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Chapter 1

Introduction

In this work we will � based on [1] � describe a generalization of commonly used ap-
proaches in representing a large amount of numerical data (that can be interpreted as a
high dimensional object) using sums of elementary tensors (see De�nition 1.1.5).

In physics, elements of a tensor space that are not able to be represented by one
elementary tensor are called entangled states. We however will not only distinguish
between elementary tensors and non-elementary tensors, but also classify the number of
terms that is needed to represent an object of the tensor space. Within this classi�cation
we will describe a complex multi-graph based structure that will allow us to reach a
level of �exibility, which is well suited to the currently available applications that use
represented tensors.

To avoid misunderstandings, we give three very basic de�nitions in advance.

De�nition (Lexicographical order). Let ` P N and I1, . . . , I` be arbitrary strict totally
ordered index sets with the relation symbol ď. Then we de�ne the lexicographical order
of I :“ pI1, . . . , I`q as the order that is induced by ď which is de�ned for i, j P I as

i ď j ô Dt P t1, . . . , `u : ik “ jk @k “ 1, . . . , t´ 1, it ď jt.

De�nition (K). We will write K if we want to express that either R or C can be used.

De�nition (Matrix notation). Let A be a matrix. Then

Ai,j

describes the entry at row i and column j of matrix A. In addition, we have

A “ pAi,jq

which will only hold for the most outer brackets of a term such that for instance in case
of writing

ppBi,jqj,iq

we simply mean the transpose of matrix B. This will be the matrix notation that we will
use in this work.
Note that i and j may also be multi-indices.

11
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1.1 Tensor product and tensor spaces

Our main point of interest is the so called tensor product of elements of linear vector
spaces as well as of the vector spaces themselves, which we call tensor space. We will
derive the de�nition from multilinear mappings and describe properties that have an
important meaning in practice.

As the introduction into tensor products and tensor spaces is a standard section, we
are guided by the structure and contents of [2, Chapter I], [3, Chapter I] and [4, Chapter
1].

We start with a basic de�nition as of [3, Chapter I Subsection 1.1]:

De�nition 1.1.1 (Bilinear mapping, img). Let A,B and C be linear vector spaces over
K. Then the mapping

f : AˆB Ñ C

is called a bilinear mapping, if it is linear in both components, i.e.

fpα1a1 ` α2a2, bq “ α1fpa1, bq ` α2fpa2, bq

and

fpa, β1b1 ` β2b2q “ β1fpa, b1q ` β2fpa, b2q

for all α1, α2, β1, β2 P K, a, a1, a2 P A and b, b1, b2 P B. We further de�ne the image of f
as

img f :“
ď

aPA

ď

bPB

tfpa, bqu.

A natural extension from a mapping that acts on two components, is one that acts on
arbitrary (�nitely) many components. Therefore, we state as of [3, Chapter I Subsection
1.3]

De�nition 1.1.2 (Multilinear mapping). Let d P N,V1, . . . ,Vd and C be K-linear vector
spaces. Then the mapping

f :
d

ą

µ“1

Vµ Ñ C

is called a multilinear mapping if it is linear in all d components, i.e. for every �xed
µ P t1, . . . , du, we have

fpa1, . . . , aµ´1, α1aµ,1 ` α2aµ,2, aµ`1, . . . , adq “α1fpa1, . . . , aµ´1, aµ,1, aµ`1, . . . , adq

` α2fpa1, . . . , aµ´1, aµ,2, aµ`1, . . . , adq

for all a1 P V1, . . . , aµ´1 P Vµ´1, aµ,1, aµ,2 P Vµ, aµ`1 P Vµ`1, . . . , ad P Vd and for all
α1, α2 P K. Analogously to De�nition 1.1.1, we de�ne the image of f as

img f :“
d
ď

µ“1

ď

aµPVµ

tfpa1, . . . , adqu.
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Based on this de�nition, we can de�ne the object, that we previously described as one
of our main objects of interest, which is the tensor product. This is, roughly speaking, a
tuple of a multilinear mapping and its codomain that preserves certain commutativity
properties. The tensor product is de�ned in [3, De�nition 1.4 and Subsection 1.20 of
Chapter I] as follows:

De�nition 1.1.3 (Tensor product). Let V1, . . . ,Vd and C,D be K-linear vector spaces
and f be a multilinear mapping

f :
d

ą

µ“1

Vµ Ñ C,

then the pair pf, Cq is called tensor product for V1, . . . ,Vd if the following two properties
hold

1. C “ span img f (i.e. C is generated by the image of f)

2. for all multilinear mappings

g :
d

ą

µ“1

Vµ Ñ D

then there exists a linear mapping

h : D Ñ C

with h ˝ g “ f (the connection between f, g and h is visualized in Figure 1.1).

