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Abstract

We are concerned with several group theoretical questions in the context of unitary groups of

functional analytic type. Our main focus lies on unitary groups of II1 factors. II1 factors are

special von Neumann algebras, which are by reduction theory of von Neumann algebras often

and by many concerns the most interesting case of those mathematical objects.

For any (noncommutative) group G one can ask under which condition an element g ∈ G
is a product of conjugates of another element h ∈ G. We are able to provide a necessary and

su�cient criterion for

(i) the projective unitary group PU(n) of the n× n matrix algebra over C;

(ii) the connected component of the identity of the projective unitary group of the Calkin

algebra;

(iii) the projective unitary group PU(M) of a II1 factorM.

Our criteria are formulated in terms of so called projective generalized s-numbers. It is known

that one can generalize the classical s-numbers for compact operators to the case of semi�nite

factorsM with faithful normal semi�nite trace τ by setting

µt(x) := inf
p∈Proj(M), τ(1−p)≤t

‖xp‖ for x ∈M, t ≥ 0.

Using this we de�ne the t-th projective generalized s-number of x ∈M by

`t(x) := inf
λ∈U(1)

µt(1− λx) for t ≥ 0.

A typical criterion on products of conjugates in this thesis then reads:

Let u, v ∈ G. If `0(u) ≤ m`t(v) for all t ∈ [0, s] and for some m ∈ N, then

u ∈ (vG ∪ v−G)cmd1/se,

where c ∈ N is a constant independent of m, s, u and v. On the other hand, if u is a product

of k conjugates of v, then `kt(u) ≤ k`t(v) for all t ≥ 0.

Having such a criterion, one may further ask if a given element u ∈ G is a uniform normal



generator for G, i.e. if there exists k ∈ N such that

G = (uG ∪ u−G)k.

Analogously we say that an element u in a topological group G is a topological uniform normal

generator if there exists k ∈ N such that

G = (uG ∪ u−G)k.

It turns out that the unitary group U(H)K(H) of compact perturbations from the identity,

despite being topologically simple, does not have any topological uniform normal generator.

In contrast, the projective unitary group PU(H) on a separable Hilbert space is not sim-

ple but does have uniform normal generators (e.g. symmetries with two in�nite-dimensional

eigenspaces by a modi�cation of a theorem of Halmos and Kakutani).

If every nontrivial element in G is a uniform normal generator, then we say that G has

the bounded normal generation property, or property (BNG). Using our result on products of

conjugates in PU(H) we deduce that the connected component of the identity of the projective

unitary group of the Calkin algebra has property (BNG). A modi�cation of a theorem of Broise

shows that every symmetry of trace 0 is a uniform normal generator for the projective unitary

group PU(M) of a (separable) II1 factor. As a vast generalization of this result we show that

PU(M) has property (BNG) for any separable II1 factor.

A group property, which recently has drawn a lot of attention of several experts in descrip-

tive set theory, is the so called automatic continuity property, or property (AC). Automatic

continuity comes out of a question of Cauchy, asking whether every endomorphism of the ad-

ditive group of the reals is continuous. We say that a topological group G has property (AC)

if every homomorphism from G to any separable topological group is continuous. Motivated

by a recent result of Tsankov showing that U(H), endowed with the strong operator topology,

has property (AC), we attack this question for projective unitary groups PU(M) of separable

II1 factors. We are able to show that any homomorphism from the groups

• PU(n), n ∈ N, endowed with the uniform topology,

• PU(M), endowed with the strong operator topology,

into any separable topological group with bi-invariant metric is continuous. Our proof uses our

results on products of conjugates for PU(M). As an easy application we obtain the uniqueness

of the bi-invariant Polish group topology on these groups. Our techniques allow us to further

show that PU(M) has a unique Polish group topology - this has previously been unknown even

in the hyper�nite case. It is worthwile mentioning that PU(n), n ∈ N, does not have property



(AC).

A group is called extremely amenable if any continuous action on a compact space has a

�xed point. This is a very rigid property which can never be observed in the universe of locally

compact groups by a theorem of Veech. Gromov and Milman discovered that the unitary group

U(H) of a separable in�nite-dimensional Hilbert space is extremely amenable, when endowed

with the strong operator topology. In modern formulation the proof of this can be boiled down

to showing �rst that U(H) is a Lévy group and second that every Lévy group is extremely

amenable. The �rst step in Gromov and Milman's work is based on growth of the (in�mum

over unit tangent vectors of the) Ricci curvature of SU(n) with n. We present an alternative

and elementary proof of the �rst step by estimating concentration inequalities on the groups

U(n) of unitary n× n matrices. Our proof yields extreme amenability of the unitary group of

the hyper�nite II1 factor with the strong operator topology, which was �rst observed, building

on results of Gromov and Milman, by Giordano and Pestov.
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1 Introduction

The topic of this PhD thesis is about algebraic and topological properties of unitary

groups of II1 factors. Before we come to the speci�c algebraic and topological properties

that we prove in this thesis, we explain why one should generally care about these

groups. Let us �rst encourage the readers interest in type II1 factors.

Motivated by the study of group representation theory, ergodic theory and quantum

mechanics, John von Neumann introduced in [Ne 30] the so called rings of operators

on a Hilbert space. These objects are nowadays called von Neumann algebras. Large

parts of the theory of von Neumann algebras were developed in a series of papers of

Murray and von Neumann, see [MN 36], [MN 37], [Ne 40], [MN 43], [Ne 43], [Ne 49].

By reduction theory the study of von Neumann algebras can be reduced to the study of

so called factors, which are von Neumann algebras with trivial center. There are three

types of factors - type I factors (these are algebras of bounded operators on a �nite- or

in�nite-dimensional Hilbert space), type II factors and type III factors. The study of

type III factors can be reduced to the study of type II factors by the Tomita-Takesaki

theory. The class of type II factors can be split into II1 factors and II∞ factors, the

latter being tensor products of a type I and a type II1 factor. Thus the study of von

Neumann algebras can basically be reduced to the study of II1 factors.

One of the major open problems in the theory of operator algebras is the so called

Connes' embedding problem, raised in his ingenious article [Co 76]. It asks whether

every II1 factor can be embedded into an ultrapower of the hyper�nite II1 factor.

It is worthwile mentioning that this problem has equivalent reformulations in many

di�erent areas of mathematics, see e.g. the recent accounts [Oz 13] and [CL 13]. An

open question connected to Connes' embedding problem is if every countable discrete

group is hyperlinear (i.e. its group von Neumann algebra embeds into an ultrapower

of the hyper�nite II1 factor).

Another famous open problem is the isomorphism problem for free group factors by

Murray and von Neumann. It asks if the group von Neumann algebras of nonabelian
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1 Introduction

free groups (which are factors of type II1) of diverse rank are isomorphic. This led

Voiculescu to the discovery of free probability theory around 1985.

As every von Neumann algebra is linearly spanned by its unitary group, the above

explains why the study unitary groups of II1 factors is crucial to understand von Neu-

mann algebras.

However, the unitary group U(M) of II1 factorM is an interesting object to study

not only from an operator algebraic point of view. For example, U(M) is a non-locally

compact Polish group in the strong operator topology, which makes it an interesting

object in descriptive set theory. Even more, the strong operator topology on U(M)

is induced from a bi-invariant metric. A problem of Popa (coming from the study of

cocycle superrigidity theory) asks for a necessary and su�cient criterion for a Polish

group to be isomorphic as a topological group to a closed subgroup of the unitary group

of some II1 factor. Further motivation for (and account on) Popa's problem, due to

Ando and Matsuzawa [AM 12], can be found in the theory of in�nite-dimensional Lie

algebras associated with unitary groups of II1 factors.

Another reason for studying unitary groups of II1 factors can be found in represen-

tation theory. In some cases the representations of a group on the whole unitary group

on a Hilbert space cannot be classi�ed while representations on the unitary group of a

II1 factor can - cf. [PT 13] and references therein.

Let us explain the main questions that we explore in this thesis. In order to keep this

introduction at reasonable length we refer the reader for detailed introductions with

historical background and precise statements of our results to Chapters 3, 4 and 5.

In Chapter 3 we are concerned with the property of extreme amenability. A topo-

logical group is extremely amenable if every continuous action on a compact space has

a �xed point. This a very rigid property only occuring in the universe of non-locally

compact topological groups. A milestone was set by Gromov and Milman [GM 83], who

proved the extreme amenability of the unitary group on a separable in�nite-dimensional

Hilbert space. Building on the seminal work of Gromov and Milman, Giordano and

Pestov [GP 06] have shown (amongst other results in this area of research) that the

unitary group of the hyper�nite II1 factor, endowed with the strong operator topology,

is extremely amenable. We present a more elementary and natural proof of this result
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in Chapter 3. Using estimates on the Ricci curvature of SU(n), Gromov and Milman

have shown that (SU(n), µn, dn)n∈N forms a Lévy family, where µn denotes the Haar

measure and dn the unnormalized Hilbert-Schmidt metric. We instead focus on esti-

mates of concentration functions for U(n) with regard to the normalized trace metric

d1,n to obtain that (U(n), µn, d1,n)n∈N forms a Lévy family.

It is a fundamental question in group theory to ask under which conditions one

element of a given group G is the product of conjugates of another element of G. We

are interested in this question in the context of unitary groups of functional analytic

type, see Chapter 4. Particular examples are �nite-dimensional projective unitary

groups, the projective unitary group of the connected component of the identity of the

Calkin algebra and the projective unitary group of a II1 factor. In all of these cases we

provide necessary and su�cient criteria for an element to be a product of conjugates of

another element. Let us call such a result a (PC)-criterion for short. However, in some

cases our criterion allows only to decide whether an element in a topological group G

is in a certain closure of some power of the conjugacy class of some g ∈ G and of g−1.

Finding such a result allows us to ask further if the conjugacy class of an element and

of its inverse generate the whole group in �nitely many steps. We call such an element

a uniform normal generator. If every nontrivial element of a group G is a uniform

normal generator we say that the group has the bounded normal generation property,

or property (BNG) for short.

Using a Baire category argument it is not hard to show property (BNG) for compact

simple groups. But to quantify the number of steps one needs to generate the whole

group with a conjugacy class, i.e. to �nd a normal generation function in our terminol-

ogy (see De�nition 4.7), is hard work even in the case of �nite simple groups - it was

done by Liebeck and Shalev in the main theorem in their seminal article [LS 01]. The

normal generation they found is basically given by log
∣∣gG∣∣ / log |G| for g ∈ G \ {1}.

In the context of compact connected simple Lie groups, Nikolov and Segal [NS 12]

managed to obtain quantitative estimates, their normal generation function is given by

averaging over angles in maximal tori. Using some ideas of Stolz and Thom [ST 14] we

prove a rank-independent criterion for an element in the projective unitary group PU(n)

of �nite rank to be a product of conjugates of another. In general, rank-independent

versions of �nite-dimensional results give hope for in�nite-dimensional analogues.

3



1 Introduction

In contrast to compact simple groups it is not at all clear for a non-locally compact

simple groups to have property (BNG) (even qualitatively). There are examples of

simple groups which do not have property (BNG), e.g., the group of �nitely supported

permutations on N. In Section 4.5 we prove a (PC)-criterion for PU(n) in terms of

what we call projective generalized s-numbers for PU(n), the reason being that this

setting is suitable for a generalization to semi�nite von Neumann algebras. With the

help of this result we can prove topological (PC)-criteria. This is done in Section 4.7

for II1 factors. The topological (PC)-criterion for unitary groups of II1 factors allows

us to conclude that the projective unitary group of any II1 has the topological bounded

normal generation property (in the strong operator topology).

We are able to provide algebraic (PC)-criteria for

• the projective unitary group PU(n), where n ∈ N;

• the connected component PU1(C) of the identity of the projective unitary group

of the Calkin algebra in Section 4.6;

• the projective unitary group of a separable II1 factor in Section 4.8.

We also have a topological (PC)-criterion for the unitary group U(H) on a separable

in�nite-dimensional Hilbert space H for elements that are not compact perturbations

of the identity. The corresponding statements are roughly of the following form:

An element u ∈ G is a product of conjugates of v ∈ G and v−1 if the

graph of the projective generalized s-numbers of v covers the box of height

determined by the projective operator norm distance from 1 and length

determined by the rank of the group.

Conversely, if u is a product of conjugates of v, then the graph of the

projective generalized s-numbers of u can be covered by that of v by �nite

expansion along the axes.

It is worthwhile noting that the unitary group U(H)K(H) of compact perturbations

of the identity, despite being topologically simple, does not possess any topological

uniform normal generator in the uniform topology. In contrast, the group U(H) has

uniform normal generators, but is not simple since it contains the normal subgroup

U(H)K(H). A well-known theorem of Halmos and Kakutani [HK 58] states that every

unitary operator on H is the product of four symmetries (having in�nite-dimensional

4



eigenspaces corresponding to 1 and −1). Since those symmetries are conjugate, their

result can be reformulated into: every symmetry s ∈ U(H) with in�nite-dimensional

eigenspaces corresponding to 1 and −1 is a 4-uniform normal generator for U(H). From

the algebraic (PC)-criterion for PU1(C) we deduce that this group has property (BNG).

In Section 4.3 we obtain the following modi�cation of Broise's result [Br 67, Theorem

1]: Every symmetry s in the projective unitary group PU(M) of a II1 factor M is a

32-uniform normal generator. Using our algebraic (PC)-criterion for unitary groups

of II1 factors together with the just mentioned result we can show that the projective

unitary group PU(M) has property (BNG). Our work on the bounded normal genera-

tion property for projective unitary groups of II1 factors is applied in Chapter 5, whose

content we will describe now.

Chapter 5 is concerned with the phenomenon of automatic continuity, which goes

back to the work of A. L. Cauchy. Cauchy analyzed the question whether every endo-

morphism of the additive group of the reals is continuous. However, using the axiom

of choice one can show that there are discontinuous homomorphisms R→ R. Cauchy's

problem drew a lot of attention around the beginning of the 20th century - for example,

M. Fréchet, S. Banach, W. Sierpi«ski and H. Steinhaus published articles around 1920.

In the 1930's A. Weil extended some results of Steinhaus to all locally compact groups.

A very general form of Cauchy's question reads:

When is a homomorphism π : G→ H between separable topological groups

continuous?

We say that a topological group G has the automatic continuity property, or property

(AC), if every homomorphism from G to any separable topological group is continuous.

This is not at all a trivial property, for example, some matrix groups such as SO(3,R)

embed discontinuously into the group S∞ of all bijections on N by the work of R. R.

Kallman [Ka 00] and S. Thomas [Th 99], cf. [Ro 09b, Example 1.5] in Rosendal's survey

article on automatic continuity.

One of the �rst general automatic continuity theorems was found around 1950 by

Pettis [Pe 50]. He proved that any Baire measurable homormophism between Polish

groups is continuous. Since then important contributions were made by J. P. R. Chris-

tensen [Ch 71], R. M. Dudley [Du 61], A. S. Kechris and C. Rosendal [KR 07], C.

Rosendal and S. Solecki [RS 07], I. Ben Yaacov, A. Berenstein and J. Melleray [BYBM

5



1 Introduction

13], T. Tsankov [Ts 13], and M. Sabok [Sa 13], to name a few. Kechris and Rosendal [KR

07] proved that groups with ample generics (that is, for each n ∈ N there is a comeager

orbit for the diagonal conjugacy action of G on Gn) have the automatic continuity

property. A countably syndetic set for a group G is a subset of G spanning G with

countably many left-translates. A group is called Steinhaus if some �xed power of every

countably syndetic set contains an open neighborhood of the identity. Rosendal and

Solecki [RS 07] found that Steinhaus groups have the automatic continuity property.

Steinhaus groups are the largest known class of groups to have this property. Of partic-

ular interest to us is the recent [Ts 13, Theorem 1], stating that the unitary group on a

separable in�nite-dimensional Hilbert space, endowed with the strong operator topol-

ogy, has the automatic continuity property (by showing that it is Steinhaus). Many

of the results from Kechris, Rosendal, Solecki, Tsankov and Sabok crucially depend on

the existence of comeager conjugacy classes. In some cases, e.g. U(H) with the strong

operator topology, the group itself does not have comeager conjugacy classes, but can

be compared to a group (e.g. by a homeomorphic embedding) having comeager conju-

gacy classes (or a weaker form, so called ample topometric generics, see [BYBM 13]).

Motivated by the automatic continuity property of U(H) [Ts 13, Theorem 1], we

analyze unitary groups U(M) of separable II1 factors M, endowed with the strong

operator topology, with respect to property (AC). A di�culty to handle this case stems

from the fact that every conjugacy class is meager. Our approach uses instead our

results on products of conjugates for PU(M). However, we are forced by our approach

in showing property (AC) to restrict our attention to conjugacy-invariant countably

syndetic sets and separable SIN target groups (i.e. separable topological groups such

that the topology is induced from a bi-invariant metric). We call this phenomenon

invariant automatic continuity. In particular, we show that these groups are invariant

Steinhaus in the sense that we need the additional condition of conjugacy-invariance

on countably syndetic sets. We are able to show that the groups

• PU(n) and SU(n), 2 ≤ n ∈ N, with the uniform topology,

• U(M) and PU(M),M a separable II1 factor, endowed with the strong operator

topology,

have the invariant automatic continuity property. This allows us to conclude the

uniqueness of the Polish SIN topology on these groups. In particular this shows that

6



PU(n) is a group with invariant automatic continuity but not automatic continuity. In

the II1 factor case it is open if it has property (AC).

Combining techniques from our proof of invariant automatic continuity with a result

of Gartside and Peji¢ [GP 08] we are able to prove the uniqueness of the Polish group

topology for the projective unitary group of a separable II1 factor. This was previously

unknown even in the hyper�nite case.

Structure of the thesis

The introduction in Chapter 1 is followed by a survey on the necessary preliminaries

in Chapter 2. In Chapter 3 we treat the topic of extreme amenability and provide an

alternative proof to the original one by Giordano and Pestov. The main part of this

thesis is formed by Chapter 4, where we prove for several unitary groups G of functional

analytic type necessary and su�cient criteria for an element of G to be a product of

conjugates of another element in G. Moreover, we are concerned with (topological)

uniform normal generators and the (topological) bounded normal generation property.

Finally, in Chapter 5, applying some results of Chapter 4, we prove invariant automatic

continuity for PU(n) and SU(n), 2 ≤ n ∈ N, endowed with the uniform topology, and

the projective unitary group of a separable II1 factor, endowed with the strong operator

topology. This again is applied to prove the uniqueness of the Polish SIN topology on

PU(M). We conclude our thesis with an outlook on open problems either arising from

Chapters 4 and 5 or being closely linked, see Chapter 6. At the end of the thesis the

reader will �nd a list of symbols, a detailed bibliography and an index of notation.

Notation

Some remarks on notation. We try to use standard notation whenever possible. We

denote the natural numbers {1, 2, . . .}, integers, rationals, reals and complex numbers

by N, Z, Q, R and C respectively. The symbol H always denotes a (complex) Hilbert

space, which is usually assumed to be separable. We denote by B(H) the algebra of

bounded operators on H. The operator norm on B(H) is denoted by ‖·‖. M always

denotes a von Neumann algebra, often assumed to be semi�nite or more speci�cally a

II1 factor. A semi�nite von Neumann algebra M is always equipped with a faithful

normal semi�nite trace τ . IfM is a II1 factor, it is always assumed to be the unique

7



1 Introduction

normalized faithful normal �nite trace. The unitary group of a von Neumann algebra

M is written as U(M), the projective unitary group ofM as PU(M). The conjugacy

class of an element g in a group G is denoted by gG and the conjugacy class of g−1 by

g−G. For a metric space (X, d) we de�ne the ε-neighborhood of a subset A ⊆ X by

(A)ε := {x ∈ X | d(x, a) ≤ ε for some a ∈ A} .

If we want to specify the metric d (or norm ‖·‖) used we write (A)ε,d (or (A)ε,‖·‖).

We will often use the ceiling function for x ∈ R:

dxe := min {n ∈ Z | n ≥ x} .

8



2 Preliminaries

This chapter represents a short survey on some de�nitions and facts from topological

group theory and operator algebra theory that will be freely used in the remaining

chapters.

2.1 Topological groups

We assume some familiarity with general topology. Nonetheless we will repeat a few

important de�nitions and results from [Bo 89, Chapters II and III], [Ga 09, Chapters

1 and 2], [Ke 95, Chapter I] and [Pe 06, Chapter 1].

Let us start right out with a crucial de�nition.

De�nition 2.1. A topological group is a group G with a topology such that the

map (g, h) 7→ gh−1 of G×G into G is continuous.

For every u ∈ G, the left translation g 7→ ug (respectively the right translation)

is a homeomorphism. Moreover, the mappings g 7→ ugv with u, v running through G

form a group of homeomorphisms. The mappings g 7→ ugu−1 with u running through

G form a subgroup.

Clearly every group is a topological group when endowed with the discrete topol-

ogy. This is not an interesting topology for the purpose of our questions - we will be

concerned with more sophisticated topologies (e.g. the strong operator topology and

the uniform topology on the unitary group of a Hilbert space) introduced in Section 2.2.

A topological space X is called Hausdor� if for any given distinct points x, y ∈ X,

there are open sets U, V ⊆ X such that x ∈ U, y ∈ V, and U ∩ V = ∅. X is called

homogeneous if for every x, y ∈ X, there exists a homeomorphism f of X to itself

such that f(x) = y. Every topological group G is homogeneous, since, given g, h ∈ G,

9



2 Preliminaries

the map x 7→ hg−1x is a homeomorhism from G to G mapping g to h. For a topolog-

ical group, being Hausdor� is equivalent to {e} being a closed set in G, by homogeneity.

Recall that in a topological space X, a fundamental system of neighborhoods

of a point x ∈ X (respectively a subset U ⊆ X) is a set of neighborhoods N of

x (respectively U) such that for each neighborhood V of x (respectively U) there

is a neighborhood W ∈ N such that W ⊆ V . A basis B of the topology can

be characterized as a set of open subsets of X such that for every x ∈ X the set

{V ∈ B | x ∈ V } is a fundamental system of neighborhoods of x.

A topological group G is �rst countable if and only if the identity element 1 of G

has a countable neighborhood base. Every topological group G has an open base at

the identity consisting of symmetric neighborhoods. A connected topological group is

generated by any neighborhood of the identity element.

If H is a normal subgroup of a topological group G, then the quotient by H of the

topology of G is compatible with the group structure of G/H. The quotient group

G/H is Hausdor� if and only if H is closed in G. It is discrete if and only if H is open

in G. In our situation, H will always be normal and closed - usually H is the center of

a unitary group G of functional analytic type.

De�nition 2.2. A group G is simple if it has no nontrivial normal subgroup, i.e., for

every normal subgroup H of G one has either H = {1} or H = G. A topological group

is topologically simple if it has no nontrivial closed normal subgroup.

2.1.1 Uniform spaces

In the context of Lévy groups (cf. Chapter 3) we will make use of the concept of

uniform spaces. The conceptual advantage over topological spaces is that one has a

notion of closeness between points. We repeat the de�nition of a uniform space. More

information can be found in [Bo 89, Chapter II] and [Pe 06, Chapter 1].

De�nition 2.3. A uniform space is a pair (X,U) consisting of a setX and a uniform

structure (or uniformity) U on X. A uniform structure is a family of subsets of

X ×X, called entourages, satisfying the following properties:

(i) U is closed under �nite intersections and supersets (if V ∈ U and V ⊆ U ⊆ X×X,

10
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then U ∈ U).

(ii) Every V ∈ U contains the diagonal 4 := {(x, x) | x ∈ X}.

(iii) If V ∈ U , then V −1 := {(x, y) | (y, x) ∈ V } ∈ U .

(iv) For every V ∈ U there exists U ∈ U such that

U ◦ U := {(x, z) | ∃y ∈ X : (x, y) ∈ U, (y, z) ∈ U} ⊆ V.

For an entourage V ∈ U we express the relation (x, y) ∈ V by saying that x and y are

V -close.

A subfamily B ⊆ U is said to be a basis of the uniformity U if for every U, V ∈ B there

exists W ∈ B with W ⊆ U ∩V , and every entourage V ∈ U contains an element U ∈ B

as a subset.

Given an element V of a uniform structure U on a setX we de�ne the V -neighborhood

V [x] of a point x ∈ X by

V [x] := {y ∈ X | (x, y) ∈ V } .

The sets V [x] with V ∈ U form a neighborhood basis for x with regard to a certain

topology on X that we call the topology determined by U . We say that an uniformity

U determining the topology of a given topological space X is compatible. Every

compact space admits a unique compatible uniformity consisting of all neighborhoods

of the diagonal.

Of course, the notion of an uniformity can be carried over to the context of topological

groups, see [Bo 89, Section III.3] and [Pe 06, Chapter 1]. The left uniform structure

of a topological group G, denoted by UL(G), is an uniformity on G which has as a basis

of entourages of the diagonal the sets

VL :=
{
(x, y) ∈ G×G | x−1y ∈ V

}
,

where V is a neighborhood of the identity. Analogously one can de�ne the right uni-

form structure of a topological group.

11
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2.1.2 Metrizable groups

Let G be a metrizable group, that is, G is a topological group admitting a compatible

metric d. By compatible we mean that it induces the group topology. Then d is called

left-invariant if

d(gu, gv) = d(u, v) for all g, u, v ∈ G.

Analogously d is called right-invariant if

d(uh, vh) = d(u, v) for all h, u, v ∈ G.

Finally, d is called bi-invariant if it is both left- and right-invariant, that is,

d(guh, gvh) = d(u, v) for all g, h, u, v ∈ G.

If G be a topological group and d a left-invariant metric generating the topology of G,

then the corresponding uniform structure is the left uniform structure.

The Birkho�-Kakutani theorem states that a topological group G is metrizable if

and only if it is Hausdor� and �rst countable. Moreover, if G is metrizable, then G

admits a compatible left-invariant metric.

If G is a group and d a bi-invariant metric on G, then G is a topological group in

the topology induced by d. Any compact metrizable group admits a compatible bi-

invariant metric.

The groups we are concerned with all admit a bi-invariant metric - however this metric

does not in all cases introduce the topology of our interest. For example, unitary groups

of von Neumann algebras (see Section 2.2) can be endowed with the topology induced

from the operator norm, which is bi-invariant but not separable if the von Neumann

algebra is not of type In, n ∈ N.

De�nition 2.4. A neighborhood V at the identity of a topological group G is called

invariant if it is invariant under all inner automorphisms, that is, if gV g−1 = V for

all g ∈ G. A topological group G is called SIN if it has a neighborhood basis of the

identity consisting of invariant neighborhoods of the identity.

12
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In the above de�nition SIN stands for small invariant neighborhoods. Note that a

topological group G is SIN if and only if the left and right uniformities on G coincide.

In particular, for every SIN group we have LUCB(G) = RUCB(G), where LUCB(G)

(respectively RUCB(G)) stands for the space of left (respectively right) uniformly con-

tinuous bounded functions on G.

A �rst countable Hausdor� topological group is SIN if and only if it admits a com-

patible bi-invariant metric.

2.1.3 Polish groups

De�nition 2.5. A topological space is Polish if it is separable and completely metriz-

able. A topological group is called Polish if it is Polish as a topological space.

Any Polish group G admits a compatible complete metric. The Birkho�-Kakutani

theorem implies that it admits a compatible left-invariant metric, which is not neces-

sarily complete. If a Polish group G admits a compatible bi-invariant metric d, then d

is complete. If G is a Polish group with bi-invariant metric d and H is a closed nor-

mal subgroup of G, then G/H as a topological group admits a compatible bi-invariant

metric.

Examples. (i) (Rn,+) and (Cn,+) are Polish groups. But (Q,+) with the topology

induced by the absolute value is no Polish group.

(ii) All countable groups with discrete topology are Polish groups.

(iii) All Lie groups (see Subsection 2.1.4) are Polish groups.

(iv) S∞ := {f : N→ N | f is a bijection} with compatible complete metric ρ(x, y) =

d(x, y) + d(x−1, y−1), where d(x, y) = 2−n−1 for x 6= y and n the least number

such that xn 6= yn, is a Polish group.

(v) The unitary group U(H) of a separable in�nite-dimensional Hilbert space, en-

dowed with the strong operator topology, is a Polish group.

(vi) The unitary group U(M) of a separable II1 factorM (see Section 2.2), endowed

with the strong operator topology, is a Polish SIN group. The same holds for the

projective unitary group PU(M) = U(M)/U(1) · 1.

(vii) The universal Urysohn space is a universal Polish space, i.e., it contains every

Polish space as a closed subspace. The isometry group of the Urysohn space is

a universal Polish group, that is, every Polish group is isomorphic to a closed

13
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subgroup of it. For the construction and interesting facts see [Ga 09, Chapter 1

and 2] and [Pe 06, Chapter 5].

[BK 96, Theorem 1.2.6] implies that every bijective continuous homomorphism be-

tween Polish groups is a homeomorphism.

Not every group can be be endowed with a Polish group topology. For example,

the free group on a continuum of generators cannot be equipped with a Polish group

topology, see Corollary 3.3 in [Ro 09b].

2.1.4 Lie groups

Let us brie�y collect some information about Lie groups, taken from [Kn, Chapter IV].

De�nition 2.6. A Lie group is a separable topological group with the additional

structure of a smooth manifold such that the multiplication and inversion are smooth.

We will deal with some special Lie groups in Section 4.5. For n ∈ N denote by

Mn×n(C) the algebra of n× n matrices over the complex �eld C. Given a group G we

write Z(G) for the center of G. We are interested in the Lie groups

U(n) := {u ∈Mn×n(C) | u∗u = uu∗ = 1} , n ∈ N,

SU(n) := {u ∈ U(n) | det(u) = 1} ,

PU(n) := U(n)/Z(U(n)) = U(n)/U(1) · 1,

all of which are compact and connected. One can show that PU(n) = SU(n)/Z(SU(n)).

A torus is a product of circle groups U(1). Every compact connected abelian Lie group

is a torus. In a compact Lie group G one can look for tori as subgroups. Tori are

partially ordered by inclusion and thus any torus is contained in a maximal torus of G.

Any two maximal tori in a compact connected Lie group are conjugate. For example,

the diagonal matrices in U(n) form a maximal torus in U(n).

Theorem 2.7. Let G be a compact connected Lie group and T a maximal torus in G.

Then each element of G is conjugate to an element of T .

2.2 Von Neumann algebras

The material presented in this section can be found in [Bl 06], [Di 81], [KR 83], [KR

86] and [Ta 03].
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We assume the reader to be familiar with basic functional analysis as found e.g.

in [Ru 73]. Some of the results that are assumed to be known by the reader are the

Baire category theorem, Borel functional calculus and the spectral theorem for normal

operators on a Hilbert space. Let H be an �nite- or in�nite-dimensional separable

Hilbert space with scalar product 〈·, ·〉 and induced norm ‖·‖H. We denote by B(H)

the algebra of bounded operators. The identity operator is denoted by 1 ∈ B(H) and

it will be always clear from the context whether 1 refers to the identity operator or the

complex number. If not stated explicitly, we will always denote by ‖·‖ the operator

norm on B(H) de�ned by

‖x‖ := sup
ξ∈H,‖ξ‖H=1

‖xξ‖H .

There are several interesting topologies on B(H). The topology induced from the

operator norm (i.e. the topology of uniform convergence) is called the uniform topol-

ogy, or norm topology. The strong operator topology on B(H) is the topology

of pointwise operator norm convergence, i.e. the topology induced from the separating

family of semi-norms ‖·ξ‖H with ξ ∈ H. A net {xi}i∈I is strong operator convergent to

x0 if and only if ‖(xj − x0)ξ‖H converges to 0 for every ξ ∈ H. The weak operator

topology on B(H) is the topology induced by the family {〈·ξ, η〉}ξ,η∈H. It is readily

checked that uniform convergence implies strong operator convergence, which in turn

implies weak operator convergence. For other interesting topologies as for example

the σ-strong-, σ-weak-, and σ-strong∗ operator topology we refer the reader to the

literature.

