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Biotechnological processes are distinguished

from classical chemistry by employing bio-

molecules or whole cells as the catalytic ele-

ment, providing unique reaction mechanisms

with unsurpassed specificity. Whole cells are

the most versatile ’factories’ for natural or non-

natural products, however, the conversion of

e.g. hydrophobic substrates can quickly become

cytotoxic. One host organism with the potential

to handle such conditions is the gram-negative

bacterium Pseudomonas putida, which distin-

guishes itself by solvent tolerance, metabolic

flexibility, and genetic amenability. However,

whole cell bioconversions are highly complex

processes. A typical bottleneck compared to

classical chemistry is lower yield and repro-

ducibility owing to cell-to-cell variability. The

intention of this work was therefore to char-

acterize a model producer strain of P. putida

KT2440 on the single cell level to identify non-

productive or impaired subpopulations. Flow

cytometry was used in this work to discrimi-

nate subpopulations regarding DNA content or

productivity, and further mass spectrometry or

digital PCR was employed to reveal differences

in protein composition or plasmid copy number.

Remarkably, productivity of the population was

generally bimodally distributed comprising low

and highly producing cells. When these two

subpopulations were analyzed by mass spec-

trometry, only few metabolic changes but fun-

damental differences in stress related proteins

were found. As the source for heterogeneity re-

mained elusive, it was hypothesized that cell

cycle state may be related to production capac-

ity of the cells. However, subpopulations of one,

two, or higher fold DNA content were virtually

identical providing no clear hints for regulatory

differences. On the quest for heterogeneity the

loss of genetic information came into focus. A

new work flow using digital PCR was created to

determine the absolute number of DNA copies

per cell and, finally, lack of expression could be

attributed to loss of plasmid in non-producing

cells. The average plasmid copy number was

shown to be much lower than expected (~1 in-

stead of 10-20). In conclusion, this work estab-

lished techniques for the quantification of pro-

teins and DNA in sorted subpopulations, and by

these means provided a highly detailed picture

of heterogeneity in a microbial population.
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Summary

The chemical industry to date largely depends

on fossil fuels which are further refined by classi-

cal organic chemistry. However, fossil fuels are

a limited resource and the accompanying chem-

ical reactions are energy-intensive and produce

large amounts of waste, questioning overall

sustainability of such processes. In contrast,

biotechnological processes have the potential

to substitute many classical chemical reactions

and were identified as an important part of a

sustainable economy in the future. Biotech-

nological processes stand out by employing

biomolecules or whole cells as the catalytic el-

ement, providing unique reaction mechanisms

with unsurpassed specificity, kinetics and sus-

tainability. Processes based on biomolecules

are generally driven under moderate temper-

ature and pressure, take place in aqueous

medium and produce mainly biodegradable

waste. Whole cells are the most versatile ’facto-

ries’ for natural or non-natural products, how-

ever, the conversion of troublesome substrates

such as higher alcohols, aldehydes or aromat-

ics quickly becomes cytotoxic even at low con-

centrations. One host organism with the po-

tential to handle such conditions is the gram-

negative soil-residing bacterium Pseudomonas

putida (P. putida). Its compared to Escherichia

coli one third larger genome comprises an im-

pressive number of efflux pumps and other

molecular mechanisms to remove deleterious

substances from the cytoplasm. Unique re-

modeling of membrane lipids changing the

membrane rigidity confers further resistance

to solvents. It is equipped with many unusual

catabolic routes leading to high metabolic flex-

ibility, such as degradation of aromatic hydro-

carbons like toluene or benzoate. P. putida is

therefore a particularly suitable host for trouble-

some bioconversions involving hydrophobic sol-

vents. However, whole cell bioconversions are

often complex, not well-understood processes.

Typical bottlenecks compared to classical chem-

istry are lower yield, difficult product purifica-

tion and reduced reproducibility owing to cell-

to-cell variability. The intention of this work

was therefore to characterize a model producer

strain of P. putida KT2440 on the single cell level

to identify non-productive or impaired subpop-

ulations. This strain was modified to produce

a plasmid-encoded fusion protein of the target

enzyme styrene monooxygenase and a variant

of the green fluorescent protein as an optical

reporter.

This enabled the investigation of P. putida on the

single cell level using fluorescence microscopy

and flow cytometry. Especially flow cytometry

is capable of high-throughput analysis of thou-

sands of single cells in a few seconds. Such

optical methods are nevertheless restricted to
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Summary

morphological analyses and it is difficult to ob-

tain exact quantities of specific molecules. To

gain a deeper insight on the molecular level,

high throughput cell sorting was used to sepa-

rate subpopulations, which were further inves-

tigated by label-free protein mass spectrometry.

By this means, up to 1,000 out of 5,350 hypo-

thetical proteins in P. putida could be quantified

easily, providing a snapshot of the cellular pro-

teome. A second downstream technique used

in this work was digital PCR, which is able to

quantify absolute copy numbers of DNA at very

low concentration with high accuracy. It is not

intended for simultaneous detection of many

different molecule species, like it is the case for

mass spectrometry, but for exact quantification

of few specific DNA templates.

First of all, analysis of subpopulations by mass

spectrometry required optimization of sample

processing and storage conditions. It was un-

clear which sample preparation protocol was

best to provide intact cells for sorting with lit-

tle impact on proteome profile during storage.

Three different methods, sodium azide fixation,

deep freezing and vacuum drying were tested

for durations of one week and one month. Deep

freezing and vacuum drying were found to per-

form almost equally well and the former was

used for further experiments. When productiv-

ity of the model P. putida strain was analyzed

using the fluorescent reporter protein, it always

showed a distinct bimodal distribution of low-

producing and high-producing cells. These sub-

populations were sorted and analyzed by pro-

tein mass spectrometry yielding a detailed pic-

ture of the gene expression landscape. Remark-

ably, only few changes were present in primary

and secondary metabolism, but fundamental

differences in stress related proteins. Obvi-

ously, producer cells tried to cope with protein

stress only by ’damage control’ – and no regula-

tory switch for the bimodal behavior was found.

And, as a secondary result, all four plasmid-

encoded proteins were almost absent in non-

producing cells. Another common source of het-

erogeneity is cell cycling. It was hypothesized

that cell cycle state (and consequently DNA

content) are related to production capacity of

cells. To harvest cells with different DNA con-

tent while all other parameters such as growth

rate were kept stable, wild-type P. putida was

grown in a chemostat and again analyzed by

subpopulation proteomics. Interestingly, sub-

populations of one fold, two fold, and higher

DNA content were virtually identical provid-

ing no clear hints for regulatory differences in

particular stages of cell cycling. However, a

second finding was that growth rate tremen-

dously influenced the gene expression program

of P. putida. After transcriptional regulation was

excluded as the reason for bimodality, the loss

of genetic information came into focus. As pre-

vious results pointed towards a fundamental

lack of expression of plasmid-encoded genes, a

new work flow was created to determine the

exact number of plasmid copies per cell. To this

end, sorting of only 1,000 cells was combined

with highly accurate digital PCR, which is the-

oretically able to detect a single DNA copy per

reaction. And indeed, the average plasmid copy

number was shown to be much lower than ex-

pected (~1 instead of 10-20 for ’medium’ copy

number). Plasmid copy number was highest

(3-5) in producing cells while plasmids were

completely absent in non-producing cells.

In conclusion, this work advanced the meth-
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Summary

ods used for single cell analysis by optimizing

sampling and storage of cells for ’subpopula-

tion proteomics’, a powerful combination of

cell sorting and mass spectrometry. Further-

more, a new platform for cell sorting and digital

PCR was developed to accurately measure ab-

solute copy numbers of DNA. Besides method-

ological advances, it was shown that single-cell

analysis provides a much more detailed picture

of a microbial population in terms of produc-

tivity, cell cycle state or stress level. In par-

ticular, it was demonstrated that the popula-

tion of P. putida KT2440 was clearly divided in

groups of producing and non-producing cells,

and that the ultimate molecular cause for this

heterogeneity was plasmid loss. The producing

cells were furthermore burdened by a consid-

erable amount of stress caused by the heterolo-

gous gene expression. This can in the end con-

fer a growth advantage to the non-producing

plasmid-free subpopulation. In future appli-

cations, this source of heterogeneity might be

eliminated using standardized plasmids with

higher copy number or by engineering stable

integration of target genes into Pseudomonas.

Altogether, these findings would remain hidden

by using standard bulk measurements, where

cell-to-cell differences are averaged. It can nev-

ertheless be expected that the progress in single

cell analysis will unveil further and more deli-

cate layers of microbial heterogeneity.
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Zusammenfassung

Die chemische Industrie ist heutzutage zwin-

gend auf fossile Rohstoffe angewiesen, wel-

che mit klassischen organo-chemischen Prozes-

sen weiterverarbeitet werden. Fossile Rohstof-

fe sind aber eine endliche Ressource und die

zu ihrer Weiterverarbeitung genutzten Prozesse

sind oftmals energieintensiv und verursachen

giftige Abfälle, was die Nachhaltigkeit solcher

Prozesse insgesamt in Frage stellt. Dem gegen-

über stehen biotechnologische Prozesse, wel-

che das Potential haben, viele konventionelle

chemische Reaktionen zu ersetzen und als ein

wichtiger Teil einer zukünftigen nachhaltigen

„Bio-Ökonomie“ gesehen werden. Biotechnolo-

gische Prozesse zeichnen sich aus durch die Ver-

wendung von Biomolekülen oder ganzen Zel-

len als katalytische Elemente, welche eine Fülle

einzigartiger Reaktionsmechanismen mit uner-

reichter Spezifität, Kinetik und Nachhaltigkeit

mit sich bringen. Prozesse auf der Basis biolo-

gischer Katalysatoren spielen sich im Allgemei-

nen unter moderaten Druck- und Temperatur-

verhältnissen in wässrigen Medien ab, und hin-

terlassen vorwiegend biologisch abbaubare Ab-

fallstoffe.

Ganze Zellen gelten als die vielseitigsten „Fa-

briken“ für natürliche und nicht-natürliche Pro-

dukte. Allerdings kann zum Beispiel die Um-

wandlung von höherwertigen Alkoholen, Alde-

hyden oder Aromaten selbst bei geringen Kon-

zentrationen schnell zu zytotoxischen Effekten

führen. Ein Bakterium, welches potentiell bes-

ser mit solchen Bedingungen umgehen kann

ist der gram-negative Bodenbewohner Pseudo-

monas putida (P. putida). Sein verglichen mit

Escherichia coli um ein Drittel größeres Genom

beinhaltet eine beeindruckende Anzahl an Ge-

nen für Efflux-Pumpen und andere molekulare

Mechanismen, um schädliche Stoffe aus dem

Zytoplasma zu entfernen. Der einzigartige Me-

chanismus der Modifikation von Membranlipi-

den verleiht der Zellmembran eine veränderte

Festigkeit und führt zu größerer Lösungsmittel-

toleranz. Es ist außerdem ausgestattet mit et-

lichen ungewöhnlichen katabolischen Wegen

die zu einer hohen metabolischen Flexibilität

führen, zum Beispiel der Nutzung von aromati-

schen Kohlenwasserstoffen wie Toluol oder Ben-

zoesäure. P. putida ist daher ein besonders geeig-

neter Organismus zur Ausführung schwieriger

Biokonversionen, bei denen zum Beispiel hydro-

phobe Lösungsmittel beteiligt sind. Dennoch

sind auch Ganzzell-basierte Bioverfahren kom-

plexe Prozesse und bisher noch unzureichend

verstanden. Typische Engpässe und Einschrän-

kungen verglichen mit herkömmlichen chemi-

schen Verfahren sind eine geringere Ausbeute,

schwierige Aufarbeitung des Produkts und ge-

ringere Reproduzierbarkeit durch interzellulä-

re Variabilität. Das Ziel dieser Arbeit war da-
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Zusammenfassung

her, den Modellorganismus P. putida KT2440

auf der Ebene der einzelnen Zelle zu charakteri-

sieren, um schlecht produzierende oder geschä-

digte Subpopulationen während eines Produkti-

onsprozesses zu identifizieren. Dafür wurde ein

Stamm verwendet, der ein Plasmid-kodiertes

Fusionsprotein herstellt, welches aus dem En-

zym Styrol-Monooxygenase und einem grün

fluoreszierenden Protein als optischer Markie-

rung besteht.

Diese Vorgehensweise erlaubte die Unter-

suchung von P. putida auf der Einzelzell-

Ebene mittels Fluoreszenz-Mikroskopie und

Durchfluss-Zytometrie. Besonders Letztere ist

als Hochdurchsatz-Technik in der Lage, tausen-

de einzelne Zellen in wenigen Sekunden zu

vermessen. Derartige optische Verfahren sind

aber begrenzt auf rein morphologische Analy-

sen und es ist schwierig, absolute Mengen be-

stimmter Moleküle nachzuweisen. Um dennoch

einen tieferen Einblick auf der molekularen

Ebene zu bekommen, wurde Hochdurchsatz-

Zellsortierung eingesetzt, um Zellen verschie-

dener Subpopulationen zu isolieren. Diese wur-

den weitergehend mittels markierungsfreier

Protein-Massenspektrometrie (MS) analysiert.

Mit dieser Technik konnten bis zu 1000 von ins-

gesamt 5350 hypothetischen Proteinen in P. pu-

tida quantifiziert werden, und damit eine de-

taillierte Momentaufnahme des zellulären Pro-

teoms erhalten werden. Eine zweite nachge-

schaltete Technik, die im Rahmen dieser Ar-

beit eingesetzt wurde, war digitale Polymerase-

Kettenreaktion (digitale PCR). Diese neuarti-

ge Technik erlaubt die absolute Quantifizierung

von in geringsten Kopienzahlen vorhandenen

DNA-Molekülen mit hoher Genauigkeit. Im Ge-

gensatz zur MS, die eine hohe Anzahl verschie-

dener Proteine parallel nachweisen kann, ist di-

gitale PCR für die exakte Quantifizierung weni-

ger bestimmter Moleküle vorgesehen. Zunächst

einmal erforderte die Analyse von Subpopu-

lationen mittels MS eine gründliche Optimie-

rung der Probenahme und -Lagerung. Es war

bisher unklar, welches Probenahme-Protokoll

die besten Ergebnisse liefern könnte im Hin-

blick auf Intaktheit der Zellen für die Sortie-

rung bei gleichzeitig geringem Einfluss auf das

Proteom-Profil. Dafür wurden drei gänzlich ver-

schiedene Methoden für eine Lagerungsdau-

er von einer Woche und einem Monat getes-

tet: Natriumazid-Fixierung, Tiefkühlung, und

Vakuumtrocknung. Tiefkühlung und Vakuum-

trockung erzielten letztendlich die besten Er-

gebnisse und erstere Methode wurde für alle

weiteren Experimente benutzt. In den folgen-

den Versuchen wurde die Produktivität des Mo-

dellstammes P. putida mit Hilfe des grün fluo-

reszierenden Proteins untersucht, und es wurde

eine interessante bimodale Aufteilung in stark-

produzierende und wenig-produzierende Zel-

len festgestellt. Um die Ursache für diese Hete-

rogenität zu finden wurden beide Subpopula-

tionen sortiert und mittels MS analysiert. Dies

ergab einen detaillierten Einblick in die gesam-

te Genexpression der Zellen. Bemerkenswer-

terweise wurden nur wenige Unterschiede im

primären und sekundären Stoffwechsel gefun-

den, während vor allem stressassoziierte Pro-

teine stark reguliert waren. Offensichtlich ver-

suchten die Produzenten, dem durch übermä-

ßige Proteinproduktion enstandenen Stress nur

durch Schadensbegrenzung zu begegnen, wäh-

rend weder eine Umlenkung von Kohlenstoff-

flüssen noch Anzeichen für einen regulatori-

schen Schalter gefunden wurde, der die Un-
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Zusammenfassung

terschiede in der Produktivität erklärt hätte.

Einen Hinweis lieferte nur die Tatsache, dass

alle vier Plasmid-kodierten Proteine in nicht-

produzierenden Zellen insgesamt kaum vorhan-

den waren. Eine weitere Quelle von Heteroge-

nität ist der Ablauf des Zellzyklus. Es wurde

angenommen, dass auch der Zellzyklus (und

damit der DNA-Gehalt) einen Einfluss auf die

Produktionskapazität der Zellen hat. Um Zel-

len verschiedenen DNA-Gehalts bei gleichzeiti-

ger Konstanz aller anderen Parameter wie z. B.

Wachstumsrate zu erhalten, wurde ein Wildtyp-

Stamm von P. putida in Chemostaten kultiviert

und die Subpopulationen wiederum mittels

MS analysiert. Interessanterweise konnte kein

wesentlicher Unterschied zwischen Zellen mit

einfachem, zweifachem, oder höherem DNA-

Gehalt festgestellt werden, und damit auch kein

klarer Hinweis auf regulatorische „Programme“

während des Zellzyklus. Allerdings wurde eine

Veränderung der Wachstumsrate als Schlüsse-

lereignis für das Genexpressionsmuster der Zel-

len erkannt. Nachdem transkriptionelle Regu-

lation weitestgehend als Ursache für Bimodali-

tät ausgeschlossen werden konnte, rückte der

Verlust genetischer Information in den Fokus.

Vorangegangene Ergebnisse zeigten einen Man-

gel plasmidkodierter Proteine in Nichtprodu-

zenten, daher wurde ein Workflow entwickelt,

um die exakte Plasmidkopienzahl pro Zelle zu

bestimmen. Dafür wurde die übliche Sortierung

auf nur 1000 Zellen herunterskaliert und die-

se mittels neuartiger digitaler PCR kombiniert,

welche theoretisch in der Lage ist, einzelne

DNA-Moleküle in einer Standard-PCR-Reaktion

zu detektieren. Und tatsächlich war die durch-

schnittliche Plasmidkopienzahl wesentlich ge-

ringer als erwartet (~1 statt 10-20 bei „mittler-

er“ Kopienzahl). Die Kopienzahl war außerdem

deutlich höher in produzierenden Zellen (3-5),

während nicht-produzierende Zellen praktisch

plasmidfrei waren.

Insgesamt konnte diese Arbeit wesentlich zum

methodischen Fortschritt der „Subpopulations-

Proteomik“ beitragen, indem Probenahme und

-Lagerung von ganzen Zellen optimiert wur-

den. Zudem wurde eine neue Plattform für die

Sortierung kleinster Zellzahlen und anschlie-

ßender Bestimmung der DNA-Kopienzahl mit-

tels digitaler PCR etabliert. Abgesehen von me-

thodischen Verbesserungen konnte gezeigt wer-

den, dass mit Einzelzellanalyse ein wesentlich

detaillierteres Bild einer mikrobiellen Popula-

tion erhalten werden kann, was z. B. Produk-

tivität, Zellzyklus-Stadium oder Stresslevel an-

geht. Im Besonderen zeigte die Population von

P. putida KT2440 eine klare Zweiteilung in

produzierende und nicht-produzierende Zellen,

die letztendlich auf Plasmidverlust zurückge-

führt werden konnte. Heterologe Genexpres-

sion führte außerdem zu beachtlichem Stress

in produzierenden Zellen und verleiht nicht-

produzierenden auf Dauer einen Wachstums-

vorteil. In zukünftigen Anwendungen kann die-

se Art genetischer Heterogenität zum Beispiel

durch Verwendung standardisierter Plasmide

mit höherer Kopienzahl oder stabilen genomi-

schen Integrationen ausgeschlossen werden.

All diese Erkenntnisse wären verborgen geblie-

ben durch übliche, auf der Populationsebene

durchgeführte Messungen, die alle Unterschie-

de zwischen einzelnen Zellen verwischen. Es

ist außerdem zu erwarten, dass weitere tech-

nische Sprünge in der Einzelzellanalytik einen

noch reicheren Fundus an mikrobieller Hetero-

genität freilegen werden.
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1 Introduction

1.1 Biotechnology for a new economy

Until today, the overwhelming majority of industrial processes for the synthesis of chemicals is

based on petrochemistry. However, natural fossil resources such as crude oil are getting more

and more scarce and the extensive use of oil-based products has led to severe pollution of the

environment. In the past years, biotechnology has made great promises as an alternative to

chemical synthesis, aiming at the replacement of energy-intensive and non-sustainable processes

by biotransformation (Figure 1.1). Such processes are distinct from traditional chemical syn-

thesis by a number of features. Bioprocesses are driven by whole cells or cellular biomolecules

such as enzymes or ribozymes. These catalysts are self-replicating, inexpensive, non-toxic and

biodegradable. This is opposed to chemical catalysts, which often comprise rare and expensive

elements such as platinum. Furthermore, enzymatic reactions usually take place at moderate

temperature and pressure, and are highly specific for their substrate. Due to the unique reaction

mechanisms, the enantiomeric selectivity can be up to 100 %.

However, many issues still prevent a major breakthrough of biotechnological processes. The most

important drawback is the complexity of whole cells or biomolecules, reducing the predictability

and reproducibility of bioprocesses. In case of whole cells, the genome ususally encodes at least

several hundred different proteins per cell (Tsoy et al., 2013), which interact in a highly complex

way to keep the cellular homeostasis. And even purified catalytic biomolecules such as enzymes

are in turn composed of many different amino acids, contributing to a flexible and sometimes

delicate conformation. Changes in protein conformation can lead to reduced or altered reactivity.

In addition, biomolecules are rapidly degraded under harsh environmental conditions such as

extreme pH, temperatures or reactive chemicals, which is not the case for elemental catalysts.

1.2 Whole cells as biocatalysts

Traditionally, microbial cells have been used as biocatalysts for hundreds of years in human history.

Famous examples are Saccharomyces yeasts for brewing beer or fermentation of other alcoholic

beverages, lactic acid bacteria for fermentation of dairy products, or microbial consortia for
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1.2. Whole cells as biocatalysts

Figure 1.1: Scheme of the ’bio-economy’, a concept of sustainable product manufacturing based
on renewable resources and biocatalytic processes. Figure is reproduced from Biobased-Industries-
Consortium (2015).

preparation of sour dough. These processes utilize naturally available carbon and energy sources

to yield alcohols or organic acids as useful by-products of the microbial metabolism. However,

much more challenging are whole cell-driven bioprocesses where non-natural or even toxic

substances are the desired reaction substrate or product. Many microbial species were already

found to naturally metabolize otherwise toxic compounds by using these as a carbon or energy

source, although in small quantities. Among these substrates are n-alkanes (Smits et al., 1999)

as well as aromatic hydrocarbons like toluene, benzoate or styrene (Panke et al., 1998; Udaondo

et al., 2012) or even antibiotics (Lin et al., 2015). However, although the bioconversion of small

amounts of these compounds by microbial cells can be implemented easily, a biotechnological

process requires many more fulfilled conditions to be feasible and cost-efficient:

• High yield

• High productivity (volumetric or time-dependent)

• Growth on cheap/widely available carbon source

• Growth on complex substrates (e.g. 2nd generation biomass)

• Tolerance for reaction substrate and product

• Easy downstream processing

• Stability and re-use of the catalytic unit

• General process stability and reproducibility
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1.3. Engineering microbial ’cell factories’

1.3 Engineering microbial ’cell factories’

1.3.1 Optimizing recombinant gene expression

The aforementioned requirements can be seen as guide lines for the construction of microbial ’cell

factories’, cells that have been deliberately and systematically engineered for a specific purpose.

In the past decades a range of different organisms and strains turned out to be suitable hosts for

different tasks. Traditionally, Escherichia coli (E. coli) has been the workhorse for the production

of all kinds of proteins, or the subsequent enzymatic conversion of a biochemical compound.

This is owing to the important historical role E. coli has played as a model organism in molecular

genetics, contributing heavily to the understanding of gene structure and regulation, or the fun-

damental processes of transcription and translation (Cooper, 2000). Moreover, it was one of the

first organisms having a fully sequenced genome made publicly available in 1997 (Blattner et al.,

1997), enabling researchers to target specific genes for knockout, modification or over-expression.

For long time, researchers and companies have resorted to E. coli as a production host by optimiz-

ing parameters such as cultivation media, expression strains, vectors and growth conditions using

a trial and error approach (Makino et al., 2011). Meanwhile, ever-growing knowledge paved

the way for further improvements of bioprocesses. Examples are codon-optimization where the

amino acid encoding base pair triplets are exchanged for ones heavily used by the host organ-

ism, or the co-expression of so called ’chaperones’, proteins assisting and governing polypeptide

maturation (Makino et al., 2011).

1.3.2 Systems biology and synthetic biology

More recently, the advance of bioinformatics opened the new field of ’synthetic biology’. According

to a definition by Serrano (2007) synthetic biology is the rational design and implementation

of new-to-nature functions in biological systems. Key characteristics are the adaptation of an

’engineering perspective’, standardization and modularization of implemented functions to allow

recombination and re-use, and the broad use of bioinformatics for rational design. Synthetic

biology is closely related to ’systems biology’, meaning the analysis of complete biological systems

instead of an isolated perspective on single genes or proteins, but synthetic biology strongly

emphasizes the design of novel functions (Serrano, 2007). A major breakthrough for synthetic

biology, besides the rapid advances in bioinformatics, was the opening of a new molecular biology

toolbox for deleting, modifying or adding new genes in microbes. These new tools broadly cover

different aspects of molecular biology, such as in vitro modification of DNA (facilitated cloning,

gene synthesis), in vivo modification of genomic DNA (genome editing), or techniques for efficient

screening of clone libraries. Seamless cloning, for instance, is a technique obviating the need for

traditional restriction and ligation steps. It is based on PCR amplification of all required DNA
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1.3. Engineering microbial ’cell factories’

fragments followed by direct assembly in one tube without repetitive cloning steps (Gibson et al.,

2009). This technique was used for the complete assembly of an in vitro synthesized genome of

Mycoplasma mycoides, representing the first cell controlled by a fully artificial genome (Gibson

et al., 2010).

