999; Wang and Daun, 2006). Identified minerals include calcium, copper, 

potassium, manganese, phosphorus and Zinc (Wang and Daun, 2006). In addition, lentil 

seeds also provide the B vitamin folate (Agriculture and Agri-Food Canada, 2008b). Thus, 

lentil seeds are of highly nutritional value. 

Growing a lentil crop can be challenged by many abiotic and biotic stresses, 

including drought, water-logging, salinity, heat, low temperature, nutrient deficiency, 

diseases, insects, weeds, and nematodes, all of which restrict the normal development of 

lentil (Erskine et al., 1994; Muehlbauer et al., 2006; Erskine et al., 1994). Among 

diseases, lentil anthracnose, caused by the fungus Colletotrichum truncatum (Schwein.) 

Andrus and Moore, was initially identified in Manitoba in 1986 and subsequently 

reported in Saskatchewan in 1990 (Morrall, 1988; Morrall and Pedersen, 1991). 

Nowadays, this disease has spread across western Canada (Tullu et al., 2003). 

Colletotrichum truncatum can infect the above-ground parts of lentil plants starting at the 

seedling stage, causing defoliation, stem girdling, plant wilting and even death after 
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vascular tissue of stems is impaired. Thus, anthracnose can be a significant threat to lentil 

yields (Morrall, 1988; Buchwaldt et al., 1996; Kaiser et al., 1998; Bailey et al., 2003). 

Colletotrichum species have demonstrated two main infection strategies to invade 

plants: intracellular hemibiotrophic infection and subcuticular intramural infection 

(reviewed by Bailey et al., 1992). The process of C. truncatum infection has been studied 

on pea and soybean (O’Connell et al., 1993; Manandhar et al., 1985). Like other 

Colletotrichum species, e.g. C. destructivum on lucerne, C. truncatum on pea displays the 

following infection process before the appearance of symptoms: conidium germination, 

appressorium formation, penetration into plant tissue, development of infection vesicles, 

development of primary and secondary hyphae (SH). However, the time course for these 

infection structures varies among Colletotrichum species (O’Connell et al., 1993; 

Latunde-Dada et al., 1997). The major difference between the infection processes of C. 

truncatum on pea and soybean is that for the latter hyphae spread below the cuticle 

during the initial infection phase, and then the fungus spreads into the cell wall 

(Manandhar et al., 1985). 

Chongo et al. (2002) studied the infection processes of two C. truncatum isolates 

with different virulences on two lentil genotypes with different resistance reactions to the 

fungus, and showed that the resistant genotype limited the growth of the hyphae, evident 

in an eight- to eleven-day delay on symptom appearance, as well as showed fewer and 

smaller lesions on leaflets compared to the susceptible genotype (Chongo et al., 2002). 

Based on field experiments and tests under controlled conditions, Buchwaldt et al. (2004) 

identified 16 accessions with resistance to anthracnose among 1,771 lentil accessions. 

Among those 16 accessions, seven were chosen as host differentials and inoculated with 

50 single-spored C. truncatum isolates. Based on the study, two pathogenic races were 

identified, i.e. race Ct0 and race Ct1. So far the differences in the infection process 

between race Ct0 and race Ct1 have not been reported. Currently, the lentil cultivars CDC 

Redberry, CDC Robin, CDC Rosetown, CDC Rouleau, and CDC Viceroy have showed 

resistance to race Ct1, but no cultivars are resistant to race Ct0 (Saskatchewan Ministry 

of Agriculture, 2008b).  
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The objective of this study was to investigate differences in the infection process 

of race Ct0 and race Ct1 using the fully susceptible cultivar Eston and the race Ct1-

resistant cultivar CDC Robin.  
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2. Literature Review 
 

2.1. Lentil  

 

2.1.1. Lentil 

 

Lentil (Lens culinaris Medikus) is one of the food crops with the longest history 

of cultivation and one of the earliest cultivated plant species in the Near East (Webb and 

Hawtin, 1981). The word “lentil” is originated from the Latin word “lens” which 

describes the seed shape of this plant (Cubero, 1981). Lentil is an annual plant and 

characterized by many branches, light green stems and leaves, and short plant height. It is 

15 to 75 cm tall, which is determined by the cropping condition and genotype. Other 

basic morphological features include that one to eight pairs of obovate leaflets are 

arranged oppositely or alternatively on a leaf; the number of flowers varies from one to 

four per peduncle; one or two seeds are generated in an oblong pod; the seed is 2 to 9 mm 

in diameter and has green, orange, or yellow cotyledons; the seed coat shows different 

colours, e.g. slight red, green, and brown (Saxena and Hawtin, 1981). Indeterminate 

growth is another feature of lentil; flowers are still blossoming at higher branches, while 

pods are maturing at lower branches on the same plant (Slinkard et al., 1990; Erskine et 

al., 1990a). For optimal yield, lentil plants need proper growing conditions, with pest 

levels managed under economic threshold. Self-pollination is another feature 

(Muehlbauer et al., 2006), so lentil plants do not need insects as a vector to spread pollen.  

 Natural environmental conditions affect the growth of lentil. Different lentil 

genotypes showed different reactions to temperature and photoperiod with a preferrence 

of warmer temperature and longer day for flowering (Summerfield et al., 1985). Rainfall 

and winter temperatures were two determining factors of lentil yield in Mediterranean 

regions (Erskine and EL Ashkar, 1993). Based on differences in environmental 

conditions lentil crops are planted in different seasons in different regions worldwide. For 
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example, in India lentil crops are planted in winter, while in the USA and Canada they 

are planted in spring. In Turkey, elevation determines the time of planting, winter and 

spring plantings take place in the areas with lower and higher elevation, respectively 

(Saxena, 1981).  

Besides natural environmental conditions, appropriate agronomic measures such 

as planting date, seeding rate, plant spacing, resistance to lodging, and weed control can 

also affect growing conditions and thereby the yield of lentil. Studies by Ali-Khan and 

Kiehn (1989) and Turk et al. (2003) showed that earlier seeding resulted in higher yield 

in Canada (early May) and Jordan (early January). In Australia, lentil yield was much 

higher when planted in May compared to July, August, and September) (Dean et al., 

2003). A study on seeding rates indicated that 150 plants/m2 resulted in the maximum 

economic return in Australia (Siddique et al., 1998). Lentil was found to have higher 

yields when row spacing was narrowed to 0.15 m (Canada) and 0.2 m (West Asia) (Ali-

Khan and Kiehn, 1989; Silimet al., 1990). Thicker stems increased the resistance to 

lodging (Erskine and Goodrich, 1988). It was shown that applications of the herbicides 

linuron, prometryn, or a combination of the two raised lentil yields by 59%, 68%, and 

49%, respectively, when compared to untreated weedy controls (Elkoca et al., 2005). 

When lentil seeding rate was raised, not only was the field used more effectively, but also 

growth of weeds was inhibited (Baird, 2007).  

Lentil plants are facing many abiotic and biotic stresses during their growth. The 

former includes drought, water-logging, salinity, heat, low temperature, and nutrient 

deficiency (Erskine et al., 1994; Muehlbauer et al., 2006), and the latter includes diseases, 

insects, weeds, and nematodes (Erskine et al., 1994). Ascochyta blight, anthracnose, 

Stemphylium blight, Fusarium wilt, Sclerotinia white mold, and rust are important lentil 

diseases (Muehlbauer et al., 2006), of which the former three severely threaten lentil 

production in Canada.  

 

2.1.2. Use of lentil 

 

The seeds of lentil, which is one of the food legume crops, provide rich nutritional 

resources for humans (Sarker and Erskine, 2006). Protein, starch, fat, fibre, minerals, and 
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vitamins have been identified in lentil seeds (Solanki et al., 1999; Wang and Daun, 2006; 

Sarker and Erskine, 2006). Regarding the exact composition of these nutritients, research 

done by various researchers showed the different results (Solanki et al., 1999; Wang and 

Daun, 2006; Bhatty, 1984; Khan et al., 1987). There are 18 kinds of amino acids in lentils, 

among which glutamic acid and aspartic acid are the two most common ones (Wang and 

Daun, 2006). Compared to protein (27.2%) and starch (43.7%), the content of fat is rather 

low with only 1.1% (Wang and Daun, 2006). The content of total dietary fibre (including 

insoluble and soluble) in lentils is 19.2%, and insoluble dietary fibre covers about 90% of 

total dietary fibre (Perez-Hidalgo et al., 1997). The following minerals have been 

reported: calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), nickel 

(Ni), potassium (K), phosphorus (P), sodium (Na), and zinc (Zn) (Solanki et al., 1999; 

Wang and Daun, 2006; Bhatty, 1984; Khan et al., 1987). Among the minerals P, Ca, Mg, 

Na, and K, the content of Na is the lowest (Bhatty, 1984). The contents of thiamin, 

riboflavin, and niacin in germinated lentils were significantly higher than those in raw 

lentils (Urbano et al., 1995). 

Whole or split lentils and lentil flour can be used as human food (Aw-Hassan et 

al., 2003). Two main characteristics of lentils, i.e. short cooking time and easy digestion 

(Aw-Hassan et al., 2003), plus the above mentioned beneficial nutritional composition, 

make lentils a valuable food item for human consumption. Studies by Bhatty (1984 and 

1990) showed that cooking quality of lentil was closely related to Ca, Mg, and P, 

especially the ratio of Ca2+ + Mg2+ to P4+, as well as the content of phytic acid in the seed. 

The content of phytic acid in poorly-cooked lentils was significantly lower than that in 

well-cooked lentils (Bhatty, 1990). Soaking seeds in water shortened the cooking time by 

6.3-8.0 min compared to dry seeds (Khan et al., 1987). 

Besides use as a food source for human being, lentil also provides feed for 

animals, e.g. poultry (Aw-Hassan et al., 2003), ram (Kalkan.and Karabulut, 2003), and 

sheep (Erskine et al., 1990b). Straw, pod walls and seed coats of lentil can be valuable 

animal feed sources. The content of protein in the seed coat can reach up to 13% (Aw-

Hassan et al., 2003). Steamed at high temperature and treated with H2SO4, cell walls can 

be easily usable. Steaming at high temperatures alone accelerated degradation of 

cellulose and hemicellulose and gas releasing in lentil straw (Kalkan.and Karabulut, 
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2003). Studies by Erskine et al. (1990b) showed that on average 44.5% of lentil straw 

was digestible dry matter. Among leaves, branches, pods, and roots in straw, the 

percentage of leaves was highest with 38%, and the percentage of branches placed the 

second with 34%. It was shown that the digestible dry matter value of leaves was much 

higher than that of branches (Erskine et al., 1990b). Sometimes the lentil plants growing 

in the field are used as a fodder for livestock (Aw-Hassan et al., 2003).                      

 

2.1.3. Lentil production 

 

2.1.3.1. Lentil production and trade in the world 

 

World lentil production was 3.87 million tonnes (Mt) in 2007 (FAO, 2009). That 

year, Canada was the second largest lentil producing country in the world with a 

production of 0.67 Mt after India. Based on production, the following eight large lentil 

producing countries were Turkey, China, Syria, Nepal, the United States, 

Australia, Bangladesh, and Iran (FAO, 2009). In 2005, Canada was a leading lentil 

producing country in the world with a production of 1.16 Mt (FAO, 2009). Production of 

red and green lentil, the two main market classes, varies in different countries. Green 

lentils have traditionally been grown mainly in Canada and the US, whereas red lentils 

are produced in the other countries (Skrypetz, 2006). 

In 2006, Canada (0.68 Mt), Australia (0.17 Mt), the US (0.13 Mt), India (0.12 Mt), 

and Syria (0.08 Mt) were the top five exporting countries (FAO, 2009). Lentil exports of 

Canada covered 51.6% of world exports in 2006 (FAO, 2009). In 2005, Canadian lentils 

were mainly exported to Algeria, Turkey, Colombia, Egypt, Spain, Venezuela, Morocco, 

Mexico, Italy, and India (FAO, 2009). In 2006, Bangladesh, United Arab Emirates, 

Pakistan, Egypt, Sri Lanka, Turkey, Colombia, India, Spain, and Algeria were the top ten 

lentil importing countries (FAO, 2009). 
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2.1.3.2. Lentil production in Canada 

 

 The history of lentil cultivation in Canada began as early as 1969 (Morrall, 1997). 

Nowadays, lentil production is across Saskatchewan, Albert and Manitoba. Saskatchewan 

ranked highest during the past 10 years, with over 95% of the national lentil production 

(Skrypetz, 2006). In 2007, the harvested area of lentil in Canada was 532,200 ha, with an 

average yield of 1,258.3 kg/ha, and a total production of 669.7 kt. The harvested area, 

yield, and production in 2005 were the highest of the 2002 – 2007 period in Canada 

(FAO, 2009). 

 Lentil crops show best performance in the brown and dark brown soil zones of 

western Canada. They can also perform well in the black soil zone when moisture is not 

too high (Skrypetz, 2006). Green lentils can be sub-classified into four groups based on 

the thousand seed weight (TSW): French green, small green, medium green, and large 

green. Common green lentils in Canada are CDC LeMay (French green), CDC Milestone 

(small green), CDC Vantage (medium green), and CDC Sovereign (large green). 

Similarly, red lentils are also divided into two groups based on TSW. They are small red 

and extra small red lentils. CDC Redberry and CDC Robin are common small red and 

extra small red lentils in Canada, respectively (Skrypetz, 2006; Saskatchewan Ministry of 

Agriculture, 2008b).  

 In 2006-2007, total domestic use of lentils was 127 kt, representing 20.2% of 

lentil production. Lentil is mainly used for food, feed, and seed domestically (Agriculture 

and Agri-Food Canada, 2008a). 

 

2. 2. The Genus Colletotrichum 

 

2.2.1. General features 

 

The fungal genus Colletotrichum Corda is anamorphic, belonging to the family 

Melanconiaceae, the order Melanconiales, and the class Coelomycetes (Sharma, 2002), 

and includes about 900 species (Sutton, 1992). The genus Glomerella is teleomorphic, 

belonging to the family Polystigmataceae and the order Sphaeriales (Sharma, 2002), and 
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includes about 80 species, among which anamorphs of more than 20 species were 

identified as Colletotrichum species. For example, the imperfect stage of G. graminicola, 

G. glycines, G. musae, G. cingulata, G. acutata, and G. truncata are C. graminicola, C. 

destructivum, C. musae, C. gloeosporioides, C. acutatum, and C. truncatum, respectively 

(Politis, 1975; Manadhar et al., 1986; Rodriguez et al., 1992; Tan and Tow, 1992; 

Guerber and Correll, 2001; Armstrong-Cho and Banniza, 2006; Sutton, 1992). Among 

the above species, the teleomorphs of C. graminicola, C. destructivum and C. 

gloeosporioides were only found in plant tissues after inoculation under controlled 

conditions (Politis, 1975; Manadhar et al., 1986; Tan and Tow, 1992). Roy’s studies 

(1982) showed that G. cingulata and G. glycines could both infect soybean seedlings in 

the field, but G. cingulata was a bigger threat to soybean seedling than G. glycines (Roy, 

1982). Vaillancourt and Hanau (1992) identified the teleomorph of a Colletotrichum 

species on sorghum leaves under controlled conditions, which closely resembled G. 

graminicola on maize in morphology (Vaillancourt and Hanau, 1992).  

 A conidium of Colletotrichum is a single cell, which has no colour and shows 

different shapes, e.g. ovoid, cylindric, or dumbbell-shaped, depending upon the species. 

In the area where a great number of conidia grow, pink or salmon colour is visible. The 

acervulus, in which condia are formed, develops under the epidermis of the infected plant 

tissue, and due to its growth, it will pierce the epidermis, thus releasing a lot of conidia 

that serve to spread the pathogen. In the acervulus, hyphae are dark and sterile (Agrios, 

2005). The species of Glomerella form perithecia, asci, and ascospores. Each of these 

structures may differ in size and shape depending upon the species (Politis, 1975; 

Manadhar et al., 1986; Rodriguez et al., 1992; Tan and Tow, 1992; Guerber and Correll, 

2001; Armstrong-Cho and Banniza, 2006; Agrios, 2005). Rodriguez et al. (1992) 

reported that the number of asci in a perithecium varied from 50 to 80 for G. musae. 

Within an ascus, eight ascospores are produced and they have been observed with the 

species G. graminicola, G. musae, G. acutata, and G. truncata (Politis, 1975; Rodriguez 

et al., 1992; Guerber and Correll, 2001; Armstrong-Cho and Banniza, 2006).   
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2.2.2. Host range 

 

Species of Colletotrichum and its teleomorph Glomerella cause anthracnose 

symptom on many annual plants (e.g. lentil, bean, onion, tomato, strawberry, pasture 

grasses, and cereals) and also are the causal agents of canker, dieback, and rot on 

some perennial plants (e.g. camellia, apple, peach, and grape) (Agrios, 2005; Freeman, 

2000). They are the pathogens of ornamental plants as well, e.g. Asystasia gangetica, 

which is also a vegetable in Southeast Asia (Agrios, 2005; Tan and Tow, 1992). Besides 

having a large number of hosts, the importance of these fungi is also evident in the 

following three aspects: I. The distribution is worldwide irrespective of differences in 

climate, from temperate to tropical regions. II. Pathogens in this genus can infect both 

young plant tissues and ripe fruits, thus diseases can occur either in the field or in the 

storage room. The diseases of young leaves and stems reduce the photosynthesis and 

transportation of nutrients, thereby indirectly influencing the formation and quality of 

fruits. Once fruits (either young or ripe) are infected, direct economic losses will be 

encountered. III. Pathogens in this genus can infect the entire plant, including 

aboveground and underground parts (Freeman, 2000). In different parts, plants may have 

different disease symptoms, e.g. anthracnose (on leaf, stem, and pod), pod spot, and root 

rot can be caused on legume plants following the infection of Colletotrichum species 

(Lenné, 1992). Colletotrichum gloeosporioides infects mango and results in blossom 

blight (Jeffries et al., 1990). When leaves of strawberry were attacked by C. acutatum, 

anthracnose would develop, whereas a necrosis of the roots would be observed when the 

roots were infected (Freeman and Katan, 1997). 

More than one plant species may serve as hosts of a single species 

of Colletotrichum, e.g. C. coccodes can infect tomato and potato, C. acutatum is a 

pathogen of almond, peach, anemone, and lupin. Hosts of C. gloeosporioides include 

avocado, mango, banana, and orange. In contrast to the above, more than one species 

of Colletotrichum may be pathogenic on one particular plant species, e.g. C. acutatum, 

and C. gloeosporioides can infect mango, peach, and apple, and C. fragariae, C. 

acutatum, and C. gloeosporioides can all attack strawberry (Dillard, 1992; Adaskaveg 

10 
 



and Hartin, 1997; Freeman et al., 2000; Talhinhas et al., 2002; Mills et al., 1992; Prior et 

al., 1992; Bernstein et al., 1995; Freeman and Rodriguez, 1995). 

 Among the Colletotrichum species which can attack weeds, C. gloeosporioides 

was studied most widely. For example, C. gloeosporioides f. sp. malvae was found to 

infect round-leaved mallow (Makowski and Mortensen, 1998), leaves of Miconia 

calvescens could be attacked by C. gloeosporioides f. sp. miconiae (Killgore et al., 

1999; Seixas and Barreto, 2007), and C. gloeosporioides f. sp. clidemiae was pathogenic 

to Clidemia hirta (Trujillo et al., 1986; Norman and Trujillo, 1995). When Aeschynomene 

virginica was infected by C. gloeosporioides f. sp. aeschynomene, anthracnose symptoms 

would be induced (Luo and TeBeest, 1998). Other common Colletotrichum species 

infecting weeds include C. coccodes and C. orbiculare, and they infect Abutilon 

theophrasti and Xanthium spinosum, respectively (Ditommaso and Watson, 1997; Klein 

and Auld, 1996). These pathogens represent potential mycoherbicides, and C. 

gloeosporioides f. sp. aeschynomene has been developed into one for the control of 

northern jointvetch (Luo and TeBeest, 1998). Being able to control weeds has constituted 

one of characteristics of the Colletotrichum species. 

