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dedicated to the variety of language



A B S T R A C T

Genre and domain influence an author’s style of writing
and therefore a text’s characteristics. Natural language pro-
cessing is prone to such variations in textual characteristics:
it is said to be genre and domain dependent.

This thesis investigates genre and domain dependencies in
sentiment analysis. Its goal is to support the development of
robust sentiment analysis approaches that work well and
in a predictable manner under different conditions, i. e. for
different genres and domains.

Initially, we show that a prototypical approach to senti-
ment analysis—viz. a supervised machine learning model
based on word n-gram features—performs differently on
gold standards that originate from differing genres and do-
mains, but performs similarly on gold standards that orig-
inate from resembling genres and domains. We show that
these gold standards differ in certain textual characteris-
tics, viz. their domain complexity. We find a strong linear
relation between our approach’s accuracy on a particular
gold standard and its domain complexity, which we then
use to estimate our approach’s accuracy.

Subsequently, we use certain textual characteristics—viz.
domain complexity, domain similarity, and readability—in a va-
riety of applications. Domain complexity and domain sim-
ilarity measures are used to determine parameter settings
in two tasks. Domain complexity guides us in model selec-
tion for in-domain polarity classification, viz. in decisions
regarding word n-gram model order and word n-gram fea-
ture selection. Domain complexity and domain similarity
guide us in domain adaptation. We propose a novel domain
adaptation scheme and apply it to cross-domain polarity
classification in semi- and unsupervised domain adapta-
tion scenarios. Readability is used for feature engineering.
We propose to adopt readability gradings, readability indi-
cators as well as word and syntax distributions as features
for subjectivity classification.

Moreover, we generalize a framework for modeling and
representing negation in machine learning-based sentiment
analysis. This framework is applied to in-domain and cross-
domain polarity classification. We investigate the relation
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between implicit and explicit negation modeling, the in-
fluence of negation scope detection methods, and the effi-
ciency of the framework in different domains.

Finally, we carry out a case study in which we transfer the
core methods of our thesis—viz. domain complexity-based
accuracy estimation, domain complexity-based model se-
lection, and negation modeling—to a gold standard that
originates from a genre and domain hitherto not used in
this thesis.
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1
I N T R O D U C T I O N

The advantage of the emotions is that they lead us astray,
and the advantage of science is that it is not emotional.

— Oscar Wilde,
The Picture of Dorian Gray

With the advent of the world wide web our information
gathering behavior drastically changed. Instead of asking
our friends and family, we query search engines to fulfill
our information needs. Moreover, people actively partici-
pate in the creation and distribution of new content, e. g.
texts, pictures, and videos. In social media, e. g. FaceBook1

and Twitter2, people not only share their daily life, but they
also express their views on basically everything—ranging
from politics to cultural events to their latest purchases—
and discuss the views of others on the same issues. The
sheer amount of such “opinionated” content requires tech-
nology that enables opinion-aware applications. This tech-
nology is subsumed under the term Sentiment Analysis (SA). Sentiment analysis

1.1 motivation

SA has manifold applications in human-computer interac-
tion (e. g. Hudlicka, 2003), intelligence, market research (e. g.
Qiu et al., 2010), and end-user products (e. g. Yu and Hatzi-
vassiloglou, 2003; Seki et al., 2005). In its manifold applica-
tions SA faces a wide variety of challenges, many of which
are inherently bound to the data to be analyzed: natural
language text.

Because just like Natural Language Processing (NLP) in
general, SA—an NLP task—is dependent on what we sub-
sume under contextual parameters. Such contextual parame- Contextual

parametersters are e. g. the point of time at which something is expressed—
the zeitgeist—or the author’s social, cultural, and educa-
tional background (see Lahiri et al., 2011) against which
something is expressed. Contextual parameters may influ-

1 http://www.facebook.com
2 http://twitter.com

1
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2 introduction

ence a text’s characteristics, e. g. its vocabulary or its struc-
ture, which in turn may influence the level of accuracy that
certain NLP—and SA—techniques reach. While many con-
textual parameters, e. g. the point of time, certainly do in-
fluence an author’s style of writing and therefore a text’s
characteristics, their influence is rather subtle3. Not sub-
tle is the influence of two other contextual parameters: the
genre and the domain in which something is expressed.
Their influence on a text’s characteristics poses a central
challenge to NLP in general: many NLP techniques are said
to be genre and domain dependent4.

Such genre and domain dependencies are particularly
pronounced in SA: Sentiment—polarity and subjectivity—
is expressed both via vocabulary and structure (see Wiebe
et al., 2004), both of which are influenced by genre and do-
main. Furthermore, sentiment is expressed differently in
different genres5 and different domains6. These considera-
tions lead to the core hypothesis of our thesis: Core hypothesis

“SA is genre and domain dependent”.

Consequently, our thesis focuses on a special case of par-
ticularly pronounced genre and domain dependencies in
NLP: genre and domain dependencies in SA.

3 According to Cook and Stevenson (2012) a word’s connotation may
change over time: they study amelioration and pejoration. Further-
more, according to Gulordava and Baroni (2011), out of 10,000 ran-
domly sampled words from Google n-grams corpus, 1.6% undergo a
semantic change when comparing the 1960s to the 1990s.

4 Sekine (1997) showed that syntax parsing is domain dependent; Es-
cudero et al. (2000) showed that Word Sense Disambiguation (WSD) is
domain dependent. Note that both Sekine (1997) and Escudero et al.
(2000)—actually most NLP research—uses domain in a much broader
sense than we do that often also comprises the genre.

5 Imagine for example how an opinion regarding a political decision is
expressed in a tweet—which is limited to 140 characters—vs. how it is
expressed in a newspaper commentary. While the former underlies no
formal editing process and therefore is expressed rather spontaneously
and direct, the latter usually underlies a rigorous editing process and
therefore is expressed “with thought”.

6 Turney (2002) was among the very first to notice domain dependence
in the semantic orientation of adjectives like “unpredictable”: when
“unpredictable” describes a movie plot, it is positively connotated,
while it is negatively connotated when it describes the steering of a
car.
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1.2 outline

Our thesis is structured as follows. In this introduction, we
yet outline our goals (see Section 1.3), clarify our terminol-
ogy (see Section 1.4), and describe challenges in SA apart
from genre and domain dependencies (see Section 1.5).

Subsequently, Part I of our thesis provides all necessary
background information: In Chapter 2 we describe the gold
standard datasets we use throughout this thesis and how
we preprocess natural language text. In Chapter 3 we de-
scribe measures to capture certain language characteris-
tics: genre and domain specifics. In Chapter 4 we describe
Machine Learning (ML) algorithms used in this thesis as
well as methods on how to evaluate ML models.

Part II forms the core of our thesis: In Chapter 5 we show
that SA is genre and domain dependent. In Chapter 6 we
leverage genre and domain characteristics for model selec-
tion and feature engineering in different SA subtasks. In
Chapter 7 we describe how to model and to represent nega-
tion in ML-based SA.

Part III applies the knowledge we gained in Part II: In
Chapter 8 we carry out a case study on previously unseen
data. In Chapter 9 we summarize our findings and con-
clude.

1.3 goals

To (i) add to the understanding of similarities and dissim-
ilarities between genres and domains and to (ii) support
the development of robust SA approaches that work well
and in a predictable manner under different conditions—
i. e. for different genres and domains—are the main goals
of our thesis. Therefore, we work within the paradigm
of language engineering7. We like to sharpen the conscious- Language

engineeringness that “off-the-shelf” SA8—just like NLP—approaches
are prone to genre and domain specifics. Therefore, we ex-

7 “Language Engineering is the discipline or act of engineering software
systems that perform tasks involving processing human language.
Both the construction process and its outputs are measurable and pre-
dictable.” (see Cunningham, 1999)

8 “Off-the-shelf” SA can be found in e. g. R text mining module (http://
cran.r-project.org/web/packages/tm/index.html), Python Natural
Language Toolkit (http://www.nltk.org/), and Java LingPipe (http:
//alias-i.com/lingpipe/).

http://cran.r-project.org/web/packages/tm/index.html
http://cran.r-project.org/web/packages/tm/index.html
http://www.nltk.org/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
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pect them to perform differently for data that originates
from differing genres and domains. Throughout our the-
sis, our desiderata to reach these goals are:

• We focus on a supervised, ML-based SA approach that
is purely data-driven and does not incorporate exter-
nal knowledge, e. g. prior polarity dictionaries like
SentiWordNet (see Esuli and Sebastiani, 2006). This
allows us to apply the same SA approach to all kinds
of genres and domains without the need for adapting
the external knowledge or the SA approach itself.

• We prefer well studied, widely used ML techniques.
This allows us to focus on the understanding of the
relation between genre and domain characteristics and
our SA approach rather than on ML technique specifics.

• We introduce as little free parameters in our experi-
ments as possible. This avoids that parameter tuning
masks the effects that genre and domain characteris-
tics have on our SA approach.

1.4 terminology

In this section we clarify our terminology related to SA (see
Section 1.4.1) as well as our notions of genre and domain
(see Section 1.4.2).

1.4.1 Sentiment Analysis

According to Pang and Lee (2008)’s comprehensive study,
Nasukawa and Yi (2003)’s article was the first to use the
term SA. It says:

“The essential issue in sentiment analysis is to
identify how sentiments are expressed in [natu-
ral language] texts and whether the expressions
indicate positive (favorable) or negative (unfa-
vorable) opinions toward the subject.”

Nasukawa and Yi (2003) go on and expatiate that SA in-
volves several subtasks, i. e. identifying sentiment expres-
sions, determining polarity and strength of these expres-
sions as well as their relation to the subject.

Sentiments themselves express our feelings and emotions. Sentiments
From Damasio (2004)’s neurobiological perspective
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“emotions are bioregulatory reactions that aim Emotions
at promoting, directly or indirectly, the sort of
physiological states that secure not just survival
but survival in the range that we, conscious and
thinking creatures, identify with well-being.”

whereas

“feelings are the mental representation of the Feelings
physiologic changes that occur during an emo-
tion.”

In a broader sense Damasio (2004) defines feeling as the
“perception of an emotional state (. . . )”. Consequently, SA
aims for identifying what we typically describe with terms
like fear, anger, sadness, and joy—mental representa-
tions of our emotions, i. e. our feelings.

To achieve this aim, several SA subtasks need to fulfilled, SA subtasks
all of which are in concordance with Nasukawa and Yi
(2003)’s initial thoughts: identification and classification of
subjectivity, of polarity and of emotions, as well as extrac-
tion of opinion expressions, opinion holders, and opinion
targets. We now define these terms.

Subjectivity encompasses “aspects of language used to ex- Subjectivity
press opinions, evaluations, and speculations” (see Wiebe
et al., 2004). Subjectivity classification of e. g. a document or a Subjectivity

classificationsentence tries to discriminate between two categories: sub-
jective and objective. An utterance as in Example (1) clearly
bears an opinion, i. e. it is subjective, whereas an utterance
as in Example (2) clearly does not, i. e. it is objective9.

(1) In the end, though, it is only mildly amusing when it
could have been so much more.

(2) The movie takes place in mexico, 2002.

Polarity or semantic orientation of e. g. a word or a phrase Polarity
refers to its evaluative characteristics (see Hatzivassiloglou
and McKeown, 1997), i. e. whether it has positive or nega-
tive associations; or, put in Nasukawa and Yi (2003)’s words,
whether it is favorable or unfavorable. Words with pos-
itive polarity are e. g. “famous” or “remarkable”. Words
with negative polarity are e. g. “contagious” or “ignorant”
(see Hatzivassiloglou and McKeown, 1997). Polarity classi- Polarity

classification
9 Example (1) and (2) are adapted from Pang and Lee (2004)’s SD v1.0.

Examples (3), (4), (5), (6) and (7) are adapted from Wiebe et al. (2003)’s
MPQA v2.0 corpus. Example (8) is taken from Toprak et al. (2010)’s DSRC

(see Chapter 2).
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Figure 1.: The relation between subjectivity and polarity. Exam-
ples (1), (2), (3), (4), and (5) are plotted for illustrative purposes
only.

(1)

(2)(3) (4)

(5)

negative positive
objective/factual

neutral

subjective/non-factual
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b
j
e
c

t
i
v

i
t
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Polarity

fication tries to discriminate between either two or three
categories: positive and negative, or positive, negative, and
neutral, respectively. When polarity is assumed to be or-
thogonal to subjectivity (see Figure 1), it is crucial to dis-
tinguish between factual and non-factual polarity (see Bal- Factual vs.

non-factual polarityahur and Steinberger, 2009; Balahur et al., 2010). On the
one hand, objective utterances may bear polarity. Both Ex-
ample (3) and (4) report facts:

(3) As a result, at least four Palestinians were reportedly
killed and more than 30 wounded.

(4) Last Wednesday the Merval index posted a sharp 5.94

percent rise when the stock exchange reopened.

But the fact that four Palestinians were killed and 30 oth-
ers were wounded is certainly negative news; the fact that
the Merval index rose by almost 6% is positive news. Both
utterances bear factual polarity. In contrast, Example (1) is
subjective and negative, i. e. it bears non-factual polarity.
On the other hand, subjective utterances must not neces-
sarily bear polarity. Example (5) is subjective, but neither
positive or negative—it is neutral. Figure 1 illustrates this.

(5) I think that the antiglobalists do not realize what has
already been done.

An opinion expression—as its name suggests—expresses Opinion expression
someone’s opinion towards something. In Example (6) “worst
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mistake” is an opinion expression. The extraction of opin-
ion expressions has been studied extensively (e. g. Breck
et al., 2007; Johansson and Moschitti, 2013).

An opinion holder is the source of an opinion (see Wie- Opinion holder
gand and Klakow, 2010). In Example (6) “former Minister
Roque Fernandez” is the holder of the opinion that it was
“the worst mistake in the history of the Argentine econ-
omy”. In Example (7) “The U.S. commanders” are the hold-
ers of the opinion that the prisoners are “unlawful combat-
ants”.

(6) According to former Minister Roque Fernandez, it
was “the worst mistake in the history of the Argen-
tine economy”.

(7) The U.S. commanders consider the prisoners to be
“unlawful combatants” as opposed to prisoners of
war, a distinction that allows the U.S. to provide dif-
ferent treatment under international law.

Opinion holder extraction is an information extraction task Opinion holder
extractionthat tries to identify the opinion holder(s) in text (e. g. Choi

et al., 2005, 2006; Kim and Hovy, 2005, 2006; Wiegand and
Klakow, 2010).

An opinion target is what the opinion is about. Exam- Opinion target
ple (8) contains two opinion targets: “features” that are not
“earth-shattering” and “eCircles” that provides “a great
place to keep in touch”.

(8) While none of the features are earth-shattering, eCir-
cles does provide a great place to keep in touch.

Opinion target extraction is an information extraction task Opinion target
extractionthat tries to identify the opinion target(s) in text (e. g. Kim

and Hovy, 2006; Zhuang et al., 2006; Bloom et al., 2007;
Kessler and Nicolov, 2009; Jakob and Gurevych, 2010).

1.4.2 Genre and Domain

Unfortunately, there is neither a clear notion of nor a clear
distinction between the terms and concepts of genre and
domain as well as text type, style, register etc. in research
of (computational) linguistics (see Lee, 2001a) on language
variety. A language variety “refer[s] to any system of linguis- Language variety



8 introduction

tic expression whose use is governed by situational vari-
ables” (see Crystal, 2008, p. 509). We resort to the terms of
genre and domain and understand them as follows:

A genre is an identifiable text category (see Crystal, 2008, Genre
p. 210) based on external, non-linguistic criteria such as
intended audience, purpose, and activity type (see Lee,
2001a) as well as textual structure, form of argumentation,
and level of formality (see Crystal, 2008, p. 210). Genres are
assigned based on their use, rather than their form. They
are recognized as legitimate groupings of texts within a
speech community (see Swales, 1990). Genre examples are
news articles, letters, novels, recipes, fora posts, weblog
posts etc. A genre may have sub-genres, e. g. specific types
of news articles or novels. It is noteworthy that these gen-
res “can have (. . . ) different levels of generality” (see Lee,
2001a): some genres are very broad, in that texts from these
genres vary considerably, while other genres are rather nar-
row, in that texts from these genres do not vary much.

In contrast to genres, text types are based on internal, lin- Text Type
guistic criteria (see Biber, 1988). Registers, or sublanguages,
and styles, are also to be distinguished from genres. Style Style
usually refers to the individual use of language (see Lee,
2001a). A certain register refers to a variety of language Register
used in a certain social situation, e. g. scientific or informal
English (see Crystal, 2008, p. 409). Registers may further be
classified according to their field, i. e. their subject-matter Field
(see Crystal, 2008, p. 409).

Similarly, a domain is a genre attribute that describes the Domain
subject area that an instantiation of a certain genre deals
with (see Steen, 1999; Lee, 2001a). E. g., a text from the
genre newspaper article may be belong to the domain
finance. Other domains may be art, science, religion, pol-
itics, sports, economy, technology etc. A domain may have
sub-domains, e. g. impressionism is a sub-domain of art,
and table tennis is a sub-domain of sports. Note that this
notion of domain deviates from Crystal (2008, p. 155)’s no-
tion, who considers a domain as an “area of experience”.
This deviation is rooted in the usual use of the term do-
main in the NLP and SA research communities.

In this thesis we focus on writing, which is the secondary
medium as opposed to speech, which is the primary medium Medium
(see Crystal, 2008, p. 300). Note that medium is different
from channel, “which refers to the physical means whereby Channel
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a (spoken or written) message is transmitted, such as a
wire, air, light (...).” (see Crystal, 2008, p. 300).

1.5 challenges

In this section we describe challenges in the research field
of SA apart from genre and domain dependencies, some of
which are currently addressed in the literature but have not
been solved satisfactorily yet, some of which remain open
to date. We subdivide these challenges into those inherent
to natural language (see Section 1.5.1) and those inherent
to technology used to process natural language (see Sec-
tion 1.5.2).

1.5.1 Language-inherent

Language-inherent challenges in SA are, among others:

irony and sarcasm . Irony is an intricate rhetorical de-
vice that expresses “one’s meaning by using language
that normally signifies the opposite, typically for hu-
morous or emphatic effect.”10. Example (9) is an ironic
expression:

(9) Don’t go overboard with the gratitude.1

Sarcasm uses “irony to mock or convey contempt”11.
Example (10) is a sarcastic reference to a book, Exam-
ple (11) is a sarcastic description of an e-book reader,
both taken from Tsur et al. (2010):

(10) [I] love the cover.

(11) Great idea, now try again with a real product
development team.

Identification of irony (e. g. Reyes and Rosso, 2012,
2013) and sarcasm (e. g. Tsur et al., 2010; Lukin and
Walker, 2013) is one of the most apparent challenges
in SA, and—genre and domain dependencies aside—
also one of the biggest: irony and sarcasm are inher-
ently ambiguous (see Tsur et al., 2010) and highly
variable in form (see Lukin and Walker, 2013). Being

10 http://oxforddictionaries.com/definition/english/irony

(accessed June 28, 2013)
11 http://oxforddictionaries.com/definition/english/sarcasm

(accessed June 28, 2013)

http://oxforddictionaries.com/definition/english/irony
http://oxforddictionaries.com/definition/english/sarcasm
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able to identify irony and sarcasm means being able
to discover that there is a discrepancy between what
is said and what is meant. This may be the difference
between classifying Example (10) as having positive
or negative polarity.

humor . Closely related to irony and sarcasm is humor,
“the quality of being amusing or comic, especially as
expressed in literature or speech”12. Example (12) is a
humorous one-liner taken from Mihalcea and Strap-
parava (2005):

(12) Take my advice; I don’t use it anyway.

The recognition of humor in writing (e. g. Mihalcea
and Strapparava, 2005) is similarly challenging as the
identification of irony and sarcasm: humor may be
subtle and its understanding requires world knowl-
edge. Although we are far from fully understanding
humor, separating humorous from non-humorous text
can be done on a high level of accuracy (see Mihalcea
and Pulman, 2007).

point of view. The interpretation of SA results depends
on one’s point of view (see Scholz and Conrad, 2012)
or one’s perspective. What may be favorable to one
party, might be unfavorable to another and vice versa.
Example (13) is of positive polarity from SPD’s point
of view, but of negative polarity from any opposing
party’s point of view.

(13) The SPD man Klaus Wowereit is elected govern-
ing major of Berlin.

The identification of an entity’s viewpoint requires
contextual information that is often not available, ren-
dering it impossible to automatically decide whether
something is favorable or unfavorable to a certain
party.

Irony and sarcasm, humor, and viewpoints are language-
inherent challenges that are specific to SA. Other language-
inherent challenges that are non-specific to SA but present
general challenges for many NLP techniques are, among
others:

12 http://oxforddictionaries.com/definition/english/humour

(accessed June 28, 2013)

http://oxforddictionaries.com/definition/english/humour
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ambiguity. Natural language is highly ambiguous, i. e. the
same utterance may have different meanings, depend-
ing on who expressed the utterance, to whom the
utterance was expressed, where and when the utter-
ance was expressed etc. Ambiguities may occur on
different language levels, e. g. on sense-level or on
sentence-level. Resolving such ambiguities, e. g. in WSD
(e. g. Brown et al., 1991; Yarowsky, 1995), is a hard
NLP task on its own.

expressive power of human language . The human
capability to compose and comprehend a virtually in-
finite number of syntactically and semantically valid
sentences (see Hauser et al., 2002; Pullum and Scholz,
2010) leads to a vast number of ways to express senti-
ment. This impedes a compact representation of language—
sentiment expressions—and hinders generalization.

creative language use . Humans are creative in their
language use. E. g., they emphasize that they are very
hungry by writing that they are “huuungry” or they
derivate the verb “to google” from searching the web
via Google’s search engine13. Again, this impedes a
compact representation of language and hinders gen-
eralization.

noise . Closely related to creative language use and the
expressive power of human language is the presence
of noise, especially in texts without editorial control,
e. g. in posts to social media, webfora, or blogs. Noise
includes orthographic flaws, creative language use,
uncommon abbreviations etc. Again, this impedes a
compact representation of language and hinders gen-
eralization.

multilinguality. Languages may differ in all their lin-
guistic characteristics, e. g. in the alphabet they use,
in their morphology, in their syntax etc. Generally,
it is not straightforward to transfer an SA approach
from one language to another (e. g. Mihalcea et al.,
2007; Balahur and Turchi, 2012).

common sense . World knowledge and common sense rea-
soning (e. g. Cambria et al., 2012a,b) are often neces-

13 http://www.google.com

http://www.google.com
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sary to understand an ongoing discourse or univer-
sally accepted facts, e. g. that a beer is best served
cold, while a pizza is best served hot. Although SA
would certainly benefit from world knowledge and
common sense reasoning, both are non-trivial to im-
plement.

1.5.2 Technology-inherent

Technology-inherent challenges for SA and NLP in general
are, among others:

supervision. ML-based NLP techniques often rely on ex-
tensive supervision (see Section 4.1.1) in the form of
manually annotated and thus costly training data. SA
methods that are unsupervised (e. g. Lin and He, 2009;
Wang and Liu, 2011; Scheible and Schütze, 2012) do
not reach the quality level of supervised and semi-
supervised methods yet.

error propagation. High-level NLP techniques such as
SA often rely on low(er)-level NLP techniques, e. g. to-
kenization, sentence segmentation, WSD, and Part of
Speech (POS) tagging, many of which pose challeng-
ing research questions on their own. Errors made in
earlier stages of an NLP workflow propagate up to later
stages such as SA.



Part I

B A C K G R O U N D





2
D ATA S E T S

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts.
— Arthur Conan Doyle,

A Scandal in Bohemia

In this chapter we introduce the gold standard datasets
that are used in this thesis (see Section 2.1). Furthermore,
we describe how we preprocess them (see Section 2.2).

Generally, a gold standard1 denotes the at that time best Gold standard
available tool to compare different measures (see Claassen,
2005). We consider a dataset—a corpus2—that is manually Corpus
labeled as a gold standard. Labeling the same data auto-
matically allows us to compare automatically and manu-
ally determined labels to assess the quality of the method
that automatically labeled the data.

2.1 gold standards

Table 1 provides an overview of all gold standards that we
use in this thesis and lists the genres they originate from
and the domains they contain. We now describe these gold
standards in detail.

2.1.1 Darmstadt Service Review Corpus

Toprak et al. (2010)’s Darmstadt Service Review Corpus
(DSRC)3 is a gold standard for sentence- and expression-
level SA. DSRC contains 474 reviews of 2 domains: online
universities (240 reviews) and online services (234 reviews).
The reviews consist of 8,877 sentences and 152,300 word to-
kens (see Toprak et al., 2010). Among others, on sentence

1 Gold standard is originally a historical term from economics.
2 A corpus is a “collection of linguistic data, either written texts or a

transcription of recorded speech (. . . )” (see Crystal, 2008, p. 117).
3 http://www.ukp.tu-darmstadt.de/data/sentiment-analysis/

darmstadt-service-review-corpus/
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Table 1.: Overview of gold standards.

gold standard genre(s) domain(s)

DSRC reviews universities,
web services

MDSD v2.0 reviews various
MPQA v2.0 news articles various
PD v2.0 reviews movies
RND reviews various
SD v1.0 reviews, plot

summaries
movies

SE-2007-T14D news headlines various
SE-2013-T2BD tweets, SMS

texts
various

SPD v1.0 reviews movies
T-MDSD tweets various

level topic relevancy, polarity, and subjectivity are anno-
tated. Among others, on expression level opinion-bearing
terms, opinion holders, and opinion targets are annotated.

2.1.2 Multi-Domain Sentiment Dataset v2.0

Blitzer et al. (2007)’s Multi-Domain Sentiment Dataset v2.0
(MDSD v2.0)4 is a gold standard for in- and cross-domain
document-level polarity classification. It contains star-rated
Amazon5 product reviews of various domains, out of which
we chose 10 domains: apparel, books, dvds, electronics,
health & personal care, kitchen & housewares, music, sports
& outdoors, toys & games, and videos. Those are exactly
the domains for which a pre-selected, balanced amount of
1,000 positive and 1,000 negative product reviews is avail-
able. Additionally, MDSD v2.0 contains large amounts of un-
labeled reviews per domain. Blitzer et al. (2007) consider
reviews with more than 3 stars as positive, and less than
3 stars as negative—they omit 3-star reviews. Table 2 pro-
vides an overview of MDSD v2.0’s labeled data.