Note that the closure of span img f makes only sense if we have a topology de�ned. There-
fore, in [5, Subsection 3.2.1] there is a distinction into algebraic tensor products (where
no topology is de�ned) and topological tensor products.
In this work, we will treat only �nite dimensional vector spaces such that the topological
tensor space and the algebraic tensor space are equal.

d
Ś

µ“1
Vµ C

D

f

g
h

Figure 1.1: Commutativity between multilinear mappings of tensor products 1

From [3, De�nition 1.4] we state the following

1see [3, Chapter I Subsection 1.20] and [2, Theorem 1.1']
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Lemma 1.1.4. Let the notation of 1.1.3 hold, then pf, Cq is a tensor product if and only
if for all multilinear mappings

g :
d

ą

µ“1

Vµ Ñ D

there exists a unique linear mapping h : D Ñ C such that h ˝ g “ f .

Proof. See [3, De�nition 1.4 and Section 1.20 of Chapter I].

By combining [2, De�nition 1.4] and [5, De�nition 3.9], we get

De�nition 1.1.5 (b, elementary tensor). Let the notation of De�nition 1.1.3 hold. Then
we de�ne the symbol b as follows:

d
â

µ“1

aµ :“ fpa1, . . . , adq

and

d
â

µ“1

Vµ :“ span img f.

We further denote elements of
d
Â

µ“1
aµ as an elementary tensor of

d
Â

µ“1
Vµ.

So we always have a multilinear mapping f in the background that acts on the vector
spaces Vµ. The mapping itself does not matter, but only the properties of De�nition
1.1.3 and Lemma 1.1.4, respectively.

As of [5, Equation (1.1) of Subsection 1.1.1] and [6, Equation (3.3) of Subsection
3.2.1] we state

Example 1.1.6. If the vector spaces V1, . . . ,Vd are all K vector spaces, then we can
de�ne the multilinear mapping f of De�nition 1.1.5 pointwise by

fpa1, . . . , adqi1,...,id :“
d
ź

µ“1

paµqiµ

where paµqiµ denotes the iµth position of vector aµ. This is the standard de�nition of the
tensor product of vectors over K.

An important property of the tensor product is the isomorphism between di�erent
orderings of tensor products of vector spaces and their elements.

Combining [2, Proposition 1.5 and Proposition 1.7] leads to

Lemma 1.1.7. Let V1,V2 and V3 be vector spaces over K. Then the following properties
hold:
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1. V1 b V2 – V2 b V1

2. V1 b V2 b V3 – V1 b pV2 b V3q.

Proof. See [2, Proposition 1.5 and Proposition 1.7].

Consequently, we obtain as of [2, Proposition 1.8]

Corollary 1.1.8. Let V1,V2 and V3 be vector spaces over the body K, then

pV1 b V2q b V3 – V1 b pV2 b V3q.

For vector spaces, we will now state a lemma that we will use implicitly through the
whole work which is given in [2, Proposition 1.2]:

Lemma 1.1.9. Let V1, . . . ,Vd be �nite dimensional K vector spaces. Then

dim
d
â

µ“1

Vµ “
d
ź

µ“1

dimVµ.

Proof. See [2, proof of Theorem 1.1].

1.2 Tensors as general vectors

In this work, all vector spaces V1, . . . ,Vd are vectors spaces overK if not de�ned otherwise.
With the help of Lemma 1.1.9, we can formulate a corollary whose content is stated in
[5, Section 5.3]:

Corollary 1.2.1. Let V1, . . . ,Vd be K �nite dimensional vector spaces. Then

d
â

µ“1

Vµ – K
śd
µ“1 dimVµ

since K is a �eld.

This corollary is of major importance as it allows us to rewrite tensors as vectors or
matrices. In our algorithms and applications we will often use this corollary. Let us give
a simple example, that is based on [5, Subsection 5.1.1].