 

2.2.3. The infection process of Colletotrichum species 

  

2.2.3.1. General infection process 

  

The infection process of Colletotrichum species starts with the attachment of 

conidia to the surface of host plant tissues. Under suitable environmental conditions, 

germ tubes will be generated from conidia. This is called germination. With the 

continuous growth of the germ tubes, appressoria will be differentiated at their ends and 

gradually darken in colour (O’Connell et al., 2000). For penetration, Colletotrichum 

species need to overcome the restriction posed by the plant epidermal cell wall and other 

cell walls (Bailey et al., 1992). Underneath the appressoria a penetration peg is formed, 

by which the epidermis can be directly penetrated. For example, C. gloeosporioides 

attacks avocado fruits and C. acutatum invades the leaves of citrus by direct penetration 

(O’Connell et al., 2000; Coates et al., 1993; Zulfiqar et al., 1996). Besides this 
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penetration mode, wounds and stomata are selected by some Colletotrichum species to 

enter host tissues. For example, C. gloeosporioides attacks ripe mango fruits through 

wounds, as does C. musae infecting banana where it induces wound anthracnose (Dinh et 

al., 2003; Chillet et al., 2007). An unidentified Colletotrichum species, which has 95–

96% of similarities to C. gloeosporioides in the nucleotide sequences of certain rDNA 

regions, can enter cowpea leaves by stomata (Latunde-Dada et al., 1999).  

Before penetration, during the period from attachment of conidia to penetration of 

the pathogens into host tissues, the development of Colletotrichum species shows a lot of 

similarities. However, the way how conidia are attached to the plant tissue surface, the 

materials involved in the attachment, as well as the effects of the darkening of 

appressoria and cutinases on penetration may be used to distinguish among a limited 

number of species that have been studied in more detail. The main differences among 

Colletotrichum species in the infection process often occur after penetration. Many 

Colletotrichum species do not cause symptoms right after they penetrate into host plant 

tissues. After a varying period of time, lasting from one day or less to more than three 

days, symptoms begin to appear. Thus the infection process of these Colletotrichum 

species can be divided into two stages: the symptomless biotrophic stage and the 

necrotrophic stage where plant tissues are damaged. The first stage is characterized by 

large primary hyphae (PH) appearing inside the epidermal cells but without causing 

damage. The morphology of PH differs among Colletotrichum species utilizing this 

infection mode. In the second stage, SH are differentiated from PH. They are thinner than 

PH and radiate into the adjacent cells. Damage to plant tissues takes place subsequently. 

This infection mode is called intracellular hemibiotrophy (Reviewed by Bailey et al., 

1992; Perfect et al., 1999; O’Connell et al., 2000), and is characteristic for C. 

destructivum infecting cowpea (Latunde-Dada et al., 1996). Cultivars of Sorghum bicolor 

exhibited different responses to C. Sublineolum infection: on susceptible cultivars, 

intracellular hemibiotrophy was apparently applicable, whereas on resistant ones no 

biotrophic period was observed before penetrated cells died (Wharton and Julian, 1996). 

A few Colletotrichum species follow a different infection mode after penetration. 

During the initial period after entering the host tissues, these species spread around the 

host epidermal cell walls below the cuticle, resulting in the disintegration of cell walls. 
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With the extensive spread of the pathogens between and within the host cells as well as 

through the cell walls, plant tissues are heavily damaged. The biotrophic stage is almost 

neglectable. This infection mode is called subcuticular intramural. However, after the 

plants are infected successfully, a necrotrophic stage will occur, which is similar to that 

observed in species with intracellular hemibiotrophic infection strategies (Reviewed by 

Bailey et al., 1992; Perfect et al., 1999; O’Connell et al., 2000). Typically, C. capsici 

infects cotton bolls in a subcuticular intramural mode (Roberts and Snow, 1984). 

Colletotrichum gloeosporioides possesses both infection modes depending upon 

what plants are infected. For example, this pathogen infects leaves of Populus 

tremuloides in an intracellular hemibiotrophic mode (Marks et al., 1965), whereas attacks 

fruits of Carica papaya in the subcuticular intramural mode (Chau and Alvarez, 1983). 

On avocado fruits, this pathogen showed that both infection strategies were applied 

(Coates et al., 1993). 

Colletotrichum species can grow into and remain on the seeds of many hosts, and 

these seeds then may become a source of inoculum in the local area after planting, or 

spread the disease to remote places when these infected seeds are transported and planted 

there in the next growing season. In some hosts, only a few seeds are infected when 

Colletotrichum species infect the plants, but these seeds do not show obvious symptoms 

(Agrios, 2005). 

 

2.2.3.2. Infection process of some Colletotrichum species 

 

Some Colletotrichum species, such as C. orbiculare (on Nicotiana tabacum) and 

C. destructivum (on lucerne), utilize the intracellular hemibiotrophic infection strategy to 

invade their hosts, which is similar to C. truncatum on lentil, so their infection processes 

are described below. Colletotrichum gloeosporioides (on mulberry) adopted a distinct 

infection mode, so its infection process is also addressed.  
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2.2.3.2.1. Colletotrichum orbiculare on Nicotiana tabacum 

 

 Colletotrichum orbiculare (Berk. & Mont.) von Arx, one of  the pathogen species 

that causes anthracnose, can infect Nicotiana tabacum cv. Xanthi (Shen et al., 2001). It 

was shown that at 12 h incubation time, average percentages of conidium germination 

and appressorium formation were 76% and 63% on the leaves, respectively. At 24 h 

incubation time, they were 78% and 93%, respectively. Between 24 and 48 h incubation 

time, the fungus grew into epidermal cells, and was characterized by the initial formation 

of roundish vesicles that further developed into PH. Before PH touched the cell walls, 

they generated branches. When PH reached a cell wall, their shape changed slightly 

before they penetrated through the cell wall into another cell. However, damage to these 

cells was not observed at this stage. The same observation was conducted in stomatal 

guard cells at 72 h incubation time. It was between 96 and 120 h incubation time that SH 

were generated. Although these SH were differentiated from PH, they were thinner and 

caused more damage to the cells than the latter since they invaded into other cells. That 

resulted in the appearance of symptoms. By 120 h incubation time, the leaf tissue 

partially died because of the spread and damage of SH within these tissues. At this time, 

the fungus had generated acervuli on the leaf surface. Investigation of plant symptoms 

showed that before 96 h incubation time, no symptoms appeared on the leaves, but after 

this time, water-soaked lesions began to form. The colour of lesions could be initially 

light green, and then the lesions would turn dry as time went on. It was shown that C. 

orbiculare is a hemibiotrophic pathogen on N. tabacum because its initial colonization 

did not kill host cells and the infection was symptomless (Shen et al., 2001). 

 

2.2.3.2.2. Colletotrichum destructivum on lucerne 

  

 Colletotrichum destructivum O’Gara is also an anthracnose fungus and can infect 

lucerne. Conidia on lucerne leaves generated septa prior to gemination (Latunde-Dada et 

al., 1997). Following germination, germ tubes developed, and appressoria were 

differentiated by 12 h incubation time. After 24 h, infection vesicles were observed in 

epidermal cells, with a thin “neck” connecting the vesicle to appressorium. Vesicles grew 
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and lobes started to be generated from the lateral sides of vesicles and extended. As a 

result, at 48 h incubation time vesicles consisting of many enlarged lobes were formed 

and presented different shapes in the epidermal cells. These multilobed vesicles, i.e. PH, 

were of considerable size but did not overcome the restriction of epidermal cell walls. 

After 60 h, PH produced thin outgrowths. These outgrowths later elongated and turned 

into SH which could cross the cell walls and reach the surrounding epidermal cells. After 

72 h, SH were so developed that their spread in eppidermal cells was easy to observe. At 

the same incubation time, acervuli began to emerge, surrounding PH in the leaf cells. By 

96 h, a great number of acervuli, each with a single seta, were found on the leaves. When 

lucerne isolates of C. destructivum were applied to cowpea, it was observed that PH grew 

much slower than on lucerne. Even when the incubation time was doubled, the size was 

still smaller. Cowpea isolate could not infect lucerne (Latunde-Dada et al., 1997).  

 

2.2.3.2.3. Colletotrichum gloeosporioides on mulberry 

 

Germinated conidia of C. gloeosporioides were observed on the leaf surface of 

mulberry after 3 h incubation time (Kumar et al., 2001). At 9 h incubation time, the 

percent germination of conidia reached 60% which increased further at 12 h incubation 

time, when germ tubes of germinated conidia had elongated and grew directionally 

towards stomata. As the germ tubes continued growing, branches were differentiated 

after 24 h. These branches spread on the leaf surface, and were assumed to be able to 

perceive the location and opening of stomata. When stomata were open, germ tubes 

would grow towards them, or else they would change direction to locate other open 

stomata (Kumar et al., 2001). When branches spread above stomata, they expanded into 

and formed infection vesicles. Primary infection hyphae were differentiated underneath 

these vesicles and passed through the stomata to infect the plant tissues (Kumar et al., 

2001). Sometimes infection vesicles were formed in the lumen of stomata. Because a 

germ tube could form several branches, each branch could enter a stomatum, thereby 

enhancing the infection of the plant compared to penetration of a single germ tube 

without branches. At 48 h incubation time, more vesicles were formed and more 

penetrations were observed. At 144 h incubation time, acervuli pierced the epidermis and 
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a large number of conidia were found in the acervuli. As a result, symptoms tended to be 

more visible (Kumar et al., 2001). In contrast to other pathogens of this genus, no 

appressoria were found on the mulberry leaves, and the penetration was through the open 

stomata (Kumar et al., 2001).   
 
2.2.4. Effects of environmental conditions on Colletotrichum species and latent 

infection 

 

 Environmental conditions, mainly temperature and humidity, play an important 

role in the disease cycles caused by Colletotrichum species. In general, pathogens in this 

genus prefer high temperature and high humidity for infection. Free water, rain, or high 

humidity are very important for releasing conidia from acervuli and spreading them in the 

field, as well as for germination of conidia and penetration of host tissue (Agrios, 2005). 

 A study by Ningen and Cole (2004) showed that decreasing night temperature 

could restrict the infection of C. gloeosporioides on Euonymus fortunei resulting in lower 

disease ratings. Two isolates of C. gloeosporioides on mango, I-2 and I-4, showed 

different responses to temperature when forming appressoria; the temperature optimum 

for I-2 was 5 ºC higher than that for I-4 (Estrada et al., 2000). Using the same 

temperature (30ºC) and incubation time (5 h), increased relative humidity resulted in an 

increase in the frequency of occurrence of papaya anthracnose, caused by C. 

gloeosporioides (Duran et al., 1998). A combined experiment of temperature and wetness 

showed that at the same wetness level, optimal temperatures were different for the 

conidial germination of C. acutatum on strawberry leaves, formation of appressoria, and 

secondary conidiation. The optimal temperatures varied from 23.0 to 27.7 ºC, 17.6 to 

26.5 ºC, and 21.3 to 32.7 ºC for these three processes, respectively (Leandro et al., 2003). 

Another experiment dealing with the influence of temperature and wetness period on 

watermelon anthracnose caused by C. orbiculare showed that at the same temperature the 

fungus thrived in longer wetness periods, and that infection might not occur if the time of 

exposition to wetness for inoculated seedlings was less than 2 h under designed 

temperature treatments (Monroe et al., 1997). Besides the effects of temperature and 

humidity, light conditions also affected the development of the Colletotrichum pathogens. 
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For example, constant light could increase sporulation of C. gloeosporioides on green 

pepper compared to 24 h darkness (Mello et al., 2004).  

 Latent infection of C. acutatum, C. gloeosporioides, and C. fragariae on 

strawberry fruits was investigated by King et al. (1997). During the latent period, 

temperature was a determinant factor. Higher temperature shortened the latent period 

when inoculated detached fruits were placed under different temperatures ranging from 5 

to 35ºC. This study also showed that three species had different sensitivities to the lower 

temperatures of 5 and 10 ºC in terms of sporulation. Among the three species, C. 

acutatum was most cold tolerant (King et al., 1997). The situation seems to be different 

for infection of peaches by C. gloeosporioides and C. acutatum where the pathogens can 

also cause latent infection (Zaitlin et al., 2000). One and a half to three months prior to 

maturity of fruits, inoculations conducted several times caused either no symptoms on the 

fruits, or only small lesions. The typical symptoms were exhibited only when the fruits 

became ripe (Zaitlin et al., 2000). The reason for latent infections in this case is probably 

related to the nutritient levels. When fruits develop toward maturity, changes in the 

nutrient composition of the fruits may result in the development of pathogens from latent 

to active condition. Similar examples are C. gloeosporioides on avocado fruit, mango 

(attached fruits), and papaya (Binyamini and Schiffmann-Nadel, 

1972; Daquioag and Quimio, 1979; Dickman and Alvarez, 1983). A study by Liu et al. 

(1995) presented an explanation based on nutrient availability as to why the two 

pathogens C. musae and C. gloeosporioides latently infected immature banana fruits and 

mangoes, respectively. It was shown that the starch content played an important role 

during these processes with immature fruits containing higher amounts of starch.  

 For Colletotrichum species with latent infection, it is necessary to use appropriate 

methods for early detection. Recently, studies showed that paraquat and ethanol 

immersion could be utilized to detect latent infection of Colletotrichum species 

(Rajeswari et al., 1997; Zaitlin et al., 2000; Ishikawa, 2004; MyeongHyeon et al., 2004).     
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2.2.5. Population structure of Colletotrichum species 

 

 Colletotrichum species have often been grouped based on the morphological 

characteristics of infection structures, symptoms, or virulence to the host plants. The 

isolates are sometimes categorized into different physiological races based on the 

reactions to differential varieties (Caten, 1987). A study by Ali et al. (1987) showed that 

when nine isolates of C. graminicola from sorghum were inoculated onto six differential 

lines of sorghum in the greenhouse and field, disease severity varied from 1.2 to 4.5 on a 

scale from 1 to 5. Further comparisons showed that all isolates caused higher disease 

ratings (2.0 to 4.5) on the first two differential lines and lower disease ratings (1.2 to 1.7) 

on two other lines, whereas on the remaining two lines disease severity ranged from low 

(1.2 to 1.7) to high (2.3 to 4.1). Based on the interaction between all isolates and the last 

two lines, three physiological races were identified (Ali et al., 1987). Marley et al. (2001) 

used different methods to identify five physiological races of Colletotrichum sublineolum 

of sorghum among 50 isolates. Initially, nine morphological groups and seven pathogenic 

groups were separated based on morphological variability and pathogenicity of these 

isolates. A typical isolate from each group was chosen and inoculated onto differential 

sorghum lines. It was shown that 16 isolates varied in their virulence (“the degree or 

measure of pathogenicity”) and aggressiveness (“ability to cause severe disease”), and 

five physiological races were established accordingly (Marley et al., 2001).                  

 Colletotrichum lindemuthianum, pathogen of Phaseolus vulgaris, is highly 

variable and different races were studied by researchers from different regions. In Brazil, 

Menezes and Dianese (1988) inoculated 12 differential cultivars with 201 isolates, and 

distinguished nine races, four of which were new. Alam and Rudolph (1988) found five 

major races in West Germany, and among which beta, delta, and lambda were more 

variable races because a total of seven subraces (three from beta, two from delta, and two 

from lambda) were identified. Other reports regarding the identification of new race(s) 

included: race epsilon in Ontario, Canada (Tu et al., 1984); race 73 (close to race alpha-

Brazil) and race 7 (similar to race delta) in Michigan, the USA (Kelly et al., 1994); race 

delta-mutant in Asturias, Spain (Fernández et al., 2000). Resistance breeding against this 

fungus in P. vulgaris encountered a great challenge due to this high variability in the 
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pathogen. 

 In Australia, Colletotrichum orbiculare infected the weed Xanthium spinosum 

(Auld and Say, 1999). Compared to an Argentinian isolate, an isolate of C. orbiculare 

from Australia was more pathogenic to the weed, had a higher growth rate and higher 

yields when cultured on potato dextrose agar for colony growth and lima bean agar for 

conidium production (Auld and Say, 1999). Colletotrichum graminicola seriously 

threatens normal growth of turf grass, e.g. annual blue grass and creeping bent grass. It 

was found that the creeping bent grass isolates of C. graminicola could infect annual blue 

grass, but annual blue grass isolates could not infect creeping bent grass. It was also 

shown that C. graminicola isolates infecting the same host were genetically highly 

similar (Browning et al., 1999). 

 To distinguish races of C. truncatum of lentil, 1771 lentil accessions, the lentil 

variety Indianhead, and 50 lentil isolates with different origins were used (Buchwaldt et 

al., 2004). A field screening was first conducted by inoculating 1771 lentil lines with one 

isolate. As a result 5% of lines showed at least moderate resistance, which were further 

examined under controlled conditions, identifying 16 lines with resistance to the fungus. 

Seven of these 16 resistant lines were inoculated with the 50 C. truncatum isolates, and 

the races Ct0 and Ct1 were found based on the reaction of the isolates to seven host 

differentials (Buchwaldt et al., 2004). 

 
2.3. Colletotrichum truncatum 

 

2.3.1. Characteristic features 

 

  Sutton (1992) summarized the morphological characteristics of conidium, 

appressorium, sclerotium, seta, and the colony of Colletotrichum truncatum (Schwein.) 

Andrus and Moore. Conidia of isolates from lentil (Kaiser et al., 1998), pea (O’Connell et 

al., 1993), and soybean (Ford et al., 2004) had a similar shape to those described by 

Sutton (1992), but were longer. Observations by Ford et al. (2004) showed that conidia of 

lentil isolates had a different shape compared with those of other host plant isolates. 

Conidia of lentil isolates were elliptical, while they were falcate for soybean isolates; the 
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former only had one pointed end, but the latter showed two pointed ends. Beyond those 

differences, it was also observed that lentil isolates generated wider and shorter conidia 

compared to soybean isolates (Ford et al., 2004). Conidial dimensions were 18.6 × 4.0 

µm. Armstrong-Cho and Banniza (2006) induced the teleomorph form of C. truncatum, 

Glomerella truncata sp. nov, in the laboratory. Eight oblong ascospores were observed in 

an ascus which was generated in a brown-black perithecium. Mean sizes of the 

perithecium, ascus, and ascospore were 350 × 200 µm, 90 × 8 µm, and 15.7 × 6.7 µm, 

respectively (Armstrong-Cho and Banniza, 2006).        

 

2.3.2. Host range 

 

Colletotrichum truncatum can infect many leguminous crops, such as lentil, pea, 

fababean, soybean, sweet pea, chickpea, and cowpea (Anderson et al., 2000; Boyette, 

1991; Weidemann et al., 1988; Adebitan et al., 1996). Colletotrichum truncatum is also a 

pathogen of some weeds, e.g. hemp sesbania (Boyette , 1991), wild vetch (Bailey et al., 

2003), Florida beggarweed (Cardina et al., 1988), jimsonweed, dogbane, cocklebur 

(Hartman et al., 1986) and scentless chamomile (Graham et al., 2006), where it is 

assumed to be suitable as a biocontrol agent of these weeds.   

Lentil isolates of C. truncatum could infect fababean and slightly infect pea, but 

could not infect chickpea, bean, and soybean in both field and controlled conditions 

(Anderson et al., 2000). Experiments carried out in controlled conditions showed that 

lesions on pea caused by lentil isolates were much less sporulating than those on 

fababean, suggesting that the infection process of a lentil isolate is different on pea and 

fababean. When pea isolates of C. truncatum were applied onto lentil and fababean, 

similar lesions were observed that did not sporulate on either host (Anderson et al., 2000). 

Similar to these observations, lesions on soybean caused by an isolate from hemp 

sesbania did not sporulate either (Boyette, 1991). Studies by Hartman et al. (1986) 

showed that C. truncatum isolates from ten weeds, such as milkweed, velvetleaf, 

jimsonweed, and cocklebur, could infect soybean.      
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2.3.3. Epidemiology of Colletotrichum truncatum on lentil 

 

2.3.3.1. Lentil anthracnose in Canada 

 

 Lentil anthracnose, caused by Colletotrichum truncatum (Schwein.) Andrus & W. 

