
MODELING AND VALIDATION OF THE BALING PROCESS 
IN THE COMPRESSION CHAMBER OF A LARGE SQUARE 

BALER 
 

 

A Thesis 

Submitted to the College of Graduate Studies and Research 

in Partial Fulfillment of the Requirement 

for the Degree of 

 

Doctor of philosophy 

 

in the 

Department of Agricultural and Bioresource Engineering 

University of Saskatchewan 

Saskatoon, Saskatchewan 

 

By 

Sadegh Afzalinia 

March, 2005 

 

Copyright 2005 Afzalinia, S.



COPYRIGHT 

The author has agreed that the Library, University of Saskatchewan, may make 

this  thesis freely available for inspection. Moreover, the author has agreed that 

permission for extensive copying of this thesis for scholarly  purpose may be granted by 

the professor or professors who supervised this thesis work recorded herein or, in their 

absence, by the Head of Department or Dean of the college in which the thesis work was 

done. It is understood that due recognition will be given to the author of this thesis and 

to the University of Saskatchewan for any use of the material in this thesis. Copying or 

publication or any use of the thesis for financial gain without approval by the University 

of Saskatchewan and the author’s written permission is prohibited. 

Request for permission to copy or to make any other use of the material in this 

thesis in whole, or in part should be addressed to: 

 

The Head, 

Department of Agricultural and Bioresource Engineering, 

University of Saskatchewan, 

57 Campus Drive, 

Saskatoon, SK, 

CANADA  S7N 5A9 

 

 

 
 



 ii

ABSTRACT 

The pressure-density relationship and the pressure distribution inside the 

compression chamber of a newly designed New Holland BB960 large square baler were 

studied for the baling of alfalfa, whole green barley, barley straw, and wheat straw. An 

analytical model was developed for the pressure distribution inside the compression 

chamber of the large square baler in the x-, y-, and z-directions by assuming isotropic 

linear elastic properties for forage materials. In order to validate this model, a tri-axial 

sensor was designed and used to measure the forces inside the compression chamber 

when whole green barley, barley straw, and wheat straw were baled. The experimental 

results proved that the developed analytical model for each of the tested forage materials 

had a good correlation with the experimental data with a reasonable coefficient of 

determination (0.95) and standard error (20.0 kPa). Test data were also used to develop 

an empirical model for the pressure distribution inside the compression chamber of the 

baler for each of the tested forage materials using least square method in regression 

analysis. These empirical models were simple equations which were only functions of 

the distance from the full extension point of the plunger along the compression chamber 

length. 

Analytical and empirical models were also developed for the pressure-density 

relationship of the baler for baling alfalfa and barley straw. Results showed that bale 

density initially decreased with distance from the plunger, and then remained almost 

constant up to the end of the compression chamber. The developed empirical model for 

both alfalfa and barley straw was a combination of a quadratic and an exponential 

equation.  In order to validate the developed models, field tests were performed by 
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baling alfalfa and barley straw of different moisture contents, flake sizes, and load 

settings. The forces on the plunger arms were recorded by a data acquisition system. The 

actual bale bulk density was calculated by measuring the bale dimensions and weight. 

Results showed that both load setting and flake size had a significant effect on the 

plunger force. The plunger force increased with increased load setting and flake size. 

Comparing analytical and empirical models for bale density as a function of the pressure 

on the plunger showed that the trend of variation of density with pressure in both models 

was similar, but the rate of change was different. The variation rate of density with 

pressure in the analytical model was higher than that of the empirical model. The 

analytical model underestimated the bale density at low plunger pressures but showed 

more accurate prediction at higher pressures, while the empirical model accurately 

predicted the bale density at both low and high pressures. 

Some crop properties such as coefficient of friction and modulus of elasticity 

were determined for the development of the pressure distribution model. Results showed 

that static coefficient of friction of alfalfa on a polished steel surface was a quadratic 

function of material moisture content, while the relationship between the coefficient of 

friction of barley straw on a polished steel surface and material moisture content was 

best expressed by a linear equation. Results of this study also proved that modulus of 

elasticity of alfalfa and barley straw was constant for the density range encountered in 

the large square baler. 
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CHAPTER 1 

INTRODUCTION 

 Compressing forage materials into high-density packages is necessary to reduce 

handling and storage costs and to facilitate the storage operation. Making such packages 

requires a comprehensive understanding of the physical and the mechanical properties of 

these materials and their mechanical behavior under pressure.  It is also important to 

know the pressure distribution within the compressed materials and the pressure-density 

relationship for different forage materials, and to be able to quantify the effect of 

material properties, machine characteristics, and operating conditions on this 

relationship.  

Baled forage material is the major type of forage material considered on the 

commercial market. About 90% of produced forage material is baled by commercial 

balers. Among the commercial balers, small rectangular balers have low field capacity 

and produce small bales with low density in the range of 114 to 207 kg/m3 (Hunt 2001). 

Round bales on the other hand have low density in the range of 100 to 170 kg/m3, and 

have high transportation cost because of their cylindrical shape and low density (Hunt 

2001, Culpin 1986, and Jenkins et al. 1985). Using a large square baler that produces 

large, high-density rectangular bales could very well eliminate the aforementioned 

problems. Therefore, to achieve accurate data for the bale compression chamber design 

and optimization in a newly designed large square baler, it is necessary to study the 

baling process which consists of: a) the relationship between the plunger pressure and 
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the bale density; b) the pressure distribution within the compression chamber in different 

directions; and c) the effect of machine settings and forage material properties on the 

baling process. In order to study the baling process, the first step is to measure the 

physical and mechanical properties of the forage materials which are baled with this 

baler. Accurate data of physical and mechanical properties of forage materials, such as 

particle stiffness and coefficients of internal and external friction, are needed to estimate 

the forces exerted on the bale and the compression chamber of the baler. These data are 

also needed as input to the analytical and numerical models of the forage material 

compaction process.  

Applied forces on the forage material by the baler plunger are exerted on the bale 

chamber during the baling process. In order to design and optimize the bale chamber 

structure, comprehensive knowledge of these forces is necessary. Therefore, appropriate 

sensor is needed to record these compressive forces in orthogonal directions. The tri-

axial sensor is a force transducer which is able to independently measure the forces in 

three directions. Ideally, this sensor should measure the forces independently, but in 

practice, there is always some cross sensitivities in this type of transducers because of 

errors in machining, locating the strain nodes, and installation of the strain gages. It is 

not possible to eliminate the cross sensitivity, but efforts must be made to reduce this 

effect during the design, fabrication, and calibration process.  

It is also very important to study the pressure-density relationship, stress 

distribution along the bale, and the effect of different factors on the bale formation of 

field-scale balers to achieve accurate data for the bale compression chamber design and 

optimization. 
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In this project, a New Holland BB960 large square baler was used to bale alfalfa, whole 

green barley, barley straw, and wheat straw. This baler produces bales with 1.2 m width, 

0.9 m height, and an adjustable length of up to 2.5 m. In this baler, forage materials are 

continuously picked up and fed into the baler using pick up system. A baffle plate 

conducts forage materials towards the baler, and centering augers transfer the crop from 

the ends of the pick up system into the packer. Double-tine packer fingers handle the 

materials from the pick up system into the pre-compression chamber, and crop holding 

fingers keep the forage materials in the pre-compression chamber, while still the stuffer 

fork is inactive. When the pre-compression chamber is filled by the forage materials, the 

stuffer system is activated by the pre-compression sensing mechanism. The top opening 

of the pre-compression chamber is cleared by the holding fingers, while the preset 

charge of forage materials are charged to the main compression chamber by the stuffer 

fork at the same moment. The plunger pushes these materials to the main compression 

chamber in its return stroke and compresses them against the partially formed bale in the 

previous strokes. When the material flake is fed into the main bale chamber, the material 

holding fingers return to their closed position. In this baler, top and side walls are 

hinged; therefore, they can be inclined by the side density cylinder according to the 

requested bale density. Top and side walls movement changes the bale outlet cross- 

section, and therefore controls the bale density (New Holland BB960 manual 2001). 

The structure of this thesis is intended to provide the reader with a detailed 

description of previous works related to this research, theoretical analysis and 

experiments that were conducted during this study,  state and discuss the results obtained 

from this research, summarize the findings of this study,  and finally, to offer some 

suggestions and recommendations regarding this particular baler.  
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1.1 OBJECTIVES 

1.1.1 General Objective 

The general objective of this research was to develop and validate a model 

describing the baling operation process inside the compression chamber of a large 

square baler using various crops and different mechanical settings. 

 
1.1.2 Specific Objectives 

In order to achieve the main objective of this research, the following are the 

specific objectives:  

a. to develop and validate an analytical model for the pressure distribution in the 

compression chamber as a function of the crop properties, bale chamber 

dimensions, and distance from the plunger along the compression chamber 

length;  

b. to develop and validate an empirical model for the pressure distribution in the 

compression chamber as a function of distance from the plunger along the 

compression chamber length;  

c. to develop and validate analytical and empirical models describing the 

relationship between plunger pressure and crop density; and 

d. to evaluate the effects of flake size and load settings on the bale density and the 

plunger force. 
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CHAPTER 2 

LITERATURE REVIEW 

There are many published papers in the area of the physical properties of forage 

materials, their mechanical behavior when they are compressed, the pressure distribution 

along the compression axis of the compressed materials, and the relationship between 

applied pressure and material bulk density. In this review, efforts were made to gather 

the most important part of the existing information regarding physical properties and 

mechanical behavior of forage materials when they are compressed to high density. 

Wafering is a process during which, loose forage material is concentrated into a high 

density and compressed product. This compressed product is called a wafer. Most of the 

previous research has been conducted on the wafering process using a cylindrical die; 

however, this information can still be helpful to study the behavior of forage materials 

during the baling operation because of the similarity between wafering with a die and 

baling operations, which also incorporate wafering. Literature related to forage material 

physical and mechanical properties, compression characteristics, wafer formation, baling 

operation, tri-axial sensor design, and a summary of the review are topics covered in this 

chapter.  

2.1 Physical and Mechanical Properties 

Without knowledge of physical and mechanical properties of agricultural 

materials, an explanation of their behavior under compression is difficult. The following 
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sections provide a survey of previous studies and their findings about the coefficient of 

friction, adhesion and cohesion coefficients, particle stiffness, the modulus of elasticity, 

and Poisson’s ratio.  

 
2.1.1 Friction, Adhesion, and Cohesion Coefficients 

The maximum friction (limiting friction) force is the maximum force needed to 

move a body which is subjected to a normal force against another body from rest. Once 

the body starts to move, the friction force decreases compared to the maximum friction 

force. This lower friction force is called sliding friction force. The ratio of the maximum 

friction force to the corresponding normal force is called static coefficient of friction. 

The ratio of the sliding friction force to the corresponding normal force is called sliding 

or kinetic coefficient of friction. The coefficient of friction between two layers of the 

same substance is called coefficient of internal friction, while the coefficient between 

two different materials is called the coefficient of external friction. 

The friction coefficient plays an important role in the compression of forage 

materials. Applied pressure to the material during the baling process is directly affected 

by the coefficient of friction; therefore, it can affect the energy requirement of the baling 

process. The coefficient of friction depends on different parameters such as material 

moisture content, the surface of the compression chamber wall, material type, particle 

size, pressure, plant maturity, and position of the stem internode.  Although, most 

research work in the field of the coefficient of friction of agricultural materials were 

related to grains, some literature was found regarding the static coefficient of friction of 

forage materials.  
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Richter (1954) for instance, determined the static and sliding friction coefficients 

for different forage materials. Coefficients of friction of chopped hay, chopped straw, 

and corn and grass silages on a galvanized steel surface were measured. The static and 

sliding coefficients of friction for chopped hay and straw were reported to range from 

0.17 to 0.42 and 0.28 to 0.33, respectively. Based on these results, it was suggested that 

values of 0.35 and 0.30 be used for the static and sliding coefficients of friction of the 

chopped hay and straw, respectively. The range of 0.52 to 0.82 and 0.57 to 0.78 for the 

static and sliding coefficients of friction regarding corn and grass silages were also 

reported. It was also recommended that static and sliding coefficients of friction of 0.80 

and 0.70 for corn and grass silages, respectively be used.  

Bickert and Buelow (1966) determined the sliding coefficient of friction for 

shelled corn on a steel and plywood surface, and barley on a steel surface. The 

researchers reported that the sliding coefficient of friction was a linear function of 

material moisture content. Snyder et al. (1967) studied the effect of normal pressure and 

relative humidity on the sliding coefficient of friction of wheat grains on various metal 

surfaces. The results of their study showed that normal pressure and relative humidity 

had a small effect on the coefficient of friction. The value of the coefficient increased 

with increasing relative humidity in the range of 25 to 85%.  

Brubaker and Pos (1965) evaluated the effect of the type of material, the type of 

surface, and the moisture content on the coefficient of friction of grains on structural 

surfaces. Three types of materials (wheat, soybeans, and nylon spheres), three different 

surfaces (Teflon, steel, and plywood), and four different moisture contents were 

considered. They found that an increase of moisture content increased the static 

coefficient of friction on all surfaces but Teflon. It was also reported that the moisture 
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content of plywood had a significant effect on frictional resistance on plywood. 

Furthermore, Thompson and Ross (1983) reported that the coefficient of friction of 

wheat grain on steel was affected by wheat moisture content. It was found that the 

coefficient of friction increased with increasing moisture content from 8 to 20%, but at 

24% moisture content, it decreased.  

In another study, Lawton and Marchant (1980) designed and fabricated a shear 

box to measure the coefficient of friction of agricultural seeds. The effect of the seed 

moisture content on the coefficient of internal friction of wheat, barley, oats, tick beans, 

and field beans was tested using the designed shear box. It was reported that material 

moisture content had a significant effect on the coefficients of internal friction of all the 

tested seeds; the coefficient increased with increasing moisture content. However, the 

rate of increment was higher for the moisture ranging from 15 to 25% wet basis (wb). 

Zhang et al. (1994) measured the coefficient of friction of wheat on corrugated 

galvanized steel, smooth galvanized steel, and wheat using a direct shear box. Three 

different levels of material moisture contents and four levels of normal pressures were 

considered. Results showed that increasing the normal pressure in the range of 9.73 to 

70.53 kPa with the moisture content ranging from 11.9 to 17.7% (wb) decreased the 

coefficient of friction of wheat on a corrugated steel surface.  It was also reported that 

the coefficient of friction of wheat on a corrugated steel surface increased with 

increasing moisture content.  

Ling et al. (1997) determined the static and the kinetic coefficients of friction of 

wood ash on a stainless steel surface, and evaluated the effect of ash moisture content 

and the particle size on the coefficient of friction. Results of this study showed that both 

the static and the kinetic coefficients of friction increased with increasing ash moisture 
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content and decreased with increasing ash particle size.  Moysey and Hiltz (1985) 

studied the effect of relative humidity and the method of filling the shear box on the 

coefficient of internal friction of some chemical fertilizers. The angle of repose for the 

tested fertilizers was also measured, and the results were compared with the coefficient 

of internal friction. It was concluded that the filling method had a significant effect on 

the coefficient of internal friction, while relative humidity had a small influence on the 

coefficient. It was also observed that the angle of repose was smaller than the angle of 

internal friction obtained using a direct shear box. Furthermore, it was found that the 

coefficient of friction of the tested fertilizers on the common bin wall materials was 

significantly higher than that of wheat on these materials.  

Shinners et al. (1991) measured the friction coefficient of alfalfa on different 

surfaces as affected by the surface type, moisture content, velocity, the normal pressure, 

and the water lubrication rate. The moisture content was found to have a significant 

effect on the coefficient of friction so that it was lower in the moisture range of 33 to 

37% (wb) than the range of 73 to 77% (wb). In this study, the two highest coefficients of 

friction (0.529 and 0.49) were obtained from polished steel and the glass coated steel 

surfaces, respectively. The lowest coefficients (0.416, 0.402, and 0.375) were obtained 

from polyethylene, iron oxide-coated steel, and Teflon coated steel, respectively. 

Furthermore, the normal pressure and velocity in the tested range had no significant 

effect on the friction coefficient, and the friction coefficient was reduced by the water 

lubrication by an average of 67% for the all tested surfaces. 

Ferrero et al. (1990) introduced the following analytical model for calculating the 

coefficient of friction of straw from the die geometry, the wafer length, and the applied 

pressure: 
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)ln()4/( PPLpD bsr −−=μ ,        (2.1) 

where: 

μ = coefficient of friction,  

D = sample diameter (m),  

pr = pressure ratio,  

Ls = sample length (m), 

Pb = pressure at the base of compression chamber (MPa) and 

P = compression pressure (MPa).                                                                                 

A direct relationship between the coefficient of wall friction and the straw moisture 

content was also found, while there was an inverse relationship between the straw 

compressed density and the coefficient of wall friction. 

Cohesion is the mutual attraction of particles of the same substance, while 

adhesion is the attraction of dissimilar substances for each other. Mani et al. (2003) 

measured the static coefficient of friction and the adhesion coefficient of corn stover 

grind on a galvanized steel surface at different particle sizes and moisture contents. The 

results showed that moisture content had a significant effect on the coefficient of friction 

but adhesion was not affected by moisture content. Tabil and Sokhansanj (1997) 

determined the cohesions of alfalfa grinds from low quality chop ground in a hammer 

mill with two different screen sizes of 2.4 and 3.2 mm. They reported cohesions of 2.19 

and 2.51 kPa for alfalfa ground using 3.2 and 2.4 mm screen sizes, respectively. 
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2.1.2 Particle Stiffness 

Particle stiffness is the ability of particles to resist deformation within the linear 

range. Bilanski et al. (1985) studied the mechanical behavior of alfalfa under 

compression in a closed-end cylindrical die. They developed an analytical model for the 

material bulk density in terms of the applied axial pressure and a constant coefficient 

(K). They validated the derived model using their experimental data for alfalfa, and 

found the value of 16.85 MPa for the model constant at a moisture content of 14% (wb). 

They claimed that the model constant was particle stiffness; however, they did not prove 

that.  Mani et al. (2003) evaluated the effect of particle size and moisture content on the 

particle stiffness of corn stover grind. The results showed that moisture content and 

particle size had significant effect on the particle stiffness; particle stiffness increased 

with increasing particle size and decreased with increasing moisture content. 

 

2.1.3 Modulus of Elasticity and Poisson’s Ratio 

Modulus of elasticity is defined as the slope of the linear part of the stress-strain 

curve of engineering materials. For biological materials, the apparent modulus of 

elasticity is used to explain the relationship between stress and strain. Apparent modulus 

of elasticity is calculated based on two different definitions called the secant definition 

and the tangent definition. In the secant definition, the apparent modulus is considered as 

the ratio of stress to strain at a certain point, while the apparent modulus in tangent 

method is defined as the slope of the stress-strain curve at a certain point on the curve 

(Stroshine 2000). The modulus of elasticity of forage materials varies during the 

compression process. The magnitude of this modulus mainly depends on the material 

volumetric weight; however it is slightly affected by the material moisture content 
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(Sitkei 1986).  Sitkei (1986) proposed the following equation for the variation of 

Young’s modulus of forage materials during compression in terms of initial Young’s 

modulus, initial bulk density, and material strain: 

))1/(( 22
00)( eeCEE εεγε −+= ,       (2.2) 

where: 

E(ε) = modulus of elasticity (psi),  

E0      = initial modulus of elasticity (psi),  

C      = model coefficient, 

γ0     = initial bulk density (lb/in3) and  

εe = material strain (in/in). 

Norris and Bilanski (1969) emphasized that the tensile modulus of elasticity for 

the alfalfa stems was proportional to the stem bulk density and varied from 0.9 to 6.8 

GPa (1.3 x 105 to 9.87 x 105 psi). These values are very high for forage materials and are 

not reliable.  

O’Dogherty (1989) cited the work of Osobov (1967) who suggested an 

exponential equation for the modulus of elasticity as a function of bulk density in the 

closed-end die in the following form: 

[ ]nEE s /)(exp 00 γγ −= ,        (2.3) 

where: 

γs = material bulk density (kg/m3), 

γ0 = initial bulk density (kg/m3), 

E = modulus of elasticity (MPa), 

E0 = initial modulus of elasticity (MPa) and 
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n     = model coefficient. 

O’Dogherty et al. (1995) studied the effect of plant maturity, position of the stem 

internode, and stem moisture content on the physical and mechanical properties of wheat 

straw. The results showed that the modulus of elasticity of wheat stems was affected by 

plant maturity so that it increased with more advanced stage of plant maturity, whereas, 

plant maturity had no significant effect on other stem physical properties. Elastic 

modulus was also affected by the position of stem internode so that the fourth stem 

internode (measured downward from the head) had the highest modulus of elasticity, 

while the first stem internode had the least modulus of elasticity.  

Poisson’s ratio is the absolute value of the ratio of the lateral strain over the axial 

strain. Applied pressure to forage materials during the compression is also a function of 

Poisson’s ratio. O’Dogherty (1989) cited the work of Mewes (1958 and 1959) who 

reported that the maximum value of Poisson’s ratio for wheat straw was 0.5 at an 

applied pressure of 177 kPa and it decreased to less than 0.1 by increasing applied 

pressure up to 1.4 MPa. 

  
2.2 Compression Characteristics 

 Previous studies related to the pressure-density relationship, pressure distribution 

inside the compressed material, and energy requirement are reviewed in the next three 

subsections. 

