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Abstract
The two most successful methods of estimating the distribution of NMR relaxation times from two di-
mensional data are firstly a data compression stage followed by application of the Butler-Reeds-Dawson
(BRD) algorithm, and secondly a primal dual interior point method using a preconditioned conjugate
gradient (PCG). Both of these methods have been presented in the literature as requiring a truncated
singular value decomposition of matrices representing the exponential kernels. Other matrix factori-
sations are applicable to each of these algorithms, and which demonstrate the different fundamental
principles behind the operation of the algorithms. In the case of the data compression approach the most
appropriate matrix decomposition specifically designed for this task is the rank-revealing QR (RRQR)
factorisation. In the case of the interior point method, the most appropriate method is the LDL factori-
sation with diagonal pivoting, also known as the Bunch-Kaufman-Parlett factorisation. The details of
these differences are discussed, and the performances of the algorithms are compared numerically.

1. Introduction
An important approach to the interpretation of nuclear magnetic resonance (NMR) measurements in-
volves the estimation of the distribution of relaxation times. This is typically performed using a numeri-
cal inversion of a Laplace transform, which is known to be an ill-conditioned procedure.

The observed data can be expressed in terms of the spectra of relaxation times using an integral.
A common experiment uses two dimensional longitudinal (T1) and transverse (T2) experiment [1], in
which case this integral takes the form:

Z(τ1, τ2) =

??
k1(τ1, T1)k2(τ2, T2)S(T1, T2) dT1 dT2 (1)

with kernels k1 and k2 given by

k1(τ1, T1) =1− 2e−τ1/T1

k2(τ2, T2) =e
−τ2/T2 (2)
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The spectra of other time constants, such as diffusion, may also be of interest, and T2–T2 experiments
are also common. The methods presented here are equally applicable to these other experiments. Exper-
imental data is collected at discrete values of time, and so (1) is frequently expressed as

Z = K1SK
T
2 + E (3)

where K1 ∈ RN1×G1 , K2 ∈ RN2×G2 , S ∈ RG1×G2 , Z ∈ RN1×N2 , and where E ∈ RN1×N2 represents
white Gaussian noise having zero-mean. If the columns of each of Z , S and E are stacked to obtain
z = vec(Z), s = vec(S) and η = vec(E), and if K = K2 ⊗K1, then (3) can be expressed as

z = Ks+ η (4)

Since the noise η is white and Gaussian, the maximum likelihood estimate of s is given by the squared
error minimising solution. The matrices K1 and K2 are very ill-conditioned, and hence solving this
solution is known to be an ill-posed problem.
Historically there have been two main approaches to solve such problems; both involving some form

of capacity control. The first approach is known as truncated singular value decomposition (TSVD) and
avoids the amplification of noise associated with small singular values by replacing the inverse of K
by a matrix of reduced rank. It was recognised by proponents of this approach that the singular value
decomposition itself was not actually required, and that the same result could be achieved with the
computationally less expensive QR factorisation [2–4]. We will return to this important point later.
The second approach uses Tikhonov regularisation, with the solution ŝ to (4) being given by

ŝ = argmin
s

?z −Ks?2 + αR(s) (5)

with α > 0 controlling the extent of the imposed regularity, and R(s) may equal sT s for simple energy
control, although other possibilities include curvature control using R(s) = sTQs where Q is a matrix
implementing an approximate first or second derivative operation. Entropy control can be implemented
using R(s) =

?
si log si [5].

Another approach to providing capacity control is to fit a finite number of exponentials to the data,
rather than a distribution, and to limit the number of these exponentials [6].
For many measurements, S can be considered as a distribution, so that all of the elements of s must

be non-negative, and imposing this constraint also improves the resolution of the estimated spectra. This
constraint is used in all the methods presented here. However, it should be noted that under some con-
ditions the T1–T2 spectrum cannot be considered to be strictly non-negative [7, 8], and so this condition
cannot always be applied. An effective approach that penalises zero-crossings rather than demanding
non-negativity is described in [9].
The amount of data collected for one measurement can be very large, with typical sizes N1=30–50

and N2=4000–10000. If a grid used for the estimated distribution has 100 × 100 elements, then the
matrix K could have 5× 109 elements, which at present is far too many for practical computation.
The two most successful methods of solving these problems of ill-conditioning and data size are the

data compression approach of [10] and the interior point method of [11]. Both of these use singular
value decompositions of the matrices K1 and K2, although the SVDs are used in very different ways.
The fact that the SVD is such a general factorisation obscures the differences between the ways that the
SVD is used in these methods.
In the remainder of this paper we demonstrate that less general matrix factorisations than the SVD

can be used for each of these methods. In doing so we highlight the differences between the two ap-
proaches. These matrix factorisations have not been previously applied to the NMR inversion problem.