1.3.3 Genetic engineering of Pseudomonas putida

Other techniques were developed to implement the genes for novel metabolic pathways into the

microbial genome. Originally, genome modification was restricted to non-targeted methods such

as successive rounds of mutagenesis by chemical treatment or UV ray and selection for desired

mutants. Meanwhile, alternative techniques allow a much more targeted approach to modify

the genome. By employing recombination systems, which can be found in many organism from

bacteriophages to eukaryotes, it is possible to introduce a DNA sequence of choice at a desired

locus in the genome. To this end, the prepared template DNA must be equipped with sequences

homologous to the integration site at both termini and will integrate upon co-expression of a

recombinase, as first demonstrated in E. coli (Datsenko & Wanner, 2000). After integration and

selection, antibiotic resistance genes can be removed from the genome by another round of

recombination, e.g. based on FLP recombinase targeting specific frt recognition sites. This way,

a complete library of around 4,000 single-gene knockout strains of E. coli was created termed

the ’Keio collection’ (Baba et al., 2006).

An interesting host for biotechnology is the soil bacterium Pseudomonas putida (P. putida). Besides

its metabolic versatility (section 1.4.1), genetic engineering to e.g. introduce new genes and

pathways is straightforward in P. putida. The Tn5-derived mini-transposon system is the method

of choice for genomic DNA integration and was for years successfully applied for repetitive

insertions of DNA into the same cell (de Lorenzo et al., 1998; Poblete-Castro et al., 2012). A

major step was made recently by introducing a new genome editing method, allowing the in

situ insertion or deletion of long DNA sequences Martínez-García & de Lorenzo (2011, 2012).

It is a two-step process with the first step being the integration of a suicide vector into the host

genome via two flanking homologous sequences; The original genomic DNA residing between

the two flanks is removed. In a second step, the restriction enzyme I-Sce1 specifically cuts the

inserted vector DNA. The DNA break will be repaired by the cellular recombination machinery

fusing the open ends and eventually removing the original vector DNA. These recombination-

based systems have the great advantage of not leaving an antibiotic marker in the genome. This

allows the recycling of one and the same antibiotic resistance in multiple sequential deletions.

As an example, Martínez-García & de Lorenzo (2011) used I-Sce1 recombination to eradicate the

large operons ttgABC and mexEF/oprN responsible for pumping out antibiotics, and suspected

prophage regions of up to 40 kbp length.
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1.4. Pseudomonas as microbial cell factory

1.3.4 Standardization of biological ’parts’

The tailoring of microbes demands not only the precise deletion of DNA but also the insertion of

external DNA encoding novel functions, such as gene expression cassettes, regulatory networks

or whole metabolic pathways. New constructs are constantly assembled by scientists and tested

in various organisms, however, many of them are often not transferable from one expression

host to another due to the lack of standardization (Serrano, 2007). To overcome this limitation,

MIT-based researchers developed a standardization guideline (Knight, 2003) and launched a pub-

lic repository called the ’Registry of Standard Biological Parts’ (http://parts.igem.org), together

with an international contest on genetically engineered machines (iGEM). These parts called

’BioBricks’ comprise basic genetic elements such as promoters, terminators or reporter genes or

more complex assemblies thereof. By these means highly elaborate modules were assembled,

such as E. coli strains with a scent of banana (IGEM, 2006), an engineered surface adherence by

introduction of a synthetic curli operon (Drogue et al., 2012), or a Pavlovian conditioning circuit

(Zhang et al., 2014).

A similar rationale is behind the foundation of the Standard European Vector Architecture (SEVA)

providing many parts for Pseudomonas (Silva-Rocha et al., 2013). The SEVA principle is to

construct, collect and openly distribute plasmids with a particular standardized structure. SEVA

plasmids feature three major elements with different options for each to choose. These are an

antibiotic resistance cassette, the replication origin, and a custom cargo site. All parts except

the cargo are predefined allowing standardized cloning strategies, easy subcloning and better

comparability in experiments.

1.4 Pseudomonas as microbial cell factory

1.4.1 Advantages of Pseudomonas putida

Pseudomonas putida is a ubiquitous gram-negative soil resident but also an interesting host for

biotechnology. It is generally recognized as safe as it shares only 85 % sequence similarity with

its famous human-pathogenic counterpart, Pseudomonas aeruginosa, and is known to lack typical

virulence factors for host invasion (Nelson et al., 2002). This is most likely owing to its different

lifestyle as a rhyzosphere inhabitant rather than human parasite. P. putida is well-known for the

degradation of otherwise toxic, ecologically harmful and resilient chemicals, especially aromatic

hydrocarbons. Among those compounds are toluene (Díaz et al., 2008), benzoate and xylene

(Martínez-García & de Lorenzo, 2012). Interestingly, many genes with degradative purpose are

encoded on plasmids such as the TOL plasmid (’pWW0’ in P. putida), carrying the operon for

toluene and xylene degradation (Williams & Murray, 1974; Greated et al., 2002). Not taking
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plasmids into account, the genome of the widely used model strain P. putida KT2440 contains

5,350 genes on 6.2 Mbp DNA, considerably more than e.g. E. coli with 4377 genes on 4.6

Mb (pseudomonas.com, Winsor et al. (2011)). Many of P. putida’s genes encode transporters

(or parts of them), e.g. for exporting cytotoxic ions or for importing a large variety of sugars,

amino acids or aromatic compounds as carbon sources. Altogether, 26 transporters for ions

(chromium, arsenic, zinc and cobalt amongst others) were identified in silico, 13 transporters

for carboxylated and aromatic coumpounds, and at least 12 efflux pumps for drugs or unknown

chemicals (Nelson et al., 2002). In the microbial world P. putida possesses more transporters

for aromatics than any other sequenced organism (Nelson et al., 2002). Its metabolic versatility

acquired during evolution (and highlighted in the next section) makes it therefore a promising

host for biotechnology.

1.4.2 Carbon utilization of Pseudomonas putida

Although P. putida is a versatile organism, it is a complex organism as well. Some crucial dif-

ferences to other commonly used host organisms must be noted. In the first place the central

carbon metabolism of P. putida differs to other organisms by its utilization of many different

carbon sources, while glucose is explicitly not the preferred carbon source, but organic acids

such as succinate, malate or citrate (Poblete-Castro et al., 2012). Although P. putida obviously

prefers other carbon sources for hexoses, it still has three pathways to metabolize glucose (Figure

1.2), the Embden-Meyerhoff-Parnas pathway (EMP, ’glycolysis’), the Entner-Douderoff pathway

(ED) and the pentose phosphate pathway (PPP) (Poblete-Castro et al., 2012). Distinct from

most other bacteria P. putida channels 96 % of glucose through the ED pathway and cannot use

glycolysis, due to the lack of phosphofructokinase (pfk, Figure 1.2) (Chavarría et al., 2012). The

PPP pathway is mainly used for anabolic reactions providing building blocks for cell maintenance.

If not for glucose, what other carbon sources are suitable for Pseudomonas? Naturally not being

able to grow on C5 sugars, efforts were successful to engineer P. putida S12 for growth on the

C5 sugars xylose and arabinose by heterologous expression of the respective genes from E. coli

and Caulobacter crescentus (Meijnen et al., 2008, 2009). An interesting feedstock which can be

metabolized by P. putida is the C3 sugar alcohol glycerol as it is a common by-product in the

biodiesel industry (Poblete-Castro et al., 2012). It has been used as sole carbon source for the lab

scale production of such diverse chemicals as medium chain length PHA or geranic acid (Figure

1.3, Poblete-Castro et al. (2014); Mi et al. (2014)). However, organic acids directly fueling the

TCA are the preferred carbon source of P. putida, which corresponds well to its lifestyle as a soil

bacterium (Nelson et al., 2002). In soil, metabolic intermediates like organic acids are thought to

be more common than sugars. Other atypical organic acids that can be metabolized are butyrate

(Cerrone et al., 2014) or benzoate (Mandalakis et al., 2013).
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1.4. Pseudomonas as microbial cell factory

Figure 1.2: The central carbon metabolism of Pseudomonas putida is displayed as divided into an
upper and lower part. The upper part includes uptake of substrates such as fructose or glucose
and metabolization via three different pathways, the Embden-Meyerhoff-Parnas pathway (EMP
or ’glycolysis’), the Entner-Douderoff pathway (ED) and the pentose phosphate pathway (PPP).
Note that the phosphofructokinase (Pfk, red) required for glycolytic comsumption of glucose is not
functional in P. putida. Yellow, pyruvate shunt. Grey, tricarboxylic acid cycle. Figure is modified from
Chavarría et al. (2012).

13



1.4. Pseudomonas as microbial cell factory

Figure 1.3: Applications of Pseudomonas putida in industrial biocatalysis. Figure is modified from
Poblete-Castro et al. (2012).

1.4.3 Mechanisms of solvent tolerance in Pseudomonas putida

Pseudomonas putida is an environmental generalist and, as outlined before, has a highly versa-

tile metabolism. Although the full genome sequence of many strains is available by now, the

metabolism and its regulation are not as well understood as it is the case for E. coli. While

the lack of knowledge and the smaller arsenal of genetic tools is clearly a drawback, the major

strength of Pseudomonas strains is solvent tolerance, enabling reactions with organic solvents as

reactants, products or as a second phase for scavenging the target compounds (Blank et al., 2008;

Rühl et al., 2009). Different mechanisms are known to contribute to the phenotype of solvent

tolerance (Figure 1.4).

First, P. putida is able to adjust the lipid composition of the cytoplasmic membrane, as solvents

are preferably deposited in the membrane, thereby increasing fluidity in a harmful way (Segura

et al., 2012). To counteract that, cells enzymatically switch cis-configured unsaturated fatty

acids to the more compact trans-configuration, rendering the membrane more rigid (Heipieper

et al., 2003). In a similar way, cells can change the ratio of saturated and unsaturated fatty acids
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1.4. Pseudomonas as microbial cell factory

Figure 1.4: The four mechanisms of solvent tolerance in Pseudomonas. Figure is modified from Segura
et al. (2012).

(Segura et al., 2012). A novel membrane-located mechanism is the formation and release of

extracellular membrane vesicles which was shown to increase membrane hydrophobicity and

therefore endurance against chemical stresses (Baumgarten et al., 2012). Second, solvent efflux

pumps are able to remove toxic compounds from the cytoplasm, making some Pseudomonas

strains with a higher number of pumps like DOT-T1E (Molina et al., 2011; Udaondo et al., 2012)

or S12 (Tao et al., 2012) even more solvent-tolerant than e.g. KT2440. In DOT-T1E, three operons

(ttgABC, ttgDEF, ttgGHI) are responsible for resistance against toluene and presumably other

solvents. Solvent tolerance is an inducible phenotype and traditionally requires cumbersome

physiological adaptation to be fully expressed. However, knocking out the main regulator ttgV of

the efflux pump encoding operon ttgGHI was shown to establish solvent tolerance immediately

(Volmer et al., 2014). Third, physiological counter measures can include the activation of enzymes

responsible for removal of reactive oxygen species as a by-product of detoxification (Choi et al.,

2014), formation of trehalose as a protective agent, expression of chaperones to improve protein

folding (Simon et al., 2014), or increasing intracellular concentration of cofactors (Udaondo

et al., 2012). Pseudomonas has a higher regeneration rate of cofactors and therefore higher
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buffer capacity than other common bacteria (Blank et al., 2008; Ebert et al., 2011). And fourth,

Pseudomonads are able to enzymatically degrade many toxic compounds and use them as carbon

source as outlined in section 1.4.1. Of all the described mechanisms, solvent efflux pumps are

regarded as the dominant means of conferring solvent tolerance (Segura et al., 2012).

1.4.4 Processes based on Pseudomonas putida to date

Despite the many known advantages of Pseudomonas as a host organism for biotechnology, only

a handful of processes were actually implemented by the chemical industry. According to Poblete-

Castro et al. (2012), 22 production processes with industrial relevance were already outlined

and tested for P. putida. Among them are many fine chemicals but also different ’flavors’ of

polyhydroxy alkanoic acid (PHA) as a raw material for future biomaterials. In contrast to that,

only nine processes were actually implemented by the industry, the majority of them being

pharmaceuticals (Table 1.1). Nevertheless it can be assumed that the market for biotechnological

production of platform chemicals will increase in the near future, and Pseudomonas is a promising

candidate for those reactions involving hydrophobic compounds.

Table 1.1: Implemented biotechnological processes using Pseudomonas strains. Table is reproduced
from Poblete-Castro et al. (2012).
Product Biocatalyst Applicability Company
2-Quinoxalinecarboxylic acid P. putida ATCC

33015
Biological activity Pfizer (US)

5-Methylpirazine-2-carboxylic acid P. putida ATCC
33015

Pharmaceutical Lonza (SUI)

Chiral amines Pseudomonas sp.
DSM 8246

Biological activity BASF (GER)

5-Cyanopentanamide P. putida Catalysis DuPont (US)
(S)-2-Chloropropionoc acid Pseudomonas sp. Herbicides Astra Zeneca (US)
D -p-Hydroxyphenyl glycine P. putida Pharmaceutical Several

companies
Chiral compounds P. putida ATCC

12633
Pharmaceutical DSM (NL)

4-[6-Hydroxypyridin-3-yl]-4-
oxobutyrate

Pseudomonas sp.
DSM 8653

Pharmaceutical Lonza (SUI)

Paclitaxel Pseudomonas sp.
lipase AK

Pharmaceutical Bristol-Myers
Squibb

1.4.5 Styrene epoxidation as a model reaction

Styrene is a hydrophobic aromatic compound consisting of a C6 ring with an ethylene group. It

is an important monomeric building block for the synthesis of polystyrene polymers (’styrofoam’)

and is produced at a rate of 25 million metric tons worldwide with a value of 1,300 USD per ton

(Exelus, 2012). A commercially interesting reaction is the stereoselective epoxidation of styrene,
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Figure 1.5: A) Pathway of enzymatic styrene degradation in P. taiwanensis VLB120 leading from
styrene to styrene oxide to phenylacetic aldehyde and finally phenylacetic acid. The genetic struc-
ture of the respective operon is shown in B): stySc, encoding the styrene sensor component, styR,
the transcriptional regulator, styA and styB, together encoding the styrene monooxygenase, styC,
the styrene oxide isomerase, and styD, the dehydrogenase. C) The model expression system in this
work are plasmids encoding a StyA-EGFP fusion protein and StyB. Transcription is regulated by AlkS
acting on the alkB promoter (PalkB). Figure modified from Panke et al. (1998).

forming a highly reactive oxygen-containing 3-heterocycle (Figure 1.5 A). The obtained styrene

oxide can be used for further synthesis of fine chemicals or pharmaceuticals. The soil bacterium

Pseudomonas taiwanensis VLB120 was shown to grow on styrene as a sole carbon and energy

source and the respective degradative genes could be identified, isolated and characterized (Panke

et al., 1998). The complete sty (-rene degrading) operon consists of six genes (Figure 1.5 B):

stySc, the styrene sensor component, styR, the transcriptional regulator, styA and styB, together

catalyzing styrene epoxidation, styC, the styrene oxide isomerase, and styD, the dehydrogenase.

The key enzyme for production of styrene oxide is the styrene monooxygenase styAB consisting

of a larger oxygenase (StyA) and a smaller reductase (StyB) providing reduced FAD as a cofactor

for the reaction (Otto et al., 2004). StyAB could be cloned and heterologously expressed in other

Pseudomonas strains such as KT2440 (Panke et al., 1999) or in E. coli (Panke et al., 2000; Park

et al., 2006) and yielded almost entirely (S)-styrene oxide with enantioselectivity of 99 %.
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Styrene epoxidation was chosen as a model reaction because it is of high commercial interest,

it involves hydrophobic reactants and products especially suitable for Pseudomonas, and it can

serve as an example for many open questions regarding process feasibility and stability. However,

the major interest of this work was to characterize population heterogeneity and its effect on

bioprocesses. To this end, a C-terminal fusion of the styA gene with the fluorescent reporter

Enhanced Green Fluorescent Protein (EGFP) was supplied by a cooperation partner within the

project (Figure 1.5 C). It allows to track gene expression in living cells without the need to lyse

cells and extract proteins biochemically. EGFP is one of hundreds of different fluorescent proteins

known to date and is an improved variant (Cormack et al., 1996) of the archetypal monomeric

GFP isolated from Aequoria victoria and cloned in 1992 (Shimomura et al., 1962; Prasher et al.,

1992).

1.5 Sources of heterogeneity in bioprocesses

Nearly all biotechnologically relevant microorganism propagate in a non-sexual ’clonal’ manner.

This means, a dividing mother cell will bring forth two genetically identical daughter cells. For

reasons of simplicity, clonal populations have historically been regarded as homogeneous with

its individuals being identical or at least highly similar. As a consequence, all morphologic

and physiologic characteristics were supposed to be normally distributed within a population.

However, countless exceptions from this rule have been found already, demonstrating that clonal

cultures are by no means homogeneous but that heterogeneity is in fact the norm. Different types

and characteristics of heterogeneity are outlined below, however, it should be kept in mind that

some of the discussed concepts are overlapping with others, depending on the applied definition.

For example, asymmetric cell division (section 1.5.2) can be a driver of heterogeneity on its own

when there are dedicated cell types involved, but it may as well result in unequal distribution of

cell constituents, a topic of its own (section 1.5.3).

1.5.1 Cell cycling

The most apparent cause of cell-to-cell heterogeneity is the need for cells to divide. To reach the

required size to enter cell division, a mother cell must roughly duplicate its volume, DNA content

and other cell constituents. A clonal population will therefore consist of a mixture of cells in

different cell cycle stages, each showing a different morphology in terms of size and shape.

The knowledge of the complexity of cell cycle regulation in bacteria has grown in the last decades.

Cell cycling is not a constantly running program, but cells adapt to variable environmental

conditions by changing the pace or mode of cell cycling. In principle, the bacterial cell cycle
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Figure 1.6: The bacterial cell cycle is regulated depending on nutrient availability. Cells with limited
amounts of nutrients undergo eukaryotic-like cell cycling, with a constant duration of chromosome
replication (C period) and cell division (D period), interrupted by periods of cell mass accumulation
(B, left panel). In contrast, bacteria with unlimited nutrient supply will undergo uncoupled cell cycling,
where new turns of DNA replication are initiated before previous ones are finished, resulting in larger
cells withmultiple chromosomecontent (right panel). Redcircles: Storage compounds accumulated
at different cell cycle stages. Figure reproduced from Müller et al. (2010).

can be split into three phases (Figure 1.6), the variable B period between birth and initiation of

replication, the C period with replication of the chromosome, and the division period D (Wang &

Levin, 2009; Müller et al., 2010). If cell cycling progresses in an ordered fashion and replication

rate is constant as defined by the fidelity of the DNA polymerase, how is it possible that cells

with more than twice the amount of DNA were found? The answer was given by Cooper &

Helmstetter (1968) who introduced the concept of multifork replication where new rounds of

DNA replication are already initiated while previous rounds are not terminated yet. By this

means, cells are able to adapt to high availability of nutrients, while the actual DNA replication

rate (C period) remains constant. However, the B period disappears completely under maximum

growth meaning that cells are constantly initiating new rounds of DNA replication. The division

period D is constant again, limiting e.g. E. coli to a minimum generation time of 20 min. This

uncoupled cell cycling is distinct from eukaryotic-like cell cycling, where replication must be
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finished before cell division (Müller et al., 2010). The model proposed by Cooper & Helmstetter

(1968) was essentially confirmed and extended in later studies. It was found that C and D periods

in E. coli are constant for short generation times but increase with generation times longer than

1 h (Skarstad et al., 1985). In fact, microbial cells are able to control the initiation and speed of

cell cycling by sensing the supply of nutrients and their own growth rate. In E. coli, the starting

point for cell cycling is the initiation of DNA replication, which is directly regulated by the oriC

binding protein DnaA, whose intracellular amount was shown to depend on growth rate and

amino acid availability (Wang & Levin, 2009). Another supposed regulatory check point is the

acquisition of cell mass. It was originally expected that DNA replication starts when cell mass

has reached a certain ’critical’ size, however, it was shown that this is true for some bacteria, but

it is surely not a universal observation (Wang & Levin, 2009; Campos et al., 2014).

1.5.2 Asymmetric cell division

Asymmetric cell division is a cell cycle related phenomenon which deserves attention in regard of

population heterogeneity. In principle, asymmetric cell division is a tightly regulated process and

must therefore be distinguished from unequal partitioning of cell constituents during cell division,

which is a non-regulated ’random’ process. Asymmetric cell division produces offspring that is

morphologically and functionally different as an evolutionary strategy of specialization. The

most prominent example employing this strategy is Caulobacter crescentus, leaving always one

swarmer cell and one stalked cell after division (Figure 1.7 A). The swarmer cell will later become

a stalked cell to undergo cell division itself. Five transcription factors globally regulating this

unique cell differentiation are known (Quiñones-Valles et al., 2014), however, the initial event

sparking this regulatory cascade is unknown. Experimental evidence points towards unequal

distribution of phosphate ions and proteolytic enzymes as a main actor (Tsokos & Laub, 2012).

Another example for asymmetric cell division is sporulation in the gram-positive bacterium Bacil-

lus subtilis (Figure 1.7 B). Under limited nutrient conditions, a B. subtilis mother cell establishes

a polar septum dividing the cell in two very different daughters, one large cell in regular state

and one small spore of very different morphology and fate (Tan & Ramamurthi, 2014). The

spore will eventually dehydrate and become dormant, being highly resistant to biochemical and

physical stress (lysozyme, heat, UV irradiation). In the light of population heterogeneity, the

onset of spore formation is highly interesting. Again, a global regulator (σF) is the key player

for executing a differential gene expression program in the two future daughter cells (Tan &

Ramamurthi, 2014). However, it is itself triggered by other proteins that act at polar septation

of the cell. What ultimately causes the originally mid-cellular septum to polarize is unknown

(Eswaramoorthy et al., 2014).
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Figure 1.7: A) Cell cycle of C. crescentus, a bacterium producing two functionally different daughter
cells after asymmetric division, a swarmer and a stalked cell type. Figure reproduced from Tsokos &
Laub (2012). B) Spore formation in B. subtilis as another example of asymmetric division. A polar sep-
tum divides the mother cell into a large regular daughter cell and a small forespore. The mother cell
is eventually lysed and the stress-resistent spore released. Figure reproduced from Tan & Ramamurthi
(2014).

1.5.3 Unequal distribution of cell constituents

Unequal partitioning of cell constituents is a less obvious but presumably widespread phe-

nomenon in the microbial world. It is caused by imperfect distribution of biomolecules during

cell division and, contrasting to asymmetric cell division, is –with some exceptions– a random,

non-regulated process. Two major mechanisms promote unequal distribution. The first one is

partitioning noise, very similar to the gene expression noise concept, and it is due to low abun-

dance of the respective molecule within the cell (Huh & Paulsson, 2011b). One can think of

a regulatory protein being present in the mother cell with only five copies (Figure 1.8). Cell

division will most likely distribute two and three copies to the daughter cells, respectively, but in

some cases the difference will be even more extreme (1:4 or 0:5); such discrete distributions can

be modeled using Poisson statistics. Interestingly, the heterogeneity detected in many studies

dealing with noisy gene expression may actually be due to unequal partitioning (Huh & Paulsson,

2011a).

The second mechanism is biased distribution of molecules which are somehow spatially orga-

nized within the cell, and can affect also largely abundant molecules (Huh & Paulsson, 2011b).

Examples are granules, membrane or nucleoid bound proteins, whose segregation must be ac-

21



1.5. Sources of heterogeneity in bioprocesses

Generation
0 1 2 3 4 5 6

Single cell lineage
SiblingN

u
m

b
er

 o
f p

ro
te

in
 x

Time

C
o

py
 n

u
m

b
er

A B

Figure 1.8: A) Cartoon of unequal partitioning of cell constituents, and model of the copy number
per cell as average (black) and stochastic progression (grey). B) Following multiple cell divisions,
unequal partitioning is virtually indistinguishable from gene expression noise. Figure reproduced from
Huh & Paulsson (2011a).

tively controlled by the cells to avoid fatal errors (Henry & Crosson, 2013). Unequal distribution

of molecules is also a factor discussed in aging of bacteria. In theory, perfectly even cell division

would result in uniform immortal lineages of cells, however, it was proposed that ’old’ and ’new’

molecules are unevenly distributed between the maternal cell poles, eventually yielding one

rejuvenated daughter cell and one aged (’maternal’) daughter cell (Ackermann et al., 2007). In

fact, a visually apparently symmetric division in E. coli was shown to be functionally asymmetric,

with maternal cells having a new and an old cell pole, and the offspring obtaining the old pole

having a lower growth rate and higher incidence of mortality (Stewart et al., 2005).

1.5.4 Gene expression noise

Gene expression in bacteria is a stochastic process. The mRNA and protein levels per cell for a

particular gene can be very different over time or among different individuals in a population. The

reason for that is intrinsic noise, the irregular initiation of transcription and translation, processes

often involving a single locus of DNA and random binding of low-abundant regulatory proteins.

A screening of single protein abundance for almost all genes of E. coli showed that most proteins

appear in a range of 1 to 100 copies per cell (Taniguchi et al., 2010), the lower range being prone

to stochasticity. Gene expression noise was indeed high for proteins with a mean copy number

less than 1, but declined to a minimum level for higher-abundant proteins. This minimum level

of stochasticity was considered a ’background’ signal, and was attributed to extrinsic noise, a

term that includes all fluctuations of a dynamic physical and biological environment (Hilfinger

& Paulsson, 2011). These impact of these fluctuations can vary from one cell to another, but is

considered global for a single cell (Elowitz et al., 2002).
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Figure 1.9: A) A dual reporter setup to detect intrinsic noise. B) Exemplary output of a dual reporter
setup to differentiate intrinsic and extrinsic noise. x1-3, y1-3, gene, transcript and protein copy number
for yellow (YFP) and cyan (CFP) fluorescent reporters, respectively. Figure modified from Hilfinger &
Paulsson (2011).