4 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
5 http://www.amazon.com

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://www.amazon.com
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Table 2.: Overview of MDSD v2.0.

domain types tokens

apparel 10,163 133,746

books 28,513 359,872

dvd 30,282 392,313

electronics 15458 232,362

health 13,087 186,339

kitchen 13,021 196,339

music 25,281 292,614

sports 14,290 215,087

toys 14,090 204,049

video 25,376 326,501

2.1.3 Multi-Perspective Question Answering Corpus v2.0

Wiebe et al. (2005)’s Multi-Perspective Question Answering
Corpus v2.0 (MPQA v2.0)6 is a gold standard for a variety
of SA subtasks, e. g. opinion holder extraction. It contains
10,657 sentences from 535 news articles from 187 different
news sources.

From these news articles Riloff et al. (2006) extracted
5,380 subjective and 4,352 objective sentences according to
a definition to be found in the MPQA v2.0 manual: “A sen-
tence was considered subjective if 1 OR 2:

1. The sentence contains a “direct-subjective” annota-
tion WITH attribute intensity NOT IN [’low’, ’neu-
tral’] AND NOT WITH attribute insubstantial.

2. The sentence contains a “expressive-subjectivity” an-
notation WITH attribute intensity NOT IN [’low’].”

This subset of MPQA v2.0 contains 19,407 word types and
261,137 word tokens and functions as a gold standard for
sentence-level subjectivity classification.

6 http://www.cs.pitt.edu/mpqa/

http://www.cs.pitt.edu/mpqa/
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2.1.4 Polarity Dataset v2.0

Pang and Lee (2004)’s Polarity Dataset v2.0 (PD v2.0)7 is
a gold standard for document-level polarity classification.
It contains 2,000 movie reviews from IMDb8 that consist
of 47,219 word types and 1,523,410 word tokens. All re-
views were automatically labeled for their polarity; there
are 1,000 positive and 1,000 negative reviews. PD v2.0 is
fully lowercased, i. e. it contains no capitalization.

2.1.5 Ratingz Network Dataset

The Ratingz Network9 is an online platform, where peo-
ple can review and rate places and services in the United
States of America. Websites that are affiliated with The Rat-
ingz Network, e. g. clubratingz.com and vetratingz.com,
share a common structure. We partially crawled reviews
from 9 The Ratingz Network websites on May 23rd, 2013

and compiled them into a gold standard—as from now
called Ratingz Network Dataset (RND)—for in- and cross-
domain document-level polarity classification.

RND contains reviews of 9 domains: summer camps, pre-
schools & childcare, nightclubs, medical doctors, lawyers &
attorneys, radio shows, real estate agents, restaurants, and
veterinarians. All reviews are star-rated for several aspects.
E. g., restaurants are rated for their food, their ambience,
and their service. Lawyers & attorneys are rated for their
knowledge, their communication, their tenacity, their work
quality, and their value. From these aspects we derive an
overall rating by averaging their ratings. Reviews with an
average rating of 3.5 stars or higher are considered positive.
Reviews with 2.5 stars or lower are considered negative.
Reviews with more than 2.5 stars but less than 3.5 stars are
omitted. For each domain 2,000 positive and 2,000 negative
reviews are available. Table 3 provides an overview of RND.

7 http://www.cs.cornell.edu/people/pabo/movie-review-data/
8 http://www.imdb.com
9 http://www.ratingz.net/

clubratingz.com
vetratingz.com
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.imdb.com
http://www.ratingz.net/
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Table 3.: Overview of RND.

domain types tokens

camps 17,330 296,022

childcare 15,326 303,635

clubs 15,762 185,126

doctors 16,558 298,167

lawyer 147,08 247,683

radio 17,712 200,226

real estate 14,231 262,527

restaurant 22,761 336,251

vet 17,941 379,700

2.1.6 SemEval-2007 Task 14 Dataset

Strapparava and Mihalcea (2007)’s SemEval-2007 Task 14

Dataset (SE-2007-T14D)10 is a gold standard for sentence-level
polarity classification. It contains 1,250 news headlines from
e. g. The New York Times11, CNN12, and BBC13 that con-
sist of 3,852 word types and 8,796 word tokens. All news
headlines are annotated for their polarity intensity. Polar-
ity intensity varies within [−100, 100], where Strapparava
and Mihalcea (2007) consider a value within [−100, 0) as
negative, (0, 100] as positive and 0 as neutral or no polarity.
Accordingly, there are 561 positive, 674 negative, and 15

neutral news headlines.
When we discard the neutral headlines and balance the

positive and negative headlines via undersampling14 the ma- Undersampling
jority class, i. e. the negative headlines, we are left with
1,122 headlines (561 positive and 561 negative).

10 http://www.cse.unt.edu/~rada/affectivetext/
11 http://www.nytimes.com/
12 http://www.cnn.com
13 http://www.bbc.com
14 Undersampling removes randomly chosen instances from the majority

class in order to create a balanced dataset (see Akbani et al., 2004).

http://www.cse.unt.edu/~rada/affectivetext/
http://www.nytimes.com/
http://www.cnn.com
http://www.bbc.com


20 datasets

2.1.7 SemEval-2013 Task 2B Dataset

SemEval-2013 Task 2B Dataset (SE-2013-T2BD)15 used in Wil-
son et al. (2013)’s SemEval-2013 shared task on SA in Twit-
ter is a gold standard for document-level polarity classi-
fication. It contains tweets from various domains—e. g. re-
garding certain persons (Gaddafi, Steve Jobs etc.), products
(Kindle, Android phones etc.), and events (Japan earth-
quake, NHL playoffs etc.). All tweets are annotated for
their polarity. Table 4 provides an overview of SE-2013-T2BD
split by training, development, and test data as provided
by the shared task organizers after we removed duplicate
tweets.

Table 4.: Overview of SE-2013-T2BD. “Pos” denotes positive, “Neg”
negative, and “Neu” neutral tweets.

split pos neg neu all types tokens

Training 3,263 1,278 4,132 8,673 29,453 192,854

Development 384 197 472 1,053 5,936 24,132

Test 1,572 601 1,640 3,813 16,325 88,206

All 5,219 2,076 6,244 13,539 41,092 305,192

Additionally, SE-2013-T2BD contains 2,094 Short Message
Service (SMS) texts (492 positive, 394 negative, 1,208 neu-
tral) from various domains that were used for testing out-
of-genre and out-of-domain performance in SemEval-2013

Task 2B. The SMS texts consist of 4,631 word types and
37,549 word tokens.

2.1.8 Sentence Polarity Dataset v1.0

Sentence Polarity Dataset v1.0 (SPD v1.0)7 by Pang and Lee
(2005) is a gold standard for sentence-level polarity classi-
fication. It contains 10,662 text snippets—roughly one sen-
tence per snippet—from Rotten Tomatoes16 movie reviews
that consist of 20,530 word types and 229,750 word tokens.
All text snippets were automatically labeled for their po-
larity. There are 5,331 positive and 5,331 negative text snip-
pets. SPD v1.0 is fully lowercased, i. e. it contains no capital-
ization.

15 http://www.cs.york.ac.uk/semeval-2013/task2/
16 http://www.rottentomatoes.com/

http://www.cs.york.ac.uk/semeval-2013/task2/
http://www.rottentomatoes.com/
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2.1.9 Subjectivity Dataset v1.0

Pang and Lee (2004)’s Subjectivity Dataset v1.0 (SD v1.0)7

is a gold standard for sentence-level subjectivity classifi-
cation. It contains 10,000 text snippets that were automat-
ically labeled for their subjectivity (5,000 subjective text
snippets from Rotten Tomatoes16 movie reviews and 5,000

objective text snippets from IMDb8 plot summaries). In to-
tal, SD v1.0 consists of 23,918 word types and 240,571 word
tokens. SD v1.0 is fully lowercased, i. e. it contains no capi-
talization.

2.1.10 Twitter Multi-Domain Sentiment Dataset

Twitter Multi-Domain Sentiment Dataset (T-MDSD) is a gold
standard for document-level polarity classification that con-
tains 4 of the domains that are also found in MDSD v2.0:
apparel, electronics, health & personal care, and kitchen &
housewares. But T-MDSD originates from a different genre—
Twitter tweets.

We compiled T-MDSD as follows: We extracted named en-
tities from the aforementioned 4 domains of MDSD v2.0 us-
ing OpenNLP’s17 named entity recognition. We manually
filtered out non-named entities and named entities that are
not associated with the specific domain. For each named
entity, i. e. for each keyword (see Table 40) we crawled Twit-
ter using the following query:

<keyword> :( OR :)

Queries that yielded tweets that are not associated with
the specific domain were filtered out manually. Per domain
we merged the tweets and sampled a balanced amount of
1,000 tweets that contain the emoticon :( and 1,000 tweets
that contain the emoticon :) but not both :( and :).
:( and :) function as a proxy (see Chapter 4.1.1): we

assume that all tweets containing :( or similar emoticons
may be considered as of negative polarity, while all tweets
containing :( or similar emoticons (see Table 5) may be
considered as of positive polarity (see Go et al., 2009). Fi-
nally, we removed these proxies from the tweets but saved
their labels.

17 http://opennlp.apache.org

http://opennlp.apache.org
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Table 5.: Emoticons similar to :( and :) (see Go et al., 2009).

emoticon similar emoticons

:( :(, :-(, : (

:) :), :-), : ), :D, =)

2.2 preprocessing

Before algorithms for high-level NLP such as SA can be ap-
plied natural language text needs to be preprocessed. Our
preprocessing comprises tokenization, sentence segmenta-
tion, POS tagging and syntactic parsing.

2.2.1 Tokenization

Tokenization divides text into tokens, e. g. words, numbers,
and punctuation marks (see Manning and Schütze, 1999,
p. 124). We use OpenNLP’s17 maximum entropy tokenizer
for any tokenization. Tokenizing Example 14

(14) Don’t buy these shows for running!

using this tokenizer yields the tokens “Do”, “n’t”, “these”,
“shoes”, “for”, “running”, and “!”.

2.2.2 Sentence Segmentation

Sentence segmentation divides text into sentences. We use
OpenNLP’s17 sentence detection tool for sentence segmen-
tation.

2.2.3 Part of Speech Tagging

POS tagging assigns a POS tag from a tag set to each token Tag set
in a text. Common tag sets are e. g. the Penn Treebank Tag
Set (PTBTS)18 and the Stuttgart Tübingen Tag Set (STTS)19.
Throughout this thesis, we use Stanford Log-linear Part-of-
Speech Tagger20 (see Toutanova et al., 2003) for POS tag-

18 http://www.cst.dk/mulinco/filer/PennTreebankTS.html
19 http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/

TagSets/stts-table.html
20 http://nlp.stanford.edu/software/tagger.shtml

http://www.cst.dk/mulinco/filer/PennTreebankTS.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-table.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-table.html
http://nlp.stanford.edu/software/tagger.shtml
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Figure 2.: A phrase structure tree of “Don’t buy these shows for
running!”.
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ging. POS tagging Example 14 using this POS tagger and
the PTBTS yields

(15) Do|VBP n’t|RB buy|VB these|DT shoes|NNS
for|IN running|VBG !|.

2.2.4 Syntactic Parsing

Syntactic parsing reconstructs the so called phrase struc- Phrase structure
treeture tree that gives rise to a particular sentence (see Man-

ning and Schütze, 1999, p. 107). We use Klein and Manning
(2003)’s Stanford Parser21 for syntactic parsing. Parsing Ex-
ample 14 using this parser yields the phrase structure—or
constituency—parse tree shown in Figure 2.

Stanford parser not only outputs syntax parse trees, but
also typed dependencies (see de Marneffe et al., 2006), i. e. Typed dependency
certain grammatical relations, e. g. nominal subject or tem-
poral modifier. The (collapsed) typed dependencies of Ex-
ample 14 are

21 http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml
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aux(buy, Do)

neg(buy, n’t)

det(shoes, these)

dobj(buy, shoes)

prepc_for(buy, running)

where—according to the parser’s output—“Do” is an auxil-
iary of “buy”, “n’t” is a negation modifier of “buy”, “these”
is a determiner of “shoes”, “shoes” is a direct object of
“buy”, and “buy” is a prepositional modifier of “running”.



3
T E X T U A L C H A R A C T E R I S T I C S

Darüber hinaus muss eine erste prinzipielle
Vorstellung über die Art des Werkstoffs bestehen

(. . . ). Eine Vorstellung über die Gestalt genügt oft
nicht, sondern erst die Festlegung prinzipieller

Werkstoffeigenschaften ermöglicht eine zutreffende
Aussage über den Wirkzusammenhang. Nur die

Gemeinsamkeit von physikalischem Effekt sowie
geometrischen und stofflichen Merkmalen (. . . )

lässt das Prinzip der Lösung sichtbar werden.

— Pahl and Beitz (1986, p. 30)

Textual characteristics, e. g. word frequencies, word dis- Textual
characteristicstributions, and word transition probabilities, quantify lan-

guage use in text via language statistics (see Bank et al.,
2012). Consequently, textual characteristics quantify simi-
larities and dissimilarities between texts, either by compar-
ing their language use directly or indirectly by comparing
“fingerprints” of their language use.

This chapter describes textual characteristics for direct
comparison of language use—domain similarity (see Sec-
tion 3.1)—and textual characteristics for indirect compari-
son of language use: domain complexity (see Section 3.2)
and readability (see Section 3.3).

3.1 domain similarity

An instance of a specific genre and a specific domain is
represented by a collection of documents—a corpus (see
Chapter 2). Therefore, for our purposes, domain similarity
is identical to corpus similarity and domain complexity is
identical to corpus complexity.

Measures for corpus similarity and corpus complexity
“consider only raw word-counts” instead of e. g. “lemmas,
or word senses, or syntactic constituents” to “be as theory-
neutral as possible” (see Kilgarriff and Rose, 1998). We
then rewrite—without discontinuity—word frequencies as
word probabilities (see Halliday, 1991, p. 82). Thus, a cor-
pus may be seen as a probability distribution over words,
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which can be encoded as a vector. We now present several
domain similarity approximations: information-theoretic mea-
sures (see Section 3.1.1) and geometrically-motivated mea-
sures (see Section 3.1.2).

3.1.1 Information-theoretic Measures

Several information-theoretic measures were proposed to
approximate domain similarity (see Van Asch and Daele-
mans, 2010; Plank and van Noord, 2011). Note that all
measures presented below actually measure divergence, i. e. Divergence
dissimilarity instead of similarity. A divergence function
div→ [0, 1] can always be converted into a similarity func-
tion sim→ [0, 1] by sim := 1−div. Proposed measures are,
among others:

kullback-leibler divergence . Kullback-Leibler (KL)
divergence (see Kullback and Leibler, 1951) is defined
as in Equation (3.1)

(3.1) DKL(Q||R) =
∑
w∈W

Q(w) log
Q(w)

R(w)

where Q and R are probability distributions over a
finite set W, e. g. words. KL divergence is not neces-
sarily symmetric and it is undefined if ∃w ′ ∈ W :

Q(w ′) > 0 but R(w ′) = 0. The larger DKL(Q||R), the
more Q and R diverge, i. e. the less similar they are.

jensen-shannon divergence . Jensen-Shannon (JS) di-
vergence (see Lin, 1991) is based on KL divergence
and is defined as in Equation (3.2)

(3.2) DJS(Q||R) =
1

2
[DKL(Q||M) +DKL(R||M)]

where M = 1
2(Q + R) is the average distribution of

Q and R and 0 6 DJS(Q||R) 6 1. In contrast to KL
divergence, JS divergence is symmetric as well as well-
defined for noncontinuous probability distributions.
The larger DKL(Q||R), the more Q and R diverge, i. e.
the less similar they are.
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renyi divergence . Renyi divergence (see Rényi, 1961)
is defined as in Equation (3.3)

DRenyi(Q||R;α) =
1

α− 1
log2

(∑
w∈W

Q(w)α

R(w)α−1

)

=
1

α− 1
log2

(∑
w∈W

Q(w)α · R(w)1−α
)

(3.3)

where α ∈ [0, 1) is a free parameter. DRenyi(Q||R;α)
approaches DKL(Q||R) for α→ 1.

skew divergence . Skew divergence (see Lee, 2001b) is
also based on the KL divergence and defined as in
Equation (3.4)

(3.4) DSkew(Q||R;α) = DKL(R||M)

where α ∈ [0, 1) is a free parameter and M = αQ+

(1−α)R is a “mixed” distribution of Q and R.

3.1.2 Geometrically-motivated Measures

Several geometrically-motivated measures were proposed
to approximate domain similarity. Proposed measures are,
among others:

cosine similarity. Cosine similarity cos(q, r) measures
the cosine of the angle between 2 vectors and is de-
fined as in Equation (3.5)

cos(q, r) =
q · r
‖q‖ · ‖r‖

=

∑n
i=1 qi × ri√∑n

i=1 q
2
i ×

√∑n
i=1 r

2
i

(3.5)

where q, r ∈ Rn are n-dimensional vectors. The larger
cos(q, r), the more similar q and r.

euclidean distance . Euclidean distance euc(q, r) is de-
fined as in Equation (3.6).

(3.6) euc(q, r) =

√√√√ n∑
i=1

(qi − ri)
2

The smaller euc(q, r), the more similar q and r.
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taxicab geometry. Taxicab geometry (see Krause, 1987),
L1 distance or Manhattan distance tax(q, r) is defined
as in Equation (3.7).

(3.7) tax(q, r) =
n∑
i=1

|qi − ri|

The smaller tax(q, r), the more similar q and r.

3.2 domain complexity

Ponomareva and Thelwall (2012a) introduce domain com-
plexity as a measure that “reflects the difficulty of [a] clas-
sification task for a given data set.” We will now present
several domain complexity approximations that were pro-
posed.

3.2.1 Ponomareva and Thelwall (2012a)

Ponomareva and Thelwall (2012a) suggest several functions
to approximate domain complexity:

percentage of rare words . Percentage of rare words
is defined as in Equation (3.8)

(3.8) PRW =
|{w ∈W | c(w) < 3}|

|W|

whereW is the vocabulary, vocabulary size |W| equals
the number of types, i. e. the number of different words Types
in a text sample, and c(w) is the number of occur-
rences of w in a text sample. Bank et al. (2012) sug-
gested a language statistic for corpus comparison that
is very similar to percentage of rare words: vocabu-
lary dispersion.

word richness . Word richness is defined just as the or-
dinary type/token ratio TTR in Equation (3.9) Type/token ratio

(3.9) TTR =
|W|∑

w∈W c(w)

where
∑
w∈W c(w) equals the number of tokens, i. e. Tokens

the total number of words in a text sample (see Crys-
tal, 2008, p. 498). Bank et al. (2012) suggested a lan-
guage statistic for corpus comparison that is very sim-
ilar to type/token-ratio: relative vocabulary size.
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relative entropy. Relative entropy is defined in Equa-
tion (3.10)

(3.10) Hrel =
H

Hmax

where H as in Equation (3.11)

(3.11) H = −
∑
w∈W

p(w) log2 p(w)

is the entropy ofW’s distribution andHmax as in Equa- Entropy
tion (3.12)

Hmax = −
∑
w∈W

1

|W|
log2

1

|W|

= log2 |W|

(3.12)

is the maximum entropy of W’s distribution, i. e. its Maximum entropy
entropy if W was distributed uniformly. Bank et al.
(2012) suggested to use entropy as a language statistic
for corpus comparison.

3.2.2 Remus (2012)

Remus (2012) proposed corpus homogeneity (see Kilgarriff Corpus
homogeneityand Rose, 1998; Kilgarriff, 2001) as another approximation

of domain complexity. Corpus homogeneity, corpus self-
similarity or simply homogeneity uses repeated random
subsampling validation and is estimated as shown in Pseu-
docode 1.

Pseudocode 1: Corpus homogeneity.

1 for i = 1, . . ., k {

2 shuffle corpus c

3 split c into 2 equally-sized subcorpora c1, c2
4 selfsimilarity si:= sim(c1, c2)

5 }

6 homogeneity Hom := average(s1, . . . , sk)

sim(c1, c2) is any similarity function (see Section 3.1.1
and Section 3.1.2). If the corpus is document-based the
documents are shuffled, if the corpus is sentence-based
the sentences are shuffled etc. For k → ∞ the estimate
approaches the “actual” corpus homogeneity. In our later
experiments we set k to 10 and use JS divergence (see Sec-
tion 3.1.1) as our similarity function.
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Remus (2012)’s primary motivation to use corpus ho-
mogeneity as an approximation of domain complexity in-
stead of Ponomareva and Thelwall (2012a)’s and Bank et al.
(2012)’s suggestions is Kilgarriff (2001), who puts it this
way:

“Ideally, the same measure can be used for sim-
ilarity and homogeneity, as then Corpus 1/Cor-
pus 2 distances will be directly comparable with
heterogeneity for Corpus 1 and Corpus 2.”

3.2.3 Ho and Basu (2002)

Ho and Basu (2002) pointed out that in general a classifica-
tion problem can be difficult for 3 reasons:

1. Its classes are ambiguous.

2. Its decision boundary is complex.

3. Its sample size is too small.

Classes may be “ambiguous either intrinsically or due to in-
adequate feature measurements.” (see Ho and Basu, 2002)
Complex decision boundaries or complex subclass struc-
tures may obviate a compact description of the decision
boundary or subclass structure. Small sample sizes and
sparsity may obviate constraints on the generalizations be-
cause of the curse of dimensionality. All domain complex-
ity approximations introduced in Section 3.2.1 and Sec-
tion 3.2.2 measure classification difficulty according to Ho
and Basu (2002)’s 3rd category.

In contrast to the domain complexity approximations in-
troduced in Section 3.2.1 and Section 3.2.2, Ho and Basu
(2002) proposed several “measures that characterize the
difficulty of a classification problem, focusing on geomet-
rical complexity of the class boundary”, i. e. measures that
fall into their 2nd category. Such descriptors of class bound- Class boundary

complexityary complexity can be divided in several categories: mea-
sures of overlap of individual feature values, e. g. maxi-
mum Fisher’s discriminant ratio, measures of separability
of classes, e. g. the fraction of points on the class boundary,
and measures of geometry, topology, and density of man-
ifolds, e. g. the average number of points per dimension.
Most of these measures rely on labeled data and are un-
measurable in an unsupervised manner. In a “real-world”
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Table 6.: Overview of subcorpora of eng_news_2010.

sentences types tokens

100 1,055 2,066

300 2,484 6,115

1,000 5,929 20,560

3,000 12,580 61,944

10,000 26,589 206,619

30,000 51,079 618,920

100,000 102,825 2,062,683

300,000 193,383 6,196,353

1,000,000 389,418 20,648,187

scenario only unsupervised measures are utile (see Chap-
ter 5 and Chapter 6). Hence, we do not consider Ho and
Basu (2002)’s measures further in our thesis.

3.2.4 Properties

We hypothesize that the domain complexity approxima-
tions as described in Section 3.2.1 and Section 3.2.2 have
an important property: they are sample size dependent, simi- Sample size

dependencelar to what was shown in Remus and Bank (2012) for Bank
et al. (2012)’s textual characteristics.

To verify our hypothesis, we investigate how domain
complexity approximations behave when applied to cor-
pora of increasing size. We use an English-language cor-
pus provided by the Wortschatz project1 (see Quasthoff et al., Wortschatz project
2006) that contains newspaper articles: eng_news_2010. Out
of eng_news_2010 we construct subcorpora Csize contain-
ing size ∈ {102, 3 · 102, 103, 3 · 103, 104, 3 · 104, 105, 3 · 105, 106}
sentences such that

∀l < m : Cl ⊂ Cm

i. e. any smaller corpus is always a real subset of any larger
corpus. Table 6 provides an overview of the eng_news_2010

subcorpora we constructed.
Measuring domain complexity of these subcorpora leads

to the results shown in Figure 3. We note: the larger the

1 http://wortschatz.uni-leipzig.de/

http://wortschatz.uni-leipzig.de/
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Figure 3.: Behavior of domain complexity measures with and
without sample size normalization for eng_news_2010 subcor-
pora of increasing size.
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corpus

• the smaller its relative entropy,

• the smaller its type/token ratio,

• the smaller its percentage of rare words and

• the smaller its homogeneity.

Percentage of rare words stabilizes at around 10,000 sen-
tences. Although this is not generally the case, type/token
ratio and homogeneity strongly correlate (r > 0.999).

We conclude that domain complexity approximations are
indeed sample size dependent and must not be used to
compare corpora that differ greatly in size. To ensure com-
parability across different-sized corpora, we normalize do-
main complexity with respect to sample size.

Sample Size Normalization

We compute percentage of rare words, type/token ratio,
and relative entropy on fixed length subsamples rather than
on the full sample as shown in Pseudocode 2.

Pseudocode 2: Sample size-normalized domain complexity.

1 for i = 1, . . ., k {

2 subsample si := extract random word window of size

1000 from full sample

3 measurement mi := domain complexity(si)

4 }

5 normalized domain complexity := average(m1, . . . ,mk)

Using a sufficient number of iterations k—10,000 in our
case—we obtain a stable approximation of the expected do-
main complexity value, which is normalized with respect
to sample size.

To compute sample size-normalized homogeneity, we
proceed as shown in Pseudocode 1. But instead of shuffling
the corpus and splitting it into 2 equally-sized subcorpora,
we randomly extract 2 fixed length subsamples s1i , s

2
i ana-

log to Pseudocode 2 with the constraint that s1i , s
2
i must not

overlap. We then measure sim(s1i , s
2
i). In deviation from

corpus homogeneity as described in Section 3.2.2 we here
set k to 10,000 instead of 10.

As we can see in Figure 3, sample size-normalized do-
main complexity approximations stabilize at around 1,000

to 3,000 sentences and are asymptotically consistent.
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3.3 readability

After presenting measures for domain similarity (see Sec-
tion 3.1) and domain complexity (see Section 3.2), we now
present measures for readability. Readability is referred to
as “the degree to which a given class of people find certain
reading matter compelling and, necessarily, comprehensi-
ble” (see McLaughlin, 1969).

(16) Do not buy these shoes for running!

