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ABSTRACT 

 
  

The effects of 1 min – 4 hr exposures to mercuric chloride (HgCl2), methyl 

mercuric chloride (CH3HgCl), p-chloromercuribenzoate (p-CMB) and 

ethylmercurithiosalicylate (TMS) on cell viability and kinetics of cell death, 

microtubules, F-actin, CD3 receptor expression, protein tyrosine phosphorylation (PTyr-

P), intracellular calcium [Ca2+] i and responses to polarized signals in YAC-1 lymphoma 

cells were investigated. 

We hypothesized that immunotoxic effects of HgCl2 (Hg2+) are initiated by global 

receptor triggering, accompanied by increased protein tyrosine phosphorylation (PTyr-P) 

and down-regulation of the T-cell receptor (TCR).  As a polychloride anion with poor 

lipid solubility, inorganic Hg2+ may produce effects at the outer cell membrane before 

significant intracellular accumulation, loss of microtubule integrity (a sensitive target) 

and activation of cell death through apoptotic pathways.  The organomercurial compound 

p-CMB is likewise thought to penetrate membranes slowly as a result of ionization. 

In contrast, the highly lipid-soluble organomercurial compounds CH3HgCl and 

TMS were expected to reduce responses to polarized stimuli only in conjunction with – 

and not prior to – loss of microtubule integrity and the onset of necrotic cell death.   

Two general patterns of effects were observed.   In HgCl2-treated YAC-1 cells, 

inhibition of responses to polarized stimuli preceded loss of microtubules and onset of 

cell death.  Effects on polarized stimuli were preceded by a transient Ca2+ signal; 
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however, this Ca2+ signal appeared abortive, accompanied by a paradoxic decrease in 

PTyr-P and partial down-regulation of CD3 receptors.  Responses to polarised stimuli 

were inhibited prior to extensive loss of microtubule staining, indicating effects preceded 

cytosolic Hg2+ accumulation.  HgCl2 exposure was followed rapidly by necrotic cell 

death.   

Similarly, p-CMB-treated YAC-1 cells failed to respond to polarized stimuli 

before effects on microtubules or loss of viability, and proceeded rapidly to late 

apoptosis; however, a transient Ca2+ signal and progressive loss of F-actin preceded 

effects in all other assays and may account for loss of polarized responses.   

  In CH3HgCl- and TMS-treated YAC-1 cells, CD3 receptor expression, [Ca2+] 

and PTyr-P were increased immediately, along with loss of microtubules. These 

reductions preceded inhibition of polarized signaling responses and seemed to indicate a 

general loss of cellular homeostasis not seen in HgCl2- and p-CMB-treated cells; loss of 

homeostasis did not necessarily produce simultaneous loss of viability, as TMS-treated 

cells remained viable for 30 min while CH3HgCl-treated cells became apoptotic within 1 

min. Nonetheless, the YAC-1 cells proceeded to cell death more slowly, remaining early 

apoptotic after 4 hr, when almost all HgCl2- and p-CMB-treated cells were necrotic.    

These findings indicate the two groups of mercury compounds may alter 

responses to polarized stimuli and induce cell death by distinct pathways, one involving 

an apparently abortive signal and the other mediated by much more profound disruption 

of cellular homeostasis.  Within the larger patterns there are further differences between 

the effects produced by each Hg compound, likely reflecting the combined influence of 

pharmaco–kinetic and –dynamic factors governing access to and interactions with 
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different cellular targets leading to cell death.  These distinct targets may in turn be 

reflected in the different immune effects produced by these compounds in vivo. 
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1.0 INTRODUCTION 

 

Mercury continues to be a serious environmental and occupational contaminant 

(Aronson, 1998; Barregard et al., 1999b; Counter and Buchanan, 2004; Eto, 2000; 

Hansen and Danscher, 1997; Hultman and Enestrom, 1992; Kaiser, 1998; Kanluen and 

Gottlieb, 1991; Nierenberg et al., 1998; Risher et al., 2002). Mercury is highly toxic to 

the nervous (Clarkson, 1987; Eto, 1997, 2000) and renal systems (Girardi et al., 1996; 

Graeme and Pollack, 1998), and can be lethal in some cases (Kulig, 1998; Siegler et al., 

1999).  However, alterations in immune function may be seen at levels well below those 

producing overt nervous or renal effects (Dieter et al., 1983; Moszczyanski et al., 1998; 

Park et al., 2000; Queiroz and Dantas, 1997a, b; Queiroz et al., 1994a; Queiroz et al., 

1994b).  

The immune effects produced by mercury (Hg) are diverse and difficult to explain 

within the framework of any current model of mercury toxicity.  On one hand, mercury 

can induce thymic atrophy (Kosuda et al., 1996), inhibit lymphocyte proliferation, 

suppress both humoral and cellular immune function (Jiang and Moller, 1995, 1996; 

Kosuda et al., 1996; Loftenius et al., 1997; Pelletier et al., 1987a; Sapin et al., 1977), and 

increase the risk and severity of human malaria infection (Silbergeld et al., 2000).  On the 

other hand, mercury may stimulate lymphocyte proliferation (Jiang and Moller, 1996), 

and can even induce a transient, genetically determined Type-2 (or T-helper-2-like or 
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antibody-mediated) autoimmune disease in susceptible rats and mice (Druet et al., 1979b; 

Sapin et al., 1982).  These results may indicate that a percentage of the human 

population, as yet undetected in general surveys, may be genetically predisposed to the 

immunotoxic effects of mercury.   

Mercury-induced autoimmune disease in laboratory animals has therefore become 

an established model of human autoimmune disease.  However, despite intensive study, 

the nature of genetic susceptibility to mercury-induced autoimmune disease and the 

underlying biochemical mechanisms responsible for the toxicity of mercury and other 

heavy metals are largely unknown.   Many mechanisms for the toxic effects of mercury 

have been proposed, yet none of these models on its own provides an adequate 

explanation of all the immune alterations produced by mercury.   

Most immunotoxicologic research has involved examination of the cellular effects 

of immunotoxicants.  Few studies have examined toxic effects at the level of signal 

transduction and none have examined toxicant effects on the ‘immunologic synapse’, the 

specialised form of receptor-mediated cell-to-cell communication that is at the heart of 

immune system activation and regulation.  The immunologic synapse presents a unique 

opportunity to study immunotoxicant effects on signal transduction in both time and 

space.  

 The cells of the immune system exist largely as independent units, until called 

upon to coordinate their activities in response to an antigenic threat.  In the presence of 

the appropriate antigenic stimulus, antigen-derived peptide fragments are presented to 

helper or cytotoxic T lymphocytes by the major histocompatibility complex (MHC: class 

I or II) on the surface of B lymphocytes, antigen presenting cells (APCs), virally infected 
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or neoplastic cells.  Only T lymphocytes bearing the clonotypic T cell receptor (TCR) 

specific for that peptide/MHC combination recognise and bind the peptide/MHC receptor 

in the area of contact between the cells.  Antigen-specific activation of the surface 

receptors creates a ‘synapse’, with a localised area of signalling created in the area of 

contact between the cells.  The localisation of signalling triggers the responding cells to 

polarize cytoskeletal and secretory machinery (microtubule organizing centre [MTOC] 

and Golgi apparatus) toward the area of contact, allowing specific release of soluble 

mediators like cytokines or perforins directly in the synaptic junction.   

 Given that mercury and other immunotoxicants may interfere with many of the 

signalling pathways that are involved in the formation of a stable immunologic synapse, 

and that these toxicants generally do not act in a localised fashion, there is potential for 

immunotoxicants to produce an aberrant, non-polarized intracellular signal.  Such 

aberrant signalling may alter normal cell-to-cell communications, and possibly induce 

cell death and/or abortive activation of lymphocytes.  

 Many of the effects of mercury have been attributed to high-affinity sulfhydryl (-

SH) group binding (Rothstein, 1972).  Among several theories for the biochemical target 

or mechanism of mercury toxicity in various tissue types are: (1) cross-linking of 

membrane phospholipid head groups to reduce membrane fluidity (Delnomdedieu and 

Allis, 1993; Girault et al., 1996); (2) aggregation of membrane receptors or other thiol 

group interactions to induce aberrant signaling (Nakashima et al., 1994; Pu et al., 1996; 

Rahman et al., 1993; Rosenspire et al., 1998); (3) alteration or blockade of membrane 

Ca++ channels (Sirois and Atchison, 1996, 2000);  (4) inhibition of Na+/K+-ATPase 

activity and subsequent loss of osmotic control of cell volume (Ballatori and Boyer, 
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1996; Ballatori et al., 1988; Chanez et al., 1989); (5) direct intracellular activation or 

inhibition of signal transduction components, such as protein kinase C (Badou et al., 

1997), ras.GTP (Mattingly et al., 2001), caspase-3 (Whitekus et al., 1999) or tyrosine 

phosphatases (Lander et al., 1992); (6) inhibition of myosin ATPase activity (Vassallo et 

al., 1999); (7) inhibition of microtubule assembly or deaggregation of microtubules 

(Brown et al., 1988; Imura et al., 1980; Keates and Yott, 1984; Miura et al., 1984; Sager 

et al., 1983; Vogel et al., 1985); (8)  activation of redox-sensitive signalling cascades, 

either directly or indirectly, as a result of generalised oxidative stress (generation of 

reactive oxygen species and lipid peroxidation), consumption of glutathione and 

induction of the mitochondrial permeability transition (Brawer et al., 1998; InSug et al., 

1997; Naganuma et al., 1990; Nath et al., 1996; Pintado et al., 1995; Shenker et al., 1999; 

Shenker et al., 1998, 2000; Shenker et al., 1993b) and (9) some effects may also be 

mediated by modulation of gene transcription, including those coding for metallothionein 

(Koropatnick and Zalups, 1997), glutathione, (-glutamyl cysteine synthetase, glutathione 

disulfide (GSSG) reductase, GSH peroxidase, and several enzymes involved in cellular 

energetics (Lash and Zalups, 1996).  

 As mercury must first pass the cell membrane in order to interact with 

intracellular targets, it is possible that toxicity is produced by multiple mechanisms, 

involving both membrane and intracellular components.  Regardless of the proximal 

target, it appears that a common target or indicator of mercury toxicity in most organs, 

including the immune system, is (10) disruption of intracellular calcium homeostasis 

(Badou et al., 1997; MacDougal et al., 1996; Pintado et al., 1995; Sirois and Atchison, 

2000; Smith et al., 1987; Tan et al., 1993).    
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 Comparative concentration-response studies of the effects of both organic and 

inorganic mercury on lymphocyte cell surface receptor expression, and their relationship 

to lymphocyte intracellular signalling, proliferation and cell death are needed.  We 

propose that immunotoxicant binding of critical lymphocyte surface receptors or 

intracellular targets produces an aberrant non-polarized intracellular signal.  We believe 

this global (i.e., non-localised) signal prevents normal polarization of signalling 

machinery, cytoskeleton and secretory apparatus towards the area of contact formed 

between antigen-specific lymphocytes and complementary antigen presenting cells 

(APCs; B-cells, macrophages or dendritic cells).  We expect that, under most 

circumstances, in the absence of appropriate spatio-temporal stimuli by which to orient 

the cytoskeleton and secretory machinery, the lymphocyte response to a toxicant-

mediated stimulus will therefore be abortive.  However, at certain optimal toxicant 

concentrations, the toxicant signal may mimic a polarized signal sufficiently to activate 

lymphocytes in non-antigen-specific fashion.  We anticipate that non-localized signalling 

may therefore provide a basis for both the immunosuppressive, stimulatory and 

autoimmune effects of mercury.  

 Selected aspects of polarised signalling in T lymphocytes were studied in a model 

of the immunologic synapse using anti-CD3-coated latex microbeads as surrogate 

antigen-presenting cell to induce polarisation responses from YAC-1 lymphoma cells. 

 Mercury compounds having differing chemical properties (organic vs inorganic 

mercury, pKa, presumed or known ability to penetrate cell membranes and suspected or 

known effects on immune function) were selected for the study.  The four compounds 

selected were mercuric chloride (HgCl2), methyl mercuric chloride (CH3HgCl), p-
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chloromercuribenzoate  (p-CMB), and ethylmercurithiosalicyclate, also known as 

thimerosal (TMS). 

 The goal of this project was to study concentration-response effects of mercury on 

lymphocyte signalling events triggered by polarised ligation of cell surface receptors.  In 

doing so, we hoped to elucidate the role of aberrant lymphocyte activation and induction 

of anergy or apoptosis in the immunosuppressive and autoimmune effects of mercury. 

The results of the research herein may provide a link to the molecular mechanisms and 

genetic basis of immune dysfunction induced by mercury and other metals in vivo.   

We anticipate that aberrant, non-localized signalling may similarly disrupt 

polarized responses to receptor-mediated signals in other organ systems, and, in 

particular, may underlie the toxic effects of metals like mercury in the nervous system.  

In addition, this research may provide a common etiology for toxin-induced Th2-like 

autoimmune syndromes produced by drugs such as captopril, penicillamine and gold 

sodium thiomalate (Delfraissy et al., 1984; Hill, 1986; Hoorntje et al., 1980; Robinson et 

al., 1986; Wooley et al., 1980).  Convergence of antigen-mediated signalling through cell 

surface antigens and toxicant-mediated cell signalling may have significant implications 

for other areas of immunology, including modulation of immune responses, therapy of 

Th1-like autoimmune disease and the pathogenesis of multiple chemical sensitivity. 
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2.0     LITERATURE REVIEW 

 

2.1  The Immune System as a sensory organ 

 The immune system evaluates and responds to the antigenic environment of the 

body, detecting tissue damage, foreign microbes and certain chemical signals.  The 

immune system is therefore sometimes considered a sensory organ, somewhat analogous 

to the nervous system.   Like the nervous system, the immune system consists of primary 

or central tissue components and a vast network of peripheral or secondary components 

that penetrate almost all other organs of the body.  The cells of the nervous system are 

connected in neural networks, but lymphocytes and corresponding antigen-presenting 

cells (APCs) or target cells do not form gap junctions or couple their respective 

cytoplasmic compartments (Singer, 1992).  Instead, the cells of the immune system exist 

largely as independent units, creating response networks as needed in response to 

antigenic threats. 

2.2  The Mobile Synapse 

2.2.1   Specific antigen recognition and presentation 

 Lymphoid cells are quite mobile within tissues and also traffic in the vascular or 

lymphoid circulation, thus maximizing the likelihood of encountering antigen in both the 

fluid (extracellular, lymph and blood) and intracellular environments and providing the 
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appropriate response.  Although distinct subsets of lymphoid cells provide immune 

surveillance for either environment, they share many common features. 

 Foreign (non-self) epitopes on antigens present in the fluid compartments may be 

recognized in their native conformation by circulating soluble immunoglobulin (sIg).  

Foreign antigen trapped by circulating sIg is phagocytosed by antigen presenting cells 

(APCs).  Alternately, foreign antigen may be internalized after binding to membrane-

bound immunoglobulin (mIg) on B lymphocytes. The internalized foreign antigen is 

processed through the endosomal/lysosomal compartments to generate short peptide 

fragments.  These peptides are returned to the cell surface, held in the groove of a special 

receptor found on antigen presenting cells, termed Class II major histocompatibility 

complexes (Class II MHC) on APCs.  The class II MHC/peptide complexes form a 

specific ligand recognized by the complementary T-cell receptor/CD3 receptor complex 

(TCR/CD3) on T lymphocytes, generally of the CD4+ helper subset (Chien and Davis, 

1993).  Through this antigen-specific interaction a localised area of signalling, or 

“synapse”, is created in the area of contact between the cells (Qi et al., 2001).  

  Similarly, foreign proteins of intracellular origin (produced by neoplastic cells, 

viruses or intracellular parasites) are processed into short peptide fragments in the 

cytoplasm of the affected cell and returned to the surface on class I MHC via the 

endoplasmic reticulum.  Class I MHC is present on all nucleated cells of the body.  In a 

healthy cell, class I MHC presents an array of proteins derived from the interior of the 

cell.  These “normal” peptides do not elicit T lymphocyte responses as, during T 

lymphocyte maturation within the thymus, lymphocytes with TCRs that avidly bind self 

peptide/MHC class I on thymic epithelial cells are deleted via apoptosis.  However, 
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cytotoxic T lymphocytes (CTLs) will recognise foreign peptide/Class I MHC complexes, 

to form an antigen-specific signalling complex similar to that for B/helper T lymphocyte 

conjugates (Montoya et al., 2002; Qi et al., 2001).   

2.2.2  Binary interactions: Cell-to-cell adhesion and intercellular 

communication  

 Local signalling complexes or synapses arise only between cells bearing a 

particular clonotypic T-cell receptor and APCs bearing the corresponding peptide/MHC 

recognised by that TCR (Berridge, 1997b).  The key features of these processes have 

been extensively studied in helper T and B lymphocyte (acting as APC) couples (Hodes 

and Singer, 1984; Kupfer et al., 1991; Kupfer and Singer, 1989b; Kupfer et al., 1986b; 

Kupfer et al., 1987b; Kupfer et al., 1994; Sanders et al., 1988), but many are shared by 

activated CTL/target cell (Kupfer and Dennert, 1984; Kupfer et al., 1985; Kupfer and 

Singer, 1989a; Kupfer et al., 1986a; Podack and Kupfer, 1991) and natural killer 

(NK)/target cell (Johansson and Nannmark, 1996; Kupfer et al., 1985) couples. 

 As reviewed by Singer (1992),, when sufficient concentrations of receptor and 

corresponding ligand are present on the membrane, the formation of a few transcellular 

receptor-ligand pairings creates an area of localised cell-to-cell contact.  This initial 

adhesion may allow sufficient time for other receptors to diffuse through the membrane 

toward the area of contact (McCloskey and Poo, 1986) and facilitate the formation of 

additional receptor-ligand pairs (Singer, 1992).  As a consequence, the responding cells 

may become flattened together (Kupfer et al., 1994; Montoya et al., 2002), or form 

interdigitating villous processes (in the case of CTLs (Foa et al., 1988; Zagury et al., 

1979)), to maximise both the area of close cell-to-cell contact and number of receptor-
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ligand pairs.  The adhesion is further stabilised by ligation and aggregation of non-

specific intercellular adhesion molecules (ICAMs), which may also provide accessory 

signals (Podack and Kupfer, 1991; Singer, 1992). 

The intial interaction of a small number of peptide-bearing Class II MHC’s on B 

lymphocyte APCs with clonotypic TCR/CD3 complexes delivers a first signal to the TH 

lymphocyte (Kupfer and Singer, 1989b).  This signal stimulates a chemical or 

conformational change in the helper T lymphocyte function-associated antigen (LFA-1 

integral membrane protein or integrin) receptors, likely mediated by protein kinase C 

(PKC) phosphorylation, to greatly increase their affinity for the monotypic ICAMs-1 and 

2 on APCs (Kupfer and Singer, 1989b).  In another PKC-dependent process (Burn et al., 

1988; Kupfer et al., 1990), the actin-binding cytoskeletal linker molecule talin becomes 

associated with ligand-bound LFA (Kupfer et al., 1986a; Sedwick et al., 1999).  Talin 

stabilises the LFA-mediated adhesion, forming a transmembrane linkage between the 

extracellular matrix and the cytoskeleton (Kupfer et al., 1990), and may also mediate 

fusion of Golgi-derived vesicles with the cell membrane (Podack and Kupfer, 1991).   

 An additional signal, requiring a larger concentration of antigen and more 

extensive syn-capping of CD4 and T-cell receptors, is needed to trigger cytoskeletal 

reorientation (Monks et al., 1997) and subsequent TH lymphocyte proliferation (Kupfer 

and Singer, 1989b). Further mutual co-capping of TCR/peptide-MHC pairs generally 

does not occur in the absence of high concentrations of processed antigen on the B 

lymphocyte APC and a significant LFA/ICAM-mediated intercellular adhesion (Kupfer 

and Singer, 1989b).   The TCR may also undergo a conformational change with increased 

affinity for the CD4 receptor (normally independent of TCR/CD3), which then interacts 
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with non-peptide-bearing portions of the B lymphocyte MHC (Kupfer et al., 1987a; 

Sakihama et al., 1995).   

2.2.3  Reorientation of the cytoskeleton and Golgi apparatus for specific 

activation  

Reorientation of the TH lymphocyte microtubule organizing centre (MTOC; the 

nucleation centre for microtubule polymerization) and the associated Golgi apparatus 

occurs within minutes of cell contact and precedes cytokine synthesis by several hours 

(Kupfer et al., 1991).  The cytoskeletal reorientation process is not completely 

understood, but it is thought that microtubules (MTs) in the area of cell contact become 

attached to the cell membrane and exert torque to pull it (Singer, 1992) and the Golgi 

apparatus (Rios and Bornens, 2003) toward the contact zone.  In antigen-specific TH/B-

APC or CTL/target cell conjugates, only the TH lymphocyte (Kupfer et al., 1986b) or 

CTL (Kupfer and Dennert, 1984) undergoes cytoskeletal reorientation.  While multiple B 

lymphocytes may bind a given TH cell, those facing the TH MTOC and its secretory 

machinery preferentially proliferate.  Other B lymphocytes bound to the same TH 

lymphocyte but not adjacent to the TH-MTOC remain in interphase (Kupfer et al., 1994).  

 Cytoskeletal involvement is thought to maintain the adhesion and signalling for 

extended periods (Valitutti et al., 1995).  Prolonged cell-to-cell contact (several minutes 

to a couple of hours for CTLs (Vyas et al., 2002); up to 20-30 hr for naive B or T 

lymphocytes (Iezzi et al., 1998; Kupfer et al., 1991; Kupfer et al., 1994; Van Seventer et 

al., 1992) may be necessary to create a sustained calcium signal, assemble a stable 

signalling scaffold from the membrane to the interior of the cell and induce gene 

transcription and protein translation (Podack and Kupfer, 1991; Valitutti and 
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Lanzavecchia, 1997).  Golgi-derived vesicles containing newly-synthesised proteins may 

then track along MTs to fuse with the cell membrane in the contact zone (Mizuno and 

Singer, 1993; Singer, 1992).   

 The secretory products contained in the Golgi vesicles have no antigenic 

specificity in their action in vitro (Kupfer et al., 1991).  Functional specificity may 

nonetheless be imposed through polarized delivery of cytokines and local insertion of 

newly expressed receptors only into the restricted intercellular space created by the three-

dimensional structure of the adhesion (Kupfer et al., 1986a; Poo et al., 1988).  In B-

APC/TH lymphocyte pairs, the TH lymphocyte releases cytokines into the ‘synapse’:  

where a corresponding receptor is present on the attached B lymphocyte, a signal may 

then be specifically delivered to the B lymphocyte without activation of bystander cells 

(Kupfer et al., 1991).  The polarization response may also direct delivery of endosomes to 

the area of contact, providing additional TCRs and signalling components to augment or 

prolong signal transduction  (Das et al., 2004; Ehrlich et al., 2002).   

 The cytotoxic T lymphocyte accomplishes unidirectional cell killing of target 

cells in a similar fashion (Kupfer et al., 1986a).  Membrane-bound lytic granules 

(containing membrane pore-forming cytolysin or perforin, and granzyme serine esterases) 

are reoriented toward the contact zone and fuse with the inner surface of the CTL 

membrane. The contents are released into the intercellular cleft, delivering the lethal hit 

only to the attached cell, while sparing other cells in the vicinity (Kupfer et al., 1985; 

Kupfer et al., 1986a; Poenie et al., 1987; Stinchcombe et al., 2001; Zagury et al., 1979). 

Both membrane and secreted proteins originating from the Golgi may activate apoptosis 

pathways in the target cell, including that mediated by tumour necrosis factor (TNF) 
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(Podack and Kupfer, 1991) and the membrane-associated cytokine Fas ligand (Suda et 

al., 1995).   

2.2.4  The supramolecular activation complex (SMAC) 

 The specialised three-dimensional contact formed between cells following antigen 

recognition has been termed the supramolecular activation complex (SMAC) or 

immunological synapse (Monks et al., 1998).  The arrangement and components of the 

SMAC in various cell types can vary (Montoya et al., 2002; O'Keefe et al., 2004; Potter 

et al., 2001; Roda Navarro et al., 2004; Standeven et al., 2004; Vyas et al., 2002).  The 

following general description refers to naive TH/B-APC interactions.  

 Grakoui et al (1999) have described SMAC formation as a 3-stage process: initial 

junction formation, followed by MHC-peptide transport and later stabilization of the 

SMAC.   The SMAC initially contains a zone of large integrin family adhesion molecules 

(LFA-1/ICAM pairs) several microns wide and spanning 30-40 nm between the two cells 

(Dustin, 2002).  The integrin junction creates a fulcrum for propulsion of an outer ring of 

T lymphocyte membrane into close apposition with the APC hrough cytoskeletal 

rearrangement (Grakoui et al., 1999a).  The smaller TCR molecules in the zone of 

apposition may then interact with peptide-MHC on the APC, with TCR/peptide-MHC 

pairs spanning a 15 nm distance in a ring surrounding the integrin junction (Dustin, 

2002).  Over the following minutes, the engaged TCRs are transported toward the centre 

of the contact zone in an actin-dependent process: it is thought that multiple TCRs are 

consumed in serial fashion during this period, each only binding the MHC for seconds 

(Grakoui et al., 1999a).  As a result, the mature SMAC contains a central zone of 

TCR/MHC-peptide pairs surrounded by a ring of integrins (Grakoui et al., 1999a; Monks 
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et al., 1998).   In a CD3-dependent process, the large mucin CD43 (the most abundant 

molecule on the surface of T lymphocytes) is actively excluded from the T 

lymphocyte/APC contact site (Sperling et al., 1998), co-localising with ERM (ezrin- 

radixin-moesin) family cytoskeletal adaptor proteins in a membrane domain distal to the 

site of TCR engagement (Allenspach et al., 2001; Cullinan et al., 2002; Delon et al., 

2001).  CD43 may function as a barrier to nonspecific T lympocyte/APC interactions that 

is removed as a result of T lymphocyte activation (Allenspach et al., 2001; Sperling et al., 

1998).  

 There is some controversy as to whether subsequent receptor clustering into the 

SMAC is mediated by active cytoskeletal rearrangements (Al-Alwan et al., 2001; 

Blanchard and Hivroz, 2002) or as a result of spontaneous self-assembly (Qi et al., 2001).  

It has been suggested that passive diffusion of TCRs is sufficient to supply the SMAC 

(Favier et al., 2001), although others have shown movement of TCRs into the SMAC at 

speeds significantly greater than unrestricted diffusion (Moss et al., 2002).  Nonetheless, 

engagement of LFA/ICAM and CD28/B7 co-stimulatory pathways may enhance the 

myosin motor protein-driven movement of actin-linked membrane receptors on the T 

lymphocyte into the area of contact through cytoskeletal reorientation, thus amplifying 

the localised TCR-mediated signal (Wulfing and Davis, 1998; Wulfing et al., 2002).  

While a minimal signal does not create productive T lymphocyte responses, the 

early integrin-mediated adhesion may commit the cell to the formation of a mature 

SMAC, capable of orchestrating responses which are not dependent on TCR signalling 

alone (Freiberg et al., 2002; Wulfing et al., 1998).  The interaction of individual 

signalling components within the SMAC may also serve to generate signal patterns that 
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would not otherwise be created in response to random receptor aggregation (Bromley et 

al., 2001; Monks et al., 1998) and enable amplification of signals even as the TCR 

becomes partially desensitised by serial engagement (Dustin, 2003).    

2.2.5   Intracellular signalling cascades in the T lymphocyte 

 The lymphocyte response to T-cell receptor-mediated activation signals may be to 

proliferate, become anergic (transiently unresponsive to otherwise appropriate stimuli 

(Sloan Lancaster et al., 1994a) ) or to die.  The nature of the response is determined by 

the developmental stage of the lymphocyte, the type and activation state of the APC 

(Rothoeft et al., 2003), and by the number, kinetics and quality of the receptor/ligand 

interactions (Irvine et al., 2002; Valitutti and Lanzavecchia, 1997; Viola et al., 1997b).  In 

immature thymocytes, TCR/CD3 activation by self-peptides stimulates apoptosis (thus 

establishing self-tolerance), while non-reactive cells are permitted to mature.  Naive 

lymphocytes encountering antigen in the absence of appropriate co-stimulation tend to 

become anergic.  When stimulated by sub-optimal signals, mature lymphocytes may 

become anergic or apoptotic; more optimal signalling may induce proliferation and 

development into effector lymphocytes. Mature activated/memory T lymphocytes do not 

generally require co-stimulation (Farber et al., 1997)  and form mature immunological 

synapses more quickly than naive lymphocytes (Watson and Lee, 2004).  The following 

discussion will briefly describe signalling events in mature lymphocytes after primary 

antigen exposure. 

   It should be noted that T lymphocyte signalling is very complex and may involve 

several different signalling cascades. Nonetheless, tyrosine phosphorylation of 

intracellular proteins appears to be the initial event following interaction of the clonotypic 
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TCR with antigen/MHC complexes.  The TCR itself does not have tyrosine kinase 

activity: TCR kinase activity is restricted to intracellular portions of the .-subunit of the 

invariant CD3 receptor associated with the TCR.  The TCR-mediated signalling involves 

formation of stable complexes of the TCR with co-receptors (CD4/8) and intracellular 

kinases, including ZAP-70, p56lck and p59fyn (Berridge, 1997b).  The activity of these 

kinases is regulated by both kinases and phosphatases.  A critical regulatory element 

appears to be the tyrosine phosphatase associated with the CD45 membrane receptor, 

which helps to maintain the src-family protein tyrosine kinase (PTK) p56lck in the active 

dephosphorylated state (D'Oro et al., 1997; Ucker et al., 1994; Volareviac et al., 1990; 

Volareviac et al., 1993; Volareviac et al., 1992).  The p56lck kinase is associated with 

cytoplasmic tails of CD4 or CD8 co-receptors.  The CD4 receptor recruits p56lck to 

translocate to the cytoskeleton at the T lymphocyte/APC interface (Caplan and Baniyash, 

1996), while co-operation between CD4 and the co-stimulatory receptor CD28 leads to 

autophosphorylation of p56lck (Holdorf et al., 2002). Activated p56lck kinase in turn 

phosphorylates immunoreceptor tyrosine-based activation motifs (ITAMs) on the 

cytoplasmic tails of CD3 subunits (Farber et al., 1997).  The ZAP-70 PTK binds the 

ITAMs and is itself phosphorylated and activated for downstream signalling (Berridge, 

1997b; Farber et al., 1997; Ucker et al., 1994).  The signalling activity of the src- and 

related syk-family kinases returns to basal levels within 30 min, after which additional 

signalling pathways may serve to prolong the signalling process (Dustin, 2003).   

 This initial TCR triggering creates a wave of phosphorylation events in the cell, 

inducing the formation of multi-protein signalling complexes, and ultimately influencing 

gene transcription (Schmitz et al., 2003).  Activated ZAP-70 phosphorylates tyrosine 
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residues on the adapter molecule linker for activation of T cells (LAT) and other proteins, 

which then recruit other proteins involved in activation of the Ras and calcium signalling 

pathways.  These include phospholipase-C(1 (PLC-(1), which translocates to the cell 

membrane upon phosphorylation.  Increased catalytic activity of PLC-(1 leads to 

production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) from 

hydrolysis of membrane-derived phosphatidylinositol. DAG production, in conjunction 

with src-family tyrosine kinase TCR signalling (Thebault and Ochoa-Garay, 2004), 

phosphatidylinositol 3-kinase (PI3-K) co-stimulation and actin cytoskeleton 

reorganization (Altman and Villalba, 2002; Sanchez-Lockhart et al., 2004), stimulates 

membrane translocation and activation of protein kinase C-2 (PKC-2) (Altman et al., 

2000; Diaz-Flores et al., 2003).  Activation of PKC-2 is an important step in TCR-

mediated proliferation (Monks et al., 1997), inducing interleukin-2 (IL-2) synthesis 

through the activator protein-1 (AP-1) and nuclear factor-kappaB (NF-6B) transcription 

factors (Altman et al., 2000; Isakov and Altman, 2002); PKC-2 provides an important 

survival signal to T lymphocytes (Altman and Villalba, 2002), promoting T lymphocyte 

cell cycle progression and regulating programmed cell death (Isakov and Altman, 2002).  

Stimuli that fail to result in PKC-2 translocation and activation also fail to induce 

proliferation (Monks et al., 1997). 

