
Multi-weighted Automata Models
and Quantitative Logics

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

im Fachgebiet

Informatik

Vorgelegt

von Vitaly Perevoshchikov

geboren am 06. April 1988 in Dschambul, Kasachstan.

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Manfred Droste (Leipzig)
2. Prof. Dr. Paul Gastin (Cachan, Frankreich)

Die Verleihung des akademischen Grades erfolgt mit Bestehen

der Verteidigung am 28.04.2015 mit dem Gesamtprädikat

summa cum laude

.

Acknowledgments
First of all, I would like to thank my supervisor Prof. Dr. Manfred Droste for
his continuous support during the last four years, for giving me the possibility to
research in his group and to live in Germany. He introduced me to the subject
of automata theory and logic. He taught me a lot how to ask questions and find
answers, how to write scientific papers and give scientific talks. I also would
like to thank him for offering me a teaching position within the first two years
of my research.

I am indebted to the Deutsche Forschungsgemeinschaft (DFG) for support-
ing me financially within the scope of the Graduiertenkolleg 1763 "Quantitative
logics and automata".

I am grateful to Prof. Dr. Paul Gastin for the valuable discussions and
interesting ideas concerning Chapter 3 of this thesis. His suggestion to restrict
the use of almost Boolean formulas in the multi-weighted setting helped to
improve the presentation of the results of Chapter 3.

I would like to thank Ingmar Meinecke, a former colleague and a good friend
of mine, for his constant moral support. He helped me a lot at the beginning of
my research.

I am grateful to Karin Quaas for reading the preliminary version of this
thesis and for her helpful comments.

Finally, I would like to thank my parents for their love and encouragement
and my darling Kießa for the faithful support during the last steps of my PhD
studies. Thanks for being you!

Contents

1 Introduction 1

2 Multi-weighted automata on finite words 9
2.1 A general framework and examples 9
2.2 Algorithmic properties of ratio automata 13

3 Multi-weighted MSO logic on finite words 17
3.1 Multi-weighted MSO logic . 17
3.2 An expressiveness equivalence result 22
3.3 Constant-preserving transformations 25
3.4 Evaluators with additional properties 27

4 Multi-weighted rational expressions 31
4.1 Preliminaries . 31
4.2 Multi-weighted rational expressions 32
4.3 A Kleene-Schützenberger theorem 35
4.4 Qualitative evaluators . 38

5 Multi-weighted ω-automata 49
5.1 A general framework and examples 49
5.2 A Nivat-like characterization . 52
5.3 Multi-weighted Muller automata 56
5.4 The discount-optimal value problem 57

6 Weight assignment logic 67
6.1 Partial mappings . 67
6.2 Unambiguous weight assignment logic 68
6.3 Weight assignment logic . 77

7 Multi-weighted timed automata 85
7.1 Timed automata . 85
7.2 A general framework and examples of multi-weighted timed au-

tomata . 89
7.3 Closure properties . 93
7.4 A Nivat theorem for multi-weighted timed automata 98

7.5 Renamings of recognizable quantitative timed languages 101

8 Timed weight assignment logic 105
8.1 Relative distance logic . 105
8.2 Timed weight assignment logic 106
8.3 Unambiguously definable timed languages 110
8.4 Definability equals recognizability 113

9 Timed pushdown automata and timed matching logic 119
9.1 Timed pushdown automata . 119
9.2 Timed matching logic . 122
9.3 Visibly pushdown languages . 124
9.4 Decomposition of timed pushdown automata 125
9.5 Definability equals recognizability 134

10 Conclusion and future work 141

Bibliography 144

Chapter 1

Introduction

Weighted automata introduced by Schützenberger [81] and timed automata in-
troduced by Alur and Dill [3] are prominent models for quantitative aspects
of systems like time, costs, probabilities and energy consumption. Weighted
automata find applications in the areas of image processing [29], speech recog-
nition [73] or verification of probabilistic systems [9], and timed automata are of
great significance for the analysis of real-time systems [3]. Recently, compound
automata frameworks combining the functionality of various automata models,
for instance, clocks, multiple weight parameters and stack have received much
attention for the quantitative analysis and modelling of systems. For instance,
single-weighted timed automata [6, 7, 11, 23, 53, 54, 68] and multi-weighted
timed automata [21, 22, 55, 69] extend the timed automata of [3] by featur-
ing several weight parameters. This permits to compute objectives like the
optimal ratio between rewards and costs [21, 22, 55], or the optimal consump-
tion of several resources where more than one resource must be restricted [69].
Arising from the model of timed automata, the multi-weighted setting has also
attracted much interest for classical non-deterministic automata on finite and
infinite words [8, 10, 14, 52, 56]. Timed pushdown automata provide another
example of a hybrid model combining timed automata with pushdown automata
for context-free languages [12]; this model was studied in [1, 19, 31, 51] in the
context of the verification of real-time recursive systems.

Since the seminal Büchi-Elgot theorem [25, 50] about the expressive equiv-
alence of nondeterministic automata and monadic second-order logic, a signif-
icant field of research investigates logical characterizations of language classes
appearing from practically relevant automata models, e.g., finite-state automata
on trees [83], pictures [59], timed words [84], data words [20] as well as push-
down automata [70] and weighted automata [34]. The main goal of this thesis is
to give logical characterizations for multi-weighted automata models on finite,
infinite and timed words as well as for timed pushdown automata in the spirit
of the classical Büchi-Elgot theorem.

The main problem of the logical characterization for multi-weighted au-

1

2

tomata is that these models involve several independent weight domains. For
instance, in multi-weighted timed automata, transition weights can be tuples
of values (corresponding to several price parameters), location weights can be
tuples of functions (describing, e.g., the continuous consumption of several re-
sources), whereas the behavior of multi-weighted timed automata takes on a
single value. Therefore, the approach of Droste and Gastin [34] to semiring-
weighted MSO logic (where all weights are taken from the same domain, namely,
a semiring) cannot be easily extended to the multi-weighted setting. We solve
this problem by splitting the semantics of formulas into two levels: the auxiliary
semantics and the proper semantics. On the auxiliary level of the semantics, we
deal with the weights appearing in the syntactic part of automata, e.g., tuples
of values. On the proper level of the semantics, we operate with the weights
appearing in the behaviors of automata, e.g., single values.

In addition, we study several algorithmic problems for multi-weighted au-
tomata which can be carried over to the developed logical formalisms. Another
significant contribution of this thesis is a Nivat-like characterization for multi-
weighted automata models as well as timed pushdown automata. Recall that
Nivat’s theorem [74] is one of the fundamental characterizations of rational
transductions and establishes a connection between rational transductions and
rational languages; versions of this theorem for semiring-weighted automata
and weighted multioperator tree automata were given in [38, 82]. As an appli-
cation of our Nivat-like decomposition theorems, inspired by the ideas of Kuske
[67] for weighted rational expressions, we introduce a new proof technique for
our Büchi-Elgot theorems. This technique permits to deduce our results in the
quantitative setting from the corresponding results in the underlying qualitative
setting.

Below we give a brief description of the contents of this thesis.

In Chapter 2, we develop a general model for multi-weighted automata on
finite words which incorporates the following examples of single- and multi-
weighted automata known from the literature: the reward-cost ratio automata
[21, 56], the discounting automata with varying discounting factors [8, 45], multi-
weighted automata with constraints on accumulated weights [69, 75] as well as
weighted-automata over semirings [13, 36, 49, 64, 65, 80] and valuation monoids
[39, 40] motivated by quantitative languages of [27, 28]. The existing concepts
of semirings and valuation monoids do not cover the multi-weighted case since
the weight constants in a multi-weighted automaton are tuples of weights (e.g.,
the reward-cost pair) whereas the behavior takes on a single value (e.g., the
reward-cost ratio). Then, the weight of a run in a multi-weighted automaton
cannot be defined by means of a binary operation (like in a semiring) or by
means of a valuation function (like in a valuation monoid). In our framework,
we process the transition weights in a general way, i.e., we take into account
the history of weights and the nondeterminism before we evaluate the behavior
on a given word. This means that we collect the strings of weights occurring
along runs in a multiset. After that, we use an aggregation function which
associates to such a multiset a single value. In Chapter 2 we also study several

3

algorithmic problems for ratio automata on finite words. We show that the
threshold problem for them is decidable in polynomial time (this result extends
the result of [56]). We also show that the behavior of ratio automata on a given
word is computable in polynomial time (like in the case of, e.g., the tropical
semiring or the semiring of natural numbers).

In Chapter 3, we introduce a concept of multi-weighted MSO logic following
the concept of semiring-weighted MSO logic of Droste and Gastin [34]. Here,
the weights of constants could be tuples of weights. The semantics of formulas
should be single values (not tuples of weights). In contrast to weighted MSO
logics over semirings [34] and valuation monoids [40], this makes it impossible to
define the semantics inductively on the structure of an MSO formula. Instead,
for finite words, we introduce an intermediate semantics which maps each word
to a finite multiset containing strings of tuples of weights. The semantics of
a formula is then defined by applying the aggregation function to the multiset
semantics. We show that our new approach to multi-weighted MSO logic ex-
tends the semiring-weighted MSO logic of [34]. We characterize multi-weighted
automata by a fragment of the multi-weighted MSO logic. Here, in general, the
fragment proposed by [34] for semirings is more expressive than multi-weighted
automata. We put additional restrictions on the syntax and show the equiva-
lence of this restricted multi-weighted MSO logic and multi-weighted automata.
The proof of this result can be reduced to the case of semirings. However, we
cannot apply directly the result of [34], since we must pay attention to the weight
constants which appear in multi-weighted automata. Therefore, we revisit the
proof of [34] with respect to the suitable constructions. Moreover, we show that
if we add suitable properties to our algebraic weight structure, the fragment
of [34] proposed for semirings also leads to recognizable quantitative languages
(in the sense of multi-weighted automata). Semirings as well as various weight
measures considered in literature satisfy this property.

In Chapter 4, we show that the double-step approach to the semantics of
the multi-weighted MSO logic can be successfully applied to the definition of
the semantics of multi-weighted rational expressions. First, we show that the
semantics of our multi-weighted rational expressions over semirings coincides
with the classical semantics of semiring-weighted rational expressions of [81].
As a main result of this chapter, we obtain expressive equivalence of multi-
weighted rational expressions and multi-weighted automata; this result extends
the classical Kleene-Schützenberger theorem for semiring-weighted automata
[61, 81]. For the proof of this result, we show that every multi-weighted automa-
ton (independently of its weight measure) can be characterized by a weighted
automaton over the semiring of natural numbers. Then, we can deduce our
result from the Kleene-Schützenberger theorem [81] for the semiring natural
numbers. Note that, in [39], weighted automata over valuation monoids were
characterized by weighted rational expressions. Since multi-weighted automata
incorporate weighted automata over valuation monoids, our expressive equiv-
alence result gives an alternative Kleene-Schützenberger characterization for
valuation monoid weighted automata. Our result about the characterization

4

of multi-weighted automata by weighted automata over natural numbers may
be of independent interest since it could be helpful to transfer to the multi-
weighted setting further results about weighted automata over the semiring
natural numbers. We go further and study whether we can omit the multiplici-
ties and consider classical finite automata as a basis of multi-weighted automata.
We show that, in general, the multiplicities cannot be avoided. However, for
structures like idempotent semirings and non-idempotent infinite semifields, the
multiplicities are irrelevant.

In Chapter 5, we study multi-weighted automata on infinite words. We are
motivated by the following examples of multi-weighted automata models con-
sidered in literature: the reward-cost ratio automata [21, 22], the discounting
automata with transition-dependent discounting factors [8, 37, 45], and multi-
weighted energy automata [52]. In these examples, multi-weighted automata
are defined without taking into account an acceptance condition. In contrast,
in this thesis we extend them by a Büchi acceptance condition since it is quite
natural from the automata-theoretic point of view. In order to motivate this
extension, we show the computability of the optimal value problem for multi-
weighted Büchi automata with discounting. We introduce a general framework
for multi-weighted Büchi automata; this framework extends the notion of ω-
valuation monoids of [40]. In particular, as in [40], we evaluate ω-sequences
of weights using a multi-weighted valuation function and resolve the nondeter-
minism on weights using an infinitary sum operation. We also give a Nivat-like
decomposition theorem for multi-weighted Büchi automata; this result permits
to separate the multi-weighted setting from the classical Büchi automata. As
a corollary, we obtain a Nivat decomposition theorem for unambiguous multi-
weighted Büchi automata where, for every input ω-word, there exists at most
one accepting run. Unambiguous automata are also of considerable interest for
automata theory as they can have better decidability properties. For instance,
the equivalence problem for unambiguous max-plus automata is decidable [60]
whereas, for nondeterministic max-plus automata, this problem is undecidable
[63]. As a first application of our Nivat theorem, we show that as in the clas-
sical case, Büchi and Muller acceptance conditions are equivalent in the multi-
weighted setting; this extends the result of [44] for totally complete semirings.

In Chapter 6, we give a logical characterization for multi-weighted Büchi
automata. Recall that, for finite words, we used a double-step approach for the
semantics of multi-weighted MSO formulas. The auxiliary semantics was defined
as for the semiring-weighted MSO logic of Droste and Gastin [34] over the
semiring of finite multisets N〈M∗〉 with the union and the Cauchy product. The
proper semantics was defined by evaluating the finite multisets of the auxiliary
semantics. However, if we want to extend this multi-weighted logic to infinite
words, we face the problem that there is no natural concatenation operation
on infinite strings. We introduce an alternative approach for infinite words
which fits to the algebraic structure we use for multi-weighted Büchi automata.
As a motivation, we consider, for instance, timed and picture automata whose
logical characterizations [59, 84] were given by the sentences of the form ψ =

5

∃X1. ... ∃Xn.ϕ where ϕ is constructed from logical operators which can be
applied without any restrictions. Here, we develop a so-called weight assignment
logic (WAL) on infinite words; this logic allows us to assign multi-weights to
positions of an ω-word. We allow the use of the first-order and second-order
existential quantifiers only in the prefix of a formula whereas, in the scope of this
existential prefix, we can use Boolean formulas as well as weighted conjunction-
like operators without any restrictions. Using our weight assignment logic, we
can, for instance, express that whenever a position of an input word is labelled
by a letter a, then the weight of this position is the reward-cost pair (2, 1). As a
weighted extension of the conjunction, we use the merging of partial mappings.
In order to evaluate an infinite partially defined string of weights, we introduce
the default weight, assign it to all undefined positions, and apply the ω-valuation
function to the obtained totally defined infinite string. Finally, for the existential
prefix, we use an infinitary sum operation. First, we show that the set of
unambiguous sentences of weighted assignment logic, i.e., the set of all sentences
without existential quantifiers, is expressively equivalent to unambiguous multi-
weighted Büchi automata. A logical characterization of unambiguous semiring-
weighted automata was given in [66] where, in general, the use of weighted
conjunction and weighted universal first-order quantification is restricted, and
the use of weighted universal second-order quantification is not allowed. In
contrast, in our unambiguous WAL we can use these logical operators without
any restrictions. Thereafter we show that our weight assignment logic is equally
expressive as nondeterministic multi-weighted Büchi automata. The proofs of
these results are based on our Nivat-like decomposition results for unambiguous
and nondeterministic multi-weighted Büchi automata. Note that Droste and
Meinecke [40] presented a weighted MSO logic over ω-valuation monoids. Our
result gives an alternative logical characterization of recognizable quantitative
ω-languages over ω-valuation monoids.

In Chapter 7, we consider the model of multi-weighted timed automata which
are of much interest for the real-time community, since they can model contin-
uous time-dependent consumption of resources (cf. linearly priced timed au-
tomata [7, 11, 68], multi-weighted timed automata with knapsack-problem ob-
jective [69] and the reward-cost ratio measure [21, 22] as well as single-weighted
timed automata with discounting [6, 53, 54]). In [43, 77, 78], semiring-weighted
timed automata were studied with respect to classical automata-theoretic ques-
tions. However, various models, e.g., multi-weighted timed automata with the
ratio and knapsack measures as well as single-weighted timed automata with
discounting do not fit into the framework of semirings. For the latter situa-
tions, only several algorithmic problems have been handled. But many questions
whether the results known from the theories of timed and weighted automata
also hold for multi-weighted timed automata remain open. Moreover, there is
no unified framework for these automata. The main goal of this chapter is
to build a bridge between the theories of multi-weighted timed automata and
timed automata. First, we develop a general model of timed valuation struc-
tures for multi-weighted timed automata. Second, following the ideas of [38]

6

and our ideas presented in Chapter 5, we give a Nivat-like characterization of
quantitative timed languages recognizable by multi-weighted timed automata.
The main difficulties here are that:

• multi-weighted timed automata have two sorts of weights and their be-
havior is computed using the time sequence of an input;

• timed automata are not determinizable; moreover, they are more expres-
sive than unambiguous timed automata.

Nevertheless, for idempotent timed valuation structures, we do not need unam-
biguity. In this case, our Nivat theorem can be formulated as it was done for
the case of ω-words. In the non-idempotent case, we give an example showing
that this statement does not hold true. But in this case we can establish a
connection between recognizable quantitative timed languages and sequentially,
deterministically or unambiguously recognizable timed languages. Finally, using
our Nivat theorem for multi-weighted timed automata, we study the connection
via renamings between determinism and non-determinism in the multi-weighted
timed setting. As we showed for multi-weighted Büchi automata, recognizable
quantitative ω-languages are exactly the renamings of deterministically (and
hence unambiguously) recognizable quantitative ω-languages. We can show that
a similar connection holds between multi-weighted timed automata and unam-
biguous multi-weighted timed automata. However, interestingly, the renamings
of the behaviors of deterministic multi-weighted timed automata form a proper
subclass of recognizable quantitative timed languages.

In Chapter 8, we establish a Büchi-Elgot characterization for multi-weighted
timed automata. We introduce a timed weight assignment logic which extends
the weight assignment logic of Chapter 6 to the timed setting; the qualitative
basis of this logic is Wilke’s relative distance logic [84, 85]. We prove that our
timed weight assignment logic is equally expressive as multi-weighted timed au-
tomata. To show this, we use the same proof technique as for weight assignment
logic on ω-words, i.e., we apply our Nivat theorem for multi-weighted timed au-
tomata. The main difficulty here is that unambiguous timed automata are not
equivalent to nondeterministic timed automata but that our Nivat theorem ap-
peals to unambiguous timed automata. In order to overcome this difficulty, we
present a logical characterization of unambiguous timed automata by means of
a fragment of relative distance logic. Note that this unambiguous fragment will
be used only in the proof of our main result but in our timed weight assignment
logic we do not restrict the use of Boolean formulas. Also note that Quaas
[77, 78] presented a weighted version of relative distance logic over semirings.
Our result, applied to semirings, gives an alternative logical characterization of
recognizable quantitative timed languages over semirings.

In Chapter 9, we provide a logical characterization for dense-timed pushdown
automata proposed recently by [2] as a model for real-time recursive systems.
These automata are equipped with a finite set of clocks as well as a stack which
keeps track of the age of its elements. For our purpose, we introduce a so-called
timed matching logic. As in the logic of Lautemann, Schwentick and Thérien

7

[70], we handle the stack functionality by means of a binary matching predicate.
As in the logic of Wilke [84], we use relative distance predicates to handle the
functionality of clocks. Moreover, for the ages of stack elements, we lift the
binary matchings to the timed setting, i.e., we can compare the time distance
between matched positions with a constant. The main result of this chapter
is the expressive equivalence of timed pushdown automata and timed matching
logic. Here, we face the following difficulties of the proof of our main result. The
class of timed pushdown languages is most likely not closed under intersection
and complement (as the class of context-free languages). Moreover, we cannot
directly follow the approaches of [70] and [84], since the proof of [70] appeals to
the logical characterization result for trees [83] (but, there is no suitable logical
characterization for regular timed tree languages) and the proof of [84] appeals
to the classical Büchi-Elgot result [25, 50] (and, this way does not permit to
handle matchings). In our case, we appeal to the MSO-like characterization of
visibly pushdown languages of Alur and Madhusudan [5]. We show our expressive
equivalence result as follows.

• We prove a Nivat-like decomposition theorem for timed pushdown au-
tomata (cf. [74, 12]) which may be of independent interest; this theorem
establishes a connection between timed pushdown languages and untimed
visibly pushdown languages of [5] by means of operations like renamings
and intersections with simple timed pushdown languages. So we can sepa-
rate the continuous timed part of the model of timed pushdown automata
from its discrete part. The main difficulty here is to encode the infinite
time domain, namely R≥0, as a finite alphabet. We will show that it suf-
fices to use several partitions of R≥0 into intervals to construct the desired
extended alphabet. On the one hand, we interpret these intervals as com-
ponents of the extended alphabet. On the other hand, we use them to
contol the timed part of the model.

• In a similar way, we separate the quantitative timed part of timed match-
ing logic from the qualitative part described by MSO logic with matchings
over a visibly pushdown alphabet [5] by means of operations like renamings
and intersections.

• Now we can deduce our result from the result of [5].

Since our proof is constructive and the reachability for timed pushdown au-
tomata is decidable [1], we can also decide the satisfiability for our timed match-
ing logic.

Preliminary versions of the results of this thesis appeared in [41] and [42].

8

Chapter 2

Multi-weighted automata on
finite words

Contents
2.1 A general framework and examples 9
2.2 Algorithmic properties of ratio automata 13

The model of multi-weighted (or multi-priced) automata is an extension of
the model of weighted automata over semirings [13, 36, 49, 64, 65, 80] and valu-
ation monoids [39, 40] by featuring several weight parameters. In the literature,
different situations of the behaviors of multi-weighted automata have been con-
sidered (cf. [10, 14, 21, 22, 52, 55, 56, 69]) to model the consumption of several
resources. For instance, the model of multi-priced timed automata introduced
in [21] permits to describe the optimal ratio between accumulated rewards and
accumulated costs of transitions.

In this chapter, we introduce a general model to describe the behaviors
of multi-weighted automata on finite words and study several algorithmic
properties of multi-weighted automata with the reward-cost ratio measure.
Interestingly, we can show that the evaluation problem for them is computable
in polynomial time.

2.1 A general framework and examples

The motivation for a new algebraic framework for multi-weighted automata
is the following. The existing concepts of semirings and valuation monoids do
not cover the multi-weighted case since the weight constants in a multi-weighted
automaton are tuples of weights (e.g., the reward-cost pair) whereas the behavior
takes on a single value (e.g., the reward-cost ratio). Then, the weight of a run
in a multi-weighted automaton cannot be defined by means of a binary product

9

10

operation (like in a semiring) or by means of a valuation function (like in a
valuation monoid).

In our framework, we process the transition weights in a general way, i.e., we
take into account all the history of weights and the nondeterminism before we
evaluate the behavior on a given word. This means that we collect the strings
of weights occurred along runs in a multiset. After that, we use an aggregation
function Φ which associates to such a multiset a single value. Now we turn to
formal definitions.

An alphabet is a non-empty finite set. Let Σ be a non-empty set (not nec-
essarily finite). A finite word over Σ is a finite sequence w = a1...an where
n ≥ 0 and ai ∈ Σ for all i ∈ {1, ..., n}. If n = 0, then we say that the word
w is empty and denote it by ε. Otherwise, we say that w is non-empty. Let
|w| = n, the length of w. We denote by Σ∗ the set of all finite words over Σ. Let
Σ+ = Σ∗ \{ε}, the set of all non-empty words over Σ. Any set L ⊆ Σ+ is called
a language over Σ. Note that we eliminate the empty word ε when considering
languages of finite words.

Let Σ be an alphabet. A finite automaton over Σ is a tuple A = (Q, I, T, F)
where Q is a finite set of states, I ⊆ Q is a set of initial states, T ⊆ Q× Σ×Q
is a set of transitions, and F ⊆ Q is a set of final states.

A run of A is a sequence ρ =
(
q0

a1−→ q1
a2−→ ...

an−−→ qn

)
such that n ≥ 1,

q0 ∈ I, ti := (qi−1, ai, qi) ∈ T for all i ∈ {1, ..., n}, and qn ∈ F . The finite
word label(ρ) := a1...an ∈ Σ+ is called the label of ρ. Sometimes we will denote
the run ρ as the word ρ = t1...tn ∈ T+. Let RunA denote the set of all
runs of A. For any w ∈ Σ+, let RunA(w) = {ρ ∈ RunA | label(ρ) = w}. Let
L(A) = {w ∈ Σ+ | RunA(w) 6= ∅}, the language recognized by A. A language
L ⊆ Σ+ is called recognizable if L = L(A) for some finite automaton over Σ.

We let N = {0, 1, 2, ...}, the set of nonnegative integers. Let X be a set. A
multiset over X is a mapping µ : X → N. For any multiset µ over X, the support
of µ is the set supp(µ) = {x ∈ X | µ(x) 6= 0}. We say that µ is finite if supp(µ)
is a finite set. The set of all finite multisets over X is denoted by N〈X〉. Let Y
be a set, f : X → Y a mapping and X ′ ⊆ X a finite subset of X. We denote
by f [X ′] ∈ N〈Y 〉 the multiset such that f [X ′](y) = |{x ∈ X ′ | f(x) = y}| for all
y ∈ Y .

Now we introduce an algebraic structure for multi-weighed automata.

Definition 2.1. An evaluator is a structure E = (M,K,Φ) where M,K are
non-empty sets and Φ : N〈M∗〉 → K is a mapping, called an aggregation func-
tion.

Note that in Definition 2.1 we do not put any conditions on the aggregation
function Φ.

Definition 2.2. Let Σ be an alphabet and E = (M,K,Φ) an evaluator. A
multi-weighted automaton over Σ and E is a tuple A = (Q, I, T, F,wt) where
(Q, I, T, F) is a finite automaton over Σ and wt : T →M is a transition weight
function.

11

Note that the framework of evaluators also permits to handle the situations
where the elements of M are not necessarily tuples of weights and the elements
of K are not necessarily single values. Nevertheless, we will call all models
of weighted automata which fit into our framework multi-weighted, since the
multi-weighted setting is the original motivation of our framework.

Let A be a multi-weighted automaton over Σ and E. We denote by
Const(A) = wt(T) ⊆M the set of all weight constants of A. We define the
mapping wt#

A : RunA → M∗ as follows. For each run ρ = t1...tn ∈ RunA
with n ≥ 1 and t1, ..., tn ∈ T , we put wt#

A(ρ) = wt(t1)...wt(tn) ∈M∗. Re-
call that, for any finite subset X ⊆ RunA, we have wt#

A[X] ∈ N〈M∗〉. Then,
the behavior of A is the mapping [[A]] : Σ+ → K defined for all w ∈ Σ+ by
[[A]](w) = Φ(wt#

A[RunA(w)]). Intuitively, wt#
A[RunA(w)] is the multiset of

all weight sequences of all accepting runs of A for w, and [[A]](w) is the Φ-
aggregation value of this multiset. Any mapping L : Σ+ → K is called a
quantitative language. We say that L is recognizable over E if there exists a
multi-weighted automaton A over Σ and E such that [[A]] = L.

Since we ignore the empty word, it suffices to define Φ only on finite multisets
containing only non-empty strings of the same length. However, the use of
N〈M∗〉 will simplify our further considerations.

Now we consider several examples which show how to describe the behavior
of single-weighted and multi-weighted automata known from the literature using
evaluators.

Let Q denote the set of all rational numbers and Q≥0 the set of all non-
negative rational numbers.

Example 2.3. The model of double-weighted reward-cost ratio automata
(cf. [14, 21, 22, 56, 57]) can be described by means of the evaluator
ERatio = (M,Q ∪ {∞},ΦRatio). Here, M = Q × Q≥0 and ΦRatio is defined
for every µ ∈ N〈M∗〉 as

ΦRatio(µ) = min
{
r1+...+rk
c1+...+ck

∣∣ (r1, c1)...(rk, ck) ∈ supp(µ)
}

where we put min ∅ =∞,
∑
∅ = 0 and r

0 =∞ for all r ∈ Q. Note that, for the
empty word ε, the reward-cost ratio r1+...+rk

c1+...+ck
is equal to 0

0 = ∞ and does not
influence the value of ΦRatio(µ). In a multi-weighted automaton A over Σ and
ERatio, transitions have a reward and a cost, and [[A]](w) is the minimal ratio
between the total reward and the total cost of a run for w.

Example 2.4. Now we consider the model of double-priced automata with the
optimal conditional reachability objective [69] (cf. also the multi-constraint rout-
ing problem [75]). Here, the first price parameter is called the primary cost and
the second price parameter is called the secondary cost. The goal is to minimize
the accumulated primary cost under some upper bound on the accumulated sec-
ondary cost. Since this objective is similar to the objective of the well known
knapsack problem, we will call these automata knapsack automata. We define
the evaluator for knapsack automata as follows. Let η ∈ Q≥0 be a secondary cost

12

bound. Then, consider EKnap(η) = (M,Q ∪ {∞},ΦKnap(η)) where M = Q × Q
and ΦKnap(η) is defined for all µ ∈ N〈M∗〉 by

ΦKnap(η)(µ) = min
{∑k

i=1xi
∣∣ (x1, y1)...(xk, yk) ∈ supp(µ) ∧

∑k
i=1yi ≤ η

}
,

with min ∅ =∞.

Example 2.5. Here, we consider multi-weighted automata with discounting.
In this model, there are two weight parameters: the cost and the discounting
factor (which is not fixed and depends on a transition). This situation was
considered in [8] (cf. also the models of weighted automata [15, 27, 28, 37, 46]
and weighted timed automata [53, 54] with the fixed discounting factor). A
discounting automaton can be considered as a multi-weighted automaton over the
evaluator EDisc = (M,Q ∪ {∞},ΦDisc) withM = Q× (Q ∩ (0, 1]) where ΦDisc is
defined by

ΦDisc(µ) = min
{∑k

i=1 ci ·
∏i−1
j=1 dj

∣∣ (c1, d1)...(ck, dk) ∈ supp(µ)
}

for all µ ∈ N〈M∗〉. Here,
∑
∅ =∞ and

∏
∅ = 1.

The following quantitative automaton model seems to be new.

Example 2.6. In weighted automata over semirings [36] and valuation monoids
[40], the behavior is defined by summing up the weights of accepting runs. How-
ever, it could be interesting to define the behavior by taking the average of the
weights of all runs. This average measure could be useful in cases when we
take into account not only the weights of runs but also how often these weights
may occur. This average setting can be described by means of the evaluator
EAvg = (Q,Q ∪ {∞},ΦAvg) where the aggregation function ΦAvg is defined for
all µ ∈ N〈Q∗〉 by

ΦAvg(µ) =
1

|µ|
·
∑

(µ(u) · (x1 + ...+ xk) | u := x1...xk ∈ supp(µ))

where we put r
0 = ∞ for all r ∈ Q. Here, |µ| =

∑
(µ(u) | u ∈ supp(µ)) is the

size of µ.

The following example is, to the best of our knowledge, new in this context.
However, a similar concept might have been considered in different settings. Let
R denote the set of all real numbers and R≥0 the set of all non-negative real
numbers.

Example 2.7. Let M = Rn for some n ≥ 1 and K = R≥0∪{∞}. Consider the
evaluator EDisp(n) = (M,K,ΦDisp(n)) where ΦDisp(n) : N〈M∗〉 → K is defined
as follows. For v1, v2 ∈ M , let (v1 + v2) ∈ M be the componentwise sum of
vectors. For a vector v = (v1, ..., vn) ∈ M , let ||v|| =

√
v2

1 + ...+ v2
n, the length

of v. Then, for every µ ∈ N〈M∗〉, we put

ΦDisp(n)(µ) =
1

|µ|
·
∑(

µ(u) · ||v1 + ...+ vk||
∣∣ u := v1...vk ∈ supp(µ)

)

13

where r
0 =∞ for all r ∈ R. Suppose that A controls the movement of some object

in Rn and each transition carries the coordinates of the displacement vector of
this object. Then, the behavior of A is the value of the average displacement of
the object after executing w.

Example 2.8. Semiring-weighted automata (cf. [36] for surveys) also fit into
the framework of evaluators. Given a semiring S = (S,+, ·,0,1), a weighted
automaton over S can be considered as a multi-weighted automaton over the
evaluator ES = (S, S,ΦS) where the aggregation function ΦS is defined as fol-
lows. For any multiset µ ∈ N〈S∗〉, we put

ΦS(µ) =
∑(

µ(u) ·
k∏
j=1

sj

∣∣∣∣ u := s1...sk ∈ supp(µ)

)

where,
∑
∅ = 0,

∏
∅ = 1 and n · s = s+ ...+ s (n summands) for n ∈ N, s ∈ S.

Example 2.9. A valuation monoid is a tuple M = (M,+, val,0) where
(M,+,0) is a commutative monoid and val : M+ → M is a val-
uation function with val(m1, ...,mn) = 0 whenever mi = 0 for some
i ∈ {1, ..., n}. Weighted automata over valuation monoids were consid-
ered in [40]. We can understand each weighted automaton over M
as a multi-weighted automaton over EM = (M,M,ΦM) where the aggrega-
tion function ΦM is defined for each finite multiset µ ∈ N〈M∗〉 by
ΦM(µ) =

∑
(µ(u) · val(m1, ...,mk) | u := m1...mk ∈ supp(µ)). Here, val(ε) is de-

fined arbitrarily.

2.2 Algorithmic properties of ratio automata

In the next chapter, we will give a logical characterization of multi-weighted
automata, i.e., we will develop a logical formalism for multi-weighted properties
and an effective translation into multi-weighted automata. As a motivation for
our new logic, we consider in the rest of this section several algorithmic problems
for multi-weighted ratio automata (cf. Example 2.3) which can be carried over
to the logic.

First, we show that the so-called threshold problem for reward-cost ratio
automata is decidable.

Lemma 2.10. Let ERatio be the evaluator of Example 2.3, ./ ∈ {<,≤}. Then, it
is decidable in polynomial time, given an alphabet Σ, a multi-weighted automaton
A over Σ and ERatio and a threshold θ ∈ Q, whether there exists a word w ∈ Σ+

such that [[A]](w) ./ θ.

Proof. It was shown in [56] that this problem is decidable in polynomial time
if a given reward-cost ratio automaton has strictly positive costs, i.e., if the
transition weights are in Q × Q>0 where Q>0 = Q≥0 \ {0}. Here we show that
this problem is decidable for an arbitrary multi-weighted automaton A over

14

ERatio. Let A = (Q, I, T, F,wt) where wt : T → Q× Q≥0. We will denote the
behavior [[A]] of such a multi-weighted automaton A over ERatio by [[A]]Ratio.
We proceed as follows:

(i) First, we construct a reward-cost ratio automaton A′ such that
[[A′]]Ratio = [[A]]Ratio and the accumulated cost of every run of A′ is
strictly positive. The idea is to label each state of A with the Boolean
flag whose initial value is 0 and the value is switched to 1 after taking a
transition whose cost is strictly positive. Then, A′ will accept only such
runs of A whose flags have been switched to 1.

(ii) Second, as in [56], we transform A′ to the weighted automaton
Aθ = (Q′, I ′, T ′, F ′,wtθ) over Σ and the tropical semiring
Trop = (Q ∪ {∞},min,+,∞, 0) as follows. For every t ∈ T with
wt′(t) = (r, c), we put wtθ(t) = r − θ · c. Let [[Aθ]]Trop de-
note the behavior of Aθ. Since the costs of runs of A′ are
strongly positive, we have: [[A′]]Ratio(w) ./ θ for some word w iff
[[Aθ]]Trop(w) ./ 0 for some word w. As it was shown in [56], Theorem 3,
./-threshold problems for weighted automata over the tropical semiring
are decidable in polynomial time. Then, the claim follows.

Now we turn to the problem of evaluation of the behavior of ratio automata
on an input word. Note that, for instance, for the tropical semiring, the behav-
ior of a weighted automaton can be evaluated efficiently (in polynomial time) by
matrix multiplications. The distributivity property of the tropical semiring is
crucial for this method. In the case of ratio automata, we do not have distribu-
tivity and the method of matrix multiplications is not applicable. Note that,
for a given word, there can be exponentially many runs. Hence, the naïve algo-
rithm which computes the weights of all runs is an exponential time algorithm.
Interestingly, we can still evaluate the behavior of ratio automata in polynomial
time. In contrast, using a similar reduction as in [75], Theorem 1, it can be
shown that for the evaluator VKnap(η) of Example 2.4 the following problem is
NP-complete: given an alphabet Σ, a secondary cost bound η ∈ Q≥0, a multi-
weighted automaton A over Σ and VKnap(η), a word w ∈ Σ+ and a threshold
θ ∈ Q, decide whether [[A]](w) ≤ θ.

Lemma 2.11. Given an alphabet Σ, a ratio automaton A over Σ and a word
w ∈ Σ+, the value [[A]]Ratio(w) can be computed in polynomial time.

Proof. Our algorithm will be based on the idea of the minimization of rational
functions presented in [72].

Let Σ be an alphabet, A = (Q, I, T, F,wt) a ratio automaton over Σ
and w ∈ Σ+. Assume that wt(t) = (rt, ct) for all t ∈ T . For a run
ρ = t1...tn ∈ RunA with t1, ..., tn ∈ T , let Reward(ρ) = rt1 + ... + rtn ,
the reward of ρ, and Cost(ρ) = ct1 + ... + ctn , the cost of ρ. By part
(i) of the previous lemma, we may assume without loss of generality that
Cost(ρ) > 0 for all ρ ∈ RunA(w). First, we can check in polynomial time

15

whether RunA(w) = ∅. In this case, [[A]]Ratio(w) =∞. Now assume that
RunA(w) 6= ∅. Then, for θ = [[A]]Ratio(w) = min

ρ∈RunA(w)

Reward(ρ)
Cost(ρ) , we have

min
ρ∈RunA(w)

Reward(ρ)−θ·Cost(ρ)
Cost(ρ) = 0. Let ϕ : Q → Q be defined for all x ∈ Q

by
ϕ(x) = min

ρ∈RunA(w)
(Reward(ρ)− x ·Cost(ρ))

Note that the equation ϕ(x) = 0 has the unique solution θ. Then, our task of
computing [[A]]Ratio(w) is equivalent to the task of finding this solution.

First, we mention an interesting property of the mapping ϕ. Let x ∈ Q be
such that ϕ(x) > 0. Then, for any run ρ ∈ RunA(w), we have: Reward(ρ)

Cost(ρ) > x

and hence θ > x. Now assume that ϕ(x) < 0. Then, there exists a
run π ∈ RunA(w) such that Reward(π) − x · Cost(π) < 0 which implies
θ ≤ Reward(π)

Cost(π) < x. Hence, the following holds true:

∀x ∈ Q : ((ϕ(x) > 0→ θ > x) ∧ (ϕ(x) < 0→ θ < x)). (2.1)

Let Trop = (Q ∪ {∞},min,+,∞, 0), the tropical semiring of rational num-
bers. Let x ∈ Q be a parameter. We consider the semiring-weighted au-
tomaton A′(x) = (Q, I, T, F,wt′(x)) over Σ and Trop where wt′(x) : T → Q
is defined as follows. For any t ∈ T with wt(t) = (r, c), we put
wt′(x)(t) = r − x · c. Clearly, [[A′(x)]]Trop(w) = ϕ(x). Then, our task is to
find x ∈ Q with [[A′(x)]]Trop(w) = 0. We transform A′(x) to the matrix rep-
resentation (γ, µ(x), ν) where γ ∈ {0,∞}1×Q, µ(x) : Σ → (Q ∪ {∞})Q×Q and
ν ∈ {0,∞}Q×1. Let w = a1...an. Then,

[[A′(x)]]Trop(w) = γ · µ(x)(a1) · ... · µ(x)(an) · ν

where the product · of matrices is defined with respect to the semiring Trop.
Now we will compute [[A′(x)]]Trop(w) as the product of matrices whose entries
can depend on x as follows.

Let M = {∞} ∪ {a − b · x | a, b ∈ Q}. Let the sequence of row vectors
(ui)1≤i≤n with ui ∈ M1×Q be defined inductively as follows: u0 = γ and
ui+1 = ui · µ(x)(ai+1). Then, [[A′(x)]]Trop(w) = un · ν. We we will perform the
operations with the parameter x in the semiring Trop as follows. We assume
that x belongs to some interval I ⊆ (−∞,∞) which contains θ. At the beginning
of computation, we put I = (−∞,∞). However, during the computation we
can restrict this interval.

• Let a, b, c, d ∈ Q. Then: (a − b · x) +∞ = ∞ + (a − b · x) = ∞ and
(a− b · x) + (c− d · x) = (a+ c)− (b+ d) · x.

• Let a, b, c, d ∈ Q. Then: min{a − b · x,∞} = min{∞, a − b · x} = ∞ and
min{a− b ·x, a− b ·x} = a− b ·x. The most interesting case is to represent
min{a− b · x, c− d · x} with (a, b) 6= (c, d) in a parametric form. Here, we
will use the property (2.1). Assume that the equation a− b · x = c− d · x
has a unique solution in the interval I (i.e., the two linear functions cross

16

in I). Let x0 be this solution. We compute ϕ(x0) = [[A′(x0)]]Trop(w) (this
can be done in polynomial time by matrix multiplications). The following
situations are possible:

– ϕ(x0) = 0. Then, θ = x0 and we terminate the computation.

– ϕ(x0) > 0. Then, by (2.1), θ > x0 and we modify I by letting
I := I ∩ (x0,∞). If d < b, then we put min{a−b·x, c−d·x} = a−b·x.
Otherwise, we put min{a− b · x, c− d · x} = c− d · x

– ϕ(x0) < 0. Then, by (2.1), θ < x0 and we modify I by letting
I := I ∩ (−∞, x0). If d < b, then we put min{a − b · x, c − d · x} =
c− d · x. Otherwise, we put min{a− b · x, c− d · x} = a− b · x.

If the equation a − b · x = c − d · x does not have a solution in I, then
we take an arbitrary point x0 ∈ I and compare the values a − b · x0 and
c − d · x0. If a − b · x0 < c − d · x0, then a − b · x < c − d · x for all
x ∈ I, and we put min{a− b · x, c− d · x} = a− b · x. Otherwise, we put
min{a− b · x, c− d · x} = c− d · x.

Since RunA(w) 6= ∅, the result will be a linear function of the form a − b · x
where a ∈ Q and b ∈ Q>0. Then, θ = a

b .
Clearly, this algorithm has polynomial time complexity.

Chapter 3

Multi-weighted MSO logic on
finite words

Contents
3.1 Multi-weighted MSO logic 17
3.2 An expressiveness equivalence result 22
3.3 Constant-preserving transformations 25
3.4 Evaluators with additional properties 27

In [34], Droste and Gastin gave a logical characterization of semiring-
weighted automata by means of weighted MSO logic; this result extends the
classical Büchi-Elgot theorem [25, 50] to the quantitative setting. The goal of
the present chapter is to expand this result of Droste and Gastin to the multi-
weighted setting.

3.1 Multi-weighted MSO logic

In this section, we wish to develop a multi-weighted MSO logic where the weight
constants are elements of a set M . Again, if weight constants are pairs of a
reward and a cost, we want the semantics of formulas to be able to reflect the
maximal reward-cost ratio setting, so the weights of formulas should be single
weights. Note that one cannot define the semantics function inductively on
the structure of a formula as in [34]. Therefore we proceed as follows. Given
a formula, we associate to each word a multiset in N〈M∗〉. For disjunction
and existential quantification we use the multiset union. For conjunction and
universal quantification, we extend the concatenation of strings in M∗ to the
Cauchy product of multisets in N〈M∗〉. Then, we use an aggregation function
Φ : N〈M∗〉 → K which associates to each multiset of elements a single value
(e.g. the maximal reward-cost ratio of pairs contained in a multiset).

17

18

(w, σ) |= Pa(x) iff aσ(x) = a
(w, σ) |= x ≤ y iff σ(x) ≤ σ(y)
(w, σ) |= X(x) iff σ(x) ∈ σ(X)
(w, σ) |= β1 ∨ β2 iff (w, σ) |= β1 or (w, σ) |= β2

(w, σ) |= ¬β iff (w, σ) |= β does not hold
(w, σ) |= ∃x.β iff (w, σ[x/i]) |= β for some i ∈ dom(w)
(w, σ) |= ∃X.β iff (w, σ[X/I]) |= β for some I ⊆ dom(w)

Table 3.1: The satisfaction relation for Boolean formulas

For the rest of this section, we fix an alphabet Σ and an evaluator
E = (M,K,Φ) where Φ : N〈M∗〉 → K is an aggregation function. We fix count-
able and pairwise disjoint sets V1 and V2 of first-order resp. second-order vari-
ables. The first-order variables are denoted by lower-case letters, e.g., x, y, z, ...
whereas the second-order variables are denoted by upper-case letters, for in-
stance, X,Y, Z, Let V = V1 ∪ V2.

The syntax of formulas of mwMSO(Σ,E), the multi-weighted MSO logic
over Σ and E, is given as in [16] by the grammar

β ::= Pa(x) | x ≤ y | X(x) | β ∨ β | ¬β | ∃x.β | ∃X.ϕ
ϕ ::= β | m | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x.ϕ |

⊕
X.ϕ |

⊗
x.ϕ

(3.1)

where a ∈ Σ, m ∈M , x, y ∈ V1 and X ∈ V2. The formulas β are called Boolean
formulas and the formulas ϕ are called multi-weighted formulas. Let MSO(Σ)
denote the set of all Boolean formulas. For any formula ϕ ∈ mwMSO(Σ,E),
let Const(ϕ) ⊆M be the set of all weight constants m ∈M occurring in ϕ.

For a formula ϕ ∈ mwMSO(Σ), we let Free(ϕ) be the set of all free
variables of ϕ, i.e., the set of those variables in ϕ not bound by a quanti-
fier. A formula ϕ ∈ mwMSO(Σ) is called a sentence if Free(ϕ) = ∅. A
word w = a1...an ∈ Σ+ is usually represented by the relational structure
(dom(w),≤, (Ra)a∈Σ) where dom(w) = {1, ..., n} is the domain of w and, for
all letters a ∈ Σ, Ra = {i ∈ dom(w) | ai = a}. A w-assignment σ is a function
mapping first-order variables in V1 to elements of dom(w) and second-order
variables in V2 to subsets of dom(w). If x ∈ V1 and i ∈ dom(w), then the
update σ[x/i] is the w-assignment with σ[x/i](x) = i and σ[x/i](y) = σ(y) for
all y ∈ V \ {x}. Similarly, for X ∈ V2 and I ⊆ dom(w), we define the update
σ[X/I] to be the w-assignment with σ[X/I](X) = I and σ[X/I](y) = σ(y) for all
y ∈ V \{X}. We denote by Σ+

V the set of all pairs (w, σ) where w ∈ Σ+ and σ is
a w-assignment. Let (w, σ) ∈ Σ+

V with w = a1...an ∈ Σ+ and β ∈MSO(Σ) be a
Boolean formula. The definition that (w, σ) satisfies β, denoted by (w, σ) |= β,
is given inductively on the structure of β as shown in Table 3.1. Here, a ∈ Σ,
x, y ∈ V1 and X ∈ V2.

Using Boolean formulas inMSO(Σ), we define formulas β1∧β2, ∀x.β, ∀X.β,
β1 → β2 and β1 ↔ β2 as usual. Let True ∈ MSO(Σ) be an abbreviation for
the sentence ∀x.(x ≤ x).

19

〈〈m〉〉(w, σ) = [m]

〈〈β〉〉(w, σ) =

{
[ε], if (w, σ) |= β,

∅, otherwise

〈〈ϕ1 ⊕ ϕ2〉〉(w, σ) = 〈〈ϕ1〉〉(w, σ) + 〈〈ϕ2〉〉(w, σ)

〈〈ϕ1 ⊗ ϕ2〉〉(w, σ) = 〈〈ϕ1〉〉(w, σ) · 〈〈ϕ2〉〉(w, σ)

〈〈
⊕
x.ϕ〉〉(w, σ) =

∑
(〈〈ϕ〉〉(w, σ[x/i]) | i ∈ dom(w))

〈〈
⊕
X.ϕ〉〉(w, σ) =

∑
(〈〈ϕ〉〉(w, σ[X/I]) | I ⊆ dom(w))

〈〈
⊗
x.ϕ〉〉(w, σ) =

∏
(〈〈ϕ〉〉(w, σ[x/i]) | i ∈ dom(w))

Table 3.2: The auxiliary semantics of multi-weighted formulas

Let µ1, µ2 ∈ N〈M∗〉 be multisets. The union (or sum) (µ1 +µ2) ∈ N〈M∗〉 is
defined by (µ1 +µ2)(u) = µ1(u) +µ2(u) for all u ∈M∗. Clearly, the union + is
a commutative operation. The Cauchy product (µ1 · µ2) ∈ N〈M∗〉 is defined for
all u ∈M∗ as

(µ1 · µ2)(u) =
∑

(µ1(u1) · µ2(u2) | u1 ∈ supp(µ1), u2 ∈ supp(µ2), u = u1u2).

We use the Cauchy product for the semantics of multi-weighted formulas in order
to reflect the concatenation of the sequences of weights. The empty multiset
µ ∈ N〈M∗〉 is defined as µ(u) = 0 for all u ∈ M∗. We will abuse the notation
and denote the empty multiset by ∅. For u ∈ M∗, let [u] ∈ N〈M∗〉 denote the
multiset such that supp([u]) = {u} and u = 1. The following proposition is
a folklore result.

Proposition 3.1. (N〈M∗〉,+, ·, ∅, [ε]) is a semiring.

We will denote the semiring from Proposition 3.1 also by N〈M∗〉. Now let
ϕ ∈ mwMSO(Σ,E) be a multi-weighted formula. We define the semantics of
ϕ in two steps as follows:

• First, the auxiliary semantics 〈〈ϕ〉〉 : Σ+
V → N〈M∗〉 is defined for all

(w, σ) ∈ Σ+
V inductively on the structure of ϕ as shown in Table 3.2. Here,

m ∈ M , β ∈MSO(Σ), x ∈ V1 and X ∈ V2. Note that 〈〈ϕ〉〉 does not de-
pend on K and Φ.

• Second, the proper semantics (or simply semantics) [[ϕ]] : Σ+
V → K is

defined as [[ϕ]] = Φ ◦ 〈〈ϕ〉〉.

Sometimes, in order to emphasize that the semantics of a multi-weighted formula
ϕ ∈ mwMSO(Σ,E) is defined with respect to E, we will write [[ϕ]]E for [[ϕ]].
Now let ϕ ∈ mwMSO(Σ,E) be a sentence. Then, for any (w, σ) ∈ Σ+

V , the
value [[ϕ]](w, σ) depends only on w. Then, ignoring the values of variables,

20

we can consider 〈〈ϕ〉〉 as the mapping 〈〈ϕ〉〉 : Σ+ → N〈M∗〉 and [[ϕ]] as the
quantitative language [[ϕ]] : Σ+ → K. Let ∆ ⊆mwMSO(Σ,E) and L : Σ+ → K
a quantitative language. We say that L is ∆-definable if there exists a sentence
ϕ ∈mwMSO(Σ,E) such that [[ϕ]] = L.

Let β ∈MSO(Σ) and ϕ1, ϕ2 ∈mwMSO(Σ,E). As in [18], we can define the
weighted If-Then-Else formula β ? (ϕ1 : ϕ2) as an abbreviation for the formula
(β ⊗ ϕ1)⊕ ((¬β)⊗ ϕ2). Here, if the Boolean formula β holds, then we take the
value of ϕ1. Otherwise, we take the value of ϕ2.

Example 3.2. Let A be an object on the plane whose displacement is managed
by two types of commands: ↔ and l. After receiving the command ↔ the object
moves one step to the left or to the right; after receiving l one step up or down.
Consider the evaluator EDisp(n) of Example 2.7 for n = 2. Let v← = (−1, 0),
v→ = (1, 0), v↓ = (0,−1) and v↑ = (0, 1). Consider the following multi-weighted
MSO sentence over the alphabet Σ = {↔, l} and the evaluator EDisp(2):

ϕ =
⊗
x.(P↔(x) ? (v← ⊕ v→) : (v↓ ⊕ v↑)).

Then, for every sequence of commands w ∈ Σ+, [[ϕ]](w) is the average displace-
ment of the object after execution of all commands from w. For instance, let
w =↔↔. Then, 〈〈ϕ〉〉(w) = [v←v←]+[v←v→]+[v→v←]+[v→v→] and [[ϕ]](w) = 1.
For w =↔l, we have [[ϕ]](w) =

√
2.