(17) Like all shoes, they needed to be ’broken in’ and at 9

months, you aren’t very capable of that.

Clearly, it is easier to comprehend Example (16) than Ex-
ample (17). According to Klare (1974)’s survey there are
3 possible solutions to “tell whether a particular piece of
writing is likely to be readable to a particular group of read-
ers”: A first solution is simply to guess. A second solution
are tests, manually built and refined. A third solution are
readability gradings and readability indicators. We will mea-
sure readability using such gradings (see Section 3.3.1) and
indicators (see Section 3.3.2) because many of them are au-
tomatically computable (see Remus, 2011).

Readability has to be distinguished from domain com-
plexity (see Section 3.2). While domain complexity indi-
cates how hard it is for an ML algorithm to “comprehend”
textual data, readability indicates how hard it is for a hu-
man reader to comprehend textual data.

3.3.1 Gradings

According to McLaughlin (1969) a readability grading is a
formula derived by linear regression (LR) (see Chapter 4.1.5),

“which best expresses the relationship between
(. . . ) a measure of the difficulty experienced by
people reading a given text, and a measure of
the linguistic characteristics of that text. This
formula can then be used to predict reading
difficulty from the linguistic characteristics of
other texts.”
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Early Work

There is a large body of readability formulae (see Klare,
1974). We present only readability formulae that are au-
tomatically computable and do not depend on lexical re-
sources, e. g. certain word lists. We present only the formu-
lae themselves. Their underlying ideas, their development,
and the derivation of their variables and constants is de-
scribed in the original work as referenced below.

devereux readability index . Smith (1961)’s Devereux
Readability Index (DRI) is calculated as shown in Equa-
tion (3.13)

(3.13) RDRI = 1.56wl+ 0.19 sl− 6.49

where wl is the average word length in characters
and sl is the average sentence length in words. The
larger RDRI, the less readable the text.

easy listening formula . Fang (1966)’s Easy Listening
Formula (EL) is calculated as shown in Equation (3.14)

(3.14) REL = npsw

where npsw is the average number of polysyllabic
words per sentence, i. e. words with strictly more than
one syllable. EL is—as its name suggests—more tai-
lored to “listenability” than to readability. Therefore,
the larger REL, the less “listenable” the text.

flesh-kincaid score . Flesh-Kincaid Score (FKS) was in-
troduced in Kincaid et al. (1975) and is calculated as
shown in Equation (3.15)

(3.15) RFKS = 0.39 sl+ 11.8nsw− 15.59

where nsw is the average number of syllables per
words. The larger RFKS, the less readable the text.

fog index . Fog Index (FI) was introduced in Gunning
(1952) and reformulated by Powers et al. (1958). It
is calculated as shown in Equation (3.16)

(3.16) RFI = 3.068+ 0.0877 sl+ 0.0984nmsw

where nmsw is the average number of monosyllabic
words per sentence, i. e. words with exactly one sylla-
ble. The larger RFI, the less readable the text.
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Table 7.: Linguistic characteristics measured by different read-
ability gradings.

dri el fi fks forcast nrei smog

wl X

sl X X X

nmsw X X X

npsw X X

nsw X

forcast. Caylor et al. (1973)’s FORCAST is calculated as
shown in Equation (3.17).

(3.17) RFORCAST = 20.41− 0.11nmsw

The larger RFORCAST, the less readable the text.

new reading ease index . Farr et al. (1951)’s New Read-
ing Ease Index (NREI) is calculated as shown in Equa-
tion (3.18).

(3.18) RNREI = 1.599nmsw− 1.015 sl− 31.517

The larger RNREI, the less readable the text.

smog grading . McLaughlin (1969)’s SMOG grading is cal-
culated as shown in Equation (3.19).

(3.19) RSMOG = 3+
√
npsw

McLaughlin (1969) argues that npsw in RSMOG simul-
taneously captures word length and sentence length.
The larger RSMOG, the less readable the text.

Different readability gradings measure different linguistic
characteristics (see Table 7). Not only do they differ in
what they measure, but also in their intended outcome.
Whereas some readability formulae aim to determine a
school grade, some refer to certain tables for further in-
terpretation. For those reasons the reading difficulty es-
timated by different readability formulae is not directly
comparable. Readability formulae do have in common that
higher outcomes generally signalize less readable or less
“listenable” text.
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Recent Work

Most readability gradings were proposed in the 1950s, ’60s,
and ’70s. Only recently, several new readability gradings
were proposed:

Si and Callan (2001) learn a weighted linear combination
of a unigram Naïve Bayes (NB) model (see Chapter 4.1.3)
and a sentence length distribution model to predict the
most likely grade level (kindergarden–2nd, 3rd–5th, and
6th–8th) of science web pages. The weights are estimated
using expectation maximization (see Hastie et al., 2009,
pp. 272–279): their unigram NB model is weighted by 0.91,
their sentence length distribution model is weighted by
0.09.

Collins-Thompson and Callan (2004) learn a unigram NB
model (see Chapter 4.1.3) to predict grade levels 1st–12th
of web pages. Their model smoothes word frequency data
within classes using Simple Good-Turing smoothing (see
Gale and Sampson, 1995) and across classes via regression.
They also perform task-specific feature selection (FS).

Schwarm and Ostendorf (2005) learn a Support Vector
Machine (SVM) model (see Chapter 4.1.2) to predict grade
levels (2nd, 3rd, 4th, and 5th) of an educational newspaper.
Their model uses several features: sentence length, num-
ber of syllables per word, FKS, different out-of-vocabulary
scores, parse tree height, number of noun phrases (NPs)
and verb phrases (VPs), number of clauses per sentence as
well as different perplexity scores of uni-, bi-, and trigram
language models.

Heilmann et al. (2007) learn a linear interpolation of a un-
igram NB model (see Chapter 4.1.3) and a k-nearest neigh-
bor (see Mitchell, 1997, pp. 231–236) model to predict the
most likely grade level (1st–12th) of first and second lan-
guage learner texts. Their model is based on syntactic pars-
ing and relies on grammatical constructions, e. g. verb tenses,
voice etc.

3.3.2 Indicators

Readability gradings (see Section 3.3.1) usually indicate the
grade level that is necessary to comprehend a certain text.
Thus, they “obscure” the linguistic characteristics encoded
by them. Consequently, their “calculated value does not
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permit to conclude what exactly has to be changed to im-
prove the readability of the text” (see Oelke et al., 2010).

According to McLaughlin (1969) average sentence length
in words and average word length in characters have the
greatest predictive power regarding reading difficulty. Lin-
guistic characteristics based on the number of syllables per
word are also frequently used in readability gradings (see
Section 3.3.1). Several other linguistic characteristics were
proposed to function as indicators of reading difficulty. In
addition to sentence length and word length, Oelke et al.
(2010) semi-automatically chose linguistic characteristics as
readability indicators that are “semantically understand-
able”: noun/verb ratio, number of nominal forms, vocab-
ulary complexity, and parse tree branching factor. These
indicators and 2 others—parse tree depth and word fre-
quency class distribution—are defined as follows:

noun/verb ratio. The noun/verb ratio is defined as
the ratio between the number of verbal forms and
the number of nominal forms. POS tags of PTBTS that
qualify as nominal forms are NN, NNS, NNP, NNPS, PRP.
POS tags of PTBTS that qualify as verbal forms are VB,
VBD, VBG, VBN VBP, VBZ, MD. The noun/verb ratio of
Figure 2 is then 0.33.

number of nominal forms . The number of nominal
forms is just that. Figure 2 has 1 nominal form—NNS:
“shoes”.

vocabulary complexity. The vocabulary complexity
(see Oelke et al., 2010) is the percentage of words
that are not among the 1,000 most frequent words
in a large corpus. These words may be considered
as uncommon words. Figure 2 contains 2 words that Uncommon words
are not among the 1,000 most frequent words in the
Wortschatz corpus eng_news_2010 (see Section 3.2.4):
“n’t”, “shoes”.2

parse tree branching factor . The parse tree branch-
ing factor is defined as the average number of child
nodes that non-leaf nodes have in the parse tree (see
Genzel and Charniak, 2003). The parse tree branch-
ing factor of Figure 2 is 1.467.

2 eng_news_2010 contains newspaper articles. Therefore, it does not con-
tain contractions such as “don’t” or “I’m”.
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parse tree depth . The parse tree depth is defined as
the length of the longest path from the root node to a
leaf node. The parse tree height of Figure 2 is 8. The
parse tree depth is almost linearly dependent on the
sentence length (see Genzel and Charniak, 2003).

word frequency class distribution. The frequency
class FC(w) of a word w (see Quasthoff et al., 2012)
is computed as shown in Equation (3.20)

(3.20) FC(w) = log2
freq(wtop)

freq(w)

where freq(w) denotes the frequency of w and wtop
denotes the most frequent word. The word frequency
class distribution of a text then indicates what pro-
portions of a text consist of high-, mid-, and low-
frequency words.

The word frequency class distribution of Figure 2 is
as follows: 1/8 of its words fall into word frequency
class 2, 1/8 fall into word frequency class 7, 1/4 fall
into word frequency class 8, 1/8 fall into word fre-
quency class 10, 1/8 fall into word frequency class 11

and 1/4 fall into word frequency classes larger than
25.

Several readability indicators implicitly carry informa-
tion about a text’s average sentence length in words, e. g.
the number of nominal forms, the number of polysyllabic
words etc.
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M A C H I N E L E A R N I N G

Above all, however, the machine has no feelings,
it feels no fear and no hope, which only disturb,

it has no wishes with regard to the result, it
operates according to the pure logic of probability.

For this reason I assert that the robot perceives
more accurately than man, it knows more about

the future, for it calculates it, it neither speculates
nor dreams, but is controlled by its own findings

(the feedback) and cannot make mistakes;
the robot has no need of intuition . . .

— Max Frisch,
Homo Faber: A Report, p. 76

Since the advent of computers, the world wide web, and
social media, vast amounts of data are generated every sec-
ond. ML seeks to make sense out of that data: it extracts
“important patterns and trends” (see Hastie et al., 2009,
p. xi)—it tries to learn from that data.

This chapter describes ML algorithms for classification
and regression (see Section 4.1), a method for scaling non-
binary feature values (see Section 4.2), methods for FS (see
Section 4.3), evaluation measures (see Section 4.4), and tech-
niques for model assessment (see Section 4.5) used in this
thesis.

4.1 classification and regression algorithms

In this section we describe ML algorithms for classifica-
tion and regression used in this thesis. Algorithms that
are more frequently used—SVMs (see Section 4.1.2) and LR
(see Section 4.1.5)—are discussed in more detail than algo-
rithms that are less frequently used—NB (see Section 4.1.3),
C4.5 Decision Trees (DTs) (see Section 4.1.4), and logistic
regression (LogReg) (see Section 4.1.6).

Generally, there are two types of ML algorithms for classi-
fication: discriminative and generative classifiers (see Ng and Discriminative

GenerativeJordan, 2001):

41
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discriminative classifiers . Given an input x and an
output y, discriminative classifiers model the condi-
tional probability p(y | x), which can be used for
classification. Some discriminative classifiers model
y given x directly, without modeling p(y | x).

generative classifiers . Given an input x and an out-
put y, generative classifiers model p(x | y) and p(y),
which can be used to generate likely pairs (x,y). Us-
ing Bayes’ theorem (see Section 4.1.3) p(y | x) can be
computed.

4.1.1 Levels of Supervision

Another important methodological issue is the level of su-
pervision that ML algorithms need. It is best characterized
by the quantity and quality of training data that is available
to ML algorithms.

supervised algorithms . Supervised ML algorithms re-
quire labeled training data, i. e. data that consists of
inputs and desired outputs: the labels. They then ac- Labels
quire the functional relation between input and out-
put. Thereby, they try to generalize from the train-
ing data. Given that a sufficiently large amount of
training data is available, supervised ML algorithms
often achieve highly accurate results. However, label-
ing training data is usually labor-intensive and costly.

A variant of supervision is distant supervision. Here, Distant supervision
training data is labeled by a proxy. E. g., a tweet that Proxy
contains an emoticon such as :-)—the proxy—may be Emoticon
automatically labeled as positive, one that contains
:-( may be automatically labeled as negative (see Go
et al., 2009); a review that is given 5 stars may be
automatically labeled as positive, one that is given 1

star may be automatically labeled as negative etc.

semi-supervised algorithms . Semi-supervised ML al-
gorithms rely on only little labeled training data—the
seeds—and additional larger amounts of unlabeled Seeds
training data to acquire the functional relation be-
tween input and output.

In bootstrapping (see Zhu, 2006, p. 11) seeds are used Bootstrapping
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to learn an initial model, which is used to label previ-
ously unlabeled training data. In turn, newly labeled
and previously labeled training data are used in con-
junction to learn a revised model. This process is re-
peated iteratively until pre-defined criteria for termi-
nation are met.

unsupervised algorithms . In contrast, unsupervised
ML algorithms do not rely on any labeled training
data, but rely on usually very large amounts of unla-
beled training data. Unsupervised ML algorithms try
to discover relevant structures autonomously, e. g. by
clustering, i. e. ordering elements of some set accord- Clustering
ing to some similarity measure.

4.1.2 Support Vector Machines

SVMs (see Vapnik, 1995; Cortes and Vapnik, 1995) are a su-
pervised, discriminative ML method based on a principle
from statistical learning theory—Structural Risk Minimiza-
tion (see Vapnik, 1998).

Let T = {(xi,yi)}li=1 be our training instances with xi ∈
Rn an n-dimensional input vector and yi ∈ {1,−1} a class
label indicating whether (xi,yi) is a positive (1) or negative
(−1) training instance. Assuming linear separability of T , a
hyperplane in Rn linearly separates T into 2 half spaces and Hyperplane
is defined by Equation (4.1)

(4.1) w · x + b = 0

where w is a vector and b is a scalar. A hyperplane (w,b)
is equally expressed by (λw, λb) for all λ ∈ R+. To scale
(w,b), i. e. to set λ we require that (w,b) separates T such
that the “functional distances”

xi ·w + b > 1 when yi = 1(4.2)
xi ·w + b 6 −1 when yi = −1(4.3)

or, more compactly:

(4.4) ∀i : yi (xi ·w + b) > 1

In other words: we place (w,b) in between the xi closest to
it. The optimal hyperplane (see Vapnik, 1995) then maximizes Optimal hyperplane
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the distance to these closest xi. The distance d between xi
and a hyperplane (w,b) is given by Equation (4.5)

(4.5) d ((w,b) , xi) =
yi (xi ·w + b)

‖w‖

where ‖w‖ =
√

wTw. From Inequality (4.4) and Equation (4.5)
follows the Inequality (4.6):

(4.6) d ((w,b) , xi) >
1

‖w‖

The margin ρ(w,b) is then given by Equation (4.7). Margin

(4.7) ρ(w,b) = min
xi:yi=1

d ((w,b) , xi) + min
xi:yi=−1

d ((w,b) , xi)

It follows from Equation (4.7) and Inequality (4.6) that the
optimal hyperplane (w0,b0) has a margin of

(4.8) ρ(w0,b0) =
2

‖w0‖
=

2√
wT
0w0

As we can see from Equation (4.8), maximizing ρ(w,b)
is accomplished by minimizing ‖w‖ subject to the con-
straint (4.4). Therefore, constructing an optimal hyperplane
is a constrained optimization problem, often approached
as a quadratic programming problem via Lagrange multi-
pliers (see Cortes and Vapnik, 1995).

Cortes and Vapnik (1995) showed that w0 can be written
as Equation (4.9)

(4.9) w0 =

l∑
i=1

yiαixi

where α is an l-dimensional vector of non-negative La-
grange multipliers determined as described in Cortes and
Vapnik (1995). It also holds that

(4.10) ∀i : αi (yi (w · xi + b) − 1) = 0

i. e. if the functional distance of a particular xi > 1, then
αi = 0: this particular xi does not contribute to the lin-
ear combination of the optimal hyperplane given in Equa-
tion (4.9). xi for which yi (xi ·w + b) = 1 are referred to
as support vectors, hence the ML algorithm’s name: SVM. To Support vectors
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determine b, we then solve Equation (4.11)

(4.11) b = −
1

2

(
w · xyi=1 + w · xyi=−1

)
as we know Equation (4.12) and Equation (4.13).

xi ·w + b = 1 when yi = 1(4.12)
xi ·w + b = −1 when yi = −1(4.13)

Function (4.14) then classifies an instance xi: if f(xi) = 1,
then xi is classified as positive, if f(xi) = −1, then xi is
classified as negative.

(4.14) f(xi) = sign (w0 · xi + b0)

Substituting w0 by Equation (4.9) finally results in classifi- Classification
functioncation function (4.15):

(4.15) f(xj) = sign

(
l∑
i=1

yiαi
(
xi · xj

)
+ b0

)

To construct an optimal hyperplane when T is not lin-
early separable without classification errors, we introduce
ξi ∈ R+, i = 1, . . . , l. ξi allows for misclassification of xi,
i. e. yi (w · xi + b) > 1− ξi. Thus, ξi introduce a so called
soft margin hyperplane. Soft margin

hyperplaneIn its original formulation C−Support Vector Classifica-
tion then solves the constrained optimization problem (4.16)

min
w,b,ξ

1

2
‖w‖2 +C

l∑
i=1

ξi

subject to yi (w · xi + b) > 1− ξi,
ξi > 0, i = 1, . . . , l

(4.16)

where C > 0 is the cost factor, i. e. a regularization param- Cost factor C
eter. A higher C value emphasizes to classify all training
instances correctly, a lower C value corresponds to an opti-
mal hyperplane with a more “flexible” soft margin.

The Kernel Trick

Another approach to separate nonlinearly separable train-
ing data T is the so called kernel trick. A function φ projects
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x into a higher-dimensional feature space, where linear sep-
arability is more likely:

(4.17) φ : Rn 7→ RN (n� N)

An optimal hyperplane is then constructed for φ(x) instead
of x. This changes function (4.9) to function (4.18)

(4.18) w0 =

l∑
i=1

yiαiφ (xi)

and function (4.15) to function (4.19).

(4.19) f(xj) = sign

(
l∑
i=1

yiαi
(
φ (xi) ·φ

(
xj
))

+ b0

)

Thus, we need to calculate dot-products in RN. This is
not feasible whenN is very large or possibly infinite. There-
fore, we introduce a kernel function K(u, v) for two instances Kernel function
u, v ∈ Rn that fulfills Equation (4.20):

(4.20) K(u, v) ≡ φ (u) ·φ (v)

To fulfill Equation (4.20), K(u, v) has to be a continuous
symmetric function and positive definite, i. e. the criteria
of Mercer’s theorem (see Mercer, 1909) have to be met. Then, Mercer’s theorem
K(u, v) implements the mapping (4.17) and function (4.19)
becomes function (4.21):

(4.21) f(xj) = sign

(
l∑
i=1

yiαiK
(
xi, xj

)
+ b0

)

Apart from replacing φ (u) ·φ (v) by K(u, v), the optimiza-
tion task itself remains unchanged. The most commonly
used kernels are the linear kernel, the polynomial kernel,
and the Gaussian radial basis function (RBF) kernel:

linear kernel . The linear kernel is defined as in Equa-
tion (4.22)

(4.22) K
(
xi, xj

)
= xi · xj

i. e. it equals the dot-product of xi and xj.

polynomial kernel . The polynomial kernel is defined
as in Equation (4.23)

(4.23) K
(
xi, xj

)
=
(
θ+ xi · xj

)d
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where θ is a coefficient and d is the polynomial ker-
nel’s degree. When θ = 0 the polynomial kernel is
called homogeneous, when θ > 0 the polynomial ker- Homogeneous
nel is called inhomogeneous. Inhomogeneous

gaussian rbf kernel . The Gaussian RBF kernel is de-
fined as in Equation (4.24)

(4.24) K
(
xi, xj

)
= exp

(
γ‖xi − xj‖2

)
where typically γ = − 1

σ2
and σ is a free parameter.

Due to their flexible nature, specific kernels may not only
be applied to vectorial, but also to non-vectorial data, e. g.
strings (e. g. Lodhi et al., 2002) or parse trees (e. g. Wiegand
and Klakow, 2010).

Asymmetric Cost Factors

This section and the following section briefly describe 2

extensions of SVMs that we use in our thesis: asymmetric
cost factors and multi-class SVMs.

To deal with imbalanced numbers of positive and neg-
ative training instances, i. e. class imbalance, Morik et al. Class imbalance
(1999) introduce asymmetric cost factors C+ and C− to al-
low for penalizing false positives and false negatives (see
Section 4.4) differently. Instead of constrained optimization
problem (4.16) they then minimize constrained optimiza-
tion problem (4.25):

(4.25) min
w,b,ξ

1

2
‖w‖2 +C+

∑
i:yi=1

ξi +C−

∑
i:yi=−1

ξi

yi equals 1 if i is a positive example, yi equals −1 if i is a
negative instance. Morik et al. (1999) choose C+,C− such
that

(4.26)
C+

C−
=

|{xi | yi = −1}|

|{xi | yi = 1}|

Multi-class SVMs

Standard SVMs are only able to discriminate between posi-
tive and negative instances, i. e. standard SVMs solve binary
classification problems where yi ∈ {−1, 1}. k-class classifi-
cation problems where yi ∈ {1, . . . ,k} and k > 2 are ei-
ther solved directly via k-class SVMs or decomposed into
several binary classifications problems and then solved via
one-against-the-rest SVMs or one-against-one SVMs:
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k-class svms Weston and Watkins (1998) generalize
the constrained optimization problem (4.16) to k-class clas-
sification problems as shown in constrained optimization
problem (4.27):

min
w,b,ξ

1

2

k∑
m=1

‖wm‖2 +C
l∑
i=1

∑
m 6=yi

ξmi

subject to (wyi · xi) + byi > (wm · xi) + bm + 2− ξmi

ξmi > 0, i = 1, . . . , l m ∈ {1, . . . ,k} \ yi

(4.27)

They generalize the decision function (4.14) to k-class clas-
sification as shown in decision function (4.28). Decision
function (4.28) chooses the class with the largest decision
value for an instance xj:

(4.28) f(xj) = arg max
k

(
wi · xj + bi

)
i = 1, . . . ,k

For details on the solution of the constrained optimization
problem see Weston and Watkins (1998).

one-against-the-rest svms One-against-the-rest or
one-against-all SVMs (e. g. Schölkopf et al., 1995) construct
k binary decision functions as shown in (4.29):

f1(xj) =
(
w1 · xj + b1

)
...

fk(xj) =
(
wk · xj + bk

)(4.29)

The i-th decision function is learned using the instances of
class i as positive training instances and the instances of
the other k− 1 classes as negative training instances. Func-
tion (4.28) then predicts the class of instance xj.

one-against-one svms One-against-one or 1-against-
1 SVMs (e. g. Kreßel, 1999) construct k(k+1)/2 binary decision
functions, one for each class pair (i, j). The (i, j)-th decision
function is learned using the instances of class i as positive
training instances and the instances of class j as negative
training instances.

The Max wins strategy is then (often) applied to predict Max wins strategy
the class of xl (see Hsu and Lin, 2002): If the (i, j)-th de-
cision function’s result is 1 class i receives a vote, if it is
−1 class j receives a vote. The class with the most votes is
predicted for instance xl.
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4.1.3 Naïve Bayes Classifier

The NB classifier is a supervised, generative ML method.
Let {(xi,yi)}li=1 be our training instances with xi ∈ Rn an
n-dimensional input vector and yi ∈ Y a class label from a
finite set (see Mitchell, 1997, p. 177). Given a new instance
xj, we want to compute p(yk | xj) to decide for the most
likely—i. e. maximum a posteriori (MAP)—class ymap: Maximum a

posteriori
(4.30) ymap if p(ymap | xj) > p(yk | xj) for ymap 6= yk

As we usually do not know p(yk | xj), we apply Bayes’ Bayes’ theorem
theorem as shown in Equation (4.31)

(4.31) p(yk | xj) =
p(xj | yk) · p(yk)

p(xj)

where p(yk) can be thought of as prior probability, which Prior probability

is updated by the evidence p(xj|yk)
p(xj)

, which then yields the Evidence

posterior probability p(yk | xj) (see Manning and Schütze, Posterior
probability1999, p. 236).

If we are not interested in the posterior probability but
simply want to predict the most likely class y ′, we can drop
the denominator p(xj) as it is independent of yk as shown
in Equation (4.32) and work with logarithms.

ymap = arg max
yk

p(yk | xj)

= arg max
yk

p(xj | yk) · p(yk)
p(xj)

= arg max
yk

p(xj | yk) · p(yk)

= arg max
yk

[
logp(xj | yk) + logp(yk)

]
(4.32)

The NB assumption states NB assumption

(4.33) p(xj | yk) =
∏
n

p(xj,n | yk)

i. e. all attributes are independent of each other. Combin-
ing Equation (4.32) and Equation (4.33) then yields the NB NB decision rule
decision rule shown in Equation (4.34):

(4.34) ymap = arg max
yk

[∑
n

logp(xj,n | yk) + logp(yk)

]
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The probabilities p(xj,n | yk) and p(yk) are approximated
via relative frequencies in the training data as shown in
Equation (4.35) and Equation (4.36), respectively:

(4.35) p(xj,n | yk) =
c(xj,n,yk)∑
m c(xj,m,yk)

(4.36) p(yk) =
c(yk)∑
i c(yi)

c(xj,n,yk) is the number of times xj,n appears for yk. c(yk)
is the number of training instances of class k. Both Equa-
tion (4.35) and Equation (4.36) are maximum likelihood esti- Maximum

likelihoodmates (see Manning and Schütze, 1999, p. 237).

4.1.4 Decision Trees

DT induction is a supervised, discriminative ML method
that usually approximates discrete-valued target functions.
DT induction is robust to noise in the training data (see
Mitchell, 1997, p. 52).

In a DT each node tests some attribute of some instance. Node
For each possible value of this attribute a branch descends Branch
from that node. If a node does not branch, i. e. has no sub-
tree, it is called a leaf . Each leaf provides a classification Subtree

Leaflabel. A DT classifies an instance by starting at its root node,
Roottesting the attribute of the root node, and following the

corresponding branch. This is repeated for the node that
has been reached. Reaching a leaf, the instance is classi-
fied accordingly (see Mitchell, 1997, pp. 52–53). A DT can
always be represented as a disjunction of conjunctions of
constraints on the attribute values of the instances (see
Mitchell, 1997, p. 53)—in other words, as a set of if-then If-then rules
rules.