 Activation of IP3 receptors on the endoplasmic reticulum results in a transient 

release of calcium (Ca2+) stores (Berridge, 1997a; Gardner, 1989).  This brief IP3 and 

Ca2+ signal is insufficient to induce full lymphocyte activation (Gardner, 1989; Van 

Seventer et al., 1992).  However, depletion of intracellular Ca2+ stores induced by inositol 

1,4,5-trisphosphate (IP3) activates stores-operated Ca2+ channels in the plasma 
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membrane, creating both sustained Ca2+ signalling (Lewis and Cahalan, 1995) and 

oscillations in intracellular Ca2+ ([Ca2+] i) levels (Donnadieu et al., 1992; Gray et al., 

1988) through feedback control of the stores-operated channels (Berridge, 1997a; Tsien 

and Tsien, 1990).  At the bulk population level, the pulses create cytoplasmic Ca2+ levels 

approximately 1.5 to 3 times the resting level (~ 100 nM)  (Berridge, 1997a; Gardner, 

1989).  Near-membrane Ca2+ concentrations at sites of intense signal activity may reach 

even higher levels (Etter et al., 1996).  The localised and/or pulsatile increases in [Ca2+] i 

may allow for targeting of Ca2+-mediated effects and prolonged signalling without 

activation cytotoxicity (Donnadieu et al., 1992).  The sustained entry of Ca2+ through the 

cell membrane regulates the turnover of active PKC to support the signalling response 

(Gardner, 1989); PKC-2 co-operates with the calmodulin/ Ca2+-activated serine/threonine 

phosphatase calcineurin to activate gene transcription for IL-2 synthesis (Altman et al., 

2000; Berridge, 1997a; Isakov and Altman, 2002). 

2.2.6  Potentially antigenic peptides and the immunological synapse 

  It has been proposed that the immunological synapse serves as a checkpoint for 

lymphocyte activation, by providing a framework within which the T lymphocyte may 

discriminate qualitative, quantitative and temporo-spatial differences in TH/APC cell 

surface receptor interactions (Anton van der Merwe et al., 2000; Blanchard and Hivroz, 

2002; Grakoui et al., 1999a; Lanzavecchia and Sallusto, 2001): such differences may be 

translated as distinct Ca2+ signals, cytoskeletal rearrangements and lymphocyte 

responses.    

The range of biologic effects produced by various MHC-peptide combinations 

appears to be a function of the half-life of the TCR/MHC-peptide interaction (Grakoui et 
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al., 1999a).  Optimal stimulation of the TCR is achieved with peptide/MHC ligands 

having off-rates for binding corresponding to the minimum receptor engagement period 

required to trigger signalling.  High affinity binding does not activate T lymphocytes 

efficiently, as low rates of dissociation limit the number of TCRs bound.  Low affinity 

binding may lead to dissociation before any signal is transduced (Valitutti and 

Lanzavecchia, 1997). 

 The helper T lymphocyte is thought to sample its environment through receptor 

interactions.  The T lymphocyte is remarkably sensitive to TCR ligation, responding with 

transient Ca2+ signals to as few as 30 peptide-MHC ligands.  Co-expression of the CD4 

receptor allows transient Ca2+ signalling in response to even a single agonist peptide-

MHC ligand (Irvine et al., 2002).  Re-organization of molecules in the contact zone 

begins in the presence of about ten agonists (Irvine et al., 2002; Purbhoo et al., 2004).  

Provided the binding kinetics are optimal, even a small number of peptides (100-200 per 

APC) presented by an APC may engage large numbers of TCRs through serial 

recruitment and triggering of TCRs (Valitutti and Lanzavecchia, 1997).  Given the TCR 

has been engaged for a requisite period of time, the complex may then dissociate without 

loss of signal transduction and the MHC-peptide ligand may bind another TCR.  A single 

MHC-peptide ligand may thus bind several hundred TCRs in an hour (Valitutti and 

Lanzavecchia, 1997).   

Proliferation and production of cytokines are stimulated following triggering of 

8,000 or more TCRs.  Signal amplification by LFA-1/ICAM, CD28/B7or other co-

stimulatory interactions appears to reduce the number of TCR ligation events required to 

activate naive lymphocytes (Viola and Lanzavecchia, 1996).  This signalling process is 
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self-limiting, as a result of gradual down-regulation of TCR expression (Valitutti and 

Lanzavecchia, 1997) due to PTK- or PKC-dependent endocytic recycling of the TCR 

(Geisler, 2004).  While TCR down-regulation may attenuate signalling, it may also 

ensure an internal store of TCR that can be rerouted to the immunological synapse 

(Geisler, 2004).  

The density of TCR/peptide-MHC complexes clustered within the SMAC and the 

proportion of cells forming mature SMACs are correlated with subsequent lymphocyte 

proliferation.  A threshold concentration of at least 60 agonist MHC-peptide complexes 

per um2 in the central SMAC is thought to “lock in” a proliferative response (Grakoui et 

al., 1999a).  The T lymphocytes form fewer conjugates and fail to form SMACs with 

APCs presenting peptides at lower concentrations (Sperling et al., 1998) or presenting 

antagonist peptides (regardless of peptide density) (Monks et al., 1998).   

The antigenic peptides presented by APCs may also have agonist, weak agonist, 

antagonist, and null properties, producing different types of adhesions and Ca2+ signals 

(Chen et al., 1998; Grakoui et al., 1999a; Grakoui et al., 1999b; Wulfing et al., 1997): 

even a single amino acid substitution may alter the outcome of TCR/MHC-peptide 

interactions (Chien and Davis, 1993; Grakoui et al., 1999a; Robey and Allison, 1995; 

Sloan Lancaster et al., 1994a; Sloan Lancaster et al., 1994b; Viola et al., 1997a).  

Agonist, weak agonist and antagonist MHC-peptide combinations each accumulate in the 

area of contact, although null and antagonist MHC-peptides do not form full SMACs or 

stop lymphocyte migration (Grakoui et al., 1999a; Grakoui et al., 1998).  Both full 

agonist and weak agonist peptides stop migration, and induce central accumulation of 

TCRs, but the density of central cluster of TCRs is lower for the weak agonist.  In 
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addition, synapses formed with APCs presenting both antagonist and agonist peptides 

display reduced MHC density within the central SMAC.  The responding T lymphocytes 

fail to arrest migration, and show reduced Ca2+ flux, IL-2 secretion and proliferation 

(Sumen et al., 2004). 

Only the most robust Ca2+ signals stimultate T lymphocyte proliferation.  The 

duration of the delay between the first TH/APC contact and the onset of the Ca2+ signal 

correlates with the strength of the stimulus, with stronger agonist stimuli giving a more 

rapid Ca2+ response (Wulfing et al., 1997).  However, in an apparent feedback control 

mechanism, ligation of the CD-28-related cell-surface receptor cytotoxic T lymphocyte-

associated antigen 4 (CTLA-4) following T lymphocyte activation downregulates 

cytokine production and cell cycle progression (Ostrov et al., 2000). Both CD28 and 

CTLA-4 bind the B7 counter-receptor on APCs; however, CTLA-4 normally localizes to 

an intracellular compartment, while co-stimulatory CD28 is expressed on the T 

lymphocyte surface.  CTLA-4 accumulates at the immunological synapse proportionate 

to the strength of the TCR signal (Egen and Allison, 2002).  The immunological synapse 

may therefore boost weak antigenic signals and attenuate overly strong signalling (Lee et 

al., 2003). 

2.2.7  Selective engagement of signalling components and the cytoskeleton in 

response to T-cell receptor (TCR) ligation and supramolecular activation 

complex (SMAC) formation 

 The assembly of a signalling scaffold beneath the SMAC and the distribution of 

calcium signals within the lymphocyte are dependent on the nature of the TCR/MHC-

peptide interaction and the architecture of the SMAC (Grakoui et al., 1999a; Monks et al., 
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1998; Pizzo et al., 2004; Pizzo and Viola, 2004).  Many components of intracellular 

signalling cascades and the cytoskeleton may assemble beneath the mature SMAC: these 

include: PKC 2; p56lck (associated with CD4); talin, ezrin and other submembranous 

cytoskeletal linker proteins; actin fibres; and the MTOC (Kwan Lim et al., 1998; Monks 

et al., 1998; Monks et al., 1997; Schaefer et al., 2004; Tomas et al., 2002).    

 Different patterns of TCR stimulation may produce distinct Ca2+ signals.  In vitro 

treatment of human leukemia cells with soluble anti-CD3 antibody (anti-CD3) alone 

produces a transient Ca2+ signal, beginning 2-3 min after addition of the antibody and 

returning to baseline within 15 min.  Ca2+ signals in response to polarised signals from 

microsphere-fixed anti-CD3 are of similar amplitude but persist for 1 hr.  In the presence 

of competitive soluble anti-CD3, Ca2+ responses to polarised stimuli from fixed anti-CD3 

are reduced in duration and the TCRs rapidly desensitized (Hashemi et al., 1996).   

 After polarised stimulation of naive TH lymphocytes with antigen presented by 

APCs, there is a delay of several minutes before [Ca2+] i levels begin to rise, after which 

oscillations occur at approximately 2 min intervals (Donnadieu et al., 1992). The [Ca2+] i 

levels remain elevated for at least 1–4 hrs (Donnadieu et al., 1992; Van Seventer et al., 

1992).  In an actin- and extracellular Ca2+-dependent process, normally spherical TH 

lymphocytes may adopt flattened and elongated morphologies, a response not seen after 

stimulation with soluble anti-CD3 antibody (Donnadieu et al., 1992). 

 In CTLs, synapse formation and Ca2+ mobilisation patterns may reflect different 

activation thresholds for the dual functions of cytotoxicity and cytokine production 

(Faroudi et al., 2003).   The formation of the CTL synapse can be initiated by binding of 

high levels of LFA-1 (Marwali et al., 2004; Somersalo et al., 2004).  Immature CTLs 
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selectively activated to cytotoxicity lack a mature immunological synapse while 

exhibiting a low threshold polarised secretion of lytic granules and spike-like patterns of 

Ca2+ mobilisation (Faroudi et al., 2003).  The interaction of mature CTLs with target cells 

results in a mature immunological synapse (Faroudi et al., 2003) accompanied by an 

almost immediate smooth and sustained 4–6 fold increase in [Ca2+] i (Poenie et al., 1987) 

and subsequent cytokine production (Faroudi et al., 2003).  The Ca2+ signal is maximal 

within 30 to 60 s and returns to baseline over 15 to 20 min.  The Ca2+ signal has two 

spatially and temporally distinct components. Transient Ca2+ mobilization from 

intracellular stores occurs distal to target cell contact zone (Gray et al., 1988; Poenie et 

al., 1987).  A more prolonged signal proximal to the target cell is created by extracellular 

Ca2+ influx (Gray et al., 1988).  Inappropriate targets cells evoke no changes in [Ca2+] i 

(Poenie et al., 1987).  In contrast, [Ca2+] i is distributed almost homogeneously throughout 

the cell volume after stimulation of the Jurkat T cell line with the mitogenic lectin 

phytohemagglutinin (Maltsev et al., 1994). 

 The T lymphocyte MTOC becomes reoriented toward the site of TCR signalling 

in response to optimal concentrations of antigen (Monks et al., 1997), regardless of 

whether integrins or co-stimulatory molecules are engaged (Lowin Kropf et al., 1998; 

Sedwick et al., 1999).  Reorientation is dependent on TCR-activated phosphorylation of 

TCR ITAMs by p56lck (Lowin Kropf et al., 1998) and extracellular Ca2+ (Kupfer et al., 

1985) but not on LFA-1 engagement or talin rearrangement (Sedwick et al., 1999).  

Where the APC presents sub-optimal concentrations of agonist or antagonist peptide, 

talin is clustered in the contact zone, but not PKC, and the MTOC remains randomly 

oriented (Grakoui et al., 1999a; Monks et al., 1998).   
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2.4  Mercury 

Although the chemical form may be altered by enzymatic activity and interaction 

with other chemicals, all forms of mercury are toxic (Fernando, 1995).  Because of its 

toxicity and persistence, mercury continues to be a serious environmental and 

occupational contaminant (Aronson, 1998; Barregard et al., 1999a; Counter and 

Buchanan, 2004; Eto, 2000; Hansen and Danscher, 1997; Hultman and Enestrom, 1992; 

Kaiser, 1998; Kanluen and Gottlieb, 1991; Nierenberg et al., 1998; Risher et al., 2002).   

For this reason, mercury ranks #3 on the US ATSDR (Agency for Toxic Substances and 

Disease Registry) priority list of hazardous substances.   

2.4.1  Mercury in the environment 

 While natural mercury accounts for a significant proportion of the global mercury 

cycle, anthropogenic inputs are currently thought to exceed natural sources.  Global 

atmospheric deposition of mercury from anthropogenic sources, including coal burning, 

waste incineration and ore refining, is estimated to be 4,000 t per year and rising at a rate 

of 1 – 2 % per year (Fitzgerald, 1995; Slemr and Langer, 1992).  Current environmental 

mercury loads in North America are 3–4 times greater than prior to the industrial 

revolution (Evers et al., 1998).   

Mercury is found in the Earth’s crust in an elemental form or combined with 

sulfur, most commonly as cinnabar (mercury (II) sulfide, HgS) (vanLoon and Duffy, 

2000).  In water and sediments, mercury is found as Hg(0), Hg(+1 or I) and Hg(+2 or II) 

species depending on redox and other environmental factors; in aerobic conditions, 

Hg(+2 or II) predominates.  In the absence of other complexing agents, mercury forms 

mono and dihydroxy complexes in water.  However, Hg(II) readily forms complexes with 
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chloride ions in water, such that HgCl2 becomes the dominant species, even at very low 

chloride concentrations (vanLoon and Duffy, 2000).  Mercury binds organic matter 

strongly through interactions with sulfur-, oxygen- and nitrogen-containing functional 

groups (Rothstein, 1972).  The Hg(II) form can also form a stable bond with carbon, to 

create methylmercury.  The monomethylmercury ion (CH3Hg+) complexes readily with 

chloride or sulfur ions, as CH3HgCl or (CH3Hg)2S.  Further methylation results in the 

formation of volatile and lipid-soluble (and therefore extremely toxic) dimethylmercury 

(CH3)2Hg (vanLoon and Duffy, 2000).   

   Unlike other heavy metals, mercury can biomagnify and bioaccumulate as 

methylmercury (Mason et al., 2001).  Mercury in aquatic environments is largely bound 

to surface sediments, but may be released under oxidizing conditions as soluble mercury 

(II) chloro species.  Plants growing in the water can accumulate chloromercurials, or 

methylation within the organic sediments can create lipid soluble species that are taken 

up into aquatic organisms and passed up the food chain to fish (vanLoon and Duffy, 

2000). 

2.4.2  Mercury toxicity 

Humans are usually exposed to organic mercury, most commonly through 

consumption of methylmercury-contaminated fish and shellfish. Less commonly, humans 

have been exposed to other organomercurials used as topical disinfectants (thimerosal 

[TMS] and merbromin) or preservatives in medical preparations (TMS) and grain 

products (both methyl and ethyl mercurials), in the manufacture of paints 

(phenylmercury), in industrial processes and in the calibration of certain analytical 

laboratory equipment (dialkyl mercurials) (Risher et al., 2002).  Occupational exposure 
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can become significant in the manufacture of chlor-alkali batteries (Barregeard et al., 

1997), fluorescent bulbs (Soleo et al., 1997) and other products containing mercury 

(Moszczyanski et al., 1998).  In recent years, there has been growing concern regarding 

mercury exposure in dental care workers and individuals with a heavy burden of dental 

amalgam in teeth (Bates et al., 2004; Corbin and Kohn, 1994; Dodes, 2001; Ekstrand et 

al., 1998; Fan et al., 1997; Lindow et al., 2003; Ritchie et al., 2004; Ritchie et al., 2002).  

A controversial theory linking thimerosal exposure from childhood vaccines and autism 

has been proposed (Ball et al., 2001; Clements, 2004; Verstraeten et al., 2003; Vojdani et 

al., 2003; Westphal and Hallier, 2003).  More recently, an association between autism 

and increased atmospheric deposition of mercury was demonstrated (Palmer et al., in 

press); further, autistic children have been shown to have reduced mercury elimination 

(Holmes et al., 2003). 

 Organic and elemental mercury are highly toxic to the central nervous system 

(CNS) (Clarkson, 1987; Eto, 1997, 2000; Eto et al., 1999), although toxicity may also 

involve the renal, respiratory, hepatic, immune, dermal, and gastrointestinal systems 

(Risher et al., 2002).  Symptoms of neurologic toxicity include visual abnormalities, 

sensory impairment of the extremities, cerebellar ataxia, hearing loss, muscle weakness, 

tremor and mental deterioration (Kazantzis, 2002; Vettori et al., 2003). Renal effects, first 

evident as proteinuria, may accompany CNS signs, or may be evident without significant 

neurotoxicity (Kazantzis, 2002).   

 Inorganic mercury salts primarily affect the renal system, leading to acute tubular 

necrosis (Eto et al., 1999; Girardi et al., 1996; Graeme and Pollack, 1998).  Proteinuria is 

often immediate following direct, dose-related toxic injury.  However, in secondary, and 
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largely dose-independent, immune-mediated injury, proteinuria may be delayed several 

weeks to months. Mercury-related glomerulopathy occurs as part of a lupus-like 

syndrome, involving a variety of autoantibodies, most prominently antinuclear antibodies 

(Barregeard et al., 1997; Hill, 1986; Kazantzis et al., 1962; Tubbs et al., 1982). 

2.4.3  Immunotoxicologic effects of mercury 

 While nervous or renal system impairments are characteristic of acute mercury 

toxicity in humans, alterations in immune function may be seen in the absence of overt 

nervous or renal effects (Dieter et al., 1983; Kazantzis, 2002; Moszczyanski et al., 1998; 

Park et al., 2000; Queiroz and Dantas, 1997a, b; Queiroz et al., 1994a; Queiroz et al., 

1994b; Silbergeld et al., 2000; Silva et al., 2004).   

The immune effects mercury are diverse and difficult to explain within the 

framework of current models of mercury toxicity.  Mercury can induce thymic atrophy 

(Kosuda et al., 1996); suppress humoral  (Blakley et al., 1980; Shenker et al., 1993a) and 

cellular immunity (Nakatsuru et al., 1985), and natural killer activity (Cai et al., 1988); 

increase tumour frequency (Blakley, 1984); and increase susceptibility to malaria 

infection in mice (Silbergeld et al., 2000). Mercury is also a known contact-sensitizing 

agent (Kazantzis, 2002; Pirker et al., 1993; Rowat, 1998; Santucci et al., 1998; Stejskal et 

al., 1996).  Mercury may also stimulate lymphocyte proliferation (Jiang and Moller, 

1995, 1996; Loftenius et al., 1997; Pelletier et al., 1988), and can induce transient Type-2 

(T-helper-2-like) autoimmune disease in genetically susceptible rats (Druet et al., 1978; 

Sapin et al., 1977) and mice (Hultman and Enestrom, 1992; Warfvinge et al., 1995), and 

similar autoimmune dysfunction in mercury-exposed humans (Silva et al., 2004).  

Mercuric chloride (HgCl2)-treated animals develop glomerulonephritis and proteinuria, 
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increased serum IgE, T lymphocyte-dependent polyclonal B lymphocyte activation and 

increased auto-antibody to glomerular basement membrane, immunoglobulins, DNA and 

nucleolar components (Bernaudin et al., 1979; Druet et al., 1979a; Druet et al., 1979b; 

Druet et al., 1978; Hultman and Enestrom, 1992; Pelletier et al., 1987b; Sapin et al., 

1977).  Immune system activation and immune complex (IC) deposition are also seen in 

genetically susceptible rats given dental amalgam restorations (Hultman et al., 1998), and 

in mice  (Warfvinge et al., 1995) and rats (Hua et al., 1993) exposed to mercury vapour 

or thimerosal (TMS) (Havarinasab et al., 2004).  Methyl mercuric chloride (CH3HgCl) 

can induce antinucleolar antibody in susceptible mice, but the B lymphocyte response is 

less than for HgCl2, with minimal increases in serum IgE and no systemic IC deposits 

(Hultman and Hansson-Georgiadis, 1999).    

Evidence of human systemic autoimmune activation by mercury similar to that 

seen in laboratory animals is sparse (Barregeard et al., 1997; Dantas and Queiroz, 1997; 

Kazantzis et al., 1962; Tubbs et al., 1982). Recently, a more convincing association was 

demonstrated among Brazilians living and working gold mining sites, among which 40% 

of had antinuclear (ANA) and antinucleolar autoantibodies (AnoA).  In upstream 

populations exposed to methylmercury primarily through consumption of fish 

contaminated by gold mining activities, both the prevalence and levels of autoantibodies 

were approximately half those seen in the gold mining community, but still several fold 

greater than those in a reference site with lower mercury exposures (Silva et al., 2004).  

2.4.3.1  Mercury and autoimmune disease in laboratory animals 

 Chronic administration of HgCl2 can induce dysregulation of the immune system 

in susceptible strains of rats (Druet et al., 1978; Sapin et al., 1977) and mice (Hultman 
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and Enestrom, 1992; Warfvinge et al., 1995).  After several weeks of oral or 

subcutaneous HgCl2 administration, treated animals develop glomerulonephritis and 

proteinuria, coincident with the appearance of both granular and linear anti-glomerular 

basement membrane IgG deposits.  Increased serum IgE and proteinuria are characteristic 

of the autoimmune syndrome, in conjunction with T -dependent polyclonal B lymphocyte 

activation and dose-dependent production of various autoantibodies (glomerular 

basement membrane, immunoglobulins, DNA and nucleolar components, 

myeloperoxydase) (Bernaudin et al., 1979; Druet et al., 1979a; Druet et al., 1979b; Druet 

et al., 1978; Hultman and Enestrom, 1992; Pelletier et al., 1987b; Sapin et al., 1977; 

Warfvinge et al., 1995).  Over the course of several weeks, autoantibody levels gradually 

return to normal even in the face of continued mercury exposure (Castedo et al., 1994).  

Thereafter, susceptible rats are resistant to subsequent mercury challenges, likely due to 

activation of suppressor cells (Bowman et al., 1984; Mathieson et al., 1991) and/or TH-1-

like effector functions (Castedo et al., 1994; Dubey et al., 1993).   In addition to renal 

damage and peripheral immune activation, splenic and lymph nodes hyperplasia and 

severe thymic atrophy, with loss of double-positive CD4+CD8+ thymocytes and extensive 

disorganization of the cortical and medullary architecture, are seen within 15 days 

following mercury treatment.  Lewis (LEW) strain rats are resistant to these immunotoxic 

effects, suggesting a role for a genetic control of this immune response, linked, in part, to 

MHC phenotype (RT-1 locus) (Kosuda et al., 1996; Sapin et al., 1982).  In certain 

models, there is evidence of tissue injury in many organs, including gastrointestinal 

vasculitis, similar to that seen in graft-versus-host disease (Mathieson et al., 1992) and 

polyarthritis (Kiely et al., 1995).  
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 A similar autoimmune syndrome is seen in genetically susceptible strains of mice 

exposed to HgCl2 (Hultman et al., 1992).  After 5-6 weeks of HgCl2 administration, 

mice from strains carrying the H-2s (A.SW and SJL) or H-2q haplotype develop 

antibodies to the nucleolar protein fibrillarin and systemic immune complex (IC) 

deposits.  Intermediate responder strains, like BALB/C (H-2d), develop only IC deposits, 

and most strains like the A.TL (H-2tl) and DBA/2 (H-2d) strains are resistant to systemic 

autoimmunity, indicating non-H-2 genes also regulate the response to mercury (Abedi 

Valugerdi and Moller, 2000; Johansson et al., 1998).  Susceptible mice show a mild 

mesangial glomerulopathy, accompanied by mesangial IgG1 antibody (and to a lesser 

extent IgG2a and C3 complement) immune complex deposition (Hultman et al., 1989). 

 Resistance or susceptibility to mercury-induced autoimmunity may be partly a 

function of antibody-dominant or T helper-2 (TH-2) lymphocyte activation, although 

some involvement of TH-1-type and other cytokines is also postulated (Bagenstose et al., 

1998b; Hu et al., 1999; Kono et al., 1998). Generalised T lymphocyte proliferation and 

activation occurs in response to mercury administration, as indicated by an increase of 

IL-2-producing cells, and increased expression of the IL-2-receptor proteins CD25 and 

CD122 and of the proliferation marker CD71 on days 2-4 in susceptible strains. This is 

followed by a long-lasting increase in the number of cytokine-producing T lymphocytes, 

dominated by CD4+ lymphocytes, with a late predominance of the TH-2-associated IL-4 

producing lymphocytes (Johansson et al., 1997).  While a TH-2-dominated response leads 

to a faster and stronger B cell activation, IL-4 production is not necessary for induction of 

autoimmunity by mercury (Bagenstose et al., 1998b; Johansson et al., 1997).  And 

although cytokines that support TH-1 functions, e.g. IL-12, can down-regulate the AnoA 
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and serum IgG1 levels, they do not significantly affect IgE induction, indicating the 

various manifestations of mercury-induced autoimmunity are independently regulated 

(Bagenstose et al., 1998a).     

 Genetically determined differences in mercury toxicokinetics may also affect the 

onset and strength of the autoimmune response.  Mercury deposition in the kidneys and 

spleen of HgCl2-exposed mice is correlated with the dose (Hultman and Enestrom, 1992).  

Whole-body mercury retention in various inbred strains of mice exposed to 203HgCl2 in 

drinking water reaches steady state after 4-5 weeks (Griem et al., 1997; Hultman and 

Nielsen, 2001).  In susceptible mice, thymic mercury concentrations increase with 

continued exposure, though steady state levels in blood and liver are reached after four 

weeks, and in spleen and kidney after eight weeks. In strains with low susceptibility, 

steady-state mercury concentrations in spleen, blood and liver are lower (Griem et al., 

1997).  The ANoA titre in susceptible congenic H-2as mice is correlated with whole-body 

retention and organ accumulation of mercury; but like susceptibility in general, the H-2 

locus does not account for all the genetic difference in toxicokinetics (Hultman and 

Nielsen, 1998).  The anti-fibrillarin response may be driven, in part, by the kinetics of 

mercury accumulation in susceptible strains, leading to rapid initial modification of 

fibrillarin by mercury followed by a dose-dependent T lymphocyte-dependent immune 

response driven by the modified fibrillarin (Hultman and Nielsen, 2001; Nielsen and 

Hultman, 2002), with AFA appearing in serum after two weeks (Hultman and Nielsen, 

2001). 

 Altered ratios of TH-1 and TH-2 lymphocytes are often observed along with 

oligoclonal utilization of certain TCR-beta chains in dysregulated immune states.  In 
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HgCl2-stimulated T lymphocytes from the responder BALB/c or SJL mice and the non-

responder DBA/2 mice, T lymphocytes bearing a certain set of TCR-beta chains are 

activated only in mercury autoimmune-susceptible mice, which is inhibited by depletion 

of V beta CD8+ T lymphocytes (Jiang and Moller, 1996).  Exposure of BALB/c mice to 

HgCl2 induces an oligoclonal response with increases of Vbeta5+, Vbeta7+, and Vbeta13+ 

CD4+ splenic T lymphocytes (Heo et al., 1997). As such, HgCl2 may activate murine T 

lymphocytes in vitro in a fashion similar to a superantigen, bypassing the usual 

constraints on antigen presentation. 

 Other forms of mercury may also trigger autoimmunity.  Mercury vapour 

produces autoimmune manifestations similar to HgCl2 in mice (Warfvinge et al., 1995) 

and rats (Hua et al., 1993), as can TMS (although a higher absorbed dose of mercury is 

needed) (Havarinasab et al., 2004).  Susceptible (H-2s) mice treated with subcutaneous 

injections of CH3HgCl develop ANoA targeting fibrillarin, although the general 

(polyclonal) and specific (ANoA) B lymphocyte response is less than that seen with 

HgCl2, with minimal increases in serum IgE and no systemic immune complex (IC) 

deposits (Hultman and Hansson-Georgiadis, 1999).  Dental amalgam restorations also 

give rise to immune system activation and systemic IC deposits in genetically susceptible 

rats (Hultman et al., 1998). 

 The mercury body burden in occupationally exposed humans is comparable to the 

lowest observable effect level (LOEL) for autoantibodies in mice (Warfvinge et al., 

1995).  The effects of mercury in laboratory animals may indicate that a percentage of the 

population, may be at a greater risk of mercury immune toxicity (Barregeard et al., 1997). 

The mercury-induced autoimmune syndrome shares many features of diseases like 
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systemic lupus erythematosus, making it popular model for autoimmunity.  This research 

has uncovered many of the cellular effects of mercury and led to the development of a 

plethora of biochemical mechanisms thought to be responsible for them. 

2.4.4  Proposed mechanisms for mercury toxicity 

  Some, if not all, mercury effects on immune function likely involve interaction 

with thiol (-SH) groups. As such, thiol-containing compounds inhibit mercury-induced 

immune effects in vitro and in vivo (Hu et al., 1997).  However, physico-chemical 

differences between organic and inorganic mercury may make it difficult to identify 

specific mechanisms for mercury toxicity.  Some proposed mechanisms may represent 

targets of all forms of mercury; however, certain mechanisms involve only membrane-

based target sites, while others are intracellular, to which ionised Hg2+ may have limited 

access.  The effects of Hg2+ may therefore be quite different in cell free systems than in 

whole cell models. 

 Cellular binding and uptake studies with mercury have shown that approximately 

66% of Hg2+ accumulated by renal cortical epithelial cells exposed to 1 uM HgCl2 for 30 

min was membrane bound (Endo et al., 1995a, b).  Accumulation of Hg2+ is thought to be 

bi-phasic: initial non-specific electrostatic binding to membranes is followed by 

internalization (Foulkes, 1988; Gutknecht, 1981).  Internalisation of a proportion of Hg2+ 

is dependent on energy and temperature, suggesting involvement of active transport 

mechanisms (Endo et al., 1995a).  Candidate transporters influencing Hg2+ uptake include 

the HCO3
-/Cl- transporter (Endo et al., 1997) and those used by essential metals 

(Ballatori, 2002).  The transporter binding sites for essential divalent metals appear to be 

somewhat non-specific, allowing transport of toxic metals such as Cd2+ and Pb2+ into and 
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around the cell (Ballatori, 2002).  In the only study of Hg2+ uptake by lymphocytes, 

during the initial 15-30 min period after exposure to radioactive 203HgCl2, 
203Hg was 

found only in membranes, but was later found bound to non-histone proteins in the 

nucleus (Nordlind, 1985). However, using the fluorescent dye BTC-5N to measure Hg2+ 

in the cytosol, nanomolar Hg2+ levels are seen within minutes of Hg2+ application in 

association with a rise in [Ca2+] i, indicating Hg2+ must enter the hepatocytes for this Ca2+ 

increase to occur  (Nathanson et al., 1995).  Although significant accumulation of Hg2+ 

does not appear to occur until after mercury-induced disruption the membrane barrier, 

organic CH3HgCl can penetrate the cells without any noticeable damage to the membrane 

(Nakada and Imura, 1982).  Transmembrane transfer of CH3HgCl has been suggested to 

involve several systems: 1) organic anion transport; 2) facilitated diffusion of D-glucose; 

3) cysteine-facilitated transport; and 4) Cl- ion transport (Wu, 1995).  Cysteinal 

sulfhydryl (–SH) group binding creates CH3Hg-L-cysteine, which may be transported 

into the cell (and across the blood-brain barrier) by the same mechanisms used for 

methionine (Kerper et al., 1992).  Inside the cell, some CH3HgCl is released and binds 

GSH.  The resulting CH3HgCl-glutathione complex may be a substrate for proteins that 

transport glutathione S-conjugates out of the brain capillary endothelial cells into the 

brain interstitial space (Ballatori, 2002; Kerper et al., 1996).   

2.4.4.1  Mercury interactions with membranes 

 Cell membranes are the first potential target for mercury toxicity.  Cross-linking 

of primary amines on polar heads of phosphatidylserine and phosphatidylethanolamine 

lipids by Hg2+ may increase lipid-lipid affinity, which alone or in combination with 

increased protein-protein and reduced protein-lipid affinities, may reduce membrane 
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fluidity and alter the spatial arrangement of membrane receptors by “squeezing” 

membrane proteins out of the lipid medium (Delnomdedieu and Allis, 1993; Girault et 

al., 1997).  Such receptor rearrangements may mimic those occurring in response to 

physiologic ligands.  Similarly, membrane divalent Hg2+ may non-specifically cross-link 

thiol (–SH) groups on lymphocyte cell surface receptors, to alter receptor conformation 

and/or produce receptor aggregation and induce aberrent signal transduction (Nakashima 

et al., 1994; Pu et al., 1995).  Aggregation (i.e. patching and capping) of CD3, CD4, Thy-

1 and CD45 receptors has been observed in HgCl2-treated murine splenic cultures.  