Let us repeat the de�nitions of important classes of operators. An operator x ∈ B(H)

is said to be

• self-adjoint if x = x∗;

• normal if x∗x = xx∗;

• positive if 〈xξ, ξ〉 ≥ 0 for all ξ ∈ H;

• a projection if x = x∗ = x2;

• an isometry if x∗x = 1;

• a partial isometry if x∗x is a projection;

• unitary if x∗x = xx∗ = 1.

• a symmetry if x = x∗ = x−1.
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A Banach algebra is a (complex) algebra A which is a Banach space under a

submultiplicative norm ‖·‖ (i.e. ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A). An involution on a

Banach algebra A is a conjugate-linear isometric anti-automorphism ∗ : A → A, x 7→

x∗, of order two, that is, for all x, y ∈ A, λ ∈ C one has (x + y)∗ = x∗ + y∗, (xy)∗ =

y∗x∗, (λx)∗ = λx∗, (x∗)∗ = x, ‖x∗‖ = ‖x‖. A C∗-algebra is a Banach algebra A with

an involution ∗ such that

‖x∗x‖ = ‖x‖2 for all x ∈ A.

Every C∗-algebra can be realized as a (not necessarily unital) operator norm closed

∗-subalgebra of B(H) by the Gelfand-Naimark-Segal construction - see Theorem I.9.18

in [Ta 03]. For our purposes, the most important examples of (concrete) C∗-algebras

are

• the two-sided ideal K(H) ⊂ B(H) of compact operators;

• the Calkin algebra C(H) de�ned by C(H) := B(H)/K(H).

The compact operators form the largest two-sided ideal in B(H).

De�nition 2.8. A norm ideal K is a two-sided ideal of B(H) equipped with a norm

‖·‖K such that ‖x‖ ≤ ‖x‖K = ‖x∗‖K for x ∈ K and ‖axb‖K ≤ ‖a‖ ‖x‖K ‖b‖ for

a, b ∈ B(H).

All nontrivial norm ideals in B(H) are contained in K(H). Some particularly im-

portant examples of norm ideals are the C∗-algebra of compact operators and the

Hilbert-Schmidt operators (or Schatten 2-class operators).

We state a result showing the importance of unitary operators in unital C∗-algebras.

Proposition 2.9. Every element in a unital C∗-algebra A is a linear combination of

four unitary elements of A.

The commutant of a set M ⊆ B(H) is

M ′ := {x ∈M | xy = yx for all y ∈ B(H)} .

The bicommutant of M is then de�ned as M ′′ := (M ′)′. It is obvious that M ⊆M ′′

and M ′2 ⊆M ′1 if M1 ⊆M2. Thus M
′ = (M ′′)′ for any set M ⊆ B(H).
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2.2 Von Neumann algebras

De�nition 2.10. A ∗-subalgebraM of B(H) such thatM =M′′ is called von Neu-

mann algebra. A factor is a von Neumann algebra such thatM∩M′ = C · 1.

The de�nition implies that every von Neumann algebra is unital. We say that a

von Neumann algebra is separable if it acts on a separable Hilbert space. We will

usually be interested in separable von Neumann algebras. Von Neumann algebras were

introduced by John von Neumann in [Ne 30]. He was motivated by his study of group

representation theory, ergodic theory and quantum mechanics. Much progress on the

theory von Neumann algebras was achieved in a series of papers of Murray and von

Neumann, see [MN 36], [MN 37], [Ne 40], [MN 43], [Ne 43], [Ne 49].

One of the most crucial results is the double commutant theorem.

Theorem 2.11. If M is a unital ∗-subalgebra of B(H) then M′′ coincides with the

weak-, strong-, σ-weak- and σ-strong closure ofM.

In particular every von Neumann algebra is closed in all above topologies. We note

here that the original de�nition of a von Neumann algebra involves the weak closure.

In particular, every von Neumann algebra is a C∗-algebra (i.e. it is closed with respect

to the operator norm). But, for example, the C∗-algebras K(H) and C(H) are not

∗-isomorphic to any von Neumann algebra.

The double commutant theorem indicates that there is a rich interplay between

algebraic and topological techniques in analyzing von Neumann algebras. Any von

Neumann algebraM contains an abundance of projections, in particularM contains

all spectral projections of any element in M. Denote the set of unitary operators in

M by U(M) and the set of projections inM by P(M). Then we have

M = U(M)′′ = P(M)′′.

Remark. The last mentioned fact marks a major di�erence between general C∗-algebras

and von Neumann algebras. A C∗-algebra may contain no other projections than 0

and 1 - e.g. the C∗-algebra of continuous functions on the unit interval [0, 1].

Simple examples of von Neumann algebras are �nite-dimensional matrix algebras

Mn×n(C) over C and the algebra B(H) of bounded operators on an in�nite-dimensional

Hilbert space. IfM is an abelian von Neumann algebra on a separable Hilbert space H,
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then there exists a second-countable compact Hausdor� spaceX and a positive measure

µ on X such that M is ∗-isomorphic to the algebra L∞(X,µ) of (equivalence classes

of) essentially bounded complex-valued measurable functions on X (with the usual

pointwise-de�ned operations and the essential supremum norm). More sophisticated

examples are presented in Subsection 2.2.1 below.

2.2.1 Type classi�cation

Von Neumann algebras can be characterized by their projections. Before being able

to give a complete classi�cation of factors, we need to distinguish various classes of

projections. To this end, we introduce an equivalence relation on P(M). The set of

projections in a von Neumann algebra forms a complete lattice.

De�nition 2.12. Two projections p and q in a von Neumann algebra M are called

equivalent if there exists a partial isometry x ∈ M such that x∗x = p and xx∗ = q.

In this case we write

p ∼ q.

p and q are called, respectively, the initial projection and the �nal projection.

If p ∼ q1 ∈ M with q1 ≤ q then we write p - q or q % p. If p - q and p � q (p is not

equivalent to q) then we write p ≺ q or q � p.

The relation ∼ de�nes an equivalence relation on the set of projections inM. Fur-

thermore, one can show that p - q and p % q imply p ∼ q. Let x ∈ M. The smallest

projection p ∈M such that px = x is called left support of x and is denoted by sl(x).

The right support sr(x) of x is the smallest projection q ∈M such that xq = x. By

polar decomposition, sl(x) ∼ sr(x).

Let us state the following powerful theorem.

Theorem 2.13. (Comparability Theorem) LetM be a von Neumann algebra and p, q

projections inM. There exists a central projection z ∈M such that

zp - zq and (1− z)p % (1− z)q.

IfM is a factor, then exactly one of the following relations holds:

p ≺ q; p ∼ q; p � q.
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De�nition 2.14. A projection p in a von Neumann algebraM is said to be

• �nite if p ∼ q ≤ p implies p = q;

• in�nite if p is not �nite;

• purely in�nite if there is no nonzero �nite subprojection q ≤ p inM;

• properly in�nite if zp is in�nite for every central projection z ∈M with zp 6= 0;

• abelian if pMp is abelian.

With these de�nitions in hand, we can completely classify von Neumann algebras.

De�nition 2.15. A von Neumann algebra M is called �nite, in�nite, properly

in�nite or purely in�nite if its identity 1 has the corresponding property.

De�nition 2.16. A von Neumann algebraM is of

• type I if every nonzero central projection in M majorizes a nonzero abelian

projection in M. M is of type In for some cardinal n (�nite or in�nite) if 1 is

the sum of n equivalent abelian projections;

• type II if M has no nonzero abelian projection and every nonzero central pro-

jection inM majorizes a nonzero �nite projection ofM;

� M is of type II1 ifM is of type II and �nite;

� M is of type II∞ if M is of type II and has no nonzero central �nite

projection;

• type III if there is no nonzero �nite projection inM (i.e. M is purely in�nite).

Any von Neumann algebra is uniquely decomposable into the direct sum of von

Neumann algebras of type I, type II1, type II∞ and type III. A von Neumann algebra

without type III summand is called semi�nite. There is a crucial structural di�erence

between semi�nite and type III von Neumann algebras - it is given by the existence of

a so called semi�nite trace.

De�nition 2.17. Let M be a von Neumann algebra. We say that a positive linear

functional τ :M→ C is a trace if τ(xy) = τ(yx) for all x, y ∈M. A trace τ is

• faithful if τ(x∗x) = 0 implies x = 0;

• normal if τ(supi xi) = supi τ(xi) for every bounded increasing net {xi}i∈I of

positive operators inM;

• �nite if τ(1) <∞.
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A semi�nite trace is a positive linear functional τ :M→ C∪{∞} such that τ(xy) =

τ(yx) for all x, y ∈ M and such that every nonzero positive x ∈ M majorizes some

nonzero positive y ∈M with τ(y) <∞;

For a von Neumann algebra it is equivalent to be semi�nite and to admit a faithful

normal semi�nite trace.

A semi�nite von Neumann algebraM with faithful normal semi�nite trace τ natu-

rally acts on the Hilbert space L2(M, τ) obtained from the GNS construction (named

after Gelfand, Naimark and Segal). (Since τ is a positive linear functional, one can

de�ne a pre-inner product on nτ := {x ∈M | τ(x∗x) <∞} by 〈x, y〉τ = τ(y∗x) for

x, y ∈ M. Faithfulness of τ implies that 〈·, ·〉τ is an inner product. The completion of

nτ with respect to 〈·, ·〉τ is then a Hilbert space denoted by L2(M, τ).)

It is worth mentioning that a priori, the existence of type II and type III von Neumann

algebras is not at all clear. Since we will be interested in II1 factors, we will focus on

examples of those in Subsection 2.2.2.

2.2.2 Type II1 factors

A II1 factorM admits a unique faithful normal normalized trace τ . Any isometry in

M is unitary. The notions of (Murray von Neumann) equivalence of projections and

unitary equivalence of projections coincide. Denote the set of projections of M by

Proj(M). Elements in Proj(M) can take any value in [0, 1]. For p ∈ Proj(M) one has

p = 0 if τ(p) = 0 by faithfulness and p = 1 if τ(p) = 1. A projection p ∈ Proj(M) can

always be halved, i.e. one can �nd subprojections p1, p2 - p such that p1 + p2 = p and

τ(p1) = τ(p2). The fact that τ takes continuous values on Proj(M) is often referred to

as continuous dimension. For any nonzero projection p ∈ Proj(M) the algebra pMp is

a II1 factor (acting on pH). For a spectral projection p ∈ Proj(M) of an operator we

call τ(p) ∈ [0, 1] the spectral weight or weight for short.

For x ∈M we let |x| := (x∗x)1/2. We de�ne the 1-norm ‖·‖1 onM by

‖x‖1 := τ(|x|) for x ∈M.
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The 2-norm ‖·‖2 is de�ned by

‖x‖2 := τ(x∗x)1/2 for x ∈M.

We will use without further notice that the metric d2 induced from the 2-norm de�nes

a bi-invariant metric on M, which follows from the trace property τ(xy) = τ(yx) for

x, y ∈M. Note that the metrics induced from ‖·‖ and ‖·‖1 are also bi-invariant.

We will need the following inequalities between the 1-norm and the 2-norm. For

convenience, we provide its easy proof.

Proposition 2.18. LetM be a II1 factor. Assume that u, v ∈ U(M) and x ∈M.

(i) |τ(x)| ≤ τ(|x|).

(ii) ‖u− v‖21 ≤ ‖u− v‖
2
2 ≤ 2 · ‖u− v‖1.

(iii) ‖·‖1 and ‖·‖2 induce the same topology.

Proof. (i) Let x = w |x| = w(x∗x)1/2 be the polar decomposition of x. Using the

Cauchy-Schwarz inequality [Ta 03, Proposition I.9.5], we obtain

|τ(x)| = |τ(w |x|)|

=
∣∣∣τ(w |x|1/2 |x|1/2)∣∣∣

≤ τ(|x|1/2w∗w |x|1/2)1/2τ(|x|1/2 |x|1/2)1/2

= τ(w∗w |x|)1/2τ(|x|)1/2

= τ(|x|).

In the last step, we used that w∗w is unitary on ker(|x|)⊥ = ker(x)⊥.

(ii) Using the Cauchy-Schwarz inequality, we obtain

‖u− v‖1 ≤ τ(|u− v|
∗ |u− v|)1/2τ(1∗1)1/2 = ‖u− v‖2 .

The second inequality follows from (i) and the bi-invariance of ‖·‖1:

‖u− v‖22 = τ(1− u∗v + 1− v∗u)

= τ(1− u∗v) + τ(1− v∗u)

≤ |τ(1− u∗v)|+ |τ(1− v∗u)|
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≤ τ(|1− u∗v|) + τ(|1− v∗u|)

= 2 · ‖u− v‖1 .

(iii) This is clear from (ii).

Now we describe a way to construct II1 factors. Let G be a countable discrete group.

Then the left regular representation λ : G→ U(`2(G)) is de�ned by

λ(g)ξh = ξgh for g, h ∈ G, ξh ∈ `2(G).

The group von Neumann algebra of G is de�ned as

L(G) := {λ(g) | g ∈ G}′′ .

The canonical trace on L(G) is given by τ(·) = 〈·ξ1, ξ1〉. We say that a group is ICC if

the conjugacy class of every nontrivial element is in�nite. It can be checked that L(G)

is a II1 factor if and only if G is ICC. Elementary examples of ICC groups are

• the group Sfin of �nitely supported permutations on N;

• the free group Fn on n ≥ 2 generators;

• the �ax+ b� group
{(

a b
0 1

)
| a, b ∈ Q, a > 0

}
.

An interesting fact is that all amenable ICC groups (e.g. Sfin) give isomorphic

group von Neumann algebras, called the hyper�nite II1 factor, usually denoted by

R. The hyper�nite II1 is the unique smallest II1 factor in the sense that every II1

factor contains a copy of R. We note that Ozawa [Oz 03] has proved that there are

uncountably many non-isomorphic separable II1 factors (and that there is no universal

separable II1 factor). There are several equivalent ways of describing R, see [Ta 03,

Theorem XIV.2.4]. For example, R can be constructed as an in�nite tensor product

(see [Ta 03, Section XIV.1]) of the matrix algebras M2×2(C) with unique normalized

trace. Or equivalently, R is generated by an increasing sequence of �nite-dimensional

∗-subalgebras of R.

The von Neumann algebraic in�nite tensor product Rλ of M2×2(C) with the state

φλ, λ ∈ (0, 1), de�ned by

φλ((aij)) :=
λ

1 + λ
a11 +

1

1 + λ
a22.
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2.2 Von Neumann algebras

gives a type III factor. The factor Rλ is called Powers factor after its inventor R.

Powers. There is a �ner classi�cation of type factors into type IIIλ, λ ∈ [0, 1], with the

help of Connes' invariant S(M). It turns out that Rλ, λ ∈ (0, 1), is of type IIIλ and

that Rλ is not isomorphic to Rµ for λ 6= µ ∈ (0, 1).

Historically the group measure space construction by Murray and von Neumann was

the �rst construction which proved the existence of non-type I factors. The construction

is a special case of a W ∗-crossed product. The interested reader is referred to the

literature.

A longstanding open problem (the so called free factor problem) asks whether L(Fn) =

L(Fm) for n 6= m. Note here that Fn, n ≥ 2, is not amenable and thus L(Fn) 6= R. It

led Voiculescu to the discovery of free probability theory, a noncommutative analogue

of classical probability theory.

2.2.3 Reduction theory

The reduction theory of von Neumann algebras is concerned with the decomposition

of von Neumann algebras into smallest parts. We mentioned already that every von

Neumann algebra can be uniquely decomposed into the direct sum of those of type I,

II1, II∞ and III. Every factor is of one of these types. On a separable Hilbert space,

any von Neumann algebra is a direct integral (a �measurable direct sum�) of factors.

The theory of direct integrals requires considerable technical e�ort and can be found

in [Di 81, Part II], [KR 86, Chapter 14] and [Ta 03, Chapter IV]. Our short account is

taken from [Bl 06, Section III.1.6].

Let (X,µ) be a standard measure space and (Hx, 〈·, ·〉x)x∈X a separable Hilbert space

for µ-almost all x ∈ X. A measurable �eld is a vector subspace V ⊆
∏
xHx closed

under multiplication by L∞(X,µ), such that x 7→ 〈ξ(x), η(x)〉x is measurable for all

ξ, η ∈ V and
∫
X〈ξ(x), ξ(x)〉xdµ(x) <∞ and such that V is generated as an L∞(X,µ)-

module by a countable subset {ξn}n∈N ⊆ V such that the completion of span {ξn(x)}n∈N
is Hx for µ-almost all x ∈ X. The completion of V is a separable Hilbert space H,

which can be identi�ed with the space of equivalence classes of measurable section of

the �eld (Hx)) written

H =

∫ ⊕
X
Hxdµ(x).

For Tx ∈ B(Hx), (Tx) is a measurable �eld of bounded operators if (Txξ(x)) is

a measurable section for each measurable section ξ. Assume that ‖Tx‖ is uniformly
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bounded. Then (Tx) de�nes an operator T ∈ B(H), which is called decomposable

and written

T =

∫ ⊕
X
Txdµ(x).

The algebra of diagonalizable operators is the image of L∞(X,µ) via

f 7→
∫ ⊕
X
f(x)1xdµ(x).

Let M be a von Neumann algebra on a separable Hilbert space H and A an com-

mutative von Neumann subalgebra of M′. As A is an abelian von Neumann algebra

on a separable Hilbert space H, it is generated (as a von Neumann algebra) by a single

bounded operator T on H. There exists a measure µ on X = σ(T ), a measurable �eld

of Hilbert spaces (Hx) over (X,µ), and a unitary

u : H →
∫ ⊕
X
Hxdµ(x)

such that A is mapped onto the set of diagonalizable operator and for all T ∈ A′ the

element

uTu∗ =

∫ ⊕
X
Txdµ(x)

is measurable.

2.2.4 Generalized s-numbers

We summarize some facts on generalized s-numbers for semi�nite von Neumann alge-

bras, collected mainly from [FK 86]. The de�nition and several properties of generalized

s-numbers are crucial for understanding Chapter 4.

Throughout this section, let M denote a semi�nite von Neumann algebra acting on

a Hilbert space H with faithful semi�nite normal trace τ . Fack and Kosaki provide a

more general framework in [FK 86], using τ -measurable operators (which are special

possibly unbounded operators a�liated withM). For our purposes, it su�ces to con-

sider operators inM itself.

The classical s-numbers of compact operators can be generalized in the following way.

De�nition 2.19. Let T ∈ M and t > 0. We de�ne the t-th generalized s-number

24



2.2 Von Neumann algebras

µt(T ) of T as

µt(T ) := inf {‖Tp‖ | p ∈ Proj(M) such that τ(1− p) ≤ t} .

We aim at presenting various expressions for µt in this section. For T ∈M we de�ne

the distribution function of T by

λt(T ) = τ
(
E(t,∞)(|T |)

)
, t ≥ 0,

where E(t,∞)(|T |) is the spectral projection of |T | corresponding to the interval (t,∞).

If T ∈ M, then λt(T ) < ∞ for t large enough and limt→ λt(T ) = 0. Since τ is

normal and E(tn,∞)(|T |) ↗ E(t,∞)(|T |) strongly as tn ↘ t (by strong right continuity

of E(t,∞)(|T |)), the map [0,∞) 3 t 7→ λt(T ) is non-increasing and continuous from the

right.

For t > 0, let Rt :=
{
S ∈M | τ (supp(|S|)) ≤ t

}
, where supp(|S|) denotes the sup-

port projection of |S|. The approximation number d(T,Rt) of T ∈ M is de�ned

as

d(T,Rt) := inf {‖T − S‖ | S ∈ Rt} .

Let us collect important characterizations of the above de�ned generalized s-numbers.

Proposition 2.20. Let T be an element of the semi�nite von Neumann algebraM.

(i) If N is any von Neumann subalgebra ofM containing the spectral projections of

|T |, then

µt(T ) = inf
p∈Proj(N ), τ(1−p)≤t

(
sup

ξ∈pH, ‖ξ‖=1
‖Tξ‖

)
.

(ii) For any t > 0, we have

µt(T ) = inf {s ≥ 0 | λs(T ) ≤ t} ,

and this in�mum is attained.

(iii) µt(T ) = d(T,Rt).

We list some more important properties of generalized s-numbers.
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Lemma 2.21. Assume that S, T ∈M.

(i) The map (0,∞) 3 t 7→ µt(T ) is non-increasing and right continuous. Moreover,

lim
t↘0

µt(T ) = ‖T‖ ∈ [0,∞].

(ii) µt(T ) = µt(|T |) = µt(T
∗) and µt(αT ) = |α|µt(T ) for t > 0 and α ∈ C.

(iii) µt(T ) ≤ µt(S) for t > 0, if 0 ≤ T ≤ S.

(iv) µt (f(|T |)) = f (µt(|T |)) , t > 0, for any continuous increasing function f on

[0,∞) with f(0) ≥ 0.

(v) µt+s(T + S) ≤ µt(T ) + µs(S) for s, t > 0.

(vi) µt(STR) ≤ ‖S‖ ‖R‖µt(T ), t > 0.

(vii) µt+s(TS) ≤ µt(T )µs(S), s, t > 0.

Lemma 2.21(i) shows that we can actually de�ne µt for all t ≥ 0. The following

lemma contains the following statement, which will be implicitly used in Chapter 4:

IfM is a II1 factor and T ∈M then we have µt(T ) = 0 for t ≥ 1.

Lemma 2.22. If T ∈M and p ∈ Proj(M), then we have

µt(Tp) = 0 for t ≥ τ(p).

In particular, if τ(1) = α <∞, then

µt(T ) = 0 for t ≥ α.

We actually get a new expression for the trace τ .

Proposition 2.23. (i) Assume that T ∈M is positive. Then

τ(T ) =

∫ ∞
0

µt(T )dt.

(ii) Assume that T ∈ M and let f be a continuous increasing function on [0,∞)

satisfying f(0) = 0. Then

τ (f(|T |)) =
∫ ∞

0
f(µt(T ))dt,
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2.3 Basic properties of unitary groups of II1 factors

and in particular,

‖T‖p =
(∫ ∞

0
µt(T )

pdt

)1/p

for p ∈ (0,∞).

Corollary 2.24. For positive operators S, T ∈M, the following conditions are equiv-

alent:

(i) µt(T ) ≤ µt(S), t > 0;

(ii) λs(T ) ≤ λs(S), s ≥ 0;

(iii) τ (f(T )) ≤ τ (f(S)) for any continuous increasing function f on [0,∞) with

f(0) = 0.

IfM is a factor, then the above are equivalent to

(iv) E(s,∞)(T ) - E(s,∞)(S), s ≥ 0.

2.3 Basic properties of unitary groups of II1 factors

In this section we collect some fundamental and important known properties of unitary

groups of II1 factors. Throughout this section,M denotes a II1 factor if not explicitly

stated.

As mentioned already in Section 2.2, every element inM is a linear combination of

four unitary elements in M. Any unitary operator in a von Neumann algebra is the

exponential of a self-adjoint operator in the algebra. (This is wrong for general C∗-

algebras due to the lack of enough spectral projections.) It is not hard to see that the

unitary group of a von Neumann algebra is pathwise connected in its norm topology

and thus in particular in the strong operator topology, see e.g. [KR 86, Exercise 5.7.24].

One can show that on U(M) the strong-, weak-, σ-weak, σ-strong and σ-strong-∗

topologies coincide. We will implicitly use the following result.

Proposition 2.25. The topology induced by the 2-norm coincides with the strong

operator topology on U(M). Moreover, U(M) is complete in this topology.

LetM for a moment be a separable II1 factor, that is, H := L2(M, τ) is separable.

To obtain that U(M) is a Polish group with the strong operator topology, it only

remains to show that U(M) is separable. By Corollary 3 to Theorem IV.2.1 in [Bo

66], the unit ball B(H)1 of the bounded operators on a separable Hilbert space is

compact (separable, since metrizable) for the weak topology. As U(M) is a subset of
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the separable set B(H)1, it is again separable for the weak topology, and hence for

the strong topology. It is well-known that U(M) is not locally compact in the strong

operator topology.

Theorem 2.26. The unitary group U(M) (respectively projective unitary group PU(M))

of a separable II1 factor, endowed with the strong operator topology, is a non-locally

compact Polish group.

We remark here that if U(M) is equipped with the uniform topology, then it is not

separable and hence not a Polish group.

The following [Br 67, Theorem 1] of Broise plays an important role in Chapter 4 and

in particular in Section 4.3.

Theorem 2.27 (Broise). Every unitary operator ofM is the product of 32 symmetries.

Broise concluded from the above theorem that U(M) admits no nontrivial character.

In Section 4.3 we present the proof of Theorem 2.27 with slight modi�cations in order

to obtain that every unitary in U(M) is the product of 32 conjugates of any symmetry

of trace 0.

Kadison [Ka 52] has shown that PU(M) is topologically simple in the uniform topol-

ogy. De la Harpe [Ha 79] was able to show more:

Theorem 2.28 (de la Harpe). PU(M) is simple.

The proof of Theorem 2.28 crucially depends on Theorem 2.27. Let us explain de la

Harpe's strategy. He �rst shows that any normal subgroupH 6= {1} of PU(M) contains

at least one nontrivial symmetry, then concluding that H contains all symmetries of

PU(M) which in turn completes the proof by Theorem 2.28.

It was also noticed by de la Harpe that Theorem 2.28 implies that U(M) admits no

nontrivial �nite-dimensional unitary representation.

We will reprove the following result of Giordano and Pestov [GP 06] in Chapter 3.

Theorem 2.29. Let R be the hyper�nite II1-factor. Then U(R), endowed with the

strong topology, is extremely amenable.

We close this section by mentioning that Popa and Takesaki [PT 93] managed to

prove contractibility of U(M) for some classes of II1 factors. It is very surprising
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2.3 Basic properties of unitary groups of II1 factors

that this result could not be proved by II1 factor techniques but instead by type III

factor techniques. In the following theorem, we call a II1 factor strongly stable if it is

isomorphic to the tensor product of itself with the hyper�nite II1 factor.

Theorem 2.30 (Popa-Takesaki). The unitary group U(M) of a II1-factor M is con-

tractible in the strong operator topology if M is either hyper�nite, strongly stable, iso-

morphic to the factor L(F∞) associated with the free group F∞ of in�nite generators,

or isomorphic to the tensor product of L(F∞) with any other factor.

It is still open whether U(M) is contractible in the strong operator topology for any

II1 factor.
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3 Extreme Amenability

This chapter is concerned with an alternative proof of extreme amenability of the

unitary group U(R) of the hyper�nite II1 factor, endowed with the strong operator

topology. Let us start right out with the main de�nition of this chapter.

De�nition 3.1. A topological group G is extremely amenable (or has the �xed

point on compacta property) if every continuous action of G on a compact space

X admits a �xed point.

Recall that a topological group G is amenable if every a�ne continuous action G

on a compact convex set X admits a �xed point. Thus, extreme amenability is a con-

siderably stronger property.

Let us present a short account on the history of the subject following Pestov [Pe 06].

Extreme amenability for semigroups was �rst considered by Granirer [Gr 65], [Gr 66]

and Mitchell [Mi 66]. Granirer and Mitchell found examples of semigroups (but not

groups) which are extremely amenable. Mitchell [Mi 70, Footnote 2] asked whether

extremely amenable groups exist at all.

Ellis has proved in [El 60] that every discrete group acts freely on a compact space,

i.e. no discrete group can be extremely amenable. Granirer and Lau [Gr 71] showed

that no locally compact group can be extremely amenable. A celebrated theorem of

Veech, see [Ve 77] (or [Pe 06, Section 3.3] for a simpli�ed proof) states that any locally

compact group acts freely on a compact space.

Herer and Christensen [HC 75] provided the �rst example of a nontrivial extremely

amenable group in 1975. Their example was more in the spirit of a counterexample

than a naturally occuring topological group: Let G be a topological group and µ a

non-atomic probability measure on R. We denote by L0(R, µ;G) the group of all µ-

equivalence classes of measurable maps from R to G. Herer and Christensen showed

that L0(R, µ;R) is extremely amenable whenever µ is a pathological submeasure (i.e.
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3 Extreme Amenability

µ is nontrivial but dominates no nontrivial measure).

A milestone was set by Gromov and Milman [GM 83] - they proved (answering a

question of Furstenberg) that the unitary group U(`2) with the strong operator topology

has the �xed point on compacta property. U(`2) is the �rst known example of a Lévy

group, see De�nition 3.14. It is worthwile noting that de la Harpe has shown that

U(`2) is amenable in the strong operator topology, cf. [Ha 73], and non-amenable in

the uniform operator topology, cf. [Ha 78].

Theorem 3.2 (Gromov-Milman). The unitary group of a separable in�nite-dimensional

Hilbert space, endowed with the strong operator topology, is extremely amenable.

Several other groups have been proved to be extremely amenable in the past decades:

• the group L0(R, µ;T) is extremely amenable if µ is a non-atomic measure, it is

also the second known example of a Lévy group and due to Glasner [Gl 98] and

independently Furstenberg and Weiss (unpublished); more examples of L0-groups

have been found by Pestov [Pe 02], Farah and Solecki [FS 08] and recently by

Sabok [Sa 12];

• the group Homeo+([0, 1]) of order-preserving homeomorphisms of the unit inter-

val, due to Pestov [Pe 98];

• the isometry group Iso(U) of the Urysohn space U, due to Pestov [Pe 02];

• groups of the form Aut(M) for a large class of countable structures M , due to

Kechris, Pestov and Todorcevic [KPT 05];

• the unitary group U(M) of a �nite continuous injective von Neumann algebra

M with separable predual and the group Aut([0, 1], λ) of measure-preserving

automorphisms of the Lebesgue space, due to Giordano and Pestov [GP 06];

The proof of extreme amenability of U(`2) by Gromov and Milman linked extreme

amenability with the concentration of measure phenomenon. The concentration of

measure phenomenon roughly states that for a typical high-dimensional structure X

for any ε > 0 the ε-thickening Aε of any set A ⊆ X containing at least half of the points

of X contains already almost all points. This is capured in the concept of Lévy families

and Lévy groups and will be explained in Section 3.1. Gromov and Milman proved

that U(`2) with the strong operator topology is a Lévy group by treating SU(n) as a
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Riemannian manifold and showing that inftRic(t, t) → ∞ as n → ∞ (showing that

(SU(n), dn, µn) forms a Lévy family with the unnormalized Hilbert-Schmidt metric dn

and Haar measure µn on SU(n)), where t runs over all unit tangent vectors in the

tangent space of SU(n). This was also used in the proof of extreme amenability of

U(R) by Giordano and Pestov. Our approach uses instead estimates on the so called

concentration functions (see De�nition 3.7) and Theorem 3.9 - this seems more natural

and clear to us.

Let us lose some words on its history. The concentration of measure phenomenon

was seemingly already used by Maxwell to obtain his Maxwell-Boltzmann distribution

law (around 1860), for an account on this cf. [Gr 93, Section 31
2 .22]. The topic was

explicitly treated for Euclidean spheres in the book [Le 22] by Lévy. Important results

have been discovered by Dvoretzky [Dv 59] and Milman [Mi 67], [Mi 71]. Let us mention

a version of a theorem of Milman which has been established via the concentration of

measure phenomenon, cf. [Pe 06, Theorem 0.0.2].

Theorem 3.3 (Milman). Let f be a uniformly continuous function from the unit sphere

S∞ of `2(N) to R. For every ε > 0 and every n ∈ N there exists a n-dimensional linear

subspace V of `2(N) such that restriction of f to the unit sphere of V is constant within

ε.

The above theorem says that the unit sphere of `2(N) is �nitely oscillation stable, a

property closely related to extreme amenability. There is a combinatorial version [Pe

06, Theorem 0.0.4] of Theorem 3.3 deduced from the classical in�nite Ramsey theorem

(see [Pe 06, Section 1.5] for the classical Ramsey theorem and versions of it).

