
Software Visualization in 3D -
Implementation, Evaluation, and Applicability

Von der Wirtschaftswissenschaftlichen Fakultät

der Universität Leipzig

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum politicarum

Dr. rer. pol.

vorgelegt

von Dipl.-Wirtsch.-Inf. Richard Müller

geboren am 23. September 1983 in Dresden

Gutachter: Prof. Dr. U. W. Eisenecker
Prof. Dr. B. Franczyk

Tag der Verleihung: 15. April 2015

Bibliographic Description

Müller, Richard
Software Visualization in 3D – Implementation, Evaluation, and Applicability
Leipzig University, Dissertation
126 Pages, 104 References, 25 Figures, 7 Tables, 8 Listings, 2 Appendices

Abstract

The focus of this thesis is on the implementation, the evaluation and the useful application
of the third dimension in software visualization. Software engineering is characterized by a
complex interplay of different stakeholders that produce and use several artifacts. Software
visualization is used as one mean to address this increasing complexity. It provides role-
and task-specific views of artifacts that contain information about structure, behavior, and
evolution of a software system in its entirety. The main potential of the third dimension is
the possibility to provide multiple views in one software visualization for all three aspects.
However, empirical findings concerning the role of the third dimension in software visua-
lization are rare. Furthermore, there are only few 3D software visualizations that provide
multiple views of a software system including all three aspects. Finally, the current tool sup-
port lacks of generating easy integrateable, scalable, and platform independent 2D, 2.5D,
and 3D software visualizations automatically.
Hence, the objective is to develop a software visualization that represents all important struc-
tural entities and relations of a software system, that can display behavioral and evolutionary
aspects of a software system as well, and that can be generated automatically.
In order to achieve this objective the following research methods are applied. A literature
study is conducted, a software visualization generator is conceptualized and prototypically
implemented, a structured approach to plan and design controlled experiments in software
visualization is developed, and a controlled experiment is designed and performed to inves-
tigate the role of the third dimension in software visualization.
The main contributions are an overview of the state-of-the-art in 3D software visualization,
a structured approach including a theoretical model to control influence factors during con-
trolled experiments in software visualization, an Eclipse-based generator for producing au-
tomatically role- and task-specific 2D, 2.5D, and 3D software visualizations, the controlled
experiment investigating the role of the third dimension in software visualization, and the
recursive disk metaphor combining the findings with focus on the structure of software in-
cluding useful applications of the third dimension regarding behavior and evolution.

Acknowledgment

I am writing these last lines with pleasure. A long way with ups and downs lies behind me.
At this point I would like to take the opportunity to say thank you to all the people who have
paved this way and who have accompanied me on this way.
First, I want to thank my parents Bettina and Bernd Müller as they have given me the chance
to study and have made this possible in the first place. Moreover, I want to thank my brother
Axel Müller who has been a constant role model and a valuable advisor. Another big thank
you goes to Mikaela Mollenhauer. She has supported me in an extraordinary manner during
the ups and downs.
I also wish to thank Ulrich Eisenecker for the outstanding supervision, the inspiring discus-
sions, and the useful advices regarding science and life. I want to thank Bogdan Franczyk
for acting as an assessor of this thesis and for his constructive feedback as well as An-
dré Ludwig for his support. Furthermore, I want to thank Dirk Zeckzer for the excellent
cooperation. Thanks are also due to my friends and colleagues Johannes Müller, Pascal Ko-
vacs, Jan Schilbach, Christopher Klinkmüller, Ábel Sinkovics, Christoph Jobst, Max Lillack,
Christoph Augenstein, Martin Roth, Stefan Mutke, Hendrik Kerkhoff, Robert Kunkel, and
David Baum.
Finally, I would like to thank all the students who have contributed directly and indirectly to
this thesis, namely Elton Qinami, Christian Mählig, André Naumann, Philipp Günther, Lino
Janke, Dan Häberlein, Denise Zilch, Andreas Gessner, and Christian Stein.

"An attempt at visualizing the fourth dimension: Take a point,

stretch it into a line, curl it into a circle, twist it into a sphere,

and punch through the sphere."
Albert Einstein

Table of Contents V

Table of Contents

Table of Contents V

List of Figures VIII

List of Tables IX

List of Listings X

List of Abbreviations XI

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Objective and Research Questions . 2

1.3 Research Methodology . 3

1.4 Contributions . 4

1.5 Outline . 4

2 Background 5

2.1 Software Visualization . 5

2.1.1 Definitions . 5

2.1.2 Supported Software Engineering Tasks 8

2.1.3 Taxonomies . 8

2.1.4 Metamodels . 9

2.1.5 Visualization Pipeline . 9

2.2 Adapted Software Engineering Paradigms 10

2.2.1 Generative Paradigm . 10

2.2.2 Model-Driven Paradigm . 12

2.3 Eclipse . 15

2.3.1 Java Development Tools . 16

2.3.2 Plug-in Development Environment 16

2.3.3 Xtext . 17

Table of Contents VI

2.3.4 Xtend 2 . 23

2.4 Extensible 3D . 24

2.4.1 X3D . 24

2.4.2 X3DOM . 30

2.5 Summary . 34

3 Literature Study 35

3.1 Past, Present, and Future of 3D Software Visualization - A Systematic Liter-
ature Analysis . 35

3.2 Summary . 48

4 Generator for 2D, 2.5D, and 3D Software Visualizations 50

4.1 Generative Software Visualization: Automatic Generation of User-Specific
Visualizations . 50

4.2 Summary . 56

5 Structured Approach 58

5.1 A Structured Approach for Conducting a Series of Controlled Experiments
in Software Visualization . 58

5.2 Summary . 65

6 Controlled Experiment 68

6.1 How to Master Challenges in Experimental Evaluation of 2D versus 3D Soft-
ware Visualizations . 68

6.2 Summary . 73

7 The Recursive Disk Metaphor 76

7.1 The Recursive Disk Metaphor - A Glyph-based Approach for Software Visua-
lization . 76

7.2 Summary . 83

8 Conclusion and Future Work 85

8.1 Contributions . 85

8.2 Recommendations for 3D Software Visualizations 87

8.3 Outlook . 87

8.3.1 Literature Study . 88

8.3.2 Generator . 88

8.3.3 X3DOM . 88

Table of Contents VII

8.3.4 Recursive Disk Metaphor . 89

8.3.5 Research Project . 89

Appendix XIII

A Famix . XIII

B Recursive Disk Metaphor . XIX

Glossary XXI

Bibliography XXVII

Wissenschaftlicher Werdegang XXXVI

Selbstständigkeitserklärung XXXVII

List of Figures VIII

List of Figures

1.1 Software engineering processes with stakeholders and artifacts. 1
1.2 Research methodology. 3

2.1 Software visualization examples showing structural, behavioral, and evolu-
tionary aspects. 7

2.2 Adapted visualization pipeline for generating software visualizations. . . 9
2.3 Elements of the generative domain model. 11
2.4 Mapping alternatives between problem and solution space. 12
2.5 Relations between domain, DSL, formal model, and metamodel. 13
2.6 Subset of Ecore. 14
2.7 Extension points and extensions in Eclipse. 16
2.8 Relations between plug-ins, fragments, and features. 17
2.9 Subset of the Famix metamodel. 23
2.10 Profiles of the X3D standard. 25
2.11 X3D architecture. 28
2.12 X3D example. 29
2.13 Moving from X3D to X3DOM. 30
2.14 X3DOM architecture. 31
2.15 X3DOM fallback model. 32
2.16 X3DOM example. 33

4.1 Generative software visualization domain model. 56
4.2 Architecture and dependencies of the generator in a component diagram. . 57

5.1 Domain specific adaption of Munzner’s extended model for software visua-
lization. 65

7.1 The structure of Findbugs visualized with the recursive disk metaphor in a
browser. 83

7.2 Behavior with the recursive disk metaphor. 84

8.1 Applications of the third dimension in software visualization. 87
8.2 The structure of Freemind visualized with the city metaphor in a browser. 88

List of Tables IX

List of Tables

2.1 Definitions for software visualization. 5
2.2 Taxonomies for software visualization. 8
2.3 Overview of profiles, components, and levels in X3D version 3.3. 26
2.4 Units of measurement in X3D. 27

5.1 Possible influence factors on the effectiveness of a software visualization. 66

6.1 Directed hypotheses operationalizing the research questions. 73
6.2 Instance of the theoretical model for comparing a 2D vs. an inherent 3D

software visualization. 74

List of Listings X

List of Listings

2.1 Xtext grammar of important terminal rules. 18
2.2 A subset of the Xtext grammar of Famix. 20
2.3 Language generator for Famix. 22
2.4 X3D example. 29
2.5 X3DOM example. 32

A.1 Language generator for Famix. XIII
A.2 Xtext grammar of Famix. XIV
B.1 Xtext grammar of the recursive disk metaphor for visualizing the structure

of a software system. XIX

List of Abbreviations XI

List of Abbreviations

AOPT
Avalon-Optimizer [10, 34, 57, 85]

API
Application Programming Interface [18,

22, 23]

AST
Abstract Syntax Tree [17–19]

BD
Big Data [88]

BI
Business Intelligence [88]

CAD
Computer-aided Design [24]

CASE
Computer-Aided Software Engineer-
ing [8]

CMM
Common Meta-Model [9]

CSS
Cascading Style Sheet [33]

CVS
Concurrent Versions System [2, 6]

DMM
Dagstuhl Middle Model [9]

DOM
Document Object Model [14, 30, 31]

DSL
Domain Specific Language [10–12, 17, 18,

20, 34, 56, 85, 88, Glossary: DSL]

EBNF
Extended Backus-Naur Form [18]

EMF
Eclipse Modeling Framework [14, 19]

EMP
Eclipse Modeling Project [5, 16, 34, 57, 86]

GP
Generative Programming [10, 13, 34, Glos-

sary: GP]

GPU
Graphics Processing Unit [34]

HTML
Hypertext Markup Language [30–34]

HTTP
Hypertext Transfer Protocol [34]

IDE
Integrated Development Environment
[2, 15, 16, 18, 23, 34, 86, 88]

ISO
International Organization for Stan-
dardization [24]

JAR
Java Archive [17]

List of Abbreviations XII

JDT
Java Development Tools [5, 16, 17, 23, 34, 57,

86]

LOC
Lines of Code [2, 49, 87]

M2M
Model-to-Model Transformation [15, 24,

57, Glossary: M2M]

M2P
Model-to-Platform Transformation [15,

24, 57, Glossary: M2P]

MDA
Model-Driven Architecture [12]

MDSD
Model-Driven Software Development
[10, 12, 13, 34, Glossary: MDSD]

MSE
File exchange format [9, 57]

MWE2
Modeling Workflow Engine 2 [18–21, 24,

57, Glossary: MWE2]

OMG
Object Management Group [12]

OSGi
Open Services Gateway initiative [17]

PDE
Plug-in Development Environment [5,

16, 34, 57, 86]

RCP
Rich Client Platform [16, 88]

SAI
Abstract Scene Access Interface [28, 30,

31]

SOA
Service-oriented Architecture [6]

SRC
Shape Resource Container [34]

SVN
Subversion [2, 6]

TMF
Textual Modeling Framework [5, 16, 34,

57, 86]

UA
User Agent [31]

URI
Uniform Resource Identifier [21, 31]

VRML
Virtual Reality Modeling Language [24,

25, 27]

WebGL
Web Graphics Library [31]

X3D
Extensible 3D [5, 10, 12, 24, 25, 27, 28, 30–34, 57,

85, 89, Glossary: X3D]

X3DOM
Extensible 3D Document Object
Model [5, 10, 12, 24, 30–34, 57, 85, 88, 89, Glossary:

X3DOM]

XHTML
Extensible Hypertext Markup Lan-
guage [30, 31, 33, 34]

XML
Extensible Markup Language [13, 24, 27,

28, 30]

XSD
XML Schema Definition [24, 57]

1 Introduction 1

1 Introduction

This chapter motivates the topic of the thesis and formulates the corresponding problem
statement. Further, it describes the research design including objective, research questions,
and the applied research methods. The introductory chapter closes with a summary of the
main contributions and an outline of the thesis.

1.1 Motivation and Problem Statement

Typical software engineering processes are forward and reverse engineering [Chikofsky and
Cross 1990] usually controlled by a cross-cutting management process [Frailey et al. 2004].
Forward engineering covers the classical software development process from requirements
engineering to the design and the implementation of the software system. On the contrary,
reverse engineering aims at analyzing an implemented software system to gain an under-
standing of its design, and if necessary, of its requirements. This supports the system’s main-
tenance, enhancement, replacement, or reuse. Reverse engineering plays an important role in
software engineering because of the rapid development of technology [Garcia et al. 2004].
Software engineering management covers planning, coordinating, measuring, monitoring,
controlling, and reporting of these processes. As depicted in Figure 1.1, these software en-
gineering processes comprise several phases1 and involve stakeholders that use and produce
artifacts. Today and in the future, one major challenge is the increasing complexity due to an
increase of number, types, and relations of stakeholders on the one hand and of artifacts on
the other hand.

Figure 1.1: Software engineering processes with stakeholders and artifacts.

1 According to the chosen software development process model, these phases may be processed iteratively.

1 Introduction 2

Software visualization provides means to deal with this complexity and to support all three
major software engineering processes [Bohnet and Döllner 2005]. According to Diehl [2007],
software visualization is "[...] the visualization of artifacts related to software and its devel-

opment process.". The major objective is to provide role- and task-specific views of these
artifacts for stakeholders. The visualized aspects of a software system may be structural,
behavioral, and evolutionary. While source code, data structures, or static call-graphs are
sources of information regarding the structure of a software system, execution traces pro-
vide behavioral information about it. Additionally, information regarding the evolution can
be obtained from version control systems, such as Concurrent Versions System (CVS), Sub-
version (SVN), or Git. For example, a developer can use a structural view of the system to
detect design flaws during software quality assessment, a tester is provided with a behavioral
view to detect bottlenecks during execution, and a manager is supported in planning and de-
cision making by an aggregated evolutionary view. In general, software visualization tools
support stakeholders in software comprehension, finding errors, improving the quality of
the software, and managing complexity [Bassil and Keller 2001]. The necessity of software
visualization is further confirmed by a survey conducted by Koschke [2003]. The results in-
dicate that 82% of the participants see software visualization as important and absolutely
necessary in software engineering. There are many useful 2D, 2.5D, and 3D software visu-
alizations. Some comprehensive overviews are provided by Gračanin et al. [2005], Teyseyre
and Campo [2009], and Caserta and Zendra [2011].
The focus of this thesis is on the implementation phase, especially on the combined visuali-
zation of artifacts containing information about the structure, behavior, and evolution of soft-
ware systems. A useful application of the third dimension may be the possibility to provide
multiple views with one software visualization for all three aspects, i.e., structure, behavior,
and evolution. However, empirical findings concerning the role of the third dimension in
software visualization are rare [Müller et al. 2014a, b; Müller and Zeckzer 2015a]. Further-
more, there are only few 3D software visualizations that provide multiple views of a software
system including all three aspects [Müller and Zeckzer 2015a]. Finally, there is no general
approach to automatically generate 2D, 2.5D, and 3D software visualizations that scale for
large software systems (> 500K Lines of Code (LOC)), that are easy to integrate into an In-
tegrated Development Environment (IDE), and that are platform independent [Müller et al.
2011].

1.2 Objective and Research Questions

Consequently, the main objective of this thesis is to develop a software visualization that
represents all important structural entities and relations of a software system, that can display
behavioral and evolutionary aspects of a software system as well, and that can be generated
automatically.

1 Introduction 3

The resulting research question is based on this objective and detailed by three sub-questions.
RQ: How should a software visualization be designed to visualize structural, behavioral, and
evolutionary aspects of a software system, and how can it be generated automatically?

• SQ1: What is the state-of-the-art in 3D software visualization?
• SQ2: How can 2D, 2.5D, and 3D software visualizations be generated automatically?
• SQ3: What role does the factor dimensionality play in solving software engineering

tasks?

1.3 Research Methodology

In order to answer the research questions, the research methodology shown in Figure 1.2 is
chosen.

Figure 1.2: Research methodology.

First, the relevant literature is reviewed. This step lays the foundations providing the theoret-
ical and the technical background. The four main research methods applied in this thesis are
the literature study combining a systematic mapping study [Petersen et al. 2008] and a sys-
tematic literature review [vom Brocke et al. 2009], the development of a prototype [Wilde
and Hess 2007], the development of a structured approach, and the controlled experiment
[Sjøberg et al. 2007]. The literature study is conducted to examine the state-of-the-art in

1 Introduction 4

3D software visualization (SQ1). The prototypical conception and implementation of the
software visualization generator (SQ2) and the structured approach are two preconditions
for the controlled experiment. The generator produces 2D, 2.5D, and 3D software visual-
izations. The approach helps to plan and to design controlled experiments and to control
the influence factors. The experiment is designed and performed to empirically investigate
the role of the third dimension in solving software engineering tasks (SQ3). The findings
of the previous steps are combined and form the input for the development of the recursive
disk metaphor (RQ). All major steps have an iterative character, as they are repeated dur-
ing the whole research process. Finally, recommendations for 3D software visualizations are
derived.

1.4 Contributions

Altogether, there are five main contributions which have all been published separately as
peer-reviewed conference and workshop articles.

1. Literature study presenting an overview of state-of-the-art in 3D software visualization
[Müller and Zeckzer 2015a].

2. Eclipse-based generator for generating 2D, 2.5D, and 3D software visualizations au-
tomatically [Müller et al. 2011].

3. Structured approach for conducting controlled experiments in software visualization
[Müller et al. 2014a].

4. Controlled experiment investigating the role of the third dimension in software visua-
lization [Müller et al. 2014b].

5. Recursive disk metaphor combining the findings with focus on the structure of soft-
ware with useful applications of the third dimension [Müller and Zeckzer 2015b].

1.5 Outline

The structure of the thesis is based on the research process. In Chapter 2 the theoretical
and technical foundations are explained. The literature study giving an overview of the
state-of-the-art in 3D software visualization is described in Chapter 3. The generator to
create 2D, 2.5D, and 3D software visualizations automatically as well as the structured
approach for conducting controlled experiments in software visualization are presented in
Chapters 4 and 5. The actual experiment investigating the role of the third dimension in solv-
ing software engineering tasks is subject of Chapter 6. The recursive disk metaphor brings all
findings of the previous chapters together and is introduced in Chapter 7. Finally, the contri-
butions are summarized, the recommendations for 3D software visualization are concluded,
and an outlook to future work is provided in Chapter 8.

2 Background 5

2 Background

This chapter explains the theoretical foundations of software visualization and of relevant
software engineering paradigms. Further, it introduces the important technical concepts based
on Eclipse, such as Java Development Tools (JDT), Plug-in Development Environment (PDE),
Eclipse Modeling Project (EMP), and Textual Modeling Framework (TMF) with Xtext,
and Xtend as well as Extensible 3D (X3D) and Extensible 3D Document Object Model
(X3DOM) to create and render 3D scenes.

2.1 Software Visualization

Software visualization is a branch of information visualization as it offers techniques and
methods to visualize abstract data [Diehl 2007, p. 3]. In addition, it has an interdisciplinary
character that is affected by software engineering, human computer interaction, graphics, and
cognitive psychology [Marcus et al. 2005]. There are two main fields of application for soft-
ware visualization: educational visualization and software engineering [Hundhausen 1996].
The scope of this thesis is placed on 3D software visualization for software engineering. In
the following, the working definition for software visualization is chosen and explained, the
supported software engineering tasks are introduced, important taxonomies are presented,
and the visualization process is described in detail.

2.1.1 Definitions

The field of software visualization has continually developed since its beginnings in the late
1980’s. Table 2.1 summarizes the most influencing definitions.

Table 2.1: Definitions for software visualization.

Authors Definition

Myers [1990] "Program visualisation uses graphics to illustrate some aspect of the
program or it’s run-time execution, where the program is specified in
a conventional, textual manner."

Price et al. [1993] "Software visualisation is the use of the crafts of typography, graphic
design, animation and cinematography with modern human- com-
puter interaction technology to facilitate both the human understand-
ing and effective use of computer software."

Roman and Cox [1993] "Program visualisation is a mapping, or transformation, of a program
to a graphical representation."

Continued on next page

2 Background 6

Table 2.1 – continued from previous page

Authors Definition

Knight and Munro [1999] "Software visualisation is a discipline that makes use of various forms
of imagery to provide insight and understanding and to reduce com-
plexity of the existing software system under consideration."

Reiss [2005] "[...] the development and evaluation of methods for graphically rep-
resenting different aspects of software, including its structure, its ab-
stract and concrete execution, and its evolution."

Diehl [2007, p. 3f] "[...] the visualization of artifacts related to software and its develop-
ment process. [...] visualizing the structure, behavior, and evolution of
software."

Diehl [2007, p. 3f] provides the most recent definition of software visualization, including all
necessary aspects, i.e., structure, behavior, and evolution. For these reasons, this definition is
used throughout the thesis.

• Structure includes program code, data structures, static call-graphs, relations, and the
organization of a software system.

• Behavior covers the execution of a software system with real and abstract data.
• Evolution refers to the development process of a software system. This information is

usually provided by version control systems, such as CVS, SVN, or Git.

Figure 2.1 shows examples of software visualizations including structural (a-b), behavioral
(c-d), and evolutionary (e-f) aspects. Wettel and Lanza [2007] visualize the structure of soft-
ware systems with a city metaphor (a). Here, packages are mapped to districts and classes
are mapped to buildings. The base area of the buildings is proportional to the number of
attributes and their height is proportional to the number of methods of a class. Eicker et al.
[2007] provide structural views of Service-oriented Architectures (SOAs) divided into busi-
ness process layer, service interface layer, and application layer (b). Greevy [2007] visualizes
execution traces in terms of object creations and interactions in the context of a static class
hierarchy (c). Von Pilgrim and Duske [2008] represent execution traces with stacked views
(d). Ripley et al. [2007] offer means to visualize and explore workspace activity as well as
evolution on a project-wide basis. The workspaces are mapped to a stack of cylinders where
each cylinder corresponds to an artifact. Stacks of cylinders with recent changes are placed
in front of the view. Stacks with less activity move into the background (e). Steinbrückner
and Lewerentz [2010] use the city metaphor to visualize the evolution of software systems.
Their approach maps the development history to elevation levels. The levels correspond to
the number of versions of an artifact. Thus, the higher an artifact is placed, the higher version
it has. Besides system evolution, the approach includes modification history and authorship
history (f).

2 Background 7

(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Software visualization examples showing structural, behavioral, and evolutionary aspects:
structure with (a) CodeCity [Wettel and Lanza 2007] and (b) SOA views [Eicker et al. 2007], behavior
with (c) CodeCrawler [Greevy et al. 2005] and (d) GEF3D [von Pilgrim and Duske 2008], evolution
with (e) Palantír [Ripley et al. 2007] and (f) Evo-Streets [Steinbrückner and Lewerentz 2010].

2 Background 8

2.1.2 Supported Software Engineering Tasks

Software visualization enhances comprehension of software systems in constructive and an-
alytical tasks in software engineering. Actually, it supports three major software engineering
processes with their corresponding tasks [Bohnet and Döllner 2005, p. 4]:

• forward engineering, i.e., design and implementation of new software systems,
• reverse engineering, i.e., maintenance, enhancement, and reuse of existing software

systems, and
• management, i.e., planning, coordinating, measuring, monitoring, controlling, and re-

porting the software engineering process.

In general, software visualization tools support stakeholders in software comprehension,
finding errors, improving the quality of the software, and managing complexity [Bassil and
Keller 2001]. The forward engineering process covers the classical software development
process from requirements engineering to the design and the implementation of the soft-
ware system. This process is usually supported by Computer-Aided Software Engineering
(CASE) tools. These tools provide structural views, as well as behavioral views of the soft-
ware system under development. The reverse engineering process aims at gaining sufficient
design-level understanding about an existing software system to help with its maintenance,
enhancement, replacement, and reuse [Chikofsky and Cross 1990]. Structural, behavioral,
and evolutionary views of the initially unknown system help to solve these tasks time- and
cost-efficiently. Reverse engineering plays an important role in software engineering due to
the rapid development in technology [Garcia et al. 2004]. For this reason, software visualiza-
tion in the context of reverse engineering is an important use case. The management process
covers the planning, coordinating, measuring, monitoring, controlling, and reporting of the
software engineering process [Frailey et al. 2004]. In this context the main source for visua-
lization are evolutionary aspects of software systems, such as system evolution, modification
history, and authorship history. The aggregation and visualization of this information may
support the management in planning and decision making.

2.1.3 Taxonomies

Taxonomies are a mean to structure a discipline in order to communicate on a common basis
among researchers and to identify research gaps. Table 2.2 builds partly upon Hundhausen
et al. [2002, p. 261] and summarizes the main taxonomies in the field of software visualiza-
tion.

Table 2.2: Taxonomies for software visualization.

Taxonomy Dimensions

Myers [1990] Aspect (Code, Data, Algorithm) × Form (Static, Dynamic)
Continued on next page

2 Background 9

Table 2.2 – continued from previous page

Taxonomy Dimensions

Stasko and Patterson [1993] Aspect × Abstractness × Animation × Automation

Roman and Cox [1993] Scope × Abstraction Level × Specification Method × Interface ×
Presentation

Price et al. [1993] Scope × Content × Form × Method × Interaction × Effectiveness

Maletic et al. [2002] Task × Audience × Target × Representation × Medium

Storey et al. [2005] Intent × Information × Presentation × Interaction × Effectiveness

Gallagher et al. [2005] Static Representation × Dynamic Representation × Views × Navi-
gation and Interaction × Task Support × Implementation × Visua-
lization

These taxonomies play an important role in developing the theoretical model for conduct-
ing controlled experiments because they reveal all important aspects that may influence the
processing of a software engineering task supported by a software visualization.

2.1.4 Metamodels

According to Diehl [2007, p. 3f], the information of software systems to be visualized may
be structural, behavioral, or evolutionary. For each of these aspects exists a metamodel.
Structural information is covered by Famix [Ducasse et al. 2011], behavioral information
is covered by Dynamix [Greevy 2007], and evolutionary information is covered by Hismo
[Ducasse et al. 2004]. These metamodels are independent of the actual programming lan-
guage, execution trace tool, or version control system. The serialization format of Famix,
Dynamix, and Hismo is MSE (meaning unknown) [Kuhn and Verwaest 2008]. There are al-
ternative metamodels, such as the Dagstuhl Middle Model (DMM) [Lethbridge et al. 2004]
and the Common Meta-Model (CMM) [Strein et al. 2007]. However, none of these alterna-
tive models covers all three aspects.

2.1.5 Visualization Pipeline

The main steps of a general visualization pipeline are extraction, analysis, filtering, mapping,
and rendering [dos Santos and Brodlie 2004]. In this thesis, this general visualization process
is adapted to software visualization and realized with a generator. The adapted visualization
pipeline is depicted in Figure 2.2.

Figure 2.2: Adapted visualization pipeline for generating software visualizations based on dos Santos
and Brodlie [2004].

2 Background 10

The information needed for the visualization is extracted from software systems and stored
in corresponding models, either conforming to Famix [Ducasse et al. 2011], to Dynamix
[Greevy 2007], or to Hismo [Ducasse et al. 2004]. These metamodels are defined with Xtext
that automatically generates the necessary language infrastructure, including parsers and val-
idators, for each metamodel. During analysis, these models are checked for syntactic and
semantic validity. They must conform to their metamodel and fulfill some predefined vali-
dation rules, e.g., each entity must have a unique identifier. In the next step, the user filters

the desired entities. This step may occur at build time of the visualization or at runtime. The
mapping is realized by model transformations and model modifications using Xtend. It is
divided into two parts. First, the valid and filtered entities from the input model are mapped
to a platform independent model. Then, the layout of these entities is computed providing
sizes and positions for the visualization. Second, the platform independent model is mapped
to a platform specific one, here, X3D. Finally, the X3D model is optimized for the web and
converted with the Avalon-Optimizer (AOPT) to X3DOM [Behr et al. 2012]. The resulting
visualization is rendered by a browser. As the rendering may be done on every platform,
X3D and X3DOM are platform independent.

2.2 Adapted Software Engineering Paradigms

The generator to be developed adapts and combines concepts and techniques of Generative
Programming (GP) and of Model Driven Software Development (MDSD) from the field of
software engineering. For this reason, both paradigms are described in the following.

2.2.1 Generative Paradigm

A comprehensive overview of GP is for example provided by Czarnecki and Eisenecker
[2000] and by Czarnecki [2005]. Especially Czarnecki and Eisenecker [2000] is used as a
primary source to explain the terminology and concepts of the generative paradigm.

Definition

"Generative Programming (GP) is a software engineering paradigm based on modeling soft-

ware system families such that, given a particular requirements specification, a highly cus-

tomized and optimized intermediate or end-product can be automatically manufactured on

demand from elementary, reusable implementation components by means of configuration

knowledge." [Czarnecki and Eisenecker 2000, p. 5]

According to this definition, the generative paradigm aims at the development of a set of
software systems, a so called system family. A system family covers a set of of systems that
are similar enough in terms of architecture to be assembled by a common set of components
[Czarnecki and Eisenecker 2000, p. 31]. The requirements of the product to be created are de-
scribed with a Domain Specific Language (DSL). A domain is a bounded field of knowledge

2 Background 11

comprising professional knowledge on the one hand and technical knowledge on the other
hand [Czarnecki and Eisenecker 2000, p. 34]. The professional knowledge includes concepts
and terminologies understood by practitioners and the technical knowledge includes ways of
how to build software systems. Further, a domain is always related to its stakeholders. A DSL

is specialized, problem-oriented, and provides means to describe concrete members of a sys-
tem family [Czarnecki and Eisenecker 2000, p. 137]. The resulting specification is handed
over to a generator. The generator assembles the desired product by combining elementary
and reusable components. Components are building blocks that are used to assemble differ-
ent systems of a system family [Czarnecki and Eisenecker 2000, p. 9]. A generator is a piece
of software that produces a system automatically according to the specification [Czarnecki
and Eisenecker 2000, p. 333ff]. There are four essential tasks of a generator. It

• completes the specification with default values,
• verifies the specification and reports warning and error messages,
• performs optimizations, and
• generates artifacts.

The result of the generation process is a member of the system family and shares the common
system family architecture, no matter if it is an intermediate or a final artifact.

Generative Domain Model

The generative domain model plays an important role in the context of this paradigm, as it
summarizes its important terms and their relations. It is shown in Figure 2.3.

- Illegal feature
combinations

- Default settings
- Default dependencies
- Construction rules
- Optimizations

- Elementary and
reusable components

- Domain specific
concepts and

- Features

Problem Space Configuration
Knowledge

Solution Space

Domain Specific Language(s)
(DSLs)

Generator(s) Components & System
Family Architecture

Figure 2.3: Elements of the generative domain model [Czarnecki and Eisenecker 2000, p. 132].

The generative domain model consists of the problem space, the solution space and the con-
figuration knowledge [Czarnecki and Eisenecker 2000, p. 131f]. The problem space provides

2 Background 12

domain specific concepts and features to specify members of a system family by means of
a DSL. The solution space covers the elementary and reusable implementation components
and the common system family architecture. The configuration knowledge maps the elements
of the problem space to the elements of the solution space and is usually implemented as a
generator. The mapping process considers information about illegal feature combinations,
default settings, default dependencies, construction rules, and optimizations.
As depicted in Figure 2.4, there are different ways of mappings between the problem and
the solution space [Czarnecki 2005]. The generative domain model can be processed recur-
sively, i.e., the solution space of one model is simultaneously the problem space of another
generative domain model. This results in a chained mapping (a). Moreover, multiple problem
spaces, either defined by a composed DSL (b) or by alternative DSLs (d), can be mapped to
one solution space. Finally, one problem space can be mapped to complementary (c) or al-
ternative (e) solution spaces. In practice, there may be more complex combinations of these
elementary mapping patterns.

(a) (b) (c) (d) (e)

Figure 2.4: Mapping alternatives between problem and solution space [Czarnecki 2005]: (a) chained
mapping, (b) multiple problem spaces, (c) multiple solution spaces, (d) alternative problem spaces,
(e) alternative solution spaces.

Technology Projection

The elements of the generative domain model may be implemented with different techniques.
The mapping of these elements to a paradigm, a programming language, or a platform is
called technology projection [Czarnecki 2005]. An overview of several technology projec-
tions is provided by Czarnecki [2005]. In this thesis, Eclipse, especially Xtext and Xtend, as
well as X3D and X3DOM are chosen as technology projections.

2.2.2 Model-Driven Paradigm

A comprehensive overview of MDSD is provided by for example Stahl et al. [2006, 2007].
MDSD can be seen as the practical realization, driven by the developer community, of the
Model-Driven Architecture (MDA) standard [Miller and Mukerji 2003] initiated by the Ob-
ject Management Group (OMG). Völter et al. [2013] have developed MDSD further and
have brought the generative and model-driven paradigms closer together. Thus, both sources
[Stahl et al. 2006, 2007; Völter et al. 2013] are combined to explain the terminology and
concepts of the model-driven paradigm.

2 Background 13

Definition

"MDSD is a generic term for techniques, that create runnable software from formal models

automatically."2 [translated into English from Stahl et al. 2007, p. 11]

According to this definition, in the model-driven paradigm models become central artifacts of
software development, as they are at least as important as source code. Models are specified
in a way allowing the automatic generation of parts of a software system or a complete
software system by means of transformations.

Metamodels and Models

Similar to GP, in the context of MDSD, the domain plays an important role. In order to pro-
vide the basis for automation, the domain’s structure has to be formalized. This formalization
is realized by the metamodel. The relations between all relevant terms of the model-driven
paradigm are outlined in Figure 2.5.

Figure 2.5: Relations between domain, DSL, formal model, and metamodel [Stahl et al. 2006, p. 56].

The metamodel defines the abstract syntax and the static semantics of a language [Stahl et al.
2006, p. 55ff]. In other words, it describes concepts that can be used for creating the formal
model. The abstract syntax of a language specifies the language’s structure, typically as a
tree or a graph. The realization of an abstract syntax is the concrete syntax that is accepted
by a parser and used as notation to specify formal models. It may be textual, graphical, tabu-
lar, or a combination of these [Völter et al. 2013, p. 27]. For example, in Extensible Markup
Language (XML) the XML document is formulated in the concrete syntax of XML. A parser

2 "Modellgetriebene Softwareentwicklung (Model Driven Software Development, MDSD) ist ein Oberbe-
griff für Techniken, die aus formalen Modellen automatisiert lauffähige Software erzeugen." [Stahl et al.
2007, p. 11]

2 Background 14

instantiates a representation in memory, where the resulting Document Object Model (DOM)
is the abstract syntax of XML. The syntax of a language is not sufficient to check semantic
rules. For this reason, the criteria for well-formedness of a language are defined by its static

semantics. These are a set of constraints and/or type system rules to which formal models
have to conform. Additionally, the dynamic semantics gives a meaning to the metamodel’s
constructs. Finally, a formal model is formulated in the concrete syntax and follows its se-
mantic, i.e., it is an instance of the metamodel. Subsequently, the term model is used as a
synonym for a formal model. In order to finish the theoretically infinite instance hierarchy of
models and their metamodels, at a certain point the metamodel is defined in itself.
An important meta-metamodel in the Eclipse ecosystem, especially in the Eclipse Modeling
Framework (EMF), is Ecore. It provides the language including syntax and semantics for
defining custom metamodels for a domain. A subset of the important elements of Ecore and
their relations are shown in Figure 2.6.

EAttribute

EClass

abstract : EBoolean = false

interface : EBoolean = false

EClassifierEPackage

nsURI : EString

nsPrefix : EString

EReference

containment : EBoolean = false

/container : EBoolean = false

resolveProxies : EBoolean = true

EStructuralFeature

changeable : EBoolean = true

volatile : EBoolean = false

transient : EBoolean = false

defaultValueLiteral : EString

unsettable : EBoolean = false

derived : EBoolean = false

EDataType

EEnumLiterall

value : EInt = 0

instance : EEnumerator

literal : EString

ENamedElement

name : EString

EEnum

[0..*] eSuperTypes

[0..1] eOpposite

[1..1] /eReferenceType

[0..*] eClassifiers[0..1] ePackage

[0..1] eContainingClass

[0..*] eStructuralFeatures

[1..1] /eAttributeType

[0..*] eLiterals

[1..1] eEnum

Figure 2.6: Subset of Ecore.