Intrinsic (or gene expression) noise can be determined in principle by subtracting extrinsic noise

using a dual reporter setup (Figure 1.9), first performed by Elowitz et al. (2002). It is based on

the assumption that two identical gene expression systems with different fluorescent reporters

should behave identical in a static environment, so that all variation in gene expression over

time can be attributed to intrinsic noise. By this means, an equal contribution of intrinsic and

extrinsic noise for a standard lac-promoted expression was shown, and the prediction of higher

intrinsic noise for lower levels of gene expression was confirmed. However, experimental issues

like differential maturation of the two fluorophores and DNA replication of the two reporter

loci at different time points limit the significance of the dual reporter approach (Hilfinger &

Paulsson, 2011). What is the biological meaning of stochastic gene expression? It might be a

mere physical property in some respect, but it might as well be exploited by cells as a strategy to

diversify, often called ’bet hedging’. The limited and discrete concentration of regulator proteins

can, in conjunction with a feed forward circuit, lead to activation of pathways in some cells of

a population but not all (Veening et al., 2008). As an example, spore formation in B. subtilis is

activated only in a subpopulation of early adopter cells sensing a worsening environment (Tan

& Ramamurthi, 2014).
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1.5.5 Mutations and chromosomal rearrangements

Heterogeneity can be caused by changes in the genetic information yielding a clonal, yet not

genetically identical bacterial population. Many different sources of genetic heterogeneity are

known, ranging from small scale point mutations to large scale chromosomal rearrangements.

Point mutations are single base pair changes caused by erroneous DNA replication. Depending

on the substituted base the mutation will be silent or alter the amino acid sequence of the protein.

More dramatically, insertion or deletion (’indels’) of one or more bases will probably destroy the

reading frame of the protein. Mutations are rare events with rates of 10-6 to 10-10 per base pair

and generation in bacteria (Rando & Verstrepen, 2007; Lee et al., 2012; Wielgoss et al., 2013).

Recent studies nevertheless suggest that bacteria are able to tune mutation rates actively and

therefore bypass Darwinian evolution (Rando & Verstrepen, 2007). It was found that the error

prone SOS DNA replication in E. coli is specifically activated under deleterious conditions to

increase genetic diversity (Petrosino et al., 2009). Moreover, different E. coli strains (B and K12)

acquired different mutations but in the very same genes to circumvent a metabolic bottleneck

(Kim et al., 2014). And finally, even in the absence of selection pressure mutation is biased

in favoring strongly transcribed genes or one strand (direction of transcription) over the other

(Juurik et al., 2012).
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Figure 1.10: Mobile genetic elements are the main source of chromosomal rearrangements in bacte-
ria. A) Miniature inverted repeat element (MITE) consisting of inverted repeats (triangles). B) Insertion
(IS) element with additional transposase gene t. C) Transposon with additional antibiotic resistance
genes (AbR). D) Integrative conjugative element (ICE), able to excise and transfer itself via conju-
gation. E) Lysogenic phage integrated into host genome and able to distribute itself via host lysis.
F) Scheme of IS element jumping to another chromosomal locus leaving behind a ’footprint’. T,
transposase. Figure modified from Darmon & Leach (2014).
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On a larger scale, chromosomal rearrangements can drive evolution in a more dramatic, stepwise

fashion. These rearrangements can be caused by intracellular processes such as homologous

recombination or transposition, eventually leading to deletion, duplication, inversion or relo-

cation of large chunks of DNA (Darmon & Leach, 2014). A vast number of genomic elements

involved in DNA rearrangements are known, most of them comprising at least direct or inverted

repeats as recognition sequences for recombinogenic enzymes (Figure 1.10). The space between

recognition sites can be filled with functional genes determining the type of element, such as a

plain transposase for insertion (IS) elements, additional host genes for (composite) transposons

or nothing at all in case of miniature inverted repeat elements (MITEs) (Darmon & Leach, 2014).

Very large and elaborate transposable elements are integrative conjugative elements (ICE) car-

rying not only genes for their own excision but also for conjugation and integration into other

cells in the neighborhood (Reinhard & van der Meer, 2014). The same is true for lysogenic

bacteriophages like µ with their complex lifestyle changing between a free extracellular and a

host integrated state (Ranquet et al., 2005). In a 25 years running experiment, Raeside et al.

(2014) characterized the chromosomal rearrangements in 12 indepentent E. coli lineages grown

for 40,000 generations. They found 110 events, mostly deletions (82) up to 55 kbp, but also 19

inversions comprising up to one third of the genome. Almost all rearrangements were due to the

action of mobile elements.

1.5.6 DNA copy number fluctuation

A common source of bacterial heterogeneity is fluctuation of DNA copy numbers. Microorganisms

regularly have variable numbers of chromosomes depending on the cell cycle stage (see 1.5.1)

but also of extra-chromosomal DNA such as plasmids. Plasmids have become the major means

of quick and powerful gene expression in research and industry as they are easy to modify, to

transfer to a host cell, and can reach high copy numbers (Friehs, 2004). However, the plasmid

copy number (PCN) can contribute significantly to population heterogeneity, as it is never uniform

in a population but shows a certain variability from cell to cell or in individual cells over time

(Wong Ng et al., 2010). One reason is that the partitioning of plasmids during cell division is

–with some exceptions– a stochastic process just like the partitioning of all other molecules (see

1.5.3). Therefore, modeling predicts a higher variability for smaller mean PCN, accompanied by

a higher plasmid loss rate after partitioning (Figure 1.11, Summers (1991)). These assumptions

were generally confirmed when comparing low copy to high copy replication systems (Wong Ng

et al., 2010), or plasmids equipped with a library of mutated replication systems displaying a

PCN from 1 to 250 (Kittleson et al., 2011).

One economically important aspect of PCN fluctuation is the appearance of plasmid free cells.

Such cells will still divide, propagate, and consume resources without being productive, under-
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Figure 1.11: Population heterogeneity caused by plasmid copy number (PCN) fluctuation. Low copy
plasmids show higher variability and rate of plasmid loss compared to high copy plasmids. Plasmids
can be stabilized in a population by active partitioning or plasmid addiction systems. Histograms
show exemplary copy number distributions.

mining a biotechnological process. In an evolutionary approach, two strains of E. coli carrying

either a beneficial plasmid or nothing were mixed at different ratios and co-cultivated (Morris

et al., 2014). It was shown that only 20 % of plasmid-carrying cells remain after 75 generations,

regardless of the mixing ratio; And without selection pressure, the plasmid-carrying subpopu-

lation disappeared completely. This is usually attributed to plasmid loss during cell division,

but sophisticated measurement of plasmid loss rates showed that the quick displacement of

plasmid-carrying cells was in fact due to the growth advantage of plasmid-free cells, which is

an accumulative effect while plasmid loss is only a linear function (Lau et al., 2013). However,

there are molecular mechanisms known to stabilize plasmid segregation (1.11). One is active

partitioning, where (low-copy) plasmids are bound to the chromosome and hitchhike during cell

division, thereby being equally partitioned to the two daughter cells (Lenz & Søgaard-Andersen,

2011). The other mechanism are plasmid addiction systems, where plasmids carry a factor on

which the host cell desperately depends on. The best example are toxin-antitoxin systems: A

plasmid carries one gene producing a toxin with long half-life and another gene for the antitoxin

with short half-life. Upon plasmid loss, the antitoxin is degraded rapidly while the toxin (e.g. a

porin or protease) unfolds its devastating action (Kroll et al., 2010).
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1.6 Methods to investigate heterogeneity

For decades microbial populations were characterized by using bulk measurements. This includes

RNA or protein isolation for measuring gene expression, kinetic assays for productivity, or plate

counting for viability. But to characterize heterogeneity, one requires assays to monitor cellular

parameters on the single cell level. Already established techniques like (epi-) fluorescence mi-

croscopy or flow cytometry can be modified and extended to analyze single cells in evermore

details and with higher throughput. In this work, flow cytometry was the fundamental technique

to identify subpopulations of interest (1.6.2), while further techniques, subpopulation proteomics

(1.6.3) and digital PCR (1.6.4), were adapted to be used on top for analyzing sorted cells.

1.6.1 Epifluorescence microscopy

The historically most important tool for single-cell analysis is fluorescence microscopy. A major

breakthrough was the cloning of the Green Fluorescent Protein and all its successors, to enable

a quantitative view on gene expression, protein localization, protein interaction and numerous

other applications (Chudakov et al., 2010). For monitoring heterogeneity, however, another

equally important advancement was the advent of microfluidics to track cells over time without

destroying the sample. An unimaginable diversity of microfluidic devices was already presented

and therefore only a tiny selection of landmark experiments can be discussed here. For instance,

a microfluidic device with 96 channels was used to probe gene expression noise in a library of

1,018 YFP tagged E. coli strains (Taniguchi et al., 2010). This study was a significant contribu-

tion to pinpoint protein number and distribution in single cells. Microfluidics and fluorescence

microscopy are a literally ideal combination to study cell lineages over long time. Wakamoto

et al. (2013) could show that ’persisters’, cells that survive antibiotic treatments in biofilms, are

not dormant but actually divide and die with much longer cell cycle duration. Moreover, siblings

are more likely to share the fate of survival or death, indicating an epigenetic, non-regulatory

adaptation. Cells are usually entrapped in silica-based micro-chambers and adhere to the walls

by direct physical contact. A novel contact-free single cell cultivation system is the ’envirostat’,

where cells are trapped in an electromagnetic field (Fritzsch et al., 2013). Using this device,

it could be shown that different microbial species are able to grow significantly faster than in

conventional space-limited cultivation systems (Dusny et al., 2012).

1.6.2 Flow cytometry and cell sorting

Flow cytometry is an established technique for the analysis of single cells. It is based on the optical

measurement of cells entrapped in a narrow fluid stream, separately passing one or more laser
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Figure 1.12: Scheme of optical system of a cytometer. Cells are focused in a narrow stream of sheath
fluid and pass a laser beam. Fluorescence signals (FL) of different wavelength are detected in
photomultipliers (PMT) by splitting the emitted light by dichroic mirrors. Cell sorting is achieved by
converting the laminar sample stream into single droplets, which can be individually deflected by
an electromagnetic field.

beams. The light scattering in the forward and sideward direction (FSC and SSC, respectively)

can be detected as well as fluorescence emission at arbitrary wavelengths (Figure 1.12). Highly

multi-parametric detection of fluorescent antibodies is nowadays a standard procedure in medical

research (Chattopadhyay & Roederer, 2012), however, this is not directly applicable to bacteria

because of their rigid cell wall and the lack of specific antibodies (Müller & Nebe-von Caron,

2010). Flow cytometry has been extensively used in biotechnological settings to screen for

productivity using properties such as light scattering, fluorescent reporter genes or intracellular

RNA aptamer probes (Hedhammar et al., 2005; Strovas & Lidstrom, 2009; Wyre & Overton,

2014; Siedler et al., 2014). It has been used as well to study cell cycling or viability via staining

of DNA or membrane integrity, respectively (Skarstad et al., 1985; Hewitt et al., 2007; Want

et al., 2011). In comparison to microscopic single cell analysis, some disadvantages of flow

cytometry come to mind: A repeated measurement of the same cells is not possible as cells are

not recycled after analysis, no detailed images are acquired but only single values per parameter,

and in consequence the intracellular localization of fluorophores remains unknown. However,

the strength of flow cytometry lies elsewhere. First, extremely high throughput enables analysis

of up to 100,000 cells per second, which allows quantitative analysis of even the rarest events

28



1.6. Methods to investigate heterogeneity

over several orders of magnitude. Second, flow cytometric analysis can be complemented by cell

sorting. This allows retrieval of intact living cells of a subpopulation of choice with high purity.

Cell sorting can be based on deflection of droplets containing the particle of interest, or based

on mechanically diverting a fluid stream, which is suitable for larger particles like plant seeds or

Drosophila eggs (Shapiro, 2003). More recently, microfluidics were as well set up for cell sorting

by using e.g. acoustic, electric or magnetic fields, although at a lower maximal speed compared

to conventional sorting (Shields et al., 2015).

1.6.3 Proteomics using mass spectrometry

Analyzing heterogeneity by optical means is limited to morphological characteristics of cells while

staining of nucleic acids or membrane integrity allows to retrieve additional physiological data.

However, to get a more detailed picture of the underlying molecular basis for heterogeneity, flow

cytometry can be used as a first step to identify and sort subpopulations of interest. In a second

step the sorted cells are subjected to another type of analysis, here the simultaneous detection

of many cellular proteins by liquid chromatography tandem mass spectrometry (LC-MS-MS).

Mass spectrometry is a widely used technique to map the proteome of microbial cells and was

already used for Pseudomonas strains (Nikodinovic-Runic et al., 2009; Wijte et al., 2011; Yun

et al., 2011). Of the 5350 ORFs predicted in silico in P. putida KT2440, roughly 25 % (up to 1286

proteins, Yun et al. (2011)) can be found expressed as proteins. However, subpopulations of

microbial cells obtained by sorting have rarely been used for mass spectrometry. In a proof-of-

principle experiment, it was possible to separate E. coli and P. putida from an artificial mixture for

further LC-MS-MS analysis (Jehmlich et al., 2010). Another application was the extraction of the

intracellular pathogen Staphylococcus aureaus from lysed host cells by sorting prior to LC-MS-MS

analysis (Surmann et al., 2014). However, sorting morphologically diverse subpopulations of

one and the same microbial species for subsequent mass spectrometry was not performed before,

and efforts were therefore undertaken in this study to establish and refine this method (Aims in

section 1.7).

1.6.4 Digital PCR to quantify DNA copy number

During the course of this work it became obvious that differences in productivity of a Pseudomonas

expression strain, as determined by EGFP fluorescence, were linked to plasmid copy number

fluctuation. The fluorescence intensity of a reporter protein such as EGFP is unfortunately not

directly correlated to the number of gene copies or transcripts within the cell. Therefore, a second

technique ought to be established to monitor even small differences in plasmid copy number of

template cells obtained by cell sorting: Digital polymerase chain reaction or digital PCR. It is a

novel technique based on the partitioning of a standard PCR reaction volume into many small

29



1.6. Methods to investigate heterogeneity

compartments, in each happening the PCR reaction individually (Vogelstein & Kinzler, 1999).

Using the most advanced system, droplet digital PCR (ddPCR), the result is a number of negative

droplets which contain no template, and a number of positive droplets containing one or more

template molecules (Hindson et al., 2011). The positive droplets are simply counted and the

absolute number of template molecules can be calculated using Poisson statistics. This simple

probabilistic model takes the occupancy of droplets by more than one template into account. This

work flow is extremely straightforward compared to the relative quantification by conventional

quantitative real time PCR (qRT-PCR), where the result is a fluorescence curve which is compared

to a known standard (Whale et al., 2012). Digital PCR has proven to be more accurate than qRT-

PCR and less prone to inhibitory substances (Strain et al., 2013; Hindson et al., 2013). However,

it has not been used in conjunction with cell sorting, although it is literally predestined for an

application providing only little amounts of template.
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1.7 Aims of this study

To establish techniques for the single cell analysis of Pseudomonas putida in biotechno-

logical settings. The model strain used throughout this work was P. putida KT2440 trans-

formed with different plasmid vectors for controlled expression of the StyA-EGFP fusion

protein and StyB. Specific aims were the flow cytometric analysis of light scatter properties,

DNA content using DAPI staining, and EGFP fluorescence to characterize the physiological

state and productivity of the cells.

To investigate microbial heterogeneity in a model bioprocess applying subpopulation pro-

teomics. First, different methods for fixation and storage of intact Pseudomomas cells were

tested in order to preserve cell morphology and protein composition for flow cytometric

sorting and mass spectrometry, respectively (publication 1). Second, the use of subpop-

ulation proteomics was intended to elucidate the cause for a striking heterogeneity in

StyA-EGFP producing populations (publication 2). And third, it was intended to quantify

the molecular basis of heterogeneity in cells undergoing cell cycling. To this end, subpop-

ulations with different DNA content appearing under strictly defined growth conditions

during chemostat cultivation were sorted and analyzed via mass spectrometry (publication

3).

To reveal the molecular cause for heterogeneity in StyA-EGFP expression. The previ-

ous proteomic study clearly pointed towards differences in plasmid copy number as a source

for population heterogeneity. Therefore, a new method should be established for precise

quantification of DNA via digital PCR on the subpopulation level. Second, this technique

should be used to test the hypothesis of plasmid loss in a subpopulation of non-productive

cells (publication 4).
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2 Publications

2.1 Overview of publications

Publication 1

Jahn, Michael; Seifert, Jana; Hübschmann, Thomas; von Bergen, Martin; Harms, Hauke;

Müller, Susann. Comparison of preservation methods for bacterial cells in cytomics and

proteomics. Journal Of Integrated Omics 3:1-9, 2013.

Significance: In this study three different methods for whole cell preservation were tested,

azide fixation, deep freezing and vacuum drying. All three methods were already known,

however, they have not been explicitly tested with cell sorting or protein mass spectrom-

etry in mind. It was shown that deep freezing preserved the cells best for at least one

month, while vacuum drying performed almost equally well. However, azide fixation was

regarded as deleterious for protein composition. The results of this study were an essential

prerequisite for the following experiments.

Publication 2

Jahn, Michael; Seifert, Jana; von Bergen, Martin; Schmid, Andreas; Bühler, Bruno; Müller,

Susann. Subpopulation-proteomics in prokaryotic populations. Current Opinion in Biotech-

nology 24:79-87, 2013.

Significance: In the first part this review discusses methods for single cell proteomics,

concluding that only limited information about protein composition of a single cell can be

obtained. In the second part, a case study is presented using P. putida KT2440 as a model

organism showing discrete subpopulations during heterologous gene expression. For the

first time, subpopulations of a bacterium are sorted and analyzed by mass spectrometry,

yielding quantitative data of almost 800 proteins.
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Publication 3

Lieder, Sarah; Jahn, Michael; Seifert, Jana; von Bergen, Martin; Müller, Susann; Takors,

Ralf. Subpopulation-proteomics reveal growth rate, but not cell cycling, as a major impact

on protein composition in Pseudomonas putida KT2440. AMB Express 4:71, 2014.

Significance: This study follows the lead of the previous publication. Applying mass

spectrometry to subpopulations of different DNA content, it was shown for the first time

that cells of the same population but in different cell cycle stage are essentially identical.

However, strong differences were found between populations of different growth rate,

demonstrating that this is a major parameter determining cell physiology.

Publication 4

Jahn, Michael; Vorpahl, Carsten; Türkowsky, Dominique; Lindmeyer, Martin; Bühler,

Bruno;Harms, Hauke; Müller, Susann. Accurate determination of plasmid copy number of

flow-sorted cells using droplet digital PCR. Analytical Chemistry 86:5969-76, 2014.

Significance: The results of publication two pointed towards plasmid copy number as a

driver of heterogeneity. This study for the first time demonstrates exact measurement of

plasmid copy number in sorted subpopulations using novel droplet digital PCR. As little

as 1,000 sorted cells were shown to provide the highest accuracy. Finally, the missing

productivity of cells could indeed be attributed to plasmid loss.

2.2 Published articles

• Publication 1 can be found at page 34.

• Publication 2 can be found at page 43.

• Publication 3 can be found at page 52.

• Publication 4 can be found at page 62.
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Subpopulation-proteomics in prokaryotic populations
Michael Jahn1, Jana Seifert2, Martin von Bergen2,3, Andreas Schmid4,
Bruno Bühler4 and Susann Müller1

Clonal microbial cells do not behave in an identical manner and

form subpopulations during cultivation. Besides varying micro-

environmental conditions, cell inherent features like cell cycle

dependent localization and concentration of regulatory

proteins as well as epigenetic properties are well accepted

mechanisms creating cell heterogeneity. Another suspected

reason is molecular noise on the transcriptional and

translational level. A promising tool to unravel reasons for cell

heterogeneity is the combination of cell sorting and

subpopulation proteomics. This review summarizes recent

developments in prokaryotic single-cell analytics and provides

a workflow for selection of single cells, low cell number mass

spectrometry, and proteomics evaluation. This approach is

useful for understanding the dependency of individual cell

decisions on inherent protein profiles.
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Introduction
In biotechnology, researchers are mainly working with

pure prokaryotic cultures assuming that the performances

of the cells might be computable and therefore control-

lable by applying, for example, simple Monod-kinetics.

However, it was already demonstrated by many single cell

based methods like flow cytometry [1�] and microchip

technologies [2,3] that cell behavior differs even under

identical micro-environmental conditions. So far, cellular

diversity in clonal cell cultures was neglected or associ-

ated with gene loss, mutations, or variations in reactor

environments [4,5]. Factors such as epigenetic modifi-

cations, variance in cell size owing to asymmetric cell

division, or different growth and cell cycle states were also

considered to be responsible for cell-to-cell differences

[6] (Figure 1). Recently, the concept of cellular noise

became more and more apparent interconnecting the

level of transcriptional and translational noise with vari-

ations in cell decisions. Raj and van Oudenaarden defined

noise as permanently changing levels of transcripts and

proteins owing to random distribution of involved mol-

ecules and enzymes within the cell [7��]. Noise levels can

be quietened by negative feedback regulation thereby

cushioning cellular responses. By contrast, positive feed-

back acts in a multiplying way, topping basic noise levels

and leading to forthcoming cell decisions [8]. Many of

these phenomena are still unclear and notoriously hard to

address owing to the complexity of regulatory networks

and interrelations. To date, it is still impossible to define

the influence of noise on the global state of prokaryotes

and to understand how noise contributes to cell decision

making and therefore to cell heterogeneity.

A deeper understanding of the variability in cell behavior

can be obtained by analyzing as much heterogeneous

cell states as possible. In this respect, gene expression

analysis on the global scale is certainly a promising

approach. Most proteins are relatively stable and can

be analyzed with higher reliability in contrast to quickly

degraded prokaryotic mRNA transcripts. Besides, pro-

teomic approaches provide snap-shots of complex

protein expression patterns that reveal deep functional

information on cells. The disadvantage is that proteins

may be too stable to track down noise and most detection

methods are biased towards proteins of medium or high

abundance, thus rare proteins may not be detected. In

this review, we discuss to what extent protein analytics of

single microbial cells or subpopulations already match

Omics standards. Examples are presented that show the

extent to which a bacterial population and its proteome

can be resolved.

Fluorescence based single cell protein
analytics
Typically, cell to cell variation in protein abundances are

determined using optical technologies like various micro-

scopic tools or flow cytometry (FC) in combination with

protein marker molecules. Large numbers of cells can

then be analyzed by the marker’s fluorescence intensity

and the result interpreted with regard to dynamic pro-

cesses or sample origin [9]. To date, fluorescent markers

coupled to specifically binding antibodies are the pre-

ferred option. Up to 20 different proteins within the same

sample can be detected in this way [10]. An extension of
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this method is mass cytometry, which uses conjugated

metal-tagged antibodies directed against surface epitopes

[11��]. However, there are many pitfalls using antibodies

in microbiology. First, there are only few universal anti-

body labeling methods available which specifically target

microbial cells. Most of them act on the surface of the

organisms. Binding of the probe to target proteins is often

only semi-quantitative in prokaryotic cultures, especially

if various cell states are investigated and multi-labeling

approaches are intended. Further difficulties include

quenching of adjacent dye molecules owing to small cell

surfaces and volumes as well as rigid cell walls impene-

trable to large probes. Similar problems occur, if amplify-

ing fluorescent systems are used, like enzymes (horse

radish peroxidase, HRP; alkaline phosphatase, AP) or

TSA (tyramide signal amplification) to increase signal

intensity. Furthermore, these methods require harsh

and often cell wall destructive treatment of microbiolo-

gical samples. Second, although a great range of anti-

bodies (or lectins) is available, these probes are normally

of meagre quality and often show unspecific binding

characteristics [1�]. Third, a main tool to determine

protein abundance is the use of fluorescent marker

proteins to reveal, for example, oscillatory or maximum

expression in regulatory circuits [12]. A wide range of

fluorescent protein species can be used to quantify

protein synthesis and thus track expression levels [13].

However, the function and biochemical characteristics of

the tagged proteins may be altered owing to the fusion of

the fluorophore, and the equilibrium between synthesis

and degradation may be affected as well [13]. In addition,

engineered strains need to be used for such investi-

gations, which require a minute genetic manipulation.

Fourth, insights are constrained to the expression pattern

of only one or few target molecules, when monitored by

antibody binding or fluorescent protein tagging. Analysis

of unique expression patterns or regulatory networks

requires a more global approach.

Mass spectrometry based single cell protein
analytics
Hence, we argue that Omics technologies will provide a

deeper insight into functions of cells and reveal more

complex relations to individual cell behavior and

decision. However, applying proteomics to single

microbial cells has not been realized to date, although

different methods for analyzing various compounds of a

single cell at once exist [14]. Microfluidic chips in com-

bination with capillary electrophoresis can analyze well-

chosen molecules, but do not mirror the complete cellular

interior (chemical cytometry [15,16]). Microarrays, as

commonly used for nucleic acids, are also used for

proteins when combined with gel or mass spectrometry

(MS) based tools. Related applications use antibody

arrays for detection of proteins after single cell lysis on

chips [17–19]. Label-free analyte measurements after cell
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Population heterogeneity. Clonal microbial populations are heterogeneous owing to various abiotic and biotic sources acting on the single cell level.
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lysis are also described (nucleotides, chlorophyll, spiked

proteins at dilutions typical for single cells [20,21]) in

addition to the use of fluorescently labeled metabolites

(metabolic cytometry [22]) or stable isotope markers (e.g.

neuropeptides [23]). Although these techniques exhibit

sensitivity sufficient for the single cell level, they do not

cover the majority of proteins of a single cell and thus

provide rather exclusive than global information on cel-

lular function.