While there are numerous algorithms for DT induction,
we present one of the most widely used: C4.5. C4.5 (see C4.5
Quinlan, 1993) is based on ID3 (see Quinlan, 1986), which ID3
we present first.
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ID3

ID3 induces DTs top-down as follows (see Mitchell, 1997,
pp. 52–56): ID3 greedily1 searches the space of all possible
DTs. Starting at the root node, ID3 decides which attribute
classifies the remaining training instances best. For each
resulting branch it does the same recursively. ID3 never re-
considers previous choices. To decide which attribute clas-
sifies the remaining training instances best, ID3 uses an
Information Gain (IG) (see Section 4.3.1) criterion. IG with
respect to an attribute A is defined as in Equation (4.37)

(4.37) IGA(T) = H(T) −
∑

v∈V(A)

|Tv|

|T |
H(Tv)

where H(T) is the entropy (see Chapter 3.2.1) of training
data T , V(A) are the values of A, and Tv ⊂ T is a subset of
T in which A has value v.

For each decision only training instances are included
which have the attribute values associated with the path
to the current node. Furthermore, attributes that have been
used higher up in the DT are excluded from using them
again. Thus, each attribute can be used only once on each
path. The DT is grown until either all remaining training
instances at the current node have the same classification
label—Tv has zero entropy—or each attribute has been used
on this path. This node then becomes a leaf associated
with the classification label of the majority of the remain-
ing training instances.

C4.5

There are several issues with ID3, e. g. handling continuous
attributes and avoiding to overfit the training data, which
are—among others—addressed in extensions to ID3 that
result in C4.5.

avoiding overfitting Generally, there are 2 ways to
avoid overfitting in DT induction: either stop growing the
DT before it perfectly fits the training data or allow the
DT to perfectly fit the training data but then post-prune it.
Pruning removes a subtree of a node, thereby makes it a Pruning

1 For each decision, a greedy algorithm “makes a locally optimal choice
in the hope that this choice will lead to a globally optimal solution.”
(see Cormen et al., 2009, p. 414)
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leaf and assigns to it the classification label most common
among its remaining training instances (see Mitchell, 1997,
p. 70). Pruning is an iterative process that chooses nodes
whose removal increases accuracy most, e. g. over a held-
out validation set. Pruning stops when it harms accuracy.

C4.5 performs rule post-pruning: After DT induction C4.5
converts the DT into an equivalent set of if-then rules, in
which one rule corresponds to one path in the DT. Each
rule is then pruned by removing preconditions—if-parts—
which increase its estimated accuracy. C4.5 pessimistically
estimates its accuracy on the training set instead of using a
held-out validation set (see Mitchell, 1997, pp. 71–72). The
rules are then sorted by their estimated accuracy and con-
sidered as a sequence for classification.

handling continuous attributes Continuous at-
tribute values are addressed by dynamically introducing
new boolean attributes Ac that are true if A < c and false
otherwise (see Mitchell, 1997, p. 72). The threshold c is cho-
sen to maximize IG. As IG is biased towards attributes with
many values, C4.5 additionally penalizes such attributes.

4.1.5 Linear Regression

LR is a supervised ML method for predicting a real-valued
output or response y based on predictors—an input vector Response

PredictorxT = (x1, x2, . . . , xn) (see Hastie et al., 2009, p. 44). An LR
model has the form

(4.38) y = f(x) = β0 +
n∑
j=1

xiβj

where β0 is the intercept and β1,β2, . . . ,βn are coefficients. Intercept

CoefficientGiven a training set {(xi,yi)}li=1, we estimate the parame-
ters βT = (β0,β1, . . . ,βn). This is typically done by mini-
mizing the residual sum (4.39)

RS(β) =

l∑
i=1

L (yi, f (xi))

=

l∑
i=1

L

yi,β0 + n∑
j=1

xijβj

(4.39)

where L (yi, f (xi)) is a loss function, e. g. the squared error Loss function
loss (4.40).
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Loss Functions

A loss function L (yi, f (xi)) allows for penalizing errors in
prediction. By far the most common loss function in LR is
squared error loss (see Hastie et al., 2009, p. 18).

squared error loss Squared error loss is defined as
in Equation (4.40)

(4.40) L (yi, f (xi)) = (yi − f (xi))
2

where yi − f(xi) = yi − ŷi are the residuals. Squared error Residual
loss may be dominated by outliers because

∑n
i=1 L (yi, f (xi))

may be heavily influenced by a few large yi − f(xi) values.

huber loss Huber loss (see Huber, 1964) is defined as
in Equation (4.41)

(4.41) Lδ(yi, f(xi)) =

1
2a
2
i if |ai| 6 δ

δ(|ai|−
1
2δ) else

where ai = yi − f(xi). Holland and Welsch (1977) choose
δ = 1.345 for a 95% asymptotic efficiency at the Gaussian
distribution. In contrast to squared error loss, Huber loss
does not suffer from the heavy influence of a few large ai
values and thus is more robust against outliers.

tukey’s biweight Tukey’s biweight or bisquare (see
Holland and Welsch, 1977) is defined as in Equation (4.42)

(4.42) Lδ(yi, f(xi)) =

ai
(
1−

(ai
δ

)2)2 if |ai| 6 δ

0 else

where ai = yi − f(xi). Holland and Welsch (1977) choose
δ = 4.685 for a 95% asymptotic efficiency at the Gaussian
distribution. Just as Huber loss Tukey’s biweight does not
suffer from the heavy influence of a few large ai values
and thus is more robust against outliers.

Both Huber loss and Tukey’s biweight are loss functions
for M-estimators. Robust regression using Huber loss and
Tukey’s biweight are usually computed using iteratively
reweighed least squares (see Holland and Welsch, 1977).
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4.1.6 Logistic Regression

LogReg is a supervised, discriminative ML method based on
LR (see Section 4.1.5) for predicting a categorical output
instead of a real-valued one. The LR model (4.38) is trans-
formed via the logistic function (4.43) Logistic function

(4.43) g(z) =
1

1+ exp(−z)

resulting in the LogReg model (4.44):

y = g (f (x))

=
1

1+ exp
(
−
(
β0 +

∑n
j=1 xiβj

))(4.44)

A LogReg model’s parameters β are usually fitted via
maximum likelihood estimation (see Hastie et al., 2009,
pp. 120–122).

4.2 feature scaling

When the j-th feature of {(xi,yi)}li=1 is not binary—i. e. ei-
ther 0 or 1—it needs to be scaled (see Hsu et al., 2003), ide-
ally in way such that

(4.45) −1 6 xjk 6 1

We ensure Inequality (4.45) by normalizing xjk such that it
has approximately zero mean. We do that by replacing xjk
as shown in Equation (4.46):

(4.46) xjk ←
xjk − µ

j

sj

where µj is the j-th feature’s distribution mean and sj is its
standard deviation.

4.3 feature selection methods

Methods for FS—or variable subset selection—retain only
a subset of all features in some model while they elimi-
nate the rest (see Hastie et al., 2009, p. 57). By removing
redundant or irrelevant features, FS facilitates model inter-
pretability and increases the model’s ability to generalize
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by reducing overfitting (see Hastie et al., 2009, p. 57). More-
over, less complex models are usually faster to train and
test. We now present two FS methods: IG (see Section 4.3.1)
and χ2 Test (see Section 4.3.2).

4.3.1 Information Gain

IG “measures the amount of information in bits about the
class prediction, if the only information available is the
presence [or absence] of a feature and the corresponding
class distribution” (see Roobaert et al., 2006). More con-
cretely, IG measures the expected decrease in entropy, i. e.
the decrease in uncertainty associated with a certain ran-
dom variable (see Mitchell, 1997, p. 57).

Applied to text classification, Yang and Pedersen (1997)
define the IG of a term t regarding m classes {ci}

m
i=1 as

shown in Equation (4.47)

IG(t) =−

m∑
i=1

p(ci) log2 p(ci)

+ p(t)

m∑
i=1

p(ci | t) log2 p(ci | t)

+ p(t̄)

m∑
i=1

p(ci | t̄) log2 p(ci | t̄)

(4.47)

where p(t) is the probability of t and p(t̄) = 1− p(t) is the
probability of not t. The conditional probabilities are cal-
culated using Bayes’ theorem as shown in Equation (4.48)

p(ci | t) =
p(t | ci) · p(ci)

p(t)
(4.48)

and analogous for t̄.

4.3.2 χ2 Test

χ2 test is a statistical test that measures divergence be-
tween an observed and an expected distribution (see For-
man, 2003). Applied to text classification, Yang and Peder-
sen (1997) define the χ2 value of t regarding c as shown in
Equation (4.49)

(4.49) χ2(t, c) =
N · (AD−CB)2

(A+C) · (B+D) · (A+B) · (C+D)
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Figure 4.: A 2×2 contingency matrix.

Actual
ci ¬ci

Predicted
ci tpi fpi

¬ci fni tni

where A is the number of times t occurs with c, B is the
number of times t occurs not with c, C is the number of
times c occurs not with t, D is the number of times neither
c or t occur, and N is the number of documents. Yang and
Pedersen (1997) then average χ2(t, c) as shown in Equa-
tion (4.50):

(4.50) χ2avg(t) =

m∑
i=1

p(ci) · χ2(t, ci)

4.4 evaluation measures

In a multi-class classification setting, given n classes C =

{c1, c2, . . . , cn} as well as cases with their predicted and ac-
tual class, we can build 2×2 contingency matrices for ev-
ery class ci as shown in Figure 4: The cases in which the
predicted class equals the actual class are called tp (true True positives
positives) and tn (true negatives). The cases in which the True negatives
predicted class does not equal the actual class are called fp False positives
(false positives) and fn (false negatives). False negatives

For a single class ci the precision Pi is then defined as in Precision
Equation (4.51):

(4.51) Pi =
tpi

tpi + fpi

The recall Ri for ci is defined as in Equation (4.52): Recall

(4.52) Ri =
tpi

tpi + fni

We can combine precision with recall into F measure or F F measure
score, which is based on Van Rijsbergen (1979)’s E measure
(see Manning and Schütze, 1999, p. 269). F measure Fi for
ci is defined as in Equation (4.53)

(4.53) Fi =
1

α 1
Pi

+ (1−α) 1Ri
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Figure 5.: A 2×2 contingency matrix for micro-averaging.

Actual
ci ¬ci

Predicted
ci

∑
ci
tpi

∑
ci
fpi

¬ci
∑
ci
fni

∑
ci
tni

where α is a factor that determines the relative weighting
of Pi and Ri. The larger α, the larger the influence of preci-
sion, and the smaller the influence of recall and vice versa.
If α = 0.5 Equation (4.53) simplifies to the harmonic mean
of Pi and Ri as shown in Equation (4.54):

(4.54) Fi =
2PiRi
Pi + Ri

Another important evaluation measure for classification is
accuracy. Accuracy Ai for ci is defined as in Equation (4.55): Accuracy

(4.55) Ai =
tpi

tpi + fpi + fni

By convention, accuracy is usually presented in percent.
E. g., an accuracy of 0.857 is written as 85.7. We follow this
convention in our thesis.

We can calculate an overall performance measure M—
e. g. overall accuracyA—either via macro-averaging or micro- Macro-averaging
averaging. In macro-averaging, one calculates an evaluation Micro-averaging
measure Mi for every class ci and then calculates M as
shown in Equation (4.56):

(4.56) M =
1

n

n∑
i=1

Mi

In micro-averaging, one first calculates an overall 2×2 con-
tingency matrix as shown in Figure 5 and then calculates
M based on this contingency matrix. Micro-averaging gives
equal weight to every case, thus it is more dominated by
large classes. Macro-averaging gives equal weight to every
class, thus it is more dominated by small classes (see Man-
ning and Schütze, 1999, p. 577). By default we use macro-
averaging.
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4.5 model assessment techniques

The most widely used method for assessing a model’s pre-
diction accuracy, precision, recall, or F measure—e. g. for
evaluation or parameter tuning—is cross validation (CV). In Cross validation
this thesis we use K-fold CV (see Section 4.5.1) and leave-
one-out CV (see Section 4.5.2).

4.5.1 K-fold Cross Validation

In a K-fold CV (see Hastie et al., 2009, pp. 241–242) we split
the data into K parts. For k = 1, . . . ,K we fit a model to
K− 1 parts of the data and validate it on the held out k-th
part. The K results are then averaged.

4.5.2 Leave-one-out Cross Validation

Leave-one-out CV (see Hastie et al., 2009, p. 242) is a special
case of a K-fold CV, where K = n and n is the number of
instances in the data: We fit a model to n− 1 parts of the
data and validate it on the held out n-th part. The n results
are then averaged.

For estimating a model’s prediction accuracy leave-one-
out CV has low variance but may be biased. In contrast,
K-fold CV is approximately unbiased but may have high
variance (see Hastie et al., 2009, pp. 242–243).
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5
G E N R E A N D D O M A I N D E P E N D E N C I E S

In this chapter we verify our core hypothesis: SA is—just
like NLP in general—genre and domain dependent.

We first describe our approach to SA in Section 5.1. In
Section 5.2 we show that our SA approach performs dif-
ferently when applied to different genres and domains. In
Section 5.3 we show that different genres and domains dif-
fer in their textual characteristics, viz. their domain com-
plexity. Finally, we relate differences in textual characteris-
tics to differences in performance in Section 5.41.

5.1 approach to sentiment analysis

This section describes our general approach to the SA sub-
tasks that this thesis focuses on: polarity and subjectivity
classification. We describe its underlying assumptions (see
Section 5.1.1), its text representation (see Section 5.1.2), and
our classifier choice (see Section 5.1.3).

5.1.1 Assumptions

Sentiment in text is—directly or indirectly—expressed in
words or phrases, i. e. sequences of words. In Example (18)
a. and Example (18) b. sentiment is expressed by the phrases
“truly love” and “truly loves”, respectively.

(18) a. I truly love wearing them.

b. She truly loves wearing them, too.

Therefore, we capture sentiment via word n-grams. A word Word n-grams
n-gram is a sequence of words of length n. Table 8 lists the
word n-grams of Example (18a.) for 1 6 n 6 4.

Polarity and subjectivity classification may both be seen
as instances of text classification or text categorization. Text Text classification
classification attempts to assign e. g. a document or a sen-
tence to at least one of two or more predefined classes or
categories (see Manning and Schütze, 1999, p. 530). In the

1 Section 5.4 is based on Remus and Ziegelmayer (2014).
2 Tetragrams are also referred to as quad-, four-, or 4-grams.
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Table 8.: Word n-grams of “I truly love wearing them.”.

n notation word n-grams

1 unigrams I, truly, love, wearing, them, .
2 bigrams I truly, truly love, love wearing,

wearing them, them .
3 trigrams truly love, truly love wearing, love

wearing them, wearing them .
4 tetragrams2 I truly love wearing, truly love wear-

ing them, love wearing them .

Figure 6.: A bag-of-words of “I truly love wearing them.” and
“She truly loves wearing them, too.”.{

I, truly, truly, love, wearing, wearing,
them, them, ., ., She, loves, „ too

}

NLP research community the dominant approach to text
classification is based on ML (see Sebastiani, 2002).

5.1.2 Text Representation

To apply ML algorithms to a text, it needs to be repre-
sented appropriately. We represent a text as a bag-of-words Bag-of-words
(Manning and Schütze, 1999, p. 237). We consider a bag-
of-words as a multiset of word n-grams. A multiset disre-
gards the order of its elements. While such a representa-
tion sacrifices information regarding a text’s structure, it
is invariant—thus robust—with respect to the positions of
words and phrases. Therefore, bags-of-words have good
generalization capabilities. Furthermore, the bag-of-words
representation scheme is easily applicable to texts of differ-
ent granularity: documents, sentences, or even phrases. A
bag-of-words of Example (18) is shown in Figure 6.

Given a vocabulary—a dictionary—that contains k unique Vocabulary

Dictionaryword n-grams, we then encode a text as a k-dimensional
vector x ∈ Rk. The i-th dimension of x, i. e. xi, then en-
codes the absence (0) or presence (1) of the i-th vocabulary
entry in the text. Generally, one could also encode a vocab-
ulary entry’s relative frequency in the text, or its tf-idf (see
Manning and Schütze, 1999, p. 543) etc., but encoding an



5.1 approach to sentiment analysis 63

love
loves
them

too
truly

wearing
,
.
I

She



1

0

1

0

1

1

0

1

1

0


Figure 7.: A vector encoding of “I truly love wearing them.” in

{0, 1}k.

entry’s absence or presence yields superior performance in
polarity classification compared to schemes that encode an
entry’s frequency (see Pang et al., 2002). So instead of in
Rk we encode vectors in {0, 1}k. Figure 7 shows a vector en-
coding of Example (18a.) given a vocabulary that contains
“love”, “loves”, “them”, “too”, “truly”, “wearing”, “,”, “.”,
“I”, “She”, i. e. all unique word unigrams of Example (18).

5.1.3 Classifier Choice

While there is an abundance of discriminative and genera-
tive ML algorithms (see Chapter 4.1) available to build clas-
sifiers, SVMs (see Chapter 4.1.2) are a common choice for
text classification. This is because SVMs can handle (i) high-
dimensional feature spaces, (ii) many relevant features, and
(iii) sparse feature vectors well (see Joachims, 1998).

To confirm that SVMs are in fact an adequate choice for
text classification—and specifically for the SA subtasks po-
larity and subjectivity classification—we carry out prelim-
inary experiments in which we compare SVMs to 3 other
commonly used ML algorithms: NB classifiers (see Chap-
ter 4.1.3), pruned DTs induced by C4.5 (see Chapter 4.1.4),
and LogReg (see Chapter 4.1.6). All 4 ML algorithms are
evaluated in a document-level polarity classification exper-
iment on PD v2.0, in a sentence-level polarity classification
experiment on SPD v1.0 as well as sentence-level subjectiv-
ity classification experiments on SD v1.0 and MPQA v2.0 (see
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Table 9.: Accuracy of different ML algorithms on several SA gold
standards.

gold standard svm nb dt logreg

MPQA v2.0 72.25 66.62 65.46 64.23

PD v2.0 86.6 64.35 71.25 81.85

SD v1.0 90.56 82.89 82.23 90.98

SPD v1.0 76.21 62.66 65.19 72.05

average 81.41 69.13 71.03 77.27

Table 10.: Accuracy of SVM models with (w/) and without (w/o)
optimization of C on several SA gold standards.

gold standard w/ w/o

MPQA v2.0 72.25 69.43

PD v2.0 86.6 75.35

SD v1.0 90.56 89.3
SPD v1.0 76.21 74.56

average 81.41 77.16

Chapter 2.1). We use solely word unigrams as features. Ta-
ble 9 shows the results on these 4 gold standards.

SVMs proved to be superior in all our experiments and
also in comparative experiments of others (e. g. Pang et al.,
2002; Go et al., 2009). Hence, SVMs are used for learning
classifiers throughout this thesis.

If not stated otherwise we use SVMs in their LibSVM im-
plementation3 with a linear kernel and their cost factor C
chosen from {2.0E-3, 2.0E-2, 2.0E-1, 2.0, 2.0E1, 2.0E2, 2.0E3} Optimization of C
via 10-fold CV on the training data (see Hsu et al., 2003).
Optimization of C is time-consuming but usually leads to
clear performance gains: Table 10 compares SVMs with op-
timization of C to SVMs without optimization of C on the
same gold standards as before. When C is not optimized—
but fixed to a medium value of 2.0—its accuracy on the
aforementioned gold standards is on average 4.25 points
lower compared to when C is optimized.

3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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In all our experiments throughout this thesis we repre-
sent texts as vector encodings of ordinary bags-of-words.
The vocabularies—the features—are induced using a data- Data-driven feature

inductiondriven approach as described in Remus and Rill (2013). We
do not make any assumption about which word n-grams
carry sentiment and which do not. Therefore, we do not
perform any (naïve) FS—we keep high- and low-frequency
word n-grams just as we keep punctuations etc. From hereon
we refer to this approach as our SA approach—or interchangeably—Our SA approach
our SA method. Our SA method

5.2 differences in performance

Although genre and domain dependence may be distin-
guished from each other, they pose a similar problem to
NLP in general and to SA specifically: the same method per-
forms differently when applied to different genres and dif-
ferent domains.

We show that the same SA method—our approach as
described in Section 5.1 using word unigrams as features—
performs differently when applied to different genres and
different domains. To that end, we carry out document-
level polarity classification experiments, in which we com-
pare results of our SA approach on gold standards (or sub-
sets of gold standards) that originate from

1. the same genre and the same domain,

2. the same genre but a different domain,

3. a different genre but the same domain,

4. a different genre and different domain.

Consequently, we consider these gold standards as rep-
resentative samples of their respective genres and domains.
We hypothesize that the differences in performance are
considerably smaller when varying neither genre nor do-
main compared with when varying the domain but not
the genre. They are even larger when varying genre but
not domain. And they are largest when varying both the
genre and the domain (see Table 11).
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Table 11.: Hypothesized differences in both performance and tex-
tual characteristics when varying either, both or neither genre
and domain.

genre domain hypothesized difference

not varied not varied “small”
not varied varied “medium”
varied not varied “medium” to “large”
varied varied “medium” to “large”

5.2.1 Varying neither Genre nor Domain

Before we investigate the differences in performance of our
SA method when we vary either or both genre and domain,
we investigate its behavior when we vary neither genre nor
domain: we run experiments on RND (see Section 2.1.5).

For each of the 9 domains in RND we randomly divide
the 2,000 available positive reviews in 2 runs of 1,000 pos-
itive reviews each; we do the same for the 2,000 available
negative reviews. This experimental setup resembles a “treat-
ment” group and a control group. We then evaluate our SA
method on both runs in a 10-fold CV. Figure 8 shows the
evaluation results. As hypothesized in Table 11 the aver-
age difference in performance between the domains in run
1 and run 2—i. e. when varying neither genre nor domain—
is “small”: 1.03±0.86 (minimum 0.1; maximum 2.25).

5.2.2 Varying Domain

We now investigate our SA method’s behavior when we
vary the domain but not the genre: we run experiments on
MDSD v2.0 (see Section 2.1.2) and RND.

For each of the 10 domains in MDSD v2.0 we use all the
available 1,000 positive and 1,000 negative reviews to eval-
uate our SA method in a 10-fold CV. Figure 8 and Figure 9

show the evaluation results. As hypothesized in Table 11

the average pairwise difference in performance between
MDSD v2.0’s domains—i. e. when varying domain but not
genre—is “medium”: 2.17±1.62 (0.1; 6.85). It is twice as
large compared to when we vary neither genre nor domain
(see Section 5.2.1).
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Figure 8.: Differences in performance of our SA method on RND

when varying neither genre nor domain as well as when vary-
ing the domain but not the genre.
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Figure 9.: Differences in performance of our SA method on
MDSD v2.0 when varying the domain but not the genre.
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Figure 10.: Differences in performance of our SA method on
MDSD v2.0 and T-MDSD when varying the genre but not the
domain as well as when varying both genre and domain.

The average pairwise differences in performance between
RND’s domains are even larger: 4.58±3.54 (0.1; 12.6) for run
1 and 4±3.87 (0; 11.25) for run 2 (see Section 5.2.1). They
are four times as large compared to when we vary neither
genre nor domain (see Section 5.2.1).

5.2.3 Varying Genre

We now investigate our SA method’s behavior when we
vary the genre but not the domain: we run experiments on
MDSD v2.0 and T-MDSD (see Section 2.1.10).

For each of the 4 domains found both in MDSD v2.0 and
T-MDSD—apparel, electronics, health & personal care, and
kitchen & housewares—we use all the available 1,000 pos-
itive and 1,000 negative reviews and tweets to evaluate
our SA method in a 10-fold CV. Figure 10 shows the eval-
uation results. As hypothesized in Table 11 the average
pairwise difference in performance between MDSD v2.0’s re-
views and T-MDSD’s tweets for equal domains—i. e. when
varying genre but not domain—is “large”: 10.23±5.16 (4.85;
16.15). It is at least twice as large compared to when we
vary the domain but not the genre (see Section 5.2.2).
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5.2.4 Varying Genre and Domain

Finally, we investigate our SA method’s behavior when we
vary both genre and domain. We run experiments as de-
scribed in Section 5.2.3.

Figure 10 shows the evaluation results. As hypothesized
in Table 11 the average pairwise difference in performance
between MDSD v2.0’s reviews and T-MDSD’s tweets for un-
equal domains—i. e. when varying genre and domain—is
“large”: 10.67±3.84 (5.35; 18.25). It is slightly larger com-
pared to when we vary genre but not domain (see Sec-
tion 5.2.3).

5.3 differences in textual characteristics

Intuitively, different genres and domains differ in their vo-
cabulary and in the way their vocabulary is used, i. e. they
differ in their textual characteristics. To confirm our intu-
ition, we measure differences in domain complexity of the
same datasets as chosen in Section 5.2, i. e. of gold stan-
dards (and subsets of gold standards) that originate from

1. the same genre and the same domain,

2. the same genre but a different domain,

3. a different genre but the same domain,

4. a different genre and different domain.

We approximate domain complexity using percentage of
rare words, word richness4, and relative entropy (see Chap-
ter 3.2.1) as well as homogeneity (see Chapter 3.2.2). In this
section our domain complexity approximations are com-
puted on word unigrams.

Analogously to Section 5.2 we hypothesize that the dif-
ferences in domain complexity are considerably smaller
when varying neither genre nor domain compared with
when varying the domain but not the genre. They are even
larger when varying the genre but not the domain. And
they are largest when varying both genre and domain (see
Table 11).

4 From hereon we refer to word richness by its more common notation:
type/token ratio.
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Figure 11.: Differences in homogeneity of RND when varying nei-
ther genre nor domain.

5.3.1 Varying neither Genre nor Domain

When we vary neither genre nor domain as in Section 5.2.1
the differences in textual characteristics, viz. domain com-
plexity, are small. Exemplarily, Figure 11 shows the differ-
ences in homogeneity.

The average difference in homogeneity between run 1

and run 2 is 0.003±0.003 (0.001; 0.008). Approximately the
same applies to percentage of rare words, type/token ratio,
and relative entropy.