Receptor aggregation was associated with activation of the src family protein tyrosine 

kinase p56lck and heavy tyrosine phosphorylation of intracellular proteins (Nakashima et 

al., 1994; Rahman et al., 1993).  Although the mechanism of triggering these events is 

redox-linked, phosphotyrosine-containing proteins and p56lck do not form aggregates 

directly through thiol-mediated bonds (Katano et al., 1995) and phosphorylation required 

an intact membrane. However, heavy phosphorylation was observed only at relatively 

high concentrations (> 0.2 mM HgCl2) and cell death ensued rapidly (Nakashima et al., 

1994).  In contrast, 48 hr exposure to HgCl2 was mitogenic at concentrations below those 

producing observable tyrosine phosphorylation with transient exposure (Nakashima et al., 

1994).  Other studies have shown moderate increases in phosphorylation at 0.1 to 1.0 uM 

HgCl2 (Rosenspire et al., 1998), or phosphorylation of specific proteins without 

increasing overall phosphorylation (McCabe et al., 1999).  Electrophoretic analysis 

shows numerous proteins are specifically phosphorylated in response to high 

concentrations of Hg2+, including a 52-kDa Shc protein, extracellular signal-regulated 

kinase 1 (ERK1), and p44, ERK2 p42 and the c-Jun amino terminal kinase p54 of the 
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mitogen-activated protein kinase MAPK family (Akhand et al., 1998).  However, 

mercury-induced aggregation of cell membrane receptors may induce distinct 

downstream intracellular phosphorylation patterns (Pu et al., 1996).   

 Membrane Ca2+ channels may also be targets of Hg2+ and methylmercury 

(Busselberg, 1995; Girardi and Elaias, 1998; Sirois and Atchison, 1996, 2000).  Heavy 

metal ions may directly block voltage activated L/N and T type calcium channels in 

excitable cells in vitro (Busselberg, 1995). Both Hg2+ and p-chloromercuribenzoate 

reduce passive, non-ATP-dependent Ca2+ influx into hepatic plasma membrane vesicles 

in vitro (Bygrave et al., 1989).  In contrast, other studies report elevation of [Ca2+] i in 

response to metal exposure (Badou et al., 1997; McNulty and Taylor, 1999; Tan et al., 

1993), alone or in conjunction with uptake of the metal (McNulty and Taylor, 1999); 

metal uptake through Ca2+ channels in the absence of significant Ca2+ signalling may also 

be seen (Hinkle et al., 1987; Tomsig and Suszkiw, 1991); uptake of metals into the cell 

may be triggered in part by depletion of [Ca2+] i stores (Kerper and Hinkle, 1997).  

Increased [Ca2+] i in neuronal preparations treated with methyHg in vitro has been 

attributed to non-specific increases in membrane permeability secondary to mercury-

related loss of energy production (Kauppinen et al., 1989).  Similar non-specific changes 

in membrane cation permeability have been seen with TMS (Gukovskaya et al., 1992). 

 In addition, mercury may inhibit Na+/K+-ATPase activity (Anner, 1997; Ballatori 

and Boyer, 1996; Ballatori et al., 1998; Chanez et al., 1989; Kaplan and Mone, 1985; 

Lewis and Bowler, 1983).  Hepatocyte Na+/K+-ATPase activity is more sensitive to the 

effects of Hg2+ than CH3HgCl.  Over 60 min, cells treated with 50 uM HgCl2 swelled to 

double the volume of controls and failed to return to normal volume after placement in 
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hypotonic media (Ballatori et al., 1988).  Na+/K+-ATPase activity in isolated canine renal 

(Kaplan and Mone, 1985) and rat brain synaptic membrane (Lewis and Bowler, 1983) 

preparations have been shown to be very sensitive to TMS, although inhibition was 

greater for HgCl2 than for TMS in rat fetal brain homogenate (Chanez et al., 1989). 

2.4.4.2  Intracellular targets for mercury 

Mercury may target intracellular components, though it is often uncertain whether 

the effects are direct or indirect.  Direct activation of the Ca2+/calcineurin-dependent 

pathway and protein kinase C (PKC) have both been implicated in HgCl2-induced IL-4 

gene expression by murine T lymphocyte hybridomas.  In this model, HgCl2 also induced 

a PKC-dependent Ca2+ influx through L-type Ca2+ channels (Badou et al., 1997).  In the 

WEHI-231 B lymphocyte cell line, activation of PKC through B-cell receptor (BCR) 

ligation leads to induction of apoptosis.  Non-toxic HgCl2 concentrations, producing no 

change in overall tyrosine phosphorylation attenuate the growth inhibitory effects of BCR 

cross-linking but have no effect on the negative growth signal generated by direct 

activation of PKC with phorbol 12-myristate 13-acetate (McCabe et al., 1999).  In 

contrast, Hg2+ inhibits the activity of, and the binding of regulatory ligands to soluble 

PKC (Speizer et al., 1989).  Organomercurials, including methyl mercury, phenyl 

mercury and p-chloromercuribenzoic acid (p-CMB), inhibit soluble PKC through thiol 

binding in a similar fashion, though greater concentrations are required (Inoue et al., 

1988). 

 Mercury may interact with the Ras/MAP kinase (mitogen activated protein 

kinase) signal transduction pathway.  Subtoxic concentrations of HgCl2 stimulate 

Ras.GTP in the Jurkat human T lymphocytic cell line, but fail to increase MAP kinase 
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activation.  Selective inhibition of T cell receptor-mediated Ras and MAP kinase 

activation is also seen with HgCl2 exposure, though activation of MAP kinase by phorbol 

diesters remains intact (Mattingly et al., 2001).  The Hg2+ ion has also been shown to 

activate protein tyrosine phosphatases (PTPase’s) and p56lck without increasing tyrosine 

phosphorylation.  Phosphorylation was only seen at concentrations producing PTPase 

inhibition (Lander et al., 1992). 

 The cytoskeleton presents several potential targets for mercury.  Organic 

CH3HgCl selectively targets microtubules (MTs) (Brown et al., 1988; Imura et al., 1980; 

Miura et al., 1984; Sager et al., 1983; Vogel et al., 1985), in a time- and concentration-

dependent fashion (Castoldi et al., 2000), while actin microfilaments remain intact, even 

in cells showing complete MT deaggregation (Wasteneys et al., 1988).  Vimentin 

intermediate filaments are also spared except at concentrations causing extensive MT 

disassembly (Sager, 1988; Wasteneys et al., 1988).   The inorganic Hg2+ ion is a more 

potent inhibitor of in vitro tubulin polymerisation than CH3HgCl, producing complete 

inhibition at 25 uM Hg2+ (Miura et al., 1984) as compared to 30-50 uM CH3HgCl (Miura 

et al., 1984; Vogel et al., 1985).  However, immunofluorescence studies in intact mouse 

glioma cells indicate CH3HgCl disrupts the MT network at an early stage of growth 

inhibition, while Hg2+ has no effect on MTs for at least 1 hr (Miura et al., 1984). This 

CH3HgCl-related MT disruption is known to interfere with cell cycle progression.  

G2/M-phase (prometaphase/metaphase) arrest is an important event in the development 

of apoptosis after CH3HgCl exposure, similar to that seen with colchicine (Miura et al., 

1999). Neuronal MT de-polymerisation in response to 1 uM CH3HgCl precedes the onset 

of cell death by several hours (Castoldi et al., 2000).  Thimerosal is also a potent MT 
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disruptor (IC30= 0.03 mM) (Brunner et al., 1991), producing cell-cycle arrest (Alexandre 

et al., 2003) and loss of spindle chromosome-sorting fidelity (Voutsinas et al., 1997). 

 Activation of redox-sensitive signalling cascades has been demonstrated for all 

forms of mercury.  Redox signalling may be activated directly or indirectly, as a result of 

generalised oxidative stress (generation of reactive oxygen species and lipid 

peroxidation), consumption of glutathione (GSH) and induction of the mitochondrial 

permeability transition (Brawer et al., 1998; InSug et al., 1997; Naganuma et al., 1990; 

Nath et al., 1996; Pintado et al., 1995; Shenker et al., 1999Shenker, 2000 #1964; Shenker 

et al., 1998; Shenker et al., 1993b).  Cells with high levels of GSH are resistant to HgCl2 

toxicity while cells with low levels of GSH are extremely sensitive. Both T and B 

lymphocytes and monocytes exposed to HgCl2 exhibit a dose-dependent decrease in GSH 

content with a concomitant reduction in glutathione disulfide (GSSG) levels.  

Lymphocyte and monocyte GSH generation is inhibited by HgCl2, although GSH 

reductase and GSH peroxidase are unaffected (Shenker et al., 1993b).  Strain-dependent 

differences in thiol levels in particular subsets of CD4+ lymphocytes and subset-specific 

modification of thiol levels may contribute to differential effects of HgCl2 lymphocytes 

from autoimmune-susceptible and -resistant strains (Roos et al., 1997). 

 Hydrogen peroxide production and expression of redox-sensitive genes (heme 

oxygenase and members of the bcl family) are stimulated by HgCl2 in renal cells in vitro 

and in vivo (Nath et al., 1996).  In T lymphocytes exposed to CH3HgCl, a profound 

reduction in mitochondrial redox potential ()Dm) occurs early, in conjunction with a 

decline in GSH levels within 1 h.  Subsequently, the generation of reactive oxygen 

species (ROS) creates a further decrease in thiol reserves. The induction of oxidative 
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stress and the mitochondrial permeability state may then lead to activation of death-

signalling pathways (Shenker et al., 1999).  Similar changes are seen in monocytes 

treated with CH3HgCl (InSug et al., 1997).  Mitochondrial dysfunction and the 

development of the mitochondrial permeability transition may result in the release of 

cytochrome c, a factor that promotes apoptosis. While CH3HgCl causes a significant 

increase in cytosolic cytochrome c from human T lymphocytes, HgCl2 does not affect 

cytosolic cytochrome c (Shenker et al., 2000).   

 Modulation of gene transcription may be responsible for some of the effects of 

mercury.  Renal GSH levels increase after exposure to a subtoxic dose of HgCl2 (0.5 

uM/kg), in conjunction with increases in gamma-glutamylcysteine synthetase, glutathione 

disulfide (GSSG) reductase and GSH peroxidase activities (Lash and Zalups, 1996).  The 

levels of c-jun mRNA and c-Jun protein are elevated in LLC-PK1 cells exposed to 10 – 

20 uM HgCl2 (Matsuoka et al., 2000).  Pretreatment of human monocytic leukemia cells 

with sub-toxic concentrations of HgCl2 (2 uM) for 20 hrs has no effect on proliferation 

potential or metabolic activity, but induces metallothionein mRNA and metallothionien 

protein accumulation (Koropatnick and Zalups, 1997). Both activation of the cell-death 

mediators caspase-8, -9, and -3 and increased expression of caspase-8 and -9 are seen in 

human T lymphocytes following CH3HgCl exposure (Shenker et al., 2002).  

2.4.4.3  Mercury and intracellular calcium 

 Although mercury toxicity may involve both membrane and intracellular 

components, a final common pathway for mercury toxicity is likely disruption of 

intracellular calcium ([Ca2+] i) homeostasis (Badou et al., 1997; Komulainen and Bondy, 

1987; MacDougal et al., 1996; Pintado et al., 1995; Sirois and Atchison, 2000; Smith et 
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al., 1987; Tan et al., 1993).  While both CH3HgCl (0.02-2 uM) and HgCl2 (0.01-1 uM) 

increase [Ca2+] i in rat splenic lymphocytes in a concentration-dependent manner, the 

mechanisms may differ.  The increase produced by CH3HgCl is both rapid and sustained, 

while HgCl2 causes a slow rise in [Ca2+] i.  The effects of the mercury compounds are not 

initially associated with reduced membrane integrity, however, membrane damage is seen 

after 15 min (Tan et al., 1993). 

  The increased [Ca2+] i seen after HgCl2 exposure may be a function of aberrant 

activation of signalling mechanisms.  The HgCl2 induces a protein kinase C-dependent 

Ca2+ influx through L-type Ca2+ channels in murine T lymphocyte hybridomas.  The 

Hg2+-induced signal is transient, being approximately 15 min in duration (Badou et al., 

1997).  Similar results are seen in leukocytes from a marine teleost fish, Sciaenops 

ocellatus.  At 10 uM or greater, HgCl2 induces rapid influx of extracellular Ca2+, along 

with growth inhibition and tyrosine phosphorylation.  Lower concentrations that activate 

fish lymphocyte growth (0.1-1 uM) induce a slower sustained rise in intracellular calcium 

but do not produce detectable protein tyrosine phosphorylation (MacDougal et al., 1996).  

 Both CH3HgCl and TMS appear to influence [Ca2+] i primarily through inhibition 

of ATP production and/or increased non-specific membrane permeability.  In a guinea 

pig synaptosomal model, CH3HgCl increases synaptosomal Ca2+ levels by two distinctive 

mechanisms. At 30 uM CH3HgCl, Ca2+ increases moderately secondary to loss of ATP 

production.  At 100 uM CH3HgCl, synaptosomal Ca2+ is dramatically increased as both 

mitochondrial and anaerobic energy production cease and plasma membrane ionic 

permeability increases (Kauppinen et al., 1989).  The effects of CH3HgCl cannot be 

inhibited with either Ca2+ or Na+ channel blockers (Komulainen and Bondy, 1987). A bi-
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phasic 10-fold increase in [Ca2+] i is seen in in thymic lymphocytes exposed to TMS (5-

100 uM), with the second phase producing the most dramatic increase.   Mobilization of 

Ca2+ from intracellular stores does not contribute significantly, as TMS, like CH3HgCl, 

non-specifically increases membrane ion permeability (Gukovskaya et al., 1992).  

However, in lymphocytes the TMS-induced rise in [Ca2+] i seems to be due to both a 

release of intracellular stores and influx of extracellular Ca2+  (Pelassy et al., 1994). 

2.4.4.4  Mercury-induced apoptosis and necrosis   

 Both HgCl2 and CH3HgCl reduce human peripheral lymphocyte viability, but the 

chemical form of mercury and the cell model used may influence the expression of 

particular components of the cell death pathways.   

 Human peripheral T lymphocytes exposed to HgCl2 or CH3HgCl show 

morphological (nuclear hyperchromaticity, fragmentation and condensation of 

nucleoplasm, destruction of cytoplasmic organelles and loss of membrane integrity) and 

biochemical (reduced phospholipid synthesis) changes consistent with apoptotic cell 

death (Shenker et al., 1992a; Shenker et al., 1993a).  In contrast, concentration- and time-

dependent changes characteristic of both apoptosis and necrosis are seen in murine 

hybridomas and T lymphocytes exposed to HgCl2 (Akhand et al., 1998; Aten et al., 1995; 

Prigent et al., 1995).  In mouse T lymphocytes, DNA fragmentation is seen at 1 uM Hg2+ 

but not at 10 uM or more. However, cell death in both concentration ranges is partly 

inhibited by protein kinase inhibitors such as staurosporine and herbimycin A, indicating 

a protein phosphorylation-linked signal is involved in Hg2+-mediated cell death 

regardless of whether DNA fragmentation is seen (Akhand et al., 1998).  
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 Methyl mercuric chloride is approximately 5-10 times more potent an inducer of 

cell death than HgCl2 (Shenker et al., 1992a; Shenker et al., 1993a).  At low 

concentrations (0-5 uM) of CH3HgCl, human T lymphocytes and monocytes exhibit 

changes in light scatter and vital dye exclusion patterns, and plasma membrane lipid 

organization consistent with apoptosis.  Treated cells show thiol depletion and a decrease 

in mitochondrial transmembrane potential (psi )m), and may be predisposed to damage 

from mercury-potentiated reactive oxygen species (ROS) formation (InSug et al., 1997; 

Shenker et al., 1998).   As many as 1/3 of lymphocytes become apoptotic within 1 hr of 

exposure to CH3HgCl, yet only 2/3 are apoptotic after 24 hrs of continued exposure, with 

1/3 remaining viable. When activated by mitogens, T lymphocytes are protected from 

apoptogenic effects of the organomercurials (Shenker et al., 1997). 

 Within 1 hr of exposure, both CH3HgCl and HgCl2 induce a mitochondrial 

membrane permeability transition, reducing both the transmembrane potential and the 

intracellular pH, and increasing reactive oxygen species (ROS) (Shenker et al., 2000), in 

association with reduced glutathione (GSH) content and activation of the caspase cascade 

(Shenker et al., 2002).  The two forms of mercury differ with respect to release of 

cytochrome C, an event often accompanying the permeability transition.  The CH3HgCl 

causes a significant increase in cytosolic cytochrome c from human T lymphocytes, with 

no accompanying changes in levels of the anti-apoptotic protein Bcl-2, while HgCl2 does 

not affect cytosolic cytochrome c but does increase Bcl-2 (Shenker et al., 2000).   

Transfected cell lines displaying increased levels of anti-apoptotic protein human Bcl-2 

are resistant to HgCl2-induced cell death but susceptibility to apoptosis induced by an 
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anti-CD3 antibody is unaffected, suggesting receptor-mediated stimuli trigger different 

pathways leading to cell death than those activated by Hg2+ (Aten et al., 1995).    

Mercury may produce dysregulation of physiological cell death pathways.  In the 

Jurkat human leukemic cell line, low levels (≤ 10 uM) of HgCl2 abrogate anti-CD95 

(Fas)-mediated apoptosis and enhance cell survival, possibly through blockade of an 

unknown plasma membrane proximal signaling event upstream of CD95 (Fas)-induced 

caspase-3 activation (McCabe et al., 2005; Whitekus et al., 1999).  TNF-alpha-induced 

caspase-3 activation is not affected by Hg2+ (McCabe et al., 2005).   However, treatment 

with CH3HgCl induces activation of caspase-8, -9, and -3 along with increased 

expression of caspase-8 and -9 (Shenker et al., 2002). 

2.5  Proposed mechanism for effects of mercury in lymphocytes 

 We proposed that the immunotoxic effects of inorganic mercury (Hg2+) and 

perhaps other compounds, like p-chloromercuribenzoate [p-CMB], that are charged at 

physiologic pH and penetrate membranes poorly) are produced, at least initially, through 

global triggering of normal membrane-dependent signalling mechanism.  In contrast, 

those of organic mercury compounds (CH3HgCl and perhaps also thimerosal [TMS]), 

which penetrate membranes more easily, are mediated primarily by increased non-

specific membrane permeability and intracellular effects, including inhibition of ATP 

production and dissolution of microtubules.  In either case, we expected that non-

localized signalling would be incompatible with normal lymphocyte activation in most 

circumstances.   

 Specifically, we hypothesized that, initially, divalent Hg2+ acts to simultaneously 

trigger various T lymphocyte receptors all over the surface of the cell, either through 
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high-affinity protein sulfhydryl interactions or by altering membrane lipid ordering. 

These membrane-dependent perturbations produced by Hg2+ may differ, spatially and 

temporally, from those normally occurring in the localized area of contact between an 

APC and an antigen-specific lymphocyte.  Simultaneous globalised triggering of TCRs 

and associated signalling cascades may inhibit polarization of the cytoskeleton and 

secretory machinery and directed shape changes or motility.  Further, it was anticipated 

these effects would be accompanied by down-regulation of the TCR in response to 

receptor triggering, as occurs with physiologic ligation (Valitutti et al., 1997), but would 

occur before effects at other intracellular targets for mercury (particularly microtubule 

integrity) are seen – and before the activation of cell death pathways. 

 In contrast, organomercurial compounds with greater lipid solubility and thus 

more rapid penetration into the cell, were expected to damage membranes non-

specifically and to increase membrane permeability, without triggering down-regulation 

of surface receptors to an appreciable extent.  Some of the subsequent intracellular targets 

of CH3HgCl or TMS could be the same or similar to those activated down-stream by 

Hg2+-receptor activation, but the time course of effects was expected to be different. 

Organomercurial compounds were therefore expected to produce significant effects on 

polarised signalling events only in conjunction with – and not prior to – loss of 

microtubule integrity and the onset of cell death.   

The pattern of cell death was expected to differ for both forms of mercury, with 

inorganic Hg2+ producing predominantly apoptosis over all but the highest concentrations 

studied and at all time periods, and organomercurial compounds possibly producing 

apoptosis at low concentrations, with necrosis dominating at higher concentrations and 
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with continued exposure, secondary to the loss of membrane integrity and loss of calcium 

homeostasis. 

 To test our hypothesis, a simple model of the immunological synapse, amenable 

for use with multiple samples and experiments, was required.  One possibility was to 

maintain an antigen-specific T lymphocyte culture along with an appropriate APC line 

and a source of antigen or antigen-derived peptides.  An alternative strategy used in this 

study was to create a surrogate antigen-presenting cell to induce polarisation responses 

from an immortalised cell line (Hashemi et al., 1996; Lowin Kropf et al., 1998) thus 

avoiding the need to maintain two cell lines and a specific antigen to activate the cells.  

 The YAC-1 Moloney virus transformed T lymphocytic line was chosen because 

of the ease of maintaining continuous cultures without specialised media and known 

surface expression of complete CD3 receptors and associated co-receptors (Lindvall et 

al., 1997).  A surrogate antigen-presenting cell (APC) was created by coating 6.0 um 

latex microspheres with anti-CD3 antibody.  By mixing and centrifuging the cells and 

beads together, the YAC-1 cells became bound to the beads, often moving over the 

surface to completely engulf the bead (and in some cases more than one bead).  Although 

no anti-co-stimulatory receptor antibody was used, and the rigid antibody-coated bead did 

not allow receptors from both cells to migrate or diffuse through the membrane or 

formation of the ‘bull’s eye’ 3-dimensional supramolecular activation complex (SMAC), 

this did not seem to affect the reorientation response, as the MTOC came to lie adjacent 

to the bead, similar to events occurring in antigen-specific lymphocyte-APC conjugates. 

 Mercury compounds having differing chemical properties (organic vs inorganic 

mercury, pKa, presumed or known ability to penetrate cell membranes and suspected or 
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known effects on immune function) were selected for study (see Table 2.1).  The four 

compounds were mercuric chloride (HgCl2), methyl mercuric chloride (CH3HgCl), p- 

chloromercuribenzoate (p-CMB), and thimerosal (TMS; ethylmercurithiosalicyclate). 

 Mercuric chloride was selected for the study as a known immunotoxicant capable 

of inducing autoimmune disease.  Inorganic mercury is also thought to penetrate 

membranes less quickly than methyl mercury in physiologic solutions, where it is likely 

present as polychloride anions (Foulkes, 2000) with poor lipid solubility.  Methyl 

mercuric chloride was selected as an organic mercurial compound which primarily 

produces immunosuppressant effects but can, with appropriate exposures, also induce a 

form of autoimmune dysfunction that differs from that produced by HgCl2 (Hultman and 

Hansson-Georgiadis, 1999).  Monomethyl mercury is thought to pass through cell 

membranes more rapidly than inorganic mercury, owing to the increase in lipid solubility 

provided by the methyl group and the likelihood that in physiologic solutions the 

compound remains uncharged, i.e. methylmercuric choride (Foulkes, 2000).  Para-

chloromercuribenzoate (p-CMB) was selected as an organic mercury compound thought 

to penetrate membranes somewhat less rapidly than CH3HgCl (possibly as a result of 

ionization at physiologic pH) and because p-CMB effects on lymphocytes were 

unknown.  Thimerosal, a drug, vaccine, and medical fluid preservative, was also included 

in the assays, owing to recent controversy regarding possible links between childhood 

vaccination and autism (Ball et al., 2001; Clements, 2004; Verstraeten et al., 2003; 

Vojdani et al., 2003; Westphal and Hallier, 2003). Thimerosal (TMS) can also induce a 

systemic autoimmune syndrome very similar to that seen after treatment with inorganic 

mercury in genetically susceptible mice, although a higher absorbed dose is required.  
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However, the immune changes produced by TMS, like HgCl2, differ from the weaker and 

more restricted autoimmune reaction observed after treatment with an equipotent dose of 

methylmercury (Havarinasab et al., 2004).  As an organomercurial compound with 

significant carbon character, it was expected that the unionised parent compound TMS 

could penetrate membranes quickly, but it has also been shown that the thiosalicylate 

group may dissociate following protein binding to leave an ethyl mercury group attached 

to proteins (Pintado et al., 1995). 

 In order to assess the effects of 5 and 30 min exposures to each of the four 

mercury compounds on immunological synapse formation, the percentage of YAC-1 

cells forming conjugates, and the percentage of conjugated cells showing morphological 

and cytoskeletal reorganization in response to anti-CD3 binding were obtained.  

Concentration-response profiles for selected signalling events, including TCR/CDE 

receptor expression, protein tyrosine phosphorylation, microtubule integrity, and 

intracellular calcium levels were determined after 1, 5, 30 min and 4 hrs after initiation of 

mercury exposure.  The pattern of cell death, whether apoptotic or necrotic, was also 

studied for the same four time points, and overall cell viability assessed 24 hrs after the 

initiation of either 5, 30 min or 4 hr mercury exposures.  These experimental objectives 

are outlined in Chapter 3 and the specific procedures described in Chapter 4. 
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Table 2.1    Summary of mercury compounds used in the study 
 
Chemical 
Name 

Molecular 
Formula 

Structure F.W. Toxicity data 

Mercuric 
Chloride 

HgCl2 
 

H g  

C l C l  
 

271.5 LD50 oral: 
 Rat       = 1 mg/kg 
 Mouse  = 5 mg/kg 

para-Chloro-
Mercuriben-
zoate 

C7H4ClHgO2.H 
 

Cl 

Hg 

H
O

C
O  

 

357.16 LD50 intraperitoneal: 
 Mouse  = 25 mg/kg 

Methyl 
Mercuric 
Chloride 

CH3HgCl  
Hg 

CH3 Cl
Mercuric Chloride 

 

251.08 LD50 oral: 
 Rat       = 29 mg/kg 
 Mouse  = 57 mg/kg 

Thimerosal C9H9HgNaO2S 
 

CH2CH3 

Hg 

S 

Na

OC

O

 
 

404.84 LD50 oral: 
 Rat       = 75 mg/kg 
 Mouse  = 91 mg/kg 
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3.0     OBJECTIVES OF THESIS 

 

3.1  Central Hypothesis 

The central hypothesis of this study was that the interaction of some forms of 

mercury with cell membrane or intracellular targets may mimic receptor-mediated 

binding of antigen and produce aberrent cellular activation.  

 It was proposed that the toxic effects of inorganic mercury (Hg2+) and other forms 

of mercury that penetrate membranes poorly (p-CMB) initially occur at the level of the 

cell membrane, while more lipid-soluble organomercurial compounds that rapidly 

penetrate to the cell interior have more pronounced intracellular effects.  It was expected 

that Hg2+ membrane interactions could produce concentration-dependent stimulation or 

inhibition of lymphocyte activation by altering membrane-dependent intracellular 

signalling events and assembly of cytoskeletal components.  This aberrant, global 

antigen-independent signal may then alter lymphocyte responses to normal polarised 

stimuli, produce transient activation of some lymphocytes and/or lead to cell death. 

3.2  Overall Project Objective    

 The main objective of this research was to undertake a preliminary study of the 

effects of various forms of mercury on selected components of receptor-mediated 

signalling pathways in T lymphocytes, including responses to polarised stimuli. 
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3.3  Specific Aims 

 The specific aims of the study were to examine the concentration-response effects 

of several forms of mercury on YAC-1 lymphoma cell on  

 I Viability and manner of cell death, 

 II Cytoskeletal integrity, 

III  TCR/CD3 expression, protein tyrosine phosphorylation and intracellular 

calcium levels, and  

 IV Morphology and polarization responses. 

3.4  Specific Aim I: Viability and Cell Death 

3.4.1  Broad Objective 

 The broad objective of Specific Aim I was to compare the effects of brief in vitro 

exposures to various forms of mercury (Hg) on YAC-1 lymphoma cell viability and to 

assess the manner of cell death (apoptosis or necrosis) at those concentrations producing 

loss of T lymphocyte viability. 

3.4.2   Null Hypotheses 

 All forms of mercury – organic vs inorganic, simple salt vs aromatic compound – 

will have equivalent toxicity, as measured by the [IC50], the concentration required to kill 

50% of the YAC-1 cells following in vitro exposure.  The toxicity of each of the mercury 

compounds will increase with increasing exposure.  All forms of mercury will induce cell 

death in similar fashion – either apoptotic or necrotic – with similar kinetics.  The 

addition of anti-CD3 antibody coated 6.0 um latex microspheres, to provide an activation 

stimulus through localised activation of CD3 receptors on the YAC-1 cells, will not affect 

the viability of mercury-treated YAC-1 cell cultures. 
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3.4.3   Specific Objectives 

a) To assess the effect of brief in vitro exposures to mercury compounds on YAC-1 

cell 24-hr viability.   The MTT assay was selected for initial range-finding 

studies, where lymphocyte viability was assessed at 24 hr following 5 min, 30 

min or 4 hr exposures to mercury and the results expressed as an [IC50] for each 

mercury compound.  On the basis of the results of this assay, the range of mercury 

concentrations selected for the remainder of the study was 0.01 to 100 uM. 

b) To assess the effect of addition of anti-CD3-coated beads on the 24-hr viability of 

mercury-treated YAC-1 cells, where beads were added either before or after the 

mercury (not all assays required the beads, their effects needed to be assessed).   

c) To develop an inexpensive high-throughput in vitro assay for detection of 

toxicant-induced apoptosis and/or necrosis, using flow cytometric techniques. 

d) Having established the range of concentrations producing toxicity, to assess the 

manner and kinetics of cell death in mercury-treated YAC-1 cells, following 1 

min, 5 min, 30 min or 4 hr exposures.  A YOPRO-1 (YP)/propidium iodide (PI) 

dye exclusion assay was used to assess whether mercury-treated cells were viable 

(YP-/PI-), early apoptotic (YP+/PI-) or late apoptotic/necrotic (YP+/PI+). 

3.5  Specific Aim II: Cytoskeletal integrity 

3.5.1  Broad Objective 

 The broad objective of Specific Aim III was to quantitatively assess the effects of 

brief in vitro exposures to mercury on selected components of the cytoskeleton of YAC-1 

lymphoma cells and to compare these results to those of Specific Aims I and II above. 
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.5.2  Null Hypothesis 

 Mercury treatment will have no effect on the quantity of microtubules, actin 

microfilaments, vimentin filaments or talin in YAC-1 lymphoma cells. 

3.5.3  Specific Objectives 

a) To develop flow cytometric methods for the quantititive assessment of 

cytoskeletal components in YAC-1 lymphoma cells.   

b) To assess the effects of brief in vitro mercury exposure on YAC-1 lymphoma cell 

microtubules, following flow cytometric assessment of mean fluorescence 

following indirect immunofluorescent staining of beta-tubulin sub-units. 

c) To assess the effects of brief in vitro mercury exposure on YAC-1 lymphoma cell 

actin microfilaments, following flow cytometric assessment of mean fluorescence 

following staining of actin with fluorochrome-conjugated phalloidin. Exposure 

periods selected for objectives (b) and (c) were 1, 5 and 30 min and 4 hrs. 

3.6  Specific Aim III: TCR/CD3 expression, protein tyrosine 

phosphorylation and intracellular calcium levels 

3.6.1  Broad objective 

 The broad objective of Specific Aim III was to assess the effects of in vitro 

mercury exposures on selected components of receptor-mediated cell signalling cascades 

in YAC-1 lymphoma cells, for comparison with the results of Specific Aims I and II. 

3.6.2  Null Hypothesis 

 Mercury treatment will have no effect on cell-surface CD3 receptor expression, 

protein tyrosine phosphorylation levels or intracellular calcium levels in YAC-1 cells. 
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3.6.3  Specific Objectives 

a) To develop flow cytometric methods for quantitative assessment of the effects of 

brief in vitro mercury exposures on cell surface CD3 receptor expression and 

intracellular protein tyrosine phosphorylation.    

b) To assess the effects of brief in vitro mercury exposure on YAC-lymphoma cell 

surface CD3 receptor expression, by flow cytometric assessment of mean CD3 

fluorescence following indirect immunofluorescent staining of CD3 receptors. 

c) To assess the effects of brief in vitro mercury exposure on YAC-1 lymphoma cell 

protein tyrosine phosphorylation, following flow cytometric assessment of mean 

intracellular phosphotyrosine fluorescence following indirect immunofluorescent 

staining of phosphotyrosine residues. Exposure periods selected for objectives (b) 

and (c) were 1 min, 5 min, 30 min and 4 hrs. 

d) To develop high throughput assays to assess the effects of brief in vitro mercury 

exposures on intracellular Ca2+ [Ca2+] i levels.   

e) To assess the effects of brief in vitro mercury exposure on [Ca2+] i in YAC-1 

lymphoma cells.  Exposure periods selected for this assay were 1 min, 5 min, 15 

min, 30 min and 4 hr. 