D. Moore, was initially identified in Manitoba in 1986 and was found again near 

Winnipeg in 1987 (Morrall, 1988). In Saskatchewan, this disease was first reported from 

Zealandia in July 1990. During a subsequent survey, this disease was identified on two 

cultivars, Laird and Eston (Morrall and Pedersen, 1991). At present, anthracnose is 

distributed in all lentil-producing regions of western Canada (Tullu et al., 2003). 

Research showed that in Canada there are two races of lentil anthracnose, Ct0 and Ct1 

(Buchwaldt et al., 2004). Some lentil cultivars, e.g., CDC Redberry, CDC Robin, CDC 

Rosetown, CDC Rouleau, and CDC Viceroy, have resistance to race Ct1, but there are no 

cultivars showing resistance to race Ct0 (Saskatchewan Ministry of Agriculture, 2008b). 

 

2.3.3.2. Symptoms of lentil anthracnose 

 

The fungus can infect leaves, stems, and pods of lentil during different growth 

stages. Occurrence of symptoms initially starts at the seedling stage. After plants are 

infected, lesions will appear on infected plant tissues. They are initially white to grayish 

in colour and finally become brown, and superficial lesions often enlarge and develop 

into deeper lesions (Morrall, 1988; Buchwaldt et al., 1996; Kaiser et al., 1998; Bailey et 

al., 2003). The disease often appears on lower leaves and stems, but later on it will move 

up, so the higher leaves and stems will become infected. During early flowering, when 

leaves are covered by many lesions, plants will defoliate. The disease will also spread 

onto surrounding plants causing disease patches to develop in fields (Bailey et al., 2003). 

Merging stem lesions can damage vascular tissues of stems, causing crop wilt. When 

infection is heavy, plants can die (Morrall, 1988; Buchwaldt et al., 1996; Kaiser et al., 

1998; Bailey et al., 2003). 

 When the canopy closes, diseased patches turn yellow. Under favorable 

environment conditions, development of the disease will accelerate and the disease tends 
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to be heavier resulting in large patches of infected plants. Dark brown discolourations in 

the middle of a patch indicate dead plants. Black microsclerotia form on heavily infected 

stems, which explains why lentil stubble can appear black in the field after harvest 

(Bailey et al., 2003). 

 

2.3.3.3. Infection process of Colletotrichum truncatum on lentil 

 

Infection studies showed that conidium germination and appressorium formation 

happened earliest at 3 h and 6 h after inoculation (ai), respectively (Chongo et al., 2002). 

Following conidium germination, an appressorium was differentiated from a germ tube of 

the germinated conidium. It was observed that the fungus used an infection peg generated 

on the underside of the appressorium as the only way to penetrate epidermal cells of 

leaves and stems. At 24 h ai PH were found colonizing epidermal cells, and between 24 h 

and 72 h ai, PH expanded within the initially colonized epidermal cells and extended 

towards adjacent cells. The earliest symptoms appeared on infected plants at 72 h ai 

(Chongo et al., 2002). It was shown that there was at least a 48 h gap between initial 

penetration and the appearance of symptoms. During this period of time, the fungus grew 

further into the plant tissues, but cells were still alive. It is for these reasons that C. 

truncatum is considered to be a hemibiotrophic fungus on lentil (Chongo et al., 2002). At 

144 h ai, severe infection symptoms were visible.  

 

2.3.3.4. Disease cycle  

  

Inoculum of lentil anthracnose mainly has four sources: dust from infected lentil 

plants during harvest, crop residues carrying the fungus left in the field, soil in the fields 

where infected lentil residues were left, and infected lentil plants (Buchwaldt et al., 1996).    

Thus, lentil anthracnose is a stubble-borne, seed-borne, and wind-borne disease 

(Buchwaldt et al., 1996; Morrall et al., 2006; Bailey et al., 2003). Warm and wet 

environmental conditions are favourable for its occurrence and development (Bailey et 

al., 2003). During day time, 20-24ºC is most conducive for disease development (Chongo 
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and Bernier, 2000a). It was reported that the disease developed fastest on four to six 

weeks old plants (Chongo and Bernier, 2000b).  

Microsclerotia on lentil residues could only maintain their infectivity for 

approximately one year when colonized residues were left on the soil surface, suggesting 

the pathogen could not tolerate adverse environment conditions, e.g. extremely low 

temperatures. If residues colonized by microsclerotia were buried under the soil, it was 

found that microsclerotia were still alive after four years (Buchwaldt et al., 1996).  

In the spring the microsclerotia can be spread from the soil surface to lower 

leaflets and stems by splashed rain, causing the first disease symptoms. During the 

growing season, the conidia from these infected leaflets and stems can be spread to 

surrounding plants when it is raining, resulting in repeated infection cycles (Bailey et al., 

2003). Wind was shown to play a role in the spread of the disease between fields by 

microsclerotia (Buchwaldt et al., 1996; Bailey et al., 2003). Infected faba bean and wild 

vetch probably can also serve as secondary hosts of lentil anthracnose (Bailey et al., 

2003). 

The severity of lentil anthracnose is determined by response of lentil cultivars to 

the fungus, virulence of predominant races, and environmental conditions (e.g., 

temperature, humidity, wind, and light).  

 

2.3.4. Infection process of Colletotrichum truncatum on other legume plants 

 

2.3.4.1. Colletotrichum truncatum on pea 

 

Pea (Pisum sativum) is one of the hosts of C. truncatum, and studies by O’Connell 

et al. (1993) showed that after germination of conidia and the formation of appressoria of 

the fungus, infection pegs were produced from the appressoria before 36 h ai. The 

infection pegs could penetrate the wall of epidermal cells, resulting in the growth of the 

fungus inside the epidermal cells. Between 36 and 48 h ai, PH were observed in 

epidermal cells, and PH gradually enlarged in both thickness and length. At 72 h ai, they 

were 4.5 to 6 µm thick in diameter and had generated many branches. These PH with 

branches continued to grow, however, growth was restricted to the initially colonized 
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epidermal cell. Therefore, until 72 h ai, the fungus had caused almost no damage to 

epidermal cells. At 72 to 96 h ai, damage began to appear as SH emerged. These SH were 

only 1.5 to 3.5µm thick in diameter and appeared to be able to grow unrestricted through 

adjacent cells. As a result, symptoms began to appear during this period. It was observed 

that some SH did not branch while they were growing, and it was suggested that this may 

be important for SH to reach remote areas (O’Connell et al., 1993). At 120 h ai, invaded 

epidermal cells tended to die because their walls were damaged by SH. As the infection 

period was characterized by a symptomless interval starting with the penetration of 

epidermal cells by the fungus and ending with cells being killed, it was confirmed that C. 

truncatum on pea is a hemibiotrophic fungus. Acervuli were not observed on plant leaves. 

In this study, the authors also inoculated other legumes (lentil, soybean, cowpea, adzuki 

bean, French bean, groundnut, and Lima bean) with C. truncatum isolates, but symptoms 

were not observed. During the infection process, the fungus could generate appressoria 

after conidial germination, but it could not penetrate into tissues of these plants. It seems 

that these plants were not hosts of the C. truncatum isolates which can infect pea 

(O’Connell et al., 1993).  

 

2.3.4.2. Colletotrichum truncatum on soybean 

 

Colletotrichum truncatum can infect the whole plant of soybean including roots 

(Khan and Sinclair, 1992). Manandhar et al. (1985) studied the infection process of C. 

truncatum on soybean leaf tissues and observed that geminating conidia were different 

from ungerminated ones in which the former generated one to three septa while the latter 

had none. At 4 h incubation time the percentage of conidial germination reached 70%. 

Germ tubes developed at the different locations on the conidium: one end or both ends. 

Germ tubes sometimes formed from the middle of the conidium, but the probability was 

very small. It was found that when conidia were distributed in a small number on the leaf 

surface, the percentage of germination was less than that when they were located in high 

density. It was common that an appressorium was generated from the end of germ tubes. 

Interestingly, it was also observed that a germ tube could sometimes generate two 

appressoria. Following the formation of appressoria, infection pegs would develop under 
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the appressoria and penetrate leaf tissues (Manandhar et al., 1985). Besides infection pegs, 

germ tubes could also invade the cells before the formation of appressoria. The fungus 

could also go into leaf tissue through stomata (Manandhar et al., 1985). 

After penetrating the cuticle and epidermis, the fungus invaded mesophyll cells 

within 48 h incubation time. At this time, infection hyphae were also found filling the 

intercellular space of the mesophyll. During this period acervuli were also generated 

(Manandhar et al., 1985). Petiole, leaf vein, and interveinal lamina were three locations 

where acervuli commonly developed. At 72 h incubation time the fungus was observed to 

colonize the vascular bundles of both leaves and petioles, resulting in the interruption of 

nutrient and water transport (Manandhar et al., 1985).  

The generation of enzymes or toxic compounds by C. truncatum after plant 

tissues were invaded might play a role in damaging these tissues (Manandhar et al., 1985). 

The fungus was shown to prefer colonizing the wet area because wetter veinal areas were 

easier to be penetrated compared to drier interveinal areas (Manandhar et al., 1985).  

 

2.4. Control of lentil anthracnose 

 

2.4.1. Studies on the resistance of lentil to Colletotrichum truncatum 

  

Breeding for and using resistant cultivars are economical and effective measures 

in controlling crop diseases. To investigate the resistance of lentil to anthracnose, and 

look for resistance resources that can be incorporated into new cultivars, some studies 

were carried out. Fifteen lentil lines and cv. Indianhead exhibited resistance to race Ct1 

(Buchwaldt et al., 2004). Currently, several lentil cultivars in addition to Indianhead also 

show resistance to race Ct1, e.g. CDC Redberry, CDC Robin, CDC Rosetown, CDC 

Rouleau, and CDC Viceroy, whereas no lentil cultivars are resistant to race Ct0 

(Saskatchewan Ministry of Agriculture, 2008b; Buchwaldt et al., 2004). It was shown 

that two wild Lens species Lens ervoides (Brign.) Grande and L. lamottei Czefr. had 

higher resistance to both races during field and greenhouse screenings (Tullu et al., 2006). 

Two interspecific hybrids resistant to both races have been developed, i.e. LR-59 and LR-

61. The former was from a cross of lentil cv. Eston × one of L. ervoides accessions, and 
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the latter from a lentil breeding line L. culinaris subsp. culinaris 971-16 × one of L. 

lamottei accessions (Fiala, 2006). 

During studying the host-pathogen interaction, it was found that C. truncatum 

developed similarly on a susceptible lentil genotype as on a resistant lentil genotype in 

terms of infection patterns during the first 48 h ai (Chongo et al., 2002). As time went on, 

the fungus developed faster on the susceptible genotype than on the resistant genotype 

because lesions appeared much earlier, and the number and size of lesions were higher 

and larger on the former (Chongo et al., 2002). At different day and night temperatures 

(16:12ºC, 20:16ºC, 24:20ºC, and 28:24ºC, day : night), the incidence of anthracnose on 

most of the resistant lentil genotypes tested was lower than that on a susceptible cultivar. 

Stem lesions on most resistant genotypes were smaller, and percentages of stem lesion 

with sporulation on all resistant genotypes were lower (Chongo and Bernier, 2000a). 

Higher temperatures increased the anthracnose incidence on the resistant lentil genotypes, 

while it did not appear to influence the fungus on a susceptible cultivar. When 

temperature was increased from 16:12 to 24:20ºC, the lesion size and percentage of stem 

lesions with sporulation on all genotypes were increased accordingly (Chongo and 

Bernier, 2000a). It was concluded that the following parameters could be used to screen 

lentil lines partially resistant to the anthracnose in the fields: incubation period, latent 

period, disease severity, and area under disease progress curve (AUDPC). The selected 

lines would be very useful in breeding for resistance to C. truncatum through crossing to 

the cultivars with partial resistance or with high yield (Chongo and Bernier, 1999a).  

A major gene, LCt-2, and minor genes were found to determine resistance of 

lentil lines to C. truncatum and the level of resistance, respectively (Tullu et al., 2003). 

The molecular markers linked to the major gene, OPEO61250, UBC-704700, 

EMCTTACA350, EMCTTAGG375, and EMCTAAAG175, were identified with the 

objective to simplify selection of lentil cultivars resistant to C. truncatum (Tullu et al., 

2003). Three markers were used, two (i.e. UBC 2271290 and RB 18680) linked to genes of 

resistance to Ascochyta lentis and one (i.e. OPO61250) linked to the gene resistant to C. 

truncatum, and recombinant inbred lines possessing genes resistant to these two 

pathogens were identified (Tar’an et al., 2003). However, the study found a lower ratio of 
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resistant lines and a higher ratio of susceptible lines with the marker OPO61250 (Tar’an et 

al., 2003).  

 

2.4.2. Control of lentil anthracnose 

 

To minimize the loss of plants caused by any species of Colletotrichum, 

integrated management measures are recommended (Waller, 1992). These measures 

cover a wide range from pre-seeding to post-harvest. 

 In regions free of the disease, anthracnose-free lentil seed is strongly 

recommended (Bailey et al., 2003), which can inhibit the spread of the disease 

significantly. Lentil cultivars with partial resistance to anthracnose, resulting in only 

smaller lesions and requiring a longer incubation period compared to susceptible cultivars, 

were believed to play an important role in restricting the spread of the disease (Chongo 

and Bernier, 1999a; Chongo and Bernier, 2000a). The use of these partially resistant 

cultivars combined with fungicide applications, e.g. chlorothalonil, was considered to 

deliver best results in controlling the development of anthracnose (Chongo et al., 1999b).  

Infected plant residues represent a major source of primary infection and good 

residue management can reduce disease pressure. The time of survival of C. truncatum in 

lentil residue depended upon where the residue was located. If infected residue was 

exposed above ground for one year, infectivity of the pathogen began to decrease. The 

reason was probably that the exposed microsclerotia could not tolerate adverse 

environmental conditions, i.e. high temperatures which lasted a long time. If infected 

residue was buried underground, higher infectivity was maintained for as long as four 

years (Buchwaldt et al., 1996). Therefore, to reduce the risk of anthracnose, new lentil 

cropping should follow at least a four-year rotation (Bailey et al., 2003). Because 

microsclerotia in dust and lentil residue can be scattered by wind, it was determined that 

fields with a new lentil crop should be at least 240 m away from fields with a history of 

lentil anthracnose (Buchwaldt et al., 1996). To avoid the infection of lentil crops by the 

pathogen from volunteer lentil plants and weed (e.g. wild vetch) growing in the lentil 

fields, timely eradication of these hosts is very important (Bailey et al., 2003).  
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 Before an application of fungicides, field surveys are necessary, which are 

conducted prior to flowering and focus on the lower leaves (Bailey et al., 2003). A study 

by Chongo et al. (1999b) showed that a fungicide application (chlorothalonil) played an 

important role in protecting lentil plants from the anthracnose. If there is a sign that 

infection is progressing, it is suggested to spray foliar fungicides no later than when the 

canopies are about to close (Bailey et al., 2003). The following options of foliar 

fungicides are currently available to control lentil anthracnose: BRAVO 500, DITHANE 

DG RAINSHIELD NT, QUADRIS, and HEADLINE EC. Each of them requires 

applications at an appropriate growth phase of lentil and needs optimal times to use 

(McVicar et al., 2006; Saskatchewan Ministry of Agriculture, 2008a).  
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3. Materials and Methods 

 

3.1. Investigation of conidium germination on glass well slides 

 
3.1.1. Selection of isolates and culture maintenance 

 

Isolates used from lentil included CT-15 (race Ct1), CT-20 (race Ct0), CT-21 

(race Ct1), CT-32 (race Ct0), CT-34 (race Ct0), and CT-35 (race Ct1). Prior to 

experimentation, all isolates were passed through a susceptible host. 

Conidial suspensions for inoculation were prepared from 7- to 10-day old cultures 

growing on oatmeal agar (OMA) (30 g powdered oatmeal, 8.8 g agar (Difco, Becton, 

Dickinson and Company, Franklin Lakes, NJ, USA), 1 liter distilled water) and incubated 

in an incubator at 22°C and alternating 12 h light and 12 h dark. The cultures were 

washed with sterile distilled water and the resulting conidial suspensions were diluted to 

a final concentration of 5 × 104 conidia/mL as determined with a haemocytometer.  

 

3.1.2. Inoculation of glass well slides 

 

Percent conidium germination of isolates was compared using glass well slides to 

determine whether isolates belonging to different races had differences irrespective of 

physical or chemical cues provided by a host plant.  

The progress of germination of conidia over time was studied in distilled water at 

27ºC in an incubator for all the isolates. A droplet of 100 μL of conidium suspension was 

spread into a well on a well slide that was incubated in a Petri dish lined with moistened 

filter paper. High humidity was maintained by placing the dishes in trays with moistened 

filter paper and loosely covering the trays with plastic. Percent conidium germination was 

assessed at 2-hour interval for 20 hours. Four Petri dishes were removed at each 
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assessment time and percent conidium germination was calculated by examining at least 

100 conidia within several fields of vision selected from left to right and from top to 

bottom across the well on each slide at × 100 magnification under a light microscope 

(Nikon Microphot FXA, Japan). Conidia were considered to have germinated when the 

germ tube was at least half the width of the conidium. The number of germinated conidia 

was expressed as a percentage of the total number of conidia counted. The experiment 

was conducted twice.  

 

3.1.3. Data analyses 

 

Statistical analyses were conducted using the SAS program (SAS Institute Inc. 

Cary, NC, USA). Regression analyses were conducted to determine the germination rate 

(slopes) for each isolate and replicate. The mixed procedure was used to compare two 

groups (races Ct0 and Ct1) by linear contrast using slope data and percent conidium 

germination data at 20 h after the conidium suspensions were spread on the well slides, 

respectively, considering ‘isolate’ as a fixed factor and ‘repeat’ and ‘repeat × isolate’ as 

random factors.  

 

3.2. Effects of plant age, conidium concentration, and inoculation 

method on conidium germination on lentil leaves 

  
3.2.1. Selection of isolate and inoculum preparation 

 

Isolate CT-15 (race Ct1) was grown on OMA for 10 to 14 days. Conidia were 

washed from Petri plates with sterile distilled water, and three conidium suspensions of 5 

× 104 (low concentration), 5 × 105 (intermediate concentration), and 1 × 106 (high 

concentration) conidia/mL were prepared.  
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3.2.2. Plant materials 

 

Lentil cultivars CDC Robin, a small red cultivar with brown seed coat and red 

cotyledon (Vandenberg et al., 2002), and Eston, a small green cultivar with yellow 

cotyledons (Slinkard and Bhatty, 1981) were used in the experiments. The two cultivars 

were planted at 8 seeds per 95mm × 95mm plastic pot filled with soil-less mixture (Terra-

Lite Redi-Earth®, Scotts-Sierra Horticultural Products Co., Marysville, Ohio, USA). 

Plants were thinned to 6 per pot two weeks after seeding. Two sets of plants were planted 

to obtain 3- and 6-week old plants. Ten pots per cultivar per plant age were prepared. The 

pots were maintained in a growth chamber at 22°C/16ºC day/night with 16 h light and 8 h 

dark. A complete fertilizer solution (20-20-20) (NPK+ micronutrients) was applied at a 

concentration of 3g per liter water two weeks after seeding and then once a week.  

  

3.2.3. Inoculation and clearing of lentil plants 

 

Four leaves consisting of at least four leaflets from four pots of each cultivar were 

removed from each, 3- and 6-week old plants. One 3- and one 6-week old leaf of each 

cultivar was placed in a sandwich box lined with moistened paper towel that represented 

one replicate. Leaflets of each leaf were point-inoculated with a droplet of 10 µL 

suspensions of isolate CT-15 using 5 × 104, 5 × 105, and 1 × 106 conidia/mL, respectively. 

The 4th leaflet was point-inoculated with the same amount of distilled water as a control.  