5.3.2 Varying Domain

When we vary the domain but not the genre as in Sec-
tion 5.2.2 the differences in domain complexity are larger
compared with when we vary neither domain nor genre
(see Section 5.3.1). Exemplarily, Figure 12 shows the differ-
ences in homogeneity.

The average pairwise difference in homogeneity between
MDSD v2.0’s domains is 0.032±0.021 (0.002; 0.077). In per-
centage of rare words it is 0.002±0.002 (0; 0.005). In type/-
token ratio it is 0.016±0.012 (0; 0.034). In relative entropy it
is 0.024±0.018 (0; 0.05).
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Figure 12.: Differences in homogeneity of MDSD v2.0 when vary-
ing the domain but not the genre.

5.3.3 Varying Genre

When we vary the genre but not the domain as in Sec-
tion 5.2.3 the differences in domain complexity are larger
compared with when we do not vary the genre but the do-
main (see Section 5.3.2). Exemplarily, Figure 13 shows the
differences in homogeneity.

The average pairwise difference in homogeneity between
MDSD v2.0’s reviews and T-MDSD’s tweets for equal domains
is 0.035±0.023 (0.012; 0.067). In percentage of rare words
average it is 0.021±0.014 (0.003; 0.036). In type/token ra-
tio it is 0.072±0.042 (0.014; 0.111). In relative entropy it is
0.067±0.009 (0.059; 0.08).

5.3.4 Varying Genre and Domain

When we vary both genre and domain as in Section 5.2.4
the differences in domain complexity are on par compared
with when we vary the genre but not the domain (see Sec-
tion 5.3.3). Exemplarily, Figure 13 shows the differences in
homogeneity.

The average pairwise difference in homogeneity between
MDSD v2.0’s reviews and T-MDSD’s tweets for unequal do-
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Figure 13.: Differences in homogeneity of MDSD v2.0 and T-MDSD

when varying the genre but not the domain as well as differ-
ences in homogeneity when varying both genre and domain.

mains is 0.035±0.018 (0.002; 0.067). In percentage of rare
words it is 0.024±0.012 (0.002; 0.037). In type/token ra-
tio it is 0.079±0.031 (0.018; 0.11). In relative entropy it is
0.066±0.012 (0.049; 0.086).

5.4 performance estimation

A question that immediately arises from Section 5.2 and
Section 5.3 is whether there is a relation between the differ-
ences in performance and the differences in textual char-
acteristics, viz. the differences in domain complexity. To
answer this question, we measure their correlation.

In this section, whenever we speak of accuracies we re-
fer to accuracies of our SA approach when not varying the
genre but varying the domain (see Section 5.2.2). Whenever
we speak of domain complexity measurements we refer
to the corresponding domain complexity measurements
when not varying the genre but varying the domain.

Table 12 shows the Pearson correlation r between accu-
racies of our SA approach and domain complexity mea-
surements. All correlations—except of relative entropy—
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Table 12.: Pearson correlation r between domain complexity mea-
surements and accuracies as well as r’s significance level p.

domain complexity measure r p

Percentage of rare unigrams -0.673 0.023

Unigram type/token ratio -0.723 0.012

Unigram relative entropy -0.425 0.192

Unigram homogeneity -0.708 0.015

are strong (|r| > 0.67) and statistically significant (p < 0.05).
From Table 12 we learn that

• the smaller the percentage of rare unigrams, i. e. the
less hapax legomena and dis legomena,

• the smaller the unigram type/token ratio, i. e. the
more tokens per type,

• the smaller the unigram relative entropy, i. e. the far-
ther the distribution from a uniform distribution and

• the smaller the unigram homogeneity value, i. e. the
more homogeneous the corpus,

the higher the accuracy of our SA method.
Relative entropy’s correlation with accuracy is neither

strong (|r| = 0.425) nor statistically significant (p > 0.05).
It exhibits an irregular behavior. As shown in Figure 14

accuracy peaks when relative entropy is mid-range. Accu-
racy is lowest when relative entropy is largest. Accuracy is
mid-range when relative entropy is smallest. Further inves-
tigations in these matters are left to future work.

However, given such strong (|r| > 0.67) and statistically
significant correlations (p < 0.05) of the 3 other domain
complexity measures we perform LRs (see Section 4.1.5):
We fit LR models using squared error loss with single do-
main complexity measurements as predictors5 and single
accuracies as responses. To evaluate the LR models, we
measure their mean residual standard error (MRSE) in leave-
one-domain-out CVs (see Chapter 4.5.2). Table 13 shows the

5 We do not use more than one predictor in our LR models in accordance
with Harrell (2001, p. 61), who suggests to obey the rule of thumb
p < n/10 where p is the number of predictors and n is the total sample
size. In our leave-one-domain-out CV experiments n = 9 (and hence
1 > 9/10).
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Table 13.: MRSEs of ordinary LR models fitted using squared er-
ror loss in leave-one-domain-out CVs with domain complexity
measurements as predictors and accuracies as responses.

predictor mrse p

Percentage of rare unigrams 1.238 0.033

Unigram type/token ratio 1.116 0.018

Unigram relative entropy 1.837 0.221

Unigram homogeneity 1.058 0.007

resulting MRSEs as well as the significance level p of the
predictor’s influence on the response. All predictors’ in-
fluences on the response—except of relative entropy—are
statistically significant (p < 0.05). From Table 13 we learn
that—analogously to the correlations we found—3 out of
4 domain complexity measures allow us to accurately es-
timate our SA method’s performance based solely on do-
main complexity measurement. Homogeneity appears to
be the most informative domain complexity measure: it
yields the smallest MRSE (1.058).

As we can see in Figure 15 our data contains (at least)
one outlier: the domain music with an accuracy of 76.4 and
a homogeneity of 0.451. Outliers such as music affect the
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Figure 15.: Accuracy vs. homogeneity as well as LR models fitted
using squared error loss, Huber loss, and Tukey’s biweight.

slope of the LR fit. We counteract outliers by employing loss
functions that are more robust than ordinary squared error
loss: Huber loss and Tukey’s biweight (see Chapter 4.1.5).
Using these robust loss functions leads to small improve-
ments in estimating accuracy—i. e. reduces the MRSEs—as
shown in Table 14.

Figure 15 depicts LR models fitted to our data using
squared error loss, Huber loss, and Tukey’s biweight. Both
robust LRs are less influenced by outliers than ordinary LR.
Thus, they result in a more accurate fit of the data, espe-
cially when applied to subsamples of the data as in our
leave-one-domain-out CVs.

Performance estimation does not only work for SVM mod-
els based on word unigrams, but also for SVM models based
on higher order word n-grams, i. e. SVM models based on
word uni- and bigrams, and SVM models based on word
uni, bi-, and trigrams: we just use higher order word n-
gram domain complexity measurements as additional pre- Additional

predictorsdictors in our LR models. To estimate the accuracy of e. g. an
SVM model based on word uni- and bigrams, we measure
both word unigram relative entropy and word bigram rela-
tive entropy, or both unigram type/token ratio and bigram
type/token ratio etc. These additional predictors are either
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Table 14.: MRSEs of robust LR models fitted using Huber loss and
Tukey’s biweight in leave-one-domain-out CVs with domain
complexity measurements as predictors and accuracies as re-
sponses.

predictor huber tukey’s

Percentage of rare unigrams 1.205 1.208

Unigram type/token ratio 1.054 1.073

Unigram relative entropy 1.959 2.050

Unigram homogeneity 1.027 1.082

kept separately or averaged. Averaging predictors, e. g. aver- Separately kept and
averaged predictorsaging word uni-, bi-, and trigram relative entropy, results

in a single predictor in our LR models. Keeping predictors
separately results in multiple predictors in our LR models.

We then proceed as described earlier. Results of the ac-
curacy estimation for SVM models based on word uni- and
bigrams are shown in Table 15. Results of the accuracy es-
timation for SVM models based on word uni-, bi-, and tri-
grams are shown in Table 16.

For accuracy estimation of SVM models based on word
uni- and bigrams using percentage of rare words as sep-
arate predictors and an LR model fitted using Tukey’s bi-
weight yields the smallest MRSE (0.472). For accuracy es-
timation of SVM models based on word uni-, bi-, and tri-
grams using type/token ratio as separate predictors and
an LR model fitted using Tukey’s biweight yields the small-
est MRSE (0.634).

Discussion

We showed that we are able to estimate our SA approach’s
accuracy on a certain gold standard based solely on the
gold standard’s textual characteristics, viz. its domain com-
plexity. Domain complexity measures allow us to deter-
mine how much an SVM model can learn from the gold
standard’s data, in which certain features—word n-grams—
occur, re-occur, or do not re-occur.

However, our performance estimates are not 100% ac-
curate. On average we over- or underestimate our SA ap-
proach’s performance by about 1 accuracy point. This is
because an ML-based classifier’s—e. g. an SVM model’s—
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Table 15.: MRSEs of LR models fitted using squared error loss, Hu-
ber loss, and Tukey’s biweight in leave-one-domain-out CVs

with domain complexity measurements as predictors and ac-
curacies of SVM models based on word uni- and bigrams as re-
sponses. PRW denotes percentage of rare word n-grams, TTR
denotes word n-gram type/token ratio, Hrel denotes word n-
gram relative entropy, Hom denotes word n-gram homogene-
ity. “sep” denotes separately kept predictors, “avg” denotes
averaged predictors.

predictor(s) squared huber tukey’s

PRW
sep 0.94 0.506 0.472
avg 0.963 0.905 0.907

TTR
sep 0.942 0.591 0.579

avg 0.921 0.777 0.765

Hrel
sep 0.902 0.882 0.87

avg 1.604 1.514 1.464

Hom
sep 1.02 1.063 1.067

avg 0.927 0.925 0.958

Table 16.: MRSEs of LR models fitted using squared error loss, Hu-
ber loss, and Tukey’s biweight in leave-one-domain-out CVs

with domain complexity measurements as predictors and ac-
curacies of SVM models based on word uni-, bi- and trigrams
as responses.

predictor(s) squared huber tukey’s

PRW
sep 1.143 0.867 0.738

avg 0.913 0.943 0.928

TTR
sep 1.048 0.747 0.634
avg 0.781 0.713 0.75

Hrel
sep 1.002 1.022 1.049

avg 1.43 1.429 1.620

Hom
sep 1.037 0.996 0.904

avg 0.877 0.854 0.894
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discriminative power ultimately also depends on a gold
standard’s non-textual characteristics, e. g. whether it con- Non-textual

characteristicstains erroneous labels, its size, and its class boundary com-
plexity (see Chapter 3.2.3).

To transfer an LR model for performance estimation, viz.
our performance estimator from the gold standard(s) it is Performance

estimatortrained on to another, their non-textual characteristics have
to similar. If their non-textual characteristics are not similar
our performance estimator will most likely suffer from an
average accuracy loss larger than 1 accuracy point.

Lessons Learned

We learned a few lessons while carrying out our experi-
ments in this section: (i) We are able to estimate the word
n-gram homogeneity of a joint corpus Cjoint consisting of
corpora Ci, Cj through the homogeneity of corpora Ci, Cj
and their similarity via LR. (ii) We are also able to esti-
mate the actual word {1, . . . ,k}-gram homogeneity out of
the separate word unigram homogeneity, word bigram ho-
mogeneity, . . . , word k-gram homogeneity by simply aver-
aging them.

Related Work

Ponomareva and Thelwall (2012a) estimate the accuracy
loss when transferring their SA method from a source to
a target domain via domain complexity and domain simi-
larity measures. Van Asch and Daelemans (2010) estimate
the accuracy loss when transferring a POS tagger from one
domain to another via domain similarity measures. Blitzer
et al. (2007) compute an A-distance proxy and show that
it correlates with accuracy loss when transferring their SA
method from a source to a target domain.

Future Work

Future work includes to estimate our SA approach’s lower
and upper bounds of accuracy instead of estimating its ac-
curacy directly. To learn more about the relation between
our SA approach’s accuracy on a certain gold standard and
its domain complexity, we consider experiments in which
we control certain textual characteristics. E. g., we limit the
vocabulary to a certain size by discarding sentences that
contain uncommon words (see Chapter 3.3.2). Thereby, we
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create subsets of gold standards on which we then evalu-
ate our SA approach and investigate its behavior. However,
this strategy bears the risk of introducing arbitrary effects
that we cannot control.

5.5 conclusion

In this chapter we described our ML-based approach to
the SA subtasks that we focus on—polarity and subjectiv-
ity classification. We described its underlying assumptions,
its text representation, and our classifier choice (see Sec-
tion 5.1).

We showed that our SA approach performs differently
when applied to gold standards (or subsets of gold stan-
dards) that originate from different genres and domains.
Moreover, we verified our hypothesis that differences in
performance are small when we vary neither genre nor do-
main; that differences in performance are larger when we
do vary the domain; and that differences in performance
are even larger when we vary the genre or both genre and
domain (see Section 5.2).

We then showed that gold standards that originate from
different genres and domains differ in their textual charac-
teristics, viz. their domain complexity. Moreover, we veri-
fied our hypothesis that differences in domain complexity
behave similar to the differences in performance (see Sec-
tion 5.3).

Finally, we showed that there is a clear relationship be-
tween our SA approach’s performance on a certain gold
standard and its domain complexity. We used this rela-
tionship to estimate our SA approach’s accuracy on a gold
standard based solely on its domain complexity (see Sec-
tion 5.4). In summary, we verified the core hypothesis of
our thesis, i. e. SA is genre and domain dependent.





6
M O D E L S E L E C T I O N A N D F E AT U R E
E N G I N E E R I N G

Wesentliche Aufgabe eines Ingenieurs ist es, für
technische Probleme mit Hilfe naturwissenschaftlicher

Erkenntnisse Lösungen zu finden, und sie unter den
jeweils gegebenen Einschränkungen stofflicher,

technologischer und wirtschaftlicher Art in optimaler
Weise zu verwirklichen.

— Pahl and Beitz (1986, p. 1)

In this chapter we use textual characteristics—viz. do-
main similarity (see Chapter 3.1), domain complexity (see
Chapter 3.2) and readability (see Chapter 3.3)—in a variety
of applications: domain complexity will guide us in model
selection for in-domain polarity classification in Section 6.1.
Domain similarity and domain complexity will be used in
domain adaptation (DA) for cross-domain polarity classifi-
cation in Section 6.2. Readability will be used in feature
engineering for subjectivity classification in Section 6.3.

6.1 domain complexity-based model selection

It is surprisingly hard to outperform a text classification
model that is based solely on word unigrams (e. g. Bekker-
man and Allan, 2004). However, often there is room for
improvement over such word unigram models, e. g. using
higher order word n-grams such as word bi- or trigrams as Higher order word

n-gramsadditional features or by performing word n-gram FS.
Some studies argue in favor of using models that com-

bine word unigram and higher order word n-gram repre-
sentations (e. g. Riloff et al., 2006), some studies argue in
favor of using word unigram representations alone (e. g.
Scott and Matwin, 1999; Bekkerman and Allan, 2004; Mos-
chitti and Basili, 2004). Several studies suggest aggressive
word n-gram FS (e. g. Rogati and Yang, 2002), other studies
suggest conservative word n-gram FS, especially for SVMs
(e. g. Brank et al., 2002). All studies underpin their sug-
gestions by empirical results based on different gold stan-

81
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dards. Therefore, we cannot be sure whether to opt for one
or another.

For in-domain document-level polarity classification on
MDSD v2.0 using our SA approach (see Chapter 5.1), do-
main complexity will guide us in 2 model selections: Sec-
tion 6.1.1 describes how domain complexity can guide us
in deciding which word n-gram model order to employ
in an SVM. Section 6.1.2 describes how domain complex-
ity can guide us in deciding whether to employ aggressive
or conservative word n-gram FS in an SVM model. Both
Section 6.1.1 and Section 6.1.2 are based on Remus and
Ziegelmayer (2014).

6.1.1 Word n-gram Model Order

In their study on the use of higher order word n-grams as
features for text classification, Bekkerman and Allan (2004)
conclude that

“for an unrestricted text categorization task one
would probably not expect dramatic effects of
using [word] bigrams. However, in domains
with severely limited lexicons and high chances
of constructing stable phrases the bigrams can
be useful.”

Furthermore they state that some

“corpora are ’simple’ enough so only a few ex-
tracted keywords [i. e. word unigrams] can do
the entire job of distinguishing between cate-
gories.”

While Bekkerman and Allan (2004) stay vague on their
notion of corpus simplicity, we believe it concurs with our Corpus simplicity
notion of domain complexity: If a dataset has low domain
complexity, it is less difficult for a classifier to learn an ac-
curate model and vice versa (see Chapter 5.4). We assume
that e. g. if a dataset’s word unigram domain complexity is
low, but its word bigram domain complexity is high, it is
likely that an SVM model based on word unigrams outper-
forms an SVM model based on both word uni- and bigrams.
If a dataset’s word uni- and bigram domain complexity is
low, but its word trigram domain complexity is high, it is
likely that an SVM model based on word uni- and bigrams
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outperforms an SVM model based on word uni-, bi-, and
trigrams etc.

If this assumption holds, given a dataset, an algorithm
for model selection, viz. a model selector may—based on Model selector
domain complexity—automatically decide what word n-
gram model order to employ in an SVM for this dataset.
E. g., whether to employ a first order SVM model based
on word unigrams or a second order SVM model based on
word uni- and bigrams. Our model selector estimates the
accuracies of these SVM models for a given dataset (see
Chapter 5.4) and chooses the SVM model that yields the
highest estimated accuracy as shown in Pseudocode 1.

Pseudocode 1: Model selector for word n-gram model order.

1 input: dataset

2 for n = 1, 2, ..., k {

3 estimate accuracy of an SVM model based on word {1,

..., n}-grams on dataset

4 }

5 output: n that yields the highest estimated accuracy

Evaluation

We evaluate our model selector in a leave-one-domain-out
CV on MDSD v2.0’s 10 domains, in which for each run we
train our model selector on 9 domains and decide what
word n-gram model order to employ in an SVM for the
remaining 1 domain.

data We decide between first, second, and third order
word n-gram SVM models, i. e. between SVM models based
on word unigrams, uni- and bigrams, or uni-, bi-, and tri-
grams. To produce data for our leave-one-domain-out CV,
we evaluate 3 SVM models per domain in 10-fold CVs: one
SVM model based on word unigrams, one SVM model based
on word uni- and bigrams, and one SVM model based word
uni-, bi-, and trigrams. The evaluation results are shown
in Table 17.

SVM models based word uni- and bigrams always out-
perform SVM models based solely on word unigrams. SVM
models based on word uni-, bi-, and trigrams outperform
SVM models based on word uni- and bigrams only for 1

domain: music.
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Table 17.: Accuracy of SVM models based on word unigrams,
word uni- and bigrams, or word uni-, bi-, and trigrams on
MDSD v2.0.

domain uni uni-bi uni-bi-tri

apparel 83.25 85.55 85.05

books 79.25 79.65 79.5
dvd 78.55 79.8 79.25

electronics 80.65 82.05 81.6
health 80.35 83.55 83.45

kitchen 81.15 82.1 81.85

music 76.4 78.45 78.9
sports 81.65 83 82.95

toys 81.55 83.15 82.75

video 81 81.65 81.65

average 80.38 81.9 81.7

experiments We vary 3 parameters of our model selec-
tor’s accuracy estimation. (i) We compare 4 predictors: per-
centage of rare words, type/token ratio, relative entropy,
and homogeneity (see Chapter 3.2). (ii) We compare sepa-
rately kept and averaged predictors (see Chapter 5.4). (iii)
We compare 3 LR loss functions: squared error loss, Huber
loss, and Tukey’s biweight (see Chapter 4.1.5). The evalua-
tion results of our leave-one-domain-out CV are shown in
Table 18.

results and discussion Our model selector yields
an average accuracy between 60–100 when deciding be-
tween first or second order. It yields an average accuracy
between 40–90 when deciding between second or third or-
der. It yields an overall accuracy between 65–95.

The most reliable model selector uses averaged homo-
geneity as predictor and fits the LR model using Huber
loss: It yields an average accuracy of 100 when deciding
between first or second order. It yields an average accu-
racy of 90 when deciding between second or third order.
Thus, it yields an overall average accuracy of 95.

Note that for our data a naïve baseline also yields an
overall average accuracy of 95: A naïve model selector that



6.1 domain complexity-based model selection 85

Table 18.: Accuracy of our model selectors for word n-gram
model order. PRW denotes percentage of rare word n-grams,
TTR denotes word n-gram type/token ratio, Hrel denotes
word n-gram relative entropy, Hom denotes word n-gram ho-
mogeneity. “sep” denotes separately kept predictors, “avg”
denotes averaged predictors. “1–2” denotes first vs. second
order, “2–3” denotes second vs. third order.

predictor loss function

Squared Huber Tukey’s
1–2 2–3 1–2 2–3 1–2 2–3

PRW
sep 100 80 90 70 80 50

avg 100 80 100 70 100 40

TTR
sep 90 90 90 80 90 80

avg 100 80 100 60 90 40

Hrel
sep 60 80 60 70 60 70

avg 90 80 90 70 80 60

Hom
sep 100 80 100 80 90 70

avg 100 80 100 90 90 90

always decides for second order yields an average accuracy
of 100 when deciding between first or second order. It
yields an average accuracy of 90 when deciding between
second or third order. Thus, its overall average accuracy is
also 95.

6.1.2 Word n-gram Feature Selection

We face 2 questions when we perform word n-gram FS (see
Chapter 4.3):

1. Which FS method should we use?

2. How many features should we select?

We answer question 1 up front: as FS method we use IG
(see Chapter 4.3.1), because it has been shown that IG is
superior to other FS methods for word n-gram based text
classification (see Yang and Pedersen, 1997; Forman, 2003),
e. g. χ2 (see Chapter 4.3.2).

We answer question 2 analogously to Section 6.1.1: for a
given dataset a model selector may—based on its domain
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complexity—estimate how many features to select for an
SVM model based on word n-grams.

Evaluation

As in Section 6.1.1 we evaluate our model selector—which
we develop in our experiments—in a leave-one-domain-
out CV on MDSD v2.0’s 10 domains, in which for each run
we train our model selector on 9 domains and estimate
how many features to select for an SVM model based on
word n-grams for the remaining 1 domain.

data FS methods such as IG produce an implicit ranking
with the most predictive features ranked highest and the
least predictive features ranked lowest. To employ FS via
IG, we have to determine a cut off (CO): features ranked Cut off
above the CO are kept, while features ranked below the CO
are discarded.

To produce data for our leave-one-domain-out CV, for
each domain we determine the CO for which the accuracy
of our SVM model peaks. First we rank a domain’s word
unigrams via IG. We then set the CO to 1, 2, . . . , 100% of the
domain’s original word unigram vocabulary size. If it is set
to 1% we keep its 1% highest ranked word unigrams, if it
is set to 2% we keep its 2% highest ranked word unigrams
etc. For each of the resulting 100 word unigram vocabular-
ies we evaluate an SVM model based on this word unigram
vocabulary in a 10-fold CV. We call the CO for which our
SVM model’s accuracy peaks ideal CO. Table 19 shows evalu- Ideal cut off
ation results of SVM models based on word unigrams with
and without FS via IG. FS is based on the ideal CO.

With FS using the ideal CO the average accuracy is 1.12

higher than without FS. Ideal COs are scattered: 85% (13,139

word unigram types) is the most conservative FS and 2%
(506 word unigram types) is the most aggressive FS. The
average ideal CO is 45% (8,045 word unigram types). Average ideal cut

off

experiments Table 20 shows the Pearson correlation r
between domain complexity measurements of MDSD v2.0’s
10 domains and their ideal CO. Relative entropy correlates
strongest with ideal CO (r = −0.35): The smaller the do-
main’s relative entropy, the larger its ideal CO. Thus, the
less uniform a domain’s word unigram distribution, the
more of its word unigrams are kept as features in our SVM
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Table 19.: Accuracy of SVM models based on word unigrams
with and without FS via IG based on the ideal CO in percent
and word unigram types.

domain without with ∆ ideal co

apparel 83.25 83.6 0.35 78% (7,927)
books 79.25 80.45 1.2 11% (3,136)
dvd 78.55 80.55 2 60% (18,169)
electronics 80.65 81.75 1.1 85% (13,139)
health 80.35 80.85 0.5 90% (11,778)
kitchen 81.15 82.8 1.65 17% (2,214)
music 76.4 78.45 2.05 2% (506)
sports 81.7 82.55 0.85 19% (2,715)
toys 81.5 82.45 0.95 4% (564)
video 81.05 81.6 0.55 80% (20,301)

average 80.39 81.51 1.12 45% (8,044.9)

Table 20.: Pearson correlation r between domain complexity
measurements and ideal COs as well as r’s significance level
p.

domain complexity measure r p

Percentage of rare word unigrams -0.08 0.814

Word unigram type/token ratio -0.119 0.727

Word unigram relative entropy -0.35 0.291

Word unigram homogeneity -0.095 0.78
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Figure 16.: Relative entropy vs. ideal CO.

model. Figure 16 plots relative entropy vs. ideal CO. Ad-
ditionally, it shows an LR model fitted to the data using
squared error loss. It achieves no perfect fit, but it still
roughly estimates ideal CO.

Given its correlation with the ideal CO, we use as our
model selector a robust LR model with relative entropy
as single predictor and ideal CO as response. We com-
pare LR models fitted using Huber loss and Tukey’s bi-
weight. Table 21 shows the evaluation results of our leave-
one-domain-out CV for Huber loss, Table 22 shows the eval-
uation results for Tukey’s biweight.

results and discussion Our model selector over- or
underestimates a domain’s ideal CO on average by 40%.
Still, SVM models with FS using the estimated CO outper-
form SVM models without FS in 6 out of 10 domains. SVM
models with FS using the estimated CO yield an average ac-
curacy of 80.55 (Huber loss) and 80.67 (Tukey’s biweight).
Without FS average accuracy is 80.39. Thus, FS using the
estimated CO yields an average accuracy gain of 0.16 and
0.28, respectively.