2. Data Compression

2.1 Outline of the method

The SVD ofK1 andK2 are given byK1 = U1Σ1V
T
1 andK2 = U2Σ2V

T
2 respectively. Since the kernels

k1 and k2 are smooth, the singular values decay very rapidly, and can be truncated at r1 and r2 non-zero
values respectively, and hence obtain approximations U1 ∈ RN1×r1 , Σ1 ∈ Rr1×r1 , V1 ∈ RG1×r1 .
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The columns of U1 are an orthonormal basis for the column space of K1, and hence P1 = U1U
T
1

forms a projection onto this space [e.g., 12]. Analogous expressions hold for the decomposition of K2.
The projection of the data Z onto the column space ofK1 andK2 is given by U1U

T
1 ZU2U

T
2 , and the data

can thus be compressed with little loss of information by considering the matrix Z̃ = UT
1 ZU2 ∈ Rr1×r2 .

K1 is clearly unchanged by projection P1, and so by considering the squared Frobenius norm of
P1(Z −K1S) as the sum of the squared vector norms of each of its columns, it follows that

?P1(Z −K1S)?2F = ?Z −K1S?2F − ?Z?2F + ?P1Z?2F (6)

A similar result holds for the projection P2 = U2U
T
2 , and hence

?Z −K1SK
T
2 ?2F =?P1(Z −K1SK

T
2 )P2?2F + ?Z?2F − ?P1ZP2?2F

The above expression is inexact when a truncated SVD is used, but the rapid decay in singular values
means the approximation is very accurate with only a few singular values. Since U1 and U2 have or-
thonormal columns, it follows that UT

1 P1(Z − K1SK
T
2 )P2U2 = UT

1 (Z − K1SK
T
2 )U2 has the same

Frobenius norm as P1(Z −K1SK
T
2 )P2, and so

argmin
S≥0

?Z −K1SK
T
2 ?2F = argmin

S≥0
?Z̃ − K̃1SK̃

T
2 ?2F (7)

where K̃1 = Σ1V
T
1 and K̃2 = Σ2V

T
2 . The truncation of singular values drastically reduces the number

of rows in K̃1 and K̃2 compared toK1 andK2 (to r1 and r2 respectively), so the number of elements of
the Kronecker product K̃ = K̃2 ⊗ K̃1 is few enough for computation to be feasible. If we form a vector
of the compressed data z̃ = vec(Z̃), then the problem can be expressed as

min
s≥0

?z̃ − K̃s?2 + αR(s) (8)

This problem can then solved using the BRD method of [13], which can be interpreted as solving
the Legendre-Fenchel dual problem [5, App. A]. For the regularisation R(s) = sT s, this involves
minimisation via Newton’s method of the function

χ(c) =
1

2
cT [G(c) + αI ] c− cT z̃ (9)

where

G(c) = K̃DK̃T (10)

where D = Diag(u(K̃T c)), c = (z̃ − K̃s)/α and u() is the Heaviside function. The Diag() operator
constructs a diagonal matrix from the vector which is its argument. The application of Newton’s method
to this problem requires the solution of equations of the form

∆c = c− (G(c) + αI)−1z̃ (11)

Further details of the method, and the selection of the regularisation parameter α are important but
do not concern us here.

This method is in effect using both the truncated SVD and the Tikhonov regularisation approaches,
although the SVD truncation is only applied to the point that it does not significantly change the results.
Thus it is the Tikhonov regularisation that is primarily responsible for dealing with the ill-posed nature
of the problem, while the SVD truncation is responsible for reducing the problem size.
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Figure 1: Typical decay of diagonal values of the various matrix decompositions.