Four replicate sandwich boxes were prepared in this manner. Sandwich boxes with 

inoculated detached leaves were placed in an incubator at 22°C, 88~92% RH, and 

continuous light for 16 h.  

After removing leaves for point-inoculation, a transparent plastic sheet was used 

to wrap around each pot. The plants in each pot were sprayed with 10 mL suspensions of 

the same isolate using a hand-held CO2 powered sprayer (model RUH8210, Oxygen 

regulator, Uniweld, USA). To ensure that there were enough inoculated leaves, two pots 

of each cultivar and plant age were sprayed with each of three concentrations of conidium 

suspensions. Two pots were sprayed with distilled water as control. All sprayed plants 
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were incubated in a mist chamber at 22°C for 16 h. Pots sprayed with the same 

concentration of suspension were put together. The experiments were conducted twice. 

After 16 h, the four detached leaflets of each treatment combination were 

removed from sandwich boxes and placed in a glass vial containing a mixture of 3:1 

(glacial acetic acid : 95% ethanol) for at least 24 h for leaflets of 3-week old plants, and 

at least 48 h for the leaflets of 6-week old plants to clear the chlorophyll. To ensure that 

there were at least four sprayed leaflets from whole plants with sufficient conidium 

numbers to be used to investigate conidium germination, one leaflet from each spray-

inoculated plant was picked from the mist chamber, resulting in 12 leaflets per treatment 

combination. Spray-inoculated leaflets of the same treatment combination were placed in 

glass vials containing the same mixture as above. The time of clearing was also the same 

as above. The mixture was changed every 12 h. Samples were then stained with Cotton 

Blue and light microscopy was conducted as described in section 3.1.2. Four leaflets per 

treatment combination were analyzed for each inoculation method. For spray-inoculation, 

four leaflets were selected randomly from 12 leaflets collected from the whole plants. At 

least 100 conidia were examined per leaflet, and percent conidium germination was 

scored as described in section 3.1.2.    

 

3.2.4. Data analysis 

 

Data were transformed using the arcsine square root transformation to stabilize 

the variance, followed by mixed procedure for the complete data set. Repeats of the 

experiment were considered a random factor, whereas plant age, inoculation method, and 

conidium concentration were fixed. Whenever there was a significant interaction between 

two parameters, further analyses were conducted. The least square adjusted means were 

used to compare mean percentages of conidium germination when necessary.    

When investigating the effect of plant age on conidium germination based on 

conidium concentration, a significant interaction of plant age × inoculation method was 

found under high concentration, so data were further analysed for each inoculation 

method under this concentration. When evaluating the effect of conidium concentration 

on conidium germination based on inoculation method, there was a significant interaction 
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between plant age and conidium concentration for the spray-inoculation method, thus this 

required further analyses for each plant age. When investigating the effect of inoculation 

method on conidium germination according to conidium concentration, there was a 

significant interaction between plant age and inoculation method at high concentration, so 

further analyses were conducted for each plant age at this concentration.  

 

3.3. Study of the infection process on detached lentil leaves 

 
3.3.1. Selection of isolates and inoculum preparation 

 

Three isolates of race Ct0 (CT-20, CT-30, CT-34) and three isolates of race Ct1 

(CT-15, CT-21, CT-35) of C. truncatum were incubated for 10-14 days in OMA Petri 

dishes at 22°C under 12 h/12 h light/dark. Conidia were harvested and the concentration 

for all conidium suspensions was adjusted to 1 × 105 conidia/mL.  

 

3.3.2. Plant materials 

 

Seeding and maintenance of lentil plants as well as applications of fertilizer were 

the same as described in 3.2.2. 

 

3.3.3. Investigation of conidium germination and appressorium formation on the 

surface of green lentil leaflets 

 

Six leaflets for each cultivar at the age of three weeks were picked randomly and 

placed in a single Petri dish lined with moistened filter paper for inoculation with six 

isolates. Leaflets of the same cultivar were placed together. Three Petri dishes were 

prepared this way at each time, and values were averaged. The experiment was repeated 

six times, representing six replicates blocked over time. For each replicated set of Petri 

dishes, preparation and inoculation of the six isolates were conducted based on a 

sequence determined randomly to reduce experimental error which might be caused by 

different time periods between conidium preparation and inoculation for each isolate. 
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Using the point-inoculation method, a droplet of 10 µL of conidium suspension was 

added to each leaflet surface. Inoculated leaflets were incubated at 22°C and 88~92% RH 

under continuous light for 12 h, immediately air dried after that and stained for 

microscopy with Aniline Blue. Investigations on conidium germination and appressorium 

formation were carried out under the light microscope at × 100 magnification following 

the same sequence as conidium preparation and inoculation. This experiment was 

designed as split-plot design, where cultivar was the main-plot factor, and isolate was the 

sub-plot factor. Data analysis was conducted using the mixed procedure in SAS, 

considering isolate and cultivar as fixed factors and repeat and repeat × cultivar as 

random factors. 

 

3.3.4. Investigation of the infection process into leaf tissue 

  

For detailed cytological studies of the infection process, three replicate leaflets for 

each cultivar were placed in a Petri dish lined with moistened filter paper. The leaflets 

from the same cultivar were placed together. For each isolate five Petri dishes were 

prepared and incubated in an incubator at 22°C, 88~92% RH, and continuous light. One 

Petri dish per isolate was removed after the following incubation periods: 24, 36, 48, 60, 

and 72 h. The chlorophyll of leaflets was removed with the clearing solution described 

earlier. Leaflets inoculated with CT-15 were stained with Aniline Blue to stain fungal 

structures. All other leaflets were not stained, and decolorized leaflets were directly 

examined using a microscope (Olympus BX51 (TRF), Olympus Optical Co Ltd., Japan) 

with differential interference contrast (DIC) function at × 400 magnification. This 

avoided the problem of low contrast between the stained fungal structures and plant cells. 

Characteristic features of the infection process were documented by 

photography with a Spot Insight B/W camera (Model# 3.1.0, Diagnostic Instruments, 

USA). 
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3.3.5. Investigation of percent penetration into detached lentil leaflets 

 

 analyzed as a completely randomized design using the mixed 

procedure of SAS.   

.3.6. Investigation of the first appearance of infection vesicles 

 

 for microscopy using 

a DIC m

or each of three leaflets for the time period when 

the infe

n vesicles over time. Slope data was then analyzed with the mixed 

proceduure of SAS.  

 

To quantify the penetration success of the isolates into lentil leaf tissue, four 

replicate leaflets for each cultivar were picked and placed in a Petri dish lined with 

moistened filter paper. The inoculation method with the six isolates was the same as 

described in section 3.3.3, and leaflets were incubated for 48 h in an incubator at 22°C, 

88~92% RH, and continuous light. Samples were cleared as described in section 3.2.3, 

and the numbers of infection vesicles and PH within epidermal cells and of appressoria 

on the leaflet surface were counted using the DIC microscope at × 200 magnification. 

The percent penetration was calculated by dividing the number of infection vesicles and 

PH within epidermal cells by the number of observed appressoria on the leaflet surface. 

The experiment was

 

3

Preparation of Petri dishes with leaflets was the same as described under section 

3.3.4. The point-inoculation method was used as described in section 3.3.3. Sets of 

inoculated leaflets were incubated for 16, 18, 19, 20, 21, 22, 23, and 24 h in an incubator 

with 22°C, 88~92% RH, and continuous light. Sample preparation

icroscope was the same as described under section 3.3.4.  

After de-staining, 87 to 391 appressoria per leaflet were evaluated for the 

appearance of infection vesicles (IV). The percentage of appressoria from which infection 

vesicles had developed was calculated f

ction vesicles were first visible. 

To investigate any differences between the two races in the first appearance of 

infection vesicles, the slopes were first calculated for the linear graphs describing the 

percentage of infectio
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3.3.7. Investigation of the size and shape of primary hyphae 

 

Preparation of Petri dishes with leaflets was the same as described in section 3.3.4. 

The point-inoculation method was used as described in section 3.3.3. Inoculated leaflets 

were incubated for 48 and 60 h, respectively, in an incubator at 22°C, 88~92% RH, and 

continuous light. Samples were cleared as described in section 3.3.4. Twenty PH per 

leaflet of each cultivar were observed for each isolate at each incubation time. The 

lengths of PH, measured from the appressorium to the end(s) of PH (for PH with up to 4 

branches) or as 2 cross diameters (for more complex PH), the percentage of the area of 

plant epidermal cell occupied by PH, and the type (1-4, Figure 3.1) of PH based on their 

shapes were recorded using a DIC microscope. The experiment was analyzed as a 

completely randomized design. The total length of PH measurements and the percent 

epidermal cell area occupied by PH were analyzed using general linear model procedure 

of SAS. The frequency of different types of PH was analyzed using genmod procedure of 

SAS. 
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Figure 3.1 Different types of primary hyphae (PH) of Colletotrichum truncatum based on 

their shapes in the detached lentil leaves observed at 48 or 60 h postinoculation (hpi) 

under a DIC microscope at × 400 magnification. T and B; Type 2: C and D; 

Type 3: E and F; Type 4: G and H. Bar=10µm. 

ype 1: A 

    

PH 

A) CT-15 (Ct1) on Eston  at 48 hpi                  B) CT-15 on Eston at 48 hpi  
 

    

PH 

PH 
PH 

      C) CT-15 on Eston at 48 hpi                               D) CT-35 on CDC Robin at 48 hpi  
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PH 

PH 

      E) CT-20 on Eston at 48 hpi                               F) CT-20 on Eston at 60 hpi                             
 

    

PH 

PH 

      G) CT-20 (Ct0) on CDC Robin at 48 hpi          H) CT-15 on Eston at 48 hpi                                               
 
 
3.3.8. Investigation of the first appearance of secondary hyphae 

   
Following procedures as described under 3.3.4, sets of inoculated leaflets were 

incubated for 60, 62, 64, 66, 68, 70, and 72 h. After the leaflets were cleared, samples 

were investigated for the first appearance of SH, and the time when SH first appeared for 

each isolate on each cultivar was recorded. Observations were descriptive only. 
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3.4. Study of the infection process on attached lentil leaves 

 
3.4.1. Selection of isolates and inoculum preparation 

 

Isolates CT-34 (race Ct0) and CT-35 (race Ct1) of C. truncatum were used in this 

study. The two isolates were incubated for 10-14 days in OMA Petri dishes at 22°C under 

12 h/12 h light/dark. Conidia were harvested and concentrations were adjusted to 1 × 105 

conidia/mL.  

 

3.4.2. Plant materials 

 

Plants of lentil cultivars Eston and CDC Robin were grown in a growth chamber 

at 22°C/16°C day/night with 16 h/8 h light/dark for three weeks. Applications of soil and 

fertilizer were the same as described in section 3.2.2. 

 

3.4.3. Inoculation of lentil plants 

 

Before inoculation, moistened paper was placed at one bottom end of the 

transparent plastic containers (Rubbermaid® brand, Rubbermaid Commercial 

Products, Saratoga Springs, NY, USA) covering 1/3 length of the bottom. A single whole 

plant from each cultivar was gently removed from the pots, and the roots were wrapped 

with some wet soil before placing the plant horizontally on the moistened paper in the 

container. More moistened paper was used to cover the roots. Leaflets were fixed to the 

bottom of the containers with tape. A total of six containers were prepared this way, three 

for each isolate. Each container had one CDC Robin plant and one Eston plant. Ten 

leaflets per plant were inoculated. The inoculation method was the same as for detached 

leaflets described under 3.3.3. After inoculation, a thin plastic film and a lid were used to 

cover the container to maintain higher humidity. Containers were placed in an incubator 

at 22º C, 88-92% RH, and continuous light for 48 h. For each cultivar, six to ten leaflets 

inoculated with each isolate were removed and tissue samples were prepared for 

microscopy as described under 3.3.4. Three leaflets from each cultivar were assessed for 
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each isolate. Twenty PH per leaflet were evaluated for their total length, the percent area 

of the plant epidermal cells occupied by PH, and the type of PH, as described under 3.3.7. 

The experiment was analyzed as a completely randomized design. Total length of PH and 

the percent plant epidermal cell area occupied by PH were analyzed using the mixed 

procedure in SAS. Frequencies of the type of PH were analyzed with the genmod 

procedure in SAS. 
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4. Results 

 

4.1. Investigation of conidium germination on glass well slides  
In this experiment, conidium germination of three race Ct0 isolates and three race 

Ct1 isolates was observed on glass well slides and percentage of conidium germination 

was determined at 2-hour interval for 20 hours. At 2 h after the conidium suspensions 

were spread on the well slides, conidium germination of race Ct0 and race Ct1 isolates 

ranged from 0 to 3 % and 0 to 4 %, respectively. At 20 h after the conidium suspensions 

were spread on the well slides, conidium germination of race Ct0 and race Ct1 isolates 

ranged from 16 to 69 % and 15 to 76 %, respectively. Overall, percentage of conidium 

germination increased over time for isolates of both races, but the data from the two races 

did not fall into two distinct groups (Figure 4.1). 

Group comparisons between race Ct0 and race Ct1 based on the slopes (rate of 

conidium germination) and 20 h germination data showed no significant differences 

between these two races (Figure 4.1, Tables 4.1 and 4.2, and Appendix 1).   

  

 

 

 

 

 

 

 

 

 

 

 

41 
 



Figure 4.1 Increases in the percentage of conidium germination of six isolates belonging 

to race Ct0 or race Ct1 of Colletotrichum truncatum between 2 and 20 hours after the 

conidium suspensions were spread on the glass well slides at 27ºC 
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Table 4.1 Means and standard errors of percent conidium germination over time (slope) 

of isolates belonging to race Ct0 or race Ct1 of Colletotrichum truncatum between 2 and 

20 hours after the conidium suspensions were spread on the glass well slides 

  
 

                                  Isolate        Race           Mean         Std Error 
 

                                   CT-15         Ct1            2.5189         0.1453 
                                   CT-20         Ct0            2.1580         0.1424 
                                   CT-21         Ct1            1.2652         0.1429 
                                   CT-32         Ct0            2.2492         0.1873 
                                   CT-34         Ct0            3.1576         0.2066 
                                   CT-35         Ct1            2.9742         0.3430 

 

 
 
 
 
Table 4.2 Results of contrast analysis of two races (Ct0 and Ct1) of Colletotrichum 

truncatum based on the slopes and percent conidium germination at 20 h after the 

conidium suspensions were spread on the glass well slides  

 
 Num       Den 

          Source             Label               DF        DF       F Value      Pr > F 
  

          Slope race Ct1 vs Ct0       1       25.5         2.53          0.1242 

          20-h data race Ct1 vs Ct0       1       27.7         0.04          0.8415 
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4.2. Effects of plant age, conidium concentration, and inoculation 

method on conidium germination on lentil leaves 
 

 In this experiment, three- and six-week old plants of lentil cvs. Eston and CDC 

Robin were inoculated with CT-15, a race Ct1 isolate, using spray- and point-inoculation 

methods at three conidium concentrations, i.e. a low concentration with 

5×104 conidia/mL, an intermediate concentration with 5×105 conidia/mL, and a high 

conidium concentration with 1×106 conidia/mL. Percentage of conidium germination in 

each treatment combination is shown in Table 4.3. Results of the analyses based on the 

entire data using the mixed procedure of SAS are shown in Appendix 2. There were 

significant interactions of plant age × inoculation method, inoculation method × 

conidium concentration, and plant age × inoculation method × conidium concentration 

(Appendix 2), so the experimental factors plant age, inoculation method, and conidium 

concentration were analysed one by one. 
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Table 4.3 Means and standard errors of percent conidium germination on three- and six-

week old plants of lentil cvs. Eston and CDC Robin inoculated with Colletotrichum 

truncatum isolate CT-15 (race Ct1) at three concentrations using two inoculation methods 

 

 
Age          Method          Cultivar 

 
Concentration

 
Mean 

 
Standard Error 

   
3-week  Point-inoculation    Eston 

 
    1 × 106 

 
  62.50 

 
     2.8785 

     5 × 105   72.25      3.2390 
     5 × 104   82.50      2.7710 
                                    CDC Robin     1 × 106   58.00      2.5774 
     5 × 105   68.25      4.0872 
     5 × 104   75.63      2.8781 
            Spray-inoculation     Eston     1 × 106   72.75      1.3195 
     5 × 105   77.00      2.2440 
     5 × 104   78.63      1.9080 
                                    CDC Robin     1 × 106   68.00      3.4434 
     5 × 105   75.13      2.8249 
     5 × 104   76.25      1.5324 
    
6-week  Point-inoculation    Eston     1 × 106   81.75      2.4330 
     5 × 105   87.00      1.5119 
     5 × 104   93.88      0.6928 
                                    CDC Robin     1 × 106   76.88      2.2155 
     5 × 105   81.63      2.6922 
     5 × 104   90.13      1.3016 
              Spray-inoculation   Eston     1 × 106   79.25      2.4839 
     5 × 105   87.75      0.8814 
     5 × 104   91.63      1.5111 
                                    CDC Robin     1 × 106   72.75      3.0923 
     5 × 105   88.88      0.9717 
     5 × 104   88.75      0.9590 
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Plant age 

 

Analyses of the entire data set showed that plant age significantly affected 

conidium germination, but there were significant interactions for plant age × inoculation 

method and plant age × inoculation method × conidium concentration (Appendix 2). 

Data were then analysed separately for each conidium concentration. At the low 

conidium concentration, plant age significantly affected conidium germination, and 

conidium germination was significantly higher on six-week old plants than on three-week 

old plants (Table 4.3. and Appendix 3). At the intermediate concentration, plant age did 

not affect conidium germination significantly (Appendix 4), whereas at the high 

concentration, plant age was a marginally significant factor. However, there was a 

significant interaction between plant age and inoculation method at that concentration 

(Appendix 5), so data were further split up by inoculation method. When spray-

inoculating with a high conidium concentration, there were no significant differences in 

conidium germination between the two plant ages (Appendix 6); when point-inoculating, 

conidium germination was significantly higher on six-week old plants than on three-week 

old plants (Appendices 7 and Table 4.3). 

 

Inoculation method 

 

Analyses of the entire data showed that inoculation method had no significant 

effect on conidium germination, but there were significant interactions for plant age × 

inoculation method, inoculation method × conidium concentration, and plant age × 

inoculation method × conidium concentration (Appendix 2). Separate analyses for each 

conidium concentration showed that at low and intermediate concentrations, inoculation 

method had no effect on conidium germination (Appendix 3 and 4); at the high 

concentration, there were also no significant differences between two inoculation 

methods in conidium germination, but there was a significant interaction of plant age and 

inoculation method (Appendix 5), so data were further explored by analyzing for each 

plant age separately. This revealed that on three-week old plants conidium germination 

was significantly higher when using spray-inoculation than using point-inoculation 
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(Appendices 8 and Table 4.3.); on six-week old plants conidium germination was not 

significantly different between the two inoculation methods (Appendix 9). 

 

Conidium concentration 

 

Analyses of the entire data showed that conidium concentration significantly 

affected conidium germination, but there were significant interactions for inoculation 

method × conidium concentration and plant age × inoculation method × conidium 

concentration (Appendix 2). Analyses by inoculation method showed that conidium 

concentration did not significantly affect conidium germination in point-inoculating (P = 

0.0549) (Appendix 10). There were significant differences among three concentrations 

when spray-inoculating, but there was also a significant interaction between plant age 

and conidium concentration (Appendix 11), so further analyses were conducted for each 

plant age separately. It was shown that when spray-inoculating three-week old plants 

there were significant differences among the three concentrations (P = 0.0048) (Appendix 

12). The high concentration resulted in significantly lower conidium germination than 

low and intermediate concentrations (P = 0.0021 and P = 0.0107, respectively), whereas 

there were no significant differences between low and intermediate concentrations 

(Appendix 13). On six-week old plants results were the same as those on three-week old 

plants (P < 0.0001) (Appendix 14), i.e. the high concentration resulted in significantly 

lower conidium germination than low and intermediate concentrations (both P < 0.0001), 

whereas there were no significant differences between low and intermediate 

concentrations (Appendix 15).  