Compared with SVM models with FS using the ideal COs
(81.51), using the estimated CO performs 0.95 and 0.83 lower,
respectively. SVM models with FS using the average ideal
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Table 21.: Ideal COs and COs estimated by our model selector
fitted using Huber loss as well as accuracies of SVM models
based on word unigrams using FS based on ideal and esti-
mated CO.

domain ideal estimated ∆

co a co a co a

apparel 78% 83.6 41% 83.50 37% -0.1
books 11% 80.45 74% 78.25 63% -2.2
dvd 60% 80.55 38% 80.10 22% -0.45

electronics 85% 81.75 42% 80.45 43% -1.3
health 90% 80.85 46% 80.50 44% -0.35

kitchen 17% 82.8 59% 82.30 42% -0.5
music 2% 78.45 39% 77.65 37% -0.8
sports 19% 82.55 60% 81.75 41% -0.8
toys 4% 82.45 37% 81.00 33% -1.45

video 80% 81.6 47% 80.00 33% -1.6

average 45% 81.51 48% 80.55 40% -0.95

Table 22.: Ideal COs and COs estimated by our model selector fit-
ted using Tukey’s biweight as well as accuracies of SVM mod-
els based on word unigrams using FS based on ideal and esti-
mated CO.

domain ideal estimated ∆

co a co a co a

apparel 78% 83.6 41% 83.5 37% -0.1
books 11% 80.45 78% 79.2 67% -1.25

dvd 60% 80.55 37% 80.1 23% -0.45

electronics 85% 81.75 42% 80.45 43% -1.3
health 90% 80.85 46% 80.5 44% -0.35

kitchen 17% 82.8 62% 82.45 45% -0.35

music 2% 78.45 39% 77.65 37% -0.8
sports 19% 82.55 62% 81.85 43% -0.7
toys 4% 82.45 37% 81 33% -1.45

video 80% 81.6 47% 80 33% -1.6

average 45% 81.51 49% 80.67 40% -0.83
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CO (45%) yield an average accuracy of 80.56, which is on
par with SVM models with FS using the estimated COs (80.55–
80.67).

6.1.3 Conclusion and Future Work

Based on our findings from Section 6.1.1 and Section 6.1.2
we conclude that domain complexity—given a task such
as document-level in-domain polarity classification, a cor-
responding gold standard such as MDSD v2.0 and an SA
approach—can guide us in model selection, e. g. whether
to opt for an SVM model based on word unigrams, word
uni- and bigrams, or word uni-, bi-, and trigrams as well
as whether to opt for aggressive or conservative word n-
gram FS.

In future work domain complexity may guide us in fea-
ture engineering: whether to use super- or sub-word char-
acter n-gram representations (see Raaijmakers and Kraaij,
2008) instead of word n-gram representations; whether to
use non-binary word n-gram weighting, e. g. weighting us-
ing tf-idf (see Manning and Schütze, 1999, p. 543) or distri-
butional information (see Xue and Zhou, 2009); or whether
to employ non-lexical features, e. g. POS tags or depen-
dency parses. Further future work may consider nonlinear
regression models.

6.2 domain similarity- and domain complexity-
based domain adaptation

A lot of SA research focuses on DA algorithms, which mini- Domain adaptation
mize the performance loss when transferring a model from
one source domain to another target domain (see Aue and Source domain

Target domainGamon, 2005; Blitzer et al., 2007; Pan et al., 2010). Only
recently, Ponomareva and Thelwall (2012a) proposed to
model the accuracy loss in cross-domain polarity classifica-
tion based on domain similarity and domain complexity vari- Domain complexity

varianceance, i. e. the domain complexity difference between source
and target domain. Ponomareva and Thelwall (2012b) hy-
pothesized that the optimal parameter setting of a graph-
based DA algorithm is related to their notions of domain
similarity and domain complexity.

We pick up on this intuitive idea: we exploit domain
similarity and domain complexity variance to tailor a given
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source domain training set to a given target domain via
Instance Selection (IS) (see Remus, 2012). Instance selection

6.2.1 Related Work

Our work resembles Plank and van Noord (2011)’s study
on parsing, in which training instances are selected based
on their similarity to a given test set. Close to our work
is Jiang and Zhai (2007), who propose a general instance
weighting framework for DA.

Work on DA in SA focuses on polarity classification: Aue
and Gamon (2005) observed early that it is nontrivial to
customize classifiers to new domains without accepting
significant accuracy loss. Blitzer et al. (2007) proposed
Structural Correspondence Learning (SCL), by which they
determine pivot features to link source and target domain
features. Tan et al. (2007) use labeled in-domain examples
to train a classifier, then classify informative but unlabeled
out-of-domain examples and finally re-train their classifier
leveraging the newly created training data. In contrast, Li
and Zong (2008) do not adapt classifiers to new domains,
but exchange knowledge among them. They pool features
common to different domains and use meta-learning to
join classifiers trained in different domains. Pan et al. (2010)
bridge the gap between different domains via Spectral Fea-
ture Alignment (SFA). Ponomareva and Thelwall (2012b)
propose graph-based DA.

Work on DA in SA beyond polarity classification encom-
passes domain-specific expansion of sentiment lexicons (see
Kanayama and Nasukawa, 2006; Qiu et al., 2009; Gindl
et al., 2010) as well as cross-domain opinion holder extrac-
tion (see Wiegand and Klakow, 2012) and cross-domain
opinion target extraction (see Jakob and Gurevych, 2010).

6.2.2 Method

Our DA scheme—IS—is based on 2 assumptions: (i) When
learning a target domain model from both source and tar-
get domain instances, the source domain instances that are
most similar to the target domain instances are more “infor-
mative”, i. e. likely to improve target domain model quality.
(ii) The reduction factor r by which the original source do- Reduction factor r
main training set size is reduced can be determined auto-
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matically by measuring domain similarity between source
and target domain as well as their domain complexity vari-
ance. We estimate rdsrc,dtgt as shown in Equation (6.1)

(6.1) r̃dsrc,dtgt = 1.0−
(
α · sdsrc,dtgt +β · |∆cdsrc,dtgt |

)
where sdsrc,dtgt is the domain similarity between source do-
main dsrc and target domain dtgt. ∆cdsrc,dtgt = cdsrc − cdtgt
is the domain complexity variance of dsrc and dtgt (see
Ponomareva and Thelwall, 2012a). α and β are essentially α and β
scaling parameters for domain similarity and domain com-
plexity variance, respectively.

Similarity of domains di and dj is measured as pairwise
JS divergence (see Chapter 3.1.1) between di and dj’s word
unigram distributions. JS divergence was given preference
over other divergence measures, e. g. KL divergence, skew
divergence, or Renyi divergence (see Chapter 3.1.1), be-
cause it provided good results across several recent studies
(e. g. Plank and van Noord, 2011; Ponomareva and Thel-
wall, 2012a). Word unigram distributions—i. e. word uni-
gram probabilities—are estimated via the word unigrams’
relative frequencies. We also experimented with Simple
Good-Turing smoothing (see Gale and Sampson, 1995) of
these probability estimates, but found it not beneficial for
our purposes. Domain complexity is measured as word
unigram homogeneity (see Chapter 3.2.2).

The rationale behind Equation (6.1) is as follows: The
more dissimilar the domains, i. e. the larger sdsrc,dtgt , the
smaller r̃dsrc,dtgt . Thus, the more the original source do-
main training set size is reduced. Moreover, the more
the domain complexity varies among source and target do-
main, i. e. the larger |∆cdsrc,dtgt |, the smaller r̃dsrc,dtgt . The
former part follows from our intuition that a target domain
model benefits more from training instances drawn from a
similar source domain than from training instances drawn
from a dissimilar source domain. The latter part follows
from Ponomareva and Thelwall (2012a)’s observation that
learning an accurate model for dtgt is harder when dtgt’s
domain complexity is higher than dsrc’s domain complex-
ity. On the one hand, if dsrc is much less complex than dtgt,
we cannot learn enough from the source domain about the
target domain. On the other hand, if dsrc is much more
complex than dtgt, we learn much from the source domain
that will not be useful within the target domain.
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Source domain training instances are then selected by IS
as follows: First, they are ranked according to their sim-
ilarity to the target domain. Similarity is measured as JS
divergence between a source domain instance’s word uni-
gram distribution and the target domain’s word unigram
distribution. Secondly, only the top 100 · r̃dsrc,dtgt%-ranked
instances are kept, while the rest is discarded. Thereby, the
source domain distribution is tailored to the target domain
distribution.

6.2.3 Evaluation

To evaluate IS, we carry out cross-domain polarity classifi-
cation experiments on document-level in a semi-supervised
setting: given a “normal” amount of source domain train-
ing data and little target domain training data, we aim at
learning a target domain model that is as accurate as pos-
sible.

Experimental Setup

Our experimental setup is as follows: As classifiers we em-
ploy SVMs using a linear kernel with their cost parameter
C set to 2.0 without any further optimization. We refrain
from optimizing C because training and testing the large
number of models in our evaluation is too time consuming.
We model polarity using word unigrams or word uni- and
bigrams as described in Chapter 5.1. As gold standard for
cross-domain document-level polarity classification we use
MDSD v2.0 (see Chapter 2.1.2).

For all 10!/(10-2)! = 90 source domain–target domain pairs
from MDSD v2.0 we use 2,000 labeled source domain in-
stances (1,000 positive and 1,000 negative) and 200 labeled
target domain instances (100 positive and 100 negative) for
training. 1,800 labeled target domain instances (900 posi-
tive and 900 negative) are used for testing. If required by
the method 2,000 unlabeled target domain instances are
available for training. This is a typical semi-supervised DA Semi-supervised DA

setting similar to Daumé III et al. (2010b)’s setup.
According to Daumé III (2007) there are several natural

baselines in DA: (i) SrcOnly, in which only labeled source SrcOnly
domain instances are used for training, (ii) TgtOnly, in TgtOnly
which only labeled target domain instances are used for
training, and (iii) All, in which both labeled source and All
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labeled target domain instances are used for training.
IS is trained on the same data as All, i. e. all available IS

labeled source and target domain instances. To estimate
domain similarity, IS uses 200 labeled source domain in-
stances and 200 labeled target domain instances. In con-
trast to using the full amount of 2,000 labeled source do-
main and 2,000 labeled target domain instances instances,
this enables symmetric domain similarity estimation across
all dsrc–dtgt pairs in our semi-supervised setting, in which
only 200 labeled target domain instances are available: di–
dj’s domain similarity equals dj–di’s domain similarity, in-
dependently of whether di or dj is the source or target do-
main, respectively. To estimate source and target domain
complexity, IS uses 200 labeled instances and 1,800 unla-
beled instances each. We use only 200 labeled instances
because in our semi-supervised setting only 200 labeled
target domain instances are available. To improve the es-
timate of domain complexity, we add another 1,800 unla-
beled instances. We assume that unlabeled instances are
readily available. Both domain similarity and domain com-
plexity are normalized with respect to sample size. Sample Sample

size-normalized
domain similarity

size-normalized domain similarity is computed similar to sam-
ple size-normalized domain complexity (see Chapter 3.2.4):
We sample a 1,000 word window from each the source
and the target domain instances and compute their word
unigram probability distributions. We iterate for 10,000

times and average the resulting word unigram probabil-
ity distributions. Finally, we compute the domain similar-
ity between the averaged distributions as described above.
Furthermore, we “normalize” domain similarity between
a source domain instance and the target domain with re-
spect to the source domain instances’s document length.
Thereby, we give longer documents additional preference
when ranking them. We do this because we expect longer
documents to contain more information than shorter ones.

We compare IS with the baselines SrcOnly, TgtOnly,
and All. Additionally, we compare IS with Daumé III
(2007)’s EasyAdapt (EA), and Daumé III et al. (2010a)’s EA

EA++. Both EA and EA++ are light-weight and state-of-the- EA++
art DA algorithms that operate via feature space augmenta-
tion and were theoretically analyzed in the framework of
co-regularization (see Daumé III et al., 2010b). Because the
authors of EA and EA++ only provide results for 2 domain
pairs of MDSD v2.0, we re-implemented EA and EA++.
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Figure 17.: In-domain accuracy of SVM models based on word
unigrams on MDSD v2.0.

We also evaluate IS in an unsupervised DA setting, in which Unsupervised DA

there are no labeled target domain training instances avail-
able. Essentially, we combine IS and SrcOnly, resulting in
IS-SrcOnly. IS-SrcOnly is then compared with SrcOnly. IS-SrcOnly

Moreover, we establish an upper bound for IS: We com-
pute the optimal reduction factor for each source domain–
target domain pair by repeatedly evaluating IS while vary-
ing r from 0 to 1 with a step size of 0.01. Using the optimal
reduction factor for all domain pairs yields an average ac-
curacy of 75.77. The average optimal reduction factor is
0.8, which is chosen for a sanity check described in the
next paragraph.

Finally, we perform 2 sanity checks: (i) ISr=0.8 selects ISr=0.8

source domain instances using a fixed reduction factor r =
0.8. (ii) ISrandom sets r̃dsrc,dtgt randomly and then selects ISrandom

source domain instances without any ranking.

Results

Figure 17 shows in-domain accuracies on MDSD v2.0’s 10

domains achieved by SVM models based on word unigrams
in 10-fold CVs. Achieving or even exceeding in-domain
accuracy is the ultimate goal of DA.
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Figure 18.: Behavior of IS for varying α and β.

For each of the 90 source domain–target domain pairs
we carry out a cross-domain polarity classification experi-
ment. In line with previous work on MDSD v2.0 (e. g. Pan
et al., 2010; Ponomareva and Thelwall, 2012a,b) we mea-
sure performance using accuracy (see Chapter 4.4). The
level of statistical significance is determined by stratified Stratified shuffling
shuffling, which is an approximate randomization test (see
Noreen, 1989) run with 2

20 = 1,048,576 iterations as rec-
ommended by Yeh (2000). Because listing accuracies for
all domain pairs and all DA methods is not feasible due
to space restrictions, we report only the average accuracy
across all domain pairs.

A priori we do not know how to scale domain similarity
and domain complexity variance, i. e. how to set α and
β. Therefore, we run IS using different parameter settings.
Figure 18 shows the behavior of IS when varying the scal-
ing parameters α and β with α ∈ [0, 1] and β ∈ [0, 1] and
a step size of 0.1. These scaling intervals were chosen to
allow r̃ a range of [0.5, 1]. The best overall result (74.62) is
achieved by setting α = 0.3 and β = 0.2 (see Figure 18),
which from now on is the default setting. Setting α = 0

while varying β leads to a minimum accuracy of 74.29 and
a maximum accuracy of 74.59. Setting β = 0 while varying
α leads to a minimum accuracy of 74.39 and a maximum
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Table 23.: Cross-domain accuracies of DA methods averaged over
MDSD v2.0’s 90 domain pairs. SVM models are based on word
unigrams or word uni- and bigrams. SVM models are trained
with and without optimization of C.

method model

uni uni-bi uni-bi
without with

SrcOnly 72.2 74.36 74.88

TgtOnly 68.42 68.96 69.04

All 74.25 76.61 77.17

IS 74.62 76.9 76.95

IS-SrcOnly 72.27 74.4 74.51

EA 74.02 75.83 76.36

EA++ 74.5 75.95 76.41

accuracy of 74.5. Thus, both domain similarity—scaled
by α—and domain complexity—scaled by β—influence r̃
positively. Improvements over all 3 baselines—SrcOnly,
TgtOnly, and All—are achieved for all scaling parameter
settings where α > 0 and β > 0 except when α = 1 or
β = 0.7. Thus, IS is beneficial even without fine-tuning its
scaling parameters.

Table 23 shows the evaluation results. When using word
unigrams as features, IS (74.62) performs significantly bet-
ter than SrcOnly (72.2, p < 0.005), TgtOnly (68.42, p <
0.005), All (74.25, p < 0.05) and EA (74.02, p < 0.005).
IS also outperforms ISrandom (71.98, p < 0.005) and ISr=0.8
(74.31, p > 0.05). IS also outperforms EA++ (74.5, p > 0.05).
IS-SrcOnly (72.27, p > 0.05) outperforms SrcOnly.

For document-level polarity classification SVM models
based on word uni- and bigrams generally yield higher
accuracies than SVM models based on word unigrams (see
Section 6.1.1). Optimizing SVM models’ hyperparameter C
usually leads to clear performance gains (see Chapter 5.1.3).
Therefore, we re-evaluate all DA methods (i) based on word
uni- and bigrams; (ii) with and without optimization of
the SVM models’ hyperparameter C. Evaluation results are
shown in Table 23.
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When using both word uni- and bigrams as features but
without optimization of C, IS (76.9) outperforms its base-
lines SrcOnly (74.36, p < 0.005), TgtOnly (68.96, p <

0.005) and All (76.61, p < 0.005), just as IS-SrcOnly (74.4)
outperforms its baseline SrcOnly (74.36, p > 0.05). How-
ever, with optimization of C, All (77.17) outperforms IS
(76.95) by a small but statistically significant margin, just as
SrcOnly (74.88) outperforms IS-SrcOnly (74.51) by a small
but statistically significant margin. This may be because IS’
scaling parameters α and β were determined without opti-
mization of C. Further investigations in these phenomena
are left to future work. IS with (76.9) and without (76.95)
optimization of C always outperforms EA (75.83, p < 0.005
and 76.36, p < 0.005) and EA++ (75.95, p < 0.005 and 76.41,
p < 0.005).

Note that there are 6 source domain–target domain pairs
for which IS is obliged to decrease performance, because
their performance peaks for r = 1.0, i. e. when there is no
source domain training set size reduction at all. These do-
main pairs are books–dvd, books–sports, electronics–sports,
electronics–video, toys–electronics, toys–video.

Comparison

Technically, we cannot compare IS to “traditional” DA meth-
ods like SCL (see Blitzer et al., 2007), SFA (see Pan et al.,
2010), OPTIM-SOCAL, and RANK-SOCAL (see Ponomareva and
Thelwall, 2012b), because—just as EA and EA++—IS is es-
sentially a preprocessing step that is agnostic to both the
employed ML algorithm as well as feature types and their
representation. Therefore, it is likely that IS is also benefi-
cial to more advanced DA techniques beyond simple bag-
of-word models. For completeness, Figure 19 nevertheless
compares IS, IS-SrcOnly, EA, and EA++ as well as SrcOnly,
TgtOnly, and All to the aforementioned algorithms, all of
which were evaluated on 4 domains—dvd, books, electron-
ics, kitchen—of MDSD v2.0, resulting in 12 domain pairs.

Although IS generally performs worse than more sophis-
ticated DA methods, it rivals their performance on some
domain pairs: it outperforms SCL in 3 out 12 domains, it
outperforms OPTIM-SOCAL in 4 out of 12 domains and it
outperforms SFA in 2 out of 12 domains.
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Figure 19.: Cross-domain accuracy of DA methods on 12

MDSD v2.0 domain pairs.

A Case Study

In addition to our evaluation in Section 6.2.3, we evaluate
IS in a case study on all 9!/(9-2)! = 72 source domain–target
domain pairs from RND (see Chapter 2.1.5). We compare
IS with its baselines SrcOnly, TgtOnly, and All. For all
DA methods we use SVM models based on word unigrams
and the same experimental setup as before. IS yields an
average accuracy of 81.55. It outperforms SrcOnly (77.45,
p < 0.005), TgtOnly (76.19, p < 0.005) and All (81.3, p >
0.05).

Lessons Learned

We conclude our evaluation with a few “lessons learned”:
(i) The “normalization” with respect to document length
is not mandatory, but improves performance slightly. (ii)
We also experimented with a slightly modified version of
Equation (6.1) as shown in Equation (6.2)

(6.2) r̃dsrc,dtgt = 1.0−
(
α · sdsrc,dtgt +β ·∆cdsrc,dtgt

)
but found using |∆cdsrc,dtgt | instead of ∆cdsrc,dtgt to pro-
vide slightly more reliable estimates of rdsrc,dtgt , although
the overall difference is almost negligible. (iii) EA and



100 model selection and feature engineering

EA++ do not benefit from IS, i. e. a combination of EA and
EA++ and IS does not improve over EA and EA++ alone
(see Remus, 2012). This is because source domain training
instances discarded by IS contain viable information with
respect to the unlabeled instances used in EA++. Further-
more, EA and EA++ augment—i. e. increase—the feature
space. Discarding source domain training instances then
leads to an even sparser feature space. (iv) IS did not im-
prove accuracy in a supervised DA setting in which there is Supervised DA

an equally large amount of labeled training instances from
both source and target domain available. (v) We were not
able to estimate r via LR. (vi) Selecting the most similar
source domain training instances from all source domains
instead of a single source domain in the vein of Plank and
van Noord (2011) did not improve accuracy.

6.2.4 Conclusion and Future Work

Our contribution is two-fold: (i) We proposed a novel light-
weight approach to DA—viz. IS—and showed that it yields
small but statistically significant improvements over sev-
eral natural baselines and achieves competitive results to
other state-of-the-art DA schemes in cross-domain polarity
classification. (ii) We demonstrated that it is possible to es-
timate IS’s parameter settings using domain similarity and
domain complexity variance.

Future work includes (i) to fine-tune the estimation of r—
e. g. via nonlinear regression of r; via estimation functions
other than Equation (6.1) and Equation (6.2); via estimation
of α and β—(ii) the combination of IS with more sophisti-
cated DA schemes like SCL or SFA and (iii) the estimation
of other algorithms’ parameters using domain complexity
and domain similarity. Apart from that, we are also inter-
ested in whether IS generalizes to other NLP tasks beyond
polarity classification.

Furthermore, we will also investigate whether IS is ben-
eficial for EA++ when selecting unlabeled target domain
instances that are most similar to a “mixture” of the given
labeled source and labeled target domain instances.
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6.3 readability-based feature engineering

Textual characteristics—viz. domain complexity and do-
main similarity measures—can guide model selection in
both in-domain and cross-domain document-level polarity
classification (see Section 6.1 and Section 6.2). In this sec-
tion we investigate how textual characteristics—viz. read-
ability measures (see Chapter 3.3)—can be used in feature
engineering for sentence-level subjectivity classification.

In a pilot study Remus (2011) improved the quality of
sentence-level subjectivity classification by employing read-
ability gradings as additional features in SVM models. Han
et al. (2013) confirmed that SA benefits from being informed
by readability gradings (see Chapter 3.3.2) and readability
indicators (see Chapter 3.3.2). In this section we build upon
Remus (2011)’s pilot study and extend it.

6.3.1 Motivation

While the meaning of Example (19)

(19) Nanometer-sized single crystals, or single-domain ul-
trafine particles, are often referred to as nanocrys-
tals.1

is quite difficult to grasp, Example (20)

(20) Wills and Kate got into marriage mode.2

is easier to understand. This is because Example (19) not
only exhibits a more complex syntactic structure than Ex-
ample (20), but also uses domain-specific terminology with
which many readers would not be familiar. Note that on
the one hand, Example (20) is more colloquial than Exam-
ple (19). On the other hand, Example (19) conveys a fact—
nanometer-sized single crystals are called nanocrystals—
while Example (20) conveys factual information—Prince
William and Princess Kate will marry—and non-factual
information—the bridal pair notably changed their usual
routine. Both lexical and syntactical complexity relate to
the notion of readability (see Chapter 3.3).

1 Example (19) is taken from http://en.wikipedia.org/Nanoparticles

(accessed January 8th, 2011).
2 Example (20) is adapted from http://www.thesun.co.uk/sol/

homepage/news/3338590/Wills-and-Kate-in-marriage-mode.html

(accessed January 8th, 2011).

http://en.wikipedia.org/Nanoparticles
http://www.thesun.co.uk/sol/homepage/news/3338590/Wills-and-Kate-in-marriage-mode.html
http://www.thesun.co.uk/sol/homepage/news/3338590/Wills-and-Kate-in-marriage-mode.html
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Therefore, we pose the following hypothesis: There is a
relation between subjectivity in natural language text and
its readability. We assume that knowing about a text’s read-
ability yields valuable information regarding its subjectiv-
ity.

6.3.2 Related Work

To the best of our knowledge readability has not been used
to assess subjectivity in natural language text before Re-
mus (2011)’s study. However, readability was used to e. g.
evaluate the quality of user-created documents such as re-
views(see Hoang et al., 2008), grade their helpfulness (see
O’Mahony and Smyth, 2010) and summarize their senti-
ment (see Nishikawa et al., 2010).

The identification of features for subjectivity classifica-
tion was studied extensively. Wiebe (2000) learns subjec-
tive adjectives using clustering based on distributional sim-
ilarity. Wiebe et al. (2001) learn subjectivity clues using
collocations. Riloff and Wiebe (2003) and Riloff et al. (2003)
learn subjective nouns by bootstrapping extraction patterns.
Wiebe et al. (2004) study how their previously identified
features work together in concert. Riloff et al. (2006) learn
complex lexical features and remove unnecessary ones us-
ing a feature subsumption hierarchy.

For subjectivity classification Yu and Hatzivassiloglou
(2003) use NB models based on word uni-, bi-, and trigrams
as well as POS tags and the polarity of words. Pang and
Lee (2004) use a graph-based formalism. Wiebe and Riloff
(2005) create high-precision but low-recall classifiers to dis-
tinguish subjective and objective sentences. Subsequently,
they use these sentences to self-train an NB model. Raaij-
makers and Kraaij (2008) use sub- and super-character n-
grams as features in SVM models. Das and Bandyopadhyay
(2009) use genetic algorithms. Wang and Liu (2011) use cal-
ibrated expectation maximization.

6.3.3 Experiments

We follow our assumption that knowing about a text’s
readability yields valuable information regarding its sub-
jectivity: Initially, we analyze a gold standard for sentence-
level subjectivity classification regarding its readability. We
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then use readability for feature engineering on this gold
standard: given a sentence, we measure its readability, use
it as feature, and classify the sentence as being either sub-
jective or objective. Finally, we evaluate our engineered
features on 2 more gold standards for sentence-level sub-
jectivity classification.