Theorem 3.4. Let γ be a �nite coloring (i.e. �nite partition) of S∞. Then for every

ε > 0 there exists a sphere Sn ⊂ S∞ of arbitrarily high dimension n ∈ N which is

monochromatic within ε. That is, Sn is contained in the ε-neighborhood of one of the

elements of γ.

In [MT 14] Melleray and Tsankov have generalized some ideas of [KPT 05] to establish

a characterization of extreme amenability in Fraïsse-theoretic terms in the framework

of continuous logic.

A geometric account on the concentration of measure phenomenon can be found in

Section [Gr 93, 31
2 ]. Ledoux [Le 01] published a book on the topic more focusing on
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quantitative and probabilistic aspects as well as applications, e.g., in statistical mechan-

ics, discrete and algorithmic mathematics. Pestov [Pe 06] has written a lecture series

volume treating the concentration of measure phenomenon from various perspectives

around dynamics of in�nite-dimensional groups.

3.1 U(R) is a Lévy group

We provide an alternative proof for the following result.

Theorem 3.5 (Giordano-Pestov). U(R), endowed with the strong operator topology,

is extremely amenable.

The proof consists of two steps. The �rst is to show that U(R) is a Lévy group (see

De�nition 3.14) via showing that (U(n), d1,n, µn) is a Lévy family (see De�nition 3.6),

where d1,n is the normalized trace metric and µn denotes the normalized Haar measure

on U(n). The second step is to show that every Lévy group is extremely amenable.

While we present a di�erent approach to the �rst step, the second step is taken from [Pe

06].

Following Gromov and Milman [GM 83] we introduce some de�nitions. Note that

De�nition 3.6(iii), taken from [Pe 06, Section 1.2], is a generalization of De�nition

3.6(ii).

De�nition 3.6. (i) A space with metric and measure, or a mm-space, is a

triple (X, d, µ) consisting of a set X, a metric d on X and a probability Borel

measure on the metric space (X, d).

(ii) A family (Xn, dn, µn)n∈N of mm-spaces is a Lévy family if, whenever Borel

subsets An ⊆ Xn satisfy

lim inf
n→∞

µn(An) > 0

one has

lim
n→∞

µn((An)ε) = 1

for every ε > 0. Here (An)ε denotes the ε-neighbourhood of An, that is,

(An)ε = {x ∈ Xn | ∃y ∈ An such that dn(x, y) < ε}.

(iii) A net (µα) of probability Borel measures on a uniform space (X,U) has the Lévy
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concentration property, or concentrates, if for every family of Borel subsets

Aα ⊆ X satisfying

lim inf
α

µα(Aα) > 0

and every entourage V ∈ UX one has

µα(V [Aα])→α 1.

One can show that in De�nition 3.6(ii) it is enough to ensure that the values µn(An),

An ⊆ Xn Borel, are bounded away from zero by any apriori chosen constant, e.g.

µn(An) ≥ 1/2. This leads us to the concept of so called concentration functions by

Milman and Schechtman [Mi 86], [MS 86].

De�nition 3.7. The concentration function αX : [0,∞)→ [0, 1/2] of an mm-space

X, de�ned for ε ≥ 0 by

αX(ε) =


1

2
, if ε = 0,

1− inf{µ(Aε) | A ⊆ X is Borel , µ(A) ≥ 1/2}, if ε > 0.

The notion of a concentration function is closely related to that of a Lévy family.

Lemma 3.8. A family (Xn, dn, µn)n∈N is a Lévy family if and only if αXn(ε)→n→∞ 0

pointwise for all ε > 0.

Assume that H is a closed subgroup of a compact group G, equipped with a bi-

invariant metric d. Then the formula d̃(g1H, g2H) := infh1,h2∈H d(g1h1, g2h2) de�nes a

left-invariant metric on the factor space G/H, see Lemma 4.5.2 in [Pe 06]. We refer to

d̃ as the factor metric. De�ne the diameter diam(G/H) of the factor space G/H to

be

diam(G/H) := sup
g1,g2∈G

inf
h1,h2∈H

d(g1h1, g2h2).

We repeat Theorem 2.9 in [GP 06] which is an improved version of [MS 86, Theorem

7.8]. The proof is based on Martingale techniques, the interested reader �nds it in [Pe

06, Sections 4.3, 4.5]. This theorem will be crucial for our proof that (U(n), d1,n, µn)

forms a Lévy family.
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Theorem 3.9. Let G be a compact group equipped with a bi-invariant metric d and let

{e} = H0 < H1 < . . . < Hn = G be a sequence of closed subgroups. Equip every factor

space Hk/Hk−1, k = 1, . . . , n, with the factor metric of d and let ak denote the diameter

of Hk/Hk−1. Then the concentration function of the mm-space (G, d, µ), where µ is

the normalized Haar measure, satis�es

αG(ε) ≤ exp

(
− ε2

8
∑n−1

k=0 a
2
k

)
.

Let d1,n denote the normalized trace metric on the space Mn×n(C) of n×n-matrices

induced from the normalized trace norm ‖·‖1,n, where n ∈ N. That is, with tr the

unnormalized trace on Mn×n(C),

d1,n(u, v) = ‖u− v‖1,n =
1

n
tr(|u− v|), u, v ∈Mn×n(C).

We �rst prove a inequality between the operator norm ‖·‖op,n := supξ∈Cn,‖ξ‖n=1 ‖·ξ‖n
onMn×n(C) and the normalized trace norm. Here, ‖·‖n = (〈·, ·〉n)1/2 denotes the norm

induced from the standard scalar product 〈·, ·〉n on Cn.

Lemma 3.10. Denote by rk(x) the rank of x. For every x ∈Mn×n(C) one has

‖x‖1,n ≤
rk(x)

n
‖x‖op,n .

Proof. Let {ξk}k=1,...,n be an orthonormal base for Cn such that {ξk}k=1,...,rk(x) is an

orthonormal base for the range of x. Recall that rk(x∗x) = rk(x) and hence rk(|x|) =

rk(|x|∗ |x|) = rk(x∗x) = rk(x). Using the Cauchy-Schwarz inequality, we conclude

tr(|x|) =
n∑
j=1

〈|x| ξj , ξj〉n

=
n∑
j=1

rk(x)∑
k=1

〈|x| ξj , ξk〉n〈ξk, ξj〉n

=

rk(x)∑
k=1

〈|x| ξk, ξk〉n
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≤
rk(x)∑
k=1

‖|x| ξk‖n ‖ξk‖n

≤ rk(x) ‖x‖op,n .

Proposition 3.11. Assume that 3 ≤ n ∈ N and u ∈ U(n). Then there exists v ∈

U(n− 1) ⊆ U(n) via v ↪→ ( v 0
0 1 ) ∈ U(n) such that

d1,n(1, uv) ≤
4

n
.

In particular, vu = 1− x for some operator x of rank at most 2.

Proof. Denote by {ek}k=1,...,n the standard orthonormal basis of Cn. If uen = en, then

u ∈ U(n − 1) and we can choose v = u∗ ∈ U(n − 1) such that tr(uv) = tr(uu∗) = n.

Hence assume that uen = ξ 6= en and consider X := span〈en, ξ〉 =̃ C2. There exists

an unitary operator w : X → X such that wξ = en. De�ne w̃ := 1X⊥ ⊕ w with X⊥

denoting the orthogonal complement of X in Cn (with respect to the standard scalar

product). Then w̃u ∈ U(n− 1), since w̃uen = (1X⊥ ⊕w)ξ = en. De�ne v := u∗w̃∗ and

note that 1 = 1X⊥ ⊕ 1X = w̃ − 0X⊥ ⊕ w + 0X⊥ ⊕ 1X to obtain

tr(uv) = tr(vu)

= tr(u∗w̃∗(w̃ − 0X⊥ ⊕ w + 0X⊥ ⊕ 1X)u)

= tr(u∗w̃∗w̃u) + tr(u∗w̃∗(0X⊥ ⊕ 1X − 0X⊥ ⊕ w)u)

= n− tr(u∗w̃∗(0X⊥ ⊕ w − 0X⊥ ⊕ 1X)u).

The rank rk(x) of the operator x := u∗w̃∗(0X⊥ ⊕ w − 0X⊥ ⊕ 1X)u is at most 2, since

rk(0X⊥ ⊕ w − 0X⊥ ⊕ 1X) ≤ 2. The bi-invariance of d1,n and Lemma 3.10 imply that

d1,n(1, uv) = ‖1− vu‖1,n = ‖x‖1,n ≤
4

n
,

since vu = 1− x and ‖x‖op,n ≤ 2.

Actually the proof shows that Proposition 3.11 is also valid for the orthogonal groups

O(n), n ≥ 3. The proof of Proposition 3.11 additionally shows the following.
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3 Extreme Amenability

Corollary 3.12. For every u ∈ U(n), n ≥ 3, there exists v ∈ U(n − 1) ⊆ U(n) such

that Re(tr(uv)) ≥ n− 4 and |Im(tr(uv))| ≤ tr(|Im(uv)|) ≤ 4.

Proof. Retain the notation of the above proof. We conclude Re(tr(uv)) ≥ n− 4 from

the calculation . Since rk(x) ≤ 2, x has at most two nonzero eigenvalues λ1, λ2 ∈ C.

The inequality sprad(x) ≤ ‖x‖op ≤ 2, see [Be 09, Proposition 9.3.2], implies that

|λ1| , |λ2| ≤ 2, where sprad(x) denotes the spectral radius of x. We conclude that

|Im(tr(uv))| = |Im(tr(x))| ≤ |tr(x)| ≤ tr(|x|) = |λ1|+ |λ2| ≤ 4.

Remark. If u ∈ U(2) and v ∈ U(1) ⊆ U(2), then tr(uv) might be 0, independ of v.

Indeed, this is true for every u ∈ U(2) of the form u =

0 −za

a 0

, where |a| , |z| =

1, a, z ∈ C.

Theorem 3.13. (U(n), d1,n, µn)n∈N forms a Lévy family, where d1,n denotes the nor-

malized trace metric on U(n) and µn is the normalized Haar measure on U(n).

Proof. We want to use Theorem 3.9. Consider the compact Lie groupU(n), 3 ≤ n ∈ N,

equipped with the bi-invariant trace metric d1,n induced from ‖·‖1,n. Embed U(k) in

U(n) via U(k) 3 u 7→

u 0

0 1n−k

 ∈ U(n), where k ≤ n, k ∈ N. We calculate the

diameter ak := diam(U(k)/U(k− 1)) of the factor space U(k)/U(k− 1) with regard to

the factor metric, where k = 1, . . . , n, U(0) := {1}. We use Proposition 3.11 to obtain

ak ≤ 2 sup
u∈U(k)

inf
v∈U(k−1)

d1,n(1, uv) ≤
8

n
.

If k = 1, we obtain a1 ≤ 2 supu∈U(1) infv∈U(0) d1,n(1, uv) = 2 supu∈U(1) d1,n(1, u) =
4
n .

If k = 2, we obtain a2 ≤ 8
n , i.e. ak ≤

8
n for all k = 1, . . . , n.

Theorem 3.9 and the above calculations imply that the concentration function of the

mm-space (U(n), d1,n, µn) satis�es

αU(n)(ε) ≤ 2 exp

(
− ε2

8
∑n−1

k=0 a
2
k

)

≤ 2 exp

(
− n2ε2

8
∑n−1

k=0 64

)
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3.2 Every Lévy group is extremely amenable

= 2 exp

(
−nε

2

512

)
.

Hence, αU(n) →n→∞ 0 pointwise on (0,∞) and thus Lemma 3.8 implies that (U(n), d1,n, µn)

is a Lévy family.

Observe that the proof of Theorem 3.13 holds analogously for the orthogonal groups

O(n), thus showing that (O(n), d1,n, µn)n∈N forms a Lévy family.

Let us now de�ne the notion of a Lévy group [Pe 06, De�nition 4.1.1], which is

basically a group admitting a Lévy family as an approximative structure.

De�nition 3.14. A topological group G is called Lévy group if there is a family of

compact subgroups (Gα) of G, directed by inclusion, with everywhere dense union and

such that the normalized Haar measures on Gα concentrate with respect to the right

(or left) uniform structure on G.

Theorem 3.15. U(R), endowed with the strong operator topology, is a Lévy group.

Proof. The directed family {U(n)}n∈N of compact subgroups of U(R) is strongly dense

in U(R) and the strong topology in U(R) is induced from the 2-metric. Moreover, the

trace metric induces the same topology by Lemma 2.18. By Theorem 3.13, the family

(U(n), d1,n, µn) concentrates with regard to the uniform structure of U(R).

3.2 Every Lévy group is extremely amenable

This section is taken from [Pe 06, Chapter 2 and 4]. It is included for convenience. We

need [Pe 06, Lemma 2.1.5]. We omit its proof.

Lemma 3.16. Assume that G is a topological group acting continuously on a compact

space X. Then for every ξ ∈ X, the orbit mapping

G 3 g 7→ gξ ∈ X

is right uniformly continuous, while the mapping

G 3 g 7→ g−1ξ ∈ X

is left uniformly continuous.
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3 Extreme Amenability

Lemma 3.16 is already enough to give a direct proof that every Lévy group is ex-

tremely amenable, cf. [Pe 06, Theorem 4.1.3].

Theorem 3.17. Every Lévy group is extremely amenable.

Proof. LetG be a Lévy group, {Gα} compact subgroups directed by inclusion, equipped

with normalized Haar measure µα. Choose an arbitrary point x0 in a compact G-space

X. Denote by να the push-forward measure of the measure µα along the continuous

orbit map G 3 g 7→ gx0 ∈ X (Lemma 3.16).

Let P (X) denote the space of all probability measures on X. Observe that P (X) is

compact since X is compact. Hence the net {να} of elements of P (X) has a cluster

point ν, which is left-invariant and non-zero, since all µα are left-invariant and non-

zero. Since G is a Lévy group, ν has the following property: for all A ⊆ X such that

ν(A) > 0 and all open neighbourhoods U containing A we have ν(U) = 1 (take An := A

for all n ∈ N in the de�nition of a Lévy group). To see this, suppose that the support

of ν consists of at least two points x1, x2. Choose nonempty disjoint neighbourhoods

U1 of x1, U2 of x2. Then 1 ≥ ν(U1 ∪ U2) = ν(U1) + ν(U2) = 2. Thus the support of

ν is a singleton, whose only element is a G-invariant point, i.e. a �xed point of the

continuous action of G on the compact space X.
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4 Bounded Normal Generation

It is a fundamental question in group theory to ask under which conditions one element

of a (noncommutative) group G is the product of conjugates of another element in G. If

for every g ∈ G, g 6= 1, its conjugacy class and that of its inverse generate G in �nitely

many steps we say that G has the bounded normal generation property, or property

(BNG), see De�nition 4.7. See Section 4.1 for precise de�nitions and more details. In

this chapter we address and answer both of these questions for many classes of unitary

groups of functional analytic type. In particular, we �nd a normal generation function

(see De�nition 4.7), i.e. a function which for every g ∈ G gives the number of steps

one needs to generate the whole group with the conjugacy class of g and g−1.

For compact metrizable simple groups it is not hard to obtain property (BNG) qual-

itatively (i.e. without an explicit normal generation function) via a Baire category

argument, cf. Proposition 4.9. A �ner qualitative result is given by the basic covering

lemma in group theory. It states that every �nite simple group is generated in �nitely

many steps by each nontrivial conjugacy class, see e.g. [AHS 85]. However, it is hard to

�nd a normal generation function even in the case of �nite simple groups. Liebeck and

Shalev provided a minimal normal generation function (see De�nition 4.7) for �nite

simple groups G in the main theorem of their seminal article [LS 01] and used this

result to obtain many interesting applications. Their normal generation function is of

the form f(g) = c log(|G|)/ log(
∣∣gG∣∣), where c is a constant and gG the conjugacy class

of g ∈ G. In 2012, Nikolov and Segal proved the bounded normal generation property

for compact connected simple Lie groups - see Proposition 5.11 in [NS 12]. They can

also provide a normal generation function, it is given by averaging over angles in max-

imal tori. We use [NS 12, Proposition 5.11] to get Theorem 4.45, i.e., a necessary and

su�cient criterion for an element in PU(n) to be an k-uniform normal generator. Our

in a sense rank independent version is suitable for generalization to obtain property

(topBNG) in the II1 factor case. While the normal generation functions in [LS 01]
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4 Bounded Normal Generation

and [NS 12] are linear, our normal generation function is quadratic.

In general, having a rank independent version of some �nite-dimensional result sug-

gests the existence of an in�nite-dimensional analogue. Indeed, using our result for

PU(n) we can prove the topological bounded generation property for the projective

unitary group PU(M) of a II1 factor M, endowed with the strong operator topology

(see Section 4.7). These results use �nite-dimensional approximation to basically reduce

to the case of the projective unitary group PU(n), n ∈ N. We deduce the topological

bounded normal generation property in both cases. This result on II1 factors covers

the topological simplicity of their projective unitary groups by Kadison in [Ka 52].

Results on topological uniform normal generators for PU(H) (e.g. in the uniform

topology or �ner) in Section 4.6 cannot be settled with �nite-dimensional approximation

and thus we have to carry the techniques to the in�nite-dimensional setting. This

allows us to prove the bounded normal generation property for the projective unitary

group of the Calkin algebra in Section 4.6. Our result on PU(H) can be seen as a

generalization of the following modi�ed version of Theorem 1 of Halmos and Kakutani

in [HK 58]. Every unitary operator on a separable Hilbert space H is a product of 4

unitary conjugates of a symmetry having in�nite-dimensional eigenspaces.

The most interesting and hardest case to handle is that of uniform normal gener-

ators (see De�nition 4.7) for the projective unitary group of a II1 factor, see Section

4.8. This is a generalization of several results. For example it implies the algebraic

simplicity of projective unitary groups of II1 factors which was discovered by de la

Harpe in [Ha 76] and a modi�ed version of Broise's result in [Br 67] stating that ev-

ery unitary in a II1 factor is the product of 32 conjugates of any symmetry with trace 0.

We need new ideas for each of these cases. The most important preliminaries are

covered in Section 2.2.4, where we recall the de�nition and some important properties

of the generalized s-numbers for semi�nite von Neumann algebras based on the article

of [FK 86] of Fack and Kosaki. We de�ne generalized projective s-numbers in Section

4.4 in this context and prove some properties that are required in the preceding sections.

Let us state the main theorems of this chapter. For t ≥ 0 and u an element of the

unitary group U(M) of a semi�nite von Neumann algebra we de�ne

`t(u) := inf
λ∈U(1)

µt(1− λu).
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The de�nition of `t is also presented in De�nition 4.24. For properties of `t we refer the

reader to Section 4.4. We remark here that the easy direction in the following theorems

can be found as Proposition 4.28 in Section 4.4:

If u is a product of k conjugates of v then `kt(u) ≤ k`t(v) for all t ≥ 0.

It is valid for the projective unitary group of any semi�nite von Neumann algebra.

In Section 4.5 we present a result that corrects [ST 14, Lemma 4.15], see Theorem

4.45. For property (BNG) for PU(n) we refer to Corollary 4.44.

Theorem 4.1. Let G denote the projective unitary group of a factor of type In, where

n ∈ N, n ≥ 2. Let u, v ∈ G and m ∈ N. If `0(u) ≤ m`t(v) for all t = 0, 1, . . . , s − 1

then

u ∈ (vG ∪ v−G)16md(n−1)/se.

Conversely, if u is a product of k conjugates of v then `kt(u) ≤ k`t(v) for all t ≥ 0.

Moreover, G has property (BNG).

The projective unitary group PU(H) on an in�nite-dimensional Hilbert space H, en-

dowed with the uniform topology, is not topologically simple, but there there are uni-

form normal generators (e.g. symmetries having two in�nite-dimensional eigenspaces

by [HK 58]). We provide a criterion for an element to be a topological uniform normal

generator in the strong operator topology. For the proof and de�nition of ‖·‖HS-closure

see Section 4.6.

Theorem 4.2. Let G denote the projective unitary group on a separable in�nite-

dimensional Hilbert space, endowed with the strong operator topology. Assume that

u, v ∈ G \ U(H)K(H) are elements satisfying `0(u) ≤ m`t(v) for all t ≥ 0 and some

m ∈ N. Then

u ∈ ((vG ∪ v−G)20m)
‖·‖HS ,

where ‖·‖HS denotes the Hilbert-Schmidt norm. Moreover, if the elements u and v are

diagonal, then we have

u ∈ (vG ∪ v−G)20m.

If u is a product of k conjugates of v, then `kt(u) ≤ k`t(v) for all t ≥ 0.

Moreover, if 2 ≤ m`t(v) for all t ≥ 0, then for any u ∈ G we have

u ∈ ((vG ∪ v−G)20m)
‖·‖HS .

43



4 Bounded Normal Generation

Let `ess(u) := infλ∈U(1) ‖1− λu‖ess. In Section 4.6 we derive the following collorary

of Theorem 4.2.

Theorem 4.3. Let G denote the connected component of the identity of the projective

unitary group of the Calkin algebra on a separable in�nite-dimensional Hilbert space.

Let u, v ∈ G and assume that `ess(u) ≤ m`ess(v). Then

u ∈ (vG ∪ v−G)20m.

Moreover, G has property (BNG).

The hardest and most interesting case from our viewpoint is the II1 factor case. The

proof is spread over Sections 4.7 and 4.8. A topological version that also holds for

non-separable II1 factors is given by Theorem 4.57.

Theorem 4.4. Let G denote the projective unitary group of a separable II1 factor.

Let u, v ∈ G and m ∈ N. Assume that u has �nite spectrum and rational weights. If

`0(u) ≤ m`t(v) for all t ∈ [0, s], then

u ∈ (vG ∪ v−G)Cmd1/se

for some constant C ∈ N independent of u, v,m and s. If u is a product of k conjugates

v then if `kt(u) ≤ k`t(v) for all t ≥ 0.

Moreover, G has property (BNG).

Some of these results allow a formulation in terms of a length function, a notion

introduced by Stolz and Thom in [ST 14], see also De�nition 4.10. Let us state this in

the case of the Calkin algebra. For u ∈ PU(C) we let

`ess(u) := inf
λ∈U(1)

‖1− λu‖ess .

Theorem 4.5. Let G denote the connected component of the identity of the projective

unitary group of the Calkin algebra. If u ∈ G is nontrivial, then one has

G = (uG ∪ u−G)k.

for every k ≥ 40/`ess(u).
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4.1 Bounded normal generation

We now present a formulation of Theorem 4.4 with a suitable normal generation

function. For x ∈M,M a II1 factor, we de�ne

L(x) :=

∫
t∈[0,1]

`t(x)dt.

Corollary 4.6. Let G denote the projective unitary group of a separable II1 factor.

For some constant C ∈ N the function f : G \ {1} → N given by

f(v) :=

C · d− ln(L(v)/2)/L(v)e, if L(v) ≤ 1/3,

C, if L(v) > 1/3,

de�nes a normal generation function for G. That is,

G =
(
vG ∪ v−G

)k
for every k ≥ f(v), v ∈ G \ {1}.

Let us state here that as an main application of some of the above main theorems we

obtain results on invariant automatic continuity for PU(n), SU(n) and PU(M), where

M is a separable II1 factor, see Chapter 5.

4.1 Bounded normal generation

In this section we de�ne the main notion of this chapter, the so called bounded normal

generation property for groups.

De�nition 4.7. (i) Let g be an element of a group G. If there exists k ∈ N such

that

G = (gG ∪ g−G)k

then we call g a uniform normal generator for G. If we want to emphasize

the number k we will write that g is a k-uniform normal generator .

(ii) A group G has the bounded normal generation property or property

(BNG) if every nontrivial element is a uniform normal generator. That is, there

exists a function f : G \ {1} → N such that

G = (gG ∪ g−G)f(g)
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4 Bounded Normal Generation

for every g 6= 1. We call f a normal generation function. If there exists a

normal generation function f such that f(g) ≤ k for all g ∈ G\{1} and some �xed

k ∈ N, then we say that G has the k-bounded normal generation property

or property k-(BNG).

(iii) Let G be a topological group and g ∈ G. If there exists k ∈ N such that

G = (gG ∪ g−G)k

then we call g a topological uniform normal generator for G.

(iv) A topological group has the topological bounded normal generation prop-

erty or property (topBNG) if every nontrivial element is a topological uniform

normal generator of G. That is,

G = (gG ∪ g−G)f(g)

for every g 6= 1, where f : G \ {1} → N is again called normal generation

function. If there exists a normal generation function f such that f(g) ≤ k for

all g ∈ G \ {1} and some �xed k ∈ N, then we say that G has the topological

k-bounded normal generation property or property k-(topBNG).

For the sake of completeness we also de�ne a stronger version of property (BNG).

Let us call an element g in a group G a strong uniform normal generator for G

or k-uniform normal generator if there exists k ∈ N such that

G = (gG)k.

If every g ∈ G is a strong uniform normal generator, then we say that G has the strong

bounded normal generation property. Analogously we say that a topological

group G has the strong topological bounded normal generation property if

every g ∈ G is a strong topological uniform normal generator, i.e.

G = (gG)k

for some k ∈ N. We again call a function witnessing the strong (topological) bounded

normal generation property a normal generation function.
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4.1 Bounded normal generation

In the case of compact simple groups one can easily show property (BNG) via a

Baire category argument, see Proposition 4.9. However, getting a quantitative result

(a normal generation function) is much harder even in the case of �nite simple groups.

Given a group with property (BNG) or (topBNG) one can ask for the minimal (up

to a universal multiplicative constant) normal generation function. That is, a normal

generation function f0 for G is minimal if for every other normal generation function

f one has f(g) ≥ cf0(g) for all g ∈ G and some constant c ∈ N independent of g.

Analogously for a group with property k-(BNG) or k-(topBNG) one can ask for the

minimal k ∈ N.

Let us list some known examples for the above de�nitions.

Examples. (i) Every �nite simple group G has the strong bounded normal generation

property by the basic covering theorem, see e.g. [AHS 85]. In fact these groups

have strong k-bounded normal generation property, where k depends only on the

group in question. A minimal (up to a universal multiplicative constant) normal

generation function for every �nite simple group is given in [LS 01, Theorem 1] -

it is given by

f(g) := dlog |G| / log
∣∣gG∣∣e for g ∈ G \ {1} .

(ii) Compact connected simple Lie groups have property (BNG), see Proposition

5.11 of [NS 12]. Nikolov and Segal also provide a normal generation function,

it is given by averaging over angles in maximal tori. We provide a di�erent

normal generation function for PU(n) via a study of projective singular values

and reprove property (BNG) for PU(n), see Section 4.5. In Corollary 4.44 we

provide the following normal generation function for PU(n):

f(u) := 16nd1/ inf
λ∈U(1)

‖1− λu‖e for u ∈ PU(n) \ {1} .

We also list some examples which will be obtained in the following sections of this

chapter.

Examples. (i) The connected component PU1(C) of the identity of the projective

unitary group of the Calkin algebra C has property (BNG), see Section 4.6. A

normal generation function is given by

f(u) := 40d1/ inf
λ∈U(1)

‖1− λu‖esse for u ∈ PU1(C) \ {1} ,
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4 Bounded Normal Generation

see Theorem 4.52.

(ii) The projective unitary group of a II1 factor has property (topBNG), see Section

4.7. If the II1 factorM is separable, then PU(M) has property (BNG), cf. 4.8.

To describe our normal generation function in this case, we need the de�nition

of generalized projective s-numbers `t(·) from Section 4.4. For u ∈ PU(M) we

de�ne

L(u) :=

∫
[0,1]

`t(u)dt.

A normal generation function is given by (see Corollary 4.67)

f(u) :=

C · d− ln(L(u)/2)/L(u)e, if L(u) ≤ 1/3,

C, if L(u) > 1/3,

where u ∈ PU(M) \ {1} and C ∈ N is a constant.

(iii) There are groups which have uniform normal generators but do not have property

(BNG). The unitary group U(H), where H is a separable in�nite-dimensional

Hilbert space, provides such an example - see Section 4.6. Some special uniform

normal generators are symmetries with two in�nite eigenspaces, which follows

from Theorem 1 in [HK 58] - Halmos and Kakutani could additionally prove that

the minimal number such that these symmetries are uniform normal generators

is 4.

Let us state some properties of groups which have property (BNG). We omit the

proof - (i) and (ii) are easy to see and (iii) is a consequence of Theorem 5.5 in [Dr 87].

Proposition 4.8. (i) If a group G has property (BNG) then it is simple. If G is a

topological group with property (topBNG) then it is topologically simple.

(i) Assume that G and H are topological groups and G has property (BNG). If

π : G→ H is a continuous homomorphism with dense image, thenH has property

(topBNG).

(iii) Every group can be embedded into a group with 2-bounded normal generation

property and the same cardinality.

The in�nite alternating group of all �nitely supported even permutations on N pro-

vides an example of a simple group which does not have property (BNG). In [DTW

99] the authors have shown that there are simple automorphism groups of cycle-free
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4.1 Bounded normal generation

partial orders which do not have property (BNG). The interested reader can �nd the

de�nitions and details in [DTW 99].

Using a Baire category argument one can show the following qualitative result for

compact simple groups. To give an quantitative result with a normal generation func-

tion is far more complicated, cf. the proofs of the above mentioned examples.

Proposition 4.9. Every compact simple group G has property (BNG).

Proof. The compact simple groups are classi�ed into discrete �nite nonabelian simple

groups, discrete cyclic groups of prime order, and (centerfree) compact connected simple

Lie groups, see [HM 06]. In the �rst two cases it is obvious that G has property (BNG).

So assume that G is a compact connected simple Lie group. Observe that for any

g ∈ G \ 1 the set
⋃
n∈Z(g

G)n forms a nontrivial normal subgroup of G and note that

gG is compact as the continuous image of the compact set G under conjugation. Due

to the fact that G is simple we have

G =
⋃
n∈Z

(gG)n.

For k ∈ N we de�ne Ck :=
⋃
|n|≤k(g

G)n. Since G is Polish we can apply the Baire

category theorem to obtain the existence of m ∈ N such that

int(Cm) 6= ∅.

Assume that U ⊆ Cm is open and let V := UU−1 ⊆ C2m. Since 1 ∈ V we have

Cm ⊆ V Cm. Thus
⋃
n∈N V C

n is an open covering of G. Now compactness of G implies

that there exists a m′ ∈ N such that

G =
⋃
|n|≤m′

V Cn ⊆
⋃
|n|≤m′

Cn+2m.

Thus G has property (BNG).

Actually every topologically simple compact topological group has property (BNG),

since topological simplicity implies algebraic simplicity for compact groups by [HM

06, Theorem 9.90].
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4 Bounded Normal Generation

4.2 Length functions

Natural candidates for a normal generation function are closely related to so called

length functions. They were introduced by Stolz and Thom in [ST 14].

De�nition 4.10. Let G be a group. We say that a function

` : G→ [0,∞)

is a pseudo length function on G if for all g, h ∈ G the following properties hold:

(i) `(1) = 0;

(ii) `(g) = `(g−1);

(iii) `(gh) ≤ `(g) + `(h).

If ` is a pseudo length function which additionally satis�es that `(g) = 0 implies g = 1,

then ` is called length function. A pseudo length function ` is called invariant if

one has

`(hgh−1) = `(g) for all g, h ∈ G.

We collect some basic properties of length functions (see [ST 14]), the proofs are easy

and will be omitted.

Proposition 4.11. Let ` be a (pseudo) length function on a group G.

(i) d(g, h) := `(gh−1), g, h ∈ G, de�nes a (pseudo) metric on G. Conversely a

(pseudo) metric d on G induces a (pseudo) length function on G by `(g) :=

d(1, g), g ∈ G.

` is invariant if and only if d is bi-invariant.

(ii) Let H be a normal subgroup of G and assume that ` is invariant. Then

`G/H(gH) := inf
h∈H

`(gh)

de�nes an invariant (pseudo) length function on the group G/H.