2.2.1 Pressure-Density Relationship 
 
There is a direct relationship between the applied pressure and the forage material bulk 

density during the compaction process. Most reported models for the pressure-density 
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relationship have either power law or exponential forms. Hundtoft and Buelow (1971) 

studied the relationship between stress and strain during compression of bulk alfalfa. 

The axial pressure was correlated to variables such as material moisture content, sample 

size, and strain. They chopped the alfalfa with a length of 1/8 in. and compressed the 

chopped material in a 3 in. diameter compression cylinder at a constant strain rate of 1 

in/in-s. The equation of the axial pressure in terms of tested variables was given as: 

)1.669.0(2 )36.1)(/032.0)(/124( wM
weaww MAWMM +−++= εσ ,   (2.4) 

where: 

 σ = axial pressure (psi), 

Mw = wet basis moisture content ranging from 0.13 to 0.4 (decimal), 

W/Aa = cross-sectional area density ranging from 1 to 3 (lb/in2) and 

εe = bulk strain ranging from 0.2 to 4.0 (in/in). 

The shortcoming of this model appears at low strain values. This model predicted 

unreasonable values for axial stresses at low values of strain (Bilanski et al. 1985). 

O’Dogherty and Wheeler (1984) introduced the following empirical models to 

show the pressure-density relationship of barley straw compressed in a cylindrical die: 

2000012.0 sP γ=                             for   150 < γs < 400 kg/m3 and  (2.5) 

[ ] 32.2)ln(00226.0ln 4 −= sP γ        for    γs > 400 kg/m3,   (2.6)  

where: 

 P = compression pressure (MPa) and 

γs = material bulk density (kg/m3). 
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The density range encountered in balers is less than 400 kg/m3; therefore, Eq. 2.5 is 

applicable to the pressure-density relationship in balers, but it has the same shortcoming 

as Eq. 2.4.  

Bilanski et al. (1985) studied the mechanical behavior of alfalfa under 

compression in a closed-end cylindrical die. An analytical model was derived to express 

the relationship between the applied axial pressure and the material bulk density by 

assuming constant bulk modulus and then the derived model was validated with the 

experimental data. The analytical model is given below: 

)/(
0maxmax )/()( KP

s e −=−− γγγγ ,       (2.7) 

where: 

γs = material bulk density (kg/m3),                                                                                 

γmax = maximum bulk density (kg/m3),                                                                                 

γ0  = initial bulk density (kg/m3),                                                                                 

P = compression pressure (MPa) and 

K = forage particle stiffness (MPa). 

They estimated γmax and K from the experimental data for alfalfa in the pressure range of 

0.0 to 39.3 MPa and validated the abovementioned model as follow: 

)85.16/(
0 )1405/()1405( Pe −=−− γγ .       (2.8) 

They also developed the following empirical model for the relationship between the 

cohesive strength and the recovered density in compressed alfalfa: 

CAS B
s −= 0

0γ ,         (2.9) 

where: 

S  = tensile yield stress (kPa), 
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γs  = material bulk density (kg/m3) and 

A0, B0, C = model coefficients.                                                                                                 

Figure 2.1 shows a typical pressure-density curve based on Bilanski’s model (Eq. 2.7). 

This graph properly explains the mechanical behavior of forage materials under 

compression. At the beginning of the compression process, forage materials resist 

deformation under small pressures (density remains constant with increasing pressure), 

but when pressure exceeds a certain amount, materials start to buckle. After that point, 

density increases with increasing applied pressure until materials behave as 

incompressible materials, and density remains constant from that point.   
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Figure 2.1 Pressure-density relationships for barley straw at a moisture content of 30%  
     (wb) based on Bilanski’s model (Eq. 2.8).   
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Butler and McColly (1959) introduced the following empirical model to express 

the compressed straw density as a function of the applied axial pressure: 

)/ln( 21 kki σγ = ,         (2.10) 

where: 

γi = bulk density (lb/in3), 

σ = applied axial pressure (psi) and  

k1, k2 = model coefficients.                                                                                                 

Bilanski et al. (1985) reported a power law equation for the pressure-density 

relationship of the compressed straw. The equation had the following form: 

m
sCP γ=  ,          (2.11)          

where: 

P = compression pressure (MPa), 

γs = material bulk density (kg/m3) and 

  C, m = model coefficients. 

Equations 2.11 and 2.12 were developed using a low loading rate; therefore, these 

models are not applicable to the compression process at high loading rates. On the other 

hand, initial conditions (P = 0 and γ = γ0) are not defined for Eq. 2.11.  Therefore, these 

models can predict material density for a certain range of applied pressure (Bilanski et 

al. 1985).  

Faborode and O’Callaghan (1986) theoretically studied the compression process 

of agricultural materials. They derived a new model for the compression pressure in 

terms of compression ratio (r = γ/γ0) and the initial density: 
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[ ]1)1(00 −= −rde
d

A
P

γ
,         (2.12) 

where: 

  P = compression pressure (MPa), 

γ0 = initial bulk density (kg/m3), 

d = material property index, 

r = compression ratio and   

A0 = model coefficient.  

They also developed the following model for the compression pressure in terms 

of material deformation: 

[ ]1))1/((0 −= −εεde
d

K
P  ,        (2.13)             

where: 

ε = material strain (m/m) and 

K0 = initial bulk modulus. 

O’Dogherty and Wheeler (1989) introduced an equation for applied pressure as a 

function of the material relaxed bulk density for compacted barley straw. The equation 

had the following form: 

sBeAP γ0
0= ,          (2.14) 

where: 

 P = compression pressure (MPa), 

γs = material bulk density (kg/m3) and 

A0, B0 = model coefficients. 
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O’Dogherty and Wheeler (1989) also reported the relationship between pressure, 

moisture content, and the relaxed density of compressed wheat straw as given below: 

[ ] )/ln(/)7()/1( / qPmPl nM
s

w−=γ ,       (2.15) 

where: 

P  = compression pressure (MPa), 

γs  = material bulk density (kg/m3), 

Mw  = straw moisture content (% wb) and 

l, m, n, q = model coefficients. 

Ferrero et al. (1990) studied the pressure-density relationship of compressed 

straw. They compressed chopped wheat and barley straw with maximum length of 40 

mm and moisture contents ranging from 7 to 23 and 10 to 20%, respectively. The 

pressure range of 20 to 100 MPa at a loading rate of 13 mm/s was applied to the 

materials and the following empirical model was fitted to the experimental data: 

)1)(( 000
CP

s ePBA −−++= γγ ,       (2.16) 

where: 

γs    = material bulk density (kg/m3), 

γ0    = initial bulk density (kg/m3), 

P    = compression pressure (MPa) and 

A0, B0, C    = model coefficients. 

Watts and Bilanski (1991) reported that the maximum stress in alfalfa wafers for 

a certain deformation was a function of the material density in the form of: 

[ ])(1log 021 γγ −−= sKKP         (2.17)  
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where: 

P = compression pressure (MPa), 

γs = material bulk density (kg/m3), 

 γ0 = initial bulk density (kg/m3) and 

K1, K2 = variables which are linear functions of material moisture content,     

                loading rate, and leaf content. 

Viswanathan and Gothandapani (1999) studied the pressure-density relationship 

of compressed coir pith with different levels of moisture contents and particle sizes. 

They compressed coir pith in the pressure range of 1 to 416 kPa and used the following 

empirical model for the pressure-density relationship: 

2
00 ss CBAP γγ ++= ,         (2.18)          

 where: 

 P  = compression pressure (kPa), 

γs  = material bulk density (kg/m3) and 

A0, B0, C = model coefficients. 

Most of the developed models for the pressure-density relationships are generally 

either exponential or power law relationships. In most cases, the shortcomings of these 

models appear at the initial and boundary conditions where they fail to predict the 

density at these conditions. It seems that a good model for the pressure-density should 

have an exponential term to satisfy the boundary condition of P = ∞ and γmax = constant. 

On the other hand, there should be either a linear or a quadratic term to satisfy the initial 

condition of P = 0 and γ = γ0. Therefore, a model containing a combination of an 

exponential and either a linear or a quadratic term such as Eq. 2.16 could best express 
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the pressure-density relationship in compressed forage materials.  It should also be noted 

that all aforementioned models have been developed based on data obtained from 

compressing forage materials in a closed-end cylindrical die. Thus, the models cannot be 

exactly extended to the baling process. 

2.2.2 Pressure Distribution 
 

Sitkei (1986) introduced a model for the stress distribution inside the forage bale 

at a distance x from the full extension point of the compressing plunger in terms of the 

material properties and the compression chamber dimensions by assuming isotropic 

linear elastic property for forage materials. The model had the form of: 
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where: 

[ ] )1/(/2/)2( ννμμα −++= baA ms ,     (2.20) 

[ ])1/()/2(1(/)2( 2)222
0 ννμνμααγ −+−+= baCB ms ,   (2.21) 

342 /2/ αα ssss aBaBAK += ,      (2.22) 

xa αξ −= ,         (2.23) 

)2/(laam α−= ,        (2.24) 

LaL αξ −= ,         (2.25) 

Px  = pressure in the x-direction at the distance x from the full extension  

    point of plunger (kPa), 

Pe  = pressure at the end of the compression chamber (kPa), 
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L   = compression chamber length (cm), 

x   = distance from the full extension point of the plunger along the  

   compression chamber length (cm), 

α  = angle of top wall of compression chamber (radian), 

 γ0  = initial bulk density (kg/m3), 

μ  = coefficient of friction between forage and compression chamber wall, 

ν  = Poisson’s ratio, 

a  = maximum height of compression chamber (cm), 

b  = maximum width of compression chamber (cm) and 

C  = model coefficient. 

The shortcomings of this model were as follows:  

a. it was derived for the bale chambers with only the top wall inclined, therefore it 

could not be a general model for the pressure distribution, 

b. in this model, pressure at the end of bale chamber was used as the boundary 

condition to solve the governing differential equation which is difficult to 

measure in practice and 

c. there are some unnecessary terms in the model making it  more complicated.  

Faborode and O’Callaghan (1986) derived an equation to express the pressure 

distribution in the compression die given by the following: 

[ ] Rxprd
x

ree
d

K
P /)()1(0 1 μ−− −= ,        (2.26) 

where: 

 Px  = pressure in the x-direction at the distance x from the full extension  

   point of plunger (MPa),  
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K0  = initial bulk modulus,  

d   = material property index, 

 r   = compression ratio, 

 μ  = coefficient of friction between die wall and forage materials, 

 x   = distance from the full extension point of the plunger along the  

   compression chamber length (cm),  

pr = pressure ratio and  

R   = die radius (m). 

  Kepner et al. (1972) proposed the following equation to estimate the portion of 

the plunger force which comes from the convergence of the bale chamber side walls: 

μ)2( cc
a

c wL
D
yEF = ,         (2.27) 

where: 

Fc = portion of the plunger force resulting from the convergence of the bale    

   chamber side walls (N), 

 E = modulus of elasticity of the forage material (Pa), 

 y = average lateral deflection of the hay (m), 

 Da = average depth of the converging section of baler (m), 

 Lc = length of the converging section of baler (m), 

 wc = width of the converging section of baler (m) and 

 μ = coefficient of friction between the forage materials and chamber walls. 

They emphasized that this equation covered only the side walls’ convergence force 

rather than bottom wall friction force and the effect of the bottom wedges. Furthermore, 

in the case of four-side convergence, the two Fc values should be considered.      
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Burrows et al. (1992) reported that in a high density baler, the compaction force 

and the piston stroke had a parabolic relationship, when wheat straw with an initial 

density of 92 kg/m3 was baled.  

 

2.2.3 Energy Requirement 
 

Reece (1967) designed a new wafering machine that continuously formed 

wafers. The machine was tested by producing wafers from chopped alfalfa with 25% 

moisture content, compression pressure of 13.81 MPa (2000 psi), and a holding time of 

13 s. The results showed that the energy requirement for forming the wafer by this 

machine with the abovementioned conditions was 3.23 Watt-h/kg (4.20 hp-h/t). 

Hann and Harrison (1976) reported that in order to make wafers from alfalfa with 

a cut length of 1.5 in. using a hydraulic wafering press, approximately 4.61 Watt-h/kg (6 

hp-h per ton of dry hay) was required. Mohsenin and Zaske (1976) studied the 

compaction of alfalfa hay and fresh alfalfa at different moisture contents and concluded 

that the compaction energy required to achieve a certain bulk density for low moisture 

hay was higher than that of the high moisture hay. 

 O’Dogherty and Wheeler (1984) reported the following equation to express the 

relationship between the specific energy and the material relaxed bulk density of 

compressed barley straw: 

00.50525.0 −= ssW γ ,        (2.28) 

where: 

Ws   = specific energy (MJ/t) and 

γs   = material bulk density (kg/m3). 
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Sitkei (1986) derived the following equation for the specific energy requirement 

of compressed forage materials as a function of the applied pressure and material bulk 

density: 

maxmax /)/1(
0

γγ
γ

γ
∫ +=

s

PPdW ss ,       (2.29) 

where: 

Ws = specific energy, 

Pmax = maximum pressure in the compression chamber,  

γs = material bulk density,                                                                                 

γmax = maximum bulk density  and 

γ0  = initial bulk density.                                                                                 

Faborode and O’Callaghan (1986) reported that the specific energy of forage 

materials increased during the compression process when the maximum applied pressure 

increased. Freeland and Bledsoe (1988) compared seven different models of the large 

round baler from the energy requirement viewpoint. They evaluated the effect of 

chamber type and the operational procedures on the energy requirement of the balers. 

The baler models with either fixed-geometry or variable-geometry chambers were 

considered. They introduced a characteristic power curve for each of the balers, and 

concluded that the fixed-geometry chamber needed more power to bale a certain amount 

of materials compared to the variable-geometry chamber baler.  

 

2.3 Wafer Formation 

Wafer formation is affected by the physical characteristics of the materials that 

are to be compressed such as crop moisture content, quality of forage materials, and 
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particle size. The following sections describe the effect of these parameters on wafer 

formation.  

 
2.3.1 Moisture Content 

Pickard et al. (1961) studied the effect of the hay moisture content on the 

pressure requirement of alfalfa wafers. Results of their research showed that at a 

constant wafer density, the required pressure to form the wafer increased with increasing 

alfalfa moisture content.  

Rehkugler and Buchele (1967) evaluated the effect of moisture content of alfalfa 

forage on the formation of wafers in a closed-end die. The results showed that wafer 

density decreased with increased moisture content; therefore, concluded that to have a 

high density wafer, moisture content of materials must be low. 

Hall and Hall (1968) used a quadratic equation to express the wafer forming 

stress at different die heating levels in terms of alfalfa moisture content in the form of: 

2
210 ww MBMBB ++=σ ,        (2.30) 

where: 

σ  = required pressure (psi), 

Mw  = moisture content (% wb) and 

B0, B1, B2 = model coefficients.  

Srivastava et al. (1981) studied the effect of material moisture content on the 

compression ratio, wafer density, and durability in the compaction of a mixture of alfalfa 

and grass. They found that 11% (wb) was the optimum moisture content to get the 

highest wafer density, durability, and the compression ratio. In another study, the range 
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of 10 to 20% (wb) was found to be the best moisture content of straw in order to produce 

high durability wafers (O’Dogherty and Wheeler 1984). 

 
2.3.2 Quality of Forage Materials 

Pickard et al. (1961) studied the effect of the hay maturity on the pressure 

requirement of alfalfa wafers. Results of their research showed that at a constant wafer 

density, the required pressure to form the wafer increased with increasing alfalfa 

maturity.  

Reece (1966) studied the effect of alfalfa quality on the wafer durability. Wafer 

formation was affected by the hay quality which was different for the hay coming from 

the first and the second cuts. The hay from the second cut alfalfa resulted in a wafer with 

a higher durability compared to the hay from the first cut due to its higher leaf-to-stem 

ratio. 

Rehkugler and Buchele (1967) evaluated the effect of the percentage of alfalfa 

stem on the formation of wafers in a closed-end die. The experiments were performed on 

both chopped and ground materials. The results showed that the high quantity of stem in 

the material had an inverse effect on the formation of the wafer by decreasing protein 

content as binding material. Grinding forage materials also decreased the expansion of 

the wafer by changing the stem’s physical property. 

  
2.3.3 Particle Size 

O’Dogherty and Wheeler (1984) reported that durability of the straw wafer 

decreased by chopping the material to be wafered. O’Dogherty and Gilbertson (1988) 

conducted a study to establish a empirical relationship between the bulk density and the 

cut length of wheat straw. Wheat straw was cut to a uniform length of 15 to 250 mm and 
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the samples were placed into a cylindrical container and a low pressure (100 Pa) was 

applied to them. After measuring the bulk density of the samples at different cut lengths, 

the following empirical model for the density-cut length relationship was developed: 

[ ]1)/109.1(03412.0/17.98 ++= ccsγ ,      (2.31) 

where: 

γ s  = material bulk density (kg/m3) and 

c    = cut length (mm). 

 

2.4 Studies Related to Baling Operation 

Corrie and Bull (1969) compared large rectangular hay bales with the 

conventional bales at similar moisture content and density from the viewpoint of 

heating, nutrient losses, and molding. The study showed that heating occurred in large 

bales more than small ones at a certain dry matter density and moisture content, and it 

was significantly affected by the dry matter bulk density, while nutrient losses were 

higher in small bales compared to large bales. The results also indicated that decreasing 

the dry matter density reduced the heating problem of the bales with a moisture content 

of more than 25%, however this could not eliminate the risk of being contaminated with 

mold. Meanwhile, the large rectangular bales provided a more efficient handling system 

compared to the small ones. 

Fairbanks et al. (1981) evaluated the effect of three types of baling machines on 

the quality and the quantity of harvested hay. A small round baler, a big round baler, and 

a mechanical stack maker were used in this study. The percentage of the crude fibre, 

protein, and ash was measured as the quality factors immediately after baling and then 
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six months afterward. Results of this study revealed that there was no significant 

difference between the quality of the fibres taken immediately after harvesting and those 

taken after six months of storage; however, hay quality decreased with an increase in 

precipitation. 

Jenkins et al. (1985) used a large rectangular baler to collect and handle rice 

straw, and compared its performance to that of a big round baler and the conventional 

handling equipment. An economic comparison among the equipment was also 

conducted.  The results indicated that the large rectangular baler had the lowest handling 

cost compared to the other available handling systems if the baler capacity was kept 

high. Rain could easily penetrate the rectangular bales in an uncovered storage 

condition, while rain penetration was limited to the outside surface in big round bales. 

They concluded that, in contrast to the round bales, big rectangular bales must be stored 

with cover. 

Shinners et al. (1992) compared the performance of two small rectangular balers 

with different feeding systems (side fed and bottom fed chamber) from the viewpoint of 

the bale chamber and pick up losses. Results indicated 1.09 and 1.31% pick up losses for 

the bottom and the side fed chambers, respectively. Therefore, the bottom-fed baler pick 

up loss was 17% lower than that of the side fed chamber baler. Furthermore, they 

reported 2.28 and 2.66% chamber losses for the bottom fed and the side fed chamber 

baler, respectively (14% lower loss for the bottom fed chamber baler). 

Coblentz et al. (1993) designed a new laboratory scale baler to make 10.3 by 

10.8 by 13.4 cm wire-tied bales. The system was producing bales with densities of 150 

to 800 kg/m3. The laboratory bale density was compared with that of the conventional 

small-square alfalfa bales and a good correlation was found. 
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Shinners et al. (1996) compared the harvest and the storage losses of different 

types of balers. Mid-size and small rectangular balers and the large round baler for the 

harvesting losses comparison were considered. The pick up and the bale chamber losses 

were compared for the considered balers. The results showed that the pick up losses of 

the mid-size and the small rectangular and the large round baler were 0.7, 0.4, and 2.6% 

of the total dry weight of the collected hay, respectively; therefore, the rectangular balers 

had less pick up losses than the round balers. The bale chamber losses were 0.7, 1.6, and 

1.6% of the total dry weight of the collected hay for the mid-size and the small 

rectangular balers and the large round baler, respectively; therefore, the mid-size 

rectangular baler had the least bale chamber loss. 

 

2.5 Tri-axial Sensor Design 

Forces applied to the forage material by the baler plunger are exerted on the bale 

and bale chamber during the baling process. In order to model the pressure distribution 

resulting from these forces, comprehensive knowledge of these forces is necessary. 

Therefore, a tri-axial sensor is needed to record these compressive forces in three 

directions. In this section, a review of studies related to sensor design is presented.  

The tri-axial sensor is a force transducer which is able to measure the forces in 

three directions independently using an extended octagonal ring (EOR). The EOR was 

developed from the circular ring force transducer to give more stability to the transducer. 

The idea of using the EOR in a measurement system was first introduced by Lowen et 

al. (1951). Hoag and Yoerger (1975) derived analytical equations of stress distribution 

for the simple and the extended ring transducers at different loading and boundary 

conditions using the strain energy method. This study resulted in two equations 
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developed for the bending moment in the ring section of the extended ring which are 

used for moment calculation in the ring section of the EOR as well. Thereafter, 

modifications were brought to one of the Hoag and Yoerger’s equations by McLaughlin 

(1996).  

Godwin (1975) designed an extended octagonal ring transducer to measure the 

soil reaction forces to the soil engaging tools in two directions and the moment in the 

plane of these forces. A good linearity, small cross sensitivity, and hysteresis were 

reported. Meanwhile, the practical sensitivities of the strain gages were much more than 

the obtained values from the analytical equations. O’Dogherty (1975) fabricated a 

transducer to determine the cutting and vertical forces of a sugar beet topping knife 

using an extended octagonal ring. The results showed a good linearity, low hysteresis in 

loading and unloading cycles, and cross sensitivities of 4.1 and 6.5% for the cutting and 

the vertical forces, respectively in the calibration process of the transducer. Based on this 

calculation, a modification to the coefficients of the formula which is used for the EOR 

transducers was suggested; coefficients of 1.6 and 1.9 instead of 0.7 and 1.4 in the 

equations of the vertical and the horizontal forces, respectively.  