3.7  Specific Aim IV: Morphology and polarization responses 

3.7.1  Broad Objective 

 The broad objective of Specific Aim IV was to assess the effects of mercury on 

the model of the immunologic synapse and to compare the effects with those seen in the 

viability assays in Specific Aims I - III. 
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3.7.2  Null Hypotheses 

 Mercury treatment will not affect the percentage of YAC-1 cells forming 

conjugates with anti-CD3 antibody-coated beads, morphologic responses or cytoskeletal 

re-orientation of the following YAC-1 cell binding to the beads.  Mercury treatment will 

not alter the appearance of the microtubules, microtubule organizing centre or Golgi 

apparatus.   

3.7.3   Specific Objectives 

a) To establish a method for visualising the effects of mercury on polarised 

signalling events using fluorescent microscopic techniques. 

b) To evaluate the effects of brief (5 and 30 min) in vitro exposures to mercury on 

the percentage of YAC-1 cells forming conjugates with anti-CD3 antibody-coated 

6.0 latex microspheres.   

c)  To assess the effects of 5 and 30 min in vitro exposures to mercury on the 

percentage of YAC-1 cells altering their morphology to wrap around at least 50% 

of the circumference of the anti-CD3 bead following bead binding. 

d) To assess the effects of 5 and 30 min in vitro exposures to mercury on the 

percentage of YAC-1 cells reorienting the MTOC and Golgi complex to a 

position directly adjacent to the area of bead contact bead following anti-CD3 

bead binding. 

e) To evaluate the effects of brief in vitro exposure to mercury on the appearance of 

YAC-1 cell microtubules and MTOC 
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4.0      

CELL DEATH AND CYTOTOXIC EFFECTS IN YAC-1 LYMPHOMA CELLS 

FOLLOWING EXPOSURE TO VARIOUS FORMS OF MERCURY. 

 

4.1  Relationship to overall project  

 The results and discussion included in Chapter 4 encompass Specific Aim I 

Objectives c and d, and Specific Aims II and III.    

It was originally planned that real-time measurement of changes in [Ca2+] i levels 

over 60 minutes post-mercury exposure would be performed using fluorometric 

assessment of Fluo-3 calcium indicator dye-loaded cells; however, like other cells of the 

lymphocytic lineage (Sommer et al., 1994), the YAC-1 cells actively extrude the dye into 

the medium, producing spurious fluorescence signals when bound to free Ca2+ in the 

medium.  Instead, an alternate methodology was developed, using flow cytometric 

evaluation of [Ca2+] i in mercury-exposed dye-loaded cells chilled and washed free of the 

mercury at specific time-points (see Materials and Methods, below).  

  In addition, mercury effects on intermediate filament vimentin and the 

cytoskeletal linker protein talin were to be assessed; both proved to be nearly 

undetectable with available antibodies, and assessment of mercury effects on these 

cytoskeletal components were subsequently deleted from the study objectives.    
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4.2  ABSTRACT 

The effects of 1 min – 4 hr exposures to four mercury compounds (mercuric 

chloride [HgCl2], methyl mercuric chloride [CH3HgCl], p-chloromercuribenzoate [p-

CMB] and thimerosal [TMS; ethylmercurithiosalicylate) on cell death, microtubules, 

actin, CD3 receptor expression, protein tyrosine phosphorylation (PTyr-P), and 

intracellular calcium ([Ca2+] i) levels were investigated in YAC-1 lympoma cells using 

flow cytometry.  After 4 hr, YOPRO-1 (YP) and propidium iodide (PI) dye uptake 

indicated all forms of mercury tested were toxic at concentrations ranging from 25.8 – 

48.4 uM, with two distinct patterns of effects.  Early apoptosis was prolonged for 

CH3HgCl- and TMS-treated cells, with more than 50% remaining YP+/PI- after 4 hr.  

Both CH3HgCl and TMS induced complete loss of $-tubulin fluorescence, indicative of 

microtubule depolymerization and inhibition of tubulin synthesis and/or $-tubulin 

degradation, while F-actin fluorescence diminished to a lesser degree and only after loss 

$-tubulin. In addition, CH3HgCl and TMS induced an almost immediate two-fold 

increase in CD3 fluorescence, with levels returning to baseline within minutes.  With 

continued exposure, CD3 fluorescence was reduced to approximately 50% of baseline 

values.  Both compounds also increased PTyr-P two- to three-fold immediately, with 

levels returning to baseline at 4 hr.   Similarly, two- to three-fold increases in [Ca2+] i were 

noted after 1 min exposure; [Ca2+] i increased progressively, reaching levels five- to eight-

fold greater than control values.  In contrast, dye uptake was delayed with HgCl2 and p-

CMB, although cell death proceeded rapidly, with almost all non-viable cells being late 

apoptotic (YP+/PI+) by 4 hr.  Exposure to p-CMB produced early reductions in F-actin, 

and after 4 hr, complete loss of F-actin with only partial reduction of total $-tubulin was 



 

58 

seen with both p-CMB and HgCl2.  CD3 expression and PTyr-P were reduced slightly 

within minutes after exposure to HgCl2, while p-CMB produced similar effects on CD3 

only at 4 hr, at which time PTyr-P was increased two- to three-fold.  Both compounds 

increased [Ca2+] i within minutes, though levels remained under twice the baseline 

concentration after 15 min exposure.  With continued exposure, [Ca2+] i  increased to 

levels two- to five-fold greater than corresponding control values.  These findings 

indicate the two groups of mercury compounds may induce cell death by distinct 

pathways, reflecting interactions with different cellular targets leading to cell death. 

4.3  INTRODUCTION 

Many of the proposed targets for mercury (Hg) toxicity are also components of 

the localized supramolecular activation complex (SMAC) or ‘immunological synapse’ 

formed between antigen-presenting cells (APCs) and responding lymphocytes (Monks et 

al., 1998).  While antigenic stimuli are restricted to the localized SMAC, mercury may 

interact non-specifically with thiol (-SH) groups throughout the cell.  Non-localized 

mercury impacts may mimic antigen-mediated signalling at certain concentrations, but 

the effects are likely not optimal under most circumstances.  In the absence of appropriate 

spatio-temporal signal organization normally provided by APCs, the lymphocyte 

response may be to activate cell death pathways.  Alternately, mercury may transiently 

activate a small percentage of cells in a non-antigen-specific fashion.  Aberrant global 

signalling, and variations thereof produced by different forms of mercury, may provide a 

basis for both the immunosuppressive and stimulatory effects of mercury. 

Mercury can induce thymic atrophy (Kosuda et al., 1996); suppress humoral  

(Blakley et al., 1980; Shenker et al., 1993a) and cellular immunity (Nakatsuru et al., 
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1985), and natural killer activity (Cai et al., 1988); increase tumour frequency (Blakley, 

1984); and reduce host immunity to and severity of malaria infection in mice (Silbergeld 

et al., 2000).  Mercury may also stimulate lymphocyte proliferation (Jiang and Moller, 

1995), and can induce transient Type-2 (T-helper-2-like) autoimmune disease in 

genetically susceptible rats (Druet et al., 1978; Sapin et al., 1977) and mice (Hultman and 

Enestrom, 1992; Warfvinge et al., 1995).   

As a result, multiple targets for mercury toxicity have been proposed including: 

membrane receptors (Nakashima et al., 1994); protein kinase C (Badou et al., 1997), 

tyrosine phosphorylation (Rosenspire et al., 1998); microtubules (Brown et al., 1988); 

and intracellular calcium (Badou et al., 1997; Tan et al., 1993)).   Some of the difficulty 

in identifying specific mechanisms for mercury toxicity may be a function of physico-

chemical differences between organic and inorganic mercury.  Some targets (e.g. 

membrane receptors) are considered specific for divalent Hg2+; others may be targets of 

all forms of mercury, although the chemical form may determine whether primary or 

secondary.   

Patching and capping of CD3, CD4, Thy-1 and CD45 receptors have been 

observed in lymphocytes exposed to HgCl2, with cell death ensuing rapidly thereafter.  

Receptor aggregation was associated with activation of p56lck and co-localisation of 

phosphotyrosine (PTyr)-containing proteins (Nakashima et al., 1994), both of which 

require an intact cell membrane (Nakashima et al., 1994; Rahman et al., 1993).  Increased 

PTyr-P also occurs in cells exposed to CH3HgCl (Colombo et al., 2004) or TMS (Kim et 

al., 2002). 
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Microtubule integrity is also altered following exposure to HgCl2, CH3HgCl or 

TMS.  Depolymerization of microtubules by CH3HgCl specifically inhibits tubulin 

synthesis (Miura et al., 1998), and both CH3HgCl and TMS inhibit cell cycle progression 

(Alexandre et al., 2003; Wasteneys et al., 1988) with subsequent apoptosis (Castoldi et 

al., 2000; Miura et al., 1999).  However, Hg2+ is a more potent inhibitor of in vitro 

tubulin polymerization than CH3HgCl (Miura et al., 1984), although growth inhibition is 

generally seen without significant loss of microtubules (Imura et al., 1980).   

In rat splenic lymphocytes, CH3HgCl produces a rapid and sustained 

concentration-dependent increase in intracellular calcium ([Ca2+] i), while HgCl2 causes a 

slow rise (Tan et al., 1993).  Increased [Ca2+] i in CH3HgCl-treated neuronal synaptosomal 

membrane preparations has been attributed to increased membrane permeability 

secondary to loss of ATP production (Kauppinen et al., 1989).  Similarly increased cation 

permeability occurs in thymic lymphocytes exposed to TMS (Gukovskaya et al., 1992) in 

conjunction with release of intracellular stores (Pelassy et al., 1994).  In contrast, HgCl2 

induces protein kinase C (PKC)-dependent Ca2+ influx through membrane Ca2+ channels 

in murine T lymphocyte hybridomas (Badou et al., 1997).   

We studied the effects of short-term (1 min– 4 hr) exposures to HgCl2, CH3HgCl, 

p-chloromercuribenzoate (p-CMB), and TMS (ethylmercurithiosalicylate; see Table 2.1) 

on lymphocyte cell death, microtubules, actin, CD3 receptor expression, PTyr-P, and 

[Ca2+] i levels.  In physiologic solutions, inorganic Hg2+ is present as a polychloride anion 

with poor lipid solubility (Foulkes, 2000).  Inorganic Hg2+ may therefore produce effects 

at the membrane before significant intracellular accumulation occurs.  Likewise, p-CMB 

was selected as an organomercurial compound thought to penetrate membranes more 
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slowly than CH3HgCl (as a result of ionization), and whose immune effects are also 

unknown.  The medical preservative TMS was included because of controversy regarding 

possible links between childhood vaccination and autism (Verstraeten et al., 2003; 

Vojdani et al., 2003; Westphal and Hallier, 2003).  Unionised TMS penetrates 

membranes quickly, but the thiosalicylate group may dissociate following protein binding 

to leave the toxic ethyl mercury moiety attached to proteins (Pintado et al., 1995). 

We hypothesized that the immunotoxic effects of inorganic mercury (Hg2+ and 

perhaps other compounds, like p-chloromercuribenzoate (p-CMB), that are charged at 

physiologic pH and are presumed to penetrate membranes poorly) are produced, at least 

initially, through global triggering of various membrane receptors with increased protein 

tyrosine phosphorylation PTyr-P) and down-regulation of the T-cell receptor (TCR), as 

occurs with physiologic ligation (Valitutti et al., 1997).  Receptor–based effects were 

anticipated to occur before effects on microtubule integrity and before the activation of 

cell death pathways. In contrast, the organomercurial compounds CH3HgCl and TMS, 

with greater lipid solubility and more rapid entry into the cell, were not expected to 

interact with receptors or produce down-regulation.  Some of the subsequent intracellular 

targets of CH3HgCl or TMS could be the same or similar to those activated down-stream 

by Hg2+-receptor activation, but the time course of effects was expected to be different. 

Both CH3HgCl and TMS were therefore expected to produce significant effects only in 

conjunction with – and not prior to – loss of microtubule integrity and the onset of cell 

death.   
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4.4  MATERIALS AND METHODS 

Unless otherwise noted, all laboratory disposables and chemicals/reagents were 

obtained from VWR (Mississauga, ON) and Sigma-Aldrich (Oakville, ON), respectively. 

4.4.1  Preparation of mercury solutions 

 Stock solutions (10 mM) of each mercury compound were prepared in deionized 

distilled H2O.  The TMS was completely soluble in water. The HgCl2 (ICN 

Pharmaceuticals, Costa Mesa, CA) was dissolved in 500 uL 1 N HCl (al-Sabti, 1994); 

CH3HgCl (Alfa Inorganics, Ventron, Beverly, MA, USA) in 1 mL of acetone (al-Sabti, 

1994); and p-CMB (ICN) in 2.0 mL of 1N NaOH.  Working dilutions of mercury 

solutions were prepared in complete RPMI at two times (0.02 – 200 uM) the final 

concentration (0.01 – 100 uM). 

4.4.2  Cultured cell line  

 The YAC-1 murine Moloney virus-transformed lymphoma cell line (American 

Type Culture Collection, Rockville, MD) was grown in continuous culture in complete 

medium [RPMI with L-glutamine supplemented with 10% fetal bovine serum (FBS; 

Canadian Life Technologies, Burlington, ON) and 10 mM HEPES buffer].  For all 

experiments, a suspension of 4 x 106 live cells/mL was prepared and held in a humidified 

incubator at 37 C with 5% CO2 for 60-90 min before use.   

4.4.3  Preparation of 96-well plates and addition of cells  

Ten uL of mercury solutions or media were added to the appropriate well of a 96-

well U-bottom tissue culture plate.  The plate was placed in a humidified incubator at 37 

C with 5% CO2 for a minimum of 30 minutes.  After pre-incubation, 10 uL of the 4 x 106 
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cells/mL cell suspension were added to the mercury-loaded plates.  The plates were  

returned to the incubator for 1 min, 5 min, (15 min for calcium assay), 30 min or 4 hr. 

4.4.4  Dye exclusion assay for apoptosis or necrosis 

 The manner of cell death was assessed using a YOPRO-1 (YP; Molecular Probes) 

and propidium iodide (PI) dye exclusion assay (Idziorek et al., 1995), with modifications 

as noted below.  The day prior to the assay, 100 uL of the working YAC-1 cell 

suspension was set aside and held overnight in an incubator in a sealed tube.  These 

predominantly non-viable cells were used as positive control cells for the staining 

procedure and to set flow cytometer signal compensations (unstained and YOPRO-, PI-, 

and dual-stained wells), while unstained viable cells provided negative control cells. 

After incubation, the plates were immediately placed on finely crushed ice and 

180 uL of ice-cold RPMI/0.5% FBS were added to each well.  The plates were 

centrifuged for two min at 1200 RPM to recover the cell pellets.  The cells were washed 

three more times with ice cold medium to remove the mercury before flow cytometric 

acquisition.  The plates were returned to the ice for all pipetting procedures.  Five uL of 

non-viable cells were added to each of four wells set aside for stain control wells.  

Seventy uL of a 0.2 uM YOPRO in ice-cold plain RPMI or media were added as 

appropriate, followed by 10 uL of 10 ug/mL PI.  The plates were held on ice for 30 min 

before flow cytometric acquisition, which was completed within two hrs thereafter.   

4.4.5  Fixation of cells for immunofluorescent and phalloidin staining 

At the end of the desired incubation period, the cells were immediately fixed by 

adding 80 uL of 4% paraformaldehyde in phosphate buffered saline (PBS) for 30 min.  

After fixation, the plates were centrifuged at 1200 RPM for 2 min to recover the cell 
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pellets and the plates washed three times with 180 uL PBS.  After staining, the plates 

were centrifuged at 1200 RPM for 5 min to recover the cell pellets and the wells washed 

once with PBS before flow cytometric data acquisition.   

4.4.6  Indirect immunofluorescent staining of tubulin fluorescence  

 One hundred uL of a 1:250 dilution of mouse anti-$-tubulin antibody (anti-Tub) 

in PBS/1% bovine serum albumin (PBS/BSA) with 0.1% saponin (SAP) were added to 

each well for 30 min at room temperature (RT).  Stain control wells included unstained 

wells and wells stained with of mouse-anti-hamster IgG antibody (MAH; Cedarlane, 

Hornby, ON).  The plates were centrifuged at 1200 RPM for 5 min to recover the cell 

pellets and the wells washed once with 180 uL PBS.  The anti-Tub antibody was detected 

by adding 100 uL of a 1:250 dilution of Alexa®-488 goat-anti-mouse IgG antibody 

(GAM-488; Molecular Probes/Invitrogen, Burlington, ON) in PBS/BSA/SAP for 30 min 

at RT.   

4.4.7  Actin staining with phalloidin 

 One hundred uL of a 1:800 dilution of Oregon-Green®-phalloidin (OG-phall; 

Molecular Probes) in PBS/BSA/SAP were added to each well for 30 min at RT.    

4.4.8  Indirect immunofluorescent staining of cell surface CD3 receptors 

 CD3 receptors were detected using a three-layer indirect immunofluorescence 

technique.  One hundred uL of a 1:250 dilution of hamster-anti-mouse anti-CD3 (anti-

CD3; Cedarlane) in PBS/BSA were added to each well for 30 min.  Stain control groups 

included wells stained with anti-trinitrophenol (anti-TNP; Cedarlane) isotype control 

antibody or media alone, followed by secondary and tertiary antibodies.  The plates were 

centrifuged at 1200 RPM for 5 min to recover the cell pellets and the wells were washed 
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once more with plain PBS. The anti-CD3 antibody was detected by adding 100 uL of a 

1:300 dilution of MAH in PBS/BSA for 30 min, washing the plate twice before adding 

100 uL of a 1:250 dilution of GAM-488 in PBS/BSA for 30 min.   

4.4.9  Indirect immunufluorescent staining of intracellular phosphotyrosine 

residues 

 Intracellular phosphotyrosine (PTyr) residues were detected using an indirect 

immunofluorescence technique (Far et al., 1994).  One hundred uL of a 1:250 dilution of 

mouse anti-phosphotyrosine (anti-PTyr) in PBS/BSA with 0.1% saponin 

(PBS/BSA/SAP) were added to each well for 30 min.  Stain control groups included 

wells stained with MAH.  The plates were centrifuged at 1200 RPM for 5 min to recover 

the cell pellets and the wells washed once more with PBS.  The anti-PTyr antibody was 

detected by adding 100 uL of a 1:250 dilution GAM-488 in PBS/BSA/SAP for 30 min.  

4.4.10  Detection of intracellular calcium with Fluo-3 

 Intracellular calcium [Ca2+] i levels in the mercury-treated YAC-1 cells were 

evaluated using the cell-permeant Ca2+ indicator dye Fluo-3-AM (Molecular Probes) in a 

flow cytometric assay (Maltsev et al., 1994; Verburg-Van Kemenade et al., 1998) 

modifiied for use with multiple samples as indicated below.  While divalent cations may 

interact with calcium indicator dyes and interfere with Ca2+-related fluorescence signals, 

this effect is minimal for Fluo-3 at free Hg2+ concentrations up to 5 uM (Marchi et al., 

2000).  Intracellular free Hg2+ concentrations are likely very low, as the high affinity of 

metal ions for proteins and other biological molecules prevents charged metal ions from 

diffusing across membranes or through ion channels passively without reacting with their 

components or with proteins in the extracellular fluid (Foulkes, 2000).  The Fluo-3 was 
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prepared as 2 uL aliquots of a 1 mM fluo solution in DMSO and frozen for future use in 

individual experiments.  At the time of the assay, 18 uL of complete RPMI were added to 

a 2 uL aliquot of Fluo-3 and mixed well to make a working Fluo-3 solution.  For a 

vehicle control treatment, 2 uL of DMSO were added to 18 uL of complete RPMI. 

For Fluo-3 dye loading, the 4 x 106 cells/mL suspension was removed from the 

incubator after 55 min and 1.0 mL aliquots of the cells were dispensed into Eppendorf 

tubes.  Three uL of the working solution of the Fluo-3 dye, DMSO vehicle or complete 

RPMI were added to the cells. Each tube was vortexed briefly and the cells returned to 

the incubator for 30 min.  After incubation, the cells were centrifuged at 6000 RPM for 

45 sec to recover the cell pellets.  The cells were washed twice more and then 

resuspended in 1.0 mL of pre-warmed (37oC) complete RPMI. Ten uL of dye-loaded or 

DMSO-treated cells were immediately added to the prepared mercury-loaded plates.  The 

plates were returned to a humidified incubator at 370C with 5% CO2 for 1 min, 5 min, 15 

min, 30 min.  An additional stain control included an aliquot of Fluo-3-loaded cells 

placed on ice immediately after the dye loading procedure.   Like other lymphocytic cells 

(Sommer et al., 1994), the YAC-1 lymphoma cell line appeared to transport organic acids 

like the Fluo-3 dye out of the cells.  Fluo-3-MFI in dye-loaded cells held on ice was not 

significantly different from untreated cells at 1, 5 and 15 min.  After 30 -90 min, Fluo-3-

MFI was greater in the cells held on ice than in untreated cells, but was still less than that 

obtained in any of the mercury treatment groups (data not shown).  By 4 hr, dye loading 

in cold cells was greater than in control or treated cells and this time point was dropped. 

 After incubation, the plates were immediately placed on finely crushed ice, 180 

uL of ice-cold RPMI/0.5% FBS added to each well and the plates centrifuged for 2 min at 
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1200 RPM to recover the cell pellets.  The cells were washed three times with ice cold 

media and the cell pellets were re-suspended by vortexing for 1-2 sec.  The plates were 

returned to the ice, seating the plate firmly to contact the ice and 80uL of ice cold plain 

RPMI were added to each well.  Data was acquired by flow cytometry within 90 min.   

4.4.11  Flow cytometric acquisition 

The Epics ELITE® flow cytometer (Beckman Coulter, Mississauga, ON) was 

configured with forward and side scatter parameters in linear and PMT2 and PMT3 

fluorescence channels in logarithmic modes. Each acquisition contained 1000 events.  

The PMT2 (YP/green channel) and PMT3 (PI/red channel) sensitivities were adjusted 

using single-stained dead cells to obtain peak fluorescence at the second decade (102).  

Compensation was set with dual-stained dead cells to obtain a uniform population in the 

upper right (YP+/PI+; see Fig. 4.1-B), untreated dual-stained live cells in the lower left 

(YP-/PI-; see Fig 4.1-A), and early apoptotic cells in the lower part of the upper left 

quadrant (YP+/PI-; see Fig. 4.1-B) of the PMT2/PMT3 dot plot.  The dot plots were 

analyzed with Expo32® software (Beckman Coulter) and the results expressed as the 

percentage of cells in each quadrant.  For tubulin, actin, CD3, PTyr, and calcium assays, 

mean fluorescence in the PMT2 channel was expressed as the percent control response. 

4.4.12  Statistical Analysis   

 All statistical analyses were performed using Prism® software (GraphPad 

Software Incorporated, San Diego, CA).   The significance of mercury and control 

treatment effects were analysed using the Kruskal-Wallis one-way ANOVA.  No post 

tests were performed if the overall p value for the ANOVA was > 0.05.  For all analyses, 
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treatment values differing from control values with p < 0.05 were considered 

significantly different. 

4.5  RESULTS 

4.5.1  YP/PI Dye Exclusion 

 Mercuric Chloride (HgCl2): After 1 or 5 min exposure to HgCl2, there were no 

effects on YAC-1 cell viability (see A, Figs. 4.2, 4.3-I and 4.3-II).  Effects on viability 

were clearly evident after 30 min at 70 – 100 uM (p < 0.001, see Fig 4.2-A). At 100 uM, 

approximately 70% of YAC-1 cells were non-viable, among which approximately 2/3 

were early apoptotic (YP+/PI-) and 1/3 were late apoptotic/necrotic (YP+/PI+; see figure 

4.3-III-A).  At 4 hr, HgCl2 continued to reduce viability at 50 – 100 uM (p < 0.001, see 

Fig. 4.2-A).  At 60 – 100 uM HgCl2, approximately 95% of cells were non-viable (see 

Fig 4.2-A), of which approximately 85% were late apoptotic/necrotic, and 15% early 

apoptotic (see Fig. 4.3-IV-A). 

 Para-Chloromercuribenzoate (p-CMB): P-CMB treatment did not affect 

viability after 1 or 5 min exposures (see B, Figs. 4.2, 4.3-I and 4.3-II).  After 30 min, 

while overall YAC-1 cell viability for the p-CMB treatment group remained greater than 

85% even at 100 uM (see Fig. 4.2-B), loss of viability was significant at 90 – 100 uM (p 

< 0.001).  The percentages of apoptotic and necrotic cells were generally equal among 

non-viable p-CMB-treated cells at this time (see Fig. 4.3-III-B).  After 4 hr, loss of 

viability for p-CMB-treated cells was significant at 30 – 100 uM (see Fig 4.2-B, p < 

0.001).  Despite the lack of effect in the first 30 min, by 4 hr approximately 95% of the 

YAC-1 cells were non-viable at p-CMB concentrations of 60 – 100 uM, of which 
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approximately 85% were late apoptotic/necrotic and 15% early apoptotic (see Fig. 4.3-

IV-B), similar to effects seen with HgCl2.   

 Methyl Mercuric Chloride (CH3HgCl): Reductions in viability were already 

evident at 1 min for CH3HgCl at 60 – 100 uM (p < 0.05, see Fig. 4.2-C). The loss of 

viability was consistent with early apoptosis with no necrosis, even where over 80 % of 

the YAC-1 cells were YP+ (see Figure 4.3-I-C).  After 5 min, CH3HgCl toxicity had 

increased, with reductions in viability at 40–100 uM (p < 0.05, see Fig. 4.2-C), and 70 – 

80% of cells were early apoptotic at 60–100 uM CH3HgCl, while only 5 – 10 % were late 

apoptotic/necrotic (see Figure 4.3-II-C).  As at 1 and 5 min, after 30 min 70 – 80% of 

cells remained YP+/PI- at 60 – 100 uM CH3HgCl, and 10% were late apoptotic/necrotic 

(Fig. 4.3-III-C).  After 30 min or 4 hr, YAC-1 viability was reduced at 30 – 100 uM (p < 

0.001 for each, see Fig. 4.2-C).  At 4 hr, approximately 40% of the almost 90% non-

viable cells were late apoptotic/necrotic (see Fig. 4.3-IV-C), and 60% remained early 

apoptotic at ≤ 80 uM.  At higher concentrations, the percentages of early apoptotic and 

late apoptotic/necrotic cells were approximately equal. 

 Thimerosal (TMS):  There was no effect of TMS treatment on viability after 1 or 

5 min (see Fig. 4.2-D).  TMS cytotoxicity increased at 30 min, with effects seen at 40 –

100 uM (p < 0.001, see Fig. 4.2-D) and viability reduced approximately 70% at 100 uM.  

Approximately 2/3 of non-viable TMS-treated cells were early apoptotic and 1/3 late 

apoptotic/necrotic, similar to the CH3HgCl treatment group (see Fig. 4.3-III-D).  By 4 

hrs, YAC-1 cell viability was reduced at 20 – 100 uM (p < 0.001), with 90% loss of 

viability at concentrations 50 – 100 uM (see Fig. 2-D).  As seen with CH3HgCl, despite 

early loss of viability, a slightly greater percentage of non-viable cells remained early 
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apoptotic at ≤ 60 uM TMS, while at higher concentrations more were late 

apoptotic/necrotic (see Fig. 4.3-IV-D).  

4.5.2  $$$$-Tubulin  

Indirect immunofluorescence detection of $-tubulin did not distinguish between 

monomeric subunits, dimers or polymerised protein.  The mean fluorescence intensity  

($-Tub-MFI) was therefore a measure of total $-tubulin levels in each cell. 

 Mercuric Chloride (HgCl2): After 1 or 5 min exposure to all concentrations of 

HgCl2, $-Tub-MFI in the YAC-1 cells was not significantly different from untreated 

control cells.  After 30 min, reductions in $-tubulin staining were noted at 70 – 100 uM 

(p < 0.05), with $-Tub-MFI reduced to 81 – 49% of control values.  After 4 hrs, $-Tub-

MFI was further reduced to 47 – 22% of control values at 60 – 100 uM (see Fig. 4.4-A).    

 Para-Chloromercuribenzoate (p-CMB): After 1 min exposure to all tested 

concentrations of p-CMB, $-Tub-MFI in the YAC-1 cells was not significantly different 

from untreated control cells.  After 5 min, $-tubulin staining was reduced to 67 – 64% of 

control values at 70 – 100 uM (p < 0.001).  Although the concentration/response curves 

for HgCl2 and p-CMB were very similar at 30 min, the overall p-value for the p-CMB 

regression was only 0.07.  But as with HgCl2, $-Tub-MFI in p-CMB-treated cells did not 

drop below 50% of control values at this time. After 4 hr, $-Tub-MFI was reduced to 47 

– 23% of control fluorescence at 50 – 100 uM (p < 0.001; see Fig. 4.4-B).    

Methyl Mercuric Chloride (CH3HgCl): Progressive effects on $-Tub-MFI were 

evident after CH3HgCl exposure at 20 – 100 uM for each of the 1 min, 5 min, 30 min or 4 

hr time periods (p < 0.001, 0.01, 0.001 and 0.05 respectively).  Reductions in $-tubulin 

staining to between 80 – 46% of control values were seen after just one min, with similar 
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reductions to 80 – 40% noted at 5 min.  After 30 min exposure, $-tubulin fluorescence 

was reduced to 25 – 10% of control levels at the highest concentrations tested and was 

virtually undetectable after 4 hrs (see Fig. 4.4-C). 

Thimerosal (TMS): Effects on $-Tub-MFI were evident at 10 – 100 uM TMS at 

all time periods (p < 0.001 for each).  After just one min, $-tubulin fluorescence was 

reduced to 71 – 47% of control values, and to 71 – 43% at 5 min.  After 30 min exposure, 

$-tubulin staining was reduced to 29 - 9% of control levels at the highest concentrations 

tested, and was virtually undetectable after 4 hr (see Fig. 4.4-D), similar to effects seen 

with CH3HgCl. 

4.5.3  F-Actin  

 Phalloidin binds primarily to polymerised filamentous actin (F-actin), but does 

not distinguish between large and small filaments (Cooper, 1987; Howard and Meyer, 

1984).  The MFI (Phall-MFI) was therefore as measure of F-actin levels in the cell.  

 Mercuric Chloride (HgCl2): There was a trend toward reduced Phall-MFI in the 

YAC-1 cells after 1 min exposure to all tested concentrations of HgCl2 (p = 0.09), but no 

such trend was evident after 5 min.  After 30 min or 4 hr, reductions were noted at 60 – 

100 uM (p < 0.001 and 0.05, respectively).  After 30 min, phalloidin fluorescence was 

reduced to between 76 – 41% of control values at these concentrations.  By 4 hr Phall-

MFI was almost undetectable, being reduced to 7% of control values at the highest 

concentrations tested (see Fig. 4.5-A).   

 Para-Chloromercuribenzoate (p-CMB): After a 1 min p-CMB exposure, Phall-

MFI was reduced to between 65 – 41% of control values at 50 – 100 uM (p < 0.05).  

Similar effects were seen after 5 min, with fluorescence reduced to 81 – 32% at 40 uM 
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and 60–100 uM (p < 0.01).  After 30 min, Phall-MFI was further reduced to 60 – 26% of 

control values at 30 – 100 uM (p < 0.05).  However, by 4 hr, effects were significant only 

at 50–100 uM (p < 0.001), with Phall-MFI reduced to 5% of control values, similar to 

effects seen with HgCl2 (see Fig. 4.5-B).  

Methyl Mercuric Chloride (CH3HgCl): There were no effects on Phall-MFI after 

1 min exposure to CH3HgCl.  Phall-MFI was reduced to 74 – 68% of control values at 

80–100 uM after 5 min (p < 0.05), with similar levels (73 – 61% of control values) seen 

at 30–100 uM after 30 min (p < 0.001). After 4 hr, Phall-MFI was 58 – 41% at 30 – 100 

uM (p < 0.001; see Fig. 4.5-C). 

Thimerosal (TMS): Phall-MFI was unchanged after 1 min exposure to TMS.  

After 5 min, phalloidin fluorescence was reduced to 81 – 60% of control values at 60 – 

100 uM (p < 0.01).  After 30 min, Phall-MFI was further reduced to 57 –3 5% at 30 – 100 

uM (p < 0.001).  By 4 hr, reductions to 49 – 23% of control levels were seen at 20 – 100 

uM (p < 0.05; see Fig. 4.5-D). 

4.5.4  Cell surface CD3 receptor expression    

 Mercuric Chloride (HgCl2): There was a trend toward reduced MFI in CD3-

stained YAC-1 cells (CD3-MFI) after 1 min exposure to HgCl2 (p = 0.11).  After 5 min, 

CD3 fluorescence in YAC-1 cells was reduced to 83 – 69% of control values at 40 – 100 

uM (p < 0.001).  However, after 30 min, there were again no significant effects.  At 4 hr, 

reductions similar to those seen at 5 min were noted at 50 – 100 uM, (79 – 65%; p < 0.01; 

see Fig 4.6-A).   