Data Analysis

We analyze DSRC (see Chapter 2.1.1) regarding readabil-
ity differences between subjective and objective sentences.
DSRC contains 2,384 subjective sentences and 3,721 objec-
tive sentences. With binary subjectivity classification ex-
periments in mind, we balance DSRC’s subjective and objec-
tive sentences using undersampling, leaving us with 2,384

subjective and 2,384 objective sentences.
We contrast the readability of DSRC’s subjective and ob-

jective sentences using 9 readability indicators—number of
monosyllabic words, number of polysyllabic words, vocab-
ulary complexity, i. e. number of uncommon words, sen-
tence length in words, average word length in characters
per sentence, noun/verb ratio, number of nominal forms,
parse tree branching factor, and parse tree depth (see Chap-
ter 3.3.2)—and 7 readability gradings—DRI, EL, FKS, FI, FOR-
CAST, NREI, and SMOG grading (see Chapter 3.3.1). Table 24

shows the results.
Average number of monosyllabic words is notably dif-

ferent between subjective and objective sentences in DSRC:
subjective sentences contain on average 0.45 less monosyl-
labic words than objective sentences, but 0.15 more polysyl-
labic words. Moreover, subjective sentences contain on av-
erage 0.21 uncommon words more than objective sentences.
Subjective sentences are on average 0.26 words shorter than
objective sentences. Parse trees of objective sentences are
on average 0.46 nodes deeper than parse trees of subjective
sentences.

Readability grading differences between subjective and
objective sentences in DSRC are less pronounced than read-
ability indicator differences. Notably different are NREI
(0.48), EL (0.15), and FKS (0.15).

In summary, subjective sentences are on average shorter
than objective sentences; they contain longer words; they
contain more uncommon words; they contain less nomi-
nal forms. According to FI and NREI subjective sentences
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are less “readable” than objective sentences. DRI, EL, FKS,
FORCAST, and SMOG signalize the opposite.

Feature Engineering

We now know that there are measurable readability differ-
ences between subjective and objective sentences in DSRC.
Therefore, we use readability indicators and readability
gradings as well as distributions of word frequency classes,
POS tags, and dependency relations for feature engineering
on DSRC: i. e., using DSRC, we identify features that discrim-
inate between subjective and objective sentences.

We use all features within SVM models whose hyperpa-
rameters’ C are optimized. All SVM models are evaluated
in 10-fold CVs on DSRC.

readability measures We use as potential features
9 readability indicators and 7 readability gradings. There-
fore, there are

∑9
k=1

(
9
k

)
= 511 and

∑7
k=1

(
7
k

)
= 127 possible

feature combinations, respectively. We evaluate each fea-
ture combination. Due to space restrictions we only report
the best performing feature combinations with respect to
accuracy, and the accuracy of each single feature. Table 24

shows the evaluation results using single features.
The best performing feature combination of the 7 read-

ability gradings consists of DRI, EL, FI, NREI, and SMOG: it
yields an accuracy of 54.45, compared with an accuracy of
53.63 when using all 7 readability gradings.

The best performing feature combination of the 9 read-
ability indicators consists of number of number of poly-
syllabic words, monosyllabic words, average word length
in characters per sentence, number of uncommon words,
number of nominal forms, parse tree branching factor, and
parse tree depth: it yields an accuracy of 58.47, compared
with an accuracy of 58.15 when using all 9 readability indi-
cators.

Combining the best feature combinations of readability
gradings and readability indicators yields an accuracy of
58.45, compared with an accuracy of 57.92 accuracy when
using all 9 readability indicators and all 7 readability grad-
ings. We conclude that—based on readability measures
alone—we are able to distinguish between subjective and
objective sentences well above chance level.
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word frequency class distribution Meier (1964,
p. 69)’s observation motivates using the distribution of word
frequency classes (see Chapter 3.3.2) as feature for sentence-
level subjectivity classification:

“Im gesamten Bereich echter Abwehr drängt sich
in den bewegenden Augenblicken der Wortschatz
sprachlicher Äußerungen (. . . ) vorwiegend auf
die Wortformen der Häufigkeits-Stufen I bis III
zusammen.”

Meier (1964) states that when we are aroused, we tend to
use only high-frequency words, i. e. words that fall into
“high” frequency classes, e. g. frequency class 1 to 3. We
capitalize Meier (1964, p. 69)’s observation and use a sen-
tence’s word frequency class distribution as a feature for
subjectivity classification.

Because we do not know how many word frequency
classes to consider in a sentence’s word frequency class
distribution, we tune this parameter: We use as only fea-
ture in an SVM model the word frequency class distribution.
Thereby, we vary the number of word frequency classes to
consider from 1 to 27 with a step size of 1. We always add a
“miscellaneous” word frequency class, in which all words
fall that do not fall in any other frequency class, either be-
cause they are unknown, or because their word frequency
class is larger. Word frequency classes are determined us-
ing a corpus from the Wortschatz project: eng_news_20093.
The evaluation results are shown in Figure 20.

Accuracy increases for an increasing number of word
frequency classes, peaks for 23 word frequency classes at
57.9 and drops for more than 23 word frequency classes.

syntax distribution Pak and Paroubek (2010)’s ob-
serve that objective and subjective texts differ in their use
of syntactical devices, e. g. (i) objective texts contain more
nouns, (ii) objective texts contain more verbs in the third
person, (iii) subjective texts contain less comparative adjec-
tives and more superlative adjectives, (iv) subjective texts
contain more personal pronouns etc. Their observations
motivate using POS tag and dependency relation distribu-
tions as features for sentence-level subjectivity classifica-
tion.

3 http://corpora.uni-leipzig.de/

http://corpora.uni-leipzig.de/
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Figure 20.: Accuracy vs. number of word frequency classes.

Using as only feature the POS tag distribution yields an
accuracy of 65.71. Using the dependency relation distribu-
tion yields an accuracy of 66.13. Using both POS tag and
dependency relation distribution as features yields an ac-
curacy of 67.12.

features in concert Table 25 shows the evaluation
results when all features are used in concert, both with
and without word unigrams as features4. Our baseline
features are POS tag, dependency relation, and word fre-
quency class distributions. The level of statistically signif-
icant difference (see Section 6.2.3) to our baseline features
is indicated by ?? (p < 0.005) and ? (p < 0.05).

Without word unigrams, using readability indicators and
readability gradings in addition to our baseline features
yields the best overall accuracy: 69.26 (p < 0.005). With
word unigrams, our baseline features alone yield the best
overall accuracy: 74.24 (p < 0.01). However, without our
baseline features, using readability gradings and readabil-

4 We refrain from using word bigrams as features, because an SVM model
based solely on word unigrams yields an accuracy of 73.34 while an
SVM model based on word uni- and bigrams yields an accuracy of
72.79.
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Table 25.: Accuracy of engineered feature sets on DSRC with and
without word unigrams. RI denotes readability indicators, RG

denotes readability gradings, POS denotes POS tag distribution,
DR denotes dependency relation distribution and FC denotes
word frequency class distribution.

feature set without with

RIbest 58.47 73.8
RGbest 54.45 73.05

RIbest, RGbest 58.45 74.03

RIall 58.15 73.74

RGall 53.63 72.98

RIall, RGall 57.92 73.63

POS 65.71 73.74

DR 66.13 73.82

FC 57.9 73.15

POS, DR 67.12 74.18

POS, DR, FC 67.94 74.24

POS, DR, FC, RIbest 68.63 73.97

POS, DR, FC, RGbest 68.74? 73.95

POS, DR, FC, RIbest, RGbest 68.68 73.91

POS, DR, FC, RIall 69.2 74.05

POS, DR, FC, RGall 69.08 73.91?

POS, DR, FC, RIall, RGall 69.26?? 74.01
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Table 26.: Accuracy of engineered feature sets on MPQA v2.0 and
SD v1.0.

feature set mpqa v2 .0 sd v1 .0

Word unigrams 72.25 90.56

+ RIbest, RGbest 72.86? 90.69

+ RIall, RGall 73.01?? 90.63

+ FC, POS, DR 72.74 90.88

+ RIall, RGall, FC, POS, DR 73.22 90.73

ity indicators as additional features increases accuracy com-
pared with using word unigrams as features alone.

Evaluation

To evaluate whether readability indicators and readability
gradings as well as word frequency class, POS tag, and
dependency relation distributions yield valuable informa-
tion regarding a text’s subjectivity or not, we perform a
sentence-level subjectivity classification on MPQA v2.0 and
SD v1.0. All models are evaluated in 10-fold CVs. MPQA v2.0
contains 5,380 subjective and 4,352 objective sentences; we
balance MPQA v2.0 using undersampling leaving us with
4,352 subjective and 4,352 objective sentences. SD v1.0 con-
tains 5,000 subjective and 5,000 objective sentences and
hence does not require balancing. As baseline features we
use word unigrams. We compare with that baseline the
best performing—engineered—feature combinations as de-
termined in the previous section.

In contrast to Remus (2011)’s pilot study, we employ
linear kernels instead of RBF kernels in our SVM models.
We also tune the SVM’s hyperparameter C as described in
Chapter 5.1.

results and discussion Table 26 shows evaluation
results of sentence-level subjectivity classification on SD v1.0
and MPQA v2.0. All features added to our baseline increase
accuracy, i. e. they all yield valuable information regarding
a sentence’s subjectivity.

On MPQA v2.0 an SVM model that uses as features word
unigrams, all 9 readability indicators, all 7 readability grad-
ings as well as word frequency class, POS tag, dependency
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Table 27.: Accuracy of different subjectivity classification meth-
ods on MPQA v2.0 and SD v1.0.

dataset study accuracy

MPQA v2.0

Riloff et al. (2006) 74.9
Raaijmakers and Kraaij (2008) 82.5
Wang and Liu (2011) 71.5

SD v1.0
Pang and Lee (2004) 90–92

Wang and Liu (2011) 90

relation distributions yields the best accuracy: 73.22. On
SD v1.0 an SVM model that uses as features word unigrams
as well as word frequency class, POS tag, dependency rela-
tion distributions performs best: an accuracy of 90.88.

Although the improvements in accuracy are small, both
readability indicators and readability gradings as well as
POS tag, dependency relation, and word frequency class
distributions contribute positively to sentence-level subjec-
tivity classification models.

comparison We briefly compare the results we achieve
using our engineered features to those reported in the lit-
erature (see Table 27): our models rank midfield both on
MPQA v2.0 and SD v1.0.

6.3.4 Conclusion and Future Work

We have shown that using readability gradings, readabil-
ity indicators and distributions of words and syntactical
devices as features in addition to word unigrams yields
accuracy improvements in sentence-level subjectivity clas-
sification. However, the accuracy improvements are small
and often not statistically significant. Therefore, we were
not able to validate our hypothesis that there is a relation
between a text’s readability and its subjectivity. Certainly,
not only words but also meta-characteristics of words—
e. g. their number of syllables—and meta-characteristics
of sentences—e. g. their length—as well as the use of cer-
tain syntactical devices are related to a text’s subjectivity.
Based on such meta-characteristics alone—viz. readability
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measures—we were able to distinguish between subjective
and objective sentences well above chance level.

Our results are based on Remus (2011)’s pilot study. How-
ever, we deviated from Remus (2011)’s pilot study in sev-
eral important aspects:

• Remus (2011) used Wilson et al. (2005)’s subjectivity
clues as features. In contrast, we did not incorporate
any lexical resources (see Remus and Rill, 2013).

• Remus (2011) used only readability gradings. In con-
trast, we used both readability gradings and their
“components”, i. e. readability indicators. We also
used more complex readability gradings as described
in Oelke et al. (2010) and word frequency class distri-
butions motivated by Meier (1964).

• Remus (2011) used RBF kernels in their SVM models
and did not optimize the SVMs’ hyperparameter C. In
contrast, we used a linear kernel (see Chapter 4.1.2)
but optimized the SVMs’ hyperparameter C.

Future work includes (i) to further study the relation be-
tween readability gradings and readability indicators and
(ii) to investigate whether we can predict a certain read-
ability grading’s or readability indicator’s usefulness for
sentence-level subjectivity classification based on its dis-
tribution among the objective and the subjective training
instances (see Table 24).
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N E G AT I O N M O D E L I N G

Ich bin der Geist, der stets verneint!
Und das mit Recht; denn alles, was entsteht,

Ist wert, daß es zugrunde geht;
Drum besser wär’s, daß nichts entstünde.

So ist denn alles, was ihr Sünde,
Zerstörung, kurz, das Böse nennt,

Mein eigentliches Element.

— Johann Wolfgang von Goethe,
Faust: Der Tragödie erster Teil

Negations as “Don’t” in Example (21)

(21) Don’t ask me!

are at the core of human language. Therefore, negations
are commonly encountered in NLP tasks, e. g. textual en-
tailment (e. g. Herrera et al., 2005; Delmonte et al., 2005).
Negations are expressed via negation words—also referred Negation word
to as negation signals—e. g. “don’t x”, “no findings of x”, Negation signal
or “rules out x” and via morphology, e. g. the morphs
“x-free”, “x-less”, or “un-x”. In SA negation plays a spe-
cial role (see Wiegand et al., 2010). Whereas Example (22)
expresses positive sentiment, the only slightly different Ex-
ample (23) expresses negative sentiment:

(22) They are 〈comfortable to wear〉+.

(23) They are 〈not 〈comfortable to wear〉+〉−.1

Therefore, attention is paid to negations frequently in com-
positional semantic approaches to SA (e. g. Moilanen and
Pulman, 2007; Choi and Cardie, 2008; Neviarouskaya et al.,
2009; Klenner et al., 2009; Remus and Hänig, 2011; Socher
et al., 2012), as well as in bag of words-based ML techniques
(e. g. Pang et al., 2002; Pak and Paroubek, 2010; Moham-
mad et al., 2013).

Research on negation scopes (NSs) and negation scope detec- Negation scope

Negation scope
detection

1 In this work, struck out words are considered as negated.

113
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tion (NSD) was primarily driven by biomedical NLP, partic-
ularly research on the detection of absence or presence of
certain diseases in biomedical text. One of the most promi-
nent studies in this field is Morante and Daelemans (2009),
which identifies negation words and their scope using a
variety of ML techniques and features. Only quite recently,
the impact of NSD on SA became of increasing interest: Jia
et al. (2009); Carrillo de Albornoz et al. (2010); Carrillo-de
Albornoz and Plaza (2013); Johansson and Moschitti (2013)
detect NSs using parse trees, typed dependencies, seman-
tic role labeling and/or manually defined negation words.
Hogenboom et al. (2011) compare several baselines for NSD,
e. g. they consider as NS the rest of the sentence follow-
ing a negation word, or a fixed window of 1 to 4 words
following, preceding or around a negation word. Coun-
cill et al. (2010); Lapponi et al. (2012) study NSD based on
Conditional Random Fields (CRFs). All these studies con-
cur in their conclusion that SA—or more precisely polarity
classification—benefits from NSD.

We model NSs in word n-gram feature space system-
atically and adopt recent advances in NSD. We believe
this endeavor is worthwhile, because it allows machines to
learn by themselves how negations modify the meaning of
words, instead of being taught by manually defined and of-
ten ad hoc rules. As before in this thesis our study focuses
on a data-driven ML-based approach to SA that operates in
word n-gram feature space and does not rely on lexical re-
sources, e. g. prior polarity dictionaries like SentiWordNet
(see Esuli and Sebastiani, 2006). While various methods
and features have been proposed for SA, such data-driven
word n-gram models proved to be still competitive in re-
cent studies (e. g. Barbosa and Feng, 2010; Agarwal et al.,
2011; Saif et al., 2012).

This chapter is based on Remus (2013b) and is structured
as follows: In the next section we describe our approach
to modeling and representing negation in data-driven ML-
based SA. In Section 7.2 we evaluate our approach in ex-
periments for several SA subtasks and discuss their results.
Additionally, we compare the effectivity of negation mod-
eling (NM) in different domains. Finally, we draw conclu-
sions and point out possible directions for future work in
Section 7.3.
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7.1 approach

We now describe our approach to implicitly and explicitly
modeling and representing negation in word n-gram fea-
ture space for data-driven ML-based SA. When explicitly Implicit vs. explicit

NMmodeling negation, we incorporate our knowledge of nega-
tion into the model; when implicitly modeling negation, we
do not.

7.1.1 Implicit Negation Modeling

As pointed out in Wiegand et al. (2010), negations are of-
ten implicitly modeled via higher order word n-grams, e. g.
word bigrams (such as “n’t return”), word trigrams (such
as “lack of padding”), and word tetragrams2 (such as “de-
nied sending wrong size”) etc. That aside, higher order
word n-grams also implicitly capture other linguistic phe-
nomena, e. g. comparatives (“larger than”, “too much”).

7.1.2 Explicit Negation Modeling

Although it is convenient, there is a drawback to solely
relying on higher order word n-grams when trying to cap-
ture negations, i. e. modeling negations solely implicitly:
long NSs as shown in Example (24) occur frequently (see
Section 7.2.3), but typical word n-grams (n < 5) are not
able to properly capture them.

(24) The leather straps have never worn out or broken.3

Here e. g. a word trigram captures “never worn out” but
not “never (. . . ) broken”. While a word 5-gram is able to
capture “never (. . . ) broken”, learning models using word
n-gram features with n > 3 usually leads to very sparse
representations, depending on how much training data is
available and how homogeneous (see Chapter 3.2.2) this
training data is. In such cases learning from the training
data what a certain higher order word n-gram contributes
to the model is then backed up by only very little to almost
none empirical findings. Therefore, we model negations
also explicitly.

2 Tetragrams are also referred to as quad-, four-, or 4-grams.
3 Except Example 28 all examples in this chapter are taken or adapted

from MDSD v2.0’s reviews on apparel.
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Negation Scope Detection

Vital to explicit NM is NSD. In Example (25) we need to
detect that “stand up to laundering very well” is in the
scope of “don’t”:

(25) They don’t stand up to laundering very well, in that
they shrink up quite a bit.

For that purpose we employ a simple regular expression-
based NSD, viz. NegEx4 (see Chapman et al., 2001) and
LingScope5 (see Agarwal and Yu, 2010), a sophisticated
CRF-based NSD trained on the BioScope corpus (see Vincze
et al., 2008). NegEx was chosen as a strong NSD baseline. NSD baseline
Its detected NSs are similar to a weak baseline NSD method
frequently used (e. g. Pang et al., 2002; Mohammad et al.,
2013): consider all words following a negation word as
negated, up to the next punctuation. LingScope was cho-
sen to represent the state-of-the-art in NSD. Moreover, both NSD state-of-the-art
NegEx and LingScope are publicly available.

To improve NSD, we expand contractions like “can’t” to Contraction
“can not”, “didn’t” to “did not” etc. Note that while NegEx
considers the negation itself to be part of the NS, we do not.
NegEx’s NSs are adjusted accordingly.

Representation in Feature Space

Once NSs are detected, negated and non-negated word n-
grams need to be explicitly represented in feature space.
Therefore, we resort to a representation inspired by Pang
et al. (2002), who create a new feature NOT_f when feature
f is preceded by a negation word, e. g. “not” or “isn’t”.

Let W = {wi}, i = 1, . . . ,d be our word n-grams and
let X = {0, 1}d be our word n-gram feature space of size
d, where for xj ∈ X, xjk = 1 denotes the presence of wk
and xjk = 0 denotes its absence. For each feature xjk we
introduce an additional feature x̆jk that encodes whether
wk appears negated (x̆jk = 1) or non-negated (x̆jk = 0).
Thus, we obtain an augmented feature space X̆ = {0, 1}2d. In Augmented feature

spaceX̆ we are now able to represent whether a word n-gram

• w is present (encoded as [1, 0]),

• w is absent ([0, 0]),

4 http://code.google.com/p/negex/
5 http://sourceforge.net/projects/lingscope/

http://code.google.com/p/negex/
http://sourceforge.net/projects/lingscope/
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bit
don’t
down

laundering
quite

shrink
stand

up/up
very
well



1, 0
1, 0
0, 0
0, 1
1, 0
1, 0
0, 1
1, 1
0, 1
0, 1


Figure 21.: A representation of “They don’t stand up to launder-

ing very well, in that they shrink up quite a bit.” in X̆.

• w is present and negated ([0, 1]) or

• w is present both negated and non-negated ([1, 1]).

Representing an Example

Assume we employ naïve tokenization that simply splits
at white spaces, ignore punctuation characters like “.” and
“,”, and extract the presence and absence of Wuni = {“bit”,
“don’t”, “down”, “laundering”, “quite”, “shrink”, “stand”,
“up”, “very”, “well”}, i. e. Wuni is our word unigram vo-
cabulary. Representing Example (25) in X̆ results then in a
stylized feature vector as shown in Figure 21.

Note the difference between “laundering” and “up” in
Figure 21: while “laundering” is present only once and is
negated and thus is represented as [0, 1], “up” is present
twice—once negated and once non-negated—and thus is
represented as [1, 1].

7.2 evaluation

We evaluate our NM approach in 3 common SA subtasks:
in-domain and cross-domain document-level polarity clas-
sification (see Section 7.2.1) as well as sentence-level polar-
ity classification (see Section 7.2.2).

Our setup for all experiments is—just as in previous ex-
periments of our thesis—as follows: As classifiers we em-
ploy SVMs, but just as in Remus (2013b) we refrain from
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optimizing the SVMs’ hyperparameter C—instead we fix C
to 2.0.

As features we use word uni-, bi-, and trigrams extracted
from the data6. Word bi- and trigrams model negation
implicitly as described in Section 7.1.1. We perform no
FS—neither stop words nor punctuation characters are re-
moved because we do not make any assumption about
which word n-grams carry sentiment and which do not.
Additionally, we explicitly model the negation of these word
uni-, bi-, and trigrams as described in Section 7.1.2. This
is different from Pang et al. (2002)’s approach, who “(. . . )
consider bigrams (and n-grams in general) to be an or-
thogonal way to incorporate context.”. Explicitly model-
ing negation of higher order word n-grams—e. g. word bi-
and trigrams—allows for learning that there is a difference
between “doesn’t work well” in Example (26) and “doesn’t
work” in Example (27),

(26) The stand doesn’t work well.

(27) The stand doesn’t work.

just as an ordinary word uni- and bigram model allows for
learning the difference between “work” and “work well”.

The in-domain document-level and sentence-level polar-
ity classification experiments are construed as 10-fold CVs.
As performance measure we report accuracy to be com-
parable to other studies (see Section 7.2.4). The level of
statistically significant difference (see Section 6.2.3) to the
corresponding base model without NM is indicated by ??

(p < 0.005) and ? (p < 0.05).

7.2.1 Document-level Polarity Classification

As gold standard for our in- and cross-domain document-
level polarity classification experiments we use MDSD v2.0
(see Chapter 2.1.2).

6 We also experimented with word tetragrams, but found that they do
not contribute to the SVM models’ discriminative power. This is not
surprising, because in all used gold standards most word tetragrams
appear only once. Their word tetragram distribution’s relative entropy
(see Chapter 3.2.1) is greater than 0.99, i. e. word tetragrams are almost
uniformly distributed.
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Table 28.: In-domain accuracy of NM averaged over all 10 do-
mains from MDSD v2.0.

base model nsd explicit nm for

uni uni-bi uni-bi-tri

uni
none 78.77

LingScope 80.06??

NegEx 79.57?

uni-bi
none 81.37

LingScope 81.73 81.93??

NegEx 81.53 81.58

uni-bi-tri
none 81.27

LingScope 81.65? 81.55 81.59?

NegEx 81.28 81.3 81.28

In-domain

The evaluation results of our in-domain document-level
polarity classification experiments averaged over all 10 do-
mains from MDSD v2.0 are shown in Table 28.

A word uni- and bigram base model, LingScope for NSD
and explicitly modeling negations for word uni- and bi-
grams yields the best overall result (81.93). This result is
statistically significant different (p < 0.005) from the result
the corresponding base model achieves using word uni-
and bigrams alone (81.37).

Cross-domain

For all 10!/(10-2)! = 90 source domain–target domain pairs
from MDSD v2.0 2,000 labeled source domain instances (1,000

positive and 1,000 negative) and 200 labeled target domain
instances (100 positive and 100 negative) are used for train-
ing. 1,800 labeled target domain instances (900 positive
and 900 negative) are used for testing. If required by the
method, 2,000 unlabeled target domain instances are avail-
able for training. This is a typical semi-supervised DA set-
ting as described in Chapter 6.2.

We employ 3 methods for cross-domain polarity classifi-
cation: All, IS, and EA++ (see Chapter 6.2). Table 29 shows
the evaluation results for All, Table 30 shows the evalua-
tion results for IS and Table 31 shows the evaluation results
for EA++.



120 negation modeling

Table 29.: Cross-domain accuracy of NM in All averaged over
all 90 domain-pairs from MDSD v2.0.

base model nsd explicit nm for

uni uni-bi uni-bi-tri

uni
none 74.25

LingScope 75.46??

NegEx 75.35??

uni-bi
none 76.61

LingScope 77.23?? 77.31??

NegEx 77.18?? 77.13??

uni-bi-tri
none 76.44

LingScope 77.01?? 77.13?? 77.12??

NegEx 76.97?? 76.83?? 76.81??

Table 30.: Cross-domain accuracy of NM in IS averaged over all
90 domain-pairs from MDSD v2.0.

base model nsd explicit nm for

uni uni-bi uni-bi-tri

uni
none 74.62

LingScope 75.75??

NegEx 75.53??

uni-bi
none 76.90

LingScope 77.74?? 77.75??

NegEx 77.43?? 77.38??

uni-bi-tri
none 76.72

LingScope 77.52?? 77.63?? 77.61??

NegEx 77.30?? 77.24?? 77.19??

For All, just like for in-domain polarity classification,
a word uni- and bigram base model, LingScope for NSD
and explicitly modeling negations for word uni- and bi-
grams yields the best overall result (77.31, p < 0.005). The
same applies to IS (77.75, p < 0.005). For EA++, a word
uni- and bigram base model, NegEx for NSD and explic-
itly modeling negations for word unigrams yields the best
overall result (77.5, p < 0.005). A word uni-, bi-, and tri-
gram base model, LingScope for NSD and explicitly model-
ing negations for word unigrams performs almost as good
and yields 77.48 accuracy (p < 0.005).
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Table 31.: Cross-domain accuracy of NM in EA++ averaged over
all 90 domain-pairs from MDSD v2.0.

base model nsd explicit nm for

uni uni-bi uni-bi-tri

uni
none 74.5

LingScope 75.46??

NegEx 75.1??

uni-bi
none 75.95

LingScope 76.42?? 76.54??

NegEx 77.5?? 77.34??

uni-bi-tri
none 75.75

LingScope 76.22?? 77.46?? 77.48??