Example 1.2.2. For simplicity, we start with the tensor product of two vectors v P Kn

and w P Km where n,m P N. Due to Corollary 1.2.1, we can interpret the space KnbKm

as Kn¨m such that we can describe v b w in the following way:

v b w “

¨

˚

˝

v1
...
vn

˛

‹

‚

b

¨

˚

˝

w1
...
wm

˛

‹

‚

–

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

v1 ¨ w1
...

v1 ¨ wm
...

vn ¨ w1
...

vn ¨ vm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Kn¨m.
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Since the space Kn b Km is only de�ned up to an isomorphism and Kn¨m – Knˆm, we
can also de�ne the tensor product of v and w as a matrix

¨

˚

˝

v1
...
vn

˛

‹

‚

b

¨

˚

˝

w1
...
wm

˛

‹

‚

–

¨

˚

˚

˚

˝

v1 ¨ w1 . . . v1 ¨ wm
v2 ¨ w1 . . . v2 ¨ wm

...
...

vn ¨ w1 . . . vn ¨ wm

˛

‹

‹

‹

‚

P Knˆm.

However, the interpretation of the tensor product of two vectors depends on the application
and has a huge in�uence on the numerical treatment and complexity.

In later sections, we will see that it is very important to interpret the tensor product
of vectors di�erently. In fact, a lot of algorithms that we describe in this work, depend on
the ability to re-order or re-interpret the given data such that it can be treated e�ciently.
Some basic concepts, such as vectorization (see [5, Section 5.1]), matricization (see [5,
Section 5.2]) and tensorization (see [5, Section 5.3 and Chapter 14]), also rely on the
re-ordering of the entries.

1.3 Tensor product of in�nite dimensional spaces

Everything that we stated until now besides Lemma 1.1.9 and Corollary 1.2.1 did not
require �niteness of the dimensions of the vector spaces Vµ. From the theoretical point
of view, it is important to treat the in�nite dimensional case slightly di�erently from the
�nite dimensional one.

In the in�nite dimensional case, we can express the tensor product for each element
of the vector space. As of [5, Remark 3.59] we have

Example 1.3.1. Let us assume that the vector spaces V1, . . . ,Vd of De�nition 1.1.3 are
all L2pra, bsq with a, b P R : a ă b. Then the tensor product can be de�ned pointwise.
That is, for fi P L

2pra, bsq with i “ 1, . . . , d, we have

˜

d
â

µ“1

fµ

¸

px1, . . . , xdq :“
d
ź

µ“1

fµpxµq

for all x1, . . . , xd P ra, bs.

Analogously to this example, we can also de�ne the tensor product pointwise for
�nite dimensional vector spaces (see Example 1.1.6). For the numerical treatment, we
have to convert the in�nite dimensional spaces into �nite ones. This is usually done by
a projection to a �nite dimensional subspace. This justi�es

Remark 1.3.2. For all numerical treatment and the description of the algorithms, we
will assume the �niteness of the tensor spaces dimension and therefore the �niteness of
the underlying vector spaces' dimension.
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1.4 Motivation

Keeping in mind Remark 1.3.2, we will now motivate the dealing with tensor networks
on a very basic level. We want to point out the reason for treating high dimensional data
as tensor network representations by giving a simple arti�cially constructed example. At
�rst, [3, Chapter I Section 1.5] contains the content of

Theorem 1.4.1. Let V1, . . . ,Vd be �nite dimensional vector spaces. Then each element
of

V :“
n
â

µ“1

Vµ

can be represented as a �nite sum of elementary tensors of V. That is

@a P V Dr P N, aµ,1, . . . , aµ,r P Vµ@µ P t1, . . . , du : a “
r
ÿ

i“1

d
â

µ“1

aµ,i.

Proof. Follows directly from the �nite dimension of V,V1, . . . ,Vd with the help of Co-
rollary 1.2.1.

The structure of the sum of elementary tensors is important and this is also the
objective that we want to address: �nding a clever structure of the sum can help reduce
the computational and storage complexity of the element of the tensor space V that we
want to represent. This also helps to deal with the so called curse of dimensionality
which is the exponential cost w.r.t. d. We will give a short example that will emphasize
the importance of the representation structure.
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Example 1.4.2. Let us consider a 27ˆ 3 matrix A with real valued entries:

A :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

5.0749 4.1027 3.0527
6.7196 5.5868 5.0496
6.2299 5.0837 3.7979
3.6702 2.9646 2.2221
4.3273 3.6029 3.3677
4.2061 3.4233 2.6278
4.8387 3.9141 2.8971
6.4658 5.3754 4.8326
5.9407 4.8581 3.6509
2.3474 1.8982 1.4092
3.1186 2.5928 2.3384
2.8806 2.3528 1.7626
1.5195 1.2285 0.9135
1.815 1.511 1.4002
1.7387 1.4201 1.1013
2.0438 1.6534 1.2229
2.6417 2.1971 1.9899
2.4503 2.0049 1.5266
3.1872 2.5776 1.9116
4.1868 3.4814 3.1462
3.8762 3.1676 2.3868
2.1159 1.7097 1.2777
2.5016 2.0828 1.9416
2.4201 1.9723 1.5209
2.869 2.321 1.7165
3.7805 3.1435 2.8339
3.4851 2.8513 2.1566