 Para-Chloromercuribenzoate (p-CMB): After 1, 5 or 30 min exposure to p-

CMB, CD3-MFI was not significantly different from untreated control cells. After 4 hr, 
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CD3-MFI was reduced to 80 – 65% of control values at 30 –1 00 uM (p < 0.01), over 

which range of concentrations CD3-MFI appeared to plateau (see Fig. 4.6-B).   

Methyl Mercuric Chloride (CH3HgCl): After 1 min, CD3 fluorescence in 

CH3HgCl-treated cells was increased to approximately 132 – 191% of control values at 

30 (p < 0.05) and 50–100 uM (p < 0.001).  However there were no effects on CD3-MFI 

after 5 or 30 min exposure to CH3HgCl.  After 4 hr exposure, CD3 staining was reduced 

to 75 – 48% of control values at 30–100 uM (p < 0.01; see Fig. 4.6-C).    

Thimerosal (TMS): Cell surface CD3 fluorescence was increased to 

approximately 127 – 214% of control values after 1 min exposure to TMS at 50 – 100 

uM (p < 0.05 and 0.001, respectively).  After 5 min, CD3-MFI remained elevated at 40 (p 

< 0.001) and 60 – 100 uM (p < 0.001), though to a lesser extent than seen at 1 min (128 –  

164%).  However, after 30 min, no effects were apparent.  After 4 hrs, CD3 fluorescence 

was reduced to 53 – 38% at 20 – 100 uM (p < 0.001), and as for p-CMB, appeared to 

have reached a plateau (see Fig. 4.6-D).  

4.5.5  Intracellular Phosphotyrosine (PTyr) Residues   

 Mercuric Chloride (HgCl2): The MFI in PTyr-stained YAC-1 cells (PTyr-MFI) 

was reduced to approximately 77 – 66% of control values at 70 – 100 uM after 1 min 

exposure to HgCl2 (p < 0.05) and to a slightly lesser extent (to 89 – 83%) after 5 min (p < 

0.001).  However, no effects were evident after 30 min or 4 hr exposures (see Fig. 4.7-A). 

 Para-Chloromercuribenzoate (p-CMB): After 1, 5 or 30 min exposure to p-

CMB, there were no effects on PTyr-MFI. After 4 hr, PTyr fluorescence increased to 

approximately 149 – 279% of control values at 50 – 100 uM (p < 0.05; see Fig. 4.7-B). 
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Methyl Mercuric Chloride (CH3HgCl):  Intracellular PTyr fluorescence was 

increased to approximately 127–227% of control values after 1 min exposure to 50 – 100 

uM CH3HgCl (p < 0.05).   After 5 min, PTyr-MFI was increased to 118 – 318% at 40 – 

100 uM (p < 0.05).  Increasing the exposure period to 30 min produced marked effects, 

increasing PTyr-MFI to 117 – 460% at 50 – 100 uM CH3HgCl (p < 0.05).  However, by 4 

hr, although there was a trend toward elevated PTyr MFI (p = 0.09), PTyr fluorescence 

had fallen (see Fig. 4.7-C).  

Thimerosal (TMS):  After 1 min exposure to TMS, PTyr-MFI was increased to 

152 – 264% of control values at 50–100 uM (p < 0.001).   Similar increases (to 136 – 

314%) were seen at ≥ 20 uM after 5 min (p < 0.001).  PTyr-MFI had fallen after 30 min, 

but was still increased approximately to 123 – 165% as compared to untreated cells at 10 

uM (p < 0.05) and 30 – 100 uM (p < 0.05).  After 4 hr, there were no effects of TMS on 

PTyr- MFI (see Fig. 4.7-D).   

4.5.6  Intracellular Calcium ([Ca2+]i)  

 Mercuric Chloride (HgCl2): Mean [Ca2+] i as assessed by Fluo-3-MFI, was 

increased approximately to approximately 114 – 175% of control values in YAC-1 cells 

exposed to 40 – 100 uM HgCl2 for 1 min (p < 0.05).  After 5 min exposure, Fluo-3-MFI 

increased to 142–221%, and after 15 min to 119 – 173%, over the same range of 

concentrations (p < 0.001 and 0.01 respectively).  After 30 min, more marked effects 

were evident at 50 – 100 uM, with Fluo-3-MFI increased to 176 – 463% as compared to 

untreated cells (p < 0.05; see Fig. 4.8-A). 

 Para-Chloromercuribenzoate (p-CMB):  Fluo-3-MFI was slightly elevated, 

reaching approximately 110 – 136% of control treatment values after 1 min exposure to 
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60 – 80 and 100 uM p-CMB (p < 0.05).  Similar small increases were seen after 5 min at 

40–100 uM (107 – 126%; p < 0.05) and 15 min at 60 – 100 uM (116 – 123%; p < 0.01).  

After 30 min, Fluo-3-MFI had increased more dramatically to 140 – 304% at 30 – 100 

uM p-CMB (p < 0.05; see Fig. 4.8-B).   

Methyl Mercuric Chloride (CH3HgCl):  After 1 min exposure to CH3HgCl, Fluo-

3-MFI increased to 208 – 288% of control values at 40 – 100 uM uM  (p < 0.01), and still 

further to 160 – 426% at 20 – 100 uM after 5 min exposure (p < 0.05).   Similar increases 

(to 158 – 365%) in Fluo-3-MFI were seen after 15 min exposures to 40 – 100 uM 

CH3HgCl (p < 0.05).  Fluo-3 fluorescence increased dramatically after 30 min exposure, 

with levels approximately 313 – 826% of values seen in untreated cells at 30 – 100 uM 

CH3HgCl (p < 0.01; see Fig. 4.8-C). 

Thimerosal (TMS):  Fluo-3-MFI increased 183 – 316% as compared to control 

values after 1 min at 20 – 100 uM TMS (p < 0.001).   After 5 min, slightly greater 

elevations in Fluo-3 fluorescence were noted at 10 – 100 uM TMS (to 242–356%; p < 

0.001).  After 5 min, increased Fluo-3-MFI (250 – 290%; p < 0.001) similar that seen at 1 

min was evident at 40 – 100 uM TMS.  After 30 min, Fluo-3 fluorescence increased 

markedly at 20 – 100 uM (p < 0.001), with levels increasing 272 – 505% as compared to 

untreated control cells (see Fig. 4.8-D). 

4.6  DISCUSSION 

After 4 hr incubation, the relative cytotoxicities of the mercury compounds were 

TMS  > CH3HgCl > p-CMB > HgCl2, consistent with other in vitro models (Shenker et 

al., 1992a; Shenker et al., 1992b; Van Horn et al., 1977).  The chemical structures of the 

mercury compounds likely account for the differences in toxicity, as chemically similar 
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forms of mercury (e.g. methyl-, ethyl- and phenylmercury) produce toxicity at equimolar 

mercury concentrations (InSug et al., 1997).  The relative toxicities of these compounds 

in vivo are HgCl2 > CH3HgCl > p-CMB > TMS (see Table 2.1), reflecting the influence 

of toxicokinetic parameters not present in vitro.  In human T lymphocytes, CH3HgCl is 

approximately 5-10 times more cytotoxic than HgCl2 (Shenker et al., 1992a; Shenker et 

al., 1993a), although less than a two-fold difference was observed in the dye exclusion 

assay reported here.    

Two general patterns of effects were observed, one for HgCl2 and p-CMB, the 

other for CH3HgCl and TMS, indicating the two groups of mercury compounds may 

induce cell death by distinct pathways, although individual differences are also evident in 

this and other assays.  Cell death proceeds rapidly to late apoptosis/necrosis for HgCl2 

and p-CMB. Both HgCl2 and p-CMB induced moderate reductions in CD3 expression.  

For HgCl2, these reductions first occurred within minutes, while for p-CMB they were 

not evident until the 4 hr time point.  The HgCl2 also induced a small, but almost 

immediate drop in PTyr-P, with levels returning to normal thereafter, while p-CMB had 

no effects until the 4 hr time point, at which time PTyr-P was increased two- to three-

fold.  Neither HgCl2 nor p-CMB affected $-tubulin levels at early time points, and 

significant $-tubulin staining remained after 4 hr treatment.  The HgCl2 effects on $-

tubulin and F-actin were quite similar in magnitude and time-course, while reductions in 

phalloidin staining were evident almost immediately with p-CMB treatment, coincident 

with a modest increase in [Ca2+] i and prior to effects in other assays.  After 4 hr, F-actin 

levels were almost undetectable in both HgCl2- and p-CMB-treated YAC-1 cells.  Both 

compounds increased [Ca2+] i within minutes, though levels remained less than twice 
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baseline levels after 15 min exposure.  With continued exposure, [Ca2+] i increased two- to 

five-fold over baseline levels.    

Different patterns were seen with CH3HgCl and TMS, both of which induced an 

almost immediate two-fold increase in CD3 fluorescence, with levels returning to 

baseline within minutes.  With continued exposure, CD3 fluorescence was reduced to 

approximately 50% of baseline values.  Both compounds also induced immediate two- to 

three-fold increases in PTyr-P, which returned toward baseline levels at 4 hr.  Both 

CH3HgCl and TMS induced rapid and complete loss of $-tubulin staining, while actin 

filaments dissociated only after reductions in $-tubulin staining, and to a lesser degree, 

with approximately 25% and 50% remaining in CH3HgCl- and TMS-treated cells, 

respectively.  Similarly, two- to three-fold increases in [Ca2+] i were noted after just 1 min  

exposure to either CH3HgCl and TMS.  The [Ca2+] i increased progressively with 

continued exposure, reaching levels five- to eight-fold greater than control values. 

The delay in onset of YP/PI dye uptake following HgCl2 or p-CMB exposure as 

compared to CH3HgCl may be a function of relatively slower passage of these mercurial 

compounds into the cell interior to produce effects.  Alternately, the onset of 

apoptosis/necrosis may be delayed following interactions at the cell surface/interior.  

Changes in CD3 expression, PTyr-P and [Ca2+] i preceded loss of microtubule or F-actin 

integrity and dye-uptake in HgCl2-treated cells, while F-actin appeared to be an early and 

specific target of p-CMB, with effects preceding dye uptake and all other changes.  In 

contrast, the effects produced by CH3HgCl are suggestive of rapid penetration of 

CH3HgCl to the cell interior, resulting in almost immediate induction of an early 

apoptotic (YP+/PI–) state, coincident with effects on all other assays except F-actin levels.  
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It is also possible rapid apoptosis was triggered by non-specific changes in membrane 

permeability, though such changes might be expected to be accompanied by influx of PI.  

The slightly slower onset of dye uptake in TMS-treated cells may reflect the degree of 

ionization of this compound, its larger size or protein binding of the ethylmercury moiety 

following dissociation from the parent TMS.  Nonetheless, TMS almost immediately 

increased CD3 expression, PTyr-P and [Ca2+] i, and reduced tubulin while sparing actin, 

similar to effects seen with CH3HgCl.  A slow progression from apoptosis through late 

necrosis was not unexpected, at least for CH3HgCl.  In previous studies, as many as 1/3 

of lymphocytes became apoptotic within 1 hr of exposure to CH3HgCl, yet only 2/3 were 

apoptotic after 24 hr of continued exposure (Shenker et al., 1997).  However, in all 

mercury treatments, a percentage of cells passed through the YP+/PI- stage before 

becoming YP+/PI+, perhaps indicating activation of both necrotic and apoptotic cell death 

pathways, with the dominant death phenotype at 4 hr determined by the relative speed of 

each process (Unal-Cevik et al., 2004).  

 The different patterns of cytotoxicity may reflect differences in mercury -induced 

apoptotic cascades seen in other cell types.  Both CH3HgCl and HgCl2 induce the 

development of a mitochondrial membrane permeability transition.  Cytochrome-c is 

released in to the cytosol in CH3HgCl-treated human T lymphocytes, with no 

accompanying changes in levels of the anti-apoptotic protein Bcl-2.  In contrast, HgCl2 

has no affect on cytochrome-c, but increases Bcl-2 (Shenker et al., 2000).  Activation of 

the caspase cascade and phosphatidylserine exposure on the plasma membrane during 

apoptosis requires ATP, while necrosis involves passive degradation (Buttgereit et al., 

2000); ATP depletion after initiation of apoptosis can lead to suspension of the apoptotic 
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process, with subsequent death by cell lysis (Volbracht et al., 1999). The Hg2+ ion 

increases cellular ATP levels early and at low concentrations, although ATP levels later 

drop with more prolonged exposures, particularly at higher concentrations of Hg2+ 

(Carranza-Rosales et al., 2005; Silles et al., 2005).  Both CH3HgCl and TMS reduce ATP 

production and increase non-specific membrane permeability, which may lead to 

increased intracellular calcium levels, and ultimately, cell death (Gukovskaya et al., 

1992; Kauppinen et al., 1989; Pelassy et al., 1994).    

Microtubules serve as scaffolds for apoptosis signaling pathways and modulate 

the activity of apoptosis-regulating molecules (Mollinedo and Gajate, 2003). Suppression 

of microtubule dynamics by either microtubule-disrupting or -stabilizing agents blocks 

the cell cycle at the metaphase/anaphase [G2/M] transition, leading to cell death by 

apoptosis (Abal et al., 2003; Jordan, 2002; Mollinedo and Gajate, 2003).  Microtubules 

appeared to be primary, or at least early, targets of CH3HgCl and TMS in this study, with 

marked loss of $-tubulin fluorescence preceding the onset of late apoptosis/necrosis.  The 

similarity between patterns of $-tubulin staining in CH3HgCl- and TMS-treated cells 

indicates that, like CH3HgCl, TMS may inhibit tubulin synthesis.  Both agents also 

appear to enhance tubulin degradation, producing a complete loss of $-tubulin staining 

within a matter of hours.  In contrast, in HgCl2- and p-CMB-treated cells, loss of 

microtubule integrity was coincident with dye uptake.  The moderate reduction in $-

tubulin levels produced by HgCl2 and p-CMB may be the result of partial inhibition of 

tubulin synthesis following microtubule disassembly and/or incomplete tubulin 

degradation.  Although actin filaments are relatively insensitive to the effects of some 

forms of mercury, actin appeared to a specific target of p-CMB.  However, the distinction 
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between primary or secondary effects must also take into account the influence of 

confounding factors affecting both microtubule and F-actin integrity, including 

intracellular calcium levels (Gremm and Wegner, 2000; Karr et al., 1980; O'Brien et al., 

1997).  Cytoskeletal dynamics are also coupled to lymphocyte signal transduction 

pathways (Sechi and Wehland, 2004) that may be targeted by mercury.  

It is postulated that HgCl2 produces aberrant aggregation and activation of cell 

surface receptors (Nakashima et al., 1994; Pu et al., 1995) and/or PKC activation (Badou 

et al., 1997), but TCR/CD3 receptor down-regulation has not been reported.  Down-

regulation of TCR/CD3 receptors is an early event following TCR triggering (Dietrich et 

al., 2002; Salio et al., 1997) or protein kinase C (PKC) activation (Cantrell et al., 1985), 

and is associated with increased PTyr-P (Kastrup et al., 2000; Lauritsen et al., 1998).  

Down-regulation of TCR/CD3 receptors may be achieved by increasing endocytic 

internalization, decreasing exocytosis (with or without increasing degradation of 

internalized receptors) or by a combination of both mechanisms (Liu et al., 2000).  When 

triggered by large amounts of antibody or agonist peptides, TCR/CD3 receptor 

expression is reduced 80% or more (Dietrich et al., 2002; Salio et al., 1997) as a result of 

increased intracellular retention and degradation of the TCR/CD3 complexes (Liu et al., 

2000).  In contrast, activation of intracellular PKC by phorbol esters increases TCR/CD3 

receptor internalization 10-fold (Menne et al., 2002) without affecting exocytosis or 

receptor degradation (Salio et al., 1997).  As a result, TCR/CD3 expression falls to 

approximately 50% of normal levels (Dietrich et al., 2002; Menne et al., 2002).  Specific 

inhibition of constitutive TCR/CD3 exocytosis by brefeldin A (Dietrich et al., 2002) or 

primiquine (Das et al., 2004) reduces surface TCR/CD3 expression only 20 or 30%, 
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respectively, similar to reductions produced by HgCl2 or p-CMB.  The Hg2+ ion may have 

nonetheless produced partial receptor down-regulation through agonist-like membrane 

interactions or PKC activation.  Indiscriminate cross-linking of multiple surface receptor 

types by Hg2+ or mercury-induced phosphorylation may not mimic the high receptor 

occupancy (Bachmann et al., 1997) or receptor clustering and assembly into lipid rafts 

(Miceli et al., 2001) needed for complete down-regulation.   

The early increase in CD3 and PTyr-P fluorescence seen with CH3HgCl and TMS 

was unexpected, as increased PTyr-P might otherwise be associated with TCR/CD3 

down-regulation.  In previous studies of TCR/CD3 expression, no increase was noted 2–5 

min following agonist triggering or PKC activation (Dietrich et al., 2002; Liu et al., 

2000).  However, in CH3HgCl or TMS-treated cells, CD3 fluorescence had returned to 

baseline within 5 min, and the initial increase could easily have been missed without an 

earlier time point.  T lymphocytes can up-regulate TCR/CD3 expression (D'Oro et al., 

1997) by decreasing receptor endocytosis (Lauritsen et al., 2001).  In resting 

lymphocytes, 70–85% of the cycling TCR/CD3 pool is found at the cell surface (Liu et 

al., 2000).  Decreased endocytosis would not therefore be expected to increase CD3 

expression two-fold unless the intracellular pool is larger in YAC-1 cells than in normal 

lymphocytes (Matsuda et al., 1994).  It is tempting to suggest the early increase in PTyr 

staining was responsible for later down-regulation of CD3 receptor expression.   

However, the reduction in CD3 expression was less than with receptor-triggered PTyr-P, 

although it was similar to that seen with PKC activation.   

Sustained PTK activation is also required to maintain increased [Ca2+] i in T 

lymphocytes following stimulation by APCs (Muller et al., 1999), but the converse does 
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not appear to be true, at least in TMS-exposed cells, where increased PTyr-P is not 

thought to be a consequence of increased [Ca2+] i (Kim et al., 2002).   As such, while 

observed simultaneously, the early increase in PTyr-P in CH3HgCl- and TMS-treated 

YAC-1 cells may have been responsible for the dramatic concomitant increase in Fluo-3 

fluorescence.  Alternately, non-specific increases in permeability (Gukovskaya et al., 

1992; Kauppinen et al., 1989) or activation of intracellular or membrane Ca2+ channels 

(Pelassy et al., 1994) could account for the observed effects.  The more modest increase 

in [Ca2+] i over the initial 15 min of HgCl2 exposure was consistent with previous studies 

in which HgCl2-exposed rat T lymphocytes showed a transient (15 min) rise in [Ca2+] i, 

thought to have resulted from PKC-dependent Ca2+ influx through L-type membrane 

channels (Badou et al., 1997).  However, TCR/CD3 down-regulation consistent with 

PKC activation was not seen in this study.  Further disruption of [Ca2+] i homeostasis, 

with levels up to 5-fold greater than baseline, was evident by 30 min, coincident with the 

onset of YP/PI dye uptake but prior to effects on actin or tubulin.   

The findings presented here indicate the two groups of mercury compounds 

induce cell death at different rates, possibly reflecting the more rapid penetration of 

CH3HgCl and TMS to the cell interior as compared to HgCl2 and p-CMB.  However, they 

also suggest the mercury compounds may have different specificities and produce toxic 

effects by different mechanisms. These patterns extend to effects on microtubules, actin 

and selected intracellular signalling components involved in the formation of the 

immunological synapse and lymphocyte activation/cell death.  Although a receptor-

mediated mechanism has been proposed for Hg2+, and microtubules are thought to be a 

primary target of CH3HgCl and TMS, mercury in all its forms is considered non-specific 
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and can interact directly with sulfhydryl (-SH) groups on targets other than membrane 

receptors, PKC, microtubules or other cellular components postulated to be specific 

targets of mercury.  Even if initially acting through these pathways, mercury may 

therefore produce more complex effects than agonist ligands or target-specific chemicals.  

Nonetheless, in this study, a relatively specific effect on F-actin was evident for p-CMB.  

However, at concentrations altering [Ca2+] i, HgCl2-treated YAC-1 cells show responses 

distinct from those produced by physiologic stimuli, including slightly reduced PTyr-P, 

and partial CD3 down-regulation.  The organomercurial compounds CH3HgCl and TMS 

produced high levels of PTyr-P and moderate down-regulation of CD3 expression, 

though neither produced CD3 down-regulation equivalent to that seen with agonist 

ligation.  It is therefore uncertain whether a receptor-based mechanism for Hg2+-related 

effects remains plausible, or whether such a stimulus can produce only an abortive signal.  

In addition, while microtubule deaggregation precedes cell death in CH3HgCl- and TMS-

treated cells, and appears to be accompanied by inhibition of tubulin synthesis, the 

distinction between primary and secondary effects of these mercury compounds is made 

more difficult by the concomitant appearance of markedly increased PTyr-P and [Ca2+] i.  

Additional investigations aimed at identifying the sequence of these events is warranted 

in order to define the initial targets of mercury toxicity and their impact upon lymphocyte 

signaling and immune regulation.   
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Figure 4.1: (A) Representative dot-plot of untreated YAC-1 lymphoma cells stained on ice with YOPRO-1 (YP) and propidium iodide (PI) dyes, 
showing greater than 90% viable cells (YP!/PI!) as highlighted within the oval; (B) Representative dot-plot of YAC-1 cells after 4 hr exposure to methyl 
mercuric chloride (CH3HgCl) and subsequent staining with YP and PI dyes, indicating viable cells (YP!/PI!), early apoptotic (YP+/PI!) cells within the 
small oval, and late apoptotic/necrotic (YP+/PI+) cells highlighted within the larger oval. 
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Figure 4.2: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C) and thimerosal 
(TMS; D) on YAC-1 lymphoma cell viability following in vitro exposures of 1 min, 5 min, 30 min or 4 hr duration, expressed as the percentage of the 
control treatment (RPMI) viable (YP!/PI!) cells, as measured by flow cytometry following incubation of mercury -treated cells with cell viability 
indicator dyes YOPRO-1 and propidium iodide on ice (n " SEM; n = minimum of 5 replicates for each data point; w, x, y and z indicate values differing 
significantly from control values for the 1 min, 5 min, 30 min and 4 hr exposure periods, respectively, p < 0.05). 
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Figure 4.3-I to IV: Effects of mercuric chloride (HgCl2, A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C) and 
thimerosal (TMS; D) on YAC-1 lymphoma cell death following in vitro exposures of 1 min (I), 5 min (II), 30 min (III) or 4 hr (IV) duration, expressed 
as the percentage of cells in each of three categories: (i) YOPRO-1 negative/propidium iodide negative (YP!/PI!; live), (ii) YP+/PI- (early apoptotic), 
and (iii) YP+/PI+ (late apoptotic/necrotic), as measured by flow cytometry following incubation of mercury -treated cells with the dyes on ice (n " SEM; 
n = minimum of 5 replicates for each data point). 
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Fig. 4.3 II 
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Fig. 4.3 III 



 

89 

A: HgCl2

0.0                                          
0

25

50

75

100

25 50 75 100 125

[Hg] (uM)

%
 C

el
ls

C: CH3HgCl

0.0                                          
0

25

50

75

100

25 50 75 100 125

[Hg] (uM)

B: pCMB

0.0                                          
0

25

50

75

100

25 50 75 100 125

[Hg] (uM)

%
 C

el
ls

D: TMS

0.0                                          
0

25

50

75

100

YP+/PI-
YP+/PI+
YP-/PI-

25 50 75 100 125

[Hg] (uM)

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

89 

Fig. 4.3 IV 
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Figure 4.4: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on YAC-1 lymphoma cell $-tubulin levels following 1 min, 5 min, 30 min or 4 hr in vitro exposures, expressed as a percentage of the control 
treatment (RPMI) fluorescence, as measured by flow cytometry following indirect immunofluorescent staining of intracellular $-tubulin (mean + SEM; 
n = minimum of 5 replicates for each data point; w, x, y and z indicate values differing significantly from control values at 1 min, 5 min, 30 min or 4 hr, 
respectively, p < 0.05]. 
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Figure 4.5: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on YAC-1 lymphoma cells F-actin levels following 1 min, 5 min, 30 min or 4 hr in vitro exposures, expressed as a percentage of the control 
treatment (RPMI) fluorescence, as measured by flow cytometry following staining of intracellular F-actin with fluorochrome-conjugated phalloidin 
(mean + SEM; n = minimum of 5 replicates for each data point, except 1 min, where n = 3; w, x, y and z indicate values differing significantly from 
control values at 1 min, 5 min, 30 min or 4 hr, respectively, p < 0.05]. 
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Figure 4.6: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on YAC-1 lymphoma cell surface CD3 receptor expression following 1 min, 5 min, 30 min or 4 hr in vitro exposures, expressed as a 
percentage of the control treatment (RPMI) fluorescence, as measured by flow cytometry following indirect immunofluorescent staining of CD3 
receptors (mean + SEM; n = minimum of 5 replicates for each data point; w, x, y and z indicate values differing significantly from control values at 1 
min, 5 min, 30 min or 4 hr, respectively, p < 0.05]. 
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Figure 4.7: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on YAC-1 lymphoma cells intracellular phosphotyrosine levels following 1 min, 5 min, 30 min or 4 hr in vitro exposures, expressed as a 
percentage of the control treatment (RPMI) fluorescence, as measured by flow cytometry following indirect immunofluorescent staining of intracellular 
phosphotyrosine residues (mean + SEM; n = minimum of 5 replicates for each data point; w, x, y and z indicate values differing significantly from 
control values at 1 min, 5 min, 30 min or 4 hr, respectively, p < 0.05]. 
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Figure 4.8: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on YAC-1 lymphoma cells intracellular calcium levels following 1, 5, 15 or 30 min in vitro exposures, expressed as a percentage of the 
control treatment (RPMI) fluorescence, as measured by flow cytometry following Fluo-3 calcium indicator dye loading (mean + SEM; n = minimum of 
5 replicates for each data point, except 15 min, where n = 2; w, x, y and z indicate values differing significantly from control values at 1, 5, 15 or 30 
min, respectively, p < 0.05]. 
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5.0      

CYTOSKELETAL POLARIZATION RESPONSES IN THE YAC-1 LYMPHOMA 

CELL LINE FOLLOWING EXPOSURE TO VARIOUS MERCURY 

COMPOUNDS. 

 

5.1  Relationship to overall project  

 The results and discussion included in Chapter 5 encompass Specific Aim IV.  

The results of this study were compared with those in Chapter 4, to assess whether effects 

on cytoskeletal components and viability preceded altered responses to polarised stimuli, 

as was anticipated for HgCl2, or were coincident with reduced polarization responses, as 

was expected for CH3HgCl or TMS. 

 5.2  ABSTRACT 

This study investigated the effects of exposures to 0.01 – 100 uM concentrations 

of various mercury compounds (mercuric chloride [HgCl2], methyl mercuric chloride 

[CH3HgCl], p-chloromercuribenzoate [p-CMB] and thimerosal [TMS; 

ethylmercurithiosalicylate]) on selected aspects of polarised signalling in T lymphocytes 

using an in vitro model of the immunological synapse.  YAC-1 lymphoma cells were 

conjugated to anti-CD3 antibody-coated 6.0 uM latex beads after 5 or 30 min mercury 

pre-treatment, fixed and the microtubules, microtubule organizing centre (MTOC) and 

Golgi apparatus identified by indirect immunofluorescent staining of beta tubulin and 
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fluorochrome-conjugated wheat germ agglutinin, respectively.  The percentage of cells 

forming conjugates with anti-CD3 or control beads, altering their morphology to wrap 

around or reorienting to lie adjacent to the attached bead were determined by light and 

fluorescent microscopy.  Two general patterns of responses were observed. After 5 min 

pre-incubation, both CH3HgCl and TMS produced moderate reductions in MTOC 

reorientation, with pronounced effects on morphologic responses.  These effects were 

accompanied by a decrease in microtubule and MTOC staining.  After 30 min, all bead-

binding variables were markedly inhibited by CH3HgCl or TMS, accompanied by a 

concentration-dependent loss of microtubules, MTOC and Golgi staining.   In contrast, 

neither HgCl2 nor p-CMB inhibited conjugate formation, morphologic responses, MTOC 

reorientation or the appearance of microtubules/MTOC in YAC-1 cells after 5 min pre-

treatment.  After a 30 min pre-incubation, all bead binding variables were reduced by 

HgCl2 and p-CMB, in the absence of the marked loss of microtubule, MTOC and Golgi 

staining seen with concentrations of CH3HgCl or TMS producing similar effects on bead 

binding.    

5.3  INTRODUCTION 

Cell-to-cell adhesion and intercellular communication are critical to the 

development, activation and maturation of the immune system. However, unlike solid 

organs, the cells of the immune system exist largely as independent units until called 

upon to coordinate their activities in response to an antigenic threat.  Interactions between 

cells of the immune system do not involve gap junctions or other means of coupling the 

respective cytoplasmic compartments (Singer, 1992).  Lymphocytes and corresponding 

antigen presenting cells (APCs; B lymphocytes, macrophages or dendritic cells) or target 
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(neoplastic or virus-infected) cells instead form a specialised three-dimensional adhesion 

and signalling complex termed the supramolecular activation complex (SMAC) or 

‘immunological synapse’ (Monks et al., 1998).  The immunological synapse presents a 

unique opportunity to study the effects of immunotoxicants such as mercury (Hg) in both 

time and space.  

 The key features of SMAC formation have been extensively studied in helper T 

(TH) and B lymphocyte (acting as APC) couples (Kupfer and Singer, 1989b; Kupfer et 

al., 1986b; Kupfer et al., 1987b).  Many of these are shared by activated cytotoxic T 

lymphocyte (CTL)/target (Kupfer and Dennert, 1984; Kupfer et al., 1985; Kupfer and 

Singer, 1989a) and natural killer (NK)/target (Kupfer et al., 1983) cell couples.  In the 

presence of an appropriate antigenic stimulus, antigen-derived peptide fragments are 

presented to TH lymphocytes by the major histocompatibility complex (MHC) on the 

surface of APCs.  TH lymphocytes bearing the corresponding clonotypic T-cell receptor 

(TCR) recognise and bind the peptide/MHC.  Antigen-specific activation of surface 

receptors creates a localised signalling complex, and triggers reorientation of the T 

lymphocyte cytoskeletal and secretory machinery (microtubule organizing centre or 

MTOC and the Golgi apparatus) toward the area of contact.  Soluble mediators may then 

be specifically released from the T lymphocyte directly in the synaptic junction (Kupfer 

et al., 1991), without unnecessary activation (Kupfer et al., 1994) or killing (Kupfer et al., 

1986a) of bystander cells.  The immunological synapse thus serves as a checkpoint for 

lymphocyte activation, providing a framework within which T lymphocytes may 

discriminate qualitative, quantitative and spatio-temporal differences in TH/APC cell 

surface receptor interactions: such differences may be translated as distinct calcium 



 

98 

signals, cytoskeletal rearrangements and lymphocyte responses (Anton van der Merwe et 

al., 2000; Grakoui et al., 1999a; Lanzavecchia and Sallusto, 2001). 

The immunological synapse prevents lymphocyte activation by inappropriate 

antigens, but it is vulnerable to chemical agents that do not act in a localised fashion.  

Modulation of protein kinase C (PKC) activity by bryostatin or bisindolylmaleimide can 

inhibit reorientation of the MTOC in CTL/target cell couples (Nesic et al., 1998).  

Similarly, mercury may interact with many of the components of the SMAC and 

downstream signalling cascades, including: membrane receptors (Nakashima et al., 1994; 

Pu et al., 1996; Rahman et al., 1993); protein kinase C (Badou et al., 1997), tyrosine 

phosphorylation (Rosenspire et al., 1998) or tyrosine phosphatases (Lander et al., 1992); 

microtubules (Brown et al., 1988; Miura et al., 1984; Sager et al., 1983); redox-sensitive 

signalling cascades (InSug et al., 1997; Shenker et al., 1993a; Shenker et al., 2002); and 

intracellular calcium (Badou et al., 1997; Smith et al., 1987; Tan et al., 1993).   