NegEx 76.14?? 77.19?? 77.08??

Table 32.: Accuracy of NM on SPD v1.0.

base model nsd explicit nm for

uni uni-bi uni-bi-tri

uni
none 74.56

LingScope 75.85??

NegEx 75.08

uni-bi
none 77.69

LingScope 77.93 77.55

NegEx 77.72 77.36

uni-bi-tri
none 77.62

LingScope 77.85 77.99 78.01?

NegEx 77.71 77.23 77.36

7.2.2 Sentence-level Polarity Classification

As gold standards for sentence-level polarity classification
we use SPD v1.0 (see Chapter 2.1.8) and SE-2007-T14D (see
Chapter 2.1.6). Evaluation results for SPD v1.0 are shown in
Table 32, evaluation results for SE-2007-T14D are shown in
Table 33.

For SPD v1.0, a word uni-, bi-, and trigram base model, us-
ing LingScope for NSD and explicitly modeling negations
for word uni-, bi-, and trigrams yields the best result (78.01,
p < 0.05). For SE-2007-T14D, a word uni- and bigram base
model, NegEx for NSD and explicitly modeling negations
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Table 33.: Accuracy of NM on SE-2007-T14D.

base model nsd explicit nm for

uni uni-bi uni-bi-tri

uni
none 64.73

LingScope 65.18

NegEx 64.73

uni-bi
none 66.43

LingScope 66.79 66.88

NegEx 66.96 67.41?

uni-bi-tri
none 66.07

LingScope 66.7 66.52 66.7

NegEx 66.52 66.61 66.61

Table 34.: Precision, recall and f-score of NSD methods.

nsd method precision recall f-score

LingScope 0.696 0.656 0.675

NegEx 0.407 0.5 0.449

for word uni- and bigrams yields the best result (67.41,
p < 0.05).

7.2.3 Discussion

Intuitively, explicit NM benefits from high quality NSD: the
more accurate the NSD, the more accurate the explicit NM.
This intuition is met by our results. As shown by Agar-
wal and Yu (2010), LingScope is often more accurate than
NegEx on biomedical data. This also applies to review
data: We evaluated LingScope and NegEx on 500 sentences
that were randomly extracted from SPD v1.0 and annotated
for their NSs by us. Table 34 shows the evaluation results.
LingScope clearly outperforms NegEx with respect to pre-
cision and recall.

So although genre and domain of BioScope’s data—on
which LingScope and NegEx were trained and tested—
differ from genre and domains of MDSD v2.0 and SPD v1.0,
models learned using LingScope as NSD yield the best or
almost best results for all our SA subtasks evaluated on
MDSD v2.0 and SPD v1.0. On another genre—SE-2007-T14D’s
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news headlines—models learned using NegEx as NSD yield
the best results. SE-2007-T14D is different because it con-
tains almost no negations (see Table 35). Compared with
MDSD v2.0 and SPD v1.0 it contains more verbal negations
which LingScope does not detect, but NegEx does, e. g.
“denies” as in Example (28):

(28) China denies reports of North Korean apology.

Compared with ordinary word n-gram models that do
not model negation (n = 1) or model negation only implic-
itly (2 6 n 6 3), word n-gram models that additionally
model negation explicitly achieve statistically significant
improvements—given an accurate NSD method.

To shed some light on the differences between the results
for the evaluated SA subtasks and their corresponding gold
standards, we analyze how many and what kind of NSs the
NSD methods detect (see Table 35). Naturally, these find-
ings rely on LingScope’s and NegEx’s definition of what an
NS actually is. According to both LingScope’s and NegEx’s
implementation an NS may encompass coordinations like
“or” as in Example (24). Generally, LingScope detects more
negations than NegEx. NSs detected by LingScope are on
average shorter than those detected by NegEx, thus they
are more precise. While LingScope and NegEx detect nega-
tions in about 67% of all documents in MDSD v2.0, only
about 20% of all sentences in SPD v1.0 contain detected nega-
tions. Not surprisingly, even less NSs are detected in SE-
2007: only about 3% of all headlines contain detected nega-
tions.

Note that only very little NSs have length 1, i. e. span 1

word unigram, but many NSs have length 4 or longer, i. e.
span 4 word unigrams or more. That confirms the need for
explicit NM as mentioned in Section 7.1.2, but also hints at
a data sparsity problem: certain parts of word n-grams in
the scope of negations may re-occur, but the same NS basi-
cally never appears twice. For MDSD v2.0 and LingScope as
NSD, on average each NS overlaps only on 0.18 positions
with each other NS. Thus, overlaps as shown in Exam-
ple (29) and Example (30) where “buy” appears in both
NSs are scarce:

(29) Don’t buy these shoes for running!

(30) Do not buy them unless you like getting blisters.
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Figure 22.: Accuracy of SVM models on different domains from
MDSD v2.0 with and without NM. LingScope and NegEx are
used as NSD methods.

The picture is similar for SPD v1.0 with an overlap in on
average 0.22 positions and worse for SE-2007-T14D with an
overlap in on average 0.02 positions.

Efficiency in Different Domains

We now compare the efficiency of our NM approach in dif-
ferent domains of MDSD v2.0. Figure 22 shows the accura-
cies SVM models yield based on word unigrams and NM for
word unigrams using either LingScope or NegEx as NSD.

Explicit NM using LingScope improves accuracy for 10/10

domains. Explicit NM using NegEx improves accuracy for
7/10 domains. Explicit NM using LingScope outperforms
explicit NM using NegEx for 7/10 domains. We did not
find any apparent (and statistically significant) correlations
between the accuracy gain that explicit NM yields and any
of the statistics shown in Table 35.

Lesson Learned

We conclude our discussion with a “lesson learned”: Apart
from the negation representation scheme we used through-
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word state p/n/a p/pn/a p/pn/n/a

present [1, 0] [1, 0] [1, 0]
present-negated [0, 1] [1, 1] [1, 1]
negated [0, 1] [1, 1] [0, 1]
absent [0, 0] [0, 0] [0, 0]

Table 36.: Representations of w ∈ W in X̆ when w is present,
present both negated and non-negated (present-negated),
present and negated (negated), and absent as described in Sec-
tion 7.1.2.

out this—viz. P/PN/N/A7—we also experimented with 2

other negation representation schemes—viz. P/N/A and
P/PN/A8. Table 36 summarizes all 3 negation represen-
tation schemes. We found that P/PN/N/A is generally
superior to P/N/A and P/PN/A.

7.2.4 Comparison

For sentence-level polarity classification on SPD v1.0, our
best performing model (78.01) outperforms 3 state-of-the-
art models: Nakagawa et al. (2010)’s dependency tree-based
CRFs (77.3), Socher et al. (2012)’s linear matrix-vector recur-
sion (77.1), and Socher et al. (2011)’s semi-supervised re-
cursive autoencoders (77.7). It is beaten by Socher et al.
(2012)’s matrix-vector recursive neural network (79) and
Wang and Manning (2012)’s SVM models with NB features
(79.4).

For sentence-level polarity classification on SE-2007-T14D,
we mimic the evaluation scheme of Strapparava and Mi-
halcea (2007)’s SemEval-2007 Task 14: Instead of a binary
polarity classification as described in Section 7.2.2 we per-
form a ternary polarity classification, in which a polarity
intensity of [−100,−50] is mapped to negative, (−50, 50)
is mapped to neutral and [50, 100] is mapped to positive.
Our models are trained on 250 headlines from the trial
data and tested on the remaining 1,000 headlines from the
test data. Our best performing model yields an accuracy of

7 P/PN/N/A stands for present, present-negated, negated, and absent.
8 P/N/A stands for present, negated, and absent; P/PN/A stands for

present, present-negated, and absent.
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Figure 23.: Cross-domain accuracy of DA methods and IS with
explicit NM on MDSD v2.0.

59.9. It outperforms all systems that originally participated
in SemEval-2007 Task 14 (29–55.1).

For in-domain document-level polarity classification on
MDSD v2.0, Ponomareva and Thelwall (2012a) report results
for 7 domains (dvd, books, electronics, health, kitchen, mu-
sic, toys) out of the 10 domains we used in our experiments.
Their SVM models use word unigrams and word stem bi-
gram as features and yield 80.29 average accuracy; on the
same 7 domains our best performing model yields 81.49

average accuracy.
For cross-domain document-level polarity classification

on MDSD v2.0, our best performing model is inferior com-
pared to more sophisticated DA methods—SCL (see Blitzer
et al., 2007), SFA (see Pan et al., 2010) as well as RANK, OP-
TIM, RANK-SOCAL, and OPTIM-SOCAL (see Ponomareva and
Thelwall, 2012b)—all of which are evaluated on 4 domains
(dvd, books, electronics, kitchen) out of the 10 domains
we used in our experiments. Their evaluation results are
shown in Figure 23.

In summary, a purely data-driven ML-based SA approach
with NM for word n-grams proves to be competitive in sev-
eral common SA subtasks.
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7.3 conclusion and future work

We conclude that data-driven ML-based SA models that op-
erate in word n-gram feature space benefit from explicit
NM. In turn, explicit NM benefits from (i) high quality
NSD like LingScope and (ii) modeling not only negation
of word unigrams, but also of higher order word n-grams,
especially word bigrams.

These insights suggest that explicitly modeling seman-
tic compositions is promising for data-driven ML-based SA.
Given appropriate scope detection methods, our approach
may for example easily be extended to model other va- Valence shifter
lence shifters (see Polanyi and Zaenen, 2006), e. g. inten-
sifiers like “very” or “many”, or hedges (see Lakoff, 1973) Hedge
like “may” or “might”, or even implicit negation in the ab-
sence of negation words (see Reyes and Rosso, 2013). Our
approach is also easily extensible to other word n-gram
weighting schemes aside from encoding pure presence or
absence, e. g. weighting using relative frequencies or tf-idf.
The feature space then simply becomes X̆ = R2d.

Note that modeling negations explicitly may be partic-
ular interesting in environments with strong restrictions
of physical memory or computing power. Then, word uni-
gram models with NM for word unigrams may present a vi-
able alternative to word uni- and bigram models, as the re-
sulting feature spaces are much smaller. E. g., the average
feature space size of word unigram models for MDSD v2.0’s
10 domains is |Xuni|= 17822.6, so |X̆uni|= 2·|Xuni|= 35645.2.
In contrast, the average feature space size for word uni-
and bigram models is |X{uni, bi}|= 114891.1. Thus, |X{uni, bi}|

is more than 3 times larger than |X̆uni|, while the achieved
accuracies are similar.

Future work encompasses model fine-tuning, e. g. ac-
counting for NSs in the scope of other negations as in Ex-
ample (31)

(31) I 〈don’t care that they are 〈not really leather〉〉.

and employing generalization methods (see Turian et al.,
2010) such as word grouping via Brown clustering (see
Brown et al., 1992) or distributional semantics (see Baroni
and Lenci, 2010) to tackle data sparsity when learning the
effects of negations, modeled both implicitly and explicitly.
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8
A C A S E S T U D Y

In this chapter we carry out a case study on document-
level polarity classification with previously unused data—
SE-2013-T2BD—and apply our findings from Chapter 5, Chap-
ter 6 and Chapter 7. For SE-2013-T2BD we

1. estimate our SA approach’s accuracy (see Section 8.1).

2. let domain complexity guide us in model selection
(see Section 8.2), viz. we decide

a) what word n-gram model order to employ in
our SA approach (see Section 8.2.1).

b) whether to employ aggressive or conservative
word n-gram FS in our SA approach (see Sec-
tion 8.2.2).

3. add word n-gram NM to our SA approach (see Sec-
tion 8.3).

8.1 performance estimation

To transfer our performance estimator (see Chapter 5.4)
and model selectors (see Chapter 6.1.1 and Chapter 6.1.2)
from the dataset they are trained on—i. e. MDSD v2.0—to
a new dataset—i. e. SE-2013-T2BD—their non-textual charac-
teristics have to be similar (see Chapter 5.4): e. g. they have
to be designated for the same SA subtask and they have
to be of similar size. Therefore, we modify SE-2013-T2BD to
match MDSD v2.0’s properties:

1. We binarize SE-2013-T2BD, i. e. we ignore the neutral
class. We transform the hitherto ternary classification
problem (positive vs. negative vs. neutral) into a
binary classification problem (positive vs. negative).

2. We balance SE-2013-T2BD by undersampling the ma-
jority class, which leaves us with 2,076 positive and
2,076 negative instances.

From hereon we refer to this binarized, balanced version
of SE-2013-T2BD as SE-2013-T2BD?.
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Table 37.: Domain complexity of SE-2013-T2BD?.

domain complexity n = 1 n = 2 n = 3

Percentage of rare n-grams 0.782 0.956 0.992

n-gram type/token ratio 0.55 0.939 0.989

n-gram relative entropy 0.916 0.994 0.999

n-gram homogeneity 0.483 0.915 0.984

Table 38.: Accuracy of our SA approach based on word unigrams,
word uni- and bigrams as well as word uni-, bi-, and trigrams
on SE-2013-T2BD?.

based on estimated actual

Word unigrams 77.18 75.29

Word uni- and bigrams 77.37 75.82

Word uni, bi-, and trigrams 77.53 75.92

Recall that our performance estimator and model selec-
tors are based on LR models that use as predictor a dataset’s
domain complexity. Table 37 shows SE-2013-T2BD?’s domain
complexity measurements for word uni-, bi-, and trigrams.

To estimate our SA approach’s accuracy on SE-2013-T2BD?,
we train a performance estimator on MDSD v2.0’s 10 do-
mains. We use Huber loss as loss function, averaged homo-
geneity as predictor, and accuracy as response (see Chap-
ter 5.4). Using SE-2013-T2BD?’s homogeneity measurements
as inputs, our performance estimator outputs our SA ap-
proach’s accuracies as shown in Table 38.

Table 38 also shows the accuracies that our SA approach
actually achieves in 10-fold CVs. Our performance estima-
tor overestimates our SA approaches’ accuracies between
1.55 and 1.89 accuracy points.

8.2 domain complexity-based model selection

8.2.1 Word n-gram Model Order

To decide for SE-2013-T2BD? what word n-gram model or-
der to employ in our SA approach, i. e. whether to employ
an SVM model based on word unigrams, word uni- and
bigrams, or word uni-, bi-, and trigrams, we use our per-
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formance estimator in a model selector for word n-gram
model order (see Chapter 6.1.1).

According to the estimated accuracies, an SVM model
based on word uni-, bi-, and trigrams performs better than
one based on word uni- and bigrams, which in turn per-
forms better than the one based on word unigrams alone.
According to the actual accuracies, the same is true. There-
fore, our model selector correctly selects the SVM model
based on word uni-, bi-, and trigrams.

8.2.2 Word n-gram Feature Selection

To decide for SE-2013-T2BD? whether to employ aggressive
or conservative word n-gram FS, we train a model selector
on MDSD v2.0’s 10 domains. We use Tukey’s biweight as
loss function, relative entropy as predictor, and ideal CO as
response (see Chapter 6.1.2).

Using the relative entropy measurement of SE-2013-T2BD?

as input, our model selector estimates a CO of -156%, which
of course is impossible: we underestimate the CO1. There-
fore, we fall back to using the average ideal CO of 45% (see
Chapter 6.1.2). Using the average ideal CO for word uni-
gram FS via IG yields an accuracy of 76.52, compared with
an accuracy of 75.29 when performing no FS. The actual
ideal CO is 16% and yields an accuracy of 77.34 when us-
ing only word unigrams as features and 76.15 when using
word uni-, bi-, and trigrams as features.

8.3 negation modeling

In Section 8.2 we decided for SE-2013-T2BD? to

• employ an SVM model based on word uni-, bi-, and
trigrams,

• employ an aggressive word n-gram FS in the SVM
model, i. e. to reduce its word unigram vocabulary
to 45% of its original size by selecting the most dis-
criminative features via IG,

in our SA approach.

1 The model selector is trained on relative entropy values ranging from
0.887 to 0.893. SE-2013-T2BD?’s relative entropy is 0.782 and hence is “out
of range”.
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Table 39.: Accuracy of our SA approach on SE-2013-T2BD? with
and without FS as well as with and without explicit NM.

fs nm

with without

with 77.1 76.52

without 76.21 75.92

We now add NM to our SA approach (see Chapter 7).
We use LingScope for NSD as it generally yields the best
results for document-level polarity classification (see Chap-
ter 7.2.1). Because we do not know for which word n-gram
to model negation explicitly, we model it for all word n-
grams in our model, i. e. for word uni-, bi-, and trigrams.
Table 39 shows the evaluation results of our SA approach
with and without explicit NM as well as with and without
FS.

Compared with our SA approach without explicit NM,
our SA approach with explicit NM gains 0.29 in accuracy.
When we additionally perform FS (see Section 8.2.2), we
gain another 0.89 in accuracy.

8.4 conclusion

In our case study we successfully transferred the core meth-
ods of our thesis—domain complexity-based performance
estimation, domain complexity-based model selection and
NM—to SE-2013-T2BD?, an SA gold standard hitherto unused
in our thesis.

Based on its domain complexity, we estimated our SA
approach’s accuracy on SE-2013-T2BD?. Using our model se-
lector for word n-gram model order, we then decided to
employ an SVM model based on word uni-, bi-, and tri-
grams (75.92 accuracy). Using our model selector for word
n-gram FS, we then decided to employ quite aggressive
word n-gram FS by reducing SE-2013-T2BD?’s word unigram
vocabulary to 45% of its original size via IG (76.52 accu-
racy). Finally, we added explicit NM for word uni-, bi-, and
trigrams (77.1 accuracy).
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S U M M A RY A N D C O N C L U S I O N

Bah, the latest news is not the last.
— Samuel Beckett,

The Unnamable

Our thesis investigated genre and domain dependencies
in SA. We conclude by revisiting the core hypothesis that
prompted our research and by summarizing our findings.

As outlined in Chapter 1, SA—and NLP in general—faces
several challenges. A major challenge is NLP’s dependence
on certain contextual parameters, e. g. the point of time at
which something is expressed or the social-cultural back-
ground against which something is expressed. Most im-
portantly, many NLP methods are dependent on the genre
and the domain in which something is expressed. There-
fore, our core hypothesis is: SA is genre and domain depen-
dent.

In Chapter 2 we introduced SA gold standards that func-
tion as representative samples of certain genres and do-
mains. In Chapter 3 we discussed textual characteristics
that characterize these gold standards and uncover simi-
larities and dissimilarities between them. In Chapter 4 we
described the ML algorithms that we use to approach the
SA subtasks addressed in this thesis: polarity and subjec-
tivity classification.

In Chapter 5 we then presented a prototypical SA ap-
proach: a supervised, data-driven ML model that is based
solely on lexical features, viz. word n-grams. In a first step,
we then validated our core hypothesis: We showed that differ-
ent genres and domains differ in their textual characteris-
tics, viz. their domain complexity. We also showed that
our SA approach performs differently on gold standards
that originate from differing genres and domains, but per-
forms similarly on gold standards that originate from re-
sembling genres and domains. We found a strong linear
relation between our SA approach’s accuracy on a particu-
lar gold standard and its domain complexity. Based solely
on a gold standard’s domain complexity, we were then able
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to estimate our SA approach’s accuracy on this particular gold
standard.

In a second step, we used domain complexity measures
and domain similarity measures to exploit genre and do-
main specifics for two tasks. (i) We let domain complexity
measures guide us in prototypical model selection processes
for in-domain document-level polarity classification (see
Chapter 6.1): to decide what word n-gram model order
to employ in an SVM and to decide whether to employ ag-
gressive or conservative word n-gram FS for an SVM model.
(ii) We let domain complexity and domain similarity mea-
sures guide us in a semi-supervised DA scenario for which we
proposed a novel DA scheme: IS (see Chapter 6.2). Subse-
quently, we applied IS to cross-domain document-level po-
larity classification. In a third step, we exploited readability
measures for feature engineering (see Chapter 6.3). Based on
the observation that human beings tend to use mainly high-
frequency words when they are aroused, we proposed a
novel readability measure: the distribution of word frequency
classes. Subsequently, we adopted several readability mea-
sures for sentence-level subjectivity classification.

In Chapter 7 we generalized a framework for modeling and
representing negation in ML-based SA. Subsequently, we ap-
plied this framework to in-domain and cross domain po-
larity classification on document-level and in-domain po-
larity classification on sentence-level. We investigated (i)
the relationship between implicit and explicit NM, (ii) the
influence of NSD methods, and (iii) the efficiency of NM in
different domains. Finally, we carried out a case study in
Chapter 8, in which we successfully transferred the core meth-
ods of our thesis—domain complexity-based performance
estimation, domain complexity-based model selection, and
NM—to a gold standard that originates from a genre and
domain hitherto not used in this thesis.

9.1 scientific contribution

As discussed in Chapter 1, genre and domain dependence
is not a particular property of SA and its subtasks but ap-
plies to many NLP techniques. Therefore, certain findings
of our thesis may generalize beyond SA and may apply to
NLP in general. To investigate which findings generalize
and which do not is left to future work (see Section 9.2):
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our thesis focused on SA, which is a prime example of
genre and domain dependence (see Chapter 1.1).

In general, our thesis contributes to a methodology to
deal with genre and domain specifics in SA. This method-
ology (i) enables us to estimate “how far we can get” us-
ing a prototypical SA approach and (ii) guides us “how to
choose the right tools for the job”. In particular, our sci-
entific contributions—which lead to several publications—
are:

• We deepened the understanding about a prototypical,
supervised ML-based SA approach and its relation to
the gold standard it is trained and tested on:

– We found that data-driven models are superior
to dictionary-based models (see Remus and Rill,
2013).

– We introduced several domain complexity mea-
sures (see Bank et al., 2012; Remus, 2012) and
investigated their sample size-dependence (see
Remus and Bank, 2012).

– We estimated our SA approach’s accuracy using
domain complexity measures (see Remus and
Ziegelmayer, 2014).

– We let domain complexity measures guide us in
prototypical model selection processes (see Re-
mus and Ziegelmayer, 2014).

– We let domain complexity and domain similar-
ity measures guide us in DA (see Remus, 2012).

• We used readability measures for feature engineering
(see Remus, 2011).

• We generalized a framework for modeling and repre-
senting negation in ML-based SA (see Remus, 2013a,b).

9.2 limitations and future work

With each decision we made in our thesis there come cer-
tain limitations regarding the conclusions we can draw
from our results:

• Initially, we experimented with ML techniques other
than SVMs, but we later focused solely on SVMs. There-
fore, we cannot be sure whether our findings gener-
alize beyond SVMs.
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• We focused on SA subtasks that may be seen as text
classification problems, i. e. polarity and subjectiv-
ity classification. Other SA subtasks, e. g. opinion
holder or opinion target extraction, may be seen as
sequential labeling problems. Therefore, we cannot
conclude that our findings generalize beyond SA clas-
sification subtasks.

• There is a gap between what some writer of some
text intended to convey to the readers of its text—the
writer’s intention—and what some reader actually
perceives when reading the text—the reader’s percep-
tion (see Maks and Vossen, 2013). We often used gold
standards that were labeled via distant supervision,
e. g. MDSD v2.0 and T-MDSD. Distant supervision re-
lies on some proxy, e. g. stars given to a review by its
author or emoticons added to a tweet by its author.
Therefore, such gold standards are labeled according
to the writer’s intention rather than the reader’s per-
ception. However, the reader’s perception is what we
are interested in most of the times.

From these limitations immediately follows what could
be future work. For the small picture future work is out-
lined in Chapter 5, Chapter 6 and Chapter 7. For the big
picture the most important future work is to investigate
whether our findings generalize beyond

• SA classification subtasks, e. g. to SA sequential label-
ing subtasks.

• SA classification subtasks to other NLP classification
tasks, e. g. topic classification.

• simple to more sophisticated SA approaches, e. g. deep
learning (e. g. Socher et al., 2013).

• supervised to unsupervised ML-based SA, e. g. via
topic models (e. g. Mei et al., 2007; Lin and He, 2009).

• SVMs to other ML algorithms, e. g. NB.

In this regard, it is also important to investigate the relation
between a gold standard’s domain complexity and its class
boundary complexity (see Chapter 3.2.3).



E P I L O G U E

When we analyze what people say, think, or feel—manually
or automatically—we should always bear in mind that it
is our obligation to preserve and to protect their—our—
privacy. It is up to every researcher and practioner to de-
cide in each and every situation whether to tap SA’s and
NLP’s full potential or not.
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Table 40.: T-MDSD keywords.

domain keywords

apparel abercrombie & fitch, american apparel,
american eagle, andrew christian, armani,
bealls, ben sherman, birkenstock, boxer
briefs, burlington, calvin klein, camel
active, carhartt, crocs, desigual, dickies,
eastpak, ed hardy, forever 21, forever21,
fred perry, gucci, h&m, hollister, hugo
boss, joop, kenneth cole, lacoste, levis,
louis vuitton, new balance, nike, old navy,
paul frank, prada, quiksilver, ralph lauren,
ray bans, reebok, river island, speedo,
superdry, tk maxx, tommy hilfiger,
topshop, true religion, united colors of
benetton, victoria’s secret

electronics belkin, deskjet, garmin, inspiron, ipod,
linksys, mac mini, optiplex, os x, osx,
panasonic, ps3, samsung, sandisk, sd card,
sony, toshiba, walkman, wii, zune

health acetaminophen, advil, alka-seltzer,
allergies, anti-anxiety, aspirin, benadryl,
blood pressure monitor, casein, cetaphil,
cholesterol, cocoa butter, cotton swabs,
hair dryer, humidifier, lubrication,
melatonin, microdermabrasion, nutritions,
oat flour, old spice, oral b, oral-b,
pedometer, razor, silk epil, skin cleanser,
sodium, thyroid, tunnel syndrome,
tylenol, vitamins

Continued on the next page
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domain keywords

kitchen blender, bodum, breville, brita,
coffeemaker, cooker, cookware, corkscrew,
crockery, cuisinart, cutlery, delonghi,
diffuser, dinnerware, dish washer,
dishwasher, electric kettle, fiestaware,
foreman, french press, fryer, frying pan,
humidifier, iron chef, juicer, kitchen aid,
kitchenaid, le creuset, oven, percolator,
saucepan, spin brush, stove, tea infuser,
toaster, zilch

II
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