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

which has rank 3. Therefore, its storage cost is 81. We can represent this matrix by

Ã “

3,3,3
ÿ

j1,j2,j3“1

v1pj1q b v2pj1, j2q b v3pj2, j3q b v4pj3q,



1.4. MOTIVATION 19

where

v1p1q :“ p0.8 0.4 0.6qT

v1p2q :“ p0.8 0.5 0.5qT

v1p3q :“ p0.9 0.2 0.4qT

v2p1, 1q :“ p1.0 0.2 0.7qT

v2p2, 1q :“ p0.6 0.5 0.4qT

v2p3, 1q :“ p0.3 0.0 0.9qT

v2p1, 2q :“ p0.8 0.5 0.5qT

v2p2, 2q :“ p0.3 0.4 0.6qT

v2p3, 2q :“ p0.4 0.9 0.2qT

v2p1, 3q :“ p0.3 0.2 0.4qT

v2p2, 3q :“ p0.8 0.2 0.3qT

v2p3, 3q :“ p0.6 0.5 0.8qT

v3p1, 1q :“ p0.3 0.6 0.1qT

v3p2, 1q :“ p0.8 0.9 0.9qT

v3p3, 1q :“ p0.9 0.9 0.8qT

v3p1, 2q :“ p0.4 0.8 0.8qT

v3p2, 2q :“ p0.4 0.7 0.5qT

v3p3, 2q :“ p0.2 0.8 0.2qT

v3p1, 3q :“ p0.8 0.8 1.0qT

v3p2, 3q :“ p0.6 0.2 0.4qT

v3p3, 3q :“ p0.1 0.6 0.9qT

v4p1q :“ p0.9 0.7 0.5qT

v4p2q :“ p0.5 0.5 0.9qT

v4p3q :“ p0.9 0.7 0.2qT ,

and the connection

A “
´

reshapepÃ, 3, 27q
¯T

(with the reshape notation of matlab and similar products). Storing v1, . . . , v4 only re-
quires 72 entries. If we increase the dimension of tensor Ã this advantage may even get
larger.

This little example gives us enough motivation to �nd clever structures for the sums
of elementary tensors for higher dimensions. By considering structured sums, we can
not only reduce the storage cost, but also the computational e�ort that is needed to
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compute one entry or perform basic linear algebra operations, i.e. abstract matrix vector
multiplications (see [5, Section 4.6]).

Example 1.4.2 �ts in the general framework that we want to describe in this work.
To be precise, the way of representing the tensor Ã is called Matrix Product State or
Tensor Train, see De�nition 2.1.8.

The upcoming Chapter 3 will introduce an approach that generalizes summation
structures for �nitely arbitrarily many dimensions. We will try to be as general as possible
in order to include many major generalization attempts for the sum of elementary tensors
as of Theorem 1.4.1.

1.5 Structure of this work

After this introductory chapter, we will make a brief excursion into the history of the
current state of the art tensor representations in Chapter 2. There, we will also describe
the connection between these di�erent types of tensor representations and give algorithms
for the conversion of one type of representation into the other.

Chapter 3 will �nally introduce the generalized tensor representation that will cover
all representations that are introduced in Chapter 2. We will also state the strong con-
nection to the r-term representation (sum of elementary tensors). This chapter will be
the foundation of the whole work. Having understood the concept behind the general-
ization, we can make interesting statements about represented tensors without worrying
about the precise structure.

Subsequently, we are going to describe approximation algorithms for the tensor net-
work format (i.e. algorithms that deal with tensor network representations). Non-linear
block Gauss-Seidel methods and an approach about �nding an initial guess. Due to the
complex structure of the approach, this chapter will be of very technical nature. It should
be su�cient though to understand the general idea behind the algorithms, as it is more
easy to write the algorithms in detail than to read them.

Chapter 5 will focus on the description of an algorithm that helps to convert di�erent
tensor network representations into each other.