2 Background 15

The class EPackage represents packages and may contain EClasses. This relation is modeled
by the reference eClassifiers to the abstract class EClassifier. EClass defines classes
and holds references to other classes as well as attributes. These relations are modeled by the
reference eStructuralFeatures to the abstract class EStructuralFeature. The references
between classes, represented by EReference, may be inheritance, composition, or aggrega-
tion. EAttribute stands for attributes and has a reference to its type. Primitive and complex
datatypes are specified by EDataType. A special datatype is the enumeration represented by
EEnum containing literals of type EEnumLiteral.

Model Transformations

A platform supports the realization of a domain and can be founded on existing building
blocks, such as middleware, libraries, frameworks, or components [Stahl et al. 2006, p. 59].
Transformations are necessary to connect the domain concepts of the problem space with
the platform in the solution space. Transformation rules are based on the metamodel’s con-
structs. There are two types of model transformations: Model-to-Platform Transformation
(M2P) and Model-to-Model Transformation (M2M) [Stahl et al. 2006, p. 60]. A M2P gen-
erates artifacts that are based on the platform. This process is also called generation. An
example is generated source code that fits into an existing framework. For this purpose, tem-
plates describe how source code should be generated from model elements. A M2M maps
one or more source models to a target model. There are three different categories: Model
transformation, model modification, and model weaving [Stahl et al. 2007, p. 199f]. A model

transformation maps a source model to a target model, where both models conform to a dif-
ferent metamodel. That means, there is a metamodel change and the source model remains
unchanged. In contrary, a model modification changes or extends source model elements, i.e.,
the target model is the modified source model and still conforms to the same metamodel. In
some cases, information is distributed in different models and needs to be joined. Here, a
model weaving combines at least two source models and creates one target model.

Tool Support

A suitable tool support is necessary to realize a model-driven approach. Czarnecki and
Helsen [2006] provide a comprehensive overview of such tools. One of the tools mentioned
in the survey is openArchitectureWare, the predecessor of Xtext and Xtend explained in the
next section.

2.3 Eclipse

Eclipse is an open-source and generic IDE for a myriad of purposes. In other words: "The

Eclipse Project provides a kind of universal tool platform - an open extensible IDE for any-

thing and yet nothing in particular." [Eclipse Website 2014]. Eclipse can be used as an IDE
for a certain programming language, as an IDE framework combining different programming

2 Background 16

languages, as a tool framework, as an application framework, and as a runtime environment.
The reason of this variety lies in the IDE’s plug-in architecture. The main task of the small
Eclipse core is to load plug-ins at runtime. These plug-ins provide the actual functionalities
of Eclipse. The Eclipse Project addresses two areas. On the one hand, there is the develop-
ment of tool integration platforms including core frameworks and technologies that are used
as a base to build software development tools of all kinds. On the other hand, there are tools
required to build and to extend these platforms. These tools are used to build the integration
platforms, to extend, and to adopt the platforms.
For the generator, the following Eclipse projects are important: JDT and PDE as parts of the
Eclipse Project, as well as Xtext and Xtend as parts of the TMF respectively the EMP. At the
moment, the generator is implemented with version 4.3 (Kepler) of Eclipse and version 2.6
of Xtext and Xtend.

2.3.1 Java Development Tools

The JDT project provides tools to develop, test, debug, build, and deploy Java applications,
including Eclipse plug-ins [JDT Project Website 2014]. The Java IDE adds a Java project
nature and a Java perspective to the Eclipse workbench enhanced by corresponding views,
editors, wizards, builders as well as code merging and refactoring tools.

2.3.2 Plug-in Development Environment

The PDE project provides tools to develop, test, debug, build and deploy Eclipse plug-ins,
fragments, features, update sites and Rich Client Platform (RCP) products [PDE Project
Website 2014]. The PDE also adds perspectives, views, editors, wizards, and builders to the
Eclipse workbench. Further, it is highly integrated with the JDT. The modular and extensible
plug-in architecture of the generator is realized with three concepts that are described next,
namely plug-ins, fragments, and features.

Plug-in

A plug-in is the smallest functional unit in Eclipse [Eclipse Documentation 2014]. It can
be an extension and it can offer extension points as placeholders for other plug-ins. The
extension concept is explained in Figure 2.7.

Extension
Point P

Interface I

Extension
Point P

Interface I

Extension
Point P

Interface I

Extension

Class C

Plug-in A Plug-in B

contributes

implements

creates, calls

Figure 2.7: Extension points and extensions in Eclipse.

2 Background 17

Plug-in A defines the extension point P and its interface I. Plug-in B contributes an extension
to plug-in A as it implements this interface in class C. At runtime, plug-in A instantiates this
class by calling the methods of the interface.
Every plug-in consists at least of a manifest (META-INF/MANIFEST.MF). The manifest con-
tains all necessary information about its execution including name, version, and dependen-
cies to other plug-ins. The runtime management of a plug-in is controlled by an implemen-
tation of the Open Services Gateway initiative (OSGi) framework. The extended manifest
(plugin.xml) specifies the extensions of the plug-in and the extension points for other plug-
ins. Further optional parts of a plug-in are the Java byte-code, usually shipped as a Java
Archive (JAR) file, as well as resources, such as icons, help pages, or internationalized
strings.

Fragment

A fragment is always part of a plug-in [Eclipse Documentation 2014]. It extends a plug-in
non-invasively with further contents or functionality. For example, language packages are
often implemented as fragments and added after the development of the plug-in has been
finished. Its manifest (fragment.xml) controls the coupling of the fragment and the plug-in.
Apart from this, the structure of a fragment is similar to plug-ins.

Feature

A feature combines related plug-ins and their fragments to a product [Eclipse Documentation
2014]. For example, the JDT is a feature consisting of plug-ins, such as a Java source code
editor, a debugger, and a console. The relations between plug-ins, fragments, and features
are illustrated in Figure 2.8. Here, feature x bundles the plug-ins A, B, C and fragment 1.
Feature y introduces fragment 2 that extends plug-in C.

Feature x

Feature y

Plug-in A Plug-in B Plug-in C

Fragment 2

Fragment 1

Figure 2.8: Relations between plug-ins, fragments, and features [Daum 2008, p. 499].

2.3.3 Xtext

Xtext is a language development framework for programming languages and DSLs [Xtext
Documentation 2014]. It covers all aspects of a complete language infrastructure by provid-
ing runtime components, such as a parser, a type-safe Abstract Syntax Tree (AST), a serial-
izer, a code formatter, a linker, compiler checks, a factory, a validation component for static
analysis, and a code generator. Moreover, Xtext is completely integrated into the Eclipse

2 Background 18

IDE. It uses the dependency injection framework Google Guice to wire up the whole lan-
guage as well as the IDE infrastructure. All subsequent statements refer to version 2.7.2 of
Xtext.
In the context of the generator, Xtext’s grammar language is used to define the metamod-
els, i.e., Famix, Dynamix, and Hismo. The desired components are described in a Model-
ing Workflow Engine 2 (MWE2) configuration that is the input for the language generator.
The language generator creates important components for the visualization process such as
parsers, validators, and the Application Programming Interfaces (APIs).

The Grammar Language

The grammar language is a DSL for the description of textual languages [Xtext Documen-
tation 2014]. It is used to describe the concrete syntax and how the syntax is mapped to an
in-memory representation—the AST. The AST will be created by the parser when it reads
an input file written in this language. Every Xtext grammar starts with a header that defines
some properties of the language. Additional grammars can be included with the keyword
with. This mechanism is called grammar mixin. An existing Ecore model can be referenced
with the keyword import and aliased to avoid name collisions with the keyword as followed
by a name.
There are four different types of rules available to define the grammar: terminal rules, parser
rules, data type rules, and enum rules. A terminal rule is described using Extended Backus-
Naur Form (EBNF)-like expressions. Return types are atomic values of type EDataType.
Examples for terminal rules are in Listing 2.1 in lines 4 to 18. A hidden terminal symbol
defines a sequence of patterns that are ignored by the parser, such as white space, and com-
ments. Nevertheless, they are woven into the model but do not play any role for the semantic
model. They are shipped as default in Terminals.xtext.

1 grammar org.eclipse.xtext.common.Terminals hidden(WS, ML_COMMENT, SL_COMMENT)

2 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

3

4 terminal ID:

5 ’^’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

6 terminal INT returns ecore::EInt:

7 (’0’..’9’)+;

8 terminal STRING :

9 ’"’ (’\\’ . /* ’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’ */ | !(’\\’|’"’))* ’"’ |

10 "’" (’\\’ . /* ’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’ */ | !(’\\’|"’"))* "’";

11 terminal ML_COMMENT:

12 ’/*’ -> ’*/’;

13 terminal SL_COMMENT:

14 ’//’ !(’\n’|’\r’)* (’\r’? ’\n’)?;

15 terminal WS:

16 (’ ’|’\t’|’\r’|’\n’)+;

17 terminal ANY_OTHER:

18 .;

Listing 2.1: Xtext grammar of important terminal rules [Xtext Documentation 2014].

2 Background 19

A parser rule uses terminal rules and other parser rules. The parser rules lead to the parse
tree. This is the blueprint for the AST. In this context, actions and assignments are used to
derive types and initialize the elements of the AST. If not explicitly specified the return type
of a parser rule is the rule’s name. Assignments (=, +=,?=) are used to bind the consumed
information to a feature of the currently produced object. The type of this object is spec-
ified by the return type of the parser rule. It is possible to declare cross-references in the
grammar. This information is used by the linker. Actions make the creation of a return type
explicit. There are simple actions and assigned actions. A data type rule creates instances of
EDataType instead of EClass. They are similar to terminal rules but they are context sensitive
and allow the use of hidden tokens. An enum rule returns enumeration literals from strings.
It is a kind of data type rule with a specific value converter and creates an instance of EEnum.
Xtext infers Ecore models from a grammar. Xtext parsers create an in-memory object graph
that is an instance of Ecore models. Such a model consists of an EPackage containing
EClasses with EAttributes and EReferences, EDataTypes and EEnums according to the
different parser rules. Xtext generates or infers an Ecore model from every grammar as fol-
lows [Xtext Documentation 2014]:

• An EPackage for each generate declaration,
• an EClass for each return type of a parser rule and for each type defined in an action

or a cross-reference,
• an EEnum for each return type of an enum rule,
• an EDataType for each return type of a terminal rule or a data type rule,
• an EAttribute in each current return type, and
• an EReference in each current return type for each assignment and for each assigned

action.

MWE2

The MWE2 is a declarative, externally configurable generator engine [Xtext Documentation
2014]. It provides means to describe object compositions and to declare object instances,
attribute values, and references. Its main purpose is the definition of workflows. A workflow

summarizes components that interact with each other. Among others, there are components
to read and write EMF models, or to transform them. However, it is also possible to write
custom components and to integrate them into MWE2 workflows.

The Language Generator

The language generator takes an Xtext grammar as input and generates necessary compo-
nents of the language infrastructure according to the MWE2 configuration [Xtext Documen-
tation 2014]. This includes a parser, a serializer, an inferred Ecore model, and a couple of
base classes for validation, formatting, and testing. The generator also contributes to shared
project resources such as the plugin.xml, MANIFEST.MF, and the Google Guice modules.

2 Background 20

Famix Example

As mentioned in Section 2.1, Famix is a metamodel describing structural aspects of software
[Ducasse et al. 2011]. In the following example, this metamodel is defined by means of an
Xtext grammar. Then, the language generator is used to generate the language infrastructure
and necessary components. The whole process is configured with MWE2.
Listing 2.2 shows a subset of the Xtext grammar definition of Famix. In other words, this is a
DSL for describing structural aspects of software systems. The complete grammar definition
of Famix can be found in Listing A.2.

1 grammar org.svis.xtext.Famix with org.eclipse.xtext.common.Terminals

2 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

3 generate famix "http://www.svis.org/famix"

4

5 Root:

6 document=Document?;

7

8 Document:

9 {Document}

10 ’(’ elements+=FAMIXElement* ’)’;

11

12 FAMIXElement:

13 FAMIXNamespace | FAMIXClass | FAMIXAttribute | FAMIXMethod | FAMIXInheritance;

14

15 FAMIXNamespace:

16 ’(FAMIX.Namespace’

17 ’(’ ’id: ’ name=INT_ID ’)’

18 ’(’ ’name’ value=MSESTRING ’)’

19 (’(’ ’isStub’ isStub=Boolean ’)’)?

20 (’(’ ’parentScope’ parentScope=IntegerReference ’)’)?

21 ’)’;

22

23 FAMIXClass:

24 ’(FAMIX.Class’

25 ’(’ ’id: ’ name=INT_ID ’)’

26 ’(’ ’name’ value=MSESTRING ’)’

27 ’(’ ’container’ container=IntegerReference ’)’

28 (’(’ ’isInterface’ isInterface=Boolean ’)’)?

29 (’(’ ’isStub’ isStub=Boolean ’)’)?

30 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

31 (’(’ ’sourceAnchor’ type=IntegerReference ’)’)?

32 ’)’;

33

34 FAMIXAttribute:

35 ’(FAMIX.Attribute’

36 ’(’ ’id: ’ name=INT_ID ’)’

37 ’(’ ’name’ value=MSESTRING ’)’

38 ’(’ ’declaredType’ declaredType=IntegerReference ’)’

39 (’(’ ’hasClassScope’ hasClassScope=Boolean ’)’)?

40 (’(’ ’isStub’ isStub=Boolean ’)’)?

41 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

42 ’(’ ’parentType’ parentType=IntegerReference ’)’

43 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

44 ’)’;

45

46 FAMIXMethod:

2 Background 21

47 ’(FAMIX.Method’

48 ’(’ ’id: ’ name=INT_ID ’)’

49 ’(’ ’name’ value=MSESTRING ’)’

50 (’(’ ’cyclomaticComplexity’ cyclomaticComplexity=INT ’)’)?

51 (’(’ ’declaredType’ declaredType=IntegerReference ’)’)?

52 (’(’ ’hasClassScope’ hasClassScope=Boolean ’)’)?

53 (’(’ ’isStub’ isStub=Boolean ’)’)?

54 (’(’ ’kind’ kind=MSESTRING ’)’)?

55 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

56 (’(’ ’numberOfStatements’ numberOfStatements=INT ’)’)?

57 ’(’ ’parentType’ parentType=IntegerReference ’)’

58 ’(’ ’signature’ signature=MSESTRING ’)’

59 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

60 ’)’;

61

62 FAMIXInheritance:

63 ’(FAMIX.Inheritance’

64 ’(’ ’id: ’ name=INT_ID ’)’

65 (’(’ ’previous’ previous=IntegerReference ’)’)?

66 ’(’ ’subclass’ subclass=IntegerReference ’)’

67 ’(’ ’superclass’ superclass=IntegerReference ’)’

68 ’)’;

69

70 IntegerReference:

71 ’(’ ’ref: ’ ref=[FAMIXElement|INT_ID] ’)’;

Listing 2.2: A subset of the Xtext grammar of Famix.

In Line 1, the name of the language is declared. This declaration requires that the grammar
file is named Famix.xtext and placed in the package org.svis.xtext. The keyword with

references an existing language, Terminals.xtext, that is also required for this language.
This grammar mixin provides definitions for INT, ID, and STRING. Further, Ecore is imported
in Line 2 and used for primitive type definitions. The generate statement in line 3 creates
an EPackage named famix with the namespace Uniform Resource Identifier (URI) http:

//www.svis.org/xtext/famix. This empty EPackage will be extended by EClasses with
EAttributes and EReferences defined by the subsequent parser rules. In this listing, there
are nine parser rules in lines 5 to 71.
According to this grammar or metamodel, every Famix model starts with a Root element
containing one or none Document. The Document holds a list of FAMIXElements. Each FAMIX-

Element has a name. FAMIXElements may be of type FAMIXNamespace for packages, FAMIX-
Class for classes, FAMIXAttribute for attributes, FAMIXMethod for methods, and FAMIX-

Inheritance for inheritance relations. All relations between these elements are modeled
using the element IntegerReference. For example, parent packages are resolved by the
references parentScope and ref.
This grammar is then handed over to the language generator with a MWE2 configuration
presented in extracts in Listing 2.3. The complete MWE2 configuration can be found in
Listing A.1.

2 Background 22

1 module org.svis.xtext.GenerateFamix

2

3 import org.eclipse.emf.mwe.utils.*

4 import org.eclipse.xtext.generator.*

5 import org.eclipse.xtext.ui.generator.*

6

7 var grammarURI = "classpath:/org/svis/xtext/Famix.xtext"

8 var fileExtensions = "famix"

9 var projectName = "org.svis.xtext.famix"

10 var runtimeProject = "../${projectName}"

11 var generateXtendStub = true

12

13 Workflow {

14 bean = StandaloneSetup {

15 scanClassPath = true

16 platformUri = "${runtimeProject}/.."

17 }

18 component = DirectoryCleaner {

19 directory = "${runtimeProject}/src-gen"

20 }

21 //[...]

22 component = Generator {

23 pathRtProject = runtimeProject

24 pathUiProject = "${runtimeProject}.ui"

25 pathTestProject = "${runtimeProject}.tests"

26 projectNameRt = projectName

27 projectNameUi = "${projectName}.ui"

28 language = auto-inject {

29 uri = grammarURI

30 // Java API to access grammar elements (required by several other fragments)

31 fragment = grammarAccess.GrammarAccessFragment auto-inject {}

32 // generates Java API for the generated EPackages

33 fragment = ecore.EMFGeneratorFragment auto-inject {}

34 // serializer 2.0

35 fragment = serializer.SerializerFragment auto-inject {

36 generateStub = false

37 }

38 // The antlr parser generator fragment.

39 fragment = parser.antlr.XtextAntlrGeneratorFragment auto-inject {}

40 // Xtend-based API for validation

41 fragment = validation.ValidatorFragment auto-inject {}

42 // [...]

43 }

44 }

45 }

Listing 2.3: Language generator for Famix.

The keyword module in Line 1 declares the fully qualified name for the language genera-
tor’s class GenerateFamix. Lines 3 to 5 import required Java classes. Lines 7 to 11 declare
attribute values with the keyword var. The main workflow is defined in lines 13 to 45. It
consists of a bean to initialize the workflow (lines 14–17), directory cleaning components
(lines 18–21), and a generator component (lines 22–44). The generator component includes
some properties and predefined fragments, e.g. for the Famix API (Line 31), model inference
(Line 33), serialization (lines 35–37), parsing (Line 39), and validation (Line 41).

2 Background 23

After processing this grammar by the language generator from Listing 2.3, one of the out-
puts is the inferred Ecore model, respectively the class diagram of the Famix metamodel in
Figure 2.9. The result of this process is a complete language infrastructure for Famix models
including an API and components to parse, serialize, and validate these models.

Document

FAMIXAttribute

value : EString

hasClassScope : EString

isStub : EString

modifiers : EString

FAMIXClass

value : EString

isInterface : EString

isStub : EString

modifiers : EString

FAMIXElementt

name : EString

FAMIXInheritanceFAMIXMethod

value : EString

cyclomaticComplexity : EInt = 0

hasClassScope : EString

isStub : EString

kind : EString

modifiers : EString

numberOfStatements : EInt = 0

signature : EString

FAMIXNamespace

value : EString

isStub : EString

IntegerReference

Root

[0..*] elements

[0..1] declaredType

[0..1] parentType[0..1] sourceAnchor

[0..1] container

[0..1] type

[0..1] previous

[0..1] subclass

[0..1] superclass

[0..1] declaredType

[0..1] parentType

[0..1] sourceAnchor[0..1] parentScope

[0..1] ref

[0..1] document

Figure 2.9: Subset of the Famix metamodel.

2.3.4 Xtend 2

Xtend is a statically-typed programming language that translates to comprehensible Java
source code [Xtend Documentation 2014]. It is closely integrated with the Eclipse JDT pro-
viding IDE features like call-hierarchies, refactoring, and debugging. Concerning syntax and
semantics Xtend is quite similar to Java. However, there are some improvements over Java,
such as:

• extension methods,
• lambda expressions,
• active annotations,
• operator overloading,
• switch expressions,
• multiple dispatch, i.e., polymorphic method invocation,
• template expressions with intelligent white space handling,

2 Background 24

• no statements as everything is an expression,
• properties for accessing and defining getters and setter,
• type inference,
• full support for Java generics, and
• it translates to Java.

In the context of the generator, Xtend’s extension methods and the template expressions are
used to describe M2Ms and M2Ps. Models conforming to an Xtext grammar are read by
a generated parser component and modified or transformed by Xtend components. In the
case of a M2M the models are written by a generated serializer component. In the case of a
M2P the models are written directly according to a template definition. Similar to Xtext, the
complete workflow is configured with MWE2.

2.4 Extensible 3D

X3D and X3DOM are two complementary approaches to create and render 2D and 3D
scenes. X3DOM is build upon the X3D standard with the objective to render these scenes
in a web browser without requiring additional plug-ins. In the following, both approaches
are introduced. Comprehensive descriptions of X3D are given by Brutzman and Daly [2007]
and descriptions of X3DOM are given by Behr et al. [2009, 2010, 2011, 2012].

2.4.1 X3D

X3D is an XML-based file format and runtime architecture to represent 3D scenes [X3D
Website 2014]. It evolved from its predecessor Virtual Reality Modeling Language (VRML).
X3D is royalty-free and since 2004 an International Organization for Standardization (ISO)
ratified standard [X3D Standard 2014]. The development is managed by the Web3D Consor-
tium. All subsequent statements refer to version 3.3 of the XML Schema Definition (XSD)
for X3D [X3D Schema 2014].

Features

X3D provides a set of componentized features that can be tailored for use in several areas
of applications, such as in engineering, in information as well as scientific visualization, in
education, and in entertainment [X3D Website 2014]. The following features are supported:
3D graphics, 2D graphics, animation, spatialized audio and video, user interaction, naviga-
tion, user-defined objects, scripting, networking, physical simulation, geospatial positioning,
Computer-aided Design (CAD) geometry, layering, support for programmable shaders, and
particle systems.

2 Background 25

Profiles, Components, and Levels

The underlying structure of X3D is modular. It is organized in nested profiles varying in func-
tionality and complexity. A profile is composed by a predefined set of components [Brutz-
man and Daly 2007, p. 13ff]. Each component is divided into levels describing increasing
capability. Every X3D node belongs to a component and varies in features depending on
the component level. The specification of a profile is mandatory and the specifications of
components and levels are optional.
There are five main profiles, namely Core, Interchange, Interactive, Immersive, and Full

as well as three special profiles namely, CADInterchange, MedicalInterchange, and MPEG-4

interactive. The latter three profiles are not relevant in this thesis and thus excluded from
further description. Figure 2.10 puts the five main profiles in a hierarchical relationship.

Full

Immersive

Interactive

Interchange

Core

Figure 2.10: Profiles of the X3D standard [Brutzman and Daly 2007, p. 13].

All profiles build upon each other, i.e., every profile that is higher in the hierarchy includes
the capabilities of its lower profile. For example, the Interactive profile offers all capabil-
ities from the Core and the Interchange profile. The Core profile provides minimal defini-
tions required by an X3D browser, such as the routing mechanism and meta-data. It acts as a
base level so that an author can build minimally defined scenes specifying the required com-
ponents and levels explicitly. The Interchange profile is the base for the representation and
exchange of geometric models providing material, texture, lightening, and animation func-
tionality. The Interactive profile adds the nodes necessary for users to interact with the
scene, such as sensors. The Immersive profile adds audio, scripting, 2D geometry, environ-
mental effects, and event utilities. This profile most closely matches the VRML 97 standard.
The Full profile includes all nodes available in the X3D standard and covers advanced areas,
as for example humanoid animation and geospatial components. Table 2.3 gives an overview
of the supported components with corresponding levels in each profile.

2 Background 26

Table 2.3: Overview of profiles, components, and levels in X3D
version 3.3 [X3D Standard 2014].

Component Interchange
Profile

Supported
Levels

Interactive
Profile

Supported
Levels

Immersive
Profile

Supported
Levels

Full Profile
Supported

Levels

Core 1 1 2 2

Time 1 1 1 2

Networking 1 2 3 3

Grouping 1 2 2 3

Rendering 3 3 3 5

Shape 1 1 2 4

Geometry3D 2 3 4 4

Geometry2D 1 2

Text 1 1

Sound 1 1

Lighting 1 2 2 3

Texturing 2 2 3 3

Interpolation 2 2 2 5

Pointing device sensor 1 1 1

Key device sensor 1 2 2

Environmental sensor 1 2 3

Navigation 1 1 2 3

Environmental effects 1 1 2 4

Geospatial 2

Humanoid animation 1

Non-uniform Rational
B-Spline (NURBS) 4

Distributed interactive
simulation (DIS) 2

Scripting 1 1

Event utilities 1 1 1

Programmable shaders 1

CAD geometry 2

Texturing 3D 2

Cube map environ-
mental texturing 3

Layering component 1
Continued on next page

2 Background 27

Table 2.3 – continued from previous page

Component Interchange
Profile

Supported
Levels

Interactive
Profile

Supported
Levels

Immersive
Profile

Supported
Levels

Full Profile
Supported

Levels

Layout component 2

Rigid body physics
component 2

Picking sensor component 3

Followers component 1

Particle systems component 3

Volume rendering
component 4

Encoding

X3D supports three file formats. First, the XML-based format with the suffix *.x3d. Second,
the VRML syntax with the suffix *.x3dv. Finally, the binary format with the suffix *.x3db.

Conventions

There are two important conventions in X3D concerning coordinate system and units of
measurement [X3D Standard 2014]. Every scene has a three-dimensional, Cartesian, right-
handed coordinate system. For this reason, rotations perform in a mathematical positive
sense, i.e., counter-clockwise. The units of measurement for length, angle, time and color
are listed in Table 2.4.

Table 2.4: Units of measurement in X3D.

Category Unit of Measurement

Length Meter

Angle Rad

Time Seconds

Color RGB(0.0–1.0, 0.0–1.0, 0.0–1.0)

Scene Graph

A scene graph is the basic unit of the X3D runtime environment. It is a directed, acyclic
graph or a tree, respectively [Brutzman and Daly 2007, p. 1]. The nodes of this tree corre-
spond to objects of the scene. All objects are positioned in the virtual world according to the
transformation hierarchy. This hierarchy describes the spatial relationships of the objects.

2 Background 28

Further, the behavior graph describes the connections between fields of nodes and the flow
of events through the system.

Runtime Architecture

The interpretation, execution, and representation of a scene is realized by the X3D browser.
The browser reads a scene description and parses its content. The created nodes are trans-
ferred to the scene graph manager which renders the nodes with corresponding geometry,
appearance, position, and orientation. Further, the manager is able to receive events from an-
imation or script nodes manipulating the scene. The Abstract Scene Access Interface (SAI)
provides means to access nodes of a scene at runtime. Figure 2.11 outlines the architecture
of X3D.

Figure 2.11: X3D architecture [X3D Standard 2014].

Viewer

The resulting scene can be viewed in a web browser with corresponding plug-ins or stan-
dalone with a player. A list of available plug-ins and players can be found at [X3D Website
2014]. The InstantPlayer was used for testing during development. This viewer is part of
the InstantReality platform developed by the Fraunhofer Institute for Computer Graphics
[InstantReality Website 2014].

Example with X3D

To illustrate the usage of X3D, a simple example is used. Listing 2.4 shows the XML-based
scene description with meta-data to create the slightly rotated red box in Figure 2.12 rendered
by the InstantPlayer.

2 Background 29

1 <X3D version=’3.3’ profile=’Interactive’>

2 <head>

3 <!--<component name=’Geometry2D’ level=’2’/>-->

4 <meta name=’title’ content=’x3d_box.x3d’/>

5 <meta name=’author’ content=’Richard Mueller’/>

6 <meta name=’created’ content=’2014-10-09’/>

7 </head>

8 <Scene>

9 <Transform translation=’0 0 0’ rotation=’1 1 0 0.78’>

10 <Shape>

11 <Appearance>

12 <Material diffuseColor=’1 0 0’/>

13 </Appearance>

14 <Box/>

15 </Shape>

16 </Transform>

17 </Scene>

18 </X3D>

Listing 2.4: X3D example.

Figure 2.12: X3D example.

In Line 1, the X3D root node is defined. The fields of this root node indicate that the Inter-

active profile and version 3.3 of the standard are required. Lines 2 to 7 cover further meta-
data of the scene in the head node. Here, additional components and levels, not supported by
the current profile, can be specified with the component node. Additionally, meta nodes are
used to add information about title, author, and date of creation. The Scene node in lines 8 to
17 introduces the actual scene graph definition. The Transform node places the Shape node
at the origin of the coordinate system (x=0, y=0, and z=0) and rotates it by approximately
45 degree (0.78 rad) around the x- and y-axes. The Material node sets the color of the shape
to red. Finally, the form of the shape is defined in Line 14, a box.

2 Background 30

2.4.2 X3DOM

X3DOM is an open-source framework and runtime architecture for 3D graphics on the
web [X3DOM Website 2014]. The main objective of X3DOM is the integration of declar-
ative X3D content in the Hypertext Markup Language (HTML) DOM tree [Behr et al.
2009, 2010]. However, it is more an intermediate solution until X3D becomes an integral part
of HTML. Figure 2.13 shows the ideas and main differences behind both concepts. Whereas
X3D is only runnable in a web browser with the help of additional plug-ins, X3DOM seam-
lessly integrates the X3D content in the web browser’s DOM tree. Consequently, no addi-
tional plug-ins are necessary to run a 3D scene in a web browser. All subsequent statements
refer to version 1.6.2 of X3DOM.

Figure 2.13: Moving from X3D to X3DOM [Behr et al. 2009].

Profile: HTML

X3DOM introduces a new profile, called HTML, to provide a subset of X3D that matches the
needs of modern HTML applications [Behr et al. 2010]. This profile extends the Interchange
profile with a level increase in the components Networking, Grouping, and Navigation.
Thus, the nodes Inline, Switch, StaticGroup, Billboard, and LOD are supported. The HTML

profile does neither include Script nodes nor does it provide support for prototypes as devel-
opers are supposed to script and partition the content from the DOM/HTML side [X3DOM
HTML Profile 2014].

Encoding

X3DOM only supports the XML-based encoding directly [Behr et al. 2010]. However, some
backends, for instance the X3D/SAI plug-in, support classical and binary encodings indi-
rectly using Inline nodes.
If an Extensible Hypertext Markup Language (XHTML) encoded document is the base for
the 3D scene, the original X3D content can be embedded with no changes. That means,
upper-case names and self-closing tags can be used. On the contrary, if an HTML encoded
document is the base, lower-case names have to be used and no self-closing tags are sup-
ported.

Runtime Architecture

The main objective of X3DOM is to render an X3D scene in the HTML DOM allowing the
developer to add, to remove, or to change DOM elements [Behr et al. 2010]. This is possible

2 Background 31

without additional plug-ins or plug-in interfaces, such as the SAI. Further, HTML events,
e.g., onclick, onload, or onmouseover, are supported. As depicted in Figure 2.14, the three
main building blocks are the User Agent (UA), the X3D runtime, and the X3DOM connector.

Figure 2.14: X3DOM architecture [Behr et al. 2010].

The UA, i.e., the web browser, holds the DOM tree, integrates and composes the final ren-
dering. Furthermore, it provides an URI resolver to download images, movies, and sounds
of the scene. The X3D runtime offers services to create and update the scene graph. It is re-
sponsible for scene rendering and for user input handling regarding navigation and picking.
The X3DOM connector is the main unit of the architecture. It connects the DOM tree with
the X3D runtime. In this role, it distributes relevant changes in both directions, i.e. model
updates from the DOM tree to the scene graph and user inputs in the other direction. Further,
it handles any media up- and downstream.
The general architecture is implemented as a JavaScript layer (x3dom.js). The integration of
this layer allows the developer to insert X3D sections in the HTML or XHTML document.
This layer acts as a connector and synchronizer that monitors DOM changes and thus updates
the X3D structures and vice versa. For this purpose, the system does not use a single X3D
runtime but a fallback model to pick the best environment for the given circumstances.

Fallback Model

The fallback model, illustrated in Figure 2.15, realizes the instantiation of different back-
end technologies for the X3D runtime. Every backend has specific feature and performance
criteria that decrease with every alternative. The model supports native implementations,
X3D/SAI plug-ins, Web Graphics Library (WebGL), and Flash. With this model it is possi-
ble to run X3D scenes in a browser without additional plug-ins.

2 Background 32

Figure 2.15: X3DOM fallback model [X3DOM Fallback Model 2014].

Example with X3DOM

Listing 2.5 uses the same X3D scene from Listing 2.4 embedded in an HTML document and
loaded by a web browser using X3DOM. The resulting red box is shown in Figure 2.16.

1 <html>

2 <head>

3 <title>X3DOM example</title>

4 <script type=’text/javascript’ src=’http://www.x3dom.org/download/x3dom.js’> </script>

5 <!--<script src=’http://www.x3dom.org/download/1.6.2/components/Geospatial.js’></script>-->

6 <!--<script src=’http://www.x3dom.org/download/x3dom.swf’></script>-->

7 <link rel=’stylesheet’ type=’text/css’ href=’http://www.x3dom.org/download/x3dom.css’></link>

8 </head>

9 <body>

10 <h1>X3DOM example</h1>

11 <p>This is a html page with a slightly rotated red cube.</p>

12 <x3d width=’600px’ height=’400px’>

2 Background 33

13 <scene>

14 <transform translation=’0 0 0’ rotation=’1 1 0 0.78’>

15 <shape>

16 <appearance>

17 <material diffuseColor=’1 0 0’></material>

18 </appearance>

19 <box></box>

20 </shape>

21 </transform>

22 </scene>

23 </x3d>

24 </body>

25 </html>

Listing 2.5: X3DOM example.

Figure 2.16: X3DOM example.

As in every HTML or XHTML document, the root element html consists of a head and a
body. The X3DOM-specific elements in the head are in lines 4 and 7. Here, the last sta-
ble X3DOM release (x3dom.js) and the corresponding Cascading Style Sheet (CSS) file
(x3dom.css) are included using script and link elements. If an additional component is
required, it can be referenced explicitly by specifying the X3DOM version, as shown in Line
5. In order to provide Flash support, the reference to x3dom.swf is necessary, as depicted in
Line 6. The actual scene graph is embedded within the body in lines 12 to 23. The differences
to Listing 2.4 are due to the encoding. In this example the document is HTML encoded. Thus,
the node names are lower-case and no self-closing tags are used. Additionally, the width and
the height of the scene can be defined in the x3d root node. Apart from that, it is the same
scene as in the previous X3D example.

AOPT

As real 3D scenes can increase in size very fast, an optimization is necessary to guarantee
acceptable runtime and interaction performance. X3DOM provides a non-standardized, op-

2 Background 34

timized BinaryContainer node [Behr et al. 2012]. Instead of a text-based description of the
scene graph, it uses more compact, external binary files. The command line tool AOPT is
part of the InstantReality platform [InstantReality Website 2014] and converts between the
different file encodings, transforms any input into an X3DOM HTML/ XHTML document,
analyzes 3D scenes, and creates optimized binary files [AOPT 2014].
However, the binary container is only a temporary solution with prototypical character. The
X3DOM developers intend to replace it with the ExternalGeometry node from the Shape
Resource Container (SRC) [Limper et al. 2014]. The main objective of SRC is to design a
solution that scales for very large 3D scenes by enabling a progressive transmission of mesh
data, by eliminating decode time through direct Graphics Processing Unit (GPU) uploads,
and by minimizing the number of Hypertext Transfer Protocol (HTTP) requests.

2.5 Summary

In this chapter, the theoretical and technical foundations of the thesis are introduced, includ-
ing software visualization, GP and MDSD, Eclipse as well as X3D and X3DOM.
The view of software visualization represented here follows the definition of Diehl [2007,
p. 3f]. Thus, software visualization is the visualization of artifacts related to software and its
development process. The main objective is to provide role- and task-specific views on these
artifacts. Additionally, the artifacts may represent structural, behavioral, and/or evolutionary
aspects of a software system.
The generative [Czarnecki and Eisenecker 2000] and the model-driven [Stahl et al. 2006]
paradigm from the field of software engineering are combined and used for the theoreti-
cal concept of the software visualization generator. The generator should be able to accept
structural, behavioral, and evolutionary models of a software system. These models have to
be transformed into role- and task-specific software visualizations. The desired requirements
of these visualizations are specified by a means of a DSL.
The generator is developed in the Eclipse IDE using JDT, PDE, TMF, and EMP. Thus, it has
a modular, extensible plug-in architecture and is closely integrated with Eclipse. The tech-
nology projections of the elements of the generative domain model, are Xtext, Xtend, and
X3D in combination with X3DOM. The problem space is defined by Famix [Ducasse et al.
2011], Dynamix [Greevy 2007], and Hismo [Ducasse et al. 2004], metamodels for describ-
ing structural, behavioral, and evolutionary aspects of software systems. The configuration
knowledge, i.e., the generator, is realized with Xtend transformations. The solution space
provides X3D components that are optimized for the web with AOPT and finally visualized
with X3DOM. Hence, the generator accepts structural models of software systems and a
DSL as input and transforms the models into 2D, 2.5D, or 3D scenes that can be interac-
tively explored in a browser without plug-ins on any platform.