2.2 Alternative Matrix Factorisation

A more simple matrix factorisation than the SVD is the QR decomposition, K = QR, where Q is a
matrix of orthonormal columns and R is an upper triangular matrix. The diagonal elements of R are
not guaranteed to be in decreasing order, although the rapid decrease in the values of the kernels k1
and k2 means that in practice the diagonal elements do decay rapidly. Rank-revealing forms of the
QR factorisation (RRQR) include column pivoting or other means to obtain K = QRET where E
is a permutation matrix. This improves the numerical stability of the factorisation process and can be
arranged to guarantee that the diagonal elements of R are in decreasing order.

We can use this rapid decay to truncate the number of columns ofQ1 andQ2, and the number of rows
of R1, R2 (whereK1 = Q1R1E

T
1 andK2 = Q2R2E

T
2 ). Then if we set Z̃ = RT

1 ZR2, K̃1 = R1E
T
1 and

K̃2 = R2E
T
2 , we obtain data compression in an similar way to that obtained using SVD. Note that if the

number of rows ofK exceeds the number of columns, then a form of the factorisation should be used in
which Q rather than R is of the same size as K .

Numerical computation of the SVD is typically begun using the QR factorisation. In theory, omis-
sion of the later stages means that the result obtained using the truncated QR is not guaranteed to the
closest approximation to K that can be obtained with a limited rank matrix. In practice however, the
rate of decay of the diagonal elements of R is very similar to the rate of decay of the singular values
of K , as shown in Fig. 1. Rank-revealing forms of the QR are designed to deal with reliably detecting
when singular values reach the limit of machine precision, and perform this task very reliably [14]. The
data compression and final results obtained using the QR factorisation are very similar to those obtained
using the SVD. If the matrix K is square or nearly square, the large number of zeros it contains using
the QR approach can speed up operation of the BRD algorithm, but usually this is not the case.

For typical sizes of K1 and K2, QR factorisation is faster than SVD decomposition by a factor of
about 8 and 1.2 respectively, although the effect of this on the total processing time is small, as the
factorisation time is only a small part of this total.

In summary: the important requirement of a matrix factorisation for the data compression approach
is that it provide a low rank approximation to the matricesK1 andK2. The QR algorithm is an effective
choice for this task, and is simpler and faster than the SVD.

3. Interior Point Methods

3.1 Outline of the method

In this section we follow standard convex optimisation theory (as presented in [15] for example) to the
problem (5) with the constraint that s ≥ 0. Both primal-dual and barrier methods are derived.
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To solve the constrained problem

min
s≥0

?z −Ks?2 + sTRs (12)

we can write the Lagrangian as

L(s, λ) = ?z −Ks?2 + sTRs− λT s (13)

where λ is a vector of non-negative Lagrange multipliers.
At optimality we must have

∂L

∂s
= 2KTKs− 2KT z + 2αRs− λ = 0 (14)

and Λs = 0 where Λ = Diag(λ). To obtain an iterative algorithm, the duality condition Λs = 0
is relaxed to λisi = µ, where µ a parameter which is reduced after each iteration to enforce duality
gradually. For a given value of µ, Newton’s method can be applied, each step of which requires solving

?
2KTK + 2αR −I

Λ Diag(s)

? ?
∆s
∆λ

?
=

?
λ− 2KTKs+ 2KT z − 2αRs

µ− Λs

?
(15)

for ∆s and ∆λ. We can eliminate ∆λ to obtain

(2KTK+2αR +Diag(s)−1Λ)∆s = −2KTKs+ 2KT z − 2αRs+ µ(1/s) (16)

Following a derivation which is only slightly different from that shown above for the primal-dual
method, we can obtain an iteration in which non-negativity is instead enforced by adding a logarithmic
barrier function scaled by 1/t [15]:

(2KTK+2αR +Diag(s)−2/t)∆s = −2KTKs+ 2KT z − 2αRs+ (1/ts) (17)

The barrier method does not appear to have been previously applied to this problem.
For both the primal-dual method, and the barrier method, a simple backtracking algorithm, as de-

scribed in [15] can be used to ensure that non-negativity is retained at each Newton iteration.
An important observation to make at this point is that the matrix K only occurs in (16) in the forms