Next, we discuss how our new multi-weighted MSO logic is related to the
semiring-weighted logic of Droste and Gastin [34]. Let S = (S,+, ·,0,1) be
a semiring. The syntax of weighted MSO logic wMSO(Σ,S) is given by the
grammar (3.1) where we replace m ∈ M by s ∈ S. As opposed to the multi-
weighted case, the semantics [[ϕ]]S : Σ+

V → S of a weighted MSO formula
ϕ ∈ wMSO(Σ,S) is defined in one step using the weights 0,1 for the Boolean
values, the sum + for ⊕, and the product · for ⊗. More precisely, the semantics
can be defined as shown in Table 3.2 where we replace 〈〈...〉〉 by [[...]]S, m ∈ M
by s ∈ S, [m] by s, ∅ by 0, and [ε] by 1.

As we showed in Example 2.8, a semiring S can be considered as the evaluator
ES = (S, S,ΦS). The following lemma shows that our multi-weighted MSO logic
extends the semiring-weighted logic of [34].

Lemma 3.3. Let Σ be an alphabet, S a semiring and ϕ ∈ wMSO(Σ,S). Then,
ϕ ∈mwMSO(Σ,ES) and [[ϕ]]E

S
= [[ϕ]]S.

The proof of this lemma follows from the following technical lemma.

Lemma 3.4. Let S = (S,+, ·,0,1) be a semiring. Then the mapping
ΦS : (N〈S∗〉,+, ·, ∅, [ε])→ (S,+, ·,0,1) is a semiring morphism with ΦS([s]) = s
for all s ∈ S.

Proof. Clearly, ΦS(∅) = 0, ΦS([ε]) = 1 and ΦS([s]) = s for all s ∈ S. Let
µ1, µ2 ∈ N〈S∗〉. It can be easily shown that ΦS(µ1 + µ2) = ΦS(µ1) + ΦS(µ2).

21

We show explicitly that ΦS(µ1·µ2) = ΦS(µ1)·ΦS(µ2). Let g : (S∗, ·, ε)→ (S, ·,1)
be the monoid morphism with g(s) = s for all s ∈ S and µ1, µ2 ∈ N〈S∗〉. Then:

ΦS(µ1) · ΦS(µ2) =

(∑
u∈S∗

µ1(u) · g(u)

)
·
(∑
v∈S∗

µ2(v) · g(v)

)
=

∑
u,v∈S∗

(µ1(u) · µ2(v)) · (g(u)g(v)) =
∑
w∈S∗

(µ1 · µ2)(w) · g(w)

= ΦS(µ1 · µ2).

Since µ1 and µ2 are finite multisets, all infinite sums in the equations above
have only finitely many non-zero summands.

The following example illustrates a situation where the use of multi-weighed
MSO logic is more convenient than the use of semiring-weighted MSO logic.

Example 3.5. Let Σ be an alphabet and a ∈ Σ. Consider the quantitative
language L : Σ+ → Q ∪ {∞} defined for every w ∈ Σ+ as L(w) = 2 · |w|a
if |w| ≤ 1000 and L(w) = ∞ otherwise (here, |w|a is the number of
a’s in w). We can define L by means of the wMSO(Σ,Trop)-sentence
β ⊗

⊗
x.(Pa(x) ? (2 : 0)) where Trop = (Q ∪ {∞},min,+,∞, 0) is the trop-

ical semiring of rational numbers and β ∈MSO(Σ) describes the property
|w| ≤ 1000: β = ∃x1. ... ∃x1000.∀y.

∨1000
i=1 (xi = y). Unfortunately, such a for-

mula β is very long and the use of semiring-weighted MSO logic is not conve-
nient. Here, it is easier to use our multi-weighted MSO logic. Let η = 1000.
Consider the evaluator EKnap(η) = (Q× Q,Q ∪ {∞},ΦKnap(η)) as defined in Ex-
ample 2.4. Then, L = [[ϕ]] where ϕ is the sentence ϕ ∈ mwMSO(Σ,EKnap(η))
defined as ϕ =

⊗
x.(Pa(x) ? (2, 1) : (0, 1)).

Next, we recall the Büchi-like result of Droste and Gastin [34] for semiring-
weighted MSO logic. Since weighted MSO logic is more powerful than weighted
automata (cf.[34]), we consider a restricted version of weighted MSO logic. Let
S = (S,+, ·,0,1) be a semiring. The set aBOOL(Σ,S) of almost Boolean
formulas is generated by the grammar

γ ::= β | s | γ ⊕ γ | γ ⊗ γ

where β ∈ MSO(Σ) and s ∈ S. For a subset X ⊆ S, let cl(X) denote the
minimal subset of S which contains X ∪{0,1} and is closed under + and ·. For
subsets X,Y ⊆ S, we say that X and Y commute elementwise, if x ·y = y ·x for
all x ∈ X and y ∈ Y . The set wMSOres(Σ,S) ⊆ wMSO(Σ,S) of syntactically
restricted formulas is defined by the rules

ϕ ::= γ | ϕ⊕ ϕ | ϕ⊗ ϕ (!) |
⊕
x.ϕ |

⊕
X.ϕ |

⊗
x.γ

where γ ∈ aBOOL(Σ,S), x ∈ V1 and X ∈ V2; moreover, there is an additional
restriction at the place (!): a formula ϕ1⊗ϕ2 belongs to wMSOres(Σ,S) iff the
sets Const(ϕ1) and Const(ϕ2) commute elementwise.

22

Theorem 3.6 (Droste, Gastin [34]). Let Σ be an alphabet, S = (S,+, ·,0,1) a
semiring, and L : Σ+ → S a quantitative language. Then, L is recognizable over
S iff L is wMSOres(Σ,S)-definable.

3.2 An expressiveness equivalence result
In this section we will compare the expressive power of multi-weighted MSO logic
and multi-weighted automata. Even for the case of a semiring, weighted MSO
logic is more expressive than semiring-weighted automata (cf. [34]). As we will
see in the next example, if we consider the restricted fragment wMSOres(Σ,S)
for multi-weighted logic, it is, in general, more expressive than multi-weighted
automata.

Given a non-empty set M and n ≥ 1, let Mn denote the set of all finite
words over M of the length n.

Example 3.7. Here, we will consider examples of multi-weighted sentences
which lead to unrecognizable quantitative languages. Let Σ be an arbitrary
alphabet. Consider the evaluator E = (M,N〈M∗〉,Φ) where M is an arbi-
trary non-empty set and Φ : N〈M∗〉 → N〈M∗〉 is the identity mapping. Let
L : Σ+ → N〈M∗〉 be any quantitative language recognizable over E. Then, for
all w ∈ Σ+, supp(L(w)) ⊆ M |w|. Based on this property, we show the unrecog-
nizability of the semantics of the following sentences:

• Let ϕ = m where m ∈M . Then, for all w ∈ Σ+, [[ϕ]](w) = [m]. Then, for
all w ∈ Σ+ with |w| > 1, we have: supp([[ϕ]](w)) ∩M |w| = ∅. Hence, the
quantitative language [[ϕ]] is not recognizable. In contrast, in the semiring-
weighted logic of [34] the semantics of a constant is always recognizable by
a semiring-weighted automaton.
• Let ϕ = True. Then, [[ϕ]](w) = [ε] for all w ∈ Σ+. Clearly, [[ϕ]] is not
recognizable over E. In contrast, in the semiring-weighted logic of [34]
the semantics of a Boolean sentence is always recognizable by a semiring-
weighted automaton.
• Let ϕ =

⊗
x.m where x ∈ V1. Then, [[ϕ]](w) = [m|w|] for all

w ∈ Σ+. Clearly, [[ϕ]] is recognizable over E. Note that, for all w ∈ Σ+,
[[ϕ⊗ ϕ]](w) = [m2|w|]. Then, [[ϕ⊗ϕ]] is not recognizable over E. Here, the
situation is similar to the case of semirings, since, as it was shown in [35],
the use of ⊗ for noncommutative semirings may not preserve recognizabil-
ity.
• Let ϕ =

⊗
x.
⊗
y.m where x, y ∈ V1 and m ∈M . Then, [[ϕ]](w) = [m|w|

2

]
for all w ∈ Σ+. Again, [[ϕ]] is not recognizable over E. Note that in the case
of semirings the nested use of the weighted first-order universal quantifier
often leads to unrecognizability [34].

By the first two parts of Example 3.7, Theorem 3.6 cannot be easily extended
to the multi-weighted setting. Our next task is to find a restricted fragment of

23

mwMSO(Σ,E) which is expressively equivalent to multi-weighted automata.
First, we analyze Example 3.7. Here, besides the standard restrictions on ⊗
and

⊗
x, we must pay attention to the length of the strings in the multisets of

the auxiliary semantics: it must be equal to the length of an input word.
For multi-weighted MSO logic, instead of the almost Boolean fragment

aBOOL(Σ,E), we consider the fragment aBOOLres(Σ,E)1 of restricted almost
Boolean formulas which is defined by the grammar:

γ ::= m | γ ⊕ γ | β ⊗ γ

where m ∈ M and β ∈ MSO(Σ). Note that, for each (w, σ) ∈ Σ+
V ,

supp(〈〈γ〉〉(w, σ)) ⊆ M . Then, we define the strongly restricted multi-weighted
MSO logic mwMSOs.res(Σ,E) ⊆ wMSO(Σ,E) over Σ and E to be the set of
all formulas generated by the grammar

ϕ ::=
⊗
x.γ | ϕ⊕ ϕ | β ⊗ ϕ |

⊕
x.ϕ |

⊕
X.ϕ

where x ∈ V1, X ∈ V2, β ∈ MSO(Σ) and γ ∈ aBOOLres(Σ,E). In relation
to the fragment wMSOres(Σ,S) for a semiring S, we restrict the use of con-
stants, Boolean formulas and the conjunction-like operator ⊗. Note that the
multi-weighted sentences from Examples 3.2 and 3.5 are strongly restricted. We
call this fragment strongly restricted to avoid confusion with the definition of
restricted semiring-weighted MSO logic.

For a semiring S, let aBOOLres(Σ,S) = aBOOLres(Σ,ES) and
wMSOs.res(Σ,S) = mwMSOs.res(Σ,ES)

Now we state our main result about multi-weighted logic on finite words.
We want to point out that here we do not put any restrictions on an evaluator
E and that this result does not extend Theorem 3.6 to the multi-weighted case
(because of the generality of our model, cf. Example 3.7). In Sect. 3.4, we
consider evaluators with additional properties and show that multi-weighted
automata over them can be characterized by the same logical fragment as in
Theorem 3.6.

Theorem 3.8. Let Σ be an alphabet, E = (M,K,Φ) an evaluator and
L : Σ+ → K a quantitative language. Then, the following are equivalent.

(a) L is recognizable over E.
(b) L is mwMSOs.res(Σ,E)-definable.

The proof of this theorem will be given in the rest of this section. We start
with the following remark.

Remark 3.9. Recall that the semantics [[ϕ]] of a multi-weighted formula
ϕ ∈mwMSO(Σ,E) is defined as the composition Φ ◦ 〈〈ϕ〉〉 where 〈〈ϕ〉〉 is the
auxiliary semantics of ϕ. The behavior [[A]] of a multi-weighted automaton A

1I am grateful to Prof. Dr. Paul Gastin for his suggestion to restrict the use of conjuction
in almost Boolean formulas. This idea helped to improve the preliminary results published in
[42].

24

over Σ and E can be decomposed as [[A]] = Φ◦〈〈A〉〉 where 〈〈A〉〉 : Σ+ → N〈M∗〉 is
defined for all w ∈ Σ+ by 〈〈A〉〉(w) = wt#

A[RunA(w)]. We call 〈〈A〉〉 the auxiliary
behavior of A.

Since we define the behavior of multi-weighted automata and the semantics
of multi-weighted MSO logic by means of the same aggregation function Φ,
by Remark 3.9 it suffices to show the equivalence of multi-weighted automata
and logic with respect to the auxiliary behavior and the auxiliary semantics,
respectively.

Recall that the codomain of the auxiliary behavior of multi-weighted au-
tomata and the codomain of the auxiliary semantics of multi-weighted MSO
logic are N〈M∗〉, whereas the weight constants are taken from M .

Our further considerations will reduce the proof of Theorem 3.8 to the
case of the semiring N〈M∗〉. Here we will use the idea that a weight con-
stant m ∈ M can be identified with the multiset [m] ∈ N〈M∗〉. Let
Mon(M) = {[m] | m ∈M} ⊆ N〈M∗〉, the set of monomials.

Lemma 3.10. Let L : Σ+ → N〈M∗〉 be a mapping. Then the following are
equivalent.

(a) L = 〈〈A〉〉 for some multi-weighted automaton A over Σ and E.
(b) L = [[A′]]N〈M∗〉 for some semiring-weighted automaton A′ over Σ and

N〈M∗〉 such that Const(A′) ⊆ Mon(M).

Proof. Given a multi-weighted automaton A = (Q, I, T, F,wt) over Σ and E, we
can define the semiring-weighted automaton A′ = (Q, I, T, F,wt′) over Σ and
N〈M∗〉 with wt′(t) = [wt(t)] for all t ∈ T . Then, for all w ∈ Σ+, we have:

[[A′]]N〈M
∗〉(w) =

∑
ρ∈RunA(w)

[wt#
A(ρ)] = wt#

A[RunA(w)] = 〈〈A〉〉(w)

and hence [[A′]]N〈M∗〉 = 〈〈A〉〉.
Conversely, for each semiring-weighted automaton B = (Q, I, T, F,wt) over

Σ and N〈M∗〉 with Const(B) ⊆ Mon(M), we define a multi-weighted automa-
ton A = (Q, I, T, F,wt′) over Σ and E such that wt(t) = [wt′(t)] for all t ∈ T .
Then, 〈〈A〉〉 = [[B]]N〈M

∗〉. This proves the result.

A similar equivalence holds for strongly restricted multi-weighted MSO logic:

Lemma 3.11. Let L : Σ+ → N〈M∗〉 be a mapping. Then, the following are
equivalent.

(a) L = 〈〈ϕ〉〉 for some multi-weighted sentence ϕ ∈mwMSOs.res(Σ,E).
(b) L = [[ϕ′]]N〈M

∗〉 for some semiring-weighted sentence
ϕ′ ∈ wMSOs.res(Σ,N〈M∗〉) with Const(ϕ′) ⊆ Mon(M).

Proof. Given a sentence ϕ ∈ mwMSOs.res(Σ,E), we define the semiring-
weighted sentence ϕ′ over N〈M∗〉 by replacing every constant m ∈ M oc-
curring in ϕ by the finite multiset [m]. Then, Const(ϕ′) ⊆ Mon(M) and
[[ϕ′]]N〈M

∗〉 = 〈〈ϕ〉〉.

25

Conversely, if ϕ′ ∈ wMSOs.res(Σ,N〈M∗〉) is a sentence with
Const(ϕ′) ⊆ Mon(M), we define the multi-weighted sentence ϕ from ϕ′ by
replacing every constant [m] in ϕ′ by m. Then, 〈〈ϕ〉〉 = [[ϕ′]]N〈M

∗〉. This proves
the result.

To finish the proof of our Theorem 3.8, we show that part (b) of Lemma 3.10
is equivalent to part (b) of Lemma 3.11. To prove this, we cannot directly use
the proof of [34] for Theorem 3.6 for the case S = N〈M∗〉, since the translation
from logic into automata presented in [34] employs some computations in the
semiring S but the set Mon(M) is not closed under the union + and the Cauchy
product ·.

Therefore, next we show for an arbitary semiring S a result stating that
for the fragment wMSOs.res(Σ,S) we have constant-preserving transformations
from logic into automata and vice versa. This result could be also of the indepen-
dent interest. For instance, if the operations in a semiring are not computable
(consider, e.g., the addition and multiplication of real numbers), a constant-
preserving transformation would be preferable.

Theorem 3.12. Let Σ be an alphabet and S a semiring.

(a) Let ϕ ∈ wMSOs.res(Σ,S) be a sentence. Then, there exists a semiring-
weighted automaton A over Σ and S such that [[A]]S = [[ϕ]]S and
Const(A) = Const(ϕ).

(b) Let A be a semiring-weighted automaton over Σ and S. Then, there
exists a sentence ϕ ∈ wMSOs.res(Σ,S) such that [[ϕ]]S = [[A]]S and
Const(ϕ) = Const(A).

We will present a proof of this theorem in the next section.
We finish the proof of Theorem 3.8 by summarizing the previous considera-

tions:

Proof of Theorem 3.8. Immediate from Theorem 3.12 for S = N〈M∗〉 and
Lemmas 3.10 and 3.11.

3.3 Constant-preserving transformations
In this section, we present a proof of Theorem 3.12. Let S = (S,+, ·,0,1) be a
semiring.

We start with part (a). For a set X ⊆ S, let cl+(X) ⊆ S be the minimal set
containing X ∪ {0} which is closed under +.

Lemma 3.13. Let ϕ ∈ wMSOs.res(Σ,S) be a sentence. Then there ex-
ists a weighted automaton A over Σ and S such that [[A]] = [[ϕ]] and
Const(A) ⊆ cl+(Const(ϕ)).

Proof. We proceed by induction on ϕ. As in the proof presented in [34], we can
restrict ourselves to a finite set V ⊇ Free(ϕ) of variables and encode values of
variables as a word over the extended alphabet Σ× {0, 1}V . Next, we will omit
the details of the proof which are analogous to the proof of [34].

26

• Let ϕ =
⊗
x.γ where x ∈ V1 and γ ∈ aBOOLres(Σ,S). It can be easily

shown by induction on the structure of a restricted almost Boolean formula
γ ∈ aBOOLres(Σ,S) that [[γ]](Σ+

V) ⊆ cl+(Const(γ)) is a finite set. Then,
we construct a weighted automaton A for ϕ as in [34], Lemma 4.4. Note
that Const(A) ⊆ [[γ]](Σ+

V) ⊆ cl+(Const(γ)).
• Let ϕ = ϕ1 ⊕ ϕ2. In this case, we apply the standard disjoint union

construction which preserves the set of weight constants of automata for
ϕ1 and ϕ2.
• Let ϕ = β ⊗ ϕ′ where β ∈ MSO(Σ). We proceed here like in the proof

of [40], i.e., we take a product of a deterministic complete unweighted
automaton for β and a weighted automaton for ϕ′. This construction
preserves the set of weight constants of the weighted automaton for ϕ′.
• Let ϕ = ∃X .ϕ′ with X ∈ V1 ∪ V2. Here, we apply the construction for the

projection of [47], Lemma 1, which preserves the constants.

Now we transform the weighted automaton A from the previous lemma to
a weighted automaton A′ with [[A′]] = [[A]] and Const(A′) = Const(ϕ).

Lemma 3.14. Let X ⊆ S be a finite set and A a weighted automaton over Σ
and S such that Const(A) ⊆ cl+(X). Then, there exists a weighted automaton
A′ over Σ and S such that [[A′]] = [[A]] and Const(A′) = X.

Proof. Let A = (Q, I, T, F,wt). We may assume that T 6= ∅. For each t ∈ T ,
let wt(t) = st,1 + ...+ st,nt where nt ≥ 0 and st,1, ..., st,nt ∈ X. The key idea of
our construction is to split each transition t into nt transitions with the weights
st,1, ..., st,nt . Let n = max{nt | t ∈ T}. We let A′ = (Q′, I ′, T ′, F ′,wt′) where:

• Q′ = Q× {1, ..., n}, I ′ = I × {1}, F ′ = F × {1, ..., n};
• T ′ consists of all transitions t′ := ((p, i), a, (q, j)) where t := (p, a, q) ∈ T ,
i ∈ {1, ..., n} and j ∈ {1, ..., nt}. We define the weight of t′ as wt′(t′) = st,j .

Clearly, Const(A′) ⊆ X. Using the distributivity property of the semiring S,
it can be easily shown that [[A′]] = [[A]].

If Const(A′) 6= X, then we add some idle transitions with the weights from
X \Const(A′) to obtain a weighted automaton whose set of weight constants
is exactly X.

Cleary, Lemmas 3.13 and 3.14 imply Theorem 3.12 (a). Next, we show part
(b) of Theorem 3.12.

Lemma 3.15. Let A be a weighted automaton over Σ and S. Then, there
exists a sentence ϕ ∈ wMSOs.res(Σ,S) such that Const(ϕ) = Const(A) and
[[ϕ]] = [[A]].

Proof. The proof of this lemma is a slight modification of the proof of Theorem
5.5 of [34]. Let A = (Q, I, T, F,wt). As in [34], Theorem 5.5, we assign with
every transition t ∈ T a second-order variable Xt which will keep track of

27

positions where this transition is taken. Let V = {Xt}t∈T . A run of A can
be described using a formula β ∈ MSO(Σ) with Free(β) = V which demands
that the values of V-variables form a partition of the domain of an input word,
the transitions of a run are matching, the labels of transitions of a run are
compatible with an input word, a run starts in I and ends in F . Then, the
wMSOs.res(Σ,S)-sentence ϕ is defined as

ϕ =
⊕
V.
(
β ⊗

⊗
x.
⊕

t∈T (Xt(x)⊗ wt(t))
)
. (3.2)

where
⊕
V abbreviates

⊕
X1. ...

⊕
Xn for an enumeration V = {X1, ..., Xn}.

Clearly, Const(ϕ) = wt(T) = Const(A). Moreover, [[ϕ]] = [[A]].

Proof of Theorem 3.12. Immediate from Lemmas 3.13, 3.14 and 3.15.

3.4 Evaluators with additional properties
As we already mentioned in Sect. 3.2, the concept of multi-weighted MSO logic
extends the semiring-weighted MSO logic. However, our Büchi result for the
multi-weighted setting (cf. Theorem 3.8) does not agree with Theorem 3.6 for
semirings, since the logical fragment of Theorem 3.8 is more restricted than the
logical fragment of Theorem 3.6. This restriction can be explained, e.g., by
Example 3.7.

In order to complete the picture of the robustness of multi-weighted logic,
we put additional conditions on the evaluator under which the logical fragment
of Theorem 3.6 (considered in the multi-weighted setting) is equivalent to multi-
weighted automata. First, we provide an informal description. As in the case of
semiring-weighted automata, we will define the weights of runs (which are also
inM) using a binary operation onM . After that, we collect the weights of runs
in a multiset and evaluate this multiset using an aggregation function.

Let X,Y be sets, f : X → Y a mapping, and µ ∈ N〈X〉 a finite multi-
set. Let E = (M,K,Φ) be an evaluator and M = (M, �,1) a monoid. Let
fM : (M∗, ·, ε)→ (M, �,1) be the monoid morphism with fM(m) = m for all
m ∈M . Let FM : N〈M∗〉 → N〈M〉 be defined for all µ ∈ N〈M∗〉 and m ∈M by

FM(µ)(m) =
∑

(µ(x) | x ∈ supp(µ), fM(x) = m)

where
∑

is the usual addition of natural numbers. Informally, the mapping
FM replaces each sequence m1...mk ∈ M∗ in a multiset by a single element
(m1 � ... �mk) ∈ M , keeping multiplicities. A natural algebraic description of
FM will follow in Lemma 3.20. We will abuse the notation and understand a
multiset µ ∈ N〈M〉 as a multiset in N〈M∗〉 with supp(µ) ⊆M .

Definition 3.16. Let E = (M,K,Φ) be an evaluator and M = (M, �,1) a
monoid. We say that E is an M-evaluator if Φ ◦ FM = Φ.

Definition 3.16 means that the values of Φ of N〈M〉 completely determine
its values on N〈M∗〉, and the diagram depicted in Fig. 3.1 commutes.

28

N〈M∗〉 N〈M〉

K

FM

ΦΦ

Figure 3.1: The diagram for M-evaluators

Example 3.17. (a) Let S = (S,+, ·,0,1) be a semiring. Consider the
monoid M = (S, ·,1). Then, ES = (S, S,ΦS) is an M-evaluator.

(b) Consider the evaluator ERatio = (M,K,ΦRatio) from Example 2.3 where
M = Q× Q≥0 and K = Q∪{∞}. Consider the monoid M = (M,+, (0, 0))
where + is the componentwise addition. Then, ERatio is an M-evaluator.

(c) For a secondary cost bound η ∈ Q≥0, let EKnap(η) = (M,K,ΦKnap(η)) be
the evaluator of Example 2.4 where M = Q× Q and K = Q ∪ {∞}. Con-
sider the monoid M = (M,+, (0, 0)) where + is the componentwise addi-
tion. Then, EKnap(η) is an M-evaluator.

(d) Let EDisc = (M,K,ΦDisc) be the evaluator where M = Q× (Q ∩ (0, 1]),
K = Q ∪ {∞} and ΦDisc is defined as in Example 2.5. Consider the
monoid M = (M, �, (0, 1)) where � is defined for all (x1, d1), (x2, d2) ∈M
by (x1, d1) � (x2, d2) = (x1 + d1 · x2, d1 · d2). Then, EDisc is an
M-evaluator.

(e) Now we consider the evaluator from Example 3.7. This example was a wit-
ness why the restricted fragment of [34] (considered in the multi-weighted
setting) is more expressive than multi-weighted automata over arbitrary
evaluators. Let E = (M,N〈M∗〉,Φ) where M is a non-empty set and Φ is
the identity mapping. Let M = (M, �,1) be any monoid. We show that E is
not an M-evaluator. Indeed, let µ = [ε] ∈ N〈M∗〉. Then, FM(µ) = [1] 6= µ
and hence Φ(FM(µ)) = FM(µ) 6= µ = Φ(µ). Thus, there exists no monoid
M such that E is an M-evaluator.

We say that subsets M ′,M ′′ of M �-commute elementwise if
m′ �m′′ = m′′ �m′ for all m′ ∈M ′ and m′′ ∈M ′′.

Let the set aBOOL(Σ,E) be defined as in the case of semirings. The frag-
ment mwMSOres

M (Σ,E) ⊆mwMSO(Σ,E) is also defined as for semirings by
the rules:

ϕ ::= γ | ϕ⊕ ϕ | ϕ⊗ ϕ (!) |
⊕
x.ϕ |

⊕
X.ϕ |

⊗
x.γ

where γ ∈ aBOOL(Σ,E), x ∈ V1 and X ∈ V2; moreover, there is an additional
restriction at the place (!): a formula ϕ1 ⊗ ϕ2 belongs to mwMSOres

M (Σ,E)
iff the sets Const(ϕ1) and Const(ϕ2) �-commute elementwise. Note that if
M is a commutative monoid, then the use of ϕ1 ⊗ ϕ2 is allowed without any
restrictions. Clearly, mwMSOs.res(Σ,E) ⊆mwMSOres

M (Σ,E).

Remark 3.18. Consider a semiring S = (S,+, ·,0,1), the corresponding
evaluator ES and the monoid M = (S, ·,1). Then, mwMSOres

M (Σ,ES) =
wMSOres(Σ,S).

29

The main result of this section is the following theorem.

Theorem 3.19. Let Σ be an alphabet, E = (M,K,Φ) an evaluator,
M = (M, �,1) a monoid such that E is an M-evaluator, and L : Σ+ → K a
quantitative language. Then, the following are equivalent.

(a) L is recognizable over E.
(b) L is mwMSOres

M (Σ,E)-definable.

If we apply this theorem to the evaluator E = ES (where S = (S,+, ·,0,1)
is a semiring) and to the monoid M = (S, ·,1), then we obtain Theorem 3.6.
Hence, Theorem 3.19 generalizes Theorem 3.6.

The rest of this section will be devoted to the proof of Theorem 3.19. Like
in the proof of Theorem 3.8, we reduce the proof to the case of semirings.
In contrast to the proof of Theorem 3.8, here we do not need to revisit the
constructions for semiring-weighted formulas; we can apply the result of [34]
as a "black box". Whereas in the proof of Theorem 3.8 we used the semiring
(N〈M∗〉,+, ·, ∅, [ε]), here we will consider a different semiring. The domain of
this semiring will be the set N〈M〉. We will consider the following operations.
For all µ1, µ2 ∈ N〈M〉, the union r1 + r2 is defined as before. We extend � to
finite multisets as follows. Let µ1, µ2 ∈ N〈M〉. Then, we define (µ1�µ2) ∈ N〈M〉
for all m ∈M by

(µ1 � µ2)(m) =
∑(

µ1(m1) · µ2(m2) | m1 ∈ supp(µ1),m2 ∈ supp(µ2),

m = m1 �m2

)
It is well known that (N〈M〉,+, �, ∅, [1]) is a semiring. We will denote this

semiring simply by N〈M〉.

Lemma 3.20. FM : (N〈M∗〉,+, ·, ∅, [ε]) → (N〈M〉,+, �, ∅, [1]) is the unique
semiring morphism satisfying FM([m]) = [m] for all m ∈M .

Proof. It is straightforward to see that FM(∅) = ∅, FM([ε]) = [1], FM([m]) = [m]
for all m ∈ M and FM(µ1 + µ2) = FM(µ1) + FM(µ2) for all µ1, µ2 ∈ N〈M∗〉.
We show that FM(µ1 · µ2) = FM(µ1) � FM(µ2) for all µ1, µ2 ∈ N〈M∗〉. For the
convenience, we will use the sum of infinite families of natural numbers under
the assumption that only finitely many of them are non-zero. Let m ∈ M . On
the one hand, we have:

(FM(µ1 · µ2))(m) =
∑

((µ1 · µ2)(x) | x ∈M∗, fM(x) = m)

=
∑

(µ1(x1) · µ2(x2) | x1, x2 ∈M∗, fM(x1x2) = m)

=
∑

(µ1(x1) · µ2(x2) | x1, x2 ∈M∗, fM(x1) � fM(x2) = m).

One the other hand:

(FM(µ1) � FM(µ2))(m) =
∑

(FM(µ1) · FM(µ2) | m1,m2 ∈M,m = m1 �m2)

=
∑

(µ1(x1) · µ2(x2) | x1, x2 ∈M∗, fM(x1) � fM(x2) = m).

30

This shows that FM(µ1·µ2) = FM(µ1)�FM(µ2). It is also not difficult to show that
whenever Ψ : (N〈M∗,+, ·, ∅, [ε]) → (N〈M〉,+, �, ∅, [1]) is a semiring morphism
with Ψ([m]) = [m] for all m ∈M , then for all µ ∈ N〈M∗〉 and m ∈M we have

Ψ(µ)(m) =
∑

(µ(x) | x ∈ supp(µ), fM(x) = m) = FM(µ)(m).

Then, FM is the unique semiring morphism preserving monomials.

Lemma 3.21. Let ϕ ∈ mwMSOres
M (Σ,E) be a formula. Then, there ex-

ists a formula ϕ′ ∈ wMSOres(Σ,N〈M〉) such that Free(ϕ′) = Free(ϕ) and
[[ϕ′]]N〈M〉 = FM ◦ 〈〈ϕ〉〉.

Proof. Let ϕ′ ∈ wMSOres(Σ,N〈M〉) be the formula obtained from ϕ by re-
placing each constant m ∈ M occurring in ϕ by the multiset [m] ∈ N〈M〉. Let
m1,m2 ∈ M with m1 �m2 = m2 �m1. Then, [m1] � [m2] = [m2] � [m1]. Then,
ϕ′ satisfies the restrictions on the use of ⊗ in wMSOres(Σ,N〈M〉)-formulas and
hence ϕ′ ∈ wMSOres(Σ,N〈M〉). The equality [[ϕ′]]N〈M〉 = FM ◦ 〈〈ϕ〉〉 can be
easily shown inductively using Lemma 3.20.

Lemma 3.22. Let A be a semiring-weighted automaton over Σ and N〈M〉.
Then, there exists a multi-weighted automaton A′ over Σ and E such that
FM ◦ 〈〈A′〉〉 = [[A]]N〈M〉.

Proof. The proof is based on a similar construction as in the proof of
Lemma 3.14. Here, for every transition t of A, we represent its weight as
wt(t) = [mt,1] + ...+ [mt,nt] where nt ≥ 0 and mt1 , ...,mt,nt ∈ M . Then, as in
Lemma 3.14, we split t into nt transitions with the weights mt,1, ...,mt,nt .

Proof of Theorem 3.19. (a) ⇒ (b). Let A be a multi-weighted automaton over
Σ and E. Then, by Theorem 3.8, there exists a sentence ϕ ∈mwMSOs.res(Σ,E)
(and hence ϕ ∈mwMSOres(Σ,E)) with [[ϕ]] = [[A]].

(b) ⇒ (a). Let ϕ ∈ mwMSOres
M (Σ,E) be a sentence. By Lemma 3.21, there

exists a sentence ϕ′ ∈ wMSOres(Σ,N〈M〉) such that [[ϕ′]]N〈M〉 = FM ◦ 〈〈ϕ〉〉. By
Theorem 3.6, there exists a semiring-weighted automaton A′ over Σ and N〈M〉
such that [[A′]]N〈M〉 = [[ϕ′]]N〈M〉. By Lemma 3.22, there exists a multi-weighted
automaton A over Σ and E such that FM ◦ 〈〈A〉〉 = [[A′]]N〈M〉. Then, we have:

[[ϕ]]E = Φ ◦ 〈〈ϕ〉〉 ∗= Φ ◦ FM ◦ 〈〈ϕ〉〉 = Φ ◦ [[ϕ′]]N〈M〉 = Φ ◦ [[A′]]N〈M〉

= Φ ◦ FM ◦ 〈〈A〉〉
∗
= Φ ◦ 〈〈A〉〉 = [[A]]E

where at ∗ we used that E is an M-evaluator.
As a corollary from Lemma 2.10 and Theorem 3.19, we obtain:

Corollary 3.23. Let the monoid M and the M-evaluator ERatio be defined as
in Example 3.17 (b). Then, it is decidable, given an alphabet Σ, a sentence
ϕ ∈mwMSOres

M (Σ,ERatio), ./ ∈ {<,≤}, and a threshold θ ∈ Q, whether
[[ϕ]](w) ./ θ for some word w ∈ Σ+.

Chapter 4

Multi-weighted rational
expressions

Contents
4.1 Preliminaries . 31
4.2 Multi-weighted rational expressions 32
4.3 A Kleene-Schützenberger theorem 35
4.4 Qualitative evaluators 38

The goal of this chapter is to extend the classical Kleene-Schützenberger
theorem [81] about the equivalence of recognizable and rational formal power
series to the multi-weighted setting. We introduce multi-weighted rational ex-
pressions and define their semantics following a similar double-step approach
as for multi-weighted MSO logic. We show that these multi-weighted rational
expressions are expressively equivalent to multi-weighted automata.

4.1 Preliminaries
In this section, we recall the classical Kleene-Schützenberger theorem [81] for
semirings. Let Σ be an alphabet and S = (S,+, ·,0,1) a semiring.

Let L1,L2 : Σ+ → S be quantitative languages. The addition
L1 + L2 : Σ+ → S is defined for all w ∈ Σ+ as (L1 + L2)(w) = L1(w) + L2(w).
The Cauchy-product L1 · L2 : Σ+ → S is defined for all w ∈ Σ+ as

(L1 · L2)(w) =
∑(

L1(w1) · L2(w2) | w1, w2 ∈ Σ+, w1w2 = w
)
.

For L : Σ+ → S, the iteration L+ : Σ+ → S is defined for all w ∈ Σ+ by

L+(w) =
∑(

L(w1) · ... · L(wi) | 1 ≤ i ≤ |w|, w1, ..., wi ∈ Σ+, w1...wi = w
)
.

31

32

[[∅]] = 0Σ+

[[(s, a)]] = sa

[[e1 + e2]] = [[e1]] + [[e2]]

[[e1 · e2]] = [[e1]] · [[e2]]

[[e+]] = [[e]]+

Table 4.1: The semantics of rational expressions over a semiring

For s ∈ S and a ∈ Σ, let sa : Σ+ → S denote the quantitative language such
that (sa)(a) = a and (sa)(w) = 0 for all w ∈ Σ+ \ {a}. Let 0Σ+ : Σ+ → S
denote the quantitative language with 0Σ+(w) = 0 for all w ∈ Σ+.

The set Rat(Σ,S) of weighted rational expressions over Σ and S is given by
the grammar

E ::= ∅ | (s, a) | E + E | E · E | E+ (4.1)

where s ∈ S and a ∈ Σ. For e ∈ Rat(Σ,S), the semantics [[e]] : Σ+ → S is
given inductively on the structure of e as shown in Table 4.1 where s ∈ S and
a ∈ Σ. In order to emphasize that the semantics of e is defined with respect to
the semiring S, we will sometimes write [[e]]S for [[e]]. A quantitative language
L : Σ+ → S is called rational over S if L = [[e]] for some e ∈ Rat(Σ,S).

Note that, for any a ∈ Σ, [[∅]] = [[(0, a)]] and hence ∅ can be omitted. How-
ever, we will need ∅ in the multi-weighted setting and, for the convenience, we
keep it here as well.

The following result is the Kleene-Schützenberger theorem for semiring-
weighted automata.

Theorem 4.1 (Schützenberger [81]). Let Σ be an alphabet, S = (S,+, ·,0,1) a
semiring, and L : Σ+ → S a quantitative language. Then, L is recognizable over
S iff L is rational over S.

Note that here we consider the iteration L+ instead of the star operation L∗.
This is not a restriction, since we ignore the empty word (cf. [39]).

4.2 Multi-weighted rational expressions
Let Σ be an alphabet and E = (M,K,Φ) an evaluator. The set Rat(Σ,E) of
multi-weighted rational expressions over Σ and E is given by the grammar (4.1)
where s ∈M and a ∈ Σ.

As in the previous chapter, consider the semiring (N〈M∗〉,+, ·, ∅, [ε]) of finite
multisets with the union and Cauchy-product; we will denote this semiring
simply by N〈M∗〉.

Let e ∈ Rat(Σ,E). We define the semantics of multi-weighted rational ex-
pressions following the double-step approach introduced in the previous chapter
for multi-weighted MSO logic.

33

• The auxiliary semantics of e is the mapping 〈〈e〉〉 : Σ+ → N〈M∗〉 defined
with respect to the semiring N〈M∗〉 as follows. Let e′ ∈ Rat(Σ,N〈M∗〉)
be obtained from e by replacing every atomic expression (m, a) of e (with
m ∈M , a ∈ Σ) by ([m], a). Then, we put 〈〈e〉〉 = [[e′]]N〈M

∗〉.
• The proper semantics (or simply semantics) of e is defined as [[e]] = Φ◦〈〈e〉〉.

Note that [[e]] : Σ+ → K.

In order to emphasize that e is defined with respect to the evaluator E, we
will sometimes write [[e]]E for the semantics [[e]]. We say that a quantitative
language L : Σ+ → K is rational over E if L = [[e]] for some multi-weighted
rational expression e ∈ Rat(Σ,E).

Example 4.2. Consider the alphabet Σ = {↔, l}, the evaluator EDisp(2) as
defined in Example 2.7, and the quantitative language L of Example 3.2. We
construct the following multi-weighted rational expression e over Σ and E:

e = ((↔, v←) + (↔, v→) + (l, v↓) + (l, v↑))+.

Then, [[e]] = L. For instance, let w =↔l. Then,

〈〈e〉〉(w) = [v←v↓]] [v←v↑]] [v→v↓]] [v→v↑]

and hence [[e]](w) =
√

2.

Now let S = (S,+, ·,0,1) be a semiring and ES = (S, S,ΦS) the evaluator
generated by S. Note that Rat(Σ,S) = Rat(Σ,ES), i.e., every formula in
Rat(Σ,ES) can be interpreted dually. We show that the use of our multi-
weighted approach leads to the same semantics as for semirings.

Theorem 4.3. Let ϕ ∈ Rat(Σ,S). Then, [[ϕ]]S = [[ϕ]]ES .

We prove this theorem in the rest of this section. First, we show the following
technical lemma.

Lemma 4.4. Let r, r1, r2 : Σ+ → N〈S∗〉. Then:

(a) ΦS ◦ (r1 + r2) = (ΦS ◦ r1) + (ΦS ◦ r2).
(b) ΦS ◦ (r1 · r2) = (ΦS ◦ r1) · (ΦS ◦ r2).
(c) ΦS ◦ (r+) = (ΦS ◦ r)+.

Here, the operations +, ·,+ on the left hand side of the formulas are induced
by the union and Cauchy-product of the multisets in N〈S∗〉, and the operations
+, ·,+ on the right hand side of the formulas are induced by the operations of
the semiring S.

Proof. Part (a) is straightforward. Parts (b) and (c) can be shown in the same
manner. We show explicitly (c).

34

Let g : S∗ → S be defined as g(ε) = 1 and g(s1...sn) = (s1 · ... · sn) ∈ S for
all n ≥ 1 and s1, ..., sn ∈ S. Then, g(uu′) = g(u) · g(u′) for all u, u′ ∈ S∗. Let
w ∈ Σ+. On the one hand:

(ΦS ◦ r+)(w) =
∑
u∈S∗

(r+(w))(u) · g(u)

=
∑
u∈S∗

(|w|∑
i=1

∑
w=w1...wi

r(w1) · ...r(wi)
)

(u) · g(u)

=
∑
u∈S∗

|w|∑
i=1

∑
w=w1...wi
u=u1...ui

r(w1)(u1) · ... · r(wi)(ui) · g(u)

=

|w|∑
i=1

∑
u1,...,ui∈S∗

∑
w=w1...wi

r(w1)(u1) · ... · r(wi)(ui) · g(u1) · ... · g(ui)

On the other hand:

(ΦS ◦ r)+(w) =

|w|∑
i=1

∑
w1...wi=w

ΦS(r(w1)) · ... · ΦS(r(wi))

=

|w|∑
i=1

∑
w1...wi=w

∑
u1,...,ui∈S∗

r(w1)(u1) · ... · r(wi)(ui) · g(u1) · ... · g(ui).

Then, ΦS ◦ r+ = (ΦS ◦ r)+.

Proof of Theorem 4.3. We proceed by induction on the structure of a rational
expression e ∈ Rat(Σ,S).

• The cases e = ∅ and e = (s, a) with s ∈ S and a ∈ Σ are straightforward.
• Let e = e1 � e2 where � ∈ {+, ·}. Then:

[[e]]E
S

= ΦS ◦ (〈〈e1 � e2〉〉) = ΦS ◦ (〈〈e1〉〉 � 〈〈e2〉〉)
(!)
= (ΦS ◦ 〈〈e1〉〉) � (ΦS ◦ 〈〈e2〉〉)

= [[e1]]E
S

� [[e2]]E
S (!!)

= [[e1]]S � [[e2]]S = [[e]]S.

Here, at the place (!) we apply Lemma 4.4 (part (a) for � = + and part
(b) for � = ·), and at the place (!!) we apply induction hypothesis for e1

and e2.
• For e = (e′)+, the equality [[e]]Φ

S
= [[e]]S can be shown similarly to the

previous case using part (c) of Lemma 4.4.

35

4.3 A Kleene-Schützenberger theorem
Our Kleene-Schützenberger theorem for multi-weighted automata is the follow-
ing.

Theorem 4.5. Let Σ be an alphabet, E = (M,K,Φ) an evaluator, and
L : Σ+ → K a quantitative language. Then, the following are equivalent.

(a) L is recognizable over E.
(b) L is rational over E.

The proof of this theorem will be given in the rest of this section.
As in the case of multi-weighted MSO logic, we could try to reduce the

proof to the case of the semiring N〈M∗〉. In particular, given a rational expres-
sion e ∈ Rat(Σ,E), using Theorem 4.1 for S = N〈M∗〉, we could construct a
semiring-weighted automaton A over Σ and N〈M∗〉 with [[A]]N〈M

∗〉 = 〈〈e〉〉; note
that the transition weights of A are multisets in N〈M∗〉. Then, as in the case
of multi-weighted MSO logic, we could revisit the proof of Theorem 4.1 with
respect to constant-preserving transformations.

Here, we introduce a different proof. We will reduce the proof of Theorem 4.5
to Kleene-Schützenberger Theorem 4.1 for the semiring (N,+, ·, 0, 1) of natural
numbers (we will denote it simply by N).

Let X be an alphabet, i.e., a non-empty finite set. For w = a1...an ∈ Σ+

and u = m1...mk ∈ X+ with n = k, let 〈x, u〉 = (a1,m1)...(an,mn) ∈ (Σ×X)+.
For a quantitative language L : (Σ×X)+ → N, let L• : Σ+ → N〈X+〉 be defined
for all w ∈ Σ+ and u ∈ X+ as:

L•(w)(u) =

{
L(〈w, u〉), if |w| = |u|,
0, otherwise.

Note that this definition is correct, since for each w ∈ Σ+, we have
| supp(L•(w))| ≤ |X||w|.

The following theorem shows that multi-weighted automata can be charac-
terized by means of semiring-weighted automata over (N,+, ·,0,1).

Theorem 4.6. Let Σ be an alphabet, E = (M,K,Φ) an evaluator, and
L : Σ+ → K a quantitative language. Then the following are equivalent.

(a) L is recognizable over E.
(b) There exist an alphabet X ⊆ M and a quantitative language

M : (Σ×X)+ → N such that M is recognizable over N and L = Φ ◦ M•.

Proof. First, we show that (a) implies (b). Let A = (Q, I, T, F,wt)
be a multi-weighted automaton over Σ and E. We may assume that
T 6= ∅. Let X = Const(A). Consider the semiring-weighted automaton
A = (Q, I, T ′, F,wt′) over Σ×X and N where:

• T ′ = {(p, (a, x), q) | t := (p, a, q) ∈ T and x = wt(t)};
• wt(t′) = 1 for all t′ ∈ T ′.

36

Then, for all w = a1...an ∈ Σ+ and u = m1...mk ∈ X+:

[[A′]]•(w)(u) = |{ρ ∈ RunA(w) | wt#
A(ρ) = u}|.

Let M = [[A′]]. Then, for all w ∈ Σ+, M•(w) = wt#
A[RunA(w)] and hence

[[A]] = Φ ◦ M•.
Second, we show that (b) implies (a). Let X ⊆ M be an alphabet and

A = (Q, I, T, F,wt) a semiring-weighted automaton over Σ×X and N. We may
assume that T 6= ∅ and n := max{wt(t) | t ∈ T} ≥ 1.

We define a multi-weighted automaton A′ = (Q′, I ′, T ′, F ′,wt′) over Σ and
E with [[A′]] = Φ ◦ [[A]]• as follows:

• Q′ = Q × X × {1, ..., n}, I ′ = I × {m0} × {1} where m0 ∈ X is fixed,
F ′ = F ×X × {1, ..., n};

• T ′ consists of all transitions t′ := ((q,m, i), a, (q′,m′, i′)) such that
t := (q, (a,m′), q′) ∈ T , i ∈ {1, ..., n} and i′ ∈ {1, ...,wt(t)}. The weight of
t′ is defined as wt′(t′) = m′.

Then, whenever ρ = t1...tk ∈ RunA is a run such that, for all i ∈ {1, ..., k},
label(ti) = (ai,mi) ∈ Σ × X and wt(ti) = ji ∈ N, this run is simulated in A′
by j1 · ... · jk many runs ρ ∈ RunA′(a1...ak) with wt#

A′(ρ) = m1...mk. Then, the
claim follows.

Now we give a similar characterization of rational quantitative languages
over E.

Theorem 4.7. Let Σ be an alphabet, E = (M,K,Φ) an evaluator, and
L : Σ+ → K a quantitative language. Then the following are equivalent.

(a) L is rational over E.
(b) There exist an alphabet X ⊆ M and a quantitative language

M : (Σ×X)+ → N such that M is rational over N and L = Φ ◦ M•.

The proof of this theorem will be based on the following technical lemma.

Lemma 4.8. Let X ⊆M be an alphabet and L,L1,L2 : (Σ×X)+ → N quanti-
tative languages. Then:

(a) (L1 + L2)• = L•1 + L•2.
(b) (L1 · L2)• = L•1 · L•2.
(c) (L+)• = (L•)+.

Proof. Part (a) is straightforward and parts (b) and (c) can be shown in the
same manner. We show explicitely the more difficult part (c).

First, we show that (L+)•(w)(u) = (L•)+(w)(u) for all w ∈ Σ+ and u ∈ X+

with |w| = |u|. On the one hand:

(L+)•(w)(u) = L+(〈w, u〉) =

|w|∑
i=1

∑
〈w,u〉=〈w1,u1〉...〈wi,ui〉

L(〈w1, u1〉) · ... · L(〈wi, ui〉).

37

On the other hand:

(L•)+(w)(u) =

|w|∑
i=1

∑
w=w1...wi
u=u1...ui

L•(w1)(u1) · ... · L•(wi)(ui)

=
∑

〈w,u〉=〈w1,u1〉...〈wi,ui〉

L(〈w1, u1〉) · ... · L(〈wi, ui〉).
(4.2)

Now let w ∈ Σ+ and u ∈ X+ with |w| 6= |u|. Then, clearly, (L+)•(w)(u) = 0.
We show that (L•)+(w)(u) = 0. Let i ∈ {1, ..., |w|} and w = w1...wi and
u = u1...ui as in Equation (4.2). Then, |wj | 6= |uj | for some j ∈ {1, ..., i} and
hence L•(wj)(uj) = 0. Then, as in is easy to see from (4.2): (L•)+(w)(u) = 0.

Now we turn to the proof of Theorem 4.7

Proof (of Theorem 4.7). First, we show that (a) implies (b). Let e ∈ Rat(Σ,E)
be a multi-weighted rational expression. LetX be the set of all constantsm ∈M
appearing in e. We may assume that X 6= ∅ (otherwise, all atomic expressions
are ∅; we replace one of them by ∅ ·m0 with m0 ∈M and obtain the equivalent
multi-weighted expression). Let ϕ(e) ∈ Rat(Σ ×X,N) be obtained from e by
replacing each atomic expression (m, a) of w (with m ∈ M and a ∈ Σ) by
(1, (a,m)). We show by induction on the structure of e that 〈〈e〉〉 = ([[ϕ(e)]]N)•.

• Let e = ∅. Then, for all w ∈ Σ+, 〈〈e〉〉(w) = ∅. Note that, for all u ∈ X+

with |u| = |w|, we have [[∅]]N(〈w, u〉) = 0. Then, ([[∅]]N)•(w) = ∅. Hence,
〈〈e〉〉 = ([[ϕ(e)]]N)•.

• Let e = (m, a) with m ∈ X and a ∈ Σ. Then, 〈〈e〉〉(a) = [m] and
〈〈e〉〉(w) = ∅ for all w ∈ Σ+ \ {a}. Let u ∈ X+ with |u| = |w|. Then,

[[ϕ(e)]]N(〈w, u〉) =

{
1, if w = a and u = m

0, otherwise

and hence 〈〈e〉〉 = ([[ϕ(e)]]N)•.
• Let e = e1+e2. By induction hypothesis, 〈〈ei〉〉 = ([[ϕ(ei)]]

N)• for i ∈ {1, 2}.
Then,

([[ϕ(e)]]N)• = ([[ϕ(e1)]]N + [[ϕ(e1)]]N)•
(!)
= ([[ϕ(e1)]]N)• + ([[ϕ(e1)]]N)•

= 〈〈e1〉〉+ 〈〈e2〉〉 = 〈〈e1 + e2〉〉.

Here, at the place (!), we apply Lemma 4.8 (a).
• The proofs for e = e1 · e2 and e = (e′)+ are similar to the previous case:

for e1 · e2 we apply Lemma 4.8 (b) and for (e′)+ we apply Lemma 4.8 (c).

Let L = [[ϕ(e)]]N. Note that L is rational over N. Then, [[e]] = Φ ◦ L•.
Now we show that (b) implies (a). Let X ⊆ M be an alphabet and

e ∈ Rat(Σ×X,N) such that L = Φ ◦ ([[e]]N)•. We show that L is rational
over E. Note that, for all u ∈ Σ×X, we have:

38

• [[(0, u)]]N = [[∅]]N;
• [[(k, u)]]N = [[(1, u)]]N + ...+ [[(1, u)]]N︸ ︷︷ ︸

k-times

for every k ≥ 1.

Then, we may assume without loss of generality that, whenever (k, (m, a)) is
an atomic subexpression of e (with k ∈ N, a ∈ Σ and m ∈ X), we have k = 1.
Then, we replace all such (1, (m, a)) of e by (a,m) and obtain the multi-weighted
rational expression e′ ∈ Rat(Σ,E). Based on Lemma 4.8, we can show as in the
proof of the implication (a) ⇒ (b) that 〈〈e′〉〉 = ([[e]]N)•. Then, L = [[e′]]E and
hence L is rational over E.