3 Literature Study 35

3 Literature Study

Müller, Richard, and Dirk Zeckzer. 2015. “Past, Present, and Future of 3D Software Visuali-
zation - A Systematic Literature Analysis.” In Proceedings of the 6th International Confer-

ence on Visualization Theory and Applications, Berlin, Germany.

3.1 Past, Present, and Future of 3D Software Visualization - A Systematic
Literature Analysis

Past, Present, and Future of 3D Software Visualization
A Systematic Literature Analysis

Richard Müller1, Dirk Zeckzer2

1Information Systems Institute, Leipzig University, Leipzig, Germany
2Institute of Computer Science, Leipzig University, Leipzig, Germany

rmueller@wifa.uni-leipzig.de, zeckzer@informatik.uni-leipzig.de

Keywords: 3D, Software Visualization, Systematic Mapping Study, Systematic Literature Review

Abstract: The ongoing 2D vs. 3D research debate from information visualization also affects software visualization.
There are many 2D, 3D, and combinations of 2D and 3D visualizations for software representing its structure,
behavior, or evolution. This study contributes findings to this debate and presents the results of analyzing the
applications of 3D in software visualization with the objectives to outline the state-of-the-art, to reveal trends,
and to identify research gaps. The analysis combined a systematic mapping study to get an overview and
a systematic literature review to gain deeper insights. The relevant papers were identified by three different
search strategies (manual browsing, keyword, and backward search). Starting with a set of 4386 publications
from the fields of information and software visualization 155 relevant papers dealing with 2D & 3D or 3D
software visualizations were identified. These papers were analyzed according to dimensionality, aspect,
year, evaluation method, and application of the third dimension. In a nutshell, the majority of 3D software
visualizations represents the structural aspect, is either evaluated using case studies showing working examples
or not evaluated at all, and applies a 2D layout using the third dimension for displaying software metrics.

1 INTRODUCTION

As a branch of information visualization, software
visualization provides tools and methods to create
representations for structural, behavioral, and evolu-
tionary aspects of software systems (Diehl, 2007).
Comprehensive surveys with numerous visualiza-
tions ranging from 2D to 3D were performed by
Gračanin et al. (2005), Teyseyre and Campo (2009),
and Caserta and Zendra (2011). However, as in its
parental discipline, there is an ongoing 2D vs. 3D de-
bate. This study aims at investigating the use of 3D in
software visualization and how its usefulness is eval-
uated.

A suitable approach for this investigation are sys-
tematic mapping studies and literature reviews. A
systematic mapping study aims at building a classi-
fication scheme in order to structure a research field
(Petersen et al., 2008). The scheme comprises facets
detailed by categories. The different facets are com-
bined to answer specific research questions. The re-
sults include frequencies of publications for each cat-
egory within this scheme. The systematic literature
review focuses on a deeper analysis of the publica-
tions and can have other goals (Brocke et al., 2009).

Petersen et al. (2008) argue that both methods can be
applied complementary. Thus, we used the mapping
study to gain an overview of the field and investigated
specific questions using detailed reviews.

The major contributions of this state-of-the-art re-
port in 3D software visualization are answers to the
following questions:

• Venue: Where were papers about 3D software vi-
sualization published?

• Aspect: Which aspects of software are visualized?

• Evolution: How did the topic evolve over the last
22 years?

• Evaluation: How was the usefulness of the 3D
software visualizations evaluated?

• Application: How was the third dimension used?

On the basis of these answers trends were revealed
and research gaps identified.

3 Literature Study 36

2 RELATED WORK

Important prior work ranges from meta-studies and
surveys to literature reviews as well as a mapping
study in the field of software visualization.

Hundhausen conducted two meta-studies, one
about software visualization effectiveness (Hund-
hausen, 1996) and one about algorithm visualization
effectiveness (Hundhausen et al., 2002). The classifi-
cation of the evaluation methods into anecdotal, ana-
lytic, and empirical is taken from these studies.

Gračanin et al. (2005) provide a general overview
over software visualization outlining several research
directions, such as (distributed) virtual environments
and visualization metaphors. Teyseyre and Campo
(2009) give a comprehensive overview over 3D soft-
ware visualization including visual representations,
interaction issues, evaluation methods, and develop-
ment tools. Caserta and Zendra (2011) focus on static
aspects of software visualization in 2D and 3D. We
used all three surveys as a starting point for the back-
ward search to find relevant papers not covered by the
selected workshops and conferences in our primary
studies.

Kienle and Müller (2007) identified quality at-
tributes and functional requirements for software vi-
sualization tools to support researchers using a liter-
ature review. Schots and Werner (2014) examined
software visualizations with regard to reuse based on
the task oriented taxonomy from Maletic et al. (2002).
The complete review can be found here (Schots et al.,
2014). Seriai et al. (2014) investigated the state-of-
the-art in validation of software visualization tools
with a mapping study. The primary categories of the
evaluation method facet are taken from this study.
The main difference to our study is the focus: we
concentrate on 3D software visualizations including
all aspects, such as structure, behavior, and evolution.
In this context, we investigate publication locations,
evaluation methods, the development of this specific
field over time, as well as the application of the third
dimension.

3 METHOD

For this study, a hybrid approach was applied combin-
ing a systematic mapping study (Petersen et al., 2008)
with a systematic literature review (Brocke et al.,
2009). First, a mapping study was performed to get an
overview and to answer the first four research ques-
tions. Second, a detailed literature review was con-
ducted to answer the fifth research question. Finally,
the results of both processes are summarized in the

findings. The complete process is depicted in Figure
1. Its steps will be described in the subsequent sec-
tions.

3.1 Define Scope & Research Questions

We describe the scope of this study according to
Cooper’s taxonomy of literature reviews (Cooper,
1988). The focus lies on applications of 3D
software visualizations. Our goal is to inte-
grate findings from publications of different work-
shops/conferences/journals to create a comprehensive
view of this topic. The study is organized conceptu-
ally guided by a classification scheme. Further, we
adopt a neutral perspective. The main audience are
specialized scholars from the fields of information vi-
sualization and software visualization. The coverage
is aimed to be representative as we combine man-
ual browsing through relevant workshop and confer-
ence proceedings, a keyword search, and a backward
search starting with state-of-the-art-papers.

With this study, we want to investigate the follow-
ing research questions:

• RQ1: Which workshops/conferences/journals in-
clude papers on 3D software visualization?

• RQ2: Which aspects of software (structure, be-
havior, evolution) are visualized with 3D?

• RQ3: How did 3D software visualization evolve
over the last 22 years and what are current trends?

• RQ4: How is the usefulness of the proposed 3D
software visualizations evaluated?

• RQ5: How is the third dimension used?

3.2 Conceptualize Topic

For the classification scheme, a top-down and bottom-
up approach were applied. We started with estab-
lished definitions from literature for the classifica-
tion of the relevant papers. If a paper introduces a
new category, the corresponding facet in the classifi-
cation scheme was extended. In this study, the fol-
lowing facets are important: dimensionality, aspect,
year, evaluation method, and application of the third
dimension. The categories for each facet are summa-
rized in Table 1 and described next.

3.2.1 Dimensionality

We differentiate between 2D, combined 2D and 3D,
and 3D software visualizations. For this study, the last
two categories are focused.

3 Literature Study 37

���������	
�������
��
������

���������	
�������
��
��

������
�	���
�
������	�
�
�������

������
�	���
��������	�����

�	����

���	���
�����
����	

����
	�
����	�

�	����
�
��������
 �����

��������
 �����

!��
 �����

"#���	�
�
���
����

���������	
����

$�������

�
�������
$�������

!������
�
����������
 �����

Figure 1: Process model for hybrid approach: Mapping study (Petersen et al., 2008) and literature review (Brocke et al.,
2009).

3.2.2 Aspect

The different aspects of software that can be visu-
alized are based on Diehl (2007). He defines soft-
ware visualization as "[...] the visualization of ar-
tifacts related to software and its development pro-
cess.". These artifacts can contain information about
the structure, the behavior, or the evolution of the
software system. Structure includes program code,
data structures, the static call graph, relations, and the
organization of the software system. Behavior covers
its execution with real and abstract data. Evolution
refers to its development process.

Table 1: Classification scheme for the study.

Facet Category

Dimensionality 2D and 3D
3D

Aspect
Structure
Behavior
Evolution

Year 1991—2013

Evaluation

Anecdotal Case Study (Example)

Empirical
Case Study (User)
Controlled Experiment

Method Questionnaire

Analytic Guideline Checking
Heuristic Evaluation

Application

Extended 2D
Full 3D
2D layout org. in 3D
3D as time
Stacked views
3D for cognition
Local fish-eye

3.2.3 Year

The years for the relevant papers range from 1991 un-
til 2013. This period results from the search strategies
described in Section 3.3.

3.2.4 Evaluation Method

Typical evaluation methods in software visualization
are case study, controlled experiment, and question-
naire (Sjøberg et al., 2007; Seriai et al., 2014). How-
ever, the term case study is used in two different ways
in software visualization. On the one hand, a case
study is the demonstration of a working example as
in (Wettel and Lanza, 2008). This type of case study
is without representative users. On the other hand,
a case study actually involves representative users as
in (Denford et al., 2002). The second type also in-
cludes explorative user studies as in (Lanza et al.,
2013). Thus, we differentiate between case study (ex-
ample) and case study (user). In addition, we found
guideline checking and heuristic evaluation described
in (Andrews, 2008). All methods can further be clas-
sified into anecdotal, empirical, and analytic evalua-
tion methods (Hundhausen, 1996; Hundhausen et al.,
2002). Anecdotal methods use compelling examples,
empirical methods involve representative users, and
analytic methods are performed by evaluation experts
using guidelines or heuristics.

3.2.5 Application of the third dimension

Reiss (1995) identified six different categories for the
application of the third dimension. As there were pa-
pers not fitting in any of these categories, we intro-
duced another one resulting in the following seven
categories.

1. Extended 2D: A 2D layout is extended to 3D re-
sulting in an additional dimension. This dimen-
sion can be used to display further information,
such as software metrics as done in sv3D (Mar-

3 Literature Study 38

cus et al., 2003) or CodeCity (Wettel and Lanza,
2007).

2. Local fish-eye: Another technique builds upon a
2D layout where the user is able to select a set of
nodes and place them at the front. This technique
uses perspective to make the selected nodes ap-
pear bigger and the other ones smaller. It results
in local fish-eye views without changing the orig-
inal graph such as in rubber sheet (Sarkar et al.,
1993).

3. 2D layout organized in 3D: The third technique
takes a 2D layout and the information is organized
in a 3D space, such as with cone and cam trees
(Robertson et al., 1991) or with hyperbolic trees
(Munzner, 1997). It is usually applied to get more
space and to minimize edge-crossings. Two other
examples for this category are the perspective wall
(Mackinlay et al., 1991) and the ‘code on the wall’
metaphor (Jackson et al., 2002).

4. Full 3D: The next technique moves from 2D to 3D
space and uses the full capabilities of three dimen-
sions. Examples are Angle (Churcher and Tech,
2003), Metaballs (Rilling and Mudur, 2005), and
the 3D scatter plot in ComVis (Bohner et al.,
2007).

5. 3D as time: Further, the third dimension is used
to represent time, such as in VRCS (Koike and
Chu, 1998), Vizz3D (Löwe and Panas, 2005), or
Palantír (Ripley et al., 2007).

6. Stacked views: This technique uses the third di-
mension to display several 2D views simultane-
ously. Examples are 3D sequence diagram as in
(Gil and Kent, 1998) and GEF3D (von Pilgrim
and Duske, 2008).

7. 3D for cognition: Finally, 3D shapes are applied
to support the mental model and to optimize the
cognition of the visualization. Examples for this
category are Geons (Irani and Ware, 2003) and the
use of social agents to visualize software scenar-
ios (Alspaugh et al., 2006).

3.3 Conduct Search

We combined three search methods in order to make
the sample more representative. First, we browsed
manually through all publications from relevant
workshops and conferences in the field of software
visualization including SoftVis (2003, 2005, 2006,
2008, 2010), VisSoft (2002, 2003, 2005, 2007, 2009,
2011, 2013), IWPC/ICPC (1998-2013), Dagstuhl
Seminar on Software Visualization (2001), OOPSLA
Workshop on Software Visualization (2001), and

ICSE Workshop on Software Visualization (2001).
Second, we performed a keyword search on pub-
lications of relevant workshops and conferences in
the field of information visualization including IEEE
VIS (2000-2013), PacificVis (2008-2013), and Euro-
Vis (2007-2013). The keyword was "software visu-
alization". Third, we conducted a backward search
using three state-of-the-art papers related to 3D soft-
ware visualization: Gračanin et al. (2005), Teyseyre
and Campo (2009), and Caserta and Zendra (2011).

3.4 Screen & Classify Papers

The screening process for each paper included ti-
tle, abstract, conclusion, and—if necessary—further
parts. We used the following inclusion and exclusion
criteria to select the relevant papers. The publication
is included, if

• it deals with single 2D and 3D or 3D software vi-
sualizations (this automatically excludes surveys),

• it is peer reviewed including full papers, short
papers, and posters (this automatically excludes
books, book chapters, technical or research re-
ports, or white papers), and

• it is written in English1.

The publication is excluded, if

• the third dimension only serves aesthetic pur-
poses, i.e., augmented 2D visualizations (Stasko
and Wehrli, 1993), and

• it does not deal with software visualization, e.g.,
network visualization (hardware) or security.

In addition, we classified all relevant papers ac-
cording to the categories of the classification scheme.
If the classification of a paper was not unique, it was
marked, discussed by the authors, and finally included
and classified or excluded. For this reason, this step
has an iterative character. We used the reference man-
agement software Mendeley for screening and clas-
sifying the papers. The provided XML export was
helpful for further data processing.

3.5 Extract & Map Data

Major results of systematic mapping studies are fre-
quency/pie charts and bubble plots. Frequency/pie
charts show the distribution of a variable in an ab-
solute or relative manner. Bubble plots resemble x-
y scatter plots but with bubbles in category intersec-
tions where the size of a bubble represents frequencies

1One paper was written in Italian, a language none of
the authors is fluent in.

3 Literature Study 39

Table 2: Results for the three search strategies.

Manual Keyword Backw. Sum

Total 878 2998 510 4386
Dupl. 0 0 146 146
Other 405 2984 220 3609
2D 393 10 73 476
3D 80 4 71 155

of publications. We used Excel for data management
and the creation of the frequency/pie charts and bub-
ble plots or systematic maps respectively.

3.6 Analyze & Synthesize Papers

To get an overview of the application of the third di-
mension in software visualization, it was necessary
to conduct a more detailed analysis of the relevant
papers. This went beyond the screening process de-
scribed above. We had to study further parts of the
paper, especially sections explaining the concepts and
their implementation and the provided figures. The
results of this deeper review are also presented in a
systematic map.

3.7 Summarize Findings

Based on the results including frequency/pie charts
and the systematic maps, we deduced findings includ-
ing trends and research gaps in 3D software visual-
ization. Trends can be detected by analyzing the evo-
lution of the topic over time. Small bubbles in the
maps highlight research areas that might be under-
researched.

4 RESULTS

Table 2 shows the amount of papers identified with
each search strategy and Figure 2 details these results
with a Venn diagram.

Overall, 4386 papers were found, manually (878),
using a keyword search (2998), or using references
in surveys (510). From these, 146 papers were du-
plicates in the backward search which yields a total
of 4240 unique papers to be examined. From these,
631 papers deal with software visualization and 155
(24.6%) with 2D & 3D (41, 26.0%) or 3D only (114,
74.0%) software visualization. These were published
as full papers (116, 74.8%), short papers (17, 11.0%),
and posters (22, 14.2%). These 155 papers are the
input to the steps ‘extract & map data’ as well as ‘an-
alyze & synthesize papers’ and thus the basis for an-
swering the research questions.

Figure 2: Results for the three search strategies as a Venn
diagram.

4.1 RQ1: Which
workshops/conferences/journals
include papers on 3D software
visualization?

Figure 3 shows all workshops, conferences, and jour-
nals including papers with 3D software visualization
that were found using the method described in Section
3. We observed, that most of the 3D software visual-
ization papers were published on VisSoft (6 events, 30
papers before 2012) and SoftVis (5 events, 24 papers).

Figure 3: Workshops, conferences, and journals with 3D
software visualizations.

3 Literature Study 40

After SoftVis and VisSoft merged in 2013, 6 papers
were published on the new VisSoft 2013. Further,
4 papers emerged from the precursor of SoftVis, the
Dagstuhl 2001 event. Altogether, 64 papers (41.29%)
containing 3D software visualization were published
on the main events.

An additional 15 papers were presented on
IWPC/ICPC (16 events). On the main visualization
conferences, a total of 9 papers are related to 3D
software visualization (InfoVis: 7, EuroVis: 1, Paci-
ficVis: 0, related conferences/workshops: 1). For the
software engineering related conferences, the count
is 10 papers (ICSE: 5, WCRE: 4, SE: 1, OOPSLA:
1). Overall, these conferences contributed 34 papers
(21.94%) to our study. 40 other venues added 57 pa-
pers (36.77%), with at most 4 additional papers per
venue.

4.2 RQ2: Which aspects of software
visualization (structure, behavior,
evolution) are visualized with 3D?

Figure 4 shows the distribution of the different aspects
displayed using 3D software visualization. From the
155 papers analyzed, 67 (43.2%) visualize structure
alone, 54 (34.8%) structure and behavior, 18 (11.6%)
structure and evolution, 6 (3.9%) structure and be-
havior and evolution, 5 (3.2%) behavior alone, and 5
(3.2%) evolution alone. That means, that 145 papers
(93.5%) deal with structure alone or in combination
with behavior and/or evolution. No 3D visualization
was proposed for a combination of behavior and evo-
lution without the aspect of structure.

Figure 4: Aspect displayed using 3D software visualiza-
tions.

4.3 RQ3: How did 3D software
visualization evolve over the last 22
years and what are current trends?

Figures 5 and 6 show the evolution of 3D software vi-
sualizations from 1991 until 2013. Few papers were
found dealing explicitly with 3D software visualiza-
tion before 2001. Overall, 30 papers were published
between 1991 and 2000, between 1 and 6 papers per
year. All papers include structural aspects.

Between 2001 and 2008, 10 papers or more were
published each year on 3D software visualization,
with an exception of 2006, when only 6 papers ad-
dress this topic. Overall, from 2001 until 2008 two
thirds (67.7%) of the found papers were published.
Between 2009 and 2013, less papers were published
on this topic per year—between no papers in 2012
and eight papers in 2013. Overall, between 2001 and
2013, 126 papers dealing with 3D software visualiza-
tion were published. Most papers address structure
(56, 36.1%) or a combination of structure and behav-
ior (40, 25.8%), structure and evolution (13, 8.4%),
and structure, behavior, and evolution (6, 3.9%). Be-
havior alone (5, 3.2%) and evolution alone (5, 3.2%)
are rarely considered. It is remarkable, that the or-
der of the different aspects or combinations of aspects
regarding the amount of papers published stays the
same, independently of the year or the amount of pa-
pers published with only few exceptions: in 1994,
1995, and 1996 only papers combining structure and
behavior were published, structure and evolution (2)
is ranked first in 1997 before structure alone (1) and
structure and behavior (1), structure and behavior (7)
is ranked first in 2001 before structure alone, structure
and evolution (4) is ranked first together with struc-
ture alone (4) in 2008 before structure and behavior
(3), and finally structure and behavior (3) is ranked
first in 2013 before structure alone (2), structure, be-
havior, and evolution (2), and structure and evolution
(1). However, the amount of papers including 3D
software visualization is already small for each year.

4.4 RQ4: How is the usefulness of the
proposed 3D software visualizations
evaluated?

Figure 7 shows the different aspects of 3D software
visualization and their evaluation methods. Some 3D
software visualizations were evaluated using several
different evaluation methods. Therefore, the total
count is larger than the total number of papers ana-
lyzed.

3 Literature Study 41

Figure 5: Time vs. aspect for 3D software visualizations (1991-2000).

Figure 6: Time vs. aspect for 3D software visualizations (2001-2013).

The different aspects or combinations of aspects
were mostly evaluated using case studies showing
working examples (89, 53.3%) or not evaluated at
all (27, 16.2%). Some 3D visualizations were eval-
uated using case studies that involve representative
users (19, 11.4%). Few 3D visualizations were eval-
uated using controlled experiments (15, 9.0%). Other
evaluation methods used were guideline checking (10,
6.0%), questionnaires (7, 4.2%), and heuristic evalu-
ations (2, 1.2%).

With respect to the combination of aspect and
evaluation method, the bubble chart does not exhibit
any particularities. As most numbers are small, the

difference in ratios does not provide evidence for re-
lationships.

4.5 RQ5: How is the third dimension
used?

Figure 8 shows the different aspects of 3D software
visualization and their application of the third dimen-
sion. As a paper might contain multiple visualizations
or a visualization might belong to different categories
at the same time, the sum is larger than the number of
papers.

3 Literature Study 42

Figure 7: Evaluation methods vs. aspect for 3D software visualizations.

Figure 8: Application of the third dimension vs. aspect for 3D software visualizations.

Most papers extended 2D visualizations (76,
39.4%), followed by full 3D (47, 24.4%), 2D layout
organized in 3D (31, 8.8%), 3D as time (17, 8.8%),
and stacked views (11, 5.7%). Another 11 papers
(5.7%) apply 3D for cognition only, while local fish-
eye is not applied at all. The latter two will not be
considered for the remaining analysis.

3D is applied for structure alone using extended
2D (30), full 3D (22), and 2D layout organized in 3D
(14). Further, extended 2D and full 3D are used for

all aspects and all combinations of aspects. 2D layout
organized in 3D is used for all aspects except struc-
ture and evolution. In contrast, 3D as time is mostly
used for structure and behavior (9), while only few
paper use it for structure and evolution (3), structure,
behavior, and evolution (2), behavior alone (2), and
evolution alone (1). Finally, stacked views are only
used for structure and behavior (8) and structure and
evolution (3). Neither 3D as time nor stacked views
are used for structure alone.

3 Literature Study 43

Figure 9: Number of 2D & 3D or 3D publications over time.

5 FINDINGS

Most papers dealing with 3D software visualization
were published on the major software visualization
conferences and workshops VisSoft (workshop until
2011), SoftVis (conference until 2010), and VisSoft
conference (since 2013). A substantial amount of pa-
pers was also published at IWPC/ICPC and InfoVis.
However, more than one third of the papers was pub-
lished on 45 different venues.

An important functional requirement of a soft-
ware visualization tool are multiple views (Kienle and
Müller, 2007). These multiple views provide a holis-
tic view of a software system combining structure,
behavior, and/or evolution and thus facilitate program
comprehension. The majority of 3D visualizations fo-
cus on structure, either alone (67, 43.2%) or in combi-
nation with behavior or evolution (72, 46.4%). Struc-
ture plays an important role in software visualization,
as one main objective is to give the formerly intangi-
ble and invisible phenomenon software a meaningful
shape (Gračanin et al., 2005). For the structural enti-
ties, such as namespaces/packages, classes, methods,
as well as attributes, and their relations suitable rep-
resentations are developed. The combination of these
representations form the basic shape of a visualiza-
tion that is usually enriched with behavioral or evo-
lutionary information. However, the combination of
all three aspects is rare in the analyzed 3D software

visualizations (6, 3.9%). One reason for this might be
the complexity such an approach requires. It is nec-
essary to combine structural information with a large
amount of data from execution traces and from ver-
sion control systems. This might be interpreted as a
serious deficit of prototype implementations and as a
research gap as well.

The temporal analysis of the sample reveals that
researchers started in 1991 to scrutinize the visu-
alization of structure of software in 3D. One year
later, behavioral aspects, and six years later evolu-
tionary aspects, were also examined. Before 2001,
there was no 3D software visualization covering all
three aspects or behavior or evolution alone. In 2001,
the field of software visualization started to establish
with first tracks on software engineering conferences
and the Dagstuhl seminar. Since 2002, first confer-
ences exclusively on software visualization have been
launched. These events have influenced the further
evolution of this area. For example, the fluctuations
of the number of 3D publications depend on the dates
of the main conferences. In 2005, there was the high-
est number of publications (20) probably because Vis-
Soft and SoftVis took place at the same time. In 2012,
there was no publication and obviously none of these
two events took place. Additionally, it was found that
there was a trend to develop more 3D visualizations
between 2001 and 2008 (67.7% of the papers found)
with its peak around 2005 (Figure 9). The trend since

3 Literature Study 44

then has to be analyzed taking into account that the
3D survey of Teyseyre and Campo (2009) appeared
in 2009. Thus, only the main conferences or work-
shops contribute to the amount of 3D software sys-
tems while other venues are not represented. Fur-
ther, 2012 no event dedicated to software visualiza-
tion took place. Further analysis will show, if there is
a trend to continue developing 3D software visualiza-
tions.

The applied evaluation methods are distributed
as follows: anecdotal (≈ 53%), empirical (≈ 24%),
and analytical (≈ 7%). Further, a large number of
visualizations does not have any evaluation at all
(≈ 16%). This is not surprising as no evaluation
at all means least effort, while anecdotal evidence
can be provided with some effort. Empirical stud-
ies, on the other hand, imply a large effort for plan-
ning, execution, and analysis. At the same time, the
target group—experienced software developers—are
not readily available for experiments. Finally, most
visualizations are already built taking guidelines into
account. Therefore, guideline checking will rarely
provide any benefits. In summary, the formerly stated
need for more empirical evaluations of 3D software
visualizations by Teyseyre and Campo (2009) still ex-
ists.

The most frequently used category for the applica-
tion of the third dimension is extending a 2D visual-
ization (76, 39.4%). The resulting additional dimen-
sion is used for example to represent software metrics,
such as LOC (Boccuzzo and Gall, 2007; Alam and
Dugerdil, 2007; Wettel and Lanza, 2007; Kuhn et al.,
2010), complexity (Sharif and Jetty, 2013; Balogh
and Beszedes, 2013), or the number of modifications
(Steinbrückner and Lewerentz, 2010), for relations
(Balzer et al., 2004; Caserta et al., 2011), as well as
for instances (Greevy et al., 2005; Waller et al., 2013).
In some cases, the use of this dimension is config-
urable by the user (Marcus et al., 2003; Löwe and
Panas, 2005).

In the next two categories—full 3D (47, 24.4%)
and 2D layout organized in 3D (31, 16.1%)—the ad-
vantage of 3D lies in the additional space that is avail-
able to represent solid 3D shapes or to optimize the
layout, e.g., to avoid edge-crossings in graphs. The
categories 3D as time (17, 8.8%) and stacked views
(11, 5.7%) are exclusively used in visualizations con-
taining behavioral and/or evolutionary information.
Hence, these two categories are suitable for represent-
ing dynamics.

Finally, 3D is used for cognition (11, 5.7%). Irani
and Ware (2003) compared 2D UML diagrams and
3D geon diagrams in several experiments. They found
out that substructures can be identified more accu-

rately with shaded components than with 2D outline
equivalents and that they are remembered more reli-
ably. Here, the third dimension does not convey ad-
ditional information but it facilitates the perception of
the human visual system.

To sum it up, it could be helpful to start with a
basic 2D shape visualizing the structure of a software
system. Further, this basic shape is extended with be-
havioral and evolutionary aspects using one or a com-
bination of the identified applications of the third di-
mension. That is, a useful software visualization is
not necessarily limited to 3D. Rather, the optimal in-
terplay between 2D and 3D may be the clue to the
successful integration of all three aspects.

6 THREATS TO VALIDITY

6.1 Reliability

We have described our method in detail and men-
tioned all sources in order to make this study repeat-
able.

6.2 Objectivity

The researcher bias mainly influences the selection
and the classification of papers.

6.2.1 Selection of Papers

We increased the representative quality of the study
by triangulating three different search methods. We
started with manual browsing of the proceedings of
the main software visualization events, continued
with a keyword search of important information visu-
alization conferences, and finished with a backward
search using state-of-the-art surveys in the field of
software visualization.

6.2.2 Classification of Papers

Each paper whose classification was not clear, was
marked as ‘needs review’ and thoroughly discussed.
Overall, there were three iterations in the ‘screen &
classify’ step with altogether 60 discussable papers.

6.3 Internal and External Validity

We addressed the internal validity of our study by
starting with a top-down approach to built the clas-
sification scheme. Thus, we used an established base
for the categories. We have tried to increase the exter-
nal validity by increasing the representative level of
the sample as described in Section 6.2.1.

3 Literature Study 45

7 CONCLUSION

We performed a systematic literature analysis using a
hybrid approach that combined a systematic mapping
study followed by a systematic literature review. The
research questions addressed where papers about 3D
software visualization were published, which aspects
were visualized, how the topic evolved over the last
22 years, how the usefulness of the 3D software visu-
alizations was evaluated, and how the third dimension
was used.

The results show that the aspect ‘structure’, the
evaluation method ‘case study (example)’, and the ap-
plication of the third dimension ‘extended 2D’ are
dominant. The combination of ‘structure’ with ‘be-
havior’ or ‘evolution’ was also found relatively often.

Although, the combination of all three aspects in
one software visualization tool providing a holistic
view is complex and challenging to implement, we
see therein a research gap for the future.

The need for more empirical evaluations of 3D
software visualizations stated earlier still exists and
should be addressed in future work.

Finally, the third dimension is mainly used to rep-
resent software metrics. Other successful applications
are to use the additional space for solid 3D shapes and
for an optimized layout, to represent time, and to am-
plify cognition. Probably, the optimal interplay be-
tween 2D and 3D views plays an important role in the
future.

REFERENCES

Alam, S. and Dugerdil, P. (2007). EvoSpaces Visualization
Tool: Exploring Software Architecture in 3D. In 14th
Work. Conf. Reverse Eng., pages 269–270.

Alspaugh, T. A., Tomlinson, B., and Baumer, E. (2006).
Using social agents to visualize software scenarios. In
Proc. 2006 ACM Symp. Softw. Vis., pages 87–94, New
York, New York, USA. ACM Press.

Andrews, K. (2008). Evaluation comes in many guises. In
Proc. 2008 AVI Work. BEyond time errors Nov. Eval.
methods Inf. Vis., pages 8–10.

Balogh, G. and Beszedes, A. (2013). CodeMetropolis - a
Minecraft based collaboration tool for developers. In
1st IEEE Work. Conf. Softw. Vis., pages 1–4.

Balzer, M., Noack, A., Deussen, O., and Lewerentz, C.
(2004). Software landscapes: Visualizing the struc-
ture of large software systems. In Proc. Sixth Jt. Eu-
rographics - IEEE TCVG Conf. Vis., pages 261–266.
Eurographics Association.

Boccuzzo, S. and Gall, H. (2007). CocoViz: Towards Cog-
nitive Software Visualizations. In 4th Int. Work. Vis.
Softw. Underst. Anal., pages 72–79. IEEE.

Bohner, S. A., Gracanin, D., Henry, T., and Matkovic, K.
(2007). Evolutional Insights from UML and Source
Code Versions using Information Visualization and
Visual Analysis. In 4th Int. Work. Vis. Softw. Underst.
Anal., pages 145–148.

Brocke, J. V., Simons, A., and Niehaves, B. (2009). Re-
constructing the giant: On the importance of rigour
in documenting the literature search process. In 17th
Eur. Conf. Inf. Syst., pages 1–13.

Caserta, P. and Zendra, O. (2011). Visualization of the
Static Aspects of Software: A Survey. IEEE Trans.
Vis. Comput. Graph., 17(7):913–933.

Caserta, P., Zendra, O., and Bodénes, D. (2011). 3D Hierar-
chical Edge bundles to visualize relations in a software
city metaphor. In 6th Int. Work. Vis. Softw. Underst.
Anal.

Churcher, N. and Tech, V. (2003). Visualising Class Cohe-
sion with Virtual Worlds. In Proc. Asia-Pacific Symp.
Informattion Vis.

Cooper, H. M. (1988). Organizing knowledge synthe-
ses: A taxonomy of literature reviews. Knowl. Soc.,
1(1):104–126.

Denford, M., O’Neill, T., and Leaney, J. (2002).
Architecture-based Visualisation of Computer Based
Systems. 9th Annu. IEEE Int. Conf. Work. Eng. Com-
put. Syst., pages 139–146.

Diehl, S. (2007). Software visualization: visualizing
the structure, behaviour, and evolution of software.
Springer.

Gil, J. and Kent, S. (1998). Three dimensional software
modelling. In 20th IEEE Int. Conf. Softw. Eng., pages
105–114.

Gračanin, D., Matković, K., and Eltoweissy, M. (2005).
Software Visualization. Innov. Syst. Softw. Eng.,
1(2):221–230.

Greevy, O., Lanza, M., and Wysseier, C. (2005). Visualiz-
ing Feature Interaction in 3-D. In 3rd Int. Work. Vis.
Softw. Underst. Anal., pages 114–119. IEEE.

Hundhausen, C. D. (1996). A meta-study of software visu-
alization effectiveness.

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. (2002).
A Meta-Study of Algorithm Visualization Effective-
ness. J. Vis. Lang. Comput., 13(3):259–290.

Irani, P. and Ware, C. (2003). Diagramming information
structures using 3D perceptual primitives. ACM Trans.
Comput. Interact., 10(1):1–19.

Jackson, S., Devanbu, P., and Ma, K.-l. (2002). Interactive
Poster: Addressing Scale and Context in Source Code
Visualization. In InfoVis.

Kienle, H. M. and Müller, H. A. (2007). Requirements of
Software Visualization Tools: A Literature Survey. In
4th Int. Work. Vis. Softw. Underst. Anal., pages 2–9.
IEEE.

Koike, H. and Chu, H.-C. (1998). How does 3-D visu-
alization work in software engineering?: empirical
study of a 3-D version/module visualization system.
In Proc. 20th Int. Conf. Softw. Eng., pages 516–519.
IEEE Computer Society.

3 Literature Study 46

Kuhn, A., Erni, D., and Nierstrasz, O. (2010). Embed-
ding spatial software visualization in the IDE: an ex-
ploratory study. In Proc. 5th Int. Symp. Softw. Vis.,
pages 113–122, New York, USA. ACM Press.

Lanza, M., D’Ambros, M., Bacchelli, A., Hattori, L., and
Rigotti, F. (2013). Manhattan: Supporting real-time
visual team activity awareness. In 21st Int. Conf.
Progr. Compr., pages 207–210.

Löwe, W. and Panas, T. (2005). Rapid construction of soft-
ware comprehension tools. Int. J. Softw. Eng. Knowl.
Eng., 15(6):905–1023.

Mackinlay, J., Robertson, G., and Card, S. (1991). The
perspective wall: Detail and context smoothly inte-
grated. In ACM Conf. Hum. Factors Comput. Syst.,
pages 173–179.

Maletic, J., Marcus, A., and Collard, M. (2002). A task ori-
ented view of software visualization. In 1st Int. Work.
Vis. Softw. Underst. Anal., pages 32–40. IEEE Com-
put. Soc.

Marcus, A., Feng, L., and Maletic, J. (2003). Compre-
hension of software analysis data using 3D visualiza-
tion. In 11th Int. Work. Progr. Compr., page 105. IEEE
Computer Society.

Munzner, T. (1997). H3: laying out large directed graphs in
3D hyperbolic space. In Vis. Conf. Inf. Vis. Symp. Par-
allel Render. Symp., pages 2–10. IEEE Comput. Soc.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software engi-
neering. In Proc. 12th Int. Conf. Eval. Assess. Softw.
Eng., pages 68–77. British Computer Society.

Reiss, S. P. (1995). An Engine for the 3D Visualiza-
tion of Program Information. J. Vis. Lang. Comput.,
6(3):299–323.

Rilling, J. and Mudur, S. (2005). 3D visualization tech-
niques to support slicing-based program comprehen-
sion. Comput. Graph., 29(3):311–329.

Ripley, R. M., Sarma, A., and van der Hoek, A. (2007).
A Visualization for Software Project Awareness and
Evolution. In 4th Int. Work. Vis. Softw. Underst. Anal.,
pages 137–144. IEEE.

Robertson, G., Mackinlay, J., and Card, S. (1991). Cone
trees: animated 3D visualizations of hierarchical in-
formation. In ACM SIGCHI Conf. Hum. Factors Com-
put. Syst., pages 189–194.

Sarkar, M., Snibbe, S. S., Tversky, O. J., and Reiss, S. P.
(1993). Stretching the Rubber Sheet: A Metaphor
for Viewing Large Layouts on Small Screens. In
6th Annu. ACM Symp. User Interface Softw. Technol.,
UIST ’93, pages 81–91, New York, NY, USA. ACM.