Conversely if `G/H is a pseudo length function on G/H, then

`G(g) := `G/H(gH), g ∈ G,

de�nes a pseudo length function on G. If `G/H is invariant, then `G is invariant,

too.
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(iii) Assume that ` is invariant. Then the set {g ∈ G | `(g) = 0} is a normal subgroup

of G.

We present some examples of (pseudo) length functions.

Examples. (i) Let G be a �nite simple group. Then the conjugacy length `conj(g) :=
log|gG|
log|G| de�nes an invariant length function. In fact, Liebeck and Shalev [LS 01]

showed that d1/`conj(·)e is (up to a multiplicative constant) the best possible

normal generation function for �nite simple groups. More precisely, for every

nontrivial g in a �nite simple group G one has

G = (gG)m

for every m ≥ c/`conj(g) and some constant c ∈ N independent of g.

(ii) Let C denote the Calkin algebra on the separable in�nite-dimensional Hilbert

space H. Write PU(C) for the projective unitary group of C. The essential norm

on C given by ‖x‖ess = infy∈K(H) ‖x− y‖ , x ∈ C, induces a length function on

PU(C) via

`ess(u) := inf
λ∈U(1)

‖1− λu‖ess , u ∈ PU(C).

In Theorem 4.52 we show that 40d1/`ess(·)e de�nes a normal generation function.

(iii) LetM be a II1 factor. By Proposition 4.11(i) the norms ‖·‖ , ‖·‖1 and ‖·‖2 induce

invariant length functions on U(M). Namely, ‖1− u‖1 , u ∈ U(M), de�nes an

invariant length function on U(M). It follows from Proposition 4.11(ii) that

`(u) := inf
λ∈U(1)

‖1− λu‖1 , u ∈ U(M),

de�nes an invariant length function on PU(M) (and an invariant pseudo length

function on U(M)). However, our normal generation function for PU(M) is of a

di�erent form, cf. Corollary 4.67.

Let us present a lower bound on normal generation functions.

Proposition 4.12. Let G be a group with property (BNG) and normal generation

function f . Assume that ` is an invariant length function on G. Then there exists a

constant c ∈ R such that

f(g) ≥ c

`(g)
for every g ∈ G \ {1} .
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4 Bounded Normal Generation

Proof. Let g ∈ G be a uniform normal generator and assume that h ∈ G = (gG ∪

g−G)f(g). Since ` is an invariant length function, we have

`(h) ≤ f(g)`(g).

Thus

f(g) ≥ `(h)

`(g)
.

Since g ∈ G was an arbitrary uniform normal generator, we are done by taking c := `(h)

for some �xed nontrivial h ∈ G.

Proposition 4.12 allows us to conclude that our normal generation function in The-

orem 4.52 is the best possible normal generation function (up to a multiplicative con-

stant). In Corollary 4.67 we provide an upper bound on the best possible normal

generation function in the case of II1 factors.

4.3 Products of symmetries

This section can be seen as a warm-up for the remainder of this chapter (in particular

for our results on II1 factors). Our aim is to modify [Br 67, Theorem 1] by Broise.

The original version states that every unitary element in a II1 factor can be written as

u = v1 · . . . · vn, where vi = sirisiri and ri, si are symmetries. From his formulation it

is not clear whether n depends on u. However, going through his proof carefully one

�nds that n = 8, independent of the unitary u in question.

We present his proof with few extra ingredients to obtain that every unitary in a II1

factorM is the product of 32 conjugates of any symmetry of trace 0, see Theorem 4.19.

In the terminology we have developed in Section 4.1 this means that every symmetry

of trace 0 is a 32-uniform normal generator for the projective unitary group ofM. We

conclude Corollary 4.20 from the proof of Theorem 4.19, which will become useful in

the proof of property (BNG) in the II1 factor case, see Theorem 4.65.

In Subsection 4.3.1 we prove the fact that symmetries in a II1 factor are conjugate if

and only if they have the same trace. This fact is certainly well-known, but we include

it for the readers convenience. In Subsection 4.3.2 we present the proof of Broise with

few changes in order to combine with the results from Subsection 4.3.1.
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4.3 Products of symmetries

4.3.1 Conjugate symmetries

In this subsection, we analyze when symmetries in a II1-factor are conjugate. It turns

out, see Proposition 4.15, that this is the case if and only if they have the same trace.

This result will help us to re�ne [Br 67, Theorem 1].

Lemma 4.13. Every symmetry s in a von Neumann algebraM is of the form s = 1−2p

for some projection p ∈ Proj(M).

Proof. Let s be a symmetry (i.e., a self-adjoint unitary). De�ne p = 1/2(1 − s). We

have to show that p is a projection. We have

p∗ =
1

2
(1− s∗) = p,

p2 =
1

4
(1− 2s+ s2) =

1

4
(2− 2s) = p,

which proves the claim.

We recall that the notions of equivalence of projections and unitary equivalence of

projections coincide in �nite von Neumann algebras. This statement can be found as

Exercise 6.9.11 in [KR 86].

Proposition 4.14. Asume that the von Neumann algebraM is �nite. Then for each

pair of equivalent projections p and q in M, there is a unitary operator u ∈ U(M)

such that upu∗ = q. That is, the notions of equivalence and unitary equivalence of

projections coincide in �nite von Neumann algebras.

Now we have gathered the necessary results to prove the main result of this subsec-

tion.

Proposition 4.15. LetM be a �nite von Neumann algebra with faithful �nite normal

trace τ . Two symmetries s, t ∈M are conjugate if and only if they have the same trace.

Proof. If s = utu∗ for some u ∈ U(M), then clearly τ(s) = τ(utu∗) = τ(t). Assume

that τ(s) = τ(t). It follows from Lemma 4.13 that there exist projections p, q ∈

Proj(M) such that s = 1 − 2p, t = 1 − 2q. Hence τ(p) = τ(q). By Proposition 4.14

there exists a unitary u ∈ U(M) such that q = upu∗. This implies

t = 1− 2q = 1− 2upu∗ = u(1− 2p)u∗,

as claimed.
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4.3.2 Products of symmetries with trace 0

The aim of this subsection is to prove that every unitary element in a II1-factor is a

product of at most 32 symmetries, all of which have trace 0 and are thus conjugate by

Proposition 4.15. The results and proofs are taken and re�ned from [Br 67].

First, let us state [Di 81, Proposition I.12].

Proposition 4.16. Every abelian von Neumann subalgebra of a von Neumann algebra

M is contained in a maximal abelian von Neumann subalgebra ofM.

We state [Br 67, Lemma 4]. As we do not modify this result we omit its proof.

Lemma 4.17. Assume thatM is a II1-factor with normalized trace τ andN a maximal

abelian von Neumann subalgebra of M. Let p ∈ Proj(N ) be a nonzero projection in

N . Then there exist orthogonal p1, p2 ∈ Proj(N ) such that p1 ∼ p2 and p = p1 + p2.

The next lemma is a strengthened version of [Br 67, Lemma 5].

Lemma 4.18. Assume that M is a II1-factor and p ∈ Proj(M). Let n ∈ {2, 3}.

Suppose that {wi,j}1≤i,j≤n and {wi}1≤i≤n are families of elements inM satisfying the

following three conditions:

(1) wi,lwl,j = wi,j and (wi,j)
∗ = w∗i,j = wj,i for all 1 ≤ i, j ≤ n.

(2) p and {wi,i}1≤i≤n are pairwise orthogonal projections.

(3) p+
∑n

i=1wi ∈ U(M) and wiwi,i = wi,iwi = wi for all 1 ≤ i ≤ n.

(i) If n = 2 and w2 = w2,1w
∗
1w1,2, then p + w1 + w2 = stst for some symmetries

s, t ∈ U(M) satisfying τ(s) = τ(t) = 0.

(ii) If n = 3 and w3 = w3,2w
∗
2w2,1w

∗
1w1,3, then p+w1 +w2 +w3 = s1t1s1t1 · s2t2s2t2

for some symmetries s1, s2, t1, t2 ∈ U(M) satisfying τ(si) = τ(ti) = 0, i = 1, 2.

Proof. Consider �rst the case p = 0. Put M1,1 := w1,1Mw1,1 and N := M1,1 ⊗

Mn×n(C). Then ψ :M→N , x 7→ (xi,j) = (w1,ixwj,1) is a homomorphism fromM to

the matrix algebra N . Conditions (1),(2) and (3) imply that ψ is an isomorphism. By

corollary to Proposition I.2 in [Di 81],M1,1 is again a II1-factor, hence N is a II1-factor

by [KR 86, Proposition 11.2.20].
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4.3 Products of symmetries

(i) The assumptions imply that

ψ(w1 + w2) =

w1,1w1w1,1 w1,1w1w2,1

w1,2w1w1,1 w1,2w1w2,1

+

w1,1w2w1,1 w1,1w2w2,1

w1,2w2w1,1 w1,2w2w2,1


=

w1,1w1w1,1 0

0 w1,2w2,1w
∗
1w1,2w2,1


=

w1 0

0 w1,1w
∗
1w1,1


=

w1 0

0 w∗1

 .

By condition (3), w1 + w2 is unitary in M, hence w1 = w1,1(w1 + w2)w1,1 is unitary

in M1,1. Thus by functional calculus there exists an element u ∈ U(M1,1) such that

u2 = w1. It follows thatw1 0

0 w∗1

 =

u2 0

0 u∗2

 =

 0 u

u∗ 0

0 1

1 0

 0 u

u∗ 0

0 1

1 0

 = stst,

where s :=

 0 u

u∗ 0

 and t :=

0 1

1 0

. Since ψ is an isomorphism,

w1 + w2 = ψ−1(s)ψ−1(t)ψ−1(s)ψ−1(t),

and ψ−1(s) and ψ−1(t) are again symmetries. Here we used that although ψ is no

∗-isomorphism, we have that if ψ(x) = ψ(x)∗ for x ∈M, then x = x∗.

Note that the trace of s and t in M1,1 ⊗Mn×n(C) vanishes. The fact that ψ is an

isomorphism betweenM and N and that isomorphisms between II1 factors are trace-

preserving imply that the trace of ψ−1(s) and ψ−1(t) also vanish.

(ii) Put w̃2 := w1,2w2w2,1. The condition w3 = w3,2w
∗
2w2,1w

∗
1w1,3 implies that

ψ(w1 + w2 + w3) =


w1 0 0

0 w1,2w2w2,1 0

0 0 w1,3w3,2w
∗
2w2,1w

∗
1w1,3w3,1
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=


w1 0 0

0 w̃2 0

0 0 w̃∗2w
∗
1



=


1 0 0

0 w̃2 0

0 0 w̃∗2



w1 0 0

0 1 0

0 0 w∗1

 .

Note that w1 and w̃2 are unitary inM1,1. From the above calculation and the case (i)

we conclude that w1 + w2 + w3 = s1t1s1t1 · s2t2s2t2, where si, ti are symmetries inM

having trace 0, i = 1, 2.

Now consider the case p 6= 0, i.e., τ(p) > 0. Decompose p into
∑n

i=1 pi, where

pi are equivalent orthogonal projections. Then de�ne w̃i := wi + pi, i = 1, . . . , n.

Hence
∑n

i=1 w̃i ∈ U(M) by condition (3). Adjust the system {wi,j} by setting w̃i,j :=

wi,j +x
∗
ixj , where xl are the partial isometries such that x∗l xl = pl and xlx

∗
l = p1. The

families {w̃i,j} and {w̃i} clearly satisfy conditions (2) and (3). We check condition (1).

We have (w̃i,j)
∗ = wj,i + x∗jxi = w̃j,i and

w̃i,lw̃l,j = wi,j + x∗ixlx
∗
l xj = wi,j + x∗ixix

∗
ixj

= w̃i,j .

That is, we may use the �rst part of the proof on the adjusted families. Finally, let us

show that if the assumptions of (i) are satis�ed for w2, then we have

w̃2,1w̃
∗
1w̃1,2 = w2,1w

∗
1w1,2 + x∗2x1p1x

∗
1x2 = w2 + x∗2x1x

∗
1x2 = w2 + x∗2x2

= w̃2.

Analogously one can check that if w3 satis�es the assumptions of (ii), then

w̃3 = w̃3,2w̃
∗
2w̃2,1w̃

∗
1w̃1,3.

We have gathered all necessary results to prove the modi�ed version of [Br 67, The-

orem 1]. The main idea of its proof is to construct families of elements in the II1-factor

satisfying the conditions in Lemma 4.18.
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Theorem 4.19 (Broise). LetM be a factor of type II1. Then every element in U(M)

is the product of 32 conjugates of any symmetry s ∈ U(M) satisfying τ(s) = 0.

Proof. Assume that u ∈ U(M). Using Lemma 4.17 we conclude that there exists

a projection p0 in maximal commutative von Neumann subalgebra containing u such

that p0 ∼ 1− p0. Since p0 commutes with u, we have

u = (up0 + 1− p0)(p0 + u(1− p0)).

Put u0 := up0. It su�ces to show that u0 + 1 − p0 is a product of 16 conjugates of a

symmetry of trace 0 (just replace p0 by 1− p0 in the following construction).

Let now {p0(n)}n∈N0 be a sequence of pairwise orthogonal projections satisfying

p0(0) = p0, τ(p0(n)) = 2−(n+1),
∑
n∈N0

p0(n) = 1.

Let N1 denote the von Neumann algebra generated by u0. Using Lemma 4.17, we

conclude that there exist two orthogonal projections p1(1), p2(1) ∈ N ′1 ∩M such that

p1(1) + p2(1) = p0(0), τ(p1(1)) = τ(p2(1)) = τ(p0(1)) = 2−2.

Since the projections p0(1), p1(1) and p2(1) are equivalent and pairwise orthogonal,

there exists a family {vi,j(1)}0≤i,j≤2 of elements inM such that

vi,i(1) = pi(1), vi,l(1)vl,j(1) = vi,j(1), (vi,j(1))
∗ = vj,i for all 0 ≤ i, j, l ≤ 2.

Putting u1 := v0,1(1)u0v1,2(1)u0v2,0(1), we obtain

u1u
∗
1 = (v0,1(1)u0v1,2(1)u0v2,0(1))(v0,2(1)u

∗
0v2,1(1)u

∗
0v1,0(1))

= v0,1(1)u0v1,2(1)p2(1)u0u
∗
0v2,1(1)u

∗
0v1,0(1)

= v0,1(1)u0v1,2(1)v2,2(1)v2,1(1)u
∗
0v1,0(1)

= v0,1(1)v1,1(1)v1,0(1)

= p0(1)

= u∗1u1.
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Inductively on can construct the following objects:

Nn, p1(n), p2(n), {vi,j}0≤i,j≤n , un.

HereNn is the von Neumann algebra generated by un−1, p1(n) and p2(n) are orthogonal

projections inM satisfying

p1(n) + p2(n) = p0(n− 1), p1(n) ∼ p2(n) ∼ p0(n),

{vi,j}0≤i,j≤n is a family of elements inM satisfying

vi,i(n) = pi(n), vi,l(n)vl,j(n) = vi,j(n), (vi,j(n))
∗ = vj,i(n) for all 0 ≤ i, j, l ≤ 2,

and

un := v0,1(n)un−1v1,2(n)un−1v2,0(n).

We show that for all n ∈ N we can assume the following properties of these objects:

(i) Nn is commutative;

(ii) p1(n) and p2(n) belong to N ′n (and hence commute with un−1);

(iii) unu
∗
n = u∗nun = p0(n).

These properties have been veri�ed for n = 1. We proceed by induction on n ∈ N.

Suppose the assertion holds for n ∈ N. We show that it holds for n+ 1.

Property (iii) for n implies property (i) for n+ 1. Lemma 4.17 and property (i) for

n+1 show that we can suppose that (ii) holds for n+1. Since (ii) holds for n+1 and

(iii) holds for n ∈ N, we have

un+1u
∗
n+1

= (v0,1(n+ 1)unv1,2(n+ 1)unv2,0(n+ 1))(v0,2(n+ 1)u∗nv2,1(n+ 1)u∗nv1,0(n+ 1))

= v0,1(n+ 1)unv1,2(n+ 1)unp2(n+ 1)u∗nv2,1(n+ 1)u∗nv1,0

= v0,1(n+ 1)unv1,2(n+ 1)p0(n)v2,1(n+ 1)u∗nv1,0(n+ 1)

= v0,1(n+ 1)unp1(n+ 1)u∗nv1,0(n+ 1)

= v0,1(n+ 1)p0(n)v1,0(n+ 1)

= v0,1(n+ 1)v1,1(n+ 1)v1,0(n+ 1)

= p0(n+ 1),
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that is, (iii) holds for n+ 1, as claimed.

Put

wi,j :=
∑
m≥0

vi,j(2m+ 1), w′i,j :=
∑
m≥1

vi,j(2m).

Then w0,0, w1,1, w2,2, respectively p0, w
′
0,0, w

′
1,1, w

′
2,2 are mutually orthogonal pro-

jections and

wi,lwl,j = wi,j , w
∗
i,j = wj,i, w

′
i,lw
′
l,j = w′i,j , and (w′i,j)

∗ = w′j,i.

De�ne the following elements:

w0 :=
∑
0≤m

u∗2m+1, w1 :=
∑
0≤m

u2mp1(2m+ 1), w2 :=
∑
0≤m

u2mp2(2m+ 1),

w′0 :=
∑
1≤m

u∗2m, w′1 :=
∑
0≤m

u2m+1p1(2m+ 2), w′2 :=
∑
0≤m

u2m+1p2(2m+ 2).

The equation p1(n+ 1) + p2(n+ 1) = p0(n) implies that

w1 + w2 =
∑
m≥0

u2m(p1(2m+ 1) + p2(2m+ 1)) = u0 +
∑
m≥1

u2mp0(2m) = u0 + w
′∗
0 ,

and

w′1 + w′2 =
∑
m≥0

u2m+1p0(2m+ 1) = w∗0.

Using these two formulas as well as unum = 0 for all n 6= m (since un = p0(n)unp0(n)),

we obtain

(w1 + w2 + w0)(p0 + w′1 + w′2 + w′0) = (u0 + w0 + w′∗0 )(p0 + w∗0 + w′0)

= u0 + w0w
∗
0 + w′∗0 w

′
0

= u0 +
∑
m≥1

p0(m)

= u0 + 1− p0.

Using Properties (ii),(iii) and the fact that p1(n)⊥p2(m) for all n,m ∈ N, we conclude

that

(w1 + w2 + w0)
∗(w1 + w2 + w0)
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= w∗1w1 + w∗2w2 + w∗0w0

=
∑
m≥0

p0(2m)(p1(2m+ 1) + p2(2m+ 1)) +
∑
m≥0

p0(2m+ 1)

=
∑
m≥0

p0(m)

= 1.

Analogously one has (w1 + w2 + w0)(w1 + w2 + w0)
∗ = 1. That is, w1 + w2 + w0 is

unitary. Similarly, p0 + w′1 + w′2 + w′0 is unitary. Observe that

w0,2w
∗
2w2,1w

∗
1w1,0 =

∑
m≥0

v0,2(2m+ 1)u∗2mv2,1(2m+ 1)u∗2mv1,0(2m+ 1)

= w0,

and similarly w′0 = w′0,2w
′∗
2 w
′
2,1w

′∗
1 w
′
1,0. Hence we can apply Lemma 4.18(ii) to obtain

that u0 + 1 − p0 is a product of four elements of the form stst, where s, t ∈ M are

symmetries satisfying τ(s) = τ(t) = 0. Thus, u is a product of eight such elements,

i.e., of 32 conjugates of a symmetry of trace 0 by Proposition 4.15.

The proofs of Lemma 4.18 and Theorem 4.19 show the following, which will become

useful in the proof of Theorem 4.64.

Corollary 4.20. Let M be a II1 factor. Every u ∈ U(M) can be decomposed into

factors u = u1 · . . . · u8 with ui ∈ U(M), i = 1, . . . , 8, such that for each ui there is

a projection pi ∈ Proj(M), τ(pi) = 1/3, such that under an isomorphism of M to

piMpi ⊗M3×3(C) such that ui has the form
1 0 0

0 wi 0

0 0 w∗i


for some wi ∈ U(piMpi). If ‖1− u‖ < ε for some ε > 0, then

‖1− ui‖2 <
∑
n≥0

min
{
2, 22nε

}
· 2−(2n+2).

In particular, for arbitrarily small δ > 0 there exists ε > 0 such that ‖1− u‖ < ε
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implies

‖1− ui‖2 < δ.

Proof. The decomposition follows from the proofs of Lemma 4.18 and Theorem 4.19.

Now assume that ‖1− u‖ < ε. We retain the notation of the proof of Theorem 4.19, in

particular, u = (u0 + p
⊥
0 )(p0 +up

⊥) and p0(0) = p0. It is clear that
∥∥1− u0 − p⊥0

∥∥ < ε.

For u1 = v0,1(1)u0v1,2(1)u0v2,0 we then get

‖p0(1)− u1‖

= ‖v0,1(1)(p0(0)− u0)v1,2(1)v2,0(1) + v0,1(1)u0v1,2(1)(p0(0)− u0)v2,0(1)‖

≤‖v1,2(1)v2,0(1)‖ · ‖v0,1(1)(p0 − u0)‖+ ‖v0,1(1)u0v1,2(1)‖ · ‖(p0 − u0)v2,0(1)‖

≤‖v0,1(1)(p0 − u0)‖+ ‖(p0 − u0)v2,0(1)‖

≤‖p0 − u0‖ · ‖p0‖+ ‖p0 − u0‖ · ‖p0‖

<2ε.

It follows by induction on n ∈ N (with the analogous calculation) that for un =

v0,1(n)un−1v1,2(n)un−1v2,0(n) we have

‖p0(n)− un‖2 < 2nε.

Now consider w1 =
∑

n≥0 u2np1(2n+ 1), the other wi's can be treated similarly. From

the above estimate we conclude∥∥∥∥∥∥
∑
n≥0

p1(2n+ 1)−
∑
n≥0

u2np1(2n+ 1)

∥∥∥∥∥∥
2

≤
∑
n≥0

‖(1− u2n)p1(2n+ 1)‖2

=
∑
n≥0

‖(p0(2n)− u2n)p1(2n+ 1)‖2

≤
∑
n≥0

‖p0(2n)− u2n‖ · ‖p1(2n+ 1)‖2

≤
∑
n≥0

min
{
2, 22nε

}
· 2−(2n+3).

That is, we have

‖1− ui‖2 =

∥∥∥∥( 1 0 0
0 1 0
0 0 1

)
−
(

1 0 0
0 w1 0
0 0 w∗1

)∥∥∥∥
2

<
∑
n≥0

min
{
2, 22nε

}
· 2−(2n+2).
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It remains to show that for arbitrarily small δ > 0 there exists ε > 0 such that

‖1− u‖ < ε implies

‖1− ui‖2 < δ.

Therefore we estimate the sum
∑

n≥0 min
{
2, 22nε

}
· 2−(2n+2). Let k ∈ N be su�ently

large such that ∑
n≥k

2−(2n+2) <
δ

2
.

Then we choose ε > 0 small enough such that

∑
n≤k

min
{
2, 22nε

}
· 2−(2n+2) <

δ

2
.

This implies ∑
n≥0

min
{
2, 22nε

}
· 2−(2n+2) < δ,

i.e. ‖1− ui‖2 < δ.

Let us conclude the this subsection with some remarks on similar results for di�erent

types of von Neumann algebras. Halmos and Kakutani proved the following result by

a di�erent method, see [HK 58, Theorem 1].

Theorem 4.21 (Halmos-Kakutani). Every unitary operator on an in�nite-dimensional

Hilbert space H is the product of four symmetries on H.

They were able to show that on every Hilbert space there exists a unitary which is not

the product of three symmetries, cf. [HK 58, Theorem 2]. The symmetries constructed

by Halmos and Kakutani in their proof of Theorem 4.21 have in�nite eigenspaces for 1

and −1. As those symmetries are conjugate by a unitary on H, Theorem 4.21 also al-

lows a reformulation: every unitary operator on H is the product of four conjugates of a

symmetry having in�nite-dimensional eigenspaces. Tsankov used this reformulation in

his proof of automatic continuity of the unitary group of a separable in�nite-dimensional

Hilbert space [Ts 13, Theorem 1].

Fillmore [Fi 66] has generalized Theorem 4.21 to the case of properly in�nite von

Neumann algebras.
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4.4 Generalized projective s-numbers

Theorem 4.22. Every unitary operator in a properly in�nite von Neumann algebra

M is the product of at most four symmetries.

These results suggest that the number 32 in Theorem 4.19 is not optimal. However,

the proof of Theorem 4.22 cannot be adapted in a straight forward way.

Remark. In the �nite-dimensional case, e.g. for the Lie groups U(n), n ∈ N, we have

the concept of a determinant. Every symmetry in U(n) has determinant ±1, while a

unitary can have any determinant in T. This implies that there cannot be a �nite-

dimensional analogue of the above theorem.

However, U(n) is generated by the symmetries and the scalar unitaries. Using this

and [Pe 63, Theorem 1], one can show that every �nite type I-factor is generated by its

centre and its symmetries.

4.4 Generalized projective s-numbers

Throughout this section, letM denote a semi�nite factor with faithful normal semi�nite

trace τ , acting on a separable Hilbert space H. Let PU(M) denote the projective

unitary group of M, i.e., PU(M) = U(M)/Z(U(M)), where Z(U(M)) denotes the

center of U(M). In particular, for factors we have Z(U(M)) = U(1) · 1.

In this section we develop the notion of generalized projective s-numbers and prove

some useful properties of these. Some of these properties will be freely used in the

following sections.

Lemma 4.23. LetM denote a semi�nite factor. Let x ∈M. The function µt(1−λx)

is continuous in λ ∈ U(1) for all t ≥ 0.

Proof. Let ε > 0 be arbitrary. We claim that there exists δ > 0 such that ‖λ1 − λ2‖ <

δ for λi ∈ Z(U(M)), i = 1, 2, implies ‖µt(1− λ1x)− µt(1− λ2x)‖ < ε. We may as-

sume without loss of generality that infτ(1−p)≤t ‖(1− λ1x)p‖ ≥ infτ(1−q)≤t ‖(1− λ2x)q‖.

|µt(1− λ1x)− µt(1− λ2x)| =
∣∣∣∣ inf
τ(1−p)≤t

‖(1− λ1x)p‖ − inf
τ(1−q)≤t

‖(1− λ2x)q‖
∣∣∣∣

≤ ‖(1− λ1x)q0‖ − ‖(1− λ2x)q0‖

≤ ‖(1− λ1x)q0 − (1− λ2x)q0‖

= ‖λ1 − λ2‖ ‖q0‖

< δ,
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4 Bounded Normal Generation

where q0 is chosen such that it realizes infτ(1−q)≤t ‖(1− λ2x)q‖. Choosing δ = ε, we

are done.

De�nition 4.24. LetM be a semi�nite factor with faithful normal semi�nite trace τ .

We de�ne

`t(x) := inf
λ∈U(1)

µt(1− λx) for t ≥ 0, x ∈M,

and call `t the t-th generalized projective s-number of x ∈M.

For a projection p ∈ Proj(M) we denote the restriction of `t to pMp by `
(p)
t , that is

`
(p)
t (x) = inf

λ∈U(1)
µt(p− λpxp) for t ≥ 0.

We call the unique smallest number s = s(x) ∈ [0,∞] such that `t(x) 6= 0 if and only

if t ∈ [0, s) the projective rank of x.

We choose the notation `t because it serves as a weaker notion of a length function

in our context. Note that the in�mum is attained Lemma 4.23. One can imagine `t(x),

x ∈ M, as a measure of the size of the spectrum of x after cutting out a piece of size

t ≥ 0 (which reduces the size of the spectrum of x as much as possible).

It follows immediately from the de�nition that `t(x) = `t(ξx) for all ξ ∈ Z(U(M))

and t ≥ 0. Observe that we have `t = 0 for t ≥ τ(1) by Lemma 2.22.

By Lemma 2.21(ii) we have `t(x) = `t(x
∗) for every t ≥ 0 and x ∈M.

Remark. (i) The following sections deal with various unitary groups of functional

analytic type. II1 factors are (by de�nition) always equipped with a unital trace

and thus the generalized projective s-numbers may take nonzero values only for

t ∈ [0, 1). However, we usually equip the compact Lie groups U(n), n ∈ N, with

the unnormalized trace in order to count the generalized projective s-numbers

from 0 to n− 1. This is just a matter of notational taste. When U(n) is embed-

ded in U(M) we usually view the eigenvalues as constant functions on intervals

[i/n, (i+ 1)/n).

(ii) If working with general semi�nite von Neumann algebraM one might de�ne the

generalized projective s-number by

`t(x) := inf
λ∈Z(U(M))

µt(1− λx) for t ≥ 0, x ∈M.
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4.4 Generalized projective s-numbers

Using Lemma 2.21(vi), we conclude

`t(gxg
∗) = inf

λ∈U(1)
µt(g(1− λx)g∗) ≤ inf

λ∈U(1)
‖g‖ ‖g∗‖µt(1− λx) = `t(x)

for all g ∈ PU(M), x ∈ M and t ≥ 0. Replacing now x by g∗xg, we obtain that `t is

invariant under conjugation, i.e.,

`t(gxg
∗) = `t(x) for all t ≥ 0.

Now let p ∈ Proj(M)\{0} and assume that x ∈M commutes with p. Then we have

`
(p)
t (x) ≤ `t(x) for all t ≥ 0.

To see this, we use submultiplicativity of the operator norm. Fix t ≥ 0. We have

`
(p)
t (x) = inf

λ∈U(1)
µt(p− λpxp)

= inf
λ∈U(1)

inf
q∈Proj(M),τ(1−q)≤t

‖p(1− λx)q‖

≤ inf
λ∈U(1)

inf
q∈Proj(M),τ(1−q)≤t

‖p‖ ‖(1− λx)q‖

= inf
λ∈U(1)

inf
q∈Proj(M),τ(1−q)≤t

‖(1− λx)q‖

= `t(x).

Lemma 4.25. `s+t(xy) ≤ `s(x) + `t(y) for all x, y ∈ M and s, t ≥ 0. In particular, `t

is non-increasing in t ≥ 0.

Proof. Since U(1) compact and since µt(1 − λx) is continuous in λ ∈ U(1), we can

choose λx, λy ∈ U(1) such that `t(x) = µt(1 − λxx) and `t(y) = µ(1 − λyy). Using

Lemma 2.21(i),(v), we obtain

`s+t(xy) = `s+t(λxxλyy)

= inf
λ∈Z(U(M))

µs+t((1− λλxx)λyy + (1− λyy))

≤ inf
λ∈Z(U(M))

µs((1− λλxx)λyy) + µt(1− λyy)

= inf
λ∈Z(U(M))

µs(1− λλxx) + `t(y)
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4 Bounded Normal Generation

= `s(x) + `t(y).

To see that `t is non-increasing in t, let y = 1 and use that obviously `t(1) = 0 for all

t ≥ 0 to obtain `s+t(x) ≤ `t(x) for all t ≥ 0.

Lemma 4.26. `t(x) is right continuous in t ∈ [0,∞], where x ∈M.

Proof. Since µt is right continuous in t ∈ [0,∞], for all λ ∈ U(1) and all ε > 0 there

exists δ > 0 such that

µt(1− λx)− µt+δ(1− λx) < ε.

Now �x arbitrary t ≥ 0 and ε > 0. By Lemma 4.23 for every t ≥ 0 we can choose

λ ∈ U(1) which realizes infλ∈U(1) µt(1− λx). We denote this element by λt. Moreover,

for every λ we can choose δλ > 0 such that

µt(1− λx)− µt+δλ(1− λx) < ε.