4.4 Qualitative evaluators
In Theorem 4.7, we showed that the basis of a multi-weighted automaton, with-
out regard of its quantitative measure, can be described by a weighted automa-
ton over the semiring of natural numbers. We can go further and ask whether
the basis of a multi-weighted automaton is qualitative, i.e., can be described by
a classical non-deterministic finite automaton. In this section, we will deal with
this question.

Let Σ be an alphabet and E = (M,K,Φ) an evaluator. For an alphabet X
and a language L ⊆ (Σ×X)+, let L• : Σ+ → N〈X+〉 be defined for all w ∈ Σ+

and u ∈ X+ as

L•(w)(u) =

{
1, if |w| = |u| and 〈w, u〉 ∈ L,
0, otherwise.

We say that the evaluator E is qualitative if, for every alphabet Σ and every
quantitative language L : Σ+ → K, the following are equivalent:

(i) L is recognizable over E;
(ii) there exist an alphabet X ⊆M and a recognizable language L ⊆ (Σ×X)+

such that L = Φ ◦ L•.

The following lemma shows that the implication (ii)⇒ (i) holds for arbitrary
evaluators.

Lemma 4.9. Let E = (M,K,Φ) be an evaluator, Σ and X ⊆ M alphabets,
and L ⊆ (Σ × X)+ a recognizable language. Then, the quantitative language
Φ ◦ L• : Σ+ → K is recognizable over E.

Proof. Let A = (Q, I, T, F) be a deterministic finite automaton over the al-
phabet Σ × X such that L(A) = L and let L = Φ ◦ L•. We show that
L is recognizable over E. For this, we construct a multi-weighted automaton
A′ = (Q′, I ′, T ′, F ′,wt′) over Σ and E where:

• Q′ = Q×X, I ′ = I × {x0} for some fixed x0 ∈ X, F ′ = F ×X;

39

• T ′ consists of edges of the form t′ := ((q, x), a, (q′, x′)) where
(q, (a, x′), q′) ∈ T . For such an edge t′, we let wt′(t′) = x′.

Since A is deterministic, we have [[A′]] = L.

Unfortunately, not every evaluator is qualitative, since the implication
(i) ⇒ (ii) does not always hold:

Lemma 4.10. There exists an evaluator E = (M,K,Φ) such that E is not
qualitative.

Proof. Let M = {m} be a singleton set, K = N〈M∗〉 and Φ : N〈M∗〉 → K the
identity mapping, i.e., Φ(µ) = µ for all µ. We show that E is not qualitative,
i.e., that there exists an alphabet Σ and a quantitative language L : Σ+ → K
for which the implication (i) ⇒ (ii) does not hold.

Indeed, let Σ = {a} be a singleton alphabet and let L : Σ+ → N〈M∗〉 be
defined for all w ∈ Σ+ as supp(L(w)) = {b|w|} and L(w)(b|w|) = |w|. Clearly, L
is recognized by the multi-weighted automaton A = (Q, I, T, F,wt) over Σ and
E where:

• Q = {1, 2}, I = {1}, F = {2};
• T = {(1, a, 1), (1, a, 2), (2, a, 2)} and wt(t) = m for all t ∈ T .

Now suppose that there exist an alphabet X ⊆ M (and hence X = M) and a
finite automaton B over Σ×X such that L = Φ ◦ (L(B))• = (L(B))•. Then, for
all w ∈ Σ+, either L(w) = ∅ or L(w) = [b|w|]. A contradiction.

We say that an evaluator E = (M,K,Φ) is idempotent if, for all
µ1, µ2 ∈ N〈M∗〉 with supp(µ1) = supp(µ2), we have Φ(µ1) = Φ(µ2).

Example 4.11. (a) Let S = (S,+, ·,0,1) be an idempotent semiring, i.e.,
1 + 1 = 1. The tropical semiring Trop = (Q ∪ {∞},min,+,∞, 0) is an
example of an idempotent semiring. Clearly, the evaluator ES generated
by an idempotent semiring S is idempotent.

(b) Let S = (S,+, ·,0,1) be a non-idempotent semiring, i.e., 1 + 1 6= 1.
The probabilistic semiring Prob = (Q≥0,+, ·, 0, 1) of non-negative real
numbers is an example of a non-idempotent semiring. We show that the
evaluator ES = (S, S,ΦS) generated by a non-idempotent semiring S is
also non-idempotent. Indeed, consider the finite multisets µ1, µ2 ∈ N〈S∗〉
with supp(µ1) = supp(µ2) = {1}, µ1(1) = 1 and µ2(1) = 2. Then,
ΦS(µ1) = 1 6= 1 + 1 = ΦS(µ2).

(c) The evaluators ΦRatio of Example 2.3, ΦKnap(η) of Example 2.4, and ΦDisc

of Example 2.5 are idempotent.
(d) The evaluators ΦAvg of Example 2.6 and ΦDisp(n) of Example 2.7 are non-

idempotent.
(e) The evaluator Φ from the proof of Lemma 4.10 is non-idempotent.

Lemma 4.12. Let E = (M,K,Φ) be an idempotent evaluator. Then E is qual-
itative.

40

Proof. Let Σ be an alphabet and L : Σ+ → K a quantitative language. Lemma
4.9 shows that (ii) implies (i). Then, it remains to show that (i) implies (ii).
Let A = (Q, I, T, F,wt) be a multi-weighted automaton over Σ and E with
[[A]] = L. Let X = Const(A) and A′ = (Q, I, T ′, F) be the nondeterministic
finite automaton over the alphabet Σ×X with

T ′ = {(q, (a,m), q′) | t := (q, a, q′) ∈ T and wt(t) = m}.

Since Φ is idempotent, we have [[A]] = Φ ◦ (L(A′))•.

In the rest of this section, we will answer the following question: is there
a qualitative evaluator which is not idempotent? We show that the class of
non-idempotent infinite semifields is contained in the class of qualitative eval-
uators. A semifield is a semiring S = (S,+, ·,0,1) such that (S \ {0}, ·,1) is a
commutative group. An example of a non-idempotent infinite semifield is the
probabilistic semiring Prob = (Q≥0,+, ·, 0, 1). Let x, y ∈ S with y 6= 0. We
will write x

y for x · y−1.

Theorem 4.13. Let S be an infinite semifield. Then, the evaluator ES generated
by S is qualitative.

In the rest of this section, we will give a proof of this theorem. Let
S = (S,+, ·,0,1). By Lemma 4.9, it suffices to show that (i) implies (ii), i.e.,
we show the following.

Lemma 4.14. Let Σ be an alphabet and L : Σ+ → S a quantitative language
recognizable over S. Then, there exists an alphabet X ⊆ S and a recognizable
language L ⊆ (Σ× S)+ such that L = ΦS ◦ L•.

The key idea of our proof is to transform a weighted automaton A over S
to an equivalent weighted automaton where, for a given word w, the sequences
of weights of runs on w are pairwise distinct. For our construction, we will use
Theorem 4.1 to transform A to a rational expression. Then, we will construct
the desired weighted automaton by induction on the structure of this weighted
rational expression.

Let A = (Q, I, T, F,wt) be a weighted automaton over Σ and S. We call A
normalized if:

• I = {i} for some i ∈ Q and, for each (p, a, q) ∈ T , q 6= i;
• F = {f} for some f ∈ Q \ {i} and, for each (p, a, q) ∈ T , p 6= f ;
• for all p, q, q′ ∈ Q and a ∈ Σ with (p, a, q), (p, a, q′) ∈ T and q 6= q′, we

have: wt(p, a, q) 6= wt(p, a, q′);
• wt(t) 6= 0 for all t ∈ T .

Example 4.15. Let Σ = {a, b, c} and S = Prob be the probabilistic semiring.
Let A1 and A2 be the weighted automata over Σ and S depicted in Figure 4.1.
Then, A1 is normalized and A2 is not normalized, since the transitions (2, b, 3)
and (2, b, 4) have the same weight.

41

1

2

3

4

a, 1

a, 2

b, 2

c, 2

b, 3

c, 3

b, 1c, 1

A1

1

2

3

4

a, 1

a, 1

b, 2

c, 2

b, 1

c, 3

b, 1c, 1

A2

Figure 4.1: Weighted automata A1 and A2 from Example 4.15

For an alphabet Γ and a language L ⊆ Γ+, let char(L) : Σ+ → N be defined
for all w ∈ Γ+ as

char(L)(w) =

{
1, if w ∈ L,
0, otherwise.

Lemma 4.16. Let A be a normalized weighted automaton over Σ and S. Then,
there exists a finite alphabet X ⊆ S and a recognizable language L ⊆ (Σ×X)+

such that [[A]] = ΦS ◦ L•.

Proof. Let A = (Q, {i}, T, {f},wt) and w = a1...an ∈ Σ+. We show that
wt#
A |RunA(w) is an injective mapping, i.e., for all ρ, ρ′ ∈ RunA(w) we have:

ρ 6= ρ′ ⇒ wt#
A(ρ) 6= wt#

A(ρ′).

Indeed, let ρ = q0
a1−→ q1

a2−→ ...
an−−→ qn and ρ′ = q′0

a1−→ q′1
a2−→ ...

an−−→ q′n be
such that wt#

A(ρ) = s1...sn and wt#
A′(ρ) = s′1...s

′
n. Note that q0 = q′0 = i. Then,

since ρ 6= ρ′, there exists k ∈ {0, ..., n − 1} such that qk = q′k and qk+1 6= q′k+1.
Then, since A is normalized and (qk, ak+1, qk+1), (qk, ak+1, q

′
k+1) ∈ T , we have:

sk+1 6= s′k+1. Thus, wt#
A(ρ) 6= wt#

A(ρ′).
Let X = wt(T). Consider the finite automaton B = (Q, {i}, T ′, {f}) over

the alphabet Σ×X where T ′ = {(p, (a, s), q) | (p, a, q) ∈ T and s = wt(p, a, q)}.
Let L = L(A). Then, for all w ∈ Σ+:

L•(w) = char(wt#
A(RunA(w)))

(!)
= wt#

A[RunA(w)].

Here, at the place (!), we apply the fact that wt#
A |RunA(w) is injective. Then,

Φ ◦ L• = [[A]].

Next, given a weighted automaton A over Σ and S, we construct an equiv-
alent normalized automaton. We proceed as follows. First, using the Kleene-
Schützenberger Theorem 4.1 for S, we can construct a weighted rational ex-
pression e ∈ Rat(Σ,S) with [[e]] = [[A]]. Then, we will construct a normalized
weighted automaton for [[A]] by induction on the structure of e.

42

Lemma 4.17. (a) The quantitative language 0Σ+ is recognizable by a nor-
malized weighted automaton over Σ and S.

(b) Let s ∈ S \ {0} and a ∈ Σ. Then, the quantitative language sa : Σ+ → S
is recognizable by a normalized weighted automaton over Σ and S.

Proof. (a) Let A = ({1, 2}, {1}, ∅, {2}, ∅). Then, [[A]] = 0Σ+ .
(b) Let A = ({1, 2}, {1}, {(1, a, 2)}, {2},wt) with wt(1, a, 2) = s. Then,

[[A]] = sa.

Lemma 4.18. Let A1 and A2 be normalized weighted automata over Σ and S.
Then, there exists a normalized weighted automaton A over Σ and S such that
[[A]] = [[A1]] + [[A2]].

Proof. Let A1 = (Q1, {i}, T1, {f},wt1) and A2 = (Q2, {i}, T2, {f},wt2). We
assume that Q1 ∩ Q2 = {i, f}. First, we construct the auxiliary weighted au-
tomaton A′ = (Q′, {i}, T ′, {f},wt′) over Σ and S with [[A′]] = [[A1]] + [[A2]] and
wt′(T ′) ⊆ S \ {0} as follows. We let:

• Q′ = Q1 ∪Q2;
• T ′ = (T1 \ T2) ∪ (T2 \ T1) ∪ {t ∈ T1 ∩ T2 | wt1(t) + wt2(t) 6= 0};
• for all t ∈ T ′:

wt′(t) =

wt1(t), if t ∈ T1 \ T2,

wt2(t), if t ∈ T2 \ T1,

wt1(t) + wt2(t), otherwise.

Note that A′ is not necessarily normalized, since there can exist q, r ∈ Q′ and
a ∈ Σ such that q 6= r, (i, a, q), (i, a, r) ∈ T ′ and wt(i, a, q) = wt(i, a, r).

Next, we transform A′ into an equivalent normalized weighted automaton.
Let Q̃ = Q′ \ {i, f}, X = T ′ ∩ ({i} × Σ × Q̃) and ∆ : X → S \ {0}. Consider
the weighted automaton A∆ = (Q, {i}, T, {f},wt∆) where:

• Q = {i, f} ∪ (Q̃×X);
• T = T1 ∪ T2 ∪ T3 ∪ T4 where

T1 = {(i, a, (q, t)) | t = (i, a, q) ∈ X},
T2 = {((q, t), a, (q′, t)) | (q, a, q′) ∈ T ′ and t ∈ X},
T3 = {((q, t), a, f) | (q, a, f) ∈ T ′ and t ∈ X},
T4 = T ′ ∩ ({i} × Σ× {f});

• wt∆ : T → S \ {0} is defined as follows (depending on ∆):

– for (i, a, (q, t)) ∈ T1, we let wt∆(i, a, (q, t)) = ∆(t);

– for ((q, t), a, (q′, t)) ∈ T2, we let wt∆((q, t), a, (q′, t)) = wt′(q, a, q′);

– for ((q, t), a, f) ∈ T3, let wt∆((q, t), a, f) = wt′(t)·wt′(q,a,f)
∆(t) ;

43

i f

p

p̃

q

q̃

x

x̃

y

ỹ

z

Q̃

A′

A∆ p

p̃

q

q̃

Q̃× {t}

i f

∆(t)
x·y
∆(t)

x·ỹ
∆(t)

z

p

p̃

q

q̃

Q̃× {t̃}∆(t̃)

x̃·y
∆(t̃)

x̃·ỹ
∆(t̃)

Figure 4.2: Construction of A∆ from A′

– for (i, a, f) ∈ T4, let wt∆(i, a, f) = wt′(i, a, f).

The idea of the construction is depicted in Figure 4.2. Here, we omit the labels
of transitions.

Now we show that [[A∆]] = [[A′]]. Obviously, [[A∆]](a) = [[A′]](a) for all
a ∈ Σ. Now let w = a1...an ∈ Σ+ with |w| ≥ 2. We construct a bijection
ϕ : RunA∆

(w) → RunA′(w) as follows. Let ρ ∈ RunA∆
(w). Then, ρ has the

form:
q0

a1−→ (q1, tρ)
a2−→ (q2, tρ)

a3−→ ...
an−1−−−→ (qn−1, tρ)

an−−→ qn

where q0 = i, qn = f , tρ = (i, a1, q1) ∈ X, q1, ..., qn−1 ∈ Q̃ and
ti := (qi−1, ai, qi) ∈ T ′ for all 1 ≤ i ≤ n. Then, we define ϕ(ρ) to be the run
t1...tn ∈ RunA′(w). Since tρ is uniquely determined for all ρ, the mapping ϕ is
bijective. Note that tρ = t1. Since · is commutative, we have:

wtA∆(ρ) = ∆(tρ) · wt′(t2) · ... · wt′(tn−1) · wt′(tρ) · wt′(tn)

∆(tρ)

= wt′(t1) · wt′(t2) · ... · wt′(tn−1) · wt′(tn) = wtA′(ϕ(ρ)).

Hence, ϕ is also weight-preserving. Then, [[A∆]](w) = [[A′]](w).
Finally, we show that we can choose ∆ : X → S \ {0} such that A∆ is

normalized. Indeed, for t ∈ X, let

Wt =
⋃

q∈Q̃,a∈Σ,
(q,a,f)∈T ′

{
wt′(q,a,f)·wt′(t)

wt′(q,a,q′) | q′ ∈ Q̃ and (q, a, q′) ∈ T ′
}

44

Let also U = {wt′(i, a, f) | a ∈ Σ, (i, a, f) ∈ T ′} and W = U ∪
⋃
t∈XWt. Note

that X and W are finite sets. Then, the set S \ (W ∪ {0}) is infinite and
hence there exists an injective mapping ∆̃ : X → S \ (W ∪ {0}). We show
that, for all p, q, r ∈ Q and all a ∈ Σ with q 6= r and (p, a, q), (p, a, r) ∈ T ,
we have: wt∆̃(p, a, q) 6= wt∆̃(p, a, r). We prove it by contradiction. Assume
that there exist p, q, r ∈ Q and a ∈ Σ with q 6= r, (p, a, q), (p, a, r) ∈ T and
wt∆̃(p, a, q) = wt∆̃(p, a, r). We distinguish the following cases:

• p = i. Then, consider two subcases:

– either q = f or r = f . We may assume without loss of generality
that q = f . Then, r = (r′, t′) ∈ Q̃×X where t′ = (p, a, r′) ∈ X, and
wt∆̃(p, a, q) = wt′(i, a, f) ∈ U . However, wt∆̃(p, a, r) = ∆̃(t′) /∈ U .
A contradiction.

– q 6= f and r 6= f . Then, r = (r′, t′) ∈ Q̃×X and q = (q′, t′′) ∈ Q̃×X
where t′ = (p, a, r′) ∈ X and t′′ = (p, a, q′) ∈ X. Note that r′ 6= q′

(otherwise, t′ = (p, a, r′) = (p, a, q′) = t′′ and then q = r). Then,
t′ 6= t′′. Since ∆̃ is injective, we obtain ∆̃(t′) 6= ∆̃(t′′). However,

∆̃(t′) = wt∆̃(p, a, r) = wt∆̃(p, a, q) = ∆̃(t′′).

A contradiction.

• p = (p′, t′) ∈ Q̃×X. Again, we consider two subcases:

– either q = f or r = f . We may assume without loss of gener-
ality that q = f . Then, r = (r′, t′) ∈ Q̃ × X for some r′ ∈ Q̃,
wt∆̃(p, a, q) = wt′(t′)·wt′(p′,a,f)

∆̃(t′)
and wt∆̃(p, a, r) = wt′(p′, a, r′). Since

wt∆̃(p, a, q) = wt∆̃(p, a, r), we have:

∆̃(t′) =
wt′(p′, a, f) · wt′(t′)

wt′(p′, a, r′)
∈Wt′ ⊆W.

However, ∆̃(t′) ∈ S \ (W ∪ {0}). A contradiction.

– q 6= f and r 6= f . Then, r = (r′, t′) ∈ Q̃ × X and
q = (q′, t′) ∈ Q̃×X where (p′, a, r′), (p′, a, q′) ∈ T ′ and r′ 6= q′.
Since wt∆̃(p, a, q) = wt∆̃(p, a, r), we have wt′(p′, a, q′) = wt′(p′, a, r′).
Note that either (p′, a, q′), (p′, a, r′) are both in T1 \ T2 or
(p′, a, q′), (p′, a, r′) are both in T2 \ T1. Since A1 and A2 are nor-
malized, we obtain wt′(p′, a, q′) 6= wt′(p′, a, r′). A contradiction.

Lemma 4.19. Let A1 and A2 be normalized weighted automata over Σ and S.
Then, the Cauchy product [[A1]] · [[A2]] is recognizable by a normalized weighted
automaton A over Σ and S.

45

Proof. Let A1 = (Q1, {i1}, T1, {f1},wt1) and A2 = (Q2, {i2}, T2, {f2},wt2).
Here, we use the usual construction for the Cauchy product. We assume that
f1 = i2 and Q1 ∩ Q2 = {f1}. Since A1 and A2 are normalized, we have:
T1 ∩ T2 = ∅ and f1 6= f2. We let A = (Q1 ∪ Q2, {i1}, T1 ∪ T2, {f2},wt) where
wt(t) = wti(t) whenever t ∈ Ti for i = 1, 2. Clearly, A is normalized. Moreover,
[[A]] = [[A1]] · [[A2]].

Lemma 4.20. Let A be a normalized weighted automaton over Σ and S.
Then, there exists a normalized weighted automaton A+ over Σ and S such
that [[A+]] = [[A]]+.

Proof. Let A = (Q, {i}, T, {f},wt). Let ` /∈ Q, Q̃ = Q \ {i, f} and
∆ ∈ S \ {0,1}. We construct the weighted automaton

A+
∆ = (Q ∪ {`}, {i}, T ′, {f},wt′∆)

by letting:

• T ′ = T ∪ T→` ∪ T`� ∪ T`→ where

T→` = {(q, a, `) | (q, a, f) ∈ T},
T`� = {(`, a, `) | (i, a, f) ∈ T},
T`→ = {(`, a, q) | (i, a, q) ∈ T};

• wt′ : T ′ → S is defined as follows:

– for all q ∈ Q̃ and a ∈ Σ with (i, a, q) ∈ T , we put
wt′∆(i, a, q) = ∆ · wt(i, a, q) and wt′∆(`, a, q) = wt(i, a, q);

– for all q ∈ Q̃ and a ∈ Σ with (q, a, f) ∈ T , we put
wt′∆(q, a, f) = wt(q,a,f)

∆ and wt′∆(q, a, `) = wt(q, a, f);

– for all p, q ∈ Q̃ and a ∈ Σ with (p, a, q) ∈ T , we put
wt′∆(p, a, q) = wt(p, a, q);

– for all a ∈ Σ with (i, a, f) ∈ T , we put: wt′∆(i, a, f) = wt′∆(`, a, `) =

wt(i, a, f), wt′∆(i, a, `) = ∆ · wt(i, a, f) and wt′∆(`, a, f) = wt(i,a,f)
∆ .

The idea of the construction is depicted in Figure 4.3. Here, we omit the labels
of transitions. It is not difficult to see that [[A+

∆]] = [[A]]. It remains to show
that we can choose ∆ ∈ S \ {0,1} such that A+

∆ is normalized. Let

W =
⋃

q∈Q̃∪{i},a∈Σ,
(q,a,f)∈T

{
wt(q,a,f)
wt(q,a,q′) | q

′ ∈ Q̃, (q, a, q′) ∈ T
}
.

Since W is finite, there exists ∆̃ ∈ S \ (W ∪ {0,1}). We show that, for all
p, q, r ∈ Q ∪ {`} and a ∈ Σ with (p, a, q), (p, a, r) ∈ T ′ and q 6= r, we have:
wt′

∆̃
(p, a, q) 6= wt′

∆̃
(p, a, r). Suppose that this does not hold. Then, there ex-

ist p, q, r ∈ Q ∪ {`} and a ∈ Σ such that (p, a, q), (p, a, r) ∈ T ′, q 6= r and
wt′

∆̃
(p, a, q) = wt′

∆̃
(p, a, r). We distinguish the following cases:

46

i f

p

p̃

q

q̃

x

x̃

y

ỹ

z

Q̃

A

A+
∆

i f

p

p̃

q

q̃

∆·x

∆·x̃

y
∆

ỹ
∆

z

`

x̃x ỹ y

∆·z z
∆

z

Q̃

Figure 4.3: Construction of A+
∆ from A

• p = i. Suppose that q, r ∈ Q̃ ∪ {`}. Then, for h ∈ {q, r}, we have:

wt′
∆̃

(i, a, h) =

{
∆̃ · wt(i, a, h), if h 6= `,

∆̃ · wt(i, a, f), otherwise.

Then, the equality wt′
∆̃

(i, a, q) = wt′
∆̃

(i, a, r) implies the equality
wt(i, a, q′) = wt(i, a, r′) for some q′, r′ ∈ Q with q′ 6= r′. Then, A is
not normalized. A contradiction. Then, either q = f or r = f . We may
assume that r = f . Since q 6= r, there are two possibilities for q:

– q = `. Then, wt(i, a, f) = ∆̃ · wt(i, a, f) and hence ∆̃ = 1 which is
impossible.

– q ∈ Q̃. Then, wt(i, a, f) = ∆̃ ·wt(i, a, q) and hence ∆̃ = wt(i,a,f)
wt(i,a,q) ∈W

which is also impossible.

Thus, the case p = i is impossible.
• p = `. Again, suppose that q, r ∈ Q̃ ∪ {`}. Then, for h ∈ {q, r}:

wt′
∆̃

(`, a, h) =

{
wt(i, a, h), if h ∈ Q̃,
wt(i, a, f), if h = `.

Hence, there exist q′, r′ ∈ Q with q′ 6= r′ and wt(i, a, q′) = wt(i, a, r′)
which is impossible since A is normalized. A contradiction. Then, either
q = f or r = f . Again, we may assume that let r = f . Then, there are
two possibilities for q:

47

– q = `. Then, wt(i, a, f) = wt(i,a,f)

∆̃
and hence ∆̃ = 1 which is impos-

sible.

– q ∈ Q̃. Then, wt(i, a, q) = wt(i,a,f)

∆̃
and hence ∆̃ = wt(i,a,f)

wt(i,a,q) ∈ W

which is also not possible.

This, the case p = ` is also impossible.
• p ∈ Q̃. Again, since A is normalized, it is not possible that q, r ∈ Q̃∪{`}.

Assume w.l.o.g. that r = f . Then, there are two possibilities for q:

– q = `. Then, wt(p, a, f) = wt(p,a,f)

∆̃
and hence ∆̃ = 1 which is

impossible.

– q ∈ Q̃. Then, wt(p, a, q) = wt(p,a,f)

∆̃
and hence ∆̃ = wt(p,a,f)

wt(p,a,q) ∈W . A
contradiction.

Thus, the case p ∈ Q̃ is impossible.
• p = f . Clearly, this case is also impossible, since f does not have outgoing

transitions.

Then, we put A+ = A+

∆̃
.

Summarizing Lemmas 4.17, 4.18, 4.19, 4.20 and Theorem 4.1, we obtain:

Lemma 4.21. Let A be a weighted automaton over Σ and S. Then, there exists
a normalized weighted automaton A′ over Σ and S with [[A′]] = [[A]].

Proof of Theorem 4.13. Immediate by Lemmas 4.9, 4.16 and 4.21.

48

Chapter 5

Multi-weighted ω-automata

Contents
5.1 A general framework and examples 49
5.2 A Nivat-like characterization 52
5.3 Multi-weighted Muller automata 56
5.4 The discount-optimal value problem 57

The goal of this chapter is to study multi-weighted automata on infinite
words. We introduce a general framework for multi-weighted Büchi automata
and give a Nivat-like decomposition theorem for them. As a corollary, we
obtain a Nivat decomposition theorem for unambiguous multi-weighted Büchi
automata. As a first application of our Nivat theorem, we show that multi-
weighted Büchi automata and multi-weighted Muller automata are expressively
equivalent. Finally, we motivate our new model of multi-weighted Büchi au-
tomata by the computability of the discount-optimal value problem.

5.1 A general framework and examples

Let Γ be a set (possibly infinite). An ω-word over Γ is an infinite sequence
(γi)i∈N where γi ∈ Γ for all i ∈ N. Let Γω denote the set of all ω-words over Γ.
Any set L ⊆ Γω is called an ω-language over Γ.

Let Σ be an alphabet. A Büchi automaton over Σ is a tuple A = (Q, I, T, F)
where Q is a finite set of states, I, F ⊆ Q are sets of initial resp. accepting
states, and T ⊆ Q× Σ×Q is a transition relation.

A run ρ = (ti)i∈N of A is defined as an infinite sequence of
matching transitions, say ti = (qi, ai, qi+1) for each i ∈ N, such
that q0 ∈ I and {q ∈ Q | q = qi for infinitely many i ∈ N} ∩ F 6= ∅. Let
label(ρ) := (ai)i∈N ∈ Σω, the label of ρ. As in the case of finite words, we denote
by RunA the set of all runs ofA and, for each w ∈ Σω, we denote by RunA(w) the

49

50

set of all runs ρ of A with label(ρ) = w. Let L(A) = {w ∈ Σω | RunA(w) 6= ∅},
the ω-language accepted byA. We say that an ω-language L ⊆ Σω is recognizable
if there exists a Büchi automaton A such that L(A) = L.

Next, we will consider multi-weighted Büchi automata. Again, the weights of
transitions can be tuples of weights (e.g., reward-cost pairs), and the values of
the behavior should be single values. Our algebraic structure for multi-weighted
Büchi automata will be defined in the spirit of ω-valuation monoids of Droste
and Meinecke [40].

We say that a monoid K = (K,+,0) is complete (cf. [35]) if it is equipped
with infinitary sum operations

∑
I : KI → K, for any index set I, such that,

for all I and all families (ki)i∈I of elements of K, the following hold:

•
∑
i∈∅ ki = 0,

∑
i∈{j} ki = kj ,

∑
i∈{p,q} ki = kp + kq for p 6= q;

•
∑
j∈J(

∑
i∈Ij ki) =

∑
i∈I ki, if

⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′.

Definition 5.1. An ω-valuation structure V = (M,K, valω) consists of a non-
empty set M , a complete monoid K = (K,+,0), and a mapping valω : Mω → K
called an ω-valuation function.

Note that, in contrast to an ω-valuation monoid of [40], the domain and the
codomain of the ω-valuation function valω of the ω-valuation structure V do not
necessarily coincide; moreover, valω is not equipped with additional properties
as in [40]. Then, ω-valuation structures are more general than ω-valuation
monoids.

Definition 5.2. Let Σ be an alphabet and V = (M, (K,+,0), valω) an ω-
valuation structure. A multi-weighted Büchi automaton (MWBA) over Σ and
V is a tuple A = (Q, I, T, F,wt) where (Q, I, T, F) is a Büchi automaton over
Σ and wt : T →M is a transition weight function.

The behavior of MWBA is defined using a similar approach as in [40]. First,
given a run ρ of this automata, we evaluate the ω-sequence of transition weights
of ρ (which is in Mω) using the ω-valuation function valω and then resolve the
nondeterminism on the weights of runs using the complete monoid K. Formally,
let ρ = (ti)i∈N ∈ RunA be a run of A where ti ∈ T for all i ∈ N. Then, the
weight of ρ is defined as wtA(ρ) = valω((wt(ti))i∈N) ∈ K. The behavior of A is
a mapping [[A]] : Σω → K defined for all w ∈ Σω by

[[A]](w) =
∑

(wtA(ρ) | ρ ∈ RunA(w)).

Note that the sum in the equation above can be infinite. Therefore we consider
a complete monoid (K,+,0).

A mapping L : Σω → K is called a quantitative ω-language. We say that L is
recognizable over V if there exists a MWBA A over Σ and E such that [[A]] = L.

Remark 5.3. As in the case of multi-weighted automata on finite words, we
could consider a more general algebraic structure given by an ω-aggregation func-
tion which evaluates infinite multisets of ω-sequences. However, this approach
has the following disadvantages:

51

• This approach is not motivated by examples of MWBA known from liter-
ature.

• The use of this abstract structure would diminish the clarity of presentation
(since we have to consider cardinal arithmetic for infinite multisets).

• The use of finite multisets of finite strings was interesting for finite words,
since we defined the Cauchy-product on them and obtained a semiring. In
contrast, there is no natural concatenation operation on infinite sequences.

Therefore, we will use the less general ω-valuation structure to describe the
behavior of MWBA.

Now we show that various models of multi-weighted automata on infinite
words can be described using ω-valuation structures.

Example 5.4. (a) Here, we consider the reward-cost ratio setting for infinite
words (cf. [21, 22]). We can handle this situation using the ω-valuation
structure VωRatio = (M,K, valωRatio) where M = Q × Q≥0 models the
reward-cost pairs, K = (R∪{−∞,∞}, sup,−∞), and valωRatio : Mω → K
is defined as follows. For a sequence u = (mi)i∈N ∈Mω with mi = (ri, ci),
we let

valωRatio(u) = lim sup
n→∞

r1 + ...+ rn
c1 + ...+ cn

with r
0 =∞.

(b) Here, we consider the transition-dependent discounting measure (cf.
[8, 37]). In order to fit this weight measure into the setting of
multi-weighted Büchi automata, we consider the ω-valuation structure
VωDisc = (M,K, valωDisc) where M = Q≥0 × ((0, 1] ∩ Q) models the pairs
of a cost and a discounting factor, K = (R≥0 ∪ {∞}, inf,∞), and valωDisc

is defined for all u = (mi)i∈N ∈Mω with mi = (ci, di) as

valωDisc(u) =

∞∑
i=0

ci ·
i−1∏
j=0

dj

where
∏
j∈∅ dj = 1.

(c) Here, we present ω-evaluators for the model of multi-weighted automata
which correspond to one-player energy games considered in [52]. Let
n ≥ 1, s1, ..., snbe energy storages and E1

max, ..., E
n
max ∈ N their maxi-

mal capacities. We start with empty storages and, along a run, the en-
ergy level of each storage sj can be increased (if we regain energy) or
decreased (if we consume energy). If the energy level of a storage sj ex-
ceeds its maximal capacity Ejmax, then we trim it to Ejmax. The goal is to
keep the energy level of every energy storage not less that zero. Consider
the sequence u = (ui)i∈N where, for all i ∈ N, ui = (u1

i , ..., u
n
i) ∈ Zn

is a vector of the energy level changes for each storage. We transform
this sequence to the sequence ũ = (ũi)i∈N of the absolute energy lev-
els ũi = (ũ1

i , ..., ũ
n
i) ∈ Zn defined inductively on i ≥ 0 as follows. For

i = 0 and j ∈ {1, ..., n}, let ũji = min{uji , Ejmax}. Then, for i ≥ 1 and

52

j ∈ {1, ..., n}, we let ũji = min{ũji−1 + uji , E
j
max}. Note that, for all i ∈ N

and j ∈ {1, ..., n}, ũji ∈ (−∞, Ejmax). We say that u is correct if ũji ≥ 0
for all i ∈ N and j ∈ {1, ..., n}. Then, for this situation we consider
the ω-valuation structure VωEnergy = (M,K, valωEnergy) where M = Zn,
K = ({0, 1},∨, 0), and valωEnergy is defined for all u ∈Mω as

valωEnergy(u) =

{
1, if u is correct,
0, otherwise.

(d) Since an ω-valuation monoid (K, (K,+,0), valω) of Droste and Meinecke
[40] is a special case of ω-valuation structures, all examples considered
there also fit into our new framework.

5.2 A Nivat-like characterization
Nivat’s theorem [74] (see also [12], Theorem 4.1) is one of the fundamental char-
acterizations of rational transductions and establishes a connection between ra-
tional transductions and rational languages. A version for semiring-weighted
automata was given in [38]; this shows a connection between recognizable quan-
titative and qualitative languages. A version for weighted multioperator tree
automata was given in [82]. In this chapter, we prove a Nivat-like decomposi-
tion theorem for recognizable quantitative ω-languages, i.e., we show how they
are related to qualitative ω-regular languages. As a corollary from the proof
this theorem, we give a Nivat-like characterization of unambiguously recogniz-
able quantitative ω-languages.

Let Σ be an alphabet and V = (M, (K,+,0), valω) an ω-valuation struc-
ture. For a (possibly different from Σ) alphabet Γ, we introduce the following
operations:

• Let ∆ be an arbitrary non-empty set and h : Γ → ∆ a mapping,
called henceforth a renaming. For any ω-word u = (γi)i∈N ∈ Γω, we let
h(u) = (h(γi))i∈N ∈ ∆ω.

• Let h : Γ→ Σ be a renaming and L : Γω → K a quantitative ω-language.
We define the renaming h(L) : Σω → K for all w ∈ Σω by

h(L)(w) =
∑

(L(u) | u ∈ Γω and h(u) = w).

Note that the sum in the equation above can be infinite.
• Let g : Γ → M be a renaming. The composition valω ◦g : Γω → K is

defined for all u ∈ Γω as (valω ◦g)(u) = valω(g(u)).
• Let L : Γω → K be a quantitative ω-language and L ⊆ Γω an ω-language.

Then, the intersection (L ∩ L) : Γω → K is defined for all u ∈ Γω as

(L ∩ L)(u) =

{
L(u), if u ∈ L,
0, otherwise.

53

We say that a Büchi automaton A over Γ is unambiguous if, for every ω-word
u ∈ Γω, we have |RunA(u)| ≤ 1.

Theorem 5.5 (Carton, Michel [26]). Let Γ be an alphabet and L ⊆ Γω an
ω-language. Then, L is recognizable iff there exists an unambiguous Büchi au-
tomaton A over Γ such that L(A) = L.

Now we state our Nivat theorem for MWBA .

Theorem 5.6. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, and L : Σω → K a quantitative ω-language. Then, the following are
equivalent.

(a) L is recognizable over V.
(b) There exist an alphabet Γ, renamings h : Γ → Σ and g : Γ → M , and a

recognizable ω-language L ⊆ Γω such that L = h((valω ◦g) ∩ L).

We start the proof of Theorem 5.6 with closure properties for recognizable
quantitative ω-languages.

Lemma 5.7. Let Γ be an alphabet.

(a) Let g : Γ→M be a renaming. Then, the composition (valω ◦g) : Γω → K
is recognizable over V.

(b) Let L : Γω → K be a quantitative ω-language recognizable over
V and L ⊆ Γω a recognizable ω-language. Then, the intersection
(L ∩ L) : Γω → K is recognizable over V.

(c) Let h : Γ → Σ be a renaming and L : Γω → K a quantitative ω-language
recognizable over V. Then, the quantitative ω-language h(L) : Σω → K is
recognizable over V.

Proof. (a) We define a MWBA A = (Q, I, T, F,wt) over Γ and V as follows:

– Q = I = F = {1} and T = {1} × Γ× {1};
– for every γ ∈ Γ, wt(1, γ, 1) = g(γ).

Then [[A]] = valω ◦g.
(b) We use Theorem 5.5 and apply the standard product construction for

Büchi automata. Let A = (Q, I, T, F,wt) be a MWBA over Γ and V and
let A′ = (Q′, I ′, T ′, F ′) be an unambiguous Büchi automaton over Γ. We
construct a MWBA A′′ = (Q′′, I ′′, T ′′, F ′′,wt′′) over Γ and V as follows:

– Q′′ = Q×Q′ × {1, 2}, I ′′ = I × I ′ × {1}, F ′′ = {(q, q′, 2) | q′ ∈ F ′};
– T ′′ consists of all transitions t = ((p, p′, i), a, (q, q′, f(p, p′, i))) such

that (p, a, q) ∈ T , (p′, a, q′) ∈ T ′, i ∈ {1, 2}, and f(p, p′, i) ∈ {1, 2}
is defined as follows. If i = 1 and p ∈ F , then f(p, p′, i) = 2. If
i = 1 and p /∈ F , then f(p, p′, i) = 1. If i = 2 and p′ ∈ F ′, then
f(p, p′, i) = 1. If i = 2 and p′ /∈ F , then f(p, p′, i) = 2. For such a
transition t, we let wt′′(t) = wt(p, a, q).

54

Then [[A′′]] = [[A]] ∩ L(A′).
(c) The proof uses the construction of Droste and Vogler [47] for the renaming.

Let A = (Q, I, T, F,wt) be a MWBA over Γ and V. We define a MWBA
A′ = (Q′, I ′, T ′, F ′,wt′) over Σ and V as follows:

– Q′ = Q× Γ, I ′ = I × {γ0} for some γ0 ∈ Γ; F ′ = F × Γ;
– T ′ consists of all transitions t = ((p, γ), a, (p′, γ′)) ∈ Q′×Σ×Q′ such

that (p, γ′, p′) ∈ T and h(γ′) = a. For such a transition t, we let
wt′(t) = wt(p, γ′, p′).

Then h([[A′]]) = [[A]].

By successive application of parts (a), (b), (c) of Lemma 5.7, we obtain:

Corollary 5.8. Let Γ be an alphabet, h : Γ → Σ and g : Γ → M renam-
ings, and L ⊆ Γω a recognizable ω-language. Then, the quantitative ω-language
h((valω ◦g) ∩ L) : Σω → K is recognizable over V.

Now we show the implication (a) ⇒ (b) of Theorem 5.6.

Lemma 5.9. Let A be a MWBA over Σ and V. Then, there exist an alphabet
Γ, renamings h : Γ → Σ, g : Γ → M , and a recognizable ω-language L ⊆ Γω

such that [[A]] = h((valω ◦g) ∩ L).

Proof. Let A = (Q, I, T, F,wt). Let Γ = T , h : T → Σ be defined for all
t = (p, a, q) ∈ T as h(t) = a, and g : T → M be defined for all t ∈ T as
g(t) = wt(t). Let L = {ρ = (ti)i∈N | ρ is a run of A}.

Consider the Büchi automaton A′ = (Q, I, T ′, F) over Γ where
T ′ = (p, (p, a, q), q) | (p, a, q) ∈ T}. Then, L(A′) = L and hence L is recog-
nizable. We show that [[A]] = h((valω ◦g) ∩ L).

Let w ∈ Σω. Then:

h((valω ◦g) ∩ L)(w) =
∑
u∈L,
h(u)=w

valω(g(u)) =
∑

ρ∈RunA(w)

wtA(ρ) = [[A]](w).

Proof of Theorem 5.6. Immediate by Lemma 5.9 and Corollary 5.8.

We say that a MWBA A = (Q, I, T, F,wt) over Σ and V is unambiguous if
the underlying Büchi automaton (Q, I, T, F) is unambiguous. In the rest of this
section, we show a Nivat theorem for unambiguous MWBA.

Let L ⊆ Γω be an ω-language and h : Γ→ Σ a renaming. We say that L is
h-unambiguous if, for all w ∈ Σω, there exists at most one u ∈ L with h(u) = w.

As a corollary of the proof of Theorem 5.6, we obtain:

Corollary 5.10. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, and L : Σω → K a quantitative ω-language. Then, the following are
equivalent.

55

(a) L = [[A]] for some unambiguous MWBA A over Σ and V.
(b) There exist an alphabet Γ, renamings h : Γ → Σ and g : Γ → M ,

and a recognizable and h-unambiguous ω-language L ⊆ Γω such that
L = h((valω ◦g) ∩ L).

Proof. The proof relies on the same constructions as the proof of Theorem 5.6.
Using the constructions of Lemma 5.7 (a), (b), we can construct an unambiguous
MWBA for L := (valω ◦g) ∩ L. In general, the construction of Lemma 5.7 (c)
for the renaming leads to an ambiguous MWBA. However, the h-unambiguity
of L guarantees that the multi-weighted automaton for h(L) is unambiguous.

Notice also that, given an unambiguous automaton A, the ω-language
L ⊆ Γω defined in Lemma 5.9 is h-unambiguous.

We say that a MWBA A = (Q, I, T, F,wt) over an alphabet Σ and an
ω-valuation structure V is deterministic if the underlying finite automaton
(Q, I, T, F) is deterministic, i.e., |I| = 1 and, for all (p, a) ∈ Q × Σ, there
exists at most one q ∈ Q with (p, a, q) ∈ T . We can use the proof of Theo-
rem 5.6 to show that the recognizable quantitative ω-languages are exactly the
renamings of deterministically recognizable quantitative ω-languages.

Corollary 5.11. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, and L : Σω → K a quantitative ω-language. Then, the following are
equivalent.

(a) L is recognizable over V.
(b) There exist an alphabet Γ, a renaming h : Γ → Σ, and a quantitative

ω-language L′ : Γω → K recognizable by a deterministic MWBA over V,
such that L = h(L′).

Proof. First, we show that (a) implies (b). Let L be recognizable over V. By
Lemma 5.9, there exist an alphabet Γ, renamings h : Γ→ Σ and g : Γ → M ,
and a recognizable ω-language L ⊆ Γω such that L = h((valω ◦g) ∩ L). Let
L′ = (valω ◦g) ∩ L. It remains to show that the quantitative ω-language L′ is
deterministically recognizable over Γ and V.

Note that in the proof of Lemma 5.9, the Büchi automaton A′ with
L(A′) = L has a deterministic transition relation but possibly multiple initial
states. Note that here we can replace them by a new single initial state; this
does not harm the deterministic transition table since each label of a transi-
tion contains information about an outgoing state. Then, L is deterministically
recognizable. Following the constructions of Lemma 5.7, we can construct a
deterministic MWTA B over Γ and V with [[B]] = valω ◦g and, using B and the
deterministic automaton for L, a deterministic MWTA C over Γ and V with
[[C]] = L′.

The implication (b) ⇒ (a) follows from Lemma 5.7 (c).

56

5.3 Multi-weighted Muller automata
In this section, we consider the model of multi-weighted automata on infinite
words with a Muller acceptance condition. It is well known that, in the Boolean
setting, Büchi and Muller automata are expressively equivalent. In [44], this
result was extended to totally complete semirings.

As an application of our Nivat theorem for MWBA, we show the expressive
equivalence of MWBA and multi-weighted Muller automata.

Let Σ be an alphabet. A Muller automaton over Σ is a tuple
M = (Q, I, T,F ,wt) where Q is a finite set of states, I ⊆ Q is a set of ini-
tial states, T ⊆ Q × Σ × Q is a set of transition and F ⊆ 2Q is a Muller
acceptance condition.

A run ρ = (ti)i∈N of M is defined as an infinite sequence of match-
ing transitions, say ti = (qi, ai, qi+1) for all i ∈ N, such that q0 ∈ I and
{q ∈ Q | q = qi for infinitely many i ∈ N} ∈ F . Let label(ρ) = (ai)i∈N, the la-
bel of ρ. Let RunM be the set of all runs of M and, for every w ∈ Σω,
let RunM(w) be the set of all runs ρ of M with label(ρ) = w. Let
L(M) = {w ∈ Σω | RunM(w) 6= ∅}, the ω-language accepted byM.

The following proposition is a folklore result.

Proposition 5.12. Let Σ be an alphabet and L ⊆ Σω an ω-language. Then,
the following are equivalent.

(a) L = L(A) for some Büchi automaton A over Σ.
(b) L = L(M) for some Muller automatonM over Σ.

Let V = (M, (K,+,0), valω) be an ω-valuation structure. A multi-weighted
Muller automaton over Σ and V is a tuple M = (Q, I, T,F ,wt) where
(Q, I, T,F) is a Muller automaton over Σ and wt : T → M is a transition
weight function.

As for multi-weighted Büchi automata, given a run ρ = (ti)i∈N ∈ RunM with
ti ∈ T for all i ∈ N, the weight of ρ is defined as wtM(ρ) = valω((wt(ti))i∈N).
Then, the behavior [[M]] : Σω → K of M is defined for all w ∈ Σω as
[[M]](w) =

∑
(wtM(ρ) | ρ ∈ RunM(ρ)).

The following theorem states the equivalence of multi-weighted Muller au-
tomata and multi-weighted Büchi automata.

Theorem 5.13. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, and L a quantitative ω-language. Then, the following are equivalent.

(a) L = [[A]] for some multi-weighted Büchi automaton A over Σ and V.
(b) L = [[M]] for some multi-weighted Muller automatonM over Σ and V.

This theorem extends the expressive equivalence result of weighted Büchi
automata and weighted Muller automata over totally complete semirings es-
tablished in [44]. Whereas the proof of [44] was given by direct non-trivial
transformations of automata, here we give a simple proof based on Proposition
5.12 and Theorem 5.6. It suffices to show that Muller-recognizable quantita-
tive ω-languages permit the same decompositions as in Theorem 5.6 for Büchi-
recognizable quantitative ω-languages.

57

Theorem 5.14. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, and L : Σω → K a quantitative ω-language. Then, the following are
equivalent.

(a) L = [[M]] for some multi-weighted Muller automatonM over Σ and V.
(b) There exist an alphabet Γ, renamings h : Γ → Σ and g : Γ → M , and a

recognizable ω-language L ⊆ Γω such that L = h((valω ◦g) ∩ L).

The proof of this theorem is much the same as the proof of Theorem 5.6. We
only have to replace F ⊆ Q by F ⊆ 2Q in the proof of Lemma 5.9 and slightly
modify the constructions of Lemma 5.7.

• We construct a multi-weighted Muller automaton for valω ◦g as in Lemma
5.7 (a) where we replace F = {1} by F = {{1}}.

• For the intersection L∩L, we apply Proposition 5.12 to construct a Muller
automaton for L, determinize it and use the standard product construction
for Muller automata.

• For the renaming h(L), we proceed as in Lemma 5.7 (c) where we re-
place F ′ by the Muller acceptance condition F ′ which consists of all sets
{(q1, γ1), ..., (qk, γk)} ⊆ Q′ such that {q1, ..., qk} ∈ F (a similar idea was
used in [40]).

Proof of Theorem 5.13. Immediate by Theorems 5.6 and 5.14.

5.4 The discount-optimal value problem

Let Σ be an alphabet and V = (M, (K,+,0), valω) an ω-valuation structure.
For a quantitative ω-language L : Σω → K, let L] =

∑
(L(w) | w ∈ Σω) ∈ K,

the optimal value of L (this notion is motivated by examples with + = inf or
+ = sup). The optimal weight problem for V is, given an alphabet Σ and a
multi-weighted Büchi automaton A over Σ and V, to compute [[A]]].

The discount-optimal value problem is the optimal value-problem for the
ω-valuation structure VωDisc as defined in Example 5.4 (b).

We call a MWBA A = (Q, I, T, F,wt) over Σ and VωDisc simple if Q = F ,
i.e., the Büchi acceptance condition is irrelevant for A. The discount-optimal
problem for simple MWBA was studied in [8] (for the case when the discounting
factors of transitions are less that 1) and in [53] (where the discounting factor
1 is allowed):

Theorem 5.15 ([8], [53]). Given a singleton alphabet ∆ and a simple MWBA
A over ∆ and VωDisc, the value [[A]]] is computable.

In this section, we show that this computability result holds for arbitrary
MWBA.

Theorem 5.16. The discount-optimal value problem is computable.

58

A1

1 2
(2, λ)

(2, λ)(1, λ) A2

1 2
(2, λ)

(2, λ)(0, 1)

Figure 5.1: MWBA A1 and A2 of Example 5.17

In the rest of this section, we give a proof of this theorem. Our proof will
use Theorem 5.15 for simple MWBA. First of all, we consider an example which
will provide an intuition for our constructions.

Example 5.17. Consider a singleton alphabet ∆ and a MWBA A1 over ∆
and VωDisc depicted on Fig. 5.1 (the labels of transitions are omitted). Here,
λ ∈ (0, 1) ∩ Q is a discounting factor. Note that every run ρ of A1 takes k ≥ 0
times the self-loop of the state 1, jumps to the state 2 and takes the self-loop of
the state 2 infinitely often. Then, [[A1]]] = infk∈N

(
1−λk
1−λ + 2λk

1−λ

)
= 1

1−λ . Note

that 1
1−λ is the weight of the non-accepting run which always stays in 1. This

can be explained by the fact that we can stay in the beneficial self-loop of the
state 1 as many times as we want (this makes the product of discounting factors
arbitrarily small) and jump to state 2 in order to fulfill the Büchi acceptance
condition. Then, in order to compute [[A]]], we can make the state 1 accepting
and apply the algorithm of Theorem 5.15 for the obtained simple MWBA. So,
the solution in this case is to keep only those states of A1 which are visited by
some accepting run of A1 and to make all these states accepting.

However, this approach does not always work if we have a transition with
the discounting factor 1. Consider, for instance, the MWBA A2 of Figure 5.1
where [[A2]]] = 2

1−λ . If we apply to A2 the method considered for A1, then we
obtain the value 0 which is not correct.

So, the situation with the discounting factor 1 is the main difficulty of the
proof. However, the discounting factors 1 appeared in the corner-point abstrac-
tion (which is a multi-weighted automaton with discounting factors λ ∈ (0, 1)∩Q
and 1) for weighted timed automata with discounting considered in [53]. There-
fore, we do not exclude this case.

We will show that we can apply the method of Example 5.17 to MWBA
with the discounting factor 1 if we:

• remove each cycle θ such that θ does not contain an accepting state and
all transitions of θ have the cost 0 and the discounting factor 1;
• remove every strongly connected component U such that all transitions of
U have the discounting factor 1.

Let Σ be an alphabet and A = (Q, I, T, F,wt) a MWBA over Σ and
VωDisc. For every transition t ∈ T with wt(t) = (c′, d′) for some c′ ∈ Q≥0 and
d′ ∈ (0, 1] ∩ Q, let wtc(t) = c′, the cost of t, and let wtd(t) = d′, the discounting
factor of t. A run fragment of A is a sequence π = q0

a1−→ q1
a2−→ ...

an−−→ qn where

59

n ≥ 0 and ti := (qi−1, ai, qi) ∈ T for all i ∈ {1, ..., n}. Let C(π) =
∑n
i=1 wtc(ti),

the cost of π, and D(π) =
∏n
i=1 wtd(ti), the discounting factor of π. Let

QAπ = {q0, ..., qn}. We say that π is a cycle if q0 = qn. We say that π is a
simple cycle if π is a cycle and the states q0, ..., qn−1 are pairwise distinct.