Schots, M., Vasconcelos, R., and Werner, C. (2014). A
Quasi-Systematic Review on Software Visualization
Approaches for Software Reuse. Technical report,
Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil.

Schots, M. and Werner, C. (2014). Using a Task-Oriented
Framework for the Characterization of Visualization
Approaches. In 2nd IEEE Work. Conf. Softw. Vis.

Seriai, A., Benomar, O., Cerat, B., and Sahraoui, H. (2014).
Validation of Software Visualization Tools : A Sys-

tematic Mapping Study. In 2nd IEEE Work. Conf.
Softw. Vis.

Sharif, B. and Jetty, G. (2013). An Empirical Study Assess-
ing the Effect of SeeIT 3D on Comprehension. In 1st
IEEE Work. Conf. Softw. Vis.

Sjøberg, D. I. K., Dybå, T., and Jørgensen, M. (2007). The
Future of Empirical Methods in Software Engineering
Research. In Futur. Softw. Eng., pages 358–378. IEEE.

Stasko, J. and Wehrli, J. (1993). Three-dimensional com-
putation visualization. Proc. 1993 IEEE Symp. Vis.
Lang., pages 100–107.

Steinbrückner, F. and Lewerentz, C. (2010). Represent-
ing development history in software cities. In Proc.
5th Int. Symp. Softw. Vis., pages 193–202, New York,
USA. ACM Press.

Teyseyre, A. R. and Campo, M. R. (2009). An overview of
3D software visualization. IEEE Trans. Vis. Comput.
Graph., 15(1):87–105.

von Pilgrim, J. and Duske, K. (2008). Gef3D: a frame-
work for two-, two-and-a-half-, and three-dimensional
graphical editors. In Proc. 4th ACM Symp. Softw.
Vis., pages 95–104, New York, New York, USA. ACM
Press.

Waller, J., Wulf, C., Fittkau, F., Döhring, P., and Hassel-
bring, W. (2013). SynchroVis : 3D Visualization of
Monitoring Traces in the City Metaphor for Analyz-
ing Concurrency. In 1st IEEE Work. Conf. Softw. Vis.,
pages 7–10.

Wettel, R. and Lanza, M. (2007). Visualizing Software Sys-
tems as Cities. In 4th Int. Work. Vis. Softw. Underst.
Anal., pages 92–99. IEEE.

Wettel, R. and Lanza, M. (2008). Visually localizing de-
sign problems with disharmony maps. In Proc. 4th
ACM Symp. Softw. Vis., pages 155–164, New York,
New York, USA. ACM Press.

3 Literature Study 47

3 Literature Study 48

3.2 Summary

The literature study presents the results of analyzing the applications of 3D in software visua-
lization with the objectives to outline the state-of-the-art, to reveal trends, and to identify
research gaps. It combines a systematic mapping study [Petersen et al. 2008] and a literature
review [vom Brocke et al. 2009].
The study refers to SQ1: What is the state-of-the-art in 3D software visualization? (see
Section 1.2) and details it with the following research questions:

• Venue: Which workshops/conferences/journals include papers on 3D software visua-
lization?

• Aspect: Which aspects of software (structure, behavior, evolution) are visualized with
3D?

• Evolution: How did 3D software visualization evolve over the last 22 years and what
are current trends?

• Evaluation: How is the usefulness of the proposed 3D software visualizations evalu-
ated?

• Application: How is the third dimension used?

The results of the study concerning venue indicate that most papers dealing with 3D software
visualization were published on the major software visualization conferences and workshops
including VisSoft (workshop until 2011), SoftVis (conference until 2010), and VisSoft con-
ference (since 2013). A substantial amount of papers was also published at IWPC/ICPC and
InfoVis. However, more than one third of the papers was published on 45 different venues.
The analysis of the 3D software visualizations shows that the aspect structure is dominant.
The combination of structure with behavior or evolution was also found relatively often.
However, the combination of all three aspects in one software visualization tool providing
a holistic view was rarely found. Kienle and Müller [2007] argue that a visualization tool
should provide multiple views. Thus, this lack is considered to be a research gap.
The temporal analysis of the sample reveals that two thirds of the 3D software visualization
papers were published between 2001 and 2008. The 3D hype with its peak around 2005 is
receding but it begins to slope again.
The applied evaluation methods are distributed as follows: anecdotal (≈ 53%), empirical
(≈ 24%), and analytical (≈ 7%). Further, a large number of visualizations does not have
any evaluation at all (≈ 16%). Consequently, the need for more empirical evaluations of 3D
software visualizations stated earlier by Teyseyre and Campo [2009] still exists and should
be addressed in future work.
The categories of the application of the third dimension are based on Reiss [1995] and ex-
tended by a further category: 3D for cognition. Thus, the analysis of the application covers six
categories3: extended 2D, full 3D, 2D layout organized in 3D, 3D as time, stacked views, and
3 The original category local fish-eye was not found in the sample and for this reason omitted.

3 Literature Study 49

3D for cognition. The most frequently used category for the application of the third dimen-
sion is extending a 2D visualization. The resulting additional dimension is used for example
to represent software metrics, such as LOC [Boccuzzo and Gall 2007; Alam and Dugerdil
2007; Wettel and Lanza 2007; Kuhn et al. 2010] (see Figure 2.1 (a)), complexity [Sharif
and Jetty 2013; Balogh and Beszedes 2013], or the number of modifications [Steinbrückner
and Lewerentz 2010] (see Figure 2.1 (f)), for relations [Balzer et al. 2004; Caserta et al.
2011], as well as for instances [Greevy et al. 2005; Waller et al. 2013] (see Figure 2.1 (c)). In
some cases, the use of this dimension is configurable by the user [Marcus et al. 2003; Löwe
and Panas 2005]. In the categories full 3D and 2D layout organized in 3D the advantage of
3D lies in the additional space that is available to represent solid 3D shapes or to optimize
the layout, e.g., to avoid edge-crossings in graphs. An example for these categories provide
Eicker et al. [2007] (see Figure 2.1 (b)). The categories 3D as time and stacked views are
exclusively used in visualizations containing behavioral or evolutionary information. Exam-
ples for the category 3D as time for software evolution provide Ripley et al. [2007] (see
Figure 2.1 (e)) and the category stacked views for software behavior use von Pilgrim and
Duske [2008] (see Figure 2.1 (d)). Hence, these two categories are suitable for representing
dynamics. Finally, there is the category 3D for cognition. Irani and Ware [2003] compared
2D UML diagrams and 3D geon diagrams in several experiments. They found out that sub-
structures can be identified more accurately with shaded components than with 2D outline
equivalents and that they are remembered more reliably. Here, the third dimension does not
convey additional information but it facilitates the perception of the human visual system.
To sum it up, it could be helpful to start with a basic 2D shape visualizing the structure of
a software system. Further, this basic shape is extended with behavioral and evolutionary
aspects using one or a combination of the identified application categories of the third di-
mension. That is, a useful software visualization is not necessarily limited to 3D. Rather, the
optimal interplay between 2D and 3D may be the clue to the successful integration of all
three aspects.

4 Generator for 2D, 2.5D, and 3D Software Visualizations 50

4 Generator for 2D, 2.5D, and 3D Software Visualizations

Müller, Richard, Pascal Kovacs, Jan Schilbach, and Ulrich Eisenecker. 2011. “Generative
Software Visualization: Automatic Generation of User-Specific Visualizations.” In Proceed-

ings of the International Workshop on Digital Engineering, Magdeburg, Germany.4

4.1 Generative Software Visualization: Automatic Generation of
User-Specific Visualizations

4 In order to align the wording of the paper with the phd thesis, the abbreviations 2d, 2,5d, and 3d are
changed to 2D, 2,5D, and 3D in the attached version of the paper.

Generative Software Visualization: Automatic Generation
of User-Specific Visualizations

Richard Müller
rmueller@wifa.uni-

leipzig.de

Pascal Kovacs
kovacs@wifa.uni-

leipzig.de

Jan Schilbach
schilbach@wifa.uni-

leipzig.de
Ulrich W. Eisenecker
eisenecker@wifa.uni-

leipzig.de
Information Systems Institute

University of Leipzig
Leipzig, Germany

ABSTRACT
Software visualization provides tools and methods to create
role- and task-specific views on software systems to enhance
the development and maintenance process. However, the ef-
fort to produce customized and optimized visualizations is
still high. Hence, we present our approach of combining the
generative and the model driven paradigm and applying it
to the field of software visualization. Based on this approach
we want to implement a generator that allows to automat-
ically generate software visualizations in 2D, 2.5D, 3D, or
for virtual reality environments according to user-specific
requirements.

Keywords
software visualization, model driven visualization, software
visualization families, automation

1. INTRODUCTION
The preconditions for software visualization in 3D and

virtual reality (VR) have improved dramatically, because of
increased computing power available at low price and new
presentation and interaction techniques. Our research tries
to explore the resulting potential for software engineering,
especially with respect to software development as well as
maintenance.

Software visualization has the potential to considerably
enhance understanding of software through providing struc-
tural, behavioral, evolutionary, or combined views [7]. This
understanding is necessary for nearly all stakeholders in-
volved in software development and maintenance, such as
developers, project managers, and customers. All of these
stakeholders have different tasks in different parts the of soft-
ware lifecycle and therefore need different information about
the software system they are involved in. Software visualiza-
tions have to support these users and their tasks, otherwise
they are not useful and therefore will not be used. This
task-oriented view was first proposed by Maletic et al. [12].

Reiss [16] identified some important issues of software vi-
sualization. Of these we address the lack of simplicity to
use a visualization technique and the lack of adoption to
real user problems. One reason for the lack of simplicity
is, that visualization users need to supply exactly the data

the visualization tool demands, because many tools require
a special input format which the user has to provide. With
our approach we are able to handle multiple software arti-
facts in multiple input formats, as long as they are in a well-
structured format. The second issue, the lack of adoption to
real user problems, comes with the mostly general scope of
actual visualization tools. Reiss [16] takes the resource usage
in the time around a specific event as an example for a real
world use case, which is not covered by the available visu-
alization tools. We believe that the adoption of principles,
methodology, and techniques of software system families is
the basis for developing a generator that adresses these prob-
lems. This generator takes one or more software artifacts
and an easy-to-create configuration of the desired visualiza-
tion as input. Furthermore, it provides ready-to-use visual-
izations optimized to the users requirements without the ne-
cessity of additional user intervention. These visualizations
optimally support the different user needs and therefore the
specific tasks in the process of the software development and
maintenance. Moreover, the visualizations produced by the
generator support any form of visualization technique be
it two-, two-and-a-half- or three-dimensional (2D, 2.5D or
3D), printed on paper, displayed on a monitor, or presented
in VR.

In this paper, we will describe the theoretical concepts of
our approach and the design of the generator. In Section 2,
we summarize theories and publications our work is based
on. In Section 3, we explain the generative visualization
process. In this context, we will first introduce the basics
of Generative Programming, especially the generative do-
main model, and derive a generative software visualization
domain model. Afterwards, we outline a technology projec-
tion to show how this model can be instantiated. To explain
the characteristics of this approach, an example scenario
demonstrates the process of generative software visualiza-
tion in Section 4. The conclusion gives a brief evaluation of
the work described in this article and provides an outlook
to future research.

2. RELATED WORK
To respect the task-specific needs of different users, many

tools for software visualization, e. g. Mondrian [14], Code-
City [17], or sv3d [13], allow to configure some aspects of the

4 Generator for 2D, 2.5D, and 3D Software Visualizations 51

visualization. However, these tools are limited with respect
to their configuration options, e. g. the number of metaphors
and layouts they offer. Furthermore, the configuration re-
quires a substantial amount of additional manual work, or
the tools are restricted to a single type of software artifact.
Vizz3D [15] and Model Driven Visualization (MDV) [4] try
to overcome these deficits with a more general approach.

Bull [4] describes MDV as an architecture for adapting the
concepts of Model Driven Engineering (MDE). The software
models used as input have to correspond to a platform inde-
pendent metamodel, e. g. Dagstuhl Middle Model (DMM)
[11]. Such a model can be retrieved by parsing sourcecode.
To generate the visualizations, platform independent models
called views are used, e. g. tree views or nested views. The
definition of the necessary transformations between the in-
put models and the view models have to be programmed by
the user in a model transformation language, e. g. Atlas or
Xtend1. After the transformation, a platform specific visu-
alization will be automatically generated for a certain tool,
e. g. Zest2.

As a weakness of this approach, we identified the necessary
creation of platform independent view models from scratch.
On the one hand, this creates a high level of freedom. On
the other hand, many possible benefits are prevented, such
as using a common layout algorithm for different view mod-
els. Another drawback is the use of complex multi-purpose
model transformation languages which are not easy to un-
derstand for non-experts. We show that using a formalized
domain specific language (DSL) to describe the mapping
from source to view elements will be easier to use while still
preserving the automatic generation of a visualization.

Panas et al. [15] describe Vizz3D as a framework for con-
figuring a visualization by using models and transforma-
tions. Beginning with a formalized model of software corre-
sponding to a metamodel defined by Vizz3D, the user first
configures the mapping to an abstract view. This view has
a graph structure with nodes and edges including properties
such as color or shape. In a second step, the user config-
ures the mapping of the view to a concrete scene rendered
by a tool, including the configuration of a metaphor and
an optional layout.

A limitation of this approach is the required transforma-
tion of the users data into the Vizz3D source format, which
causes additional effort. The user has to define two map-
pings to configure a visual representation instead of only
one mapping. Finally this results in a tight coupling of plat-
form independent metaphors to platform specific visualiza-
tion tools.

3. GENERATIVE SOFTWARE VISUALIZA-
TION

3.1 Generative Paradigm
Generative Programming aims at the automized produc-

tion of software systems based on software system families:

“Generative Programming (GP) is a software en-
gineering paradigm based on modeling software
system families such that, given a particular re-
quirements specification, a highly customized and

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/gef/zest/

Figure 1: Generative Domain Model (GDM) [6]

optimized intermediate or end-product can be au-
tomatically manufactured on demand from ele-
mentary, reusable implementation components by
means of configuration knowledge.” [6]

Such a family covers a set of systems being similar enough
from an architectural point of view to be built from a com-
mon set of assets. The requirements of the resulting sys-
tem are described with a DSL. In this context, a domain
is an area of knowledge comprising expert knowledge from
stakeholders and technical knowledge of how to build soft-
ware systems. A DSL is a specialized and problem-oriented
language for domain experts to specify concrete members
of a system family. It abstracts from technical knowledge
and implementation details. This specification is processed
by a generator, which automatically assembles the system
by combining elementary and reusable components accord-
ing to configuration knowledge and a flexible system family
architecture as well. Components are building blocks for
assembling different systems of a family.

The basic terms of the generative paradigm and their re-
lationships are summarized by the generative domain model
(GDM, see Fig. 1). It comprises the problem space, the so-
lution space, as well as configuration knowledge for mapping
the problem space to the solution space. The problem space
covers domain specific concepts as well as their features used
by domain experts to specify their requirements. The re-
quirements are expressed in terms of one or more DSLs.
The solution space includes elementary and reusable imple-
mentation components which can be assembled as defined
through the system family architecture. The configuration
knowledge encapsulates illegal feature combinations, default
settings, construction rules, and optimizations as well as re-
lated information.

The parts of a GDM and two or more GDMs can be con-
nected in different ways [5]. One possibility is that the so-
lution space of one GDM is the problem space of another
GDM. This is called a chaining of mappings. Furthermore,
specifications in a DSL can be processed by different gener-
ators which map them to different solution spaces. In this
case, there are several alternative solution spaces instead of
only one.

3.2 Generative Software Visualization Domain
Model

Comparing the generative paradigm with the field of soft-
ware visualization, especially its visualization process, yields

4 Generator for 2D, 2.5D, and 3D Software Visualizations 52

Figure 2: Generative Software Visualization Domain Model (GSVDM)

many remarkable similarities. A visualization should be
automatically generated according to user-specific require-
ments by mapping information of software artifacts to a vi-
sual representation. For this reason, we adapt the definition
of GP as follows:

“The visualization process should be arranged such
that, given a particular requirements specifica-
tion, a highly customized and optimized visualiza-
tion can be automatically generated on demand
from elementary, reusable implementation com-
ponents belonging to a visualization family by means
of configuration knowledge.”

The difference to the original definition is that the re-
sult of the generation process is not a software system but
an optimized and ready-to-use visualization representing the
structure, the behavior, and/or the evolution of a software
system. Instead of assembling each visualization manually,
it is created automatically from implementation components
on the basis of a visualization family according to a specifi-
cation in a DSL provided by the user.

This concept can be described in terms of the generative
domain model. The chaining of mappings and the alter-
native solution spaces are used to realize the high variabil-
ity of platforms for different visualization techniques. Be-
sides that, the separation of the platform independent and
the platform specific solution spaces makes it possible to
reuse the implementation components. The resulting con-
cept is called generative software visualization domain model
(GSVDM, see Fig. 2).

The problem space offers means to specify concrete mem-
bers of a visualization and a platform family for representing
information from software artifacts. Using a DSL, the user
can specify on which platform which information of a soft-
ware artifact has to be visualized with which visualization
technique. The DSL corresponds to the requirements specifi-
cation in the above mentioned definition and abstracts from
concrete implementations.

The solution space includes implementation components
that can be assembled according to a family architecture.

Due to the chaining of mappings, there are at least two so-
lution spaces. The platform independent space contains ab-
stract visualization techniques, such as trees, graphs, tables,
and abstract or real world metaphors. The platform specific
spaces provide concrete platforms for these techniques, such
as Graphviz [10], Tulip [1], Gephi [2], or X3D [3].

The configuration knowledge, which is implemented as
a generator, defines the mapping of problem space to so-
lution space. In this case, the generation process is also the
visualization process. This means that the process corre-
sponds to a fully automated visualization process compris-
ing all necessary parts of a visualization pipeline [8]. Thus,
the knowledge about illegal feature combinations, default
settings, default dependencies, construction rules, and op-
timizations is augmented with knowledge about extraction,
analysis, filtering, mapping, and rendering from the DSL.

3.3 Model Driven Technology Projection
In order to implement this theoretical concept, it is nec-

essary to identify concrete techniques for the elements of
the software visualization domain model. Consequently, all
spaces are described with structured models, and the config-
uration knowledge provides mappings between these spaces
using model-to-model transformations. The DSL can be im-
plemented as text-only or as a dialogue-based wizard con-
trolling the different steps of the visualization pipeline. By
using the XText-Framework3 for implementing the DSL, we
will be able to utilize existing functionality, to provide code
completion, syntax highlighting and other useful features.

The starting point of the automatic visualization pro-
cess are structured software artifacts containing information
about structure, behavior, or evolution of software systems.
Some of those structures – also known as metamodels – are
Ecore, UML, XML or the DMM.

The common architecture for the visualization family is
provided by a visualization technique meta-metamodel. It
consists of a graph with nodes and edges where each element
can have additional properties. The basic assumption be-

3http://www.eclipse.org/Xtext/

4 Generator for 2D, 2.5D, and 3D Software Visualizations 53

hind this is that all visualization techniques can be reduced
to this abstract structure, so it is sufficient to have only one
model that can be flexibly instantiated. Another advantage
of using a graph structure is the ability to employ existing 2D
and 3D layout algorithms rather than implementing them.
The different platform independent visualization techniques
are the implementation components.

It is obvious that the common architecture for the visu-
alization platform depends on the used platform. For this
reason, there is one model for each platform. Imagine the
visualization should be an X3D-scene. Then, the X3D-file is
the model, the X3D-schema definition is the metamodel, and
the XML schema definition is the meta-metamodel. Fur-
ther examples for visualization platforms are DOT4 from
Graphviz, TLP5 from Tulip, or GEXF6 from Gephi.

The configuration knowledge maps the elements of soft-
ware artifacts to the elements of visualization techniques and
finally to elements of a visualization platform corresponding
to the DSL. The steps of the visualization pipeline are im-
plemented by means of the Eclipse Modeling Framework. In
this way, formal models can be analyzed and checked with
predefined validation rules. For the mapping, i. e. model-to-
model transformations, the transformation rules are defined
on the meta-level and they are applied for each model con-
forming to the corresponding metamodel. In order to handle
more than one source model the so called model-weaving is
used. The rendering is done by the concrete visualization
platforms.

4. EXAMPLE SCENARIO
In order to illustrate our approach we want to use a simple

fictional scenario. Imagine a project manager who is prepar-
ing a meeting. In order to make the development team pay
attention to current problems, information of the software
system’s structure enhanced with metrics is required. The
system under development is a banking system implemented
in Java and the relevant metrics are McCabe Complexity
and LOC. To make it more understandable for all stake-
holders, the manager waives source code and complex tables.
Instead, the visualization should be 3D and represented by
a nested visualization technique, which can be explored in-
teractively in the company’s virtual reality environment.

To do this in a generative way, the following steps have to
be carried out. As a precondition, the necessary information
has to be available in formal models, e.g. an Ecore model for
the structure and an XML file for the metrics. Initially, the
models are loaded by the generator (extraction). If neces-
sary, the user can apply predefined rules to check the models
for consistent semantics (analysis). Then, the relevant in-
formation from the software artifacts is selected (filtering),
and a visual representation for each piece of information is
defined by the user (mapping). This mapping comprises two
stages: In the first stage, the visualization technique is se-
lected, and in the second stage, the visualization platform is
chosen. During these stages, the user sets the mapping rules
for packages, classes, methods, attributes, and references to
clusters, nodes, and edges as well as the visual appearance
including shape, size, and colour of the different types of
clusters, nodes, and edges. Clusters are special nodes, that

4http://www.graphviz.org/content/dot-language
5http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format
6http://gexf.net/

can contain further clusters or nodes. The mappings are ei-
ther completely controlled by the user or default mappings
are applied. The simplified mapping rules in the banking
example are as follows:

– package 7→ cluster 7→ brown cube
– class 7→ cluster 7→ blue sphere
– method 7→ node 7→ green to red cylinder
– attribute 7→ node 7→ blue cone
– reference 7→ edge 7→ blue line
– McCabe 7→ node 7→ green(low) - red(high)
– LOC 7→ cluster/node 7→ size

At this time, only the size and positions of the elements in
the 3D space are missing. Here the graph structure from the
meta-metamodel comes into play. By applying established
layout algorithms the missing information is computed. For
the banking example a force directed layout algorithm for
clustered graphs is used [9]. Now, the generator has all nec-
essary information to produce the visualization. As a result,
the X3D-model in Fig. 3 and 4 is automatically generated

Figure 3: X3D-model of the banking example in-
cluding structure and metrics (Overview)

Figure 4: X3D-model of the banking example in-
cluding structure and metrics (Detail)

4 Generator for 2D, 2.5D, and 3D Software Visualizations 54

and can be interactively explored in a suitable browser, such
as an Eclipse view, a standalone X3D-Browser, or a vir-
tual reality environment. These visualizations have been
generated using a predecessor of the planned generator. In
this predecessor a box- and solar-system-metaphor as well
as X3D as target platform are hard-wired. By this means,
it was possible to visualize the structure of a real-world ex-
ample with several hundred classes.

5. CONCLUSION AND FUTURE WORK
It was explained how the generative paradigm and the

model driven paradigm can be adopted to meet the require-
ments of generating highly customized and ready-to-use soft-
ware visualizations by the user without writing any glue code
by hand. Hence, this promising concept makes it possible
to integrate different kinds of software artifacts with differ-
ent visualization techniques and well-approved visualization
tools, not being limited to a specific platform and configured
by an easy-to-use DSL.

Our future work will continue the implementation of
the generator architecture and infrastructure based on the
Eclipse platform, the specification of the grammar of the
DSL, the iterative development of the meta-metamodel for
visualization techniques including a representative amount
of metamodels of visualization techniques as well as the inte-
gration of some established visualization tools. Eventually,
we plan to use the generator to evaluate different visualiza-
tion aspects, like three-dimensionality, animation, and in-
teraction for their suitability in different tasks and different
stages of the software life cycle. With the resulting findings
we want to improve the spread of task- and role-specific soft-
ware visualization in industrial software development and
maintenance.

6. REFERENCES
[1] D. Auber. Tulip : A huge graph visualisation

framework. In P. Mutzel and M. Jünger, editors,
Graph Drawing Softwares, Mathematics and
Visualization, pages 105–126. Springer-Verlag, 2003.

[2] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an
open source software for exploring and manipulating
networks. 2009.

[3] D. Brutzman and L. Daly. X3D: Extensible 3D
Graphics for Web Authors. Elsevier, 2007.

[4] R. I. Bull. Model Driven Visualization: Towards a
Model Driven Engineering Approach for Information
Visualization. PhD thesis, University of Victoria, 2008.

[5] K. Czarnecki. Overview of generative software
development. In Unconventional Programming
Paradigms, number 3566 in Lecture Notes in
Computer Science, pages 326–341. Springer, Berlin
Heidelberg, 2005.

[6] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications:
Methods, Techniques and Applications.
Addison-Wesley Longman, Amsterdam, June 2000.

[7] S. Diehl. Software Visualization - Visualizing the
Structure, Behaviour, and Evolution of Software.
Springer, 2007.

[8] S. dos Santos and K. Brodlie. Gaining understanding
of multivariate and multidimensional data through

visualization. Computers & Graphics, 28(3):311–325,
June 2004.

[9] T. Dwyer. Extending the WilmaScope 3D graph
visualisation system: software demonstration. In
APVis ’05: proceedings of the 2005 Asia-Pacific
symposium on Information visualisation, pages 39–45.
Australian Computer Society, Inc., 2005.

[10] E. R. Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11):1203–1233, 2000.

[11] T. C. Lethbridge, E. Plödereder, S. Tichelaar, C. Riva,
P. Linos, and S. Marchenko. The dagstuhl middle
model (DMM). http://www.site.uottawa.ca/
∼tcl/dmm/DMMDescriptionV0006.pdf, 2002.

[12] J. I. Maletic, A. Marcus, and M. L. Collard. A task
oriented view of software visualization. In VISSOFT
2: Proceedings of the 1st International Workshop on
Visualizing Software for Understanding and Analysis,
pages 32–40. IEEE Computer Society, 2002.

[13] A. Marcus, L. Feng, and J. I. Maletic. Comprehension
of software analysis data using 3D visualization. In
Proc. 11th IWPC. IEEE Computer Society, 2003.

[14] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: an
agile information visualization framework. In
Proceedings of the 2006 ACM symposium on Software
visualization, SoftVis ’06, pages 135–144, Brighton,
United Kingdom, 2006. ACM. ACM ID: 1148513.

[15] T. Panas, R. Lincke, and W. Löwe.
Online-configuration of software visualizations with
vizz3d. In Proc. 2nd SoftVis, pages 173–182, New
York, NY, USA, 2005. ACM.

[16] S. P. Reiss. The paradox of software visualization. In
Proc. 3rd VISSOFT, pages 59–63, 2005.

[17] R. Wettel, M. Lanza, and R. Robbes. Software systems
as cities: a controlled experiment. In Proceeding of the
33rd international conference on Software engineering,
ICSE ’11, pages 551–560, Waikiki, Honolulu, HI, USA,
2011. ACM. ACM ID: 1985868.

4 Generator for 2D, 2.5D, and 3D Software Visualizations 55

4 Generator for 2D, 2.5D, and 3D Software Visualizations 56

4.2 Summary

The software visualization generator combines the generative and the model-driven paradigms
to produce role- and task-specific visualizations automatically according to user require-
ments specified in a DSL. These visualizations may represent structural, behavioral, and/or
evolutionary aspects of a software system in 2D, 2.5D, or 3D.
The generator refers to SQ2: How can 2D, 2.5D, and 3D software visualizations be gen-

erated automatically? and is the first precondition for answering SQ3: What role does the

factor dimensionality play in solving software engineering tasks? (see Section 1.2). It is used
to generate 2D, 2.5D, and 3D software visualizations for the controlled experiment described
in Chapter 6. Moreover, it is used to generate the recursive disk metaphor presented in Chap-
ter 7.

Figure 4.1: Generative software visualization domain model [Müller et al. 2011].

The main concepts of the generator are summarized by Figure 4.1 and by the following def-
inition: "The visualization process should be arranged such that, given a particular require-

ments specification, a highly customized and optimized visualization can be automatically

generated on demand from elementary, reusable implementation components belonging to

a visualization family by means of configuration knowledge." [Müller et al. 2011]. The gen-
erative software visualization domain model is a chained mapping combining three spaces.
First, the user specifies the aspect or combination of aspects of a software system to be visu-
alized, the visualization technique, and the visualization platform with a DSL. Second, the
DSL is handed over to the first solution space where the layout of the visualization technique
is computed. This results in a platform independent model. Third, the second space turns into
a problem space and the visualization is transformed to a specific visualization platform.
In order to implement this theoretical concept, it is necessary to identify concrete techniques
for the elements of the generative software visualization domain model, i.e., a technology
projection is applied. Here, the model-driven paradigm comes into play. Hence, all spaces

4 Generator for 2D, 2.5D, and 3D Software Visualizations 57

are described by formal models and the configuration knowledge provides mappings be-
tween the spaces using M2Ps and M2Ms. The metamodels for the aspects and for the visua-
lization technique are serialized in MSE [Kuhn and Verwaest 2008]. The structure is mod-
eled with Famix [Ducasse et al. 2011], the behavior with Dynamix [Greevy 2007], and the
evolution with Hismo [Ducasse et al. 2004]. The metamodels for the aspects and for the
visualization technique are defined in an Xtext grammar. The metamodel for the platform
is defined by the X3D XSD [X3D Schema 2014]. As X3D scene graphs can be rendered
on any platform, the software visualizations are platform independent. With AOPT they are
optimized for the web and can be interactively explored in any browser supporting X3DOM.
The transformation of the models, i.e., the configuration knowledge, is realized with Xtend.
Among others, the visualization platform is covered by X3D and X3DOM. All transfor-
mations are configured and controlled by MWE2 workflows. The generator is implemented
in Eclipse using JDT, PDE, TMF, and EMP. It has a modular and extensible architecture
and consists of three parts. The Xtext metamodels are stored in plug-in projects named
org.svis.xtext.[metamodel]. The core of the generator including the Xtend transforma-
tions is the plug-in project org.svis.generator. The MWE2 workflows to configure and
to control the transformations are in the plug-in project org.svis.generator.test. The
complete architecture and dependencies of the generator are visualized with a component
diagram in Figure 4.2.

«component»
org.svis.xtext.dynamix

«component»
...

«component»
org.svis.xtext.rd

«component»
org.svis.xtext.hismo

«component»
org.svis.xtext.famix

Metamodels

«component»
org.svis.xtext.dynamix

«component»
...

«component»
org.svis.xtext.rd

«component»
org.svis.xtext.hismo

«component»
org.svis.xtext.famix

«component»
org.svis.generator.test

Workflows

«component»
org.svis.generator.test

«component»
org.svis.generator

Modeltransformations

«component»
org.svis.generator

Figure 4.2: Architecture and dependencies of the generator in a component diagram.

5 Structured Approach 58

5 Structured Approach

Müller, Richard, Pascal Kovacs, Jan Schilbach, Ulrich Eisenecker, Dirk Zeckzer, and Gerik
Scheuermann. 2014. “A Structured Approach for Conducting a Series of Controlled Exper-
iments in Software Visualization.” In Proceedings of the 5th International Conference on

Visualization Theory and Applications, Lisbon, Portugal.5

5.1 A Structured Approach for Conducting a Series of Controlled
Experiments in Software Visualization

5 A spelling mistake of the word Representation in Figure 1 is corrected in the attached version of the paper.

A Structured Approach for Conducting a Series of Controlled
Experiments in Software Visualization

Richard Müller1, Pascal Kovacs1, Jan Schilbach1, Ulrich W. Eisenecker1, Dirk Zeckzer2 and
Gerik Scheuermann2

1Information Systems Institute, University of Leipzig, Leipzig, Germany
2Institute of Computer Science, University of Leipzig, Leipzig, Germany

{rmueller, kovacs, schilbach, eisenecker}@wifa.uni-leipzig.de, {zeckzer, scheuermann}@informatik.uni-leipzig.de

Keywords: Software Visualization, Evaluation, Controlled Experiment, 3D.

Abstract: In the field of software visualization controlled experiments are an important instrument to investigate the
specific reasons, why some software visualizations excel the expectations on providing insights and ease task
solving while others fail doing so. Despite this, controlled experiments in software visualization are rare.
A reason for this is the fact that performing such evaluations in general, and particularly performing them in
a way that minimizes the threats to validity, is hard to accomplish. In this paper, we present a structured ap-
proach on how to conduct a series of controlled experiments in order to give empirical evidence for advantages
and disadvantages of software visualizations in general and of 2D vs. 3D software visualizations in particular.

1 INTRODUCTION

Determining the circumstances why and when a soft-
ware visualization is well suited to support a specific
software engineering task remains a big challenge.
Several factors have to be considered, e. g., the type
of software under inspection, the representation used
to depict the software artifact, navigation and interac-
tion as well as the implementation.

A suitable approach to determine these circum-
stances is the controlled experiment. It is a gen-
erally accepted research and evaluation method in
information visualization (Carpendale, 2008; An-
drews, 2008; Munzner, 2009; Isenberg et al., 2013),
in software engineering (Sjoberg et al., 2007), and
in software visualization (Tichy and Padberg, 2007;
Di Penta et al., 2007). But one single con-
trolled experiment is not sufficient because there
are too many factors that might influence the re-
sult. For example, (Dwyer, 2001) did not con-
duct a planned experiment because it ”(. . .) would
be inconclusive due to the number of unconstrained
variables involved.”

One important question to be addressed in soft-
ware visualization is the role of dimensionality. The
strengths and weaknesses of 3D visualizations have
been controversially discussed over the last two
decades. (Teyseyre and Campo, 2009) provide a con-
cise overview of the ongoing scientific discourse.

From a technical point of view, major weaknesses
of 3D are the intensive computation and the complex
implementation. The computational effort is more
and more diminishing due to the increasing comput-
ing power. To minimize the development effort there
are several promising approaches (Bull et al., 2006;
Müller et al., 2011). Another point is that nowa-
days technical issues like ghosting, calibration, and
resolution are no longer an issue as Custom-off-the-
Shelf solutions exist. The ongoing technical evolu-
tion of 3D, such as in cinema and on TV (Huynh-Thu
et al., 2011), interaction devices like Kinect (Smisek
et al., 2011) or Leap Motion (Weichert et al., 2013),
and merging of web- and home-entertainment sys-
tems (Zorrilla et al., 2013) offers new opportunities
for software visualization.

From a visualization point of view, the major
weaknesses of 3D are occlusion and more complex
navigation. Strengths are the additional dimension,
often used to depict time, the integration of local into
global views, the composition of multiple 2D views
in a single 3D view, and the facilitation of perception
of the human visual system.

Even at the latest VISSOFT conference there were
five papers dealing with 3D in software visualization
(Waller et al., 2013; Sharif and Jetty, 2013; Benomar
and Poulin, 2013; Balogh and Beszedes, 2013; Fit-
tkau et al., 2013).

5 Structured Approach 59

For these reasons, we raise the questions again
why and when is 3D better or worse than 2D in soft-
ware visualization. Hence, a series of experiments is
needed which investigates the role of dimensionality
in several configurations varying a single factor sys-
tematically in each experiment while keeping the re-
maining ones constant or measure their influence on
the result.

The contribution of this paper is the underlying
structured approach for conducting such a series of
controlled experiments in order to give empirical ev-
idence for advantages and disadvantages of software
visualizations, especially for 2D vs. 3D.

2 RELATED WORK

Our approach is based on the lessons learned from
other experiments in software visualization (Sensalire
et al., 2009), e. g., concerning experiment’s duration
and location as well as tool and task selection. In ad-
dition, we incorporate the hints, guidelines and frame-
works for controlled experiments in information visu-
alization and software engineering (Basili et al., 1986;
Pfleeger, 1995; Kosara et al., 2003; Sjoberg et al.,
2007; Carpendale, 2008; Keim et al., 2010; Wohlin
et al., 2012), e. g., conduct a pilot study and training
tasks, take care of and document all factors that may
influence the results, and clearly describe the threats
to validity.

For our series of experiments we apply Munzner’s
process model for design and validation of visual-
izations (Munzner, 2009). The four nested layers
of the design process are domain problem charac-
terization, data and operation abstraction, encoding
and interaction technique, and algorithm. Each part
has corresponding validation methods. (Meyer et al.,
2012) extended this model with blocks and guide-
lines. Blocks are outcomes of the design process at
each level and guidelines describe the relations be-
tween these blocks. The model as well as its extension
makes visualization research transparent and compa-
rable and supports researchers to structure their ap-
proach and to identify research gaps.