We claim that δ := infλ∈U(1) δλ > 0. Assume to the contrary that δ = 0, i.e., there

exists no δ̃ > 0 such that µt(1 − λx) − µt+δ̃(1 − λx) < ε for all λ ∈ U(1). Then there

exist sequences {λn}n∈N and {δn}n∈N, δn := δλn , such that

• λn → λ and δn → 0 for n→∞,

• µt(1−λnx)−µt+δn(1−λnx) ≥ ε for all n greater than some n0 ∈ N (by uniform

continuity in λ, see Lemma 4.23, and right-continuity of µt in t).

On the other hand we have

µt(1− λx)− µt+δλ(1− λx) < ε (4.1)

with δλ > 0. Thus there exists n1 ∈ N such that δn < δλ for all n ≥ n1. But this

implies

ε > µt(1− λnx)− µt+δλ(1− λnx) ≥ µt(1− λnx)− µt+δn(1− λnx) ≥ ε,

whenever n > max {n0, n1} which is a contradiction to Inequality (4.1). Hence δ > 0

and

ε > µt(1− λt+δx)− µt+δ(1− λt+δx) = µt(1− λt+δx)− `t+δ(x) ≥ `t(x)− `t+δ(x).
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4.4 Generalized projective s-numbers

Since t ≥ 0 and ε > 0 were arbitrary, we are done.

Before coming to the easy direction in the main theorems on products of conjugates

we collect the above proven properties of generalized projective s-numbers.

Proposition 4.27. LetM be a semi�nite factor with faithful normal semi�nite trace

τ . Let x, y ∈M and u ∈ U(M).

(i) `t(x) = `t(x
∗) for all t ≥ 0.

(ii) `t(x) = 0 for all t ≥ τ(1).

(iii) `t(uxu
∗) = `t(x) for all t ≥ 0.

(iv) `
(p)
t (x) ≤ `t(x) for all t ≥ 0.

(v) `s+t(xy) ≤ `s(x) + `t(y) for all s, t ≥ 0.

(vi) `t is non-increasing in t ≥ 0.

(vii) `t is right continuous in t ≥ 0.

The following proposition is the easy direction in the main theorems on products of

conjugates. The proof is a straight forward application of some properties of generalized

projective s-numbers.

Proposition 4.28. If u ∈ G := PU(M) is a product of k conjugates of v ∈ G and

v−1, then `k·t(u) ≤ k · `t(v) for all t ≥ 0.

Proof. Let t ≥ 0. By assumption we can write u = g1v
ε1g∗1g2v

ε2g∗2 · · · gkvεkg∗k for some

gi ∈ G and εi ∈ {1,−1}, where i = 1, . . . , k . Using `t(gwg) = `t(w) for all g, w ∈ G

and that `t(w) = `t(w
∗) for all t ≥ 0, we deduce

`kt(u) ≤ `t(g1v
ε1g∗1) + `(k−1)t(g2v

ε2g∗2 · · · gkvεkg∗k)

≤ `t(vε1) + `t(g2v
ε2g∗2) + `(k−2)t(g3v

ε3g∗3 · · · gkvεkg∗k)

= `t(v) + `t(g2v
ε2g∗2) + `(k−2)t(g3v

ε3g∗3 · · · gkvεkg∗k)
...

≤ k · `t(v),

which proves our claim.

The following Markov-type inequality turns out to be useful in the proof of Lemma

4.30.
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Lemma 4.29. If τ(|x|) =
∫

[0,τ(1)] µt(x)dt ≤ ε, then µt(x) ≤ ε/t for all t > 0.

Proof. Assume to the contrary that µt0(x) > ε/t0 for some t0 > 0. Since µt is non-

increasing in t, this implies µt(x) > ε/t0 for all t ∈ [0, t0]. Hence, by positivity of

µt, ∫
[0,τ(1)]

µt(x)dt ≥
∫

[0,t0]
µt(x)dt >

∫
[0,t0]

ε

t0
dt = ε,

a contradiction.

The following lemma analyzes the behaviour of projective generalized s-numbers

under approximation in the operator norm and in the 2-norm. It will be very useful in

proving some of our main results.

Lemma 4.30. LetM be a semi-�nite von Neumann algebra.

(i) Assume that u, u′, v, v′ are elements of M satisfying ‖u− u′‖ , ‖v − v′‖ < ε and

`kt(u) ≤ max {m`t(v)− δ, 0} for all t ≥ 0 and some m, k ∈ N, δ ≥ 0. Then

`kt(u
′) ≤ max

{
m`t(v

′)− δ + (m+ 1)ε, 0
}

for all t ≥ 0.

(ii) Assume that u, u′, v, v′ are elements ofM satisfying ‖u− u′‖2 , ‖v − v′‖2 < ε and

`k(t+δ0)(u) ≤ max {m`t(v)− δ, 0} for all t ≥ 0 and somem, k ∈ N, δ0 > 0, δ ≥ 0.

Then

`4k(t+δ0)(u
′) ≤ max

{
m`t(v

′)− δ + m+ 1/k

t+ δ0
ε, 0

}
for all t ≥ 0.

Proof. (i) For t ≥ 0 we obtain

`t(u
′) = inf

λ
µt(1− λ(u′ − u+ u))

≤ `(n−1)t/n(u) + µt/n(u− u′)

≤ max
{
m`(n−1)t/nk(v)− δ + µt/n(u− u′), 0

}
≤ max

{
m`(n−1)2t/n2k(v

′)− δ +mµ(n−1)t/n2k(v − v′) + µt/n(u− u′), 0
}

≤ max
{
m`(n−1)2t/n2k(v

′)− δ +m
∥∥v − v′∥∥+ ∥∥u− u′∥∥ , 0}

< max
{
m`(n−1)2t/n2k(v

′)− δ + (m+ 1)ε, 0
}
.
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4.4 Generalized projective s-numbers

This implies

`n2kt/(n−1)2(u
′) < max

{
m`t(v

′)− δ + (m+ 1)ε, 0
}
.

By right-continuity of `t, see Lemma 4.26, letting n tend to +∞, we arrive at

`kt(u
′) ≤ max

{
m`t(v

′)− δ + (m+ 1)ε, 0
}
.

(ii) For t ≥ 0 and n ≥ 2, we conclude

`t(u
′) ≤ `(n−1)t/n(u) + µt/n(u− u′)

≤ max
{
m`(n−1)t/nk−(n−1)δ0/n(v)− δ + µt/n(u− u′), 0

}
≤ max

{
m`(n−1)2t/n2k−(n−1)δ0/n(v

′)− δ +mµ(n−1)t/n2k(v − v′) + µt/n(u− u′), 0
}
.

Hence

`n2k(t+δ0)/(n−1)2(u
′) ≤max

{
m`t+δ0(1−(n−1)/n)(v

′)− δ +mµ(t+δ0)/(n−1)(v − v′)

+µnk(t+δ0)/(n−1)2(u− u′), 0
}
,

and using Lemma 4.29 (and that ‖u− u′‖2 < ε implies ‖u− u′‖1 < ε) yields

`n2k(t+δ0)/(n−1)2(u
′) ≤ m`t(v′)− δ +m ·min

{
(n− 1)ε

t+ δ0
, 2

}
+min

{
(n− 1)ε

k(t+ δ0)
, 2

}
.

Putting n := 2 completes the proof.

Let us conclude this section by proving that products of ε-thickened conjugacy

classes of topological groups with compatible bi-invariant metric behave well under

ε-thickening. This result will be needed for some of the main theorems, namely those

which rely on �nite-dimensional approximation.

Lemma 4.31. Let G be a topological group equipped with a compatible bi-invariant

metric d. Let ε > 0. Then (((gG)ε)
n)ε ⊆ ((gG)n)(n+1)ε for all n ∈ N.

Proof. Let h ∈ ((gGε )
n)ε and assume that gi,ε for i = 1, . . . , n, are elements of gGε

satisfying d(h, g1,ε · · · gn,ε) < ε. Then there are elements g1, . . . , gn ∈ gG such that
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4 Bounded Normal Generation

d(gi, gi,ε) < ε. Using the bi-invariance of d, we obtain

d(h, g1 · · · gn) ≤ d(h, g1,ε · · · gn,ε) + d(g1,ε · · · gn,ε, g1g2,ε · · · gn,ε)

+ . . .+ d(g1 · · · gn−1gn,ε, g1 · · · gn)

< ε+ d(g1,ε, g1) + . . .+ d(gn,ε, gn)

< (n+ 1)ε,

which shows that h ∈ ((gG)n)(n+1)ε.

4.5 Bounded normal generation for type In factors

Property (BNG) for compact connected simple Lie groups (e.g. the projective uni-

tary group PU(n)) has been settled quantitatively in [NS 12]. We repair the rank-

independent result [ST 14, Lemma 4.15] for PU(n) and clarify in Proposition 4.32 why

this is necessary. Some arguments are borrowed from these articles but our path fo-

cuses on the PU(n)-case and our version of [ST 14, Lemma 4.15] as well as its proof

di�er considerably. Recall that every type In factor is isomorphic to the matrix algebra

Mn×n(C).

In this section we �x the following notation. Let T denote the maximal torus of

diagonal entries in U(n), 2 ≤ n ∈ N, i.e.,

T =
{
diag(ei θ0 , . . . , ei θn−1) | θi ∈ [0, 2π), i = 0, 1, . . . , n− 1

}
.

Decompose T into n− 1 subgroups Tj , j = 0, . . . , n− 1, which are de�ned as follows.

T0 := Z(U(n)),

Tj := {diag(1, . . . , 1, λ, . . . , λ) | λ ∈ U(1)} ,

where λ is on the positions j + 1, . . . , n− 1.

Observe that every element u = diag(λ0, . . . , λn−1) ∈ T can be decomposed into the

product of commuting factors u = u0 · . . . · un−1, where ui ∈ Ti. Here,

u0 = diag(λ0, λ0, . . . , λ0),

ui = diag(1, . . . , 1, λiλi−1, λiλi−1, . . . , λiλi−1) for i ≥ 1.
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4.5 Bounded normal generation for type In factors

We call this decomposition the one-parameter torus decomposition of u. Let

us point out that when working in PU(n), the factor u0 in the decomposition u =

u0 · . . . · un−1 actually can be left out since u0 is central.

We will use another decomposition for u ∈ SU(n) (respectively u ∈ PU(n)). For

j = 0, . . . , n− 2 let Sj , denote the subgroup of U(n) of matrices of the form


1 0

SU(2)

0 1

 ,

where the SU(2)-copy sits at the entries (j + 1, j + 1), (j + 2, j + 1), (j + 1, j + 2) and

(j + 2, j + 2). Then u can be decomposed into factors ui ∈ Si, i = 0, . . . , n− 2, where

u0 = diag(λ0, λ0, 1, . . . , 1),

ui = diag(1, . . . , 1, λ0 · . . . · λi, λ0 · . . . · λi, 1, . . . , 1).

This decomposition is called the SU(2) product decomposition. Note that the fac-

tors in the SU(2) product decomposition mutually commute.

We will need both of the above introduced decompositions in order to get the desired

rank-independent result. Actually the error that is hidden in [ST 14, Lemma 4.15]

stems from an incorrect use of these decompositions. To see that [ST 14, Lemma 4.15]

is wrong, we provide the following result.

Proposition 4.32. Let u = diag(λ−n−1, λ, λ, . . . , λ) and v = diag(µ−n−1, µ, µ, . . . , µ)

be nontrivial elements in G := PU(n). Assume that arg(λ)/ arg(µ) is irrational.

If u ∈ (vG ∪ v−G)k, then k ≥ n− 1.

Proof. Assume that u ∈ (vG ∪ v−G)k, i.e. u = g1v
ε1g−1

1 · . . . · gkvεkg−1
k with gi ∈

G, εi ∈ {1,−1}. Then there exists a lift of u into SU(n) such that zu is a product of

k conjugates of z0v ∈ SU(n) for some z, z0 ∈ Z(U(n)) (actually z, z0 = 1 if u, v are

written down as in the assumption). Hence u′ := µ−ku is a product of k conjugates of

v′ := µ−1v in U(n). Now µ−1v is a rank one perturbation of the identity and thus u′ is

at most a rank k perturbation of the identity in U(n). But n− 1 diagonal entries of u′

are of the form λµ−k, which are di�erent from 1. Hence 1− u′ has rank at least n− 1

and this implies k ≥ n− 1.

71



4 Bounded Normal Generation

Let us now come to the �rst step in the proof of our rank-independent result. For

convenience we repeat the proof of the following SU(2)-result from [NS 12].

Lemma 4.33 (Nikolov-Segal). Let u =
(
eiϕ 0
0 e− iϕ

)
and v =

(
ei θ 0
0 e− i θ

)
be noncentral

elements in G := SU(2). If |ϕ| ≤ m |θ| for some even m ∈ N, then u ∈ (vG)m.

Proof. Consider the realization of SU(2) by unitary matrices
{(

a b
−b̄ ā

)
| |a|2 + |b|2 = 1

}
.

The conjugacy class of v is uniquely determined by the normalized trace tr(v) = cos θ

with θ ∈ [0, π]. As m is even, we have (vG)m = ((−v)G)m and hence we may assume

that θ ∈ [0, π/2].

If w ∈ SU(2) is diagonal with tr(w) = cos γ, then we can choose v′ ∈ vSU(2) such

that tr(wv′) = cos γ1 for any γ1 ∈ [γ − θ, γ + θ], namely v′ :=
(

cos θ+i sin θ1 b
−b̄ cos θ−i sin θ1

)
for θ1 ∈ [−θ, θ], where |b|2 = 1− cos2 θ − sin2 θ1 = sin2 θ − sin2 θ1 ≥ 0.

Observe that multiplication of diagonal elements by v adds the angle θ while multipli-

cation with v−1 subtracts the angle θ. Thus, regarding the given inequality |ϕ| ≤ m |θ|,

we can use v and v−1 in the �rst m − 1 steps and a possibly nondiagonal element

v′ ∈ vSU(2) to obtain an possibly nondiagonal element with the same trace as u. Using

again that elements of the same trace are conjugate in SU(2), we conclude that u is

the product of m conjugates of v.

Note that in particular, 1 ∈ (uSU(2))2 for every u ∈ SU(2).

Let us now analyze how to use the above lemma on a single factor ui ∈ Si in PU(n).

Lemma 4.34. Let G := PU(n) with n ≥ 2, n ∈ N. Let u = diag(eiϕ0 , . . . , eiϕn−1), v =

diag(ei θ0 , . . . , ei θn−1) ∈ G and assume that u0·. . .·un−1 with ui ∈ Si. If |ϕ1 + . . .+ ϕi−1| ≤

m |θj−1 − θj | for some i, j ∈ {1, . . . , n− 1} and even m ∈ N then

ui ∈ (vG ∪ v−G)2m.

Proof. Write v0 · . . . · vn−1, vi ∈ Ti in its one-parameter torus decomposition. Let

g ∈ Sj be the permutation swapping the diagonal entries at the positions j, j + 1.

Then [v, g] = [vj , g] ∈ Sj . Let h ∈ G such that uhi ∈ Sj . Using the given inequality

|ϕ1 + . . .+ ϕi−1| ≤ m |θj−1 − θj | (note that ϕ1 + . . . + ϕi−1 is the angle of ui) and

Lemma 4.33 we conclude

ui ∈ h−1([vj , g]
Sj ∪ [vj , g]

−Sj )mh ⊂ (vG ∪ v−G)2m.

72



4.5 Bounded normal generation for type In factors

This concludes the proof.

The following result is a crucial point in simultaneous generation with the help of

SU(2)-copies. Our proof di�ers from that of Stolz and Thom - in fact, the error was

hidden in the proof of this result. An important point to notice is that we have to

decompose the generating element v in the following Lemma into elements of the one-

parameter tori Ti to generate simultaneously. But the generated element u needs to be

decomposed into elements of Sj .

Lemma 4.35. Let G := PU(n), n ≥ 2, m ∈ N even and s ∈ N0. Let

u = diag(eiϕ0 , . . . , eiϕn−1) = u0 · u1 · . . . · un−1

be the SU(2) product decomposition of u and let

v = diag(ei θ0 , . . . , ei θn−1) = v0 · v1 · . . . · vn−1

with vi ∈ Ti be the one-parameter torus decomposition of v. For 0 ≤ k ≤ s and

0 ≤ l ≤ s let ik and jl be elements of {0, . . . , n− 1}. If |ik − il| , |jk − jl| ≥ 2 for all

k 6= l and

|ϕ0 + ϕ1 + . . .+ ϕik | ≤ m |θjk − θjk+1| for k, l = 0, . . . , s.

Then

ui1 · ui2 · . . . · uis ∈
(
vG ∪ v−G

)2m
.

Proof. Write v = vj1 · . . . ·vjs · ṽ where ṽ commutes with Si1 , . . . , Sis . Note that Sjk and

Sjl commute elementwise for k 6= l. Moreover, ṽ commutes with Sjk for all k = 1, . . . , s.

Thus we get

(
vSj1 ·...·Sjs

)m
=
(
v
Sj1
j1
· . . . · vSjsjs

· ṽSj1 ·...·Sjs
)m

=
(
v
Sj1
j1

)m
· . . . ·

(
v
Sjs
js

)m
· ṽm.

Let gjk ∈ Sjk be a permutation switching positions jk and jk+1 for k = 0, . . . , s. De�ne

g := gj1 · . . . · gjs ∈ Sj1 · . . . · Sjk .

Consider now the commutator [v, g] = vgv−1g−1 ∈ (vG ∪ v−G)2. Observe that [v, g] ∈

73



4 Bounded Normal Generation

Sj1 · . . . · Sjs . Let h ∈ G be a permutation such that Shik = Sjk for all k = 1, . . . , s.

Using Lemma 4.33, we obtain uhik ∈
(
[vjk , gjk ]

Sjk ∪ [vjk , gjk ]
−Sjk

)m
for all k = 1, . . . , s,

and hence

ui1 · . . . · uis ∈ h−1
((

[v, g]Sj1 ·...·Sjs
)m)

h ⊂ (vG ∪ v−G)2m.

This completes the proof.

In order to have a relation between projective s-numbers and angles, we need the

following lemma.

Lemma 4.36. For all θ ∈ [−π, π], one has |θ| /2 ≤
√
2(1− cos θ) ≤ |θ|.

Proof. By symmetry of cos, it su�ces to check the case θ ∈ [0, π].

To see the �rst inequality, de�ne f(θ) := 1−cos θ−θ2/8. We have f ′(θ) = sin θ−θ/4

and f ′(0) = 0. Since f ′′(θ) = cos θ − 1/4 is monotone decreasing in the interval [0, π],

f ′′ has a unique zero in [0, π] (note that f ′′(0) = 3/4 > 0). Hence f ′ has a unique

extreme point in [0, π], which is a maximum in [0, π]. Thus f has at most two zeroes

in [0, π], one of which is 0. We have f(π) > 0 and thus f(θ) ≥ 0 for all θ ∈ [0, π]. This

implies |θ| /2 ≤
√
2(1− cos θ).

To prove the second inequality, observe that cos θ =
∑∞

j=0(−1)jθ2j/(2j)! ≥ 1− θ2/2

and hence
√
2(1− cos θ) ≤

√
2(1− (1− θ2/2)) ≤ θ.

The following de�nition is crucial in order to obtain estimates between projective

s-numbers and eigenvalue di�erences, which in turn will be compared to angles.

De�nition 4.37. Assume that u ∈ G := U(n), 2 ≤ n ∈ N. Let us say that ũ =

diag(λ0, . . . , λn−1) ∈ uG ∩ T is optimal if

• |λ0 − λ1| ≥ |x0 − x1| for all v = diag(x0, . . . , xn−1) ∈ uG ∩ T ;

• |λi − λi+1| = |xi − xi+1| for all i = 0, . . . , k−1 implies |λk − λk+1| ≥ |xk − xk+1|.

This de�nes a lexicographic order on the eigenvalue di�erences, hence for every u ∈

U(n) respectively PU(n), there exists an optimal element ũ. For two di�erent optimal

elements ũ, ṽ, we have |λi − λi+1| = |xi − xi+1| for all i ∈ {0, . . . , n− 2}.

For an optimal element u there exists a permutation σ ∈ SX , where X = {0, . . . , n− 2}

and SX denotes the group of permutations on X, such that

∣∣λσ(0) − λσ(0)+1

∣∣ ≥ ∣∣λσ(1) − λσ(1)+1

∣∣ ≥ . . . ≥ ∣∣λσ(n−2) − λσ(n−2)+1

∣∣ .
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4.5 Bounded normal generation for type In factors

We call such a permutation the permutation associated to the optimal element u.

Note that our de�nition of optimality slightly di�ers from the one given in [ST 14].

Lemma 4.38. Let u = diag(λ0, . . . , λn−1) ∈ T ⊂ U(n) and σ a permutation such that∣∣λσ(i) − λσ(i)+1

∣∣ is monotone decreasing in i = 0, . . . , n− 2, where n ≥ 2, n ∈ N. Then

1

2

∣∣λσ(2i) − λσ(2i)+1

∣∣ ≤ `i(u).
If u is optimal with associated permutation σ then

1

2

∣∣λσ(2i) − λσ(2i)+1

∣∣ ≤ `i(u) ≤ ∣∣λσ(i) − λσ(i)+1

∣∣ for all i = 0, . . . , n− 2.

Proof. To prove the �rst inquality, let z0 = diag(z, . . . , z) ∈ Z(U(n)) be arbitrary and

�x a permutation τ ∈ SY , Y := {0, . . . , n− 1}, such that
∣∣z − λτ(0)

∣∣ ≥ ∣∣z − λτ(1)

∣∣ ≥
. . . ≥

∣∣z − λτ(n−1)

∣∣ . Assume to the contrary, that
∣∣λσ(2i) − λσ(2i)+1

∣∣ > 2
∣∣z − λτ(i)

∣∣.
Hence ∣∣z − λσ(k)

∣∣+ ∣∣z − λσ(k)+1

∣∣ ≥ ∣∣λσ(k) − λσ(k)+1

∣∣ > 2
∣∣z − λτ(i)

∣∣
for all k = 0, . . . , 2i by the choice of σ. This implies σ(k) ∈ {τ(0), . . . , τ(i− 1)} or

σ(k + 1) ∈ {τ(0), . . . , τ(i− 1)}. Since {τ(0), . . . , τ(i− 1)} contains i elements but the

inequality holds for 2i+ 1 elements by assumption, we arrive at a contradiction. Since

z0 was chosen arbitrarily, the �rst inequality follows.

Now assume that u is optimal. To see the last inequality, let τ be a permutation such

that
∣∣λn−1 − λτ(0)

∣∣ ≥ ∣∣λn−1 − λτ(1)

∣∣ ≥ . . . ≥
∣∣λn−1 − λτ(n−2)

∣∣. By optimality of u, we

have |λi − λi+1| ≥ |λi − λj | for all j ≥ i+ 1. Observe that for all τ(i) = 0, . . . , n− 2,

`i(u) ≤ µi(λn−1 − u) =
∣∣λn−1 − λτ(i)

∣∣ ≤ ∣∣λτ(i) − λτ(i)+1

∣∣ ,
while for τ(i) = n− 1, we get `i(u) = 0. Thus for each i, `i(u) can be estimated from

above by
∣∣λτ(i) − λτ(i)+1

∣∣. Since both ∣∣λσ(i) − λσ(i)+1

∣∣ and `i(u) are decreasing in i, we
obtain

`i(u) ≤
∣∣λσ(i) − λσ(i)+1

∣∣ .

The above two lemmata imply the following important corollary which relates pro-

jective singular values and angles of elements in U(n).
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Corollary 4.39. Let u = diag(ei θ0 , . . . , ei θn−1), v = diag(ei γ0 , . . . , ei γn−1) ∈ T ⊂

U(n) be optimal with associated permutation σ, τ . Then `ki(u) ≤ m`i(v) for all

i = 0, . . . , n − 1 and some k,m ∈ N implies
∣∣θσ(2ki) − θσ(2ki)+1

∣∣ ≤ 4m
∣∣γτ(i) − γτ(i)+1

∣∣
for all i = 0, . . . , n− 1. Here we set θi = γi = 0 for all i ≥ n.

Proof. We use the above two lemmata to prove this. First we conclude that

∣∣∣ei θσ(2kj) − ei θσ(2kj)+1

∣∣∣ ≤ 2m
∣∣ei γτ(j) − ei γτ(j)+1

∣∣ .
Using now the estimates

∣∣∣1− ei(θσ(2kj)−θσ(2kj)+1)
∣∣∣ ≤ ∣∣θσ(2kj) − θσ(2kj)+1)

∣∣ ,∣∣∣1− ei(γτ(2kj)−γτ(2kj)+1)
∣∣∣ ≥ ∣∣γτ(2kj) − γτ(2kj)+1)

∣∣ /2,
we obtain the claimed inequality.

We need the following combinatorial lemma to control sums of angles (occuring in

the SU(2) product decomposition of an element in SU(n) (respectively PU(n)) rank-

independently.

Lemma 4.40. Let n ∈ N. Assume that α1, . . . , αn ∈ R satisfy
∑n

i=1 αi = 0. Then

there exists a permutation σ ∈ Sn such that for every k ∈ {1, . . . , n} one has∣∣∣∣∣
k∑
i=1

ασ(i)

∣∣∣∣∣ ≤ max
i=1,...,n

|αi| .

Proof. Without loss of generality we have α1 = maxi=1,...,n |αi| > 0 and αi 6= 0 for all

i = 1, . . . , n. Moreover, we may assume that α1 ≥ . . . ≥ αl > 0 and αl+1 ≤ . . . ≤ αn <

0 for some l < n. We now construct the permutation σ ∈ Sn. We let σ(1) := 1 and

σ(2) = l + 1. Then ασ(1) + ασ(2) ≥ 0.

(1) Let 1 ≤ j1 ≤ n be the (unique) smallest number such that

α1 + αl+1 + . . .+ αl+j1 ≥ 0.

Set σ(1 + i) := l + i, where i = 1, . . . , j1.

(2) If there are no αi's left, then we are done. Else we let 1 ≤ j2 ≤ l be the unique
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4.5 Bounded normal generation for type In factors

smallest number such that

α1 + αl+1 + . . .+ αl+j1 + α2 + . . .+ α1+j2 ≥ 0.

Put σ(1 + j1 + i) := 1 + i for i = 1, . . . , j2.

We obviously have for k ≤ 1 + j1 + j2∣∣∣∣∣
k∑
i=1

ασ(i)

∣∣∣∣∣ ≤ max
i=1,...,n

|αi| = ασ(1).

Proceed inductively interchanging steps (1) and (2) until σ is de�ned on {1, . . . , n}.

This �nishes the proof.

De�nition 4.41. Let u = diag(ei θ0 , . . . , ei θn−1) ∈ SU(n) such that
∑n−1

i=0 θi = 0. Let

α ∈ Sn be as in Lemma 4.40. Then we say that the element diag(eθα(0) , . . . , ei θα(n−1))

angle sum optimal. The permutation α is said to be associated to the angle sum

optimal element u.

Lemma 4.42. Assume that u = diag(ei θ0 , . . . , ei θn−1) ∈ SU(n) with
∑n−1

i=0 θi = 0.

Then we have

2`0(u) ≥ max
i=0,...,n−1

|θi| .

Proof. We may assume that u is optimal and thus |θ0 − θ1| ≥ |θi − θj | for all i, j =

0, . . . , n− 1. Since
∑n−1

i=0 θi = 0 we obtain

|θ0 − θ1| ≥ max
i=0,...,n−1

|θi| .

Thus by Lemma 4.38 we have 2`0(u) ≥ maxi=0,...,n−1 |θi| as claimed.

For Lie group PU(n) we obtain the following rank-dependent result by successive

application of Lemma 4.34.

Theorem 4.43. Let G := PU(n), n ≥ 2, and assume that u, v ∈ G \ {1} satisfy

`0(u) ≤ m`0(v) for some m ∈ N. Then

u ∈ (vG ∪ v−G)8mn.
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Proof. Without loss of generality,

u = diag(ei θ0 , . . . , ei θn−1) = u0 · . . . · un−2 ∈ S0 · . . . · Sn−2

is angle sum optimal with associated permutation α and

v = diag(ei γ0 , . . . , ei γn−1)

is optimal with associated permutation τ . Since `0(u) ≤ m`0(v), we conclude from

Corollary 4.39 and the de�nition of optimality that for all i = 0, . . . , n− 1 we have

4m
∣∣γτ(0) − γτ(0)+1

∣∣ ≥ max
j,k=0,...,n−1

|θj − θk| ≥
∣∣θα(0) + θα(1) + . . .+ θα(i)

∣∣ .
Now we can apply Lemma 4.34 for each ui and hence obtain

ui ∈ (vG ∪ v−G)8m.

Proceeding the same way for all n− 1 terms ui we have

u ∈ (vG ∪ v−G)8m(n−1) ⊆ (vG ∪ v−G)8mn.

Remark. Theorem 4.43 can actually be sharpened in the sense that one does not need

the conjugacy class of v−1. To see this, observe that one may choose n permutations

π1, . . . , πn−1 ∈ G such that

vπ1vπ
−1
1 · . . . · πn−1vπ

−1
n−1 = diag(ei γ0 · . . . · ei γn−1 , . . . , ei γ0 · . . . · ei γn−1) = 1.

Thus 1 ∈ (vG)n, which implies v−1 ∈ (vG)n−1.

Corollary 4.44. Assume that v ∈ G := PU(n) is nontrivial, where n ≥ 2. Then for

every k ≥ 16n/`0(v) we have

G = (vG ∪ v−G)k.

In particular, PU(n) has property (BNG).

Proof. Since v is nontrivial we have `0(v) > 0. It is trivial that for any u ∈ G one has
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4.5 Bounded normal generation for type In factors

`0(u) ≤ 2
`0(v)`0(v) = 2. Using Theorem 4.43 we conclude

u ∈ (vG ∪ v−G)8n·d2/`0(v)e.

From this we conclude that G = (vG ∪ v−G)8n·d2/`0(v)e and in particular that G has

property (BNG).

Now we come to the main result of this section. The main ingredient is Lemma 4.35.

Theorem 4.45. Let G := PU(n), where n ≥ 2. Assume that u, v ∈ G satisfy `0(u) ≤

m`t(v) for some m ∈ N and t = 0, 1, . . . , s− 1 ≤ n− 1. Then

u ∈ (vG ∪ v−G)16md(n−1)/se.

Proof. Since we are in PU(n) we may assume, multiplying with a central element if

necessary, that the angle sums of u and v add up to 0. Without loss of generality u is

angle sum optimal and v is optimal with associated permutation α and τ respectively.

The �rst step is to generate most of u = u0 · . . . ·un−2 (in the SU(2) product decomposi-

tion) simultaneously. Assume that n− 1 is divisible by two (if not, the following works

equally well for n − 2 instead since we are generous with the number of conjugates).

We split the set A := {0, . . . , n− 2} of indices into two sets Ai ⊂ A with cardinality

(n − 1)/2 and such that |a− b| ≥ 2 for any distinct a, b ∈ Ai, i = 1, 2. Let N denote

the unique largest integer divisible by s such that N ≤ n−1
2 . Further decompose each

Ai into 2N/s sets Ai,j of cardinality s/2. Then Ai \
⋃
l=1,...,2N/sAi,l has at most s− 1

elements.

By Corollary 4.39, for all j = 0, . . . , s− 1, we have∣∣∣∣∣
j∑
i=0

θα(i)

∣∣∣∣∣ ≤ 4m
∣∣γτ(i) − γτ(i+1)

∣∣ .
Let B :=

⋃
i=1,2,3, l=1,...,N Ai,l and observe that the cardinality of A\B is at most s−1.

Applying now Lemma 4.35 to all 2 · 2N/s sets Ai,l we have

∏
j∈B

uj ∈ (vG ∪ v−G)4m·4N/s.
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Using again Lemma 4.35 for the remaining factors of u we obtain

∏
j∈A\B

uj ∈ (vG ∪ v−G)4m·2.

Thus from N ≤ (n− 1)/2 and (N + s/2)/s ≤ (n− 1+ s)/(2s) ≤ (n− 1)/s we conclude

u ∈ (vG ∪ v−G)16mN/s+8m ⊆ (vG ∪ v−G)16md(n−1)/se.