Let θ be a cycle of A. We say that θ is accepting if QAθ ∩F 6= ∅. We say that
θ is singular if θ is simple, not accepting, C(θ) = 0 and D(θ) = 1. Let S(A) be
the number of singular cycles of A. We say that A is non-singular if S(A) = 0.

Lemma 5.18. Let A be a MWBA over an alphabet Σ and VωDisc. Then, there
exist an alphabet Γ and a non-singular MWBA B over Γ and VωDisc such that
[[B]]] = [[A]]].

Proof. The idea of our construction is the following. We replace a singular cycle
θ by a single state vθ. Since the transitions of θ do not influence the weight
of a run, we augment vθ with a self-loop for each discounting factor appearing
in the transitions between the states of θ and label it with the minimal cost
for this discounting factor. Correspondingly, we connect the other states with
vθ. In order to avoid an automaton with the multiple occurrences of the same
transitions, we have to extend the alphabet in order to label them by distinct
letters.

Let A = (Q, I, T, F,wt) such that S(A) > 0. Let Λ = {wtd(t) | t ∈ T}
and Γ = Σ × Λ. Let B0 = (Q, I, T ′, F,wt′) be a MWTA over Γ and VωDisc

such that T ′ = {(q, (a, λ), q′) | t := (q, a, q′) ∈ T and wtd(t) = λ} and, for
all t = (q, (a, λ), q′) ∈ T ′, wt′(t) = wt(q, a, q′). Clearly, S(B0) = S(A) and
[[B0]]] = [[A]]].

Assume that, for some i ≥ 0, a MWTA Bi over Γ and VωDisc is de-
fined and contains a singular cycle θ. Let U = Qi \ QBiθ . Then, we define
Bi+1 = (Qi+1, Ii+1, Ti+1, Fi+1,wti+1) from Bi as follows:

• Qi+1 = U ∪ {vθ} where vθ /∈ U is a new state which will simulate θ;

• Ii+1 =

{
(Ii ∩ U) ∪ {vθ}, if Ii ∩QBiθ 6= ∅,
Ii ∩ U, otherwise;

• Ti+1 = (Ti ∩ (U × Γ× U)) ∪ T→θ ∪ T�θ ∪ Tθ→ such that:

– T→θ = {(q, γ, vθ) | q ∈ U and (q, γ, q′) ∈ Ti for some q′ ∈ QBiθ };

– T�θ = {(vθ, γ, vθ) | γ ∈ Γ \ (Σ× {1}),∃q, q′ ∈ QBiθ : (q, γ, q′) ∈ Ti};

– Tθ→ = {(vθ, γ, q′) | q′ ∈ U and (q, γ, q′) ∈ Ti for some q ∈ QBiθ };

• Fi+1 = Fi (note that QBiθ ∩ F = ∅);
• for all t ∈ Ti+1, wti+1(t) is defined as follows:

– if t ∈ Ti ∩ (U × Γ× U), then wti+1(t) = wti(t);

– if t = (vθ, γ, q′) ∈ Tθ→ with γ = (a, λ) ∈ Γ, then (wti+1)d(t) = λ and
(wti+1)c(t) = min{(wti)c(q, γ, q

′) | q ∈ QBiθ and (q, γ, q′) ∈ Ti};
– if t = (vθ, γ, vθ) ∈ T�θ with γ = (a, λ), then (wti+1)d(t) = λ and

(wti+1)c(t) = min{(wti)c(q, γ, q
′) | q, q′ ∈ QBiθ and (q, γ, q′) ∈ Ti};

60

– if t = (q, γ, vθ) ∈ T→θ with γ = (a, λ) ∈ Γ, then (wti+1)d(t) = λ and
(wti+1)c(t) = min{(wti)c(q, δ, q

′) | q′ ∈ QBiθ and (q, δ, q′) ∈ Ti};

Thus, we eliminated in Bi at least one singular cycle θ of Bi−1 and we did not
add any new singular cycle. Then, S(Bi) < S(Bi−1). Moreover, we simulated all
potentially optimal runs of A and excluded some of runs which do not influence
the value [[Bi−1]]]. Then, [[Bi]]] = [[Bi−1]]]. Following this process, in finitely
many steps we obtain a MWBA Bk over Γ and VωDisc such that S(Bk) = 0 and
[[Bk]]] = [[A]]]. Then, we let B = Bk.

We fix a singleton alphabet ∆ = {δ}.

Lemma 5.19. Let A be a non-singular MWBA over an alphabet Σ and VωDisc.
Then, there exists a non-singular MWBA B over ∆ and VωDisc such that
[[B]]] = [[A]]].

Proof. Let A = (Q, I, T, F,wt). Consider the renaming h : Σ → ∆. Then,
h([[A]])] = [[A]]]. By Lemma 5.7 (c), h([[A]]) is recognized by a MWBA B over
∆ and VωDisc such that [[B]] = h([[A]]). Let B be constructed as in the proof
of Lemma 5.7. We show that B is non-singular. Suppose that B contains a
singular cycle θ = (q0, a0)

δ−→ (q1, a1)
δ−→ ...

δ−→ (qn, an) where q0, ..., qn ∈ Q,
a0, ..., an ∈ Σ, (q0, a0) = (qn, an), C(θ) = 0 and D(θ) = 1. Then, we can
construct the non-accepting cycle η = q0

a1−→ q1
a2−→ ...

an−−→ qn of A such that
C(η) = C(θ) = 0 and D(η) = D(θ) = 1. Then, η contains a trivial subcycle
η′ (note that q0, ..., qn−1 are not necessarily pairwise distinct). Hence, A is
non-singular. A contradiction.

Then, it suffices to show that [[A]]] is computable for a non-singular MWBA
A = (Q, I, T, F,wt) over the singleton alphabet ∆. Since the labels of transi-
tions in T are irrelevant, we will slightly abuse the notation and assume that
T ⊆ Q×Q. So, we will consider the runs of A as sequences ρ = (qi)i∈N ∈ Qω
such that q0 ∈ I, (qi, qi+1) ∈ T for all i ∈ N, and there exists f ∈ F such that
qi = f for infinitely many i ∈ N. For each i ≥ 0, let Di(ρ) =

∏i−1
j=1 wtd(qj , qj+1).

We will also represent a run fragment θ of A as a finite sequence v0...vn ∈ Q+.
Moreover, we may assume without loss of generality that I = {ι} is a singleton
set (otherwise, we can add a new unique initial state ι and connect it with the
states in I by transitions t with wt(t) = (0, 1). Clearly, this does not harm the
non-singularity of a MWBA).

Let +→A ⊆ Q×Q be the transitive closure of T and ∗→A ⊆ Q×Q the reflexive
and transitive closure of T . For q ∈ Q and U ⊆ Q, we write q ∗→A U if q ∗→A u
for some u ∈ U . We say that a subset U ⊆ Q is strongly connected if u +→A u′
for all u, u′ ∈ U . We say that U is a strongly connected component (SCC) if
U is strongly connected and every subset V ⊆ Q with V) U is not strongly
connected. A SCC U ⊆ Q is called accepting if U ∩ F 6= ∅. A SCC U of A is
called reachable if ι ∗→A U . A SCC U of A is called trivial if wtd(t) = 1 for all
t ∈ T ∩ (U ×U). Let T (A) be the number of SCC of A which are reachable and
trivial. We say that A is non-trivial if T (A) = 0.

61

Lemma 5.20. Let A be a non-singular MWBA over ∆ and VωDisc such that
T (A) > 0. Then, there exists a non-singular MWBA B over ∆ and VωDisc such
that T (B) = T (A)− 1 and [[B]]] = [[A]]].

Proof. Let A = (Q, {ι}, T, F,wt) and U ⊆ Q a trivial and reachable SCC of A.
We construct B by eliminating U . The construction is based on the following
ideas.

• If U ∩ F = ∅, then stay in U is not an optimal solution (since it will not
decrease the global discounting factor and will probably increase the cost)
and we have to leave it with the minimal cost.

• If there exists f ∈ U ∩ F and there exists a simple cycle θ of A such that
f ∈ Qθ and C(θ) = 0, then the eventual recurring of θ could be a potential
optimal solution. Then, we retain the state f , reach it with the minimal
cost and equip it with the self-looping transition with the cost 0 and an
arbitrary discounting factor λ < 1 (in order to avoid a new trivial SCC).

• If there exists f ∈ U ∩F and there exists no simple cycle θ of A such that
f ∈ Qθ and C(θ) = 0, then the visit of f infinitely many times is not an
optimal solution, since we obtain an accepting run of the weight ∞.

We may assume that ι /∈ U . Let

→U = {(q, u) ∈ T | q ∈ Q \ U and u ∈ U},

the set of exterior ingoing transitions of U , and

U→ = {(u, q) ∈ T | u ∈ U and q ∈ Q \ U},

the set of exterior outgoing transitions of U . Let FU be the set
of all f ∈ U ∩ F such that there exists a simple cycle θ of A
with f ∈ Qθ and C(θ) = 0. For u, u′ ∈ U , let Cmin(u, u′) =
min{C(θ) | θ = v0...vn ∈ Q+ is a path fragment with v0 = u, vn = u′}.

The idea of our construction is the following. Assume that p, p′ ∈ U and
q, q′ ∈ Q \ U such that (q, p) ∈ T and (p′, q′) ∈ T . Then, we add the states
s1 = 〈q, p, p′, q′, 1〉 and s2 = 〈q, p, p′, q′, 2〉. Then transition (q, p) will be mod-
elled by (q, s1), and the transition (p′, q′) will be modelled by (s2, q

′). Moreover,
we add the transition (s1, s2) with the discounting factor 1 and the minimal cost
of a run fragment between p and p′.

We let B = (Q′, {ι}, T ′, F ′,wt′) such that:

• Q′ = (Q \ U) ∪Q′′ ∪ FU ∪ F ′′ where

– Q′′ = {(v, v′, i) | v ∈ →U, v′ ∈ U→, i ∈ {1, 2}};
– F ′′ = {(v, f) | v ∈ →U and f ∈ FU};

• T ′ = (T ∩ (Q \ U)2) ∪ T1 ∪ T12 ∪ T2 ∪ TF ′′,1 ∪ TF ′′,2 ∪ TFU where:

– T1 = {(q, ((q, u), v′, 1)) | (q, u) ∈ →U and v′ ∈ U→};
– T12 = {((v, v′, 1), (v, v′, 2)) | v ∈ →U and v′ ∈ U→};

62

– T2 = {((v, (u′, q′), 2), q′) | (u′, q′) ∈ U→};
– TF ′′,1 = {(q, ((q, u), f)) | (q, u) ∈ →U, f ∈ FU};
– TF ′′,2 = {(((q, u), f), f) | (q, u) ∈ →U, f ∈ FU};
– TFU = {(f, f) | f ∈ FU}.

• wt′ is defined as follows:

– for t ∈ (T ∩ (Q \ U)2): wt′(t) = wt(t);

– for t = (q, ((q, u), v′, 1)) ∈ T1: wt′(t) = wt(q, u);

– for t = ((v, v′, 1), (v, v′, 2)) ∈ T12 with v = (q, u) and v′ = (u′, q′):
wt′(t) = (Cmin(u, u′), 1);

– for t = ((v, (u′, q′), 2), q′) ∈ T2: wt′(t) = wt(u′, q′);

– for t = (q, ((q, u), f)) ∈ TF ′′,1: wt′(t) = wt(q, u);

– for t = (((q, u), f), f) ∈ TF ′′,2: wt′(t) = (Cmin(u, f), 1);

– for t = (f, f) ∈ TFU , let wt′(t) = (0, λ) where λ ∈ Q ∩ (0, 1) is fixed.

Note that the setQ′\(Q\U) does not contain any SCC. Then, T (B) = T (A)− 1.
Moreover, B simulates all potential optimal runs of A and excludes some runs
which does not influence the value [[A]]]. Then, [[B]]] = [[A]]]. Moreover, our
U -elimination process did not add any singular cycle to A. Then, B is non-
singular.

As a corollary from Lemma 5.20, we obtain:

Corollary 5.21. Let A be a non-singular MWBA over ∆ and VωDisc. Then,
there exists a MWBA B over ∆ and VωDisc such that B is non-singular and
non-trivial, and [[B]]] = [[A]]].

The following lemma shows that we can decide whether [[A]]] = ∞ for a
non-trivial MWTA A.

Lemma 5.22. Let A = (Q, {ι}, T, F,wt) be a MWBA over ∆ and VωDisc such
that A is non-trivial. Then, the following are equivalent.

(a) [[A]]] <∞;
(b) There exists f ∈ F such that ι ∗→A f

+→A f .

Proof. The implication (a) ⇒ (b) is trivial.
We show that (b) implies (a). Since ι ∗→ f , there exists a run fragment

u0...uk ∈ Q+ of A such that 1 ≤ k ≤ |Q|, u0 = ι, uk = f and (ui, ui+1) ∈ T
for all i ∈ {0, ..., k − 1}. Since f +→A f and A is non-trivial, the SCC P
containing f is non-trivial, i.e., there exist p, p′ ∈ P such that (p, p′) ∈ T and
λ := wtd(p, p

′) < 1. Since f ∗→ p and p′
∗→ f , we can construct a cycle θ =

v0...vl ∈ Q+ with v0 = vm = f , 1 ≤ l < 2 · |Q| and (vi, vi+1) = (p, p′) for some
i ∈ {0, ..., l−1}. Then, we construct the run ρ = u0...uk−1(fv1...vl−1)ω. Clearly,

63

ρ ∈ RunA. We show that wtA(ρ) < ∞. Indeed, let M = max{wtc(t) | t ∈ T}.
Then:

wtA(ρ) ≤M · k +
∑
i≥0

M · l · λi < M · |Q|+ 2 ·M · |Q| ·
∑
i≥0

λi

= M · |Q| · 3− λ
1− λ

<∞.

Hence, [[A]]] < wtA(ρ) <∞.

Lemma 5.23. Let A be a non-trivial, non-singular MWBA over ∆ and VωDisc

such that [[A]]] <∞. Then, there exists a simple MWBA B over Σ and VωDisc

such that [[B]]] = [[A]]].

Proof. Let U =
⋃
{P | P is an accepting and reachable SCC of A}. Since

[[A]]] < ∞, by Lemma 5.22, U 6= ∅. Let M = max{γc(t) | t ∈ T} + 1 > 0
and λ = max{wtd(t) | t ∈ T and wtd(t) < 1}. Since A is non-trivial, non-
singular and [[A]]] <∞, then 0 < λ < 1.

We construct B = (Q′, {ι}, T ′, Q′,wt′) as follows:

• Q′ = U ∪ {q ∈ Q | ι ∗→A q
∗→A U};

• T ′ = T ∩ (Q′ ×Q′);
• wt′ = wt |T ′ .

Clearly, since A is non-singular, B is also non-singular.
First, we prove that [[B]]] ≤ [[A]]]. For this, we show RunA ⊆ RunB. Indeed,

let ρ = (qi)i∈N ∈ RunA. Then, there exist a SCC P ⊆ U and k ∈ N such
that qi ∈ P for all i ≥ k. Moreover, ι ∗→A qi

∗→A P for all 0 ≤ i < k. Then,
ρ ∈ (Q′)ω and hence ρ ∈ RunB.

Next, we prove that [[A]]] = [[B]]]. Let ε > 0. We show the following:

∀ρ ∈ RunB ∃% ∈ RunA : wtA(%) < wtB(ρ) + ε. (5.1)

Let ρ ∈ RunB. If ρ ∈ RunA or wtB(ρ) =∞, then (5.1) is obvious. Now assume
that ρ ∈ RunB \RunA and wtB(ρ) < ∞. Then, there exists a simple cycle
θ = u0...un ∈ (Q′)+ such that ρ visits each of its transitions infinitely often.
Note that QBθ ∩ F = ∅ (otherwise, ρ ∈ RunA). Since B is non-singular, either
C(θ) > 0 or D(θ) < 1.

We distinguish the following cases.

• D(θ) < 1. Then, there exists j ∈ {0, ..., n−1} with λ := wtd(uj , uj+1) < 1.
Let (ij)j∈N ∈ Nω be an infinite sequence such that i0 < i1 < ... and
(qik , qik+1

) = (uj , uj+1) for all k ∈ N. Then, Di0(ρ) ≤ 1 and, for all
k ∈ N, Dik+1

(ρ) ≤ λ · Dik(ρ) and hence 0 ≤ Dik(ρ) ≤ λk. This means
that lim

k→∞
Dik(ρ) = 0. Since the sequence (Di(ρ))i∈N is monotonically

non-increasing, we obtain lim
i→∞

Di(ρ) = 0.

64

• C(θ) > 0. Then, there exists j ∈ {0, ..., n−1} with c := wtc(uj , uj+1) > 0.
Suppose that δ := lim

i→∞
Di(ρ) > 0. Since (Di(ρ))i∈N is a monotonically

non-increasing sequence, Di(ρ) ≥ δ for all i ∈ N. Let (ij)j∈N ∈ Nω be an
infinite sequence such that i0 < i1 < ... and (qik , qik+1

) = (uj , uj+1) for all
k ∈ N. Then,

wtA′(ρ) ≥
∞∑
k=0

wtc(qik , qik+1
) ·Dik(ρ) ≥

∞∑
k=0

c · δ =∞.

A contradiction.

Let k ∈ N. Then, qk
∗→ Uk for some reachable and accepting SCC Uk of A′.

We fix a state fk ∈ U ∩ F . Then, qk
∗→B fk

+→B fk. Let η = p0...pl be a run
fragment of A such that l ≤ |Q|, p0 = qk and pl = fk. Moreover, since Uk is
non-trivial, there exists a cycle θ = v0...vs of A such that s ≤ 2·|Q|, v0 = vs = fk
and wtd(vj , vj+1) ≤ λ for some j ∈ {0, ..., s − 1}. We construct an accepting
run %(k) = (ui)i∈N ∈ RunA(w) as follows: %(k) = q0...qkp1...pl−1(fkv1...vs−1)ω.
For every i ∈ N, let ci = wtc(qi, qi+1) and c′i = wtc(ui, ui+1). Then∣∣∣wtB(ρ)− wtA(%(k))

∣∣∣ =

∣∣∣∣∣
∞∑
i=k

(ci ·Di(ρ)− c′i ·Di(%
(k)))

∣∣∣∣∣
<

∞∑
i=k

ci ·Di(π) +M ·
∞∑
i=k

Di(%
(k)).

Since wtB(ρ) < ∞, there exists k0 ∈ N such that
∑∞
i=k′ ci · Di(π) < ε

2 for all
k′ ≥ k0. Moreover,

∞∑
i=k

Di(%
(k)) < Dk(%(k)) ·

(
|Q|+ 2 · |Q| ·

∞∑
i=0

λi
)

= Dk(%(k)) · |Q| · 3− λ
1− λ

.

Since ρ and %(k) have the same prefix q0...qk, we obtain Dk(ρ) = Dk(%(k)).
Let R = |Q| · 3−λ

1−λ . Then,
∑∞
i=kDi(%

(k)) < R · Dk(ρ). Since lim
k→∞

Dk(ρ) = 0,

we have lim
k→∞

∑∞
i=kDi(%

(k)) = 0. Then, there exists k1 ∈ N such that∑∞
i=k′ Di(%

(k′)) < ε
2M . Let k2 = max{k0, k1}. Then,

|wtB(ρ)− wtA(%(k2))| < ε

2
+M · ε

2M
= ε

and we let % = %k2 .
Let ε > 0 be an arbitrary real number. Then, there exists ρ ∈ RunB

such that wtB(ρ) < [[B]]] + ε. By (5.1), there exists % ∈ RunA such that
wtA(%) < wtB(ρ) + ε. Then:

0 ≤ [[A]]] − [[B]]] < wtA(%)− wtB(ρ) + ε < 2ε.

Since ε > 0 is arbitrary, we obtain [[A]]] = [[B]]].

65

Proof of Theorem 5.16. By subsequent application of Lemmas 5.18 and 5.19,
Corollary 5.21, Lemmas 5.22 and 5.23, and Theorem 5.15.

As a corollary from Theorem 5.16, we obtain:

Corollary 5.24. It is decidable, given an alphabet Σ, a MWBA A over Σ and
VωDisc, and a threshold θ ∈ Q≥0, whether [[A]](w) < θ for some w ∈ Σω.

66

Chapter 6

Weight assignment logic

Contents
6.1 Partial mappings . 67
6.2 Unambiguous weight assignment logic 68
6.3 Weight assignment logic 77

The goal of this chapter is to give a logical characterization for multi-
weighted Büchi automata. We develop a weight assignment logic on infinite
words; this logic allows us to assign multi-weights to positions of an ω-word.
First, we show that unambiguous sentences of our weight assignment logic, i.e.,
sentences without any existential quantifiers, are expressively equivalent to un-
ambiguous multi-weighted Büchi automata. Thereafter we show that our weight
assignment logic is equally expressive as nondeterministic multi-weighted Büchi
automata. The proofs of these results are based on our Nivat-like decomposition
results for unambiguous and nondeterministic multi-weighted Büchi automata.

6.1 Partial mappings

In this section, we present some notions about partial mappings which will be
used for the semantics of our weight assignment logic.

Let X,Y be non-empty sets. A partial mapping f : X 99K Y is a mapping
f : X ′ → Y where X ′ ⊆ X. We say that the set X ′ is the domain of f and
denote it by dom(f). We say that f is total if dom(f) = X. Let [X 99K Y]
denote the collection of all partial mappings f : X 99K Y . Let Y ↑ = [N 99K Y].
Note that Y ω (Y ↑. Let ⊥ denote the empty mapping with dom(⊥) = ∅.

We say that mappings f1, f2 : X 99K Y are compatible, written f1 ↑ f2, if
f1(x) = f2(x) for all x ∈ dom(f1) ∩ dom(f2). Clearly, the relation ↑ is reflexive
and symmetric. For f1, f2 : X 99K Y with f1 ↑ f2, the union (or merging)
f1 ∪ f2 : X 99K Y is defined as:

67

68

• dom(f1 ∪ f2) = dom(f1) ∪ dom(f2) ;
• and dom(f1 ∪ f2)(x) = fi(x) whenever x ∈ dom(fi) for i ∈ {1, 2}.

This definition is correct, since f1 and f2 are compatible. Note that the union
itself can be considered as a partial operation ∪ : [X 99K Y]2 99K [X 99K Y]
with dom(∪) = {(f1, f2) | f1 ↑ f2}.

Now let I be an index set (possibly infinite) and (fi)i∈I an I-family of partial
mappings fi : X 99K Y . We say that (fi)i∈I is compatible if fi ↑ fj for all i, j ∈ I.
In this case we define the union f :=

(⋃
i∈I fi

)
: X 99K Y as:

• dom(f) =
⋃
i∈I dom(fi);

• f(x) = fi(x) whenever i ∈ dom(fi) for some i ∈ I.

For I-families of partial mappings, we can consider the union as a par-
tial mapping

⋃
I : [X 99K Y]I 99K [X 99K Y] with dom(

⋃
I) =

{(fi)i∈I | (fi)i∈I is compatible}.
Let f : X 99K Y , x0 ∈ X and y0 ∈ Y . Then, f [x0/y0] : X 99K Y is defined

as dom(f [x0/y0]) = dom(f) ∪ {x0}, f(x0) = y0 and f [x0/y0](x) = f(x) for all
x ∈ dom(f) \ {x0}.

Example 6.1. Let Σ = {a, b} be an alphabet and f1, f2, f3 ∈ Σ↑ partial map-
pings defined as follows:

• dom(f1) = N and f1(i) = a for all i ∈ dom(f1), i.e., f1 = aω;
• dom(f2) ⊆ N is the set of all odd numbers and f2(i) = b for all
i ∈ dom(f2);

• dom(f3) ⊆ N is the set of all even numbers and f3(i) = a for all
i ∈ dom(f3).

Then, f1 ↑ f3, f3 ↑ f2 but ¬(f1 ↑ f2). This shows in particular that the relation
↑ is, in general, not transitive. Moreover, (f1 ∪ f3) = aω, (f2 ∪ f3) = (ab)ω, and
(f1 ∪ f2) is undefined.

6.2 Unambiguous weight assignment logic
In this section, we introduce our unambiguous weight assignment logic on infinite
words and we show that it is expressively equivalent to unambiguous MWBA.

We start with MSO logic on infinite words. Its syntax is defined exactly
as for MSO logic on finite words. Let Σ be an alphabet and MSO(Σ) the set
of all MSO formulas over Σ. Here, we will interpret a formula ϕ ∈ MSO(Σ)
over an ω-word w ∈ Σω. Let dom(w) = N, the domain of w. As opposed to
finite words, all ω-words have the same domain. We define w-assignments σ
and updates σ[x/i], σ[X/I] as it was done for finite words. Let ΣωV denote the
set of all pairs (w, σ) where w ∈ Σω and σ is a w-assignment.

Let (w, σ) ∈ ΣωV and ϕ ∈ MSO(Σ). The definition that (w, σ) satisfies ϕ,
denoted by (w, σ) |= ϕ, is given inductively on the structure of ϕ in the same
manner as for finite words. If ϕ is a sentence, then we simply write w |= ϕ and

69

let Lω(ϕ) = {w ∈ Σω | w |= ϕ}, the ω-language defined by ϕ. We say that an
ω-language L ⊆ Σω is MSO-definable if there exists a sentence ϕ ∈ MSO(Σ)
such that Lω(ϕ) = L.

Theorem 6.2 (Büchi [25], Elgot [50]). Let Σ be an alphabet and L ⊆ Σω an
ω-language. Then, L is recognizable iff L is MSO-definable.

Now we lift this result to the setting of unambiguous multi-weighted Büchi
automata.

Let Σ be an alphabet and V = (M, (K,+,0), valω) an ω-valuation structure.
We also consider a designated element 1 ∈M which we call the default weight.
We denote the pair (V,1) by V1.

The set uWAL(Σ,V1) of formulas of unambiguous weight assignment logic
over Σ and V1 is given by the grammar:

ϕ ::= β | x 7→ m | β ? (ϕ : ϕ) | ϕ u ϕ |
d
x.ϕ |

d
X.ϕ

where β ∈ MSO(Σ), m ∈ M , x ∈ V1 and X ∈ V2. Such a formula ϕ will be
called an unambiguous weight assignment formula. Note that here we use the
weighted If-Then-Else operator of [18]. Let Const(ϕ) ⊆ M be the set of all
elements m ∈ M occurring in ϕ. The set Free(ϕ) ⊆ V of free variables of ϕ is
defined as usual. We say that ϕ is a sentence if Free(ϕ) = ∅.

Next, we will define the semantics of unambiguous weighted assignment
formulas. Recall that M↑ = [N 99K M]. Let Undef /∈ M↑ which will
mean the undefined value (the value Undef should not be mixed up with
the empty mapping ⊥ which is defined). Using this undefined value, we can
naturally extend the partial mapping

⋃
I : (M↑)I 99K M↑ as the total map-

ping
⋃
I : (M↑ ∪ {Undef})I →M↑ ∪ {Undef} as follows. Consider a family

(fi)i∈I ∈ (M↑ ∪ {Undef})I . Then, we put

⋃
i∈Ifi =

{⋃
i∈I fi, if (fi)i∈I ∈ (M↑)I ∩ dom(

⋃
I),

Undef, otherwise.

In particular, if some fi is Undef, then the union is also Undef. For simplicity,
we will omit the overline and write

⋃
instead of

⋃
.

Now let ϕ ∈ uWAL(Σ,V1). The auxiliary semantics of ϕ is the mapping
〈〈ϕ〉〉 : ΣωV →M↑ ∪ {Undef} defined for all (w, σ) ∈ ΣωV inductively on the
structure of ϕ as shown in Table 6.1. Here, ϕ,ϕ1, ϕ2 ∈ uWAL(Σ,V1), m ∈M ,
x ∈ V1 and X ∈ V2.

The proper semantics [[ϕ]] : ΣωV → K operates on the auxiliary semantics
〈〈ϕ〉〉 as follows. Let (w, σ) ∈ ΣωV .

• If 〈〈ϕ〉〉(w, σ) ∈ M↑, then we assign the default weight 1 to all undefined
positions and evaluate the obtained sequence using valω.

• If 〈〈ϕ〉〉(w, σ) = Undef, then we put [[ϕ]](w, σ) = 0.

Note that if ϕ ∈ uWAL(Σ,S) is a sentence, then the values 〈〈ϕ〉〉(w, σ) and
[[ϕ]](w, σ) do not depend on σ and we consider the auxiliary semantics of ϕ as

70

〈〈β〉〉(w, σ) =

{
⊥, if (w, σ) |= β,

undef, otherwise

〈〈x 7→ m〉〉(w, σ) = ⊥[σ(x)/m]

〈〈β ? (ϕ1 : ϕ2)〉〉(w, σ) =

{
〈〈ϕ1〉〉(w, σ), if (w, σ) |= β,

〈〈ϕ2〉〉(w, σ), otherwise

〈〈ϕ1 u ϕ2〉〉(w, σ) = 〈〈ϕ1〉〉(w, σ) ∪ 〈〈ϕ2〉〉(w, σ)

〈〈
d
x.ϕ〉〉(w, σ) =

⋃
i∈dom(w)

〈〈ϕ〉〉(w, σ[x/i])

〈〈
d
X.ϕ〉〉(w, σ) =

⋃
I⊆dom(w)

〈〈ϕ〉〉(w, σ[X/I])

Table 6.1: The auxiliary semantics of the uWAL(Σ,V1)-formulas

the mapping 〈〈ϕ〉〉 : Σω →M↑ ∪ {Undef} and the proper semantics of ϕ as the
quantitative ω-language [[ϕ]] : Σω → K. We say that a quantitative ω-language
L : Σω → K is unambiguously definable over V if there exist a default weight
1 ∈M and a sentence ϕ ∈ uWAL(Σ,V1) such that [[ϕ]] = L.

Remark 6.3. Note that the merging u extends the classical conjunction:
as it is easy to see, for β1, β2, β ∈ MSO(Σ) and X ∈ V1 ∪ V2, we have
〈〈β1 u β2〉〉 = 〈〈β1 ∧ β2〉〉 and 〈〈

d
X .β〉〉 = 〈〈∀X .β〉〉 and hence [[β1uβ2]] = [[β1∧β2]]

and [[
d
X .β]] = [[∀X .β]]. Moreover, the undefined value Undef corresponds to

the Boolean value False and ⊥ corresponds to the Boolean value True.

Example 6.4. Let Σ = {a}, VωDisc = (M, (K,+,0), valωDisc) the ω-valuation
structure of Example 5.4 (b) and the default weight 1 = (0, 1). Let λ ∈ Q ∩ (0, 1).
Consider the uWAL(Σ,VωDisc

1)-sentence ϕ =
d
x.(x 7→ (1, λ)). Then,

〈〈ϕ〉〉(aω) = (1, λ)ω and [[ϕ]](aω) = 1 + λ+ λ2 + ... = 1
1−λ .

For β ∈ MSO(Σ) and ϕ ∈ uWAL(Σ,V1), let β ⇒ ϕ denote the formula
β ? (ϕ : True).

Example 6.5. Let Σ = {a, b}. Consider the quantitative ω-language
L : Σω → R ∪ {−∞,∞} defined for all w ∈ Σω as follows. If w = aω, then
we put L(w) = ∞. Otherwise, let L(w) be the number of the earliest po-
sition in w labelled by b. For this, we consider the ω-valuation structure
VωRatio = (M, (K,+,0), valωRatio) of Example 5.4 (a) and the default weight
1 = (0, 0). Then, L is be defined by the uWAL(Σ,V1)-sentence

ϕ = (∀x.Pa(x)) u
d
x.

d
y.[(Pmin

b (x) ∧ (y < x))⇒ ([x 7→ (1, 1)] u [y 7→ (1, 0)])])

where Pmin
b (x) = Pb(x) ∧ ∀z.((z < x) → Pa(x)). Indeed, let w = aω. Then,

〈〈ϕ〉〉(w) = Undef and hence [[ϕ]](w) = ∞. Now let w = an−1bw′ where n ≥ 1

71

and w′ ∈ Σω. Then, f := 〈〈ϕ〉〉(w) : N 99K M is the partial mapping with
dom(f) = {1, ..., n}, f(i) = (1, 0) for all i < n and f(n) = (1, 1). Then,
[[ϕ]](w) = n.

Now we state our main result about unambiguous weight assignment logic.

Theorem 6.6. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, and L : Σω → K a quantitative ω-language. Then, the following are
equivalent.

(a) L is unambiguously definable over V.
(b) L is unambiguously recognizable over V.

Using our Nivat-like result for unambiguously recognizable quantitative ω-
languages, namely Corollary 5.10, we will deduce Theorem 6.6 from Theorem
6.2. For this, it suffices to show the following.

Lemma 6.7. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, 1 a default weight, and L : Σω → K a quantitative ω-language. Then,
the following are equivalent.

(a) L = [[ϕ]] for some sentence ϕ ∈ uWAL(Σ,V1).
(b) There exist an alphabet Γ, renamings h : Γ → Σ and g : Γ → M ,

and an MSO-definable and h-unambiguous ω-language L ⊆ Γω such that
L = h((valω ◦g) ∩ L).

The proof of this lemma will be given in the rest of this section. First, we
show that (a) implies (b). Let ϕ ∈ uWAL(Σ,V1) be a sentence.

We fix a new symbol # /∈M which we will use to mark the positions where
a partial mapping f ∈ M↑ is undefined. Let ∆ϕ = Const(ϕ) ∪ {#}. If
η : N 99K Const(ϕ) is a partial mapping (clearly, η ∈M↑), we encode η as the
ω-word code(η) = (bi)i∈N ∈ ∆ω

ϕ where, for all i ∈ N, bi = η(i) if i ∈ dom(η) and
bi = # otherwise. For any ω-word w = (ai)i∈N ∈ Σω, we encode the pair (w, η)
as the ω-word code(w, η) = ((ai, bi))i∈N ∈ (Σ×∆ϕ)ω.

The following lemma will help us to construct a required MSO-definable and
h-unambiguous ω-language L ⊆ Γω.

Lemma 6.8. Let ϕ ∈ uWAL(Σ,V1). Then, there exists a formula
ζ ∈MSO(Σ×∆ϕ) such that Free(ζ) = Free(ϕ) and, for all (w, σ) ∈ ΣωV and
all partial functions η : N 99K Const(ϕ), the following holds:

〈〈ϕ〉〉(w, σ) = η iff (code(w, η), σ) |= ζ.

Note that 〈〈ϕ〉〉(w, σ) = η means in particular that 〈〈ϕ〉〉(w, σ) 6= Undef.

Proof. For each β ∈MSO(Σ), let β∗ ∈MSO(Σ×∆ϕ) be the formula obtained
from β by replacing each subformula Pa(x) of β by the formula

∨
m∈∆ϕ

P(a,m)(x).

Let Y ∈ V2 be a fresh variable which does not occur in ϕ. For each subfor-
mula ψ of ϕ, we construct the formula rY (ψ) ∈MSO(Σ ×∆ϕ) inductively on
the structure of ψ as follows.

72

• Let ψ = β ∈MSO(Σ). Then, we put rY (ψ) = β∗ ∧ (Y = ∅).
• Let ψ = (x 7→ m) with m ∈M and x ∈ V1. Then, we put

rY (ψ) =

(∨
a∈Σ

P(a,m)(x)

)
∧ (Y = {x}).

• Let ψ = β ? (ψ1 : ψ2) where β ∈MSO(Σ). Then, we put

rY (ψ) = (β∗ ∧ rY (ψ1)) ∨ ((¬β∗) ∧ rY (ψ2)).

• Let ψ = ψ1 u ψ2. Then, we put

rY (ψ) = ∃Y1.∃Y2.(rY1
(ψ1) ∧ rY2

(ψ2) ∧ (Y = Y1 ∪ Y2))

where Y1, Y2 ∈ V2 are two variables which do not occur in ψ and Y1 6= Y2,
Y1 6= Y , Y2 6= Y .
• Let ψ =

d
X .ψ′ where X ∈ V1 ∪ V2. Let

χ(Y) = ∀x.∃Y ′.(rY ′(ψ′) ∧ (Y ′ ⊆ Y))

where Y ′ ∈ V2 is a variable with Y ′ 6= Y which does not occur in ψ. Then,
we put

rY (ψ) = χ(Y) ∧ ∀Z.(χ(Z)→ (Y ⊆ Z)).

where Z ∈ V2 does not occur in ψ and Z /∈ {Y, Y ′}.

Let w ∈ Σω and η : N 99K Const(ϕ) a partial mapping. For R ⊆ N, let
η|R : N 99K Const(ϕ) be defined as dom(η|R) = R ∩ dom(η) and η|R(i) = η(i)
for all i ∈ dom(η|R). We show by induction on the structure of ψ that, for all
w-assignments σ, we have:

(code(w, η), σ) |= rY (ψ) iff σ(Y) ⊆ dom(η) and 〈〈ψ〉〉(w, σ) = η|σ(Y). (6.1)

• Let ψ = β ∈MSO(Σ).

– Assume that (code(w, η), σ) |= rY (ψ). Then, (code(w, η), σ) |= β∗

and σ(Y) = ∅ which implies (w, σ) |= β and σ(Y) = ∅. Hence,
〈〈ψ〉〉 = ⊥ = η|∅ and σ(Y) = ∅ ⊆ dom(η).

– Conversely, assume that σ(Y) ⊆ dom(η) and 〈〈β〉〉(w, σ) = η|σ(Y).
Then, (w, σ) |= β and η|σ(Y) = ⊥. Since σ(Y) ⊆ dom(η), we
obtain σ(Y) = ∅. Furthermore, (code(w, η), σ) |= β∗. Then,
(code(w, η), σ) |= rY (β).

• Let ψ = (x 7→ m) where m ∈ Const(ϕ) and x ∈ V1.

– Assume that (code(w, η), σ) |= rY (ψ). Then, σ(x) ∈ dom(η),
η(σ(x)) = m and σ(Y) = {σ(x)}. Then, 〈〈ψ〉〉(w, σ) = ⊥[σ(x)/m] =
η|σ(Y) and σ(Y) = {σ(x)} ⊆ dom(η).

73

– Conversely, assume that the right hand side of (6.1) holds true. Then,
η|σ(Y) = ⊥[σ(x)/m]. Since σ(Y) ⊆ dom(η), we have σ(Y) = {σ(x)}.
Moreover, η(σ(x)) = m. Then, the left hand side of (6.1) holds true.

• Let ψ = β ? (ψ1 : ψ2) where β ∈MSO(Σ).

– Assume that the left hand side of (6.1) holds true. Then, one of the
following situations is possible:

∗ (w, σ) |= β and (code(w, η), σ) |= rY (ψ1). Then, by induction
hypothesis, σ(Y) ⊆ dom(η) and 〈〈ψ1〉〉(w, σ) = η|σ(Y). Since
〈〈ψ〉〉(w, σ) = 〈〈ψ1〉〉(w, σ), the right hand side of (6.1) holds true.

∗ (w, σ) 2 β and (code(w, η), σ) |= rY (ψ2). This case is similar to
the previous one.

– Conversely, assume that the right hand side of (6.1) holds. Again,
we distinguish between two cases.

∗ (w, σ) |= β. Then, 〈〈ψ1〉〉(w, σ) = 〈〈ψ〉〉(w, σ) = η|σ(Y). By
induction hypothesis for ψ1, (code(w, η), σ) |= rY (ψ1). Since
(code(w, η), σ) |= β∗, the left hand side of (6.1) holds.

∗ (w, σ) 2 β. This case is similar to the previous one.

• Let ψ = ψ1 u ψ2.

– Assume that the left hand side of (6.1) holds. Then, there exist
R1, R2 ⊆ dom(w) such that:

∗ σ(Y) = R1 ∪R2,
∗ (code(w, η), σ[Y1/R1]) |= rY1(ψ1),
∗ (code(w, η), σ[Y2/R2]) |= rY2

(ψ2).

Then, by induction hypothesis for ψ1 and ψ2: R1 ⊆ dom(η),
〈〈ψ1〉〉(w, σ) = η|R1 , R2 ⊆ dom(η) and 〈〈ψ2〉〉(w, σ) = η|R2 . Hence,
σ(Y) ⊆ dom(η) and, since η|R1 and η|R2 are compatible partial map-
pings, we have: 〈〈ψ1 u ψ2〉〉(w, σ) = η|R1

∪ η|R2
= η|σ(Y). This shows

that the right hand side of (6.1) also holds true.

– Conversely, assume that the right hand side of (6.1) holds. Let
η1 = 〈〈ψ1〉〉(w, σ) and η2 = 〈〈ψ2〉〉(w, σ). Then, η|σ(Y) = η1 ∪ η2.
Moreover, there exist R1, R2 ⊆ dom(w) such that:

∗ R1 ∪R2 = σ(Y),
∗ η1 = η|R1 and η2 = η|R2 .

Since R1, R2 ⊆ σ(Y) ⊆ dom(η), by induction hypothe-
sis, (code(w, η), σ[Yi/Ri]) |= rY (ψi) for i ∈ {1, 2}. Since
Y2 does not occur in rY (ψ1) and Y1 does not occur in
rY (ψ2), we have: (code(w, η), σ[Y1/R1, Y2/R2]) |= rY (ψ1) and
(code(w, η), σ[Y1/R1, Y2/R2]) |= rY (ψ2). Then, the left hand side
of (6.1) holds.

• Let ψ =
d
x.ψ′ where x ∈ V1. Let χ = ∀x.∃Y ′.(rY ′(ψ′) ∧ (Y ′ ⊆ Z)).

74

– Assume that (code(w, η), σ) |= rY (ψ). Then, (code(w, η), σ) |= χ(Y).
This means that, for all i ∈ dom(w), there exists Ri ⊆ σ(Y) such that
(code(w, η), σ[x/i, Y ′/Ri]) |= r′Y (ψ′). Then, by induction hypothe-
sis, for all i ∈ dom(w), Ri ⊆ dom(η) and 〈〈ψ′〉〉(w, σ[x/i]) = η|Ri .
Let R =

⋃
i∈dom(w)

Ri. Then, (code(w, η), σ[Z/R]) |= χ(Z). Since

(code(w, η), σ) |= ∀Z.(χ(Z)→ (Y ⊆ Z)), we obtain: σ(Y) ⊆ R.
Hence, R = σ(Y) and

〈〈ψ〉〉(w, σ) =
⋃

i∈dom(w)

η|Ri = η|R = η|σ(Y).

Finally, σ(Y) =
⋃

i∈dom(w)

Ri ⊆ dom(η). This shows that the right

hand side of (6.1) holds true.
– Conversely, assume that the right hand side of (6.1) holds. Then,

there exists a family (Ri)i∈dom(w) with Ri ⊆ σ(Y) ⊆ dom(η) for each
i ∈ dom(w), such that

⋃
i∈dom(w)Ri = σ(Y) and, for all i ∈ dom(w),

〈〈ψ′〉〉(w, σ[x/i]) = η|Ri . Then, using the induction hypothesis, it is
easy to see that, for all i ∈ dom(w), (code(w, η), σ[x/i, Y ′/Ri]) |=
rY ′(ψ

′). Hence, (code(w, η), σ) |= χ(Y). It remains to show that

(code(w, η), σ) |= ∀Z.(χ(Z)→ (Y ⊆ Z)).

Indeed, let Q ⊆ dom(w) with (code(w, η), σ[Z/Q]) |= χ(Z).
Then, for all i ∈ dom(w), there exists a subset Qi ⊆ Q with
(code(w, η), σ[x/i, Y ′/Qi]) |= rY ′(ψ

′). Then, by induction hypoth-
esis, for all i ∈ dom(w), Qi ⊆ dom(η) and

η|Qi = 〈〈ψ′〉〉(w, σ[x/i]) = η|Ri .

Hence, Qi = Ri for all i ∈ dom(w), and

σ(Y) =
⋃

i∈dom(w)

Ri =
⋃

i∈dom(w)

Qi ⊆ Q.

– The proof for ψ =
d
X.ψ′ with X ∈ V2 is completely analogous to

the proof of the previous case. The difference is that we consider "for
all I ⊆ dom(w)" instead of "for all i ∈ dom(w)".

Finally, we construct the desired formula ζ as

ζ = ∃Y.
(
rY (ϕ) ∧ ∀x.

(
(¬Y (x))→

∨
a∈Σ

P(a,#)(x)
))

.

Assume that 〈〈ϕ〉〉(w, σ) = η. Let R = dom(η) and consider σ′ = σ[Y/R].
Then, σ′(Y) ⊆ dom(η) and 〈〈ϕ〉〉(w, σ) = η|σ(Y). Then, by (6.1), we have:
(code(w, η), σ′) |= rY (ϕ). Moreover, for all i ∈ dom(w) \ σ′(Y), η(i) is unde-
fined and hence (code(w, η), σ′) |= ∀x.(¬Y (x)→

∨
a∈Σ P(a,#)(x)) which implies

(code(w, η), σ) |= ζ.

75

Conversely, let (code(w, η), σ) |= ζ. Then, there exists R ⊆ dom(w) such
that (code(w, η), σ[Y/R]) |= rY (ϕ) and, for all i /∈ R, η(i) is undefined. By
(6.1), we have: R ⊆ dom(η) and 〈〈ϕ〉〉(w, σ) = η|R. Since η(i) is undefined for
all i ∈ dom(w) \R, we have η|R = η and hence the claim follows. This finishes
the proof of this lemma.

The next lemma finishes the proof of the part (a) ⇒ (b) of Lemma 6.7.
Recall that ϕ ∈ uWAL(Σ,V1) is a sentence.

Lemma 6.9. There exist an alphabet Γ, renamings h : Γ→ Σ and g : Γ→M ,
and an MSO-definable and h-unambiguous ω-language L ⊆ Γω such that
[[ϕ]] = h((valω ◦g) ∩ L).

Proof. Let Γ = Σ×∆ϕ. Let h : Γ→ Σ be defined for all a ∈ Σ and b ∈ ∆ϕ by
h(a, b) = a. Let g : Γ→M be defined for all a ∈ Σ and b ∈ ∆ϕ by

g(a, b) =

{
b, if b ∈ Const(ϕ),

1, if b = #.

By Lemma 6.8, there exists a sentence ζ ∈ MSO(Γ) such that
Lω(ζ) = {code(w, η) | w ∈ dom(〈〈ϕ〉〉) and η = 〈〈ϕ〉〉(w)}. Note that, for each
w ∈ Σω, there exists at most one u ∈ Lω(ζ) with h(u) = w. Then, Lω(ζ)
is h-unambiguous. Let L = Lω(ζ). Then, [[ϕ]] = h((valω ◦g) ∩ L). Indeed, let
w ∈ Σω. Then, we distinguish between the following two cases:

• 〈〈ϕ〉〉(w) = Undef. Then, [[ϕ]](w) = 0. On the other side, by definition of
L, there exists no u ∈ L with h(u) = w. Then, h((valω ◦g) ∩ L)(w) = 0
and hence [[ϕ]](w) = h((valω ◦g) ∩ L)(w).

• 〈〈ϕ〉〉(w) ∈ M↑. Then, since the mapping g assigns the default weight 1
to the undefined positions of 〈〈ϕ〉〉(w) ∈ M↑ and L is h-unambiguous, we
have [[ϕ]](w) = h((valω ◦g) ∩ L)(w).

Now we turn to the implication (b) ⇒ (a) of Lemma 6.7; this result is used
for the proof of the implication (b)⇒ (a) of Theorem 6.6. Clearly, we can alter-
natively give a direct translation of an unambiguous MWBA into an uWAL-
sentence. But our approach based on Nivat Theorem could be interesting since
here we do not have to describe explicitly the behavior of the underlying Büchi
automaton; it suffices to show that we can describe renamings and intersections.

Lemma 6.10. Let Γ be an alphabet, h : Γ → Σ and g : Γ → M renamings,
and L ⊆ Γω an h-unambiguous and MSO(Γ)-definable ω-language. Then, there
exist 1 ∈M and a sentence ϕ ∈WAL(Σ,V1) such that [[ϕ]] = h((valω ◦g) ∩ L).

Proof. Let β ∈ MSO(Γ) be a sentence with Lω(β) = L and
V = {Xγ | γ ∈ Γ} ⊆ V2 a set of pairwise distinct variables not occurring in β.
We will use them to describe the renaming h: each variable Xγ corresponds

76

to the set of positions which were labelled by γ before the renaming). In or-
der to transform β into an MSO(Σ)-formula and not to lose the information
about the labels of positions before the renaming, we introduce for each formula
ζ ∈MSO(Γ), the renaming h(ζ) ∈MSO(Σ) obtained from ζ by replacing ev-
ery predicate Pγ(x) occurring in γ (with γ ∈ Γ and x ∈ V1) by the formula
Ph(γ)(x) ∧Xγ(x).

For an ω-word u = (γi)i∈N, let σu : V → 2dom(u) be defined for all γ ∈ Γ
as σu(Xγ) = {i ∈ dom(u) | γi = γ}. It can be easily shown by induction on
the structure of β that, for all ω-words u ∈ Γω and all u-assignments σ with
σ|V = σu, we have:

(u, σ) |= β iff (h(u), σ) |= h(β). (6.2)

Then, in order to describe the renamings, we additionaly define the following
MSO(Σ)-formulas.

• Let
Partition = ∀x.

(∨
γ∈Γ

Xγ(x) ∧
∧
γ′∈Γ,
γ′ 6=γ

¬Xγ′(x)

)
. (6.3)

Note that this formula demands that the values of V-variables form a
partition of the domain of an ω-word (because every position of a word
must be labelled exactly by one letter).

• Let
Renaming = ∀x.

(∨
γ∈Γ

(Xγ(x) ∧ Ph(γ)(x))

)
. (6.4)

Note that the formula Renaming demands that whenever a position was
labelled by γ before the renaming, then it must be labelled by h(γ) after
the renaming.

Let Boolean = Partition ∧ Renaming ∧ h(β). Note that Boolean ∈
MSO(Σ) and Free(Boolean) = V.

Let x ∈ V1 be a fresh variable and 1 ∈ M be defined arbitrarily. Let
(γi)1≤i≤|Γ| be an enumeration of Γ. Now, we will assign weights to the
positions of an ω-word using g : Γ → M . For this, we apply the for-
mula χ = uWAL(Σ,V1) defined as follows. We let χ =

d
x.χ1 where, for

i ∈ {1, ...,Γ}, χi ∈ uWAL(Σ,V1) is defined inductively as follows.

• For i = |Γ|, we let χ|Γ| = (x 7→ g(γ|Γ|)).
• Let i ∈ {1, ..., |Γ|} and assume that χi+1 is defined. Then, we let
χi = Xγi(x) ? ((x 7→ g(γi)) : χi+1).

Then, we define the desired sentence ϕ ∈ uWAL(Σ,V1) as

(∃Xγ1 ∃Xγ|Γ| .Boolean) u
d
Xγ1

d
Xγ|Γ| .(Boolean ? (χ : True)).

We show that [[ϕ]] = h((valω ◦g) ∩ L). Let w ∈ Σω. We distinguish between
the following two cases.

77

• There exists no u ∈ L such that h(u) = w. Then, by (6.2), we have
w 2 ∃Xγ1 ∃Xγ|Γ| .Boolean and hence 〈〈ϕ〉〉(w) = Undef. Hence,
[[ϕ]](w) = 0 = h((valω ◦g) ∩ L)(w).

• There exists u ∈ L such that h(u) = w. Since L is h-unambiguous, there
exists exactly one such u. Note that, by (6.2), for each w-assignment σ,
(w, σ) |= Boolean iff σ|V = σu. Then, w |= ∃Xγ1

. ... ∃Xγ|Γ| .Boolean
and

[[ϕ]](w) = valω(g(u)) = h((valω ◦g) ∩ L).

Proof of Lemma 6.7. The implication (a) ⇒ (b) is shown in Lemma 6.9. The
implication (b) ⇒ (a) is shown in Lemma 6.10.

Proof of Theorem 6.6. Immediate by Lemma 6.7, Corollary 5.10 and Theorem
6.2.

6.3 Weight assignment logic
In this section, we establish a Büchi-Elgot theorem for nondeterministic multi-
weighted Büchi automata, i.e., we introduce a weight assignment logic which is
expressively equivalent to them.

Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation structure, and
1 ∈M a default weight. The set WAL(Σ,V1) of formulas of weight assignment
logic (WAL) over Σ and V1 is defined by the grammar

ϕ ::= ψ | tx.ϕ | tX.ϕ

where ψ ∈ uWAL(Σ,V1), x ∈ V1 and X ∈ V2. Here, tx and tX are quantita-
tive versions of the existential quantifier. For ϕ ∈WAL(Σ,V1), the semantics
[[ϕ]] : ΣωV → K is defined as follows.

• Let ϕ = ψ ∈ uWAL(Σ,V1). Then, [[ψ]] is defined as for unambiguous
weight assignment formulas in the previous chapter.

• Let ϕ = tx.ϕ with x ∈ V1. Then, for all (w, σ) ∈ ΣωV , we let

[[tx.ϕ]](w, σ) =
∑

i∈dom(w)

[[ϕ]](w, σ[x/i]).

• Let ϕ = tX.ϕ with X ∈ V2. Then, for all (w, σ) ∈ ΣωV , we let

[[tX.ϕ]](w, σ) =
∑

I⊆dom(w)

[[ϕ]](w, σ[X/I]).

Given a formula ϕ ∈WAL(Σ,V1), the set Free(ϕ) ⊆ V of free variables of ϕ is
defined as usual. We say that ϕ is a sentence if Free(ϕ) = ∅. If ϕ is a sentence,
then we can eliminate the w-assignments from the domain of [[ϕ]] and consider

78

[[ϕ]] as a quantitative ω-language [[ϕ]] : Σω → K. We say that a quantitative
ω-language L : Σω → K is WAL-definable over V if there exist 1 ∈ M and a
sentence ϕ ∈WAL(Σ,V1) such that [[ϕ]] = L.

Let V = {x1, ..., xk, X1, ..., Xl} ⊆ V be a set of pairwise distinct vari-
ables and ψ ∈ uWAL(Σ,V1). We denote by tV.ψ the WAL(Σ,V1)-formula
tx1. ... txk.tX1. ... tXl.ψ.

Remark 6.11. Let V ⊆ V be a finite set of variables, ψ ∈ uWAL(Σ,V1) and
ϕ = tV.ψ. Let x ∈ V1 \ V be a variable not appearing in ψ. Then:

[[ϕ]] = [[t(V ∪ {x}).(ψ umin(x))]]

where min(x) is an abbreviation for ∀y.(x ≤ y).
Now let X ∈ V2 \ V be a variable not appearing in ψ. Then:

[[ϕ]] = [[t(V ∪ {X}).(ψ uX = ∅)]]

where X = ∅ is an abbreviation for ∀y.¬X(y).
This shows we can transform arbitrary formulas ϕ1 = tV1.ψ1 and ϕ2 =

tV2.ψ2 with ψ1, ψ2 ∈ uWAL(Σ,V1) to the form with V1 = V2.

Remark 6.12. We consider several additional natural logical operators can be
defined using WAL-formulas.

(a) Consider a weighted If-Then-Else formula β ? (ϕ1 : ϕ2) (cf. [18]) where
β ∈MSO(Σ) and ϕ1, ϕ2 ∈WAL(Σ,V1), whose semantics is defined for
all (w, σ) ∈ ΣωV as

[[β ? (ϕ1 : ϕ2)]](w, σ) =

{
[[ϕ1]](w, σ), if (w, σ) |= β,

[[ϕ2]](w, σ), otherwise.

Note that, in general, the formula β ? (ϕ1 : ϕ2) is not in WAL(Σ,V1).
By Remark 6.11, we may assume that ϕ1 = tV.ψ1 and ϕ2 = tV.ψ2

where V ⊆ V is a finite set of variables and ψ1, ψ2 ∈ uWAL(Σ,V1).
We may also assume that the V-variables do not appear in β. Then,
the formula β ? (ϕ1 : ϕ2) can be simulated by the WAL(Σ,V1)-formula
tV.(β ? (ψ1 : ψ2)). Note that (β ? ψ1 : ψ2) ∈ uWAL(Σ,V1). For the
sake of readability, we will sometimes denote the formula β ? (ϕ1 : ϕ2) by

β ?

{
ϕ1

ϕ2.

(b) For ϕ1, ϕ2 ∈ WAL(Σ,V1), consider the new formula ϕ1 t ϕ2 whose se-
mantics is defined for all (w, σ) ∈ ΣωV as

[[ϕ1 t ϕ2]](w, σ) = [[ϕ1]](w, σ) + [[ϕ2]](w, σ).

Note that the formula ϕ1tϕ2 can be simulated by theWAL(Σ,V1)-formula

tX.(X = ∅)?

ϕ1

(X = N)?

{
ϕ2

False

79

where:

– X ∈ V2 is a fresh variable;
– X = ∅ is an abbreviation for ¬∃x.X(x);
– X = N is an abbreviation for ∀x.X(x);
– False is an abbreviaton for ∃x.(¬(x ≤ x)).

Example 6.13. Assume that a bus can operate two routes A and B which start
and end at the same place. For R ∈ {A,B}, the route R lasts tR ∈ Q>0 time
units and profits pR ∈ Q>0 money units on the average per trip. We may be
interested in making an infinite schedule for this bus which is represented as an
infinite sequence from {A,B}ω. This schedule must be fair in the sense that both
routes A and B must occur infinitely often in this timetable (even if the route
A or B is unprofitable). The optimality of the schedule is also preferred (we
wish to profit per time unit as much as possible). We consider the ω-valuation
structure VωRatio of Example 5.4 (a) together with a default weight 1 and a
singleton alphabet Σ = {τ}; 1 and Σ are irrelevant here. Now we construct a
sentence ϕ ∈mwMSOω(Σ, (VωRatio)1) to define the optimal income of the bus
per time unit (supremum ratio between rewards and time):

ϕ = tX.
((
∞
∃x.X(x) ∧

∞
∃x.¬(X(x))

)
u

d
x.(X(x) ? (x 7→ rA : x 7→ rB))

)
where

∞
∃x.ψ is an abbreviation of the MSO(Σ)-formula ∀y.∃x.((y ≤ x) ∧ ψ),

rA = (pA, tA) and rB = (pB , tB). Here, the second order variable X corresponds
to the set of positions in an infinite schedule which can be assigned to the route
A. Then,

[[ϕ]](τω) = sup

{
lim sup
n→∞

pA · |I ∩ n|+ pB · |Ic ∩ n|
tA · |I ∩ n|+ tB · |Ic ∩ n|

∣∣∣∣ I ⊆ N with I, Ic infinite
}

where n = {1, ..., n} and Ic = N \ I.

Our Büchi-Elgot result for MWBA is the following theorem.

Theorem 6.14. Let Σ be an alphabet, V = (M, (K,+,0), valω) an ω-valuation
structure, 1 ∈ M a default weight, and L : Σω → K a quantitative ω-language.
Then, the following are equivalent.

(a) L is recognizable over V.
(b) L is WAL-definable over V.

We will use Theorem 5.6 to deduce Theorem 6.14 from Theorem 6.2. For
this, it suffices to show the following.

Lemma 6.15. Let L : Σω → K be a quantitative language. Then, the following
are equivalent.

(a) L = [[ϕ]] for some sentence ϕ ∈WAL(Σ,V1).

80

(b) There exist an alphabet Γ, renamings h : Γ → Σ, g : Γ → M , and an
MSO-definable ω-language L ⊆ Γω such that L = h((valω ◦g) ∩ L).

First, we show that (a) implies (b).

Lemma 6.16. Let ϕ ∈ WAL(Σ,V1) be a sentence. Then, there exists an
alphabet Γ, renamings h : Γ → Σ and g : Γ → M , and an MSO(Γ)-definable
ω-language L ⊆ Γω such that [[ϕ]] = h((valω ◦g) ∩ L).

Before we turn to the proof of Lemma 6.16, we give an example with illus-
trates the idea of the proof of this lemma.

Example 6.17. Let Σ = {a} be a singleton alphabet and m,m′ ∈ M with
m 6= m′. Consider the WAL(Σ,V1)-sentence

ϕ = tx. u y.(y ≤ x) ?

{
y 7→ m

y 7→ m′.

The semantics of ϕ will be decomposed in the following way. First, we define the
extended alphabet Γ which reflects labels, weights and the nondeterminism of the
"existential" prefix. Let Γ = Σ × {m,m′,#} × {0, 1}. We need the additional
component {0, 1} since it can happen that we obtain the same assignment of
weights for distinct values of the variable x. Let h : Γ → Σ be the projection
to the Σ-component and let g : Γ → M be defined for all γ = (a, b, c) ∈ Γ with
a ∈ Σ, b ∈ {m,m′,#} and c ∈ {0, 1} by

g(γ) =

{
b, if b ∈ {m,m′},
1, otherwise.

In other words, the renaming h takes care of the labels and the renaming g takes
care of the weights; note that g assigns the default weight 1 to all unassigned
positions labelled by the special symbol #. Finally, we construct the following
MSO(Γ)-formula which reflects the qualitative properties of the weight assign-
ments:

∃x.(∀y.([y ≤ x ∧ P(∗,m,∗)(y)] ∨ [y > x ∧ P(∗,m′,∗)(y)]) ∧ φ(x))

where
φ(x) = ∀y.([y = x ∧ P(∗,∗,1)(y)] ∨ [y 6= x ∧ P(∗,∗,0)(y)]).

and ∗ means that a given component can take all value from its domain. Note
that φ(x) follows the idea of the standard Büchi encoding of variables: the value
of the additional {0, 1}-component at the position x is 1, for all other positions
this value is 0.

Proof. Our proof will be based on Lemma 6.8. We may assume that
ϕ = tx1. ... txk.tX1. ... tXl.ψ where k, l ≥ 0, x1, ..., xk ∈ V1 and
X1, ..., Xl ∈ V2 are pairwise distinct variables, and ψ ∈ uWAL(Σ,V1). Let
V = {x1, ..., xk, X1, ..., Xl}. As in Lemma 6.8, let ∆ϕ = Const(ϕ) ∪ {#} where
/∈M . We define the alphabet Γ, the renamings h, g as follows.

81

• Let Γ = Σ×∆ϕ × {0, 1}|V|; we use the {0, 1}|V|-component for the Büchi
encoding of the values of V-variables. Moreover, the ∆ϕ-component of Γ
will be used to encode weights of assigned positions (using the elements
in Const(ϕ)) and unassigned positions (using #).

• Let g̃ : ∆ϕ → M be defined by g̃(b) = b for all b ∈ Const(ϕ) and
g̃(#) = 1. For all γ = (a, b, c) ∈ Γ with a ∈ Σ, b ∈ ∆ϕ and c ∈ {0, 1}|V|,
we let h(γ) = a and g(γ) = g̃(b).

It remains to define L ⊆ Γω such that [[ϕ]] = h((valω ◦g) ∩ L).
By Lemma 6.8, there exists a formula ζ ∈MSO(Σ×∆ϕ) such that

Free(ζ) = V and, for all (w, σ) ∈ ΣωV and all partial mappings
η : N 99K Const(ϕ):

〈〈ψ〉〉(w, σ) = η iff (code(w, η), σ) |= ζ. (6.5)

Note that formula ζ over the alphabet Σ×∆ϕ encodes the auxiliary semantics
〈〈ψ〉〉. We have to adopt this formula to the extended alphabet Σ×∆ϕ×{0, 1}|V|
and to connect the {0, 1}|V|-component with V-variables via the Büchi-encoding.

Let ζ∗ ∈MSO(Γ) be the formula obtained from ζ by replacing each predi-
cate P(a,b)(x) occurring in ζ (here, a ∈ Σ, b ∈ ∆ϕ and x ∈ V1) by the formula∨

(P(a,b,c)(x) | c ∈ {0, 1}|V|). Here we demand that the {0, 1}|V|-component is
arbitrary.

For all 1 ≤ i ≤ |V|, d ∈ {0, 1} and x ∈ V1, let

R∗i,d(x) =
∨(

P(a,b,c)(x) | a ∈ Σ, b ∈ ∆ϕ and c = (c1, ..., c|V|) with ci = d
)
.

This formula demands that the i-th bit of a vector in {0, 1}|V| is d.
Let y ∈ V1 be a fresh variable. Let φ ∈ MSO(Γ) be defined as

φ = ∀y.(φ1 ∧ φ2) where

φ1 =

k∧
i=1

[(R∗i,1(y) ∧ (y = xi)) ∨ (R∗i,0(y) ∧ (y 6= xi))],

φ2 =

l∧
j=1

[(R∗k+j,1(y) ∧Xj(y)) ∨ (R∗k+j,0(y) ∧ (¬Xj(y)))].

The formula φ encodes the values of V-variables in the {0, 1}|V|-component of
an input word: the first-order variables x1, ..., xk correspond to the first k bits
of the {0, 1}|V|-component and the second-order variables X1, ..., Xl correspond
to the last l bits.

Let the sentence β ∈ MSO(Γ) be defined as β = ∃V.(φ ∧ ζ∗). Then, the
desired language L is defined as L = L(β). For w = (ai)i∈N ∈ Σω and
u = (bi)i∈N ∈ ∆ω

ϕ, we will abuse the notation and write (w, u) for ((ai, bi))i∈N.
If w ∈ Σω, let Vw be the set of all mappings J : V → dom(w) ∪ 2dom(w) such

that J (V ∩V1) ⊆ dom(w) and J (V ∩ V2) ⊆ 2dom(w). For a w-assignment σ and
J ∈ Vw, let σ′ := σ[V/J] denote the w-assignment such that σ′|V = J and
σ′|V \V = σ|V \V .

82

Finally, we show that [[ϕ]] = h((valω ◦g) ∩ L). Let w ∈ Σω and σ a fixed
w-assignment. Then,

h((valω ◦g) ∩ L)(w) =
∑(

valω(g̃(u)) | J ∈ Vw and ((w, u), σ[V/J]) |= ζ
)

(!)
=
∑(

valω(η) | J ∈ Vw and η = 〈〈ψ〉〉(w, σ[V/J]) is defined
)

=
∑
J∈Vw

[[ψ]](w, σ[V/J])

= [[ϕ]](w).

Here, at the place (!), we apply (6.5).

Now we show the implication (b) ⇒ (a) of Lemma 6.15.

Lemma 6.18. Let Γ be an alphabet, h : Γ → Σ and g : Γ → M renamings,
and L ⊆ Γω an MSO(Γ)-definable ω-language. Then, there exist 1 ∈ M and a
sentence ϕ ∈WAL(Σ,V1) such that [[ϕ]] = h((valω ◦g) ∩ L).

Proof. Here, we use a similar construction as in the proof of Lemma 6.10. Let
β ∈ MSO(Γ) be a sentence with Lω(β) = L. Let V ⊆ V2, (γi)i∈{1,...,|Γ| an
enumeration of Γ, Boolean ∈MSO(Σ) and χ ∈ uWAL(Σ,V1) be defined as
in the proof of Lemma 6.10. Let ψ = (Boolean ? (χ : True)) ∈ uWAL(Σ,V1).
Then, we define the sentence ϕ ∈WAL(Σ,V1) as

ϕ = tXγ1 tXγ|Γ| .ψ.

Note that Free(ϕ) = V and, for all (w, σ) ∈ ΣωV , 〈〈ψ〉〉(w, σ) ∈Mω.
Let w ∈ Σω and σ a fixed w-assignment. We define the set Vw and the

w-assignment σ[V/J] for J ∈ Vw as in the previous lemma. Then,

[[ϕ]](w) =
∑
J∈Vw,

(w,σ[V/J])∈dom(〈〈ψ〉〉)

valω(〈〈ψ〉〉(w, σ[V/J])) =
∑

u∈Γω,h(u)=w,
(w,σ′)|=h(β)

valω(g(u))

(!)
=

∑
u∈L,
h(u)=w

valω(g(u)) = h((valω ◦g) ∩ L)(w).

Here, σ′ is a w-assignment with σ′|V = σu and, at the place (!), we apply
(6.2).

Proof of Lemma 6.15. Immediate by Lemmas 6.16 and 6.18.

Proof of Theorem 6.14. Immediate by Theorems 5.6, 6.2 and Lemma 6.15.

Note that the proof of Theorem 6.14 is constructive. Then, we obtain the
following corollary.

83

Corollary 6.19. Let VωDisc be the ω-valuation structure of Example
5.4 (c). Then, it is decidable, given an alphabet Σ, a default weight
1 ∈ Q≥0 × ((0, 1] ∩ Q), a sentence ϕ ∈ WAL(Σ, (V ωDisc)1), and a threshold
θ ∈ Q≥0, whether [[ϕ]](w) < θ for some w ∈ Σω.

Proof. Immediate from Theorem 6.14 and Corollary 5.24.

84

Chapter 7

Multi-weighted timed
automata

Contents
7.1 Timed automata . 85
7.2 A general framework and examples of multi-

weighted timed automata 89
7.3 Closure properties 93
7.4 A Nivat theorem for multi-weighted timed automata 98
7.5 Renamings of recognizable quantitative timed lan-

guages . 101

In this chapter, we develop a general framework for multi-weighted timed au-
tomata on finite timed words. Following the ideas of [38] and our ideas presented
in Chapter 5, we give a Nivat-like characterization of quantitative languages rec-
ognizable by multi-weighted timed automata. Finally, using our Nivat theorem
for multi-weighted timed automata, we study the connection via renamings be-
tween determinism and nondeterminism in the multi-weighted timed setting.

7.1 Timed automata
Let Σ be an alphabet. A (finite) timed word over Σ is a finite word over
Σ× R≥0, i.e., a finite sequence (a1, t1)...(an, tn) with n ≥ 0, a1, ..., an ∈ Σ
and t1, ..., tn ∈ R≥0. Let |w| = n, the length of w, and 〈w〉 = t1 + ... + tn, the
time length of w. If |w| = 0, then we say that the timed word w is empty and
denote it by ε. For all i, j with 0 ≤ i < j ≤ n, let 〈w〉i,j = ti+1 + ...+ tj .

Let TΣ∗ = (Σ × R≥0)∗, the set of all finite timed words, and
TΣ+ = TΣ∗ \ {ε}. Any set L ⊆ TΣ+ of timed words is called a timed lan-
guage. Like in the untimed case, we eliminate the empty word ε when con-
sidering timed languages. For timed words w = (a1, t1)...(an, tn) ∈ TΣ∗ and

85

86

w′ = (a′1, t
′
1)...(a′n, t

′
n) ∈ TΣ∗, the concatenation (w · w′) ∈ TΣ∗ is defined as

(a1, t1)...(an, tn)(a′1, t
′
1)...(a′n, t

′
n).

Remark 7.1. In the literature, a timed word is represented sometimes as a
sequence (a1, τ1)...(an, τn) where 0 ≤ τ1 ≤ τ2 ≤ ... ≤ τn where τi measures the
time between the beginning and the i-th position. In contrast, here we represent
a timed word as a sequence (a1, t1)...(an, tn) where (t1, ..., tn) is an arbitrary
finite sequence in R≥0. Here, ti measures the time between the positions i − 1
and i.

Let I denote the collection of all intervals of the form [a, b], [a, b), (a, b],
(a, b), [a,∞) or (a,∞) where a, b ∈ N. Note that ∅ ∈ I. Let C be a finite set
of clock variables ranging over R≥0. A clock constraint over C is a mapping
φ : C → I. If C = ∅ or φ(x) = [0,∞) for all x ∈ C, then we will denote such
a mapping φ by True. We denote by Φ(C) the set of all clock constaints over
C. A clock valuation is a mapping ν : C → R≥0 which assigns a value to each
clock variable. Let RC≥0 be the set of all clock valuations over C. We say that a
clock valuation ν ∈ RC≥0 satisfies a clock constraint φ ∈ Φ(C), written ν |= φ, if
ν(x) ∈ φ(x) for all x ∈ C.

Now let ν ∈ RC≥0, t ∈ R≥0 and Λ ⊆ C. Let ν + t denote the clock valuation
ν′ ∈ RC≥0 such that ν′(x) = ν(x) + t for all x ∈ C. Let ν[Λ := 0] denote the
clock valuation ν′ ∈ RC≥0 such that ν′(x) = 0 for all x ∈ Λ and ν′(x) = ν(x) for
all x /∈ Λ.

Definition 7.2. Let Σ be an alphabet. A timed automaton over Σ is a tu-
ple A = (L,C, I, E, F) such that L is a finite set of locations , C is a fi-
nite set of clocks, I, F ⊆ L are sets of initial resp. final locations and
E ⊆ L× Σ× Φ(C)× 2C × L is a finite set of edges.

For an edge e = (`, a, φ,Λ, `′), let label(e) = a, the label of e. A run of A is
a finite sequence

ρ = (`0, ν0)
t1−→ e1−→ (`1, ν1)

t2−→ e2−→ ...
tn−→ en−→ (`n, νn) (7.1)

where n ≥ 1, `0, `1, ..., `n ∈ L, ν0, ν1, ..., νn ∈ RC≥0, t1, ..., tn ∈ R≥0 and
e1, ..., en ∈ E satisfy the following conditions:

• `0 ∈ I, ν0(x) = 0 for all x ∈ C, `n ∈ F ;
• for all 1 ≤ i ≤ n: ei = (`i−1, ai, φi,Λi, `i) for some ai ∈ Σ, φi ∈ Φ(C) and

Λi ⊆ C such that νi−1 + ti |= φi and νi = (νi−1 + ti)[Λi := 0].

The label of ρ is the timed word label(ρ) = (label(e1), t1)...(label(en), tn) ∈ TΣ+.
Let RunA denote the set of all runs of A. For any timed word w ∈ TΣ+, let
RunA(w) denote the set of all runs ρ of A such that label(ρ) = w. Let L(A) =
{w ∈ TΣ+ | RunA(w) 6= ∅}. We say that an arbitrary timed language L ⊆ TΣ+

is recognizable if there exists a timed automaton over Σ such that L(A) = L.
Let tRec(Σ) denote the collection of all recognizable timed languages.

87

1 2 3
a, x := 0 a, x ≥ 3

a ab

Figure 7.1: Timed automaton A of Example 7.3

Example 7.3. Let Σ = {a, b} and L ⊆ TΣ+ be the timed language consisting
of all timed words w = xyz where x, z ∈ T{a}+ and y ∈ T{b}∗ such that either
y = ε or 〈y〉 ≥ 3. We show that this timed language is recognizable. For this, we
construct the timed automaton A = (L,C, I, E, F) over Σ where L = {1, 2, 3},
C = {c}, I = {1}, F = {3} and

E = {(1, a,True, ∅, 1), (1, a,True, {x}, 2), (2, b,True, ∅, 2),

(2, a, φ≥3, ∅, 3), (3, a,True, ∅, 3)}

where φ≥3 ∈ Φ(C) with φ≥3(c) = [3,∞). Then, L(A) = L. The timed automa-
ton A is depicted in Figure 7.1. Here, we omit all irrelevant information (i.e.,
when a set of clocks to be reset is empty or a clock constraint is True).

Let A = (L,C, I, E, F) be a timed automaton over Σ. We call A:

• unambiguous if |RunA(w)| ≤ 1 for all w ∈ TΣ+;
• deterministic if |I| = 1 and, for all e1 = (`, a, φ1,Λ1, `1) ∈ E and
e2 = (`, a, φ2,Λ2, `2) ∈ E with e1 6= e2, there exists no clock valuation
ν ∈ RC≥0 with ν |= φ1 and ν |= φ2;

• sequential if |I| = 1 and, for all e1 = (`, a, φ1,Λ1, `1) ∈ E and
e2 = (`, a, φ2,Λ2, `2) ∈ E, we have e1 = e2 (this property can be viewed
as a strong form of determinism).

Let L ⊆ TΣ+ be a timed language. We say that L is unambiguously (de-
terministically, sequentially, respectively) recognizable if there exists an unam-
biguous (deterministic, sequential, respectively) timed automaton A over Σ such
that L(A) = L.

Let tRecUnamb(Σ) denote the collection of all unambiguously recognizable
timed languages over Σ, tRecDet(Σ) the collection of deterministically recog-
nizable timed languages, and tRecSeq(Σ) the collection of sequentially recog-
nizable timed languages. Clearly,

tRecSeq(Σ) ⊆ tRecDet(Σ) ⊆ tRecUnamb(Σ) ⊆ tRec(Σ).

Lemma 7.4 ([84]). There exists an alphabet Σ such that

tRecDet(Σ) (tRecUnamb(Σ) (tRec(Σ).

We complete the chain of strict inclusions of Lemma 7.4 by the following
strict inclusion.

88

1

2

3

4

5

b

a

a, x < 1

a, x ≥ 1

Figure 7.2: Timed automaton AL from the proof of Lemma 7.5

Lemma 7.5. There exists an alphabet Σ such that

tRecSeq(Σ) (tRecDet(Σ).

Proof. Let Σ = {a, b}. Consider the timed language L ⊆ TΣ+ defined as

L = {(a, t)(b, t′) | t < 1 and t′ ∈ R≥0} ∪ {(a, t)(a, t′) | t ≥ 1 and t′ ∈ R≥0}.

We show that L ∈ tRecDet(Σ) \ tRecSeq(Σ).
First, we show that L ∈ tRecDet(Σ). Consider the timed automaton AL

over Σ with the only clock x depicted in Figure 7.2. Clearly, AL is deterministic
and L(AL) = L. Then, L ∈ tRecDet(Σ).

Next, we show that L /∈ tRecSeq(Σ). Assume that there exists a sequential
timed automaton A = (L,C, {`0}, E, F) over Σ such that L(A) = L. Consider
w = (a, 0.9)(b, 0.2) ∈ L(A). Then, there exist e = (`0, a, φ,Λ, `1) ∈ E and
e′ = (`1, b, φ

′,Λ′, `2) ∈ E such that

ρ = (`0, ν0)
0.9−−→ e−→ (`1, ν1)

0.2−−→ e′−→ (`2, ν2)

is a run in RunA(w). Here, ν0(x) = 0 for all x ∈ C, ν1 = (ν0 + 0.9)[Λ := 0]
and ν2 = (ν1 + 0.2)[Λ′ := 0]. Moreover, (ν0 + 0.9) |= φ and (ν1 + 0.2) |= φ′ and
`2 ∈ F .

Consider now the timed word u = (a, 1)(a, 0.1) ∈ L(A). Since A is sequen-
tial, there exists e′′ = (`1, a, φ

′′,Λ′′, `3) such that

% = (`0, ν0)
1−→ e−→ (`1, ν

′
1)

0.1−−→ e′′−→ (`3, ν
′
2)

is a run in RunA(u). Here, ν′1 = (ν0 + 1)[Λ := 0] and ν′2 = (ν′1 + 0.1)[Λ′′ := 0].
Moreover, (ν0 + 1) |= φ and (ν′1 + 0.1) |= φ′′ and `3 ∈ F . Then, for all x ∈ Λ, we
have: (ν1 + 0.2)(x) = 0.2 ∈ φ′(x) and (ν′1 + 0.1)(x) = 0.1 ∈ φ′′(x) and, for all
x ∈ C \Λ, we have: (ν1 + 0.2)(x) = 1.1 ∈ φ′(x) and (ν′1 + 0.1)(x) = 1.1 ∈ φ′′(x).
Note that 0.1 ∈ φ′′(x) implies 0.2 ∈ φ′′(x). Then, (ν1 + 0.2) |= φ′′(x). Let

π = (`0, ν0)
0.9−−→ e−→ (`1, ν1)

0.2−−→ e′′−→ (`3, ν
′
2)

where ν′2 = (ν1 + 0.2)[Λ′′ := 0]. Clearly, π is a run of A. Since
label(π) = (a, 0.9)(a, 0.2), we obtain (a, 0.9)(a, 0.2) ∈ L(A) = L. A contra-
diction. Thus, L /∈ tRecSeq(Σ).

89

7.2 A general framework and examples of multi-
weighted timed automata

In this section, we introduce a general model of multi-weighted timed automata
over timed valuation structures. For the clarity of presentation, as in the frame-
work of multi-weighted Büchi automata, we will not generalize the notion of
evaluators to the timed setting but, as in [42], we define our algebraic structure
for multi-weighted timed automata in the spirit of valuation monoids [40]. We
introduce a timed valuation function to compute the weights of runs. The non-
determinism on the weights of runs will be resolved by means of a commutative
operation (e.g., minimum or maximum). As in [40], the weight of a run depends
on the history of weights that occurred in this run. We also will model the
property that staying in a location invokes costs depending on the length of the
stay and that the subsequent transition also invokes costs but happens instan-
taneously. In addition, we must take into account the multi-weighted setting,
i.e., the fact that the weight constants (e.g., tuples of weights) in an automaton
and the weights of runs (e.g., single values) are not necessarily taken from the
same set.

Definition 7.6. A timed valuation structure is a tuple
V = (ML,ME , (K,+,0), valT) where:

• (K,+,0) is a commutative monoid;
• ML and ME are non-empty sets of location weights and edge weights
respectively;

• valT : T(ML ×ME)+ → K is a timed valuation function.

We say that V is idempotent if + is idempotent, i.e., k+ k = k for all k ∈ K.

Remark 7.7. In [42], a timed valuation monoid is defined as a timed valuation
structure with ML = ME = K. In this thesis, we extend this model in order to
be able:

• to consider the multi-weighted setting (e.g., the weight constants can be
the tuples of weights and the behavior takes on single values);

• to incorporate situations where the weights of staying in locations can be
defined by arbitrary functions, as in [77, 78].

Definition 7.8. Let Σ be an alphabet and V = (ML,ME , (K,+,0), valT) a timed
valuation structure. A multi-weighted timed automaton (MWTA) over Σ and
V is a tuple A = (L,C, I, E, F,wt) where:

• (L,C, I, E, F) is a timed automaton over Σ;
• wt : (L ∪ E) → (ML ∪ME) is a weight function with wt(L) ⊆ ML and

wt(E) ⊆ME.

We call A unambiguous (deterministic, sequential, respectively) if the under-
lying timed automaton (L,C, I, E, F) is unambiguous (deterministic, sequential,
respectively). Let ρ be a run of A of the form

ρ = (`0, ν0)
t1−→ e1−→ (`1, ν1)

t2−→ e2−→ ...
tn−→ en−→ (`n, νn).

90

We associate with ρ the timed word

wt#
A(ρ) = ((wt(`0),wt(e1)), t1)...((wt(`n−1),wt(en)), tn) ∈ T(ML ×ME)+

which contains all the history of weights and time delays of the run ρ. Then,
the weight of ρ is defined as wtA(ρ) = valT(wt#

A(ρ)) ∈ K. The behavior of A is
the mapping [[A]] : TΣ+ → K defined for all w ∈ TΣ+ by

[[A]](w) =
∑

(wtA(ρ) | ρ ∈ RunA(w)).

A mapping L : TΣ+ → K is called a quantitative timed language (QTL). We
say that L is:

• recognizable over V if there exists a MWTA A over Σ and V such that
[[A]] = L;

• unambiguously (deterministically, sequentially) recognizable if there exists
an unambiguous (deterministic, sequential) MWTA A over Σ and V such
that [[A]] = L.

Let tRec(Σ,V) denote the collection of all QTL L : TΣ+ → K recognizable
over Σ and V. In the same manner, we define the collections tRecUnamb(Σ,V),
tRecDet(Σ,V) and tRecSeq(Σ,V) for unambiguous, deterministic and sequen-
tial MWTA. Clearly,

tRecSeq(Σ,V) ⊆ tRecDet(Σ,V) ⊆ tRecUnamb(Σ,V) ⊆ tRec(Σ,V).

The next examples shows that various models of single-weighted timed au-
tomata and multi-weighted timed automata fit into the framework of timed
valuation structures.

Example 7.9. (a) Linearly priced timed automata were studied in [7, 11,
68]. The weights of edges in these automata have the same meaning as
the transition weights of weighted untimed automata, i.e., happen instantly
and time independently. In contrast, the weight of a delay in a location is
time-dependent and grows linearly in time. The behavior of linearly priced
timed automata can be described by means of the timed valuation structure

VtSum =
(

Q,Q, (R ∪ {∞},min,∞), valtSum
)

where valtSum : T(Q × Q)+ → R ∪ {∞} is defined for all timed words
v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ∈ T(Q× Q)+ by

valtSum(v) =

n∑
i=1

(mi · ti +m′i).

(b) Now we consider the reward-cost ratio measure for timed automata in-
vestigated in [21, 22], i.e., the objective is the ratio between accumulated

91

rewards and costs. The behavior of ratio timed automata on finite words
can be described using the timed valuation structure

VtRatio =
(
M,M, (R ∪ {∞},min,∞), valtRatio

)
where M = Q × Q≥0 and valtRatio : T(M ×M)+ → R ∪ {∞} is defined
for all v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ∈ T(M ×M)+ with mi = (ri, ci)

and m′i = (r′i, c
′
i) by

valtRatio(v) =

∑n
i=1(ri · ti + r′i)∑n
i=1(ci · ti + c′i)

.

Here, we put x
0 =∞ for all x ∈ R.

(c) Single-weighted timed automata with discounting in time were investigated
in [53, 54] (cf. also [6]). Their behavior on finite words can be described
as follows. For a discounting factor λ ∈ Q ∩ (0, 1), we consider the timed
valuation structure

VtDisc(λ) =
(

Q,Q, (R ∪ {∞},min,∞), valtDisc(λ)
)
.

Here, the timed valuation function valtDisc(λ) : T(Q × Q)+ → R ∪ {∞} is
defined for all v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ∈ T(Q× Q)+ by

valtDisc(λ)(v) =

n∑
i=1

λt1+...+ti−1 ·
(∫ ti

0

mi · λτdτ + λti ·m′i
)
.

(d) Double-priced timed automata with a knapsack-like objective, i.e., with an
upper bound η ∈ Q≥0 on the accumulated weight for the secondary weight
parameter were investigated in [69]. Their behavior can be described by
means of the timed valuation structure

VtKnap(η) =
(
M,M, (R≥0 ∪ {∞},min,∞), valtKnap(η)

)
where M = Q≥0 × Q≥0 and valKnap(η) is defined for all
v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ∈ T(M ×M)+ with mi = (xi, yi) and

m′i = (x′i, y
′
i) by

valtKnap(η)(v) =

{∑n
i=1(xi · ti + x′i), if

∑n
i=1(yi · ti + y′i) ≤ η,

∞, otherwise.

(e) A semiring model for weighted timed automata (which covers, for instance,
the case of linearly priced timed automata) was considered in [77, 78]. In
this model, the weights of edges are taken from a semiring S = (S,+, ·,0,1)
and the weights of locations are taken from a set of functions F ⊆ SR≥0 .
Our model of MWTA over timed valuation structures also covers this case.
Here, we consider the timed valuation structure

VS,F =
(
F , S, (S,+,0), valS,F

)

92

where valS,F : T(S × F)+ → S is defined for all timed words
v = ((f1, s1), t1)...((fn, sn), tn) by

valS,F (v) =

n∏
i=1

si · fi(ti).

Now we show that the threshold problem for multi-weighted ratio timed
automata of Example (b) 7.9 is decidable (note that, in [21, 22], these multi-
weighted automata were considered for nonterminating computations with some
additional properties which we do not need for finite timed words).

Lemma 7.10. It is decidable, given an alphabet Σ, a MWTA A over Σ and
VtRatio, and a threshold θ ∈ Q, whether [[A]](w) < θ for some w ∈ TΣ+.

Proof. Let A = (L,C, I, E, F,wt) be a MWTA over an alphabet Σ and VtRatio.
For every u ∈ L ∪ E, let wt(u) = (ru, cu). For a run

ρ = (`0, ν0)
t1−→ e1−→ (`1, ν1)

t2−→ e2−→ ...
tn−→ en−→ (`n, νn)

of A, let RewardA(ρ) =
∑n
i=1(r`i−1

· ti + rei), the reward of
ρ, and CostA(ρ) =

∑n
i=1(c`i−1

· ti + cei), the cost of ρ. Note that
wtA(ρ) = RewardA(ρ)

CostA(ρ) .
Following the idea of part (i) of the proof of Lemma 2.10, we construct a

MWTA A′ = (L′, C ′, I ′, E′, F ′,wt′) over Σ and VtRatio such that [[A′]] = [[A]]
and CostA(ρ) 6= 0 for all ρ ∈ RunA′ as follows:

• L′ = L× {0, 1}, C ′ = C ∪ {x} with x /∈ C, I ′ = I × {0}, F ′ = F × {1};
• wt′(`, j) = wt(`) for all ` ∈ L and j ∈ {0, 1};
• E′ is constructed from E as follows. Let e = (`, a, φ,Λ, `′) ∈ E. Then, we

add the following three transitions to E′:

– e1 := ((`, 1), a, φ1,Λ, (`
′, 1)) with φ1|C = φ|C and φ1(x) = [0,∞).

We put wt′(e1) = wt(e);

– e2 := ((`, 0), a, φ2,Λ ∪ {x}, (`′, j)) with φ2|C = φ|C , φ2(x) = [0, 0]
and

j =

{
0, if ce = 0,

1, otherwise.

We also put wt′(e2) = wt(e);

– e3 := ((`, 0), a, φ3,Λ ∪ {x}, (`′, j)) with φ3|C = φ|C , φ3(x) = (0,∞)
and

j =

{
0, if c` = ce = 0,

1, otherwise.

Again, we put wt′(e3) = wt(e).

93

Note that A′ simulates all runs ρ of A with CostA(ρ) > 0 and rejects all runs
ρ with CostA(ρ) = 0. Then, clearly, [[A′]] = [[A]].

The rest of the proof follows a similar idea as the proof of part (ii) of Lemma
2.10. Let θ ∈ Q be a threshold. Note that

∃w ∈ TΣ+ : [[A′]](w) < θ iff ∃ρ ∈ RunA′ : wtA′(ρ) < θ.

We construct the linearly priced timed automaton A′′ = (L′, C ′, I ′, E′, F ′,wt′′)
over Σ and VtSum (as defined in Example 7.9 (a)) as follows. For u ∈ L′ ∪ E′,
let wt′(u) = (ru, cu). Then, we put wt′′(u) = ru − θ · cu. Since Cost(ρ) > 0 for
all ρ ∈ RunA′ , we have:

(∃ρ ∈ RunA′ : wtA′(ρ) < θ)⇔ (∃ρ ∈ RunA′′ : wtA′(ρ) < 0).

Moreover, it follows from the results of, e.g., [11], that the <-threshold problem
for linearly priced timed automata is decidable. Then, the claim follows.

7.3 Closure properties
In this section, we consider some closure properties for recognizable quantita-
tive timed languages. We fix an alphabet Σ and a timed valuation structure
V = (ML,ME , (K,+,0), valT).

Let Γ be an alphabet and h : Γ → Σ a mapping called a renaming. For
a timed word v = (γ1, t1)...(γn, tn) ∈ TΓ+, we let h(v) be the timed word
(h(γ1), t1)...(h(γn), tn) ∈ TΣ+. Now assume that Γ is finite. Then, for a QTL
r : TΓ+ → K, we define the renaming h(r) : TΣ+ → K for all w ∈ TΣ+ by

h(r)(w) =
∑

(r(v) | v ∈ TΓ+ and h(v) = w).

Observe that, for any w ∈ TΣ+, there are only finitely many v ∈ TΓ+ with
h(v) = w, hence the sum exists in (K,+,0).

Lemma 7.11. Let Γ be an alphabet and h : Γ → Σ a renaming. If a QTL
r : TΓ+ → K is recognizable over V, then the renaming h(r) : TΣ+ → K is also
recognizable over V.

Proof. Let A = (L,C, I, E, F,wt) be a MWTA over Γ and V such that [[A]] = r.
To construct a MWTA for the renaming h(r), we use a similar idea as in [47],
Lemma 1. Consider the MWTA A′ = (L × Γ, C, I ′, E′, F × Γ,wt′) over Σ and
V where:

• I ′ = I × {γ0} for some fixed γ0 ∈ Γ;
• E′ consists of all edges e′ = ((`1, γ1), h(γ2), φ,Λ, (`2, γ2)) such that
e = (`1, γ2, φ,Λ, `2) ∈ E and γ1 ∈ Γ. For such an edge e′, we put
wt′(e′) = wt(e);

• for any ` ∈ L and γ ∈ Γ: wt′(`, γ) = wt(`).

94

Let w = (a1, t1)...(an, tn) ∈ TΣ+ be a timed word. We define the mapping
π : RunA′(w)→

⋃
v∈h−1(w) RunA(v) as follows. Let

ρ : ((`0, γ0), ν0)
t1−→ e1−→ ((`1, γ1), ν1)

t2−→ e2−→ ...
tn−→ en−→ ((`n, γn), νn)

be a run in RunA′(w). Assume that ei = ((`i−1, γi−1), ai, φi,Λi, (`i, γi)) for all
1 ≤ i ≤ n. Let ei = (`i−1, γi, φi,Λi, `i) for each 1 ≤ i ≤ n. Then, by definition
of A′, h(γi) = ai for all 1 ≤ i ≤ n and

ρ : (`0, ν0)
t1−→ e1−→ (`1, ν1)

t2−→ e2−→ ...
tn−→ en−→ (`n, νn)

is a run of A with h(label(ρ)) = (h(γ1), t1)...(h(γn), tn) = w, i.e.,
label(ρ) ∈ h−1(w). Then, we put π(ρ) = ρ. Clearly, π is bijective. Moreover,
wtA(π(ρ)) = wtA′(ρ) for all ρ ∈ RunA′(w). Then:

[[A′]](w) =
∑

ρ∈RunA′ (w)

wtA′(ρ) =
∑(

wtA′(π
−1(ρ)) | ρ ∈

⋃
v∈h−1(w)

RunA(v)

)
=

∑
v∈h−1(w)

∑
ρ∈RunA(v)

wtA(ρ) =
∑

v∈h−1(w)

[[A]](v) = h(r)(w)

and hence h(r) = [[A′]].

Let g : Γ → ML × ME be a renaming. We define the composition
valT ◦g : TΓ+ → K for all w = (γ1, t1)...(γn, tn) ∈ TΓ+ by

(valT ◦g)(w) = valT((g(γ1), t1)...(g(γn), tn)).

We say that the timed valuation structure V is location-independent
if, for any v = ((m1,m

′
1), t1)...((mn,m

′
n), tn) ∈ T(ML × ME)+ and

v′ = ((k1, k
′
1), t1)...((kn, k

′
n), tn) ∈ T(ML ×ME)+ with m′i = k′i for all

i ∈ {1, ..., n}, we have valT(v) = valT(v′). If V is not location-independent,
then we say that V is location-dependent.

Lemma 7.12. Let Γ be a finite alphabet and g : Γ → ML ×ME a renaming.
Then:

(a) valT ◦g is unambiguously recognizable over V.
(b) If V is location-independent, then valT ◦g is sequentially recognizable

over V.

Proof. Note that for multi-weighted Büchi automata and a renaming g : Γ→M
which takes care of weights, we constructed a deterministic MWBA with one
state. In the timed setting, the situation is different since we first stay in a
location and then take an edge; moreover, the locations of MWTA are also
equipped with weights. Then, we have to guess which letter we will read after
staying in a location.

Let gL : Γ → ML and gE : Γ → ME be mappings such that
g(γ) = (gL(γ), gE(γ)) for all γ ∈ Γ.

95

(a) Consider the MWTA A = (L, ∅, I, E, F,wt) over Γ and V such that:

– L = I = Γ and F = {γf} where γf ∈ Γ is fixed.

– E = {(γ, γ,True, ∅, γ′) | γ, γ′ ∈ Γ}.
– wt(`) = gL(`) for all ` ∈ L = Γ and wt(e) = gE(γ) for all
e = (γ, γ,True, ∅, γ′) ∈ E

Let w = (γ1, t1)...(γn, tn) ∈ TΓ+. Let ei = (γi, γi,True, ∅, γi+1) for all
1 ≤ i ≤ n where γn+1 = γf . Then, RunA(w) = {ρ} where

ρ = (γ1, ν1)
t1−→ e1−→ (γ2, ν2)

t2−→ e2−→ ...
tn−1−−−→ en−1−−−→ (γn, νn)

tn−→ en−→ (γf , νn+1)

with νi = ∅ for all 1 ≤ i ≤ n+ 1. Then, A is unambiguous and

[[A]](w) = wtA(ρ) = valT[((gL(γ1), gE(γ1)), t1)...((gL(γn), gE(γn)), tn)]

= (valT ◦g)(w)

and hence valT ◦g = [[A]]. This shows that the QTL valT ◦g : TΓ+ → K is
unambiguously recognizable over V.

(b) Let A = ({1}, ∅, {1}, E, {1},wt) be a MWTA over Γ and V with
E = {(1, γ,True, ∅, 1) | γ ∈ Γ}, wt(1, γ,True, ∅, 1) = gE(γ) for all γ ∈ Γ
and wt(1) = m0 where m0 ∈ ML is fixed. Clearly, A is sequential. Let
w = (γ1, t1)...(γn, tn) ∈ TΓ+. Then, since V is location-independent, we
have

[[A]](w) = valT[((m0, gE(γ1)), t1)...((m0, gE(γn)), tn)]

= valT((g(γ1), t1)...(g(γn), tn)) = (valT ◦g)(w).

This shows that valT ◦g is sequentially recognizable.

However, in general, the QTL valT ◦g is not sequentially recognizable over
V. Moreover, we can show that, in general, valT ◦g is not deterministically
recognizable.

Lemma 7.13. There exist an alphabet Γ, a location-dependent timed valuation
structure V = (ML,ME , (K,+,0), valT), and a renaming g : Γ → ML ×ME

such that the QTL valT ◦ g is not deterministically recognizable over V.

Proof. Let Γ = {a, b} and V = VtSum as in Example 7.9 (a). Let
g(a) = (1, 0) and g(b) = (2, 0). Suppose that there exists a deterministic MWTA
A = (L,C, I, E, F,wt) over Γ and VtSum such that [[A]] = valtSum ◦g. Let
I = {`0}, A = wt(`0) and B = max{|wt(e)| | e ∈ E}. Let γ ∈ Γ and t ∈ R≥0.
Then,

A · t−B ≤ [[A]](γ, t) ≤ A · t+B.

96

By assumption, [[A]](a, t) = valtSum(g(a), t) = t and [[A]](b, t) = 2 · t. Then,
every t ∈ R≥0 is a solution of the following system of inequations:{

−B ≤ (1−A) · t ≤ B,
−B ≤ (2−A) · t ≤ B.

Then, every t ∈ R≥0 is a solution of the system{
|A− 1| · t ≤ |B|,
|A− 2| · t ≤ |B|.

(7.2)

There are two possibilities:

• A /∈ {1, 2}. Then, every t > min
{
|B|
|A−1| ,

|B|
|A−2|

}
is not a solution of system

(7.2).
• A ∈ {1, 2}. Then, every t > |B| is not a solution of (7.2).

Thus, the QTL valtSum ◦g is not deterministically recognizable over VtSum.

Let L ⊆ TΓ+ be a timed language and r : TΓ+ → K a QTL. The intersection
(r ∩ L) : TΓ+ → K is the QTL defined by (r ∩ L)(w) = r(w) if w ∈ L and
(r ∩ L)(w) = 0 if w ∈ TΓ+ \ L.

As opposed to weighted untimed automata, the class of recognizable quan-
titative timed languages is not closed under the intersection with recognizable
timed languages.

Lemma 7.14. There exists an alphabet Γ, a non-idempotent timed valuation
structure V = (ML,ME , (K,+,0), valT), a recognizable timed language L ⊆ TΓ+

and a QTL r : TΓ+ → K sequentially recognizable over V such that r ∩L is not
recognizable over V.

Proof. Our proof will be based on the fact that tRecUnamb(Γ) (tRec(Γ). Let
Γ = {a} be a singleton alphabet. Recall that N = (N,+, ·, 0, 1) is the semiring
of natural numbers. Let F = {f} ⊆ NR≥0 with f(t) = 1 for all t ∈ R≥0.
Let V = VN,F (cf. Example 7.9 (e)). For a timed language L ⊆ TΓ+, let
char(L) : TΓ+ → N be the characteristic function of L, i.e., char(L)(w) = 1 for
all w ∈ L and char(L)(w) = 0 for all w /∈ L. We claim that, for any timed
language L ⊆ TΓ+:

L ∈ tRecUnamb(Γ) iff char(L) ∈ tRec(Γ,V). (7.3)

First, let L = L(A) for an unambiguous timed automaton A = (L,C, I, E, F)
over Γ. We construct from A the MWTA A′ = (L,C, I, E, F,wt) over
Γ and V where wt(`) = f for all ` ∈ L and wt(e) = 1 for all
e ∈ E. Clearly, for every run of A′, wtA′(ρ) = 1. Then, since A is
unambiguous, for every w ∈ L, we have |RunA′(w)| = 1 and hence
[[A′]](w) = 1 = char(L)(w). Similarly, for every w /∈ L, RunA′(w) = ∅ and

97

hence [[A′]](w) = 0 = char(L)(w). Conversely, assume that char(L) is recogniz-
able over V. Then, there exists a MWTA A = (L,C, I, E, F,wt) over Γ and V
such that [[A]] = char(L). Let E′ = E \ {e ∈ E | wt(e) = 0}, wt′ = wt |E′ and
A′ = (L,C, I, E′, F,wt′) be the MWTA over Γ and V. Then, for all w ∈ TΓ+,
RunA′(w) = {ρ ∈ RunA(w) | wtA(ρ) 6= 0} and hence [[A′]](w) = [[A]](w). Let
w ∈ L and ρ ∈ RunA′(w). Assume that ρ has the form

ρ = (`0, ν0)
t1−→ e1−→ (`1, ν1)

t2−→ e2−→ ...
tn−→ en−→ (`n, νn).

Then, wtA′(ρ) = wt(e1) · ... · wt(en) ≥ 1 and hence 1 = [[A′]](w) ≥ |RunA′(w)|
which implies |RunA′(w)| = 1. Now let w /∈ L. Since [[A′]](w) = 0 and
wtA′(ρ) ≥ 1 for all ρ ∈ RunA′(w), we obtain RunA′(w) = ∅. Then, the timed
automaton A′ = (L,C, I, E′, F) is unambiguous and L(A′) = L. Hence, L is
unambiguously recognizable.

Let L ∈ tRec(Γ) \ tRecUnamb(Γ) 6= ∅ (cf. Lemma 7.4). Let the QTL
r : TΓ+ → N be defined by r(w) = 1 for all w ∈ TΓ+. Consider the sequen-
tial MWTA A = ({1}, ∅, {1}, {(1, a,True, ∅, 1)}, {1},wt) over Γ and V with
wt(1) = wt(1, a,True, ∅, 1) = 1. Clearly, [[A]] = r. Note that r ∩ L = char(L).
Suppose that r ∩ L is recognizable over V. Then, by (7.3), L ∈ tRecUnamb(Γ).
A contradiction.

Lemma 7.15. Let Γ be an alphabet, L ⊆ TΓ+ a recognizable timed language,
and r : TΓ+ → K a QTL recognizable over V.

(a) If V is idempotent, then (r ∩ L) ∈ tRec(Γ,V).
(b) Suppose that L ∈ tRecUnamb(Γ). Then (r ∩ L) ∈ tRec(Γ,V).
(c) Suppose that L ∈ tRecUnamb(Γ) and r ∈ tRecUnamb(Γ,V). Then

(r ∩ L) ∈ tRecUnamb(Γ,V).
(d) If L ∈ tRecSeq(Γ) and r ∈ tRecSeq(Γ,V), then (r∩L) ∈ tRecSeq(Γ,V).
(e) If L ∈ tRecDet(Γ) and r ∈ tRecDet(Γ,V), then

(r ∩ L) ∈ tRecDet(Γ,V).

Proof. Let A = (L,C, I, E, F) be a timed automaton over Γ with L(A) = L.
Let A′ = (L′, C ′, I ′, E′, F ′,wt′) be a MWTA over Γ and V such that
[[A′]] = r. We may assume that C and C ′ are disjoint sets of clocks. Let
A×A′ = (L× L′, C ∪ C ′, I × I ′, E′′, F × F ′,wt′′) be the MWTA over Γ and V
where E′′ consists of all edges e′′ = ((`1, `

′
1), a, φ ∧ φ′,Λ ∪ Λ′, (`2, `

′
2)) such that

e = (`1, a, φ,Λ, `2) ∈ E and e′ = (`′1, a, φ
′,Λ′, `′2) ∈ E′. For such an edge e′′, we

put wt′′(e′′) = wt′(e′). For any `′′ = (`, `′) ∈ L× L′, we put wt′′(`′′) = wt′(`′).