Important prior work comparing 2D and 3D visu-
alizations with controlled experiments in information
visualization as well as in software visualization has
been performed. Ware et al. examined the percep-
tion and the layout of graphs displayed in different di-
mensions and environments (Ware et al., 1993; Ware
and Franck, 1994; Ware and Franck, 1996; Ware and
Mitchell, 2008). (Levy et al., 1996) examined users’
preferences for 2D and 3D graphs in different sce-
narios. (Cockburn and McKenzie, 2001) compared

a 2D and a 3D representation of a document manage-
ment system. (Koike and Chu, 1998) conducted ex-
periments to compare two version control and mod-
ule management systems RCS (2D) and VRCS (3D).
Irani et al. developed 3D geon diagrams and exam-
ined their benefit empirically (Irani and Ware, 2000;
Irani and Ware, 2003). (Wettel et al., 2011) provided
empirical evidence in favor of a 3D metaphor repre-
senting software as a city. (Sharif and Jetty, 2013) as-
sessed the effect of SeeIT 3D on comprehension. All
these experiments show that there are benefits offered
by 3D over 2D in performance, error rates, or pref-
erence. (Cockburn and McKenzie, 2002) evaluated
the effectiveness of spatial memory in 2D and 3D.
They found that navigation in 3D spaces can be diffi-
cult. Nonetheless, there is still a lack of empirical ev-
idence supporting the 2D versus 3D discussion espe-
cially in the field of software visualization (Teyseyre
and Campo, 2009). With our series of controlled ex-
periments we aim at extending the knowledge about

Figure 1: Domain specific adaption of Munzner’s extended
model for software visualization (Munzner, 2009; Meyer
et al., 2012).

5 Structured Approach 60

advantages and disadvantages of the third dimension
in software visualization.

3 A NEW PERSPECTIVE ON
CONTROLLED EXPERIMENTS

In our approach, we adapt Munzner’s extended model
for visualization design and validation to the software
visualization domain (Munzner, 2009; Meyer et al.,
2012).

First, we derived the influence factors from sev-
eral taxonomies in the field of information visualiza-
tion in general and in the field of software visualiza-
tion in particular (Myers, 1990; Stasko and Patter-
son, 1993; Price et al., 1993; Roman and Cox, 1993;
Maletic et al., 2002; Storey et al., 2005; Gallagher
et al., 2008). These factors are user, task, software ar-
tifact, navigation and interaction, representation, and
implementation.

Then, we assigned these factors to Munzner’s ex-
tended model. Consequently, user, problem tasks,
and software artifact characterize the domain prob-
lem. Data abstractions and operation tasks are in the
data and operation abstraction layer. Representation
as well as navigation and interaction belong to the en-
coding and interaction technique layer. Finally, im-
plementation corresponds to the algorithm layer. The
resulting model is depicted in Figure 1.

These two steps provide an overview of the main
factors. In order to understand their relations they
have to be detailed and linked. This is supported by
the nested structure of the model and by the blocks
and guidelines. Table 1 details the factors from Fig-
ure 1 with possible instantiations where each factor is
marked with the color from the corresponding layer.
This list does not claim to be complete. Rather, it
is open for extension by other researchers conducting
controlled experiments in the field of software visual-
ization.

In a problem-driven approach the experimenter
has to define the scope of the domain. In software
visualization, a user has a specific role, a certain back-
ground, previous knowledge, and circumstances. The
user solves a problem task with a software artifact
where the artifact has a type and a size, and rep-
resents a specific aspect of a software system. To
abstract from the domain, the necessary information
from the software artifact is extracted into a suitable
data abstraction (implementation). The problem task
is divided into several operation tasks. On the next
layer, the data is represented using a certain tech-
nique in a certain dimension. The operation tasks are
processed with navigation and interaction techniques

supported by input and output devices. The final layer
contains the implementation. The representation and
interaction techniques have to be implemented with
an algorithm on a platform processing the data from
the software artifact. The visualization process might
be full-, semi-, or not automated at all.

4 PLANNING A SERIES OF
CONTROLLED EXPERIMENTS

We plan to conduct a series of experiments inves-
tigating the influence of dimensionality. Thus, our
research aims at the encoding and interaction tech-
nique layer. In the model, dimensionality is a sub-
factor of representation and might be influenced by
several other factors. Apart from group matching and
randomization, these factors are purposely either var-
ied, kept constant, or measured (Siegmund, 2012). To
vary the factor, it turns into an independent variable,
whose value is intentionally changed. To reduce or
at least to minimize the influence of the other fac-
tors, they are transformed into controlled variables
and have to be kept constant. The remaining factors
being difficult or not possible to control are measured
to analyze their influence on the result.

As an example, imagine a controlled experiment
with the following research question: Does an inher-
ent 3D software visualization reduce time to solve
software engineering tasks, compared to a 2D soft-
ware visualization? In the derived hypothesis time is
the dependent variable and dimensionality the inde-
pendent one. We apply a between-subjects design.
That means, there are a control group (2D) and an
experimental group (3D) where every participant is
member of only one group. In order to isolate dimen-
sionality as a factor under study we have to keep the
other factors constant or at least quasi-constant. The
participants act in the role of a developer and solve
two typical problem tasks, such as finding a bug or
identifying a dominating class. The tasks are detailed
with corresponding operation tasks. The visualiza-
tions are automatically generated from source code
of a medium-sized software artifact representing its
structure. The 2D and the inherent 3D visualization
have to be as similar as possible only differing in di-
mensionality. A suitable representation is a graph re-
spectively a nested node-link technique with corre-
sponding layout algorithms and shapes for 2D (e.g.,
rectangle) and 3D (e.g., cuboid). To solve their tasks,
the participants should gain an overview, zoom in and
out, filter, and identify relations in the visualization.
To overcome the interaction barrier between 2D and
3D input devices, both visualizations are controlled

5 Structured Approach 61

Table 1: Possible influence factors on the effectiveness of a software visualization.

Factor/Sub-Factor Examples for possible instantiations
User
Role Manager, Requirements Engineer, Architect, Developer, Tester, Maintainer, Reengi-

neer, Documenter, Consultant, Team, Researcher (Storey et al., 2005)
Background Age, Gender, Color Blindness, Ability of Stereoscopic Viewing
Knowledge Education, Programming Experience, Domain Knowledge
Circumstances Occupation, Familiarity with Study Object/Tools (Siegmund, 2012)
Task
Problem Development, Maintenance, Re-Engineering, Reverse Engineering, Software Process

Management, Marketing, Test, Documentation (Maletic et al., 2002)
Operation Retrieve Value, Filter, Compute Derived Value, Find Extremum, Sort, Determine

Range, Characterize Distribution, Find Anomalies, Cluster, Correlate (Amar et al.,
2005)

Software Artifact
Type Requirements, Architecture, Source Code, Stack Trace, Revision History
Size Small, Medium, Large (Wettel et al., 2011)
Aspect Structure, Behavior, Evolution (Diehl, 2007)
Representation
Dimensionality 2D, 2.5D, Augmented 2D, Adapted 2D, Inherent 3D (Stasko and Wehrli, 1993)
Technique Graph, Tree, Abstract/Real World Metaphor, Decorational/Representational Anima-

tion (Gračanin et al., 2005; Diehl, 2007; Höffler and Leutner, 2007)
Navigation &
Interaction
Technique Overview, Zoom, Filter, Details-on-Demand, Relate, History, Extract (Shneiderman,

1996; Lee et al., 2006; Keim and Schneidewind, 2007; Yi et al., 2007)
Input Keyboard, Mouse, Gamepad, Flystick, Kinect, Touch Device, Leap Motion, Brain-

Computer Interface
Output Paper, Monitor, Projector, Virtual Reality Environment, Oculus Rift
Implementation
Algorithm Radial Layout, Balloon Layout, Treemap, Information Cube, Cone Tree (Herman et al.,

2000)
Platform
Dependence Platform Independent, Platform Dependent
Automation Full, Semi, Manual
Data Abstraction Famix, Dynamix, Hismo (Nierstrasz et al., 2005; Greevy, 2007; Ducasse et al., 2004)

with a touch device. Thus, the difference between 2D
input devices (e. g., keyboard and mouse) compared
to 3D ones (e. g., flystick) is eliminated. To minimize
the differences concerning the environment with re-
gard to the output all participants solve their tasks in
the same virtual reality environment under equal con-
ditions. Therefore, they wear special 3D glasses to
receive the immersive view of the 3D visualization.
The participants using the 2D visualization also wear
them to eliminate influences due to, e. g., brightness
differences. Finally, the remaining factors that are
difficult or not to control have to be measured. The
participants are tested concerning color vision defi-
ciency and stereoscopic view ability to control their

effect on the participant’s performance. With respect
to the statistical analysis additional data about edu-
cation, programming experience, and domain knowl-
edge, i. e. virtual reality, touch devices, and 3D, are
collected.

With our structured approach making the influ-
ence factors and their relationships explicit, we are
able to vary different factors in different experiments
while keeping other relevant factors constant or mea-
sure their influence on the result. For example, we
keep the whole setting as described above and we
vary the representation technique, e. g., with another
metaphor using the additional dimension to integrate
structural and behavioral information or to represent

5 Structured Approach 62

quality metrics, we change the size of the software ar-
tifact, or we use different tasks. Furthermore, we are
supported in documenting the experimental design, in
analyzing the threats to validity and in comparing our
results with other researchers.

5 CONCLUSION AND FUTURE
WORK

In this paper we have presented our structured ap-
proach for conducting a series of controlled exper-
iments in software visualization. We derived im-
portant influence factors from information and soft-
ware visualization literature and assigned them to
Munzner’s extended model for visualization design
and validation. The domain specific adaption to soft-
ware visualization helps to relate and to control the
influence factors.

With this new perspective on controlled experi-
ments in software visualization, we are able to con-
duct a series of experiments obtaining comprehensive
empirical evidence of the advantages and disadvan-
tages of 3D.

REFERENCES

Amar, R., Eagan, J., and Stasko, J. (2005). Low-level com-
ponents of analytic activity in information visualiza-
tion. In Pro. 2005 IEEE Symp. Inf. Vis., page 15. IEEE
Computer Society.

Andrews, K. (2008). Evaluation comes in many guises. In
Proc. 2008 AVI Work. BEyond Time Errors Nov. Eval.
Method. Inf. Vis., pages 8–10.

Balogh, G. and Beszedes, A. (2013). CodeMetropolis – a
Minecraft based collaboration tool for developers. In
Proc. 1st IEEE Work. Conf. Softw. Vis., pages 1–4.

Basili, V. R., Selby, R. W., and Hutchens, D. H. (1986). Ex-
perimentation in software engineering. IEEE Trans.
Softw. Eng., 12(7):733–743.

Benomar, O. and Poulin, P. (2013). Visualizing Software
Dynamicities with Heat Maps. In 1st IEEE Work.
Conf. Softw. Vis. IEEE.

Bull, R. I., Storey, M.-A., Favre, J.-M., and Litoiu, M.
(2006). An Architecture to Support Model Driven
Software Visualization. In 14th Int. Conf. Progr.
Compr., pages 100–106. IEEE Computer Society.

Carpendale, S. (2008). Evaluating information visualiza-
tions. In Kerren, A., Stasko, J. T., Fekete, J.-D., and
North, C., editors, Information Visualization, volume
4950, pages 19–45. Springer, Berlin, Heidelberg.

Cockburn, A. and McKenzie, B. (2001). 3D or not 3D?:
evaluating the effect of the third dimension in a doc-
ument management system. In Proc. SIGCHI Conf.
Hum. factors Comput. Syst., pages 434–441. ACM.

Cockburn, A. and McKenzie, B. (2002). Evaluating the ef-
fectiveness of spatial memory in 2D and 3D physi-
cal and virtual environments. In Proc. SIGCHI Conf.
Hum. Factors Comput. Syst., pages 203–210. ACM.

Di Penta, M., Stirewalt, R. E. K., and Kraemer, E. (2007).
Designing your Next Empirical Study on Program
Comprehension. 15th Int. Conf. Progr. Compr., pages
281–285.

Diehl, S. (2007). Software visualization: Visualizing
the Structure, Behaviour, and Evolution of Software.
Springer.

Ducasse, S., Gı̌rba, T., and Favre, J. (2004). Modeling soft-
ware evolution by treating history as a first class en-
tity. In Proc. Work. Softw. Evol. Through Transform.,
pages 75–86. Elsevier.

Dwyer, T. (2001). Three dimensional UML using force di-
rected layout. In Proc. 2001 Asia-Pacific Symp. Inf.
Vis., volume 9, pages 77–85. Australian Computer So-
ciety.

Fittkau, F., Waller, J., Wulf, C., and Hasselbring, W. (2013).
Live Trace Visualization for Comprehending Large
Software Landscapes : The ExplorViz Approach. In
1st IEEE Work. Conf. Softw. Vis., pages 1–4.

Gallagher, K., Hatch, A., and Munro, M. (2008). Software
Architecture Visualization: An Evaluation Frame-
work and Its Application. IEEE Trans. Softw. Eng.,
34(2):260–270.

Gračanin, D., Matković, K., and Eltoweissy, M. (2005).
Software Visualization. Innov. Syst. Softw. Eng.,
1(2):59–63.

Greevy, O. (2007). Dynamix - a meta-model to support
feature-centric analysis. In 1st Int. Work. FAMIX
Moose Reeng.

Herman, I., Melancon, G., and Marshall, M. S. (2000).
Graph visualization and navigation in information vi-
sualization: A survey. IEEE Trans. Vis. Comput.
Graph., 6(1):24–43.

Höffler, T. N. and Leutner, D. (2007). Instructional anima-
tion versus static pictures: A meta-analysis. Learn.
Instr., 17(6):722–738.

Huynh-Thu, Q., Barkowsky, M., and Le Callet, P. (2011).
The Importance of Visual Attention in Improving the
3D-TV Viewing Experience: Overview and New Per-
spectives. IEEE Trans. Broadcast., 57(2):421–431.

Irani, P. and Ware, C. (2000). Diagrams based on struc-
tural object perception. In Proc. Work. Conf. Adv. Vis.
Interf., pages 61–67. ACM.

Irani, P. and Ware, C. (2003). Diagramming information
structures using 3D perceptual primitives. ACM Trans.
Comput. Hum. Interact., 10(1):1–19.

Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., and
Möller, T. (2013). A systematic review on the practice
of evaluating visualization. IEEE Trans. Vis. Comput.
Graph., 19(12):2818–27.

Keim, D. A., Kohlhammer, J., Ellis, G., and Mansmann, F.
(2010). Mastering The Information Age-Solving Prob-
lems with Visual Analytics. Eurographics Association.

Keim, D. A. and Schneidewind, J. (2007). Introduction to
the Special Issue on Visual Analytics. SIGKDD Ex-
plorations, 9(2):3–4.

5 Structured Approach 63

Koike, H. and Chu, H. (1998). How does 3-D visualization
work in software engineering?: empirical study of a 3-
D version/module visualization system. In Proc. 20th
Int. Conf. Softw. Eng., pages 516–519. IEEE Com-
puter Society.

Kosara, R., Healey, C. G., Interrante, V., Laidlaw, D. H.,
and Ware, C. (2003). User Studies: Why, How, and
When? IEEE Comput. Graph. Appl., 23(4):20–25.

Lee, B., Sims Parr, C., Plaisant, C., and Bederson, B. B.
(2006). Visualizing Graphs as Trees: Plant a seed and
watch it grow. In 13th Int. Symp. Graph Draw., vol-
ume 3843, pages 516–518. Springer.

Levy, E., Zacks, J., Tversky, B., and Schiano, D. (1996).
Gratuitous graphics? Putting preferences in perspec-
tive. In Proc. SIGCHI Conf. Hum. Factors Comput.
Syst., pages 42–49. ACM.

Maletic, J., Marcus, A., and Collard, M. (2002). A task ori-
ented view of software visualization. In 1st Int. Work.
Vis. Softw. Underst. Anal., pages 32–40. IEEE Com-
pututer Society.

Meyer, M., Sedlmair, M., and Munzner, T. (2012). The
four-level nested model revisited: blocks and guide-
lines. In Proc. 2012 Work. BEyond Time Errors Nov.
Eval. Method. Vis., pages 1–6.

Müller, R., Kovacs, P., Schilbach, J., and Eisenecker, U.
(2011). Generative Software Visualizaion: Automatic
Generation of User-Specific Visualisations. In Proc.
Int. Work. Digit. Eng., pages 45–49.

Munzner, T. (2009). A nested model for visualization de-
sign and validation. IEEE Trans. Vis. Comput. Graph.,
15(6):921–928.

Myers, B. A. (1990). Taxonomies of visual programming
and program visualization. J. Vis. Lang. Comput.,
1(1):97–123.

Nierstrasz, O., Ducasse, S., and Gı̌rba, T. (2005). The story
of moose: an agile reengineering environment. In
Proc. 10th Eur. Softw. Eng. Conf., pages 1–10. ACM.

Pfleeger, S. L. (1995). Experimental design and analysis in
software engineering. Ann. Softw. Eng., 1(1):219–253.

Price, B. A., Baecker, R. M., and Small, I. S. (1993). A Prin-
cipled Taxonomy of Software Visualization. J. Vis.
Lang. Comput., 4(3):211–266.

Roman, G.-C. and Cox, K. C. (1993). A taxonomy of pro-
gram visualization systems. Computer, 26(12):11–24.

Sensalire, M., Ogao, P., and Telea, A. (2009). Evaluation of
software visualization tools: Lessons learned. In 5th
Int. Work. Vis. Softw. Underst. Anal., pages 19–26.

Sharif, B. and Jetty, G. (2013). An Empirical Study Assess-
ing the Effect of SeeIT 3D on Comprehension. In 1st
IEEE Work. Conf. Softw. Vis.

Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proc. 1996 IEEE Symp. Vis. Lang., pages 336–343.

Siegmund, J. (2012). Framework for Measuring Pro-
gram Comprehension. Phd thesis, Otto-von-Guericke-
Universität Magdeburg.

Sjoberg, D. I. K., Dybå, T., and Jorgensen, M. (2007). The
Future of Empirical Methods in Software Engineering
Research. In Futur. Softw. Eng. (FOSE ’07), pages
358–378.

Smisek, J., Jancosek, M., and Pajdla, T. (2011). 3D with
Kinect. In 2011 IEEE Int. Conf. Comput. Vis. Work.,
pages 1154–1160.

Stasko, J. and Patterson, C. (1993). Understanding and
Characterizing Program Visualization Systems. Tech-
nical report, Georgia Institute of Technology, Atlanta.

Stasko, J. and Wehrli, J. (1993). Three-dimensional com-
putation visualization. Proc. 1993 IEEE Symp. Vis.
Lang., pages 100–107.

Storey, M.-A. D., Čubranić, D., and German, D. M. (2005).
On the use of visualization to support awareness of
human activities in software development: a survey
and a framework. In Proc. 2005 ACM Symp. Softw.
Vis., pages 193–202. ACM.

Teyseyre, A. R. and Campo, M. R. (2009). An overview of
3D software visualization. IEEE Trans. Vis. Comput.
Graph., 15(1):87–105.

Tichy, W. and Padberg, F. (2007). Empirische Methodik
in der Softwaretechnik im Allgemeinen und bei der
Software-Visualisierung im Besonderen. In Softw.
Eng. 2007 Beitr. Work., pages 211–222. Gesellschaft
für Informatik.

Waller, J., Wulf, C., Fittkau, F., Döhring, P., and Hassel-
bring, W. (2013). SynchroVis: 3D Visualization of
Monitoring Traces in the City Metaphor for Analyz-
ing Concurrency. In 1st IEEE Work. Conf. Softw. Vis.,
pages 7–10.

Ware, C. and Franck, G. (1994). Viewing a graph in a virtual
reality display is three times as good as a 2D diagram.
IEEE Symp. Vis. Lang., pages 182–183.

Ware, C. and Franck, G. (1996). Evaluating stereo and mo-
tion cues for visualizing information nets in three di-
mensions. ACM Trans. Graph., 15(2):121–140.

Ware, C., Hui, D., and Franck, G. (1993). Visualizing object
oriented software in three dimensions. In Proc. 1993
Conf. Cent. Adv. Stud. Collab. Res. Softw. Eng., pages
612–620. IBM Press.

Ware, C. and Mitchell, P. (2008). Visualizing graphs in
three dimensions. ACM Trans. Appl. Percept., 5(1):1–
15.

Weichert, F., Bachmann, D., Rudak, B., and Fisseler, D.
(2013). Analysis of the accuracy and robustness of
the leap motion controller. Sensors, 13:6380–6393.

Wettel, R., Lanza, M., and Robbes, R. (2011). Software
systems as cities: A controlled experiment. In Proc.
33rd Int. Conf. Softw. Eng., pages 551–560. ACM.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
Software Engineering. Springer.

Yi, J. S., ah Kang, Y., Stasko, J. T., and Jacko, J. A. (2007).
Toward a deeper understanding of the role of inter-
action in information visualization. IEEE Trans. Vis.
Comput. Graph., 13(6):1224–1231.

Zorrilla, M., Martin, A., Sanchez, J. R., Tamayo, I., and
Olaizola, I. G. (2013). HTML5-based system for in-
teroperable 3D digital home applications. Multimed.
Tools Appl., pages 1–21.

5 Structured Approach 64

5 Structured Approach 65

5.2 Summary

As stated in Section 3.2, empirical evaluations in software visualization, especially controlled
experiments, are quite rare. One reason is the fact that performing such evaluations in gen-
eral, and particularly performing them in a way that minimizes the threats to validity, is hard
to accomplish. The contributions of this paper help to overcome these challenges. It presents
a structured approach on how to conduct a series of experiments in software visualization
including a theoretical model to control influence factors. Hence, it is possible to give em-
pirical evidence for advantages and disadvantages of software visualizations, especially for
2D vs. 3D.
The structured approach is the second precondition for answering SQ3: What role does the

factor dimensionality play in solving software engineering tasks? (see Section 1.2). It is used
to design the corresponding controlled experiment in Chapter 6.

Figure 5.1: Domain specific adaption of Munzner’s extended model [Munzner 2009; Meyer et al.
2012] for software visualization [Müller et al. 2014a].

The development of the theoretical model is a domain specific adaption from the field of
information visualization to software visualization and comprises two steps. First, the main
influence factors are derived from several software visualization taxonomies [Myers 1990;

5 Structured Approach 66

Stasko and Patterson 1993; Roman and Cox 1993; Price et al. 1993; Maletic et al. 2002;
Storey et al. 2005; Gallagher et al. 2005]. These factors are user, task, software artifact,
navigation and interaction, representation, and implementation. Second, these factors are
assigned to Munzner’s extended model for design and validation of visualizations [Munzner
2009; Meyer et al. 2012]. Thus, user, problem tasks, and software artifact characterize the
domain problem. Data abstractions and operation tasks are in the data and operation ab-

straction layer. Representation as well as navigation and interaction belong to the encoding

and interaction technique layer. Finally, implementation corresponds to the algorithm layer.
The resulting model is depicted in Figure 5.1. The main factors from Figure 5.1 are detailed
with possible instantiations in Table 5.1 where each factor is marked with the color from
the corresponding layer. This list does not claim to be complete. Rather, it is designed as an
open list to be extended by other researchers conducting controlled experiments in the field
of software visualization.

Table 5.1: Possible influence factors on the effectiveness of a soft-
ware visualization [Müller et al. 2014a].

Factor/Sub-Factor Examples for possible instantiations

User
Role Manager, Requirements Engineer, Architect, Developer, Tester,

Maintainer, Reengineer, Documenter, Consultant, Team, Re-
searcher [Storey et al. 2005]

Background Age, Gender, Color Blindness, Ability of Stereoscopic Viewing
Knowledge Education, Programming Experience, Domain Knowledge
Circumstances Occupation, Familiarity with Study Object/Tools [Siegmund

2012]

Task
Problem Development, Maintenance, Re-Engineering, Reverse Engineer-

ing, Software Process Management, Marketing, Test, Documen-
tation [Maletic et al. 2002]

Operation Retrieve Value, Filter, Compute Derived Value, Find Extremum,
Sort, Determine Range, Characterize Distribution, Find Anoma-
lies, Cluster, Correlate [Amar and Stasko 2004]

Software Artifact
Type Requirements, Architecture, Source Code, Stack Trace, Revision

History
Size Small, Medium, Large [Wettel et al. 2011]
Aspect Structure, Behavior, Evolution [Diehl 2007]

Representation
Dimensionality 2D, 2.5D, Augmented 2D, Adapted 2D, Inherent 3D Stasko and

Patterson [1993]
Technique Graph, Tree, Abstract/Real World Metaphor, Decorational/Repre-

sentational Animation [Gračanin et al. 2005; Diehl 2007; Höffler
and Leutner 2007]

Continued on next page

5 Structured Approach 67

Table 5.1 – continued from previous page

Factor/Sub-Factor Examples for possible instantiations

Navigation & Interaction
Technique Overview, Zoom, Filter, Details-on-Demand, Relate, History, Ex-

tract [Shneiderman 1996; Lee et al. 2005; Keim and Schnei-
dewind 2007; Yi et al. 2007]

Input Keyboard, Mouse, Gamepad, Flystick, Kinect, Touch Device,
Leap Motion, Brain-Computer Interface

Output Paper, Monitor, Projector, Virtual Reality Environment, Oculus
Rift

Implementation
Algorithm Radial Layout, Balloon Layout, Treemap, Information Cube,

Cone Tree [Herman et al. 2000]
Platform
Dependence Platform Independent, Platform Dependent
Automation Full, Semi, Manual
Data Abstraction Famix, Dynamix, Hismo [Nierstrasz et al. 2005; Greevy 2007;

Ducasse et al. 2004]

6 Controlled Experiment 68

6 Controlled Experiment

Müller, Richard, Pascal Kovacs, Jan Schilbach, and Dirk Zeckzer. 2014. “How to Master
Challenges in Experimental Evaluation of 2D versus 3D Software Visualizations.” In IEEE

VIS 2014 International Workshop on 3DVis: Does 3D Really Make Sense for Data Visuali-

zation?, Paris, France.

6.1 How to Master Challenges in Experimental Evaluation of 2D versus 3D
Software Visualizations

How to Master Challenges in Experimental Evaluation of 2D versus 3D
Software Visualizations

Richard Müller∗
Information Systems

Institute
University of Leipzig

Pascal Kovacs†

Information Systems
Institute

University of Leipzig

Jan Schilbach‡

Information Systems
Institute

University of Leipzig

Dirk Zeckzer§

Institute of Computer
Science

University of Leipzig

ABSTRACT

Software visualizations in 3D and virtual reality are an interest-
ing and debated research topic in academia. However, the benefits
and drawbacks of 3D software visualizations in immersive environ-
ments compared to its 2D counterparts are not very well understood
due to the lack of empirical evaluations. The challenge is to plan
valid experiments with analogous 2D and 3D visualization tech-
niques, while avoiding various influence factors and minimizing the
threats to validity. In this paper, we present an experiment as part
of a series using a structured approach to meet these challenges.

Index Terms: Information Interfaces and Presentation [H.5.1]:
Multimedia Information Systems—Evaluation/methodology
Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Virtual reality

1 INTRODUCTION

Performing controlled experiments in software visualization while
minimizing the threats to validity is hard to accomplish. There are
many influence factors such as the user, the task, the visualized soft-
ware artifact, its representation with the corresponding navigation
and interaction techniques as well as the implementation.

Furthermore, to derive general statements about the benefits or
drawbacks of visualizations one single experiment is not sufficient.
Rather, a series of experiments is needed [9]. Thus, selected influ-
ence factors should be varied in different experiments while keep-
ing the remaining factors constant or measure their influence.

This paper has two contributions. (1) We present an experiment
as part of such a series to answer the question: Does the additional
dimension in inherent 3D [17] software visualizations lead to ad-
vantages in solving software engineering tasks? (2) Further, we
explain how we met the challenge to control the influence factors in
comparing 2D vs. 3D software visualizations.

2 RELATED WORK

To control the different influence factors and to minimize the threats
to validity during an experiment and over the whole series, we used
a structured approach for planning and conducting controlled ex-
periments in software visualization [12]. The approach is based on
the extended process model for design and validation of visualiza-
tions by Munzner et al. [13, 10].

Further, we considered the lessons learned from other experi-
ments in software visualization [15], hints, guidelines, and frame-
works [16, 5, 20].

Important prior work in conducting controlled experiments com-
paring 2D and 3D information and software visualizations has been

∗e-mail: rmueller@wifa.uni-leipzig.de
†e-mail: kovacs@wifa.uni-leipzig.de
‡e-mail: schilbach@wifa.uni-leipzig.de
§e-mail: zeckzer@informatik.uni-leipzig.de

performed [18, 6, 19]. However, all of these controlled experiments
were not performed as part of a series. Therefore, deducing general
statements about advantages and disadvantages of the third dimen-
sion in software visualization is still difficult.

3 THE EXPERIMENT IN A NUTSHELL

In the experiment, we investigated the comprehension of a medium-
sized software system focusing on three main research questions:

1. Does an inherent 3D software visualization reduce the time to
solve a task, compared to a 2D software visualization?

2. Does an inherent 3D software visualization increase the cor-
rectness of the solution of a task, compared to a 2D software
visualization?

3. Does an inherent 3D software visualization require more in-
teraction to solve a task, compared to a 2D software visual-
ization?

From these research questions, we derived the directed hypothe-
ses given in Table 1. All hypotheses refer to a software comprehen-
sion task of medium-sized software systems.

Our research questions and hypotheses aim at comparing 2D ver-
sus 3D software visualizations. Therefore, the dimension of the
software visualization is the independent variable that is to be var-
ied. To verify our hypotheses, we measure the following dependent
variables in our experiment: the time a participant needs to com-
plete the task, the correctness of the participant’s solution, and the
click time the participant spends for interaction.

In order to measure the presumed effect, the random sample was
divided into two groups. Both groups had to solve the same tasks,
but the control group used a 2D and the experimental group used an
inherent 3D visualization. We applied a between-subjects design,
i.e., every participant was member of only one group.

4 CONTROLLING THE INFLUENCE FACTORS

Next, we describe how we control the influence factors in the ex-
periment. Table 2 shows all considered factors and the way how we
control them, i.e., whether we hold them constant or measure them.

Alternative Hypothesis Null Hypothesis

H11: The third dimension de-
creases time to solve a task.

H10: The third dimension
does not decrease time to
solve a task.

H21: The third dimension in-
creases correctness of solved
tasks.

H20: The third dimension
does not increase correctness
of solved tasks.

H31: The third dimension in-
creases interaction required to
solve a task.

H30: The third dimension
does not increase the interac-
tion required to solve a task.

Table 1: Directed hypotheses operationalizing the research ques-
tions.

6 Controlled Experiment 69

Factor/Sub-
Factor

Characteristic Control

User
Role Developer, Maintainer measured
Background 20-40 years measured

Male, Female measured
Color Blindness measured
Ability of Stereoscopic Viewing measured

Knowledge Bachelor, Master, PhD, Post Doc measured
Programming Experience measured
Domain Knowledge measured

Circumstances Occupation measured
Familiarity with Study Object measured
Familiarity with Study Tools measured

Task
Problem T1: Find a method, T2: Identify

dependencies
constant

Operation Retrieve Value, Filter, Find Ex-
tremum

constant

Software Artifact
Type Source Code: Java constant
Size Medium: 200K LOC constant
Aspect Structure constant
Representation
Dimensionality 2D, Inherent 3D varied
Technique Nested Node-Link constant
Navigation & Interaction
Technique Overview, Zoom, Details-on-

Demand, Relate
constant

Input Tablet constant
Output Virtual Reality Environment constant
Implementation
Algorithm Force-Directed Layout constant
Platform De-
pendence

Platform Independent constant

Automation Full constant
Data Abstrac-
tion

Famix constant

Table 2: Instance of the model: Comparing a 2D vs. an inherent 3D
software visualization [12].

4.1 User
Attributes of the user that might have an influence on the results are
color blindness, the ability of stereoscopic viewing, and the indi-
vidual experience in software development, software visualization,
virtual reality, and using a tablet. Furthermore, the frequency of ac-
tivities in playing 3D games, watching 3D movies in cinema or on
TV, as well as 3D modeling might also have an effect. In order to
check whether these factors are distributed almost equally among
both groups, we collected the necessary data and included it in our
analysis.

Furthermore, the user experience was measured with a question-
naire. The participants were assisted by pairs of words, in which
each pair represented contrasting judgments of the visualization.
This assessment was derived from the AttrakDiff questionnaire [8].
Finally, we asked for positive and negative aspects of the visualiza-
tions and for suggested improvements.

4.2 Task
A typical scenario in software development and re-engineering is
the identification of dependencies in complex software systems to
implement new features or to refactor code. The advantage of these
tasks is that a deep understanding of the software is not necessary,

whereby the training of the participant has less effect on the results.
Thus, the effort to train the participants and the effort needed to
review the experiment by others are reduced to a minimum [7].

Nevertheless, the participant must have at least some knowledge
about the system to solve this task in a proper way. Hence, the
first task of the experiment was to identify a single method using
a visualization. This gave a first insight into the visualized system.
The task was solved, if the participant identified the correct method.
In the second task, the participant had to identify six dependencies
of this method on other methods and attributes. To solve the sec-
ond task, the participant had to identify all six dependencies. Ev-
ery missing or wrongly identified dependency was rated as a single
mistake. The first visualization did not contain any dependency to
avoid solving the second task at the same time. An additional bene-
fit of this combination of tasks is, that the participant did not have to
search for the starting point of the second task, whereby the search
had no influence on the result of identifying the dependencies.

4.3 Software Artifact
The analyzed software system is the Apache Tomcat Project [1] be-
ing a good example of medium-sized and freely available software
systems. To handle the visualization in a proper way, the size of the
visualized code was limited to three bigger packages, selected ac-
cording to the amount of the contained classes, methods, attributes,
and relations. Presenting only a subset of the whole system imi-
tates a zoom interaction by the user and limits the time needed per
participant.

4.4 Representation
A suitable representation technique of the software artifact to solve
the two tasks is a nested node-link visualization. This decision has
the advantage that corresponding shapes for 2D and 3D visualiza-
tions exist, e.g., a rectangle in 2D is a cuboid in 3D. Addition-
ally, the containment relation, typical for the structure of software
systems, was realized by nested elements. The packages, classes,
methods, and attributes were mapped to nodes, while the invoca-
tion relations were mapped to edges. The complete mapping is de-
scribed in Table 3.

Entity 2D 3D Color
Package Rectangle Cuboid Pink

Class Rectangle Cuboid Red
Method Ellipse Sphere Blue
Attribute Ellipse Sphere Green

Method call Line Tube Blue
Attribute call Line Tube Green

Table 3: Mapping of software entities in 2D and 3D.

4.5 Navigation & Interaction
The device for interacting with the visualization was a tablet
(ODYS Xelio, Android 4) that contained a touch-surface and com-
municated with the controlling computer via WLAN. To minimize
the effect of the interaction on the outcome of the experiment, a cus-
tomized interface was implemented as an app for the tablet, which
provides similar interactions for both, the 2D and the 3D visual-
izations, using the touch screen. Figure 1 shows the graphical user
interface to control 3D visualizations, containing buttons for mov-
ing left, right, up, down, zooming in/out, rotating around the x-, y-,
z-axis, and resetting the position of the visualization. For 2D visual-
izations, the buttons for rotation were omitted, which was the only
difference in interaction between the 2D and the 3D visualization.
The app uses standard HTTP-GET requests, which were sent to the
web server of the InstantPlayer, to control the user’s movement in
the scene.

6 Controlled Experiment 70

Figure 1: Mockups of the graphical user interface for 2D and 3D.

The experiment was performed in a virtual reality environment
with a powerwall composed of three connected screens as the out-
put device. The light in the lab was controlled by darkening all
windows. The image for the wall is generated by two projectors
per screen using the INFITEC-method. Therefore, the participants
had to wear special 3D glasses to receive an immersive view of the
3D visualization. To eliminate the influence of the glasses on the
results, the participants using the 2D visualization also had to wear
some.

4.6 Implementation
For the 3D visualizations, the layout was computed with the FDL
tool [21], whereas the FDP tool of Graphviz [3] was used for 2D
visualizations. Both tools apply a force-directed layout algorithm.
Extracts from the resulting visualizations for the second task are
shown in Figure 2.

We used a generator to create the visualizations for the experi-
ment automatically [11]. The generator utilizes the generative and
the model driven paradigm to process different input formats and
transform them into different output formats with minimum con-
figuration effort. The input for both visualizations was the source
code of the Apache Tomcat Project parsed into a Famix model [14].
The output format of the generator was Extensible 3D (X3D) [2].
X3D served as format for both visualizations and is platform inde-
pendent.