Let us explain in what sense Theorem 4.45 is rank-independent. Retain the notations

of Theorem 4.45. If s = 1, then the rank of PU(n) is clearly involved. However,

if s = (n − 1)/p with p ∈ N, then one needs at most 16mp conjugates to generate

u, which is independent of the rank if, e.g., p = 2. This will be useful to prove the

topological bounded normal generation property for projective unitary groups of II1

factors in Section 4.7.

4.6 Bounded normal generation for the Calkin algebra

LetM be a separable type I∞-factor. ThenM = B(H) for some in�nite-dimensional

separable Hilbert space H by Corollary V.1.28 in [Ta 03]. In this section, we consider

G := PU(M) endowed with the strong operator topology. In this topology G is a

Polish group. However, we also need to consider Hilbert-Schmidt perturbations in this

group in the proof of Theorem 4.51. The topology induced from the Hilbert-Schmidt

norm does not even make U(M) respectively PU(M) a topological group.

We explain the notion used in Theorem 4.51. Let u, v ∈ G, n ∈ N and denote by

‖·‖HS the Hilbert-Schmidt norm. The notion u ∈ (vG ∪ v−G)n
‖·‖HS used in Theorem

4.51 means that u lies in (vG∪ v−G)n up to an arbitrarily ‖·‖HS-small Hilbert-Schmidt

perturbation.

There is an obstruction for the bounded normal generation property of PU(H) which

we will now describe. Let K denote the norm-ideal of compact operators K(H) on H,

endowed with the operator norm. We de�ne U(H)K as the group of unitary operators
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on a Hilbert space H such that 1− u is an element of K,

U(H)K := {u ∈ U(H) | 1− u ∈ K} .

We endow U(H)K with the topology given by the operator norm.

Obviously, U(H)K is a normal subgroup ofU(H) which contains every �nite-dimensional

unitary group U(n), n ∈ N. The center of U(H)K does not contain the circle rota-

tion group U(1), in fact it only consists of the element 1. Since U(H)K is naturally

embedded in U(H), we consider the generalized projective s-numbers

`t(u) = inf
λ∈Z(U(H))

µt(1− λu) = inf
λ∈U(1)

µt(1− λu).

Observe that for any u ∈ U(H)K we have `t(u) ≤ µt(1 − u) → 0 for t → ∞ by

compactness of 1− u. In particular, for elements u, v ∈ U(H)K there usually does not

exist a number m ∈ N such that `0(u) ≤ m`t(v) for all t ≥ 0. This is the obstruction

for the bounded normal generation property of PU(H). Thus we can only hope for

property (BNG) for the connected components of the projective unitary group of the

Calkin algebra.

We embed u ∈ U(n) into U(H)K in the usual way by U(n) 3 u 7→ ( u 0
0 1 ) ∈ U(H)K .

It is not hard to show that the unions
⋃
n∈NU(n) as well as

⋃
n∈N SU(n) are dense in

U(H)K in the uniform topology.

It is known that U(H)K is topologically simple in the uniform topology. However,

there is no topological uniform normal generator for U(H)K . Suppose the contrary

and let v be a topological uniform normal generator for U(H)K . Then one can replace

the sequence of singular values of 1 − v ∈ K with their square roots and obtain a

corresponding element u ∈ U(H)K . But then there exists no k ∈ N such that `kt(u) ≤

k`t(v) for all t ≥ 0, which contradicts Proposition 4.28.

Analogously to the �nite-dimensional case we deal with two di�erent decompositions.

If u = diag(λ0, λ1, . . .) ∈ U(H) is a diagonal element, then we can again write u =∏
j∈N0

uj in the SU(2) product decomposition with uj de�ned as follows:

uj = diag(1, . . . , 1, λ0 · . . . · λj , λ0 · . . . · λj , 1, 1, . . .), j ∈ N0.
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Then we have

n∏
j=0

uj = diag(λ0, . . . , λn, λ0 · . . . · λn, 1, 1, . . .)→n→∞ u

strongly (but not uniformly). We can also de�ne the one-parameter torus decomposi-

tion
∏
j∈N0

ũj of u by setting

ũ0 = diag(λ0, λ0, . . .), ũj = diag(1, . . . , 1, λj−1λj , λj−1λj , . . .), j ∈ N0.

Then in the strong operator topology (but not in the uniform topology) we have

n∏
j=0

ũj = (λ0, λ1, . . . , λn−1, λn, λn, . . .)→n→∞ u.

That is, when U(H) is endowed with the strong operator topology, then we have

u′ =
∏
j∈N0

ũj =
∏
j∈N0

uj .

Let us prove an in�nite-dimensional analogue of Lemma 4.35. As in the previous

section we denote by Sj a copy of SU(2) embedded in U(H) around the diagonal

entries j, j + 1.

Lemma 4.46. Consider u = diag(ei θ0 , . . .), v = diag(ei γ0 , . . .) ∈ G := U(H), G en-

dowed with the strong operator topology. Assume that
∏
i∈N0

ui is the SU(2) product

decomposition of u and v =
∏
i∈N0

vi is the one-parameter torus decomposition. Let

I, J ⊆ N0 be countable index sets such that |ik − il| , |jk − jl| > 1 for all k 6= l ∈ N0,

where ik, il ∈ I, jk, jl ∈ J . Assume that
∣∣∣∑ik

i=1 θi

∣∣∣ ≤ m |γjk − γjk+1| for some even

number m ∈ N and all k, l ∈ N0. Then

∏
i∈I

ui ∈
(
vG ∪ v−G

)2m
.

Proof. Write as above u = ũ
∏∞
k=1 uik where ũ =

∏
l∈N\I ul and analogously v =

ṽ
∏∞
l=1 vjl . Note that Sjk and Sjl commute elementwise for k 6= l. Moreover, ṽ com-
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mutes with Sjk for all jk ∈ J . Thus we get

(
v
∏
j∈J Sj

)m
=

ṽ∏j∈J Sj
∏
j∈J

v
Sj
j

m

= ṽm
∏
j∈J

(
v
Sj
j

)m
.

Let w ∈ U(H) be an unitary operator such that Swik = Sjk for all k ∈ N0. Using Lemma

4.33 and the given inequality, we obtain uwik ∈
(
v
Sjk
jk

)m
for all k ∈ N0, i.e.,

∏
i∈I

ui ∈
(
ṽ−m

(
v
∏
j∈J Sj

)m)w∗
.

Since

(ṽ)−2 ∈ ṽ−2
∏
j∈J

(
v
Sj
j

)−2
=
(
v
∏
j∈J Sj

)−2
,

we conclude

∏
i∈I

ui ∈
((
v
∏
j∈J Sj

)m
·
(
v−

∏
j∈J Sj

)m)w∗
⊂ w∗

(
vG ∪ v−G

)2m
w.

This �nishes the proof.

In Section 4.5 we de�ned for elements in U(n) the notions of optimality and angle-sum

optimality in order to be able to apply the local SU(2)-result of Nikolov and Segal, cf.

Lemma 4.33, at several positions simultaneously. We want to apply the same strategy

at in�nitely many positions and hence need to transfer the just mentioned notions to

the unitary group U(H).

Let us now adapt the concept of optimality. The main reason for the following more

complicated de�nition is that a diagonal (unitary) operator might have in�nitely many

cluster points.

De�nition 4.47. Assume that u = diag(ei θ0 , ei θ1 , . . .) ∈ G := U(H) and let A ⊆ N0

be an index set the form ∅, or {0, 1, . . . , d} for some d ∈ N0 or N0. Let (εn)n∈N0 be a

sequence of elements εn ∈ [−1/2, 1/2] and εn := 0 for all n ∈ N0 \ A. We say that a

diagonal operator u′ = diag(ei(θ0+ε0), ei(θ1+ε1), . . .) is (εn)n∈A-optimal for u if

• |εn| ≥ |εn+1|;

•
∣∣ei(θj+εj) − ei(θj+1+εj+1)

∣∣ = 2 for all j ∈ A;

• if v = diag(ei γ0 , . . .) ∈ uG such that γi = θi for i = 0, . . . , n and
∣∣ei θj − ei θj+1

∣∣ =
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∣∣ei γj − ei γj+1
∣∣ for all j = 0, . . . , d, d+ 1, . . . , k − 1, then

∣∣∣ei θk − ei θk+1

∣∣∣ ≥ ∣∣ei γk − ei γk+1
∣∣ .

If A = ∅, then we also call u′ optimal for u.

Moreover, to an (εn)n∈A-optimal element u′ we associate an injective map σ : N0 → N0

with u′, such that the di�erences
∣∣∣ei(θσ(i)+εσ(i)) − ei(θσ(i)+1+εσ(i)+1)

∣∣∣ are decreasing.
The map σ in the above de�nition can be inductively constructed as follows. We

set σ(0) = 0. Suppose that σ(i − 1) is constructed. Then σ(i) takes the value of the

smallest index j which satis�es

∣∣∣ei(θσ(l)+εσ(l)) − ei(θσ(l)+1+εσ(l)+1)
∣∣∣ ≥ ∣∣∣ei(θj+εj) − ei(θj+1+εj+1)

∣∣∣
≥
∣∣∣ei(θk+εk) − ei(θk+1+εk+1)

∣∣∣ ,
for all l ≤ i − 1 and k /∈ {σ(0), . . . , σ(i− 1)}. There are cases where σ cannot be

constructed surjectively and hence not as an element of the in�nite permutation group

S∞. Namely if in�nitely of the above di�erences are bigger than some others.

We need (εn)n∈A-optimality in order to have Corollary 4.39. Note that for a diagonal

element u ∈ U(H) there always exists an (εn)n∈A-optimal element, the set A and the

possible values of each εn depend however very much on the spectrum of u. Observe

that an (εn)n∈A-optimal element u′ as above lies in (uG)2|ε0| with respect to the operator

norm, by continuity of
∣∣1− ei ε0

∣∣, where G := U(H). The third condition in the above

de�nition de�nes a lexicographic order starting from the (d+ 1)th entry.

De�nition 4.48. Let u ∈ U(H). If λ1, λ2 lie in the spectrum of u, then we call the

multiplicity of λ1 minus the multiplicity of λ2 the relative (λ1, λ2)-multiplicity of u.

We denote this integer by νλ1,λ2 or simply ν if λ1, λ2 are clear from the context. The

multiplicity of a non-eigenvalue is always set to be zero. If the multiplicities of both λ1

and λ2 are in�nite, then ν := 0. For notational convenience we always set ε−n := 0 for

n ∈ N and ε0 := 0 if the relative (λ1, λ2)-multiplicity is less than 1. Moreover, we set

εn := 0 for all n ≥ ν.

For example, an element u ∈ U(H)K might have −1 in its spectrum, and 1 ∈ σ(u)

as a limit point or with lower multiplicity than −1. In any case, if the relative (−1, 1)
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4.6 Bounded normal generation for the Calkin algebra

multiplicity is positive, then it is �nite, by compactness of 1− u.

Before being able to de�ne an in�nite-dimensional variant of angle-sum optimality,

we need to imitate Lemma 4.40.

Lemma 4.49. Let {αn}n∈N0
⊆ R be a sequence with in�nitely many positive and

in�nitely many negative real numbers such that both the sum over all positive αn and

over all negative αn diverge. Then there exists a permutation σ ∈ S∞ such that∣∣∣∣∣
n∑
i=0

ασ(i)

∣∣∣∣∣ ≤ sup
j∈N0

|αj | for every n ∈ N0.

Proof. The construction of σ is analogous to that in Lemma 4.40. We divide

N0 into three sets A1 := {n ∈ N0 | αn > 0}, A2 := {n ∈ N0 | αn = 0} and A3 :=

{n ∈ N0 | αn < 0}. De�ne σ inductively. First put σ(0) = minn∈A1 n, σ(1) =

minn∈A2 n and σ(2) = minn∈A3 n. If
∑2

i=0 ασ(i) > 0, then set σ(2 + i) =

minn∈A3\{σ(2),σ(3),...,σ(i+1)} n for i = 1, . . . , j1 with j1 the smallest number such that∑2+j1
i=0 ασ(i) ≤ 0. Now let σ(2 + j1 + i) = minn∈A1\{σ(0),σ(2+j1+1),...,σ(2+j1+i−1)} n for

i = 1, . . . , j2 with j2 the smallest number such that
∑2+j1+j2

i=0 ασ(i) > 0. Put σ(2+ j1 +

j2 +1) = minn∈A2\{σ(0)} n and σ(3+ j1 + j2 + i) = minn∈A3\{σ(0),...,σ(3+j1+j2+i−1)} n for

i = 1, . . . , j3 with j3 the smallest number such that
∑3+j1+j2+j3

i=0 ασ(i) ≤ 0. Proceed by

induction (alternating the above steps).

Let u ∈ PU(H) \ U(H)K , u 6= 1. Observe that there is λ ∈ U(1) such that λu

has in�nitely many positive and in�nitely many negative angles. For example, if the

spectrum σ(u) of u is
{
eiπ/2, 1

}
, where eiπ/2 and 1 have in�nite multiplicities, then

one can choose λ = e− iπ/4 to obtain σ(λu) =
{
eiπ/4, e− iπ/4

}
.

De�nition 4.50. Let u = diag(ei θ0 , ei θ1 , . . .) ∈ PU(H) \ U(H)K , u 6= 1, and σ ∈ S∞
as in Lemma 4.49. Then we say that diag(ei θσ(0) , ei θσ(1) , . . .) is angle sum ordered

with respect to u.

Note that by Lemma 4.49 and the remark preceding the above de�nition, given any

u ∈ PU(H)\U(H)K , u 6= 1, there exists an element in uG, G := PU(H), which is angle

sum ordered with respect to u. In fact, there exist in�nitely many such elements.

Theorem 4.51. Let H be a separable in�nite-dimensional Hilbert space. Consider

the projective unitary group G := PU(H) of B(H), endowed with the strong operator
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topology. Assume that u, v ∈ G \ U(H)K are nontrivial elements satisfying `0(u) ≤

m`t(v) for all t ≥ 0 and some m ∈ N. Then

u ∈ (vG ∪ v−G)20m
‖·‖HS .

Proof. Since v ∈ PU(H) \ U(H)K , `t(v) does not tend to zero as t → ∞. Hence

there exists δ > 0 such that `0(u) ≤ 2m`t(v) − δ for all t ≥ 0. We choose ε > 0 such

that ε ≤ δ/(2m+2). Using a version of the noncommutative Weyl-von Neumann-type

theorem by Voiculescu, see [Vo 79, Theorem 2.4], we obtain the existence of diagonal

elements

u′ = diag(ei θ0 , ei θ1 , . . .), v′ = diag(ei γ0 , ei γ1 , . . .)

and g, h ∈ G such that gu′g−1 and hv′h−1 are ε-close to u and v in the Hilbert-Schmidt

norm ‖·‖HS respectively. By Lemma 4.30 and since the Hilbert-Schmidt norm is always

greater or equal than the operator norm, we have

`0(u
′) ≤ 2m`t(v

′)− δ + 2(m+ 1)ε

≤ 2m`t(v
′) for all t ≥ 0.

We now describe how to get an (εn)n∈A-optimal element for v′. Let (cn)n∈A′′ de-

note the (possibly empty, �nite or countably in�nite) sequence of cluster points cn in

the set
{
ei γ0 , ei γ1 , . . .

}
(starting from 1 in mathematically positive direction). Con-

sider the corresponding sequence (νn) of relative (cn, cn) multiplicities and throw out

the nonpositive ones. Here we set νn := 0 if both −cn and cn have in�nite multi-

plicity. We obtain a subsequence (νn)n∈A′ of (νn)n∈A′′ , where A
′ ⊆ A′′. The index

set A in the de�nition of (εn)n∈A-optimality is now empty if A′ is empty, and else

A =
{
0, 1, . . . , 2

∑
n∈A′ νn − 1

}
, in particular, A = N0 if 2

∑
n∈A′ νn is not �nite.

Now we may choose arbitarily small εn, decreasing in absolute value, such that ε >

|εn| > 0 for n ∈ A and |εn| → 0 and such that v′′ = diag(ei(γ0+ε0), . . .) is (εn)n∈A-

optimal for v′ with associated permutation τ , where we assume without loss of gener-

ality that the eigenvalues are ordered in such a way, that this is possible (follows from

bi-invariance of the operator norm and renumbering if necessary).

Assume that u′′ ∈ (u′)G is angle sum ordered with respect to u′ (with corresponding

permutation σ). Then we have 2`0(u
′′) ≥

∣∣∑n
i=0 θσ(i)

∣∣ for all n ∈ N0. Using Corollary
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4.39 we obtain for all n ∈ N0 and t ≥ 0∣∣∣∣∣
n∑
i=0

θσ(i)

∣∣∣∣∣ ≤ 2`0(u
′′) ≤ 8m

∣∣γτ(t) + ετ(t) − γτ(t)+1 − ετ(t)+1

∣∣ .
Hence by the triangle inequality, assuming εn to be su�ciently small,∣∣∣∣∣

n∑
i=0

θσ(i)

∣∣∣∣∣ ≤ 8m
∣∣γτ(t) − γτ(t)+1

∣∣+ 8m
∣∣ετ(t) − ετ(t)+1

∣∣
≤ 10m

∣∣γτ(t) − γτ(t)+1

∣∣ for all t ≥ 0, n ∈ N0. (4.2)

Before being able to generate u′′ from v′′, we need to decompose both elements in

an appropriate way. Decompose u′′ =
∏
i∈N0

ui into its SU(2) product decomposition

and v′′ =
∏
i∈N0

vi into its one-parameter torus decomposition. In order to generate

in�nitely many entries of u′′ simultaneously, we partition N0 into disjoint sets A1 and

A2, where A1 := {2n | n ∈ N0} and A2 := {2n+ 1 | n ∈ N0}.

We use Lemma 4.46 and Inequality (4.2) to obtain

∏
j∈Ai

uj ∈
(
(v′′)G ∪ (v′′)−G

)10m
, i = 1, 2,

and thus

u′′ ∈
(
(v′′)G ∪ (v′′)−G

)20m
.

Since u′′ ∈ (u′)G, v′′ ∈ ((v′)G)ε0 ⊆ ((v′)G)ε and u
′ ∈ (uG)ε,‖·‖HS , v

′ ∈ (vG)ε,‖·‖HS , we

get

u ∈
(
(u′′)G

)
ε
⊆
((

(vG)2ε,‖·‖HS ∪ (v−G)2ε,‖·‖HS

)20m
)
ε,‖·‖HS

.

Thus by Lemma 4.31 we have u ∈
((
vG ∪ v−G

)20m
)

(20m+1)2ε,‖·‖HS
.

Letting ε tend to zero, we arrive at

u ∈ (vG ∪ v−G)20m
‖·‖HS

.

This completes the proof.

In Theorem 4.51 we actually do not need the condition u /∈ U(H)K . The only problem

that can arise for u ∈ U(H)K is that the angle sum increases for every possible SU(2)

decomposition of u. Hence the assumption has to be changed to 2 ≤ m`t(v) (instead
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of `0(u) ≤ m`t(v)) for all t ≥ 0. The proof works equally well. Thus one can interpret

Theorem 4.51 as a criterion to be a topological uniform normal generator for PU(H),

endowed with the strong operator topology.

Remark. Fong and Sourour showed in [FS 85] that every proper normal subgroup of

U(H) is contained in the normal subgroup U(H)K(H) and that if u ∈ U(H)\U(H)K(H),

then u is a product of a �nite number of operators, each of which is unitarily equivalent.

So Theorem 4.51 on the one hand can be considered weaker than the result of Fong and

Sourour because it involves the Hilbert-Schmidt norm closure, but on the other hand

we give quantitative estimates. Our version will allow us to prove the bounded nor-

mal generation property for the connected component of the identity of the projective

unitary group of the Calkin algebra.

Let H be an in�nite-dimensional separable (complex) Hilbert space. By C we de-

note the Calkin algebra on H, i.e., C = B(H)/K(H). Moreover, we write U(C) for its

unitary group and PU(C) for its projective unitary group. Each equivalence class in

U(C) contains a diagonal element by the Weyl-von Neumann-Berg-Voiculescu Theorem,

see [Vo 79, Theorem 2.4]. By [Mu 90, Theorem 4.1.6] C is a simple C∗-algebra (but

not a von Neumann algebra). The (projective) unitary group of the Calkin algebra is

not connected (recall that in contrast, the unitary group of a von Neumann algebra is

always connected in the uniform topology and hence also in the strong operator topol-

ogy, see [KR 86, Exercise 5.7.24(ii)]). Its connected components are characterized by

the Fredholm index. Since we want to use Theorem 4.51 we need to ensure that the

elements of consideration in PU(C) can be lifted to U(H). This lift exists precisely if

the elements have Fredholm index 0, that is, they are in the connected component of

the identity.

The essential norm ‖·‖ess on C is the norm de�ned by

‖x‖ess := inf
y∈K(H)

‖x− y‖ , where x, y ∈ C.

For u ∈ PU(C) we let

`ess(u) := inf
λ∈U(1)

‖1− λu‖ess .

Theorem 4.52. Let G denote connected component of the identity of PU(C). Assume
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that u, v ∈ G \ {1} satisfy `ess(u) ≤ m`ess(v). Then

u ∈ (vG ∪ v−G)20m.

In particular, if `ess(v) > 0, then

G = (vG ∪ v−G)m,

for every m ≥ 40/`ess(v). That is, G has property (BNG).

Proof. Let H := PU(H). Since u and v are of Fredholm index 0, there exists a lift

into H. We denote the corresponding elements by u′ and v′. Since the eigenvalues of

u, v have in�nite multiplicity, we have `t(u
′) ≤ m`t(v′) for all t ≥ 0. Hence by Theorem

4.51 we have

u′ ∈ (v′H ∪ v′−H)20m
‖·‖HS .

We may pass back to PU(C) by using the quotient map, so that we obtain

u ∈ (vG ∪ v−G)20m,

as claimed.

To see the second claim, note that if `ess(v) > 0, then trivially

`ess(u) ≤
2

`ess(v)
`ess(v).

This holds for arbitrary u ∈ G, i.e. G has property (BNG).

The following corollary was also found by Fong and Sourour in [FS 85].

Corollary 4.53. The connected component G of the identity in PU(C) is algebraically

simple.

Fong and Sourour actually showed more, see [FS 85, Theorem 3]: the normal sub-

groups of U(C) are its center and the groups

Nn := {u ∈ U(C) | n divides the Fredholm index of u} , n ∈ N0.
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4.7 Topological bounded normal generation for II1 factors

This section deals with property (topBNG) for projective unitary groups of II1 factors,

endowed with the strong operator topology. This section is mainly included because

our proof of property (topBNG) is easier to understand than our proof of property

(BNG) which is treated in the next section.

The strategy of the proof of property (topBNG) is to approximate both u and v

(arbitarily close) with elements having �nite spectrum and rational weights and then

map them to the same element in PU(n) via partial isometries. This allows us to use

Theorem 4.45. Letting the approximation be �ner and �ner and using Lemma 4.31 we

conclude that u is in the strong closure of a product of conjugates of v and v∗.

Our �rst step is to prove the following approximation result.

Proposition 4.54. Assume that u ∈ U(M) and ε > 0. There exists an element

u′ ∈ U(M) having �nite spectrum and corresponding spectral projections of rational

trace such that ∥∥u− u′∥∥
2
< ε.

Proof. Choose pairwise distinct elements λ1, . . . , λn ∈ U(1), n ≥ 2, such that for every

λ ∈ σ(u) there exists i ∈ {1, . . . , n} such that |λ− λi| < ε/4 and arg(λi) < arg(λi+1)

mod 2π. Denote by pu the spectral measure of u and de�ne

pi := pu({λ | arg(λ) ∈ [arg(λi), arg(λi+1))})

for i = 1, . . . , n − 1 and pn := pu([λn, λ1)) = 1 −
∑n−1

i=1 pi. If pi has rational trace we

set qi := pi. Without loss of generality we may assume that pi 6= 0 and τ(pi) ∈ R \Q.

For i = 1, . . . , n − 1 let qi be a subprojection of pi with rational trace and such that

‖pi − qi‖2 < ε/(n− 1). Set qn := 1−
∑n−1

i=1 qi and observe that τ(qn) ∈ Q and pn is a

subprojection of qn such that

‖pn − qn‖2 =

∥∥∥∥∥1−
n−1∑
i=1

pi − (1−
n−1∑
i=1

qi)

∥∥∥∥∥
2

≤
n−1∑
i=1

‖pi − qi‖2 < ε.

Now set u′ :=
∑n

i=1 λiqi. From the inequality ‖xy‖1 ≤ ‖x‖ · ‖y‖2 for x, y ∈ M and
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Proposition 2.18(ii) we conclude

‖xy‖1 ≤ ‖xy‖2 ≤ ‖x‖ · ‖y‖2 ≤ ‖x‖ · 2 ‖y‖1 .

Hence we obtain

∥∥u− u′∥∥
1
=

∥∥∥∥∥
n∑
i=1

(uqi − λiqi)

∥∥∥∥∥
1

≤
n∑
i=1

‖uqi − λiqi‖1

≤
n∑
i=1

‖uqi − λiqi‖ · 2 ‖qi‖1

<
n∑
i=1

ε

4
· 2 ‖qi‖1

=
ε

2
.

By Proposition 2.18(ii) we thus have

∥∥u− u′∥∥
2
≤ 2 ·

∥∥u− u′∥∥
1
< ε,

as desired.

Remark. Using similar arguments as in the proof of Proposition 4.54 one can show

that if the connected components of the spectrum of u ∈ U(M) have rational weight,

then for arbitrary ε > 0 there exists u′ with �nite spectrum and spectral projections of

rational trace such that ∥∥u− u′∥∥ < ε.

The proof of Theorem 4.57 uses the following technical lemma, which allows us

estimate singular values for su�ciently close 2-norm approximations of a given element

in a II1 factorM.

Lemma 4.55. Let x, x′ ∈ M. There exists ε > 0 dependent only on x such that if

‖x− x′‖2 < ε, then

`2t(x) ≤ 2`t(x
′) for all t ≥ 0.

Proof. Let s denote the projective rank of x. Put δ := `3s/4(x)/2. Assuming ε
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to be small enough we have a su�ciently �ne 2-norm approximation x′ of x such

that `s/2(x
′) ≥ 2δ > 0. Right continuity (see Lemma 4.26) implies that there exists

δ0 ∈ (0, s/2] such that

`0(x)− `t(x) ≤ δ for all t ∈ [0, δ0].

Thus for all t ∈ [0, δ0] we conclude

`0(x) ≤ `δ0(x) + δ

≤ `δ0/2(x
′) + µδ0/2(x− x

′) + δ

≤ `t(x′) +
2ε

δ0
+ δ.

Thus if ε is small enough, we have 2ε/δ0 < δ and hence

`t(x) ≤ `t(x′) + 2δ ≤ `t(x′) + `s/2(x
′) ≤ 2`t(x

′) for all t ∈ [0, δ0].

For t ∈ [δ0, s/2] we obtain

`2t(x) ≤ `t(x′) + µt(x− x′) ≤ `t(x′) +
ε

δ0
≤ 2`t(x

′).

Thus for all t ≥ 0

`2t(x) ≤ 2`t(x
′),

as claimed.

Assume now that u, v ∈ G := PU(M) satisfy `0(u) ≤ m`t(v) for all t ∈ [0, s] and

some m ∈ N. We want to show that under these circumstances we have

u ∈ (vG ∪ v−G)32md1/se‖·‖2 .

Let ε > 0 be arbitrarily small. By Proposition 4.54 there exist elements u′, v′ ∈

U(M) such that ‖u− u′‖2 , ‖v − v′‖2 < ε and u′ =
∑n

i=1 λipi, v
′ =

∑m
j=1 ζjqj , where

λi, ζj ∈ U(1) and pi, qj ∈ Proj(M) satisfy τ(pi) = ri/si, τ(qj) = rj+n/sj+n for some

rk, sk ∈ N \ {0}.

Let s0 denote the least common multiple of s1, . . . , sn+m. Take subprojections p
′
i of the
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pi and q
′
j of the qj such that τ(p′i) = τ(q′j) = 1/s0 and

u′ =

s0∑
i=1

λ′ip
′
i, v′ =

s0∑
j=1

ζ ′jq
′
j ,

where multiplicities are taken into account. We need the following easy lemma.

Lemma 4.56. Let p′i and q
′
i be as de�ned above. There exists w ∈ U(M) such that

wp′iw
∗ = q′i for all i = 1, . . . , s0.

Proof. Since p′i ∼ q′j for all i, j = 1, . . . , s0, we may choose partial isometries xi

(respectively yi) with initial projection p′i (respectively q
′
i) and �nal projection p′1. Let

w :=
∑k

i=1 y
∗
i xi. We claim that w is unitary.

w∗w =
∑
i

xiyiy
∗
i xi +

∑
i 6=j

x∗i yiy
∗
jxj =

∑
i

x∗i p1xi =
∑
i

x∗ixix
∗
ixi =

∑
i

pi = 1,

and analogously ww∗ = 1.

Using the above lemma, we obtain that

wu′w∗ =

s0∑
i=1

λ′iq
′
i, v′ =

s0∑
i=1

ζ ′iq
′
i.

We assume that u′ is such that we have `0(u
′) ≤ `0(u). Note that this is always possible

by choosing the eigenvalues of the approximating element u′ such that

sup
λ,ζ∈σ(u′)

|λ− ζ| ≤ sup
λ,ζ∈σ(u)

|λ− ζ| .

Using Lemma 4.55 for v, v′ and assuming ε to be su�ciently small we obtain for all

t ∈ [0, s/2] that

`0(wu
′w∗) = `0(u

′) ≤ `0(u) ≤ m`2t(v) < 2m`t(v
′). (4.3)

We may assume that s is rational. Indeed, if s is irrational, using right continuity and

the fact that the inequality `2t(v) < 2`t(v
′) for t ∈ [0, s/2] is strict, we replace s by

some rational s̃ > s such that `2t(v) ≤ 2`t(v
′) for all t ∈ [0, s̃/2]. Replacing s0 by a

multiple of s0 if necessary, we may also assume that s(s0 − 1)/2 ∈ N. Using Theorem
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4.45 for the elements u′, v′ with Inequality (4.3) we conclude that

wu′w∗ ∈ (vG ∪ v−G)16md(s0−1)/(s/2)(s0−1)e = (vG ∪ v−G)32md1/se.

Hence

u ∈ (((vG)ε ∪ (v−G)ε)
32md1/se)ε,

where G := PU(M). Using Lemma 4.31, we obtain

u ∈ ((vG ∪ v−G)32md1/se)(32md1/se+1)ε.

Now letting ε tend to zero, i.e. approximating both u and v �ner and �ner in the

2-norm, we obtain

u ∈ (vG ∪ v−G)32md1/se‖·‖2 .

Summarizing the above discussion, we have proven the following theorem.

Theorem 4.57. Let M be a II1-factor. Assume that u, v ∈ G := PU(M) satisfy

`0(u) ≤ m`t(v) for all t ∈ [0, s] and some m ∈ N. Then

u ∈ (vG ∪ v−G)32md1/se‖·‖2 .

If both u and v have �nite spectrum and rational spectral weights, then

u ∈ (vG ∪ v−G)32md1/se.

Lemma 4.58. Let M be a �nite von Neumann algebra with normalized trace. For

any two elements u, v ∈ PU(M) \ {1} there exist k,m ∈ N such that `kt(u) ≤

max {m`t(v)− δ, 0} for all t ≥ 0 and some δ ≥ 0. In particular, for every v ∈

PU(M) \ {1}, there exist k,m ∈ N such that `kt(u) ≤ max {m`t(v)− δ, 0} for all

t ≥ 0 and for all u ∈ PU(M).