Godwin et al. (1993) designed a dynamometer using the EOR to measure the 

exerted forces and moments on tillage tools. Two EOR in back-to-back form which their 

longitudinal axes were making angles of 900 were used. The dynamometer using a tri-

axial loading method was calibrated and excellent linearity between the applied forces 

and moments and the bridge output voltage was found. A small amount of hysteresis 

effect between loading and unloading calibration curves, and cross sensitivity of less 

than 4% was reported; however, in one case the reported cross sensitivity was 10.6%. 
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Gu et al. (1993) designed and built a transducer to measure the vertical and the 

horizontal forces on the wheels of a quarter scaled model tractor using two EORs with 

the stress nodes at positions of θ = ±45° and  θ = 0°. The transducer was calibrated by 

applying independent forces in two perpendicular directions, and a regression model for 

each of the vertical and the horizontal primary sensitivities and the cross sensitivities 

was developed. Cross sensitivities ranging from around zero to four percent were 

reported.  

O’Dogherty (1996) derived a formula to determine the ring thickness of the EOR 

transducer using the data of the designed transducers by previous researchers. He 

introduced a graphical procedure for the EOR design based on the geometrical 

parameters of the ring.  McLaughlin and co-workers (1998) designed and fabricated a 

double extended octagonal ring (DEOR) drawbar transducer. They calibrated the 

transducer using both uni-axial and tri-axial loading method. From the uni-axial loading 

calibration, sensor cross sensitivities were assessed at 1.9 and 7.0% for the draft and the 

vertical loading, respectively. From the tri-axial loading calibration, regression models 

were derived to predict each of the draft, vertical, and side loads. The designed 

transducer was also used to measure the draft, the vertical, and the side loads on the 

drawbar of two secondary tillage tools and proved to be reliable in the field to measure 

the drawbar forces. 

 
2.6 Summary 

Most of the information found in the literature about coefficients of friction was 

related to the kinetic coefficient of friction rather than the static coefficient of friction. 

Only one study was found about static coefficient of friction of some forage materials 
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(Richter 1954), but results of this research were not reliable because the moisture 

content of materials has not been reported. Regarding other properties such as modulus 

of elasticity and particle stiffness, information found in the literature were for materials 

different from those used in this study. The results of crop properties from literature are 

not directly extendable to this study; however, this information can help understand crop 

behavior during the baling process. This information also gives an idea about methods of 

measuring crop properties. 

In the area of pressure-density relationships, more literature was found, however 

all developed models were based on the data of compressing forage materials in a 

closed-end cylindrical die. Although, these models cannot be directly extended to the 

pressure-density relationship in balers, some of them (recently derived ones) give 

information about the form of the pressure-density model in balers. They can also help 

to determine the factors affecting this relationship. 

The knowledge of pressure distribution along the axis of compression for 

compressed forage materials, as expressed within the literature (Eqs. 2.19 and 2.26), 

provides an idea about the pattern of pressure distribution in a large square baler and the 

parameters affecting this pattern. Only two models (Sitkei1986 and Faborode and 

O’Callaghan1986) were found in the literature regarding pressure distribution. One was 

based on data released from compressing forage materials in a cylindrical die which is 

not extendable to the pressure distribution in a bale chamber. The other one was an 

analytical model which has been developed for a bale chamber by assuming an isotropic 

linear elastic property for forage materials. The latter model had three shortcomings as 

follows: 
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a. it was derived for bale chambers with only the top wall inclined, whereas in a 

large square baler not only the top wall, but the side walls are also inclined; 

b. in this model, the pressure at the end of bale chamber was used as the boundary 

condition to solve the governing differential equation which is difficult to 

measure in practice; and 

c. there are some unnecessary terms in the model, making it  more complicated.  

The aforementioned shortcomings in previous studies justify distinct 

experimental and theoretical studies on the pressure-density relationships and the 

pressure distribution during the baling process.    
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CHAPTER 3 

MATERIALS AND METHODS 

In this chapter, model development, materials and methods used to carry out the 

experiments, instrumentation set up, and field and laboratory tests are described. 

 
3.1 Model Development 

In this section, model development for the pressure distribution and pressure-

density relationship is explained. In each case, development of both analytical and 

empirical models is covered.  

  
3.1.1 Pressure Distribution 

  
3.1.1.1 Analytical Model 

The compositions and the properties of forage materials change continuously 

during growth, maturity, and even after harvest because they are alive and biological 

materials. These materials consist of solid and liquid components which make a very 

complex construction whose mechanical behavior cannot be characterized by simple 

equations and constants. The mechanical behavior of these materials varies with factors 

such as loading rate, previous history of loading, material composition, and moisture 

content. Therefore, most agricultural materials do not follow linearity in compression 

tests even at small deformations. Because the load-deformation relationship in forage 

materials depends on deformation rate, time also plays a role in this relationship. Thus, 
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these materials are categorized as viscoelastic. In spite of being aware of the 

aforementioned fact and in order to simplify the problem in this study, it was assumed 

that the forage material behaves as an isotropic linear elastic material. With this 

assumption, analytical models of the pressure distribution inside the compression 

chamber and the pressure-density relationship for a large square baler were developed 

using the theory of elasticity. 

In general, the constitutive relationship for an isotropic linear elastic material 

(Fig. 3.1) is characterized by modulus of elasticity (E) and Poisson’s ratio (ν). Either 

stress can be expressed as a function of strain or strain as a function of stress using the 

following equations (Fung 1977): 

kkijijij
EE εδ

νν
νε

ν
σ

)21)(1(1 −+
+

+
= ,       (3.1) 

 
or 
 

kkijijij EE
σδνσνε −

+
=

1 ,        (3.2) 

 

where: 

 i = x, y, or z, 

j = x, y, or z, 

k = x, y, or z, 

δij = Kronecker delta with the following definition: 

 δij = 1 if i = j and 

δij = 0 if i ≠ j.  
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Considering the normal stresses only and substituting σii = -Pi and εii = -εi where i = x, y, 

and z (Fig. 3.2) the following equations can be derived between pressure and 

compressive strain of an element of the bale in different directions:  

( )[ ]zyxx PPP
E

+−= νε 1   in x-direction,     (3.3) 

( )[ ]zxyy PPP
E

+−= νε 1    in y-direction and    (3.4) 

( )[ ]yxzz PPP
E

+−= νε 1   in z-direction.     (3.5) 

These relationships only valid for an isotropic linear elastic element.  

y

x

z

σxx

σxy

σxz
σzy

σzx
σzz

σyy

σyxσyz

 

Figure 3.1 Stress tensor on an element of an isotropic linear elastic material. 



 38

y

x

z

Px = -σxx

Pz = -σzz

Py = -σyy

εx = -εxx

εz = -εzz

εy = -εyy

 

Figure 3.2  Normal stresses applied to an element of the bale inside the compression  
      chamber. 

 

From Eqs. 3.3, 3.4, and 3.5,  εx,  Py, and Pz  can be calculated in terms of Px, εy, and εz as 

follows: 
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)1(1 2 .       (3.8) 

Volume change of element is also stated in terms of either strains or stresses using the 

following equation: 

( )zyxzyx PPP
EV

V
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−
=++≅

Δ νεεε 21 .      (3.9)   
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A general form of the equation of equilibrium for an isotropic linear elastic material is 

given as follows: 

0=+
∂

∂
i

ij b
j
σ

.          (3.10) 

Since body forces (bi) are assumed to be zero, the following equations result from Eq. 

3.10: 
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From Figures 3.3 and 3.4, ax and bx (variable height and width of compression chamber 

as a function of the distance from the plunger) are defined using the following equations: 

xaax α−= ,          (3.14) 

xbbx β2−= ,          (3.15) 

where: 

a  = maximum height of compression chamber (cm) and 

b  = maximum width of compression chamber (cm).  

Furthermore, according to the geometry of the compression chamber, the following 

assumptions can be made: 

)(x
a
x

yy εαε ==−  and         (3.16) 

)(2 x
b

x
zz εβε ==− .         (3.17) 
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Equations 3.16 and 3.17 state that the strains in the y- and z-directions are solely a 

function of x. Therefore, based on Eqs. 3.6, 3.7, and 3.8, the strain in x-direction and the 

pressures in y- and z-directions are also functions of x only if the variation of Px with  

respect  to y and  z is zero.  σyz  is  also  assumed   to  be  zero  which  is a reasonable 

assumption. Therefore, the following equations result from Eqs. 3.11, 3.12, and 3.13: 
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Figure 3.3 Side view of the compression chamber of a large square baler. 
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Figure 3.4 Top view of the compression chamber of a large square baler.  
 

 

Equations 3.19 and 3.20 show that σxy and σxz are only functions of y and z, so they do 

not appear in the equation of equilibrium in the x-direction.  Therefore, the stresses on 

the wedge part of an element of elastic material resemble what are shown in Fig. 3.5.  

Based on this free body diagram, the equations of equilibrium in the x- and y-directions 

are as follows: 
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Figure 3.5 Stresses applied on the wedge part of an elastic material. 

 

  

From Eqs. 3.21 and 3.22, σn andτ n could be calculated as follows: 
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Comparing these stresses to pressures applied to an element of the bale in bale chamber 

(Fig. 3.6), the following relationships could be found: 

 ασαασ 2sincossin 22
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Figure 3.6 Pressures applied on the wedge part of an element of the bale. 

 

 

Using Eqs. 3.25 and 3.26, σxy and Pn can be calculated in terms of μ, α, Px, and Py as 

follow: 
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Since in the large square baler, α is very small (α<<1rad) the following assumptions can 

be made: 

yn PP ≈  and          (3.29)  
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nxyf Pμστ =−≈ .         (3.30) 

Therefore, there are only two components of stresses on the inclined surface of 

the element (both top and side inclined surfaces). The normal stress which equals to Py 

for top surface and to Pz for side surfaces, and the shear stress which equals to μPy for 

top surface and to μPz for side surfaces, respectively. In Sitkei’s model (Eq. 2.19), it has 

been assumed that only the top wall of the bale chamber made an angle of α with the x-

axis (longitudinal axis), and the rest are parallel to the x-axis. Therefore, this model has 

been derived by assuming zero strain in the z-direction. In the large square baler, the top 

wall makes an angle of α and the side walls make angle of β with the x axis (Figures 3.3 

and 3.4). In other words, the strain in none of the directions is zero. In order to derive an 

equation for the pressure distribution inside the bale along the length of the compression 

chamber, the equation of equilibrium of an element of bale shown in Figure 3.7 in the x-

direction is considered as follows: 

 
0=∑ xF  and          (3.31) 
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Figure 3.7 Applied forces to an element of the bale in the compression chamber. 
 

 

Since α and β are small, the following assumptions can be made: 

 ααα == tansin , 

βββ == tansin , 

1coscos == βα , 

y
y

n PP = ,  

y
y

n Pμτ = , 

z
z

n PP =  , 

z
z

n Pμτ =  and 

yb Pμτ = . 
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By considering the above assumptions, Eq. 3.32 can be written as: 

( ) ( ) ( ) 022 =++++ μβμα xzxy
xx aPbP

dx
APd

.     (3.33) 

By inserting Py and Pz from Eqs. 3.7 and 3.8 into Eq. 3.33, the following equation is 

obtained: 
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By inserting εy and εz from Eqs. 3.16 and 3.17 into Eq. 3.34, the following equation can 

be written: 
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In order to simplify the problem, the mean values of Am, am, and bm are used instead of 

variable values of Ax, ax, and bx according to the following definitions: 

 
)2/(Laaa mx α−=≈ , 

)2/(2 Lbbb mx β−=≈  and 

mmmx baAA =≈ . 
 
Therefore the following differential equation can be written for the pressure in the x-

direction: 
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In Sitkei’s model (Eq. 2.19), the modulus of elasticity (E) has been considered as a 

function of the strain in y-direction, while the results of the experiments in this study 

showed that E was constant for the density range encountered in the large square baler. 

Therefore, a constant E was considered in this model.  By reducing the constant 

coefficients of the above differential equation to A and B using the following 

relationships (Eqs. 3.38 and 3.39), the differential equation can be written in a simple 

form of Eq. 3.37.   
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Px  = pressure in the x-direction at the distance x from the full extension  

    point of plunger (kPa), 

L   = compression chamber length (cm), 

x   = distance from the full extension point of the plunger along the  

   compression chamber length (cm), 

α  = angle of top wall of compression chamber with respect to x-axis, 
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β  = angle of side wall of compression chamber with respect to x-axis, 

 μ  = coefficient of friction between forage and compression chamber wall, 

ν  = Poisson’s ratio, 

a  = maximum height of compression chamber (cm) and 

b  = maximum width of compression chamber (cm). 

Equation 3.39 is a first order linear differential equation. The solution of this equation 

with the boundary condition of Px = Pp at x = 0 (pressure on the plunger is Pp) could be 

written as: 

 

( )AxAx
px eAx

A
BePP −− −−+= 12 .       (3.40) 

A and B as are expressed in Eqs. 3.38 and 3.39 are functions of  compression chamber 

geometry and forage material properties. In order to evaluate the effect of these 

parameters (α, β, μ, υ, and cross-section area) on the constants A and B and consequently 

on the pressure distribution, a compression chamber with a square cross-section is 

assumed for simplification (a = b and am = bm). Therefore, A and B could be written as 

follows: 
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According to Eqs. 3.41 and 3.42, A and B increase with increasing α, β, μ, and υ, while 

they decrease with increasing cross-section area (a and am). Therefore, pressure in the x-

direction drops off faster with increasing wall angles, coefficient of friction, and 
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Poisson’s ratio, whereas with an increasing cross-section area it drops off more slowly. 

If a compression chamber with no converged walls is considered (α = β = 0), constant B 

will disappear and constant A will be only function of coefficient of friction, Poisson's 

ratio, and chamber cross-section area. This shows that the second term of Eq. 3.40 

comes from the walls convergence. Equation 3.40 expresses the pressure distribution 

inside the compression chamber of a baler along the axis of compression (x-direction) as 

a function of crop properties, bale dimensions, and the distance from the full extension 

point of the plunger. Using Eqs. 3.7, 3.8, and 3.40, the following equations can be 

derived for pressures in the y- and z-directions (Py and Pz): 
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According to Eqs. 3.43 and 3.44,  on the plunger (x = 0) the following relationships exist 

between pressures in the x-, y-, and z-directions (Pp is pressure in the x-direction at x = 

0): 
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Therefore, the Poisson’s ratio (ν) can be calculated using Eq. 3.45 as follows: 
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The developed analytical model for pressure distribution in this study was validated 

using collected data for barley straw, wheat straw, and whole green barley. The least-
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square regression analysis method was used for model validation, and model constant 

coefficients were estimated. 

   
3.1.1.2 Empirical Model  

The analytical model for the pressure distribution is a complicated model with 

many parameters. These parameters which are related to the compression chamber 

dimensions or forage material physical and mechanical properties have to be measured 

prior to the modeling process. Measuring these parameters is usually a time-consuming 

exercise (requires a lot of time) and is very expensive. So, in addition to the analytical 

model, an empirical model was also introduced for the pressure distribution in the x- and 

y-directions for the tested forage materials using the experimental data. According to the 

pattern of the experimental data, an exponential model with unknown constants was 

considered for each of the materials. The least square error in the regression analysis was 

used to validate the model and estimate the model parameters. The general form of the 

presented models was the same for the all tested forage materials, while the model 

constants differed from material to material. The   following is the   general form of the 

model in the x-direction for the tested forage materials:  

xB
x eAP 0

0
−= ,          (3.47) 

 
where: 

Px      = pressure in the x-direction as a function of distance from the full     

   extension point of the plunger (kPa), 

x   = distance from the full extension point of the plunger along the  

     compression chamber length (cm) and 

 A0, B0    = model coefficients. 
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Because the dug hole in the bale for the sensor was usually larger than the sensor 

size, there was a gap between the sensor body and the top and side walls of the dug hole. 

In practice, some of the forces applied in the y-direction have been consumed to fill this 

gap. Since filling this gap takes some time, at the beginning of the force recording 

process (near the plunger), the recorded forces in the y-direction were much lower than 

the expected forces. However, the recorded forces at the end of the compression 

chamber were much closer to the expected forces. Therefore, the values of forces 

recorded in the y-direction were not reliable (especially near the plunger), however the 

trend of force changing with distance from the plunger showed the force distribution 

pattern inside the compression chamber in the y-direction. After converting the recorded 

forces to pressure, the following exponential model was fitted to the experimental data 

of barley straw, wheat straw, and whole green barley in the y-direction:    

xD
y CeP 0−=           (3.48) 

 
where: 

Py  = pressure in the y-direction at the distance x from the full extension  

    point of plunger (kPa), 

x = distance from the full extension point of the plunger along the  

   compression chamber length (cm) and 

C, D0   = model coefficients. 

 
The designed sensor was not able to record the forces in the z-direction (section 3.3.2.2); 

therefore, there were no data available in the z-direction to model the pressure 

distribution in this direction. 
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3.1.2 Pressure-Density Relationship 

3.1.2.1 Analytical Model 

It is also important to find a relationship between bale density and applied 

pressure to the bale. Bale density changes during the baling process along the bale length 

because of changing bale volume. Bale volume change is related to the pressures in 

different directions given by Eq. 3.9. An analytical model can be derived by inserting Py 

and Pz from Eqs. 3.7 and 3.8 into Eq. 3.9 as follows: 
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On the other hand, the relationship between volume change and density is expressed by: 

xV
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00
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where: 

 ΔV = bale volume change (m3), 

 V0 = bale initial volume (m3), 

 V = bale volume as a function of distance from the full extension point of  

   the plunger (m3),  

 γx = bale density as a function of distance from the full extension point of  

   the plunger (kg/m3) and 

 γ0 = initial bale density (kg/m3). 

 

By equating the right hand sides of Eqs. 3.49 and 3.50, and using Eqs. 3.16 and 3.17, the 

following equation can be obtained: 
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After simplifying Eq. 3.51, the following model can be developed for the bale density as 

a function of pressure, crop properties, and compression chamber dimensions: 
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At the plunger (x = 0), Px is equal to Pp; therefore, γp which is the bale density in front of 

the plunger is calculated from the following equation: 
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3.1.2.2 Empirical Model 

Developing an empirical model for the relationship between the bale density and 

plunger pressure in a large square baler was one of the objectives of this study. In order 

to establish this model, the data of baling alfalfa and barley straw at different load 

settings were used. In these tests, plunger forces were recorded by strain gages, and 

densities were calculated by measuring bale dimensions and weight. Different models 

have been introduced for the pressure-density relationship of forage materials, where 

some of them were tested with the data of this experiment to find the best model for the 

pressure-density relationship. The most promising model for the purpose of this study 

was the model (Eq. 2.16) suggested by Ferrero et al. (1990). Thus, this model was 

modified to show the best agreement with the experimental data of the relationship 

between alfalfa and barley straw bale density and plunger pressure. Therefore, the 
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pressure-density relationship for the large square baler during the alfalfa and barley 

straw baling process was best expressed with the following model: 

)1)(( 02
000

pPD
pps eCPPBA −−+++= γγ ,      (3.54)  

where: 

γs    = material bulk density (kg/m3), 

γ0    = initial bulk density (kg/m3), 

Pp    = compression pressure on the plunger (MPa) and 

A0, B0, C, D0 = model coefficients. 

Comparison of the analytical and empirical models for bale density as a function of 

pressure on plunger, Pp, (Eqs. 3.52 and 3.53) shows that these models have completely 

different general forms, however both models reveal that bale density has a direct 

relationship with material initial density and plunger pressure.  

 

3.2 Large Square Baler 

In this project, a newly designed New Holland BB960 large square baler (Fig. 

3.8) was used to bale alfalfa, whole green barley, barley straw, and wheat straw. This 

baler produces bales with a width of 1.2 m, height of 0.9 m, and an adjustable length of 

up to 2.5 m. A schematic of the large square baler and its components is shown in Figure 

3.9.  A large square baler has a two-stage feeding system (Figs. 3.10 and 3.11). After 

being lifted by the pickup (1), the centering augers  guide the  crop to the packer 

chamber throat   opening,  where it is  swept  into  the  pre-compression  chamber by  a 

set  of  packer  fingers  (2)  mounted on a  triple throw  crankshaft,  giving  the  packer  a  
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 Figure 3.8 New Holland BB960 large square baler. 
 

raking action that mixes the crop and ties the flake together as it feeds into the fixed-

volume pre-compression chamber (3). The holding fingers (4) retain the charge in the 

chamber until the crop density reaches a predetermined level. At this point, the pre-

compression forks (5) engage to sweep the preformed flake into the bale chamber where 

it is compressed by the plunger (6) into the compression chamber (7). Since one charge 

makes one complete flake, bale density is always consistent throughout the bale with all 

sides being well formed regardless of crop conditions or ground speed.  This is 

especially important when baling light swaths on rough ground.  Conversely, balers 

without pre-chambers must be driven at high speed to attempt to maintain flake content 

and bale shape. 
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 Figure 3.9 Cross-view of a CNH large square baler (courtesy of CNH). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.10 Packing the pre-compression chamber (courtesy of CNH). 
 
