# eed-Placed P and S Fertilizers: Effect on Can Plant Stand and Yie

Laryssa Grenkow, Don Flaten, University of Manitoba Cynthia Grant, Agriculture Agri-Food Canada John Heard, Manitoba Agriculture, Food and Rural Initiatives





Agriculture et Agroalimentaire Canada







### Early Season P Response in Canola Grown on Soil with Low Soil Test P\*



\*equiv. to ~ 7 ppm Olsen P

(John Heard, MAFRI)

#### S Deficiency Delays Maturity, Decreases Seed Yield and Oil Concentration



## **Challenges for Farmers**

- 4R's Right Source, Rate, Placement, Timing
- One pass, low disturbance, low SBU seeders
  - Limiting rate of seed-placed fertilizer
    - Yield limiting?
    - Depleting soil fertility?
- New P and S fertilizers
  - Seed Safety?
  - As effective as conventional sources?

# What is an Acceptable Plant Stand for Canola?

- Canola Council of Canada suggests:
  - Seed canola at a rate of 5-8 lbs/ac
  - Target plant stand of 40-200 plants/m<sup>2</sup>

| Environmental Conditions        | Seeding Rate 150 seeds/m²<br>(~7lbs/ac) |
|---------------------------------|-----------------------------------------|
| "Optimal"<br>Emergence = 60-80% | 90 – 120 plants/m <sup>2</sup>          |
| "Normal"<br>Emergence = 40-60%  | 60 – 90 plants/m²                       |

• Seed-row fertilizer can significantly reduce plant stands

#### Seedrow Toxicity from Ammonium Sulphate



Photo: John Waterer ... west of Elm Creek, MB

## **Fertilizer Toxicity**

- Salt Toxicity (Osmotic stress)
  - Affected by fertilizer source, soil moisture content

| Fertilizer      | Salt Index |
|-----------------|------------|
| MAP (11-52-0)   | 26.7       |
| APP (10-34-0)   | 20.0       |
| AS (20-0-0-24)  | 88.3       |
| ATS (15-0-0-30) | 90.4       |

- Ammonia Toxicity
  - Affected by fertilizer source, soil pH, CEC, texture, temperature and water and lime content
  - Ammonium sulphate can react with lime in soil to form ammonia

# **Study Objectives**

- In the field:
  - The effect of various sources and rates of seedplaced P and S fertilizers on plant stand and yield of canola
- In controlled environment:
  - The effect of soils from different landscape
    positions on the toxicity of AS and MAP
    fertilizers placed in the seed-row with canola

# **Field Study Treatments**

- Phosphorus Fertilizers
  - MAP (11-52-0)
  - Coated MAP (11-51-0)
  - APP (10-34-0)
- Rate Applied
  - 0 lbs P₂O₅/ac
  - 18 lbs P<sub>2</sub>O<sub>5</sub>/ac (Low)
  - 35 lbs P₂O₅/ac (High)

- Sulphur Fertilizers
  - AS (20-0-0-24)
  - ATS (15-0-0-20)
  - Vitasul (0-0-0-90)
- Rate Applied
  - 0 lbs S/ac
  - 8 lbs S/ac (Low)
  - 16 lbs S/ac (High)
- Microessentials S15 (13-33-0-15)
  - 18 lbs P<sub>2</sub>O<sub>5</sub>/ac 8 lbs S/ac (Low)
  - -35 lbs P<sub>2</sub>O<sub>5</sub>/ac -16 lbs S/ac (High)

# quid Granular Fertilizer

Fertilizer

#### **Data Collection**

#### **Plant Stand Assessment**

#### **Harvesting Seed**



#### Average Effect of Granular Fertilizers on Plant Stand (17 Site Years)



### Average Effect of Liquid and Granular Fertilizers on Plant Stand (10 Site Years)



#### What About Fields with Variable Soil Properties?



#### Growth Chamber Experiment with Soils from Different Landscape Positions



#### **Effect of MAP on Canola Seedling Emergence in Soil from Brandon**



Knoll

18

0

35 lb  $P_2O_5/ac$ 

#### Effect of AS on Canola Seedling Emergence in Soil from Brandon



#### Knoll

Hollow

0

8

16 lb S/ac

#### Landscape Position – AS Rate Interaction in Soils From Brandon



#### 4-way Interaction: MAP Rate, AS rate, Landscape Position and Days After Emergence in Soil from Brandon



#### Average Effect of Granular Fertilizers on Seed Yield (16 Site Years)



### Average Effect of Granular and Liquid Fertilizers on Seed Yield (9 Sites Years)



#### Plant Stand and Seed Yield Relationship Affected by Seed-Placed MAP and AS



## In Summary – Rate and Source Effects on Canola <u>Emergence</u>

- Canola emergence was reduced and delayed by conventional sources of seed-placed P and S fertilizers due to salt and ammonia toxicity
- AS has a high salt index and risk of ammonia toxicity, especially on calcareous soils; therefore, AS has a greater potential to reduced plant stands than P fertilizers
- Polymer coating was effective in reducing salt toxicity of MAP
- Liquid APP/ATS may be more toxic than conventional granular blends perhaps because the delivery increases the proximity of the liquid band with the seed
- MES15 and Vitasul may be less toxic than equivalent rates of MAP/AS because the elemental S requires time to oxidize and therefore has a low salt index

### In Summary – Rate and Source Effects on Canola <u>Yield</u>

- The relationship between plant stand and yield is plastic and reaching yield potential depends on balancing optimum plant stand with adequate plant available P and S
- Increasing rates of conventional sources of P and S above the recommended rates can cause significant seedling damage which may reduce the capacity to reach yield potential
- AS applied at high rates can decrease yield compared to low rates even at a S responsive site because of a severe reduction in plant stand
- Seed-placed MES15 and Vitasul contain elemental forms of S, which may not be as effective as seed-placed AS in the year of application on S-responsive soils

### In Summary

- Highly available sources of P and S increase the risk and severity of seedling toxicity, but they also increase the frequency and size of yield response
- If limited by single shoot, low SBU seeding equipment, reserve the limited tolerance of canola for seed-row fertilizer for P. Unlike P, S is mobile in the soil and could be placed away from the seed
- umgrenkl@cc.umanitoba.ca