MS-based subpopulation proteomics
As the previously mentioned approaches are often

premature and limited to certain pathways and regu-

latory circuits, researchers started to use groups of cells

with similar characteristics presuming that these cells

have also similar physiological characteristics. To selec-

tively separate groups of cells from surrounding tissue

or cell suspensions, laser capture micro-dissection

(LCM) [24] or flow cytometric cell sorting (FS [25])

are extensively used. Using LCM, recent studies

detected about 7000 proteins from pancreatic islets

(each between 2000 and 4000 cells [26]) or 1700

proteins from 10 000 captured breast cancer cells

[27]. Already in 2006, FS was used to separate 109

prokaryotic Cupriavidus necator cells for subsequent

proteomic investigation but only 150 proteins were

detected per subpopulation at the time using 2D-gel

electrophoresis [28]. The large number of cells necess-

ary to detect a considerable number of proteins points

to the major problem when investigating microbial cells

in comparison to eukaryotic cells: the volume factor of

1:1000 pulls down the number of detectable proteins in

relation to the cell count. The combination of an

improved cell sorting procedure with MS increased

the resolution insofar as only 5 � 106 cells were necess-

ary to detect about 900 proteins for Escherichia coli and

Pseudomonas putida [29], limiting the time needed for

sorting from 3 weeks to 3 days.

Cell selection for subpopulation proteomics
Selecting individual organisms out of populations means

that subpopulations need to be defined to be selectable

by LCM or FS. Microbial cells rarely show morphological

characteristics that can be used to differentiate cell types

within a population. Therefore, the cells need to attain

fluorescence as is the case for fluorescent protein expres-

sion or be stained towards other physiologically relevant

characteristics. Ideally, every cell in a population should

carry or be labeled by a marker to allow not only ‘yes’ or

‘no’ decisions but also quantification. In addition to

fluorescent proteins, we found DNA to be a reliable

marker because every cell contains the molecule and

its changing quantities mark various growth character-

istics [30]. Bacteria may contain one or more chromo-

somes of different information and length and several

copies of them, referred to as respective chromosome

equivalents. DNA is a stable molecule and can be labeled

with high specificity using the blue fluorescent dye DAPI

(40,60-diamidino-2-phenylindole) binding at A-T rich

regions. It is widely discussed in microbial biotechnology

that certain performances like product synthesis do only

occur either when the cell cycle is finished or within the

stochastic phases when no replication and cell division

occurs [6]. Hence, DNA appears to be a good marker for

potential decision switches in the cell cycle during recom-

binant protein production.

How different cells in a population can behave within

identical environments is shown in the following unpub-

lished example, based on the method described by

Jehmlich et al. [29]. Subpopulation dynamics were ana-

lyzed for engineered Pseudomonas putida KT2440 during

expression of the styAB genes encoding the styrene

monooxygenase from Pseudomonas sp. strain VLB120

[31,32,33]. For this purpose, the cells contained a plas-

mid-based enhanced green fluorescent protein (EGFP)

reporter construct, in which the EGFP gene was fused to

the styA gene and gene expression was induced using

dicyclopropylketone (DCPK) [34]. Besides fluorescence,

cytometric analyses included DNA staining and light

scattering of cells, particularly forward scattering

(FSC). The growing culture (Figure 2a) showed various

subpopulations regarding cell cycle stages, with cells

containing C1n, C2n, C4n, and more chromosome

equivalents, recombinant protein synthesis (‘yes’ or

‘no’ decisions resulting in a bimodal pattern) and light

scattering (size and density). Each of the three

parameters mirrored changes occurring during batch

cultivation (Figure 2b). Although the DNA content of

expressing and non-expressing cells was identical during

exponential growth, the C1n subpopulation of expres-

sing cells did not recover after 24 hours (Figure 2b). This

hints towards impaired cell division owing to recombi-

nant protein accumulation. The fluorescence intensity of

EGFP expressing cells was already visible after 1 hour,

increased to a maximum at 4 hours and slowly decreased

until 24 hours after induction. EGFP is described to

remain stable in cells for about 24 hours [35]. The pro-

portion of induced cells without EGFP fluorescence

increased during cultivation (1 hour: 33 � 10%, 4 hours:

35 � 4%, 8 hours: 49 � 11%, 24 hours: 55 � 9%) prob-

ably owing to the restricted cell division in expressing

cells. Moreover, during the later stage of cultivation, the

FSC signal of the majority of EGFP containing cells

shifted towards higher intensity, most probably owing to

inclusion body formation (Figure 3a and b). As a result,

induced cells showed at least eight subpopulations that

varied in cell abundance during the course of cultivation

(Figures 2b and 3a). However, even thorough analysis of

the population heterogeneity by FC does neither reveal

the causes for heterogeneity nor the present state of the

cells. Deeper insights into the respective subpopulations

are provided if FS and MS are combined to obtain

proteome data of subpopulations. One should keep in
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mind, that beforehand discrimination of subpopulations

by specific cell characteristics, such as light scatter or

fluorescence labeling, is a prerequisite for ‘subpopu-

lation-proteomics’.

MS based subpopulation proteome analysis
Subpopulation proteome analysis requires a reliable

workflow which is shown in Figure 3c. In the case study

using recombinant P. putida KT2440, only a subset of
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Population heterogeneity during production of a recombinant EGFP fused target protein. (a) Growth of wild type and recombinant P. putida KT2440 on

citrate (5 g/L). Samples contained, from left to right, strains without plasmid (�), with target gene free plasmid (pCOM10 [34]), and with full plasmid

(pCOM10 StyA<EGFP StyB) without and with induction by 0.025% (v/v) DCPK at 0 hour. Upon induction, the synthesis of the fusion protein

StyA<EGFP resulted in decreased growth. (b) Heterogeneity of induced and non-induced cells in the course of protein production as determined by

flow cytometry and microscopy. The proportions of distinct subpopulations differing in FSC, EGFP fluorescence, and DNA content are depicted as

color-coded diagram for each gate (FS1: fluorescent cells with low FSC; FS2: fluorescent cells with high FSC; EGFP�: non-fluorescent cells; EGFP+:

fluorescent cells; EGFP Int.: log10 fluorescence intensity; C1n: cells with one chromosome equivalent; C2n: cells with two chromosome equivalents;

C4n: cells with four chromosome equivalents; Cxn: cells with more than 4 chromosome equivalents). Fluorescence and granule formation of induced

cells was verified by fluorescence microscopy.
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DCPK induced cells produced functional EGFP and

these cells could be further subdivided into cells with

low FSC and (more granular) cells with higher FSC.

Fluorescent cells with low FSC occurred only at the

beginning of cultivation (1-4 hours after induction).

Therefore, the 4 hours time point was chosen for the

sorting of three subpopulations, namely 1: cells without

EGFP fluorescence, 2: cells with fluorescence but low

FSC, and 3: cells with fluorescence and high FSC

(Figure 3b). A total number of 5 � 106 cells per subpopu-

lation with four biological replicates were sorted on a filter

well plate, trypsin digested, and analyzed by nanoLC-

ESI-MS/MS (LTQ Orbitrap MS).

After identification and quantification by MaxQuant [36],

a total number of 743 unique proteins (annotated and

hypothetical) were detected, with 548 proteins present in

at least one replicate per subproteome and 401 proteins

present across all replicates. The KEGG Brite hierarch-

ical database was used to map 373 annotated unique

proteins of the dataset to 730 different functions, com-

pared to 1235 unique entries with 2531 functions in the

Origin and analysis of heterogeneity Jahn et al. 83
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Reporter protein fluorescence and granule formation as parameters for cell sorting. (a) Fluorescence of the reporter protein (FL1 (EGFP)) and forward

scattering (FSC) of non-induced (pink) and induced (cyan) P. putida KT2440 (pCOM10 StyA<EGFP StyB) as measured by flow cytometry. The induced

population split in fluorescent and non-fluorescent cells, the latter was correlated with higher forward scatter owing to granule formation. (b) To reveal

underlying changes in protein expression, cells harvested 4 hours after induction were sorted based on fluorescence and forward scatter. The gates

chosen to sort the cells according to three subpopulations, being 1: cells without EGFP fluorescence, 2: cells with fluorescence and low FSC, and 3:

cells with fluorescence and high FSC, are shown. (c) Workflow of cell sorting on filter wells, tryptic digestion, and label-free mass spectrometry for

protein identification and quantification (adapted from [29]).
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hypothetical P. putida Brite hierarchy (Figure 4a). To find

significant differences between subpopulations, two

different algorithms for gene set analysis (GAGE and

SAFE [37,38]) were applied. Surprisingly, they revealed

that the majority of functional categories covered by

KEGG was only marginally changed (Figure 4b).

The most significantly changed pathways were for

instance the ones for pyrimidine and purine metabolism

as well as oxidative phosphorylation. Even within such

significantly changed groups, single proteins only showed

small to moderate changes in expression level (Figure 4c).

Beyond functional groups, the most differentially

expressed genes (Figure 4c, extremes) included particu-

larly stress related genes. In EGFP expressing cells (SP 2/

SP 3), the heat shock chaperones IbpA (PP_1982) and hfq

(PP_4894) as well as catalases katA (PP_0481) and ahpC

(PP_2439) were found to be strongly upregulated,

whereas ATPase subunit F0 (PP_5418) and elongation

factor efp (PP_1858) were downregulated. Strong differ-

ences existed between subpopulations regarding the four

plasmid-encoded proteins, even for the kanamycin resist-

ance conferring KanR, although all cells were cultivated

in the presence of the antibiotic (Figure 4c). Possible

reasons include a reduced plasmid copy number as well as

reduced expression of encoded genes.

These results suggest that the cells of subpopulation 3

accumulated the recombinant protein, ceased cell cycle

activity, and activated stress response. By contrast, the non-

fluorescent cells of subpopulation 1 featured increased

nucleotide metabolism (DNA synthesis) and respiration

despite kanamycin selection, whereas cells from subpopu-

lation 2 represented the intermediate state of 1 and 3. This

experiment may serve as an example that cytometrically

analyzed intra-population variation is mirrored in the pro-

teome profile. It is, however, remarkable that the variation

between the subpopulations was restricted to a few

proteins, although the high variation in optical cell charac-

teristics implied more global differences.

Interpretation of cell-to-cell variations in
clonal cultures
In the presented case study, multiple subpopulations

were characterized by different cell-based and pro-

teome-based features although environmental conditions

were identical. Why do cells make these diverse de-

cisions? And do they stick to decisions once made?

Recently, the phenomenon of noise was discussed in the

context of cell decision making. Noise is described to be

less perceptible in prokaryotes and less detectable on the

proteome as compared to the transcriptome level [7��].
Transcriptomic changes often occur in ‘bursts’, which are

difficult to mirror on the protein level, because of the

short half-live of mRNA in bacteria contrasting with the

relatively high stability of proteins [7��].

Nevertheless, proteins can be considered as the target

molecules of choice to monitor cell decisions, as they are

the entity defining the cell’s function. To date, single-cell

variability in protein expression is preferably measured by

fluorescent reporter proteins, antibody-based labeling,

and microfluidic chips that utilize an antibody array after

single cell lysis. Although these tools are useful and

convenient, the provided view on the cell state is rather

limited as only predefined target proteins are considered.

Subpopulation proteomics as introduced here constitute a

valuable extension to the existing approaches, providing a

more global view. Instead of relying on one label per

experimental condition only (such as a fluorescent repor-

ter protein), a combination of reporter proteins, function-

ally targeted dyes, scatter characteristics, and parameters

like cell number and time can be used to discriminate

subpopulations, which then can be analyzed by MS,

yielding ‘sub’-proteomes. Even in prokaryotes, at least

several hundred proteins per subpopulation can be ident-

ified, quantified, and clustered to reconstruct pathways

and regulatory networks.

By this means, only minor differences in the metabolic

pathway-related protein levels were found between the

three investigated subpopulations SP 1 to SP 3 of the

recombinant P. putida strain (Figure 4c). Nevertheless,

the few and pronounced effects imposed by excessive

recombinant protein production, which only occurred in a

certain proportion of cells, were connected to protein

turnover and thus cell maintenance. Furthermore, evi-

dence on the single-cell and subproteome level hinted

towards compromised cell division of producing cells, a

fact already discussed by Sevastsyanovich et al. [39�].
Assuming that non-producing cells keep their pace in

cell cycling, they will out-compete the producers not

owing to increased growth rates but simply owing to

the inability of producers to divide. Interestingly, once

the decision for production was made there seems to be

no going back, indicating a certain inevitability in cell

fate.

Cellular decision making is a highly complex process,

depending on the cell’s individual prerequisites and

history, its micro-environment, and extrinsic and intrinsic

noise. Here, as a proof-of-principle, a proteome snap-shot

was provided for a certain moment in the history of the

culture, but a time series of samples may allow recon-

structing cellular decisions from the beginning of popu-

lation splitting on. However, cell decisions in response to

intrinsic noise of gene expression will be difficult to

detect in this way, because effects of extrinsic and intrin-

sic noise can hardly be differentiated. Another way to

aquire such information might be the use of advanced

reporter systems [40] or techniques that resolve spatial

molecule movements over time, like fluorescence corre-

lation spectroscopy [41] or high resolution imaging in

single cells [42�].
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Figure 4
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Subpopulation proteomics. Proteome data on sorted subpopulations are shown. Cells were treated as depicted in Figure 2c and subjected to mass-

spectrometry with label-free quantification of proteins. (a) Protein identifiers mapped to functional classes using the KEGG Brite database. Indicated is

the total number of assigned proteins (with number of unique proteins in brackets) for the complete proteome of P. putida KT2440 (left) and for the

subpopulation dataset (right). (b) To find significant changes across KEGG pathways, gene set analysis (GAGE, SAFE) was performed for three sorted

subpopulations and the p-values of both tests were correlated. (c) Relative fold change (log2) of protein quantity for a selection of most significantly

changed pathways. Additionally, plasmid-derived proteins and the chromosomally encoded proteins with the most extremely changed expression

levels are listed without functional clustering. SP 1: cells without EGFP fluorescence; SP 2: cells with fluorescence and low FSC; SP 3: cells with

fluorescence and high FSC; Total: unsorted control; NI: non-induced cells.
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Bimodal distributions of markers as discussed here may

emerge not only owing to one but even more decisions

taking place in a cell. Strong signals like the surplus

DCPK induction used in this experiment might interfere

with other regulatory circuits. In turn, noisy regulation [8]

may even ignore strong extrinsic signals like DCPK. As

probably every gene holds its individual expression noise

independent from expression level, the complex inter-

play of noise may generate a vibrating cell state that may

lead to individual decisions.

It needs to be stated that the responsible regulatory

proteins are often of small molecular mass, are low abun-

dant and may not be detected when MS is performed on

low cell numbers of sorted microbial subpopulations.

Other shortcomings of this Omics approach are that the

protein rather than the transcript level is covered, and,

with cell sorting and MS usually taking several hours per

sample, it requires considerable effort in time and instru-

mentation.

Conclusion
Specific cellular markers are required to select sub-

populations for subsequent proteomic analyses. The

presented method is therefore constrained to popu-

lations that show optically detectable variances in cell

physiology. Emerging subpopulations can be sorted and

their proteome resolved. Subproteomics allows tracking

down differential gene expression in regard to cellular

functions. In the presented example, we found 743

unique proteins in three subpopulations. The number

of specifically regulated proteins was surprisingly low

and closely connected to overexpression of the heter-

ologous protein. Thus, using the presented workflow,

microbial subpopulation proteomics showed functional

variety of cells. An extension of this method by protein-

SIP (protein stable-isotope probing) [43] may allow

tracking of specific metabolic activity [43], and more

advanced MS methods may allow the detection of very

low abundant proteins.

Many cellular decisions can be followed using cell scatter

characteristics, intrinsic or extrinsic fluorescent signals

and subproteome analytics. However, decisions based

on gene expression noise still cannot be resolved as

knowledge on molecule dynamics and spatial distribution

within a single prokaryotic cell is not recorded using flow

cytometry. Despite some limitations, the methods pre-

sented here allow an unparalleled view into microbial

population heterogeneity.
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Subpopulation-proteomics reveal growth rate, but
not cell cycling, as a major impact on protein
composition in Pseudomonas putida KT2440
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Abstract

Population heterogeneity occurring in industrial microbial bioprocesses is regarded as a putative effector causing
performance loss in large scale. While the existence of subpopulations is a commonly accepted fact, their
appearance and impact on process performance still remains rather unclear. During cell cycling, distinct
subpopulations differing in cell division state and DNA content appear which contribute individually to the
efficiency of the bioprocess. To identify stressed or impaired subpopulations, we analyzed the interplay of growth
rate, cell cycle and phenotypic profile of subpopulations by using flow cytometry and cell sorting in conjunction
with mass spectrometry based global proteomics. Adjusting distinct growth rates in chemostats with the model
strain Pseudomonas putida KT2440, cells were differentiated by DNA content reflecting different cell cycle stages.
The proteome of separated subpopulations at given growth rates was found to be highly similar, while different
growth rates caused major changes of the protein inventory with respect to e.g. carbon storage, motility, lipid
metabolism and the translational machinery.
In conclusion, cells in various cell cycle stages at the same growth rate were found to have similar to identical
proteome profiles showing no significant population heterogeneity on the proteome level. In contrast, the growth
rate clearly determines the protein composition and therefore the metabolic strategy of the cells.

Keywords: Heterogeneity; Subpopulations; Pseudomonas putida; Proteome; Flow cytometry; Cell cycle

Introduction
Commonly applied assumptions consider microbial popu-
lations in bioreactors as uniform, thus leveling individual
properties of subpopulations to averages. However, it is in-
creasingly accepted that clonal microbial cultures com-
prise individuals that are not identical, differing in terms
of DNA content and cell physiology (Brehm-Stecher and
Johnson 2004; Delvigne and Goffin 2013). Heterogeneity
of clonal microbial cultures may result from several dis-
tinct sources, either from internal biological origins, such
as mutations, cell cycle decisions and age distribution, or
from ‘external’ technical factors (Avery 2006; Müller et al.
2010). Notably, external factors interact with biological
properties, yielding the superimposition of both impacts
in the population. Here, we shed light on the impact of

two key players in the origin of population heterogeneity,
the growth rate and the cell cycle.
Traditionally, the cell cycle is suggested to play a role

in the development of population heterogeneity within
clonal populations (Müller et al. 2010). A short summary
of the sequence of cell cycle phases can be found in
Figure 1. The bacterial cell cycle was described for
Escherichia coli comprising the B-Phase, which is de-
fined as the time between division and start of replica-
tion, the replication phase (C-Phase), the pre-D-Phase
(an interphase between the C- and D-Phase) and the
division phase (D-Phase) (Cooper 1991; Müller and Babel
2003). Furthermore, under optimal growth conditions accel-
erated proliferation (also called ‘multifork DNA-replication’)
can be monitored: new rounds of DNA replication may be
initiated before a previous round is completed, puta-
tively providing another source of heterogeneity (Bley
1990; Müller 2007).
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It is suspected, that biosynthesis of biotechnological
interesting compounds occurs in dependency of the cell
cycle, e.g. only within the stochastic B- and pre-D-phases,
when cells are neither replicating nor dividing (Müller
et al. 2010). Ackermann et al. (1995) described for
Methylobacterium rhodesianum that products like polyhy-
droxyalkanoates (PHAs) accumulate only when cells com-
prise a certain chromosome number. This phenomenon
was found to occur at off-cell-cycling stages. In microbial
biotechnology, heterogeneity caused by cell cycling may
cause inefficiently producing subpopulations and could
have significant impact on the overall process perform-
ance (Lencastre Fernandes et al. 2011). Here, we aim to
investigate if the protein inventory of a cell, which is re-
lated to its metabolic activity, is dependent on cell cycle
stages and how growth rates may influence both, protein
composition and cell cycling.
Pseudomonas putida KT2440 was used as a model or-

ganism owing to its numerous qualities as an expression
host, such as safety (Bagdasarian et al. 1981; Nakazawa
and Yokota 1973), fast growth, a fully sequenced genome
(Nelson et al. 2002) and high stress tolerance (Martins

Dos Santos et al. 2004). Together with simple nutrient
demand, the potential to regenerate redox cofactors at a
high rate (Blank et al. 2008) and its amenability to gen-
etic manipulation, P. putida is an ideal host for heterol-
ogous gene expression (Meijnen et al. 2008). With the
advance of genome-wide pathway modeling (Puchałka
et al. 2008) and ‘omics techniques, the way for systems-
wide engineering strategies was paved to turn P. putida
into a flexible cell factory chassis (Yuste et al. 2006).
Consequently, P. putida is more and more explored and
already successfully used for numerous industrial appli-
cations (Poblete-Castro et al. 2012; Puchałka et al. 2008).
In our study, we applied continuous cultivations under

controlled growth conditions at defined growth rates. While
(fed-) batch approaches are characterized by steadily chan-
ging environmental conditions such as media composition,
steady-state modes of a chemostat, where cells are cultivated
with a pre-installed growth rate, are defined by environmen-
tal conditions that remain unchanged (Carlquist et al. 2012).
Notably, (fed-) batch cultures usually represent a mixture of
cells growing with different speed as a consequence of
changing environmental conditions (Unthan et al. 2014).

Figure 1 Schematic overview of the bacterial cell cycle. The bacterial cell cycle can be divided into B, C, pre-D and D phases constituting a
defined order within one generation time. Under unlimited growth conditions, some bacterial species are capable of accelerating proliferation by
uncoupling DNA synthesis from division. As a result, a new round of DNA replication is initiated before the completion of the previous round
(Cooper 1991; Müller et al. 2010).
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Investigating a wide spectrum of growth rates with
chemostat cultivation and sampling at steady state condi-
tions gave a specific and unmasked view on the influence
of the growth rate on population characteristics. Features
like DNA content of the cells, protein composition and
adenylate energy charge measurements were included
in the study. Additionally, subpopulations with differ-
ent DNA content were sorted at growth rates 0.1 h−1,
0.2 h−1 and 0.7 h−1 and analyzed for their proteome
composition.
Summarizing, we investigated if cell cycling subpopu-

lations at the same growth rate were independent and
different from each other on the level of metabolic path-
ways, e.g. whether slow growing cells with longer cell
cycling phases might specialize between proliferation
and production phases. In addition, we wanted to clarify
if cells invest into different protein species under rising
growth rates.

Materials and methods
Bacterial strains and cultivation conditions
Chemicals were purchased from Fluka, St. Gallen, Switzerland.
Experiments were performed with P. putida KT2440
(ATCC 47054) cells originating from a single colony
stored in a working cell bank at −70°C. Cells were cultivated
in M12 minimal salt medium containing 2.2 gL−1 (NH4)2
SO4, 0.4 gL−1 MgSO4 · 7 H2O, 0.04 gL−1 CaCl2 · 2 H2O,
0.02 gL−1 NaCl, 2 gL−1 KH2PO4 and trace elements (2 mgL−1

ZnSO4 · 7 H2O, 1 mgL−1 MnCl2 · 4 H2O, 15 mgL−1 Na3-
citrate · 2 H2O, 1 mgL−1 CuSO4 · 5 H2O, 0.02 mgL−1

NiCl2 · 6 H2O, 0.03 mgL−1 NaMoO4 · 2 H2O, 0.3 mgL−1

H3BO3, 10 mgL−1 FeSO4 · 7 H2O).
A shake flask preculture (150 mL) was started from a

minimal medium working cell bank (8.5 mL) with a glu-
cose concentration of 5 gL−1. At mid-exponential growth
phase, the preculture was used to inoculate the bioreactor
(KLF 3.7 L, Ser. No. 10819, Bioengineering AG, Wald,
Switzerland) to reach a final working volume of 1.5 L. Be-
fore inoculation, the cultivation conditions were set to
30°C, a stirrer speed of 700 rpm, a pressure of 0.5 bar
and an aeration of 2 Lmin−1 sterile filtered ambient air.
The pH was set and maintained at pH 7 with 25% (v/v)
NH4OH. Exhaust gas composition (Blue Sense CO2 and
O2, (DCP-CO2 DCP-02, Blue Sense gas sensor GmbH,
Herten, Germany), dissolved oxygen and pH in the liquid
phase (Ingold, Mettler Toledo GmbH, Giessen, Germany)
were monitored online. After glucose depletion, the batch
cultivation was continued as a chemostat. At steady state
conditions, the dilution rate equals the specific growth
rate μ in a chemostat set-up. Each dilution rate (and there-
fore growth rate) and environmental condition was kept
for 5 residence times. The dilution rate was adjusted by
feeding at a defined flow rate. Weight gain of the reactor
was monitored and a harvest pump was started at a

weight gain of 10 g. Additionally, the dilution rate was
checked manually by measuring the mass of the harvest
outflow within a timespan of one hour before sampling.
Steady state was evaluated online via exhaust air analysis.
Chemostat cultivations were performed in three individual
biological replicates.