 

The above experiments suggested that the point-inoculation method used on the 

leaves of three-week old lentil plants using a conidium concentration of 5 × 105 

conidia/mL was the most suitable method for further experiments. However, when the 

experiments were conducted on green and uncleared leaves, it was found that 5 × 105 

conidia/mL resulted in a conidium concentration too high for detailed counts, suggesting 

that the clearing process had washed off a certain number of conidia, specifically non-
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germinated conidia. Therefore, the conidium concentration was slightly reduced to 1 × 

105 conidia/mL for subsequent experiments on green leaves used without clearing.  
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4.3. Study of the infection process on detached lentil leaves 

 
4.3.1. Conidium germination and appressorium formation on the surface of 

detached green leaves 

 

In this study, conidium germination and appressorium formation of six isolates 

were investigated on the surface of detached green (i.e. non-destained) leaves of CDC 

Robin and Eston at 12 hpi. It was shown that there was no significant interaction of 

isolate and cultivar (P = 0.0557) for percent conidium germination, while there was a 

significant interaction of isolate and cultivar (P = 0.0001) for percent appressorium 

formation. On Eston, conidium germination of race Ct0 isolates was significantly higher, 

with 68.9% germinated conidia, than that of race Ct1 isolates, with 63.5% (Figure 4.2, 

Table 4.4, Appendix 16). However, no significant differences in the percentage of 

appressorium formation were observed between the two races at that time (Fig. 4.2, Table 

4.5, Appendix 17). On CDC Robin, race Ct0 isolates had significantly higher percentages 

of conidium germination (62.5%) and of appressorium formation (37.3%) than race Ct1 

isolates (50.4% and 29.3%, respectively) at that time (Fig. 4.2, Tables 4.4 and 4.5, 

Appendices 16 and 17).  
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Figure 4.2 Percentages of conidium germination (left) and of appressorium formation 

(right) of three isolates of race Ct0 (CT-20, CT-30, CT-34) and three isolates of race Ct1 

(CT-15, CT-21, CT-35) of Colletotrichum truncatum at 12 h postinoculation on the 

detached leaves of lentil cultivars CDC Robin and Eston 
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Table 4.4 Results of the contrast analysis of percent conidium germination of race Ct0 

and race Ct1 of Colletotrichum truncatum on the detached lentil leaves at 12 h 

postinoculation                                           
 

                                                         Num        Den 
              Label                                    DF         DF        F Value        Pr > F 
 
              Ct1 vs Ct0 on Eston                1         17.5           5.33           0.0334 
              Ct1 vs Ct0 on CDC Robin      1         14.7          31.87          <.0001 
 

 

 

Table 4.5 Results of the contrast analysis of percent appressorium formation of race Ct0 

and race Ct1 of Colletotrichum truncatum on the detached lentil leaves at 12 h 

postinoculation   

                                                       Num        Den 
              Label                                  DF          DF         F Value         Pr > F 
 
              Ct1 vs Ct0 on Eston              1         13.4            0.21              0.6589 
              Ct1 vs Ct0 on CDC Robin    1         16.7          33.18              <.0001 
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4.3.2. Penetration into detached leaf tissue 

 

4.3.2.1. Investigation of the infection process into leaf tissue 

 

In this study, the infection process of six isolates into detached leaf tissue of both 

cultivars, CDC Robin and Eston, was observed by microscopy between 24 hpi and 72 hpi 

at 12-h interval.  

Observations of inoculated lentil leaflets showed that following conidium 

germination, generation and growth of germ tubes, and appressorium formation on the 

leaflet surface, infection vesicles (IVs) were observed inside the epidermal cells of both 

cultivars under the penetration sites at 24 hpi (Fig. 4.3). In most cases the IVs appeared to 

be directly connected to the underside of appressoria. Sometimes appressoria were not 

found above IVs, probably because these appressoria were washed away during the leaf 

clearing process.  

After IVs were formed, larger PH within epidermal cells developed between 36 

and 60 hpi (Figs. 3.1 and 4.4). During this period PH expanded in size. Either a single PH 

extended from the appressorium or two to several lobes were developed from PH and 

continuously grew. As a result, PH presented different shapes (Fig. 3.1). The 

development of fungal infection structures (IV and PH) in specific leaflets was not 

synchronized as an IV was observed in one epidermal cell while PH were developing in 

others (Fig. 3.1E). At 36 hpi, the majority of PH was Type 1 and Type 2. It was obvious 

that PH showed different shapes starting at 48 hpi (Fig. 3.1). By 60 hpi, PH had 

developed further in size and number of branches compared to 48 hpi (Fig. 3.1F). For 

some isolates, e.g. CT-30, thinner SH began to develop from some PH by 60 hpi. By 72 

hpi, SH became very prominent, being much thinner than PH, either developing inside a 

locally parasitized epidermal cell or spreading through the cell wall to adjacent cells (Fig. 

4.5).  
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Fig. 4.3 An infection vesicle (IV) of isolate CT-35 (race Ct1) of Colletotrichum 

truncatum inside an epidermal cell on a detached leaflet of lentil cultivar CDC Robin at 

24 h postinoculation under a DIC microscope at × 400 magnification. Bar=5µm. 

 

 
  

 
 
 
Fig. 4.4 A primary hypha (PH) of isolate CT-35 (race Ct1) of Colletotrichum truncatum 

inside an epidermal cell on a detached leaflet of lentil cultivar Eston at 36 h 

postinoculation under a DIC microscope at × 400 magnification. Bar=10µm. 
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Fig. 4.5 Primary hyphae of Colletotrichum truncatum isolates on the detached leaflets of 

lentil cultivar Eston at 72 h postinoculation (PH: primary hyphae, SH: secondary hyphae) 

under a DIC microscope at × 400 magnification. Bar=10µm. 

 

    

PH 

SH SH 

PH 

A) CT-20 (Ct0)                                                B) CT-35 (Ct1)  

 
    
4.3.2.2. Investigation of percent penetration of six isolates into detached lentil leaflets  

 
 

In this experiment, the percentage of appressoria with IV and/or PH, i.e. percent 

penetration, was determined at 48 hpi. Data analyses revealed that there was no 

significant interaction between isolate and cultivar (P = 0.6193). Both isolate and cultivar 

had significant effects on penetration (P = 0.0007 and P = 0.0045, respectively; 

Appendix 18). Contrast analysis showed that isolates of race Ct0 had a significantly 

higher percentage of penetration on CDC Robin and Eston than isolates of race Ct1 (Fig. 

4.6 and Table 4.6). As chlorophyll of leaflets had been removed prior to counting, it was 

speculated that some appressoria were removed during that process and as a result, the 

percent penetration may have possibly been overestimated. However, it was hypothesized 

that any washing-off of appressoria might happen at equal frequency on both cultivars, so 

relative differences should still be valid.  
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Fig. 4.6 Percent penetration of three isolates of race Ct0 (CT-20, CT-30, CT-34) and 

three isolates of race Ct1 (CT-15, CT-21, CT-35) of Colletotrichum truncatum into 

detached leaflets at 48 h postinoculation on the lentil cultivars CDC Robin and Eston 
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Table 4.6 Results of the contrast analysis of percent penetration of race Ct0 and race Ct1 

of Colletotrichum truncatum on the detached leaflets of lentil cultivars CDC Robin and 

Eston at 48 h postinoculation  
 

                                                       Num     Den 
               Label                                 DF       DF        F Value        Pr > F 
 
         Ct1 vs Ct0                                 1       32.6         27.26           <.0001 
         Ct1 vs Ct0 on Eston                  1       16.3         13.30           0.0021 
         Ct1 vs Ct0 on CDC Robin        1       16.4         13.98           0.0017 
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4.3.2.3. Investigation of the first appearance of infection vesicles 

 

     In this experiment, leaflets were examined for infection vesicles on an hourly 

basis, and the percentage of appressoria with infection vesicles inside the epidermal cells 

was investigated for each of three replicate leaflets of two cultivars between 16 and 24 

hpi. The time point when the average percentage of appressoria with IV on the three 

replicate leaflets of each cultivar inoculated with each isolate was equal or exceeding 

0.5% was considered the time when infection vesicles of this isolate were first produced. 

The standard of 0.5% was determined because in the initial stage of IV appearance, the 

percentage of appressoria with IV was very low.         

   Results showed that on both CDC Robin and Eston, there were no significant 

differences between race Ct0 and race Ct1 in the first appearance of infection vesicles 

(Table 4.7 and Appendix 19). 

   

Table 4.7 Results of the contrast analysis of the first appearance of infection vesicles of 

race Ct0 and race Ct1 of Colletotrichum truncatum on the detached leaflets of lentil 

cultivars CDC Robin and Eston 

 

 
                                                                          Num      Den 
                Cultivar            Label                         DF        DF       F Value     Pr > F 
 
                 CDC Robin    race Ct0 vs race Ct1       1         3.11        0.36          0.5876 
 
                 Eston              race Ct0 vs race Ct1       1       10.1          0.12          0.7398 
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4.3.2.4. Investigation of the size and different types of primary hyphae 

  

In this study, the size (including total length of PH and percentage of epidermal 

cell area occupied by PH) and different types of PH based on their shapes (Figure 3.1 in 

Materials and Methods) of the six isolates were investigated on detached leaves of lentil 

cultivars Eston and CDC Robin at 48 and 60 hpi.  

Data analysis revealed that incubation time, cultivar, and isolate significantly 

affected the total length of PH (Appendix 20). Because of a significant interaction 

between incubation time and cultivar (P < 0.0001), data for 48 and 60 hpi were analysed 

separately (Appendix 20). At 48 hpi, isolate and cultivar significantly affected the total 

length of PH (Appendix 21). PH were significantly larger on Eston compared to CDC 

Robin, and the interaction between cultivar and isolate was non-significant (Table 4.8 and 

Appendix 21). In comparison, at 60 hpi, there were no significant differences among the 

isolates (Appendix 22); a cultivar effect was present, and PH on CDC Robin were 

marginally larger than those on Eston (Table 4.8 and Appendix 22). However, the 

interaction between isolate and cultivar was non-significant (Appendix 22). Further 

analyses showed that at 48 hpi, on Eston the total length of PH of race Ct0 isolates was 

significant higher than that of race Ct1 isolates. On CDC Robin, there were no significant 

differences between the two races (Tables 4.8 and 4.9). At 60 hpi, on both cultivars there 

were no significant differences between the two races (Table 4.10). 
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Table 4.8 Total length of primary hyphae of six Colletotrichum truncatum isolates after 

48 and 60 h incubation time on the detached leaves of lentil cultivars Eston and CDC 

Robin (Values in brackets are standard errors of the means) 

 
 
Race 

 
Isolate 

Total Length of Primary Hyphae (μm) 
48 h 60 h 

Eston CDC Robin Eston CDC Robin 

Ct0 
CT-20 71.29 (6.14) 55.67 (4.73) 69.54 (0.97) 70.88 (2.77) 
CT-30 75.92 (1.00) 61.54 (2.50) 68.88 (3.92) 77.54 (1.16) 
CT-34 66.67 (3.58) 57.96 (1.79) 64.88 (1.48) 74.25 (1.67) 

Ct1 
CT-15 67.75 (1.09) 57.58 (0.74) 72.13 (1.76) 74.33 (0.83) 
CT-21 57.25 (1.44) 58.96 (0.33) 67.13 (2.79) 67.67 (1.70) 
CT-35 59.29 (2.09) 46.96 (1.04) 69.58 (1.05) 72.04 (2.96) 
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Table 4.9 Results of the contrast analysis of total length of primary hyphae of race Ct0 

isolates and race Ct1 isolates of Colletotrichum truncatum at 48 h postinoculation on the 

detached leaves of the lentil cultivars Eston and CDC Robin 

 

   Cultivar         Contrast              DF  Contrast SS   Mean Square   F Value   Pr > F 

 

   Eston            race Ct0 vs race Ct1  1        8752               8752                11.12      0.0009 

   CDC Robin  race Ct0 vs race Ct1  1        1361               1361                  2.72      0.1002 
 

 

 

 

Table 4.10 Results of the contrast analysis of total length of primary hyphae of race Ct0 

isolates and race Ct1 isolates of Colletotrichum truncatum at 60 h postinoculation on the 

detached leaves of the lentil cultivars Eston and CDC Robin 

  
   Cultivar       Contrast                 DF   Contrast SS  Mean Square  F Value  Pr > F 

 

   Eston            race Ct0 vs race Ct1  1         307                 307                 0.50       0.4806 

   CDC Robin  race Ct0 vs race Ct1  1         744                 744                 1.21       0.2713 
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For the percentage of epidermal cell area occupied by PH, incubation time, isolate, 

and cultivar had significant effects. The isolate × cultivar interaction was also significant 

(P = 0.0140), but none of the other interactions was (Appendix 23), so data were further 

analyzed for each cultivar separately. On Eston, there were no significant differences in 

the percentage of epidermal cell area occupied by PH among the isolates or between the 

races at both 48 and 60 h incubation times (Appendix 24 and Table 4.12). The percentage 

of epidermal cell area occupied by PH was significantly affected by incubation time, and 

was higher at 60 hpi than at 48 hpi (Table 4.11 and Appendix 24). However, on CDC 

Robin, isolate and incubation time had significant effects (Appendix 25). Race Ct0 

isolates occupied significantly more space in epidermal cells than race Ct1 isolates at 

both (48 and 60 h) incubation times (Tables 4.11 and 4.12), and the percentage of 

epidermal cell area occupied by PH was significantly higher at 60 hpi than at 48 hpi 

(Table 4.11 and Appendix 25). Further analyses showed that at 48 and 60 hpi, the 

percentage of epidermal cell area occupied by PH of race Ct0 isolates was not 

significantly differenct from race Ct1 isolates on Eston, but on CDC Robin, race Ct0 

isolates covered significantly more space than race Ct1 isolates (Tables 4.11, 4.13, and 

4.14).  
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Table 4.11 Percentage of epidermal cell area occupied by primary hyphae of six 

Colletotrichum truncatum isolates after 48 and 60 h incubation time on the detached 

leaves of lentil cultivars CDC Robin and Eston (Values in brackets are standard errors of 

the means). 

 

 
Race 

 
Isolate 

Percent Epidermal Cell Area (%) 
                     48 h 60 h 
Eston CDC Robin Eston CDC Robin 

Ct0 
CT-20 15.37 (0.55) 14.73 (0.75) 20.42 (1.06) 22.27 (0.65) 
CT-30 16.22 (0.62) 15.57 (0.56) 21.23 (0.73) 22.93 (0.49) 
CT-34 15.82 (0.47) 15.20 (0.51) 22.25 (0.86) 24.12 (1.02) 

Ct1 
CT-15 15.37 (0.51) 12.08 (0.55) 21.95 (0.82) 18.32 (1.16) 
CT-21 14.95 (0.43) 11.52 (0.57) 22.92 (1.26) 17.37 (0.72) 
CT-35 14.50 (0.46) 11.23 (0.62) 21.07 (0.54) 19.17 (1.05) 
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Table 4.12 Results of the contrast analysis of percent epidermal cell area occupied by 

primary hyphae of race Ct0 isolates and race Ct1 isolates of Colletotrichum truncatum at 

both 48 h and 60 h incubation time on the detached leaves of the lentil cultivars Eston 

and CDC Robin 

  

    Cultivar       Contrast                  DF  Contrast SS   Mean Square  F Value  Pr > F 
 
    Eston             race Ct0 vs race Ct1   1          1.51                 1.51           0.01       0.9107 
    CDC Robin   race Ct0 vs race Ct1   1    3158                3158              29.71       < .0001 
 

 

 

Table 4.13 Results of the contrast analysis of percent epidermal cell area occupied by 

primary hyphae of race Ct0 isolates and race Ct1 isolates of Colletotrichum truncatum at 

48 h postinoculation on the detached leaves of the lentil cultivars Eston and CDC Robin 

 

   Cultivar      Contrast                 DF  Contrast SS   Mean Square  F Value   Pr > F 
 
   Eston            race Ct0 vs race Ct1   1         66.7                66.7             0.89       0.3463 
   CDC Robin  race Ct0 vs race Ct1   1     1138               1138              22.39       < .0001 
 

 

 

Table 4.14 Results of the contrast analysis of percent epidermal cell area occupied by 

primary hyphae of race Ct0 isolates and race Ct1 isolates of Colletotrichum truncatum at 

60 h postinoculation on the detached leaves of the lentil cultivars Eston and CDC Robin 

 

   Cultivar     Contrast                  DF  Contrast SS   Mean Square   F Value  Pr > F 
 
   Eston           race Ct0 vs race Ct1   1          41.3                41.3             0.25       0.6171 
   CDC Robin race Ct0 vs race Ct1   1      2093               2093              12.93       0.0004 
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At 48 and 60 h incubation time, there were no significant differences in the 

frequency of different types of PH between the two races on Eston and CDC Robin 

(Tables 4.15 and 4.16). Isolates of both races generated types 1, 2, and 4 of PH at similar 

frequencies in the leaf epidermal cells of Eston and CDC Robin at each incubation time 

(Table 4.15 and Appendices 26-29). However, at 48 h incubation time isolates of race 

Ct0 had generated more type 3 of PH compared to isolates of race Ct1 on CDC Robin, 

but this difference was not evident at 60 h incubation time (Table 4.15 and Appendices 

27 and 29). 
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Table 4.15 Frequency of different types of primary hyphae (PH, based on shape) of six 

Colletotrichum truncatum isolates after 48 and 60 h incubation time on the detached 

leaves of lentil cultivars CDC Robin and Eston (Values in brackets are standard errors of 

the means) 
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   Type of PH  

            1           2           3           4 
Eston CDC 

Robin
Eston CDC 

Robin
Eston CDC 

Robin 
Eston CDC 

Robin
 
 
 
 
 
48  

 
 
Ct0 

CT-
20 

7.0 
(0.58) 

7.7 
(0.88) 

4.3 
(0.33) 

5.7 
(0.66) 

3.3 
(0.88) 

3.3 
(0.88) 

5.3 
(0.33) 

3.3 
(0.33) 

CT-
30 

4.3 
(0.88) 

7.0 
(0.58) 

6.7 
(0.88) 

3.0 
(0.58) 

5.7 
(0.88) 

7.7 
(0.88) 

3.3 
(0.88) 

2.3 
(0.33) 

CT-
34 

5.3 
(1.45) 

7.7 
(1.20) 

5.0 
(2.52) 

4.3 
(0.88) 

6.7 
(0.88) 

5.3 
(1.85) 

3.0 
(0.58) 

2.7 
(0.33) 

 
 
Ct1 

CT-
15 

7.3 
(1.45) 

8.3 
(1.20) 

6.7 
(0.88) 

5.3 
(1.20) 

3.3 
(0.88) 

3.3 
(0.88) 

2.7 
(0.33) 

3.0 
(0.58) 

CT-
21 

6.3 
(0.88) 

6.7 
(1.20) 

6.0 
(0.58) 

7.0 
(1.53) 

5.3 
(0.88) 

2.3 
(0.33) 

2.3 
(0.88) 

4.0 
(0.58) 

CT-
35 

6.0 
(0.58) 

7.3 
(0.88) 

7.3 
(0.88) 

6.3 
(0.88) 

3.7 
(0.88) 

3.0 
(1.53) 

3.0 
(1.00) 

3.3 
(0.88) 

 
 
 
 
 
60  

 
 
Ct0 

CT-
20 

4.3 
(0.33) 

3.0 
(0.58) 

5.7 
(0.88) 

4.7 
(1.20) 

7.7 
(0.88) 

10.0 
(0.58) 

2.3 
(0.33) 

2.3 
(0.33) 

CT-
30 

5.3 
(0.88) 

3.3 
(0.33) 

5.0 
(0.58) 

3.3 
(0.88) 

7.7 
(0.33) 

11.3 
(0.88) 

2.0 
(0) 

2.0 
(0) 

CT-
34 

5.0 
(0.58) 

4.0 
(0.58) 

4.7 
(1.20) 

4.0 
(1.15) 

8.3 
(0.88) 

9.7 
(0.88) 

2.0 
(0.58) 

2.3 
(0.33) 

  
Ct1 

CT-
15 

4.0 
(0.58) 

4.0 
(1.15) 

5.0 
(1.15) 

3.3 
(0.88) 

7.7 
(0.88) 

9.0 
(0.58) 

3.3 
(0.33) 

3.7 
(0.88) 

CT-
21 

5.0 
(0.58) 

3.0 
(0.58) 

4.0 
(0.58) 

3.7 
(1.20) 

8.7 
(1.20) 

10.3 
(1.20) 

2.3 
(0.33) 

3.0 
(0.58) 

CT-
35 

4.3 
(0.88) 

3.3 
(0.88) 

5.0 
(0.58) 

6.3 
(1.20) 

8.0 
(0.58) 

8.0 
(0.58) 

2.7 
(0.33) 

2.3 
(0.33) 
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Table 4.16 Results of the contrast analysis of frequency of different types of primary 

hyphae (PH, based on shape) of race Ct0 isolates and race Ct1 isolates of Colletotrichum 

truncatum after 48 and 60 h incubation time on the detached leaves of lentil cultivars 

Eston and CDC Robin  

 
 
Source 

 
 
DF

48 h 60 h 
Chi- 
Square

Pr > 
ChiSq 

Type Chi- 
Square 

Pr > 
ChiSq 

Type

race Ct0 vs. race Ct1 on Eston 1 0.43 0.5101 LR 0.05 0.8220 LR 
race Ct0 vs. race Ct1 on CDC 
Robin 

1 0.00 0.9722 LR 0.23 0.6337 LR 

 
    

As only the infection process of CT-34 (race Ct0) and CT-35 (race Ct1) after 48 h 

incubation was studied on attached leaves (Chapter 4.4), comparisons of the total length 

of PH and of percent epidermal cell area occupied by PH of these two isolates on 

detached leaves were conducted to facilitate the comparison of detached and attached leaf 

inoculation assays. It was shown that there were no significant differences between the 

two isolates on the detached leaves of Eston, but CT-34 had significantly larger PH than 

CT-35 on the detached leaves of CDC Robin (Appendices 30-33). 