Proof. Since v 6= 1, we have `t(v) at least for t = 0. Right continuity of µt in t implies

that there exists an interval [0, δ0) such that `t(v) 6= 0 for all t ∈ [0, δ0). There exist

δ1, ε > 0 such that `t(v) ≥ ε for all t ∈ [0, δ1]. Since `t(u) ≤ 2 for all t ≥ 0, there exists

m ∈ N such that mε ≥ 2 + δ. Clearly, there also exists k ∈ N such that kδ1 > 1 (recall

that `t ≡ 0 for all t > τ(1)). That is, we have `kt(u) ≤ max {m`t(v)− δ, 0} for all
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4.8 Bounded normal generation for II1 factors

t ≥ 0.

Theorem 4.59. The projective unitary group G of a II1-factor, endowed with the strong

operator topology, has property (topBNG).

Proof. Let v ∈ G \ {1} be arbitrary. By Lemma 4.26 there exist δ > 0 and ε > 0 such

that

`t(v) ≥ ε for all t ∈ [0, δ].

Let u ∈ G be arbitrary. Since `t(u) ≤ 2 for all t ≥ 0 and `t(u) = 0 for all t ≥ 1 we have

`0(u) ≤ d2/εe`t(v) for all t ∈ [0, δ].

Using Theorem 4.57 we conclude

u ∈ ((vG ∪ v−G)32d2/εe·d1/δe)
‖·‖2

.

Since u was an arbitrary element, this implies that G has property (topBNG).

An immediate corollary of Theorem 4.59 is the topological simplicity of the projective

unitary group in the strong operator topology. This was discovered for the uniform

topology by Kadison in [Ka 52].

Corollary 4.60. The projective unitary group of a II1 factor is topologically simple

in the strong operator topology.

We remark here that Theorem 4.59 implies that the projective unitary group of a

metric ultraproduct of a II1 factor has property (BNG). However, in the next section

we will prove that the projective unitary group of any separable II1 factor has the

bounded normal generation property.

4.8 Bounded normal generation for II1 factors

This section deals with the proof of the bounded normal generation property of projec-

tive unitary groups of II1 factors. The proof of this algebraic property is considerably

more complicated than that of its topological counterpart in the previous section.

In this sectionM will always denote a separable II1 factor.
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4 Bounded Normal Generation

The following result is a �rst observation on the spectral behaviour under taking

appropriate commutators.

Lemma 4.61. For every u ∈ U(M) there exists v ∈ U(M) such that

‖1− uvu∗v∗‖2 ≥ inf
λ∈U(1)

‖1− λu‖2 .

Proof. Apply [Po 81, Lemma 2.3] (see also [Ta 03, Lemma XIV.5.6]) to the element

u− τ(u) in order to obtain for arbitrary ε > 0 the existence of v ∈ U(M) such that

‖v(u− τ(u))v∗ − (u− τ(u))‖22 = ‖v − uvu∗‖22 ≥ (2− ε) ‖u− τ(u)‖22 .

For ε > 0 su�ciently small, we obtain

(2− ε) ‖u− τ(u)‖22 ≥ inf
λ∈U(1)

‖1− λu‖22 ,

as claimed.

However, Lemma 4.61 does not reveal information about the generalized projective

s-numbers of the commutator. It is much harder to keep track of that information

under commutators. We now construct for a given unitary u another unitary v such

that the commutator [u, v] retains much of the spectral information of u. On the one

hand this result is crucial for our proof of property (BNG) in the II1 factor case, on

the other hand it is of independent interest since it allows to consider commutators

instead of the original element without qualitatively changing the (projective) spectral

information.

Proposition 4.62. LetM be a II1 factor. For every u ∈ U(M) there exist v ∈ U(M)

such that

`24t(u) ≤ 4`t([u, v]) for all t ≥ 0.

Proof. If u ∈ Z(U(M)), then the claim is trivial. So assume that u is noncentral.

Right continuity of `t in t implies that there exists s ∈ (0, 1] such that `t(u) > 0 for all

t ∈ [0, s) and `t(u) = 0 for t ≥ s. For δ := `s/2(u) > 0 we obtain

`2t(u) ≤ 2`t(u)− δ for all t ∈ [0, s/2).
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4.8 Bounded normal generation for II1 factors

Using the right continuity of `t once again we get the existence of δ0 > 0 satisfying

`0(u)− `24δ0(u) ≤
δ

2

and thus

`24t(u)− `24δ0(u) ≤
δ

2
for all t ∈ [0, δ0). (4.4)

Let ε > 0 such that ε ≤ δδ0/40. By Proposition 4.54 we can �nd u′ such that

‖u− u′‖2 < ε and u′ =
∑n−1

i=0 λipi with orthogonal projections pi and τ(pi) = 1/n for

i = 0, . . . , n − 1. Relabelling if necessary, we may assume that diag(λ0, . . . , λn−1) is

optimal with associated permutation π. Taking orthogonal subprojections pi,1, pi,2 of pi

with trace 1/(2n), the multiplicities of the eigenvalues are divisible by 2. We write λi,j

for the eigenvalue corresponding to pi,j , j = 1, 2. Note that λi,j = λi for j = 1, 2 and

all i = 0, . . . , n− 1. We consider λt,j = λt as a right-continuous function in t ∈ [0,∞)

which is constant on the intervals [0, 1), . . . , [n − 1, n), λt = λi for t ∈ [i, i + 1), and

zero for t ≥ n. We now construct a permutation σ ∈ SX , X = {0, . . . , n− 1} × {1, 2},

as follows. Set

λσ(i,1) := λi+1,1, λσ(n−1,1) := λ0,1, λσ(i,2) := λi,2.

For notational convenience we can consider σ(t, j) as a right-continuous function in

t ∈ [0,∞) which is zero if t ≥ n and constant on the intervals [i, i+ 1), i = 0, . . . , n.

Let v ∈ U(M) be such that vpi,jv
∗ = pσ−1(i,j). Then

[u′, v] =
∑

i=0,...,n−1, j=1,2

λi,jpi,j
∑

k=0,...,n−1, l=1,2

λk,lpσ−1(k,l) =
∑
i,j

λi,jλσ(i,j)pi,j .

Put λ̃i,j := λi,jλσ(i,j) and observe that λ̃i,2 = 1. We want to have an inequality between

the projective singular values of [u′, v] and u′. It is clear that `t([u
′, v]) is constant in

the intervals [i/n, (i + 1)/n), i = 0, . . . , n − 1, and zero for t ≥ 1. Therefore we use

Lemma 4.38 (recall that τ is normalized). We have

1

2

∣∣λπ(2tn) − λπ(2tn)+1

∣∣ ≤ `t(u′) ≤ ∣∣λπ(tn) − λπ(tn)+1

∣∣ for t ≥ 0.

Let σ̃ be a permutation on {0, . . . , n− 1} such that
∣∣∣λ̃σ̃(i),1 − λ̃σ̃(i),2

∣∣∣ ≥ ∣∣∣λ̃σ̃(j),1 − λ̃σ̃(j),2

∣∣∣
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for i ≤ j. Analogously to λt and σ(t, j) we view σ̃(t) as a right-continuous func-

tion in t ∈ [0,∞) being constant on the intervals [i, i + 1). We claim that for t ∈

{0, 1/n, . . . , (n− 1)/n} we have

`t([u
′, v]) ≥ 1

2

∣∣∣λ̃σ̃(2tn),1 − λ̃σ̃(2tn),2

∣∣∣ . (4.5)

Assume the contrary that there exists t ∈ {0, 1/n, . . . , (n− 1)/n} such that the above

inequality does not hold. We conclude analogously to Lemma 4.38. Let z ∈ U(1) be

arbitrary and η be a permutation of {0, . . . , n− 1} such that

∣∣∣z − λ̃η(0),1

∣∣∣ ≥ ∣∣∣z − λ̃η(1),1

∣∣∣ ≥ . . . ≥ ∣∣∣z − λ̃η(n−1),1

∣∣∣ .
Thus by assumption

∣∣∣λ̃σ̃(2i),1 − λ̃σ̃(2i),2

∣∣∣ > 2
∣∣∣z − λ̃η(i),1

∣∣∣ for some i ∈ {0, . . . , n− 1}.

Hence for k = 0, . . . , 2i we have

∣∣∣z − λ̃σ̃(j),1

∣∣∣+ ∣∣∣z − λ̃σ̃(j),2

∣∣∣ ≥ ∣∣∣λ̃σ̃(k),1 − λ̃σ̃(k),2

∣∣∣ > 2
∣∣∣z − λ̃η(i),1

∣∣∣ ,
that is, σ̃(j) or σ̃(j) lies in {η(0), . . . , η(i− 1)} (which has only i elements). Since the

inequality holds for 2i + 1 elements we conclude a contradiction. Since z ∈ U(1) was

arbitrary, Inequality (4.5) follows.

We conclude

`t([u
′, v]) ≥ 1

2

∣∣∣λ̃σ̃(2t),1 − λ̃σ̃(2t),2

∣∣∣
=

1

2

∣∣λσ̃(2t),1λσ̃(2t)+1,1 − 1
∣∣

=
1

2

∣∣λσ̃(2t) − λσ̃(2t)+1

∣∣
≥ 1

2

∣∣λπ(2t) − λπ(2t)+1

∣∣
for all t ∈ [0, (n − 1)/n) except possibly t ≥ (n − 1)/2n - namely if σ̃(n − 1) = n − 1

(thus σ(σ̃(n−1)+1) = 1) and |λn−1 − λ1| <
∣∣λπ(n−1) − λπ(n−1)+1

∣∣. Hence 2`t([u′, v]) ≥∣∣λπ(3tn) − λπ(3tn)+1

∣∣ and
`3t(u

′) ≤ 2`t([u
′, v]) for all t ≥ 0. (4.6)
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4.8 Bounded normal generation for II1 factors

The following calculation uses the fact that ‖xy‖2 ≤ ‖x‖ · ‖y‖2 for any x, y ∈M.

∥∥[u, v]− [u′, v]
∥∥

2
≤ ‖v∗‖ ·

∥∥uvu∗ − uvu′∗ + uvu′∗ − u′vu′∗
∥∥

2

≤ ‖uv‖ ·
∥∥u∗ − u′∗∥∥

2
+
∥∥vu′∗∥∥ · ∥∥u− u′∥∥

2

< 2ε.

Using Lemma 4.25 we have the following estimates for every t > 0:

`t(u) = inf
λ
µt(1− λ(u− u′ + u′))

≤ `t/2(u′) + µt/2(u− u′).

From Lemma 4.29 and the inequality ‖·‖1 ≤ ‖·‖2 we further conclude

`t(u) ≤ `t/2(u
′) + 2ε/t

(4.6)

≤ 2`t/6([u
′, v]) + 2ε/t. (4.7)

The same calculation with u replaced by [u′, v] and u′ replaced by [u, v] shows that

`t([u
′, v]) ≤ `t/2([u, v]) + 2 · 2ε/t. (4.8)

Combining Inequalities (4.7) and (4.8) we get

`t(u) ≤ 2`t/12([u, v]) + min {10ε/t, 2} for all t ≥ 0. (4.9)

From the inequality `2t(u) ≤ 2`t(u)− δ for all t ∈ [0, s/2) and the above estimates we

conclude for t ∈ [0, s/24) that

`24t(u) ≤ 2`12t(u)− δ
(4.9)

≤ 4`t([u, v]) +
20ε

t
− δ.

Using Equation (4.4) we obtain from the above inequality that for all t ∈ [0, δ0)

`24t(u) ≤ `24δ0(u) +
δ

2

≤ 4`δ0([u, v]) +
20ε

δ0
− δ + δ

2
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4 Bounded Normal Generation

≤ 4`t([u, v]) +
20ε

δ0
− δ

2

≤ 4`t([u, v]).

If s/24 > t ≥ δ0 we have

`24t(u) ≤ 4`t([u, v]) +
20ε

t
− δ

≤ 4`t([u, v]) +
20ε

δ0
− δ

≤ 4`t([u, v]).

Since `24t(u) = 0 for all t ≥ s/24 we can summarize our estimates to

`24t(u) ≤ 4`t([u, v]) for all t ≥ 0,

which concludes the proof.

Remark. The proof of Proposition 4.62 shows that v can be chosen such that it has �nite

spectrum and rational spectral weights. If u has �nite spectrum and rational spectral

weights itself, then v can be de�ned on subprojections of the spectral projections of u.

We need the following Borel measurable version of Lemma 4.33.

Lemma 4.63. Let (X, ν) be a Borel measure space and let u =
(
eiϕ 0
0 e− iϕ

)
, v =(

ei θ 0
0 e− i θ

)
∈ G := U(M2×2(C)⊗L∞(X, ν)) be nontrivial elements. If |ϕ(x)| ≤ m |θ(x)|

for some even m ∈ N and ν-almost every x ∈ X, then u ∈ (vG)m.

Proof. The proof follows closely the proof of Lemma 4.33, but we need to ensure that

the steps are Borel. This will be clear from the construction.

Observe that multiplication of diagonal elements by v(x) adds the angle θ(x) while

multiplication with v−1(x) subtracts the angle θ(x). If w(x) ∈ SU(2) is diagonal with

tr(w(x)) = cos γ(x), then we can choose v′(x) ∈ v(x)SU(2) such that tr(w(x)v′(x)) =

cos γ1(x) for any γ1(x) ∈ [γ(x)− θ(x), γ(x) + θ(x)], namely

v′(x) :=
(

cos θ(x)+i sin θ1(x) b(x)

−b̄(x) cos θ(x)−i sin θ1(x)

)
for θ1(x) ∈ [−θ(x), θ(x)], where |b(x)|2 = 1 − cos2 θ(x) − sin2 θ1(x) = sin2 θ(x) −

sin2 θ1(x) ≥ 0.
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4.8 Bounded normal generation for II1 factors

Assume that ϕ(x) and θ(x) have the same sign for ν-almost all x ∈ X (else one

needs to replace v by v∗ in the following). Multiply v(x) n ∈ {1, . . . ,m− 1} times by

itself until either ϕ(x) ≤ nθ(x) or ϕ(x) ≥ (m− 1)θ(x). In the second case, multiplying

vm−1(x) by the right element v′(x) one obtains u(x) = vm−1(x) ·v′(x). In the �rst case,

if n = m − 1 then we also get u(x) = vm−1(x) · v′(x). If n < m − 1 then we multiply

interchangingly by v∗(x) and v(x) until one step is left. The last step is to use the

conjugate v′(x) of v(x) to obtain u(x) = vn(x)v∗(x)v(x) · . . . · v∗(x)v(x) · v′(x). This

gives an algorithm which determines in �nitely many steps and divides X into Borel

sets in each step.

Before proving the main result of this section we want to outline the strategy of the

proof. We want to generate an element u ∈ PU(M) having �nite spectrum and rational

weights with an arbitrary element v ∈ PU(M) under the assumption of an inequality

between their projective s-numbers. Our �rst step is to map v via an isomorphism

into 2 × 2 matrices over pMp, τ(p) = 1/2, such that they have diagonal form. Then

v =
(
v0 0
0 v1

)
=
(
v0 0
0 1

)
·
(

1 0
0 v1

)
. Using Proposition 4.62 we can ensure that the projective

singular values of [v0, w0], where w =
(
w0 0
0 1

)
, are still comparable with those of the

original element v. We then use two conjugates of [v, w]g[v, w]−1g−1 to construct a

unitary v′ which has �nite spectrum and rational spectral weights, where g permutes

the diagonal entries of the 2×2 matrix [v, w]. Using now Theorem 4.57 we can generate

u with v′.

Theorem 4.64. LetM be a separable II1-factor and u, v ∈ G := PU(M). Assume that

u has �nite spectrum and rational spectral weights. If `0(u) ≤ m`t(v) for all t ∈ [0, s]

and some m ∈ N, then

u ∈ (vG ∪ v−G)24576md1/se.

Proof. First note that for δ := `s(v) > 0 we have

`0(u) ≤ m(2`t(v)− δ) for all t ∈ [0, s].

Put ε := δ/4. Let ζ1, . . . , ζn be n roots of unity with arg(ζi) < arg(ζi+1) such that

for every λ ∈ σ(v) there is an i ∈ {1, . . . , n} such that |λ− ζi| < ε. We may assume

that there exists no ζi satisfying |λ− ζi| > ε for all λ ∈ σ(v). Denote by pi the

spectral projection of v corresponding to the set
{
eiϕ | ϕ ∈ [arg(ξi), arg(ξi+1))

}
, where
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4 Bounded Normal Generation

ζn+1 := ζ1 and i ∈ {1, . . . , n}. De�ne f(v) =
∑n′

i=1 ζipi. It follows that

‖v − f(v)‖ < ε.

Now take subprojections p′i of pi with τ(p
′
i) =

1
2τ(pi). Let p :=

∑n′

i=0 p
′
i. Then τ(p) =

1/2 and p commutes with v.

Denote in the following by `
(p)
t the restriction of `t to pMp, i.e., `

(p)
t (x) = infλ µt(p−

λpxp) for x ∈M. We conclude from Lemma 4.30 that

`2t(v) ≤ `2t(f(v)) + ε = `
(p)
t (f(v)) + ε for every t ≥ 0.

Since we also have ‖f(v)p− vp‖ < ε we obtain `
(p)
t (f(v)) ≤ `(p)t (v)+ ε for all t ≥ 0 and

thus

`2t(v) ≤ `(p)t (v) + 2ε for every t ≥ 0. (4.10)

We have v ∼=
(
v0 0
0 v1

)
=
(
v0 0
0 1

)
·
(

1 0
0 v1

)
∈ U(pMp ⊗ M2×2(C)) for v0 := vp and

some v1 ∈ U(pMp). By Proposition 4.62 applied to the algebra pMp there exists

w =
(
w0 0
0 1

)
∈ U(pMp⊗M2×2(C)) such that

`
(p)
24t(v) ≤ 4`

(p)
t ([v, w]) for all t ≥ 0,

where

[v, w] =
(
v0w0v∗0w

∗
0 0

0 1

)
.

Let g ∈ U(pMp⊗M2×2(C)) be such that

g[v, w]−1g−1 =
(

1 0
0 (v0w0v∗0w

∗
0)−1

)
.

Then under the identi�cation of G with its image under the isomorphismM→ pMp⊗

M2×2(C) we have

ṽ := [v, w]g[v, w]−1g−1 ∈ (vG ∪ v−G)4.

In particular,

`
(p)
24t(v) ≤ 4`

(p)
t ([v, w]) = 4`

(p)
t (ṽ) for all t ≥ 0. (4.11)
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By Theorem II.6.1 in [Di 81] we can decompose L∞(σ(ṽ), ν) into a direct integral

such that ṽ is represented as
∫ ⊕
σ(ṽ)

(
λ 0
0 λ

)
dν(λ).

Now we can use Lemma 4.63 to generate an element v′ with discrete spectrum and

rational spectral weights such that `t(v
′) + ε ≥ `t(ṽ) for all t ≥ 0 and

v′ ∈ (ṽG ∪ ṽ−G)2 ⊆ (vG ∪ v−G)8.

In the following, we describe how to generate such an element explicitly.

• First note that right continuity of `t in t ≥ 0 implies that there exists δ0 ∈ (0, 1)

such that `0(ṽ) ≤ `δ0(ṽ) + δ/4. Let ε0 ∈ (0, 1) be such that ε0 < δ0δ/24 and such

that there exists λ ∈ σ(ṽ) with |1− λ| > ε0.

• Let λ0 := 1 and λ1, . . . , λn ∈ U(1), n ∈ N, such that

1. |1− λi| ≥ ε0 for all i ∈ {1, . . . , n} and |1− λi| = ε0 for i = 1, n,

2. for every λ ∈ σ([v, w]) with |1− λ| ≥ ε0 there exists i ∈ {1, . . . , n} such that

|λ− λi| < ε0,

3. |ϕi| < |ϕi+1| ≤ 2 |ϕi| for all i ∈ {1, . . . , n− 1}, where ϕi = arg(λi).

• Denote the subprojections of the spectral projections of ṽ corresponding to the

parts

(ϕ1/2, ϕ1], (ϕ1, ϕ2], (ϕ2, ϕ3], . . . , (ϕn−1, ϕn], (ϕn, ϕ1/2]

by p1, . . . , pn, p0. Then
∑n

i=0 pi = 1. Without loss of generality all these projec-

tions are nontrivial (else we can leave out some parts and renumber). Let qi - pi

for i = 0, . . . , n be subprojections of rational trace such that τ(pi − qi) < ε0/n.

• Using Lemma 4.63 we can generate

v′ =
n∑
i=0

λiqi + q̃

in two steps, where q̃ := 1−
∑n

i=0 qi, τ(q̃) ≤ 1− (1− n · ε0/n) = ε0.

We have generated a unitary with �nite spectrum and rational spectral weights. The

inequality

‖xy‖1 ≤ ‖x‖ · ‖y‖1
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allows us to conclude

∥∥v′ − ṽ∥∥
1
≤

n∑
i=0

∥∥(v′ − ṽ)qi∥∥1
+
∥∥(v′ − ṽ)q̃∥∥

1

≤
n∑
i=0

∥∥(v′ − ṽ)qi∥∥ · ‖qi‖1 + ∥∥v′ − ṽ∥∥ · ‖q̃‖1
< ε0 ·

n∑
i=0

‖qi‖1 + 2 ‖q̃‖1

≤ 3ε0.

Thus for t ∈ [0, δ0/2) we conclude

`2t(ṽ) ≤ `δ0(ṽ) + δ/4

≤ `δ0/2(v
′) +

6ε0

δ0
+ δ/4

< `δ0/2(v
′) + δ/2.

For t ≥ δ0/2 we obtain

`2t(ṽ) ≤ `t(v′) +
6ε0

δ0
≤ `t(v′) + δ/4,

so that we have

`2t(ṽ) ≤ `t(v′) + δ/2 for all t ≥ 0, (4.12)

as well as

`
(p)
2t (ṽ) ≤ `

(p)
t (v′) + δ/2 for all t ≥ 0.

From `0(u) ≤ m(2`t(v) − δ) for all t ∈ [0, s] and from Equation (4.12) we conclude

for all t ∈ [0, s] that

`0(u) ≤ m(2`t(v)− δ)
(4.10)

≤ m(2`
(p)
t/2(v) + 2ε− δ)

(4.11)

≤ m(8`
(p)
t/48(ṽ) + 2ε− δ)

(4.12)

≤ m(8`
(p)
t/96(v

′) + δ/2 + 2ε− δ)
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≤ 8m`
(p)
t/96(v

′)

≤ 8m`t/96(v
′).

Summarizing these estimates we have

`0(u) ≤ 8m`
(p)
t (v′) ≤ 8m`t(v

′) for all t ∈ [0, s/96]. (4.13)

Since u has �nite spectrum and rational weights we can use Theorem 4.57 to obtain:

u ∈ ((v′)G ∪ (v′)−G)32md96/se ⊆ ((v′)G ∪ (v′)−G)3072md1/se

⊆ (vG ∪ v−G)24576md1/se.

This concludes the proof.

In Theorem 4.64 we required the element u to have �nite spectrum and rational

spectral weights. So in particular, we can generate any symmetry of trace 0. To prove

that PU(M) has property (BNG) it then su�ces then to combine Theorem 4.19 and

Theorem 4.64.

Theorem 4.65. The projective unitary group of a separable II1 factor has property

(BNG).

Proof. Let v ∈ G := PU(M) \ {1} be arbitrary and denote by s its projective rank.

Let w be a symmetry of trace 0. By Lemma 4.58 there exist m ∈ N such that `0(w) ≤

m`t(v) for all t ∈ [0, s/2]. Using Theorem 4.64 we obtain

w ∈ (vG ∪ v−G)24576md1/se.

Using now Theorem 4.19 we obtain

u ∈ (wG ∪ w−G)32

for any u ∈ G. That is,

G = (vG ∪ v−G)786432md1/se.

This �nishes the proof.
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Theorem 4.65 easily implies the algebraic simplicity of PU(M) which was �rst dis-

covered by de la Harpe - see the main theorem in [Ha 79].

Corollary 4.66. The projective unitary group of a II1 factor is simple.

We now present a formulation of Theorem 4.65 with a suitable normal generation

function. For x ∈M we de�ne

L(x) :=

∫
t∈[0,1]

`t(x)dt.

Corollary 4.67. Let G denote the projective unitary group of a separable II1 factor.

For some constant C ∈ N the function f : G \ {1} → N given by

f(v) :=

C · d− ln(L(v)/2)/L(v)e, if L(v) ≤ 1/3,

C, if L(v) > 1/3,

de�nes a normal generation function for G. That is,

G =
(
vG ∪ v−G

)k
for every k ≥ f(v), v ∈ G \ {1}.

Proof. Observe that `·(v)/2 : [0, 1] → [0, 1] is non-zero and monotone decreasing.

Assume that L(v) ≤ 1/3. From [Th 14, Lemma 2] we conclude that there exists some

t0 ∈ [0, 1] such that

t0`t0(v) ≥
L(v)/2

−4 ln(L(v)/2)
.

As in the proof of Theorem 4.65 we conclude that

G = (vG ∪ v−G)786432·d1/`t0 (v)e·d1/x0e ⊆ (vG ∪ v−G)786432·d(−8 ln(L(v)/2))/L(v)e.

Now if L(v) > 1/3, then (for t0 = 1/6) we even have `1/6(v)/6 ≥ 1/36. Assume to the

contrary that `1/6(v) < 1/6, then we would have

L(v) ≤
∫

[0,1/6]
1dt+

∫
[1/6,1]

1

6
dt =

1

6
+

1

6
− 1

36
<

1

3
,

a contradiction to L(v) > 1/3. It follows that there is a constant C ∈ N such that the
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4.8 Bounded normal generation for II1 factors

function f : G \ {1} → N de�ned by

f(v) :=

C · d− ln(L(v)/2)/L(v)e, if L(v) ≤ 1/3,

C, if L(v) > 1/3,

is a normal generation function.
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5 Invariant Automatic Continuity

The aim of this chapter is to prove that every homomorphism from the group

• PU(n), n ∈ N, endowed with the norm topology,

• PU(M),M a separable II1-factor, endowed with the strong operator topology,

into any separable SIN group is continuous.

In general we say that a Polish group G has automatic continuity if every homomor-

phism of G into any other separable topological group is continuous. It is known that

PU(n) does not have automatic continuity.

Another goal is to prove the uniqueness of the Polish group topology of the projective

unitary group of a separable II1 factor. To the author's knowledge this was previously

unknown even for the hyper�nite II1 factor.

Throughout this chapter II1 factors are assumed to be separable.

In the following introduction on automatic continuity we follow to some extent

Rosendal's excellent survey [Ro 09b] on the subject.

The question of automatic continuity goes back to A. L. Cauchy, who analyzed

the question whether every function π : R → R satisfying the equation π(x + y) =

π(x) + π(y), x, y ∈ R, is of the form π(x) = rx for some �xed r ∈ R. He proved

that any continuous solution is of this form. So in modern terminology his question

asks if every endomorphism of the additive group of the reals is continuous. Using the

axiom of choice one can show that there are discontinuous homomorphisms. In fact,

Cauchy's question drew a lot of attention around the beginning of the 20th century.

Several mathematicians attempted to �nd additional assumptions on the function π

which imply that the solution is continuous. Successful attempts were provided around

1920, e.g., by M. Fréchet (any Lebesgue measurable solution is continuous), S. Banach,

W. Sierpi«ski and H. Steinhaus. A result of Steinhaus was extended in the 1930's by

A. Weil to all locally compact groups.
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5 Invariant Automatic Continuity

A very general form of the question is:

When is a homomorphism π : G→ H between Polish groups continuous?

One the one hand, the motivation to study this question is intrinsic, since it is the study

of close connections between algebraic and topological structure of Polish groups. On

the other hand, there are connections to many other �elds, such as operator algebras,

ergodic theory, geometry and model theory and dynamics of large Polish groups.

We note that the general form of this question is nontrivial, i.e. there are many dis-

continuous homomorphisms between Polish groups - see [Ro 09b]. For example some

matrix groups such as SO(3,R) embed discontinuously into the group S∞ of all permu-

tations on N (this is [Ro 09b, Example 1.5], it follows from results of R. R. Kallman [Ka

00] and S. Thomas [Th 99]).

One of the �rst general results on automatic continuity in group theory can be found

in Pettis' article [Pe 50] (cf. also the book of Kechris [Ke 95, Theorem 9.10]). To state

the result let us recall some de�nitions. A subset A of a Polish space X has the Baire

property if there is an open set B ⊆ X such that the symmetric di�erence

A4B = (A \B) ∪ (B \A)

is meagre. We say that a map π : X → Y between Polish spaces is Baire measurable

if π−1(V ) has the Baire property for every open set V ⊆ Y .

Theorem 5.1 (Pettis). Any Baire measurable homomorphism between Polish groups

is continuous.

Christensen has archieved a general measurable automatic continuity result in [Ch

71]. Before stating it, we repeat some notion. A subset A of a Polish space X is called

universally measurable if for any Borel probability measure ν on X, A di�ers from

a Borel set by a set of ν-measure zero. A map π : X → Y between Polish spaces

is universally measurable if π−1(V ) is universally measurable for every open set

V ⊆ Y .

Theorem 5.2 (Christensen). Suppose that π : G → H is a universally measurable

homomorphism from a Polish group G to a Polish group H, where H admits a bi-

invariant metric compatible with its topology. Then π is continuous.
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Another early general automatic continuity result was proved by Dudley in [Du 61].

Recall that a norm on a group G is a function ‖·‖ : G→ N such that

(i) ‖gf‖ ≤ ‖g‖+ ‖f‖;

(ii) ‖1G‖ = 0;

(iii) ‖g‖ =
∥∥g−1

∥∥;
(iv) ‖gn‖ ≥ max{n, ‖g‖} for all g 6= 1G.

Examples of normed groups are free groups with word length function.

Theorem 5.3 (Dudley). Any homomorphism from a Polish group G into a normed

group H equipped with the discrete topology is continuous.

Slutsky has recently generalized this theorem in [Sl 13] to homomorphisms into free

products. Kechris and Rosendal [KR 07, Theorem 1.10] have shown the following

general result.

Theorem 5.4 (Kechris-Rosendal). Any homomorphism from a Polish group with ample

generics into any separable topological group is continuous.

A Polish group G has ample generics if for each n ∈ N there is a comeager orbit for

the diagonal conjugacy action of G on Gn:

g · (g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

This notion has been generalized in [KR 07] from the notion of ample generics intro-

duced in [HHLS 93] (for the purpose of studying the small index property of some

automorphism groups). Groups having ample generics also have the small index prop-

erty by [KR 07, Theorem 1.6], i.e., any subgroup of index less than 2ℵ0 is open. An

important example for a group having ample generics is the group S∞. The authors

prove in [KR 07] that the group of Haar measure-preserving homeomorphisms of the

Cantor space and the group of Lipschitz homeomorphisms of the Baire space have

ample generics.

It is very rare that a group has ample generics. For example, (projective) unitary

groups of II1 factors do not have ample generics - even more they do not have comeager

conjugacy classes (which can be seen from the bi-invariance of the trace).

In [RS 07] Rosendal and Solecki develop a more general framework for groups having

automatic continuity.

111



5 Invariant Automatic Continuity

De�nition 5.5. A topological group G is Steinhaus (with exponent k) if there

exists an element k ∈ N such that W k contains an open neighbourhood of 1G for any

symmetric countably syndetic set W ⊆ G (see De�nition 5.8).

In Proposition 2 of [RS 07] the authors can show the following.

Proposition 5.6 (Rosendal-Solecki). Every homomorphism from Steinhaus topologi-

cal group into any separable topological group is continuous.

For example, topological groups with ample generics are Steinhaus with exponent

10 (see [KR 07, Lemma 6.15]). Rosendal and Solecki show that the group Aut(Q, <)

of order-preserving bijections of the rationals and several homeomorphism groups are

Steinhaus. Their proofs crucially use the existence of comeager conjugacy classes (the

groupHomeo+(S
1) of orientation preserving homeomorphisms on the unit circle S1 only

has meager conjugacy classes, but the proof heavily uses that the group Homeo+(R)

of increasing homeomorphisms of R is Steinhaus, which in turn relies on the existence

of comeager conjugacy classes). This indicates that we need some new ideas to show

an automatic continuity result for unitary groups of II1 factors.