Determination of the adenylate energy charge
The adenylate energy charge (AEC) value mirrors the
cellular energy status (Atkinson and Walton 1967) and
can be assessed as follows: Biocatalytic reactions inside
the cells were stopped with 35% (w/v) HClO4. 4 mL bio-
suspension was taken directly into 1 mL of precooled
(−20°C) HClO4 solution on ice and mixed immediately
(Theobald et al. 1997). The sample was shaken at 4°C
for 15 min in an overhead rotation shaker. Afterwards,
the solution was neutralized on ice by fast addition of
1 mL 1 M K2HPO4 and 0.9 mL 5 M KOH (Buchholz
et al. 2001). The neutral solution was centrifuged at 4°C
and 4,000×g for 10 min to remove cell debris, precipi-
tated protein and potassium perchlorate. The super-
natant was kept at −20°C for batch high pressure liquid
chromatography (HPLC) measurements. At each sam-
pling time, the biosuspension sample and a filtrated
sample without cells was treated according to the above
described procedure.
Nucleotide analysis was performed by reversed phase

ion pair HPLC (Theobald et al. 1997). The HPLC system
(Agilent Technologies, Waldbronn, Germany) consisted of
an Agilent 1200 series autosampler, an Agilent 1200 series
Binary Pump SL, an Agilent 1200 series thermostated
column compartment, and an Agilent 1200 series diode
array detector set at 260 and 340 nm. The nucleotides
were separated and quantified on an RP-C-18 column that
was combined with a guard column (Supelcosil LC-18-T;
15 cm× 4.6 mm, 3 μm packing and Supelguard LC-18-T
replacement cartridges, 2 cm; Supelco, Bellefonte, USA)
at a flow rate of 1 ml/min. A gradient elution method
(Cserjan-Puschmann et al. 1999) was adapted and per-
formed with two mobile phases, buffer A (0.1 M KH2PO4/
K2HPO4, with 4 mM tetrabutylammonium sulfate and
0.5% (v/v) methanol, pH 6.0) and (ii) solvent B (70% (v/v)
buffer A and 30% (v/v) methanol, pH 7.2). The following
gradient programs were implemented: 100% (v/v) buffer A
from 0 min to 3.5 min, increased to 100% (v/v) B until
43.5 min, remaining at 100% (v/v) B until 51 min, de-
creased to 100% (v/v) A until 56 min and remaining at
100% (v/v) A until 66 min.
The AEC is calculated according to Atkinson and

Walton (1967):

AEC ¼ ATP½ � þ 0:5⋅ ADP½ �
AMP½ � þ ADP½ � þ ATP½ � ð1Þ
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Sample preparation and staining for flow cytometry
Samples for flow cytometry were washed with PBS, re-
suspended in cryo-protective solution (15% (v/v) glycerol
in PBS according to Jahn et al. (2013)) and stored at −20°C.
Deep-frozen cell samples were thawed on ice and cen-

trifuged for 2 min at 8,000×g and 4°C to remove the
cryo-protective solution. The supernatant was discarded,
the cells were resuspended in ice cold PBS and adjusted
to an optical density of OD600nm = 0.05 in 2 mL volume.
For DNA staining, the cells were centrifuged, taken up
in 1 mL permeabilization buffer (0.1 M citric acid, 5 gL−1

Tween 20), incubated for 10 min on ice, centrifuged again
and the supernatant was removed. Finally, cells were
resuspended in 2 mL ice cold staining buffer (0.68 μM
DAPI, 0.1 M Na2HPO4), filtered through a Partec Cell-
Trics mesh (Partec, Germany) with 30 μm pore size and
stored on ice until analysis.

Flow cytometry and cell sorting
Flow cytometry was performed using biological dupli-
cates. For each biological replicate two technical replicates
were investigated using a MoFlo cell sorter (Beckman-
Coulter, USA) as described before (Jahn et al. 2013;
Jehmlich et al. 2010). Forward scatter (FSC) and side
scatter signals (SSC) were acquired using blue laser ex-
citation (488 nm, 400 mW) and a bandpass filter of
488/10 nm together with a neutral density filter of 2.0
for emission. The DAPI fluorescence was recorded
using a multi-line UV laser for excitation (333–365 nm,
100 mW) and a bandpass filter of 450 ± 30 nm for emis-
sion. The datasets were annotated according to the
miFlowCyt standard (Lee et al. 2008) and are publicly
available on the FlowRepository database (Spidlen et al.
2012). Cells were sorted at the most accurate mode (single
cell, one drop) with a sorting speed of 4,000 s−1 and a
sample chamber cooled to 4°C. For cell sorting a total
number of 5 × 106 cells per replicate were directly sorted
on a filter well plate (LoProdyne™ membrane with
0.45 μm pore size, Nunc, Germany) and the residual
buffer was constantly drawn off by an exhaust pump.
After sorting, the filter membrane was washed three
times with 200 μL PBS, air dried and stored at −20°C
for further analysis.

Identification of proteins by LC-MS-MS
For quantitative proteomics, the filter membrane was
cut into smaller pieces and treated by trypsin for whole
cell proteolytic digestion as described in Jahn et al. (2013).
The obtained peptide solution was purified using the Zip-
Tip protocol (Millipore, USA), dried in a vacuum concen-
trator at 30°C and finally taken up in 20 μL 0.1% (w/v)
formic acid. The solution was separated by nano-ultra per-
formance liquid chromatography and measured by an

LTQ Orbitrap XL (Thermo Fisher Scientific, Germany) as
described in Jahn et al. (2013).

Data analysis
Mass spectra were analyzed by MaxQuant v1.2.2.5 (Cox
and Mann 2008) for protein identification and label-free
quantification with the genome database of P. putida
KT2440 and the settings given in Jahn et al. (2013). The
label-free quantification (LFQ) values were used for fur-
ther data analysis and can be found in the Additional
file 1. The mean, standard deviation and relative quan-
tity of replicates in relation to the reference population
(RP, μ = 0.2 h−1, mean of two biological replicates) was
calculated. The RP was sorted in order to exclude in-
fluences of the sorting procedure on the proteomic
content. Unsorted cells of the 0.2 h−1 grown popula-
tion were used as an unaffected control population
(CP). Student's t-test was performed for significance
testing (p < 0.05) of single proteins. Proteins were an-
notated using COG (clusters of orthologous groups)
(Tatusov et al. 1997) and clustered in two hierarchical
levels of metabolic pathways (‘metabolism’, ‘pathway’).
Protein clusters were tested for significant changes using
the R Bioconductor (www.bioconductor.org) packages
GAGE (Luo et al. 2009) and GlobalTest (Goeman et al.
2006), setting p < 0.05 and a relative fold change (FC)
of 1.5 (log2 FC > 0.58) as thresholds. Hierarchical groups
were visualized using a color-coded circular treemap (Jahn
et al. 2013).

Results
Subpopulation dynamics of P. putida KT2440 were ana-
lyzed in a wide range from slow growth rates starting at
μ = 0.1 h−1 to high growth rates of up to μ = 0.7 h−1. At
growth rates higher than μ = 0.7 h−1, wash out of the
culture was observed, meaning that the maximal growth
rate was exceeded and cells could not reproduce fast
enough to keep the population density constant. For this
reason, μ = 0.7 h−1 was the highest growth rate investi-
gated in this study. The physiological and the energetic
state of the averaged cell population was analyzed by
biomass/substrate yield (Yx/s), biomass specific substrate
uptake rates (qs), and adenylate energy charge measure-
ments (AEC), each measured at steady state growth condi-
tions (Figure 2). Observed stable carbon dioxide emission
rates served as the criterion to qualify the achievement of
steady-state cultivation conditions.
The yield of biomass on glucose increased gradually

by 10% from μ = 0.1 h−1 to μ = 0.5 h−1. Further rise of
the growth rate resulted in yield reductions, returning to
the level at μ = 0.1 h−1 (−10%). The energetic capacity of
the cells can be estimated via AEC, taking the relative
contribution of all three phosphorylated forms of aden-
ine into account. The AEC was found to be stable with
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increasing growth rate until μ = 0.4 h−1. Further increas-
ing the growth rate resulted in a reduction of the AEC
level by – 18% (p-value < 0.01), which was almost the
same at maximum growth, still staying in the range of ex-
pected physiological levels. The specific glucose uptake
rate qs was increasing linearly with increasing growth rate.

To be able to distinguish between subpopulations, flow
cytometry was proven to be a suitable tool shedding
light on the dynamics of single cells within a heteroge-
neous microbial population (Cooper 1991; Müller and
Babel 2003; Shapiro 2000; Skarstad et al. 1985). Here,
the DNA content was monitored via flow cytometry in
addition to forward scattering (FSC) giving relative infor-
mation about cell size (Müller and Nebe-Von-Caron
2010) (Figure 3). The dataset of the biological replicate
can be found in the Additional file 2: Figure S1. The
subpopulation analysis revealed that the major differen-
tial parameter was the alteration of DNA content as
distinguished by flow cytometry. Three subpopulations
could be identified in total: cells containing a single
chromosome equivalent (C1), two chromosome equiv-
alents (C2) and cells with more than two chromosome
equivalents (Cx) (Figure 3). Population composition with
respect to DNA content varied clearly as a function of
growth rates. At μ = 0.1 h−1, 82.0 ± 0.3% of cells contained
a single chromosome equivalent, while only 18.0 ± 0.2%
contained a double chromosome equivalent content. No
Cx subpopulation could be detected. On the contrary, at
the high growth rate of μ = 0.7 h−1 only 1.4 ± 0.8% of cells
belonged to the C1 subpopulation, 16.1 ± 0.1% of cells
contained a double chromosome content and 82.5 ± 1.0%
more than double.
To investigate whether subpopulations with different

DNA content show physiological differences as well, we
sorted the cell population at three growth rates (0.1 h−1,
0.2 h−1 and 0.7 h−1) into subpopulations containing sin-
gle (C1), double (C2) or more than double chromosome
content (Cx) aiming to analyze their proteome profile as
the basis of their phenotype. In total, 677 unique pro-
teins could be detected. 351 proteins were found in at
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Figure 3 Dot plots of DNA content (DAPI, in arbitrary fluorescence units (A.F.U.)) versus forward scatter (FSC, in A.F.U.) at different
growth rates 0.1 h−1, 0.2 h−1 and 0.7 h−1. The dataset of the biological replicate can be found in the Additional file 2: Figure S1. Cells of P. putida
KT2440 grown at steady state conditions in chemostats were stained with DAPI and analyzed by flow cytometry. The DNA content and the forward
scatter increased with increasing growth rate. The indicated gates (C1, C2, Cx) were used for sorting 5x106 cells per subpopulation for further mass
spectrometric analysis.
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population. The specific glucose uptake rate (qs, gGLCgCDWh
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bars), the adenylate energy charge (AEC, dark grey bars) and the
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steady state conditions for different growth rates μ (h−1). The
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of one specific growth rate (0.1≤ μ (h−1)≤ 0.7). Error bars show the
standard deviation between three biological replicate cultivations.
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least one replicate of all subpopulations and 245 proteins
were found across all replicates. 707 different functions
of 647 unique proteins were annotated using the data-
base of clusters of orthologous groups (COG) (Tatusov
et al. 1997) (Additional file 2: Figure S2). 95.2% of the
non-sorted control population (CP) proteome could be
found in the reference population (RP) proteome with-
out significant changes, indicating only a small influence
of cell sorting on protein recovery and confirming the
quality of the analysis.
Significant changes in protein quantity were defined by

exceeding a threshold of more than 1.5 fold change (FC)
in combination with a p-value < 0.05 (Student's t-test).
Changes in metabolic pathways were detected using
GAGE and GlobalTest gene set analysis (Goeman et al.
2006; Luo et al. 2009) applying the same significance
filter as for the individual proteins.
As a result, at any given growth rate, the proteomic

patterns of the subpopulations did not differ significantly
from each other (Figure 4a). When looking at single pro-
teins, only three were detected that comprised signifi-
cantly different levels between subpopulations at growth
rate μ = 0.1 h−1 and μ = 0.7 h−1, respectively. The abun-
dance of cell division protein FtsZ was found to be 3.6
fold lower in subpopulation C1 in contrast to C2. FtsZ is
a bacterial tubulin homologue self-assembling into a ring
at mid-cell level and localizing the bacterial divisome
machinery (Adams and Errington 2009; Weart et al.
2007). The two other proteins were the molecular chaperone
GroEL (FC 1.7) and a P-47-like protein (PP_2007, FC 2.4).
Also at high growth rate of μ = 0.7 h−1, only three proteins,
the translocation protein TolB (FC 1.8), the NADH de-
hydrogenase subunit G (PP_4124, FC 1.51) and a succinyl-
diaminopimelate transaminase (PP_1588, FC 0.26) showed
significant differences between the subpopulations C2 and
Cx. Surprisingly, no changes in metabolic pathways could
be found between subpopulations at any given growth rate.
Comparing the subpopulations of different growth rates

with RP, biologically significant differences were detectable
as tested by gene set analysis (GAGE (Luo et al. 2009) and
Globaltest (Goeman et al. 2006)) (Figure 4b and 4c).
At μ = 0.1 h−1, subpopulations C1 and C2 showed higher
abundance of proteins related to ‘cell motility’, and pro-
teins involved in ‘cell cycle control, cell division and
chromosome partitioning’ (cell cycle) were additionally
highly abundant in subpopulation C2. Apart from COG
annotated pathways, several proteins connected to carbon
storage were found to be significantly changed (Figure 5).
Mirroring low qS at slow growth compared to moderate
growth, four main signaling proteins in chemotaxis
(CheA, CheB, CheW, CheV) as well as 6 methyl accepting
chemotaxis transducers were significantly increased. Fur-
thermore, the low abundance of glycogen synthesis pro-
teins (GlgA, Pgm) and the high abundance of glycogen

hydrolysis proteins (GlgX, GlgP) could be seen together
with an increase of proteins involved in PHA production
(PhaA, PhaC).
In contrast, subpopulations C2 and Cx of fast growing

cells (μ = 0.7 h−1) revealed higher presence of proteins
grouped in the pathway ‘Translation, ribosomal struc-
ture and biogenesis’ (Translation), while proteins of
'Signal transduction mechanisms’ (Signaling) and ‘Lipid
transport and metabolism’ (Lipids), were significantly un-
derrepresented. The faster growth was reflected in proteins
related to translation and therefore protein production.
Here, 11 tRNA synthetases and 25 ribosomal proteins
showed significantly higher abundance. In lipid metabol-
ism, mostly enzymes of beta-oxidation were found in lower
presence at fast growth (Figure 5). The supposed down
regulation of the ‘Cell Cycle’ (C2 versus Cx) was mainly
due to the single protein change of the poorly character-
ized PP_3128.
In summary, the proteome of cells differing in DNA con-

tent but of identical growth rate was highly similar, whereas
the proteome of cells cultivated at different growth rates
was significantly diverging in particular pathways.

Discussion
Considering the influence of different growth rates on
the population, proteome analysis revealed that slow
growth triggered starvation response, while fast growing
cells displayed accelerated protein synthesis and allevi-
ated stress physiology. In slowly growing cells, proteins
connected to PHA synthesis and glycerol hydrolysis
were amplified, indicating higher PHA carbon storage
activity. Additionally, these cells showed protein patterns
anticipating increased motility and chemotaxis response.
Notably, low qS values of slowly growing cells (μ = 0.1 h−1)
were not reflected on the energetic state of the population.
AEC values did not differ significantly between slow and
moderate growth rates of 0.1 h−1 and 0.4 h−1, respectively.
Chemotaxis and cellular motility as a response to carbon-
poor conditions are well-known phenomena in natural en-
vironments (Harshey 2003; Soutourina and Bertin 2003).
Our observations in slowly growing cells are in agreement
with findings of transcriptome studies in ‘average popula-
tions’ of other species. For instance, studies in E. coli
showed higher expression of genes involved in motility
at slower growth rates in direct comparison to faster
growth conditions (Nahku et al. 2010) and studies in
Saccharomyces cerevisiae showed significant amplifica-
tion of carbon storage metabolism at slow growth
(François and Parrou 2001).
Fast growing cells were obviously investing resources

in proteins involved or related to the translation machin-
ery. Multiple ribosomal proteins as well as tRNA synthe-
tases were highly abundant fostering protein/biomass
production (Figure 5). This finding is also in agreement
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with observations in eukaryotes like S. cerevisiae (Rebnegger
et al. 2014) and prokaryotes such as Salmonella typhimur-
ium (Schaechter et al. 1958). Additionally, proteins of typical
carbon storage pathways, e.g. PHA synthesis, were less
abundant in P. putida KT2440. Proteins of lipid biosyn-
thesis, especially involved in beta oxidation were also low-
ered in fast growing cells compared to RP. This observation
is in agreement with the lower abundance of the PHA syn-
thesis proteins, as the beta oxidation provides precursors for
this pathway (Aldor and Keasling 2003).
To our surprise, the almost 6.5-fold increase of the

specific glucose uptake rate with increasing growth
rate (Figure 2), was not mirrored by major changes

among proteins involved in carbohydrate and energy
metabolism.
Notably, relative changes of protein quantity can be elu-

cidated with the method applied here. Absolute changes
per cell, dependent on the growth rate were not measured
with the applied workflow, as it was first shown for the
sum of proteins by Schaechter et al. (1958). Their pioneer-
ing studies described an exponential increase in protein,
DNA and RNA contents and therefore, cell size with in-
creasing growth rates (Bremer and Dennis 1996; Maaløe
and Kjeldgaard 1966; Schaechter et al. 1958). In our study,
the relative cell size estimation was acquired using FSC. In
accordance to various other cell cycle analyses, the FSC
increased with increasing growth rates (Donachie 1968;
Hewitt et al. 1999; Neumeyer et al. 2013; Skarstad et al.
1983) (Figure 3). Following the rational of Schaechter et al.
(1958), this phenomenon reflects increasing protein con-
tents per cell. We presume that the increased amount of
cellular glucose uptake is proportional to the elevated
production of proteins, thus increasing absolute pro-
tein quantity but leaving relative quantity unchanged.
Studying the putative impact of growth rate and cell

cycle stage on the functional diversity of a population,
the growth rate is obviously a major determinant for cel-
lular protein composition, as found in our chemostat
studies. Growth and cell cycle were clearly linked, but
subpopulations showing different DNA content showed
only small differences in cellular physiology at the same
growth rate. The detection of FtsZ in a significant higher
abundance in the C2 subpopulation, which is preparing
for division after finishing replication, is in agreement
with its assigned function as a proposed diffusible factor
(Teather et al. 1974) initiating cell division (Chien et al.
2012). Despite this cell cycle related finding, subpopula-
tions showed almost identical protein patterns irrespect-
ive of cell sizes, anticipated protein mass (Lindmo 1982;
Rønning et al. 1979) and DNA content.
Surprisingly, no signs for a specialization of cells in dif-

ferent cell stages for e.g. carbon storage or protein produc-
tion/growth could be observed that could support the
hypothesis of shared tasks of subpopulations in B- and
pre-D/D-phases during the cell cycle. This result is re-
markable: subpopulations distinguished by DNA content

µ=0.1h-1, C1

µ=0.1h-1, C2

µ=0.7h-1, C2

µ=0.7h-1, CX

µ=0.1h-1, C1

µ=0.1h-1, C2

µ=0.7h-1, C2

µ=0.7h-1, CX

Figure 5 Heatmaps of metabolic pathways of special interest.
The log2 fold changes of annotated proteins are visualized ranging
from blue (low abundance) to red (high abundance). A detailed
annotation of the protein names can be found in the Additional file 1.
One line of the heatmap represents the different subpopulations (C1, C2
and Cx) at different growth rates (μ= 0.1 h−1, μ= 0.7 h−1). Proteins of
the specific pathways are shown column-wise.

(See figure on previous page.)
Figure 4 Circular treemaps visualizing differentially expressed functional protein categories. Proteins detected by mass spectrometry were
clustered according to their pathway annotation in COG covering two levels of specificity (Tatusov et al. 1997). The size of a sector is proportional
to the number of proteins found in one specific pathway in relation to the total protein number. The color code represents the log2 mean fold
change (log2 FC) of protein quantity in one pathway. The color blue codes for an underrepresentation, red for an overrepresentation of the
proteins in a pathway compared to the reference population (RP, μ = 0.2 h−1). Pathways with a fold change in the range log2 FC < −0.58 and log2
FC > 0.58 are labeled with the respective pathway name. Pathways that were significantly changed using GAGE (Luo et al. 2009) and Globaltest
(Goeman et al. 2006) gene set analysis are additionally marked (*). a. Comparison of the subpopulations C1/C2 and C2/Cx at growth rates 0.1 h−1

and 0.7 h−1, respectively. b. Comparison of the subpopulations C1 and C2 at μ = 0.1 h−1 with RP. c. Comparison of the subpopulations C2 and
Cx at μ = 0.7 h−1 with RP.

Lieder et al. AMB Express 2014, 4:71 Page 8 of 10
http://www.amb-express.com/content/4/1/71

2.2. Published articles

59



appear to be physiologically highly similar provided that
the growth rate is the same.
Although we are aware that subpopulations do not mirror

single cell proteome compositions, the high resemblance of
the subpopulations proteome patterns at the various growth
rates point to their nearly identical physiological state.
One may argue whether this finding was influenced by

the operation mode ‘chemostat’. We identified the high
similarity among subpopulations by installing distinct
growth rates, because superimposing impacts in classical
(fed-) batch fermentations would have prevented the un-
equivocal growth-to-subpopulation analysis. However,
the chemostat approach might have excluded the detec-
tion of subpopulations with different protein contents
because this ‘growth rate filter’ was installed. Assuming
that cells aim to grow with the least energetic burden as
possible, cellular protein compositions should be opti-
mized at a given growth rate. Therefore, it could not be
excluded, that subpopulations showing different protein
patterns may have existed, but were washed-out because
they could not achieve the required growth rate. While
the latter demands for further in-depth analysis, the de-
termining impact of growth on cell cycle and subpopula-
tions is clearly visible. It gives rise to the assumption
that the cell cycle itself has a minor impact on popula-
tion heterogeneity under the conditions tested.
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ABSTRACT: Many biotechnological processes rely on the
expression of a plasmid-based target gene. A constant and
sufficient number of plasmids per cell is desired for efficient
protein production. To date, only a few methods for the
determination of plasmid copy number (PCN) are available, and
most of them average the PCN of total populations disregarding
heterogeneous distributions. Here, we utilize the highly precise
quantification of DNA molecules by droplet digital PCR (ddPCR)
and combine it with cell sorting using flow cytometry. A duplex
PCR assay was set up requiring only 1000 sorted cells for precise
determination of PCN. The robustness of this method was proven
by thorough optimization of cell sorting, cell disruption, and PCR
conditions. When non plasmid-harboring cells of Pseudomonas
putida KT2440 were spiked with different dilutions of the expression plasmid pA-EGFP_B, a PCN from 1 to 64 could be
accurately detected. As a proof of principle, induced cultures of P. putida KT2440 producing an EGFP-fused model protein by
means of the plasmid pA-EGFP_B were investigated by flow cytometry and showed two distinct subpopulations, fluorescent and
nonfluorescent cells. These two subpopulations were sorted for PCN determination with ddPCR. A remarkably diverging
plasmid distribution was found within the population, with nonfluorescent cells showing a much lower PCN (≤1) than
fluorescent cells (PCN of up to 5) under standard conditions.

Plasmids are simple and convenient expression systems for
recombinant protein production in numerous biotechno-

logical processes.1,2 In contrast to chromosomal expression,
plasmids have the advantage of multiple copies per cell,
resulting in higher gene dosage. Plasmid retention is usually
ensured by means of a selection pressure, such as an antibiotic
or a toxin/antitoxin system.3 The number of plasmid copies
within a cell (plasmid copy number, PCN) is a crucial factor for
efficient recombinant gene expression. It is calculated as the
number of plasmid copies per chromosome,1,4 as done in this
study, or alternatively as plasmid copies per cell.5 The PCN
largely depends on the plasmid’s replication system and on its
structural and segregational stability.1

Plasmid distribution is not perfectly even in a population but
shows variation from cell to cell.6 The mean and variance of
PCN is determined by the segregation mechanism, which can
be based on random partitioning or an active partitioning
system.7,8 Mathematical models suggest that high variance in
plasmid distribution leads to more frequent occurrence of
plasmid-free cells,8 especially when random partitioning goes
along with a low mean PCN.9 The plasmid-free subpopulation
can enrich and out-compete the plasmid-carrying cells.10,11

Such processes can be monitored on the single-cell level using a

plasmid-based fluorescent reporter protein in combination with
flow cytometry. For instance, in P. putida KT2440, plasmid-
based gene expression using the alk regulatory system12 was
found to follow a bimodal distribution with the majority of cells
having either strong fluorescence of enhanced green fluorescent
protein (EGFP+) or weak enhanced green fluorescent protein
(EGFP−).13 Both cell types were sorted for proteomic analysis,
which suggested either a difference in PCN or a differential
expression of plasmid-located genes as the cause for
heterogeneity.
Although plasmid presence can be indirectly inferred using

traditional plating on selective media or fluorescent report-
ers,6,13 such methods are biased by incomplete cultivability and
uncontrollable influences on the formation of the reporter
protein, respectively, the latter comprising variable tran-
scription, translation, and protein folding. Direct methods to
determine PCN make use of gel or capillary electro-
phoresis,14,15 liquid chromatography,16 and quantitative real-
time PCR (qRT-PCR).4,5,17 qRT-PCR proved to be specific,
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accurate (CV of 10−20%4,5), and provided a high dynamic
range of plasmid detection from 102 to 109 copies.4 However,
all these methods strongly depend on DNA standards for
absolute quantification of PCN, and qRT-PCR requires the use
of dilution curves for PCR efficiency calculation.4 The PCR
efficiency can dramatically influence the determination of PCN
as it is the base of the Cq exponent in PCN calculation. Errors
in PCR efficiency will therefore affect PCN exponentially with
increasing Cq. Another source of variation is the processing of
the sample to obtain analysis-grade DNA from whole cells.
PCR-based methods require only small amounts of sample
DNA, but extraction, purification, and linearization of DNA can
distort PCN. To avoid DNA loss during preparation and
simplify sample treatment, a whole cell disruption procedure
using heat at 95 °C was developed for copy number analysis by
qRT-PCR.4,5 For that, the amount of starting material must be
sufficient for accurate amplification without stochasticity, but
on the other hand, the content of starting material should not
exceed amounts where inhibition by cell debris occurs. The
number of cells used per PCR reaction by Carapuca et al.5 was
at least 5 × 104, and Skulj et al.4 used different dilutions ranging
from 102 to 105 cells, the lower being the threshold for the
occurrence of stochasticity.
A novel PCR-based method for highly accurate quantification

of DNA copy number is digital PCR, which is based on the
subdivision of a single PCR reaction mixture into many small
partitions, each undergoing the PCR reaction separately.18,19 A
major advantage of digital PCR compared to qRT-PCR is the
simplified experimental procedure. Neither dilution curves for
PCR efficiency calculation nor DNA standards for absolute
quantification are required. Digital PCR is also more precise
than qRT-PCR due to higher robustness and thus allows
significant detection of smaller fold changes between
samples,20−22 although qRT-PCR offers a higher dynamic
range.23 Digital PCR for DNA copy number analysis has been
applied to a number of different targets,21,22,24,25 among them
plasmids from clinical26,27 as well as environmental samples.28

However, a thorough characterization of PCN in bacteria with
focus on population heterogeneity was, to our knowledge, not
performed to date.
In this study, a novel approach to determine PCN is

presented using P. putida as a model organism. We used flow
cytometry to identify subpopulations by differences in plasmid-
based EGFP gene expression. A similar approach using cell
sorting in combination with proteomics has already been used
to analyze population heterogeneity in bacteria.13,29,30 Here,
small numbers of cells were sorted and accurately deposited in
micro wells for subsequent PCN analysis by droplet digital
PCR (ddPCR).31 A workflow was established using duplex
detection of genomic and plasmid DNA of only 1000 cells,
revealing remarkable heterogeneity of plasmid copy number in
a population of P. putida KT2440.