 

4.3.2.5. Investigation of the first appearance of secondary hyphae 

 

     In this experiment, the first appearance of SH was investigated for each isolate on 

two cultivars at 60, 62, 64, 66, 68, 70, and 72 hpi. The time point when the average 

percentage of PH with SH on three leaflets for each isolate was equal or exceeding 5% 

was considered the time when SH of this isolate were first produced.   

     Results showed that on Eston SH were produced at 60 hpi when inoculated with 

CT-30, CT-34, and CT-35, and at 62 hpi when inoculated with CT-15, CT-20, and CT-21. 

On CDC Robin, SH were produced at 60 hpi after inoculated with CT-30, at 62 hpi when 

inoculated with CT-15, CT-20, and CT-34, and at 64 hpi when inoculated with CT-21 

and CT-35.   
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4.4. Study of the infection process on attached lentil leaves 

 
 In this study, leaflets growing on intact plants of the lentil cultivars CDC Robin 

and Eston were fixed with tape at the bottom of plastic containers, inoculated by point-

inoculation with CT-34 (race Ct0) and CT-35 (race Ct1), and incubated for 48 h. The 

total length of PH, the percent area of plant epidermal cell occupied by PH, and the type 

of PH were investigated. 

 The total length of PH of CT-34 and CT-35 varied from 12.5 to 115 µm and 7.5 to 

60 µm on CDC Robin, respectively, and from 12.5 to 100 µm and 7.5 to 72.5 µm on 

Eston. The percent plant epidermal cell area occupied by PH of these two isolates ranged 

from 3 to 26% and 1 to 18% on CDC Robin, respectively, and from 3 to 25% and 1 to 

20% on Eston. Analyses of the data showed that the interaction term between isolate and 

cultivar was not significant for the total length of PH (P = 0.1489), nor for the percent 

plant epidermal cell area occupied by PH (P = 0.1501). The total length of PH and 

percent plant epidermal cell area occupied by PH of CT-34 were significantly higher than 

those of CT-35 on the attached leaflets of both cultivars (Tables 4.17, 4.18, and 4.19).   

 

Table 4.17 Means of total length (Ltotal (µm)) of primary hyphae and means of percent 

plant epidermal cell area occupied by primary hyphae (Percentage) of two isolates (CT-

34 and CT-35) of Colletotrichum truncatum  at 48 h incubation time on the attached 

leaves of lentil cultivars CDC Robin and Eston (Values in brackets are standard errors of 

the means) 

 

 
Race 

          
Isolate    

Ltotal (µm)            Percentage 
Eston CDC Robin Eston CDC Robin 

 
Ct0 

  
CT-34 45.79(1.00)a 47.38(0.57)a 10.48(0.28)a 10.85(0.47)a 

 
Ct1 

  
CT-35 29.21(1.31)b 23.54(1.17)b 6.90(0.54)b 5.18(0.27)b 

 Note: Different letters in the same column indicate significant differences.  
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Table 4.18 Comparisons of least squares means of total length of primary hyphae of 

Colletotrichum truncatum isolates CT-34 (race Ct0) and CT-35 (race Ct1) inoculated 

onto attached leaflets of lentil cultivars CDC Robin and Eston at 48 h incubation time  

                                                                            
                                                                           Standard 

Cultivar     Effect    iso        iso         Estimate      Error       DF       t Value    Pr > |t| 

 

CDC Robin iso    CT-34 

 

CT-35       23.83          3.46           92.9       6.88        <.0001 

Eston           iso    CT-34 CT-35       16.58          3.61         107          4.59        <.0001 
                              

 

 
 

 

Table 4.19 Comparisons of least squares means of percent plant epidermal cell area 

occupied by primary hyphae of Colletotrichum truncatum isolates CT-34 (race Ct0) and 

CT-35 (race Ct1) inoculated onto attached leaflets of lentil cultivars CDC Robin and 

Eston at 48 h incubation time    

                                                                            
                                                                           Standard 

Cultivar       Effect    iso        iso     Estimate        Error     DF        t Value     Pr > |t| 

 

CDC Robin  iso 

 

CT-34  CT-35         5.67           0.97          97.5        5.81       <.0001 

Eston            iso CT-34  CT-35         3.58           1.06        115           3.37       0.0010 
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Four types of PH were identified and the frequency of each type was counted for 

each isolate on the attached leaves of Eston and CDC Robin (Table 4.20). Because of 

significant interaction between isolate and type of PH (P = 0.0011), the frequency of each 

PH type was analyzed individually. For types 1 and 4, there were significant differences 

between CT-34 and CT-35. However, no such differences were found for types 2 and 3 

(Table 4.21). Since the research objective of this study was to investigate whether there 

were significant differences in the infection progress between the two isolates on CDC 

Robin and there were no such differences on Eston, the frequency of each PH type was 

further analyzed individually for both isolates on each cultivar. The frequency of types 1, 

2, and 3 of PH did not significantly differ between CT-34 and CT-35 on either Eston or 

CDC Robin. CT-34 had significantly more type 4 of PH than CT-35 on Eston. However, 

on CDC Robin there were no significant differences in the frequency of type 4 of PH 

between the two isolates (Tables 4.20 and 4.22). 
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Table 4.20 Frequency of the different types of primary hyphae (PH, based on shape) of 

two isolates (CT-34 and CT-35) of Colletotrichum truncatum at 48 h incubation time on 

the attached leaves of lentil cultivars CDC Robin and Eston (Values in brackets are 

standard errors of the means) 

  

Cultivar Type 
of PH 

                        Isolate 
         CT-34   CT-35 

Eston 

1        8.0 (1.00) a     12.7 (0.88) a 
2      4.3 (0.33) a       3.7 (1.20) a 
3      1.7 (0.88) a       1.3 (0.33) a 
4      6.0 (1.00) a       2.3 (0.66) b 

CDC 
Robin 

1      8.0 (1.00) a     12.3 (0.66) a 
2      5.3 (0.33) a       5.7 (1.20) a 
3      3.0 (0.58) a       0.7 (0.33) a 
4      3.7 (0.66) a       1.3 (0.33) a 

 

 

 

 

 

 

 

 

            Note: Different letters in the same row indicate significant differences.  
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Table 4.21 Comparison of the frequency of different types of primary hyphae (PH, based 

on shape) of two isolates (CT-34 and CT-35) of Colletotrichum truncatum at 48 h 

incubation time 

 
PH  Standard 
Type   Effect    iso        iso           Estimate       Error         DF       t Value        Pr > |t| 
1          iso      CT-34    CT-35        -0.4258      0.1837            1           5.37          0.0205 
2          iso      CT-34    CT-35         0.0532      0.2689            1           0.04          0.8431 
3          iso      CT-34    CT-35         0.8382      0.5373            1           2.43          0.1188 
4          iso      CT-34    CT-35         0.9495      0.3683            1           6.65          0.0099 
 
 

 

 

Table 4.22 Comparison of the frequency of different types of primary hyphae (PH, based 

on shape) of two isolates (CT-34 and CT-35) of Colletotrichum truncatum at 48 h 

incubation time on the attached leaves of lentil cultivars CDC Robin (CR) and Eston (E) 

 
PH                                                                             Standard 
Type   Cul    Effect     iso          iso         Estimate        Error      DF    Chi-Square    Pr > ChiSq 
  1       CR      iso CT-34    CT-35 -0.4329 0.2621    1       2.73         0.0986 
  2       CR      iso CT-34    CT-35 -0.0606 0.3483    1       0.03         0.8618 
  3       CR      iso CT-34    CT-35 1.2528 0.8018    1       2.44         0.1182 
  4       CR      iso CT-34    CT-35 1.0116 0.5839    1       3.00         0.0832 
  1        E        iso CT-34    CT-35 -0.4187 0.2575    1       2.64         0.1040 
  2        E        iso CT-34    CT-35 0.1671 0.4097    1       0.17         0.6834 
  3        E        iso CT-34    CT-35 0.5108 0.7303    1       0.49         0.4843 
  4        E        iso CT-34    CT-35 0.8873 0.4491    1       3.90         0.0482   
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5. Discussion 
 

5.1. Investigation of conidium germination on glass well slides 
  

Conidium germination is the first stage for the fungus to infect plant tissues. 

Isolates with higher percentage of conidium germination contribute to greater number of 

appressorium and possibly more penetration, and could thus present a greater threat to 

plant growth. Suitable temperature, light, and sufficient humidity and nutrients are all 

essential conditions for conidium germination. In this experiment, distilled water was 

used, and the purpose was to examine germination of the six isolates of Colletotrichum 

truncatum on inert glass well slides. The objective was to determine whether there were 

significant differences in the percentage of conidium germination between isolates of the 

two races irrespective of potential cues given by the host plant surface. The results 

showed no significant differences in the percentage of conidium germination between the 

two races on inert glass slides. Since glass slides provide limited cues to the fungus to 

encourage development, the results indicated that there were no inherent differences 

between the two races in conidium germination. Therefore, any differences in 

germination on lentil plants caused by the two races of C. truncatum should be the result 

of their specific interaction.     

It was shown that conidia of the six isolates began to germinate after 2 h of 

incubation. This was somewhat less than the minimum incubation time observed by 

Chongo et al. (2002), who determined that conidial germination started after 3-6 h of 

incubation.  Generally one germ tube was formed from a conidium, but there were also 

two germ tubes observed on some conidia, which was similar to the description by 

Chongo et al. (2002) who described up to 3 germ tubes per conidium. However, no 

conidia with three germ tubes were detected in this study. 

In some cases, appressoria were formed shortly after conidial germination which 

had been observed earlier by Chongo et al. (2002). In this case, germ tubes were not 
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visible because appressoria were located very close to conidia. These conidia with short 

germ tubes and very early appressorium development may penetrate hosts more quickly. 

Conidia with more than one appressorium also may have more penetration attempts.  

  In this experiment, conidia were suspended in water and incubated under high 

humidity to make sure that the pathogen was provided with a conducive condition for 

conidium germination. Studies by Bradley et al. (2003) showed that Stemphylium sp. had 

much higher conidial germination in free water than at 100% relative humidity (RH) 

when infecting clover species. Similar results were shown by Green and Bailey (2000), 

who worked on the factors affecting infection of Alternaria cirsinoxia on leaves of 

Canada thistle. They found that A. cirsinoxia preferred free water for conidial 

germination and appressorium formation. Studies by Fernando et al. (2000) found 

different results, i.e. ≥ 96% RH resulted in higher conidium germination during a study 

on the interaction between C. acutatum and Hevea brasiliensis, and it was unnecessary to 

use free water. However, studies by Stojanovic et al. (1999) showed even if RH was 

almost 100%, in vitro conidial germination of C. gloeosporioides only reached 2.5% after 

24 h.  

Some researchers used the glass slides in various studies to investigate conidium 

germination and formation of other infection structures, e.g. appressoria. Studies by 

Sheikholeslami et al. (2005) showed that old conidia of Erysiphe betae had lower 

germination compared to fresh conidia on glass slides. Studies by Li et al. (2005) showed 

that conidia of E. pulchra germinated on glass slides at the same time as on dogwood 

leaves, but the formation of appressoria was much later.   
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5.2. Effects of plant age, conidium concentration, and inoculation 

method on conidium germination on lentil leaves 
 

In this experiment, the race Ct1 isolate CT-15 was used to optimize the 

inoculation protocol with regard to lentil plant age, conidium concentration, and the 

inoculation method. The objective was to develop a protocol to be used for further 

experiments using multiple isolates of C. truncatum. In this study, three parameters were 

investigated and compared in one experiment. The advantage of such an experimental 

design was to create the same experimental conditions for the purpose of minimizing the 

experimental error and to save time in carrying out the experiments. However, the 

disadvantage was the complexicity of data analyses, particularly interpretation of 

interactions among different parameters.    

At the intermediate concentration of 5 × 105 conidia/mL, there were no significant 

differences in conidium germination between the two plant ages. At the same time, 

inoculation method had no significant effect. Three-week old lentil plants would be a 

better option for studying the infection of C. truncatum compared to six-week old plants 

since time spent in managing the plants would be shortened in half, thus saving time and 

speeding up the research process. At the low concentration of 5 × 104 conidia/mL, there 

were significant differences in conidium germination between the two plant ages. 

However, at the high concentration of 1 × 106 conidia/mL, the things tend to be more 

complicated because of an interaction of plant age and inoculation method.  

The results also showed that inoculation with the low (5 × 104 conidia/mL) and 

intermediate (5 × 105 conidia/mL) pathogen concentrations by either point-inoculation or 

spray-inoculation had no significant effect on conidium germination. When the spray-

inoculation method was used, more labour was required compared to the point-

inoculation method because whole plants were inoculated. This involved wrapping pots 

in transparent plastic sheets, moving them into a mist chamber after inoculation with a 

sprayer and finally moving them onto a normal phytotron bench. In contrast, for point-

inoculation, detached leaves were placed into a sandwich box, inoculated with conidium 

suspensions using a pipetter, and incubated in an incubator. Furthermore, the inoculated 

area was easy to find on point-inoculated leaflets and thus the observation of germinating 
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conidia was conducted faster than on spray-inoculated leaflets where conidia were 

distributed over a larger area. Savings in time and space would favour the use of the 

point-inoculation method. Therefore, point-inoculation would be chosen at a low or an 

intermediate concentration. 

In terms of the effect of conidium concentration on germination, it was shown that 

when point-inoculating, there were no significant differences between intermediate (5 × 

105 conidia/mL) and high concentrations (1 × 106 conidia/mL) (P = 0.1464) or between 

intermediate and low (5 × 104 conidia/mL) concentrations (P = 0.0925), but conidium 

germination was significantly lower at high concentration than at low concentration (P = 

0.0258). It was also shown that when point-inoculating, plant age had no effect on 

conidium germination. Therefore, an intermediate concentration with 5 × 105 conidia/mL 

was considered the best option among the three concentrations when point-inoculating. 

It is worthy mentioning here that the point-inoculation study involved detached 

leaves, whereas spray-inoculation was done on whole plants with attached leaves. 

Investigating resistance of wheat to Fusarium graminearum, Miedaner et al. 

(2003) showed that inoculating wheat heads with a spray method was better compared to 

inoculating florets using a point-inoculation method. Similarly, McCallum and Tekauz 

(2002) reported that spraying entire spikes of barley with F. graminearum had a higher 

inoculation efficiency and was better in identifying resistance than injecting single florets. 

A study by Warham (1990) also showed that a spray-inoculation method produced better 

inoculation results compared to other inoculation methods when investigating the 

interaction of wheat with Tilletia indica. The above researchers preferred to use the 

spray-inoculation method. However, they did not do microscopy studies, which may be 

the reason why they did not choose the point-inoculation method. 

A study by Chongo and Bernier (2000) showed that increasing conidium 

concentrations for spray-inoculation of lentil plants and favourable growth stages (i.e. 4-6 

weeks after planting) could enhance the development of C. truncatum (2000). Increased 

conidium concentration shortened the incubation and latent periods, while lesion numbers 

were raised and disease severity was higher when using a high concentration of 1 × 105 

conidia/mL (Chongo and Bernier, 2000). In contrast, higher conidium concentration (106 

conidia/mL) of C. gloeosporioides did not result in higher severity of anthracnose on 

74 
 



Stylosanthes scabra (Chakraborty, 1990). The current study suggests that higher 

conidium concentration inhibited conidium germination compared to lower concentration.  

Lentil plants of 4-6 weeks were found to be more susceptible to C. truncatum 

(Chongo and Bernier, 2000). This is consistent with the results of the current study where 

six-week old plants were found to have higher conidium germination than three-week old 

plants at three concentrations when both inoculation methods were used (Table 4.3). In 

particular, conidium germination was significantly higher on six-week old plants than on 

three-week old plants at 5 × 104 conidia/mL under both inoculation methods, and also at 

1 × 106 conidia/mL when point-inoculating (Table 4.3). Higher conidium germination 

may result in higher number of appressorium and higher infection. A study on the 

interaction between Ascochyta rabiei and chickpea showed that as partially resistant 

chickpea plants grew older, they became more susceptible (Chongo and Gossen, 2001). A 

similar result was reported by Makowski (1993) regarding the interaction of 

mallow/velvetleaf and C. gloeosporioides f. sp. malvae. In contrast, a study on 

muskmelon showed that the earlier seedlings were inoculated with F. oxysporum f. sp. 

melonis, the more disease developed (Latin and Snell, 1986). As the bean cutivar Prelude 

grew from 8 to 14 days of age, its resistance to C. lindemuthianum was getting stronger 

(Bigirimana and Höfte, 2001). Based on the results and discussion above, it is clear that 

an evaluation of inoculation methods requires investigating many factors, such as level of 

resistance of plant, plant growth stage, conidium concentration, environmental condition, 

and experimental design. The results of the current study suggest that the point-

inoculation method on three-week old plants using a conidium concentration of 5 × 105 

conidia /mL is the optimum option for further experiments. 
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5.3. Study of the infection process on detached lentil leaves 
  
5.3.1. Conidium germination and appressorium formation on detached green leaf 

surface 

 

The research hypothesis for this study was that isolates of the two races would not 

differ in terms of conidium germination and appressorium formation on Eston, but that 

isolates of race Ct0 would have significantly higher conidium germination and 

appressorium formation than isolates of race Ct1 on CDC Robin. This study showed that 

on Eston, conidium germination of race Ct0 isolates was significantly higher than that of 

race Ct1 isolates at 12 hpi; but no significant differences in appressorium formation were 

observed between the two races at that time. On CDC Robin, race Ct0 isolates had 

significantly higher percentages of conidium germination and appressorium formation 

than race Ct1 isolates at 12 hpi. Differences in the percentage of appressorium formation 

therefore support the research hypothesis, but data on percentage of conidium 

germination did not. Results suggest that a higher percentage of conidium germination 

was not automatically correlated with a higher percentage of appressorium formation as 

on the leaflet surface of Eston race Ct0 isolates had significantly higher conidium 

germination than race Ct1 isolates, but there were no significant differences in 

appressorium formation between the two races. Similar to observations on well slides, it 

was observed here that some conidia germinated and generated long germ tubes, at the 

end of which appressoria were eventually differentiated. In contrast, other conidia 

generated appressoria shortly after they germinated, thus had only very short germ tubes. 