(a) Let V be idempotent. Consider a timed word w ∈ TΓ+ \ L. Then,
RunA(w) = ∅ and hence RunA×A′(w) = ∅. Then,

[[A×A′]](w) = 0 = (r ∩ L)(w).

If w ∈ L, then RunA(w) 6= ∅. Let N = |RunA(w)| > 0. Since V is

98

idempotent,
∑N
i=1 wtA′(ρ) = wtA′(ρ) for all ρ ∈ RunA′(w). Then,

[[A×A′]](w) =
∑

ρ∈RunA×A′ (w)

wtA×A′(ρ) =
∑

ρ∈RunA′ (w)

N∑
i=1

wtA′(ρ)

=
∑

ρ∈RunA′ (w)

wtA′(ρ) = [[A′]](w) = r(w) = (r ∩ L)(w).

This shows that [[A×A′]] = r ∩ L. Thus, r ∩ L is recognizable over V.
(b) Let A be unambiguous. Then, as in the previous case, for all w ∈ TΓ+ \L,

[[A×A′]](w) = 0 = (r ∩ L)(w). For w ∈ L, |RunA(w)| = 1. Then,

[[A×A′]](w) =
∑

ρ∈RunA×A′ (w)

wtA×A′(ρ) =
∑

ρ∈RunA′ (w)

wtA′(ρ)

= [[A′]](w) = r(w) = (r ∩ L)(w).

Then, r ∩ L is recognizable over V.
(c) Let A,A′ be unambiguous. Then, clearly, A × A′ is unambiguous. As

it was shown in (b), [[A × A′]] = r ∩ L. Thus, r ∩ L is unambiguously
recognizable over V.

(d) Let A,A′ be sequential. Then, clearly, A × A′ is sequential. As it was
shown in (b), [[A × A′]] = r ∩ L. Thus, r ∩ L is sequentially recognizable
over V.

(e) Let A,A′ be deterministic. It can be easily shown that A × A′ is also
deterministic. Then, like in (b), [[A × A′]] = r ∩ L. Thus, r ∩ L is deter-
ministically recognizable over V.

7.4 A Nivat theorem for multi-weighted timed
automata

In this section, we present a Nivat-like characterization of multi-weighted timed
automata. This result illustrates the connection between recognizable quanti-
tative and qualitative languages (cf. the Nivat theorem for semiring-weighted
automata [38] and Theorem 5.6 for multi-weighted Büchi automata).

Let Σ be an alphabet and V = (ML,ME , (K,+,0), valT) a timed valuation
structure. Let N (Σ,V) (with N standing for Nivat) denote the class of all
QTL L : TΣ+ → K such that there exist an alphabet Γ, renamings h : Γ→ Σ
and g : Γ→ML ×ME , and a recognizable timed language L ⊆ TΓ+ such that
L = h((valT ◦g) ∩ L). Notice that these decompositions are defined in a similar
way as for ω-words (cf. Theorem 5.6). Here, valω is replaced by valT and
g : Γ → M by g : Γ → (ML ×ME). However, in contrast to Theorem 5.6, the
equality tRec(Σ,V) = N (Σ,V) does not always hold.

99

Lemma 7.16. There exist an alphabet Σ and a non-idempotent and location-
independent timed valuation structure V such that tRec(Σ,V) 6= N (Σ,V).

Proof. Let Σ = {a} be a singleton alphabet and V = (ML,ME , (K,+,0), valT)
be as in the proof of Lemma 7.14. Let L ∈ tRec(Σ) \ tRecUnamb(Σ) 6= ∅ (cf.
Lemma 7.4). Consider the alphabet Γ = Σ and the identity mapping id : Γ→ Σ,
i.e. id(γ) = γ for all γ ∈ Γ. Consider also the mapping g : Γ→ML×ME defined
by g(γ) = (1, 1) for all γ ∈ Γ and the QTL r : TΓ+ → K with r(u) = 1 for
all u ∈ TΓ+. Then, valT ◦g = r and r ∩ L = id((valT ◦g) ∩ L) ∈ N (Σ,V).
However, it was shown in Lemma 7.14 that r ∩ L /∈ tRec(Σ,V). This proves
that tRec(Σ,V) 6= N (Σ,V).

Let the collectionN Seq(Σ,V) be defined likeN (Σ,V) with the only difference
that L is sequential. Similarly, let the collections NUnamb(Σ,V) and NDet(Σ,V)
be defined like N (Σ,V) with the only difference that L is unambiguously recog-
nizable resp. deterministically recognizable. Clearly,

N Seq(Σ,V) ⊆ NDet(Σ,V) ⊆ NUnamb(Σ,V) ⊆ N (Σ,V). (7.4)

Our Nivat theorem for MWTA is the following.

Theorem 7.17. Let Σ be an alphabet and V a timed valuation structure. Then,

(a) tRec(Σ,V) = N Seq(Σ,V) = NDet(Σ,V) = NUnamb(Σ,V).
(b) tRec(Σ,V) ⊆ N (Σ,V). If V is idempotent, then Rec(Σ,V) = N (Σ,V).

The proof of this theorem follows from the next two lemmas.

Lemma 7.18. tRec(Σ,V) ⊆ N Seq(Σ,V).

Proof. Let A = (L,C, I, E, F,wt) be a MWTA over Σ and V such that L = [[A]].
Let Γ = E. We define the renamings h : Γ → Σ and g : Γ→ML ×ME for all
γ = (`, a, φ,Λ, `′) ∈ Γ by h(γ) = a and g(γ) = (wt(`),wt(γ)). We construct the
timed automaton A′ = (L,C, I, E′, F) over Γ with

E′ = {(`, γ, φ,Λ, `′) | ∃a ∈ Σ : γ = (`, a, φ,Λ, `′) ∈ E}.

We put L = L(A′). We show that L is sequentially recognizable. Indeed, let
⊥ /∈ L and consider the timed automaton A′′ = (L ∪ {⊥}, C, {⊥}, E′′, F) over
Γ with

E′′ = E′ ∪ {(⊥, γ, φ,Λ, `′) | ∃` ∈ I : (`, γ, φ,Λ, `′) ∈ E′}.

It is easy to see that A′′ is sequential and L(A′′) = L.
It remains to show that L = h((valT ◦g) ∩ L). Let w = (a1, t1)...(an, tn) ∈

TΣ+. We define the mapping π : RunA(w) → {v ∈ L | h(v) = w} as follows.
Let ρ ∈ RunA(w) be a run of the form

ρ = (`0, ν0)
t1−→ γ1−→ (`1, ν1)

t2−→ γ2−→ ...
tn−→ γn−→ (`n, νn). (7.5)

100

Then, we put π(ρ) = (γ1, t1)...(γn, tn). Clearly, for all i ∈ {1, ..., n},
γi = (`i−1, ai, φi,Λi, `i) for some φi ∈ Φ(C) and Λi ⊆ C, and so h(π(ρ)) = w.
For 1 ≤ i ≤ n, let ei = (`i−1, γi, φi,Λi, `i) ∈ E′. Then,

(`0, ν0)
t1−→ e1−→ (`1, ν1)

t2−→ e2−→ ...
tn−→ en−→ (`n, νn) (7.6)

is a run in RunA′(π(ρ)) and hence π(ρ) ∈ L(A′) = L. This shows that π is
correctly defined. Now we show that π is bijective. Indeed, let ρ, ρ′ ∈ RunA(w)
where ρ is defined as in (7.5) and

ρ′ = (`′0, ν
′
0)

t1−→ γ′1−→ (`′1, ν
′
1)

t2−→ γ′2−→ ...
tn−→ γ′n−→ (`′n, ν

′
n).

Assume that ρ 6= ρ′. Then, there exists i ∈ {1, ..., n} such that γi 6= γ′i.
Then, π(ρ) 6= π(ρ′) and hence π is injective. It remains to show that π is
onto. Let v′ = (δ1, t1)...(δn, tn) ∈ L with h(v′) = w. Then, there exists a run
% ∈ RunA′(v

′) of the form (7.6) where, for all 1 ≤ i ≤ n, ei = (`i−1, δi, φi,Λi, `i)
for some φi ∈ Φ(C) and Λi ⊆ C. Then, there exists bi ∈ Σ with
δi = (`i−1, bi, φi,Λi, `i) ∈ E. Since h(v′) = w, we have bi = ai. Then,

%′ = (`0, ν0)
t1−→ δ1−→ (`1, ν1)

t2−→ δ2−→ ...
tn−→ δn−→ (`n, νn)

is a run in RunA(w) with π(%′) = v′.
Now let ρ ∈ RunA(w) be a run of the form (7.5). Then,

(valT ◦g)(π(ρ)) = valT(g(π(ρ))) = valT((g(γ1), t1)...(g(γn), tn)) = wtA(ρ).

Thus,

h((valT ◦g) ∩ L)(w) =
∑

((valT ◦g)(v) | v ∈ L and h(v) = w)

=
∑

(wtA(ρ) | ρ ∈ RunA(w)) = [[A]](w) = L(w).

Lemma 7.19. (a) NUnamb(Σ,V) ⊆ tRec(Σ,V).
(b) Let V be idempotent. Then, N (Σ,V) ⊆ tRec(Σ,V).

Proof. (a) The result follows by successive application of Lemmas 7.11, 7.12
and 7.15(b).

(b) The result follows by successive application of 7.11, 7.12 and 7.15(a).

Proof of Theorem 7.17. Immediate by Lemmas 7.18 and 7.19 and the chain of
inclusions (7.4).

101

7.5 Renamings of recognizable quantitative
timed languages

In Corollary 5.11, we stated the coincidence of the class of recognizable quantita-
tive ω-languages with the class of the renamings of deterministically recognizable
quantitative ω-languages. Here, we will study this connection in the context of
multi-weighted timed automata.

Let Σ be an alphabet and V = (ML,ME , (K,+,0), valT) a timed valuation
structure. We introduce the following abbreviations.

• Let HUnamb(Σ,V) denote the collection of all QTL L : TΣ+ → K such that
there exist an alphabet Γ, a renaming h : Γ → Σ and an unambiguously
recognizable QTL r : TΓ+ → K over V such that L = h(r).

• The collection HDet(Σ,V) is also defined like HUnamb(Σ,V) with the only
difference that r is deterministically recognizable over V.

• The collection HSeq(Σ,V) is defined like HUnamb(Σ,V) with the only dif-
ference that r is sequentially recognizable over V.

The following theorem compares the classes HSeq(Σ,V), HDet(Σ,V),
HUnamb(Σ,V), and tRec(Σ,V).

Theorem 7.20. (a) For every alphabet Σ and a timed valuation structure V:

HSeq(Σ,V) = HDet(Σ,V) ⊆ HUnamb(Σ,V) = tRec(Σ,V).

Moreover, if V is location-independent, then HDet(Σ,V) = HUnamb(Σ,V).
(b) There exist an alphabet Σ and a location-dependent timed valuation struc-

ture V such that HDet(Σ,V) 6= HUnamb(Σ,V).

The proof of this theorem will follow from the lemmas of the rest of this
section.

Lemma 7.21. HUnamb(Σ,V) = tRec(Σ,V).

Proof. The inclusion from left to right follows from Lemma 7.11. It remains
to show that tRec(Σ,V) ⊆ HUnamb(Σ,V). Let L ∈ tRec(Σ,V). Then, by
Theorem 7.17, L ∈ NUnamb(Σ,V), i.e., there exist an alphabet Γ, renamings
h : Γ→ Σ and g : Γ → ML ×ME , and a timed language L ∈ tRecUnamb(Σ)
such that L = h((valT ◦g) ∩ L). By Lemma 7.12 (a), the QTL (valT ◦g) is unam-
biguously recognizable over V. Consider the QTL r = ((valT ◦g)∩L) : TΓ+ → K.
By Lemma 7.15 (c), r is unambiguously recognizable over V. Since L = h(r),
we have: L ∈ HUnamb(Σ,V).

Lemma 7.22. Let V be location-independent. Then, HSeq(Σ,V) = tRec(Σ,V).

Proof. The inclusion HSeq(Σ,V) ⊆ tRec(Σ,V) follows from Lemma 7.11.
We show that tRec(Σ,V) ⊆ HSeq(Σ,V). Let L ∈ tRec(Σ,V). Then,
by Theorem 7.17, there exist an alphabet Γ, renamings h : Γ → Σ,
g : Γ→ML ×ME and a sequentially recognizable timed language L ⊆ TΓ+

102

3

1

2

a/0

b/0

1

2

0

a/0

b/0

Figure 7.3: MWTA AL from the proof of Lemma 7.23

such that L = h((valT ◦g) ∩ L). Since V is location-independent, by Lemma
7.12 (b), the QTL (valT ◦g) : TΓ+ → K is sequentially recognizable over V.
Consider the QTL r = ((valT ◦g) ∩ L) : TΓ+ → K. By Lemma 7.15 (d),
r ∈ tRecSeq(Σ,V). Since L = h(r), we have: L ∈ HSeq(Σ,V).

Lemma 7.23. There exists an alphabet Σ and a location-dependent timed val-
uation structure V such that HSeq(Σ,V) 6= Rec(Σ,V).

Proof. Let Σ = {a, b} and let V = (ML,ME , (K,+,0), valT) = VtSum as in
Example 7.9 (a). Consider the QTL L : TΣ+ → K over V defined by

L((a1, t1)...(an, tn)) =

{
t1, if a1 = a,

2 · t1, otherwise.

Consider the MWTA AL over Σ and V depicted in Figure 7.3 whose set of
clocks is empty (here, the numbers, depicted under the locations of AL, mean
the weights of these locations). Then, [[A]]L = L and hence L ∈ tRec(Σ,V).

Suppose that there exist a finite alphabet Γ, a mapping h : Γ → Σ and a
sequentially recognizable QTL r : TΓ+ → K over V such that L = h(r). Let
A′ = (L′, C ′, I ′, E′, F ′,wt′) be a sequential MWTA over Γ and V such that
[[A′]] = r. Let I ′ = {⊥}. Let ν0 : C → R≥0 be the clock valuation with
ν0(x) = 0 for all x ∈ C. Let A = wt′(⊥) and, for σ ∈ Σ and t ∈ R≥0,
Bσ,t = min{wt′(e) | e = (⊥, γ, φ,Λ, `) ∈ E′, h(γ) = σ, ν0 + t |= φ and ` ∈ F ′}.
Note that, for any σ ∈ Σ, the set {Bσ,t | t > 0} is finite. For any t > 0,

t = [[A]](a, t) = min{[[A′]](γ, t) | γ ∈ Γ, h(γ) = a} = A · t+Ba,t

and 2 · t = [[A]](b, t) = A · t + Bb,t. Then, A 6= ∞ and for any t > 0, Ba,t 6= ∞
and Bb,t 6=∞. We consider the following possibilities:

• A = 1. Then, the set {Bb,t | t > 0} = {t | t > 0} is infinite which is
impossible;

• A 6= 1. Then, the set {Ba,t | t > 0} = {(1−A) · t | t > 0} is infinite which
is also impossible.

Hence L /∈ HSeq(Σ,V).

103

Lemma 7.24. HSeq(Σ,V) = HDet(Σ,V).

Proof. The inclusion HSeq(Σ,V) ⊆ HDet(Σ,V) is trivial. We show the converse
inclusion. Let L ∈ HDet(Σ,V). Then, there exist an alphabet Γ, a renaming
h : Γ → Σ and a deterministic MWTA A = (L,C, I, E, F,wt) over Γ and V
such that L = h([[A]]). Assume that C = {x1, ..., xm} 6= ∅ and |C| = m. For all
1 ≤ i ≤ m, let K′i be the set of all k ∈ N such that there exists an edge e ∈ E with
the clock constraint φ ∈ Φ(C) such that either k = inf φ(xi) or k = supφ(xi);
note that φ(xi) ∈ I is an interval. Let Ki = K′i ∪ {0,∞}. Assume that, for all
1 ≤ i ≤ m, Ki = {ki,1, ..., ki,li} with 0 = ki,1 < ki,2 < ... < ki,li = ∞. For any
1 ≤ i ≤ m, let Ri = {[ki,j , ki,j] | 1 ≤ j < li} ∪ {(ki,j , ki,j+1) | 1 ≤ j < li} be a
finite set of intervals. Let R = R1 × ...×Rm. For (r1, ..., rm) ∈ R and a clock
valuation ν ∈ RC≥0, we will write ν |= (r1, ..., rm) iff ν(xi) ∈ ri for all 1 ≤ i ≤ m.
Note that, for all ν ∈ RC≥0 there exists exactly one tuple (r1, ..., rm) ∈ R such
that ν |= (r1, ..., rm). For % = (r1, ..., rm) ∈ R and φ ∈ Φ(C), we will write
% |= φ if ri ⊆ φ(xi) for all 1 ≤ i ≤ m.

Let φ ∈ Φ(C) be a clock constraint which appears in E. Then, for all clock
valuations ν ∈ RC≥0, we have: ν |= φ if and only if there exists exactly one % ∈ R
such that ν |= % and % |= φ. Consider the alphabet Γ′ = Γ×R and the mapping
h′ : Γ′ → Σ defined for all γ ∈ Γ, % ∈ R by h′(γ, %) = h(γ). We define the
MWTA A′ = (L,C, I, E′, F,wt′) over Γ′ and V where E′ consists of all edges
e′ = (`, (γ, %), φ,Λ, `′) such that e := (`, γ, φ,Λ, `′) ∈ E and % |= φ. For such an
edge e′, we put wt′(e′) = wt(e).

First, we show that A′ is sequential. Indeed, let e′1 = (`, (γ, %), φ1,Λ1, `
′
1)

and e′2 = (`, (γ, %), φ2,Λ2, `
′
2) be edges in E′. Then, (`, γ, φ1,Λ1, `

′
1) ∈ E and

(`, γ, φ2,Λ2, `
′
2) ∈ E. Moreover, there exists ν ∈ RC≥0 with ν |= %. Since % |= φ1

and % |= φ2, we have ν |= φ1 and ν |= φ2. Since A is deterministic, we have
φ1 = φ2, Λ1 = Λ2 and `′1 = `′2. This shows that e′1 = e′2.

Let g : Γ′ → Γ be defined for all γ ∈ Γ and % ∈ R by g(γ, %) = γ, so
h′ = h ◦ g. It is easy to see that [[A]] = g([[A′]]). Then:

L = h([[A]]) = h(g([[A′]])) = (h ◦ g)([[A′]]) = h′([[A′]]).

Thus, L ∈ HSeq(Σ,V).

Consider the Boolean semiring B and the mapping f : {0, 1} → {1}. Let
F = {f}. Then, VB,F (cf. Example 7.9(e)) is a location independent timed
valuation structure. Note that every recognizable language L ⊆ TΣ+ can be
interpreted as a recognizable QTL over VB,F . Let HUnamb(Σ) denote the class of
all timed languages L ⊆ TΣ+ such that there exist an alphabet Γ, a renaming h :
Γ→ Σ and an unambiguously recognizable language L′ ⊆ TΓ+ with L = h(L′).
The classes HDet(Σ) and HSeq(Σ) are defined similarly, using languages L′
which are deterministically recognizable resp. sequentially recognizable.

As a corollary from Theorem 7.20, we obtain:

Corollary 7.25. Let Σ be an alphabet. Then,

HSeq(Σ) = HDet(Σ) = HUnamb(Σ) = tRec(Σ).

104

Chapter 8

Timed weight assignment
logic

Contents
8.1 Relative distance logic 105
8.2 Timed weight assignment logic 106
8.3 Unambiguously definable timed languages 110
8.4 Definability equals recognizability 113

In this chapter, we establish a Büchi-Elgot characterization for multi-
weighted timed automata of Chapter 7. We introduce a timed weight assignment
logic which extends the weight assignment logic of Chapter 6 to the timed set-
ting; the qualitative basis of this logic is Wilke’s relative distance logic. We prove
that our timed weight assignment logic is equally expressive as multi-weighted
timed automata.

8.1 Relative distance logic
In [84, 85], Wilke introduced relative distance logic on timed words and showed
that this logic is equally expressive as timed automata. In this section, we
present basic notions about this logic.

Recall that V1 is a countable set of first-order variables and V2 is a countable
set of second-order variables. Here, we also add a countable set D of (second-
order) relative distance variables such thatD∩(V1∪V2) = ∅. LetW = V1∪V2∪D.

Let Σ be an alphabet. Recall from the previous chapter that I means the
collection of intervals. The set RDL(Σ) of relative distance formulas over Σ is
defined by the grammar

ϕ ::= Pa(x) | x ≤ y | X (x) | dI(X,x) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

105

106

(w, σ) |= Pa(x) iff aσ(x) = a
(w, σ) |= x ≤ y iff σ(x) ≤ σ(y)
(w, σ) |= X (x) iff σ(x) ∈ σ(X)

(w, σ) |= dI(D,x) iff (σ(D), σ(x)) ∈ dI(w)
(w, σ) |= ϕ1 ∨ ϕ2 iff (w, σ) |= ϕ1 or (w, σ) |= ϕ2

(w, σ) |= ¬ϕ iff (w, σ) |= ϕ does not hold
(w, σ) |= ∃x.ϕ iff ∃j ∈ dom(w) : (w, σ[x/j]) |= ϕ
(w, σ) |= ∃X.ϕ iff ∃J ⊆ dom(w) : (w, σ[X/J]) |= ϕ

Table 8.1: The semantics of relative distance formulas

where a ∈ Σ, x, y ∈ V1, X ∈ V2, X ∈ V2 ∪ D, and I ∈ I. The formulas of the
form dI(X,x) are called relative distance predicates.

Let w = (a1, t1)...(an, tn) ∈ TΣ+ be a timed word. The domain of w is
the set dom(w) = {1, ..., n} of positions of w. Let j ∈ dom(w), J ⊆ dom(w),
and I ∈ I. Then, we write (J, j) ∈ dI(w) if 〈w〉i,j ∈ I for the greatest value
i ∈ J ∪ {0} with i < j.

To define a w-assignment σ, we also take into account relative distance
variables, i.e., σ : W → dom(w) ∪ 2dom(w) where σ(V1) ⊆ dom(w) and
σ(V2 ∪ D) ⊆ 2dom(w). The updates σ[x/j] and σ[X/J] with x ∈ V1, X ∈ V2∪D,
j ∈ dom(w) and J ⊆ dom(w) are defined as for usual finite words.

Let TΣ+
W denote the set of all pairs (w, σ) where w ∈ TΣ+ and σ is a w-

assignment. The definition that a pair (w, σ) ∈ TΣ+
W satisfies the formula ϕ,

written (w, σ) |= ϕ, is given inductively on the structure of ϕ as shown in Table
8.1. Here, a ∈ Σ, x, y ∈ V1, X ∈ V2, D ∈ D, X ∈ V2 ∪ D, and I ∈ I.

Let ∃RDL(Σ) denote the set of all formulas ϕ = ∃D1. ... ∃Dk.ψ where
k ≥ 0, D1, ..., Dk ∈ D and ϕ ∈ RDL(Σ). Note that RDL(Σ) ⊆ ∃RDL(Σ). For
(w, σ) ∈ TΣ+

W , the satisfaction relation (w, σ) |= ϕ is defined as usual.
For a formula ϕ ∈ ∃RDL(Σ), the set Free(ϕ) ⊆ W of free variables of ϕ is

defined as the set of all variables of ϕ not bound by a quantifier. We say that
ϕ is a sentence if Free(ϕ) = ∅. In this case, we can simply write w |= ϕ. For a
sentence ϕ ∈ ∃RDL(Σ), let L(ϕ) = {w ∈ TΣ+ | w |= ϕ}, the timed language
defined by ϕ. We say that a timed language L ⊆ TΣ+ is definable if there exists
a sentence ϕ ∈ ∃RDL(Σ) such that L(ϕ) = L.

Theorem 8.1 (Wilke [84]). Let Σ be an alphabet and L ⊆ TΣ+ a timed lan-
guage. Then, L is recognizable iff L is definable.

8.2 Timed weight assignment logic

In this section, we introduce a quantitative logic which is equivalent to the
multi-weighted timed automata we considered in the previous chapter. As the
qualitative basis, we take Wilke’s relative distance logic. As the quantitative
basis, we take the weight assignment logic (cf. Chapter 6). As a weight structure,

107

we use a timed valuation structure investigated in the previous chapter. As in
the case of weight assignment logic, we will assign weights to the positions of a
timed word. In order to reflect both discrete and continuous weights, we have
to augment our logic with the possibility to assign these both sorts of weights.

Let Σ be an alphabet and V = (M,S, (K,+,0), valT) a timed valuation
monoid. Note that the set M corresponds to the set of location weights of a
MWTA and S corresponds to the set of edge weights. Let 1 = (1M ,1S) ∈M×S,
a pair of default weights. Let V1 denote the pair (V,1).

The set tWAL(Σ,V1) of timed weight assignment logic formulas over Σ and
V1 is given by the grammar

ϕ ::= β | x 7→ m | x Z⇒ s | β ? (ϕ : ϕ) | ϕ u ϕ |
d
x.ϕ |

d
X.ϕ

ψ ::= ϕ | tx.ψ | tX .ψ

where β ∈ RDL(Σ), m ∈M , s ∈ S, x ∈ V1, X ∈ V2 and X ∈ V2∪D. We denote
by tWALu(Σ,V1) ⊆ tWAL(Σ,V1) the set of all formulas generated from the
nonterminal ϕ.

For a formula ϕ ∈ tWAL(Σ,V1), let ConstM (ϕ) ⊆ M be the set of
all m ∈M such that x 7→ m appears in ϕ for some x ∈ V1. Similarly, let
ConstS(ϕ) ⊆ S be the set of all constants s ∈ S such that x Z⇒ s appears in ϕ
for some x ∈ V1.

Now we are going to define the semantics of formulas in tWAL(Σ,V1). The
approach here is similar to our approach to the semantics of weight assignment
logic on ω-words. What is new here is that:

• the domain of a finite timed word is not fixed;
• we must assign to the positions of a timed word both continuous weights

fromM and discrete weighs from S, therefore we need two partially defined
mappings.

For the definitions about partial mappings, we refer the reader to Sect.
6.1. For a set Y and n > 0, let Y ↑n denote the set of all partial mappings
f : {1, ..., n} 99K Y . Now let µ, µ′ ∈ M↑n and δ, δ′ ∈ S↑n. We say that pairs
r = (µ, δ) and r′ = (µ′, δ′) are compatible, written r ↑ r′ if µ ↑ µ′ and
δ ↑ δ′. If r ↑ r′, then we define the union (or merging) (r ∪ r′) ∈ M↑n × S↑n by
r∪r′ = (µ∪µ′, δ∪δ′). Let ∆ : TΣ+

V 99K
⋃
n≥1M

↑
n×S↑n be a partial mapping with

∆(w, σ) ∈M↑|w|×S
↑
|w| for all (w, σ) ∈ TΣ+

W . We define valT0,1(∆) : TΣ+
W → K for

all w = (a1, t1)...(an, tn) ∈ TΣ+ and all w-assignments σ as follows. If ∆(w, σ)
is undefined, then we let valT0,1(∆) = 0. Otherwise, ∆(w, σ) = (µ, δ) for some
µ ∈M↑|w| and δ ∈ S

↑
|w|, and we let

valT0,1(∆) = valT(((m1, s1), t1)...((mn, sn), tn))

where mi =

{
µ(i), if i ∈ dom(µ),

1M , otherwise
and si =

{
δ(i), if i ∈ dom(δ),

1S , otherwise
for all

i ∈ {1, ..., n}.

108

〈〈β〉〉(w, σ) =

{
(⊥,⊥), if (w, σ) |= β,

undef, otherwise

〈〈x 7→ m〉〉(w, σ) = (⊥[σ(x)/m],⊥)

〈〈x Z⇒ s〉〉(w, σ) = (⊥,⊥[σ(x)/s])

〈〈β ? (ϕ1 : ϕ2)〉〉(w, σ) =

{
〈〈ϕ1〉〉(w, σ), if (w, σ) |= β

〈〈ϕ2〉〉(w, σ), otherwise

〈〈ϕ1 u ϕ2〉〉(w, σ) = 〈〈ϕ1〉〉(w, σ) ∪ 〈〈ϕ2〉〉(w, σ)

〈〈
d
x.ϕ〉〉(w, σ) =

⋃
i∈dom(w)

〈〈ϕ〉〉(w, σ[x/i])

〈〈
d
X.ϕ〉〉(w, σ) =

⋃
I⊆dom(w)

〈〈ϕ〉〉(w, σ[X/I])

Table 8.2: The semantics of tWALu(Σ,V1)-formulas.

As in Sect. 6.2, we introduce the undefined value Undef and extend the
union operations of partial mappings also to Undef: we assume that the union
with Undef is Undef as well as r∪ r′ = Undef for all r, r′ ∈M↑n×S↑n (n > 0)
which are not compatible.

First, we start with the semantics for ϕ ∈ tWALu(Σ,V1). Let
w ∈ TΣ+ and σ be a w-assignment. The semantics of ϕ is the mapping
〈〈ϕ〉〉 : TΣ+

W →
⋃
n≥1(M↑n × S↑n)∪ {Undef} defined for all (w, σ) ∈ TΣ+

W induc-
tively on the structure of ϕ as shown in Table 8.2. Here β ∈ RDL(Σ), m ∈M ,
s ∈ S, x ∈ V1 and X ∈ V2.

Now we turn to the semantics of ψ ∈ tWAL(Σ,V1) which is the mapping
[[ψ]] : TΣ+

W → K defined for all (w, σ) ∈ TΣ+
W as shown in Table 8.3. Here,

ϕ ∈ tWALu(Σ,V1), x ∈ V1 and X ∈ V2 ∪ D and we let valT0,1(Undef) = 0.
We say that ψ ∈ tWAL(Σ,V1) is a sentence if every variable of ψ is bound

by a quantifier. If ψ is a sentence, then its semantics does not depend on variable
assignments; so we can consider [[ψ]] as the mapping [[ψ]] : TΣ+ → K. We say
that a QTL L : TΣ+ → K is tWAL-definable over V if there exist a pair of the
default weights 1 ∈M×S and a sentence ψ ∈ tWAL(Σ,V1) such that [[ψ]] = L.

Example 8.2. A plane makes flights between two airports X and Y. Let τf
be the flight time from X to Y and also from Y to X. During a flight the air
company bears the following expenses:

• the fuel costs f ∈ Q≥0 per time unit;
• the crew salary c ∈ Q≥0 per time unit;

In the airports, the plane can stay between τmin
s and τmax

s time units. Assume
that τmin

s , τmax
s ∈ N While staying there are the following costs:

109

[[ϕ]](w, σ) = valT0,1(〈〈ϕ〉〉(w, σ))

[[tx.ψ]](w, σ) =
∑

i⊆dom(w)

[[ψ]](w, σ[x/i])

[[tX .ψ]](w, σ) =
∑

I⊆dom(w)

[[ψ]](w, σ[X/I])

Table 8.3: The semantics of tWAL(Σ,V1)-formulas

• the crew salary c ∈ Q≥0 per time unit;
• the airport fee a ∈ Q≥0 per time unit;
• one-time costs b ∈ Q≥0 for beverages, snacks, cleaning service, etc.

A flight schedule is a timed word w = (A, t1)(F, t2)...(A, t2n−1)(F, t2n) over the
alphabet {A,F} where, for all 1 ≤ i ≤ n, τmin

s ≤ t2i−1 ≤ τmax
s and t2i = τf .

Here, the pair (A, t) means that the plane stays in an airport t time units and
the pair (F, t) means that the plane makes a flight which takes t time units. The
average cost of w is defined by

C(w) = c+
a · t1 + b+ f · t2 + ...+ a · t2n−1 + b+ f · t2n

t1 + t2 + ...+ t2n−1 + t2n

Given a timed word w ∈ T{A,F}+, our goal is to check whether w is a flight
schedule and to compute the average cost of w. For this, we will use our weighted
relative distance logic over the alphabet Σ = {A,F}, the timed valuation struc-
ture V = VRatio of Example 7.9 (b) together with the pair of the default weights
1 = ((0, 0), (0, 0)). Let β1 be the sentence which checks whether we have a se-
quence of the form AF...AF. Let DA be a relative distance variable which will
mean the set of all positions labeled by A. Analogously, let DF ∈ D be a variable
which corresponds to the set of all positions labeled by F. This can be expressed
by the formula

β2 = ∀x.[(PA(x)↔ DA(x)) ∧ (PF(x)↔ DF(x))].

Let I = [τmin
s , τmax

s] ∈ I. Next we check the correctness of a time sequence using
the formula

β3 = ∀x.[{PA(x)→ dI(DF, x)} ∧ {PF(x)→ d[τf ,τf](DA, x)}].

Finally, we construct the timed weight assignment sentence ϕ ∈ tWAL(Σ,V1)
as

ϕ = tDA.tDF.(β u
d
x.[XA(x) ? ([x 7→ (a+ c, 1) u x Z⇒ (b, 0)] : x 7→ (f + c, 1))]).

Then, for all w ∈ T{A,F}+:

[[ϕ]](w) =

{
C(w), if w is a flight schedule,
∞, otherwise.

110

Our Büchi-Elgot theorem for multi-weighted timed automata is the follow-
ing.

Theorem 8.3. Let Σ be an alphabet, V = (M,S, (K,+,0), valT) a timed valua-
tion structure, 1 ∈M × S a pair of default weights, and L : TΣ+ → K a QTL.
Then, L is recognizable over V iff L is tWAL-definable over V.

The proof of this theorem will we given in Sect. 8.4.
The proof of Theorem 8.3 that we present in Sect. 8.4 gives us effective

translation procedures from logic to automata (and vice versa). Then, we obtain
the following corollary.

Corollary 8.4. Let VtRatio be the timed valuation structure of Example 7.9 (b)
and 1 an arbitary pair of default weights in VtRatio. Then, it is decidable, given
an alphabet Σ, a sentence ψ ∈ tWAL(Σ,V1), and a threshold θ ∈ Q, whether
[[ϕ]](w) < θ for some w ∈ TΣ+.

8.3 Unambiguously definable timed languages

As in the case of weight assignment logic on ω-words, we will prove Theorem 8.3
using our Nivat Theorem 7.17 (a). Note that the qualitative basis of this theo-
rem is given by a proper subclass of recognizable timed languages (sequentially,
deterministically or unambiguously recognizable) whereas Wilke’s Theorem 8.1
characterizes the full class of recognizable timed languages. A similar problem
with the unambiguity occured in [77] for semiring-weighted relative distance
logic over non-idempotent semirings; a solution was given by restricting the
Boolean part of the logic to formulas of bounded variability. Here, we show
that this restriction can be avoided. For this, we introduce a fragment of rel-
ative distance logic which is equivalent to unambiguous timed automata and
applicable for the proof of Theorem 8.3.

Definition 8.5. Let Σ be an alphabet. A timed language L ⊆ TΣ+ is called
unambiguously definable if there exists a formula ϕ ∈ RDL(Σ) such that
|Free(ϕ)| = k ≥ 0, Free(ϕ) = {D1, ..., Dk} ⊆ D and, for every w ∈ TΣ+, there
exists at most one tuple (I1, ..., Ik) ∈ (2dom(w))k with (w, σ[D1/I1, ..., Dk/Ik]) |=
ϕ, and L = L(∃D1. ... ∃Dk.ϕ).

The goal of the present section is to show the following theorem.

Theorem 8.6. Let Σ be a finite alphabet and L ⊆ TΣ+ a timed language. Then,
L is unambiguously recognizable iff L is unambiguously definable.

The proof of this theorem will be given in the rest of this section.

Lemma 8.7. Let A be an unambiguous timed automaton over Σ. Then, the
timed language L(A) is unambiguously definable.

111

Proof. Let A = (L,C, I, E, F) and (ci)i∈{1,...,|C|} be a enumeration of C. Let
{Dc | c ∈ C} ⊆ D be a set of pairwise distinct relative distance variables. As
it was shown in [84], L(A) can be defined by a ∃RDL(Σ)-sentence of the form
∃Dc1 ∃Dc|C| .ϕ where ϕ ∈ RDL(Σ) describes an accepting run in A. For a
timed word w ∈ TΣ+, a run ρ ∈ RunA(w) and a clock c ∈ C, Dc corresponds
to the set of all positions of w where, along the run ρ, the clock c was reset.
Since A is unambiguous, for every word there exists at most one accepting run.
Then, if such a run exists, then the sets Dc (c ∈ C) are uniquely determined.
Thus, L(A) is unambiguously definable.

Now we turn to the converse direction. For this, we will use the idea of de-
terminizable event-recording automata introduced in [4] and their logical char-
acterization [30]. Let V be a finite set. A V-event-recording automaton over Σ
is a timed automaton A = (L,V, I, E, F) over the alphabet Σ × 2V such that,
for each (`, (a, U), φ,Λ, `′) ∈ E with a ∈ Σ and U ⊆ V, we have: U = Λ. Our
definition of V-event-recording automata differs from event-recording automata
of [4] in that we do not associate a clock with each letter in Σ × 2V . However,
our definition follows the same idea that the history of clock resets is uniquely
determined by an input timed word.

Lemma 8.8. Let V be a finite set.

(a) Let L1,L2 ∈ T(Σ × 2V)+ be timed languages recognizable by V-event-
recording automata. Then, the intersection L1 ∩ L2 is also recognizable
by a V-event-recording automaton.

(b) For each V-event-recording automaton A over Σ there exists a determin-
istic V-event-recording automaton A′ such that L(A) = L(A′).

(c) Let L be a timed language recognizable by a V-event-recording automaton.
Then, the complement TΣ+ \L is also recognizable by a V-event-recording
automaton.

Proof. (a) We use the standard product construction for timed automata.
(b) As in [4], we adopt the standard powerset construction to the

timed setting. Assume that A = (L,V, I, E, F). We construct
A′ = (L′,V ′, I ′, E′, F ′) as follows.

– L′ = 2L, I ′ = {I}, F ′ = {L̃ ⊆ L | L̃ ∩ F 6= ∅};
– E′ is defined in the following way. We denote by K ⊆ N \ {0} the set

of all positive natural numbers k such that k is the lower or upper
bound of the interval φ(x) where x ∈ V and φ ∈ Φ(V) is some clock
constraint appearing in A. We will use these points for a partition
of the interval [0,∞). Assume that K = {k1, ..., kl} where l ≥ 0 and
k1 < k2 < ... < kl. Let P(K) ⊆ I be defined as

P(K) = {[0, 0], (0, k1), [k1, k1], (k1, k2), ..., [kl, kl], (kl,∞)}

(if l = 0, then P(K) = {[0, 0], (0,∞)}). Let Q,Q′ ⊆ L,
(a, U) ∈ Σ× 2V and φ ∈ Φ(V). Then, we let (Q, (a, U), φ, U,Q′) ∈ E′

112

iff φ : V → P(K) and Q′ is the set of all `′ ∈ L such that there exists
an edge (`, (a, U), φ, U, `′) ∈ E where ` ∈ Q and φ(x) ⊆ φ(x) for all
x ∈ V.

Then, A′ is deterministic and L(A′) = L(A).

(c) This fact follows from (b).

As it was shown in [4], event-recording automata are not closed under renam-
ing. In contrast, our V-event-recording automata enjoy this property if a renam-
ing is applied only to the Σ-component. Let Γ,∆ be alphabets and h : Γ→ ∆ a
renaming. For a timed word w = ((γ1, U1), t1)...((γn, Un), tn) ∈ T(Γ× 2V)+, let
h(w) ∈ T(∆ × 2V)+ denote the timed word ((h(γ1), U1), t1)...((h(γn), Un), tn).
Then, let L ⊆ T(Γ × 2V)+, let h(L) = {h(w) | w ∈ L}. Similarly, for
L′ ⊆ T(Γ× 2V)+, let h−1(L′) = {w ∈ T(Σ× 2V)+ | h(w) ∈ L′}.

Lemma 8.9. Let Γ,∆ be alphabets, h : Γ→ ∆ a renaming and V a finite set.

(a) Let A be a V-event-recording automaton over Γ. Then, there exists a
V-event-recording automaton A′ over ∆ with L(A′) = h(L(A)).

(b) Let B be a V-event-recording automaton over ∆. Then, there exists a
V-event-recording automaton B′ over Γ with L(B′) = h−1(L(B)).

Proof. (a) Here, we apply the standard renaming construction where we
replace each edge (`, (γ, U), φ, U, `′) of A with γ ∈ Γ by the edge
(`, (h(γ), U), φ, U, `′).

(b) Here, we replace each edge (`, (δ, U), φ, U, `′) of B with δ ∈ ∆ by the set
of edges (`, (γ, U), φ, U, `′) where γ ∈ Γ and h(γ) = δ.

Lemma 8.10. Let L ⊆ TΣ+ be an unambiguously definable timed language.
Then, L is unambiguously recognizable.

Proof. Let L = L(∃D1. ... ∃Dk.ϕ) where {D1, ..., Dk} ⊆ D are pairwise
distinct variables and ϕ ∈ RDL(Σ) such that Free(ϕ) = D and, for
every w ∈ TΣ+, there exists at most one tuple (I1, ..., Ik) ∈ (2dom(w))k with
(w, σ[D1/I1, ..., Dk/Ik]) |= ϕ.

Let V = {D1, ..., Dk} and, for every w ∈ TΣ+ and J : V → 2dom(w), let
code(w,J) ∈ T(Σ × 2V)+ denote the Büchi encoding of the pair (w,J) as the
timed word.

Using the standard Büchi encoding technique, Lemmas 8.8, 8.9 and struc-
tural induction, we can show that there exists a deterministic V-event-recording
automaton A over Σ such that

L(A) = {code(w,J) | w ∈ TΣ+,J : V → 2dom(w) and (w,J) |= ϕ}.

Assume that A = (L,V, I, E, F). Then, we define the timed automaton
A′ = (L,V, I, E′, F) over Σ by letting

E′ = {(`, a, φ, U, `′) | (`, (a, U), φ, U, `′) ∈ E}.

113

Note that A is deterministic and, for each w ∈ TΣ+, there exists at most
one assignment J : V → 2dom(w) such that code(w,J) ∈ L(A). Then, for
each w ∈ TΣ+, there exists at most one run ρ ∈ RunA′(w) and hence A′ is
unambiguous. Moreover, as it easy to see, L(A′) = L(∃D1. ...∃Dk.ϕ). Thus, L
is unambiguously recognizable.

Then, Theorem 8.6 follows immediately from Lemmas 8.7 and 8.10.

8.4 Definability equals recognizability
In this section, we give a proof of Theorem 8.3. The proof idea is similar
to the idea used for weighted assignment logic on ω-words, i.e., we proceed
via our Nivat-like result for MWTA. What is new here is that we have two
sorts of weights as well as that we deal with unambiguously recognizable timed
languages.

Recall that Σ is an alphabet, V = (M,S, (K,+,0), valT) is a timed valuation
structure, and 1 ∈ M × S is a pair of default weights. First, we show that
definability implies recognizability.

Theorem 8.11. Let ψ ∈ tWAL(Σ,V1) be a sentence. Then, the QTL [[ψ]] is
recognizable over Σ and V.

The proof of this theorem will be given below.
Let ψ = tx1. ... txk.tX1. ... tXl.ϕ be a sentence with k, l ≥ 0, x1, ..., xk ∈

V1, X1, ..., Xl ∈ V2 ∪ D and ϕ ∈ tWALu(Σ,V1). First of all, we fix a letter
/∈ (M ∪ S). We will use it to mark positions where partial mappings µ ∈M↑n
and δ ∈ S↑n are undefined. Let ψ ∈ tWAL(Σ,V1), ∆M

ϕ = ConstM (ϕ) ∪ {#}
and ∆S

ϕ = ConstS(ϕ) ∪ {#}.
Let w = (a1, t1)...(an, tn) ∈ TΣ+ be a timed word. Consider partial

mappings µ : {1, ..., n} 99K ConstM (ϕ) and δ : {1, ..., n} 99K ConstD(ϕ)
(clearly, µ ∈ M↑n and δ ∈ S↑n). We encode µ as the word code(µ) =
m1...mn ∈ (∆M

ϕ)+ such that, for all i ∈ {1, ..., n}, mi = µ(i) if
i ∈ dom(µ) and mi = # otherwise. Similarly, we encode δ as the word
code(δ) = s1...sn ∈ (∆S

ϕ)+ such that, for all i ∈ {1, ..., n}, si = δ(i) if i ∈ dom(δ)
and si = # otherwise. Then, we encode the triple (w, µ, δ) as the timed word
code(w, µ, δ) = ((a1,m1, s1), t1)...((an,mn, sn), tn) ∈ T(Σ×∆M

ϕ ×∆S
ϕ)+.

Lemma 8.12. Let ϕ ∈ tWALu(Σ,V1). Then, there exists a for-
mula ζ ∈ RDL(Σ×∆M

ϕ ×∆S
ϕ) such that Free(ζ) = Free(ϕ) and, for

all (w, σ) ∈ TΣ+
W and all partial functions µ ∈ (ConstM (ϕ))↑|w| and

δ ∈ (ConstS(ϕ))↑|w|, the following holds:

〈〈ϕ〉〉(w, σ) = (µ, δ) iff (code(w, µ, δ), σ) |= ζ. (8.1)

Proof. The proof of this lemma follows the same idea as the proof of Lemma
6.8. First, let β ∈ RDL(Σ). We denote by β∗ the RDL(Σ × ∆M

ϕ × ∆S
ϕ)-

formula obtained from β by replacing each subformula Pa(x) of β by the formula∨(
P(a,m,d)(x) | m ∈ ∆M

ϕ and d ∈ ∆S
ϕ

)
. Clearly, Free(β∗) = Free(β).

114

Since µ and δ are partially defined mappings, we need to keep track of the
positions where these mappings are undefined. For this, we introduce two fresh
second-order variables Y, Z ∈ V2: Y for µ and Z for δ. For each subformula γ
of ϕ, we define a formula rY,Z(γ) ∈ RDL(Σ×∆M

ϕ ×∆S
ϕ) with Free(rY,Z(γ)) =

Free(γ) ∪ {Y,Z}. We proceed by induction as follows.

• Let γ = β ∈ RDL(Σ). Then, we put rY,Z(γ) = β∗ ∧ (Y = ∅) ∧ (Z = ∅).
• Let γ = x 7→ m with m ∈ ∆M

ϕ and x ∈ V1. Then, we put

rY,Z(γ) =
∨(

P(a,m,s)(x) | a ∈ Σ and s ∈ ∆M
ϕ

)
∧ (Y = {x}) ∧ (Z = ∅).

• Let γ = x Z⇒ s with s ∈ ∆S
ϕ and x ∈ V1. Then, we put

rY,Z(γ) =
∨(

P(a,m,s)(x) | a ∈ Σ and m ∈ ∆M
ϕ

)
∧ (Y = ∅) ∧ (Z = {x}).

• Let γ = β ? (γ1 : γ2) with β ∈ RDL(Σ). Then, we put

rY,Z(γ) = (β∗ ∧ rY,Z(γ1)) ∨ ((¬β∗) ∧ rY,Z(γ2)).

• Let γ = γ1 u γ2. Then, we put

rY,Z(γ) = ∃Y1.∃Y2.∃Z1.∃Z2.
[
rY1,Z1

(γ1) ∧ rY2,Z2
(γ2)∧

(Y = Y1 ∪ Y2) ∧ (Z = Z1 ∪ Z2)
]

where Y1, Y2, Z1, Z2 ∈ V2 are fresh and pairwise distinct variables.
• Let γ =

d
X .γ′ where X ∈ V1 ∪ V2. Let

ξ(Y, Z) = ∀X .∃Y ′.∃Z ′.(rY ′,Z′(γ′) ∧ (Y ′ ⊆ Y) ∧ (Z ′ ⊆ Z))

where Y ′, Z ′ ∈ V2 are fresh and distinct variables. Then, we put

rY,Z(γ) = ξ(Y, Z) ∧ ∀U.∀W.[ξ(U,W)→ ((Y ⊆ U) ∧ (Z ⊆W))].

Let w ∈ TΣ+, µ ∈ (ConstM (ϕ))↑|w| and η ∈ (ConstS(ϕ))↑|w|.

For R ⊆ {1, ..., |w|}, let µ|R ∈ (ConstM (ϕ))↑|w| be defined such that
dom(µ|R) = R ∩ dom(µ) and dom(µ|R)(i) = µ(i) for all i ∈ dom(µ|R). The
partial mapping δ|R ∈ (ConstS(ϕ))↑|w| is defined similarly. As in the proof of
Lemma 6.8, it can be shown by induction on the structure of γ that, for any
w-assignment σ, (code(w, µ, δ), σ) |= rY,Z(γ) iff the following hold:

• σ(Y) ⊆ dom(µ) and σ(Z) ⊆ dom(δ),
• 〈〈γ〉〉(w, σ) = (µ|σ(Y), δ|σ(Z)).

Then, the desired formula ζ ∈ RDL(Σ×∆M
ϕ ×∆S

ϕ) is defined as

ζ = ∃Y.∃Z.
[
rY,Z(ϕ) ∧ ∀x.

(
(¬Y (x))→

∨
a∈Σ, s∈∆S

ϕ

P(a,#,s)(x)

)

∧ ∀x.
(

(¬Z(x))→
∨

a∈Σ, m∈∆M
ϕ

P(a,m,#)(x)

)]
.

Note that Free(ζ) = Free(ϕ) and (8.1) holds.

115

Lemma 8.13. There exist an alphabet Γ, renamings h : Γ → Σ and
g : Γ→M × S, and an unambiguously definable timed language L ⊆ TΓ+ such
that [[ψ]] = h((valT ◦g) ∩ L).

Proof. The proof is similar to the proof of Lemma 6.16. The main differences are
that we have two types of weights and that L must be unambiguously definable.
Let 1 = (1M ,1S).

Recall that ψ = tx1. ... txk.tX1. ... tXl.ϕ with ϕ ∈ tWALu(Σ,V1).
We may assume that x1, ..., xk, X1, ..., Xl are pairwise distinct variables. Let
V = {x1, ..., xk, X1, ..., Xl}. We define Γ, h and g as follows.

• Let Γ = Σ×∆M
ϕ ×∆S

ϕ × {0, 1}|V|.
• Let h : Γ → Σ be defined for all γ = (a,m, s, u) with a ∈ Σ, m ∈ ∆M

ϕ ,
s ∈ ∆S

ϕ and u ∈ {0, 1}|V| as h(γ) = a.
• Let gM : ∆M

ϕ → M be defined by gM (m) = m for all m ∈ ConstM (ϕ)

and gM (#) = 1M . Similarly, let gS : ∆S
ϕ → S be defined by gS(s) = s

for all s ∈ ConstS(ϕ) and gS(#) = 1S . Then, g : Γ→ M × S is defined
for all γ = (a,m, s, u) with a ∈ Σ, m ∈ ∆M

ϕ , s ∈ ∆S
ϕ and u ∈ {0, 1}|V| by

letting g(γ) = (gM (m), gS(s)).

It remains to define L ⊆ TΓ+. By Lemma 8.12, there exists a formula
ζ ∈ RDL(Σ×∆M

ϕ ×∆S
ϕ) such that Free(ζ) = V and, for all (w, σ) ∈ TΣ+

W ,
all partial mappings µ ∈ (ConstM (ϕ))↑|w| and δ ∈ (ConstS(ϕ))↑|w| and all
w-assignments σ, we have: 〈〈ϕ〉〉(w, σ) = (µ, δ) iff (code(w, µ, δ), σ) |= ζ.

Let ζ∗ ∈MSO(ζ) be the formula obtained from ζ by replacing each predicate
P(a,m,s)(x) occurring in ζ (here, a ∈ Σ, m ∈ ConstM (ϕ), s ∈ ConstS(ϕ) and
x ∈ V1) by the formula

∨
(P(a,m,s,u)(x) | u ∈ {0, 1}|V|). For all 1 ≤ i ≤ |V|,

d ∈ {0, 1} and x ∈ V1, let

R∗i,d(x) =
∨(

P(a,m,s,u)(x) | a ∈ Σ,m ∈ ∆M
ϕ , s ∈ ∆S

ϕ and

u = (u1, ..., u|V|) with ui = d
)

Using our new formulas R∗i,d(x), we define the formulas φ1, φ2 and φ for the
Büchi encoding of V-variables as in the proof of Lemma 6.16. The formula ϕ
encodes the values of V-variables. Let the sentence β ∈ ∃RDL(Γ) be defined as

β = ∃D1. ... ∃Dr.∃Y1. ... ∃Yl−r.∃x1. ... ∃xk.(φ ∧ ζ∗)

with r = |V ∩ D|, {D1, ..., Dr} = V ∩ D and {Y1, ..., Yl−r} = V ∩ V2. Then, we
put L = L(β). Since φ uniquely associates values of V-variables with an input
timed word, L is unambiguously definable. Moreover, it follows from Lemma
8.12 that h((valT ◦g) ∩ L) = [[ϕ]].