■ EXPERIMENTAL SECTION
The cultivation of bacteria, construction of plasmid, trans-
formation of cells, and statistical methods are described in detail
both in the experimental section and in Table S-1 of the
Supporting Information.
Flow Cytometry and Cell Sorting. Deep-frozen samples

were prepared as described in Jahn et al.32 Briefly, samples were
analyzed with a MoFlo cell sorter (Beckman-Coulter) as
described in Jehmlich et al.29 Forward-scatter (FSC) and side-
scatter signals (SSC) were acquired using blue laser excitation

(488 nm, 400 mW) and a bandpass filter of 488/10 nm
together with a neutral density filter of 2.0 for emission. The
EGFP fluorescence was detected in channel FL1 using blue
laser excitation and a bandpass emission filter of 530/40
together with a neutral density filter of 0.3. The sheath buffer
was composed as given in Koch et al.33 with a 2-fold dilution.
Prior to all measurements the instrument was adjusted with
fluorescent beads33 and EGFP expressing P. putida KT2440
cells as a biological standard. Data were recorded at a speed of
3000 cells/s (or lower for cell sorting) using Summit v4.3
software (Beckman-Coulter) and further analyzed using the
Bioconductor framework for R.34 Cells and beads (Fluoresbrite
Bright Blue Microspheres, Ø = 0.5 μm, Polysciences) were
sorted using the MoFlo cell sorter and deposited in 8-well PCR
strips (G003-SF, Kisker Biotech) using the CyCLONE robotic
tray. Unless otherwise stated, 1000 cells or beads (equaling to 1
μL of volume) were sorted into one tube of an 8-well strip
prefilled with 7 μL of dH2O at a speed of 100−200 particles/s.
The most accurate sorting mode (Single Cell and One Drop
mode) was used for highest purity. Cell and bead populations
were gated according to the FSC, SSC, and FL1 (EGFP) signal
intensity. To control for accurate sorting, P. putida KT2440
untransformed cells were spiked with beads prior to analysis,
and a number of 1000 beads or cells were sorted as the no-
template-control or no-plasmid-control, respectively. Sorted
samples were immediately stored at −20 °C.

Sample Preparation for ddPCR. The heat treatment
method previously reported4,5 was adapted to extract DNA
from whole sorted cells. If not stated otherwise, samples were
thawed on ice, heated at 95 °C for 20 min in a Tetrad 2
thermo-cycler (Bio-Rad), and immediately cooled on ice again.
The samples were briefly centrifuged at 500 × g for 3 s to
remove residual liquid from the tube walls. Different incubation
times for heat treatment ranging from 0 to 60 min were tested
with ddPCR, and the condition with the highest obtained copy
numbers was chosen for further experiments. Control samples
containing only pure DNA as template were heated for 5 min.
For dilution curves, samples were spiked with 2 μL of plasmid
solution obtained by serial dilution of a plasmid stock (109

copies/μL). DNA concentration of plasmid stocks was
determined using a NanoDrop spectrophotometer (Thermo
Scientific).

Primer and Probe Design. Primers and probes were
designed with Primer335 and optimized with PerlPrimer36

regarding primer dimers, self-priming, melting temperature,
aspired G/C content of 30−80%, and the presence of GC
clamps. Gene sequences were retrieved from www.
pseudomonas.com, and all oligonucleotides were tested for
specificity using Primer-BLAST (NCBI) with the genome
sequence of P. putida KT2440 and E. coli BL21 as a negative
control. Designed probes were modified at the 5′ end with the
fluorophore FAM for reference genes ileS/glyA and HEX for
the plasmid-located markers styA/oriT, and all were modified at
the 3′ end with the quencher BHQ-1. All oligonucleotides were
obtained from Eurofins MWG Operon. Probes and primers
were tested according to the dMIQE guidelines,23 including
optimal concentration, annealing temperature, formation of a
single product (using qRT-PCR and gel electrophoresis), and
discrimination of negative and positive droplets in uniplex and
duplex assays (using ddPCR). A summary of used oligonucleo-
tides is listed in Table S-2 in Supporting Information, and the
dMIQE checklist is given in Table S-3 in Supporting
Information.

Analytical Chemistry Article

dx.doi.org/10.1021/ac501118v | Anal. Chem. XXXX, XXX, XXX−XXXB

2.2. Published articles

63



Droplet Digital PCR. For ddPCR, a duplex reaction setup
was used with simultaneous detection of a reference gene and a
plasmid-located target. A single reaction volume of 20 μL
contained 10 μL 2x ddPCR Supermix (Bio-Rad), 2 μL of
primers (final concentration of 900 nM) and probes (final
concentration of 250 nM for ileS/glyA, 125 nM for styA/oriT),
and 8 μL of template solution. A master mix containing all
ingredients except the template was prepared and added to the
heat-treated samples in 8-well strips. The samples were
thoroughly mixed, briefly centrifuged at 500 × g for 3 s, and
transferred to DG8 cartridges (Bio-Rad) for droplet generation
with the QX100 system (Bio-Rad) according to the
manufacturer. Generated droplets were transferred to a twin.tec
96-well PCR plate (Eppendorf) and sealed for 5 s with a heat
sealer (Eppendorf). The PCR reaction was performed in a
Tetrad 2 thermo-cycler with the following program: 95 °C for
10 min, 40 cycles of 94 °C for 30 s and 58 °C for 60 s, 98 °C
for 10 min, with a ramp rate of 2.5 °C/s. Droplets were
analyzed with the QX100 droplet reader with simultaneous
detection of FAM and HEX.

■ RESULTS
DNA Extraction by Heating. The quality of PCN

determination strongly depends on the correct ratio of genomic
DNA (gDNA) to plasmid DNA (pDNA). Every sample
treatment step increases the probability of losing DNA.
Therefore, we chose a sample treatment solely based on
heating at 95 °C and subsequent cooling on ice. It was shown
that heat treatment in a range of 5 to 20 min is effective for cell
disruption.4 To evaluate the effect of heat treatment on DNA
integrity, pure plasmid DNA was heated for a duration ranging
from 0 (not heated) to 20 min and analyzed by agarose gel
electrophoresis (Figure 1A). For 0 and 2 min, distinct bands
representing different plasmid DNA conformations37 were
found. In contrast, heat treatment for 5 to 20 min led to
fragmentation of DNA indicated by smeared bands with a size
ranging from 1 to 5 kb. To evaluate the effect of heat treatment
on whole bacterial cells, 1000 cells of P. putida KT2440 carrying
the plasmid pA-EGFP_B were sorted in micro wells and heated
for 0 (not heated) up to 60 min. Generally, for quantification of
pDNA, the gene styA or the origin of transfer oriT, and for
gDNA, the genes glyA or ileS were used as markers for
detection with ddPCR, respectively (Table S-2, Supporting
Information). Using a duplex reaction with styA and ileS, the
concentration increased for both markers up to a duration of 20
min (Figure 1B). However, prolonged heating (≥40 min)
reduced the detectability of the gDNA marker by 50%,
indicating a loss of template molecules due to excessive
fragmentation. The PCN was calculated as the ratio of pDNA
to gDNA concentration (Figure 1C), which was highly similar
for samples heated for 2 to 20 min (3.8 ≤ PCN ≤ 4.2).
Nonheated samples showed a strongly reduced PCN of 2, and
samples heated for 40 or 60 min showed a high PCN of 8 due
to loss of gDNA (Figure 1B). As a result, a heat treatment of 20
min was used for further experiments with P. putida, as it
provided the highest concentration for the gDNA marker.
Digital PCR for PCN Analysis of Sorted Cells. To

determine the PCN of selected microbial cells in heterogeneous
populations, we developed a workflow combining cell sorting
and digital PCR. This workflow was optimized toward
simplicity featuring as few sample preparation steps as possible
(Figure 2). First, small and defined cell numbers were
deposited into micro wells via cell sorting and heated for 20

min at 95 °C to disrupt the cells. Then, ddPCR master mix was
added, droplets were generated, the PCR reaction was
performed, and the mixture of positive and negative droplets
was analyzed via a microfluidic ddPCR reader. To ensure
reliable DNA quantification, the PCR reaction conditions were
optimized regarding primer and probe sequence, concentration,
and annealing temperature.
Unlike qRT-PCR, digital PCR is more robust against a

reduced PCR efficiency.23 For example, four different primer
combinations for the detection of ileS yielded mean
fluorescence intensities of positive droplets between 4538 and
8469 arbitrary units (Figure S-1A, B, Supporting Information).
However, the total number of positive droplets and thus the
absolute gDNA concentration in copies/μL was highly similar
for all primer pairs (37 ≤ C ≤ 44 copies/μL, Figure S-1C).
Furthermore, the assay was adjusted to detect pDNA and
gDNA simultaneously using a duplex setup with HEX- and
FAM-labeled probes, respectively. A better discrimination of
double positive droplets was achieved by reducing the
concentration of HEX-labeled probes from 250 to 125 μM
(Figure S-2, Supporting Information).

Figure 1. Heat disruption of bacteria for DNA isolation. (A) Agarose
gel electrophoresis of isolated plasmid DNA (pA-EGFP_B) after
heating at 95 °C for 0−20 min. kbp, kilo base pairs. L, 1 kbp ladder.
(B) Digital droplet PCR for determination of plasmid copy number
(PCN) using different heating times (0−60 min). The template
comprised 1000 sorted cells of P. putida KT2440 pA-EGFP_B grown
on minimal medium for 24 h. A duplex setup with one plasmid (styA)
and one genomic DNA marker (glyA) was used for absolute
quantification (cp/μL, copies/μL). (C) PCN was calculated as the
ratio of styA/glyA copy number. Gray symbols, replicate values. Black
symbols, mean ± standard deviation.
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To test the reliability of the simultaneous quantification of
gDNA and pDNA, the duplex assay was compared with the
uniplex assays using an artificial mixture of gDNA and pDNA as
template. The respective uniplex assays yielded the same copy
number for each template type as the duplex assay, excluding
cross talk between both assays (Figure S-3A, Supporting
Information). In a duplex PCR assay, amplification can be
disturbed by different template types, such as gDNA and
pDNA, interfering in the detection of each other. To exclude
this, latex beads or gDNA were spiked with pDNA and used as
template, resulting in no significant differences between
samples (Figure S-3B).
To test the dynamic range of plasmid quantification, a log2

dilution series of pDNA was analyzed using ddPCR with 1000
sorted beads per well as a negative control for the gDNA
marker (Figure 3A). The detection was linear (slope = 1.02)
with a good quality of fit (R2 = 0.992) in a range of 80 to 5000
copies/μL, spanning 7 log2 scales. In contrast to pure DNA as a
template, the presence of cellular material may inhibit the PCR
reaction. Therefore, the same plasmid dilution series was
analyzed with a number of 1000 untransformed cells of
P. putida KT2440 instead of beads (Figure 3B), and no
significant difference between both experiments was found
(slope = 0.99, R2 = 0.996). According to this result, the
influence of 1000 lysed cells on pDNA detection was negligible.
As ddPCR is a very sensitive method and theoretically able to

detect a single target molecule. We tested different numbers of
sorted cells ranging from 0 to 10 000 for PCN quantification.
With a total number of ∼20 000 droplets per reaction, a
limitation of template molecules is reasonable to avoid
overloading of droplets. When no cells were sorted, ≤ 5
droplets per well were positive (0−0.5 copies/μL, Figure 4).
With increasing number of sorted cells (10−1000), the
precision of pDNA and gDNA quantification increased in
terms of standard deviation of PCN and was optimal for 500−
2000 sorted cells (PCN1,000 cells = 2.2 ± 0.15). However, a cell
number higher than 2000 led to reduced fluorescence for the

reference gene ileS (Figure 4A) and therefore underestimation
of gDNA copy number (Figure 4B). Thus, we used a number
of 1000 sorted cells for further experiments.

Figure 2. Workflow for cell sorting and droplet digital PCR. Cells were cultivated and analyzed by flow cytometry to detect and select
subpopulations of interest (e.g., cells expressing EGFP). A number of 1000 cells per replicate was sorted in micro well tubes and heated at 95 °C for
up to 20 min for cell disruption, resulting in the release of plasmid and genomic DNA (blue). PCR master mix was added to the sample (not shown),
and up to 20 000 droplets were generated from a 20 μL PCR mixture. The duplex PCR reaction was performed in a standard benchtop cycler where
amplification takes place in every droplet individually. Positive and negative droplets for both channels were counted by a microfluidic analyzer
(gDNA marker in blue, pDNA marker in green, double positive in brown), and absolute copy number was calculated using Poisson statistics.31

Figure 3. Plasmid DNA dilution series with sorted beads (A) and
sorted cells (B) as controls. The copy number of styA was determined
in a dilution series of plasmid pA-EGFP_B. Seven log2 dilutions of
plasmid ranging from 1:1 (5000 copies/μL) to 1:64 (80 copies/μL)
contained either 1000 sorted beads as no template control (A) or 1000
untransformed (WT) cells of P. putida KT2440 (B). Cp/μL, copies/
μL.
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Principally, it can be expected that not all selected cells are
correctly sorted, lysed, and accessible for PCR. To test the
ability of the assay to detect the absolute DNA copy number,
cells of P. putida KT2440 originating from a chemostat
cultivation (S. Lieder, 2014, submitted for publication) were
stained with DAPI resulting in two distinct subpopulations with
respect to DNA content, C1n and C2n (Figure 5A). For each
of these two subpopulations, 1000 cells were sorted. If the
chromosome of the C1n and C2n subpopulations contained
only one and two gDNA copies each, perfect ddPCR
quantification would yield 1000 and 2000 copies, respectively.
The detected copy numbers in two biological replicates were
700 and 732 for C1n, and 1428 and 1396 for C2n, respectively
(Figure 5B). This represents ≥70% of the theoretical copy
number, showing that not all contained template molecules can
be detected. Concomitantly, it was proven that 1 and 2 copies
of the same gDNA marker can be discriminated in sorted cells
with high precision using ddPCR and that the number of
chromosomal copies (C1n, C2n) of P. putida KT2440
measured by flow cytometry corresponds to the number of
copies measured by ddPCR.
PCN of Subpopulations during Protein Production.

The presented method was used to determine the hetero-
geneity of PCN in a culture of P. putida KT2440 producing the
EGFP fusion protein StyA-EGFP. We hypothesized that
EGFP− cells lost the plasmid during cultivation probably due
to a naturally high resistance of Pseudomonas against antibiotics.
To test this, cells were precultivated two times successively for
16 h in the presence of different kanamycin concentrations (0,
50, 500 μg/mL). Next, the cells were cultivated without
kanamycin, as it inhibits protein synthesis at the ribosome,38

but instead, the cells were treated with DCPK to induce StyA-
EGFP protein production (Figure S-4, Supporting Informa-
tion). The proportion of fluorescent cells was analyzed by flow
cytometry (Figure 6A). In this analysis, 1,000 cells of the
EGFP− and EGFP+ subpopulations were sorted, and the PCN
was analyzed using ddPCR (Figure 6B). The EGFP+
subpopulation was first detected after 2 h of induction and
increased in fluorescence intensity over a time period of 24 h.

The proportion of the EGFP+ cells was lowest for 0 μg/mL
and highest for 500 μg/mL kanamycin in precultivation, but
never exceeded 20% of all cells. The PCN of the two
subpopulations was remarkably different (Figure 6B). EGFP+
cells showed a PCN of 2−3 for 0 and 50 μg/mL and a higher
PCN of 3−5 for 500 μg/mL kanamycin, whereas the PCN of

Figure 4. Different numbers of cells sorted for PCN analysis. Different cell numbers of P. putida KT2440 ranging from 0 to 10 000 cells were sorted,
and the PCN was determined by ddPCR. (A) Dot plot of droplet fluorescence obtained via ddPCR. Two replicates of each cell number for the
genomic DNA marker ileS and plasmid marker styA are shown, respectively. For high cell numbers (5000 and 10 000 cells), the fluorescence
amplitude of ileS positive droplets declined. Arbitrary units, a.u. (B) Absolute copy numbers of ileS and styA with four replicates per condition. Cp/
μL, copies/μL. (C) Plasmid copy number (PCN) of sorted cells. Gray symbols, replicate values. Black symbols, mean ± standard deviation.

Figure 5. Genomic DNA copy number of DNA stained cells. P. putida
KT2440 from a chemostat cultivation was stained with DAPI and
analyzed by flow cytometry. (A) Histogram showing subpopulations
with one and two chromosome copies (C1n, C2n). For each
subpopulation, 1000 cells per well were sorted in two biological
replicates (R1, R2). (B) The gDNA copy number was determined
using ddPCR with the reference gene ileS. The obtained copies/μL
were multiplied with the total reaction volume of 20 μL to yield
copies/1000 sorted cells. Gray area: sorted beads as negative control,
total population R1 as positive control. Gray symbols, replicate values.
Black symbols, mean ± standard deviation.
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EGFP− cells was ≤1 for 0 and 50 μg/mL. However, we found a
PCN up to 3 for EGFP− cells after 4 h of cultivation when
precultivated with 500 μg/mL of kanamycin. Nevertheless, for
all tested conditions, the PCN of EGFP− cells decreased over
time, whereas the PCN of EGFP+ cells remained rather
constant. In summary, the overall plasmid copy number was
low according to general classification1 and showed strong
variation between EGFP+ and EGFP− subpopulations. Under
low selection pressure of 0−50 μg/mL kanamycin, the plasmid
was readily lost during successive cultivation, whereas high
selection pressure led to better retention of the plasmid.
Notably, not all plasmid-carrying cells produced the EGFP
fusion protein. It should be noted, however, that in this study,
the PCN was calculated as per chromosome, and as one cell can
have multiple copies of chromosomal DNA, the PCN per cell
can be considerably higher.

■ DISCUSSION

To determine the distribution of PCN in a population, we
developed a novel method based on single-cell sorting of
bacteria and digital PCR. Conventional qRT-PCR and digital
PCR have already been used to estimate PCN4,5,26,27 but only
for total populations of bacteria. As the mean PCN of a
population conceals cells without a plasmid, we aimed to
determine the PCN in different subpopulations of interest, such
as protein-producing and nonproducing cells. To this end, we

used flow cytometry for cell sorting and droplet digital PCR for
simultaneous detection of plasmid and genomic DNA in sorted
cells. The method was applied to a P. putida model system with
highly variable protein production, where the level of EGFP
fluorescence indicates the presence or absence of the target
protein.13

The first step of the workflow after cell sorting is DNA
extraction, which was implemented by using a heat treatment,
thereby omitting further washing and precipitation of DNA.4

Heat disruption is simple, fast, and especially suitable for a
small number of cells, as constituents of a greater number of
lysed cells may inhibit PCR.39 Indeed, inhibition was observed
when more than 5000 cells were used in a 20 μL PCR reaction
volume, which may either be due to remaining cell constituents
or a high salt concentration40 (up to 35 μM NaCl) originating
from the sheath fluid in cell sorting. The optimal number of
sorted cells to avoid stochasticity and inhibition ranged
between 500 and 2000 cells, which is less or equal compared
to other studies using whole cells for quantitative PCR.4,5

Heat disruption of cells is a critical step in PCN
determination, because DNA is degraded by heat if not
protected by (PCR) buffer.41 We tested if heat treatment
reduces DNA integrity, and we found fragmentation of plasmid
DNA with increasing incubation time, as analyzed by gel
electrophoresis. Nevertheless, the heat treatment was beneficial
for DNA copy number yield in a range of 2 to 20 min for

Figure 6. PCN after cultivation with different concentrations of antibiotic. P. putida KT2440 pA-EGFP_B was precultivated two times with different
kanamycin concentrations (0, 50, 500 μg/mL). For protein production, a third cultivation was performed without kanamycin to prevent inhibition of
translation, but DCPK was added to induce expression of StyA-EGFP. (A) StyA-EGFP formation was monitored over 24 h using flow cytometry. X-
axis, forward scatter (FSC); y-axis, EGFP fluorescence. White and light blue background marks fluorescent and nonfluorescent subpopulation,
respectively, with proportion of cells in gray. Rectangular gates in green (EGFP+) and black (EGFP−) surround the subpopulations that were sorted
for PCN analysis. (B) PCN of sorted subpopulations (green, EGFP+; black, EGFP−).
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P. putida KT2440, a similar range as reported for E. coli (10−20
min).4,5 However, we recommend optimizing the duration of
cell disruption for every species or cell type individually, as
unequal degradation of plasmid and reference gene will alter
the PCN.
The next step after isolation is usually the quantification of

plasmid DNA, often performed with HPLC or electrophoresis.
Unfortunately, both of these methods require relatively large
amounts of isolated DNA and comparison with standard
curves.1 In contrast, qRT-PCR is able to detect much smaller
amounts of the specimen, but it can result in false estimation of
PCN when performed without reference genes (absolute
quantification). One reason is that amplification of template
DNA is never 100% efficient.41 Another reason is that absolute
quantification of plasmid copies per cell requires the cell
number as a reference,5 which is often indirectly and
inaccurately inferred from optical density.42,43 In contrast, the
method presented here is based on sorting whole cells and
performing duplex digital PCR and therefore does not suffer
from these disadvantages. First of all, cell sorting allows the
exact deposition of a number of cells from subpopulations of
interest. For instance, we sorted cells according to their defined
DNA content (C1n, C2n) and were able to distinguish one and
two chromosome copies with excellent precision. Moreover,
70% of all theoretically contained DNA copies of lysed cells
were detected. Nevertheless, the fact that not all theoretically
contained DNA copies were detected might be due to loss of
cells during sorting, although this appears improbable because a
high sorting efficiency with ≥95% recovery was usually
achieved with fluorescent beads. More likely, loss of DNA
due to heat fragmentation or incomplete lysis of cells led to
false negative droplets in ddPCR. For PCN determination,
these errors can be reduced by relative quantification with a
chromosomal marker as the reference. In combination with a
duplex reaction setup, this also corrects well-to-well variations
of cell number or reaction volume. Finally, the use of reference
genes also corrects for melting double-stranded DNA to single
DNA strands, which are independently distributed in a ddPCR
reaction volume and hence increase copy number.41

Compared to qRT-PCR, digital PCR has a lower dynamic
range of quantification.23 For the purpose of PCN
quantification, we tested a dynamic range of 1 to 64 plasmid
copies per chromosome and verified that quantification was
highly linear and accurate. The determination of higher PCNs
may be possible as well. But the bottleneck of digital PCR is the
number of partitions (droplets) per reaction23 and, to avoid
inhibition or overloading of droplets, a reduction of cell number
to less than 1000 could be a solution, as evaluated in this study.
If, however, ideal conditions without inhibition are assumed,
the total number of 20 000 droplets would lead to an upper
detection limit of around 105 template molecules, correspond-
ing, for example, to 104 cells with a PCN of 10, whereas higher
cell numbers would result in saturation (positive droplets only).
In comparison, qRT-PCR was reported to be linear in a higher
dynamic range of 102−105 bacteria with a PCN of up to 2504.
Apart from this limitation, digital PCR is more robust regarding
systematic errors when compared with qRT-PCR, as PCR
efficiency does not play a role for quantification.
As an example, the PCN was determined in a highly

heterogeneous population of P. putida KT2440 producing the
plasmid-borne recombinant protein StyA-EGFP. With EGFP
fluorescence as a signal for protein production, a strongly
reduced PCN was found in EGFP− cells compared to EGFP+

cells, when precultivated under standard selection conditions
(50 μg/mL kanamycin). Thus, the missing protein production
can be directly ascribed to the lack of the respective genetic
information. But interestingly, when the concentration of
antibiotic was raised 10-fold, the PCN of both subpopulations,
EGFP+ and EGFP− cells, increasedsome cells carried the
plasmid, but were nevertheless unable to produce the desired
protein. This implies that impaired protein production was not
solely caused by plasmid loss but by other factors as well. The
formation of functional EGFP may be slowed down because it
is fused to StyA and requires the time-consuming maturation of
the chromophore.44,45 Conversely, the full induction leads to
deleterious effects on translation or viability of cells.11 Lastly,
the antibiotic kanamycin inhibits protein synthesis directly at
the ribosome.38 Although it was not added during induction, it
is possible that kanamycin still remains bound to the ribosome
due to its high binding affinity (1.4 × 10−6 ≤ Kd ≤ 1.8 ×
10−5),46−49 or leads to aggregation of misfolded proteins during
precultivation,50 and thereby stresses cells even after the
removal of the antibiotic.