Compared to conidium germination, appressorium formation is more closely related to 

the infection process of C. truncatum because only under the appressorium will a 

penetration peg be formed to pierce the cell wall of epidermise, so that the fungus can 

enter the leaflet tissue. When more penetration pegs are formed, it is predicted that more 

parts of the plant will be parasitized by the pathogen, and plants will face more damage. 

The results for appressorium formation showed that CDC Robin delayed or restricted 

appressorium formation of race Ct1 isolates while Eston did not. This may explain why 

there tends to be less disease on CDC Robin after inoculation with race Ct1 isolates 
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compared to that on Eston, whereas similar levels of disease occur for race Ct0 isolates 

on both cultivars.  

Other researchers have investigated the infection process and other characteristics 

of plant pathogens by looking at conidium germination and appressorium formation. 

Mould et al. (1991) studied the infection process of two races of C. trifolii on Medicago 

sativa, and found that race identity did not influence conidium germination and 

appressorial development. A study by Daykin and Milholland (1984) showed that the 

initial infection process by C. gloeosporioides, including conidium germination and 

appressorium formation, on susceptible and resistant cultivars of muscadine grape was 

similar. Comparisons of percentages of conidium germination and of appressorium 

formation of C. orbiculare at 12 and 24 hpi on two Nicotiana species by Shen et al. (2001) 

showed that except for the percentage of germination at 24 hpi, significant differences 

between the two Nicotiana species were observed. In two different hosts, tobacco and 

round-leaved mallow, C. orbiculare had different percentage of conidium germination 

and different number of appressorium (Shen et al., 2001). Jahromi et al. (2002) 

investigated the difference in percent appressorium formation of Rhynchosporium 

alismatis on Damasonium minus (a rice weed) at two temperatures, 25 and 30ºC, and 

found that under a higher temperature R. alismatis produced significantly lower 

appressoria on leaves than under a lower temperature. Some researchers used other 

parameters in studies of the infection process. Morin et al. (1996) found that conidium 

germinated at similar time and pre-penetration structures had no big differences in 

morphology when studying the pre-penetration phase of C. gloeosporioides f. sp. malvae 

on the leaves of five different weed species. Auld and Say (1999) compared different C. 

orbiculare isolates on the same weed species using conidium production, colony diameter, 

and other factors. The results of my study suggest that conidium germination and 

appressorium formation are important components in the C. truncatum infection process. . 

The study of conidium germination and appressorium formation is simple and fast. 

Meanwhile, this method is less ambiguous compared to the timing and morphological 

description of infection structures, or measurement of colony diameter. The results of this 

part of my study supported those by Shen et al. (2001) showing that investigations of 
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conidium germination and of appressorium formation can be used to identify the reaction 

of isolates from different races of the fungus to different hosts or cultivars.  

 

5.3.2. Penetration into detached leaf tissue 

 

Based on observation until 72 hpi in this study, isolates from both races followed 

the typical infection process on both lentil cultivars, i.e. conidium germination, 

appressorium formation, penetration into plant tissue, and appearances and growth of IV, 

PH, and SH. This infection process is similar to that described for C. truncatum on pea 

(O’Connell et al., 1993), C. orbiculare on tobacco (Shen et al., 2001), C. destructivum on 

lucerne (Latunde-Dada et al., 1997), and C. sublineolum on susceptible Sorghum bicolour 

cultivar (Wharton and Julian, 1996). The differences are in the timing of IV, PH, and SH 

appearances. In the study by Khan and Hsiang (2003), SH of C. graminicola were not 

found on four turfgrass species before 168 hpi. Colletotrichum gloeosporioides 

penetrated into mulberry leaf through the open stomata without formation of appressoria 

(Kumar et al., 2001). Colletotrichum truncatum on soybean showed a different infection 

process as hyphae initially spread below the cuticle after penetration into the plant tissue, 

after which the pathogen spread into the cell wall (Manandhar et al., 1985). It was 

observed that at the same incubation time on the same leaflet, some conidia could 

germinate, and others could not; penetration could be successful from some appressoria, 

but not from others. These may be related to different sensitivity of the infection 

structures to the plant tissue and environmental conditions. In this study PH of C. 

truncatum were not observed to extend towards the surrounding cells in the lentil leaves. 

The production of SH sometimes was not triggered when PH had occupied the entire 

epidermal cells, but occurred, for example, when PH covered 20 to 30% of the epidermal 

cell area. This could be the result from the interaction of the fungus and plant, i.e. specific 

signalling between the fungus and the host, and/or changes in environmental conditions 

for the PH. Observations clearly showed that SH were much thinner, spread faster than 

PH, and crossed cell walls. It has been suggested that this may be resulted from a change 

of surface features of hyphal cells during the switch from the biotrophic (PH) to the 
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necrotrophic stage (SH). Extracellular matrixes and glycoproteins found on PH are not 

detected on the surface of SH (Perfect et al., 2001).  

For the experiment studying the percent penetration of six isolates into detached 

lentil leaflets, the research hypothesis was that on Eston there would be no significant 

differences in the percent penetration between race Ct0 isolates and race Ct1 isolates, but 

on CDC Robin percent penetration of race Ct0 isolates would be significantly higher than 

that of race Ct1 isolates. This study showed that race Ct0 isolates had a significantly 

higher percentage of penetration than race Ct1 isolates on both cultivars. These results do 

not support the research hypothesis. Khan and Hsiang (2003) found that on one turfgrass 

species, not only did conidia of C. graminicola germinate quicker, but also the 

penetration pore was generated faster and hyphae spread more widely within epidermal 

cells compared to three other turfgrass species. When investigating the size of PH at 48 

and 60 h incubation time on the detached leaves of lentil cultivars Eston and CDC Robin, 

the research hypothesis was that on Eston there would be no significant differences 

between the isolates of race Ct0 and isolates of race Ct1 in the size of PH, while on CDC 

Robin the size of PH of race Ct0 isolates would be significantly larger than that of race 

Ct1 isolates. Studying the percent epidermal cell area occupied by PH at both incubation 

times (48 and 60 hpi), as well as the percentage of epidermal cell area occupied by PH at 

48 and 60 hpi each showed that on Eston there were no significant differences between 

the two races. However, on CDC Robin PH of race Ct0 isolates occupied significantly 

more space than PH of race Ct1 isolates. These results support the research hypothesis. 

The comparison of CT-34 (race Ct0) and CT-35 (race Ct1) in terms of the total length of 

PH and plant epidermal cell area occupied by PH on the detached leaves also supported 

the research hypothesis. On Eston there were no significant differences between two 

isolates, but CT-34 had significantly longer PH than CT-35 on CDC Robin. Compared to 

the length of PH, the measurement of the percentage of epidermal cell area occupied by 

PH appears to be a better approach to investigate these infection structures because the 

measurement of length, as explained in section 3.3.6, was based on one to three 

measurements depending on the type of PH. For PH type 2 to 4, two or three 

measurements would still not reflect the complete size accurately, but measuring each 

branch would have been impractical. In contrast, estimating the cell area occupied by PH 
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more clearly reflected the size of PH, in particular as PH of C. truncatum are restricted to 

one epidermal cell. An epidermal cell with more area occupied by a PH would be 

expected to be more affected because more nutrients would be withdrawn from the host 

cells. 

Results of this study showed that on CDC Robin the development of race Ct1 

isolates was restricted compared to race Ct0 isolates as IV and SH of race Ct1 isolates 

appeared later in epidermal cells. Studies by Chongo et al. (2002) showed that symptoms 

appeared eight to eleven days earlier on the susceptible lentil cultivar Eston than on the 

resistant lentil line PI 320937 after inoculation with C. truncatum isolates. PI 320937 

limited swelling of hyphae and production of lesions compared to Eston after inoculation 

with an isolate of moderate virulence and one of high virulence (Chongo et al., 2002). In 

my studies, as no hypersensitive reaction was observed on CDC Robin after inoculation 

with race Ct1 isolates, the term “incompatibility” is not appropriate for describing the 

interaction between race Ct1 isolates and CDC Robin. On Eston, development of race 

Ct1 isolates was not restricted as on CDC Robin and isolates of this race developed 

similarly to race Ct0 isolates in terms of percent epidermal cell area occupied by PH. 

Based on these observations, race Ct0 and race Ct1 do not appear to be classical 

physiological races, but may represent aggressive races as reviewed by Caten (1987), or 

some intermediate forms. 
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5.4. Study of the infection process on attached lentil leaves 

 
In this study, attached leaves from whole plants of both lentil cultivars Eston and 

CDC Robin were point-inoculated with one race Ct0 isolate (CT-34) and one race Ct1 

isolate (CT-35). My research hypothesis was that on Eston there would be no significant 

differences in the size of PH between these two isolates, but on CDC Robin PH of CT-34 

would be significantly larger than that of CT-35. This was shown on the detached leaves 

in chapter 4.3.  The objective here was to determine whether this was also true on the 

attached leaves. Therefore the point inoculation method was used to compare the results 

of this experiment with those from the previous experiments on detached leaves, and also 

to make sure that each leaflet received the same amount of conidium suspension. To 

inoculate leaflets effectively, lentil plants were placed horizontally at the bottom of 

plastic containers so that the leaflets could be easily fixed with the tape.  

Based on previous experiments on detached leaves, 48 h of incubation time was 

considered to be optimum to observe the development of PH inside plant epidermal cells. 

At this time, SH had not yet emerged from PH, so it was easier to measure the length of 

PH and estimate the percent cell area occupied by PH.  

Previous experiments showed that on detached leaflets of CDC Robin, the total 

length of PH and the percentage of plant epidermal cell area occupied by PH were 

significantly higher for CT-34 than for CT-35, whereas there were no significant 

differences in these two parameters between the two isolates on Eston. On the attached 

leaves of CDC Robin, CT-34 also had higher values for these measurements for PH 

compared to CT-35, but in contrast to the results on the detached leaves, these high PH 

values were also found on the attached leaves of Eston. This suggests that isolates of C. 

truncatum developed differently on the detached and attached leaflets. Compared to the 

observations of CT-34 and CT-35 on detached leaves, the types of PH of these two 

isolates were similar on the attached leaves, but the size of PH was smaller than that in 

detached tissues, indicating that the development of PH was slower on attached leaves. In 

other words, the attached leaves had different sensitivity to C. truncatum compared to 

detached leaves.  
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One of the differences between detached leaflets and attached leaflets is that the 

former loses the supply of water and mineral nutrients from the roots during the period of 

incubation. As a result, detached leaflets lose increasingly more water and probably start 

to experience plasmolysis of cells, which may have an influence on the infection process 

as well. Studies by Liu et al. (2007) suggested that senescence in detached leaves could 

be one important reason for the differences between detached and attached leaves of 

Arabidopsis after being infected by Colletotrichum spp. They found that C. linicola could 

not penetrate attached leaves of Arabidopsis, but was able to invade detached leaves of 

the plant (Liu et al., 2007). Wei et al. (1997) showed that senescence played a role in 

speeding up the switch from the biotrophic to the necrotrophic phase of infection when 

investigating the interaction between round-leaved mallow and C. gloeosporioides f. sp. 

malvae. They suggested that this might be resulted from disorder in detoxification and 

repairing systems in older plant tissues (Wei et al., 1997). The influence of senescence 

was also shown in the interaction between C. gloeosporioides and citrus where healthy 

flower tissues escaped infection by the fungus but senescent petals were easily penetrated 

(Zulfiqar et al., 1996). In my study, C. truncatum could penetrate the attached leaflets of 

lentil although PH developed more slowly compared to the detached leaflets.   

When studying the infection process of pathogens on the plants, finding a suitable 

inoculation method is vital as it influences the time requirements of experiments and the 

quality of data. When spraying the whole plants, it is difficult to ensure that individual 

leaflets receive the same amount of conidium suspension, in particular when leaflets only 

need to be inoculated with a small amount. There is an obvious problem after spraying 

the whole plant that the conidium suspension can drip from higher leaves onto lower 

leaves, resulting in different conidium concentrations. Whether the point-inoculation 

method is feasible for inoculation of attached leaves depends on kind of plants. For 

example, Arabidopsis leaves grow along the soil surface and can easily be inoculated 

with point-inoculation method. Lentil plants grow erectly, so it is necessary to find a 

suitable method to fix the leaves in a horizontal position as was done in this study. Based 

on my experiments, preparing lentil plants as described here for the whole plant assay is  

time consuming, especially when a large number of leaves need to be inoculated.    
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Using detached leaves has many advantages compared to experiments on whole 

plants. First of all, using detached leaves is highly efficient. When inoculating many 

leaves, this method saves much time. In addition, detached leaves can be inoculated by 

more than one fungus to compare the responses of the plant to them simultaneously. 

Inoculation of detached leaves does not encourage the induced resistance on the whole 

plant (Herath et al., 2001). Secondly, use of detached leaves can save resources (Tedford, 

et al., 1990). After the leaves are excised from the plants, plants can continue to grow, 

other leaves and plant tissues can be used in different experiments, if possible, seeds can 

also be harvested. Finally, using detached leaves can save space and labour. Detached 

leaves after inoculation can be incubated in smaller containers and incubators under 

specific conditions. Even though the use of detached leaves has the above advantages, it 

can not completely replace the use of attached leaves from the whole plants because 

attached leaves are different from detached leaves in their physiology due to senescence 

and different levels of water and nutrient supplies. It is therefore important to verify the 

detached-leaf data with the whole-plant assay for the selected parameters. 

This study does not support the research hypothesis and contradicts the findings 

on detached leaflets that were inoculated with the same isolates. On attached leaves the 

total length of PH and percent plant epidermal cell area occupied by PH between the race 

Ct1 isolate and race Ct0 isolate were different on both CDC Robin and Eston, but on 

detached leaves the difference between the isolates was only found on CDC Robin. CDC 

Robin has race Ct1-resistance which may dominate any senescence effect on detached 

CDC Robin leaves, whereas that senescence effect on detached Eston leaves facilitates 

infection by both isolates with the result that no observable differences between the race 

Ct1 isolate and race Ct0 isolate can be seen.   

This study showed that PH of two isolates, each from one of two races of C. 

truncatum, developed differently in terms of length and area of the epidermal cell 

occupied by this structure at 48 h incubation time on attached leaflets of both cultivars. 

CT-34 had significantly longer PH and occupied significantly more area in plant 

epidermal cells in both cultivars than CT-35. This suggests that the two isolates are 

different in aggressiveness and may represent aggressive races rather than physiological 

races as described by Caten (1987). However, the leaves of lentil lines had quantitatively 
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different reactions to ascospore-derived isolates of CT-21 (race Ct1) × CT-30 (race Ct0). 

Stems were more resistant than leaves. Specifically, the reaction of stem of CDC Robin 

to those isolates fell into two major groups and showed a binomial distribution that could 

suggest major resistance genes regulate resistance in stems (Cohen-Skali et al., 2008). 
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6. Summary and Conclusions 
 

Investigation of conidium germination of two races (Ct0 and Ct1) of 

Colletotrichum truncatum on inert glass well slides showed that there were no significant 

differences between race Ct0 and race Ct1, indicating that race Ct0 was not inherently 

different from race Ct1 in conidium germination. Therefore, any differences in conidium 

germination in subsequent experiments could be attributed to specific interactions 

between the two races and lentil cultivars with different resistance. 

The study on effects of plant age, conidium concentration, and inoculation 

method on conidium germination on lentil leaves determined parameters for a protocol 

for infection studies of C. truncatum on lentil. It was shown that the point-inoculation 

method on destained leaves of three-week old lentil plants using a conidium 

concentration of 5 × 105 conidia/mL was most suitable for further experiments. Since 5 × 

105 conidia/mL resulted in a large number of conidia on green leaves, a conidium 

concentration of 1 × 105 conidia/mL was used in the following experiments. 

At 12 hpi, conidium germination of race Ct0 isolates was significantly higher on 

the surface of detached green leaves of Eston than that of race Ct1 isolates. However, 

there were no significant differences between the two races in the percentage of 

appressorium formation. At that time, on CDC Robin race Ct0 isolates had significantly 

higher percentages of conidium germination and appressorium formation than race Ct1 

isolates. 

Investigation of the infection process of isolates of the two races into leaf tissues 

of lentil cultivars CDC Robin and Eston showed that IVs were observed inside the 

epidermal cells under the penetration sites at 24 hpi. During the period of 36 to 60 hpi, 

PH began to be generated and expanded in size. Since the development of fungal 

infection structures in leaves was not synchronized, different types of PH were observed 

at 36, 48, 60, and 72 hpi. Thinner SH of some isolates (e.g. CT-30) were observed 
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initially to develop from some PH at 60 hpi. By 72 hpi, SH became very prominent, 

spread at a locally parasitized epidermal cell, even passed through the cell wall and 

reached to the surrounding cells. 

Investigation of percent penetration of the isolates of two races into detached 

lentil leaflets at 48 hpi showed that isolates of race Ct0 had a significantly higher 

penetration frequency than isolates of race Ct1 on CDC Robin and Eston. With regard to 

the first appearance of infection vesicles, the study showed that on both CDC Robin and 

Eston, there were no significant differences between isolates of both races. 

At 48 hpi, race Ct0 isolates had significantly longer PH than race Ct1 isolates on 

detached leaves of Eston; at 48 hpi on detached leaves of CDC Robin and at 60 hpi on 

detached leaves of both cultivars, there were no significant differences between the two 

races. There were also no significant differences between the two races in the percentage 

of epidermal cell area occupied by PH at 48 and 60 hpi on Eston, but on CDC Robin, PH 

of race Ct0 isolates occupied significantly more space than those of race Ct1 isolates at 

both incubation times. 

The frequencies of types 1, 2 and 4 of PH were similar among isolates of both 

races in leaf epidermal cells of Eston and CDC Robin at 48 and 60 hpi. At 48 hpi more 

type 3 of PH was generated by isolates of race Ct0 than by isolates of race Ct1 on CDC 

Robin, but this difference was not found at 48 hpi on Eston and at 60 hpi on both 

cultivars. 

Investigation of the infection process on attached lentil leaves was carried out 

using two isolates CT-34 (race Ct0) and CT-35 (race Ct1) on CDC Robin and Eston at 48 

hpi. Results showed that CT-34 had significantly longer PH and a significantly higher 

percentage of plant epidermal cell area occupied by PH than CT-35 on both cultivars. For 

the frequency of different types of PH, only type 4 of PH was significantly more frequent 

with CT-34 than with CT-35 on Eston; for this type on CDC Robin and types 1, 2, and 3 

of PH on both cultivars, there were no significant differences between the two isolates.  

To conclude, this study indicates that the two races have different virulence which 

were evident in conidium germination, appressorium formation, and growth of primary 

infection hyphae. Race Ct0 is more virulent than race Ct1, irrespective of whether it 

infects Eston or CDC Robin. The development of primary infection hyphae of race Ct1 
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was clearly inhibited and/or delayed during the infection process on the leaves of the 

resistant lentil cultivar CDC Robin.  