 
 
 
 
 

Pick-up (1) 
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Figure 3.11 Filling the main compression chamber (courtesy of CNH). 

 

The bale density control system in the large square baler could be used in three 

different modes. The first mode is called the automatic bale density control mode.  The 

baler should work normally in this mode to produce bales with a uniform bale density 

close to the pre-set density by the operator. In this study, the baler was operated in the 

automatic mode, so only this mode is explained in this section. In this mode, the plunger 

force sensor senses the force applied to the bale via the plunger, and a processor sets the 

pressure in the bale density controlling system to adjust the bale density based on 

plunger force.  A density level is selected in this mode by an operator from the tractor 

cab based on the crop type and moisture content. This mode can compensate for the 

variation in the baling material conditions such as moisture content, so that the pressure 

in the density cylinders changes to keep the plunger load and the bale density constant. 

The available settings are 10, 20, 30, up to 100% of the maximum available plunger 

force, and by changing the load setting; the side hydraulic cylinders adjust the applied 
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forces to the top and side walls in such a way that the baler applies a resistance equal to 

the requested force to the plunger (New Holland BB960 Manual 2001). 

There is also a pre-compression chamber that is located prior to the main 

compression chamber so that the forage materials are compressed at an adjustable 

pressure before entering the main chamber. The packer charges the forage materials 

continuously into this chamber; when enough material is charged into the pre-

compression chamber and the pressure in the pre-compression chamber is exceeded 

from the stuffer trip setting (this setting sets the size of the flake charged into the bale 

chamber), the sensor paddles are pushed down (Fig. 3.12). At this time, the stuffer drive 

is activated and the stuffer fork sends the material from the pre-compression chamber to 

the bale chamber when the plunger is doing its compression stroke. At the same time, 

the holding fingers open the top opening of the pre-compression chamber. Once the 

material flake is charged to the bale chamber, the holding fingers return to their original 

position (Fig. 3.13).  

 

 
Figure 3.12 Sensors of the pre-compression chamber (New Holland BB960 Manual  

       2001).  
 



 59

 
 
 

 
Figure 3.13 The holding fingers situation right after feeding the materials to the bale  

        chamber (New Holland BB960 manual 2001). 
 

There is a lever with ten positions to apply ten different pre-compression 

pressure levels to the materials which is called the stuffer trip sensitivity lever.  This 

lever is connected to the pre-compression chamber sensor via a spring. Changing the 

lever position changes the spring tension and consequently changes the sensor 

sensitivity.  The position of this lever determines the amount of materials fed to the bale 

chamber (flake size) in such a way that increasing the spring tension increases the flake 

size and decreasing the spring tension decreases the flake size. There are ten positions on 

this lever (one to ten) to choose ten different flake sizes. Lower positions give thinner 

flakes and higher positions give thicker flakes. Well-shaped dense bales should have a 

flake with the thickness of 60 to 80 mm; however, flake size depends on the sensor 

sensitivity.   
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3.3 Instrumentation Set up 

In this section, sensor installation on the baler and sensor design are explained. 

 

3.3.1 Sensor Installation 

To record forces exerted to the baler plunger and different parts of the 

compression chamber walls, appropriate sensors were installed in different points of the 

baler. To measure the forces on the plunger, a set of four strain gages (EA-06-500BL-

350, Microsoft Measurements, Raleigh, NC) were mounted on each arm of the plunger 

(Figs. 3.14 and 3.15). Strain gages were used in a Wheatstone bridge, and a data 

acquisition system was used to record the bridge outputs which were voltages at the 

frequency of 50 Hz (Fig. 3.16). Repeated loading-unloading procedure was carried out 

in the lab to calibrate the installed sensor.  

 
Figure 3.14 Strain gages installed on the plunger arm. 
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Figure 3.15 Arrangement of strain gages on the plunger arm and Wheatstone bridge (Vs  

        and Vo are excitation and bridge output voltages, respectively). 
 
 

 
To measure the top and side wall displacements during baling, a displacement 

sensor was mounted on each wall. The displacement sensor used a potentiometer linked 

to a rotary device that turned around its axis when pushed by an arm linked to the wall. 

A rolled plate created a spring effect to follow the wall displacement. The measured 

displacements were then used to calculate the top and side wall angles which appear in 

the analytical model of the pressure distribution inside the compression chamber.  
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Figure 3.16 Data acquisition and monitoring system.  

 

3.3.2 Sensor Design 

The main purpose of the field experiments with the baler was to collect 

appropriate experimental data to validate the models of  the pressure-density relationship 

and the pressure distribution inside the bale along the length of the compressing 

chamber. In order to achieve this goal, two types of measurement sensors were designed.   

3.3.2.1 Uni-axial Sensor 

The uni-axial sensor consisted of an S-shape load cell which was put inside a 

pipe as a cover (radius of 50 mm and total length of 150 mm) and fixed at one end. The 

other end was used as the area that senses the applied force (Fig. 3.17). The Instron 

testing machine (Instron Corp., Canton, MA) was used to calibrate this sensor (Fig. 

3.18). This load cell was put inside the bale in the x-, y-, and z-directions to record the 

forces in those directions for alfalfa bales. The main problem with the uni-axial sensor 
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was that it was not able to record the forces in three directions simultaneously. In 

addition, because of the cylindrical shape of the sensor, the alignment with the 

corresponding axis inside the bale chamber was difficult.  

 

 
Figure 3.17 Assembled uni-axial sensor (height is 150 mm). 
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Figure 3.18 Load cell calibration using the Instron testing machine. 

 

3.3.2.2 Tri-axial Sensor 

A tri-axial sensor was designed using two extended octagonal ring (EOR) which 

were put together as shown in Figure 3.19. The EOR was machined from aluminium 

6061-T6 with yield strength of 275 MPa and Young’s modulus of 70 GPa. A cube of six 

aluminum plates was used to cover the sensor and provide a suitable sensing area for the 

applied forces at different directions (Fig. 3.20). Therefore, the outside dimensions of 

the tri-axial sensor were: length of 210 mm, height of 160 mm, and width of 175 mm. z- 

and y-direction views of the sensor and applied forces to the covering plates of sensor 

are shown in Figures 3.21 and 3.22. The applied forces to the covering plates can be 

transferred to each of the EOR used in this sensor. Therefore, three forces (Fx, Fy, and 

Fz)  and  two  moments  (Mx  and Mz)  are  applied  to  each EOR (Fig. 3.23). Since   two  
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Figure 3.19 Designed sensor without cover plates (length of 163 mm, height of 110 mm,  
        and width of 126mm). 

  

 
 

Figure 3.20 Different pictures of the designed tri-axial sensor (length of 210 mm, height of  
        160 mm, and width of 175 mm for the sensor with cover). 
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Figure 3.21 Applied forces to the covering plates of the sensor in the x-y plane. 
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Figure 3.22 Applied forces to the covering plates of the sensor in the x-z plane. 
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Figure 3.23 Forces transferred from covering plates to the extended octagonal ring  
       in different directions. 
 

 

EORs have been used in this sensor, half of the applied forces to the covering plates in 

each direction is applied to each EOR. The EOR consists of a rigid part and a flexible 

part (Fig. 3.24). The flexible part which is the ring section of the EOR, is used as a 

sensitive element to bending moment to measure the applied forces by installing strain 

gages on. The horizontal and vertical forces (Fx and Fy) and Mz apply bending moment 

at the ring section of the EOR; therefore, by installing strain gages at proper positions on 

this element, these forces can be measured simultaneously and independently. The 

bending moment at different angles of the ring section of this element is calculated from 

the following equation using mechanics of materials: 

θθ
πθ cos

2
)sin2(

2
RFRFM xy −−= ,       (3.55) 
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where: 

R = radius of the ring section (m), 

θ = angle, measured clockwise from the top of the ring (radians), 

Mθ = bending moment in ring at angular position θ (N m) and 

Fx, Fy = applied load in the x and y-directions (N). 

 

 

 

Figure 3.24 Flexible and rigid sections of the extended octagonal ring (EOR). 

 

 

In order to measure forces in different directions simultaneously and 

independently with minimum cross sensitivities, proper positions of strain gages must be 

determined using Eq. 3.55. For measuring Fy, the angle of the location of strain gage 

must be selected in such a way that bending moment at that angle is only a function of 

Fy. Therefore, the second term of Eq. 3.55 should be zero: 

0cos
2

=θRFx .         (3.56) 
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From Eq. 3.56, θ is obtained to be 90°. So, strain gages should be installed at the angle of 

90° clockwise from the top point of ring section to measure Fy without any side effects 

from Fx and Fz. For Fx measurement, the first term of Eq. 3.56 should be zero; therefore: 

0)sin2(
2

=− θ
π

RFy .         (3.57) 

From Eq. 3.57, θ is calculated to be 39.5°. So, strain gages should be installed at the 

angle of 39.5° from the top point of the ring section to measure Fx without any side 

effects from Fy and Fz. Strain gages installed at these two angles are not affected by Fz, 

because Fz applies shear and torsion at those points which cannot be recorded by these 

strain gages. In order to measure Fz, the strain gages must be installed on the side faces 

of the ring section (Fig. 3.25). 

 

Figure 3.25 Positions of the strain gages on the EOR to record side forces.  
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Based on the above analysis of the strain gage position, the stress nodes of the 

EOR (Fig. 3.26) used in this sensor were selected at the positions of θ = ±39.50° and θ = 

90° for axial and vertical force measurements, respectively. The radius of the ring 

section  of  the  EOR (R) was  considered  25 mm,  because it  was  the smallest required 

 

 

Figure 3.26 Stress nodes and strain gage locations in the extended octagonal ring.  
        Bridge containing gages 1, 2, 3, and 4 is sensitive to Fx and the bridge   
        containing gages 5, 6, 7, and 8 is sensitive to Fy.   

 

 

size of the ring for strain gage installation. A ring width of at least 38 mm was needed to 

attach the horizontal force bracket to the EOR via four bolts. The ring center to center 

distance (2L) was chosen to be 100 mm, and a distance of 50 mm was also required 

between the two EORs. Based on these dimensions and a preliminary estimation of the 

maximum plunger pressure, the maximum applied force to the sensor in the x-direction 

was found to be about 9 kN. Therefore, the horizontal design load was considered to be 
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9 kN, and 56% of this load (5 kN) was selected as the vertical design load.  According to 

the abovementioned dimensions and design loads, the ring thickness was then 

determined using Eq. 3.55 and the following equation from mechanics of materials: 

( )
2

216
tEw

M

r

θ
θ

ν
ε

−
= ,         (3.58) 

where: 

wr, t = ring width and thickness (m), 

εθ = strain at angular position θ on the ring (m/m), 

Mθ = bending moment in the ring at the angular position θ (N m), 

ν = Poisson’s ratio and 

E = modulus of elasticity (Pa). 

The maximum bending moment of the ring section was calculated using Eq. 3.55 

then ring thickness was computed using Eq. 3.58. The allowable strain for aluminum 

6061-T6 is 0.0039 m/m; therefore, based on this strain and the design loads, a ring 

thickness of 6.5 mm was obtained for the EOR. Once the ring thickness was determined, 

the ratio of the ring radius to the ring thickness (R/t) was calculated to make sure that the 

condition for the thin ring was satisfied. The designed EOR dimensions are shown in 

Table 3.1. A set of four strain gages were each installed at the positions of θ = ±39.5° 

and θ = 90° on the ring section of the EORs. Each set of these strain gages formed a full 

Wheatstone bridge so that there was one horizontal output and one vertical output for 

each of the EORs (Fig. 3.26). Therefore, the force in the x-direction was calculated from 

the sum of the horizontal outputs of the two EORs, and the force in the y-direction was 

computed from the sum of the vertical outputs.  
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Table 3.1 Dimensions of the EOR. 
 

Parameter Dimension (mm) 
t (ring thickness) 6.5 

wr (ring width) 38 

2L (ring center to center distance) 100 

h 6 

r (ring radius) 25 

 

3.3.2.3 Sensor Calibration 

The uni-axial loading calibration was performed by applying forces in the x- and 

y-directions separately to determine the sensor vertical and horizontal primary, 

secondary, and cross sensitivities. Three directional calibration was also carried out by 

applying forces in the x-, y-, and z-directions to the sensor simultaneously. Independent 

forces in the x- and y-directions were applied using the Wykeham Farrance shear box 

apparatus and in the z-direction, force was applied by using a C-clamp. The applied 

force in the z-direction was measured by locating a small load cell between the C-clamp 

and the sensor wall (Figure 3.27). Four loading and three unloading points were 

considered for the three directional calibrations.  

A data acquisition system including a data logger (PPIO-AI8), a signal 

conditioner (EXP16), a power supply, and a laptop were used to record the output of the 

sensor at the frequency of 50 Hz. The data of the three directional calibration were used 

to develop the multiple regression calibration equations to predict each of the forces in 

the x- and y-directions. The primary, the secondary, and  the  cross  sensitivities  for each 
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Figure 3.27 Sensor calibration using the Wykeham Farrance shear box apparatus  

        and a C-clamp. 
 
 

of the horizontal and the vertical loading were also computed using the data of the uni-

axial calibration. In both cases of the sensors (the uni-axial and the tri-axial sensors), a 

potentiometer was used to measure the load cell position with respect to the baler 

plunger at each moment when it was moving to the back of the baler along with the bale 

(Fig. 3.28).  

3.4 Field Experiments 

The baler was tested in two different provinces of Canada in 2001 to collect 

appropriate data for the pressure-density relationship. First, it was tested in 

Saskatchewan in late June and early July with alfalfa then it was shipped to Québec and 

tested with barley straw in late July and early August. Data collection for the pressure 



 74

distribution model was performed in 2003 by baling whole green barley, barley straw, 

and wheat straw.  

 
Figure 3.28 Displacement sensor used to measure the load cell position. 

 
 

   

3.4.1  Pressure-Density of Alfalfa 

The farm considered in Saskatchewan was located in Clavet, a town about 30 km 

southeast of Saskatoon. This field consisted of a quarter section (64 ha) of second year 

pure alfalfa. The first cut was done in late June and early July, and completed in three 

days.  The effect of flake size and the load settings on the plunger force and the bale 

density was evaluated on this field. The equipped large square baler was used to bale 

alfalfa at 12.4% (wb) moisture content (Fig. 3.29). To determine the effect of flake size 

and the load setting on the plunger force and bale density, three levels of flake sizes 

(three positions of the sensitivity lever such as  3, 6, and 9 out of 10) and three levels of 

load settings (50, 60, and 70% of the available maximum plunger force) were 
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considered. Baling was performed at the constant forward speed of 8 km/h. The forces 

on the plunger arms were recorded by the data acquisition system. The average of the 

peak forces resulting from the sum of the forces on the two plunger arms was considered 

as the plunger force for each bale formation.  

 
 

Figure 3.29 Baling pure alfalfa in Saskatchewan. 
 

 

The actual bale bulk density was calculated by measuring the bale dimensions 

and weight (Fig. 3.30). Table 3.2 shows a sample of the raw data taken in this test. 

Moisture content of the material samples was determined using the ASAE standard 

S358.2 DEC 98 for forage materials (ASAE 2001). A split plot experimental design with 

three replications was established in the field to evaluate the effect of the main factor 

(load setting) and the sub factor (flake size) on the plunger force and the bale density. 

The SAS software (SAS Institute, Cary, NC) was used to analyze the data resulting from 

this experiment, and the treatment mean comparison was carried out using Duncan’s 

multiple range tests.  Finally, efforts were made to fit one of the pressure-density models 

which had been introduced in the literature to the data of the plunger pressures and the 

corresponding bale densities. None of the models discussed in the section 2.2.1 fitted 
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sufficiently well to the experimental data of this test; therefore, a modified empirical 

model was used to fit to the data of this experiment. 

 

 
Figure 3.30 Bale weight measurement. 

 
 
 

3.4.2  Pressure-Density of Barley Straw 

In Québec, barley straw with 8.7% (wb) moisture content was baled in a 48 ha 

farm. To determine the effect of flake size and the load setting on the plunger force and 

bale density, three levels of flake sizes (three positions of the sensitivity lever like 3, 6, 

and 9 out of 10) and four levels of the load settings (40, 60, 80, and 100% of the 

available maximum plunger load) were considered (Fig. 3.31). Baling was performed at 

the constant forward speed of 15 km/h. The forces on the plunger arms were recorded by 

the data acquisition system. The average of the peak forces resulting from the sum of the 

forces on the two plunger arms was considered as the plunger force for each bale 

formation. The actual bale bulk density was calculated in the same manner as the alfalfa 

in Saskatchewan. A sample of raw data taken in this test is shown in Table 3.3. 
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Figure 3.31 Baling barley straw in Quebec. 

 
 

 

Moisture content of the material samples was determined using the ASAE 

standard S358.2 DEC 98 for forage materials (ASAE 2001). The same experimental 

design, the statistics software, and the mean comparison test, used in the previous test, 

were also applied in this part of the study.  At the end, an empirical model was fitted to 

the data of this experiment.  
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Table 3.2 Raw data from pressure-density tests for alfalfa. 

Load Setting (%) Flake size  
(lever position out 

of 10) 

Plunger Force (kN) Bale Density (kg/m3) 

50 3/10 261.4 151.9 
50 3/10 240.3 158.4 
50 3/10 235.9 151.9 
50 3/10 256.6 160.5 
50 6/10 273.7 156.2 
50 6/10 243.0 156.2 
50 6/10 262.9 156.9 
50 6/10 271.9 156.2 
50 9/10 261.3 152.9 
50 9/10 269.3 154.9 
50 9/10 283.2 150.8 
50 9/10 248.1 150.8 
60 3/10 297.9 159.7 
60 3/10 288.8 159.7 
60 3/10 302.2 168.4 
60 3/10 306.4 157.5 
60 6/10 329.6 162.7 
60 6/10 298.0 161.2 
60 6/10 308.9 158.5 
60 6/10 293.8 166.8 
60 9/10 320.3 162.2 
60 9/10 314.8 162.2 
60 9/10 325.0 160.7 
60 9/10 308.3 166.4 
70 3/10 359.9 175.6 
70 3/10 365.1 175.6 
70 3/10 366.6 182.9 
70 3/10 351.4 178.0 
70 6/10 366.9 188.4 
70 6/10 391.0 185.9 
70 6/10 347.8 183.4 
70 6/10 366.9 180.9 
70 9/10 384.9 184.8 
70 9/10 384.5 189.8 
70 9/10 381.1 184.8 
70 9/10 388.8 187.3 
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Table 3.3 Raw data from pressure-density tests for barley straw. 

Load Setting (%) Flake size  
(lever position out  

of 10) 

Plunger Force (kN) Bale Density 
(kg/m3) 

40 3/10 221.9 113.3 

40 6/10 210.5 110.0 

40 9/10 216.8 106.6 

60 3/10 315.4 121.9 

60 6/10 315.6 124.8 

60 9/10 315.8 125.9 

80 3/10 398.8 131.9 

80 6/10 383.2 140.0 

80 9/10 403.2 141.4 

100 3/10 483.6 140.9 

100 6/10 500.0 143.9 

100 9/10 493.8 147.6 

 

 

3.4.3 Pressure Distribution Tests 

In order to validate the developed analytical model for the pressure distribution 

and develop empirical models for the pressure distribution, experimental data of forces 

inside the bale were required. Therefore, the uni-axial sensor was put inside the 

compression chamber to record the forces inside the bale along the length of 

compression chamber for alfalfa. The sensor was inserted in the bale in the x-, y- and z-

directions via a small window located on the side wall (Figs. 3.32, 3.33, and 3.34). In 
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this case, the load was set at 70% and the flake size set at 5/10. Alfalfa at 15.7% (wb) 

moisture content was baled and tests were repeated three times for each direction. The 

displacement sensor was also set to record the load cell position inside the bale with 

respect to the full extension point of the plunger in the x-direction. 

 
Figure 3.32 Load cell inside the bale in the x-direction. 

 

 
Figure 3.33 Load cell inside the bale in the z-direction. 
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Figure 3.34 Load cell inside the bale in the y-direction. 

 

Forces recorded by the uni-axial sensor for alfalfa were compared with the 

plunger forces measured by installing strain gages on the plunger arms in the pressure-

density tests (section 3.4.1). Results showed that forces recorded by the sensor in the x-

direction were twice as high as the forces measured by installing strain gages shown in 

Table 3.2 (Fig. 3.35). This showed that the uni-axial sensor was not able to record 

accurate data of force inside the compression chamber. Therefore, because of the 

inaccuracy of forces obtained with the uni-axial sensor, a tri-axial sensor was designed 

and used in the succeeding experiments. 

The tri-axial sensor was used to measure the forces inside the bale in different 

directions when whole green barley, barley straw, and wheat straw were baled. This 

sensor was put inside the bale using a small window located on the bale chamber side 

wall by drilling a hole at the bale cross-section center (Fig. 3.36).  Whole green barley 

was baled in August 2003 in Saskatoon with 51.0% of moisture content at the baling 
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speed of 8 km/h. The load and the flake size were set at 50% and 5/10, respectively. 

Barley straw was baled in early September in Saskatoon at a 12.0% moisture content and 

forward speed of 8 km/h. The load and the flake size settings were 60% and 5/10, 

respectively. Wheat straw with 9.7% moisture content was baled in late  September. The  
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Figure 3.35 Force distribution  along   the  compression  chamber  length  in  the x- 
       direction for alfalfa recorded by the uni-axial sensor at a moisture content  
       of 15% wb and load setting of 70% (zero on the x-axis is the full extension  
       point of plunger).  
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Figure 3.36 Tri-axial sensor inside the whole green barley bale. 