■ CONCLUSION
We developed a method for the quantification of plasmid copy
number in bacteria using accurate sorting of intact cells by flow
cytometry, heat disruption of cells, and quantification of
plasmid and genomic DNA markers by droplet digital PCR.
This workflow allowed the precise and easy analysis of PCN
using only 1000 sorted cells and provided new insights in
unequal plasmid distribution as a driver for population
heterogeneity. Using a model gene expression system in
P. putida KT2440, the heterogeneity in protein production
could be directly related to plasmid copy number variation,
although other reasons preventing the formation of EGFP may
play a role as well. Apart from plasmid copy number, the
combination of cell sorting and digital PCR can be used to
quantify any DNA molecule or sequence in question and may
even be adapted for RNA quantification.
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3 Discussion

3.1 Enlarging the toolbox for microbial single cell analysis

Analysis of heterogeneity in microbial populations always depends on the toolbox that is avail-

able. Microbial populations in biotechnology have traditionally been characterized using bulk

measurements such as western blotting to determine the amount of a target protein, or enzyme

assays for the catalytic activity of cells. All these techniques are valuable and indispensable, but

provide only an averaged view on the population. In the last decade the interest has shifted from

the population to the single cell as the catalytic unit, and this development was boosted by me-

thodical advances. The dominant techniques to analyze single cells are time-lapse (fluorescence)

microscopy and flow cytometry. The major advantage of flow cytometry over microscopy is a

higher throughput and the option to recover arbitrarily selected subpopulations via cell sorting

(Müller & Nebe-von Caron, 2010).

3.1.1 Establishing mass spectrometric analysis of sorted subpopulations

In this work, the toolbox for single cell analysis of bacteria was significantly extended by combin-

ing cell sorting with downstream proteomics. The foundation of this work was laid by Wiacek

et al. (2006) and Jehmlich et al. (2010), who were the first to sort bacterial cells for subsequent

proteomics using 2D gel electrophoresis and mass spectrometry, respectively. The latter study

already demonstrated higher recovery of proteins (~900 compared to ~130) with significantly

fewer cells (5× 106 versus 1× 109), but the sorted subpopulations were an artificial mixture of

two species. Furthermore, pending questions were the long term stability of specimens stored

for later analysis and the procedure of cell sampling/fixation in general. Countless protocols for

cell sampling and storage are available, however, each of it can have a different impact on the

sample quality.

A rapid method requiring no extra cooling is chemical fixation by ethanol, formaldehydes, in-

hibitors or metal ions (Günther et al., 2008; Jensen et al., 2010), while the preservation of intact

and often viable cells is usually performed by deep freezing (De Paoli, 2005). A third way of

sample preparation is (freeze) drying, which was shown to perform well for selected bacteria

70



3.1. Enlarging the toolbox for microbial single cell analysis

and even preserve viability similar to deep freezing (Wong et al., 2007; Bauer et al., 2011). Three

of these methods were applied to Pseudomonas putida (publication 1, page 34): Sodium azide

fixation and storage at 4◦C, deep freezing and storage at -80◦C, and vacuum drying with storage

at 4◦C. Here, the goal was not to preserve cell viability but to keep cells in a state suitable for

cytometry and mass spectrometry. This includes intact cells with identical scatter characteristics,

DNA content and proteome profile. The result of this study was that deep freezing for short term

(one week) and long term (one month) had only a minor effect on cell characteristics and pro-

tein composition, and was therefore rated best. Vacuum drying performed almost equally good,

while sodium azide fixation was rather deleterious. This finding was in line with other studies

who rated deep freezing using cryoprotectants as superior (Perlmutter et al., 2004), even for

mixed communities (Kerckhof et al., 2014). However, chemical fixation of histological samples

with ethanol was reported to be equally good for protein mass spectrometry (Chaurand et al.,

2008). This study significantly contributes to the knowledge of sample preparation in bacteria,

and demonstrates once more that the impact of a sampling protocol is to be tested thoroughly

beforehand. Furthermore, findings regarding Pseudomonas putida are most likely applicable to all

other Pseudomonas strains and, probably, even to similar gram-negative bacteria. The optimized

sampling protocol directly led to the first application of subpopulation proteomics to identify

regulatory differences in different phenotypes of bacteria, here the producing and non-producing

cells in a clonal population of P. putida KT2440 (discussed in section 3.2).

3.1.2 Digital PCR of sorted subpopulations

The second methodical advancement achieved in this work was the combination of cell sorting

via flow cytometry and novel droplet digital PCR for precise quantification of DNA copy numbers.

Digital PCR was already applied to quantify the copy number of very different DNA templates,

among them also plasmids (Straub et al., 2013). However, it nevertheless remains a young

technology and, although it was shown that it is superior to conventional qRT-PCR, it is not

trivial to assess the reliability and recovery of the method. How many copies of a template are

really detected and what is the lowest number of template molecules? An elegant study by Bhat

et al. (2011) used an artificial template with two independent target sequences to approach this

question. The authors hypothesized, that ’molecular drop-out’ would affect the two reactions

individually, meaning that the failure of one reaction would still yield a positive signal of the other.

And indeed, a PCR reaction under ideal conditions yielded only 88 to 94 % double positive signals.

However, the portion of completely undetected template molecules remained unknown. These

questions were answered by sorting a defined number of P. putida cells containing a genomic

and a plasmid DNA template (publication 4, page 62). By precise deposition of exactly 1,000

cells with known DNA content, it was shown that only 75 % of template molecules from heat

treated cells are detected. This is an important template inherent experimental error that needs

71



3.2. Heterogeneity of Pseudomonas putida in a model bioprocess

to be taken into account. Furthermore, a heat treatment protocol intended to crack bacterial cells

(Carapuça et al., 2007; Skulj et al., 2008) was refined by optimizing heating duration for P. putida

and E. coli. And finally, the power of digital PCR to detect very few template copies was challenged

by depositing different numbers of cells ranging from 1 to 10,000. Theoretically, digital PCR can

detect a single template molecule like the chromosome of a single bacterial cell in a background

of 20,000 droplets (20µL), but this study clearly demonstrated that false positive ’background’

signals lead to extreme variability for 1 to 10 sorted cells. Quantification was reliable only from

100 cells upwards and optimal for 500-2,000 cells. As a matter of fact, sorting a single cell is

technically feasible and reliable, but the detection of few or only one template molecules from

that cell is not. These findings represent an important benchmark showing that detection of DNA

from single sorted cells by PCR based methods will remain challenging.

3.2 Heterogeneity of Pseudomonas putida in a model
bioprocess

3.2.1 Discrete subpopulations appear during protein production

The model bioprocess based on inducible styA/styB expression and implemented here in P. putida

showed strong cell to cell variability from the beginning on. The formation of StyA after induc-

tion was tracked in live cells by a translational fusion with EGFP and always showed a variable

portion of non-fluorescent cells (publication 2, page 43). More specifically, productivity was

not normally distributed in the population but clustered in two very distinct subpopulations of

high producers and non-producers. Such bimodal distributions of gene expression are a known

phenomenon in biotechnological processes that can be caused by various forms of stress (Sevast-

syanovich et al., 2009), the induction regime (Wyre & Overton, 2014), noise on the regulatory

level (Nikel et al., 2014) or lack of genetic information (e.g. plasmid loss, Summers (1991)). The

reason for bimodal distribution in this model bioprocess was completely unknown. However, the

induction regime applied in this work was a standard concentration of a hydrophobic compound,

sufficient to activate all cells in a culture. This may at least exclude the hypothesis of noisy gene

expression. Another layer of heterogeneity is added by cell cycling. Staining of DNA yielded four

subpopulations regarding DNA content which came up at different stages of cultivation. This is

an amount of heterogeneity which can be expected, however, when StyA-EGFP productivity was

correlated with DNA content, it was found that the most productive cells were not able to return

to single chromosome content in stationary phase, but remained with a chromosome content of

up to four copies. This effect could be due to defective cell division caused by inclusion bodies,

as was already reported for E. coli (Lee et al., 2008).
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3.2.2 Protein production is related to various forms of stress

To gain a global insight and test as many probable causes for bimodal gene expression as possi-

ble, three subpopulations (EGFP negative, EPFG positive, EGFP positive with inclusion bodies)

were sorted and analyzed by protein mass spectrometry. Altogether, the quantification of ~800

proteins was in line with comparable proteomic studies on Pseudomonas (Jehmlich et al., 2010;

Yun et al., 2011). The surprising finding of this study was that almost no regulatory differences

were found between subpopulations and only little changes in metabolic pathways were obvious.

It can be concluded, that the morphologically very different subpopulations were not running

different metabolic ’modes’ or ’programs’, but were functionally similar. Two groups of proteins

were nevertheless extremely different between subpopulations. First and most strikingly, stress-

related proteins were strongly up-regulated in producer cells, among them chaperones supposed

to reduce protein stress, and catalases supposed to reduce oxidative stress. Thus, the top pro-

ducers in a population react on heterologous gene expression with ’late-stage’ counter measures,

instead of redirecting carbon or energy flow in the first place. The second protein group gave

a strong indication of the ultimate reason for bimodal gene expression. In the non-producing

subpopulation, all four plasmid-encoded proteins were almost absent, pointing towards plasmid

loss.

3.2.3 Variability in genome copy number is not represented on the protein
level

Cell cycling is considered as a major cause for population heterogeneity (Müller & Nebe-von

Caron, 2010). As discussed before (section 3.2), previous results showed a clear split of the

P. putida KT2440 population into StyA-EGFP/StyB producing and non-producing cells. One hy-

pothesis for lacking gene expression in a subpopulation was the occurrence of inactive cells

seizing cell cycling and production. Related to this question, an experiment was –in collabo-

ration with the University of Stuttgart– conceived to probe subpopulations with different DNA

content, and to reveal underlying regulatory programs (publication 3, page 52). The wild type

model strain P. putida KT2440 was grown under defined and stable conditions in chemostats and

subpopulations were sorted regarding DNA content and further analyzed by mass spectrometry.

Strikingly, almost no differences were found between subpopulations of one and the same growth

rate. This allows two hypotheses: Either the cells are functionally identical although having a

different number of chromosomes, and quickly shift between different cell cycle stages, while the

proteome largely stays the same. This would be a very surprising finding, pointing towards great

physiological homogeneity of all cells of the population. Or, ’true’ single cell variability could not

be resolved by sorting a subpopulation of millions of cells. The second hypothesis implies that

single cell differences are averaged, or hidden subpopulations are overshadowed by a dominant
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portion of cells. As the growth medium is constantly exchanged in a chemostat, non-dividing

cells may be quickly washed out and displaced by the dividing subpopulation. However, a second

finding of this study was that growth rate actually turned out to be the dominant factor shaping

the proteome profile of the cells. Slow growing cells (µ= 0.1) are in a completely different mode

than fast growing cells (µ= 0.7), the former desperately seeking nutrients, while the latter are

channeling energy into replication.

3.2.4 Heterogeneity was ultimately caused by plasmid copy number
fluctuation

Evidence from previous experiments pointed towards plasmid copy number (PCN) differences

as the cause for population heterogeneity. A novel technique using droplet digital PCR was

developed as outlined in section 3.1.2 to determine the absolute plasmid copy number in sorted

subpopulations. After thorough optimization of the cell sorting protocol, cell number, DNA

isolation, and ddPCR assay, the PCN in P. putida KT2440 was finally determined in the course of

target gene expression. The population was split into two subpopulations, and it could ultimately

be shown that the plasmid was present in producers and absent in non-producers (publication 4,

page 62).

What is the molecular reason for plasmid loss? In the first place, copy number and stability are

linked with each other and determined by the replication system (Summers, 1991). Empirical

evidence already suggested that the higher the copy number, the more stable is a plasmid during

repetitive rounds of cell division, and the lower is the variability in PCN (Wong Ng et al., 2010;

Kittleson et al., 2011). These insights are backed by the results of this study, as the PCN was, even

in the most producing cells, surprisingly low (3-5). This was an overall unexpected finding for a

plasmid series long used in biotechnology and reported to have medium to high copy number

(Smits et al., 2001). However, it is a shuttle vector containing two replication systems, one for

E. coli and one for Pseudomonas, and it was shown that copy number was extremely high in E. coli

(100-150), but higher as well in other Pseudomonas strains like DOT-T1E and VLB120 (10-20,

unpublished results). Finally, these results demonstrate that PCN can vary a lot in different

subpopulations, and averaged measurements will only provide a distorted view of the total

population. Moreover, it is certainly not advisable to continue bioprocesses with this particular

plasmid series in a host like P. putida KT2440 as the very low copy number leads to segregational

instability over time. The missing metabolic burden will confer a growth advantage to plasmid-

free cells, whose fraction will exponentially increase over time (Lau et al., 2013). However, the

actual overall productivity was high despite the low copy number, showing that higher copy

number is not automatically an advantage. Sufficient gene expression can be reached with low
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copy numbers as well, accompanied by lower levels of stress (Jones et al., 2000; Zdraljevic et al.,

2013).

3.3 Conclusion and future prospects

Cellular heterogeneity can significantly reduce efficiency and yield in industrial bioprocesses. In

this project, population heterogeneity in Pseudomonas putida was investigated using an exemplary

biotransformation from styrene to styrene oxide by production of an EGFP fused recombinant

protein, StyA/StyB. Target gene expression was tracked via EGFP fluorescence and found to be

extremely variable, showing discrete subpopulations of low and highly productive cells. Using

cell sorting in combination with mass spectrometry or digital PCR, the phenotypic heterogeneity

could be resolved on the molecular level providing insights into bottlenecks of recombinant

protein production:

• The proteome profile of producing and non-producing cells was overall similar. Signif-

icant changes were, however, detected in stress-related proteins. Recombinant protein

production was therefore a metabolic burden, which cells tried to overcome by launching

corrective counter measures, rather than redirecting carbon or energy fluxes.

• Heterogeneity caused by cell cycling is a common phenomenon best seen by differential

DNA content. However, subpopulations with one, two, or more than two copies of the

chromosome did not show significant differences. This either underlines that all cycling

cells of a population are essentially running the same ’program’, or that true regulatory

differences can only be detected by other means, such as single cell studies with reporter

genes.

• The fundamental source of heterogeneity in this work was plasmid copy number variability.

Non-producing cells appeared as a consequence of (segregational) plasmid loss, predomi-

nantly because the average plasmid copy number was much lower than originally expected.

Even if molecular causes for heterogeneity could be identified, many open questions remain.

First of all, technical limitations allow only to analyze subpopulations with at least millions

or hundreds of cells for mass spectrometry or digital PCR, respectively. This means, although

single cells can be sorted with high precision, the result will nevertheless be an average of many

cells. Furthermore, cell sorting requires the clear discrimination of subpopulations by certain

morphological features. Therefore, getting quantitative information of many different molecules

of one and the same cell remains challenging. Single cell studies using reporter genes and time

lapse microscopy are one way, however, only very few proteins per cell at the same time can

be tagged and monitored (Taniguchi et al., 2010). Practically, this approach would be limited
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to the observation of at most three important regulatory proteins. This could nevertheless be

an alternative to detect cell cycle-related heterogeneity in a clonal population, which was only

found to a small extent in this work using subpopulation mass spectrometry.

The efficiency of the model bioprocess studied here was spoiled by an actually trivial thing, an

inappropriate plasmid expression system. Clearly, two ways can be seen to overcome such lim-

itations in the biotechnology of the future. One is the ongoing trend away from variable and

’unstable’ plasmids towards stable genomic integration or deletion of desired genes (Song et al.,

2015); A strategy which is more laborious in the beginning, but may yield the more reproducible

process in the end. The molecular tool box for genome engineering is literally exploded in recent

years. Traditional homologous recombination systems were supplemented by ’recombineering’ us-

ing heterologous recombinases (e.g. λRed), restriction enzyme mediated recombination (I-Sce1,

TALENs, CRISPR-Cas), or RNA interference for gene knockdown (Martínez-García & de Lorenzo,

2011; Song et al., 2015). Some of these techniques will probably become ’bread and butter’ tools

in molecular biology, boosting the power and diversity of microbial strains for biotechnology.

The other trend is towards using well-characterized and standardized biological ’parts’. As an

example, the encountered bottleneck regarding plasmid copy number could be overcome by

using a suite of rationally designed plasmids with known properties, such as the ones provided

by the SEVA plasmid repository (Silva-Rocha et al., 2013; Martínez-García et al., 2015). Improved

strains and better understanding of microbial physiology can finally pave the way for a more

sustainable economy in the future.
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5.4 Glossary

1st generation biomass Agricultural biomass usable for human diet or animal feeding, such
as starch or saccharose.

2nd generation biomass Agricultural biomass not usable for human diet or animal feeding,
such as straw or wood, as opposed to→1st generation biomass.

(Bacterio-) Phage Virus with bacteria as host organisms. A self-replicative, packaged portion
of DNA or RNA.

Biotransformation The conversion of one chemical compound into another by a biological
catalysts such as an enzyme or ribozyme.

bp One base pair, the length unit of DNA.

Chaperone A protein helping other proteins to mature and fold correctly.

cis-trans isomerism In organic chemistry, the position of side chains at a C double bond. Either
the two side chains with highest priority are on the same (cis) or the opposite site (trans).

Digital PCR Next generation of quantitative PCR, where template molecules are discretely dis-
tributed across many small partitions and detected individually.

Discreteness In statistics, a distribution where all components must be integers (whole num-
bers).

Epoxidation Chemical reaction resulting in the formation of a heterocyclic 3-ring with two
carbon and one oxygen atom.

Extrinsic noise Fluctuation in gene expression due to extracellular, ’environmental’ perturba-
tions.

Green Fluorescent Protein, GFP A protein naturally occurring in the jellyfish Aequoria vic-
toria. Its unique reaction center is able to absorb light and emit fluorescence of a higher
wavelength.

Growth rate In microbiology, the fraction of growth of a population per time unit.

Heterologous protein A protein not naturally present in the host organism where it is ex-
pressed.

Homologous recombination The site-specific excision or insertion of DNA fragments in vivo,
catalyzed by specific enzymes (recombinases).

Intrinsic noise Fluctuation in gene expression due to the→stochastic nature of transcription
and translation.

Operon In bacteria, an array of genes uniformly regulated by the same regulatory site (opera-
tor).
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Open reading frame, ORF In genetics, the base pair sequence between start and stop codon
of a gene. A shift of one or two bp will destroy the reading frame by changing the encoded
amino acids.

OriV, oriT Origin of replication (vegetative) and origin of transfer, for plasmid maintenance and
transduction, respectively.

Plasmid A circular, self-replicating portion of DNA.

Poisson distribution In statistics, a→discrete probability distribution to estimate a given num-
ber of events occurring in a fixed interval of time or space.

qRT-PCR Quantitative real time polymerase chain reaction. A technique, where the in vitro
synthesis of DNA is monitored by fluorescent dyes, allowing quantification of the DNA
template.

Reactive oxygen species Either highly reactive oxygen radicals with a free electron
(O2·−, OH·), or reactive oxygen donors (hydrogen peroxide HOOH).

Restriction, ligation The cutting and re-joining of DNA in molecular biology.

Saturated/unsaturated fatty acids Unsaturated fatty acids do contain C double bonds, sat-
urated do not.

SEVA Standard European Vector Architecture, a plasmid repository.

Stochasticity The amount of randomness of a process, where single events cannot be predicted
but only estimated by probability. Examples are Brownian motion or radioactive decay of
isotopes.

Suicide vector A→plasmid carrying an origin of replication not functional in the target strain.
This strain is only resistant to an antibiotic if the suicide vector and its resistance gene
integrates into the genome.

Synthetic biology The rational design and implementation of novel functions or modules in
biological systems.

Systems biology In molecular biology, the view of an organism as a whole as opposed to single
genes or proteins.

Toxin-antitoxin system →Plasmid addiction system, where a stable toxin is degraded by an
unstable antitoxin. Plasmid loss results in retention of the toxin and killing of the host cell.

Transcription factor A protein promoting or inhibiting transcription by binding an→operator
region on the DNA.

Vector A →plasmid modified to serve as a genetic vehicle for storage and transformation of
genes into host cells.
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5.6. Supplementary material

5.6 Supplementary material

5.6.1 Supplementary material for Publication 1

Figure 5.1: Supplementary Figure S1. Evaluation of vacuum drying (VD) conditions for P. putida KT2440
using flow cytometry. Depicted is forward scatter (FSC) versus DAPI fluorescence (FL4). Different
drying temperatures (30◦C, 60◦C) and drying durations (10, 30 and 60min) were tested as described
in the materials and methods section, and the lower temperature combined with a moderate drying
duration (30◦C, 30min) yielded the most distinct distribution. Sodium azide fixed (SAF) and deep
frozen (DF) cells were used for comparison.

Figure 5.2: Supplementary Figure S2. Evaluation of deep freezing (DF) conditions for P. putida KT2440
cells using flow cytometry. Depicted is forward scatter (FSC) versus DAPI fluorescence (FL4) for three
different storage methods (DF with 15 and 50% (v/v) glycerol in PBS as a cryoprotective agent,
sodium azide fixation) and three storage durations (2, 7, 28d). No significant difference was observed
between 15 and 50% glycerol.
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Figure 5.3: Supplementary Figure S3. Internal variation of identical samples when using FlowFP finger-
printing. The raw data of the fresh samples for each time point (0, 2, 4, 6, 8, 10, 12h) were in silico
split in two halves and the similarity of both halves was computed. Depicted is the comparison of
the first half versus itself and versus the second half. The standard deviation sd ranged from 0.07 to
0.25, which represents the internal variation of sample acquisition.

Figure 5.4: Supplementary Figure S4. Test of different storage methods for E. coli DH5α using flow
cytometry. Vacuum drying (VD), deep freezing (DF) and sodium azide fixation (SAF) were applied to
cells after 0, 1 and 2h of incubation into growth medium. The prepared samples were stored for 16
or 31 days and then analyzed by flow cytometry as described in the materials and methods section.
An increase of events below the C1n population is clearly visible for SAF treated samples (1, 2 h),
particularly after 31d of storage.
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Figure 5.5: Supplementary Figure S5. Variability of protein number and quantity across replicates as
identified by mass spectrometry. (A) The number of proteins detected by MS per replicate ranged
from 611 to 832 (total: 971). Some replicates of 28d stored VD and SAF treated samples showed a
reduced protein number. The relative protein quantity of all proteins (without 1% lower and upper
quantile) was taken into account to calculate the similarity of a sample (B) or single replicate (C)
towards each other. The distance, expressed as standard deviation, was visualized by non-metric
multidimensional scaling (NMDS). The similarity to the fresh sample (F) was high for deep frozen (DF)
and vacuum dried (VD) samples with the exception of lower similarity for 2 VD replicates after 28 d
of storage. Sodium azide fixed samples (SAF) displayed the highest dissimilarity.

Figure 5.6: Supplementary Figure S6. Peptide coverage of selected proteins. For 60 proteins of
different length (the 20 largest, 20 smallest and 20 of medium polypeptide length) all peptides,
which were at least detected once by MS, were mapped onto the complete amino acid sequence.
A different pattern in peptide coverage may indicate fragmentation or degradation at the termini
of the polypeptide. Here, peptide coverage was highly similar across samples. Sample description:
F – fresh, VD – vacuum drying, DF – deep freezing, SAF – sodium azide fixation.
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Supplementary information
Supplementary information S1. MaxQuant settings for proteomics data analysis

The retrieved raw data were analyzed by MaxQuant version 1.2.2.5  [1] with  the genome
sequence of  P. putida KT2440 as database. The settings for MaxQuant were the following:
Peptide  modifications  given  were  methionine  oxidation  as  variable  and  cysteine
carbamidomethylation as fixed. Further settings were first search ppm of 20, main search
ppm of 6, maximum number of modifications per peptide 5, max. missed cleavages 2 and a
maximum charge for  the peptide of  5.  Parameters  for  the  identification were  a  minimum
peptide length of 5 amino acids, a false discovery rate for peptides, proteins and level of
modification  sites  of  1%.  A  minimum  of  2  unique  peptides  was  required  for  protein
identification.  Apart  from unmodified  peptides only  peptides with  oxidized methionine and
carbamidomethylized cysteine were used for quantification. Only unique or razor peptides
were chosen for use in quantification. Further miscellaneous settings included re-quantify,
match between runs (time window of 2 min), label free quantification and second peptides. To
analyze the sample data label free quantification (LFQ) values were used.