 

Future studies should be focused on testing more isolates of both races on 

attached lentil leaves to confirm the differences observed in the infection process on 

detached and attached leaves. Such experiments should also include a wider range of 

incubation times as were done on detached leaves. Current ongoing research looking at 

the inheritance of virulence suggests that different stem reactions to the two races are 

more dramatic than leaf reactions (Cohen-Skali, 2008). Therefore, studies of the infection 

process should also be extended to lentil stems. 
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8. Appendices 
 
Appendix 1 ANOVA table for the slopes and percent conidium germination at 20 h after 

the conidium suspensions were spread on the well slides of three isolates of race Ct0 and 

three isolates of race Ct1 of Colletotrichum truncatum                               

 
   Num       Den 

Source         Effect         DF         DF      F Value      Pr > F 
 

Slope            iso                5        11.6         14.87       0.0001 
 

20-h data      iso                5        11.5         12.14       0.0003 
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Appendix 2 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin inoculated with 

Colletotrichum truncatum CT-15 (race Ct1) at three conidium concentrations using 

spray- and point-inoculation methods 

  
                                                      Num        Den 
                Effect                              DF          DF        F Value        Pr > F 
                age 1   1.57 43.17    0.0396 
                inoc 1   157   3.66    0.0574 
                age*inoc 1   157   6.20    0.0138 
                cul 1   157 20.01    <.0001 
                age*cul 1   157   0.07    0.7848 
                inoc*cul 1   157   1.61    0.2065 
                age*inoc*cul 1   157   0.01    0.9093 
                con 2   2.23 26.03    0.0284 
                age*con 2   157   1.25    0.2884 
                inoc*con 2   157   5.55    0.0047 
                age*inoc*con 2   157   4.39    0.0140 
                cul*con 2   157   0.80    0.4531 
                age*cul*con 2   157   0.14    0.8736 
                inoc*cul*con 2   157   0.74    0.4796 
                age*inoc*cul*con 2   157   0.55    0.5776 
 

Note: age=plant age, inoc=inoculation method, cul=cultivar, con=concentration 
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Appendix 3 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin inoculated with 5 × 

104 conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate using two 

inoculation methods 

                            
 Num        Den 
 Effect                 DF          DF            F Value           Pr > F 
 age    1      51.2  109.82     <.0001 
 inoc    1      51.2      2.74     0.1040 
 age*inoc    1      51.2      0.04     0.8368 
 cul    1      51.2    11.55     0.0013 
 age*cul    1      51.2      0.00     0.9451 
 inoc*cul    1      51.2      1.07     0.3061 
 age*inoc*cul    1      51.2      0.36     0.5531 

 

Note: age=plant age, inoc=inoculation method, cul=cultivar 
 
 

 

Appendix 4 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin inoculated with 5 × 

105 conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate using two 

inoculation methods                            
 

                                           Num       Den 
                  Effect                  DF        DF          F Value            Pr > F 
                  age    1       1.01       20.48         0.1360 
                  inoc    1       1         3.03         0.3320 
                  age*inoc    1     47.6         0.08         0.7752 
                  cul    1       1.07         2.12         0.3715 
                  age*cul    1     47.6         0.03         0.8709 
                  inoc*cul    1     47.6         2.45         0.1241 
                  age*inoc*cul    1     47.6         0.91         0.3459 
 
Note: age=plant age, inoc=inoculation method, cul=cultivar 
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Appendix 5 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin inoculated with 1 × 

106 conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate at three 

concentrations using two inoculation methods 

 
                                           Num        Den 
                  Effect                  DF         DF        F Value         Pr > F 
                  age  1          2.01          19.18          0.0481 
                  inoc  1        53.9              2.70          0.1062 
                  age*inoc  1        53.9            12.92          0.0007 
                  cul  1        53.9              8.33          0.0056 
                  age*cul  1        53.9              0.28          0.6014 
                  inoc*cul  1        53.9              0.04          0.8437 
                  age*inoc*cul  1        53.9              0.02          0.8894 
                            

Note: age=plant age, inoc=inoculation method, cul=cultivar 
 

 

 

Appendix 6 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin spray-inoculated with 

1 × 106 conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate 

 
Num       Den 

Effect              DF        DF        F Value        Pr > F 
age 1            2            4.04   0.1823 
cul 1          26            4.43   0.0452 
age*cul 1          26            0.21   0.6537 

                                       

           Note: age=plant age, cul=cultivar 
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Appendix 7 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin point-inoculated with 

1 × 106 conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate 

 
Num       Den 

Effect             DF         DF         F Value         Pr > F 
age 1             2            40.63            0.0237 
cul 1           26              3.66            0.0669 
age*cul 1           26              0.08            0.7858 

         
        Note: age=plant age, cul=cultivar  

 
 

 

Appendix 8 Results from a mixed model analysis of percent conidium germination on 

three-week old plants of lentil cvs. Eston and CDC Robin inoculated with 1 × 106 

conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate using two inoculation 

methods 

 
Num       Den 

Effect              DF         DF           F Value          Pr > F 
inoc 1           27            15.77              0.0005 
cul 1           27              3.20              0.0847 
inoc*cul 1           27              0.00              0.9650 

 

      Note: inoc=inoculation method, cul=cultivar 
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Appendix 9 Results from a mixed model analysis of percent conidium germination on 

six-week old plants of lentil cvs. Eston and CDC Robin inoculated with 1 × 106 

conidia/mL of Colletotrichum truncatum CT-15 (race Ct1) isolate using two inoculation 

methods 

 
Num        Den 

Effect              DF          DF            F Value          Pr > F 
inoc 1          26.8              1.69               0.2048 
cul 1          26.8              5.17               0.0313 
inoc*cul 1          26.8              0.05               0.8237 

 
     Note: inoc=inoculation method, cul=cultivar 
 
 

 

Appendix 10 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin point-inoculated with 

Colletotrichum truncatum CT-15 (race Ct1) isolate at three concentrations 

 
                                           Num           Den 
                    Effect               DF              DF              F Value           Pr > F 
                    age     1               1.1             103.54              0.0503 
                    cul     1               1.24               5.95              0.2066 
                    age*cul     1             78.9                 0.07              0.7992 
                    con     2               2.57             11.04              0.0549 
                    age*con     2             78.9                 0.56              0.5737 
                    cul*con     2             78.9                 0.17              0.8406 
                    age*cul*con     2             78.9                 0.17              0.8414 
 
Note: age=plant age, cul=cultivar, con=concentration 
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Appendix 11 Results from a mixed model analysis of percent conidium germination on 

three- and six-week old plants of lentil cvs. Eston and CDC Robin spray-inoculated with 

Colletotrichum truncatum CT-15 (race Ct1) isolate at three concentrations 

 
                                              Num           Den 
                        Effect               DF             DF             F Value            Pr > F 
                        age 1   2     27.09               0.0350 
                        cul 1 82       6.39               0.0134 
                        age*cul 1 82       0.02               0.9002 
                        con 2 82     36.15               <.0001 
                        age*con 2 82       6.21               0.0031 
                        cul*con 2 82       1.66               0.1969 
                        age*cul*con 2 82       0.60               0.5486 
 

Note: age=plant age, cul=cultivar, con=concentration 
 

 

 

Appendix 12 Results from a mixed model analysis of percent conidium germination on 

three-week old plants of lentil cvs. Eston and CDC Robin spray-inoculated with 

Colletotrichum truncatum CT-15 (race Ct1) isolate at three concentrations 

 
Num     Den 

                    Effect            DF        DF        F Value         Pr > F 

cul 1         41           2.84             0.0996 

con 2         41           6.10             0.0048 

cul*con 2         41           0.17             0.8409 
 

          Note: cul=cultivar, con=concentration 
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Appendix 13 Results of the contrast analysis of conidium germination at three conidium 

concentrations when spray-inoculating three-week old plants of lentil cvs. Eston and 

CDC Robin with Colletotrichum truncatum CT-15 (race Ct1) isolate 

  
                                                                     Standard 

         Effect    con      con          Estimate         Error      DF    t Value    Pr > |t| 

         con       1*106    5*104       -0.0803 0.0245      41       -3.29      0.0021 

         con       1*106    5*105       -0.0654 0.0245      41       -2.67      0.0107 

         con       5*104    5*105        0.0150 0.0245      41        0.61      0.5440 

 
 Note: con=concentration 
 
 
 

 

Appendix 14 Results from a mixed model analysis of percent conidium germination on 

six-week old plants of lentil cvs. Eston and CDC Robin spray-inoculated with 

Colletotrichum truncatum CT-15 (race Ct1) isolate at three concentrations 

 
                                         Num     Den 

                        Effect         DF        DF         F Value          Pr > F 

 cul                1          42            3.64              0.0634 

 con               2          42          37.38              <.0001 

 cul*con        2          42            2.16              0.1284 
 

      Note: cul=cultivar, con=concentration 
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Appendix 15 Results of the contrast analysis of conidium germination at three conidium 

concentrations when spray-inoculating six-week old plants of lentil cvs. Eston and CDC 

Robin with Colletotrichum truncatum CT-15 (race Ct1) isolate 

 
                                                                   Standard 

         Effect    con       con        Estimate        Error      DF    t Value    Pr > |t| 

         con       1*106    5*104   -0.1930   0.0239       42      -8.09      <.0001 

         con       1*106    5*105   -0.1597   0.0239       42      -6.69      <.0001 

         con       5*104    5*105    0.0333   0.0239       42       1.39      0.1704 

 
  Note: con=concentration 
 
 

 

Appendix 16 Results from a mixed model analysis of percent conidium germination of 

six isolates representing two races Ct0 and Ct1 of Colletotrichum truncatum on the 

detached lentil leaves at 12 h postinoculation 

 
Num       Den 

Effect           DF         DF        F Value         Pr > F 

iso 5           14.2          27.77            <.0001 

cul 1           29.8          37.84            <.0001 

iso*cul 5           14.2            2.84            0.0557 

     
   Note: iso=isolate, cul=cultivar 
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Appendix 17 Results from a mixed model analysis of percent appressorium formation of 

six isolates representing two races Ct0 and Ct1 of Colletotrichum truncatum on the 

detached lentil leaves at 12 h postinoculation 

 
Num        Den 

Effect              DF          DF          F Value         Pr > F 

iso 5            9.13           37.98            <.0001 

cul 1          25.3             53.76            <.0001 

iso*cul 5            9.13           19.52            0.0001 

 
       Note: iso=isolate, cul=cultivar 
 

 
 
 

Appendix 18 Results from a mixed model analysis of percent penetration of six isolates 

representing two races Ct0 and Ct1 of Colletotrichum truncatum on the detached leaflets 

of lentil cultivars CDC Robin and Eston at 48 h postinoculation 

 
                                      Num      Den 
                  Effect             DF        DF       F Value       Pr > F 
                         
                   iso 
                   cul 
                   iso*cul 

 
   5        10.1          11.18         0.0007 
   1        32.6            9.29         0.0045 
   5        10.1            0.73         0.6193 

 
              Note: iso=isolate, cul=cultivar 
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Appendix 19 Results from a mixed model analysis of the first appearance of infection 

vesicles of six isolates representing two races Ct0 and Ct1 of Colletotrichum truncatum 

on the detached leaflets of lentil cultivars CDC Robin and Eston 

 
                                                                 Num      Den 

                    Cultivar              Effect         DF        DF       F Value       Pr > F 

                    CDC Robin             iso            5         2.06         0.09           0.9862 

                    Eston                       iso            5         4.03         0.37           0.8487 

 

 

 

 

Appendix 20 ANOVA table for the total length of primary hyphae of six isolates 

representing race Ct0 and race Ct1 of Colletotrichum truncatum at both incubation times 

(48 and 60 h) on the detached leaves of both lentil cultivars, Eston and CDC Robin 

 
                                                        Sum of 
       Source                      DF          Squares       Mean Square       F Value         Pr > F 
       h       1           31360      31360     49.84            <.0001 
       iso       5           13436        2687       4.27            0.0007 
       h*iso       5             6359        1272       2.02            0.0730 
       cul       1             3048        3048       4.84            0.0279 
       h*cul       1           17675      17675     28.09            <.0001 
       iso*cul       5             3000          600       0.95            0.4452 
       h*iso*cul       5             5107        1021       1.62            0.1507 
       Error 1416         890955          629  
       Corrected Total 1439         970941   
 
Note: iso=isolate, cul=cultivar, h=incubation time 
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Appendix 21 ANOVA table for the total length of primary hyphae of six isolates 

representing two races Ct0 and Ct1 of Colletotrichum truncatum at 48 h postinoculation 

on the detached leaves of lentil cultivars Eston and CDC Robin 

 
                                                         Sum of 
       Source                       DF          Squares        Mean Square      F Value      Pr > F 
       iso      5   16778         3356     5.21          0.0001 
       cul      1   17701       17701   27.48          <.0001 
       iso*cul      5     5849         1170     1.82          0.1074 
       Error  708 456018           644  
       Corrected Total  719 496346   
 
Note: iso=isolate, cul=cultivar 
 
                        
 
        

 

Appendix 22 ANOVA table for the total length of primary hyphae of six isolates 

representing two races Ct0 and Ct1 of Colletotrichum truncatum at 60 h postinoculation 

on the detached leaves of lentil cultivars Eston and CDC Robin 

 
                                                     Sum of 
       Source                    DF         Squares       Mean Square      F Value        Pr > F 
     
       iso     5        3018     603.5 0.98             0.4275 
       cul     1        3022   3021.7 4.92             0.0269 
       iso*cul     5        2258     451.6 0.74             0.5972 
       Error 708    434938     614.3  
       Corrected Total 719    443235   
 
Note: iso=isolate, cul=cultivar 
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Appendix 23 ANOVA table for the percentage of epidermal cell area occupied by 

primary hyphae of six isolates representing two races Ct0 and Ct1 of Colletotrichum 

truncatum at both (48 and 60 h) incubation times on the detached leaves of both lentil 

cultivars, Eston and CDC Robin 

 
      Source DF Type III SS Mean Square    F Value    Pr > F 
     
       h 1     16585.3    16585.3             146.50     <.0001 
       iso 5       1838.3        367.7                 3.25     0.0064 
       h*iso 5         105.6          21.1                 0.19     0.9677 
       cul 1         770.0        770.0                 6.80     0.0092 
       h*cul 1           96.6          96.6                 0.85     0.3557 
       iso*cul 5       1620.7        324.1                 2.86     0.0140 
       h*iso*cul 5         268.3          53.7                 0.47     0.7959 
       Error 1416   160299.9        113.2  
     Corrected Total 1439   181584.7   
 
Note: h=incubation time, iso=isolate, cul=cultivar  

 

 

 

Appendix 24 ANOVA table for the percentage of epidermal cell area occupied by 

primary hyphae of six isolates representing two races Ct0 and Ct1 of Colletotrichum 

truncatum at both (48 and 60 h) incubation times on the detached leaves of lentil cultivar 

Eston 

 

     Source                           DF  Type III SS     Mean Square       F Value       Pr > F 
   
     iso                                    5      171.8                   34.4                   0.29           0.9208 
     h                                       1    7075.1               7075.1                 58.91           <.0001 
     h*iso                                5      184.5                   36.9                   0.31           0.9086 
     Error                            708  85028.6                 120.1 
     Corrected Total           719  92460.0 
 
Note: iso=isolate, h=incubation time 
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Appendix 25 ANOVA table for the percentage of epidermal cell area occupied by 

primary hyphae of six isolates representing two races Ct0 and Ct1 of Colletotrichum 

truncatum at both (48 and 60 h) incubation times on the detached leaves of lentil cultivar 

CDC Robin 

 

   Source                         DF     Type III SS       Mean Square      F Value      Pr > F 

       iso     5         3287     657.5   6.18          <.0001 
       h     1         9607   9606.8 90.36          <.0001 
       h*iso     5           189       37.9   0.36          0.8783 
      Error 708       75271     106.3  
      Corrected Total 719       88355   
 
Note: iso=isolate, h=incubation time 
 
 
 
 

 

Appendix 26 Contrast analysis of frequency of different types of primary hyphae (PH, 

based on shape) of six isolates representing race Ct0 and race Ct1 of Colletotrichum 

truncatum on the detached leaves of lentil cultivar Eston at 48 h incubation time 

 
                                                                       Chi- 
            Contrast                              DF         Square        Pr > ChiSq         Type 
     race Ct1 vs race Ct0 (type 1)         1          0.87                 0.3503              LR 

     race Ct1 vs race Ct0 (type 2)         1          0.21                 0.6476              LR 

     race Ct1 vs race Ct0 (type 3)         1          0.94                 0.3318              LR 

     race Ct1 vs race Ct0 (type 4)         1          1.71                 0.1909              LR 
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Appendix 27 Contrast analysis of frequency of different types of primary hyphae (PH, 

based on shape) of six isolates representing race Ct0 and race Ct1 of Colletotrichum 

truncatum on the detached leaves of lentil cultivar CDC Robin at 48 h incubation time 

 
                                                                       Chi- 
            Contrast                              DF         Square        Pr > ChiSq        Type 
     race Ct1 vs race Ct0 (type 1)         1          0.00                 0.9849             LR 

     race Ct1 vs race Ct0 (type 2)         1          3.40                 0.0653             LR 

     race Ct1 vs race Ct0 (type 3)         1          5.76                 0.0164             LR 

     race Ct1 vs race Ct0 (type 4)         1          0.66                 0.4182             LR 

 

 

 

 

Appendix 28 Contrast analysis of frequency of different types of primary hyphae (PH, 

based on shape) of six isolates representing race Ct0 and race Ct1 of Colletotrichum 

truncatum on the detached leaves of lentil cultivar Eston at 60 h incubation time 

 
                                                                        Chi- 
                  Contrast                         DF         Square       Pr > ChiSq         Type 
               race1 vs race0 (type 1)        1           0.19                 0.6618              LR 

               race1 vs race0 (type 2)        1           0.19                 0.6639              LR 

               race1 vs race0 (type 3)        1           0.03                 0.8702              LR 

               race1 vs race0 (type 4)        1           0.76                 0.3828              LR 
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Appendix 29 Contrast analysis of frequency of different types of primary hyphae (PH, 

based on shape) of six isolates representing race Ct0 and race Ct1 of Colletotrichum 

truncatum on the detached leaves of lentil cultivar CDC Robin at 60 h incubation time 

 
                                                                        Chi- 
              Contrast                             DF         Square        Pr > ChiSq          Type 
              race1 vs race0 (type 1)          1          0.00                 1.0000                LR 

              race1 vs race0 (type 2)          1          0.10                 0.7571                LR 

              race1 vs race0 (type 3)          1          0.72                 0.3959                LR 

              race1 vs race0 (type 4)          1          0.93                 0.3348                LR 

 

 

 

 

Appendix 30 ANOVA table for the total length of primary hyphae of Colletotrichum 

truncatum isolates CT-34 (race Ct0) and CT-35 (race Ct1) at 48 h incubation time on the 

detached leaves of lentil cultivar Eston 

 
                                                       Sum of 
       Source                      DF         Squares       Mean Square     F Value     Pr > F 
    
       Isolate      1         1632     1632                   2.56         0.1125 
    
       Error 118       75322       638 
    
       Corrected Total 119       76954  
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Appendix 31 ANOVA table for the total length of primary hyphae of Colletotrichum 

truncatum isolates CT-34 (race Ct0) and CT-35 (race Ct1) at 48 h incubation time on the 

detached leaves of lentil cultivar CDC Robin 

 
                                                      Sum of 
       Source                    DF          Squares        Mean Square     F Value     Pr > F 
    
       Isolate     1   3630 3630                9.07         0.0032 
    
       Error 118 47207   400 
    
       Corrected Total 119 50837  
 

 
                                                        
 

 

Appendix 32 ANOVA table for the percentage of plant epidermal cell area occupied by 

primary hyphae of Colletotrichum truncatum isolates CT-34 (race Ct0) and CT-35 (race 

Ct1) at 48 h incubation time on the detached leaves of lentil cultivar Eston 

 
                                                      Sum of 
       Source                      DF        Squares      Mean Square      F Value       Pr > F 
    
       Isolate     1     52   52.0                   0.76            0.3852 
    
       Error 118 8078   68.5 
    
       Corrected Total 119 8130  
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Appendix 33 ANOVA table for the percentage of plant epidermal cell area occupied by 

primary hyphae of Colletotrichum truncatum isolates CT-34 (race Ct0) and CT-35 (race 

Ct1) at 48 h incubation time on the detached leaves of lentil cultivar CDC Robin 

 
                                                         Sum of 
       Source                        DF         Squares      Mean Square    F Value    Pr > F 
    
       Isolate     1     472      472                   8.58        0.0041 
    
       Error 118   6494        55 
    
       Corrected Total 119   6966  
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