An important chapter will be Chapter 6, where we will describe general problems in
dealing with represented tensors. Due to the complexity of the tensor network represen-
tation, we will stumble upon a lot of di�culties and numerical problems. As soon as
such a problem arises, we will emphasize it and try to precisely describe the origin.

Since the tensor network approach does not cover all kinds of existing tensor repre-
sentations, Chapter 7 will give a short overview of selected tensor representations that
do not �t in our scheme. The list however, will by no means be complete.

For numerical experiments, the implementation is always also an important factor
when it comes to measuring e�ciency and runtime. Therefore, we will dedicate a whole
chapter to the implementation, which is Appendix A, where we also will try to justify
several peculiarities of the created source code. The interested reader is encouraged to
try out the examples since they are useful in helping to understand the theory.
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Wherever we introduce or describe a numerical method, we will give numerical ex-
amples in order to emphasize the statements that we make during the description. This
should help the reader to get an impression about where the method can be applied in
practice.

At this point we want to explicitly point out that every application is special. There-
fore the structure of the tensor representation should be chosen such that it �ts the
setting where the data comes from. So one should always try to ask the question of
whether the numerical structure is reasonable with respect to the real world. Long story
short: There is no one best way to generally represent tensors. Everything depends on
the application. There is a broad set of applications equipped with well working meth-
ods of representing tensors. The known working tensor based solutions may serve as an
indicator on what structure may be used for a speci�c class of problems. [7] gives a very
extensive overview about currently used methods.
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Chapter 2

Overview over existing tensor

formats

In order to properly justify the new approach that is used in this thesis, we will explain
di�erent ways of representing a tensor. This chapter's main part is the description of
various popular tensor formats and the explanation of the di�erence between a tensor
format and a tensor representation, which is important (see introduction into Section
2.1). We will also describe, how to convert the representation of a tensor into another
representation of the same tensor (i.e. the tensor itself is not changed, but its represen-
tation).

2.0 Notation

The upcoming notation is valid for the rest of this work.
We will denote K vector spaces with dimension nµ P N as

Vµ

for µ P t1, . . . , du with d P N. Furthermore, we de�ne

V :“
d
â

µ“1

Vµ

as of De�nition 1.1.5. There will be also mappings

f : Nj Ñ Vµ

and

f : Ni Ñ K

for some j, i P N, which we de�ne to have �nite support, compare [1, Notation 2.1].

23
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To increase the readability, we will support the de�nition of the tensor formats and
the explanation of the tensor representation conversions by diagrams, which are di�erent
from the diagrams introduced by [8]. These diagrams will also have a sort of notation
that would allow us to de�ne the formats just by drawing a picture (we will make proper
de�nitions however). Since our approach is (multi)graph-based, we have edges and ver-
tices. We will use the graphical notation of [1] in a sightly modi�ed way (the modi�cation
is only with respect to the vertex symbols):
Each vertex represents a mapping into a vector space. As in [1, Example 2.2], we will
distinguish between spatial vertices and scalar vertices. The spatial vertices represent
mappings into K vector spaces with dimension ě 1 whereas the scalar vertices represent
mappings into K. This di�erence is also visualized in the graphs, see Figure 2.1. In most
cases, we will not distinguish between the vertex and the mapping that is represented by
the vertex.

(a) Vector space vertex (b) Scalar vertex

Figure 2.1: Symbols for di�erent vertex types

Since we want to explain summation structures of elementary tensors, we have to
visualize summations. In the diagrams, we have an edge between vertices, where there
is a summation. Each edge will be labeled with the summation index although the
summation index only exists within the summation. This way, the diagrams are supposed
to be as close as possible to the formulas. In [1], the edges are labeled in the same way
as well as the vertices.

A short and very simple example is Figure 2.2 where we have a vector space vertex
(labeled v) and a scalar vertex (labeled w). The connection between both vertices is
equivalent to a common summation index of the mappings (that are represented by the
vertices). So if we name the mappings equivalent to their corresponding vertices, we get
the following formula

ÿ

j

vpjqwpjq

where v : NÑ V and w : NÑ K have a �nite support.

Figure 2.2: Example graph representation 1

1compare [1, Fig. 1]
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2.1 Formats

In each subsection, we are going to give a short introduction into the format, state its
main properties and name advantages and disadvantages where necessary.

A tensor format is - roughly speaking - a summation structure for the sum of elemen-
tary tensors without limiting the number of terms of the sum. We impose however, the
�niteness of the support, such that there is only a �nite number of non-zero terms. So
basically a tensor format describes a summation structure. Thus, a tensor does not have
a format, it just may be represented in a certain format, which means that one tensor
can be represented in di�erent formats (i.e. the tensor itself does not change). For a
general de�nition of the term tensor format, we refer to De�nition 3.2.3.