Proof of Theorem 8.11: follows from Lemma 8.13, Theorem 8.6 and the inclusion
NUnamb(Σ,V) ⊆ tRec(Σ,V) of our Nivat Theorem 7.17 (a).

Now we turn to the converse direction of Theorem 8.3

116

Theorem 8.14. Let L : TΣ+ → K be a QTL recognizable over Σ and V. Then,
there exists a sentence ψ ∈ tWAL(Σ,V1) such that [[ψ]] = L.

Using the inclusion tRec(Σ,V) ⊆ NUnamb(Σ,V) of Theorem 7.17 (a), it
suffices to show the following.

Lemma 8.15. Let Γ be an alphabet, h : Γ and g : Γ → M × S renamings,
and L ⊆ TΓ+ an unambiguously definable timed language. Then, there exists a
sentence ψ ∈ tWAL(Σ,V1) such that [[ψ]] = ((valT ◦g) ∩ L).

Proof. Here we use a similar proof technique as in Lemma 6.18. For each γ ∈ Γ
with g(γ) = (m, s), let gM (γ) = m and gS(γ) = s. Let β ∈ RDL(Γ) be a
formula such that:

(i) Free(β) = {D1, ..., Dk} ⊆ D where k ≥ 0 and D1, ..., Dk are pairwise
distinct variables;

(ii) for each w ∈ TΣ+ there exists at most one tuple (I1, ..., Ik) ∈ (2dom(w))k

such that (w, σ[D1/I1, ..., Dk/Ik]) |= β; here σ is a fixed w-assignment;
(iii) L = L(∃D1. ... ∃Dk.β).

Let V = {Xγ | γ ∈ Γ} ⊆ V2 be a set of pairwise distinct variables which do not
appear in β. For any formula ζ ∈ RDL(Γ), we denote by h(ζ) ∈ RDL(Γ) the
formula obtained from ζ by replacing each predicate Pγ(x) occurring in γ by
the formula Ph(γ)(x) ∧Xγ(x).

For a timed word u = (γ1, t1)...(γn, tn) ∈ TΓ+, let σu : V → 2dom(u) be
defined for all γ ∈ Γ as σu(Xγ) = {i ∈ dom(u) | γi = γ}. It can be shown
by induction on the structure of β that, for all timed words u ∈ TΓ+ and all
u-assignments σ with σ|V = σu, we have:

(u, σ) |= β iff (h(u), σ) |= h(β). (8.2)

Let the formula Partition be defined as in Equation (6.3) and the formula
Renaming as in Equation (6.4). Let

Boolean = Partition ∧Renaming ∧ h(β).

Note that Boolean ∈ RDL(Σ). Let (γi)1≤i≤|Γ| be an enumeration of
Γ and x ∈ V1 a fresh variable. For 1 ≤ i ≤ |Γ|, we define the formula
χi ∈ tWALu(Σ,V1) inductively as follows.

• For i = |Γ|, we let χi = (x 7→ gM (γi)) u (x Z⇒ gS(γi)).
• Let 1 ≤ i < |Γ| and assume that χi+1 is defined. Then, we let
χi = Xγi(x) ? (((x 7→ gM (γi)) u (x Z⇒ gS(γi))) : χi+1).

Let χ =
d
x.χi. Note that χ ∈ tWALu(Σ,V1). Then, we define the desired

sentence ψ ∈ tWAL(Σ,V1) as

ψ = tD1. ... tDk.tX1. ... tX|Γ|.(Boolean u χ).

Taking into account (ii) and Equation 8.2, it can be shown as in the proof of
Lemma 6.18 that [[ψ]] = ((valT ◦g) ∩ L).

117

Now Theorem 7.17 (a) and Lemma 8.15 prove Theorem 8.14.

Proof of Theorem 8.3. Immediate by Theorems 8.11 and 8.14.

Remark 8.16. Alternatively, we could prove Theorem 8.14 by a direct trans-
lation of a MWTA into a timed weight assignment sentence. However, our
proof has the advantage that we do not have to provide a bulky description of
an accepting run of a timed automaton.

118

Chapter 9

Timed pushdown automata
and timed matching logic

Contents
9.1 Timed pushdown automata 119
9.2 Timed matching logic 122
9.3 Visibly pushdown languages 124
9.4 Decomposition of timed pushdown automata . . . 125
9.5 Definability equals recognizability 134

In this chapter, we provide a logical characterization for timed pushdown
automata investigated in [2] (cf. also [19, 31, 51] for related models). For our
purpose, we introduce a timed matching logic. As in the logic of Lautemann,
Schwentick and Thérien [70], we handle the stack functionality by means of a
binary matching predicate. As in the logic of Wilke [84], we use relative distance
predicates to handle the functionality of clocks. Moreover, to handle the ages
of stack elements, we lift the binary matchings to the timed setting, i.e., we are
able compare the time distance between matched positions with a constant. The
main result of this chapter will be the expressive equivalence of timed pushdown
automata and timed matching logic.

9.1 Timed pushdown automata
In this section, we consider timed pushdown automata which have been intro-
duced and investigated in [1]. These machines are nondeterministic automata
equipped with finitely many global clocks (like timed automata) and a stack
(like pushdown automata). In contrast to untimed pushdown automata, in the
model of TPDA we push together with a letter a local clock whose initial age
can be an arbitrary real number from some interval. Like in timed automata,

119

120

the values of global clocks and the ages of local clocks grow in time. Then,
we can pop this letter only if its age belongs to a given interval. Note that,
when considering all possible runs of a TPDA, the number of used local clocks
is in general not bounded by any constant. We slightly extend the definition of
TPDA presented in [1] by allowing labels of edges. This, however, does not harm
the decidability of the reachability problem which was shown in [1]. Note that
the model of TPDA of [1] extends the model of timed automata with untimed
stack proposed in [19].

For basic notions about timed languages, clock constraints and clock valua-
tions, we refer the reader to Section 7.1. Let Γ be a stack alphabet. We denote by
S(Γ) = ({↓}×Γ×I)∪{#}∪({↑}×Γ×I) the set of stack commands over Γ. For
u = (γ1, t1)...(γk, tk) ∈ TΓ∗ and t ∈ R≥0, let u+t = (γ1, t1+t)...(γk, tk+t) ∈ TΓ∗.

Definition 9.1. Let Σ be an alphabet. A timed pushdown automaton (TPDA)
over Σ is a tuple A = (L,Γ, C, L0, E, Lf) where L is a finite set of locations,
Γ is a finite stack alphabet, C is a finite set of clocks, L0, Lf ⊆ L are sets of
initial resp. final locations, and E ⊆ L×Σ×S(Γ)×IC × 2C ×L is a finite set
of edges.

Let e = (`, a, s, φ,Λ, `′) ∈ E be an edge of A with `, `′ ∈ L, a ∈ Σ, s ∈ S(Γ),
φ ∈ IC and Λ ⊆ C. We will denote e by ` a,φ,Λ−−−→

s
`′. We say that a is the label

of e and denote it by label(e). We also let stack(e) = s, the stack command of
e. Let E↓ ⊆ E denote the set of all push edges e with stack(e) = (↓, γ, I) for
some γ ∈ Γ and I ∈ I. Similarly, let E# = {e ∈ E | stack(e) = #} be the set
of local edges and E↑ = {e ∈ E | stack(e) = (↑, γ, I) for some γ ∈ Γ and I ∈ I}
the set of pop edges. Then, we have E = E↓ ∪ E# ∪ E↑.

A configuration c of A is described by the present location, the values of the
clocks, and the stack, which is a timed word over Γ. That is, c is a triple 〈`, ν, u〉
where ` ∈ L, ν ∈ RC≥0 and u ∈ TΓ∗. We say that c is initial if ` ∈ L0, ν(x) = 0
for all x ∈ C and u = ε. We say that c is final if ` ∈ Lf and u = ε. Let CA
denote the set of all configurations of A, C0

A the set of all initial configurations
of A and CfA ⊆ CA the set of all final configurations.

Let c = 〈`, ν, u〉 and c′ = 〈`′, ν′, u′〉 be two configurations with
u = (γ1, t1)(γ2, t2)...(γk, tk) and let e = (q, a, s, φ,Λ, q′) ∈ E be an edge. We
say that c `e c′ is a switch transition if ` = q, `′ = q′, ν |= φ, ν′ = ν[Λ := 0],
and:

• if s = (↓, γ, I) for some γ ∈ Γ and I ∈ I, then u′ = (γ, τ)u for some τ ∈ I;
• if s = #, then u′ = u;
• if s = (↑, γ, I) with γ ∈ Γ and I ∈ I, then k ≥ 1, γ = γ1, t1 ∈ I and
u′ = (γ2, t2)...(γk, tk).

For t ∈ R≥0, we say that c `t c′ is a delay transition if ` = `′, ν′ = ν + t and
u′ = u + t. For t ∈ R≥0 and e ∈ E, we write c `t,e c′ if there exists c′′ ∈ CA
with c `t c′′ and c′′ `e c′.

A run ρ of A is an alternating sequence of delay and switch transi-
tions which starts in an initial configuration and ends in a final configu-
ration, formally, ρ = c0 `t1,e1 c1 `t2,e2 ... `tn,en cn where n ≥ 1, c0 ∈ C0

A,

121

1

a, push[0,0](γa)

b, push[0,0](γb)

a, pop(0,1)(γa)

b, pop[0,2](γb)

Figure 9.1: TPDA A of Example 9.2

c1, ..., cn−1 ∈ CA, cn ∈ CfA, t1, ..., tn ∈ R≥0 and e1, ..., en ∈ E. The label
of ρ is the timed word label(ρ) = (label(e1), t1)...(label(en), tn) ∈ TΣ+. Let
L(A) = {w ∈ TΣ+ | there exists a run ρ of A with label(ρ) = w}, the timed
language recognized by A. We say that a timed language L ⊆ TΣ+ is a timed
pushdown language if there exists a TPDA A over Σ such that L(A) = L.

Note that every timed automaton A = (L,C, I, E, F) can be considered as
a TPDA A = (L,Γ, C, I, E, F) where Γ is an arbitrary alphabet and E = E#.

Example 9.2. Here, we consider a timed extension of the well-known Dyck
languages. Let Σ = {a1, ..., am} be a set of opening brackets and Σ = {a1, ..., am}
a set of corresponding closing brackets. Let Ia1

, ..., Iam ∈ I be intervals. We will
consider the timed Dyck language DΣ(Ia1

, ..., Iam) ⊆ T(Σ∪Σ)+ of timed words
w = (a1, t1)...(an, tn) where a1...an is a sequence of correctly nested brackets and,
for every i ∈ {1, ...,m}, the time distance between any two matching brackets ai
and ai is in Iai . It is not difficult to see that the timed language DΣ(Ia1

, ..., Iam)
is a timed pushdown language. We illustrate this on the following example.
Let Σ = {a, b}, Σ = {a, b}, Ia = (0, 1) and Ib = [0, 2]. Consider the TPDA
A = (L,Γ, ∅, L0, E, Lf) with:

• L = L0 = Lf = {1}, Γ = {γa, γb};

• E = {eα | α ∈ Σ ∪ Σ} such that, for α ∈ Σ, eα =
(
1

α,∅,∅−−−−−−−→
(↓,γα,[0,0])

1
)
and

eα =
(
1

α,∅,∅−−−−−−→
(↑,γα,Iα)

1
)
.

The TPDA A is depicted in Fig. 9.1. Note that A does not contain any
global clocks. Then, L(A) = DΣ(Ia, Ib). Consider, for instance, the timed
word w = (b, 0)(a, 0.2)(a, 0.9)(b, 0.9) ∈ T(Σ ∪ Σ)+. Then,

〈1, ε〉 `0 〈1, ε〉 `eb 〈1, (γb, 0)〉 `0.2 〈1, (γb, 0.2)〉 `ea 〈1, (γa, 0)(γb, 0.2)〉
`0.9 〈1, (γa, 0.9)(γb, 1.1)〉 `ea 〈1, (γb, 1.1)〉 `0.9 〈1, (γb, 2)〉 `eb 〈1, ε〉

is an accepting run of A with the label w. Note that here we omit the empty
clock valuation of configurations.

122

9.2 Timed matching logic
The goal of this section is to develop a logical formalism which is expressively
equivalent to TPDA defined in Sect. 9.1. Our new logic will incorporate Wilke’s
relative distance logic [84] for timed automata as well as the logic with match-
ings [70] introduced by Lautemann, Schwentick and Thérien for context-free
languages. Moreover, we augment our logic with the possibility to measure the
time distance between matched positions.

Recall that V1, V2,D denote the countable and pairwise disjoint sets of first-
order, second-order and relative distance variables, respectively. We also fix a
matching variable µ /∈ V1 ∪ V2 ∪ D. Let U = V1 ∪ V2 ∪ D ∪ {µ}.

Let Σ be an alphabet. The set tMSO(Σ) of timed matching MSO formulas
is defined by the grammar

ϕ ::= Pa(x) | x ≤ y | X (x) | dI(D,x) | µI(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y ∈ V1, X ∈ V2, D ∈ D, X ∈ V2 ∪ D and I ∈ I. The formulas
of the form dI(D,x) are called relative distance predicates and the formulas of
the form µI(x, y) are called distance matchings. For µ[0,∞)(x, y), we will write
simply µ(x, y).

The tMSO(Σ)-formulas are interpreted over timed words over Σ and
assignments of variables. Let w ∈ TΣ+ be a timed word. Recall that
dom(w) = {1, ..., |w|} is the domain of w. A (w,U)-assignment is a
mapping σ : U → dom(w) ∪ 2dom(w) ∪ 2(dom(w))2

such that σ(V1) ⊆ dom(w),
σ(V2 ∪ D) ⊆ 2dom(w) and σ(µ) ⊆ 2(dom(w))2

. Let σ be a (w,U)-assignment. For
x ∈ V1 and j ∈ dom(w), the update σ[x/j] is the (w,U)-assignment defined by
σ[x/j](x) = j and σ[x/j](y) = σ(y) for all y ∈ U \{x}. Similarly, for X ∈ V2∪D
and J ⊆ dom(w), we define the update σ[X/J] and, for M ⊆ (dom(w))2, the
update σ[µ/M].

Let w ∈ TΣ+ be a timed word and I ∈ I an interval. Recall that, for
j ∈ dom(w) and J ⊆ dom(w), we write (J, j) ∈ dI(w) if 〈w〉i,j ∈ I for the
greatest value i ∈ J ∪ {0} with i < j. For i, j ∈ dom(w), M ⊆ (dom(w))2 and
I ∈ I, we will write (i, j,M) ∈ µI(w) if i < j, (i, j) ∈M and 〈w〉i,j ∈ I.

Given a formula ϕ ∈ tMSO(Σ), a timed word w = (a1, t1)...(an, tn) ∈ TΣ+

and a (w,U)-assignment σ; the satisfaction relation (w, σ) |= ϕ is defined in-
ductively on the structure of ϕ as shown in Table 9.1. Here, a ∈ Σ, x, y ∈ V1,
X ∈ V2, D ∈ D, X ∈ V2 ∪ D and I ∈ I.

For ϕ ∈ tMSO(Σ) and y ∈ V1, let ∃≤1y.ϕ denote the formula
¬∃y.ϕ ∨ ∃y.(ϕ ∧ ∀z.(z 6= y → ¬ϕ[y/z])) where z ∈ V1 does not occur in
ϕ and ϕ[y/z] is the formula obtained from ϕ by replacing y by z. Let
Matching(µ) ∈ tMSO(Σ) denote the formula

Matching(µ) =∀x.∀y.(µ(x, y)→ x < y) ∧ ∀x.∃≤1y.(µ(x, y) ∨ µ(y, x)) ∧
∀x.∀y.∀u.∀v.((µ(x, y) ∧ µ(u, v) ∧ x < u < y)→ x < v < y).

This formula demands that a binary relation µ on a timed word domain is a
matching (cf. [70]), i.e., it is compatible with <, each element of the domain
belongs to at most one pair in µ and µ is noncrossing.

123

(w, σ) |= Pa(x) iff aσ(x) = a
(w, σ) |= x ≤ y iff σ(x) ≤ σ(y)
(w, σ) |= X (x) iff σ(x) ∈ σ(X)

(w, σ) |= dI(D, x) iff (σ(D), σ(x)) ∈ dI(w)
(w, σ) |= µI(x, y) iff (σ(x), σ(y), σ(µ)) ∈ µI(w)
(w, σ) |= ϕ1 ∨ ϕ2 iff (w, σ) |= ϕ1 or (w, σ) |= ϕ2

(w, σ) |= ¬ϕ iff (w, σ) |= ϕ does not hold
(w, σ) |= ∃x.ϕ iff ∃j ∈ dom(w) : (w, σ[x/j]) |= ϕ
(w, σ) |= ∃X.ϕ iff ∃J ⊆ dom(w) : (w, σ[X/J]) |= ϕ

Table 9.1: The semantics of tMSO(Σ)-formulas

The set TML(Σ) of the formulas of timed matching logic over Σ is defined
to be the set of all formulas of the form

ψ = ∃µ.∃D1. ... ∃Dm.(ϕ ∧Matching(µ))

where m ≥ 0, D1, ..., Dm ∈ D and ϕ ∈ tMSO(Σ). Let w ∈ TΣ+ and σ be a
(w,U)-assignment. Then, (w, σ) |= ψ iff there exist J1, ..., Jm ⊆ dom(w) and a
matching M ⊆ (dom(w))2 such that (w, σ[D1/J1, ..., Dm/Jm, µ/M]) |= ϕ. For
simplicity, we will denote ψ by ∃matchµ.∃D1. ... ∃Dm.ϕ. Note that ∃RDL(Σ)-
formulas are exactly the TML(Σ)-formulas not containing µ.

For a formula ψ ∈ TML(Σ), the set Free(ψ) ⊆ U of free variables of ψ
is defined as usual. We say that ψ ∈ TML(Σ) is a sentence if Free(ψ) = ∅.
Note that, for a sentence ψ, the satisfaction relation (w, σ) |= ψ does not
depend on a (w,U)-assignment σ. Then, we will simply write w |= ψ. Let
L(ψ) = {w ∈ TΣ+ | w |= ψ}, the language defined by ψ. We say that a timed
language L ⊆ TΣ+ is TML-definable if there exists a sentence ψ ∈ TML(Σ)
such that L(ψ) = L.

Example 9.3. Consider the timed Dyck language DΣ(Ia1 , ..., Iam) ⊆ T(Σ∪Σ)+

defined in Example 9.2. The timed language DΣ(Ia1
, ..., Iam) can be defined by

the TML(Σ)-sentence

∃matchµ.

(
∀x.∃y.(µ(x, y) ∨ µ(y, x)) ∧

∀x.∀y.
(
µ(x, y)→

∨m

j=1
(Paj (x) ∧ Paj (y) ∧ µIaj (x, y))

))
.

Our main result is the following theorem.

Theorem 9.4. Let Σ be an alphabet and L ⊆ TΣ+ a timed language. Then L
is a timed pushdown language iff L is TML-definable.

Note that Theorem 9.4 extends the result of [70] for context-free languages
as well as the result of [84] for regular timed languages. As already mentioned
in the introduction, we will use the logical characterization result for visibly
pushdown languages [5]. In Sect. 9.3, for the convenience of the reader, we

124

recall this result. In Sect. 9.4, we show a Nivat-like decomposition theorem for
timed pushdown languages. Finally, in Sect. 9.5, we give a proof of Theorem
9.4.

It was shown in [1] that the emptiness problem for TPDA is decidable.
Moreover, as we will see later, our proof of Theorem 9.4 is constructive. Then,
we obtain the decidability of the satisfiability problem for our timed matching
logic.

Corollary 9.5. It is decidable, given an alphabet Σ and a sentence
ψ ∈ TML(Σ), whether there exists a timed word w ∈ TΣ+ such that w |= ψ.

9.3 Visibly pushdown languages

For the rest of the chapter, we fix a special stack symbol ⊥.
A pushdown alphabet is a triple Σ̃ = 〈Σ↓,Σ#,Σ↑〉 with pairwise disjoint sets

Σ↓, Σ# and Σ↑ of push, local and pop letters, respectively. Let Σ = Σ↓∪Σ#∪Σ↑.
A visibly pushdown automaton (VPA) over Σ̃ is a tuple A = (Q,Γ, Q0, T,Qf)
where Q is a finite set of states, Q0, Qf ⊆ Q are sets of initial resp. final states,
Γ is a stack alphabet with ⊥ /∈ Γ, and T = T ↓ ∪ T# ∪ T ↓ is a set of transitions
where T ↓ ⊆ Q × Σ↓ × Γ × Q is a set of push transitions, T# ⊆ Q × Σ# × Q
is a set of local transitions and T ↑ ⊆ Q × Σ↑ × (Γ ∪ {⊥}) × Q is a set of pop
transitions.

We define the label of a transition τ ∈ T depending on its sort as follows.
If τ = (p, c, γ, p′) ∈ T ↓ ∪ T ↑ or τ = (p, c, p′) ∈ T#, we let label(τ) = c, so
c ∈ Σ↓ ∪ Σ↑ resp. c ∈ Σ#.

A configuration of A is a pair 〈q, u〉 where q ∈ Q and u ∈ Γ∗. Let τ ∈ T be
a transition. Then, we define the transition relation `τ on configurations of A
as follows. Let c = 〈q, u〉 and c′ = 〈q′, u′〉 be configurations of A.

• If τ = (p, a, γ, p′) ∈ T ↓, then we put c `τ c′ iff p = q, p′ = q′ and u′ = γu.
• If τ = (p, a, p′) ∈ T#, then we put c `τ c′ iff p = q, p′ = q′ and u′ = u,
• If τ = (p, a, γ, p′) ∈ T ↑ with γ ∈ Γ ∪ {⊥}, then we put c `τ c′ iff p = q,
p′ = q′ and either γ 6= ⊥ and u = γu′, or γ = ⊥ and u′ = u = ε.

We say that c = 〈q, u〉 is an initial configuration if q ∈ Q0 and u = ε. We call c a
final configuration if q ∈ Qf . A run ofA is a sequence ρ = c0 `τ1 c1 `τ2 ... `τn cn
where c0, c1, ..., cn are configurations of A such that c0 is initial, cn is final and
τ1, ..., τn ∈ T . Let label(ρ) = label(τ1)... label(τn) ∈ Σ+, the label of ρ. Let
L(A) = {w ∈ Σ+ | there exists a run ρ of A with label(ρ) = w}. We say that a
language L ⊆ Σ+ is a visibly pushdown language over Σ̃ if there exists a VPA A
over Σ with L(A) = L.

Remark 9.6. Note that we do not demand for final configurations that u = ε
and we can read a pop letter even if the stack is empty (using the special stack
symbol ⊥). This permits to consider the situations where some pop letters are
not balanced by push letters and vice versa.

125

We note that the visibly pushdown languages over Σ̃ form a proper subclass
of the context-free languages over Σ, cf. [5] for further properties.

For any word w = a1...an ∈ Σ+, let Mask(w) = b1...bn ∈ {−1, 0, 1}+ such
that, for all 1 ≤ i ≤ n, bi = 1 if ai ∈ Σ↓, bi = 0 if ai ∈ Σ#, and bi = −1
otherwise. Let L ⊆ {−1, 0, 1}∗ be the language which contains ε and all words
b1...bn ∈ {−1, 0, 1}+ such that

∑n
j=1 bj = 0 and

∑i
j=1 bj ≥ 0 for all i ∈ {1, ..., n}.

Here, we interpret 1 as the left parenthesis, −1 as the right parenthesis and 0 as
an irrelevant symbol. Then, L is the set of all sequences with correctly nested
parentheses.

Next, we turn to the logic MSOL(Σ̃) over the pushdown alphabet Σ̃ which
extends the classical MSO logic on finite words by the binary relation which
checks whether a push letter and a pop letter are matching. This logic was
shown in [5] to be expressively equivalent to visibly pushdown automata. The
logic MSOL(Σ̃) is defined by the grammar

ϕ ::= Pa(x) | x ≤ y | X(x) | L(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y ∈ V1 and X ∈ V2. The formulas in MSOL(Σ̃)
are interpreted over a word w = a1...an ∈ Σ+ and a variable assignment
σ : V1 ∪ V2 → dom(w) ∪ 2dom(w). We will write (w, σ) |= L(x, y) iff σ(x) < σ(y),
aσ(x) ∈ Σ↓, aσ(y) ∈ Σ↑ and Mask(aσ(x)+1...aσ(y)−1) ∈ L. For other formulas,
the satisfaction relation is defined as usual. If ϕ is a sentence, then the satisfac-
tion relation does not depend on a variable assignment and we can simply write
w |= ϕ. For a sentence ϕ ∈ MSOL(Σ̃), let L(ϕ) = {w ∈ Σ+ | w |= ϕ}. We
say that a language L ⊆ Σ+ is MSOL(Σ̃)-definable if there exists a sentence
ϕ ∈MSOL(Σ̃) such that L(ϕ) = L.

The following result states the expressive equivalence of visibly pushdown
automata and MSOL-logic.

Theorem 9.7 (Alur, Madhusudan [5]). Let Σ̃ = (Σ↓,Σ#,Σ↑) be a pushdown
alphabet, Σ = Σ↓ ∪ Σ# ∪ Σ↑, and L ⊆ Σ+ a language. Then, L is a visibly
pushdown language over Σ̃ iff L is MSOL(Σ̃)-definable.

9.4 Decomposition of timed pushdown automata
In this section we prove a Nivat-like (cf. [74, 12]) decomposition theorem for
timed pushdown automata. This result establishes a connection between timed
pushdown languages and visibly pushdown languages. We will use this theorem
for the proof of our Theorem 9.4.

The key idea is to consider a timed pushdown language as a renaming of
a timed pushdown language over an extended alphabet which encodes the in-
formation about clocks and stack; on the level of this extended alphabet we
can separate the setting of visibly pushdown languages from the timed setting.
Our separation technique appeals to the partitioning of R≥0 into finitely many
intervals; this finite partition will be used for the construction of the desired
extended alphabet.

126

In the rest of this chapter, we fix an alphabet Σ (which we will understand
as the alphabet of Theorem 9.4).

Consider a TPDA A = (L,Γ, C, L0, E, Lf) over Σ. We may assume that
C = {1, ...,m}. Let X ⊆ N be the set of all natural numbers which are lower or
upper bounds of some interval I ∈ I appering in E (either in a clock constraint
or in a stack command). Clearly, X is a finite set. Let k = max(X) (if X = ∅,
then we let k = 0). Let P(k) = {[0, 0], (0, 1), [1, 1], (1, 2), ..., [k, k], (k,∞)} ⊆ 2I ,
the k-interval partition of R≥0. Note that P(k) is a finite non-empty set since
[0, 0] ∈ P(k) for any k ∈ N. The extended alphabet for such a TPDA A will
be a pushdown alphabet augmented with the following additional components
reflecting the performance of the clocks and the stack:

• the partition of the pushdown alphabet will be induced by the component
{↓,#, ↑};
• for every global clock c ∈ {1, ...,m}, we add two components:

– a component P(k) which indicates the interval containing a value of
the clock c before taking an edge of A;

– a component {0, 1} which indicates whether the clock c was reset
after taking an edge of A or not;

• to handle the local clocks of the stack, we add the component P(k) which
indicates:

– for all push letters (i.e. with the ↓-component) the interval containing
an initial value of the local clock which will be pushed into the stack;

– for all pop letters (i.e. with the ↑-component) the interval containing
a value of the clock on the top of the stack.

– for all letters with #, the stack is not touched and the P(k)-
component of this letter is useless. So in this case we can restrict
ourselves to the interval [0, 0].

Formally, we consider the pushdown alphabet R̃m,k = 〈R↓m,k,R
#
m,k,R

↑
m,k〉

where, for δ ∈ {↓,#, ↑}: Rδm,k = Σ × (P(k))m × {0, 1}m × P(k) × {δ}. Let
Rm,k =

⋃
δ∈{↓,#,↑}Rδm,k.

Now consider a "simple" TPDA over Rm,k with a single state, a single stack
symbol and m clocks {1, ...,m}; for every letter in Rm,k, this TPDA processes
the clocks and the stack according to the information encoded in the additional
components of Rm,k. Let Tm,k ⊆ T(Rm,k)+ denote the timed language accepted
by this TPDA.

For intervals I, I ′ ∈ I, let I − I ′ = {x− x′ | x ∈ I and x′ ∈ I ′}.
The timed language Tm,k can be described formally

as follows. Let w = (b1, t1)...(bn, tn) ∈ T(Rm,k)+ where, for all i ∈ {1, ..., n},
bi = (ai, Gi, Ri, si, δi) with ai ∈ Σ, Gi = (g1

i , ..., g
m
i) ∈ (P(k))m (corresponds

to the intervals for the global clocks), Ri = (r1
i , ..., r

m
i) ∈ {0, 1}m (corresponds

to the resets of global clocks), si ∈ P(k) (corresponds to the intervals for the

127

local clocks in the stack), δi ∈ {↓,#, ↑} and ti ∈ R≥0. Then, w ∈ Tm,k iff the
following hold:

• Mask(b1...bn) ∈ L (with respect to the pushdown alphabet R̃m,k);
• for all i ∈ {1, ..., n} and j ∈ {1, ...,m}, letting rj0 = 1, we have 〈w〉i′,i ∈ gji

for the greatest i′ ∈ {0, 1, ..., i− 1} with rji′ = 1;
• for all i, i′ ∈ {1, ..., n} with i < i′, δi = ↓, δi′ = ↑ and Mask(bi+1...bi′−1) ∈

L, we have 〈w〉i,i′ ∈ si′ − si.

Clearly, the timed language Tm,k is a non-empty timed pushdown language.
Let ∆ be an alphabet, L ⊆ ∆+ a language and L′ ⊆ T∆+ a timed language.
Let (L ∩ L′) ⊆ T∆+ be the "restriction" of L′ to L, i.e., the timed language
consisting of all timed words w = (b1, t1)...(bn, tn) ∈ L′ such that b1...bn ∈ L.
Let ∆,∆′ be alphabets and h : ∆ → ∆′ a renaming. For a timed word
w = (b1, t1)...(bn, tn) ∈ T∆+, let h(w) = (h(b1), t1)...(h(bn), tn). Then, for a
timed language L ⊆ T∆+, let h(L) = {h(w) | w ∈ L}, so h(L) ⊆ T(∆′)+.

Now we formulate our decomposition theorem. This result permits to sepa-
rate the discrete part of TPDA from their timed part. We show that the discrete
part can be described by visibly pushdown languages whereas the timed part
can be described by means of timed languages Tm,k which have the following
interesting property. We can decide whether a timed word w belongs to Tm,k
by analyzing the components of w. In contrast, if we have a TPDA A and can
use it only as a "black box", then we cannot say whether a timed word w is
accepted by this TPDA A without passing w through A.

Theorem 9.8. Let Σ be an alphabet and L ⊆ TΣ+ a timed language. Then the
following are equivalent.

(a) L is a timed pushdown language.
(b) There exist m, k ∈ N, a renaming h : Rm,k → Σ, and a visibly push-

down language L′ ⊆ (Rm,k)+ over the pushdown alphabet R̃m,k such that
L = h(L′ ∩ Tm,k).

Before we turn to the proof of Theorem 9.8, we give an example of the
decomposition for a TPDA.

Example 9.9. Consider the TPDA A = (L,Γ, C, L0, E, Lf) over the alphabet
Σ = {a, b} depicted in Fig. 9.2. Formally, A is defined as follows:

• L = {1, 2}, L0 = {1}, Lf = {2}, Γ = {γ}, C = {x};
• E consists of the following edges: 1

a,True,∅−−−−−−→
(↓,γ,(0,1))

1, 1
b,True,{x}−−−−−−−→

#
1,

1
a,x≥1,∅−−−−−→

#
2, 2

a,True,∅−−−−−−→
(↑,γ,[1,1])

2.

The timed language L(A) can be decomposed in the following way. As already
mentioned before, m is the number of global clocks of A, i.e., m = 1 and k
is the maximal constant appearing in the intervals of A, i.e., k = 1. Then,
R1,1 = Σ× P(1)× {0, 1} × P(1)× {↓,#, ↑}. Then, L = h(L′ ∩ Tm,k) where:

128

1 2

a, push(0,1)(γ)

b, x := 0

a, x ≥ 1

a, pop[1,1](γ)

Figure 9.2: TPDA A of Example 9.9

1 2

(a, ∗, 0, (0, 1), ↓), push(γ)

(b, ∗, 1, idle,#)

(a, (1,∞), 0, idle,#)

(a, [1, 1], 0, idle,#)

(a, ∗, 0, [1, 1], ↑), pop(γ)

Figure 9.3: TPDA AL′ of Example 9.9

• h : R1,1 → Σ is the projection to the first component;
• the language L′ ⊆ (R1,1)+ is recognized by the visibly pushdown automaton
AL′ = (L,Γ, L0, T

′, Lf) over the pushdown alphabet R̃1,1 depicted in Fig.
9.3. Here, the component ∗ in the transition labels means an arbitrary
element of P(1) and idle = [0, 0] denotes the idle stack interval for the
letters with the #-component. We also would like to point out that every
edge of the TPDA A is simulated by several transitions of the VPA AL′ .
For instance, we simulate the edge from the location 1 to the location 2
of the TPDA A by two edges, since, for the condition x ≥ 1 we have two
intervals [1, 1], (1,∞) in the partition P(1) which satisfy this condition.

• The timed language T1,1 ⊆ T(R1,1)+ (as defined before) can be recog-
nized by the TPDA AT1,1

= ({1}, {α}, C, {1}, E′, {1}) depicted in Fig.
9.4. Here, I, J are arbitrary intervals in P(1). By using a new stack letter
α, we want to point out that the stack alphabet of the TPDAs for Tm,k is
a singleton alphabet and does not depend on Γ.

First, we show the implication (a) ⇒ (b) of Theorem 9.8.

Lemma 9.10. Let A be a timed pushdown automaton over Σ. Then, there exist
m, k ∈ N, a renaming h : Rm,k → Σ, and a visibly pushdown automaton A′ over
the pushdown alphabet R̃m,k such that L(A) = h(L(A′) ∩ Tm,k).

Proof. The idea of our decomposition is illustrated in Example 9.9. Now we
give a formal proof. Let A = (L,Γ, C, L0, E, Lf). We may assume without loss
of generality that C = {1, ...,m}. As defined in the beginning of this section,
let X ⊆ N be the set of all natural numbers which are lower or upper bounds
of some interval I ∈ I appearing in E and let k = max(X) (for X = ∅, we let
k = 0).

129

1

(a, I, 0, J, ↓), x ∈ I, pushJ (α)

(a, I, 1, J, ↓), x ∈ I, x := 0, pushJ (α)

(a, I, 0, J, ↑), x ∈ I, popJ (α)

(a, I, 1, J, ↑), x ∈ I, x := 0, popJ (α)

(a, I, 0, J,#), x ∈ I
(a, I, 1, J,#), x ∈ I, x := 0

Figure 9.4: TPDA AT1,1 of Example 9.9

Recall that Rm,k = Σ× (P(k))m×{0, 1}m×P(k)×{↓,#, ↑}. Let R = Rm,k
and h : R → Σ be the projection to the Σ-component. We define the visibly
pushdown automaton A′ = (L,Γ, L0, T, Lf) over the pushdown alphabet R̃m,k
where the set T = T ↓ ∪ T# ∪ T ↑ is defined as follows. We simulate every edge
e =

(
`
a,φ,Λ−−−→
s

`′
)
∈ E with `, `′ ∈ L, a ∈ Σ, φ : {1, ...,m} → I, Λ ⊆ {1, ...,m}

and s ∈ S(Γ) by (possibly multiple) transitions in T depending on the sort of e
as follows.

• If e ∈ E↓ and s = (↓, γ, I) for some γ ∈ Γ and I ∈ I, then we let
(`, a↓, γ, `′) ∈ T ↓ for all a↓ = (a, (g1, ..., gm), (r1, ..., rm), σ, ↓) ∈ R such
that:

– for all j ∈ {1, ...,m}, gj is any interval in P(k) such that gj ⊆ φ(j);

– for all j ∈ {1, ...,m}: rj ∈ {0, 1}, and rj = 1 iff j ∈ Λ;

– σ is an interval in P(k) with σ ⊆ I.
• If e ∈ E#, then we let (`, a#, `′) ∈ T# for all
a# = (a, (g1, ..., gm), (r1, ..., rm), σ,#) ∈ R where g1, ..., gm, r1, ..., rm are
defined as in the previous case and σ = [0, 0] is the idle interval.

• If e ∈ E↑ and s = (↑, γ, I) for some γ ∈ Γ and I ∈ I, then we let
(l, a↑, γ, `′) ∈ T ↑ for all a↑ = (a, (g1, ..., gm), (r1, ..., rm), σ, ↑) ∈ R where
g1, ..., gm, r1, ..., rm and σ are defined as in the first case. Note that we
do not have transitions in T ↑ whose stack letter is ⊥.

Note that although the emptiness of the stack at the end of a run is not required
by visibly pushdown automata, it is checked by intersection with the timed
language Tm,k.

In the rest of the proof, we denote the timed language Tm,k simply by T . It
remains to prove that L(A) = h(L(A′) ∩ T).

First, we show ⊆. Let w = (a1, t1)...(an, tn) ∈ TΣ+ be a timed word such
that w ∈ L(A). Then, there exists a run

ρ = 〈`0, ν0, u0〉 `t1,e1 〈`1, ν1, u1〉 `t2,e2 ... `tn,en 〈`n, νn, un〉

of A with label(ρ) = w such that

130

• for all i ∈ {0, ..., n}, `i ∈ L, νi ∈ RC≥0 and ui ∈ TΓ∗;

• for all i ∈ {1, ..., n}, ei =
(
`i−1

ai,φi,Λi−−−−−→
si

`i
)
for some φi ∈ Φ(C), Λi ⊆ C

and si ∈ S(Γ). Assume that

si =

(↓, γi, Ii), if ei ∈ E↓,
#, if ei ∈ E#,

(↑, γi, Ii), if ei ∈ E↑.

where γi ∈ Γ and Ii ⊆ I.

For all i ∈ {0, ..., n}, assume that ui = (p1
i , τ

1
i)...(pxii , τ

xi
i) where xi ≥ 0,

p1
i , ..., p

xi
i ∈ Γ and τ1

i , ..., τ
xi
i ∈ R≥0. Let pi = p1

i ...p
xi
i ∈ Γ∗. Clearly, p0 = ε. For

all i ∈ {1, ..., n} with ei ∈ E↓, let ξi = τ1
i , the initial age of a clock which was

pushed into the stack at the position i. Note that ξi ∈ Ii.
We show that there exist π1, ..., πn ∈ R such that:

(i) h(πi) = ai for all i ∈ {1, ..., n};
(ii) π1...πn ∈ L(A′);
(iii) (π1, t1)...(πn, tn) ∈ T .

For every i ∈ {1, ..., n}, we let πi = (ai, (g
1
i , ..., g

m
i), (r1

i , ..., r
m
i), σi, δi) defined as

follows.

• For all j ∈ {1, ...,m}, let gji ∈ P(k) be the interval such that
νi−1(j) + ti ∈ gji . Since ρ is a run of A, we have gji ⊆ φ(j).

• If ei ∈ E#, then we let σi = [0, 0].
• If ei ∈ E↓, then we let σi be the interval containing ξi. Note that σi ⊆ Ii.
• If ei ∈ E↑, then we let σi ∈ P(k) be the interval containing τ1

i−1 + ti (note
that xi−1 ≥ 1 since ρ is a run of A). Since ρ is a run of A, we have σi ⊆ Ii.

• For all j ∈ {1, ...,m}, rji =

{
1, if j ∈ Λi,

0, otherwise.

• Let δi =

↓, if ei ∈ E↓,
#, if ei ∈ E#,

↑, if ei ∈ E↑

Clearly, (i) holds. Now we show (ii). Let

% = 〈`0, p0〉 `e′1 〈`1, p1〉 `e′2 ... `e′n 〈`n, pn〉

where, for all i ∈ {1, ..., n} with ei ∈ E↓ ∪E↑, we have e′i = (`i−1, πi, γi, `i) ∈ T
and, for all i ∈ {1, ..., n} with ei ∈ E#, we have e′i = (`i−1, πi, `i) ∈ T . Then, %
is a run of A′ and label(%) = π1...πn. Hence π1...πn ∈ L(A′).

Next, we show (iii).

• Since ρ is a run of A, it is easy to see that Mask(π1...πn) ∈ L.

131

• Let i ∈ {1, ..., n} and j ∈ {1, ...,m} and assume that rj0 = 1.
Then, for the greatest i′ ∈ {0, 1, ..., i − 1} with rji′ = 1, we have:
〈w〉i′,i = νi−1(j) + ti ∈ gji .

• Let i, i′ ∈ {1, ..., n} with i < i′, δi = ↓, δi′ = ↑ and Mask(πi+1...πi′−1) ∈ L.
This means that, at the position i, some letter γ ∈ Γ was pushed
into the stack and at the position i′, this letter was popped. Then,
〈w〉i,i′ = (τ1

i′−1 + ti′)− ξi ∈ Ii′ − Ii.

Then, (π1, t1)...(πn, tn) ∈ T . Hence, L(A) ⊆ h(L(A′) ∩ T).
Now we show the converse inclusion L(A) ⊇ h(L(A′) ∩ T). Let

w = (a1, t1)...(an, tn) ∈ h(L(A′) ∩ T). Then, there exist π1, ..., πn ∈ R such
that:

(i) h(πi) = ai for all i ∈ {1, ..., n};
(ii) π1...πn ∈ L(A′);
(iii) (π1, t1)...(πn, tn) ∈ T .

By (i), assume that, for all i ∈ {1, ..., n}, πi = (ai, (g
1
i , ..., g

m
i), (r1

i , ..., r
m
i), σi, δi)

where g1
i , ..., g

m
i , σi ∈ P(k), r1

i , ..., r
m
i ∈ {0, 1} and δi ∈ {↓,#, ↑}. By (ii), there

exists a run % of A′ with label(%) = π1...πn. Assume that

% = 〈`0, p0〉 `e′1 〈`1, p1〉 `e′2 ... `e′n 〈`n, pn〉

where `0, ..., `n ∈ L, p0, ..., pn ∈ Γ∗ and e′1, ..., e′n ∈ T . We assume that, for all
i ∈ {1, ..., n} with δi ∈ {↓, ↑}, e′i = (`i−1, πi, γi, `i) for some γi ∈ Γ and, for all
i ∈ {1, ..., n} with δi = #, we have e′i = (`i−1, πi, `i).

By definition of A′, for every i ∈ {1, ..., n}, there exists an edge
ei =

(
`i−1

ai,φi,Λi−−−−−→
si

`i
)
∈ E such that:

• si =

(↓, γi, Ii), if δi = ↓,
#, if δi = #,

(↑, γi, Ii), if δi = ↑
where Ii ∈ I with σi ⊆ Ii;

• gji ⊆ φi(j) for all j ∈ {1, ...,m};
• Λi = {j | j ∈ {1, ...,m} and rji = 1};

Now we show that there exists a run ρ of A such that label(ρ) = w. We let

ρ = 〈`0, ν0, u0〉 `t1,e1 〈`1, ν1, u1〉 `t2,e2 ... `tn,en 〈`n, νn, un〉

where νi ∈ RC≥0 and ui ∈ TΓ∗ are defined as follows.

• We let ν0(j) = 0 for all j ∈ {1, ...,m} and u0 = ε.
• Assume that i ≥ 1 and νi−1 is defined. Then, by (iii), we have for all
j ∈ {1, ...,m}: νi−1(j) + ti ∈ gji ⊆ φi(j). Hence, νi−1 + ti |= φi. Then, we
let νi = (νi−1 + ti)[Λi := 0].
• Assume that i ≥ 1 and ui−1 is defined. We distinguish between the

following cases:

132

– If δi = ↓, then, we let ui = (γi, ξi)(ui−1 + ti) for some unknown
nonnegative real number ξi ∈ σi which will be determined when the
letter γi will be popped.

– If δi = #, then we let ui = ui−1 + ti.
– If δi = ↑, then, using (iii) and the fact that % is a run of A′, we have:
ui−1 = (γi, τ

′)u′ such that there exists a position i′ < i with δi′ = ↑,
Mask(πi′+1...πi−1) ∈ L and 〈w〉i′,i = τ ′ − ξi′ ∈ σi − σi′ . Then, there
exist y ∈ σi and y′ ∈ σi′ such that τ ′ − ξi′ = y − y′. By letting
ξi′ = y′ ∈ σi′ (which determines the unknown value of ξi), we have
τ ′ = y ∈ σi ⊆ Ii. So we let ui = u′.

Finally, since Mask(π1...πn) ∈ L, we have un = ε. This shows that ρ is a run
of A. Since label(ρ) = w, we obtain w ∈ L(A).

Now we turn to the converse direction of Theorem 9.8.

Lemma 9.11. Let m, k ∈ N and A a visibly pushdown automaton over the
pushdown alphabet R̃m,k. Then, there exists a TPDA A′ over the alphabet
Rm,k such that L(A′) = L(A) ∩ Tm,k.

Proof. The proof idea is the following. Since we work here with the extended
alphabet Rm,k (which corresponds to m global clocks), every letter of this al-
phabets contains the information about the guards and resets of global clocks
as well as performance of the timed stack, we can rewrite the transitions of a
VPA (over the extended pushdown alphabet R̃m,k) as edges of a TPDA (over
the extended alphabet Rm,k).

Let A = (L,Γ, L0, T, Lf). We put A′ = (L,Γ, C, L0, E, Lf) where
C = {1, ...,m} and E = E↓ ∪ E# ∪ E↑ is defined as follows.

• For every t = (`, a↓, γ, `′) ∈ T ↓ with a↓ = (a, (g1, ..., gm), (r1, ..., rm), σ, ↓)
(where g1, ..., gm, σ ∈ P(k) and r1, ..., rm ∈ {0, 1}), we let(
`
a↓,φ,Λ−−−−→
(↓,γ,σ)

`′
)
∈ E↓ where φ(j) = gj for all j ∈ C and

Λ = {j ∈ C | rj = 1}.
• For every t = (`, a#, `′) ∈ T# with a# = (a, (g1, ..., gm), (r1, ..., rm), σ,#),

we let
(
`
a#φ,Λ−−−−→

#
`′
)
∈ E# where φ and Λ are defined as in the previous

case.
• For every t = (`, a↑, γ, `′) ∈ T ↑ with a↑ = (a, (g1, ..., gm), (r1, ..., rm), σ, ↑),

we let
(
`
a↑,φ,Λ−−−−→
(↑,γ,σ)

`′
)
∈ E↑ where φ and Λ are defined as in the first case.

Let R = Rm,k and T = Tm,k. We prove that L(A′) = L(A) ∩ T .
First, we show the inclusion ⊆. Let v = (π1, t1)...(πn, tn) ∈ L(A′) where, for

all i ∈ {1, ..., n}, πi = (ai, (g
1
i , ..., g

m
i), (r1

i , ..., r
m
i), σi, δi). Then, there exists a

run ρ of A′ with label(ρ) = v. Assume that

ρ = 〈`0, ν0, u0〉 `t1,e1 〈`1, ν1, u1〉 `t2,e2 ... `tn,en 〈`n, νn, un〉.

133

where, for all i ∈ {1, ..., n}, ei =
(
`i−1

πi,φi,Λi−−−−−→
si

`i
)
with

si =

(↓, γi, Ii), if δi = ↓,
#, if δi = #,

(↑, γi, Ii), if δi = ↑

For all i ∈ {0, ..., n}, assume that ui = (p1
i , τ

1
i)...(pxii , τ

xi
i) where xi ≥ 0,

p1
i , ..., p

xi
i ∈ Γ and τ1

i , ..., τ
xi
i ∈ R≥0. Let pi = p1

i ...p
xi
i ∈ Γ∗.

Note that, for all i ∈ {1, ..., n} with δi ∈ {↓, ↑}, we have
e′i := (`i−1, πi, γi, `i) ∈ T and, for all i ∈ {1, ..., n} with δi = #, we have
e′i := (`i−1, πi, `i) ∈ T . Then,

〈`0, p0〉 `e′1 〈`1, p1〉 `e′2 ... `e′n 〈`n, pn〉

is a run of A and hence π1...πn ∈ L(A). Since, for all i ∈ {1, ..., n}, φi(j) = gji
for all j ∈ C, Λi = {j ∈ C | rji = 1} and σi = Ii, it is easy to see that v ∈ T .
Then, v ∈ L(A) ∩ T and hence L(A′) ⊆ L(A) ∩ T .

Second, we show the inclusion L(A)∩T ⊆ L(A′). Let v = (π1, t1)...(πn, tn) ∈
L(A)∩T such that πi = (ai, (g

1
i , ..., g

m
i), (u1

i , ..., u
m
i), σi, δi) for all i ∈ {1, ..., n}.

Then, π1...πn ∈ L(A) and hence there exists a run % of A with label(%) = v.
Assume that

% = 〈`0, p0〉 `e′1 〈`1, p1〉 `e′2 ... `e′n 〈`n, pn〉

such that:

• for all i ∈ {0, ..., n}: `i ∈ L and pi ∈ Γ∗ (since v ∈ T , we have pn = ε)
• for all i ∈ {1, ..., n} with δi ∈ {↓, ↑}: e′i = (`i−1, πi, γi, `i) for some γi ∈ Γ

(note that γi 6= ⊥ since v ∈ T ; recall that ⊥ is a special bottom-of-stack
symbol of a VPA);

• for all i ∈ {1, ..., n} with δi = #: e′i = (`i−1, πi, `i).

We define edges e1, ..., en ∈ E as follows. For every i ∈ {1, ..., n}, let ei =(
`i−1

πi,φi,Λi−−−−−→
si

`i
)
where:

• si =

(↓, γi, σi), if δi = ↓,
#, if δi = #,

(↑, γi, σi), if δi = ↑;
• φi(j) = gji for all j ∈ C;
• Λi = {j ∈ C | rji = 1}.

Then, the condition v ∈ T guarantees that there exists a run ρ of A′ of the form

ρ = 〈`0, ν0, u0〉 `t1,e1 〈`1, ν1, u1〉 `t2,e2 ... `tn,en 〈`n, νn, un〉

where ν0, ..., νn ∈ RC≥0 and u0, ..., un ∈ TΓ∗. Since label(ρ) = v, we have
v ∈ L(A′). Then, L(A) ∩ T ⊆ L(A′).

134

It is easy to see that the class of timed pushdown languages is closed under
renamings:

Lemma 9.12. Let ∆, ∆′ be alphabets, h : ∆′ → ∆ a renaming, and A a TPDA
over ∆′. Then, there exists a TPDA A′ over ∆ such that L(A′) = h(L(A)).

Proof. Let A = (L,Γ, C, L0, E, Lf). Then, we put A′ = (L,Γ, C, L0, E
′, Lf)

with E′ = {(`, h(a), s, φ,Λ, `′) | (`, a, s, φ,Λ, `′) ∈ E}. Then, it is not difficult to
see that L(A′) = h(L(A)).

Proof of Theorem 9.8. Immediate by Lemmas 9.10, 9.11 and 9.12.

Remark 9.13. As it can be observed from the proof of Theorem 9.8, instead
of the k-interval partition P(k), for every global clock or the timed stack, one
could take a partition induced by bounds of the intervals which correspond to
this clock or timed stack. For instance, if the intervals (0, 1) and (8, 15) ap-
pear in the commands for the timed stack, then we could take the partition
{[0, 0], (0, 1), [1, 1], (1, 8), [8, 8], (8, 15), [15, 15], (15,∞)}. However, for the sim-
plicity of our notations, we considered the same partition P(k) for all global
clocks and the timed stack.