The visualizations were rendered by the InstantPlayer [4]. It has
a wide coverage of the X3D-standard and supports different output
device configurations, including stereoscopic virtual reality envi-
ronments. Additionally, it comes with a built-in web server, with
the ability to access and modify the scene via standard HTTP-GET
requests.

5 RESULTS

We measured the influence of the independent variable dimension
on our dependent variables time, correctness, and click time. Due to
the sample size of 18 we applied the non-parametric Mann-Whitney
U-Test to check our hypotheses. We chose a significance level of
α = 0.05 corresponding to a 95% confidence interval. Two observa-
tions had to be partially excluded from the results due to technical
problems, one measurement of time and one of click time. Table 4
shows the detailed results of the experiment.

For the first task, none of the differences in time, in correct-
ness, or in the amount of interaction were significant (ptime,1 =
0.271, pcorr,1 = 0.235, pclick,1 = 0.303). The results indicate, how-
ever, that the experimental group (3D) took less time (−18.08%),
was more accurate (+28.57%), and also used less interac-
tion (−10.59%).

For the second task, time and interaction were significantly dif-
ferent. There was an increase in time of 42.29% from the control
group to the experimental group. There was an increase in correct-
ness of +14.28% in the second task from the control group to the
experimental group. While the null hypothesis could not be rejected
for time and correctness (pcorr,2 = 0.405), it could be rejected for
interaction. In the second task, there was a significant increase of

Figure 2: Extracts from 2D and 3D nested node-link visualization
(overview/zoom).

111.41% of interactions from the control group to the experimen-
tal group (pclick,2 = 0.030). Thus, there is a strong indication that
3D does not decrease the time to analyze a software system. There
was no significant difference in correctness. The results from the
experiment rather suggest the following conclusions:

Time: The third dimension does not decrease the time to solve
a software comprehension task in medium-sized software systems.
The decrease of 18.08% for the first task was not significant. Only
the increase of 42.29% for the second task was significant.

Correctness: The third dimension does not increase the correct-
ness of a solved software comprehension task in medium-sized soft-
ware systems. Even though the 3D group made less mistakes, this
difference was not significant.

Click time: The third dimension increases the interaction re-
quired to solve a software comprehension task in medium-sized
software systems. There was an increase of 111.41%.

User experience: In the questionnaire regarding the user expe-
rience, all participants were included, also the formerly excluded
outliers. The experimental group, i.e., the 3D group, rated slightly
more positive. The majority of this group experienced the inherent
3D visualization more motivating, less demanding, more inventive,
more innovative, and more clearly structured.

6 DISCUSSION

In this section, we discuss the results of the experiment and the
feasibility of the structured approach.

6.1 Experiment
The main objective of the experiment was to investigate the influ-
ence of the dimensionality in software visualizations on time, cor-
rectness, and interaction. From the three hypotheses only the influ-
ence of interaction was significant in the second task. This effect
could be explained by the increased amount of degrees of freedom
necessary for navigation in inherent 3D software visualizations. In
addition to the left, right, up, down, zoom in/out and reset controls
there are rotations around the x-, y-, and z-axis in both directions
each.

Due to the small sample size and the choice of very basic tasks,
the results have to be interpreted with caution. It is possible that out-

6 Controlled Experiment 71

Time [s] Correctness [%] Click Time [s]
Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D
n 9 8 9 8 9 9 9 9 8 9 8 9
min 20.86 16.31 29.38 72.98 0 100 0 50.02 1.37 1.10 0.80 1.48
max 130.29 102.80 247.05 191.19 100 100 100 100 4.27 4.84 15.06 26.16
median 49.42 40.86 71.92 128.93 100 100 100 100 2.73 1.88 2.47 6.59
mean 59.09 48.40 89.33 127.11 77.78 100 77.78 88.89 2.77 2.48 3.88 8.21

difference [%] −18.08 +42.29 +28.57 +14.28 −10.59 +111.41
σ 33.27 31.43 63.92 38.67 44.10 0 39.96 18.63 1.10 1.48 4.69 7.39

Table 4: Descriptive statistics of the dependent variables.

liers distort the results. In future experiments we aim at a minimum
of 20 participants per group to gain more reliable results. Addition-
ally, the choice of tasks should be improved in the future. In our
experimental design the tasks were not independent of each other.
Therefore, if a participant made an error in the first task, the second
one mostly resulted in an error, too. For this reason, the different
tasks should be all mutually independent. Moreover, there should
be more than two tasks in such an experiment. Finally, participants
should be assigned to the groups before the experiment based on
a pre-questionnaire in order to assure an equal distribution among
groups from the beginning.

6.2 Approach
Nonetheless, the experiment shows, that our approach is suitable
to plan and conduct comparing experiments in the field of software
visualization. The structured approach was helpful to determine
the relevant influence factors. Further, we were able to control
these factors either by holding them constant or by measuring them.
Hence, we measured relevant characteristics from the participants.
We used the same tasks, the same software artifact, and the same
virtual reality environment. Moreover, we applied a similar visu-
alization (nested node-link) as well as navigation and interaction
technique (specific interface) reducing the differences between both
groups to a minimum. Finally, we assured that both visualizations
contained the same information by using the generator including
Famix and X3D.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an experiment examining the influence
of the third dimension in software visualization. The underlying
structured approach supported us in planning and conducting this
experiment and creating comparable empirical data for our series.
We outlined different approaches to overcome specific challenges
comparing 2D vs. 3D software visualizations.

For the moment, we state that the third dimension does not show
significant advantages in solving a task for medium-sized software
systems. But as discussed in the previous section, these results have
to be interpreted with caution.

In the future, we consider the findings from this experiment and
plan to conduct further experiments to investigate other factors re-
sponsible for the advantages and disadvantages of software visual-
izations.

REFERENCES

[1] Apache Tomcat. http://tomcat.apache.org/. Accessed:
2014-09-18.

[2] Extensible 3D (X3D). http://www.web3d.org/x3d/. Ac-
cessed: 2014-09-18.

[3] Graphviz. http://www.graphviz.org/. Accessed: 2014-09-
18.

[4] InstantReality. http://www.instantreality.org/. Ac-
cessed: 2014-09-18.

[5] S. Carpendale. Evaluating information visualizations. In A. Ker-
ren, J. Stasko, J.-D. Fekete, and C. North, editors, Inf. Vis. Human-
Centered Issues Perspect., pages 19–45, Berlin, Heidelberg, 2008.
Springer.

[6] A. Cockburn and B. McKenzie. 3D or not 3D?: evaluating the effect
of the third dimension in a document management system. In Proc.
SIGCHI Conf. Hum. factors Comput. Syst., pages 434–441. ACM,
Mar. 2001.

[7] M. Di Penta, R. E. K. Stirewalt, and E. Kraemer. Designing your Next
Empirical Study on Program Comprehension. In 15th Int. Conf. Progr.
Compr., pages 281–285, 2007.

[8] M. Hassenzahl, A. Platz, M. Burmester, and K. Lehner. Hedonic and
ergonomic quality aspects determine a software’s appeal. In CHI,
pages 201–208, 2000.

[9] P. Irani and C. Ware. Diagramming information structures using 3D
perceptual primitives. ACM Trans. Comput. Interact., 10(1):1–19,
2003.

[10] M. Meyer, M. Sedlmair, and T. Munzner. The four-level nested model
revisited: blocks and guidelines. In Work. BEyond time errors Nov.
Eval. methods Inf. Vis., pages 1–6, 2012.

[11] R. Müller, P. Kovacs, J. Schilbach, and U. Eisenecker. Generative
Software Visualization: Automatic Generation of User-Specific Visu-
alizations. In Proc. Int. Work. Digit. Eng., pages 45–49, Magdeburg,
Germany, 2011.

[12] R. Müller, P. Kovacs, J. Schilbach, U. Eisenecker, D. Zeckzer, and
G. Scheuermann. A Structured Approach for Conducting a Series of
Controlled Experiments in Software Visualization. In Proc. 5th Int.
Conf. Vis. Theory Appl., pages 204–209, Lisbon, Portugal, 2014.

[13] T. Munzner. A nested model for visualization design and validation.
IEEE Trans. Vis. Comput. Graph., 15(6):921–928, 2009.

[14] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of moose: an agile
reengineering environment. In Proc. 10th Eur. Softw. Eng. Conf. held
jointly with 13th SIGSOFT Int. Symp. Found. Softw. Eng., pages 1–10,
New York, USA, 2005. ACM.

[15] M. Sensalire, P. Ogao, and A. Telea. Evaluation of software visual-
ization tools: Lessons learned. In 5th Int. Work. Vis. Softw. Underst.
Anal., pages 19–26. IEEE, 2009.

[16] D. I. K. Sjø berg, T. Dybå, and M. Jø rgensen. The Future of Empirical
Methods in Software Engineering Research. In Fut. Softw. Eng., pages
358–378. IEEE, May 2007.

[17] J. Stasko and J. Wehrli. Three-dimensional computation visualization.
Proc. 1993 IEEE Symp. Vis. Lang., pages 100–107, 1993.

[18] C. Ware and G. Franck. Viewing a graph in a virtual reality display is
three times as good as a 2D diagram. IEEE Symp. Vis. Lang., pages
182–183, 1994.

[19] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A
controlled experiment. In Proc. 33rd Int. Conf. Softw. Eng., pages
551–560, Waikiki, Honolulu, USA, 2011. ACM.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering. Springer,
2012.

[21] D. Zeckzer, R. Kalcklösch, L. Schröder, H. Hagen, and T. Klein. An-
alyzing the reliability of communication between software entities us-
ing a 3D visualization of clustered graphs. In Proc. 4th ACM Symp.
Softw. Vis., pages 37–46, New York, USA, Sept. 2008. ACM.

6 Controlled Experiment 72

6 Controlled Experiment 73

6.2 Summary

The benefits and drawbacks of 3D software visualizations in immersive environments com-
pared to their 2D counterparts are not very well understood due to the lack of empirical
evaluations. The challenge is to plan valid experiments with corresponding 2D and 3D visua-
lization techniques, while controlling various influence factors and minimizing the threats to
validity. In this controlled experiment these challenges are met using the generator [Müller
et al. 2011] and the structured approach [Müller et al. 2014a] described in the preceding
Chapters 4 and 5. The controlled experiment investigates the influence of dimensionality in
software visualization.
The experiment refers to SQ3: What role does the factor dimensionality play in solving

software engineering tasks? (see Section 1.2) and details it with the following research ques-
tions:

• Time: Does an inherent 3D software visualization reduce the time to solve a task,
compared to a 2D software visualization?

• Correctness: Does an inherent 3D software visualization increase the correctness of
the solution of a task, compared to a 2D software visualization?

• Interaction: Does an inherent 3D software visualization require more interaction to
solve a task, compared to a 2D software visualization?

From these research questions, the directed hypotheses given in Table 6.1 are derived. All
hypotheses refer to a software comprehension task of medium-sized software systems.

Table 6.1: Directed hypotheses operationalizing the research ques-
tions [Müller et al. 2014b].

Alternative Hypothesis Null Hypothesis

H11: The third dimension decreases time to
solve a task.

H10: The third dimension does not decrease
time to solve a task.

H21: The third dimension increases correct-
ness of solved tasks.

H20: The third dimension does not increase
correctness of solved tasks.

H31: The third dimension increases interac-
tion required to solve a task.

H30: The third dimension does not increase
the interaction required to solve a task.

The research questions and hypotheses aim at comparing 2D versus 3D software visualiza-
tions. Therefore, the dimension of the software visualization is the independent variable that
is varied. To verify the hypotheses, the following dependent variables are measured in the
experiment: the time a participant needs to complete the task, the correctness of the partic-
ipant’s solution, and the click time the participant spends for interaction. Furthermore, the
random sample was divided into two groups. Both groups had to solve the same tasks, but

6 Controlled Experiment 74

the control group used a 2D and the experimental group used an inherent 3D visualization. A
between-subjects design was applied, i.e., every participant was member of only one group.
The visualizations for the experiment were produced with the generator [Müller et al. 2011].
Moreover, the structured approach was applied in the experiment [Müller et al. 2014a]. The
approach helped to plan the experiment, to determine relevant influence factors, and to con-
trol these factors. Table 6.2 shows all considered factors and the way how they were con-
trolled, i.e., whether they were hold constant or measured.

Table 6.2: Instance of the theoretical model for comparing a 2D
vs. an inherent 3D software visualization. [Müller et al. 2014b].

Factor/Sub-Factor Characteristic Control

User
Role Developer, Maintainer measured
Background 20-40 years measured

Male, Female measured
Color Blindness measured
Ability of Stereoscopic Viewing measured

Knowledge Bachelor, Master, PhD, Post Doc measured
Programming Experience measured
Domain Knowledge measured

Circumstances Occupation measured
Familiarity with Study Object measured
Familiarity with Study Tools measured

Task
Problem T1: Find a method, T2: Identify dependencies constant
Operation Retrieve Value, Filter, Find Extremum constant

Software Artifact
Type Source Code: Java constant
Size Medium: 200K LOC constant
Aspect Structure constant

Representation
Dimensionality 2D, Inherent 3D varied
Technique Nested Node-Link constant

Navigation & Interaction
Technique Overview, Zoom, Details-on-Demand, Relate constant
Input Tablet constant
Output Virtual Reality Environment constant

Implementation
Algorithm Force-Directed Layout constant
Platform Dependence Platform Independent constant
Automation Full constant
Data Abstraction Famix constant

The results of the experiment indicate that the third dimension does not decrease the time

to solve a software comprehension task in medium-sized software systems. The decrease of

6 Controlled Experiment 75

18.08% for the first task was not significant. Only the increase of 42.29% for the second task
was significant. Furthermore, the third dimension does not increase the correctness of the
solution of a software comprehension task in medium-sized software systems. Even though
the 3D group made less mistakes, this difference was not significant. The third dimension
increases the interaction required to solve a software comprehension task in medium-sized
software systems. There was an increase of 111.41% regarding the time spent for interaction.
In the post-questionnaire [Hassenzahl et al. 2000], the experimental group (3D group) rated
slightly more positive. They found the 3D visualization more motivating, less demanding,
more inventive, more innovative, and more clearly structured.
To conclude, the dimensionality of software visualizations is not a decisive factor that shows
significant advantages in solving a task for medium-sized software systems. It plays a rather
tangential role. To increase its benefit, it has to applied in a useful way. More important
seems to be the used visualization technique or metaphor. A suitable metaphor combining
2D and 3D usefully is introduced next, in Chapter 7.

7 The Recursive Disk Metaphor 76

7 The Recursive Disk Metaphor

Müller, Richard, and Dirk Zeckzer. 2015. “The Recursive Disk Metaphor - A Glyph-Based
Approach for Software Visualization.” In Proceedings of the 6th International Conference

on Visualization Theory and Applications, Berlin, Germany.

7.1 The Recursive Disk Metaphor - A Glyph-based Approach for Software
Visualization

The Recursive Disk Metaphor
A Glyph-based Approach for Software Visualization

Richard Müller1, Dirk Zeckzer2

1Information Systems Institute, Leipzig University, Leipzig, Germany
2Institute of Computer Science, Leipzig University, Leipzig, Germany

rmueller@wifa.uni-leipzig.de, zeckzer@informatik.uni-leipzig.de

Keywords: Software Visualization, Glyph-based Visualization

Abstract: In this paper, we present the recursive disk metaphor, a glyph-based visualization for software visualization.
The metaphor represents all important structural aspects and relations of software using nested circular glyphs.
The result is a shape with an inner structural consistency and a completely defined orientation. We compare the
recursive disk metaphor to other state-of-the-art 2D approaches that visualize structural aspects and relations
of software. Further, a case study shows the feasibility and scalability of the approach by visualizing an open
source software system in a browser.

1 INTRODUCTION

Software is known to be complex, intangible, and in-
visible (Gračanin et al., 2005). A major challenge in
the field of software visualization is to give the ab-
stract artifact software a shape in order to explore and
to understand it.

We present a glyph-based approach to make struc-
tural software entities and eventually the whole soft-
ware system visible. Glyph-based visualization is a
form of visual design where a data set is represented
by a collection of visual objects referred to as glyphs
(Borgo et al., 2013). In more detail,
• "[...] a glyph is a small visual object that can

be used independently and constructively to de-
pict attributes of a data record or the composition
of a set of data records;

• each glyph [...] can be spatially connected to con-
vey the topological relationships between data
records or geometric continuity of the underlying
data space; and

• glyphs are a type of visual sign that can make use
of visual features of other types of signs such as
icons, indices and symbols." (Borgo et al., 2013)
To assemble the shape of software from scratch,

we start with the basic structural entities of software,
i.e., system, namespaces/packages, classes, methods,
and attributes. Further, relations should be shown
on demand to avoid visual clutter. Common visual-
ization techniques to represent structure and metrics

of software in 2D are node-link diagrams, Cartesian,
Voronoi, or circular treemaps, and Sunburst (Caserta
and Zendra, 2011). We map the entities to circular
glyphs. The spatial location of each glyph is predeter-
mined by the underlying structure of the software, i.e.,
by the containment relations of the entities. As glyphs
may contain other glyphs, they are constructed recur-
sively. For these reasons, we call this approach re-
cursive disk metaphor. We decided to dismiss global
space-efficiency for local space-efficiency allowing
a complete representation of namespaces/packages,
classes, inner classes, methods, and attributes. While
the resulting visualization is not space-filling as other
types of treemaps, it still uses space efficiently by
avoiding empty space between the glyphs and by
omitting the links. The empty space supports the for-
mation of characteristic patterns that can easily be
perceived.

We believe that the application of glyphs holds
benefits for software visualization, as one major
strength of glyphs is that patterns involving multiple
data dimensions may be more easily perceived (Ward,
2008):

1. We get a complete shape for the whole software
system representing all important structural enti-
ties and their relations. This leads to visually dif-
ferentiable class glyphs.

2. Design flaws may be easily detectable through
certain visual anti-patterns during software qual-
ity assessment.

7 The Recursive Disk Metaphor 77

2 RELATED WORK

Glyphs have been successfully applied in 2D software
visualization. Chuah and Eick (1998) map software
management data to timewheel and infobug glyphs.
Pinzger et al. (2005) map structural and evolutionary
software metrics to Kiviat diagrams. Boccuzzo and
Gall (2007) map structural software metrics to well-
known glyphs, such as houses, tables, and spears. The
final shape looks either well-shaped or mis-shaped
and allows conclusions concerning the software de-
sign. Besides the unique visual patterns, all ap-
proaches use the benefit of glyphs to view many di-
mensions of the data simultaneously.

According to Caserta and Zendra (2011) current
state-of-the-art techniques to visualize static aspects
of software in 2D are Treemap (Shneiderman, 1992),
Circular Treemap (Wang et al., 2006), Sunburst (An-
drews and Heidegger, 1998; Stasko et al., 2000), De-
pendency Structure Matrix (Sangal et al., 2005), Hier-
archical Edge Bundles (Holten, 2006), Treemap met-
rics (Holten et al., 2005), Class Blueprint/Polymetric
Views (CodeCrawler) (Lanza, 2003; Ducasse and
Lanza, 2005), Voronoi Treemap (Balzer et al., 2005),
UML (Gutwenger et al., 2003), UML MetricView
(Termeer et al., 2005), UML Area of Interest (Byelas

Table 1: Completeness comparison between recursive disk
metaphor and 2D software visualizations of static aspects
(+ supported/– not supported).

Technique/ Tool

Pa
ck

ag
e

C
la

ss

In
ne

r
C

la
ss

M
et

ho
d

A
tt

ri
bu

te

R
el

at
io

ns

Treemap + + – – – –

Circular Treemap + + – – – –

Sunburst + + – – – –

Dep. Struc. Mat. + – – – – +

Hier. Edge Bund. + + – – – +

Treemap metrics + + – + – –

CodeCrawler – + – + + +

Voronoi Treemap + + + + + –

UML + + – + + +

UML MetricView + + – + + +

UML Area of Int. + + – + + +

Rigi + + – + + +

Recursive Disk + + + + + +

and Telea, 2006), and SHriMP Views (Rigi) (Storey
et al., 1997). However, all of these techniques do
not support all structural entities and relations. A
comparison of the completeness between the recur-
sive disk metaphor and these 2D software visualiza-
tions of static aspects is shown in Table 1. It shows
that the recursive disk metaphor is the only technique
that visually represents inner classes and relations.

Although, there are applications of radial layouts
(Stasko et al., 2000; Barlow and Neville, 2001; Wang
et al., 2006; Fischer et al., 2012), they are not very
widespread because of some drawbacks (Burch and
Weiskopf, 2014). First, they are not as space-efficient
as Cartesian treemaps (McGuffin and Robert, 2010).
Second, it is more difficult to estimate and compare
areas of circles (Cleveland and McGill, 1984). As
stated in the introduction, using a circular, glyph-
based approach uses space efficiently while allowing
the formation of patterns that facilitate the compari-
son of the structure.

3 THE RECURSIVE DISK
METAPHOR

In general, the recursive disk metaphor is applicable
to visualize software written in procedural and object
oriented languages. However, due to their popular-
ity, we focus on object-oriented languages. Hence,
we use Java as reference language to explain the
metaphor.

3.1 Glyph Design

A glyph consists of a graphical entity with compo-
nents, each of which has geometric attributes and ap-
pearance attributes (Ward, 2002). For the recursive
disk metaphor, we use the geometric attributes shape,
size, orientation, position, and direction as well as the
appearance attributes color and transparency.

3.1.1 Geometric Attributes

For each software entity, i.e., attribute, method, class,
and package as well as the system as a whole circular
glyphs are used. The circle for classes is divided into
one or more inner circles surrounded by rings. From
inside to outside, inner classes, attributes, and meth-
ods are mapped to these elements. If one of these en-
tities is missing, it is simply omitted. Attributes and
methods are represented by circle or ring segments.
The outermost ring of a class forms its border to dis-
tinguish it from other classes. In Java packages have

7 The Recursive Disk Metaphor 78

5

1

2

3

4

(a)

1
2

(b)
Figure 1: Basic glyphs and relations with the recursive disk
metaphor: (a) 1 - Package with five classes, 2 - General
classes with altogether eighteen methods and five attributes,
3 - Method class with two methods, 4 - Data class with four
attributes, 5 - Class with eight methods, eight attributes, and
three inner classes (b) 1 - Selected class, 2 - Superclass.

neither methods nor attributes. For this reason, they
are only represented by the border ring.

Attribute glyphs are all of the same size. The size
of a method glyph is estimated using its number of
statements. The size of a class glyph is determined
by the sum of the number of its attributes, the sizes
of its methods, and, if present, the sizes of its inner
classes1. All values are accumulated and represented
by area. Consequently, a class with a large size cov-
ers a large area. This area reflects the expense to read
and understand the source code of a certain class. As
the radius of the rings for packages and classes de-
pends on their elements, it is defined by the minimum
bounding circle.

3.1.2 Appearance Attributes

The default color mapping is chosen according to the
opponent process theory (Ware, 2004). As most peo-
ple with color deficiency view have problems distin-
guishing red and green, the combination of these col-
ors has been avoided. Consequently, the glyphs for at-
tributes are yellow, methods are blue, classes purple,
and packages are gray. An example of the appearance
of the different glyph types is shown in Figure 1 (a).

Relations between glyphs can be explored interac-
tively. They are visualized using opacity. Only glyphs
participating in a relation are opaque while all other,
unrelated glyphs are transparent. To visualize rela-
tions, a glyph has to be selected and the type of re-
lation has to be chosen. A selected glyph is marked
red. There are different types of relations depending
on the type of the glyph. For class glyphs there are

1The original idea (Eisenecker, 2012) uses sizes of at-
tributes and methods that are proportional to their number of
characters of their identifier or definition. However, due to
technical restrictions, we use the approach described above.

supertypes and subtypes, for method glyphs there are
callers and callees, and for attribute glyphs there are
accessors. An example of showing the supertype of a
class glyph is illustrated in Figure 1 (b).

3.2 Placement Strategy

The layout of the glyphs is structure-driven combin-
ing a hierarchical and an ordered circular positioning
pattern (Ward, 2002). Hence, the class and pack-
age glyphs are arranged according to their hierar-
chy level and their net area. The net area is the ac-
tual area of a glyph derived from its containing ele-
ments. On the contrary, the gross area includes ad-
ditional empty space due to hierarchical placement.
The applied layout is a derivation of the classical cir-
cle packing algorithm (Wang et al., 2006). The dif-
ference is that the glyph with the largest net area is
placed in the center of the visualization and the re-
maining glyphs are ordered descending by their net
area and arranged clockwise around the largest glyph
in the center. This is done recursively for all class
and package glyphs on every hierarchy level. Addi-
tionally, the method glyphs in a class glyph are or-
dered clockwise descending according to their area.
Attribute glyphs are arranged in the same manner de-
pending on the size of their type. The result is a shape
with an inner structural consistency and a completely
defined orientation. The extension of the classical cir-
cle packing algorithm with the described placement
strategy facilitates the comparison of areas of differ-
ent glyphs. An example of the arrangement of one
package, five classes, and three inner classes is shown
in Figure 1 (a).

3.3 Implementation

The underlying technical approach for generating the
recursive disk metaphor combines the generative and
the model-driven paradigms (Müller et al., 2011). The
whole visualization pipeline and the applied imple-
mentation techniques are summarized in Figure 2.

The information needed for the visualization
is extracted from software systems and stored in
Famix (Nierstrasz et al., 2005). During the analysis,
these models are checked for syntactic and semantic

Extraction Analysis Filtering Mapping Rendering

Famix Eclipse Modeling Framework

X3D
X3DOM
HTML 5

Javascript

Figure 2: Visualization pipeline and implementation tech-
niques.

7 The Recursive Disk Metaphor 79

validity. They must conform to their meta-model and
fulfill some predefined rules, e.g., each entity must
have a unique identifier.

There are two types of filtering. The first one is
applied at build time. Here, the user can specify the
desired packages that should be visualized. Currently,
this is realized by a properties file. This will be re-
placed by a wizard in a future version. The second
one is applied at runtime and described in Section 4.1.

The mapping is realized by model transformations
and model modifications using the Eclipse Modeling
Framework (EMF, 2014). It is divided into two parts.
First, the valid and filtered entities from the input
model are mapped to a platform independent model.
Then, the layout of these entities is computed provid-
ing sizes and positions for the visualization. Second,
the platform independent model is mapped to a plat-
form specific one, here, Extensible 3D (X3D). Finally,
the X3D model is optimized for the web and con-
verted to X3DOM (Behr et al., 2012). The resulting
visualization is rendered by a browser.

4 CASE STUDY: FINDBUGS

Findbugs is an open source software that uses static
analysis to look for bugs in Java code (Findbugs,
2014). According to our analysis, version 3.0.0 has
61 packages, 1425 classes, 10541 methods, and 5413
attributes. Altogether, there are approximately 200K
LOC.

4.1 Navigation and Interaction

As depicted in Figure 3, currently the following inter-
action techniques are supported to explore Findbugs:
• Overview/Zoom: The navigation mode turntable

allows to zoom in and out, to rotate, and to pan.
• Filter: The entities can be hidden and unhidden

as well as searched for.

Figure 3: Mockup of the browser interface with focus on
interaction techniques.

• Details-on-demand: For each entity exists a de-
tailed view.

• Relate: Relations between entities can be shown.

From Shneiderman’s visualization mantra (Shnei-
derman, 1992), only history and extract are currently
not supported.

4.2 Visual Patterns

The glyph design and the placement strategy lead to
a specific appearance of glyphs on class level and on
system level forming unique visual patterns.

Hence, a visual differentiation of the kind of
classes is possible based on patterns. In Findbugs,
the following patterns occur. A general class with at-
tributes and methods has a yellow circle in its center
surrounded by a blue ring (Figure 4 (a)). A class with
only attributes is yellow (Figure 4 (b)). If it is not
a data class, it is an enumeration. A class with only
methods is blue (Figure 4 (c)). A class with neither
attributes nor methods results in a purple disk (Fig-
ure 4 (d)). The ring with a blue circle in its center
or the purple disk may be an abstract class or an inter-
face. Nested elements, such as inner classes or classes
in packages, lead to some empty space in the resulting
figure producing further recognizable visual patterns
(Figure 4 (e)).

The recursive disk metaphor can be used to as-
sess the quality of software by exploring visual pat-

(a) (b) (c) (d)

(e) (f)
Figure 4: Examples for patterns (a-d) and anti-patterns (e-f)
in Findbugs visualized with the recursive disk metaphor: (a)
General class with attributes and methods (Incompatible-
Types) (b) Enumeration (IdentityMethodState) (c) Abstract
class (BetterVisitor) (d) Interface (ComparableMethod) (e)
God class (FindRefComparison) (f) Brain class (Find-
NullDeref).

7 The Recursive Disk Metaphor 80

(a) (b)
Figure 5: The structure of Findbugs visualized with the recursive disk metaphor in a browser: (a) Overview (b) Zoom.

terns. Design flaws can be identified by anti-patterns.
Lanza et al. Lanza et al. (2006) introduced several
anti-patterns, such as god class and brain class. An
example for each anti-pattern occurring in Findbugs
is shown in Figure 4 (e) and (f). Obviously, these two
classes have a different appearance and they are big-
ger than the other classes. Additionally, they tend to
appear in the center of their hierarchy level. Conse-
quently, they are readily detectable. We believe that
the recursive disk metaphor is ideally suited to detect
anti-patterns in software systems. While these anti-
patterns could in principle be detected automatically
(Lanza et al., 2006), the parameters for these detection
algorithms have to be established empirically. Using
visualization, no parameters are needed and combi-
nations of anti-patterns can be spotted (Wettel and
Lanza, 2008).

All these glyphs form the visualization in Fig-
ure 5. It contains two screen-shots of Findbugs visu-
alized with the recursive disk metaphor in a browser.
The left screenshot shows the structure of the whole
system and the right screenshot represents a detailed
view of a part of the system.

5 CONCLUSION AND FUTURE
WORK

We presented the recursive disk metaphor using
glyph-based visualization for software visualization.
The metaphor focuses on the structure of software
including all important entities from package to at-
tribute level as well as their relations. Additionally, it
has an inner structural consistency and a completely
defined orientation. Hence, the glyph-based approach
gives the per se intangible and invisible software a
shape. It produces unique visual patterns for class
structures and for anti-patterns. We compared the re-
cursive disk metaphor to related work and discussed

design decisions. Further, we outlined implementa-
tion details and presented the interface. Its feasibility
and scalability has been shown with a case study.

In the future, we intend to cover additional lan-
guages, such as C/C++ and .NET. Additionally, we
plan to compare our approach with established ap-
proaches for visually detecting anti-patterns (Wettel
and Lanza, 2008). Finally, a series of controlled ex-
periments is planned based on the approach by Müller
et al. (2014) to empirically evaluate the metaphor.

ACKNOWLEDGEMENTS

We would like to thank Ulrich Eisenecker for the ini-
tial idea of this metaphor (Eisenecker, 2012) and the
inspiring discussions.

REFERENCES

Andrews, K. and Heidegger, H. (1998). Information slices:
Visualising and exploring large hierarchies using cas-
cading, semi-circular discs. In InfoVis 1998, pages
9–11.

Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi
treemaps for the visualization of software metrics. In
Proc. 2005 ACM Symp. Softw. Vis., pages 165–172,
New York, USA. ACM Press.

Barlow, T. and Neville, P. (2001). A comparison of 2-D
visualizations of hierarchies. In InfoVis 2001, pages
131–138. IEEE.

Behr, J., Jung, Y., Franke, T., and Sturm, T. (2012). Using
images and explicit binary container for efficient and
incremental delivery of declarative 3D scenes on the
web. In Proc. 17th Int. Conf. 3D Web Technol., pages
17–26, New York, USA. ACM Press.

Boccuzzo, S. and Gall, H. (2007). CocoViz: Towards Cog-
nitive Software Visualizations. In 4th Int. Work. Vis.
Softw. Underst. Anal., pages 72–79. IEEE.

7 The Recursive Disk Metaphor 81

Borgo, R., Kehrer, J., Chung, D., Maguire, E., Laramee,
R. S., Ward, M., and Chen, M. (2013). Glyph-based
visualization: Foundations, design guidelines, tech-
niques and applications. Eurographics.

Burch, M. and Weiskopf, D. (2014). On the Benefits and
Drawbacks of Radial Diagrams. In Handb. Hum. Cen-
tric Vis., pages 429–451. Springer.

Byelas, H. and Telea, A. (2006). Visualization of areas of
interest in software architecture diagrams. In Proc.
2006 ACM Symp. Softw. Vis., pages 105–114, New
York, USA. ACM Press.

Caserta, P. and Zendra, O. (2011). Visualization of the
Static Aspects of Software: A Survey. IEEE Trans.
Vis. Comput. Graph., 17(7):913–933.

Chuah, M. and Eick, S. (1998). Information rich glyphs
for software management data. IEEE Comput. Graph.
Appl., 18(4):24–29.

Cleveland, W. and McGill, R. (1984). Graphical percep-
tion: Theory, experimentation, and application to the
development of graphical methods. J. Am. Stat. As-
soc., 79(387):531–554.

Ducasse, S. and Lanza, M. (2005). The class blueprint: vi-
sually supporting the understanding of classes. IEEE
Trans. Softw. Eng., 31(1):75–90.

Eisenecker, U. W. (2012). Ideas on the recursive disk
metaphor (audio file).

EMF (2014). Eclipse Modeling Framework. http://www.
eclipse.org/modeling/emf/. Accessed: 2014-11-
05.

Findbugs (2014). Findbugs. http://findbugs.
sourceforge.net/. Accessed: 2014-11-05.

Fischer, F., Fuchs, J., and Mansmann, F. (2012). ClockMap:
Enhancing circular treemaps with temporal glyphs for
time-series data. In Eurographics Conf. Vis., pages
97–101. ACM.

Gračanin, D., Matković, K., and Eltoweissy, M. (2005).
Software Visualization. Innov. Syst. Softw. Eng.,
1(2):221–230.

Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert,
S., and Mutzel, P. (2003). A new approach for visual-
izing UML class diagrams. In Proc. 2003 ACM Symp.
Softw. Vis., pages 179–188, New York, USA. ACM
Press.

Holten, D. (2006). Hierarchical edge bundles: visualiza-
tion of adjacency relations in hierarchical data. IEEE
Trans. Vis. Comput. Graph., 12(5):741–8.

Holten, D., Vliegen, R., and van Wijk, J. (2005). Visual
Realism for the Visualization of Software Metrics. In
3rd Int. Work. Vis. Softw. Underst. Anal., pages 27–32.
IEEE.

Lanza, M. (2003). CodeCrawler - A Lightweight Software
Visualization Tool. In 2nd Int. Work. Vis. Softw. Un-
derst. Anal., pages 54–55.

Lanza, M., Marinescu, R., and Ducasse, S. (2006). Object-
Oriented Metrics in Practice: Using Software Metrics
to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer-Verlag Berlin Hei-
delberg.

McGuffin, M. J. and Robert, J.-M. (2010). Quantifying
the space-efficiency of 2D graphical representations
of trees. Inf. Vis., 9(2):115–140.

Müller, R., Kovacs, P., Schilbach, J., and Eisenecker, U.
(2011). Generative Software Visualization: Auto-
matic Generation of User-Specific Visualizations. In
Proc. Int. Work. Digit. Eng., pages 45–49, Magdeburg,
Germany.

Müller, R., Kovacs, P., Schilbach, J., Eisenecker, U.,
Zeckzer, D., and Scheuermann, G. (2014). A Struc-
tured Approach for Conducting a Series of Controlled
Experiments in Software Visualization. In Proc. 5th
Int. Conf. Vis. Theory Appl., pages 204–209, Lisbon,
Portugal.

Nierstrasz, O., Ducasse, S., and Gîrba, T. (2005). The story
of moose: an agile reengineering environment. In
Proc. 10th Eur. Softw. Eng. Conf. held jointly with 13th
SIGSOFT Int. Symp. Found. Softw. Eng., volume 30 of
ESEC/FSE-13, pages 1–10, New York, USA. ACM.

Pinzger, M., Gall, H., Fischer, M., and Lanza, M. (2005).
Visualizing multiple evolution metrics. In Proc. 2005
ACM Symp. Softw. Vis., pages 67–75, New York,
USA. ACM Press.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005).
Using dependency models to manage complex soft-
ware architecture. In Proc. 20th Annu. ACM SIG-
PLAN Conf. Object oriented Program. Syst. Lang.
Appl., New York, USA. ACM Press.

Shneiderman, B. (1992). Tree visualization with tree-maps:
2-d space-filling approach. ACM Trans. Graph.,
11(1):92–99.