KT z, KTKs and KTK . Both KT z = vec(KT
1 ZK2) and KTKs = vec(KT

1 K1SK
T
2 K2) are readily

calculated. The matrix H ? KTK = (KT
2 K2) ⊗ (KT

1 K1) typically has of the order of 100 million
elements, and so it is very much smaller thanK , which typically has of the order of 1–10 billion elements,
and so in this form the problem is feasible without truncation on ordinary desktop computers.
However, the computation can be considerably further reduced by using the approach of [5]. Using

the same TSVD as in Section 2.1, withKTK ≈ Ṽ Σ2Ṽ T , and applying the matrix inversion lemma, the
inverse of the matrix on the left of (16) is given by

P = A− AṼ ((2Σ2)−1 +M )−1Ṽ TA (18)

where A = (2αR+Diag(s)Λ)−1 andM = Ṽ TAṼ . The truncation of the SVD means that P is not the
exact inverse required, but is certainly accurate enough to provide an effective preconditioner for solving
(16) or (17) using the preconditioned conjugate gradient (PCG) method [16]. With the exception of the
preconditioner (18), all of the calculations of the PCG algorithm can be efficiently calculated using the
exact but factored forms of K1 and K2, rather than K = K2 ⊗K1. M can be calculated using [5]

Mij =
1

α

G1?

f=1

G2?

g=1

Sfg(Ṽ1)fa(Ṽ2)gb(Ṽ1)fb(Ṽ2)gd (19)

where (a, b) and (c, d) are row and column indices corresponding to the linear indices i and j respectively.
This results in a very efficient algorithm.
Note that for large values of α, the interior point methods may not converge reliably. This difficulty

can be overcome to some extent by commencing the algorithm with a small value of α, which is gradually
increased towards the target value as the iterations progress. For the results in Section 4. this approach
was used whenever the value of α was greater than 10−3.

© 2014, Paul D. Teal 
diffusion-fundamentals.org 22 (2014) 11, pp 1-9

5



3.2 Alternative Matrix Factorisations

The interior-point method makes no use of the unitary matrices U1 and U2, and it is apparent that the re-
quired factorisations are the eigendecomposition ofKT

1 K1 andKT
2 K2. The factors that can be obtained

using the eigen-decomposition KTK = V DV T are functionally identical to those obtained using the
SVD ofK , but are generally calculated much more rapidly (about 12 times faster for typical sizes ofK2,
but 3 times slower for typical sizes of K1).

As for the data compression method, the QR factorisation can be used instead of the SVD: if Ki =
QRET , then KT

i Ki = ERTQTQRET = ERTRET . If we define D = Diag(diag(RRT )) and
V = ERTD−1/2, we can obtain KT

i Ki = V DV T which can be truncated and used in an identical way
to the eigendecomposition. If the matrixK1 orK2 has more columns than rows this is a suitable method
because KT

i Ki is actually rank deficient, rather than being only numerically ill conditioned, and this is
accurately reflected in the sizes of D and V .

If K1 or K2 has more rows than columns, it is more computationally efficient to perform a fac-
torisation of the square matrix KT

i Ki, rather than of the matrix Ki itself. A suitable choice besides
eigendecomposition is the LDL decomposition. The LDL can be performed using diagonal pivoting,
resulting in KT

i Ki = ELDLTET where D is a block diagonal matrix with blocks of size 1 or 2, L
is lower triangular, and E is a permutation matrix. This is also known as the Bunch-Kaufman-Parlett
factorisation [17] or Cholesky LDLt decomposition. The productsKT

i Ki are positive semi-definite, and
so any blocks inD of size 2 only occur as a result of numerical imprecision, and can be removed. As for
the QR factorisation, the pivoting, leads to very rapid decay of the elements of D. Usually the diagonal
elements of L are all equal to 1, but the rate of decay of D can be enhanced by instead scaling the
columns of L to have unit norm. For typical sizes of K1 and K2, this factorisation is about 3 and 20
times faster respectively than using the SVD .

In summary: the important requirement of a matrix factorisation for interior point methods is that of
providing a computationally efficient approximate inverse ofKT

1 K1 andKT
2 K2 for the purpose of creat-

ing a preconditioner for the PCG algorithm. An effective choice for this task is the LDL decomposition.