As a corollary of Theorem 9.8 and its proof, we deduce a decomposition theo-
rem for timed automata. These may be considered as TPDA whose sets of push
and pop edges are empty (and hence a stack alphabet is irrelevant for their defi-
nition). We slightly modify the extended alphabet needed for the decomposition
by excluding the components relevant for the stack. Moreover, instead of visibly
pushdown languages we consider classical regular languages. For m, k ∈ N, let
R0
m,k = Σ×(P(k))m×{0, 1}m. We define the timed language T 0

m,k ⊆ T(R0
m,k)+

as follows. Let w = (b1, t1)...(bn, tn) ∈ T(R0
m,k)+ where, for all i ∈ {1, ..., n},

bi = (ai, (g
1
i , ..., g

m
i), (r1

i , ..., r
m
i)) with ai ∈ Σ, g1

i , ..., g
m
i ∈ P(k) and r1

i , ..., r
m
i ∈

{0, 1}. Then, w ∈ T 0
m,k iff, for all i ∈ {1, ..., n} and j ∈ {1, ...,m}, letting rj0 = 1,

we have 〈w〉i′,i ∈ gji for the greatest i′ ∈ {0, 1, ..., i− 1} with rji′ = 1.

Corollary 9.14. Let Σ be an alphabet and L ⊆ TΣ+ a timed language. Then
the following are equivalent.

(a) L is recognizable by a timed automaton.
(b) There exist m, k ∈ N, a renaming h : R0

m,k → Σ and a regular language
L′ ⊆ (R0

m,k)+ such that L = h(L′ ∩ T 0
m,k).

9.5 Definability equals recognizability
In this section, we prove Theorem 9.4. First, we show that TML-definable
timed languages are pushdown recognizable.

Theorem 9.15. Let Σ be an alphabet and ψ ∈ TML(Σ) a sentence. Then,
there exists a TPDA A over Σ such that L(A) = L(ψ).

135

To prove this theorem, let ψ = ∃matchµ.∃D1. ... ∃Dm.ϕ ∈ TML(Σ) with
m ≥ 0. We may assume that D1, ..., Dm ∈ D are pairwise distinct variables.

We wish to use Theorem 9.8. As preparation for this, we prove the following
technical lemma which provides a decomposition of a TML-sentence. For the
definitions of Rm,k, R̃m,k and Tm,k we refer the reader to the previous section.

Lemma 9.16. Let ψ ∈ TML(Σ) be a sentence as defined above. Then, there
exist k ∈ N, a renaming h : Rm,k → Σ and a sentence ϕ∗ ∈MSOL(R̃m,k) such
that L(ψ) = h(L(ϕ∗) ∩ Tm,k).

Before we turn to the proof of Lemma 9.16, we give an informal explana-
tion and an example which illustrates such a decomposition of ψ. For decom-
position, we will consider the extended alphabet Rm,k where m is the num-
ber of relative distance variables of ψ and k is the maximal natural number
which is a lower or upper bound of some interval appearing in ψ (if ψ does
not contain any intervals, then we let k = 0). So, our extended alphabet is
Σ× (P(k))m × {0, 1}m × P(k)× {↓,#, ↑}. The additional components will have
the following meaning.

• Using a vector (g1, ..., gm) ∈ (P(k))m, we will encode the intervals which
appear in the relative distance predicates of ψ. Here the component gi
(i ∈ {1, ...,m}) is responsible for the relative distance predicates with the
variable Di.

• Using a vector (r1, ..., rm) ∈ {0, 1}m, we will implement the standard
Büchi-encoding of the variables D1, ..., Dm.

• Using the component P(k)× {↓,#, ↑}, we will model quantitative match-
ings. Here P(k) is responsible for the intervals of quantitative matchings.
The component {↓,#, ↑} will have the following task. If a position does
not belong to any pair in a matching relation, then it is marked by #. If
a position is on the left side in a matched pair, then it is marked by ↓. If
a position is on the right side in a matched pair, then it is marked by ↑.

Example 9.17. Let Σ = {a, b} and

ψ = ∃matchµ.∃D.∀x.(D(x) ∧ [(∃y.µ(1,∞)(x, y)) ∨ d(0,1](D,x) ∨ Pb(x)]).

In this example, we have m = 1 and k = 1, i.e. the extended alphabet is
R1,1 = Σ × P(k) × {0, 1} × P(k) × {↓,#, ↑}. As a renaming h : Rm,k → Σ,
we take the projection to the Σ-component. The sentence ϕ∗ ∈MSOL(R̃1,1) is
defined:

∀x.(ϕ1 ∧ [(∃y.ϕ2) ∨ ϕ3 ∨ ϕ4])

where

ϕ1 = P(∗,∗,1,∗,∗)(x)

ϕ2 = L(x, y) ∧ P(∗,∗,∗,[0,0],↓)(y) ∧ P(∗,∗,∗,(1,∞),↑)(y)

ϕ3 = P(∗,∗,(0,1),∗,∗)(x) ∨ P(∗,∗,[1,1],∗,∗)(x)

ϕ4 = P(b,∗,∗,∗,∗)(x).

136

where we denote by ∗ the components which can take arbitrary values from their
domains. Then, L(ψ) = h(L(ϕ∗) ∩ Tm,k).

Proof of Lemma 9.16. Let ψ = ∃matchµ.∃D1. ... ∃Dm.ϕ as defined above. Let
k be the maximal natural number which is a lower or upper bound of some
interval appearing in ψ (if ψ does not contain any intervals, then we let k = 0).
For simplicity, let R = Rm,k, R̃ = R̃m,k and T = Tm,k. Let ∆ = {↓,#, ↑}.
We will denote a letter of R by (a,G,R, s, δ) where a ∈ Σ, G ∈ (P(k))m,
R ∈ {0, 1}m, s ∈ P(k) and δ ∈ ∆. Let h : R → Σ be the projection to the
Σ-component. Finally, we define the formula ϕ∗ ∈MSOL(R̃) from the formula
ϕ by the following substitutions.

• If Pa(x) with a ∈ Σ and x ∈ V1 is a subformula of ϕ, then Pa(x) is replaced
by the formula∨

(P(a,G,R,s,δ)(x) | G ∈ (P(k))m, R ∈ {0, 1}m, s ∈ P(k), δ ∈ ∆).

• If Dj(x) with j ∈ {1, ...,m} and x ∈ V1 appears in ϕ, then Dj(x) is re-
placed by the formula∨

(P(a,G,R,s,δ)(x) | a ∈ Σ, G ∈ (P(k))m, R = (r1, ..., rm) ∈ {0, 1}m with

rj = 1, s ∈ P(k), δ ∈ ∆).

• If dI(Dj , x) is a subformula of ϕ where j ∈ {1, ...,m}, x ∈ V1 and I ∈ I,
then we replace dI(Dj , x) by the formula∨

(P(a,G,R,s,δ)(x) | a ∈ Σ, G = (g1, ..., gm) ∈ (P(k))m with gj ⊆ I,

R ∈ {0, 1}m, s ∈ P(k), δ ∈ ∆).

Note that we remove the variable Dj from ϕ.
• If µI(x, y) is a subformula of ϕ where x, y ∈ V1 and I ∈ I, then µI(x, y)

is replaced by the formula

L(x, y) ∧
∨

(P(a,G,R,[0,0],↓)(x) | a ∈ Σ, G ∈ (P(k))m, R ∈ {0, 1}m) ∧∨
(P(a,G,R,s,↑)(y) | a ∈ Σ, G ∈ (P(k))m, R ∈ {0, 1}m, s ∈ P(k) with s ⊆ I).

Note that here we replace the matching relation µ by the matching relation
L with respect to the visibly pushdown alphabet R̃ and measure the time
distance using the P(S)-component of the extended alphabet.

Note that ϕ∗ is a sentence, since Free(ϕ) ⊆ {D1, ..., Dm, µ} and we
removed D1, ..., Dm, µ when constructing ϕ∗. It remains to show that
L(ψ) = h(L(ϕ∗) ∩ T).

First, we show the inclusion ⊆. Let w = (a1, t1)...(an, tn) ∈ L(ψ) and σ be a
fixed (w,U)-assignment. Then, there exist a matching M ⊆ dom(w)× dom(w)
and sets J1, ..., Jm ⊆ dom(w) such that (w, σ[D1/J1, ..., Dm/Jm, µ/M]) |= ϕ.
We construct a word w∗ = π1...πn ∈ R+ where, for all i ∈ {1, ..., n},
πi = (ai, (g

1
i , ..., g

m
i), (r1

i , ..., r
m
i), si, δi) with ai ∈ Σ, g1

i , ..., g
m
i , si ∈ P(k),

r1
i , ..., r

m
i ∈ {0, 1} and δi ∈ ∆ as follows.

137

• For all i, i′ ∈ {1, ..., n} with (i, i′) ∈ M , we put δi = ↓, δi′ = ↑, si = [0, 0]
and let si′ be the interval in the partition P(k) with 〈w〉i,i′ ∈ si′ (uniquely
determined).

• For all i ∈ {1, ..., n} such that i does not belong to any pair in M , we put
δi = # and si = [0, 0].

• For all i ∈ {1, ..., n} and j ∈ {1, ...,m}, we let rji = 1 iff i ∈ Jj .
• For all i ∈ {1, ..., n} and j ∈ {1, ...,m}, we let gji be the interval in the

partition P(k) such that (Jj , i) ∈ dk
j
i (w) (note that gji is uniquely deter-

mined).

Let w∗∗ := (π1, t1)...(πn, tn) ∈ TR+. Clearly, since I − [0, 0] = I for all I ∈ I,
we have w∗∗ ∈ T . Moreover, h(w∗∗) = w.

For a (w,U)-assignment σ : U → dom(w) ∪ 2dom(w) ∪ 2(dom(w))2

, let
σ = σ[D1/J1, ..., Dm/Jm, µ/M] and σ be the restriction of σ to V1 ∪ V2, i.e.,
σ = σ|V1∪V2

.
Now we show that w∗ ∈ L(ϕ∗). For this, we show that, for every w-

assignment σ and every subformula η of ϕ, the following holds:

(w, σ) |= η iff (w∗, σ) |= η∗. (9.1)

We proceed by induction on the structure of η.

(i) The cases η = Pa(x), η = (x ≤ y) and η = X(x) with a ∈ Σ, x, y ∈ V1

and X ∈ V2 are straightforward.
(ii) Let η = Dj(x) with j ∈ {1, ...,m} and x ∈ V1. Then:

(w, σ) |= η ⇔ σ(x) ∈ Jj ⇔ rjσ(x) = 1 ⇔ (w∗, σ) |= η∗

(iii) Let η = dI(Dj , x) where j ∈ {1, ...,m}, x ∈ V1 and I ∈ I. Then:

(w, σ) |= η ⇔ gjσ(x) ⊆ I ⇔ (w∗, σ) |= η∗.

(iv) Let η = µI(x, y) where x, y ∈ V1 and I ∈ I. Then:

(w, σ) |= η ⇔ (σ(x) < σ(y) ∧ δσ(x) = ↓ ∧ δσ(y) = ↑
∧Mask(rσ(x)+1...rσ(y)−1) ∈ L ∧ sσ(y) ⊆ I)

⇔ (w, σ) |= η∗

(v) Let η = η1 ∨ η2. By induction hypothesis, (w, σ) |= ηi ⇔ (w∗, σ) |= (ηi)
∗

for i ∈ {1, 2}. Then:

(w, σ) |= η ⇔ (w, σ) |= η1 or (w, σ) |= η2

(!)⇔ (w∗, σ) |= (η1)∗ or (w∗, σ) |= (η2)∗

⇔ (w∗, σ) |= (η1)∗ ∨ (η2)∗ |= (w∗, σ) |= η∗

Here, at the place (!), we apply induction hypothesis.

138

(vi) Let η = ¬η′. By induction hypothesis, (w, σ) |= η′ ⇔ (w∗, σ) |= (η′)∗.
Then:

(w, σ) |= η ⇔ (w, σ) 2 η′ ⇔ (w∗, σ) 2 (η′)∗ ⇔ (w∗, σ) |= η.

Here, at the place (!), we apply induction hypothesis.
(vii) Let η = ∃x.η′ with x ∈ V1. For every i ∈ {1, ..., n}, by induction hy-

pothesis, we have (w, σ[x/i]) |= η′ ⇔ (w, σ[x/i]) |= (η′)∗. Then, since
η∗ = ∃x.(η′)∗, (9.1) holds true.

(viii) The case η = ∃X.η′ with X ∈ V2 is similar to the previous case.

Since ϕ∗ is a sentence and (w, σ) |= ϕ for any (w,U)-assignment σ, it follows
from (9.1) that w∗ |= ϕ∗ and hence w∗ ∈ L(ϕ∗). Thus, w ∈ h(L(ϕ∗) ∩ T).

Second, we show the converse inclusion L(ψ) ⊇ h(L(ϕ∗) ∩ T).
Let w = (a1, t1)...(an, tn) ∈ h(L(ϕ∗) ∩ T). Then, there exists a timed
word w∗∗ = (π1, t1)...(πn, tn) ∈ L(ϕ∗) ∩ T such that h(w∗∗) = w. As-
sume that, for all i ∈ {1, ..., n}, πi = (ai, (g

1
i , ..., g

m
i), (r1

i , ..., r
m
i), si, δi).

LetM = {(i, j) ∈ (dom(w))2 | i < j, δi = ↓, δj = ↑ and Mask(ri+1...rj−1) ∈ L}.
Since w∗∗ ∈ T , M is a matching. For every j ∈ {1, ...,m}, let
Jj = {i ∈ dom(w) | rji = 1}. Let σ be a (w,U)-assignment. To prove that w ∈
L(ψ), we show that (w, σ[D1/J1, ..., Dm/Jm, µ/M]) |= ϕ. As in the proof of the
inclusion ⊆, for any (w,U)-assignment σ : U → dom(w) ∪ 2dom(w) ∪ 2(dom(w))2

,
let σ = σ[D1/J1, ..., Dm/Jm, µ/M] and σ be the restriction of σ to V1 ∪ V2.
Let w∗ = π1...πn ∈ L(ϕ∗). We show that, for every w-assignment σ and every
subformula η of ϕ, (9.1) holds. We proceed by induction on the structure of η
in the same fashion as it was done in (i) - (viii) with the only difference that we
apply the fact that w∗∗ ∈ T . Then, (w, σ[D1/J1, ..., Dm/Jm, µ/M]) |= ϕ and
hence w |= ψ. This finishes the proof of this lemma.

Proof of Theorem 9.15. Immediate by Lemma 9.16, Theorem 9.7 and Theorem
9.8, implication (b) ⇒ (a).

Now, we show the converse direction of Theorem 9.4.

Theorem 9.18. Let Σ be an alphabet and A a timed pushdown automaton over
Σ. Then, there exists a sentence ψ ∈ TML(Σ) such that L(ψ) = L(A).

The proof of this theorem will be given in the rest of this section. Again, we
will apply our decomposition Theorem 9.8 for TPDA.

Lemma 9.19. Let Σ be an alphabet, m, k ∈ N, h : Rm,k → Σ a renaming, and
ϕ ∈MSOL(R̃m,k) a sentence. Then, there exists a sentence ψ ∈ TML(Σ) such
that L(ψ) = h(L(ϕ) ∩ Tm,k).

Proof. For the proof, we follow a similar approach as in the proof of Lemma 6.10.
Let Γ = Rm,k, X = {Xγ ∈ V2 | γ ∈ Γ} be a set of pairwise distinct variables
not appearing in ϕ, and D = {Di ∈ D | 1 ≤ i < m} be a set of pairwise distinct
relative distance variables. Using the X-variables, we will describe the renaming

139

h (i.e., we store in these second-order variables the positions of the letters of the
extended alphabet Γ before the renaming). We will use the D-variables as well
as the matching variable µ to describe the timed language Tm,k. Moreover, we
transform ϕ to a tMSO(Σ)-formula.

Let ϕ∗ ∈ tMSO(Σ) be the formula obtained from ϕ by the following trans-
formations.

• Every subformula L(x, y) of ϕ with x, y ∈ V1 is replaced by µ(x, y).
• Every subformula Pγ(x) of ϕ with x ∈ V1 and γ ∈ Γ is replaced by the

formula Ph(γ)(x) ∧Xγ(x).

The formula

Partition =

(
∀x.
[∨
γ∈Γ

(
Xγ(γ) ∧

∧
γ′ 6=γ

¬Xγ′(x)

)])
demands that values of X-variables form a partition of the domain. The formula

Renaming = ∀x.
(∨
γ∈Γ

(
Xγ(γ)→ Ph(γ)(x)

))
correlates values of X-variables with an input word. It remains to handle Tm,k.
For a letter γ = (a, (g1, ..., gm), (r1, ..., rm), s, δ) ∈ Γ with a ∈ Σ, g1, ..., gm, s ∈
P(k), r1, ..., rm ∈ {0, 1} and δ ∈ {↓,#, ↑}, let gj(γ) = gj (1 ≤ j ≤ m), s(γ) = s,
rj(γ) = rj (1 ≤ j < m) and δ(γ) = δ.

For I, I ′ ∈ I, let I � I ′ = (I − I ′) ∩ [0,∞). Clearly, (I � I ′) ∈ I. For
j ∈ {1, ...,m} and x ∈ V1, let D1

j (x) = Dj(x) and D0
j (x) = ¬Dj(x). Consider

the tMSO(Σ)-formula

ξ =∀x.
(∧
γ∈Γ

Xγ(x)→
∧m

j=1
(dg

j(γ)(Dj , x) ∧Drj(γ)
j (x))

)
∧

∀x.
(∧

γ∈Γ,
δ(γ)=#

Xγ(x)→ (¬∃y.(µ(x, y) ∨ µ(y, x)))

)
∧

∀x.
(∧

γ∈Γ,
δ(γ)=↑

Xγ(x)→ ∃y.
∨
γ′∈Γ,
δ(γ′)=↓

(Xγ′(y) ∧ µs(γ)�s(γ′)(y, x))

)

which takes care of matchings and time. Let (γi)i∈{1,...,|Γ|} be an enumeration
of Γ. Then, we define the desired sentence ψ as

ψ = ∃matchµ.∃D1. ... ∃Dm.∃X1. ... ∃X|Γ|.(ϕ∗ ∧Partition ∧Renaming ∧ ξ).

We show that L(ψ) = h(L(ϕ) ∩ Tm,k).
Again, for the sake of simplicity, let T = Tm,k. First, we show that

L(ψ) ⊆ h(L(ϕ) ∩ T). Let w = (a1, t1)...(an, tn) ∈ L(ψ) and σ be a fixed
(w,U)-assignment. Then, there exist sets J1, ..., Jm,K1, ...,K|Γ| ⊆ dom(w) and
a matching relation M ⊆ (dom(w))2 such that:

140

(i) the sets K1, ...,K|Γ| form a partition of dom(w);
(ii) for all i ∈ dom(w): whenever i ∈ Kv for some v ∈ {1, ..., |Γ|}, we have

ai = h(γv);
(iii) (w, σ[X1/K1, ..., X|Γ|/K|Γ|, µ/M]) |= ϕ∗;
(iv) (w, σ[D1/J1, ..., Dm/Jm, X1/K1, ...,K|Γ|/J|Γ|, µ/M]) |= ξ; moreover, note

that the sets J1, ..., Jm are uniquely determined by the sets K1, ...,K|Γ|.

For each i ∈ {1, ..., n}, let πi = γj for j ∈ {1, ..., |Γ|} such that i ∈ Kj

(here we take into account (i)). Then, by (iii), we have π1...πn ∈ L(ϕ). Let
u = (π1, t1)...(πn, tn). Then, by (iv), u ∈ T and, by (ii), h(u) = w. Hence,
w ∈ h(L(ϕ) ∩ T).

Second, we show that h(L(ϕ) ∩ T) ⊆ L(ψ). Assume that w =
(a1, t1)...(an, tn) ∈ h(L(ϕ) ∩ T). Then, there exist π1, ..., πn ∈ Γ such that:

(a) π1...πn ∈ L(ϕ);
(b) v := (π1, t1)...(πn, tn) ∈ T ;
(c) h(πi) = ai for all i ∈ {1, ..., n}.

Assume that, for all i ∈ {1, ..., n}, πi = (ai, (g
1
i , ..., g

m
i), (r1

i , ..., r
m
i), si, δi). For

each j ∈ {1, ...,m}, let Jj = {i ∈ {1, ..., n} | rji = 1}. For each v ∈ {1, ..., |Γ|},
let Kv = {i ∈ {1, ..., n} | πi = γv}. Then, clearly, the sets K1, ...,K|Γ| form a
partition of dom(w). We define a relation M ⊆ (dom(w))2 as follows:

M = {(i, i′) | i < i′, δi = ↓, δi′ = ↑ and Mask(πi+1...πi′−1) ∈ L}.

By (b), M is a matching relation. Note also that M is uniquely determined by
the sets K1, ...,K|Γ|.

Let σ be a fixed (w,U)-assignment. Then, the following holds.

• Since the sets K1, ...,K|Γ| form a partition of dom(w), we have
(w, σ[X1/K1, ..., X|Γ|/K|Γ|]) |= Partition.
• By (c), we have (w, σ[X1/K1, ..., X|Γ|/K|Γ|]) |= Renaming.
• Using (a), it is not difficult to check that

(w, σ[X1/K1, ..., X|Γ|/K|Γ|, µ/M]) |= ϕ∗.
• By (b): (w, σ[D1/J1, ..., Dm/Jm, X1/K1, ..., X|Γ|/K|Γ|, µ/M]) |= ξ.

Let χ = ϕ∗ ∧Partition ∧Renaming ∧ ξ. Then,

(w, σ[D1/J1, ..., Dm/Jm, X1/K1, ..., X|Γ|/K|Γ|, µ/M]) |= χ

and hence w ∈ L(ψ). This finishes the proof of this theorem.

Proof of Theorem 9.18. Immediate by Theorems 9.8 and 9.7 and Lemma 9.19.

Remark 9.20. Alternatively, Theorem 9.18 can be proved by a direct trans-
lation of A into ψ. However, by using Theorem 9.8, it suffices to describe a
simpler timed language Tm,k and a projection h to adopt the logical description
of a visibly pushdown language of [5]. In particular, here we do not have to
describe some technical details like initial, final states as well as concatenations
of transitions.

Proof of Theorem 9.4. Immediate by Theorems 9.15 and 9.18.

Chapter 10

Conclusion and future work

In this thesis, we studied various models of multi-weighted automata and the
model of pushdown timed automata from the automata-theoretic point of view.
Our main results concern logical characterization of these compound automata
models. From the theoretical point of view, these results show the robustness
of the automata-theoretic approach. From the practical point of view, the de-
veloped logical formalisms with an effective translation process from formulas
into automata could be used as a tool for the specification and verification of
compound properties of systems. In addition, we studied several algorithmic
problems for multi-weighted automata. In particular, we showed that, despite
the loss of distributivity, the behavior of ratio automata on finite words can be
evaluated in polynomial time. We also investigated the optimal weight problem
for multi-weighted Büchi automata with discounting. The methods, ideas and
auxiliary results presented in this thesis could be of independent interest and
could be helpful for further developments in the theory of complex automata
models combining time, costs, stacks, data etc. In particular, our Nivat-like
results provide a way to separate quantitative components of models from their
qualitative parts and could be applied to the extension of results, known for the
qualitative setting, to the quantitative setting.

Now we briefly summarize the contents of this thesis and mention some
directions for the future work.

In Chapter 2, we introduced a general algebraic model of multi-weighted
automata which extends single-weighted automata over semirings [36] and val-
uation monoids [40]. We also studied some algorithmic properties of multi-
weighted automata with the reward-cost ratio measure. As we already men-
tioned, we presented a polynomial time algorithm for the evaluation problem
for ratio automata. It could be interesting to investigate whether the behavior
of multi-weighted automata with discounting (cf. Example 2.5) or averaging (cf.
Example 2.6) on a finite word can be also computed in polynomial time. The
exploration of further decision problems for multi-weighted automata (e.g., the
equivalence problem or the quantitative language inclusion problem [27]) is also

141

142

encouraged. In particular, since the ratio automata of Example 2.3 contain the
semiring-weighted automata over the tropical semiring, the equivalence problem
for these automata is undecidable [63]. However, one could investigate whether
the result of Hashiguchi et al. [60] for finitely ambiguous automata also holds
in the multi-weighted setting (cf. also [62]).

In Chapter 3, we extended the use of the semiring-weighted logic of Droste
and Gastin [34] to the multi-weighted setting. We introduced a multi-weighted
MSO logic on finite words and characterized the class of behaviors of multi-
weighted automata by means of a syntactically restricted fragment of this logic.
The logical fragment we propose here could be of independent interest for various
weighted settings, since it permits constant-preserving translations of formulas
into automata. For a subclass of evaluators which contains all semirings as
well as various multi-weighted settings known from literature, we could enlarge
the fragment of multi-weighted MSO logic which is expressively equivalent to
multi-weighted automata; the same fragment was used in [34] for a logical char-
acterization of semiring-weighted automata. This shows the robustness of our
multi-weighted approach. Further research in this topic should compare the
complexity of the translation processes from single- and multi-weighted MSO
formulas into automata. Moreover, it could be also interesting to extend the
results of Bollig, Gastin, Monmege and Zeitoun [17, 18] about the equivalence
of weighted pebble automata and weighted transitive closure logic to the multi-
weighted setting as well as the Kleene-Schützenberger theorem for weighted
pebble automata [58].

In Chapter 4, we lifted the classical Kleene-Schützenberger theorem [81] to
the multi-weighted setting. In addition, we showed that the basis of a multi-
weighted automaton can be characterized by a single-weighted automaton over
the semiring of natural numbers. We also showed that, for the classes of idem-
potent evaluators and non-idempotent infinite semirings, the setting of natural
numbers in this characterization is irrelevant and can be replaced by classical
finite-state automata, i.e., non-idempotent infinite semifields are closely related
to idempotent evaluators. It could be also interesting to investigate other classes
of non-idempotent evaluators which are also closely related to idempotent eval-
uators.

In Chapter 5, we investigated multi-weighted Büchi automata on infinite
words. Following the ideas of a Nivat theorem of [38] for semirings, we proved
a Nivat theorem for multi-weighted automata. Using operations like renam-
ings and intersections, we could characterize recognizable and unambiguously
recognizable quantitative ω-languages by means of recognizable qualitative ω-
languages. As an application of this theorem, we showed that multi-weighted
ω-automata with Büchi and Muller acceptance conditions are expressively equiv-
alent. Moreover, we considered an algorithm for the optimal weight problem
for multi-weighted Büchi automata with discounting. The further research may
investigate the complexity of this algorithm. Moreover, multi-weighted Büchi
automata with various objectives should be further explored with respect to
decidability and complexity results.

143

In Chapter 6, we introduced a concept of weight assignment logic on ω-words.
We showed that this logic is expressively equivalent to multi-weighted Büchi au-
tomata. Using our Nivat theorem for multi-weighted Büchi automata, we could
deduce the proof of this result from the classical Büchi-Elgot theorem [25, 50].
Note that we considered formulas with a weighted existential prefix where, in
the scope of this existential prefix, we can use the conjunction-like operators
without any restrictions. If we disallow the use of weighted existential quan-
tifiers, then we obtain a logic which is expressively equivalent to unambiguous
multi-weighted automata; these automata could have better decidability and
complexity properties than their nondeterministic extensions. Following a sim-
ilar approach, we can also define a weight assignment logic on finite words.
Further research may investigate multi-weighted extensions of temporal logics
like LTL and CTL, for instance, in the context of the model-checking problem.

In Chapter 7, we developed a general framework for multi-weighted timed
automata on finite words and gave their Nivat-like characterization. We had
to overcome the difficulty that unambiguous timed automata are weaker than
nondeterministic timed automata. Based on this result, we illustrated the fol-
lowing difference between the weighted and weighted timed settings: whereas
recognizable quantitative languages are exactly the renamings of deterministi-
cally recognizable quantitative languages, this result does not hold true in the
context of timed automata. In our Nivat theorem for multi-weighted timed
automata, we showed that, in general, if in a Nivat decomposition of the form
h((valT ◦g)∩L) we take an intersection with a nondeterministically recognizable
timed language L, then we can obtain an unrecognizable quantitative timed lan-
guage. Then, it could be interesting to study which extension of multi-weighted
timed automata can be characterized by such decompositions. It seems likely
that the results of this chapter can be easily extended to the setting of infinite
timed words. Multi-weighted timed automata should be further studied in the
context of decidability and complexity.

In Chapter 8, we characterized multi-weighted timed automata by means
of a timed extension of weight assignment logic of Chapter 6 based on Wilke’s
relative distance logic [84]. An open question is whether it is possible to extend
the results of [17, 18] to the timed setting. Moreover, one could try to establish
a Kleene-Schützenberger theorem for multi-weighted timed automata. For the
special case of semirings, based on the approach of [24], such a characterization
was presented in [43].

Finally, in Chapter 9, we introduced a timed matching logic and showed that
this logic is equally expressive as timed pushdown automata of [1]. Hence, the
satisfiability problem for our timed matching logic is decidable. When proving
our main result, we showed a Nivat-like decomposition theorem for timed push-
down automata. This theorem seems to be the first algebraic characterization of
timed pushdown languages. Based on the ideas presented in [34, 42, 71, 78] and
the ideas of this thesis, our ongoing research concerns a logical characterization
for weighted timed pushdown automata [2]. It could be also interesting to prove a

144

version of the Chomsky-Schützenberger theorem for timed pushdown automata
(cf. [48]). One could also investigate such an extension of timed pushdown
automata where each edge permits to push or pop several stack elements. Our
conjecture is that this extended model is more expressive than timed pushdown
automata as considered in this chapter.

Bibliography

[1] Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown au-
tomata. In: LICS 2012, pp. 35–44. IEEE Computer Society (2012).

[2] Abdulla, P.A., Atig, M.F., Stenman, J.: Computing optimal reachability
costs in priced dense-timed pushdown automata. In: LATA 2014. LNCS,
vol. 8370, pp. 62–75. Springer (2014).

[3] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994).

[4] Alur, R., Fix, L., Henzinger, T.: Event-clock automata: a determinizable
class of timed automata. Theoretical Computer Science 211(1-2), 253–273
(1999).

[5] Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004,
pp. 202–211. ACM (2004).

[6] Alur, R., Triverdi, A.: Relating average and discounted costs for quanti-
tative analysis of timed systems. In: EMSOFT 2011, pp. 165–174. IEEE
(2011).

[7] Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed
automata. In: HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer (2001).

[8] Andersson, D.: Improved combinatorial algorithms for discounted payoff
games. Master’s thesis, Uppsala University, Department of Information
Technology (2006).

[9] Baier, C., Größer, M.: Recognizing omega-regular languages with proba-
bilistic automata. In: LICS 2005, pp. 137–146. IEEE (2005).

[10] Bauer, S., Juhl, L., Larsen, K., Legay, A., Srba, J.: A logic for
accumulated-weight reasoning on multiweighted modal automata. In:
TASE 2012, pp. 77–84. IEEE (2012).

[11] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Petterson, P.,
Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed
automata. In: HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer (2001).

145

146

[12] Berstel, J.: Transductions and Context-Free Languages. Teubner Studi-
enbücher: Informatik. Teubner, Stuttgart (1979).

[13] Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS
Monographs on Theoretical Computer Science, vol. 12. Springer (1988).

[14] Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing
robust systems. In: FMCAD 2009, pp. 85–92. IEEE (2009).

[15] Boker, U., Henzinger, T.: Determinizing discounted-sum automata. In:
CSL 2011. LIPIcs, vol. 12, pp. 82–96. Schloss Dagstuhl (2011).

[16] Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: DLT 2009.
LNCS, vol. 5583, pp. 18-38. Springer (2009).

[17] Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted au-
tomata and transitive closure logics. In: ICALP 2010. LNCS, vol. 6199,
pp. 587–598. Springer (2010).

[18] Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Logical characteriza-
tion of weighted pebble walking automata. In: CSL/LICS’14. ACM Press
(2014).

[19] Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of
systems with continuous variables and unbounded discrete data structures.
In: Hybrid Systems II. LNCS, vol. 999, pp. 64–85. Springer (1995).

[20] Bouyer, P.: A logical characterization of data languages. Inf. Process.
Lett. 84(2), 75–85 (2002).

[21] Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as pos-
sible. In: HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer (2004).

[22] Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for
multi-priced timed automata. Formal Methods in System Design 32, 3–23
(2008).

[23] Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite
runs in weighted timed automata with energy constraints. In: FORMATS
2008. LNCS, vol. 5215, pp. 33-47. Springer, Heidelberg (2008).

[24] Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages.
Journal of Automata, Languages and Combinatorics 7(2), 167–186 (2001).

[25] Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math.
Logik und Grundl. Math. 6, 66–92 (1960).

[26] Carton, O., Michel, M.: Unambiguous Büchi automata. In: LATIN 2000.
LNCS, vol. 1776, pp. 407–416. Springer (2000).

147

[27] Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In:
CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer (2008).

[28] Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure
properties for quantitative languages. Logical Methods in Comp. Sci. 6(3)
(2010).

[29] Culik, K., Kari, J.: Image compression using weighted finite automata.
Comput. Graphics 17, 305–313 (1993).

[30] D’Souza, D.: A logical characterization of event clock automata. Int. Jour-
nal of Foundations of Computer Science 14(4), 625–639. World Scientific
(2003).

[31] Dang, Z.: Pushdown timed automata: a binary reachability characteri-
zation and safety verification. Theoretical Computer Science 302, 93–121
(2003).

[32] De Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future
in systems theory. In: ICALP 2003. LNCS, vol. 2719, pp. 1022–1037.
Springer (2003).

[33] Droste, M., Gastin, P.: Weighted automata and weighted logics. In:
ICALP 2005. LNCS, vol. 3580, pp. 513–525. Springer (2005).

[34] Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoret.
Comp. Sci. 380(1-2), 69–86 (2007).

[35] Droste, M., Gastin, P.: Weighted automata and weighted logics. In:
Droste, M., Kuich, W., Vogler, H. (eds.) [36], chapter 5.

[36] Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Au-
tomata. EATCS Monographs on Theoretical Computer Science. Springer
(2009).

[37] Droste, M., Kuske, D.: Skew and infinitary formal power series. In:
ICALP 2003. LNCS, vol. 2719, pp. 426–438. Springer (2003).

[38] Droste, M., Kuske, D.: Weighted automata. In: Pin, J.-E. (ed.) Hand-
book: "Automata: from Mathematics to Applications", European Math-
ematical Society, to appear.

[39] Droste, M., Meinecke, M.: Weighted automata and regular expressions
over valuation monoids. Int. J. Found. Comput. Sci. 22(8), 1829–1844
(2011).

[40] Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics
for average and long-time behaviors. Inf. Comput. 220-221, 44–59 (2012).

[41] Droste, M., Perevoshchikov, V.: Multi-weighted automata and MSO logic.
In: CSR 2013. LNCS, vol. 7913, pp. 418–430. Springer (2013).

148

[42] Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed
automata and relative distance logic. In: ICALP 2014. LNCS, vol. 8573,
pp. 171–182. Springer (2009).

[43] Droste, M., Quaas, K.: A Kleene-Schützenberger theorem for weighted
timed automata. Theor. Comput. Sci. 412(12-14), 1140–1153 (2011).

[44] Droste, M., Rahonis, G.: Weighted automata and weighted logics on infi-
nite words. In: DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer (2006).

[45] Droste, M., Rahonis, G.: Weighted automata and weighted logics with
discounting. Theoretical Computer Science 410(37), 3481–3494 (2009).

[46] Droste, M., Sakarovitch, J., Vogler, H.: Weighted automata with discount-
ing. Inf. Process. Lett. 108(1), 23–28 (2008).

[47] Droste, M., Vogler, H.: Weighted automata and multi-valued logics over
arbitrary bounded lattices. Theoret. Comp. Science 418, 14–36 (2012).

[48] Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for
quantitative context-free languages. In: DLT 2012. LNCS, vol. 7907,
pp. 203–214. Springer (2013).

[49] Eilenberg, S.: Automata, Languages and Machines, volume A. Academic
Press, New York (1974).

[50] Elgot, C.C.: Decision problems of finite automata design and related arith-
metics. Trans. Amer. Math. Soc. 98, 21–51 (1961).

[51] Emmi, M., Majumdar, R.: Decision problems for the verification of real-
time software. In: HSCC 2006. LNCS, vol. 3927, pp. 200–211. Springer
(2006).

[52] Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in mul-
tiweighted automata. In: ICTAC 2011. LNCS, vol. 6916, pp. 95–115.
Springer (2011).

[53] Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced
timed automata. Electr. Notes Theor. Comput. Sci. 239, 179–191 (2009).

[54] Fahrenberg, U., Larsen, K.G.: Discounting in time. Electr. Notes Theor.
Comput. Sci. 253, 25–31 (2009).

[55] Fahrenberg, U., Larsen, K.G., Thrane, C.R.: Model-based verification
and analysis for real-time systems. In: Software and Systems Safety -
Specification and Verification. NATO Science for Peace and Security Series
- D: Information and Communication Securita, vol. 30, pp. 231–259. IOS
Press (2011).

149

[56] Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by
functional automata. In: CONCUR 2012. LNCS, vol. 7454, pp. 132–146.
Springer (2012).

[57] Fränzle, M., Swaminathan, M.: Revisiting decidability and optimum
reachability for multi-priced timed automata. In: FORMATS 2009. LNCS,
vol. 5813, pp. 149–163. Springer (2009).

[58] Gastin, P., Monmege, B.: Adding pebbles to weighted automata. In:
CIAA 2012. LNCS, vol. 7382, pp. 28–51. Springer (2012).

[59] Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-
order logic over pictures and recognizability by tiling systems. In: STACS
1994. LNCS, vol. 775, pp. 365–375. Springer (1994).

[60] Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence
problem for finitely ambiguous finance automata. Int. Journal of Algebra
and Computation 12(3), 445–461 (2002).

[61] Kleene S.C.: Representation of events in nerve nets and finite automata.
Automata Studies, 3–42. Princeton University Press (1956).

[62] Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theor.
Comput. Sci. 327(3), 349–373 (2004).

[63] Krob, D.: The equality problem for rational series with multiplicities in
the tropical semiring is undecidable. International Journal of Algebra and
Computation 4(3), 405–425 (1994).

[64] Kuich, W.: Semirings and formal power series: their relevance to formal
languages and automata. In: Handbook of Formal Languages, vol. 1, pp.
609–677. Springer (1997).

[65] Kuich, W., Salomaa, A.: Semirings, Automata and Languages. EATCS
Monographs on Theoretical Computer Science, vol. 5. Springer (1986).

[66] Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In:
LICS 2013, pp. 113–122. IEEE (2013).

[67] Kuske, D.: Schützenberger’s theorem on formal power series follows from
Kleene’s theorem. Theor. Comput. Sci. 401(1-3), 243-248 (2008).

[68] Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pet-
tersson, P., Romijn, J.: As cheap as possible: efficient cost-optimal reach-
ability for priced timed automata. In: CAV 2001. LNCS, vol. 2102, pp.
493–505. Springer (2001).

[69] Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-
priced timed automata. In: FOSSACS 2005. LNCS, vol. 3441, pp. 234–249.
Springer (2005).

150

[70] Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free lan-
guages. In: CSL 1994. LNCS, vol. 933, pp. 205–216. Springer (1994).

[71] Mathissen, Ch.: Weighted logics for nested words and algebraic formal
power series. In: ICALP 2008. LNCS, vol. 5126, pp 221–232. Springer
(2008).

[72] Megiddo, N.: Combinatorial optimization with rational objective func-
tions. In: STOC 1978. ACM, pp. 1–12 (1978).

[73] Mohri, M.: Finite-state transducers in language and speech processing.
Computational Linguistics 23, 269–311 (1997).

[74] Nivat, M.: Transductions des langages de Chomsky. Ann. de l’Inst. Fourier
18, 339–456 (1968).

[75] Puri, A., Tripakis, S.: Algorithms for the multi-constrained routing prob-
lem. In: SWAT 2002. LNCS, vol. 2368, pp. 338–347. Springer (2002).

[76] Quaas, K.: On the supports of recognizable timed series. In: FORMATS
2009. LNCS, vol. 5813, pp. 243–257. Springer (2009).

[77] Quaas, K.: Kleene-Schützenberger and Büchi theorems for weighted timed
automata. PhD thesis, Universität Leipzig (2010).

[78] Quaas, K.: MSO logics for weighted timed automata. Formal Methods in
System Design 38(3), 193–222 (2011).

[79] Rasmussen, J., Larsen, K.G., Subramani, K.: Resource-optimal schedul-
ing using priced timed automata. In: TACAS 2004. LNCS, vol. 2988, pp.
220–235. Springer (2004).

[80] Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power
Series. Text and Monographs in Computer Science. Springer (1978).

[81] Schützenberger, M.P.: On the definition of a family of automata. Infor-
mation and control 4, 245–270 (1961).

[82] Stüber, T., Vogler, H., Fülöp, Z.: Decomposition of weighted multioper-
ator tree automata. Int. J. Foundations of Computer Sci. 20(2), 221–245
(2009).

[83] Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
System Theory, 2:57–81 (1968).

[84] Wilke, T.: Automaten und Logiken zur Beschreibung zeitabhängiger Sys-
teme. PhD thesis, Christian-Albrecht-Universität Kiel (1994).

[85] Wilke, T.: Specifying timed state sequences in powerful decidable logics
and timed automata. In: Formal Techniques in Real-Time and Fault-
Tolerant Systems 1994. LNCS, vol. 863, pp. 694–715. Springer (1994).

Index

⊥, 67, 124
∗→A, 60
+→A, 60
[X 99K Y], 67
∃RDL(Σ), 106
∃matchµ, 123
0Σ+ , 32
aBOOL(Σ,S), 21
aBOOLres(Σ,E), 23
c `t,e c′, 120
cl+(X), 25
FM, 27
f : X 99K Y , 67
f [X ′], 10
f1 ↑ f2, 67
fM, 27
D, 105
HDet(Σ,V), 101
HSeq(Σ,V), 101
HUnamb(Σ,V), 101
I, 86
L•, 35
Mask(w), 125
Matching(µ), 122
Mon(M), 24
MSO(Σ), 18
MSOL(Σ̃), 125
mwMSO(Σ,E), 18
mwMSOs.res(Σ,E), 23
mwMSOres

M (Σ,E), 28
N〈X〉, 10
N (Σ,V), 98
NDet(Σ,V), 99
N Seq(Σ,V), 99
NUnamb(Σ,V), 99
P(k), 126

r ↑ r′, 107
Rm,k, 126
R̃m,k, 126
Rat(Σ,E), 32
Rat(Σ,S), 32
RDL(Σ), 105
S(Γ), 120
supp(µ), 10
Tm,k, 126
TΣ∗, 85
TΣ+, 85
TΣ+

V , 106
tMSO(Σ), 122
tRec(Σ), 86
tRec(Σ,V), 90
tRecDet(Σ), 87
tRecDet(Σ,V), 90
tRecSeq(Σ), 87
tRecSeq(Σ,V), 90
tRecUnamb(Σ), 87
tRecUnamb(Σ,V), 90
tWALu(Σ,V1), 107
tWAL(Σ,V1), 107
uWAL(Σ,V1), 69
V , 18
V1, 18
V2, 18
V1, 69
W, 105
WAL(Σ,V1), 77
wMSO(Σ,S), 20
wMSOres(Σ,S), 21
wt#
A, 11, 90

wtA(ρ), 50
Y ↑, 67
Y ↑n , 107

151

152

Φ(C), 86
ΦS, 13
µ(x, y), 122
µI(x, y), 122
ΣωV , 68
Σ+
V , 18

�-commute elementwise, 28

ω-language, 49
h-unambiguous, 54
MSO-definable, 69
recognizable, 50

ω-valuation function, 50
ω-valuation monoid, 52
ω-valuation structure, 50

aggregation function, 10

Büchi automaton, 49
unambiguous, 53

clock constraint, 86
clock valuation, 86
clock variable, 86
commute elementwise, 21
configuration (TPDA), 120
configuration (VPA), 124
cycle, 59

accepting, 59
simple, 59
singular, 59

default weight, 69, 107
distance matching, 122

edge, 86
evaluator, 10

M-evaluator, 27
idempotent, 39
qualitative, 38

finite automaton, 10
finite word, 10

domain, 18
empty, 10
length, 10

formula
Boolean, 18
multi-weighted, 18

restricted almost Boolean, 23
sentence, 18
weighted formula

almost Boolean, 21
syntactically restricted, 21

language
MSOL(Σ̃)-definable, 125
timed pushdown, 121
visibly pushdown, 124

location, 86

monoid
complete, 50

Muller automaton, 56
multi-weighted automaton, 10
multi-weighted Büchi automaton

(MWBA), 50
deterministic, 55
Nivat theorem, 53
non-singular, 59
non-trivial, 60
simple, 57
unambiguous, 54

multi-weighted MSO logic, 18
auxiliary semantics, 19
proper semantics, 19
strongly restricted, 23

multi-weighted Muller automaton, 56
multi-weighted timed automaton

(MWTA), 89
deterministic, 89
Nivat theorem, 99
sequential, 89
unambiguous, 89

multiset, 10
Cauchy product, 19
empty, 19
finite, 10
monomial, 24
sum, 19
support, 10
union, 19, 29

153

partial mapping, 67
compatible, 67
domain, 67
empty, 67
total, 67
union, 67

problem
discount-optimal value problem,

57
evaluation problem, 14
optimal weight problem, 57
threshold problem, 13, 90

pushdown alphabet, 124

quantitative ω-language, 50
WAL-definable, 78
composition, 52
intersection, 52
recognizable, 50
renaming, 52
unambiguously definable, 70

quantitative language, 11
∆-definable, 20
addition, 31
Cauchy-product, 31
iteration, 31
rational, 32, 33
recognizable, 11

quantitative timed language (QTL), 90
composition, 94
deterministically recognizable, 90
recognizable, 90
renaming, 93
sequentially recognizable, 90
tWAL-definable, 108
unambiguously recognizable, 90

rational expression
multi-weighted, 32

auxiliary semantics, 33
proper semantics, 33

weighted, 32
relative distance logic, 105
relative distance predicate, 106
renaming, 52, 93
reward-cost ratio, 11

run fragment, 58

semifield, 40
semiring, 13

semiring morphism, 20
tropical semiring, 14, 15

stack alphabet, 120
stack command, 120
strongly connected component, 60

accepting, 60
reachable, 60
trivial, 60

timed automaton, 86
V-event-recording automaton, 111
deterministic, 87
recognizable, 86
sequential, 87
unambiguous, 87

timed Dyck language, 121
timed language, 85

TML-definable, 123
definable, 106
deterministically recognizable, 87
sequentially recognizable, 87
unambiguously definable, 119
unambiguously recognizable, 87

timed matching logic, 123
timed pushdown automaton (TPDA),

120
timed valuation function, 89
timed valuation monoid, 89
timed valuation structure, 89

idempotent, 89
location-dependent, 94

timed weight assignment logic, 107
timed word, 85

concatenation, 86
domain, 106
empty, 85
length, 85
time length, 85

valuation monoid, 13
variable

first-order, 18

154

free, 18, 106
matching, 122
relative distance, 105
second-order, 18

visibly pushdown automaton (VPA),
124

weight assignment logic (WAL), 77
unambiguous, 69

weighted automaton
normalized, 40

weighted If-Then-Else formula, 20
weighted MSO logic, 20

List of Figures

3.1 The diagram for M-evaluators . 28

4.1 Weighted automata A1 and A2 from Example 4.15 41
4.2 Construction of A∆ from A′ . 43
4.3 Construction of A+

∆ from A . 46

5.1 MWBA A1 and A2 of Example 5.17 58

7.1 Timed automaton A of Example 7.3 87
7.2 Timed automaton AL from the proof of Lemma 7.5 88
7.3 MWTA AL from the proof of Lemma 7.23 102

9.1 TPDA A of Example 9.2 . 121
9.2 TPDA A of Example 9.9 . 128
9.3 TPDA AL′ of Example 9.9 . 128
9.4 TPDA AT1,1

of Example 9.9 . 129

155

156

List of Tables

3.1 The satisfaction relation for Boolean formulas 18
3.2 The auxiliary semantics of multi-weighted formulas 19

4.1 The semantics of rational expressions over a semiring 32

6.1 The auxiliary semantics of the uWAL(Σ,V1)-formulas 70

8.1 The semantics of relative distance formulas 106
8.2 The semantics of tWALu(Σ,V1)-formulas. 108
8.3 The semantics of tWAL(Σ,V1)-formulas 109

9.1 The semantics of tMSO(Σ)-formulas 123

157

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzuläs-
sige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die ange-
führten Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich
oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnom-
men wurden, und alle Angaben, die auf mündlichen Auskünften beruhen, als
solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestell-
ten Materialien oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, 11. Dezember 2014

Vitaly Perevoshchikov

Wissenschaftlicher Werdegang
Sep.1998 - Jun.2005 Gymnasium 32 Kaliningrad, Russland

Sep.2005 - Jun.2010 Russische Staatliche Immanuel-Kant-Universität
Kaliningrad

Studium der Angewandten Mathematik und Informatik

Diplomarbeit "Über eine effiziente parallelisierte
Implementierung der Pollard-Rho-Methode zur
Berechnung des diskreten Logarithmus auf elliptischen
Kurven"

Diplom mit Auszeichnung

Sep.2010 - Sep.2012 Universität Leipzig
Wissenschaftlicher Mitarbeiter und Doktorand am
Institut für Informatik
Abteilung Automaten und Sprachen
Betreuer: Prof. Dr. M. Droste

Okt.2012 - Apr.2015 Universität Leipzig
Doktorand am Institut für Informatik
Abteilung Automaten und Sprachen
Stipendiat des DFG Graduiertenkollegs "QuantLA"
Betreuer: Prof. Dr. Manfred Droste

Publikationsliste
Begutachtete Veröffentlichungen

1. Weight assignment logic. Angenommen bei International Conference on
Developments in Language Theory (DLT) 2015.

2. A logical characterization of timed pushdown languages (mit M. Droste).
Angenommen bei International Computer Science Symposium in Russia
(CSR) 2015.

3. A Nivat theorem for weighted timed automata and weighted relative dis-
tance logic (mit M. Droste). In: International Colloquium on Automata,
Languages and Programming (ICALP) 2014. Lecture Notes in Computer
Science, Volume 8573, S. 171–182. Springer (2014).

4. Multi-weighted automata and MSO logic (mit M. Droste). In: Inter-
national Computer Science Symposium in Russia (CSR) 2013. Lecture
Notes in Computer Science, Volume 7913, S. 418–430. Springer (2013).

5. On the problems of efficient realization of parallelized Pollard’s rho-
method (mit A. Gritsenko). In: Proceedings of the Junior Scientist Con-
ference 2010, S. 95–96. Technische Universität Wien (2010).

6. On the efficient realization of an elliptic curve discrete logarithm prob-
lem solution (mit A. Gritsenko). In: Scientific Conference at the Tomsk
State University of Control Systems and Radioelectronics 2009, S. 319–327
(2009) (auf Russisch).

Eingereichte Arbeiten

1. Logics for weighted timed pushdown automata (mit M. Droste). April
2015.

2. Multi-weighted automata and MSO logic (mit M. Droste). Eingereicht
bei Theory of Computing Systems (TOCS), Special Issue of CSR 2013.
September 2014 (Revision).

3. Adding operations to weighted MSO-logic. April 2014.

Liste der Vorträge
1. Decomposition of weighted timed automata. FFM 2015, Aachen, 26.02.15.
2. A logical characterization of timed pushdown languages. Post WATA

2014, Dresden, 26.11.14.
3. A Nivat theorem for weighted timed automata and weighted relative dis-

tance logic. ICALP 2014, Kopenhagen, 09.07.14.
4. Adding operations to weighted MSO-logic. YR-ICALP 2014, Kopenhagen,

09.07.14.
5. A Nivat theorem for weighted timed automata and weighted relative dis-

tance logic. WATA 2014, Leipzig, 07.05.14.
6. Multi-weighted automata and MSO logic. Dagstuhl Seminar 14041

"Quantitative Models: Expressiveness, Analysis, and New Applications",
Schloss Dagstuhl, 28.01.14.

7. Multi-weighted automata and MSO logic. CSR 2013, Jekaterinburg,
29.06.13.

8. Büchi-type theorems for unambiguous, functional and multi-weighted au-
tomata. WATA 2012, Dresden, 02.06.12.

9. On the problems of efficient realization of parallelized Pollard’s rho
method. Junior Scientist Conference 2010, Wien, 08.04.10.