Various forms of mercury, both organic and inorganic, are known to be cytotoxic 

to lymphocytes and to produce immune dysregulation.  Mercuric chloride (HgCl2) and 

methyl mercuric chloride (CH3HgCl) reduce human peripheral lymphocyte viability in 

vitro (Shenker et al., 1992a; Shenker et al., 1993a), while the mercurial medical 

preservative thimerosal induces apoptosis in the Jurkat human T lymphocytic leukemia 

cell line (Makani et al., 2002).  Mercury can induce thymic atrophy (Kosuda et al., 1996); 

inhibit lymphocyte proliferation (Shenker et al., 1992b); suppress humoral  (Blakley et 

al., 1980; Shenker et al., 1993a) and cellular immunity (Nakatsuru et al., 1985), and 

natural killer activity (Cai et al., 1988); increase tumour frequency in mice exposed to 

carcinogens (Blakley, 1984); and increase the risk and severity of human malaria 
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infection (Silbergeld et al., 2000).  Mercury may also stimulate lymphocyte proliferation 

(Jiang and Moller, 1995, 1996; Loftenius et al., 1997; Pelletier et al., 1988), act as a 

hapten to stimulate mercury -specific lymphocytes (Stejskal et al., 1999), and can induce 

a transient, genetically determined Type-2 (T-helper-2-like or antibody-mediated) 

autoimmune disease in susceptible rats and mice (Druet et al., 1979b; Hultman and 

Hansson-Georgiadis, 1999; Pelletier et al., 1987a; Sapin et al., 1982).  Similar 

autoimmune dysfunction in humans is seen in mercury-exposed humans (Silva et al., 

2004). 

  To date there have been no investigation of mercury effects on the immunological 

synapse.  However, HgCl2 has been shown to alter intracellular signalling and inhibit 

polarization in response to chemotactic gradients in neutrophils (Contrino et al., 1988; 

Worth et al., 2001). Binding of critical lymphocyte surface receptors or intracellular 

targets by mercury may produce an aberrant non-polarised intracellular signal. The 

mercury-induced signal may mimic antigen-mediated signalling at certain mercury 

concentrations, but is likely not optimal under most circumstances.  This global signal 

may prevent normal reorientation of the lymphocyte signalling scaffold, cytoskeleton and 

secretory apparatus in response to physiologic stimuli.  In the absence of appropriate 

spatio-temporal stimuli by which to initiate reorientation, the lymphocyte response to 

mercury-mediated stimuli may simply be to activate cell death pathways.  Alternately, 

mercury may transiently activate a small percentage of cells in a non-antigen-specific 

fashion.  The global stimulus may also trigger non-specific release of soluble mediators 

and inappropriate activation of bystander cells.  Aberrant global signalling may thus 

provide a basis for both the immunosuppressive and -stimulatory effects of mercury. In 
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this study, the effects of four mercury compounds on selected aspects of polarised 

signalling were investigated using an in vitro model of the immunological synapse.     

5.4  MATERIALS AND METHODS 

Unless otherwise noted, all laboratory disposables were obtained from VWR 

International (Mississauga, ON) and all chemicals and reagents were purchased from 

Sigma-Aldrich (Oakville, ON). 

5.4.1  Preparation of mercury solutions 

 Mercury compounds having differing chemical properties (organic vs inorganic 

mercury, presumed or known ability to penetrate cell membranes and suspected or known 

effects on immune function) were selected for the study.  The four compounds selected 

were mercuric chloride (HgCl2), p-chloromercuribenzoate  (p-CMB), methyl mercuric 

chloride (CH3HgCl), and ethylmercurithiosalicyclate, also known as thimerosal (TMS).  

Stock solutions (10 mM) of each mercury compound were prepared in ddH2O.  The TMS 

was completely soluble in water, but HgCl2 (ICN Pharmaceuticals, Costa Mesa, CA) was  

dissolved in 500 uL 1 N HCl (al-Sabti, 1994); CH3HgCl (Alfa Inorganics, Ventron, 

Beverly, MA, USA) in 1 mL of acetone (al-Sabti, 1994); and p-CMB (ICN) in 2.0 mL of 

1N NaOH.  The solutions were filter-sterilized, aliquotted and frozen at -20oC until 

required.  Working dilutions of mercury treatments were prepared in complete RPMI 

medium (RPMI with L-glutamine supplemented with 10% fetal bovine serum [FBS; all 

Canadian Life Technologies, Burlington, ON] and 10 mM HEPES buffer) at two times 

(0.02 – 200 uM) the final concentration (0.01 – 100 uM).   
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5.4.2  Cultured cell line  

The YAC-1 murine Moloney virus-transformed lymphoma cell line (H-2a, CD3+, 

TCR , CD45+, CD4-/8-; (Lindvall et al., 1997)) was obtained from the American Type 

Culture Collection (TIB-160; ATCC, Rockville, MD).  The cells were grown in 

continuous culture in complete medium.  After washing, counting and determination of 

viability using trypan blue exclusion, the cell concentration was adjusted to 4 x 106 live 

cells/mL and the suspension incubated in a humidified incubator at 370C with 5% CO2 

for 60-90 minutes before use.     

5.4.3  Preparation of multi-well slides  

 Glass slides (2” x 3"; Corning) were coated with 15 uL of a 1 mg/mL solution of 

poly-L-lysine (PLL, >300 000 MW) in water and allowed to air dry.  Multi-well slide 

membranes were prepared from a commercial window coating film (Concord Window 

Film, Danbury, CT) by first cutting the film slightly smaller than the slide, and then using 

a plain paper hole punch to create the wells (8/slide).  The upper surface of the membrane 

was washed thoroughly with cotton swab soaked in 70% ethanol.  The lower surface was 

lightly coated with a thin film of warmed glycerol jelly (50 mL water, 5 g gelatin, 50 mL 

glycerol) applied with a cotton swab.  The membrane was firmly applied to a PLL-coated 

slide and left for at least one hour. 

5.4.4  Preparation of anti-CD3 antibody-, poly-L-lysine (PLL)- and 

mercury-treated anti-CD3-coated microbeads 

 Anti-CD3-coated latex microbeads were used as surrogate antigen-presenting 

cells to induce polarisation responses from YAC-1 lymphoma cells.  Antibody-coated 

and control beads were prepared with a passive adsorption technique under sterile 
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conditions, after the method of Lowin-Kropf et al (1998).  Fifty uL of 6.0 um red-dyed 

carboxylate-modified latex beads (~2 x 108 beads/ml; Polysciences, Warrington, PA) 

were placed in an micro-centrifuge tube (Eppendorf) with 950 uL plain phosphate 

buffered saline (PBS; Sigma-Aldrich) and centrifuged for 2 min at 6000 RPM.  The bead 

pellet was recovered and the beads were washed twice more and then resuspended in 1.0 

mL of PBS.  Ten µg (20 µL) of anti-CD3 antibody (0.5 mg/mL; Cedarlane, Hornby, ON) 

or 10 µL of a 1 mg/mL filter-sterilized solution of PLL were added.  The beads were 

placed on a rotary shaker at room temperature (RT) for 90 min.  The beads were washed 

two more times and resuspended in PBS with 1% BSA to block any unbound sites and 

then placed on a rotary shaker for 30 min.  The stained and blocked beads were washed 

three times in plain PBS, resuspended and stored for a maximum of four weeks in 1.0 mL 

plain PBS (to give a final bead concentration of 107 beads/mL).   

 For each experiment, an appropriate volume of the stock suspensions of anti-

CD3- or PLL-coated beads were diluted 1:4 in complete RMPI, to give a working 

dilution of 2 x 106 beads/mL.  The working dilution of the anti-CD3-coated beads was 

used to prepare mercury -treated control beads.  Aliquots of anti-CD3-coated beads were 

transferred to each of four micro-centrifuge tubes.  An appropriate volume of the 1 mM 

working dilutions of HgCl2, CH3HgCl, p-CMB or TMS was added to the bead suspension 

to give a final concentration of 100 uM Hg.  The beads were incubated with the mercury 

for 30 min, washed three times in plain RPMI for one min at 6000 RPM, and resuspended 

in complete media.  The prepared beads were placed in a humidified incubator at 37 C 

with 5% CO2 until required. 
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5.4.5  Preparation of 96-well plates and addition of cells  

 Ten uL of the four mercury solutions, control treatments or media were added to 

the appropriate well of a 96-well U-bottom tissue culture plate (Nunc).  The plate was 

placed in a humidified incubator at 37 C with 5% CO2 for a minimum of 30 min.  After 

pre-incubation, 10 uL of the prepared cell suspension were added to the mercury -loaded 

plates.  The plates were then returned to the incubator for 5 or 30 min for the anti-CD3 

bead conjugation assay. 

5.4.6  Cell-bead conjugation 

 At the end of the 5 or 30 min mercury incubation, 10 uL of prepared anti-CD3-, 

mercury-treated anti-CD3- or PLL-coated beads or media were added to the appropriate 

wells.  The plates were then vortexed gently for one min and centrifuged for ten min at 

1200 RPM to bring the cells and beads into contact.   After centrifugation, 180 uL of 

RPMI/0.5% FBS are added to each well and the plates centrifuged at 1200 RPM for two 

min to recover the cell pellets.  After removing 180 uL of supernatant, the plates were 

vortexed vigourously for 10 s.  The remaining cell-bead suspensions were quickly 

transferred to the appropriate well of the prepared multi-chambered slides and allowed to 

settle for 5 min.  The cells were fixed by adding 50 uL of 4% paraformaldehdye in PBS 

to each well for 30 min.  The paraformaldehyde was removed and the wells washed three 

times with 100 uL PBS.   

5.4.7  Fluorescence staining of microtubules and Golgi apparatus 

 The location of the Golgi apparatus was identified using fluorochrome-

congugated wheat germ agglutinin (WGA) after the method of Kupfer et al (1983) 

(Kupfer et al., 1983; see Fig 5.1-B).  The WGA binds to N-acetylglucosaminyl (NAG) 
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residues in the cell, primarily in the trans-Golgi compartment.   The cells were 

permeabilised by adding 20 uL of PBS containing 1% bovine serum albumin (BSA), 0.1 

% saponin and 0.1% NaN3 (PBS/BSA/Sap) to each well for 20 min. The permeabilisation 

solution was removed, and non-specific WGA binding sites on the endoplasmic reticulum 

were blocked by adding 20 uL of a 100 ug/mL Concanavalin-A (ConA) solution in 

PBS/BSA to each slide well for 20 min.  The ConA was removed and the wells washed 

once with plain PBS.  A 100 ug/mL solution of Texas-Red WGA (TR-WGA; Molecular 

Probes, Eugene, OR) was prepared in 0.15% Triton X-100 (J.T. Baker Chemical Co., 

Phillipsburg, NJ) in PBS containing 1% BSA (PBS/BSA) and centrifuged at 6000 RPM 

for 2 min to remove any protein aggregates. Twenty uL of the TR-WGA solution were 

added to each well for 30 min.  Stain control wells included unstained wells, wells 

stained only with TR-WGA (and no anti-tubulin antibody) and wells blocked with 10 

mM N-acetylglucosamine (NAG; Sigma-Aldrich) in PBS/BSA.  The TR-WGA was 

removed and the wells washed once with plain PBS.   

 The location of the microtubules (MT) and microtubule-organising centre 

(MTOC) were identified with an indirect immunofluorescence technique, after the 

method of Kupfer et al  (1982 and 1983; see Fig. 5.1-A).  Twenty uL of a 1:250 dilution 

of mouse anti-$-tubulin (anti-Tub) in PBS/BSA/Sap were added to each well for 30 mins.  

The anti-Tub was removed and the wells washed once with PBS.  The anti-Tub antibody 

was detected by adding 20 uL of a 1:250 dilution of Alexa®-488 goat-anti-mouse IgG 

antibody (GAM-488; Molecular Probes) in PBS/BSA/SAP for 30 min.  The GAM-488 

was removed and the wells washed once with plain PBS.  Stain control wells included 

unstained wells and wells stained with anti-Tub/GAM only (and no TR-WGA), or with 
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mouse-anti-hamster IgG isotype control antibody (MAH; Cedarlane, Hornby, ON) 

followed by secondary antibody staining.   

 The location of the well was marked on the underside of the slides before 

removing the membrane.  A drop of ProLong AntiFade® mounting medium (Molecular 

Probes) was added to each well and cover slips applied. 

5.4.8  Scoring of conjugate formation, morphologic responses and 

microtubule organizing centre (MTOC)/Golgi reorientation 

 The response of the YAC-1 cells to anti-CD3 or control bead binding was 

assessed by light and fluorescent microscopy.  The percentage of cells forming 

conjugates with anti-CD3 or control beads, the morphology of YAC-1 cells bound to 

beads, and the orientation of the MTOC/Golgi with respect to the bound bead were 

evaluated microscopically for each well using a 40X phase-contrast or 60X dry objective.  

To determine the percentage of cells forming conjugates, two hundred cells/well were 

counted and the number of cells binding beads (including cells with multiple beads 

attached or multiple cells contacting a single bead) were recorded.  Incidental contact was 

distinguished from stable conjugate formation first on the basis of continued contact 

through vortexing, staining and wash steps and also by observations of a slight 

deformation of the YAC-1 cell in the area of contact (as assessed by phase or differential 

interference contrast microscopy).   

To assess the morphologic and MTOC/Golgi polarization responses to bead 

binding, one hundred single-cell/single-bead conjugates were scored for each well.  

Morphologic responses (see Fig. 5.2) were scored as: (1) wrapped (where the cell contact 

area extended at least halfway around the circumference of the bead, as assessed by 
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placing the cross-hairs of the microscope photo mask over the bead); (2) touching (where 

area of contact was minimal and the YAC-1 cell retained a roughly spherical shape); or 

(3) elongated (where the area of contact was minimal or wrapped around the bead while 

the cell adopted an elongated morphology, such that the length of the cell exceeded two 

times its width).  The orientation of the MTOC/Golgi (see Fig. 5.3) was assessed relative 

to the position of the bead.  The MTOC/Golgi orientation was scored as: (1) adjacent 

(directly adjacent to or flattened onto the bead); (2) neutral (in the middle of the cell or on 

the side opposite the area of bead contact); or (3) elongated (stretched the length of cell 

with an elongated morphology).  Where the MTOC was not visualised, the location of the 

Golgi was scored, if present.  In cells where neither the MTOC or Golgi were seen, a ‘not 

identified’ score was assigned.  The results were expressed as the percentage of cells in 

each category.  The general appearance of the microtubules, MTOC and Golgi were also 

noted.  Because scoring of slides for these assays is extremely time-consuming, 60 uM 

was the maximum concentration of CH3HgCl, p-CMB and TMS tested at 30 min. 

5.4.9  Statistical Analysis   

 All statistical analyses were performed using Prism® statistical software 

(GraphPad Software Incorporated, San Diego, CA).   The [IC50] values for mercury 

effects ([Hg] producing 50% reduction as compared to control treatments) were obtained 

from non-linear regression of data after log transformation of x values ([Hg]), with T-

tests for comparison of [IC50] values.  The significance of mercury and control treatment 

effects were analysed using the Dunnett’s one-way analysis of variance (ANOVA).  No 

post tests were performed if the overall p value for the ANOVA was > 0.05.  For all 
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analyses, treatment values differing from control values at the level of p < 0.05 were 

considered significantly different. 

5.5.  RESULTS  

5.5.1  Formation of conjugates with anti-CD3 antibody-coated beads  

 At a cell:bead ratio of 2:1, approximately 40 and 33% of untreated YAC-1 cells 

formed stable conjugates with the anti-CD3-coated beads at the 5 and 30 min time points 

respectively (see Fig. 5.4-A and D, control values).  

 Mercuric Chloride (HgCl2): After 5 min pre-treatment with HgCl2, the 

percentage of YAC-1 cell-bead conjugates was not significantly different from untreated 

control cells.  After 30 min, effects were noted at 60 – 100 uM HgCl2 (p < 0.001), with an 

[IC50] of 47.1 uM (see Table 5.1 and Fig 5.5-A).    

 Para-Chloromercuribenzoate (p-CMB): After 5 min pre-treatment, p-CMB had 

no effect on YAC-1 conjugate formation.  After 30 min, conjugate formation was 

reduced at 30 – 100 uM p-CMB (p < 0.001), with an [IC50] of 22.3 uM (see Table 5.1 and 

Fig. 5.5-B).   

Methyl Mercuric Chloride (CH3HgCl): After 5 min pre-treatment, CH3HgCl 

produced no effects on conjugate formation.  However, CH3HgCl-treated cells acquired a 

rounded morphology and tended to form larger aggregates than untreated, HgCl2- or p-

CMB-treated cells.  Anti-CD3 beads located within the aggregates contacted many cells, 

increasing the percentage of conjugates scored.  After 30 min exposure, conjugate 

formation was reduced at 10 – 100 uM CH3HgCl (p < 0.05; [IC50] = 7.2 uM; see Table 

5.1 and Fig. 5.5-C). 
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 Thimerosal (TMS): Like CH3HgCl-treated cells, TMS-treated cells acquired 

rounded morphology and formed large aggregates, within which many cells contacted 

any entrapped beads.  There was a trend toward reduced conjugate formation after 5 min 

pre-treatment with TMS (overall p = 0.09).  The effects became more pronounced after 

30 min, with conjugate formation reduced at 10 – 100 uM TMS (p < 0.001; [IC50] = 3.8 

uM; see Table 5.1 and see Fig. 5.5-D). 

Bead treatment control groups: Pre-treatment of anti-CD3 beads with 100 uM of 

each of the mercury compounds had no effect on conjugate formation. The percentage of 

PLL-coated bead conjugates was also not significantly different from anti-CD3 bead 

conjugates.  However, only approximately 6 and 7% of untreated YAC-1 cells formed 

conjugates with isotype control anti-TNP antibody-coated beads at the 5 or 30 min time 

points, respectively (p < 0.001 for both 5 and 30 min; see Fig. 5.8-A and D).  

5.5.2  Morphology of cells conjugated to anti-CD3 antibody-coated beads  

 At either the 5 or 30 min time points, approximately 53% of untreated YAC-1 

cells forming stable conjugates with the anti-CD3-coated beads also engulfed the bead 

(see Fig. 5.4 B and E, control values), either partially (at least 50% of the circumference 

of the bead) or completely (occasionally engulfing more than one bead, data not shown). 

Mercuric Chloride (HgCl2): There was a trend toward a reduction in conjugated 

YAC-1 cells wrapping around the attached bead after 5 min pre-treatment with HgCl2 

(overall p = 0.14).  After 30 min, effects were noted at 40 – 100 uM HgCl2 (p < 0.05), 

with an [IC50] of 50.0 uM (see Table 5.2 and Fig 5.6-A).    

 Para-Chloromercuribenzoate (p-CMB): After 5 min exposure, p-CMB had no 

effect on YAC-1 morphologic responses.  The p-CMB inhibited bead-wrapping after 30 
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min, with significant reductions noted at 20 – 100 uM (p < 0.001; [IC50] = 23.5 uM; see 

Table 5.2 and Fig. 5.6-B). 

Methyl Mercuric Chloride (CH3HgCl): After 5 min pre-treatment with 

CH3HgCl, the percentage of YAC-1 cells wrapping around the attached bead was 

reduced at 20 – 100 uM (p < 0.05; [IC50] = 21.8 uM, see Table 5.2).  After 30 min 

exposure, morphologic responses were further reduced, with effects noted at 

concentrations of 10 – 100 uM CH3HgCl (p < 0.001; [IC50] = 5.7 uM; see Table 5.2 and 

Fig. 5.6-C). 

 Thimerosal (TMS): A 5 min exposure to TMS reduced YAC-1 morphologic 

responses at 10 – 100 uM (p < 0.05; [IC50] = 5.4 uM, see Table 5.2).  After 30 min the 

concentration response curve was somewhat different, although statistically, TMS effects 

on morphology were relatively unchanged, with an [IC50] value of 5.4 uM and effects 

again seen at 10 – 100 uM (p < 0.001; see Table 5.2 and Fig 5.6-D). 

Bead treatment controls: Pre-treatment of anti-CD3 beads with the mercury 

compounds had no effect on morphologic responses.  Morphologic changes in response 

to PLL or isotype control anti-TNP antibody-coated beads were reduced as compared to 

the anti-CD3 bead response, with between 3 and 7% of untreated wrapping around the 

bead at the 5 or 30 min time points (p < 0.001 for both PLL and TNP beads at 5 or 30 

min; see Fig. 5.8-B and E).   

5.5.3  Reorientation of the microtubule organizing centre (MTOC) and 

Golgi apparatus in response to anti-CD3 bead binding  

 Approximately 55 and 53% of untreated YAC-1 cells forming stable conjugates 

with the anti-CD3-coated beads also had the microtubule organizing centre (MTOC) 
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lying adjacent to the bead at the 5 and 30 min time points, respectively (see Fig. 5.8-C to 

F, control values).  

Mercuric Chloride (HgCl2): The percentage of conjugated YAC-1 cells 

reorienting the MTOC towards the attached bead was not significantly different from 

untreated control cells after 5 min pre-treatment with HgCl2.  No changes in the 

appearance of the microtubules, MTOC and Golgi were detectable microscopically at this 

time.  After 30 min, effects were noted at 60  - 100 uM (p < 0.001; [IC50] = 60.1 uM; see 

Table 5.3 and Fig 5.7-A).  These reductions in polarization responses were not 

accompanied by a loss of microtubule/MTOC staining, except at 80-100 uM HgCl2 (see 

Fig. 5.10-A), where the MTOC was not visualized in some cells though MTOC staining 

generally appeared normal (see Figs. 5.4-A to C).   Occasionally, failure to identify the 

MTOC was associated with increased peripheral tubulin staining (see 5.4-B) or the 

appearance of randomly oriented microtubules throughout the cell (see 5.4-C).  

Para-Chloromercuribenzoate (p-CMB): After 5 min exposure, p-CMB had no 

effect on YAC-1 cytoskeletal reorientation responses (see Fig. 5.7-B).  As for HgCl2, no 

changes in the appearance of the microtubules, MTOC and Golgi were detectable 

microscopically at this time.  The MTOC reorientation response was inhibited after 30 

min at 40 – 100 uM (p < 0.001; [IC50] = 41.2 uM; see Table 5.3 and Fig. 5.10-B).  These 

reductions in polarization responses were not accompanied by a loss of 

microtubule/MTOC staining.  Where it was not possible to identify the MTOC (see Fig. 

5.10-B), the loss of the MTOC was associated with increased peripheral tubulin staining 

or the appearance of randomly oriented microtubules throughout the cell (see Fig. 5.4-D).  
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Methyl Mercuric Chloride (CH3HgCl): There was a trend toward reduced 

reorientation responses after 5 min pre-treatment with CH3HgCl (p = 0.0585), but it was 

not possible to calculate an [IC50] value (see Table 5.3).  The effects were partly a 

function of a loss in microtubule staining, which was first evident at concentrations just 

above those reducing the percentages of YAC-1 cells exhibiting polarized reorientation 

responses.  The loss of microtubule staining progressed to complete loss of an identifiable 

MTOC or Golgi at higher concentrations of CH3HgCl (see Fig. 5.10-C).  After 30 min 

exposure, reorientation responses were significantly reduced, with effects noted at 20 – 

100 uM (p < 0.001; [IC50] = 18.2 uM; see Table 5.3 and Fig. 5.7-C).  The loss of 

polarization responses was associated with marked loss of microtubule and MTOC 

staining (see Fig. 5.4-E), and concomitant loss of Golgi staining (see Fig. 5.9 and 10-C). 

 Thimerosal (TMS): A 5 min exposure to TMS reduced YAC-1 reorientation 

responses at 20 – 100 uM (p < 0.05; [IC50] = 20.5 uM, see Table 5.3).  As for CH3HgCl, 

the effects reflected reduced microtubule staining (see Fig. 5.9 and 10-D).  After 30 min 

TMS effects noted at 10 – 100 uM (p < 0.001;  [IC50] = 9.3 uM, see Table 5.3 and Fig 

5.7-D).  Similar to CH3HgCl and the effects seen at 5 min, the loss of polarization 

responses at 30 min was associated with marked loss of microtubule and MTOC staining 

(see Fig. 5.4-F), and concomitant loss of Golgi staining (see Fig. 5.10-D). 

 Bead treatment controls: Pre-treatment of anti-CD3 beads with the mercury 

compounds had no effect on MTOC reorientation.  Reorientation of the MTOC toward 

PLL-coated beads occurred in approximately 22 and 18% of conjugated YAC-1 cells at 

the 5 or 30 min time points, respectively (p < 0.001 for both 5 and 30 min; see Fig. 5.8-C 

and F).  Among the untreated YAC-1 cells bound to isotype control anti-TNP antibody-
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coated beads, approximately 16 and 21% of had the MTOC adjacent to the bead at the 5 

or 30 min time points, respectively (p < 0.001 for both 5 and 30 min; see Fig. 5.8-C and 

F).   

5.6  DISCUSSION 

 The anti-CD3 coated latex microbeads provided a simple model to study the 

effects of mercury on the immunological synapse. However, as the anti-CD3 antibody is 

held rigid on the bead surface, the model does not allow for co-aggregation and migration 

of cell surface receptors as typically occurs during formation of cell-to-cell conjugates 

(Anton van der Merwe et al., 2000).  The YAC-1 cells nonetheless formed stable 

conjugates with the anti-CD3-coated beads and specifically induced both morphologic 

changes and reorientation of intracellular structures in response to bead binding.  While 

the YAC-1 cells formed conjugates with PLL-coated beads at levels similar to anti-CD3 

beads, wrapping of the beads did not occur.  In addition, reorientation of the MTOC was 

seen in less than 25% of cells bound to the PLL beads, a figure considered consistent 

with random MTOC orientation (Lowin Kropf et al., 1998).  Isotype control anti-TNP 

antibody-coated beads failed to induce conjugate formation, morphologic responses or 

MTOC reorientation. 

All forms of mercury tested reduced formation of cell-bead conjugates and 

morphologic and polarization responses to bead binding.  The CH3HgCl and TMS were 

the most potent inhibitors of bead-related variables, while the curves for the p-CMB data 

tended to fall intermediate to those produced by CH3HgCl and TMS and that of HgCl2.  

In addition, there were two general patterns of responses produced by the mercury 

compounds. The data plots, [IC50] values and effects on microtubules produced by 
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CH3HgCl and TMS were quite similar.  After 5 min pre-incubation, both CH3HgCl and 

TMS produced moderate reductions in MTOC reorientation, with pronounced effects on 

morphologic responses.  These effects were accompanied by a decrease in microtubule 

and MTOC staining.  After 30 min, all the bead-binding parameters were markedly 

inhibited at low concentrations of CH3HgCl or TMS, accompanied by a concentration-

dependent loss of microtubules and identifiable MTOC or Golgi complex.  The loss of 

discernable Golgi structures stained with WGA is likely due to coincident loss of the 

associated microtubule array.   The Golgi apparatus is actively maintained in a 

perinuclear position through the action of microtubules, molecular motor activity and 

other factors (Rios and Bornens, 2003).  The fate of the microtubules and Golgi complex 

are interlinked during normal mitotic cycling (Moskalewski and Thyberg, 1990) and also 

following treatment with microtubule-disrupting drugs (Robbins and Gonatas, 1964; 

Rogalski and Singer, 1984).  While the toxicity of CH3HgCl is thought to involve 

multiple mechanisms (Ponce et al., 1994), methylmercury has been shown to specifically 

attack microtubules in cultured cells at concentrations that inhibit cell growth (Brown et 

al., 1988; Cadrin et al., 1988; Imura et al., 1980; Sager, 1988; Wasteneys et al., 1988).  

TMS is also a known spindle poison capable of disrupting cellular microtubules 

(Voutsinas et al., 1997) and inhibiting in vitro tubulin polymerization (Brunner et al., 

1991; Wallin and Hartley-Asp, 1993).  Similarly, in this study, the loss of microtubule 

integrity in CH3HgCl- and TMS-treated YAC-1 cells appears to underlie the reductions in 

conjugate formation, and morphologic and cytoskeletal reorientation responses in the 

anti-CD3-coated bead binding assay.   
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In contrast, alterations in bead-binding parameters occurred without discernable 

loss of microtubules in HgCl2- and p-CMB-treated YAC-1 cells.   Neither HgCl2 nor p-

CMB inhibited conjugate formation, morphologic responses, MTOC reorientation or the 

appearance of microtubules/MTOC in YAC-1 cells after 5 min pre-treatment.  After 30 

min pre-incubation, all bead binding variables were reduced by HgCl2 and p-CMB, in the 

absence of the marked loss of microtubule, MTOC and Golgi staining seen with 

concentrations of CH3HgCl or TMS producing similar effects on bead binding.  This 

result is consistent with other studies, where mercuric ion (Hg2+) has been shown to 

disrupt microtubule networks only to the same extent as other cellular organelles (Imura 

et al., 1980).  As Hg2+ is a more potent inhibitor of in vitro tubulin polymerization than 

CH3HgCl (Imura et al., 1980; Miura et al., 1984), it would appear unlikely that free Hg2+ 

was present in the cytosol at the time when the loss of bead-binding responses was 

observed.   

However, inhibition of cytoskeletal polarization in HgCl2- and p-CMB-treated 

YAC-1 cells may nonetheless have been due to minor losses in assembled microtubules 

(particularly in the cortical regions most intimately involved in morphologic responses to 

cell-bead binding) not evident to the naked eye by fluorescence microscopy, similar to 

reductions in endocytosis and subsequent processing following low-dose colcemid 

exposure producing only minimal microtubule disruption (Caron et al., 1985).  Where the 

MTOC or Golgi were not clearly identifiable in HgCl2 and, in particular, p-CMB-treated 

cells, it was not due to loss of overall tubulin staining, but rather to loss of an identifiable 

MTOC within cells with otherwise normal microtubule architecture. Less commonly, 

failure of polarization was seen in cells with an apparently normal amount of 
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microtubules scattered haphazardly throughout the cell or concentrated at the periphery.  

The significance of this finding is unknown.  It is possible that these effects were 

artefacts of the fixation procedure, as cells with similar microtubule arrangements were 

occasionally seen in other treatment groups, or the effect may perhaps be secondary to 

disengagement of microtubules from the MTOC or cell membrane attachments, 

disruption of actin or other cytoskeletal components.  Alternately, stabilization of 

microtubules similar to that produced by chemotherapeutic agents like taxol (Abal et al., 

2003) could theoretically prevent the cytoskeletal remodelling necessary for polarization 

response.  However, in cytotoxic T lymphocytes (CTL), microtubule stabilization by 

taxol has no effect on CTL polarization or release or cytotoxic granules toward target 

cells (Knox et al., 1993).    

Morphologic and polarization results obtained after 30 min pre-incubation with 

higher concentrations of the mercury compounds must nonetheless be interpreted with 

caution as conjugate formation was almost completely inhibited: the results, particularly 

for higher mercury concentrations, often reflect scoring of less than 100 cell-bead 

conjugates.  As such, the results may be appear skewed, as seen, for example, by the 

trend to more normal MTOC polarization responses at 30 min for 50 and 60 uM TMS, 

following almost complete inhibition of the response at lower concentrations  (see Fig. 5 

D).  

The reductions in bead binding responses were not a function of mercury 

blockade of variable (binding) regions on the anti-CD3 antibody, as pre-treatment of the 

anti-CD3 beads with 100 uM concentrations of each of the mercury compounds did not 

affect conjugate formation, morphology or polarization responses in the YAC-1 cells.  It 
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is therefore considered unlikely that mercury effects in the bead conjugation assays 

occurred secondary to blockade of CD3 epitopes. 

Given the complexity of the formation of the immunological synapse, multiple 

mechanisms may underlie the inhibition of lymphocyte polarization by mercury 

compounds.  The cytoskeletal polarization response may involve multiple signalling 

components, from ligation and activation of cell surface receptors, to the formation of 

stable signalling scaffolds within the cell and creation of gradients of intracellular 

calcium across the cytosol – all of which may be influenced by mercury treatment.  The 

bead-binding assays may therefore produce results that may not correlate well with those 

seen in assays where the beads were not used.  However, the appearance of microtubules, 

the MTOC and Golgi in both conjugated and unconjugated cells were similar, suggesting 

mercury treatment did not have different effects as a result of bead binding.  