Stasko, J., Catrambone, R., Guzdial, M., and McDonald, K.
(2000). An evaluation of space-filling information vi-
sualizations for depicting hierarchical structures. Int.
J. Hum. Comput. Stud., 53(5):663–694.

Storey, M., Wong, K., and Müller, H. (1997). Rigi: a visu-
alization environment for reverse engineering. In 19th
ACM Int. Conf. Softw. Eng., pages 606–607.

Termeer, M., Lange, C., Telea, A., and Chaudron, M.
(2005). Visual Exploration of Combined Architectural
and Metric Information. In 3rd Int. Work. Vis. Softw.
Underst. Anal., pages 21–26, Washington, DC, USA.
IEEE.

Wang, W., Wang, H., Dai, G., and Wang, H. (2006). Visu-
alization of large hierarchical data by circle packing.
In Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
pages 517–520, New York, USA. ACM Press.

Ward, M. (2002). A taxonomy of glyph placement strate-
gies for multidimensional data visualization. Inf. Vis.,
1:194–210.

Ward, M. O. (2008). Multivariate Data Glyphs: Principles
and Practice. In Handb. Data Vis., pages 179–198.
Springer.

Ware, C. (2004). Information visualization: perception for
design. Morgan Kaufmann, 2nd edition.

Wettel, R. and Lanza, M. (2008). Visually localizing design
problems with disharmony maps. In Proc. 4th ACM
Symp. Softw. Vis., pages 155–164, New York, USA.
ACM Press.

7 The Recursive Disk Metaphor 82

7 The Recursive Disk Metaphor 83

7.2 Summary

The recursive disk metaphor is a glyph-based visualization for software visualization. It rep-
resents all important structural aspects and relations of software using nested circular glyphs.
The metaphor is implemented with the generative and model-driven approach and generated
automatically.
The metaphor refers to the top level RQ: How should a software visualization be designed,

to visualize structural, behavioral, and evolutionary aspects of a software system, and how

can it be generated automatically? (see Section 1.2). The design of the metaphor implies the
findings from the literature study in Chapter 3, is implemented with the software visualiza-
tion generator presented in Chapter 4, and considers the results of the controlled experiment
described in Chapter 6.
As stated in Section 6.2, the third dimension plays a rather tangible role. For this reason,
the basic shape of the recursive disk metaphor is 2D in the first place. The metaphor can
be applied to visualize structural aspects, such as packages, classes, inner classes, methods,
and attributes, as well as their relations. The resulting shape has an inner structural consis-
tency and a completely defined orientation. The glyph design and the placement strategy
lead to visually detectable patterns and anti-patterns [Ward 2008]. Listing B.1 shows the
Xtext grammar of the recursive disk metaphor. Figure 7.1 contains two screen-shots of Find-
bugs [2014] visualized with the recursive disk metaphor in a browser. In order to evaluate
the scalability of the approach, Vuze [2014] (formerly Azureus), a large software system, has
been successfully visualized with the recursive disk metaphor.

(a) (b)

Figure 7.1: The structure of Findbugs visualized with the recursive disk metaphor in a browser
[Müller and Zeckzer 2015b]: (a) overview (b) zoom.

However, taking the application categories of the third dimension into account, summarized
in Section 3.2, the recursive disk metaphor may be extended with behavioral and evolution-

ary views. Therefore, the third dimension can be used with a combination of the categories
extended 2D and 3D as time. The structural basis of the recursive metaphor opens a broad
spectrum of many different variants for designing behavioral and evolutionary views. Next,
one straight forward possibility for a behavioral view is described that is similar to Code-

7 The Recursive Disk Metaphor 84

Crawler [Greevy et al. 2005]. This view builds upon the 2D structural view and extends it
with information about class instances and method invocations at runtime. It provides the
user an overview of instantiated classes and invoked methods for a certain execution trace.
For each instance of a class an instance ring is placed above the structural base. If there are
several instances of the same class they are placed above each other with some space left
in between. The instance ring holds the invoked method segments. If the same method is
invoked multiple times within one instance, the method segments are stacked on top of each
other. Thus, depending on the number of instances and method invocations the class grows
in the third dimension. The resulting behavioral view is depicted in Fig. 7.2.

Figure 7.2: Behavior with the recursive disk metaphor: 1 - One instance with two method invocations,
2 - Two instances with two invocations of the same method for the first instance and one method
invocation for the second instance, 3 - One instance of an inner class with four method invocations
and one instance of the surrounding class with a total of seven method invocations.

The same applies for evolutionary views where the 2D structural view of the recursive disk
metaphor can be extended to the third dimension. One possibility is to use the height of a
glyph to represent the number of its modifications similar to Evo-Streets [Steinbrückner and
Lewerentz 2010].
To sum it up, the recursive disk metaphor is able to visualize all important structural aspects
and their relations of a software system in 2D, it is generated automatically, and it scales
well for large software systems. Furthermore, the metaphor may be extended to 3D in order
to visualize behavioral and evolutionary aspects. Therefore, the categories extended 2D and
3D as time are combined. The extensions of the recursive disk metaphor with behavioral and
evolutionary views are currently under development. After their completion, the resulting
software visualizations provide holistic views on all three aspects of the software system.

8 Conclusion and Future Work 85

8 Conclusion and Future Work

The final chapter summarizes the contributions of this thesis, concludes the recommenda-
tions for 3D software visualizations, and provides an outlook to future work.

8.1 Contributions

There are five main contributions of this thesis (see Section 1.4).

1. Literature study presenting an overview of state-of-the-art in 3D software visualization
[Müller and Zeckzer 2015a] (see Chapter 3).
The study presents the state-of-the-art including trends and research gaps in 3D soft-
ware visualization. It combines a systematic mapping study [Petersen et al. 2008] and
a literature review [vom Brocke et al. 2009]. Especially the venues, the visualized
aspects, the evolution, the evaluation methods, and the applications of the third dimen-
sion in the field of 3D software visualization are analyzed. This analysis revealed two
research gaps. First, there is a lack of empirical evaluations in the field of 3D soft-
ware visualization. Second, there are only few 3D software visualizations that provide
multiple views of a software system including all three aspects, i.e., structure, behav-
ior, and evolution. The first research gap is addressed by the structured approach (3.)
and the controlled experiment (4.). The second research gap is addressed by the soft-
ware visualization generator (2.) and the recursive disk metaphor (5.). Additionally,
the analysis led to an update of the application categories introduced by Reiss [1995]
and extended it with 3D for cognition. Hence, there are six categories6 for the appli-
cation of the third dimension: extended 2D, full 3D, 2D layout organized in 3D, 3D as

time, stacked views, and 3D for cognition.
2. Eclipse-based generator for generating 2D, 2.5D, and 3D software visualizations au-

tomatically [Müller et al. 2011] (see Chapter 4).
The generator combines the generative [Czarnecki and Eisenecker 2000] and the model-
driven [Stahl et al. 2006] paradigms to produce automatically role- and task-specific
visualizations according to user requirements specified in a DSL. The generated visu-
alizations may represent structural, behavioral, and/or evolutionary aspects of a soft-
ware system in 2D, 2.5D, or 3D. Furthermore, the visualizations are X3D models.
These models can be optimized for the web using AOPT and rendered in any browser
supporting X3DOM. This assures the platform independence of the software visual-
izations. The plug-in architecture of the generator is implemented with Eclipse tech-

6 The original category local fish-eye was not found in the sample and for this reason omitted.

8 Conclusion and Future Work 86

niques including JDT, PDE, TMF, and EMP. This assures its easy extensibility and its
seamless integration into the Eclipse IDE.

3. Structured approach for conducting controlled experiments in software visualization
[Müller et al. 2014a] (see Chapter 5).
The approach supports researchers in planning and in designing a series of experi-
ments in software visualization and to control influence factors. The approach is based
on the extended process model for design and validation of visualizations by Munzner
et al. [Munzner 2009; Meyer et al. 2012]. This model is adapted to the field of soft-
ware visualization and enhanced with influence factors derived from several software
visualization taxonomies.

4. Controlled experiment investigating the role of the third dimension in software visua-
lization [Müller et al. 2014b] (see Chapter 6).
The experiment was planned and designed with the structured approach (3.) and used
visualizations from the generator (2.). The dependent variables in the experiment were
time, correctness, and interaction. The independent variable dimension was varied (2D
and 3D). The random sample was divided into a control group (2D) and an experi-
mental group (3D). To measure the presumed effect, a between-subjects design was
applied. Although the experimental group made less mistakes and gave a more pos-
itive feedback, the control group solved their software engineering tasks faster. This
means that the third dimension does not show significant advantages in solving a task
for medium-sized software systems. It plays a rather tangential role. To increase its
benefit, it has to applied in a useful way. More important seems to be the applied
visualization technique or metaphor.

5. Recursive disk metaphor combining the findings with focus on the structure of soft-
ware with useful applications of the third dimension [Müller and Zeckzer 2015b] (see
Chapter 7).
The recursive disk metaphor is a glyph-based visualization for software visualization
[Borgo et al. 2013]. It represents all important structural aspects and relations of soft-
ware using nested circular glyphs. The metaphor is implemented with the generative
and model-driven approach and uses 2D to visualize the structural aspects. However,
this 2D shape can be easily extended to 3D in order to additionally visualize behav-

ioral or evolutionary aspects. Therefore, the application categories extended 2D and
3D as time are combined. These extensions are currently under development. After
their completion, the resulting software visualizations provide holistic views on all
three aspects of a software system. Besides their automatic generation, the visualiza-
tions scale well for large software systems and they are platform independent.

8 Conclusion and Future Work 87

8.2 Recommendations for 3D Software Visualizations

For the moment, it has to be stated that the third dimension does not show significant advan-
tages in solving a task for medium-sized software systems. Hence, the factor dimensionality

is not decisive and plays a rather tangential role. This finding brings the applied metaphor
more into focus. Thus, it is more important to use a suitable metaphor independent from
its dimensionality. For the design of the metaphor the glyph-based visualization serves as a
sound basis [Borgo et al. 2013]. However, the optimal interplay between 2D and 3D may be
the clue to the successful integration of all three aspects. In this context, the application of the
third dimension should be thoroughly thought out. For this reason, all application categories
are summarized and shown in Figure 8.1. The different categories are not disjoint and can be
combined. This list serves as a starting point and does not claim to be complete. Rather, it is
designed as an open list to be extended by other researchers.

• Extended 2D: A 2D layout is extended to 3D. The additional dimension can be used to
display further information, such as software metrics, LOC, complexity, or the number
of modifications, relations, or instances (a).

• Full 3D: The next technique moves from 2D to 3D and uses the full capabilities of
three dimensions (b).

• 2D layout organized in 3D: The second technique takes a 2D layout and organizes the
information in a 3D space. It is usually applied to get more space and to minimize
edge-crossings (c).

• 3D as time: Further, the third dimension is used to represent time (d).
• Stacked views: This technique uses the third dimension to display several 2D views

simultaneously (e).
• 3D for cognition: Finally, 3D shapes are applied to support the mental model and to

optimize the cognition of the visualization (f).

(a) (b) (c)

Time

(d) (e) (f)

Figure 8.1: Applications of the third dimension in software visualization [Müller and Zeckzer 2015a]:
(a) extended 2D (b) full 3D (c) 2D layout organized in 3D (d) 3D as time (e) stacked views (f) 3D for
cognition.

8.3 Outlook

The end of one work is often the beginning of another one. So it is in this case. The final
section outlines various theoretical and practical future work.

8 Conclusion and Future Work 88

8.3.1 Literature Study

The literature study will be extended to 2D software visualization. The integration and the
analysis of the results of both studies will provide new and promising insights concerning
state-of-the-art, trends, and research gaps in the field of software visualization.

8.3.2 Generator

The architecture of the Eclipse-based software visualization generator is modular and eas-
ily extensible. Thus, new visualization techniques and metaphors can be implemented with
considerably less effort. For example, the city metaphor similar to Wettel and Lanza [2007]
has already been implemented with the generative and model-driven approach. A screenshot
of Freemind [2014] visualized with the city metaphor in a browser is depicted in Figure 8.2.
Various additional software visualizations are planned to be implemented with this approach
to benefit from scalability, IDE integration, and platform independence.

(a) (b)

Figure 8.2: The structure of Freemind visualized with the city metaphor in a browser: (a) top view
(b) front view.

The next steps in the context of the generator are the migration from Eclipse version 4.3
(Kepler) to version 4.4 (Luna) and the integration into the Eclipse IDE on the basis of RCP.
Currently, the DSL to specify user requirements is a properties file. With the Eclipse integra-
tion this textual DSL will be replaced by a wizard-based one. Furthermore, it is planned to
link the visualization entities with the corresponding source code artifacts.
At the moment, the generator is used for software visualization. However, the basic concept
of transforming formal models into visualizations according to a DSL can be easily extended
to information visualization in general and further areas of application. This includes for
example the emerging fields Business Intelligence (BI) and Big Data (BD).

8.3.3 X3DOM

As tablets and smartphones become more and more important as visualization devices the
choice of X3DOM holds potential. For example, Limberger et al. [2013] present a web-
based approach that makes software maps more accessible to many different stakeholders

8 Conclusion and Future Work 89

in software engineering projects. As the preferred output of the generator is X3D that can
be easily transformed into X3DOM, a similar web-based and collaborative solution with the
approach described in this thesis is possible.
Furthermore, the X3DOM visualizations are suitable for controlled experiments as they can
be easily integrated in a web-based evaluation environment. In such an environment it is
comparatively easy to guide the participants through different tasks and to track relevant in-
formation, e.g., time or responses. A first prototype of the web-based evaluation environment
is under development.

8.3.4 Recursive Disk Metaphor

The recursive disk metaphor still holds potential for future work. At present, it is possible
to visualize software systems implemented in Java. In the future, it is planned to cover addi-
tional languages, such as C/C++ and .NET. Additionally, the recursive disk metaphor will be
evaluated empirically and examined for its visual software quality assessment capabilities in
the context of a proposed research project.

8.3.5 Research Project

The main contributions of this thesis serve as a basis for a proposal of a research project. The
main goal of this project is to empirically investigate the advantages and disadvantages of 2D
and 3D software visualizations with focus on different metaphors and interaction techniques.

Appendix XIII

Appendix

A Famix

Listing A.1 shows the MWE2 configuration of the language generator for Famix.

1 module org.svis.xtext.GenerateFamix

2

3 import org.eclipse.emf.mwe.utils.*

4 import org.eclipse.xtext.generator.*

5 import org.eclipse.xtext.ui.generator.*

6

7 var grammarURI = "classpath:/org/svis/xtext/Famix.xtext"

8 var fileExtensions = "famix"

9 var projectName = "org.svis.xtext.famix"

10 var runtimeProject = "../${projectName}"

11 var generateXtendStub = true

12

13 Workflow {

14 bean = StandaloneSetup {

15 scanClassPath = true

16 platformUri = "${runtimeProject}/.."

17 }

18 component = DirectoryCleaner {

19 directory = "${runtimeProject}/src-gen"

20 }

21 component = DirectoryCleaner {

22 directory = "${runtimeProject}.ui/src-gen"

23 }

24 component = Generator {

25 pathRtProject = runtimeProject

26 pathUiProject = "${runtimeProject}.ui"

27 pathTestProject = "${runtimeProject}.tests"

28 projectNameRt = projectName

29 projectNameUi = "${projectName}.ui"

30 language = auto-inject {

31 uri = grammarURI

32 // Java API to access grammar elements (required by several other fragments)

33 fragment = grammarAccess.GrammarAccessFragment auto-inject {}

34 // generates Java API for the generated EPackages

35 fragment = ecore.EMFGeneratorFragment auto-inject {}

36 // the old serialization component

37 // fragment = parseTreeConstructor.ParseTreeConstructorFragment auto-inject {}

38 // serializer 2.0

39 fragment = serializer.SerializerFragment auto-inject {

40 generateStub = false

41 }

42 // a custom ResourceFactory for use with EMF

43 fragment = resourceFactory.ResourceFactoryFragment auto-inject {}

44 // The antlr parser generator fragment.

45 fragment = parser.antlr.XtextAntlrGeneratorFragment auto-inject {}

46 // Xtend-based API for validation

47 fragment = validation.ValidatorFragment auto-inject {

Appendix XIV

48 // composedCheck = "org.eclipse.xtext.validation.ImportUriValidator"

49 // composedCheck = "org.eclipse.xtext.validation.NamesAreUniqueValidator"

50 }

51 // old scoping and exporting API

52 // fragment = scoping.ImportURIScopingFragment auto-inject {}

53 // fragment = exporting.SimpleNamesFragment auto-inject {}

54 // scoping and exporting API

55 fragment = scoping.ImportNamespacesScopingFragment auto-inject {}

56 fragment = exporting.QualifiedNamesFragment auto-inject {}

57 fragment = builder.BuilderIntegrationFragment auto-inject {}

58 // generator API

59 fragment = generator.GeneratorFragment auto-inject {}

60 // formatter API

61 fragment = formatting.FormatterFragment auto-inject {}

62 // labeling API

63 fragment = labeling.LabelProviderFragment auto-inject {}

64 // outline API

65 fragment = outline.OutlineTreeProviderFragment auto-inject {}

66 fragment = outline.QuickOutlineFragment auto-inject {}

67 // quickfix API

68 fragment = quickfix.QuickfixProviderFragment auto-inject {}

69 // content assist API

70 fragment = contentAssist.ContentAssistFragment auto-inject {}

71 // generates a more lightweight Antlr parser and lexer tailored for content assist

72 fragment = parser.antlr.XtextAntlrUiGeneratorFragment auto-inject {}

73 // generates junit test support classes into Generator#pathTestProject

74 fragment = junit.Junit4Fragment auto-inject {}

75 // project wizard (optional)

76 // fragment = projectWizard.SimpleProjectWizardFragment auto-inject {

77 // generatorProjectName = "${projectName}"

78 // }

79 // rename refactoring

80 fragment = refactoring.RefactorElementNameFragment auto-inject {}

81 // provides the necessary bindings for java types integration

82 fragment = types.TypesGeneratorFragment auto-inject {}

83 // generates the required bindings only if the grammar inherits from Xbase

84 fragment = xbase.XbaseGeneratorFragment auto-inject {}

85 // provides a preference page for template proposals

86 fragment = templates.CodetemplatesGeneratorFragment auto-inject {}

87 // provides a compare view

88 fragment = compare.CompareFragment auto-inject {}

89 }

90 }

91 }

Listing A.1: Language generator for Famix.

Listing A.2 shows the Xtext grammar definition of Famix.

1 grammar org.svis.xtext.Famix with org.eclipse.xtext.common.Terminals

2 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

3 generate famix "http://www.svis.org/famix"

4

5 Root:

6 document=Document?;

7

8 Document:

9 {Document}

10 ’(’ elements+=FAMIXElement* ’)’;

11

Appendix XV

12 FAMIXElement:

13 FAMIXClass | FAMIXFileAnchor | FAMIXInvocation | FAMIXParameterizableClass | FAMIXAttribute |

FAMIXInheritance | FAMIXAccess | FAMIXNamespace | FAMIXMethod |FAMIXPrimitiveType | FAMIXComment |

FAMIXParameter | FAMIXReference | FAMIXParameterizedType | FAMIXAnnotationInstance |

FAMIXAnnotationInstanceAttribute | FAMIXAnnotationType | FAMIXAnnotationTypeAttribute |

FAMIXLocalVariable | FAMIXImplicitVariable | FAMIXType | FAMIXParameterType | FAMIXJavaSourceLanguage|

FAMIXDeclaredException | FAMIXThrownException | FAMIXCaughtException | FAMIXEnum | FAMIXEnumValue;

14

15 FAMIXNamespace:

16 ’(FAMIX.Namespace’

17 ’(’ ’id: ’ name=INT_ID ’)’

18 ’(’ ’name’ value=MSESTRING ’)’

19 (’(’ ’isStub’ isStub=Boolean ’)’)?

20 (’(’ ’parentScope’ parentScope=IntegerReference ’)’)?

21 ’)’;

22

23 FAMIXFileAnchor:

24 ’(FAMIX.FileAnchor’

25 ’(’ ’id: ’ name=INT_ID ’)’

26 (’(’ ’element’ element=IntegerReference ’)’)?

27 ’(’ ’endLine’ endline=INT ’)’

28 ’(’ ’fileName’ filename=MSESTRING ’)’

29 ’(’ ’startLine’ startline=INT ’)’

30 ’)’;

31

32 FAMIXClass:

33 ’(FAMIX.Class’

34 ’(’ ’id: ’ name=INT_ID ’)’

35 ’(’ ’name’ value=MSESTRING ’)’

36 ’(’ ’container’ container=IntegerReference ’)’

37 (’(’ ’isInterface’ isInterface=Boolean ’)’)?

38 (’(’ ’isStub’ isStub=Boolean ’)’)?

39 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

40 (’(’ ’sourceAnchor’ type=IntegerReference ’)’)?

41 ’)’;

42

43 FAMIXParameterizableClass:

44 ’(FAMIX.ParameterizableClass’

45 ’(’ ’id: ’ name=INT_ID ’)’

46 ’(’ ’name’ value=MSESTRING ’)’

47 ’(’ ’container’ container=IntegerReference ’)’

48 (’(’ ’isInterface’ isInterface=Boolean ’)’)?

49 (’(’ ’isStub’ isStub=Boolean ’)’)?

50 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

51 (’(’ ’sourceAnchor’ type=IntegerReference ’)’)?

52 ’)’;

53

54 FAMIXMethod:

55 ’(FAMIX.Method’

56 ’(’ ’id: ’ name=INT_ID ’)’

57 ’(’ ’name’ value=MSESTRING ’)’

58 (’(’ ’cyclomaticComplexity’ cyclomaticComplexity=INT ’)’)?

59 (’(’ ’declaredType’ declaredType=IntegerReference ’)’)?

60 (’(’ ’hasClassScope’ hasClassScope=Boolean ’)’)?

61 (’(’ ’isStub’ isStub=Boolean ’)’)?

62 (’(’ ’kind’ kind=MSESTRING ’)’)?

63 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

64 (’(’ ’numberOfStatements’ numberOfStatements=INT ’)’)?

65 ’(’ ’parentType’ parentType=IntegerReference ’)’

66 ’(’ ’signature’ signature=MSESTRING ’)’

Appendix XVI

67 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

68 ’)’;

69

70 FAMIXInvocation:

71 ’(FAMIX.Invocation’

72 ’(’ ’id: ’ name=INT_ID ’)’

73 ’(’ ’candidates’ candidates=IntegerReference ’)’

74 (’(’ ’previous’ previous=IntegerReference ’)’)?

75 (’(’ ’receiver’ receiver=IntegerReference ’)’)?

76 ’(’ ’sender’ sender=IntegerReference ’)’

77 ’(’ ’signature’ signature=MSESTRING ’)’

78 ’)’;

79

80 FAMIXAttribute:

81 ’(FAMIX.Attribute’

82 ’(’ ’id: ’ name=INT_ID ’)’

83 ’(’ ’name’ value=MSESTRING ’)’

84 ’(’ ’declaredType’ declaredType=IntegerReference ’)’

85 (’(’ ’hasClassScope’ hasClassScope=Boolean ’)’)?

86 (’(’ ’isStub’ isStub=Boolean ’)’)?

87 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

88 ’(’ ’parentType’ parentType=IntegerReference ’)’

89 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

90 ’)’;

91

92 FAMIXAccess:

93 ’(FAMIX.Access’

94 ’(’ ’id: ’ name=INT_ID ’)’

95 ’(’ ’accessor’ accessor=IntegerReference ’)’

96 (’(’ ’isWrite’ isWrite=Boolean ’)’)?

97 (’(’ ’previous’ previous=IntegerReference ’)’)?

98 ’(’ ’variable’ variable=IntegerReference ’)’

99 ’)’;

100

101

102 FAMIXPrimitiveType:

103 ’(FAMIX.PrimitiveType’

104 ’(’ ’id: ’ name=INT_ID ’)’

105 ’(’ ’name’ value=MSESTRING ’)’

106 ’(’ ’isStub’ isStub=Boolean ’)’

107 ’)’;

108

109 FAMIXComment:

110 ’(FAMIX.Comment’

111 ’(’ ’id: ’ name=INT_ID ’)’

112 ’(’ ’container’ container=IntegerReference ’)’

113 ’(’ ’content’ content=MSESTRING ’)’

114 ’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’

115 ’)’;

116

117 FAMIXParameter:

118 ’(FAMIX.Parameter’

119 ’(’ ’id: ’ name=INT_ID ’)’

120 ’(’ ’name’ value=MSESTRING ’)’

121 ’(’ ’declaredType’ declaredType=IntegerReference ’)’

122 ’(’ ’parentBehaviouralEntity’ parentBehaviouralEntity=IntegerReference ’)’

123 ’)’;

124

125 FAMIXInheritance:

126 ’(FAMIX.Inheritance’

Appendix XVII

127 ’(’ ’id: ’ name=INT_ID ’)’

128 (’(’ ’previous’ previous=IntegerReference ’)’)?

129 ’(’ ’subclass’ subclass=IntegerReference ’)’

130 ’(’ ’superclass’ superclass=IntegerReference ’)’

131 ’)’;

132

133 FAMIXReference:

134 ’(FAMIX.Reference’

135 ’(’ ’id: ’ name=INT_ID ’)’

136 ’(’ ’source’ source=IntegerReference ’)’

137 ’(’ ’target’ target=IntegerReference ’)’

138 ’)’;

139

140 FAMIXParameterizedType:

141 ’(FAMIX.ParameterizedType’

142 ’(’ ’id: ’ name=INT_ID ’)’

143 ’(’ ’name’ value=MSESTRING ’)’

144 (’(’ ’arguments’ arguments+=IntegerReference* ’)’)?

145 ’(’ ’container’ container=IntegerReference ’)’

146 (’(’ ’isStub’ isStub=Boolean ’)’)?

147 ’(’ ’parameterizableClass’ parameterizableClass=IntegerReference ’)’

148 ’)’;

149

150 FAMIXAnnotationInstance:

151 ’(FAMIX.AnnotationInstance’

152 ’(’ ’id: ’ name=INT_ID ’)’

153 ’(’ ’annotatedEntity’ annotatedEntity=IntegerReference ’)’

154 ’(’ ’annotationType’ annotationType=IntegerReference ’)’

155 ’)’;

156

157 FAMIXAnnotationInstanceAttribute:

158 ’(FAMIX.AnnotationInstanceAttribute’

159 ’(’ ’id: ’ name=INT_ID ’)’

160 (’(’ ’annotationTypeAttribute’ annotationTypeAttribute=IntegerReference ’)’)?

161 ’(’ ’parentAnnotationInstance’ parentAnnotationInstance=IntegerReference ’)’

162 ’(’ ’value’ value=MSESTRING ’)’

163 ’)’;

164

165 FAMIXAnnotationType:

166 ’(FAMIX.AnnotationType’

167 ’(’ ’id: ’ name=INT_ID ’)’

168 ’(’ ’name’ value=MSESTRING ’)’

169 ’(’ ’container’ container=IntegerReference ’)’

170 (’(’ ’isStub’ isStub=Boolean ’)’)?

171 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

172 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

173 ’)’;

174

175 FAMIXAnnotationTypeAttribute:

176 ’(FAMIX.AnnotationTypeAttribute’

177 ’(’ ’id: ’ name=INT_ID ’)’

178 ’(’ ’name’ value=MSESTRING ’)’

179 (’(’ ’isStub’ isStub=Boolean ’)’)?

180 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

181 ’(’ ’parentType’ parentType=IntegerReference ’)’

182 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

183 ’)’;

184

185 FAMIXLocalVariable:

186 ’(FAMIX.LocalVariable’

Appendix XVIII

187 ’(’ ’id: ’ name=INT_ID ’)’

188 ’(’ ’name’ value=MSESTRING ’)’

189 ’(’ ’declaredType’ declaredType=IntegerReference ’)’

190 (’(’ ’isStub’ isStub=Boolean ’)’)?

191 ’(’ ’parentBehaviouralEntity’ parentBehaviouralEntity=IntegerReference ’)’

192 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

193 ’)’;

194

195 FAMIXImplicitVariable:

196 ’(FAMIX.ImplicitVariable’

197 ’(’ ’id: ’ name=INT_ID ’)’

198 ’(’ ’name’ value=MSESTRING ’)’

199 (’(’ ’parentBehaviouralEntity’ parentBehaviouralEntity=IntegerReference ’)’)?

200 ’)’;

201

202 FAMIXType:

203 ’(FAMIX.Type’

204 ’(’ ’id: ’ name=INT_ID ’)’

205 ’(’ ’name’ value=MSESTRING ’)’

206 ’(’ ’container’ container=IntegerReference ’)’

207 ’(’ ’isStub’ isStub=Boolean ’)’

208 ’)’;

209

210 FAMIXParameterType:

211 ’(FAMIX.ParameterType’

212 ’(’ ’id: ’ name=INT_ID ’)’

213 ’(’ ’name’ value=MSESTRING ’)’

214 ’(’ ’container’ container=IntegerReference ’)’

215 (’(’ ’isStub’ isStub=Boolean ’)’)?

216 ’)’;

217

218 FAMIXJavaSourceLanguage:

219 ’(FAMIX.JavaSourceLanguage’

220 ’(’ ’id: ’ name=INT_ID ’)’

221 ’)’;

222

223 FAMIXDeclaredException:

224 ’(FAMIX.DeclaredException’

225 ’(’ ’id: ’ name=INT_ID ’)’

226 ’(’ ’definingMethod’ definingMethod=IntegerReference ’)’

227 ’(’ ’exceptionClass’ exceptionClass=IntegerReference ’)’

228 ’)’;

229

230 FAMIXThrownException:

231 ’(FAMIX.ThrownException’

232 ’(’ ’id: ’ name=INT_ID ’)’

233 ’(’ ’definingMethod’ definingMethod=IntegerReference ’)’

234 ’(’ ’exceptionClass’ exceptionClass=IntegerReference ’)’

235 ’)’;

236

237 FAMIXCaughtException:

238 ’(FAMIX.CaughtException’

239 ’(’ ’id: ’ name=INT_ID ’)’

240 ’(’ ’definingMethod’ definingMethod=IntegerReference ’)’

241 ’(’ ’exceptionClass’ exceptionClass=IntegerReference ’)’

242 ’)’;

243

244 FAMIXEnum:

245 ’(FAMIX.Enum’

246 ’(’ ’id: ’ name=INT_ID ’)’

Appendix XIX

247 ’(’ ’name’ value=MSESTRING ’)’

248 ’(’ ’container’ container=IntegerReference ’)’

249 (’(’ ’isStub’ isStub=Boolean ’)’)?

250 (’(’ ’modifiers’ modifiers+=MSESTRING* ’)’)?

251 (’(’ ’sourceAnchor’ sourceAnchor=IntegerReference ’)’)?

252 ’)’;

253

254 FAMIXEnumValue:

255 ’(FAMIX.EnumValue’

256 ’(’ ’id: ’ name=INT_ID ’)’

257 ’(’ ’name’ value=MSESTRING ’)’

258 (’(’ ’isStub’ isStub=Boolean ’)’)?

259 ’(’ ’parentEnum’ parentEnum=IntegerReference ’)’

260 ’)’;

261

262 Boolean:

263 ’true’ | ’false’;

264

265 IntegerReference:

266 ’(’ ’ref: ’ ref=[FAMIXElement|INT_ID] ’)’;

267

268 INT_ID returns ecore::EString:

269 ’^’?INT;

270

271 terminal MSESTRING:

272 ’\’’ (’a’..’z’ | ’A’..’Z’ | ’.’ | ’_’ | ’\\’ | ’/’ | ’0’..’9’ | ’<’| ’?’ | ’$’| ’{’| ’!’) (’a’..’z’ | ’A’..’

Z’ | ’.’ | ’_’ | ’\\’ | ’/’ | ’0’..’9’ | ’(’ | ’)’ | ’[’ | ’]’ | ’,’ | ’;’ | ’*’ | WS | ’>’ | ’<’ | ’@’

| ’:’ | ’?’ | ’&’ | ’!’ | ’{’ | ’}’| ’\"’ | ’-’ | ’+’ | ’=’ | ’$’ | ’#’ | ’~’ | ’^’ | ’%’ | ’|’ |’\’\’

’ | ’‘’)* ’\’’;

Listing A.2: Xtext grammar of Famix.

B Recursive Disk Metaphor

The MWE2 configuration of the language generator for the recursive disk metaphor is similar
to Listing A.1. Listing B.1 shows the Xtext grammar definition of the recursive disk metaphor
for visualizing the structure of a software system.

1 grammar org.svis.xtext.RD with org.eclipse.xtext.common.Terminals

2 generate rd "http://www.svis.org/xtext/RD"

3 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

4

5 Root:

6 document=Document?;

7

8 Document:{Document}

9 ’(’ disks+=Disk* ’)’;

10

11 Disk:

12 ’(Disk’

13 ’(’ ’id: ’ name=INT_ID ’)’

14 ’(’ ’name’ value=MSESTRING ’)’

15 ’(’ ’fqn’ fqn=MSESTRING ’)’

16 ’(’ ’height’ height=Decimal ’)’

17 ’(’ ’radius’ radius=Decimal ’)’

18 ’(’ ’type’ type=MSESTRING ’)’

19 ’(’ ’level’ level=INT ’)’

Appendix XX

20 (’(’ ’loc’ loc=INT ’)’)?

21 (’(’ ’crossSection’ crossSection=MSESTRING ’)’)?

22 (’(’ ’spine’ spine=MSESTRING ’)’)?

23 (’(’ ’netArea’ netArea=Decimal ’)’)?

24 (’(’ ’grossArea’ grossArea=Decimal ’)’)?

25 (’(’ ’methodArea’ methodArea=Decimal ’)’)?

26 (’(’ ’dataArea’ dataArea=Decimal ’)’)?

27 (’(’ ’maxLevel’ maxLevel=INT ’)’)?

28 (’(’ ’color’ color=MSESTRING ’)’)?

29 (’(’ ’transparency’ transparency=Decimal ’)’)?

30 (’(’ ’position’ position=Position ’)’)?

31 (’(’ ’data’ data+=DiskSegment* ’)’)?

32 (’(’ ’methods’ methods+=DiskSegment* ’)’)?

33 (’(’ ’references’ references+=Reference* ’)’)?

34 (’(’ ’disks’ disks+=Disk* ’)’)?

35 ’)’;

36

37 DiskSegment:

38 ’(Disk.Segment’

39 ’(’ ’id: ’ name=INT_ID ’)’

40 ’(’ ’name’ value=MSESTRING ’)’

41 ’(’ ’fqn’ fqn=MSESTRING ’)’

42 ’(’ ’type’ type=MSESTRING ’)’

43 (’(’ ’crossSection’ crossSection=MSESTRING ’)’)?

44 (’(’ ’spine’ spine=MSESTRING ’)’)?

45 (’(’ ’size’ size=Decimal ’)’)?

46 (’(’ ’radius’ radius=Decimal ’)’)?

47 (’(’ ’innerRadius’ innerRadius=Decimal ’)’)?

48 (’(’ ’outerRadius’ outerRadius=Decimal ’)’)?

49 (’(’ ’color’ color=MSESTRING ’)’)?

50 ’)’;

51

52 Position:

53 ’\’’x=Decimal’ ’y=Decimal’ ’z=Decimal’\’’;

54

55 Reference:

56 ’(’ ’ref: ’ name=INT_ID ’)’

57 ’(’ ’fqn: ’ fqn=MSESTRING ’)’

58 ’(’ ’type’ type=MSESTRING ’)’;

59

60 INT_ID returns ecore::EString:

61 ’^’?INT;

62

63 Decimal returns ecore::EDouble:

64 ’-’?INT ’.’ INT;

65

66 terminal MSESTRING:

67 ’\’’ (’a’..’z’ | ’A’..’Z’ | ’.’ | ’_’ | ’\\’ | ’/’ | ’0’..’9’ | ’<’| ’?’ | ’$’| ’{’| ’!’) (’a’..’z’ | ’A’..’

Z’ | ’.’ | ’_’ | ’\\’ | ’/’ | ’0’..’9’ | ’(’ | ’)’ | ’[’ | ’]’ | ’,’ | ’;’ | ’*’ | WS | ’>’ | ’<’ | ’@’

| ’:’ | ’?’ | ’&’ | ’!’ | ’{’ | ’}’| ’\"’ | ’-’ | ’+’ | ’=’ | ’$’ | ’#’ | ’~’ | ’^’ | ’%’ | ’|’ |’\’\’

’ | ’‘’)* ’\’’;

Listing B.1: Xtext grammar of the recursive disk metaphor for visualizing the structure of a software

system.