4. Results

The primary purpose of this paper is to contrast the data compression and interior point approaches
in terms of their use of matrix factorisations. However, this section will additionally demonstrate the
effectiveness of the alternative matrix factorisations proposed, and compare the performance of the algo-
rithms.

All three of the algorithms discussed in this paper produce visually identical recovered relaxation
distributions (except as noted below). Hence we do not present figures of these distributions. However,
we are interested in the relative speed of the various algorithms, and hence compare their speeds using
plots of the objective function (5) versus computation time for small and large values of α.

The exact objective function can be efficiently calculated without truncation using the matrix trace
operation as

tr
?
ZZT

?
− 2 tr

?
STKT

1 ZK2

?
+ tr

?
STKT

1 K1SK
T
2 K2

?
+ α?S?2F (20)

some components of which can be precomputed. None of the algorithms explicitly require calculation of
the objective function, and so the time required to do so is not included in the computation times shown.

The data used as input to the algorithms consisted of N1 = 50 values of τ1 logarithmically spaced
on [10−4, 10] seconds by N2 = 10000 values of τ2 linearly spaced on [3.5 × 10−4, 3.5] seconds. This
was synthesised from a distribution consisting of various geometrical shapes on a logarithmically spaced
grid of G1 = 100 values on [10−2, 10] seconds by G2 = 101 values on [10−2, 10] seconds.

In every case where matrix factorisation was required, the QR was used for the BRD algorithms, and
LDL for the interior point methods. For the BRD method, the factorisation truncation threshold was set
to 10−4.
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Figure 2: Comparison of the convergence of the algorithms for various values of the regularisation control parameter
α.

For the barrier method, the multiplier of the logarithmic barrier function was chosen to be initially
10−3, and was increased by a factor of 4 whenever the proportional decrease in objective function plus
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barrier function was less than 10−5.

The results are presented in Fig. 2 for a computer having a CPU clock speed of 2.83GHz. Although
the QR decomposition is faster than the SVD, the LDL is faster still, and this explains the difference in
the timing of the first iteration of each of the methods. Note that the convergence rate of the methods
shown is practically indistinguishable from when the SVD is used. The only difference is that the traces
shown start later (shift to the right) when the SVD is used. For this particular example on the computer
used, using the SVD results in all three curves starting at about 0.6 second.

Most of the methods were found to fail (not converge on useful results) occasionally. This was
more likely to occur with the BRD based methods for small values of α and more likely to occur for
the primal-dual method for very large values of α. The results shown in Fig. 2 are typical in this re-
spect. The possibility of failure highlights the importance of care in interpretation of the results of these
experiments.

For small values of α, the barrier method is the fastest and most reliable. For large values of α, the
compression-BRD method is the fastest, and the barrier method does not obtain as low a value of the
objective function as the compression-BRDmethod. For values of α larger than about 102 this difference
becomes visually significant in the resulting relaxation distribution.

5. Conclusions

In this paper we have demonstrated the use of different matrix factorisations for the estimation of NMR
relaxation distributions.

The fact that both the data compression method has required a TSVD, and the interior-point method
can be accelerated using a TSVD gives the superficial appearance of resemblance between the methods.
The methods are in fact very different. One important contrast is the matrix which is inverted at each
stage of these algorithms. In the case of the data compression method, using BRD, this matrix isG+Ddc
whereDdc is a diagonal matrix andG defined as in (10) byK Diag()KT . In the case of the interior point
methods, the important matrix is H +Dip where Dip is a diagonal matrix and H = KTK . G is of size
r1r2 × r1r2 which decreases with stronger truncation of the SVD. By contrast, the size of H is fixed at
G1G2 ×G1G2 (a closer analogy does exist between the matrices G andM , which does decrease in size
with stronger truncation of the SVD, though G andM also have differences).

Other differences are highlighted by the matrix factorisations that are applicable in each case: for the
BRD method, a QR factorisation is applicable, whereas for interior point methods, LDL factorisation is
the most useful.

The values of the regularisation parameter α for which the methods perform best is also different.
The interior point barrier method is effectively solving the primal problem, whereas the BRD method is
solving a form of dual. The interior point primal-dual method does not appear to excel for any values of
the regularisation parameter.
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