While a microtubule-centred mechanism for the effects of CH3HgCl or TMS on 

lymphocyte polarization responses is attractive, actin microfilament and microtubule 

networks are interconnected, and are also linked to the cell membrane through integrins 

and cytoskeletal linker proteins which participate in the formation of the immunological 

synapse and associated signalling complexes (Burn et al., 1988; Das et al., 2002; Faure et 

al., 2004; Kupfer et al., 1990).   However, reduced polarization responses in HgCl2- and 

p-CMB-treated YAC-1 cells may involve additional mechanisms, including subtle 

cytoskeletal alterations not apparent on a visual examination of cell-bead conjugates.  We 

are therefore quantifying tubulin and actin levels in YAC-1 cells exposed to the four 

mercury compounds, and assessing TCR/CD3 receptor expression, and intracellular 
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phosphotyrosine and calcium levels to further elucidate the mechanisms of the altered 

bead binding responses. 
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Table 5.1:  Effects of mercuric chloride (HgCl2,), methylmercuric chloride (CH3HgCl), 
p-chloromercuribenzoate (p-CMB) and thimerosal (TMS) on the percentage of YAC-1 
lymphoma cells forming conjugates with anti-CD3 antibody-coated 6.0 um latex beads 
following 5 or 30 min exposure in vitro with subsequent addition of the beads. The 
concentration producing 50% reduction in conjugate formation ([IC50]) was calculated by 
non-linear regression of concentration-response data normalized to % control response 
[% control response = (% Hg-treated cells conjugated with anti-CD3-coated beads - % 
cells binding isotype control antibody-coated beads)/(% treatment control conjugated 
cells - % cells binding control beads); n = minimum of five replicates for each data 
point]. 
 

 [IC50] (uM) 

Time (min) HgCl2 p-CMB CH3HgCl TMS 

5 --- --- --- --- 

30 47.1 22.3 7.2 3.8 
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Table 5.2:  Effects of mercuric chloride (HgCl2,), methylmercuric chloride (CH3HgCl), 
p-chloromercuribenzoate (p-CMB) and thimerosal (TMS) on the percentage of YAC-1 
lymphoma cells  (conjugated to anti-CD3 antibody-coated 6.0 um latex beads) wrapping 
around at least 50% of the circumference of the bead following 5 or 30 min exposure in 
vitro with subsequent addition of the beads. The concentration producing 50% reduction 
in cells wrapping the beads ([IC50]) was calculated by non-linear regression of 
concentration-response data normalized to % control response [% control response = (% 
Hg-treated cells wrapping around anti-CD3-coated beads - % cells wrapping isotype 
control antibody-coated beads)/(% treatment control wrapped cells - % cells wrapping 
control beads); n = minimum of five replicates for each data point]. 
 

 [IC50] (uM) 

Time (min) HgCl2 p-CMB CH3HgCl TMS 

5 --- --- 21.8 5.4 

30 50.0 23.5 5.7 5.3 
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Table 5.3:  Effects of mercuric chloride (HgCl2,), methylmercuric chloride (CH3HgCl), 
p-chloromercuribenzoate (p-CMB) and thimerosal (TMS) on the percentage of YAC-1 
lymphoma cells  (conjugated to anti-CD3 antibody-coated 6.0 um latex beads) having the 
microtubule organizing centre (MTOC) and/or Golgi apparatus oriented directly adjacent 
the bead following 5 or 30 min exposure in vitro with subsequent addition of the beads. 
The concentration producing 50% reduction in cells reorienting the MTOC next to the 
beads ([IC50]) was calculated by non-linear regression of concentration-response data 
normalized to % control response [% control response = (% Hg-treated cells reoriented 
toward anti-CD3-antibody-coated beads - % cells reoriented toward isotype control 
antibody-coated beads)/(% treatment control reoriented cells - % cells reoriented toward 
control beads); n = minimum of four replicates for each data point]. 
 

 [IC50] (uM) 

Time (min) HgCl2 p-CMB CH3HgCl TMS 

5 --- --- 60.1 20.5 

30 60.1 41.2 18.2 9.3 
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Figure 5.1:  Identification of (A) the microtubule organizing centre (MTOC; arrowheads) in YAC-1 lymphoma cells bound to anti-CD3 antibody-
coated 6 uM latex microspheres by indirect immunofluorescence staining of $-tubulin with mouse anti-$-tubulin antibody and Alexa-488®-conjugated 
goat-anti-mouse IgG (GAM) antibody and (B) counterstaining with Texas-Red®-conjugated wheat germ agglutinin (WGA) to identify the trans-Golgi 
(arrowheads). 
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Figure 5.2: Illustration of scoring of morphologic responses of YAC-1 cells to anti-CD3 bead binding.  Single cell/bead conjugates were scored as: (1) 
wrapped (where the cell contact area extended at least halfway around the circumference of the bead, as assessed by placing the cross-hairs of the 
microscope photo mask over the bead); (2) touching (where area of contact was minimal and the YAC-1 cell retained a roughly spherical shape); or (3) 
elongated (where the area of contact was minimal or wrapped around the bead while the cell adopted an elongated morphology, such that the length of 
the cell exceeded two times its width).  Conjugates of more than one cell or bead were not scored.   
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Figure 5.3: Illustration of scoring of microtubule organizing center (MTOC) orientation of YAC-1 cells to anti-CD3 bead binding.  Single cell/bead 
conjugates were scored as: (1) adjacent (directly adjacent to or flattened onto the bead; A); (2) neutral (in the middle of the cell or on the side opposite 
the area of bead contact; N); or (3) elongated (stretched the length of cell with an elongated morphology; E).  Where the MTOC was not visualised, the 
location of the Golgi was scored, if present. In cells where neither the MTOC or Golgi were seen, a ‘not identified’ score was assigned.  Conjugates of 
more than one cell or bead were not scored. 
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Figure 5.4:  Representative images of -$-tubulin fluorescence YAC-1 cells conjugated to anti-CD3 beads and treated for 30 min with (A) 90 uM 
mercuric chloride (HgCl2); (B) 100 uM HgCl2 (arrowhead indicates YAC-1 cell with increased peripheral staining and loss of identifiable microtubule 
organizing center [MTOC]); (C) 80 uM HgCl2 (arrowhead indicates YAC-1 cell with randomly oriented microtubules); (D) 60 uM p-
chloromercuribenzoate (p-CMB; arrowhead indicates YAC-1 cell with randomly oriented microtubules); (E) 30 uM methylmercuric chloride 
(CH3HgCl); (F) 20 uM thimerosal (TMS). 
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Figure 5.5: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on the percentage of YAC-1 lymphoma cells forming conjugates with anti-CD3 antibody-coated 6.0 um latex beads following 5 min or 30 
min exposure in vitro with subsequent addition of the beads (mean " SEM; n = minimum of 5 replicates for each data point; y indicates values differ 
significantly from control treatment values at 30 min, p < 0.05). 
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Figure 5.6: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on the percentage of YAC-1 lymphoma cells conjugated to anti-CD3 antibody-coated 6.0 um latex beads wrapping around at least 50% of the 
circumference of the bead following 5 min or 30 min exposure in vitro with subsequent addition of the beads (mean " SEM; n = minimum of 5 
replicates for each data point; x and y indicate values differ significantly from control treatment values at 5 and 30 min respectively, p < 0.05). 
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Figure 5.7: Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on the percentage of YAC-1 lymphoma cells conjugated to anti-CD3 antibody-coated 6.0 um latex beads with the microtubule organizing 
centre (MTOC) oriented directly adjacent the bead following 5 min or 30 min exposure in vitro with subsequent addition of the beads (mean " SEM; n 
= minimum of 4 replicates for each data point; x and y indicate values differ significantly from control treatment values at 30 min, p < 0.05). 
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Figure 5.8:  Effects of mercuric chloride (HgCl2)-, methylmercuric chloride (CH3HgCl)-, p-chloromercuribenzoate (p-CMB)- or thimerosal (TMS)-
treated anti-CD3 beads, or poly-L-lysine (PLL)- and anti-trinitrophenol antibody (TNP)-coated 6.0 um latex beads on the percentage of YAC-1 
lymphoma cells forming cell-bead conjugates (A, D), wrapping around at least 50% of the bead circumference (B, E) or having with the microtubule 
organizing centre (MTOC) oriented directly adjacent to the bead (C, F) following 5 (A, B, C) and 30 min (D, E,F) incubation with untreated media in 
vitro with subsequent addition of the beads;  (mean + SEM; n = minimum of 4 replicates for each data point; * and  ** indicate values differ 
significantly from anti-CD3 bead control values, p < 0.05 and p < 0.001, respectively). 
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Figure 5.9:  Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B) methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on the percentage of YAC-1 lymphoma cells conjugated to anti-CD3 antibody-coated 6.0 um latex beads having the microtubule organizing 
centre (MTOC) oriented in each of four positions [(i) directly adjacent to the bead, (ii) neutral (centrally located or on the opposite side of the cell from 
the bead), (iii) elongated (MTOC extends the length of the cell, which is itself elongated) and (iv) not identified] following 5 min exposure in vitro with 
subsequent addition of the beads (mean  + SEM; n = min of 4 replicates for each data point). 
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Figure 5.10:  Effects of mercuric chloride (HgCl2; A), p-chloromercuribenzoate (p-CMB; B) methylmercuric chloride (CH3HgCl; C), and thimerosal 
(TMS; D) on the percentage of YAC-1 lymphoma cells conjugated to anti-CD3 antibody-coated 6.0 um latex beads having the microtubule organizing 
centre (MTOC) oriented in each of four positions [(i) directly adjacent to the bead, (ii) neutral (centrally located or on the opposite side of the cell from 
the bead), (iii) elongated (MTOC extends the length of the cell, which is itself elongated) and (iv) not identified] following 30 min exposure in vitro 
with subsequent addition of the beads (mean  + SEM; n = min of 4 replicates for each data point). 
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6.0  

EFFECTS OF BRIEF EXPOSURES TO VARIOUS FORMS OF HG ON YAC-1 

LYMPHOMA CELL VIABILITY 

 

6.1  Relationship to overall project 

 This material comprises the results of Specific Aim I, objectives (a) and (b, 

referring to the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay of cell 

viability.  As this data was primarily used to establish appropriate ranges of mercury 

concentrations to be used for the assays to follow, or in the case of specific objective (b), 

did not produce any particularly interesting effects, it was not included in the first 

manuscript (Chapter 4).  However, there were some unexpected findings that did prove 

interesting.   

6.2  ABSTRACT 

Cell viability, as assessed by the methylthiazolyldiphenyl-tetrazolium bromide 

(MTT) assay, was examined in YAC-1 lymphoma cells 24 hr after 1 min – 4 hr 

exposures to 0.01 – 100 uM concentrations of various mercury compounds (mercuric 

chloride [HgCl2] methyl mercuric chloride [CH3HgCl], p-chloromercuribenzoate [p-

CMB] and thimerosal [TMS; ethylmercurithiosalicylate]).   All forms of mercury tested 

were toxic to the YAC-1 cell line at micromolar concentrations, ranging from 3.3 – 43.6 

uM, with distinct patterns of effects evident in each assay.  The concentration-response 
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curves in the MTT assay were similar 24 hr after 5 min, 30 min or 4 hr exposures for 

HgCl2 and CH3HgCl.  In contrast, both p-CMB and TMS exhibited enhanced 24-hr 

cytotoxicity with increasing exposure time. These findings indicate the two groups of 

mercury compounds may induce cell death by distinct pathways.   

6.3  INTRODUCTION  

 Refer to section 4.3, for relevant background information and rationale.  

6.4  MATERIALS AND METHODS 

6.4.1  Preparation of mercury solutions 

 The preparation of the mercury solutions is described in section 4.4.1 

6.4.2  Cultured cell line  

 The preparation of the YAC-1 lymphoma cell line is described in section 4.4.2. 

6.4.3  Preparation of 96-well plates and addition of cells  

 Ten uL of the four mercury solutions or media were added to the appropriate well 

of a 96-well U-bottom tissue culture plate (Nunc, VWR).  The plate was placed in a 

humidified incubator at 37 C with 5% CO2 for a minimum of 30 minutes.  After pre-

incubation, 10 uL of the prepared cell suspension were added to the mercury-loaded 

plates.  The plates were then returned to the incubator for 5 min, 30 min or 4 hr for the 

MTT assay. 

6.4.4  Methylthiazolyldiphenyl-tetrazolium Bromide (MTT) Assay 

  The MTT (3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide) assay 

(Mosmann, 1983) was used to assess cell viability 24 hr after brief mercury exposures, 

with modifications as noted below.  The MTT assay is a colorimetric assay system which 

measures the reduction of a tetrazolium component (MTT) into an insoluble formazan 
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product by the mitochondria of viable cells.   At the end of the mercury exposure, 180 uL 

of RPMI containing 0.5% fetal bovine serum (RPMI/0.5%FBS) were added to each well 

and the plates centrifuged at 1200 RPM for two min to recover the cell pellets.  The 

plates were washed three more times and the pellets resuspended in 100 uL complete 

RPMI.  The plates were returned to the incubator for a total of 24 hrs after the addition of 

cells to the mercury.  After 24 hrs, 50 uL of media were removed from each well.  Ten uL 

of 1% saponin (Sigma-Aldrich) in PBS were added to one well of untreated cells (lysis 

control) and the cell pellet resuspended by gentle trituration.  Five uL of MTT reagent (5 

mg/mL in phosphate buffered saline [PBS]; Sigma-Aldrich) were added to all wells and 

the plate returned to the incubator for four hr. After four hr of incubation, 45 uL of media 

were withdrawn from the wells.  One hundred uL of acid alcohol (isopropanol with 0.4 % 

1 N HCl) were added to each well to develop the blue colour of the MTT reagent.  The 

intensity of the colour reaction was recorded in a microplate reader (Molecular Devices, 

Sunnyvale, CA) in dual-filter mode, with the read filter set at 565 uM and the reference 

filter set at 630 uM.   The YAC-1 cell viability was expressed as an adjusted value with 

reference to the background value (lysis control) as follows: 

     Adjusted % Control Response = (Reading ! Background) 

          (No Treatment !Background) 

 

6.4.5  Modifications to MTT (methylthiazolyldiphenyl-tetrazolium bromide 

(MTT) assay methodology for addition of anti-CD3 beads 

The MTT assay was modified to maintain the relationship of cell numbers and 

mercury concentration with the addition of anti-CD-coated beads.  The mercury was 
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added to the plates as in basic MTT assay method (see Chapter 4 for basic method).   

Anti-CD3 coated beads were prepared as in Chapter 5.  

6.4.5.1  Viability of YAC-1 cells, with addition of anti-CD3 beads before 

exposure to mercury  

  The cells were prepared at a concentration of 8 x 106 cells/mL and the anti-CD3-, 

Hg-treated anti-CD3-, anti-TNP- or PLL–coated beads were prepared at 4 x 106 

beads/mL.  After the pre-incubation of the prepared cell suspension, equal volumes of 

cells and beads were mixed in 12 x 75 mm polystyrene tubes (Falcon, VWR), vortexed 

for 1 min and then centrifuged at 1200 RPM for 10 mins to bring the cells and beads into 

contact.  After centrifugation, the plates were vortexed vigourously for 10 secs to break 

up large cell-bead clumps and to resuspend the cell-bead pellets.  Ten uL of cell-bead 

mixture or complete RPMI were added to the appropriate wells, including all assay 

controls indicated in section 4.6.1.2 above.  The plates were gently vortexed for 10 secs 

and then returned to a humidified incubator at 37 C with 5% CO2 for 5 min, 30 min or 4 

hours.   At the end of the incubation period, the cell-bead pellets were gently re-

suspended and then 180 uL of RPMI/0.5% FBS was added to each well and the plates 

centrifuged for 2 min at 1200 RPM to recover the cell pellets. The cells were washed 

three more times and the cell pellets resuspended in 100 uL complete RPMI.  The plates 

were then returned to the incubator for a total of 24 hrs from the time of the addition of 

cells to the mercury. 

 After 24 hr, the plates were removed from the incubator and the remainder of the 

MTT assay was completed as described in section 4.6.1.2.  
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6.4.5.2  Viability of YAC-1 cells, with addition of anti-CD3 beads after 

exposure to mercury  

  Anti-CD3-, Hg-treated anti-CD3-, anti-TNP- or PLL–coated beads were prepared 

as in section 4.5.  The preparation of the cells and plates was as indicated in section 

4.6.1.1.    At the end of the pre-incubation periods for the cells and plates, 10 uL of YAC-

1 cells or complete RPMI (to create assay control wells similar to those in 4.6.1.1. and 

additional control wells for use of the anti-CD3 beads: beads in media without cells, 

untreated cells without beads, untreated cells with beads, untreated cells with Hg-treated 

beads, untreated cells with beads lysed before addition of the MTT reagent, and media 

only) were added to each well and the plates gently vortexed.  The plates were returned to 

a humidified incubator at 37 C with 5% CO2 for 5 min, 30 min or 4 hours.    

6.4.6  Statistical Analysis   

 All statistical analyses were performed using Prism® statistical software 

(GraphPad Software Incorporated, San Diego, CA).   The [IC50] values for mercury 

effects were obtained from non-linear regression of data after log transformation of x 

values ([Hg]), with T-tests for comparison of [IC50] values.  The significance of mercury 

and control treatment effects in the MTT assay were analysed using the Kruskal-Wallis 

non-parametric one-way analysis of variance and Dunn’s multiple comparison tests.  For 

all analyses, treatment values differing from control values at the level of p < 0.05 were 

considered significantly different. 

6.5  RESULTS 

6.5.1  Viability of YAC-1 cells, without addition of anti-CD3 beads  
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 All of the mercury compounds tested were toxic to the YAC-1 lymphoma line 

(see Figs 6.1 and 6.2), but the kinetics of cell death and the IC50 values (see Table 6.1), as 

measured by the MTT assay, differed significantly between the mercury treatments. 

 HgCl2 without anti-CD3 beads: After 5 min exposure to HgCl2, followed by 

washing and incubation for 24 hrs, YAC-1 cell viability was significantly reduced at 

concentrations ≥ 50 uM (p < 0.01, see Fig. 6.1-A; [IC50] = 46.0 uM, see Table 6.1).  After 

30 min or 4 hr, the cytotoxicity of HgCl2 ([IC50] = 41.6 uM and 43.6 uM, respectively; 

see Table 6.1) and concentration-response curves were similar to the effects produced 

following a five min exposure (see Fig 6.1-A and Table 6.1), although at 4 hr, YAC-1 

viability was reduced at ≥ 40 uM (p < 0.01, see Fig. 6.1-A).  

 Para-Chloromercuribenzoate (p-CMB) without anti-CD3 beads: After 5 min 

exposure, p-CMB had no effect on YAC-1 viability (see Fig. 6.1-B).  The p-CMB began 

to alter viability after 30 min, with significant reductions in viability at ≥ 40 uM (p < 

0.01, see Fig. 6.1-B), but the effects were not sufficient to calculate an [IC50].  The p-

CMB cytotoxicity continued to increase with exposure time.  The viability was reduced at 

≥ 30 uM after 4 hr  (p < 0.01, see Fig 6.1-B; [IC50] = 33.0 uM, see Table 6.1). 

Methyl Mercuric Chloride (CH3HgCl) without anti-CD3 beads: After a 5 min 

exposure, CH3HgCl reduced the 24-hr viability at ≥ 30 uM (p < 0.01, see Fig. 6.1-C; 

[IC50] = 28.5 uM, see Table 6.1).  After 30 min, the cytotoxicity ([IC50] = 25.1 uM, see 

Table 6.1) was similar to the effects produced following a 5 min exposure.  By 4 hr, the 

cytotoxicity of CH3HgCl had increased slightly ([IC50] = 20.7 uM), with effects seen at ≥ 

20 uM (p < 0.01), although the concentration-response curve was remarkably similar to 

that produced following a 5 or 30 min exposure (see Fig 6.1-C and Table 6.1).   
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 Thimerosal (TMS) without anti-CD3 beads: A 5 min exposure to TMS reduced 

YAC-1 cell viability at ≥ 30 uM (p < 0.05, see Fig. 6.1-D; [IC50] = 46.0 uM, see Table 

6.1).  Cytotoxicity associated with TMS increased with exposure time, with [IC50] values 

of 12.6 uM and 3.3 uM and effects seen at ≥ 20 and 10 uM after 30 min and 4 hr 

exposures, respectively (p < 0.001 for each; see Fig 6.1-D and Table 6.1). 

 Control Treatments without anti-CD3 beads:  There were no significant effects 

produced by the control treatments after either 5 min, 30 min or 4 hr exposure (see Fig. 

6.2). 

6.5.2  Viability of YAC-1 cells, with addition of anti-CD3 beads before 

mercury exposure 

 HgCl2 with anti-CD3 beads added before mercury exposure: After 5 min 

exposure, the 24 hr [IC50] of HgCl2 was 59.3 uM (see Fig 6.2-A and Table 6.2), a value 

significantly higher than when the beads were not added (see Table 6.4), and significant 

reduction in viability was seen only at ≥ 70 uM.  Prior addition of anti-CD3 beads 

increased 30 min HgCl2 toxicity ([IC50] = 35.0 uM; see Tables 6.2. and 6.4) as compared 

to addition of the beads after mercury.  After 4 hr, the toxicity of HgCl2 ([IC50] = 44.5 

uM; see Table 6.2), was significantly different from that produced by 30 min exposure, 

but similar to that produced in the absence of anti-CD3 beads (see Table 6.4). 

p-CMB with anti-CD3 beads added before mercury exposure:  The p-CMB had 

no effect on overall YAC-1 viability after a 5 min exposure (see Fig. 6.2-B), and it was 

not possible to calculate an [IC50].  The toxicity of p-CMB increased after 30 min 

exposure, sufficient to calculate an [IC50] of 44.2 uM, similar to that obtained in the 

absence of the beads (see Tables 6.2 and 6.4).  After 4 hr of mercury exposure, p-CMB 
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was the only treatment for which addition of anti-CD3 beads significantly affected 

toxicity, which was reduced relative to the value obtained without beads ([IC50] = 41.1 

uM; see Tables 6.2 and 6.4).  

 CH3HgCl with anti-CD3 beads added before mercury exposure:  The addition of 

beads before a 5 min exposure to CH3HgCl produced effects on viability ([IC50] = 29.4 

uM]) similar to results seen without addition of anti-CD3 beads (see Fig. 6.2-C and 

Tables 6.2 and 6.4).  After 30 min exposure, the toxicity of CH3HgCl ([IC50] = 17.7 uM) 

was significantly greater than that obtained at 5 min and after 30 min exposure without 

the addition of beads (see Tables 6.2 and 6.4).   

 TMS with anti-CD3 beads added before mercury exposure: Prior addition of 

anti-CD3 beads increased the toxicity of a 5 min TMS exposure ([IC50] = 17.7 uM; see 

Fig. 6.2-D and Table 6.2), producing significant reductions in viability at ≥ 20 uM.  After 

30 min, the toxicity of TMS ([IC50] = 8.4 uM) was significantly greater than that 

produced by 5 or 30 min exposures without beads, although the 4 hr [IC50] of 1.9 uM was 

similar to that obtained in the absence of the beads (see Table 6.4). 

 Cell and bead treatment control groups with beads added before mercury 

exposure: Neither control treatments (concanavalin A and anti-CD3), or prior addition of 

Hg-treated bead controls or anti-CD3 beads or bead treatment control PLL- or anti-TNP 

isotype-control antibody-coated beads any effect on YAC-1 viability (see Fig 6.4). 

6.5.3  Viability of YAC-1 cells, with addition of anti-CD3 beads after 

mercury exposure  

 HgCl2 with anti-CD3 beads added after mercury exposure: After 5 min exposure 

to HgCl2, the 24 hr [IC50] was 60.8 uM (see Fig. 6.5-A and Table 6.3), a value 
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significantly higher than when the beads were not added (see Table 6.4), and significant 

reduction in viability was seen only at ≥ 70 uM.  After 30 min, the toxicity of HgCl2 

([IC50] = 42.6 uM) was significantly different from that seen at 5 min, but not from that 

produced by an equivalent exposure without the addition of anti-CD3 beads (see Table 

6.4).  After 4 hrs, the toxicity of HgCl2 ([IC50] = 40.8 uM) was not significantly different 

from that produced by 30 min exposure (see Table 6.4). 

 p-CMB with anti-CD3 beads added after mercury exposure: As seen in the 

absence of anti-CD3 beads, p-CMB had no effect on YAC-1 viability after a 5 min 

exposure, except for reductions seen at 70 and 100 uM (see Fig. 6.5-B).  After 30 min, 

the [IC50] was 47.0 uM, and not significantly different from values obtained without the 

beads at 30 min (see Tables 6.3 and 6.4). After 4 hr exposure, p-CMB toxicity was 

increased ([IC50] = 23.5 uM), and was the only treatment for which the [IC50] was 

reduced relative to the value obtained without beads at this time (see Table 6.4). 

CH3HgCl2 with anti-CD3 beads added after mercury exposure: The addition of 

the beads did not alter CH3HgCl toxicity after 5 min exposure, with YAC-1 viability 

reduced at ≥ 40 uM ([IC50] = 29.2 uM), similar to that seen without beads (see Fig. 6.5-C 

and Tables 6.3 and 6.4).  After 30 min, the toxicity of CH3HgCl ([IC50] = 26.4 uM) was 

not significantly different from values obtained at 5 min or from those obtained without 

the beads at 30 min.  The toxicity of CH3HgCl was increased after 4 hr, to give an IC50 

value of 17.1 uM, a value similar to that obtained in the absence of the beads (see Tables 

6.3 and 6.4).  

 TMS with anti-CD3 beads added after mercury exposure: The addition of the 

beads increased 5 min TMS toxicity ([IC50] = 15.2 uM) and significant reduced viability 
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at ≥ 20 uM (see Fig. 6.5-D and Tables 6.3 and 6.4).  The toxicity of TMS after a 30 min 

exposure was not significantly different from that obtained at 5 min or without the beads 

([IC50] = 11.8 uM).  After 4 hr, the toxicity of TMS was increased, to give an [IC50] of 

1.9 uM, similar to that obtained in the absence of the beads (see Table 6.4).    

 Cell and bead treatment control groups with anti-CD3 beads added after 

mercury exposure: Neither control treatments (concanavalin A and anti-CD3), Hg-

treated bead controls (anti-CD3 beads pre-treated with 100 uM solution of each of the 

mercury compounds tested) or anti-CD3 beads or bead treatment control poly-L-lysine 

(PLL)- or anti-TNP isotype-control antibody-coated beads any effect on YAC-1 viability 

(see Fig. 6.6).   

6.6  DISCUSSION  

 The MTT assay was used to establish appropriate mercury concentrations for use 

in other assays.  Initially, concentrations from 0.01 to 50 uM, with exposure periods of 30 

mins and 4 hrs were selected.  However, in subsequent assays some mercury effects 

appeared very rapidly, and additional 1, 5 and 15 min exposures were added for some 

assays, and the maximal concentration extended to 100 uM for all treatment groups. 

 After an initial 4 hr incubation with the mercury compounds, with or without the 

addition of anti-CD3 beads, the relative toxicities at 24 hrs post-treatment, as expressed 

by the [IC50] values (see Chapter 4) were TMS  > CH3HgCl > p-CMB > HgCl2.  The very 

high toxicity of TMS (6-fold greater than CH3HgCl) is consistent with other models.  As 

little as 0.02 – 0.1 uM TMS has been shown to be toxic corneal endothelial cultures 

(Takahashi, 1982; Van Horn et al., 1977).  These findings may be of concern given than 

TMS has been included in vaccines as a preservative – intramuscular injection of TMS 
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bypasses GI absorption and hepatic metabolism, distributing the compound directly to the 

injection site and any associated inflammatory response.   

 In addition, each of the mercury compounds produced complete loss of YAC-1 

cell viability within a very narrow range of concentrations (10 – 30 uM).  This result may 

reflect the homogeneity of the cell line with respect to redox status, pro- vs. anti-

apoptotic signalling components, and protective reserves (anti-oxidants, glutathione, etc.) 

or other factors that influence mercury toxicity.  Alternatively, mercury may be 

sequestered by binding to thiol (-SH; sulfhydryl) and other binding sites on albumen or 

other non-diffusible proteins in the medium (Foulkes, 1974), with free mercury present in 

the media only after saturation of albumen and other proteins.   Mercury toxicity may 

also be a threshold phenomenon, requiring a certain proportion of membrane or 

intracellular targets to be bound by mercury before effects are seen.  Regardless of the 

actual mechanism responsible for the steep concentration-response curves, it was evident 

that all subsequent assays needed to be carefully optimised to provide meaningful 

comparisons of the results.   

 Perhaps most unexpected was the lack of effect of increasing exposure time on 

the toxicity of HgCl2 or CH3HgCl.  The concentration response curves for the 5 min, 30 

min and 4 hr treatments were virtually identical (see Figure 6.1-A and -C) and the [IC50] 

values were not significantly different (except at 4 hrs for CH3HgCl; see Table 6.1).  In 

contrast, TMS, and p-CMB in particular, showed significant effects of increasing 

exposure times.  The ethylmercury moiety has been shown to be the toxic principle of 

TMS.  The toxicity of ethyl- and methylmercury are thought to be quite similar (Magos, 

2001; Shenker et al., 1997).  The clear difference in the kinetics of toxicity of TMS and 
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CH3HgCl in the MTT assay would suggest that ethylmercury does not rapidly dissociate 

from TMS in the YAC-1 cell model.  As both p-CMB and TMS contain carboxyl groups, 

the effects may nonetheless reflect the degree of ionisation of these compounds at pH = 

7.4 or their larger size, slowing their diffusion and entry into the cell, and thus the speed 

at which these compounds diffuse across the lipid cell membrane to produce intracellular 

effects.  The effects of p-CMB were delayed to a greater extent than for TMS, possibly as 

a function of lower overall toxicity and/or greater ionisation.  During optimisation of the 

assay protocols, p-CMB toxicity was observed to be markedly influenced by the pH of 

the media (as was HgCl2), however TMS toxicity appeared to be much less sensitive to 

pH.  The assay protocol was modified to include a 30 min incubation of the mercury -

loaded 96-well plates in a CO2 incubator to equilibrate the pH of all wells prior to 

addition of the cells.  The results may also represent a certain degree of reversibility of p-

CMB and TMS effects, such that with continued exposure, the cells become irreversibly 

committed to die.   

 The very rapid effects of HgCl2 are more difficult to explain, given that HgCl2 

was also the least toxic of the mercury compounds studied.  This result may to some 

extent reflect the mechanics of the assay: the wash steps to remove the mercury after the 

initial exposure ‘pulse’ require a significant amount of time (around 15 min).  During the 

initial wash steps some residual mercury may still be present in the media and thus the ‘5 

min’ exposure may therefore more accurately reflect an 8 to 10 min exposure – 

thereafter, further exposure to HgCl2 does not appear to increase toxicity – though what 

may be occurring in that 8 - 10 minute period remains to be explained.  
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 Theoretically, both HgCl2 and CH3HgCl could enter cells equally rapidly – with 

the lower toxicity of HgCl2 being a function of different potential target sites.  Diffusion 

of uncharged HgCl2 from protein-free media through lipid bilayers has been 

demonstrated (Gutknecht, 1981).  However, HgCl2 is thought be present mainly as an 

anionic polychloride in physiologic solutions (Foulkes, 1991).  Given the very high 

affinity of metal ions for proteins and other biological molecules, it is unlikely that Hg2+ 

diffuses through membranes or ion channels passively without reacting with their 

components, or with proteins in extracellular fluid.  Membrane transfer of metals may 

instead be mediated by diffusible metal complexes (Foulkes, 2000).   In other in vitro 

models of HgCl2 toxicity, mercury was found only in membranes for 15-30 minutes post-

exposure (Nordlind, 1985).  After longer exposures, most mercury was still bound to 

membranes (Endo et al., 1995a).  Maximal uptake of mercury by human peripheral T 

lymphocytes occurred within 1 to 3 hr following CH3HgCl treatment; in contrast, 

mercury uptake was not maximal until 3-6 hr after HgCl2 exposure (Shenker et al., 

1992b).  These findings would suggest Hg2+ does not easily pass through membranes to 

the cytosol. 

 The lack of effect of increasing duration of HgCl2 or CH3HgCl exposure may 

have nonetheless been a function of membrane binding and subsequent internalisation of 

mercury through normal membrane trafficking.   Upon exposure to HgCl2, external 

membrane binding sites (–SH, –OH, etc.) may have been saturated (or binding reached 

some threshold level) at HgCl2 concentrations greater than 40 uM.  Upon subsequent 

internalization of membranes, a lethal ‘hit’ (immediate or delayed) may have been 

delivered to the interior of the cell, and further accumulation of mercury was not required 
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for cell death.  The mechanism of such a ‘hit’, whether somehow related to membrane-

bound mercury or to mercury that is subsequently released from internalised membranes, 

is not known. 

 The anti-CD3 beads were to be added to the YAC-1 cell cultures as surrogate 

antigen presenting cells in subsequent assays (see Chapter 5).  As such, it was important 

to assess their effects on viability in the MTT assay.  A cell:bead  ratio of 2:1 was found 

to be optimal, generally resulting in a maximum of 30 % of cells binding beads under 

most circumstances.  If the proportion of beads was increased, the cells and beads tended 

to form large aggregates, making assessment of the YAC-1 cell orientation virtually 

impossible (see Chapter 5) and potentially shielding cells at the the centre from mercury 

exposure.  At the 2:1 cell:bead ratio, the addition of anti-CD3 beads had no effect on 

viability of untreated YAC-1 cells.  This was not entirely unexpected, as unlike some cell 

lines, the virus-transformed YAC-1 cell line proliferates (possibly maximally) without 

cytokine or antigenic stimulation and with only 30% cell-bead conjugates, any effect 

related to the anti-CD3-coated beads was not expected to be dramatic.   