 

load was set at 70% while the  flake size  setting and  baling forward speed were the 

same as the previous tests. Each treatment consisted of the force recording for a full 

length of one bale, and each treatment was repeated three times for all cases. The same 

data acquisition system, used in the sensor calibration, was utilized to record the output 

of the sensor at the frequency of 50 Hz. 

3.5 Measurement of Crop Properties 

 Measurement of some crop properties such as coefficients of friction, adhesion, 

and modulus of elasticity are covered in this section. 

3.5.1 Friction and Adhesion Coefficients 

In this research, the coefficient of friction of selected forage materials on a 

polished steel surface was measured in the laboratory using the Wykeham Farrance 
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shear box apparatus (Fig. 3.37). This apparatus consisted of a sample box for holding the 

material samples, a force transducer to record the frictional force, two linear variable 

differential transformers (LVDT) to measure the sample horizontal and vertical 

displacements, a linkage to apply the normal force to the sample, and an electrical motor 

to provide a relative motion for the variable half of the sample box with respect to its 

fixed half. The coefficient of external friction was measured for alfalfa, barley straw, 

wheat straw, and whole green barley on a polished steel surface. In the case of alfalfa 

and barley straw, four levels of material moisture content were considered (12.0, 22.0, 

31.0, and 42.2% (wb) for alfalfa and 12.2, 20.3, 32.9, 45.7 (wb) for barley straw), and 

tests were carried out at five levels of normal pressures (200, 330, 500, 600, and 735 

kPa). 

Shear
force

Material
sample

Normal
force

LVDT
(for vertical Displacement)

LVDT
(for horizontal Displacement)

Force
transducer

 

Figure 3.37 Schematic of the Wykeham Farrance shear box (redrawn from Moysey and  
       Hiltz 1985). 
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The coefficients of friction of wheat straw and whole green barley on a polished 

steel surface were measured at only one level of moisture content which were 10.0 and 

51.0% for wheat straw and whole green barley, respectively. Alfalfa samples were 

selected from the first cut alfalfa of 2003 crop, and barley and wheat straw were chosen 

from straw left on the field after harvesting in August 2003. A pre-calculated amount of 

water was sprayed to the samples to achieve the required moisture, and then the samples 

were kept in the climate controlled storage for 72 hours. For each test, a sample of 

forage material was put in the sample box and the bottom half of the sample box was 

subjected to a shear force by the electrical motor at a shear rate of 0.4 mm/min for each 

of the aforementioned normal pressures (Fig. 3.38). The frictional force was recorded by 

the force transducer. The horizontal and the vertical displacements were recorded by the 

horizontal and vertical LVDTs, respectively. Each test was repeated three times, and the 

SAS software (SAS Institute, Cary, NC) was used to analyze the data of the experiments 

in the form of a completely randomized design. The maximum shear stresses were 

plotted versus the normal pressures at each level of moisture content. The slope of the 

best fit line to the plotted data was considered as the coefficient of friction, and the y-

intercept of the line was considered as the adhesion coefficient of the sample at that 

moisture content based on Coulomb’s equation (Fig. 3.39). Data which graph shown in 

Figure 3.39 was created based on is presented in Table 3.4. Coulomb’s equation 

expresses shear stress as a function of normal stress, coefficient of friction, and adhesion 

or cohesion coefficients as follow: 

ndA μστ += ,          (3.59) 
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where: 

 τ = shear stress (kPa), 

 Ad = adhesion coefficient (kPa), 

μ = coefficient of external friction (decimal) and 

σn  = normal stress (kPa). 

 

 

 

 

 
 

Figure 3.38 Measurement of the coefficient of friction using Wykeham Farrance 
        shear box. 
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Table 3.4. A sample of data used to calculate coefficient of friction. 
 

Normal Stress (kPa) Shear Stress (kPa) 

198.9 30.3 

331.8 51.6 

499.9 78.2 

599.0 87.3 

734.3 112.6 

198.9 32.7 

331.8 51.2 

499.9 77.6 

599.0 85.9 

734.3 110.5 

198.9 32.9 

331.8 48.4 

499.9 76.1 

599.0 91.7 

734.3 111.6 
 

 

3.5.2 Modulus of Elasticity 

The relationship between strain and stress in the proportional limit of the stress-strain 

curve of the engineering materials could be explained using the modulus of elasticity, E, 

which is the ratio of stress to strain (E = σ/ε). A single value of the modulus of elasticity 

is considered for the stresses used in design calculations of most engineering materials, 

because the stress-strain relationship is linear below the proportional limit for these 

types of materials. For biological materials, the apparent modulus of elasticity is used to 

explain  the  relationship  between  stress  and   strain. Apparent  modulus  of elasticity is 
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Figure 3.39 Coefficients of friction and the adhesion or cohesion coefficients from 
        the data of shear box. 

 
 

 
calculated based on two different definitions called the secant definition and the tangent 

definition. In the secant definition, the apparent modulus is considered as theratio of 

stress to strain at a certain point, while the apparent modulus in tangent method is 

defined as the slope of the stress-strain curve at a certain point on the curve (Stroshine 

2000). Figure 3.42 shows calculation of modulus of elasticity at point C using these two 

methods. In the secant method, modulus of elasticity at point C is defined as the slope of 

line AC, while in tangent method slope of line BD is considered as modulus of elasticity 

at point C. 
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Figure 3.40 Two methods of calculating modulus of elasticity at one point of stress- 
        strain curve. 
 

In order to find a relationship between apparent modulus of elasticity and bulk 

density of alfalfa and barley straw, the data of the tests performed for the particle 

stiffness were used. When forage materials were compressed in a closed-end cylinder, 

these materials were deformed only in the x-direction and strains in the y- and z-

directions were zero.  Using Eq. 3.6 and setting strains in the y- and z-directions to zero, 

the following relation will be found between stress and strain in the x-direction: 

( ) xxx FEE εε
νν

νσ =
−+

−
=

)21(1
)1( ,       (3.60) 

where: 

 ( ) )21(1
)1(
νν

ν
−+

−
=F .        (3.61) 
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According to Eq. 3.60, when one of the aforementioned methods is used to calculate 

modulus of elasticity, the obtained values (bulk modulus) are a combination of modulus 

of elasticity and Poisson’s ratio. Because, Poisson’s ratio is a constant coefficient, 

plotting the obtained values versus material bulk density can show the trend of variation 

of modulus of elasticity with respect to material density.     

The tangent method for the modulus calculation was used to calculate the 

product of F (a function of Poisson’s ratio) and the modulus of elasticity (E). The stress-

strain curve was plotted for each of the tested materials. This curve consisted of three 

parts: a) an elastic part, which started from the origin and continued up to the point with 

50.00 kPa and 0.04 m/m of stress and strain, respectively. This part was very small 

relative to the compacting part and could be ignored in the modulus calculation process; 

b) a compacting part, which was the most dominant part of the stress-strain curve in the 

compression process with an almost constant slope; and c) an incompressible part in 

which strain remained constant with increasing stress. This part occurred at the high 

stresses which are not encountered in the baling process; therefore this part was also 

eliminated in the modulus calculation process.  Thus, the compacting part of stress-strain 

curve (part b) was considered and FE was calculated at each point of the curve using the 

central difference approximation of the first derivative at that point. Therefore, this value 

at each point was calculated from the ratio of the difference between the stresses of the 

two points equidistant from that point (0.002 m/m from either side) to the difference 

between their strains (Fig. 3.40).  Density of the samples was calculated at each strain, 

and the FE-γ curve was then plotted using the calculated FE values to find the trend of 

variation of modulus of elasticity with respect to the material density. A sample of the 

raw data taken in this test is shown in Table 3.5. 
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Table 3.5 A sample of data used to evaluate the variation of modulus of elasticity with 
respect to bulk density.   

Bulk Density (kg/m3) 
( ) =

−+
−

)21(1
)1(

νν
ν E FE (MPa) 

99.0 0.23 

100.5 0.23 

101.9 0.08 

104.5 0.08 

105.0 0.08 

106.6 0.16 

107.7 0.08 

109.4 0.31 

110.5 0.16 

128.9 0.25 

133.1 0.30 

137.4 0.37 

142.2 0.33 

147.2 0.16 

152.5 0.43 

158.3 0.36 

164.6 0.45 

171.4 0.36 

178.7 0.45 

186.7 0.40 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter, results of model development and validation, sensor design, and 

field and laboratory tests are discussed. 

  
4.1 Model Development and Validation 

In this section results of model development and validation for the pressure 

distribution and pressure-density relationship are covered. In each case, results of both 

analytical and empirical models are discussed.  

  

4.1.1  Analytical Model for the Pressure Distribution 

The analytical models for the pressure distribution in the x-, y-, and z-directions 

were derived based on the theory of elasticity by assuming isotropic linear elastic 

behavior for the forage materials (Eqs. 3.40, 3.43, and 3.44). In the literature, only one 

model was found regarding the distribution of pressure inside the compression chamber 

of balers (Sitkei’s model, Eq. 2.19). The developed model in this study (Eq. 3.40) has 

three important advantages compared to Sitkei’s model (Eq. 2.19). The advantages are:  

1. The new model (Eq. 3.40) is much simpler than Sitkei’s model (Eq. 2.19), has 

fewer terms, and calculating the pressure using this model is much easier. 

2. In the new model, the pressure on the plunger (Pp) has been used as the boundary 

condition to solve the governing differential equation instead of the pressure at 
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the end of the bale chamber (Pe) which had been used in Sitkei’s model (Eq. 

2.19). Measuring the pressure on the plunger is much easier than the pressure at 

the end of the bale chamber; therefore, the boundary condition used in the new 

model is much more accessible than that of Sitkei’s model (Eq. 2.19). 

3. The new model is more general than Sitkei’s model (Eq. 2.19), because it is 

applicable to all kinds of balers (including the balers with top and side walls 

inclined), whereas Sitkei’s model (Eq. 2.19) is only applicable to the balers with 

one pair of converging walls.  

 

4.1.2 Validation of the Analytical Model  

The analytical model (Eq. 3.40) was validated using the experimental data 

collected for three different crops including barley straw, wheat straw, and whole green 

barley. The least-square regression analysis method was used to validate the analytical 

model in the x-direction (Eq. 3.40). In this method, υ, μ, and E were changed in order to 

minimize the summation of the square difference between data resulting from the model 

(Eq. 3.40) and the experimental data. Values of υ, μ, and E corresponding to the 

minimum sum square error were considered as the estimated values for these 

parameters.   Values of 0.32, 0.38, and 0.40 were estimated for Poisson’s ratio of whole 

green barley, wheat straw, and barley straw, respectively (Table 4.1).  Sitkei (1986) 

reported the range of 0.25 to 0.35 for Poisson’s ratio of forage materials for the pressure 

range encountered in balers and the range of 0.35 to 0.45 for the pressure range 

encountered in pelleting machines. Because the pressure in a large square baler is 

usually higher than the pressure in smaller balers, the estimated values for Poisson’s 

ratio of the tested materials are acceptable. For the modulus of elasticity, values of 10, 
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39, and 2.4 kPa were estimated from the analytical model validation for barley straw, 

wheat straw, and whole green barley, respectively (Table 4.1). The estimated value of 

the modulus of elasticity for barley straw was much lower than the measured value 

(122.5 kPa).  There were no measured values of modulus of elasticity for wheat straw 

and whole green barley to compare the estimated values with. For the coefficient of 

friction between forage materials and bale chamber walls, values of 0.55, 0.43, and 0.45 

were estimated for whole green barley, wheat straw, and barley straw, respectively 

(Table 4.1). These values were approximately three times as high as the coefficient of 

friction of the same crops on polished steel surface measured in laboratory using shear 

box at the similar moisture content. After  observing  these  high values for coefficient of 

 

Table 4.1 Constants of the analytical model for the pressure distribution in the x-
direction for the different forage materials. 
 

Material type α (rad) β (rad) E (kPa) μ ν 
Barley straw 0.09 0.13 10 0.45 0.40 

Wheat straw 0.08 0.14 39 0.43 0.38 

Whole green barley 0.07 0.12 2.4 0.55 0.32 

 

 

friction, the surface of the compression chamber walls was inspected. It was observed 

that the wall surface was covered by a rough layer of crop dry extract which increased 

the coefficient of friction. In reality, after baling the first few bales (especially with the 

higher moisture content), the wall surface will not be a polished steel surface anymore. It 

will be a rough surface with a high coefficient of friction. Therefore, coefficients of 
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friction estimated from the analytical model are more realistic than the measured ones in 

laboratory. The following are the results of model validation for barley straw, wheat 

straw, and whole green barley.  

 

4.1.2.1 Barley Straw 

Pressure distribution inside the compression chamber of the baler in the x-

direction for barley straw at a load setting of 60% and the material moisture content of 

12.2% (wb) is shown in Figure 4.1. Both the experimental data and the predicted 

pressure values (based on Eq. 3.40) are presented in this figure. According to this plot, 

the best fit between the experimental data and the predicted values was found at the 

beginning of the compression chamber length close to the plunger and at the end of the 

bale chamber length. The error of the pressure prediction on the plunger (x = 0) was very 

low which proved that the model has accurately estimated the pressure on the baler 

plunger. The standard error and the coefficient of determination of the regression 

analysis in this case were 20.0 kPa and 0.95, respectively (Table 4.2). 
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Figure 4.1 Experimental pressure distribution and the predicted pressure distribution  
      based on the analytical model  along the  compression  chamber length    
      in the x-direction for barley straw at a moisture content of 12.2% (wb) (zero   
      on the x-axis is the full extension point of plunger). 
 

 

Table 4.2  The coefficient of determination and the standard error of the analytical 
model in the x-direction for different forage materials. 
 

Material type R2 Standard error (kPa) 

Barley straw 0.95 20.0 

Wheat straw 0.95 26.0 

Whole green barley 0.96 18.4 
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According to Eq. 3.43, the vertical pressure (pressure in the y-direction) inside 

the compression chamber of a large square baler at a certain distance from the plunger is 

a function of the pressure in the x-direction, crop properties, and the compression 

chamber dimensions. Therefore, the pressure distribution along the compression 

chamber length in the y-direction (vertical pressure) for barley straw was obtained using 

Eq. 3.43 and the data of the predicted horizontal pressures (Fig. 4.2).  The pressure 

distribution in the y-direction showed the same pattern as the pressure distribution in the 

x-direction with the highest pressure near the plunger and the lowest pressure at the end 

of the compression chamber. The maximum pressure in the y-direction for the barley 

straw was about 65% of the maximum pressure in the x-direction. The experimental data 

are also presented in Fig. 4.2. There was a significant difference between the 

experimental and predicted pressures near the baler plunger, while at the end of 

compression chamber these pressures were very close together. This showed that the 

analytical model failed to accurately predict the pressure in the y-direction due to the 

following potential reasons: 

1. The analytical model in the x-direction was developed by assuming constant 

value for Poisson’s ratio (υ). This value was estimated by validating the 

analytical model in the x-direction and was used in the analytical model in the y-

direction to predict pressure in this direction. This estimated constant υ was an 

average value of the actual variable Poisson’s ratio. In reality, υ probably has not 

been constant along the compression process. This ratio has had its minimum 

value (which has been smaller than the estimated value) at the beginning of 

compression process (near the plunger) and has increased with increasing 

distance from the plunger. Therefore, the maximum difference between the 
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experimental data and the predicted pressures was observed at the beginning of 

the compression process and the minimum difference was observed at the end of 

the compression chamber. 

2. The experimental data have been much smaller than the expected pressures in the 

y-direction due to the gap between the dug hole inside the bale and the sensor 

body. Therefore, at the beginning of the baling process the difference between 

the experimental data and the predicted pressures were very large, while after 

filling the gap at the end of the compression chamber, the sensor was able to 

record data close to the expected pressures.  
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Figure 4.2  The  predicted  and  the   experimental   pressure   distribution   along    the   
      compression   chamber  length  in  the y-direction (vertical pressure)  based   
      on  the analytical  model for  barley  straw  at  a moisture  content  of  12.2%   
      (wb)  (zero on  the x-axis  is the full extension point of plunger). 
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Equation 3.42 expresses the pressure inside the compression chamber of a large 

square baler in the z-direction (lateral pressure) in terms of the pressure in the x-

direction, dimensions of the compression chamber, and the properties of the baled crop. 

This equation was used to plot the lateral pressure versus the distance from the full 

extension point of the plunger along the compression chamber length for barley straw by 

inserting in the predicted pressures in the x-direction into Eq. 3.44 (Fig. 4.3). The lateral 

pressure distribution had the same pattern as the vertical pressure with the small 

differences in the minimum pressures.  The analytical model in the z-direction seemed to 

have the same problem as the analytical model in the y-direction; however, there were 

no experimental data available in this direction to which the predicted pressures could be 

compared.   
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Figure 4.3  Predicted pressure distribution along the compression chamber length in the  

      z-direction  (lateral  pressure)  based  on  the  analytical  model   for  barley 
      straw  at a moisture  content of  12.2% (wb) (zero  on   the  x-axis  is the full 
      extension point of plunger). 
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4.1.2.2 Wheat Straw 

Figure 4.4 shows the results of wheat straw compressed at a load setting of 70% 

and material moisture content of 9.7% (wb). The analytical model (Eq. 3.40) predicted 

the pressure on the baler plunger with an accuracy of 97.5%. The model showed a poor 

accuracy for the pressure prediction at the compression chamber length range of 50 to 

100 cm and for the end of the compression chamber length. The model predicted 

negative values for the pressure at the distances larger than 190 cm; therefore, the model 

was valid until 190 cm of the compression chamber length. The regression analysis of 

the experimental and the predicted data of the pressure distribution in the case of wheat 

straw presented a high coefficient of determination (0.95) and a low standard error (26 

kPa) for the model fitness to the experimental data (Table 4.2).  
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Figure 4.4 Experimental pressure  distribution and the  predicted  pressure distribution  
      based  on  the  analytical  model  along  the   compression  chamber  length  
      in the x-direction  for wheat  straw at a moisture content  of 9.7% (wb) (zero  
      on the x-axis is the full extension point of plunger). 
 

 
The pressure distribution in the y-direction inside the compression chamber of 

the baler for wheat straw based on Eq. 3.43 is shown in Figure 4.5. This plot was 

obtained by inserting in the predicted pressures in the x-direction into equation 3.41. The 

maximum predicted vertical pressure for wheat straw was about 216 kPa which was 

approximately 60% of the maximum pressure in the x-direction. The experimental data 

are also presented in Figure 4.5. Similar to the results of the model validation in the y-

direction for barley straw, there was a significant difference between the experimental 

data and the predicted pressures in the y-direction for wheat straw near the baler plunger, 

while at the end of the compression chamber these pressures were very close together. 
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Therefore the same justification stated in the case of barley straw could be true for wheat 

straw as well.  
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Figure 4.5 Predicted and the experimental pressure distributions  along the compression  
     chamber length in the y-direction (vertical pressure)  based on the  analytical   
     model  for wheat straw  at a moisture  content  of 9.7%  (wb)  (zero on  the 
     x-axis  is  the  full extension point of plunger). 

  
 
 Equation 3.42 was used to plot the lateral pressure versus the distance from the 

full extension point of the plunger along the compression chamber length for wheat 

straw by inserting in the predicted pressures in the x-direction into this equation (Fig. 

4.6). Again, the pattern of the lateral pressure distribution for wheat straw was similar to 

the vertical pressure pattern with the almost identical pressures on the plunger. However, 

the model estimated the higher lateral pressure than the vertical one at the end of the 

compression chamber length. The analytical model in the z-direction probably had the 
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same problem as the analytical model in the y-direction; however, there were no 

experimental data available in this direction to prove that.   
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Figure 4.6 Predicted pressure distribution along the compression chamber length in the 
      z-direction  (lateral  pressure)  based  on  the  analytical   model  for  wheat  
      straw  at  a moisture  content  of  9.7% (wb) (zero  on  the  x-axis  is  the full  
      extension point of plunger). 

 

 

4.1.2.3 Whole Green Barley 

The experimental and the predicted pressure distribution in the x-direction based 

on the developed analytical model for whole green barley at a load setting of 50% and 

material moisture content of 51% (w.b.) is shown in Figure 4.7. The results of 

comparing the predicted (based on Eq. 3.40) and the experimental pressures showed that 

the predicted pressure by the analytical model  on the plunger was 10% more than the 
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experimental pressure at the same position. The overall coefficient of determination and 

the standard error in this case were 0.96 and 18.4 kPa, respectively (Table 4.2).  
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Figure 4.7 Experimental pressure  distribution  and predicted pressure  distribution based 
     on the analytical  model   along  the  compression   chamber  length  in  the x- 
     direction for whole  green  barley  at  a moisture  content  of 51% (wb) (zero   
     on  the x-axis is the full extension point of plunger). 

 

 

The pressure distribution inside the compression chamber of the large square 

baler in the y-direction (vertical pressure) for whole green barley is shown in Figure 4.8. 

Again, this plot resulted from Eq. 3.43 by putting the predicted pressures in the x-

direction and the model constants into this equation. The maximum vertical pressure on 

the plunger was 157 kPa which was about 48% of the maximum pressure in the x-

direction. The experimental data are also presented in this Figure. There was also a 
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significant discrepancy between the experimental data and the predicted pressures near 

the baler plunger for whole green barley, but this discrepancy was much smaller 

compared to the discrepancies in barley and wheat straw. This smaller difference 

between the experimental data and the predicted pressures was most likely due to the 

following reasons: 

1. Whole green barley had the actual Poisson’s ratio closer to the estimated ratio. 

On the other hand, the variation of Poisson’s ratio in whole green barley was 

smaller than that of barley and wheat straw. Thus, the difference between the 

experimental data and the predicted pressures was smaller compared to this 

difference in barley and wheat straw.  