Supplementary information S2. Sunburst treemaps

Treemaps  are  useful  for  visualization  of  hierarchically  ordered  data,  such  as  functional
annotation provided by KEGG. Both rectangular  [2] and voronoi-based treemaps  [3] have
been used for  data  visualization,  but  here  we report  the  first  use of  circular  (“sunburst“)
treemaps for proteome data representation. Sunburst treemaps were created using a custom
recursive function in R, where the size of each group sector corresponds to the number of
proteins within the group, and the color encodes the output of an arbitrary function applied to
the  group  subset,  e.  g.  mean,  median,  variance  or  standard  deviation.  This  sectorplot()
function does not depend on R packages other than the basic ones. The source code for the
function can be simply executed in R (tested with R version >= 2.14)

## PLOT FUNCTION
sectorplot    <- function(data, levels, exp, FUN, adjust.height=FALSE, 
height.inner=0.1, height.initial=0.5/length(levels), range=c(-1,1), col=NULL, 
border=NULL, lwd=1, labels=NA) {

# FUNCTION FOR DRAWING SECTOR
draw.sector <- function(height=0.1, a=1, segment=c(0, 2*pi), nv=30, border=NULL, 
col=NA, lty=1, lwd=1, draw.label=FALSE, categ, ...) {
    z <- seq(segment[1], segment[2], length=nv + 1)
    xx <- c( a * cos(z), rev((a+height)* cos(z)))
    yy <- c(a * sin(z), rev((a+height) * sin(z)))

1
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    polygon(xx, yy, border=border, col=col, lty=lty,
    lwd=lwd, ...)
    # draw labels
    if (draw.label) {
        if (a*cos(median(z))>=0) side=1 else side= -1
        lines(    x=c((a+height)*cos(median(z)), 0.8*cos(median(z)), 0.8*side), 
            y=c((a+height)*sin(median(z)), 0.8*sin(median(z)), 0.8*sin(median(z))),
            col="grey")
        text(x=0.8*side, y=0.8*sin(median(z)), labels=substring(categ, 1, 15), 
col="grey", pos=3+side, offset=0.2, cex=0.7)
    }
}

# CALCULATE SECTOR RANGE AND DRAW SECTOR
sector <- function(level, categ, rows.select, height.inner, height.actual, 
expression) {
    hits <- which(data[[levels[level]]] %in% categ)
    # Color definition
    if (is.null(col)) {color <- colorRampPalette(c("#539FD4","#8BBF09","#F1DB5B"))
(length(levels))[[level]]}
    else {color <- colorRampPalette(col)(100)[1+((expression-range[1])/(range[2]-
range[1])*99)]}
    draw.sector(a=height.inner,
        height=height.actual,
        segment=c(hits[1], hits[length(hits)]+1)/nrow(data)*2*pi,
        border=border, lwd=lwd, categ=categ, 
        col=color, draw.label=(!is.na(labels) & levels[level]==labels))
}

# CORE FUNCTION
recur <- function(level=1, rows.select=1:nrow(data), height.inner) {
    for (categ in unique(data[rows.select,levels[level]])) {
        # DRAW SINGLE SECTOR
        expression <- FUN(data[data[[levels[level]]]==categ, exp])
        if (adjust.height) {height.actual <- height.initial+
(height.initial*(expression/(range[2]-range[1])) )}
        else {height.actual <- height.initial}
        sector(level, categ, rows.select, height.inner, height.actual, expression)
        # CALL FUNCTION RECURSIVELY
        if (level!=length(levels)) { recur(level=level+1, 
rows.select=which(data[[levels[level]]] %in% categ), 
height.inner=height.inner+height.actual) }
    }
}

# FUNCTION CALL
par(mar=c(0,0,0,0))
plot(0, type="n", xlim=c(-1,1), ylim=c(-1,1), axes=FALSE)
recur(level=1, height.inner=height.inner)

# DRAW LEGEND
xcoord <- grconvertX(0, from="ndc", to="user")
ycoord <- grconvertY(1, from="ndc", to="user")
if (is.null(col)) {legend(xcoord, ycoord, legend=levels, pch=15, pt.cex=3, 
col=colorRampPalette(c("#539FD4","#8BBF09","#F1DB5B"))(length(levels)), xpd=NA, 
bty="n")}
else {legend(xcoord, ycoord, legend=seq(range[1],range[2], length.out=length(col)),

2
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pch=15, col=col, pt.cex=3, xpd=NA, bty="n")}
}

The function takes the following arguments for (graphical) adjustments:

sectorplot(data, FUN, levels, exp, adjust.height=TRUE, height.inner=0.1,
height.initial=0.5/length(levels), range=c(-1,1), col=NULL, border=NULL, 
lwd=1, labels=NA)

Argument Usage

data a data.frame object with hierarchical ordered data in columns

FUN function applied to group sectors for color coding (like mean, 
median,...)

levels character vector indicating column names of the data.frame

exp character indicating the column with values, which are used by 
FUN

adjust.height logical. Should the height of sectors be adjusted to exp values?

height.inner numeric. Adjusts the “hole” of the innermost sector level

height.initial numeric. Adjusts basic height of sectors

range the range to which colors are mapped

col colors to construct a color gradient (passed to 
colorRampPalette)

border line color of sector borders

lwd line width of sector borders

labels character indicating which column to choose for labels

The  function  can  be  used  according  to  the  following  self-contained  example.  First,  we
construct a data.frame and then visualize it using sectorplot().
The function supports only hierarchical structures where each 'mother' group has a distinct
set of 'children'. Ambiguous allocation of child groups may lead to unintended results.

dat <- data.frame(A=rep(1:2, each=6), B=rep(1:4, each=3), C=sample(1:12, 12))

sectorplot(dat,
    FUN=mean, levels=c("A","B","C"), 
    exp="C", labels="C", 
    range=c(0,12), 
    col=c("lightgrey","darkgrey","royalblue","orange","red"),
)

3
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Figure 5.7: Supplementary Figure S1. Influence of primer combinations on ileS ddPCR. For each PCR
reaction two different forward and reverse primers were tested in all four possible combinations. A.u.,
arbitrary units. (A) For the example of ileS, all combinations allowed differentiation of negative and
positive droplets, but fluorescence amplitude was different. (B) Mean droplet amplitude for the four
different combinations. (C) Despite this difference, the calculated copy number is identical for all
tested combinations. Cp/µL, copies/µL. Grey symbols, replicate values. Black symbols, mean ±
standard deviation.
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Figure 5.8: Supplementary Figure S2. Optimization of probe concentration in duplex reactions. Duplex
ddPCR was performed with one genomic (ileS or glyA) and one plasmid marker (styA) using FAM-
and HEX-labeled probes, respectively. (A) The styA probe concentration was optimized for best
separation of negative (grey), single positive (blue, green) and double positive (brown) droplets.
The scatter plot combines samples of all three probe concentrations and the respective clouds are
indicated in the plot. A.u., arbitrary units. (B) The obtained copy numbers are similar for the different
probe concentrations and also in comparison to the styA uniplex control (UP). Cp/µL, copies/µL.
Grey symbols, replicate values. Black symbols, mean ± standard deviation.
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Figure 5.9: Supplementary Figure S3. Controls for duplex ddPCR. (A) Multiplexing controls for duplex
ddPCR assay. Either nothing (no probes), ileS or styA in uniplex reactions (UP) or bothmarkers together
in a duplex assay (DP) were detected. Template is an artificial mixture of genomic and plasmid DNA.
(B) Different mixtures of template were used to control reliability of the ileS/styA duplex assay. Beads,
1,000 sorted beads. gDNA, genomic DNA of P. putida KT2440. pDNA, plasmid pA-EGFP-B. Cp/µL,
copies/µL. Grey symbols, replicate values. Black symbols, mean ± standard deviation.

TRANSFORMATION

LB + 500 µg/mL 
kanamycin

2 x PRE-CULTIVATION

MM + 0, 50, or 
500 µg/mL kanamycin

INDUCTION

MM without kanamycin,
+ 0.025 % DCPK

Figure 5.10: Supplementary Figure S4. Scheme of cultivation with variable concentration of antibiotic.
Transformants were grown on LB medium supplemented with 500µg/mL kanamycin, and used to
inoculate shaking flasks with minimal medium (MM). Cells were pre-cultivated twice for 16h with
variable amounts of kanamycin (0, 50, 500µg/mL) and cultivated once without kanamycin but
induction with 0.025% DCPK.
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Supporting Information for: 

Accurate Determination of Plasmid Copy 
Number on the Single Cell Level using Droplet 

Digital PCR 

Michael Jahn1, Carsten Vorpahl1, Dominique Türkowsky1, Martin Lindmeyer2, Bruno Bühler2, 
Hauke Harms1, Susann Müller1 

 

1Helmholtz-Centre for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, 
Germany 

2Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, 
TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany  

 
EXPERIMENTAL SECTION 
 
Cultivation of bacteria 
Pseudomonas putida KT2440 (obtained from DSMZ – German Collection of Microorganisms 

and Cell Cultures) was plated on LB medium1 with 2 % agarose, incubated overnight, used for 
inoculation of 10 mL minimal medium in 100-mL shake flasks and cultivated at 30 °C on a rotary 
shaker (200 rpm). Baffled shake flasks with 25 mL medium were inoculated with a volume of 
overnight culture corresponding to an optical density at 600 nm (OD600 nm, Ø=0.5 mm) of 0.1. 
Cultivation media were LB without supplements or minimal medium ((NH4)2SO4 2.2 g/L, MgSO4 
x 7H2O 0.4 g/L, CaCl2 × 2H2O 40 mg/L, NaCl 20 mg/mL, Na3-citrate x 2H2O 15 mg/L, FeSO4 x 
7H2O 10 mg/L, ZnSO4 x 7H2O 2 mg/L, MnCl2 x 4H2O 1 mg/L, CuSO4 x 5H2O 1 mg/L, NiCl2 x 
6H2O 20 µg/L, NaMoO4 x 2H2O 30 µg/L, H3BO3 0.3 mg/L) supplemented with 5 g/L citrate as 
the carbon and energy source. If required, kanamycin (Cat-No. T832.3, Roth) was added as a 
50 mg/mL stock solution in deionized H2O (dH2O) to a final concentration of 50-500 µg/mL and 
gene expression was induced with addition of dicyclopropylketone (DCPK, Sigma) to a final 
concentration of 0.025 %. Measurement of OD600 nm and EGFP fluorescence (485 nm 
excitation/520 nm emission wavelength) during cultivation was performed in a Tecan GENios 
Plus spectrophotometer by sampling of 200 µL culture in a transparent 96-well plate. Samples 
for flow cytometry were taken by centrifugation of 1 mL cell suspension for 2 min at 8,000 x g 
and 4 °C. The supernatant was discarded and the cells re-suspended in 500 µL ice cold 
cryopreservation buffer as described in Jahn et al.2. Cell samples were stored at -20 °C until 
analysis. 
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DNA manipulation 
Agarose gel electrophoresis and ligation was performed as described by Sambrook and 

Russel1. Enzymes (Phusion High-Fidelity Polymerase, T4 DNA ligase, restriction enzymes) and 
buffers were purchased from Thermo Scientific and oligonucleotides from Sigma Aldrich. 
Plasmids and DNA-fragments were isolated using the peqGOLD plasmid Miniprep Kit I 
(peqLab) and purified using the NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel) 
according to the supplier’s recommendation. 

For construction of the plasmid pA-EGFP_B, the fusion of styA (oxygenase component of the 
styrene monooxygenase from Pseudomonas sp. strain VLB1203) and EGFP was performed via 
overlap extension PCR4 using the primers F1-F4 and B1-B4 listed in Table S-1. The single 
genes styA and styB were amplified from genomic DNA using the primers F1/B1 and F3/B3 as 
the template and EGFP was amplified using the primers F2/B2 from plasmid pBSK-GFP1 
(unpublished vector). To avoid steric hindrance, a linker sequence (GGC GGC GGC GGC GGC 
GGC GCC) was integrated between the C-terminus of StyA and the N-terminus of EGFP. After 
amplification and purification, the created fragment was cloned via blunt end ligation into 
pSMART-HCKan (Lucigen) and transformed into E. coli DH5α. Correctly ligated plasmids were 
isolated and used as PCR template. The resulting PCR product generated with primers F5 and 
B5 and plasmid pCom105 were digested with NdeI, purified, and ligated according to the 
supplier’s recommendations. The correct insertion was verified by digestion with different 
restriction enzymes and DNA sequencing. 

 
Electroporation 
For electro-competent cells, a 100-mL volume of LB medium was inoculated with a P. putida 

KT2440 overnight culture and grown until the OD600 nm reached 0.5. All cells were harvested by 
centrifugation (5 min, 5,000 x g, 4 °C), washed once with 5 mL ice cold dH2O and once with 5 
mL ice cold 15 % glycerol, finally taken up in 2 mL 15 % glycerol and stored in 40-µL aliquots at 
-80 °C. For electroporation, an aliquot of competent cells was thawed on ice, 100 ng plasmid 
DNA (pA-EGFP_B) was added and the suspension transferred to an electroporation cuvette 
(1 mm gap). Electroporation was done in a Bio-Rad MicroPulser with program Eco1 at 1.8 kV 
and the cells were transferred to 1 mL LB medium and incubated at 30 °C for 30 min. 
Transformants were obtained by selection on LB agar (2 %) plates supplemented with 
kanamycin (50 µg/mL). For E. coli, electroporation was performed as described by Sambrook 
and Russel1 using an Equibio EasyjecT Prima electroporator with 2.5 kV. 

 
Statistics 
If not indicated otherwise, experiments were performed with two independent biological 

replicates, and all PCR experiments were performed with at least three technical replicates per 
condition at the stage of cell sorting. Repeatability and inter-assay variation were monitored 
using the following controls; sorted beads (no-template-control), sorted beads spiked with 
plasmid (no-genomic-DNA-control), and sorted wild type cells (no-plasmid-control). Data 
acquisition for ddPCR was performed with QuantaSoft v1.3.2.0 software (calibrated for 
FAM/HEX, manual gating), data were exported as text file and further analyzed using R v3.0.1. 
For each reaction volume of 20 µL up to 15,000 droplets were analyzed with an average droplet 
volume of ~ 0.9 nL6. The PCN was calculated as the ratio of plasmid marker copy number and 

genomic reference copy number per replicate ( 
c pDNA/ cgDNA ), indicated is mean and standard 

deviation of all replicates per condition. Statistical power analysis was performed with the R 
package 'pwr' to determine the minimum number of replicates for significant detection of PCN 
differences (power=0.8). Outliers were not removed except for known pipetting errors. 

 

5.6. Supplementary material

110



 3 

Table S-1. Oligonucleotide primers for construction of plasmid pA-EGFP_B. 

Prime
r 

Characteristics Primer / probe sequence 

F1 StyA_Fusion_Fw GAATAAGCAGATTGCAGGCGAGCTGGGTATTG 

B1 StyA_Fusion_Bw CTCCCTTACTAACCATGGCGCCGCCGCCGCCGCCGGCCGCGATAGTGGGTGCG
AAC 

F2 EGFP_Fusion_Fw CCCACTATCGCGGCCGGCGGCGGCGGCGGCGCCATGGTTAGTAAGGGAGAGG
AGTTG 

B2 EGFP_Fusion_Bw GCCTTGACCAGCGGAGCAATAGCGTTACTTGTACAGCTCGTCCATGCC 

F3 StyB_Fusion_Fw GCATGGACGAGCTGTACAAGTAACGCTATTGCTCCGCTGGTCAAGGC 

B3 StyB_Fusion_Bw TCTTCCGGTGATCGGCACAGAAAGGC 

F4 StyA*_Amp GGGTATTGCCGAGGTAACGGTAAAG 

B4 StyB*_Amp CCGGTGATCGGCACAGAAAGGCCT 

F5 StyAB_pCom10_NdeI_
Fw 

CGGCCATATGAAAAAGCGTATCGG 

B5 StyAB_pCom10_NdeI_
Bw 

CGGCCATATGTCAATTCAGTGGCAACG 

 
 

 

Table S-2. Oligonucleotide primers and probes used for ddPCR. 

Target Marker Gene ID Amplicon 
Length 

Primer / probe sequence Tm / °C Length 
/ bp 

Genome ileS PP_0603 120 5'-GGACAACCCATACAAGACC-3' 60.16 19 

P. putida 
KT2440 

   5'-TCAAAGCACCAGTTCACC-3' 60.26 18 

    5'-FAM-TCCGCGCCCTGGCCGA-BHQ-1-3' 72.69 16 

 glyA PP_0671 145 5'-CCAGAGTTCAAGGCTTAC-3' 57.38 18 

    5'-CGGAGATTTCCTGCTTG-3' 57.68 17 

    5'-FAM-ACCACCTGTTCCTGCTGTCGCT-BHQ-1-3' 70.96 22 

Plasmid  styA
7
 Genbank: 115 5'-GGCTGGTAGAGACGGTAG-3' 60.97 18 

pA-EGFP_B  AF03116
1 

 5'-CTGAGGAGTTTGGTTATTTCG-3' 59.12 21 

    5'-HEX-TGGGAGCCTTGAGATCACCGTAG-BHQ-1-3' 68.02 23 

 oriT
5
 Genbank: 104 5'-CAGGTGCGAATAAGGGAC-3' 60.25 18 

  AJ30208
7 

 5'-GTAGACTTTCCTTGGTGTATCC-3' 60.33 22 

    5'-HEX-CCTATCCTGCCCGGCTGACG-BHQ-1-3' 69.64 20 
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Table S-3. dMIQE check list for digital PCR experiments. 

ITEM TO CHECK IMPOR-
TANCE 

CHECK-
LIST 

COMMENT 

EXPERIMENTAL DESIGN       

Definition of experimental and control  groups E  + Induced / non-induced cells, 
fluorescent / non-fluorescent cells, 
beads 

Number within each group E  + 4 replicates per group 
Assay carried out by core lab or investigator's 
lab? 

D  + Investigator's lab 

Power analysis D  + R package 'pwr', power 0.8 

SAMPLE       

Volume/mass of sample processed E  + 1,000 sorted cells or beads 
Microdissection or macrodissection E NA  
If frozen - how and how quickly? E  + -20 °C, after centrifugation 
If fixed - with what, how quickly? E NA  
Sample storage conditions and duration 
(especially for formalin fixed/paraffin embedded 
samples) 

E  + -20 °C, 15 % glycerol in PBS, 1month 

NUCLEIC ACID EXTRACTION       

Quantification—instrument/method E  + NanoDrop, spectrometrically 
Storage conditions: temperature, concentration, 
duration, buffer 

E  + -20 °C, 1,000 cells/well in 7 µL dH2O + 
1 µL sheath buffer 

DNA or RNA quantification E NA NanoDrop, only for purified DNA 
controls 

Quality/integrity, instrument/method, e.g. RNA 
integrity/R quality index and trace or 3':5' 

E NA  

Template structural information E  + whole cell DNA 
Template modification (digestion, sonication, 
preamplification, etc.) 

E NA  

Template treatment (initial heating or chemical 
denaturation) 

E  + Heating 95 °C, 5-20 min depending on 
template 

Inhibition dilution or spike E  + Sorted different cell numbers as 
template (10-10,000), inhibition for ≥ 
5,000 cells 

DNA contamination assessment of RNA sample E NA  
Details of DNase treatment where performed E NA  
Manufacturer of reagents used and catalogue 
number 

D NA  

dPCR TARGET INFORMATION       

Sequence accession number E  + see Table S2 
Amplicon location D  + see Table S2 
Amplicon length E  + see Table S2 
In silico specificity screen (BLAST, etc.) E  +  
Pseudogenes, retropseudogenes or other 
homologs? 

D  + no homologs 

Sequence alignment D  + PrimerBLAST 
Secondary structure analysis of amplicon and GC 
content 

D  - only of probes and primers 

Location of each primer by exon or intron (if 
applicable) 

E NA  

Where appropriate, which splice variants are 
targeted? 

E NA  

dPCR OLIGONUCLEOTIDES       

Primer sequences E  + see Table S2 
RTPrimerDB Identification Number  D  NA  
Probe sequences D  + see Table S2 
Location and identity of any modifications E  + 3' FAM/HEX fluorophore,  

5' BHQ1 quencher 
Manufacturer of oligonucleotides D  + MWG Operon 
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Purification method D  + HPLC (MWG Operon) 

dPCR PROTOCOL       

Reaction volume and amount of cDNA/DNA E  + 20 µL, containing 8 µL with 1,000 cells 
as template  

Primer, (probe), Mg++ and dNTP concentrations E  + Primer 900 nM, Probes 125 or 250 nM, 
Mg

2+
 and dNTP proprietary (Bio-Rad) 

Polymerase identity and concentration  E  - proprietary (Bio-Rad) 
Buffer/kit catalogue number and manufacturer  E  + 2x ddPCR Supermix for Probes, 

catalog: 186-3010 (Bio-Rad) 
Exact chemical constitution of the buffer D  - proprietary (Bio-Rad) 
Additives (SYBR Green I, DMSO, etc.) E NA  
Plates/tubes manufacturer and catalog number D  + Cell sorting: 8 well strips, clear, flat-

cap, catalog: G003-SF-I (Kisker 
Biotech).  
PCR: twin.tec 96 well plates, clear, 
semi-skirted, catalog: 0030 128 575 
(Eppendorf) 

Complete thermocycling parameters E  + 2-step cycling protocol, see manuscript 
Reaction setup, gravimetric or volumetric dilutions 
(manual/robotic) 

D  + Manual volumetric dilutions 

Total PCR reaction volume prepared D  + 20 µL 
Partition number, individual partition volume E  + ~ 20,000 droplets / sample, ~0.9 nL 
Total volume of the partitions measured (effective 
reaction size) 

E  + ~ 15,000 droplets * 0.9 nL = 13.5 µL 

Partition volume variance/SD D  - Unknown 
Comprehensive details and appropriate use of 
controls 

E  + Controls: NTC (beads), no-gDNA-
control (spiked plasmid), no-plasmid-
control (WT cells), multiplex/uniplex 
assays 

Manufacturer of dPCR instrument E  + Bio-Rad QX100 
 

dPCR VALIDATION       

Optimization data for the assay D  + Optimization: probe/primer sequence, 
concentration, annealing temp (qRT-
PCR),  
8-well-strips, multiplexing, cell number, 
2 independent reference (ileS/glyA) 
and target genes (styA/oriT) 

Specificity (when measuring rare mutations, 
pathogen sequences etc.) 

E NA  

Limit of detection of calibration control D  + LOD (3 x SD of blank) < 1 cp/µL 
If multiplexing, comparison with singleplex assays E  + Yes, see Figure S-3 

DATA ANALYSIS       

Mean copies per partition (Lambda Λ or 
equivalent) 

E  + Λ = -ln(1-k/n), k = positive partitions, n 
=  all partitions; Λ (500 < k < 14000) = -
ln(1-k/15,000) → 0.03 < Λ < 2.7 

dPCR analysis program (source, version) E  + Quantasoft v1.3.2.0 (Bio-Rad) 
Outlier identification and disposition E NA  
Results of no-template controls E  + sorted beads, see Figure 4 or Figure 

S-3 
Examples of positive(s) and negative 
experimental results as supplemental data 

E  + template controls, see Figure S-3 

Where appropriate, justification of number and 
choice of reference genes 

E  + 2 reference genes previously tested for 
qRT-PCR application 

Where appropriate, description of normalization 
method 

E NA No normalization used 

Number and concordance of biological replicates D  + Usually 2 biological replicates, 4 
technical replicates 

Number and stage (RT or dPCR) of technical 
replicates 

E  + Technical replication during cell sorting 

Repeatability (intraassay variation) E  + 3 independent repetitions of induction 
experiment 
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Reproducibility (interassay/user/lab etc. variation) D  - Not performed 
Experimental variance or CI E  + relative standard deviation (CV) = 5-15 

% 
Statistical methods used for analysis E  + Mean and standard deviation, power 

analysis, student's t-test 
Data submission using RDML (Real-time PCR 
Data Markup Language) 

D  - not performed 

E, Essential information; D, Desirable information; NA, not applicable; +/-, applied/not applied. 

 
 
REFERENCES 
(1) Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; New York: Cold 

Spring Harbor Laboratory Press, 2001; Vol. 1. 

(2) Jahn, M.; Seifert, J.; Hübschmann, T.; von Bergen, M.; Harms, H.; Müller, S. Journal Of 
Integrated Omics 2013, 2, 25-33.  

(3) Köhler, K.A.K.; Rückert, C.; Schatschneider, S.; Vorhölter, F.; Szczepanowski, R.; Blank, 
L.M.; Niehaus, K.; Goesmann, A.; Pühler, A.; Kalinowski, J.; Schmid, A. J Biotechnol 
2013, 168, 729-730. 

(4) Ho, S.N.; Hunt, H.D.; Horton, R.M.; Pullen, J.K.; Pease, L.R. Gene 1989, 77, 51-59. 

(5) Smits, T.H.; Seeger, M.A.; Witholt, B.; van Beilen, J.B. Plasmid 2001, 46, 16-24. 

(6) Dong, L.; Meng, Y.; Wang, J.; Liu, Y. Anal Bioanal Chem 2014, 406, 1701-1712. 

(7) Panke, S.; Witholt, B.; Schmid, A.; Wubbolts, M.G. Appl Environ Microbiol 1998, 64, 
2032-2043. 

 

5.6. Supplementary material

114



5.6. Supplementary material

5.6.3 Supplementary material for Publication 4

Figure 5.11: Supplementary Figure S1. Replicate dataset of dot plots of DNA content (DAPI, in arbitrary
fluorescence units (A.F.U.)) versus forward scatter (FSC, in A.F.U.) at different growth rates, 0.1 h-1, 0.2 h-1

and 0.7h-1. Cells of P. putida KT2440 grown at steady state conditions in chemostats were stained
with DAPI and analyzed by flow cytometry. The DNA content and the forward scatter increased
with increasing growth rate. The indicated gates (C1, C2, Cx) were used for sorting 5×106 cells per
subpopulation for further mass spectrometric analysis.

Figure 5.12: Supplementary Figure S2. Overview of the total protein detection and protein annotation.
Overall, 677 unique proteins were identified, 351 proteins were detected in at least one replicate of all
subpopulations and 245 proteins were found across all replicates. Functional annotation was carried
out using the COG database (Tatusov et al., 1997). 707 different functions of 647 unique proteins
could be annotated into 17 categories. The total number of proteins of Pseudomonas putida KT2440
annotated in one specific category (dark grey bars) is compared to the number of proteins recovered
in this study (light grey bars).
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