 It was also of interest to determine whether a polarized stimulus could ‘rescue’ 

cells from mercury toxicity.   All of the mercury compounds tested continued to be toxic 

to the YAC-1 lymphoma line when anti-CD3 beads were added immediately before or 

after the mercury exposure, similar to effects seen where the anti-CD3 beads were not 

added.  However, some effects of bead addition were noted at 5 min, where the toxicity 

of HgCl2 was slightly reduced and TMS toxicity was slightly increased.  Some additional 

effects of addition of beads were also noted with 30 min exposures to HgCl2, CH3HgCl 

and TMS and following 4 hr exposure to CH3HgCl and p-CMB.   These effects may have 
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been a function of the variability of the MTT assay and the small number of replicates; if 

genuine, the effects of anti-CD3 binding appeared most likely to affect the outcome of 

mercury treatment if occurring within minutes of, or possibly before, the initiation of 

mercury treatment.  For subsequent bead-binding assays, the beads were nonethless 

added immediately before mercury treatment, as the effects of mercury on early 

signalling events were of primary interest for this study.  Regardless, some caution in 

interpreting the effects of HgCl2 and TMS in bead-binding assays was warranted 

(although cytoskeletal effects, at least, appeared similar in both bound and unbound cells; 

see Chapter 5). 

The findings presented here may indicate the two groups of mercury compounds 

induce cell death by distinct pathways, but despite overall similarities in patterns of 

cytotoxicity produced by HgCl2 and CH3HgCl, and by p-CMB and TMS, the individual 

differences in the pattern of effects produced by each these compounds may reflect 

interactions with different cellular targets leading to cell death. Those different targets 

may, in turn, reflect the physicochemical properties of each of the compounds, and the 

ease with which they pass from the membrane to the cell interior 
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Table 6.1: Effects of mercuric chloride (HgCl2), p-chloromercuribenzoate (p-CMB), 
methylmercuric chloride (CH3HgCl) and thimerosal (TMS) on YAC-1 lymphoma cell 
24-hr viability, as measured by the colorimetric MTT (methylthiazolyldiphenyl-
tetrazolium bromide) assay of mitochondrial activity, following in vitro exposures of 5 
min, 30 min or 4 hr duration, expressed as the concentration producing 50% reduction in 
viability (24-hr [IC50]; calculated by non-linear regression of concentration-response 
data; n = minimum of 5 replicates for each data point). 
 

 [IC50] (uM) 

Time HgCl2 p-CMB CH3HgCl TMS 

5 min 46.0 a, x -- 28.5 b, x 36.1 c, x 

30 min 41.6 a, x -- 25.1 b, x 12.6 c, y 

4 hr 43.6 a, x 33 b 20.7 c, y 3.3 d, z 
a, b, c, d Indicate significant differences due to treatment effects: where letters for the different mercury 

treatments of a specific time period are the same, the [IC50] values between treatments do not 
differ; different letters indicate the values are significantly different from each other, p  <  0.05. 

 
x, y, z Indicate significant differences due to exposure time: where letters for different time periods for a 

mercury treatment are the same, the [IC50] values between time periods do not differ; different 
letters indicate the values are significantly different from each other, p < 0.05. 
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Table 6.2:  Effects of mercuric chloride (HgCl2), methylmercuric chloride (CH3HgCl), p-
chloromercuribenzoate (p-CMB) and thimerosal (TMS) on the 24 hr-viability of YAC-1 
lymphoma cells previously conjugated to anti-CD3 antibody-coated 6.0 um latex beads, 
following in vitro exposures of 5 min, 30 min or 4 hr duration, expressed as the 
concentration producing 50% loss of viability (24-hr [IC50]; calculated by non-linear 
regression of concentration-response data; n = minimum of 5 replicates for each data 
point), as measured by the colorimetric MTT (methylthiazolyldiphenyl-tetrazolium 
bromide) assay of mitochondrial activity.  
 

 [IC50] (uM) 

Time HgCl2 p-CMB CH3HgCl TMS 

5 min 59.3 a, x -- 29.4 b, x 17.7 c, x 

30 min 35 a, y 44.2 b, y 
17.9 c, y 8.4 d, y 

4 hr 44.5 a, z 41.2 a, y 25.9 b, x 5.5 c, y 
 
a, b, c, d Indicate significant differences due to treatment effects: where letters for the different mercury 

treatments of a specific time period are the same, the [IC50] values between treatments do not 
differ; different letters indicate the values are significantly different from each other, p < 0.05. 

 
x, y, z Indicate significant differences due to exposure time: where letters for different time periods for a 

mercury treatment are the same, the [IC50] values between time periods do not differ; different 
letters indicate the values are significantly different from each other, p < 0.05. 
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Table 6.3:  Effects of mercuric chloride (HgCl2,), methylmercuric chloride (CH3HgCl), 
p-chloromercuribenzoate (p-CMB) and thimerosal (TMS) on YAC-1 lymphoma cell 24-
hr viability following in vitro exposures of 5 min, 30 min or 4 hr duration with 
subsequent addition of anti-CD3 antibody-coated 6.0 um latex beads, expressed as the 
concentration producing 50% loss of viability (24-hr [IC50]; calculated by non-linear 
regression of concentration-response data; n = minimum of 5 replicates for each data 
point) as measured by the colorimetric MTT (methylthiazolyldiphenyl-tetrazolium 
bromide) assay of mitochondrial activity.  
 

 [IC50] (uM) 

Time HgCl2 p-CMB CH3HgCl TMS 

5 min 60.8 a, x -- 29.2 b, x 15.2 c, x 

30 min 42.6 a, y 47.0 a, x 
26.4 b, x 11.8 c, x 

4 hr 40.8 a, y 23.5 b, y 17.1 c, y 1.9 d, y 
 
a, b, c, d Indicate significant differences due to treatment effects: where letters for the different mercury 

treatments of a specific time period are the same, the [IC50] values between treatments do not 
differ; different letters indicate the values are significantly different from each other, p < 0.05. 

 
x, y, z Indicate significant differences due to exposure time: where letters for different time periods for a 

mercury treatment are the same, the [IC50] values between time periods do not differ; different 
letters indicate the values are significantly different from each other, p < 0.05. 
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Table 6.4: Comparison of the effects of mercuric chloride (HgCl2; A), methylmercuric 
chloride (CH3HgCl; B), p-chloromercuribenzoate (p-CMB; C) and thimerosal (TMS; D) 
on the 24-hr viability of YAC-1 lymphoma cells with either no anti-CD3 antibody coated 
6.0 latex beads added, with anti-CD3 beads added after mercury (Hg) exposure or where 
the YAC-1 cells have previously been conjugated to anti-CD3 beads, following in vitro 
mercury exposures of 5 min, 30 min or 4 hr duration, expressed as the concentration 
producing 50% loss of viability (24-hr [IC50]; calculated by non-linear regression of 
concentration-response data), as measured by the colorimetric MTT 
(methylthiazolyldiphenyl-tetrazolium bromide) assay of mitochondrial activity. 
 

 A: HgCl2   B: CH3HgCl 

 No 
Beads 

Beads 
After 
Hg 

Beads 
Before 
Hg 

  No 
Beads 

Beads 
After 
Hg 

Beads 
Before 
Hg 

5 min 46.0 60.8 59.3  5 min 28.5 29.2 29.4 

Sig Diff a x y y  Sig Diff x x x 

         

30 min 41.6 42.6 35  30 min 25.1 26.4 17.9 

Sig Diff x x y  Sig Diff x x y 

         

4 hr 43.6 40.8 44.5  4 hr 20.7 17.1 25.9 

Sig Diff x x x  Sig Diff x x y 

         

 C: p-CMB   D: TMS 

 No 
Beads 

Beads 
After 
Hg 

Beads 
Before 
Hg 

  No 
Beads 

Beads 
After 
Hg 

Beads 
Before 
Hg 

5 min n/a n/a n/a  5 min 36.1 15.2 17.7 

Sig Diff x x x  Sig Diff x y y 

         

30 min n/a 47 44.2  30 min 12.6 11.8 8.4 

Sig Diff x x x  Sig Diff x x y 

         

4 hr 33 23.5 41.2  4 hr 3.3 1.9 5.5 

Sig Diff x y z  Sig Diff x x x 

a Sig Diff (significant differences): Where letters in no bead, beads after mercury and beads before 
mercury treatment columns of a time period are the same the [IC50] values between treatments do 
not differ; different letters indicate the values are significantly different from each other, p < 0.05.  
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Figure 6.1: Effects of mercuric chloride (HgCl2, A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C) and thimerosal 
(TMS; D) on YAC-1 lymphoma cell 24-hr viability following in vitro exposures of 5 min, 30 min or 4 hr duration, as measured by the colorimetric 
MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay of mitochondrial activity [adjusted % control response = (reading - background)/(RPMI 
control treatment - background); mean " SEM; n = minimum of replicates for each data point; x, y and z indicate values differing significantly from 
control values for the 5 min, 30 min and 4 hr exposure periods, respectively, p < 0.05]. 
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Figure 6.2: Effects of concanavalin-A (ConA) and anti-CD3 antibody control treatments on YAC-1 lymphoma cell 24-hr viability after in vitro 
exposures of 5 min (A), 30 min (B) or 4 hr (C) duration, as measured by the colorimetric MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay of 
mitochondrial activity [% control response = (reading - background)/(RPMI control treatment - background); mean " SEM; n = minimum of 5 replicates 
for each data point]. 

156 

A: 5 min

Con
tro

l
an

ti-
CD3 

0.
1 

an
ti-

CD3 
1

an
ti-

CD3 
10

 
Con

A 0
.5

Con
A 5

Con
A 5

0

0

50

100

150

Cell Treatment Control (ug/mL)

%
 C

o
n

tr
o

l V
ia

b
ili

ty

B: 30 min

Con
tro

l
an

ti-
CD3 

0.
1 

an
ti-

CD3 
1 

an
ti-

CD3 
10

Con
A 0

.5
Con

A 5
Con

A 5
0

0

50

100

150

Cell Treatment Control (ug/mL)

%
 C

o
n

tr
o

l V
ia

b
ili

ty

C: 4 hr

Con
tro

l
an

ti-
CD3 

0.
1 

an
ti-

CD3 
1

an
ti-

CD3 
10

Con
A 0

.5
Con

A 5
Con

A 5
0

0

50

100

150

Cell Treatment Control (ug/mL)

%
 C

o
n

tr
o

l V
ia

b
ili

ty



 

157 

A: HgCl2

0.0                                          
-50

0

50

100

150

25 50 75 100 125

[Hg] (uM)

%
 C

on
tr

ol
 V

ia
bi

lit
y

 y, z
 y

 x, y, z
 y, z

 x, y, z
 x, y, z

 x, y, z

C: CH3HgCl

0.0                                          
-50

0

50

100

150

25 50 75 100 125

[Hg] (uM)

x, y, z

x, y, z
x, y, z

x, y, z

x, y, z
x, y, z

x, y

B: pCMB

0.0                                          
-50

0

50

100

150

25 50 75 100 125

 y, z
 y, z

 y, z

 y, z
 y, z

 y, z

 y

[Hg] (uM)

%
 C

on
tr

ol
 V

ia
bi

lit
y

 y

D: TMS

0.0                                          
-50

0

50

100

150
5 min
30 min
4 hr

25 50 75 100 125

[Hg] (uM)

x, y, z
x, y, z

x, y, z

x, y, z

x, y, z

x, y, z

x, y, z

x, y, z

x, y, z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3: Effects of mercuric chloride (HgCl2, A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C) and thimerosal 
(TMS; D) on the 24-hr viability of YAC-1 lymphoma cells previously conjugated to anti-CD3 antibody-coated 6 uM latex beads, following in vitro 
exposures of 5 min, 30 min or 4 hr duration, as measured by the colorimetric MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay of 
mitochondrial activity [adjusted % control response = (reading - background)/(RPMI control treatment - background); mean " SEM; n = minimum of 5 
replicates for each data point, except at 4 hr, where n = 3; x, y and z indicate values differing significantly from control values for the 5 min, 30 min and 
4 hr exposure periods, respectively, p < 0.05]. 
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Figure 6.4: Effects of 5 min, 30 min or 4 hr in vitro exposures to concanavalin-A (ConA) and anti-CD3 antibody control treatments and addition of 
anti-CD3 beads (A-C) or addition of mercuric chloride- (HgCl2), methylmercuric chloride- (CH3HgCl), p-chloromercuribenzoate-(p-CMB) or 
thimerosal- (TMS) treated anti-CD3-coated, poly-L-lysine- (PLL) or anti-trinitrophenol- (TNP) coated  6.0 um latex beads to untreated cells after 5 min, 
30 min or 4 hrs (D-F) on YAC-1 lymphoma cell 24-hr viability, as measured by the colorimetric MTT (methylthiazolyldiphenyl-tetrazolium bromide) 
assay of mitochondrial activity [adjusted % control response = (reading!background)/(no treatment!background); mean + SEM; n = minimum of 5 
replicates for each data point, except at 4 hr, where n = 3]. 
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Figure 6.5: Effects of mercuric chloride (HgCl2, A), p-chloromercuribenzoate (p-CMB; B), methylmercuric chloride (CH3HgCl; C) and thimerosal 
(TMS; D) on the 24-hr viability of YAC-1 lymphoma cells conjugated to anti-CD3 antibody-coated 6 uM latex beads following in vitro exposures of 5 
min, 30 min or 4 hr duration, as measured by the colorimetric MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay of mitochondrial activity 
[adjusted % control response = (reading - background)/(RPMI control treatment - background); mean " SEM; n = minimum of 5 replicates for each data 
point; x, y and z indicate values differing significantly from control values for the 5 min, 30 min and 4 hr exposure periods, respectively, p < 0.05]. 
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Figure 6.6: Effects of 5 min, 30 min or 4 hr in vitro exposures to concanavalin-A (ConA) and anti-CD3 antibody control treatments (A-C) or addition of 
mercuric chloride- (HgCl2), methylmercuric chloride- (CH3HgCl), p-chloromercuribenzoate- (p-CMB) and thimerosal- (TMS) treated anti-CD3-coated, 
poly-L-lysine- (PLL) and anti-trinitrophenol-(TNP)-coated 6.0 uM control beads to untreated cells after 5 min, 30 min or 4 hrs (D-F) on  24 -hr viability 
of YAC-1 lymphoma cell previously conjugated to anti-CD3-coated beads (A-C) or bead treatment controls (D-F), as measured by the colorimetric 
MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay of mitochondrial activity [adjusted % control response = (reading - background)/(no 
treatment - background); mean + SEM; n = minimum of 5 replicates for each data point, except F, n = 2]. 
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7.0    GENERAL DISCUSSION 

7.1 Premise 

The potential for immunotoxicants, and in particular mercury, to produce failure 

of pattern recognition within the localized supramolecular activation complex (SMAC) or 

‘immunological synapse’ formed between antigen-presenting cells (APCs) and 

responding lymphocytes was the focus of this project.   

While antigenic stimuli are restricted to the localized SMAC, mercury may 

interact non-specifically with thiol (-SH) groups throughout the cell.  Non-localized 

mercury impacts may perhaps mimic antigen-mediated signaling at certain concentrations 

and for short periods; however, the effects are likely not optimal under most 

circumstances, creating interference with normal signaling pathways and activating cell 

death pathways to protect the body against inappropriate immune activation.   

Further, the physico-chemical properties of various forms of mercury may 

influence the events leading to loss of viability and the manner of cell death, which may 

in turn underlie the different effects of various forms of mercury on immune function.   

7.2 The Trouble with Targeting Mercury Effects 

Mercury is a non-specific toxicant, binding to sulfhydryl (-SH; and to a lesser 

extent other) functional groups on virtually any protein on or in the cell.  Unfortunately, 

even in experiments designed to identify particular targets of mercury, it is often difficult 

to discern whether such effects are direct or indirect, as multiple extra- and intracellular 
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targets may be triggered more-or-less simultaneously.  Some of the difficulty in 

identifying specific targets for mercury toxicity is also likely a function of physico-

chemical differences between organic and inorganic mercury.  Some targets (e.g. 

membrane receptors) are considered specific for divalent Hg2+, while other downstream 

signaling components may be targets of all forms of mercury, though the kinetics of such 

effects may differ.  In some cases, cell free models have been used to try to isolate 

mercury effects at the molecular levels; however, the effects may differ from those seen 

whole cell models, as seen with the inhibition of microtubule assembly by Hg2+ and 

CH3HgCl.  

Despite these difficulties, the functional consequences of non-specific mercury 

effects on the immunological synapse may nonetheless give some insight as to how 

mercury toxicity is manifested.  The immunological synapse (or supramolecular 

activation complex; SMAC) is a four-dimensional pattern-recognition framework within 

which the lymphocyte can distinguish dangerous from harmless antigenic stimuli and 

target the effector response accordingly.  But while antigenic stimuli are restricted to the 

localized area of contact created by the immunological synapse, many cellular 

components involved in spatio-temporal patterning of the immunological synapse are 

susceptible to aberrant activation or inhibition by chemical agents such as mercury.  Such 

global signals may not be optimal for T lymphocyte activation, especially for naive T 

lymphocytes.  Without an appropriate directional stimulus with which to orient 

reorganization of signalling scaffolds, the cytoskeleton and secretory functions, the 

lymphocyte may essentially become ‘confused’.  ‘Confused’ lymphocytes may be unable 

to respond to normal polarized stimuli, and also need to be eliminated in order to prevent 
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the possibility of inappropriate activation and non-targeted release of cytokines or 

cytolytic factors.  The immunological synapse is but one of many mechanisms preventing 

inappropriate immune activation and autoimmunity, but it has two potential weaknesses:  

first, if large numbers of lymphocytes become ‘confused’ simultaneously, their 

subsequent pre-emptive elimination may leave the host with reduced defences; second, if 

somehow breached, the loss of this one defence may circumvent many of the other 

protective measures.  In both cases, the disruption may be transient, but if order is not 

restored promptly, the host may become immuno-compromised or fall victim to its own 

rampaging immune system, both of which may be seen with various forms of mercury. 

7.3 Using the Immunological Synapse to Study Mercury  

Specifically, we proposed that the immunotoxic effects of inorganic Hg2+ (and 

perhaps other compounds, like p-chloromercuribenzoate, that are likely charged at 

physiologic pH and penetrate membranes poorly) are produced, at least initially, through 

global triggering of normal membrane-dependent signaling mechanisms at the cell 

surface.  We expected this non-antigen specific receptor activation could inhibit 

polarization of cytoskeleton and secretory machinery in lymphocytes responding to 

localized stimuli, in conjunction with down-regulation of the TCR in response to receptor 

triggering, but before any significant effects at other intracellular targets for mercury 

(particularly microtubule integrity) are seen – and before the activation of cell death 

pathways.  In most naive lymphocytes, the abortive non-localized stimulus created by 

Hg2+ may activate receptor-mediated apoptotic cell death pathways as part of the immune 

system’s ‘failsafe’ mechanisms to avoid inappropriate immune activation, while possibly 

transiently activating a small percentage of cells in a non-antigen-specific fashion. 
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 In contrast, organomercurial compounds, such as methyl mercuric chloride 

(CH3HgCl) and thimerosal (TMS), with greater lipid solubility and thus more rapid 

penetration into the cell, were expected disrupt microtubules and increase membrane 

permeability non-specifically without activating or down-regulating cell surface receptors 

to an appreciable extent.  Some of the subsequent intracellular targets of CH3HgCl or 

TMS could be the same or similar to those activated down-stream by Hg2+-receptor 

activation, but effects on polarized signaling events would be seen in conjunction with – 

and not prior to – loss of microtubule and organelle integrity and other intracellular 

effects associated with the onset of cell death.   

The patterns of cell death, while likely showing components of both apoptosis and 

necrosis depending on concentration, were expected to differ in time course for both 

groups of mercury compounds – with inorganic Hg2+ producing predominantly apoptosis 

at all time points and over all but the highest concentrations studied, and CH3HgCl and 

TMS possibly producing apoptosis at low concentrations, but with necrosis becoming 

dominant at higher concentrations and with continued exposure, secondary to the loss of 

membrane integrity and increasing intracellular calcium. 

7.4 Methylthiazolyldiphenyl-tetrazolium Bromide (MTT) Assay  

After 4 hr incubation, the relative cytotoxicities of the mercury compounds in the 

MTT assay were TMS  > CH3HgCl > p-CMB > HgCl2.  While it may be argued that the 

concentrations at which viability was affected are too high to be environmentally or 

clinically relevant, the YAC-1 cells were exposed to a large range of concentrations (0.01 

to 100 uM).  Transformed cell lines do not respond to normal growth-inhibitory stimuli 

and may also prove more resistant to toxicity.  As such, mercury concentrations 
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producing effects in the YAC-1 cells may be relatively, but not directly, comparable to 

cells in vivo or in freshly isolated lymphocytes.  Each mercury compound tested 

nonetheless produced effects in each of the additional assays at similar concentrations to 

those producing loss of viability, allowing direct inter-assay comparisons – and a glimpse 

into the differences between mercury compounds that share the same toxic principle. 

In vitro cytotoxicity often increases with increasing exposure, as was seen with p-

CMB and TMS, although at some point no further toxic effects are expected.  However, 

the lack of effect of increasing exposures to HgCl2 and CH3HgCl beyond a 5 min 

exposure in the MTT assay was unexpected, especially for HgCl2. The data are consistent 

with three possible scenarios: 1) both compounds penetrate cells extremely rapidly, to 

produce cytotoxicity within minutes thereafter, although previous studies indicate this is 

unlikely for charged and highly reactive Hg2+ (Foulkes, 1991, 2000; Nordlind, 1985; 

Shenker et al., 1992b); 2) either form of mercury produces almost immediate effects, 

regardless of whether that mercury has penetrated to the cell interior – with HgCl2 likely 

producing those effects before significant intracellular accumulation; 3) toxicity is a 

function of early saturation of a critical target by HgCl2 or CH3HgCl, whether in the cell 

interior or at the membrane (with toxicity in the latter case related to effects at the 

membrane, and/or upon membrane internalization).   The first possibility became less 

likely upon consideration of the results of the YP/PI dye exclusion and other assays. 

7.5 Dye Exclusion Assay 

The delay in onset of YP/PI dye uptake following HgCl2 or p-CMB exposure as 

compared to CH3HgCl may be a function of relatively slower passage of HgCl2 or p-

CMB into the cell interior to produce effects.  Alternately, the onset of apoptosis/necrosis 
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may be delayed following interactions at the cell surface or interior.  In contrast, the 

effects produced by CH3HgCl are suggestive of rapid penetration of CH3HgCl to the cell 

interior, resulting in almost immediate induction of an early apoptotic (YPlow/PIneg) state, 

coincident with effects on all other assays except F-actin levels.  It is also possible rapid 

apoptosis was triggered by non-specific changes in membrane permeability, though such 

changes might be expected to be accompanied by influx of PI.  The slightly slower onset 

for TMS effects may reflect the degree of ionization of this compound, its larger size or 

protein binding of the ethylmercury moiety following dissociation from the parent TMS.  

While it was expected that CH3HgCl and TMS would both produce greater disruption of 

cellular homeostasis than HgCl2 and p-CMB, is was also anticipated that such changes 

would be incompatible with cell survival and would hasten cell death by necrosis.   

Despite these early and profound changes in the intracellular environment, for both 

CH3HgCl and TMS, progression through apoptosis through late necrosis was slower than 

for HgCl2 or p-CMB.   

7.6 Flow Cytometric Assessment of CD3 Expression, Phosphotyrosination, B-

Tubulin, F-Actin and Intracellular Calcium Levels 

Although a receptor-mediated mechanism has been proposed for Hg2+, and 

microtubules are thought to be a primary target of CH3HgCl and TMS, mercury in all its 

forms is considered non-specific and can interact directly with sulfhydryl (-SH) groups 

on many membrane and intracellular targets in addition to membrane receptors, PKC, 

microtubules or other cellular components postulated to be specific targets of mercury.  

Even if initially acting through these pathways, mercury may therefore produce effects 

distinct from those seen with agonist ligands or target-specific chemicals.   
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In HgCl2-treated YAC-1 cells, inhibition of responses to polarized stimuli 

preceded the loss of microtubules and the onset of cell death, as hypothesized.  Effects on 

polarized stimuli were in turn preceded by a transient Ca2+ signal, with [Ca2+] i; however, 

this Ca2+ signal appeared abortive, accompanied not by an increase, but by a paradoxic 

decrease in PTyr-P and only partial down-regulation of CD3 receptors.  Failure of HgCl2-

treated YAC-1 cells to respond to polarized stimuli did therefore not appear to be simply 

a function of reduced CD3 binding sites following HgCl2 exposure, but may have 

nonetheless been related to disruption of polarization responses by the abortive signal in 

some as yet undetermined fashion, given that only a very brief exposure to HgCl2 was 

necessary to induce complete loss of viability.  Given that Hg2+ is a potent inhibitor of 

microtubule polymerization and inhibition of polarization is seen prior to extensive loss 

of microtubule staining, the effects appear to involve mechanisms that precede significant 

entry of free Hg2+ in the cytosol.  In addition, HgCl2 exposure was followed rapidly by 

necrotic cell death, rather than apoptotic cell death as might be presumed to follow 

activation of receptor pathways.   

Similarly, p-CMB-treated YAC-1 cells failed to respond to polarized stimuli 

before effects on microtubules or loss of viability.  Effects on many assays were delayed 

as compared to HgCl2, which may reflect delayed diffusion into the cell interior due to 

ionization; however, a transient Ca2+ signal and progressive loss of F-actin preceded 

effects in all other assays and may account for loss of polarized responses.  In B 

lymphocytes the strength of activation signals is thought to be related to the degree of 

actin deploymerization (Hao and August, 2005).  As such, the different effects on actin 

produced by HgCl2 and p-CMB may therefore represent different ‘interpretations’ of the 
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overall signaling alterations produced by the two compounds, in addition to the 

possibility of different specific targets. 

Nonetheless it was CH3HgCl and TMS that produced immediate and profound 

effects on CD3 receptor expression, [Ca2+] i and PTyr-P, with concurrent loss of 

microtubules and polarized signaling responses.  Unfortunately the rapid onset of 

CH3HgCl and TMS effects made it difficult to identify their sequence; however, 

sustained PTyr-P is generally considered to be required to maintain increased [Ca2+] i.  In 

addition, microtubule deaggregation was accompanied by complete inhibition of tubulin 

synthesis.  These changes seemed to indicate a general loss of cellular homeostasis not 

seen in HgCl2- and p-CMB-treated cells, which did not necessarily produce simultaneous 

loss of viability, as TMS-treated cells remained viable for 30 min while CH3HgCl-treated 

cells became apoptotic within 1 min. Nonetheless, the YAC-1 cells proceeded to cell 

death more slowly, remaining early apoptotic after 4 hr, when almost all HgCl2- and p-

CMB-treated cells were necrotic.  Unexpectedly, both compounds also produced 

approximately 50% down-regulation of CD3 receptors at 4 hr, a finding that may be 

considered consistent with protein kinase C activation and not receptor-mediated PTyr-P, 

although effects on the cytoskeleton may have prevented complete down-regulation.  

Nonetheless, for all mercury treatments, YAC-1 cell responses to polarized stimuli were 

reduced at time points when CD3 receptors were not down-regulated.  

7.7 Responses to Polarized Stimuli and Cytoskeletal Changes 

The inhibitory effects of the four mercury compounds on conjugation, 

morphologic and cytoskeletal reorientation responses were consistent with their relative 
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cytotoxicities in the MTT assay and at 4 hr in the dye exclusion assay.  As seen in other 

assays, two patterns of mercury effects emerged.   

The reduction in bead binding in HgCl2-treated cells is difficult to explain.  Loss 

of bead-binding responses was expected be due to down-regulation of CD3 receptors 

after aberrant triggering via cross-linking of –SH groups by divalent Hg2+ (a mechanism 

not thought to be operative for monovalent organomercurial compounds).  However, 

CD3 expression was only marginally reduced, along with pTyr-P, and only at 5 min when 

bead-binding responses were unaffected.  At 30 min, when all bead-binding responses 

were reduced, CD3 expression and pTyr-P had returned to baseline levels; F-actin levels 

were however somewhat reduced, although not the extent seen in p-CMB-treated cells.  

At 30 min, $-tubulin staining in HgCl2-treated cells was reduced to levels similar to those 

associated with inhibition of bead binding responses at 5 min in CH3HgCl- and TMS-

treated cells.  As such, the entire time-course of mercury effects may simply be delayed 

for HgCl2; however, distinct differences in the time-course of effects on $-tubulin 

synthesis and [Ca2+] i, and the magnitude and direction of effects on CD3 expression and 

pTyr-P would indicate that such a phenomenon is unlikely.   HgCl2-treated YAC-1 cells 

may nonetheless have been ‘paralysed’ by a global membrane-mediated Hg2+ stimulus, 

but further investigations are required to determine if receptor desensitization, prevention 

of normal receptor movement and recycling through membranes, global recruitment of 

cytoskeletal components or some other mechanism may have been responsible.  

Regardless, the lack of effects on microtubules at time points when CD3 expression, 

pTyr-P and [Ca2+] i were all affected is suggestive that, whatever the mechanism, YAC-1 

cells are affected by Hg2+ prior to significant accumulation of free Hg2+ in the cytosol.   
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As actin is critical to shape changes, motility and the MTOC reorientation 

response (Dustin and Cooper, 2000), the loss of bead-binding responses would appear to 

be specifically related to loss of F-actin in p-CMB-treated cells, but whether due to solely 

to loss of F-actin or somehow secondary to the small increase in [Ca2+] i  is not known.  

However, it should be noted that HgCl2 induced a similar early increase in [Ca2+] i, but did 

not affect F-actin to the same degree as p-CMB at early time points.  The relatively 

greater loss of F-actin in p-CMB-treated cells may nonetheless explain the greater 

frequency of cells with no identifiable MTOC and randomly or peripherally located 

microtubules, as the cytoskeletal fibres are closely interlinked (Burn et al., 1988; Das et 

al., 2002; Faure et al., 2004; Kupfer et al., 1990).   

For CH3HgCl, inhibition of bead-binding responses was preceded by, or 

coincident with, alterations in dye uptake, microtubule integrity and signaling 

components, but prior to down-regulation of CD3 receptors.  As such, the loss of viability 

can be considered responsible for the loss of polarized signaling responses.  However, 

although TMS produced very similar overall effects on bead-binding responses, 

microtubule integrity and disruption of signaling cascades, the effects preceded dye 

uptake.  TMS-related loss of polarized signaling responses would therefore appear to be 

secondary to profound disturbances in the intracellular environment, indicating that 

viability alone does not determine whether cells can respond to a polarized stimulus.  

The cytoskeletal polarization response may involve multiple signaling 

components, from ligation and activation of cell surface receptors, to the formation of 

stable signaling scaffolds within the cell and creation of gradients of intracellular calcium 

across the cytosol – all of which may be influenced by mercury treatment.  However, 
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given the complexity of the formation of the immunological synapse, multiple 

mechanisms may underlie the inhibition of lymphocyte polarization by each of the four 

mercury compounds.  The results presented here indicate that each of the four mercury 

compounds may initially influence those pathways in unique ways.  Nonetheless, perhaps 

the most striking finding is that overall, two general patterns of effects produced by 

HgCl2 and p-CMB, and by CH3HgCl and TMS, emerged in almost all the assays. 

7.8 Conclusions 

The toxicity of HgCl2 and CH3HgCl are known to differ with respect to events 

related to apoptosis, including cytochrome C release and expression of the anti-apoptotic 

protein bcl-2 (Shenker et al., 2000).  The two patterns of effects on receptor expression, 

protein tyrosine phosphorylation, intracellular calcium, microtubules, and progression 

through apoptosis seen here may represent still more manifestations of these fundamental 

differences in mechanisms preceding the onset of cell death following mercury exposure. 

Together, these findings indicate the two groups of mercury compounds may alter 

responses to polarized stimuli and induce cell death by distinct pathways, one related to 

an apparently abortive signal and the other mediated by much more profound disruption 

of cellular homeostasis.  Within the larger patterns there are further differences between 

the effects produced by each Hg compound, likely reflecting the combined influence of 

pharmaco–kinetic and –dynamic factors governing access to and interactions with 

different cellular targets leading to cell death. These distinct targets may in turn be 

reflected in the different immune effects produced by these compounds in vivo, including 

both immune stimulation and inhibition. 
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