2. The dug hole in the whole green barley bale had more uniform shape than the 

other materials (barley and wheat straw) because of the higher moisture content 

of green barley. Therefore, the gap between the sensor and the dug hole was 

smaller for whole green barley and it took the forces less time to fill the gap. For 

this reason the difference between the experimental and predicted pressures was 

smaller than that of barley and wheat straw. 
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Figure 4.8 Predicted and the experimental pressure  distributions  along the  compression  
chamber length in the y-direction (vertical  pressure) based  on  the analytical   
model for  whole green barley at  moisture  content  of   51% (wb) (zero  on   
the x-axis is the full extension point of plunger). 

 
 
 
 The pressure distribution in the z-direction (lateral pressure) for whole green 

barley showed almost the same pattern as the vertical pressure distribution (Fig. 4.9).  In 

this particular case, the maximum lateral pressure on the plunger and the minimum one 

at the end of the compression chamber length were almost identical to the vertical 

maximum and minimum pressures, respectively. There were no experimental data 

available in the z-direction in this case to compare the predicted pressures with.  
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Figure 4.9 Predicted pressure distribution along the compression chamber length in the 
     z-direction (lateral pressure) based on the analytical  model for whole green 
     barley  at  a  moisture  content  of  51% (wb) (zero  on  the  x-axis  is  the full 
     extension point of plunger). 

 
 
 

The data presented in Figures. 4.1, 4.4, and 4.7 were the results of three 

replications for each kind of forage material at the flake size lever position of 5/10. 

Comparing these graphs of the pressure distribution for different forage materials 

showed that the pressure distribution for all the tested forage materials had almost the 

same pattern. The maximum pressures for barley straw and wheat straw were 

approximately identical. Considering the fact that barley straw has been baled at a load 

setting of 60% compared to the 70% of the load setting for wheat straw, the maximum 

pressure resulting from baling barley straw was higher than that of the wheat straw. In 

the case of whole green barley, the maximum pressure was less than that of the barley 
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and wheat straw which was because of the lower load setting (50%) and Poisson’s ratio 

(0.32).  

The experimental pressures in all cases (for all forage materials) had their 

maximum values on the plunger (x = 0) and then decreased exponentially with 

increasing distance from the full extension point of the plunger up to about 60 cm from 

the plunger. At this point (point “A”), the pressure started to increase due to reduction of 

the cross-section area up to distance of about 95 cm from the plunger (Point “B”) and 

again decreased. This problem occurred because of the presence of a bend in the 

compression chamber walls (top and side walls) which increased the standard errors and 

decreased the coefficients of determination of the models (Point “B” in Fig. 4.10). In 

reality, the compression chamber walls make two different angles with the x-axis (a 

larger angle for the part AB and a smaller angle for the part BC) while only one angle 

was considered in model development for each wall for simplification.   

Equations 3.43 and 3.44 which express the vertical and the lateral pressures in 

terms of the pressure in the x-direction forage material properties, and the compression 

chamber dimensions, consist of two parts. The first part is only a function of Poisson’s 

ratio (ν) and the pressure in the x-direction, and is exactly identical in both equations.  

The second part is a function of the distance from the full extension point of the plunger 

(x), crop properties, and the compression chamber dimensions which vary from equation 

to equation. For the maximum lateral and vertical pressures which take place on the 

plunger, only the first part of the equation comes to play a role, because the distance 

from the full extension point of the plunger is zero (x = 0). Therefore, the maximum 

lateral and vertical pressures are solely functions of the maximum pressure in the x-

direction and Poisson’s ratio. Because the maximum pressure in the x-direction and the 
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Poisson’s ratio for each of the tested forage material were constant, the predicted 

maximum vertical and the lateral pressures for each of the materials were the same but 

they varied  between crops tested.  For the minimum pressures which occurred at the end 

Plunger

Top wall

A B C

 

Figure 4.10 The actual shape of the top wall of the compression chamber. 

   

of the compression chamber length, both parts of the equations play a role; therefore, the 

minimum vertical and lateral pressures are not necessarily identical for a certain crop.   

Comparing the maximum vertical and the lateral pressures for the different 

materials showed that barley straw had the highest maximum lateral and vertical 

pressures because of its largest Poisson’s ratio.  Whole green barley had the lowest 

maximum pressures because of its lowest Poisson’s ratio and lowest maximum pressure 

in the x-direction.      
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4.1.3 Validation of the Empirical Model  

The empirical models of the pressure distribution in the x- and y-directions for 

different forage materials (Eqs. 3.47 and 3.48) were validated using the experimental 

data of field tests. The least-square regression analysis was used for model validation, 

and model constants were estimated for each of the tested crops (Tables 4.3 and 4.4). 

The coefficient of determination and the standard error were also calculated for each case 

as criteria of model fitness (Tables 4.3 and 4.4). A high coefficient of determination and 

a low standard error of the model in the x-direction for all tested crops revealed that 

there was a good correlation between the empirical model and the corresponding 

experimental data in the x-direction. In contrast, coefficient of x for the model (-D0) in 

the y-direction had a very low value which showed that the pressure distribution in this 

direction was almost linear rather than exponential. The reason was probably inaccuracy 

of the experimental data in the y-direction especially near the plunger. Therefore, there 

was not a good correlation was not found between the empirical model and the 

experimental data in the y-direction. The empirical models were validated using the data 

collected for three different crops, namely barley straw, wheat straw, and whole green 

barley. The following are the results of the empirical model validation for different 

crops. 
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Table 4.3 Estimated constants of the developed empirical model (Eq. 3.47) for the 
pressure distribution in the x-direction for different forage materials. 

  
Constant Barley straw Wheat straw Whole green barley 

A0 370.81 410.31 326.47 

B0 0.018 0.021 0.014 

R2 0.96 0.97 0.96 

Standard error 19.27 20.57 18.39 

 
 
 
 
Table 4.4 Estimated constants of the developed model (Eq. 3.48) for pressure 
distribution in the y-direction for different forage materials. 
 

Constant Barley straw Wheat straw Whole green barley 
C 61.2 59.2 113.3 

D0 0.0083 0.0076 0.0077 

R2 0.96 0.93 0.90 

Standard error 3.1 2.6 8.2 

 
 

4.1.3.1 Barley Straw 

The pressure distribution inside the compression chamber of the large square 

baler in the x-direction for barley straw based on the developed empirical model at a 

load setting of 60% and moisture content of 12.2% (wb) is shown in Figure 4.11. Both 

the experimental and the predicted pressures are presented in this figure. Based on the 

graphs shown in this figure, the best fit between the experimental data and the predicted 

pressures was found at the beginning of the compression chamber length close to the 
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plunger with error of approximately 5%. The overall standard error and the coefficient 

of determination of the regression analysis in this case were 0.96 and 19.3 kPa, 

respectively (Table 4.3).  
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Figure 4.11 Experimental and predicted pressure distribution based on the empirical  
        model   along   the   compression   chamber  length  in  the  x-direction  
        for barley straw at a moisture content of 12.2% (wb) (zero on  the x-axis  
        is the full extension point of plunger). 
 
 
The pressure distribution inside the compression chamber of the large square 

baler in the y-direction for barley straw based on the developed empirical model at a 

load setting of 60% and material moisture content of 12.2% (wb) is shown in Figure 

4.12. Based on the results shown in this plot, the model predicted the maximum vertical 

pressure on the baler plunger with error of approximately 5.4%. The standard error and 

the coefficient of determination of the regression analysis for the vertical pressure were 
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3.1 kPa and 0.96, respectively (Table 4.4). The experimental data showed the trend of 

the pressure distribution in the y-direction; however these data were much smaller than 

the actual data (especially near the plunger). 
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Figure 4.12 Experimental and predicted pressure   distribution   based on the empirical   

        model along  the compression  chamber length in the y-direction (vertical   
        pressure) for barley  straw at a moisture content of 12.2% (wb) (zero on the 
       x-axis is the full extension point of plunger). The same experimental data as   
       in Figure 4.2 was used in this plot. 
 
 

4.1.3.2 Wheat Straw 

Figure 4.13 shows similar results for the wheat straw at a load setting of 70% and 

material moisture content of 9.7% wb. The experimental and the predicted pressures 

along the compression chamber length are presented in different colors to show the 



 114

accuracy of the model fitness. For wheat straw, the empirical model overestimated the 

pressure on the baler plunger with the accuracy of 87.3% which was the lowest 

compared to the accuracy of the pressure prediction of the empirical model for the other 

forage materials at the same position. The regression analysis of the experimental and 

the predicted data of the pressure distribution in the case of wheat straw showed a high 

coefficient of determination and a low standard error for the model fitness to the 

experimental data which were 0.97 and 20.6 kPa, respectively (Table 4.3).   
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Figure 4.13 Experimental  and  the  predicted   pressure   distributions  based  on  the   

        empirical   model   along   the   compression   chamber  length  in the x- 
        direction for wheat straw at a moisture  content of 9.7% (wb) (zero  on the  
        x-axis is the full extension point of plunger). 
 
 
The pressure distribution inside the compression chamber of the baler in the y-

direction for wheat straw based on the developed empirical model at a load setting of 

70% and material moisture content of 9.7% w.b. is shown in Figure 4.14. Based on the 
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results shown in this plot, the model predicted the maximum vertical pressure on the 

baler plunger with error of approximately about 2.6%. The overall standard error and the 

coefficient of determination of the regression analysis for the vertical pressure were 2.6 

kPa and 0.93, respectively (Table 4.4). The experimental data showed the trend of the 

pressure distribution in the y-direction; however the values of these data were not 

reliable (especially near the plunger). 
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Figure 4.14 Experimental   and the  predicted    pressure   distributions   based   on  the   
        empirical    model   along   the   compression   chamber   length   in the y- 
        direction (vertical pressure) for  wheat  straw at  moisture  content of 9.7%  
        (wb) (zero on the x-axis is the full extension point of plunger). The same  
        experimental data as  in Figure 4.5 was used in this plot. 
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4.1.3.3 Whole Green Barley 

The experimental and the predicted pressure distribution in the x-direction based 

on the developed empirical model for whole green barley at a load setting of 50% and 

moisture content of 51% (wb) are presented in Figure 4.15. Results of the comparison of 

predicted and experimental showed that the empirical model predicted the pressure on 

the plunger with error of about 5%. The overall coefficient of determination and the 

standard error in this case were 0.96 and 18.4 kPa, respectively (Table 4.3).  
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Figure 4.15 Experimental   and  the  predicted   pressure   distribution     based   on   the   

        empirical   model   along   the    compression    chamber    length  in the  x- 
        direction for whole  green  barley  at  moisture   content of  51%  (wb) (zero  
        on the x-axis is the full extension point of plunger). 

 
 
 

The pressure distribution in the y-direction for whole green barley based on the 

developed empirical model at a load setting of 50% and material moisture content of 
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51% (wb) is shown in Figure 4.16. Based on the results shown in this plot, the model 

predicted the maximum vertical pressure on the baler plunger with error of 

approximately about 17.9%. The overall standard error and the coefficient of 

determination of the regression analysis for the vertical pressure were 8.2 kPa and 0.90, 

respectively (Table 4.4). The experimental data showed the trend of the pressure 

distribution in the y-direction; however these data were much lower than the actual data 

(especially near the plunger) and were not reliable from the viewpoint of their values. 
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Figure 4.16 Experimental   and  the  predicted    pressure   distribution   based  on   the   
        empirical model along the compression chamber length in the y-direction 
        (vertical pressure) for  whole green  barley at a moisture  content  of  51% 
        (wb) (zero on the x-axis is the full extension point of plunger). The  same 
        experimental data as in Figure 4.2 was used in this plot. 
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4.1.4 Comparison of Analytical and Empirical Models 
 

The analytical model for the pressure distribution was a complicated model and had 

many parameters. These parameters which were related to the compression chamber 

dimensions or forage material physical and mechanical properties have to be measured 

prior to the modeling process. Measuring these parameters is usually a time-consuming 

exercise and is very expensive. In contrast, the empirical models were simple equations 

which were only functions of the distance from the full extension point of the plunger 

along the compression chamber. Comparing the analytical and empirical models of the 

pressure distribution in the x-direction (Eqs. 3.40 and 3.47) showed that the general form 

of the empirical model was exactly the same as the first term of the analytical model. 

Because the value of the first term of Eq. 3.40 was very large relative to that of the other 

terms, especially for the distances less than 150 cm (Table 4.5), it was reasonable to 

have the empirical model with the general form of the first term of Eq. 3.40. Coefficient 

“A0” in this model is identical to the pressure on the plunger (Pp). Ideally, these two 

coefficients (A0 in the empirical model and Pp in the analytical model) should be equal to 

the experimental pressure on the plunger (maximum experimental pressure) but in 

practice, there was some discrepancy between these coefficients depending on the model 

accuracy.  Results of model validation showed that the coefficient “A0” in the empirical 

model for barley straw, wheat straw, and whole green barley were 370.8, 410.3, and 

326.5 kPa, respectively (Table 4.3), while Pp in the analytical model was 350.0, 360.0, 

and 325.0 kPa for barley straw, wheat straw, and whole green barley, respectively.  

Comparing the results of the analytical and the empirical models in the x-

direction for barley straw revealed that the empirical model provided more accurate 

pressure prediction with a larger coefficient of determination and a lower overall 
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standard error; however, the analytical model provided more accurate prediction of the 

pressure on the plunger than the empirical model. Comparison of the results of the 

analytical and the empirical models in the x-direction for baling wheat straw indicated 

that the empirical model had more accurate overall prediction for the pressure along the 

compression chamber, and had the larger coefficient of determination and the lower 

overall standard error, while the analytical model provided more accurate prediction of 

the pressure only on the plunger. For baling whole green barley, results showed that both 

analytical and empirical models predicted the pressure distribution in the x-direction 

with similar accuracy. Therefore, in order to estimate the pressure distribution of baling 

whole green barley, either model could be used. 

Comparing Eqs. 3.47 and 3.48 showed that the empirical model for the pressure 

distribution in the x- and y-directions have the same general form with different model 

constants. Comparing the analytical and empirical models for the pressure distribution in 

the y-direction (Eqs. 3.43 and 3.48) revealed that the empirical model in the y-direction 

had exactly the same general form as the first term of the analytical model in this 

direction. Since the value of the first term of Eq. 3.43 was very large relative to that of 

the other terms especially for the distances less than 150 cm (Table 4.5), the empirical 

model was selected similar to the general form of the first term of Eq. 3.43. Coefficient 

“C” in the empirical model was identical to the coefficient of the first term of the 

analytical model. 
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Table 4.5 Values of the different terms of Eqs. 3.40 and 3.43 as a function of distance 
form the full extension point of the plunger for barley straw. 
  
Distance from the 

plunger (cm) 

First term of 

Eq. 3.40 (kPa) 

Rest of Eq. 

3.40 (kPa) 

First term of 

Eq. 3.43 (kPa) 

Rest of Eq. 

3.43 (kPa) 

0.0 356.0 0.0 237.3 0.0 

15.0 275.6 -0.1 183.7 0.3 

30.0 212.2 -0.3 141.5 0.5 

45.0 164.9 -0.5 109.9 0.6 

60.0 127.1 -0.9 84.7 0.7 

75.0 97.8 -1.3 65.2 0.8 

90.0 75.5 -1.8 50.4 0.8 

105.0 56.9 -2.3 37.9 0.8 

120.0 45.2 -2.8 30.1 0.8 

135.0 35.2 -3.3 23.5 0.8 

150.0 27.4 -3.8 18.2 0.8 

165.0 21.1 -4.4 14.1 0.8 

180.0 16.3 -4.9 10.9 0.7 

195.0 12.6 -5.5 8.4 0.7 

210.0 9.7 -6.1 6.5 0.6 

225.0 8.2 -6.7 5.0 0.6 

240.0 7.8 -7.3 3.9 0.5 

  

 

4.1.5 Analytical Model for Pressure-Density Relationship 

Alfalfa bale density versus distance from the full extension point of the plunger 

along the compression chamber was plotted based on the analytical model of pressure-

density (Eq. 3.52). This graph shows that bale density decreases with distance of up to 

50.0 cm, and then remains almost constant up to the end of the compression chamber 

(Fig. 4.17), while in reality bale density should remain almost constant along the 
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compression chamber.  This analytical model failed to accurately predict the bale 

density along the compression chamber length due to the assumptions made in the 

model development. This model was developed by assuming elastic behavior for 

forage materials, while these materials were not elastic in reality. Therefore, the 

unloading process in forage materials was not reversible. Figure 4.18 compares the 

pressure-density relationship based on the analytical model with the possible pressure-

density relationship in reality. Point “A” is on the plunger; therefore the pressure and 

density at this point are the maximum pressure and density in the baling process. Point 

“B” is assumed to be a point at a distance x from the full extension point of the 

plunger. According to the analytical model (Eq. 3.52), point “B” should be on the 

pressure-density curve. Thus, the density at this point (γB) is much smaller than the 

maximum density (γmax). In practice, point “B” will be probably somewhere at “C” 

instead of being at “B” due to the inelastic property of forage materials. Point “C” has 

a density close to the maximum density; therefore in reality density remains almost 

constant along the compression chamber length. On the other hand, point “C” still has 

the same pressure as point “B”; for this reason, the analytical model for the pressure 

distribution which is based on the same assumptions as the analytical model for the 

pressure-density relationship works well in the x-direction. Unfortunately, no 

experimental data of the bale density along the compression chamber were available to 

validate this analytical model. Figure 4.17 showed the bale density variation with 

distance from the plunger when the bale was inside the bale chamber, so it cannot be 

extended to the variation of the bale density after coming out of the compression 

chamber. When the bale is out of the compression chamber, the tied twines keep a 

constant pressure on the bale. This constant pressure can balance the bale density 
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along the bale length by densifying the looser parts and loosening the denser parts. 

Therefore, the bale final density will have a value which is approximately an average 

of the maximum and minimum densities of the bale in the compression chamber.       
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Figure 4.17 Variation  of  bale  density  along the  compression  chamber length  for  
        alfalfa at a moisture content of 12.4% (wb) based on the analytical model  
        of  pressure-density  (zero  on  the  x-axis  is  the  full  extension   point  
        of plunger). 
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Figure 4. 18 Comparing the pressure-density relationship based on the analytical  

            model with the possible pressure-density relationship in reality.  
 

 

4.1.6 Empirical Model for Pressure-Density Relationship 

Different models have been proposed for the pressure-density relationship of 

forage materials in the literature. Some of these models including those proposed by 

Ferrero et al. (1990), Viswanathan and Gothandapani (1999), Watts and Bilanski (1991), 

Butler and McColly (1959), and Bilanski et al. (1985)  were tested with the data of  the 

experimental tests to find the best model for the pressure-density relationship. The least- 

square regression analysis method was used to validate each model with the 

experimental data.  In this method, model constant coefficients were changed in order to 

minimize the summation of the square difference between data resulting from each of 



 124

the models and the experimental data. Then, the standard error and the average error 

were calculated using the following equations (Figliola 2000): 
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where: 

 SE = standard error, 

 yp = predicted data, 

 ye = experimental data, 

 AE = average error and 

 ey  = average of the experimental data. 

The model that had the minimum average error was selected as the best model. Results 

of validation of these models using the experimental data of alfalfa are shown in Table 

4.6. This table showed that the developed model for the pressure-density relationship in 

this study (first model in the table) had the highest coefficient of determination and 

lowest average error. The coefficient of determination and average error for this model 

were 0.89 and 2.55%, respectively. This model was a modified version of model 

proposed by Ferrero et al. (1990). Experimental data and predicted density for alfalfa 

based on the proposed model (Eq. 3.54) versus plunger pressure are plotted in Figure 

4.19. The standard error and the coefficient of determination for this model were 4.25 

kg/m3 and 0.89, respectively (Table 4.6). 
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The estimated values for the constant coefficients of this model are shown in 

Table 4.7. Models expressing pressure-density relationship in the literature were the 

results of compressing forage materials in a closed-end die which differed from the baler 

compression chamber used in the present study. Basically, the bale chamber of a baler is 

an open-end canal rather than a closed-end die. For this reason, none of the previously 

proposed models could be applied to the data of the pressure-density relation of the large 

square baler. 

 

  

Table 4.6 Summary of validating of different models of pressure-density relationship 
with the data of baling alfalfa in the large square baler. 
   

Pressure-density model R2 Average error (%) 

)1)(( 02
000

PD
s eCPPBA −−+++= γγ    

 
0.89 2.55 

)1)(( 0
000

PD
s ePBA −−++= γγ          (Ferrero et al. 1990) 

 
0.86 2.96 

)/(
0maxmax )/()( KP

s e −=−− γγγγ       (Bilanski et al. 1985)  0.85 3.02 

)/ln( 21 kki σγ =                      (Butler and McColly 1959) 0.83 3.27 

2
00 ss CBAP γγ ++=                         (Viswanathan 1999)   0.87 5.91 

[ ])(1log 021 γγ −−= sKKP      (Watts and Bilanski 1991)   0.86 6.09 
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Figure 4.19 Experimental and the predicted  densities vs.  plunger  pressure  in  a large  

        square baler for alfalfa at a moisture content of 12.4% (wb). 
 
 
 
Table 4.7 Estimated constants of the pressure-density model for alfalfa (Eq. 3.54). 
 