Recently Tsankov has obtained in [Ts 13] the result which motivated us to check

if unitary groups of II1 factors, endowed with the strong operator topology, have an

automatic continuity property.

Theorem 5.7 (Tsankov). Every homomorphism from the unitary group U(H) on a

separable in�nite-dimensional Hilbert space H, endowed with the strong operator topol-

ogy, into any separable topological group is continuous.

The proof shows the Steinhaus property for U(H) and relies on the work of Ben-

Yaacov, Berenstein and Melleray in [BYBM 13] - namely it su�ces to show that some

�xed power of a countably syndetic set contains an open set in the uniform topology

(instead of the strong operator topology). In fact, this result motivated us to check

if the (projective) unitary group U(M) of a II1 factor M, endowed with the strong

operator topology, also has an automatic continuity property. We tried to adapt the

proof of Tsankov - showing that there exists a �xed power n ∈ N such thatWn contains

an open neighborhood of the identity for any countably syndetic setW . We managed to

transfer the setting and to prove (with the help of our modi�ed version of Broise's result,
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5.1 Invariant Automatic continuity

Theorem 4.19) that some �xed power k ∈ N of any countably syndetic set contains a

�small unitary group�, i.e. U(pMp) ⊕ (1 − p) ⊆ W k for some nonzero p ∈ Proj(M).

Unfortunately we were not able to control the trace of p - thus further steps might lead

to a dependence of the power n on the set W .

It is worth mentioning that Sabok has found in [Sa 13] a more general result on

automatic continuity which implies Tsankov's result as well as, e.g., that the isometry

group of the Urysohn space has the automatic continuity property. More precisely, he

has shown that the automatic continuity property holds for automorphism groups of

homogeneous complete metric structures that have locally �nite automorphisms, the

extension property and admit islotated sequences, cf. [Sa 13] for de�nitions. The proof

relies on the work of Kechris and Rosendal [KR 07] and Rosendal and Solecki [RS 07].

However, this still does not resolve the II1 case.

Let us close this introduction by mentioning that appearances of the phenomenon

of automatic continuity can also be found in the theory of C∗-algebras and Banach

algebras. We list some examples.

• Any algebra homomorphism from an abelian unital Banach algebra A into C

is continuous. This can be easily seen. If I is a modular maximal ideal of A

then A/I is isomorphic to C by [Mu 90, Lemma 1.3.2]. Hence the projection

A → A/I ∼= C is a continuous isomorphism.

• Any isomorphism of a C∗-algebra onto another C∗-algebra is continuous, see [Ta

03, Corollary I.5.6].

• Any derivation on a C∗-algebra is norm-continuous, see [Sa 60].

Dales has written an extensive monograph on automatic continuity in the context of

Banach algebras, see [Da 00]. However, the techniques to analyze automatic continuity

for Banach algebras are quite di�erent from those used to study automatic continuity

for groups.

5.1 Invariant Automatic continuity

Our strategy to prove automatic continuity of projective unitary groups of II1 factors

(endowed with the strong operator topology) di�ers greatly from the ones mentioned in

the introduction of this chapter. One reason is the lack of comeager conjugacy classes.

The main ingredients in our proof are Theorem 4.65 and Propositon 5.18 which en-
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5 Invariant Automatic Continuity

sures that a �xed power of any conjugacy-invariant countably syndetic set contains a

neighborhood of the identity. The rest of our proof is an adaption of Proposition 5.6

(cf. [RS 07, Proposition 2]).

Recall that for a pseudometric space (X, d) and x ∈ X we let

Bd
r (x) := {y ∈ X | d(x, y) ≤ r} .

In a semi�nite von Neumann algebraM with faithful semi�nite normal trace τ , one

can measure the size of the support of an element x ∈M as follows. We de�ne

[x] := inf
{
τ(p) + τ(q) | p, q ∈ Proj(M), p⊥xq⊥ = 0

}
.

We observe that [x] equals the trace of the support projection s = s(x) of x. It is clear

that τ(s) ≥ [x]. We check that [x] ≥ τ(s). Obviously we have p⊥x(1− p)⊥ = 0 for any

spectral projection of x. Thus if p⊥xq⊥ = 0 then τ(p⊥) + τ(s) + τ(q⊥) ≤ 2. It follows

that τ(p) + τ(q) ≥ τ(s) and so we have [x] ≥ τ(s).

[Th 08, Lemma 2.1] implies that

dr(x, y) := [x− y]

satis�es the triangle inequality and thus de�nes a pseudometric onM. It is actually a

metric on M: if dr(x, y) = 0 then p⊥ = q⊥ = 1 and hence p⊥(x − y)q⊥ = x − y = 0

implies x = y. (It is in general not a metric on M-bimodules!) Following Thom [Th

08, Section 2.1] we call dr the rank metric.

The work of Rosendal and Solecki in [RS 07] shows that the right sets to concider

in order to get an highly abstract automatic continuity result are so called countably

syndetic sets.

De�nition 5.8. Let W be a subset of a group G. We say that W is symmetric if

W =W−1. A symmetric set W is called countably syndetic if there exist countably

many elements gn ∈ G, n ∈ N, such that G =
⋃
n∈N gnW .

Note that for a countably syndetic set W , there exists some n ∈ N such that gnW

contains the identity element of G (and hence g−1
n , gn ∈W ). An example of a countably

syndetic set in a separable topological group is any nonempty open symmetric set.
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5.1 Invariant Automatic continuity

To ensure that every countably set in the projective unitary group of a II1 factor

contains �well-behaved� elements, we need the following proposition.

Proposition 5.9. (i) The (projective) unitary group of a semi�nite von Neumann

algebra (not of type In, n ∈ N) is not separable in the uniform topology.

(ii) The (projective) unitary group of a semi�nite von Neumann algebra is not separable

in the topology induced by the rank metric.

Proof. (i) This is well-known. One can prove it directly or use that M contains an

uniformly inseparable abelian von Neumann algebra and then use Proposition 2.9 to

conclude that the unitary group is also inseparable.

(ii) Set uϕ := eiϕp+ ei 2ϕp⊥, where p ∈ Proj(M) satis�es τ(p) = 1/2 and ϕ ∈ [0, π/4].

Then
{
Bdr

1/4(uϕ)
}
ϕ∈[0,π/4]

de�nes an uncountable family of disjoint open sets in U(M)

as well as PU(M). Hence U(M) and PU(M) are not separable in the topology induced

by dr.

Proposition 5.11 will ensure that for every countably syndetic set W in PU(M), W 2

contains elements of some suitable length in the above two inseparable topologies. In

order to prove this, we need the following lemma.

Lemma 5.10. Suppose that (X, d) is an inseparable space equipped with pseudometric

d. Then there exists ε > 0 such that for every countable subset A of X there exists

x ∈ X with d(x,A) ≥ ε.

Proof. Suppose there exists no such ε. Then there exists a sequence {An}n∈N of

countable subsets of X and a sequence {εn}n∈N, εn → 0 for n → ∞ such that for

every x ∈ X we have εn > d(x,An). But then d(x,
⋃
n∈NAn) = 0 for all x ∈ X. Thus⋃

n∈NAn forms a countable dense set in X, which is a contradiction.

Proposition 5.11. Let G be an inseparable topological group with compatible pseu-

dometric d. There exists ε > 0 such that for every countably syndetic set W ⊆ G, W 2

contains an element u satisfying d(1, u) > ε.

Proof. For the moment, let ε > 0 be arbitrary. Recall that an ε-separated set V ⊆ G

is a set such that every pair of distinct points u, v ∈ V has distance d(u, v) > ε. Zorn's

lemma implies that there exists a maximal ε-separated set Vε. Observe that Vε is ε-

dense in G by maximality (the existence of a point u ∈ G \Vε such that d(u, v) > ε for

all v ∈ Vε obviously contradicts maximality of Vε).

115



5 Invariant Automatic Continuity

We conclude from Lemma 5.10 that there exists ε > 0 such that Vε is uncountable.

We may assume that 1 ∈ Vε. Since W is countably syndetic, there exists a sequence

{gn}n∈N ⊆ G such that G =
⋃
n∈N gnW . In particular we have Vε =

⋃
n∈N Vε ∩ gnW .

The pigeonhole principle implies that there exists m ∈ N such that

|Vε ∩ gmW | ≥ 2.

(Actually it implies that there is an intersection having uncountably many elements.)

Let u, v ∈ Vε ∩ gmW . Since W 2 = (gmW )−1(gmW ) and 1 ∈ W 2 we either have

d(1, u) > ε or d(1, v) > ε. This completes the proof.

Let us come to the main de�nition of this chapter.

De�nition 5.12. Let G be a topological group. If every homomorphism from G to any

separable SIN group is continous, then we say that G has the invariant automatic

continuity property.

Closely related to invariant automatic continuity we de�ne an invariant version of

the Steinhaus property.

De�nition 5.13. A topological group G has the invariant Steinhaus property

(with exponent k) if there exists an element k ∈ N such that W k contains an open

neighbourhood of 1G for any symmetric conjugacy-invariant countably syndetic set

W ⊆ G.

Following closely the proof of [RS 07, Proposition 2] we obtain the invariant automatic

continuity for groups having the invariant Steinhaus property. In order to see that, we

�rst recall following well-known result.

Lemma 5.14. Let π : G→ H be a homomorphism between topological groups. If π is

continuous at the neutral element 1G of G, then π is continuous at every point g ∈ G.

Proposition 5.15. Let G be a topological group with the invariant Steinhaus property.

Then G has the invariant automatic continuity property.

Proof. Let π : G → H be a homomorphism into a separable SIN group H. Assume

that G has the invariant Steinhaus property with exponent k. By Lemma 5.14 it su�ces

to show that π is continuous at 1G. Suppose that U ⊆ H is an open neighbourhood of
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5.1 Invariant Automatic continuity

1H . Since H is SIN we can �nd a conjugacy-invariant symmetric open set V satisfying

1H ∈ V ⊆ V 2k ⊆ U ⊆ H. By separability of H, V covers H by countably many

translates {hnV }n∈N. For each n ∈ N such that hnV ∩ π(G) 6= ∅, choose gn ∈ G such

that π(gn) ∈ hnV . Thus hnV ⊆ π(gn)V −1V = π(gn)V
2 and π(gn)V

2 cover π(G).

For �xed g ∈ G, choose n ∈ N such that π(g) ∈ π(gn)V 2. Then π(g−1
n g) ∈ V 2, thus

g−1
n g ∈ π−1(V 2) and hence gnπ

−1(V 2) cover G. Moreover, since H is SIN we obtain

xg−1
n gx−1 ∈ π−1(V 2) for every x ∈ G. It follows that W := π−1(V 2) is symmetric,

countably syndetic and conjugacy invariant in G.

Since G has the invariant Steinhaus property, W k contains an open neighborhood of

the identity. Hence, π(W 2k) ⊆ V 2k ⊆ U , and we obtain 1G ∈ Int(π−1(U)), that is, π

is continuous at 1G.

Let us verify the invariant Steinhaus property for �nite-dimensional projective uni-

tary groups.

Proposition 5.16. The projective unitary group PU(n), endowed with the norm topol-

ogy, where n ∈ N, has the invariant Steinhaus property with exponent 32n.

Proof. The case n = 1 is trivial and so we assume n ≥ 2. Put G := PU(n) and let

W ⊆ G be a symmetric conjugacy-invariant countably syndetic set. By Propositions

5.9 and 5.11 there exists v ∈ W 2 such that dr(1, v) > ε. Thus, dr(1, v) ≥ 1 and

δ := `0(v) > 0. We use v to generate a δ-neighborhood of the identity in the operator

norm. So consider an arbitrary element u ∈ G satisfying `0(u) ≤ δ. From Theorem

4.45 we then conclude

u ∈ (vG ∪ v−G)16n.

Since u ∈ B‖·‖δ (1) was arbitrary, this shows that G has the invariant Steinhaus property

with exponent 32n.

Remark. Basically the same proof as above shows that SU(n) also has the invariant

Steinhaus property. The additional obstruction coming with SU(n) is that it has a

nontrivial center. However, the center is �nite and thus one can generate a small

δ-neighborhood of the identity with δ > 0 and δ < minλ∈Z(SU(n))\{1} ‖1− λ‖.

Propositions 5.15 and 5.16 together with the previous remark imply the following.

Theorem 5.17. PU(n) and SU(n), endowed with the norm topology, where n ∈ N,

have the invariant automatic continuity property.
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5 Invariant Automatic Continuity

We feel obliged to explain that the compact connected Lie groups PU(n) and SU(n)

do not have the automatic continuity property, i.e. there is a need for an extra condition

on the class of target groups (also it is not clear if SIN groups form the most general

such class). We follow [Ro 09b, Example 1.5] to show this. Let G := PU(n). It is

enough to show that it there is a discontinuous embedding into the Polish group S∞

of all permutations of N. From [HHM 14, Theorem 2.3] we deduce the existence of a

non-open subgroup H ⊆ G of countably in�nite index. Thus the set G/H of left cosets

is countable and we view S∞ as the group Sym(G/H) of all permutations of G/H. We

de�ne a group homomorphism

π : G→ Sym(G/H), π(g) = Lg,

where Lf (gH) = fgH, f ∈ G, is the left multiplication. Note that [Ka 00, Theorem

1] (see also [Ka 00, Corollaries 9 and 10]) tells us that π is injective. We claim that π

is discontinuous. Obviously Lf (1H) = 1H if and only if f ∈ H. Thus

π−1 ({σ ∈ Sym(G/H) | σ(1H) = 1H}) = H,

which is not open by de�nition of H. Hence π is discontinuous.

Now we come to the core in our proof of the invariant automatic continuity property

of projective unitary groups of separable II1 factors. A major di�culty in the proof

stems from the fact that we could prove Theorem 4.64 in this quantitative version only

if the element that one wants to generate has �nite spectrum and rational spectral

weights. Many of the techniques and results developed in Chapter 4 are needed.

Proposition 5.18. The projective unitary group PU(M) of a separable II1 factorM,

endowed with the strong operator topology, has the invariant Steinhaus property.

Proof. Let W ⊆ G := PU(M) be a symmetric conjugacy-invariant countably synde-

tic set. We have to show that there exists a �xed k ∈ N such that W k contains a

neighborhood of the identity. By Proposition 5.9 and Proposition 5.11 there exist

• ε1 > 0 independent of W and u ∈W 2 with ‖1− λu‖ > ε1 for all λ ∈ U(1),

• ε2 > 0 independent of W and v ∈W 2 with `t(v) 6= 0 for all t ∈ [0, ε2].

Let ε denote the minimum of ε1, ε2. By right continuity of `t in t, see Lemma 4.26,
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5.1 Invariant Automatic continuity

there exist δ > 0 such that

`t(u) ≥ ε for all t ∈ [0, δ], `t(v) ≥ δ for all t ∈ [0, ε].

To generate an arbitrarily small neighborhood of the identity in the strong operator

topology we need several steps.

(1) First we use u and v to generate elements w with ‖1− w‖2 ≤ δ2/2 which are of

the form 
1 0 0

0 w0 0

0 0 w∗0

 (5.1)

in some (U(p0Mp0) ⊗M3×3(C))/(C · 1) ∼= G, where τ(p0) = 1/3. Let p be a

projection commuting with w such that

∥∥∥1− p− wp⊥∥∥∥ < δ and τ(p) = δ.

Decompose w = w1w2 with w1 := wp+ p⊥ and w2 := p+ p⊥w. Hence `0(w1) ≤
2
ε`t(u) for all t ∈ [0, δ]. Using Theorem 4.64 we can generate a symmetry s of

trace 0 in U(pMp) with u, namely we obtain s ∈ (uG ∪ u−G)cd1/εe for some

constant c ∈ N (e.g. c = 24576). Theorem 4.19 allows us to conclude that

w1 ∈ (sG ∪ s−G)32 ⊆ (uG ∪ u−G)cd1/εe.

It remains to generate w2. By Lemma 4.29 (together with Proposition 2.18) we

have `0(w2) ≤ 2δ2/2δ = δ ≤ `t(v) for all t ∈ [0, ε]. Suitable approximation of v

in the operator norm, as in the beginning of the proof of Theorem 4.64, allows us

to �nd a projection p ∈M which commutes with v, is equivalent to p0 and such

that for ε′ = δ/8 we have

`3t(v) ≤ `(p)t (v) + 2ε′.

Now view v as a (diagonal) element of U(pMp ⊗M3×3(C)). Using Proposition

4.62 we can �nd an element v′ =

(
1 0 0
0 v′0 0
0 0 1

)
∈ U(pMp ⊗ M3×3(C)) such that
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5 Invariant Automatic Continuity

`
(p)
24t(v) ≤ 4`

(p)
t ([v, v′]) for all t ≥ 0. Let g ∈ U(pMp ⊗M3×3(C)) be a unitary

permuting the second and third diagonal entry. Consider the element

ṽ := [v, v′]g[v, v′]−1g−1 ∈ (vG ∪ v−G)4,

and observe that ṽ satis�es

`
(p)
24t(v) ≤ 4`

(p)
t ([v, v′]) ≤ 4`

(p)
t (ṽ) for all t ≥ 0.

Thus we have

`0(w2) ≤ δ ≤ `t(v) ≤ `(p)t/3(v) + 2ε0 ≤ 4`
(p)
t/72(ṽ) +

δ

4
for all t ∈ [0, ε].

As in the proof of Theorem 4.64 (restricting our attention to the lower 2×2 part)

we generate an element v′′ ∈ (ṽG ∪ ṽ−G)2 ⊆ (vG ∪ v−G)8 that has �nite spectrum

and rational weights such that

δ ≤ 4`
(p)
t/72(ṽ) +

δ

4
≤ 4`

(p)
t/72(v

′′) +
3δ

4
for all t ∈ [0, ε].

In particular, 4`
(p)
t (v′′) ≥ δ/4 for all t ∈ [0, ε/72]. Hence

`0(w2) ≤ 16`
(p)
t (v′′) for all t ∈ [0, ε/72]. (5.2)

We restrict our attention to the lower 2 × 2 subalgebra qMq in (5.1) and pass

to the direct integral M2×2(L
∞(σ(qw2)), ν), where qw2 =

∫
λ∈σ(qw2)

(
λ 0
0 λ

)
dν(λ)

(note that q commutes with w2). Let p
′ denote the projection that cuts v′′ down to

the lower 2×2 part. This allows us to conjugate p′v′′ into M2×2(L
∞(σ(qw2)), ν).

Recall that Corollary 4.39 gives us a relation between the projective s-numbers

and the angles of the eigenvalues (note that v′′ has �nite spectrum and for w2 we

only need the estimate for the 0-th projective s-number since `t(·) is decreasing

in t). We apply Lemma 4.63 with the relation (5.2) to generate q′w2 for a sub-

projection q′ ≤ q, τ(q′) = eps/72 (and 1's everywhere else). Thus using Lemma

4.63 on at most d72/εe parts (where relation (5.2) holds) we obtain

w2 ∈ (v′′G ∪ v′′−G)4·16·d72/εe ⊆ (vG ∪ v−G)8·64·d72/εe,
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5.1 Invariant Automatic continuity

(the factor 4 comes from Corollary 4.39).

We conclude that

w = w1w2 ∈W cd1/εe

for some constant c ∈ N (which is independent of δ).

(2) Assume that w such that ‖1− w‖2 ≤ δ2 has �nite spectrum and rational weights.

This case follows in the same way as in the �rst step. Namely one decomposes w =

w1w2 and generates w1 with the element u (which has uniformly big projective

s-numbers) and w2 with the element v (which has uniformly many nontrivial

projective s-numbers). This leads us again to w ∈ W cd1/εe for some constant

n ∈ N (independent of δ).

(3) Assume that w ∈ B
‖·‖
ε0 (1) ⊆ U(M) for some ε0 ∈ (0, δ2) small enough such that

using Corollary 4.20 we can decompose w into a product w1 · . . . ·w8 of elements

wi ∈ U(M) of the form (5.1) satisfying

‖1− wi‖2 < δ, i = 1, . . . , 8.

Note that ε0 depends on the countably syndetic set W . Using the �rst step, we

obtain

w = w1 . . . w8 ∈W 8cd1/εe.

Thus we can generate an ε0-neighborhood in the operator norm in 8cd1/εe steps.

(4) Now let w ∈ B
‖·‖2
ε0 (1) be arbitrary. Approximate w by an element w′ with �nite

spectrum in the operator norm, such that ‖w − w′‖ = ‖1− ww′∗‖ < ε1. From

the third step we conclude that ww′∗ ∈ W 8cd1/εe. It remains to show that w′

can be generated from elements in WCd1/εe for some constant C ∈ N. Therefore,

using Proposition 4.54, we approximate w′ with an element w′′ that has �nite

spectrum and rational spectral weights such that

∥∥w′ − w′′∥∥
2
≤ ε1 and dr(1, w

′w′′∗) ≤ δ.

The second step allows us to conclude w′′ ∈ W cd1/εe for some constant c ∈ N.

We only have to generate the element w′w′′∗ of small rank. It is clear that

`t(w
′w′′∗) = 0 for all t > δ. Let q denote the projection witnessing nontriviality

of w′w′′∗ and observe that τ(q) ≤ δ. As in the �rst step, we use u to generate a
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5 Invariant Automatic Continuity

symmetry s of trace 0 in qMq such that

s ∈W cd1/εe

for some constant c ∈ N. From Theorem 4.19 we conclude that

w′w′′∗ ∈W 32·cd1/εe.

Summarizing the above three steps, we have shown that there exists a constant C ∈ N

(independent of δ and ε0) such that WCd1/εe contains a neighborhood of the identity

in the strong operator topology. This shows that PU(M) has the invariant Steinhaus

property.

Actually the proof of Proposition 5.18 will allow us to conclude the uniqueness of

the Polish group topology of PU(M) in Section 5.2.

We can now conclude the main theorem in this section from Proposition 5.15 and

Proposition 5.18.

Theorem 5.19. The projective unitary group of a separable II1 factor, endowed with

the strong operator topology, has the invariant automatic continuity property.

Remark. We mention that [Sa 13, Theorem 7.3] implies that homomorphisms from

the unitary group of a separable in�nite-dimensional Hilbert space (endowed with the

strong operator topology, which is non-bi-invariant and Polish) into SIN groups are

trivial.

Our strategy to obtain Theorem 5.19 mainly used that we could ensure the existence

of elements of a certain size in a �xed power of every conjugacy-invariant countably

syndetic set. The author hopes that this strategy leads to more new examples of groups

having the invariant automatic continuity property.

5.2 Uniqueness of the Polish group topology

As an easy application of Theorem 5.19 we show that PU(M) has a unique Polish SIN

group topology. The proof is actually valid for any separable topological group with

the invariant automatic continuity property. In particular, PU(n) and SU(n) carry a
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5.2 Uniqueness of the Polish group topology

unique Polish SIN group topology. In the case PU(n) it is already known that it has a

unique Polish group topology, see [GP 08, Theorem 11].

Proposition 5.20. The projective unitary group G of a separable II1 factor carries a

unique Polish SIN group topology.

Proof. Assume that T is another topology on G which makes it a Polish group with

a bi-invariant metric. Let id : (G,SOT )⇒ (G, T ) denote the identity homomorphism.

Since (G, T ) is a separable SIN group, id is continuous by Theorem 5.19. So it is a

continuous bijection and hence a homeomorphism by [BK 96, Theorem 1.2.6]. It follows

that T and the strong operator topology coincide: on the one hand id−1(O) = O is

open in the strong operator topology for any open O ⊆ (G, T ) by continuity. On the

other hand whenever O ⊆ (G,SOT ) is open, then id(O) = O is open in T since id is a

homeomorphism.

Now we will make use of the proof of Proposition 5.18 to conclude the uniqueness of

the Polish group topology on PU(M) for any separable II1 factor. For this purpose,

we need [GP 08, Theorem 8]. We �rst clarify some notations. Let G be a group. An

identity set in G is a subset of G of the form

{g ∈ G | w(g;u1, . . . , um) = 1} ,

where w denotes a free word in G (i.e. without consecutive symbols of the form gg−1 or

g−1g) and u1, . . . , um ∈ G. By de�nition identity sets can be viewed as inverse images

of 1 under the maps w(·;u1, . . . , um).

A verbal set is a subset of G of the form

{w(g1, . . . , gn;u1, . . . , um) | g1, . . . , gn ∈ G} ,

where w is a free word and u1, . . . , um ∈ G. Verbal sets are forward images under the

maps w.

An example of an identity set is the centralizer
{
g ∈ G | gug−1u−1 = 1

}
of an ele-

ment u ∈ G. For us the most important example of a verbal set is the conjugacy class{
gug−1 | g ∈ G

}
of an element u ∈ G.
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5 Invariant Automatic Continuity

We say that a collection N of a topological space X is a network if for every x ∈ V

with V open in X, there exists N ∈ N such that x ∈ N ⊆ V .

We can now state [GP 08, Theorem 8].

Theorem 5.21 (Gartside-Peji¢). Every Polish group that has a countable network of

sets from the σ-algebra generated by identity sets and verbal sets has a unique Polish

group topology.

Here is the main result of this section - it is based on the proof of Proposition 5.18

and Theorem 5.21.

Theorem 5.22. The projective unitary group G of a separable II1 factor has a unique

Polish group topology.

Proof. First recall that G is a Polish group in the strong operator topology. We

construct a countable network for G. For n ∈ N we let εn := 1/n and δ = δ(n) <

1
Cd1/ε2ne

= 1
Cn2 , where C ∈ N is the universal constant coming from the proof of

Proposition 5.18. Now choose u, v ∈ G (only dependent on n) such that ‖1− u‖2 <

δ, ‖1− v‖2 < δ and

`t(u) ≥ εn for all t ∈ [0, δ], `t(v) ≥ δ for all t ∈ [0, εn].

Using the proof of Proposition 5.18 we conclude the existence of δ0 = δ0(n) ∈ (0, δ)

(independent of u and v) such that

B
‖·‖2
δ0

(1) ⊆ Nεn :=
(
uG ∪ u−G ∪ vG ∪ v−G

)Cd1/εne
.

However, we have Nεn ⊆ B
‖·‖2
1/n (1), since for every x ∈ Nεn

‖1− x‖2 ≤ Cd1/εneδ ≤ 1/n.

Fix a countable dense subset D ⊆ G. We claim that

N := {xNεn | x ∈ D,n ∈ N}

forms a countable network for G. First of all, N is formed by the σ-algebra generated

from verbal sets
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5.2 Uniqueness of the Polish group topology

Now let w ∈ V with V ⊆ G open. Since V is open, we can �nd ε > 0 such that

B
‖·‖2
ε (w) ⊆ V . Let n ∈ N such that εn = 1/n < ε/2. By denseness of D we can choose

v0 ∈ D such that ‖v0 − w‖2 ≤ δ0. Then we have (note that δ0 = δ0(n) < εn < ε/2):

w ∈ v0B
‖·‖2
δ0

(1) ⊆ v0Nεn

⊆ v0B
‖·‖2
1/n (1)

⊆ v0B
‖·‖2
ε/2 (1)

⊆ wB‖·‖2δ0
(1)B

‖·‖2
ε/2 (1)

⊆ wB‖·‖2ε (1)

= B
‖·‖2
ε (w)

⊆ V.

That is, for arbitrary w ∈ V , V open in G, we �nd a set N ∈ N such that w ∈ N ⊆ V ,

i.e., N is a network. Since D and N are countable, N is countable. Now from Theorem

5.21 we conclude that G has a unique Polish group topology.

In a similar fashion we obtain the (already known) uniqueness of the Polish group

topology on PU(n).

Theorem 5.23. PU(n) has a unique Polish group topology for every n ∈ N.

As a consequence of Theorem 5.22 we obtain the following further automatic con-

tinuity results, which are equivalent to the uniqueness of the Polish group topology

by [Pe 07, Lemma 10, Lemma 13]. Of course, the results in Corollary 5.24 also hold

true for PU(n), n ∈ N.

Corollary 5.24. Let M denote a separable II1 factor and let G be its projective

unitary group.

(i) Every isomorphism from G to a Polish group is continuous.

(ii) Every epimorphism from a Polish group to G with closed kernel is continuous.
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6 Outlook

Here we discuss some of the open problems that came out of our work or seem to be

closely linked.

In Chapter 4 we proved many results on products on conjugates in various unitary

groups of functional analytic type. Whenever possible, we concluded property (BNG)

or property (topBNG). Our methods seem su�ciently general to be applicable for many

other large (non-locally compact) groups.

We have de�ned projective generalized s-numbers for semi�nite factors. Type III

factors do not admit a semi�nite trace, but they behave to some extent similar to

Calkin algebras. This leads us to expect the following question to have a positive

answer.

Does the projective unitary group of a type III factor have property (BNG)?

We intend to further pursue this question in the future.

It is likely that the closure condition in our theorem on products of conjugates in

U(H) (see Theorem 4.51) can be omitted. Then it would not be surprising to have an

algebraic criterion for products of conjugates in unitary groups of II∞ factors (which

are tensor products of I∞ and II1 factors).

Necessary and su�cient criteria for products of conjugates are interesting in any

noncommutative non-compact group. We did not yet deeply study what the complete

absence of a (topological) uniform normal generator means for the structure of a group.

Note that we have already observed that the group PU(H) does have uniform normal

generators (namely symmetries with two in�nite eigenspaces), although it is not simple

as U(H)K(H) is a nontrivial normal subgroup.

A group G has the strong uncountable co�nality if for every increasing sequence of

symmetric sets W0 ⊆W1 ⊆ . . . ⊆ G =
⋃
nWn there exist k,m ∈ N such that W k

m = G.
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6 Outlook

If a group has propety (BNG) then the above condition is obviously satis�ed whenever

some Wn contains a nontrivial conjugacy class. It would be interesting to see how

property (BNG) compares in depth to the strong uncountable co�nality and the topo-

logical Bergman property, see e.g. [Ro 09a]. In particular, it is unknown whether the

(projective) unitary group of II1 factor has the strong uncountable co�nality. In the

future we want to �gure out if this is an application of our results on property (BNG).

We proved in Chapter 5 that the projective unitary group PU(M) of a separable II1

factorM has the invariant automatic continuity property. It is still an open question

if PU(M) has the automatic continuity property. Probably some of our ideas can be

used to prove (or disprove) this - for example, if one can show the strong uncountable

co�nality and apply methods developed in the previous chapters.

128



Index of Symbols

(A)ε ε-neighborhood of the set A

B(H) algebra of bounded operators on H

C complex numbers

C Calkin algebra

d metric

G group

gG conjugacy class of g ∈ G

G/H quotient group G modulo H

H Hilbert space

K norm ideal

K(H) compact operators

M von Neumann algebra, II1 factor

Mn×n(C) algebra of n× n matrices

N positive integers, 1, 2, . . .

N0 N ∪ {0}

‖·‖ operator norm

‖·‖1 1-norm de�ned by the trace τ

‖·‖ 2-norm de�ned by the trace τ

‖·‖HS Hilbert-Schmidt norm

‖·‖K norm of the norm ideal K

Proj(M) set of projections ofM

PU(C) projective unitary group of the Calkin algebra

PU(H) projective unitary group on H

PU(M) projective unitary group ofM

PU(n) projective unitary group of n× n matrices

Q rational numbers
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6 Outlook

R real numbers

R+ positive real numbers, i.e. (0,∞)

R+
0 R+ ∪ {0}

〈·, ·〉 scalar product

SU(n) special unitary group of n× n matrices

T one-dimensional torus, U(1)

τ trace on a semi�nite von Neumann algebra

U(H) group of unitary operators on H

U(H)K group of unitary operators ofK-perturbations from the iden-

tity on H

U(M) unitary group ofM

U(n) unitary group of n× n matrices

Z integers
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