Glossary XXI

Glossary

Abstract syntax
The abstract syntax of a language specifies the language’s structure, typically as a tree
or a graph [Stahl et al. 2006, p. 55ff]. [13]

Action
Actions make the creation of a return type explicit. There are simple actions and as-
signed actions [Xtext Documentation 2014]. [19]

Assignment
Assignments (=, +=,?=) are used to bind the consumed information to a feature of the
currently produced object [Xtext Documentation 2014]. [19]

Behavior
The aspect behavior covers the execution of a software system with real and abstract
data [Diehl 2007, p. 3f]. [6]

Component
Components are building blocks that are used to assemble different systems of a sys-
tem family [Czarnecki and Eisenecker 2000, p. 9]. [11]

Concrete syntax
The concrete syntax is the realization of an abstract syntax that is accepted by a parser
and used as notation to define models [Stahl et al. 2006, p. 55ff]. It may be textual,
graphical, tabular, or a mix of these [Völter et al. 2013, p. 27]. [13]

Configuration knowledge
The configuration knowledge maps the elements of the problem space to the elements
of the solution space and is usually implemented as a generator. The mapping pro-
cess considers information about illegal feature combinations, default settings, default
dependencies, construction rules, and optimizations [Czarnecki and Eisenecker 2000,
p. 131f]. [12]

Data type rule
A data type rule creates instances of EDataType instead of EClass. They are similar to
terminal rules but they are context sensitive and allow the use of hidden tokens [Xtext
Documentation 2014]. [19]

Glossary XXII

Domain
A domain is a bounded field of knowledge comprising professional knowledge as well
as technical knowledge and is always related to its stakeholders [Czarnecki and Eise-
necker 2000, p. 34]. [10]

DSL
A DSL is specialized, problem-oriented, and provides means to describe concrete
members of a system family [Czarnecki and Eisenecker 2000, p. 137]. [10]

Dynamic semantics
The dynamic semantics gives a meaning to the metamodel’s constructs [Stahl et al.
2006, p. 55ff]. [14]

Enum rule
An enum rule returns enumeration literals from strings and creates an instance of EEnum
[Xtext Documentation 2014]. [19]

Evolution
The aspect evolution refers to the development process of a software system [Diehl
2007, p. 3f]. This information is usually provided by version control systems, such as
CVS, SVN, or Git. [6]

Feature
A feature combines related plug-ins and their fragments to a product [Eclipse Docu-
mentation 2014]. [17]

Formal model
A formal model is formulated in the metamodel’s concrete syntax and follows its se-
mantic, i.e., it is an instance of the metamodel [Stahl et al. 2006, p. 55ff]. [14]

Forward engineering
The forward engineering process covers the classical software development process
from requirements engineering to the design and the implementation of the software
system [Chikofsky and Cross 1990]. [8]

Fragment
A fragment is always part of a plug-in. It extends a plug-in non-invasively with fur-
ther contents or functionality [Eclipse Documentation 2014]. For example, language
packages are often implemented as fragments and added after the development of the
plug-in has been finished. [17]

Generative domain model
The generative domain model summarizes the concepts and relations of the generative

Glossary XXIII

paradigm. It consists of the problem space, the solution space and the configuration
knowledge [Czarnecki and Eisenecker 2000, p. 131f]. [11]

Generator
A generator is a piece of software that produces a system automatically according to
the specification [Czarnecki and Eisenecker 2000, p. 333ff]. [11]

GP
"Generative Programming (GP) is a software engineering paradigm based on model-

ing software system families such that, given a particular requirements specification,

a highly customized and optimized intermediate or end-product can be automatically

manufactured on demand from elementary, reusable implementation components by

means of configuration knowledge." [Czarnecki and Eisenecker 2000, p. 5] [10]

Grammar mixin
A grammar mixin combines at least two different Xtext grammars [Xtext Documenta-
tion 2014]. [18]

M2M
A model-to-model transformation maps one or more source models to a target model
[Stahl et al. 2006, p. 60]. [15]

M2P
A model-to-platform transformation generates artifacts that are based on the platform.
This process is also called generation [Stahl et al. 2006, p. 60]. [15]

Management
The management process covers the planning, coordinating, measuring, monitoring,
controlling, and reporting of the software engineering process [Frailey et al. 2004]. [8]

MDSD
"Model-Driven Software Development (MDSD) is a generic term for techniques, that

create runnable software from formal models automatically." [translated into English
from Stahl et al. 2007, p. 11] [10]

Metamodel
The metamodel defines the abstract syntax and the static semantics of a language [Stahl
et al. 2006, p. 55ff]. [13]

Model modification
A model modification changes or extends source model elements, i.e., the target model
is the modified source model and still conforms to the same metamodel [Stahl et al.
2007, p. 199f]. [15]

Glossary XXIV

Model transformation
A model transformation maps a source model to a target model, where both models
conform to a different metamodel [Stahl et al. 2007, p. 199f]. [15]

Model weaving
A model weaving combines at least two source models and creates one target model
[Stahl et al. 2007, p. 199f]. [15]

MWE2
Modeling Workflow Engine 2 (MWE2) is a declarative, externally configurable gener-
ator engine [Xtext Documentation 2014]. [18]

Parser rule
A parser rule uses terminal rules as well as other parser rules and leads to the parse
tree [Xtext Documentation 2014]. [19]

Platform
A platform supports the realization of a domain and can be founded on existing build-
ing blocks, such as middleware, libraries, frameworks, or components [Stahl et al.
2006, p. 59]. [15]

Plug-in
A plug-in is the smallest functional unit in Eclipse. It can be an extension and it can of-
fer extension points as placeholders for other plug-ins [Eclipse Documentation 2014].
[16]

Problem space
The problem space provides domain specific concepts and features to specify members
of a system family by means of a DSL [Czarnecki and Eisenecker 2000, p. 131f]. [11]

Profile
A profile is composed by a predefined set of components where ach component is
divided into levels describing increasing capability. Every X3D node belongs to a
component and varies in features depending on the component level. There are five
main profiles, namely Core, Interchange, Interactive, Immersive, and Full as well
as three special profiles namely, CADInterchange, MedicalInterchange, and MPEG-4

interactive [Brutzman and Daly 2007, p. 13ff]. [25]

Reverse engineering
The reverse engineering process aims at gaining sufficient design-level understanding
about an existing software system to help with its maintenance, enhancement, replace-
ment, and reuse [Chikofsky and Cross 1990]. [8]

Glossary XXV

Scene graph
A scene graph is the basic unit of the X3D runtime environment. It is a directed, acyclic
graph or a tree, respectively [Brutzman and Daly 2007, p. 1]. The nodes of this tree
correspond to objects of the scene. [27]

Solution space
The solution space covers the elementary and reusable implementation components
and the common system family architecture [Czarnecki and Eisenecker 2000, p. 131f].
[12]

Static semantics
The static semantics are a set of constraints and/or type system rules to which formal
models have to conform [Stahl et al. 2006, p. 55ff]. [14]

Structure
The aspect structure includes program code, data structures, static call-graphs, rela-
tions, and the organization of a software system [Diehl 2007, p. 3f]. [6]

System family
A system family covers a set of of systems that are similar enough in terms of archi-
tecture to be assembled by a common set of components [Czarnecki and Eisenecker
2000, p. 31]. [10]

Technology projection
A technology projection is the mapping of the elements of the generative domain
model to a paradigm, a programming language, or a platform [Czarnecki 2005]. [12]

Terminal rule
A terminal rule is described using EBNF-like expressions. Return types are atomic
values of type EDataType [Xtext Documentation 2014]. [18]

Visualization pipeline
A visualization pipeline defines a visualization process including five main steps: ex-
traction, analysis, filtering, mapping, and rendering [dos Santos and Brodlie 2004].
[9]

Workflow
In the context of MWE2, a workflow summarizes components that interact with each
other [Xtext Documentation 2014]. [19]

X3D
Extensible 3D (X3D) is an XML-based file format and runtime architecture to repre-
sent 3D scenes [X3D Website 2014]. [5]

Glossary XXVI

X3DOM
Extensible 3D Document Object Model (X3DOM) is an open-source framework and
runtime architecture for 3D graphics on the web [X3DOM Website 2014]. [5]

Xtend
Xtend is a statically-typed programming language that translates to comprehensible
Java source code [Xtend Documentation 2014]. [23]

Xtext
Xtext is a language development framework for programming languages and domain
specific languages [Xtext Documentation 2014]. [17]

Bibliography XXVII

Bibliography

Alam, S. and Dugerdil, P. (2007). EvoSpaces: 3D Visualization of Software Architecture. In
Int. Conf. Softw. Eng. Knowl. Eng., pages 500–506. Knowledge Systems Institute Graduate
School. [Cited on page 49]

Amar, R. and Stasko, J. (2004). A knowledge task-based framework for design and evalua-
tion of information visualizations. In IEEE Symp. Inf. Vis., pages 143–150. [Cited on page

66]

AOPT (2014). AOPT. http://doc.x3dom.org/tutorials/models/aopt/index.html. Ac-
cessed: 2014-10-13. [Cited on page 34]

Balogh, G. and Beszedes, A. (2013). CodeMetropolis – a Minecraft based collaboration tool
for developers. In 1st IEEE Work. Conf. Softw. Vis., pages 1–4. [Cited on page 49]

Balzer, M., Noack, A., Deussen, O., and Lewerentz, C. (2004). Software landscapes: Vi-
sualizing the structure of large software systems. In Proc. Sixth Jt. Eurographics - IEEE

TCVG Conf. Vis., pages 261–266. Eurographics Association. [Cited on page 49]

Bassil, S. and Keller, R. (2001). Software visualization tools: Survey and analysis. In 9th

Int. Work. Progr. Compr., pages 7–17. [Cited on pages 2 and 8]

Behr, J., Eschler, P., Jung, Y., and Zöllner, M. (2009). X3DOM: A DOM-based HTML5/X3D
Integration Model. In Proc. 14th Int. Conf. 3D Web Technol., pages 127–135, New York,
USA. ACM. [Cited on pages 24 and 30]

Behr, J., Jung, Y., Drevensek, T., and Aderhold, A. (2011). Dynamic and interactive aspects
of X3DOM. In Proc. 16th Int. Conf. 3D Web Technol., pages 81–88, New York, USA.
ACM. [Cited on page 24]

Behr, J., Jung, Y., Franke, T., and Sturm, T. (2012). Using images and explicit binary con-
tainer for efficient and incremental delivery of declarative 3D scenes on the web. In Proc.

17th Int. Conf. 3D Web Technol., pages 17–26, New York, USA. ACM. [Cited on pages 10,

24, and 34]

Behr, J., Jung, Y., Keil, J., Drevensek, T., Zoellner, M., Eschler, P., and Fellner, D. (2010).
A scalable architecture for the HTML5/X3D integration model X3DOM. In Proc. 15th

Int. Conf. Web 3D Technol., pages 185–194, New York, USA. ACM. [Cited on pages 24,

30, and 31]

http://doc.x3dom.org/tutorials/models/aopt/index.html

Bibliography XXVIII

Boccuzzo, S. and Gall, H. (2007). CocoViz: Towards Cognitive Software Visualizations. In
4th Int. Work. Vis. Softw. Underst. Anal., pages 72–79. IEEE. [Cited on page 49]

Bohnet, J. and Döllner, J. (2005). Konzepte der Softwarevisualisierung für komplexe, ob-
jektorientierte Softwaresysteme. Technical Report 6, Hasso-Plattner-Institut für Soft-
waretechnik, Universität Potsdam, Potsdam. [Cited on pages 2 and 8]

Borgo, R., Kehrer, J., Chung, D., Maguire, E., Laramee, R. S., Ward, M., and Chen, M.
(2013). Glyph-based visualization: Foundations, design guidelines, techniques and appli-
cations. Eurographics State Art Reports, pages 39–63. [Cited on pages 86 and 87]

Brutzman, D. and Daly, L. (2007). X3D: Extensible 3D graphics for Web authors. Elsevier.
[Cited on pages 24, 25, 27, XXIV, and XXV]

Caserta, P. and Zendra, O. (2011). Visualization of the Static Aspects of Software: A Survey.
IEEE Trans. Vis. Comput. Graph., 17(7):913–933. [Cited on page 2]

Caserta, P., Zendra, O., and Bodénes, D. (2011). 3D Hierarchical Edge bundles to visualize
relations in a software city metaphor. In 6th Int. Work. Vis. Softw. Underst. Anal. [Cited on

page 49]

Chikofsky, E. and Cross, J. (1990). Reverse engineering and design recovery: a taxonomy.
IEEE Softw., 7(1):13–17. [Cited on pages 1, 8, XXII, and XXIV]

Czarnecki, K. (2005). Overview of Generative Software Development. In Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., and Michel, O., editors, Unconv. Program. Paradig., volume
3566 of Lecture Notes in Computer Science, pages 326–341. Springer Berlin Heidelberg.
[Cited on pages 10, 12, and XXV]

Czarnecki, K. and Eisenecker, U. W. (2000). Generative Programming: Methods, Tools, and

Applications. Addison-Wesley. [Cited on pages 10, 11, 34, 85, XXI, XXII, XXIII, XXIV, and XXV]

Czarnecki, K. and Helsen, S. (2006). Feature-based survey of model transformation ap-
proaches. IBM Syst. J., 45(3):621–646. [Cited on page 15]

Daum, B. (2008). Java-Entwicklung mit Eclipse 3.3: Anwendungen, Plugins und Rich

Clients. dpunkt.verlag. [Cited on page 17]

Diehl, S. (2007). Software Visualization: Visualizing the Structure, Behaviour, and Evolution

of Software. Springer. [Cited on pages 2, 5, 6, 9, 34, 66, XXI, XXII, and XXV]

dos Santos, S. and Brodlie, K. (2004). Gaining understanding of multivariate and multidi-
mensional data through visualization. Comput. Graph., 28(3):311–325. [Cited on pages 9

and XXV]

Bibliography XXIX

Ducasse, S., Anquetil, N., Bhatti, U., Hora, A. C., Laval, J., and Gîrba, T. (2011). MSE and
FAMIX 3.0: an interexchange format and source code model family. [Cited on pages 9, 10,

20, 34, and 57]

Ducasse, S., Gîrba, T., and Favre, J.-M. (2004). Modeling software evolution by treating
history as a first class entity. In Work. Softw. Evol. Through Transform., pages 75–86.
[Cited on pages 9, 10, 34, 57, and 67]

Eclipse Documentation (2014). Eclipse Documentation. http://help.eclipse.org/

kepler/index.jsp. Accessed: 2014-04-04. [Cited on pages 16, 17, XXII, and XXIV]

Eclipse Website (2014). Eclipse Website. http://www.eclipse.org/. Accessed: 2014-10-
15. [Cited on page 15]

Eicker, S., Spies, T., and Kahl, C. (2007). Software Visualization in the Context of Service-
Oriented Architectures. In 4th Int. Work. Vis. Softw. Underst. Anal., pages 108–111. IEEE.
[Cited on pages 6, 7, and 49]

Findbugs (2014). Findbugs. http://findbugs.sourceforge.net/. Accessed: 2014-11-05.
[Cited on page 83]

Frailey, D., MacDonell, S., and Gray, A. (2004). Software engineering management. In
Bourque, P. and Dupuis, R., editors, Guid. to Softw. Eng. Body Knowl., chapter 8, pages
1–13. The Institute of Electrical and Electronics Engineers, Inc., AUT University. [Cited

on pages 1, 8, and XXIII]

Freemind (2014). Freemind. http://freemind.sourceforge.net/wiki/index.php/Main_

Page. Accessed: 2014-11-05. [Cited on page 88]

Gallagher, K., Hatch, A., and Munro, M. (2005). A Framework for Software Architecture
Visualisation Assessment. In 3rd Int. Work. Vis. Softw. Underst. Anal., pages 76–81, Bu-
dapest, Hungary. IEEE. [Cited on pages 9 and 66]

Garcia, V. C., Lucredio, D., do Prado, A. F., Alvaro, A., and de Almeida, E. S. (2004). To-
wards an Effective Approach for Reverse Engineering. In Proc. 11th Work. Conf. Reverse

Eng., pages 298–299. IEEE. [Cited on pages 1 and 8]

Gračanin, D., Matković, K., and Eltoweissy, M. (2005). Software Visualization. Innov. Syst.

Softw. Eng., 1(2):221–230. [Cited on pages 2 and 66]

Greevy, O. (2007). Dynamix - a meta-model to support feature-centric analysis. In 1st Int.

Work. FAMIX Moose Reengineering. [Cited on pages 6, 9, 10, 34, 57, and 67]

Greevy, O., Lanza, M., and Wysseier, C. (2005). Visualizing Feature Interaction in 3-D. In
3rd Int. Work. Vis. Softw. Underst. Anal., pages 114–119. IEEE. [Cited on pages 7, 49, and 84]

http://help.eclipse.org/kepler/index.jsp
http://help.eclipse.org/kepler/index.jsp
http://www.eclipse.org/
http://findbugs.sourceforge.net/
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://freemind.sourceforge.net/wiki/index.php/Main_Page

Bibliography XXX

Hassenzahl, M., Platz, A., Burmester, M., and Lehner, K. (2000). Hedonic and ergonomic
quality aspects determine a software’s appeal. In Proc. SIGCHI Conf. Hum. Factors Com-

put. Syst., pages 201–208. [Cited on page 75]

Herman, I., Melancon, G., and Marshall, M. S. (2000). Graph visualization and navigation in
information visualization: A survey. IEEE Trans. Vis. Comput. Graph., 6(1):24–43. [Cited

on page 67]

Höffler, T. N. and Leutner, D. (2007). Instructional animation versus static pictures: A meta-
analysis. Learn. Instr., 17(6):722–738. [Cited on page 66]

Hundhausen, C. D. (1996). A meta-study of software visualization effectiveness. http:

//www.eecs.wsu.edu/~veupl/pub/MetaStudy.pdf. [Cited on page 5]

Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. J. Vis. Lang. Comput., 13(3):259–290. [Cited on page 8]

InstantReality Website (2014). InstantReality Website. http://www.instantreality.org/.
Accessed: 2014-10-10. [Cited on pages 28 and 34]

Irani, P. and Ware, C. (2003). Diagramming information structures using 3D perceptual
primitives. ACM Trans. Comput. Interact., 10(1):1–19. [Cited on page 49]

JDT Project Website (2014). JDT Project Website. http://www.eclipse.org/jdt/. Ac-
cessed: 2014-10-15. [Cited on page 16]

Keim, D. A. and Schneidewind, J. (2007). Introduction to the Special Issue on Visual Ana-
lytics. ACM SIGKDD, 9(2):3–4. [Cited on page 67]

Kienle, H. M. and Müller, H. A. (2007). Requirements of Software Visualization Tools: A
Literature Survey. In 4th Int. Work. Vis. Softw. Underst. Anal., pages 2–9. IEEE. [Cited on

page 48]

Knight, C. and Munro, M. (1999). Comprehension with[in] Virtual Environment Visualisa-
tions. In 7th Int. Work. Progr. Compr., page 4, Los Alamitos, CA, USA. IEEE. [Cited on

page 6]

Koschke, R. (2003). Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey. J. Softw. Maint., 15(2):87–109. [Cited on page 2]

Kuhn, A., Erni, D., and Nierstrasz, O. (2010). Embedding spatial software visualization in
the IDE: an exploratory study. In Proc. 5th Int. Symp. Softw. Vis., pages 113–122, New
York, USA. ACM. [Cited on page 49]

Kuhn, A. and Verwaest, T. (2008). FAME—A polyglot library for metamodeling at runtime.
In Work. Model. Runtime, pages 57–66. [Cited on pages 9 and 57]

http://www.eecs.wsu.edu/~veupl/pub/MetaStudy.pdf
http://www.eecs.wsu.edu/~veupl/pub/MetaStudy.pdf
http://www.instantreality.org/
http://www.eclipse.org/jdt/

Bibliography XXXI

Lee, B., Parr, C., Plaisant, C., and Bederson, B. (2005). Visualizing Graphs as Trees: Plant a
seed and watch it grow. In Graph Draw., volume 3843, pages 516–518, Berlin, Heidelberg.
Springer-Verlag. [Cited on page 67]

Lethbridge, T. C., Tichelaar, S., and Ploedereder, E. (2004). The Dagstuhl Middle Meta-
model: A Schema For Reverse Engineering. Electron. Notes Theor. Comput. Sci., 94:7–18.
[Cited on page 9]

Limberger, D., Wasty, B., Trümper, J., and Döllner, J. (2013). Interactive software maps for
web-based source code analysis. In Proc. 18th Int. Conf. 3D Web Technol., pages 91–98,
New York, USA. ACM. [Cited on page 88]

Limper, M., Thöner, M., Behr, J., and Fellner, D. W. (2014). SRC - a Streamable Format for
Generalized Web-based 3D Data Transmission. In Proc. Ninet. Int. ACM Conf. 3D Web

Technol., pages 35–43, New York, USA. ACM. [Cited on page 34]

Löwe, W. and Panas, T. (2005). Rapid construction of software comprehension tools. Int. J.

Softw. Eng. Knowl. Eng., 15(6):905–1023. [Cited on page 49]

Maletic, J., Marcus, A., and Collard, M. (2002). A task oriented view of software visuali-
zation. In 1st Int. Work. Vis. Softw. Underst. Anal., pages 32–40. IEEE. [Cited on pages 9

and 66]

Marcus, A., Comorski, D., and Sergeyev, A. (2005). Supporting the evolution of a software
visualization tool through usability studies. In 13th Int. Work. Progr. Compr., pages 307–
316. IEEE. [Cited on page 5]

Marcus, A., Feng, L., and Maletic, J. (2003). Comprehension of software analysis data using
3D visualization. In 11th Int. Work. Progr. Compr., page 105. IEEE Computer Society.
[Cited on page 49]

Meyer, M., Sedlmair, M., and Munzner, T. (2012). The four-level nested model revisited:
blocks and guidelines. In Work. BEyond time errors Nov. Eval. methods Inf. Vis., pages
1–6. [Cited on pages 65, 66, and 86]

Miller, J. and Mukerji, J. (2003). MDA Guide Version 1.0.1. [Cited on page 12]

Müller, R., Kovacs, P., Schilbach, J., and Eisenecker, U. (2011). Generative Software Visua-
lization: Automatic Generation of User-Specific Visualizations. In Proc. Int. Work. Digit.

Eng., pages 45–49, Magdeburg, Germany. [Cited on pages 2, 4, 56, 73, 74, and 85]

Müller, R., Kovacs, P., Schilbach, J., Eisenecker, U., Zeckzer, D., and Scheuermann, G.
(2014a). A Structured Approach for Conducting a Series of Controlled Experiments in
Software Visualization. In Proc. 5th Int. Conf. Vis. Theory Appl., pages 204–209, Lisbon,
Portugal. [Cited on pages 2, 4, 65, 66, 73, 74, and 86]

Bibliography XXXII

Müller, R., Kovacs, P., Schilbach, J., and Zeckzer, D. (2014b). How to Master Challenges in
Experimental Evaluation of 2D versus 3D Software Visualizations. In IEEE VIS 2014 Int.

Work. 3DVis Does 3D really make sense Data Vis., Paris, France. [Cited on pages 2, 4, 73,

74, and 86]

Müller, R. and Zeckzer, D. (2015a). Past, Present, and Future of 3D Software Visualization
- A Systematic Literature Analysis. In Proc. 6th Int. Conf. Vis. Theory Appl., Berlin,
Germany. [Cited on pages 2, 4, 85, and 87]

Müller, R. and Zeckzer, D. (2015b). The Recursive Disk Metaphor - A Glyph-based Ap-
proach for Software Visualization. In Proc. 6th Int. Conf. Vis. Theory Appl., Berlin, Ger-
many. [Cited on pages 4, 83, and 86]

Munzner, T. (2009). A nested model for visualization design and validation. IEEE Trans.

Vis. Comput. Graph., 15(6):921–928. [Cited on pages 65, 66, and 86]

Myers, B. A. (1990). Taxonomies of visual programming and program visualization. J. Vis.

Lang. Comput., 1(1):97–123. [Cited on pages 5, 8, and 65]

Nierstrasz, O., Ducasse, S., and Gîrba, T. (2005). The story of moose: an agile reengineering
environment. In Proc. 10th Eur. Softw. Eng. Conf. held jointly with 13th SIGSOFT Int.

Symp. Found. Softw. Eng., volume 30, pages 1–10, Lisbon, Portugal. ACM. [Cited on page

67]

PDE Project Website (2014). PDE Project Website. http://www.eclipse.org/pde/. Ac-
cessed: 2014-10-15. [Cited on page 16]

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies
in software engineering. In Proc. 12th Int. Conf. Eval. Assess. Softw. Eng., pages 68–77.
British Computer Society. [Cited on pages 3, 48, and 85]

Price, B. A., Baecker, R. M., and Small, I. S. (1993). A Principled Taxonomy of Software
Visualization. J. Vis. Lang. Comput., 4(3):211–266. [Cited on pages 5, 9, and 66]

Reiss, S. (2005). SoftVis 2005, Call for papers. http://www.softvis.org/softvis05/.
Accessed: 2014-09-30. [Cited on page 6]

Reiss, S. P. (1995). An Engine for the 3D Visualization of Program Information. J. Vis.

Lang. Comput., 6(3):299–323. [Cited on pages 48 and 85]

Ripley, R. M., Sarma, A., and van der Hoek, A. (2007). A Visualization for Software Project
Awareness and Evolution. In 4th Int. Work. Vis. Softw. Underst. Anal., pages 137–144.
IEEE. [Cited on pages 6, 7, and 49]

Roman, G.-C. and Cox, K. C. (1993). A taxonomy of program visualization systems. IEEE

Comput., 26(12):11–24. [Cited on pages 5, 9, and 66]

http://www.eclipse.org/pde/
http://www.softvis.org/softvis05/

Bibliography XXXIII

Sharif, B. and Jetty, G. (2013). An Empirical Study Assessing the Effect of SeeIT 3D on
Comprehension. In 1st IEEE Work. Conf. Softw. Vis. [Cited on page 49]

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information
visualizations. In Proc. 1996 IEEE Symp. Vis. Lang., pages 336–343. IEEE. [Cited on page

67]

Siegmund, J. (2012). Framework for Measuring Program Comprehension. Phd thesis, Uni-
versity of Magdeburg, School of Computer Science. [Cited on page 66]

Sjøberg, D. I. K., Dybå, T., and Jørgensen, M. (2007). The Future of Empirical Methods in
Software Engineering Research. In Futur. Softw. Eng., pages 358–378. IEEE. [Cited on

page 3]

Stahl, T., Völter, M., Bettin, J., Haase, A., and Helsen, S. (2006). Model-driven Software

Development: Technology, Engineering, Management. John Wiley & Sons, 1st edition.
[Cited on pages 12, 13, 15, 34, 85, XXI, XXII, XXIII, XXIV, and XXV]

Stahl, T., Völter, M., Efftinge, S., and Haase, A. (2007). Modellgetriebene Softwareentwick-

lung: Techniken, Engineering, Management. dpunkt.verlag, 2nd edition. [Cited on pages 12,

13, 15, XXIII, and XXIV]

Stasko, J. and Patterson, C. (1993). Understanding and Characterizing Program Visualization
Systems. Technical report, Georgia Institute of Technology, Atlanta. [Cited on pages 9 and 66]

Steinbrückner, F. and Lewerentz, C. (2010). Representing development history in software
cities. In Proc. 5th Int. Symp. Softw. Vis., pages 193–202, New York, USA. ACM. [Cited

on pages 6, 7, 49, and 84]

Storey, M.-A. D., Čubranić, D., German, D. M., and Cubranic, D. (2005). On the use of
visualization to support awareness of human activities in software development. In Proc.

2005 ACM Symp. Softw. Vis., pages 193–202, New York, USA. ACM. [Cited on pages 9

and 66]

Strein, D., Lincke, R., Lundberg, J., and Löwe, W. (2007). An Extensible Meta-Model for
Program Analysis. IEEE Trans. Softw. Eng., 33(9):592 – 607. [Cited on page 9]

Teyseyre, A. R. and Campo, M. R. (2009). An overview of 3D software visualization. IEEE

Trans. Vis. Comput. Graph., 15(1):87–105. [Cited on pages 2 and 48]

Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E., and
Wachsmuth, G. (2013). DSL Engineering: Designing, Implementing and Using Domain-

Specific Languages. dslbook.org. [Cited on pages 12, 13, and XXI]

Bibliography XXXIV

vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., and Cleven, A. (2009).
Reconstructing the giant: On the importance of rigour in documenting the literature search
process. In 17th Eur. Conf. Inf. Syst., pages 1–13. [Cited on pages 3, 48, and 85]

von Pilgrim, J. and Duske, K. (2008). GEF3D: a framework for two-, two-and-a-half-, and
three-dimensional graphical editors. In Proc. 4th ACM Symp. Softw. Vis., pages 95–104,
New York, USA. ACM. [Cited on pages 6, 7, and 49]

Vuze (2014). Vuze. http://sourceforge.net/projects/azureus/. Accessed: 2014-11-
09. [Cited on page 83]

Waller, J., Wulf, C., Fittkau, F., Döhring, P., and Hasselbring, W. (2013). SynchroVis : 3D
Visualization of Monitoring Traces in the City Metaphor for Analyzing Concurrency. In
1st IEEE Work. Conf. Softw. Vis., pages 7–10. [Cited on page 49]

Ward, M. O. (2008). Multivariate Data Glyphs: Principles and Practice. In Handb. Data Vis.,
pages 179–198. Springer. [Cited on page 83]

Wettel, R. and Lanza, M. (2007). Visualizing Software Systems as Cities. In 4th Int. Work.

Vis. Softw. Underst. Anal., pages 92–99. IEEE. [Cited on pages 6, 7, 49, and 88]

Wettel, R., Lanza, M., and Robbes, R. (2011). Software systems as cities: A controlled
experiment. In Proc. 33rd Int. Conf. Softw. Eng., pages 551–560, Waikiki, Honolulu,
USA. ACM. [Cited on page 66]

Wilde, T. and Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik: Eine em-
pirische Untersuchung. Wirtschaftsinformatik, 49:280–287. [Cited on page 3]

X3D Schema (2014). X3D Schema. http://www.web3d.org/specifications/x3d-3.3.

xsd. Accessed: 2014-10-12. [Cited on pages 24 and 57]

X3D Standard (2014). X3D Standard. http://www.web3d.org/standards/. Accessed:
2014-09-18. [Cited on pages 24, 26, 27, and 28]

X3D Website (2014). X3D Website. http://www.web3d.org/x3d/. Accessed: 2014-09-18.
[Cited on pages 24, 28, and XXV]

X3DOM Fallback Model (2014). X3DOM Fallback Model. http://www.x3dom.org/

wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png. Accessed: 2014-
10-13. [Cited on page 32]

X3DOM HTML Profile (2014). X3DOM HTML Profile. http://www.x3dom.org/?page_

id=158. Accessed: 2014-10-13. [Cited on page 30]

X3DOM Website (2014). X3DOM Website. http://www.x3dom.org/. Accessed: 2014-09-
30. [Cited on pages 30 and XXVI]

http://sourceforge.net/projects/azureus/
http://www.web3d.org/specifications/x3d-3.3.xsd
http://www.web3d.org/specifications/x3d-3.3.xsd
http://www.web3d.org/standards/
http://www.web3d.org/x3d/
http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png
http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png
http://www.x3dom.org/?page_id=158
http://www.x3dom.org/?page_id=158
http://www.x3dom.org/

Bibliography XXXV

Xtend Documentation (2014). Xtend Documentation. http://www.eclipse.org/xtend/

documentation.html. Accessed: 2014-10-15. [Cited on pages 23 and XXVI]

Xtext Documentation (2014). Xtext Documentation. http://www.eclipse.org/Xtext/

documentation.html. Accessed: 2014-10-15. [Cited on pages 17, 18, 19, XXI, XXII, XXIII,

XXIV, XXV, and XXVI]

Yi, J. S., ah Kang, Y., Stasko, J. T., and Jacko, J. A. (2007). Toward a deeper understanding
of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph.,
13(6):1224–1231. [Cited on page 67]

http://www.eclipse.org/xtend/documentation.html
http://www.eclipse.org/xtend/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html

Wissenschaftlicher Werdegang

Allgemeine Hochschulreife

09/1994–06/2002 Robert-Schumann-Gymnasium in Leipzig
Leistungskurse: Mathematik und Englisch
Abschluss: Abitur (Note 1,4)

Wehrdienst

07/2002–06/2003 Heeresflieger in Fritzlar

Studium

10/2003–02/2009 Studium der Wirtschaftsinformatik an der Universität Leipzig
Thema der Diplomarbeit: Konzeption und prototypische Implementie-
rung eines Generators zur Softwarevisualisierung in 3D
Abschluss: Diplom-Wirtschaftsinformatiker (Note 1,5)

02/2005–01/2009 Studentische Hilfskraft am Lehrstuhl für Wirtschaftsinformatik, insbes.
Softwareentwicklung für Wirtschaft und Verwaltung

Übungen: Strukturierte Programmierung, Objektorientierte und generi-
sche Programmierung, Entwicklung verteilter Anwendungen

Wissenschaftliche Tätigkeiten

11/2008–09/2009 Mitarbeiter im Forschungsprojekt BEFAS bei Volkswagen

02/2009–1/2015 Wissenschaftlicher Mitarbeiter und Doktorand am Lehrstuhl für Wirt-
schaftsinformatik, insbes. Softwareentwicklung für Wirtschaft und Ver-
waltung

Betreuung von Abschlussarbeiten (Bachelor, Master, Diplom)

Vorlesungen: Anforderungsermittlung und Softwareergonomie (seit 04/
2010), Softwarevisualisierung (seit 04/2012), Entwicklung für und mit
Eclipse (10/2012–02/2013)

seit 01/2010 Mitarbeiter im Forschungsprojekt Softwarevisualisierung in 3D und VR

Reviewtätigkeiten

SKIL’12 (PC), SKIL’11 (PC), Computer and Informatics (eingeladen)

Leipzig, den 21. Januar 2015 Richard Müller

Selbstständigkeitserklärung

Hiermit versichere ich, dass

1. die vorgelegte Dissertation ohne unzulässige Hilfe, insbesondere ohne die Inanspruch-
nahme eines Promotionsberaters, und ohne Benutzung anderer als der angegebenen
Hilfsmittel angefertigt wurde und dass die aus fremden Quellen direkt oder indirekt
übernommenen Gedanken in der Arbeit als solche kenntlich gemacht worden sind und

2. die vorgelegte Dissertation weder im Inland noch im Ausland in gleicher oder in ähn-
licher Form einer anderen Prüfungsbehörde zum Zwecke einer Promotion oder eines
anderen Prüfungsverfahrens vorgelegt und insgesamt noch nicht veröffentlicht wurde.

Leipzig, den 21. Januar 2015 Richard Müller

	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Objective and Research Questions
	1.3 Research Methodology
	1.4 Contributions
	1.5 Outline

	2 Background
	2.1 Software Visualization
	2.1.1 Definitions
	2.1.2 Supported Software Engineering Tasks
	2.1.3 Taxonomies
	2.1.4 Metamodels
	2.1.5 Visualization Pipeline

	2.2 Adapted Software Engineering Paradigms
	2.2.1 Generative Paradigm
	2.2.2 Model-Driven Paradigm

	2.3 Eclipse
	2.3.1 Java Development Tools
	2.3.2 Plug-in Development Environment
	2.3.3 Xtext
	2.3.4 Xtend 2

	2.4 Extensible 3D
	2.4.1 X3D
	2.4.2 X3DOM

	2.5 Summary

	3 Literature Study
	3.1 Past, Present, and Future of 3D Software Visualization - A Systematic Literature Analysis
	3.2 Summary

	4 Generator for 2D, 2.5D, and 3D Software Visualizations
	4.1 Generative Software Visualization: Automatic Generation of User-Specific Visualizations
	4.2 Summary

	5 Structured Approach
	5.1 A Structured Approach for Conducting a Series of Controlled Experiments in Software Visualization
	5.2 Summary

	6 Controlled Experiment
	6.1 How to Master Challenges in Experimental Evaluation of 2D versus 3D Software Visualizations
	6.2 Summary

	7 The Recursive Disk Metaphor
	7.1 The Recursive Disk Metaphor - A Glyph-based Approach for Software Visualization
	7.2 Summary

	8 Conclusion and Future Work
	8.1 Contributions
	8.2 Recommendations for 3D Software Visualizations
	8.3 Outlook
	8.3.1 Literature Study
	8.3.2 Generator
	8.3.3 X3DOM
	8.3.4 Recursive Disk Metaphor
	8.3.5 Research Project

	Appendix
	A Famix
	B Recursive Disk Metaphor

	Glossary
	Bibliography
	Wissenschaftlicher Werdegang
	Selbstständigkeitserklärung