Constant Estimated values for alfalfa 

γ0 80.00 

A0 119.86 

B0 -501.53 

C 1306.62 

D0 71.31 

R2 0.89 

Standard error 4.25 
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Models proposed by Ferrero et al. (1990), Viswanathan and Gothandapani 

(1999), Watts and Bilanski (1991), Butler and McColly (1959), and Bilanski et al. 

(1985)  were also tested with the data of barley straw to find the best model for the 

pressure-density relationship. Results of validation of these models using the 

experimental data of barley straw are shown in Table 4.8. This table showed that the 

developed model for the pressure-density relationship in this study (first model in the 

table) had the highest coefficient of determination and lowest average error. The 

coefficient of determination and average error for this model were 0.94 and 2.50%, 

respectively. The experimental data and predicted densities for barley straw based on the 

developed model (Eq. 3.54) versus the plunger pressure are plotted in Figure 4.20. The 

estimated values for the constant coefficients of this model are shown in Table 4.9. The 

standard error and the coefficient of determination of this model were 3.21 kg/m3 and 

0.94, respectively (Table 4.9). 

 
Table 4.8 Summary of validating different models of pressure-density relationship with 
the data of baling barley straw in the large square baler. 
   

Pressure-density model R2 Average error (%) 

)1)(( 02
00

PD
os eCPPBA −−+++= γγ  

 
0.94 2.50 

)/(
0maxmax )/()( KP

s e −=−− γγγγ           (Bilanski et al. 1985)  0.94 2.52 

)/ln( 21 kki σγ =                         (Butler and McColly 1959) 0.94 2.55 

)1)(( 0
000

PD
s ePBA −−++= γγ             (Ferrero et al. 1990) 

 
0.92 2.89 

2
00 ss CBAP γγ ++=                            (Viswanathan 1999) 0.93 7.81 

[ ])(1log 021 γγ −−= sKKP         (Watts and Bilanski 1991)    0.92 8.00 



 128

80

90

100

110

120

130

140

150

160

0 0.1 0.2 0.3 0.4 0.5
Plunger pressure (MPa)

B
al

e 
de

ns
ity

 (k
g/

m
3 )

Measured density 

Empirically predicted density 

 

Figure 4.20 Experimental and the predicted densities vs. plunger pressure in a large    
        square baler for barley straw at a moisture content of 8.7% (wb). 

 

 

Table 4.9 Estimated constants of the pressure-density model for barley straw (Eq. 3.54). 
 

Constant Estimated values for barley straw 

γ0 50.00 

A0 9.11 

B0 301.66 

C -250.05 

D0 71.21 

R2 0.94 

Standard error 3.21 
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4.1.7 Comparison of Analytical and Empirical Models 

Comparison of the analytical and empirical models for bale density as a function 

of pressure on the plunger, Pp, (Eqs. 3.53 and 3.54) showed that these models had 

completely different general forms, but in both models bale density had a direct 

relationship with the material initial density and plunger pressure. Figure 4.21 represents 

the variation of the bale density of alfalfa with respect to the maximum pressure inside 

the compression chamber (Pp) based on both analytical and empirical models. According 

to these graphs, the trend of variation of density with pressure in both models is similar, 

but their rate of changes is different. Variation rate of density with pressure in the 

analytical model is higher than that of the empirical model. At low plunger pressures, 

the analytical model underestimates the bale density but at the higher pressures its 

prediction gets close to the real bale density. The cause of low accuracy in density 

prediction based on the analytical model is probably the assumptions made in deriving 

the analytical model.  In the analytical model development, forage materials assumed to 

behave as an isotropic linear elastic material which is not true in reality. 
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 Figure 4.21 Experimental data and the predicted   densities based  on  the   analytical   
  and empirical   models vs.  the   plunger   pressure     in  a  large   square      
  baler  for  alfalfa  at  12.4% (wb) moisture content. 

 

 

4.1.8 Field Tests  

Collected data from the experiments in both provinces (Saskatchewan and 

Québec) in 2001 were analyzed using a split plot design in the SAS software (SAS 

Institute, Cary, NC) except the evaluation of the flake size and load setting effect on the 

barley straw bale density in Québec. For this study, insufficient data were collected to do 

the statistical analysis. In this section, results of the effect of load setting and flake size 

on the plunger force and bale density are discussed. Results are provided for baling 

alfalfa and barley straw.  
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4.1.8.1 Baling Alfalfa 

The analysis of variance of the data collected to test the effect of load setting and 

flake size on the plunger force showed that both the load setting and flake size had a 

significant effect on the plunger force (Table A.1). Means comparison analysis using the 

Duncan’s multiple range test (DMRT) indicated that the difference between the plunger 

forces at all the load settings was significant even at the significance level of 1% (Table 

4.10). Means comparison analysis of the plunger forces at different flake sizes revealed 

that at the significance level of 5%, the difference between all treatments was significant 

(Table 4.11). However, at the significance level of 1% there was a considerable 

difference only between the plunger force at flake size of 3/10 and the others (Table 

4.11). The plunger force increased with increased percentage of the available maximum 

plunger force on the load pre-setting control system and flake size. Although, the 

plunger force was supposed to decrease with increasing flake size, results showed that 

the plunger force increased with increasing flake size. This was probably due to the 

increased flake size which increased the material rebounding after each plunger stroke. 

A greater plunger force with the increasing load setting was expected; therefore, when 

the load was set at 70% of the available maximum load, the plunger force reached its 

maximum value. 
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Table 4.10 Average plunger forces at different load settings for alfalfa (α = 0.01). 
 

Load setting  Plunger force (kN) 
50 255.6 a 

60 305.5 b 

70 372.3 c 

a, b, c Averages with different letters were statistically different at 99% level. 

 

Table 4.11 Average plunger forces at different flake sizes for alfalfa. 

  
Flake size (plunger/stuffer ratio setting) 

 
Plunger force (kN) 

(α = 0.05) 
Plunger force (kN) 

(α = 0.01) 
3/10 299.7 a 299.7  a 

6/10 313.6 b 313.6  b 

9/10 320.1 c 320.1  b 

a, b, c Averages with different letters were statistically different. 

 

The results of the analysis of variance for the effect of load setting and flake 

sizes on the alfalfa bale density are presented in Appendix A (Table A.2). These results 

revealed that load setting, flake size, and their interaction had significant effect on the 

alfalfa bale density at a significance level of 1%. The difference between all mean values 

of the bale densities at different load settings at a significance level of 1% was 

significant (Table 4.12). The mean comparison analysis of the bale density at different 

flake sizes showed that at the significance level of 5%, the bale density at the flake size 

of 3/10 was significantly different from bale densities at other flake sizes (Table 4.13). 

However, at the confidence level of 99% only the difference between the bale densities 
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at the flake sizes of 3/10 and 6/10 was significant (Table 4.13).  The bale density 

drastically increased with increasing load setting, but slightly increased with increasing 

flake size, as expected. The effect of interaction between load setting and flake size on 

the bale density was significant only at the load setting of 70%. Bale density at the flake 

size of 3/10 at 70% load setting was significantly different from the bale density of this 

load setting at 6/10 and 9/10 flake sizes (Table 4.14).  

 
 
 

Table 4.12 Average alfalfa bale densities at different load settings (α = 0.01). 
 

Load setting (as percentage of 
the available maximum load) 

Bale density (kg/m3) 

50 154.3 a 

60 161.8 b 

70 183.8 c 

a, b, c Averages with different letters were statistically different at 99% level. 

 
 

Table 4.13 Average alfalfa bale densities at different flake sizes. 
 

flake size (plunger/stuffer ratio 
setting ) 

 

Bale density (kg/m3) 
(α = 0.05) 

Bale density (kg/m3) 
(α = 0.01) 

3/10 165.2 a 165.2 a 

6/10 167.5 b 167.5 b 

9/10 167.2 b 167.2 ab 

a, b Averages with different letters were statistically different. 
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Table 4.14 The effect of the interaction between load setting and flake size on the bale 
density for alfalfa.  
 

Load setting (%) Flake size Bale density (kg/m3) 

50 3/10 155.1 a 

50 6/10 155.1 a 

50 9/10 152.6 a 

60 3/10 162.4 b 

60 6/10 161.7 b 

60 9/10 161.3 b 

70 3/10 178.0 c 

70 6/10 185.8 d 

70 9/10 187.6 d 

 

4.1.8.2 Baling Barley Straw 

 A summary of the analysis of variance of the data showing the effect of load 

setting and flake size on the plunger load of the baler in the baling barley straw is 

presented in the appendix A (Table A.3). Results showed that plunger load was 

drastically affected by the load setting and interaction between load setting and flake 

size at 1% significance level, while flake size had no significant effect on the plunger 

load even at the significance level of 5%. Based on the mean comparison analysis, the 

difference between plunger loads at diverse load settings was significant at the 

significance level of 1%, therefore checking the difference between the treatments at the 

significance level of 5% was not necessary (Table 4.15).  This analysis, on the other 
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hand, showed no significant difference between the plunger load mean values at the 

different flake sizes at the confidence level of 99% (Table 4.16). Whereas, means 

comparison showed a significant difference between plunger loads at flake sizes of 6/10 

and 9/10 at the confidence level of 95% (Table 4.16). As expected, a higher load setting 

considerably increased the plunger load, while greater flake size slightly increased the 

plunger load due to more relaxation of the larger flakes.  The interaction between load 

setting and flake size had a significant effect on the plunger force at all load settings but 

60%. Results showed that at the highest level of load setting (100%) the medium flake 

size required the maximum plunger force, while at the medium load settings (60 and 

80%) the thickest and at the lowest load setting (40%) the thinnest flake size needed the 

maximum plunger force (Table 4.17).   

 
 

Table 4.15 Average plunger forces at different load settings for the baling barley straw 
(α = 0.01). 
 

Load setting (percent of 
available maximum plunger force) 

Plunger force (kN) 

40 216.4 a 

60 317.7 b 

80 397.8 c 

100 492.4 d 

a, b, c, d  Averages with different letters were statistically different at 99% level. 
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Table 4.16 Average plunger forces at different flake sizes for the baled barley straw. 

  
 flake size (plunger/stuffer ratio setting) Plunger force (kN) 

(α = 0.05) 
Plunger force (kN)  

(α = 0.01) 
3/10 354.9  ab 354.9 a 

6/10 354.0  b 354.0 a 

9/10 359.3  a 359.3 a 

a, b Averages with different letters had statistically significant difference. 
 
 
 
Table 4.17 The effect of the interaction between load setting and flake size on the 
plunger force for barley straw.  
 

Load setting (%) Flake size Plunger force (kN) 

40 3/10 221.9 a 

40 6/10 210.5 ab 

40 9/10 216.8 b 

60 3/10 315.4 c 

60 6/10 317.8 c 

60 9/10 320.1 c 

80 3/10 398.8 d 

80 6/10 387.9 e 

80 9/10 404.9 d 

100 3/10 483.6 f 

100 6/10 500.0 g 

100 9/10 493.8 g 
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Average barley straw bale densities of the different treatments showed that the 

bale density significantly increased with increasing load setting (Table 4.18). Flake size 

had a slight effect on the barley straw bale density (Table 4.19); however, the number of 

data available for the barley straw density was insufficient to perform a complete 

statistical analysis. Results of flake size effect on the bale density in both tested 

materials also showed that at the low load settings, bale density decreased with 

increasing flake size (Table 3.2 and 3.3). This was probably because of more recovery 

(rebound) of the thicker flakes at the lower plunger pressures.    

 

 

Table 4.18 Average barley straw bale densities at different load settings. 

  
Load setting (percent of 

available maximum plunger force) 
Bale density (kg/m3) 

40 109.9 

60 124.1 

80 137.7 

100 144.1 

 

 

 

Table 4.19 Average barley straw bale densities at different flake sizes. 
 

Flake size (plunger/stuffer ratio setting) Bale density (kg/m3) 
3/10 127.0 

6/10 129.6 

9/10 130.3 
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4.2 Sensor Design 

Results of sensor sensitivity, sensor calibration, and sensor performance in the 

field are discussed in this section.  

 

4.2.1 Sensor Sensitivity 
 

The sensor showed an excellent linearity under the uni-axial vertical and 

horizontal loading calibration with no hysteresis in the unloading cycle (Figs. 4.22 and 

4.223). Results of the primary, the secondary, and the cross sensitivities of the sensor for 

each of the horizontal and the vertical loadings are shown in the Table 4.20. The 

horizontal and vertical primary sensitivities of the sensor were 1479.7 and 1387.8    

μVV-1kN-1, and cross sensitivities of four arm bridge outputs for the horizontal and the 

vertical loadings were 0.64% and 2.85%, respectively.  Godwin (1975) reported draft 

and vertical cross sensitivities of 1.1 and 2.1%, respectively. McLaughlin et al. (1998) 

found a cross sensitivity of 1.9 and 7.0% for the draft and the vertical loadings. Gu et al. 

(1993) determined a range of 0 to 4% for the cross sensitivity. Therefore, the horizontal 

cross sensitivity determined in this study was the lowest compared to those previously 

reported, and the vertical cross sensitivity was found to be smaller than all reported 

vertical sensitivities but what reported by Godwin (1975). 
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Figure 4.22 Uni-axial horizontal calibration of the tri-axial sensor. 
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Figure 4.23 Uni-axial vertical calibration of the tri-axial sensor. 
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Table 4.20 Cross sensitivities of the sensor resulting from uni-axial calibration. 
 
Loading axis Primary sensitivity 

(μVV-1kN-1) 
Secondary sensitivity 

(μVV-1kN-1) 
Cross sensitivity (%) 
(Secondary/Primary) 

x 1479.7 9.45 0.64 

y 1387.8 39.55 2.85 

 

 

4.2.2 Sensor Calibration 

The tri-axial loading calibration data were used to develop the following 

calibration equations for the forces in the x-direction (draft) and the y-direction (vertical 

force) using multiple regression analysis.  

 0)( cVVcVcVcF yxiyzxxx +++= ,       (4.3) 

0)( cVVcVcVcF yxixxyyy +++= ,       (4.4) 

where: 

 Fx, Fy      = forces in the x- and y-directions (N), 

           Vx, Vy      = output of the horizontal and vertical force measurement bridges   

                                       (v) and 

           cx, cy, ci, c0   = model coefficients. 

Least square method in multiple regression analysis was used to validate the developed 

models and estimate the model constant coefficients (Table 4.21). 
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Table 4.21 Estimated constants of the calibration equations of the sensor  

Model cx cy ci c0 
Fx -1214.71 7.63 -13.91 -450.44 

Fy -15.48 -1313.99 -0.53 -223.41 

 

 

Results of the multiple regression models for Fx and Fy showed that the best 

prediction model expressed the forces as a function of primary bridge output, secondary 

bridge output, and the interaction between the primary and secondary outputs.  The 

predicted horizontal and vertical loads versus applied horizontal and vertical loads for 

the tri-axial loading calibration are plotted in Figures 4.24 and 4.25, respectively.  The 

predicted forces were calculated using the abovementioned multiple regression models. 

Figure 4.24 showed that the regression model for the force prediction in the x-direction 

had successfully corrected the cross sensitivity effects from the forces in other directions 

on the force measurement in this direction. The coefficient of determination and the 

standard error in this case were 0.99 and 28.64 N, respectively (Table 4.22).  The plot of 

the predicted vertical forces versus applied vertical forces showed that the regression 

model for the force in the y-direction had the ability  to predict the applied forces to the 

sensor in the y-direction (R2 = 0.99). However, the random error in this prediction was 

higher than that of the model predicting force in the x-direction. The coefficient of 

determination and the standard error for the force prediction in the y-direction were 0.99 

and 86.5 N, respectively (Table 4.22).     

Primary sensitivities of the EORs, calculated from the analytical equations and 

the strain gage bridge theory, were 1122.4 and 848.8 μVV-1kN-1 for the horizontal and 
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vertical sensitivities, respectively. These calculated sensitivities were 75.9 and 61.2% of 

the measured sensitivities (1479.7 and 1387.8 μVV-1kN-1). These results revealed that 

the analytical equations used for the EOR design (Eqs. 3.54 and 3.57) underestimated 

the stress at both positions (θ = ± 39.5° and  θ = 90°) of the ring section of the EOR. 
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Figure 4.24 Predicted  horizontal  loads  resulting  from  the developed model in the tri- 
        axial calibration vs. the applied horizontal loads. 
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Figure 4.25 Predicted vertical loads resulting  from the  developed model in the  tri-axial  

        calibration vs. the applied vertical loads. 
 
 

Table 4.22 The coefficient of determination and the standard error of the sensor 
calibration equations. 

  
Model R2 Standard error (kPa) 

Fx 0.99 28.64 

Fy 0.99 86.5 

 

 

4.2.3 Sensor Performance in the Field 

Placing the sensor inside the compression chamber of the baler and its alignment 

inside the bale was the most difficult practical problem during the field tests. There was 

no reference inside the compression chamber and the bale to use for sensor alignment; 
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therefore, sensor alignment was performed observationally. This has probably made 

some misalignment for the sensor during the field tests which has caused some errors in 

the recorded forces. Meanwhile, since the dug hole in the bale for sensor was usually 

larger than the sensor size, there was a gap between the sensor body and the top and side 

walls of the dug hole. In practice, some of the applied forces in the y- and z-directions 

have been consumed to fill this gap. For this reason, recorded forces in the y-direction 

were lower than the expected forces. Results of force measurement inside the 

compression chamber in the x-direction were similar to the results obtained for the baler 

plunger maximum force by installing strain gages on the plunger arms. The error for the 

force measurement using the tri-axial sensor for barley straw was about 5%.  However, 

there was no reference to evaluate the obtained forces by the sensor in the y-direction; 

results showed that the recorded forces were lower than the expected forces in this 

direction. The reason was probably the gap between the walls of the sensor and dug hole 

inside the bale.  According to the theoretical analysis given in section 3.3.2.2, forces in 

the z-direction could not be recorded by the strain gages mounted on this sensor. 

Therefore, this sensor could only record the forces in the x- and y-directions. In practice, 

some values were obtained for Fz as a function of the difference between forces in the x-

direction in two EORs, but the accuracy of this measurement was very low. In order to 

make the sensor a perfect tri-axial force transducer, a set of stain gages must be mounted 

on the side faces of the ring section of the EOR (Fig. 3.25) to be able to record Fz in 

addition to Fx and Fy.    
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4.3 Measurement of Crop Properties 

Results of measurement of some crop properties such as coefficient of friction, 

adhesion coefficient, and modulus of elasticity are discussed in this section. 

4.3.1 Friction and Adhesion Coefficients 
 

Results of the analysis of variance of the effect of moisture content on the static 

coefficient of friction of alfalfa on a polished steel surface showed that alfalfa moisture 

content had a significant effect on the coefficient of friction at the confidence level of 

99% (Table A.4). The coefficient of variation and the correlation coefficient in this case 

were 6.1 and 0.95, respectively. The coefficient of friction increased with increasing 

moisture content; however, the rate of the increment was larger for the higher moisture 

contents than that of the lower ones (Table 4.23). This result was in good agreement 

with the results reported for alfalfa and similar materials in the literature. Shinners et al. 

(1991) reported that moisture content had a significant effect on the coefficient of 

friction of alfalfa so that it was lower in the moisture range of 33 to 37% than the range 

of 73 to 77%. Mani et al. (2003) presented that moisture content had a significant effect 

on the coefficient of friction of corn stover grind. Ling et al. (1997) showed that both the 

static and the kinetic coefficients of friction of wood ash increased with increasing ash 

moisture content.  At the confidence level of 95%, the difference between the 

coefficients of friction at all moisture contents was significant, while at confidence level 

of 99%, only difference between the coefficients at 12.0, 31.0, and 42.2% was 

significant (Table 4.23).  The coefficients of friction for alfalfa ranged from 0.15 to 0.26 

for moisture contents of 12.0 to 42.2% (wb). Efforts were made to develop a 

mathematical relationship between the coefficient of friction of alfalfa on a polished 
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steel surface and alfalfa moisture content. Therefore, the relationship between 

coefficient of friction and moisture content for alfalfa was best expressed by the 

following quadratic equation: 

14.010107 425 +−×= −−
ww MMμ ,       (4.5) 

where: 

 μ = coefficient of friction and 

 Mw = moisture content % wb. 

The experimental and predicted data of the coefficient of friction of alfalfa on a polished 

steel surface versus moisture content is shown in Figure 4.26. The coefficient of 

determination and the standard error of the model fitness were 0.95 and 0.01, 

respectively.   

 

Table 4.23 Mean comparison of the static coefficient of friction of alfalfa on a polished 
steel surface at different moisture contents. 

  

Moisture content (%) Coefficient of friction      
(α = 0.05) 

Coefficient of friction      
(α = 0.01) 

12.0 0.15 a 0.15 a 

22.0 0.17 b 0.17 ab 

31.0 0.20 c 0.20 b 

42.2 0.26 d 0.26 c 

a, b, c, d Averages with different letters were statistically different. Each coefficient of 
friction represents average of fifteen samples. 
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Figure 4.26 Experimental  and   predicted   coefficients  of   friction  of  alfalfa  on  a  

        polished steel surface vs. material moisture content. 
 
 
Although, the difference between the adhesion coefficients of alfalfa on a 

polished steel surface at different levels of moisture content was considerable, the 

analysis of variance of the effect of moisture content on the adhesion coefficient showed 

no significant effect (A.5). This lack of effect could be partially due to a high coefficient 

of variation between the data. However, Duncan’s multiple range mean comparison test 

showed a significant difference between the adhesion coefficients at 12.0% and 42.2% 

(wb) moisture contents at 95% of confidence level. The adhesion coefficient of alfalfa 

on a polished steel surface increased with increasing moisture contents from 12.0 to 

31.0% (wb) and then decreased at the moisture content of 42.2% (Table 4.24). The 

lower adhesion coefficient at 42.2% moisture content could be related to the lubrication 

of steel surface by water released from the moist materials under pressure.  No literature 

was found regarding adhesion coefficient of alfalfa to be able to compare the results 
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with, but some studies related to the effect of moisture content on the adhesion 

coefficient of some other forage materials have been reported. For instant, Mani et al. 

(2003) reported that moisture content had no significant effect on adhesion coefficient 

which is in agreement with the results of this study.  

 

Table 4.24 Adhesion coefficient of alfalfa on a polished steel surface at different 
moisture contents. 
 

  Moisture content (%) Adhesion coefficient (kPa) 
12.0 2.1 a 

22.0 11.4 ab 

31.0 14.9 ab 

42.2 8.3 b 

a, b Averages with different letters were statistically different at 95% level. Each 
adhesion coefficient represents average of fifteen samples. 

 
 
 

Results shown in Table A.6 indicated that the static coefficient of friction of 

barley straw on a polished steel surface was affected by moisture content, as stated in 

previous studies. Comparison of the treatment means proved that the difference between 

all treatments was significant at the confidence level of 95%. However, the difference 

between the coefficients of friction at moisture contents ranging from 12.2% and 32.8%, 

was not significant at confidence level of 99% (Table 4.25). The coefficient of friction 

for barley straw was in the range of 0.14 to 0.27 at moisture contents of 12.2 to 45.7% 

(wb). The relationship between the coefficient of friction of barley straw on a polished 

steel surface and moisture content is best expressed by the following linear equation:  
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1006.00037.0 += wMμ ,        (4.6) 

where: 

 μ = coefficient of friction and 

 Mw = moisture content % wb. 

The coefficient of determination and the standard error of the model were 0.93 and 

0.013, respectively.    

 

Table 4.25 Static coefficient of friction of barley straw on a polished steel surface at 
different moisture contents. 

   
Moisture content (%) Coefficient of friction      

(α = 0.05) 
Coefficient of friction 

(α = 0.01) 
12.2 0.14 a 0.14  a 

20.3  0.18  b 0.18 ab 

32.8  0.22  c 0.22 b 

45.7  0.27  d 0.27 c 

a, b, c, d Averages with different letters were statistically different. Each coefficient of 
friction represents average of fifteen samples. 

 

The adhesion coefficient of barley straw on a polished steel surface was not 

significantly affected by the material moisture content, while the difference between the 

adhesion coefficients was considerable (Table A.7). However, Duncan’s multiple range 

mean comparison test showed a significant difference between the adhesion coefficients 

at moisture contents of 20.3% and 45.7% at the confidence level of 95% (Table 4.26). 

Again the high coefficient of variation could be the reason for this lack of significant 

difference.  The coefficient increased with increasing moisture contents ranging from 



 150

12.2 to 20.3% and then decreased with moisture contents ranging from 20.3 to 45.7%. 

The lubricating role of the released water from the moist material under pressure could 

explain the reduction of the adhesion coefficient at high moisture contents. The static 

coefficients of friction of wheat straw and whole green barley on a polished steel surface 

were measured at 10.0 and 51.0% moisture contents, respectively, which were 0.13 for 

the wheat straw and 0.21 for whole green barley.   

 

Table 4.26 Adhesion coefficient of barley straw on a polished steel surface at different 
moisture contents. 

   
Moisture content (%) Adhesion coefficient (kPa) 

12.2                               5.9 ab 

20.3                             11.2  a 

32.8                               3.1 ab 

45.7 0.2 b 

a, b Averages with different letters were statistically different at 95% level. Each adhesion 
coefficient represents average of fifteen samples. 
 

4.3.2 Modulus of Elasticity 

In order to find a relationship between apparent modulus of elasticity and bulk 

density of alfalfa and barley straw, the data of the tests performed for the particle 

stiffness were used. The tangent method for the modulus calculation was used in this 

study. According to Eq. 3.60, when the tangent method is used to calculate modulus of 

elasticity, the obtained values are combination of modulus of elasticity and Poisson’s 
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ratio ( ( ) FEE
=

−+
−

)21(1
)1(

νν
ν ). Since, Poisson’s ratio is a constant coefficient, plotting the 

obtained values versus material bulk density can show the trend of variation of modulus 

of elasticity with material bulk density.  Therefore, calculated values for alfalfa and 

barley straw were plotted versus material bulk density (FE-γ curve). Results for alfalfa 

showed that the apparent modulus of elasticity remained constant as the density 

increased from 100 kg/m3 to 220 kg/m3 (Fig. 4.27). Results for barley straw also showed 

that the apparent modulus of elasticity remained constant as the density increased from 

100 kg/m3 to 190 kg/m3 (Fig. 4.28). Therefore, the results of this study proved that 

modulus of elasticity of alfalfa and barley straw was constant for the density range 

encountered in the large square baler. 
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Figure 4.27 Variation of the apparent modulus of elasticity with bulk density of alfalfa  
        (E  is  modulus  of  elasticity   and  F is a  function  of  Poisson’s  ratio  as   
        defined in Eq. 3.61). 
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Figure 4.28 Variation of the apparent modulus of elasticity with the  bulk density of  
        barley straw (E is modulus of elasticity and F is a function of Poisson’s  
        ratio as defined in Eq. 3.61). 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS  

5.1 Summary 

 This section is intended to provide a summary of the most important results 

achieved in this study.  

  

5.1.1 Analytical Model for the Pressure Distribution  

 A new analytical model was developed for the pressure distribution inside the 

compression chamber of a baler by assuming isotropic linear elastic behavior for forage 

materials. Model development was performed according to the conditions of a large 

square baler. The new conditions involved the constant modulus of elasticity instead of 

the variable modulus of elasticity, and the inclined top and side walls instead of the 

inclined top wall in Sitkei’s model (Eq. 2.19). The derived analytical model was found 

to be simpler and more convenient than Sitkei’s model (Eq. 2.19). Results of the model 

validation showed that the analytical model accurately predicted the pressure in the x-

direction, while the model was not accurate in the y- and z-directions. The overall 

standard error and the coefficient of determination of the regression analysis were 20.0 

kPa and 0.95, respectively.   

For wheat straw, the analytical model predicted the pressure on the baler plunger 

(maximum pressure) with the accuracy of 97.5%. The regression analysis of the 

experimental and the predicted data of the pressure distribution for wheat straw revealed 
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a standard error and a coefficient of determination of 26 kPa and 0.95, respectively. The 

overall standard error and coefficient of determination for whole green barley were 18.4 

kPa and 0.96, respectively. Therefore, an acceptable correlation was found between the 

experimental data and the derived analytical model for each of forage materials tested in 

this study.  

Comparing graphs of the pressure distribution of different forage materials based 

on the derived analytical model indicated that the pressure distribution for all tested 

forage materials had similar patterns. The maximum pressures for barley straw and 

wheat straw were approximately identical. Considering the fact that barley straw had 

been harvested at a lower load setting compared to the load setting for wheat straw 

(barley straw baled at a load setting of 60% and wheat straw baled at a load setting of 

70%), the maximum pressure resulting from the baling barley straw was higher than that 

of wheat straw. The maximum pressure for whole green barley was inferior to those of 

the barley and wheat straw which was explained by the lower load setting (50%) and 

Poisson’s ratio (0.32).  

   

5.1.2 Empirical Model for the Pressure Distribution 

Data of the experimental tests were used to develop an exponential empirical 

model for the pressure distribution inside the compression chamber of the baler for each 

of the tested forage materials (barley straw, wheat straw, and whole green barley) using 

regression analysis. These empirical models were simple equations which were only 

functions of the distance from the full extension point of the plunger along the 

compression chamber. These models had the identical general form for all forage 

materials in each specific direction with different model constants. Based on the results 
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obtained for baling barley straw, the best correlation between the experimental data and 

the predicted pressures was found at the beginning of the compression chamber length 

close to the plunger (maximum pressure inside the bale chamber) with an error of 

approximately 5%. The overall standard error and the coefficient of determination of the 

regression analysis in this case for model in the x-direction were 19.3 kPa and 0.96, 

respectively. For wheat straw, the empirical model overestimated the pressure in the x-

direction on the baler plunger with an accuracy of 87.3% which was the lowest 

compared to the accuracy of the pressure prediction of the empirical model for the other 

crops at the same position. The regression analysis of the experimental and the predicted 

data of the pressure distribution in the x-direction for wheat straw presented a good 

coefficient of determination and a low standard error for the model correlation to the 

experimental data which were 0.97 and 20.6 kPa, respectively. Results of comparing the 

predicted and experimental pressures showed that the empirical model predicted the 

pressure on the plunger in the x-direction with the error of about 5% for whole green 

barley. The overall coefficient of determination and the standard error were 0.96 and 

18.4 kPa, respectively. Comparing the experimental and the predicted pressure 

distribution in the x-direction revealed that the developed model for wheat straw 

overestimated the maximum pressure on the baler plunger, whereas models for barley 

straw and whole green barley estimated more accurate values for the maximum pressure 

on the baler plunger. The empirical model in the y-direction was not accurate because of 

the inaccurate experimental data. 
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5.1.3 Comparison of Models of Pressure Distribution 

Comparing the results of the analytical and the empirical models in the x-

direction for barley straw revealed that the empirical model provided more accurate 

pressure prediction with a larger coefficient of determination and a lower overall 

standard error; however, the analytical model provided more accurate prediction of the 

pressure on the plunger than the empirical model. Comparison of the results of the 

analytical and the empirical models in the x-direction for baling wheat straw indicated 

that the empirical model had more accurate overall prediction for the pressure along the 

compression chamber, and had the larger coefficient of determination and the lower 

overall standard error, while the analytical model provided more accurate prediction of 

the pressure only on the plunger. For baling whole green barley, results showed that both 

analytical and empirical models predicted the pressure distribution with similar 

accuracy. Therefore, in order to estimate the pressure distribution of baling whole green 

barley, either model could be used. 

 

5.1.4 Pressure-Density Relationship 

Analytical and empirical models were developed for the pressure-density 

relationship of the baler for baling alfalfa and barley straw. Results of plotting the 

analytical model versus distance from the plunger showed that bale density decreased 

with distance up to 50 cm, and then remained almost constant up to end of compression 

chamber. This model failed to accurately predict the bale density along the bale length 

because of the assumption made in the model development. The developed empirical 

model for both alfalfa and barley straw was a combination of a quadratic and an 

exponential equation.  In order to validate the developed models, field tests were 
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performed by baling alfalfa and barley straw. For alfalfa with 12.4% moisture content, 

three flake sizes and three load settings were considered. Three levels of the flake sizes 

and four levels of the load settings were considered for barley straw with 8.7% moisture 

content. The forces on the plunger arms were recorded by a data acquisition system. The 

actual bale bulk density was calculated by measuring the bale dimensions and weight. 

Results showed that both load setting and flake size had a significant effect on the 

plunger force and bale density. The plunger force and bale density increased with 

increasing load setting and flake size. 

 Comparing analytical and empirical models for the bale density as a function of 

pressure on the plunger showed that the trend of variation of density with pressure in 

both models was similar, but the rate of change was different. The variation rate of 

density with pressure in the analytical model was higher than that of the empirical 

model. The analytical model underestimated the bale density at low plunger pressures 

but showed more accurate prediction at higher pressures, while the empirical model 

accurately predicted the bale density at low and high pressures. 

 

5.1.5 Sensor Design 

A tri-axial sensor was designed using an extended octagonal ring (EOR) and was 

calibrated uni-axially and tri-axially. The sensor showed excellent linearity and low 

cross sensitivities. Primary sensitivities of the EORs calculated from the analytical 

equations and the strain gage bridge theory were 1122.4 and 848.8 μVV-1kN-1 for the 

horizontal and the vertical sensitivities, respectively. These calculated sensitivities were 

75.9 and 61.2% of the measured ones (1479.7 and 1387.8 μVV-1kN-1). Results revealed 

that the analytical equations used for the EOR design (Eqs. 3.55 and 3.58) 
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underestimated the stress at the all positions (θ = ±39.5° and θ = 90°) of the ring section 

of the EOR. Results of the force measurement inside the bale compression chamber in 

the x-direction were close to the results obtained for the baler plunger maximum force 

from installing strain gages on the plunger arms. For barley straw, the error for the force 

measurement using the tri-axial sensor was approximately 5%.  However, there was no 

reference to evaluate the obtained forces by the sensor in the y-direction; results showed 

that the recorded forces were lower than the expected forces in this direction. The reason 

was probably the gap between the walls of the sensor and the dug hole inside the bale.  

According to the theoretical analysis given in section 3.3.2.2, forces in the z-direction 

could not be recorded by the strain gages mounted on this sensor. Therefore, this sensor 

could only record the forces in the x- and y-directions. 

 

5.1.6 Crop Properties 

Results of the static coefficient of friction of different forage materials on the 

polished steel surface showed that the moisture content of the forage materials had a 

significant effect on the coefficient of external friction. The coefficient of external 

friction increased with increasing crop moisture content for both alfalfa and barley 

straw. The static coefficient of friction of alfalfa on a polished steel surface was a 

quadratic function of material moisture content, while the relationship between the 

coefficient of friction of barley straw on a polished steel surface and material moisture 

content was best expressed by a linear equation. Results of variation of modulus of 

elasticity with bulk density for both alfalfa and barley straw showed that the apparent 

modulus of elasticity remained constant as bulk density increased in the density range 

encountered in a large square baler.  



 159

5.2 Conclusions 

 This section is intended to list some of the most significant conclusions that can be 

drawn from this research based on the addressed objectives.  These conclusions are 

outlined as follows: 

1. Analytical models were developed for the pressure distribution inside the bale 

along the compression chamber length in the x-, y-, and z-directions based on 

theory of elasticity. The models were validated using experimental data in the x- 

and y-directions collected for barley straw, wheat straw, and whole green barley. 

The model in the x-direction was simpler and more convenient than Sitkei’s 

model (Eq. 2.19) and showed a good correlation with the experimental data. The 

analytical models did not work in the y- and z-directions because of either 

inaccurate experimental data or inappropriate assumptions in model 

development.   

2. Empirical models were also developed for the pressure distribution in the x- and 

y-direction for each of the tested forage materials using regression analysis. The 

model accurately predicted the pressures in the x-direction, while it had a poor 

accuracy in the y-direction.  

3. Analytical and empirical models were developed for the pressure-density 

relationship of large square baler for alfalfa and barley straw. The empirical 

model had a good correlation with the experimental data, while the analytical 

model showed an inaccurate prediction of density particularly at the low plunger 

pressures. 
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4. Load setting and flake size had a significant effect on the plunger force and bale 

density. The plunger force and bale density increased with increasing load setting 

and flake size. 

5. A tri-axial sensor was designed using EOR and was calibrated uni-axially and 

tri-axially. The sensor showed excellent linearity and low cross sensitivities.   

6. The static coefficient of friction of alfalfa on a polished steel surface was a 

quadratic function of material moisture content, while the relationship between 

the coefficient of friction of barley straw and moisture content was best 

expressed by a linear equation. 

 

5.3 Recommendations for Future Work 

According to results and limitations of this study, the following recommendations can be 

given to make the future studies more effective in this area:   

1. This study was limited to the modeling of variation of the pressure distribution in 

the x-, y-, and z-directions with respect to the x-direction. In other word, the 

sensor was located at the center of the bale cross-section area; therefore, forces 

were measured on the centerline of bale at different distances from plunger. In 

order to have a comprehensive understanding of pressure patterns inside the 

compression chamber, having the pressure variation in the y- and z-direction 

(pressure variation from center to top and side walls) are also necessary. 

Therefore, modeling of the variation of pressure in the y- and z-direction by 

locating sensors at different positions from center to top and side walls could be 

one of the objectives of the future studies. 

2. The analytical models in the y- and z-directions were not validated in this study 

because of lack of accurate experimental data in these directions. Therefore, 
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validating these models using accurate experimental data can be another aspect 

of future work.  

3.  The analytical model for the pressure-density relationship was not validated in 

this study, because of lack of experimental data.  Therefore, validation of the 

analytical model of pressure-density relationship by measuring the bale density 

variation along the bale length can be performed in the future. 

4.   Since the field experiments in present study were performed at one level of 

moisture content for each crop, evaluation of the effect of crop moisture content 

on the pressure-density relationship and pressure distribution models can also be 

considered in the future research.        
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APPENDIX A 

TABLES OF ANALYSIS OF VARIANCE 

 
 

Table A.1 Analysis of variance of the data of the effect of flake size and load setting on 
the alfalfa plunger force. 

  
Source DF SS MS F P R2 CV 

Flake size 2 6487.6 3243.8 24.7 <0.0001 0.95 3.7 
Load 

setting 2 205830.5 102915.2 783.6 <0.0001   

Interaction 4 687.7 171.9 1.31 0.27   

Error 81 10638.8 131.3     

Total 89 223644.6      
 

 

 

Table A.2 Analysis of variance of data for the effect of the flake size and the load setting 
on alfalfa bale density.  
 

Source DF SS MS F P R2 CV 
Flake size 2 96.7 48.4 5.6 0.005 0.95 1.8 

Load 
setting 2 14124.7 7062.4 818.5 <0.0001   

Interaction 4 472.5 118.1 13.7 <0.0001   

Error 81 698.9 8.6     

Total 89 15392.8      
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Table A.3 Analysis of variance of data of the effect of flake size and load setting on the 
plunger force for the baling barley straw. 

  
Source DF SS MS F P R2 CV 

Flake size 2 519.6 259.8 2.74 0.07 0.99 2.7 
Load 

setting 3 991904.9 330635.0 3489.6 <0.0001   

Interaction 6 2636.2 439.4 4.64 0.0004   

Error 84 7959.0 94.8     

Total 95 1003019.7      
 
 
 
 
Table A.4 Analysis of variance of data of the effect of the moisture content on the 
coefficient of friction of alfalfa on a polished steel surface. 
 

Source DF Sum of 
squares 

Mean 
square 

F 
Value 

Pr>F R2 Coefficient 
of variation 

Model 3 0.0212 0.0071 49.8 <0.0001 0.95 6.1 

Error 8 0.0011 0.0001     

Corrected 
total 

 
11 

 
0.0223 

     

 
 
 
 
Table A.5 Analysis of variance of data of the effect of the moisture content on the 
adhesion coefficient of alfalfa on a polished steel surface. 
 

Source DF Sum of 
squares 

Mean 
square 

F Value Pr>F R2 Coefficient 
of variation 

Model 3 263.91 87.97 3.25 <0.081 0.55 56.61 

Error 8 216.57 27.07     

Corrected 
total 

 
11 

 
480.47 
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Table A.6 Analysis of variance of data of the effect of the moisture content on the 
coefficient of friction of barley straw on a polished steel surface. 
 

Source DF Sum of 
squares 

Mean 
square 

F Value Pr>F R2 Coefficient 
of variation 

Model 3 0.0266 0.0089 38 <0.0001 0.93 7.5 

Error 8 0.0019 0.0002     

Corrected 
total 

 
11 

 
0.0285 

     

 
 
 
 
Table A.7 Analysis of variance of data of the effect of moisture content on the adhesion 
coefficient of barley straw on a polished steel surface. 
 

Source DF Sum of 
squares 

Mean 
square 

F Value Pr>F R2 Coefficient 
of variation 

Model 3 244.68 81.56 2.79 <0.11 0.51 114.09 

Error 8 233.54 29.19     

Corrected 
total 

 
11 

 
478.22 
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APPENDIX B 

FORCES APPLIED TO THE TRI-AXIAL SENSOR 
 

 
Forces applied on the cover plates of the sensor and a schematic of the sensor 

without cover plates are shown in Figures B.1 and B.2. Fy is applied on the center of the 

y side, while Fx and Fz have an offset of “b0” with respect to the centers of x and z sides. 

Therefore, when the forces are transferred to the end of the bracket in addition to the 

moments Fya0 and  Fza0,  Fxb0 and  Fzb0 also appear at that point (Fig. B.3). When the 

forces are transferred to the center of the bracket, Fya0 and  Fza0 disappear and only  Fxb0 

and  Fzb0 remain at the center of the bracket (Fig. B.4). These two moments (Fxb0 and 

Fzb0) and orthogonal forces (Fx, Fy, and Fz) apply bending stresses on the “S1” and “S2” 

sides of the ring section of the sensor (Fig. B.5). Distribution of stresses created by Fx 

and Fy is shown in Figure B.5b and the stress distribution created by Fz is shown in 

Figure B.5c. In order to sense the strains created by Fx, Fy, strain gages must be installed 

on the face “S2”, while strain gages on the face “S1” sense the strain created by Fz. 
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Figure B.1 Forces applied to the cover plates of the sensor. 
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Figure B.2 Schematic of the sensor without cover plates. 
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Figure B.3 Forces transferred from the covers to the hitch point of sensor. 

 
 

 
 

Figure B.4 Forces transferred from the hitch point to the center of braces. 
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Figure B.5 Bending stresses applied to the ring section of the sensor. a) a section of the  

flexible part (ring section) of the sensor; b) bending stress applied by Fx  and      
Fy on the cross-section of the ring; and c) bending stress applied by Fz on the  
cross-section of the ring. 

 
 
 
 
 