If we say v is an XYZ formatted tensor or v is an XYZ tensor, we want to express
that v is given in the form of the tensor format XYZ. Analogously, if we say v is a XYZ
representation, we mean that v is a tensor represented in the XYZ format.

2.1.1 r-term format

As a tensor format is a structure of some sum of elementary tensors in our context, one of
the most simple tensor formats that we can describe is de�ned by a sum of independent
elementary tensors.

The idea for the r-term format has been introduced in [9].

De�nition 2.1.1 (r-term format). Let d P N, then the r-term format is de�ned as

d
ą

µ“1

tf : NÑ Vµu ÑV

pv1, . . . , vdq ÞÑ
ÿ

j

d
â

µ“1

vµpjq.

The name r-term format therefore is well-founded as we are only considering mappings
vi which have �nite support such that a tensor in the r-term format can be represented
with r P N (�nitely many) elementary tensors.

We say, a tensor v is an r-term tensor (or CP tensor) (or tensor in r-term/CP
representation) with representation rank r̃ P N if we represent v by

r̃
ÿ

j“1

d
â

µ“1

vµpjq

with vi : t1, . . . , r̃u Ñ Vi @i P t1, . . . , du.

Visualizing the r-term format leads us to Figure 2.3 which illustrates a graph that
has d vertices that are connected by one edge (which we labeled j).
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Figure 2.3: r-term tensor of order d

A overview of the r-term format can be found in [5, Chapter 7]. For application
related use of this format, [4] is recommended. Note that this format is often also called
CP format which stands for canonical polyadic. In the psychometrics and phonetics
community, r-term tensors are often called CANDECOMP (canonical decomposition,
see [10]) and PARAFAC (parallel factors, see [11]), respectively. However, we will not
use these alternative names.

The main advantage of this format is the linear storage dependency with respect to
the dimension d. Since all addends are independent from each other, we can change
and adjust them separately without taking care of the other addends. This will become
a very important property later on (see Chapter 4). In contrast to [1], we include the
r-term format into the framework of tensor networks.

Unfortunately, the manifold of r-term tensors with a certain �xed rank is not closed
(see [12]). That is an important fact as it leads to numerical instability which has to be
taken care of.

Finding an r-term representation that has the smallest possible value for r for a given
tensor is an ill-posed problem, as shown in [12].

2.1.2 Tucker format / Subspace format

In the previous subsection, we mentioned the di�culties and numerical problems that
appear when using the r-term format. We can overcome these by changing the structure
of the representation. Separating the dimensions from each other (such that they do
not share a summation index) by introducing a so called core tensor leads to the Tucker
format, which has been introduced in [13]:

De�nition 2.1.2 (Tucker format, Subspace format, Tucker legs, Tucker core, Tucker
tensor). Let d P N, then the Tucker format is de�ned as

˜

d
ą

µ“1

tf : NÑ Vµu

¸

ˆ

!

f : Nd Ñ K
)

ÑV

pv1, . . . , vd, wq ÞÑ
ÿ

j1,...,jd

wpj1, . . . , jdq
d
â

µ“1

vµpjµq

where w is the so called core tensor or Tucker core and the vi are the so called Tucker
legs. This format is also referred to as the Subspace format, see [5, Chapter 8]. The
graphical representation is as of Figure 2.4.
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We say, a tensor v is a Tucker tensor (or a tensor in Tucker representation) with
representation rank pr1, . . . , rdq P Nd, if we represent v by

r1,...,rd
ÿ

j1,...,jd“1

wpj1, . . . , jdq
d
â

µ“1

vµpjµq

with v1, . . . , vd, w as de�ned above.

Figure 2.4: Tucker tensor of order d

From the technical point of view, this format seems to be not very feasible as the
Tucker core w depends on all d summation indices and therefore has a storage cost which
is exponentially in d (i.e. w can be considered to be a full order d tensor). In practice
however, it turns out that the representation rank may be very small such that the
support of w is also relatively small, compared to nd. In [14] the Tucker core has been
approximated by a di�erent structure (to wit the TT format). See the next subsection
for details. In contrary to the r-term format, the Tucker format is stable.

2.1.3 Tree-like formats

The problems of the r-term format have been solved with the Tucker format whereas
new problems have been introduced such as possibly large ranks r1, . . . , rd such that the
storage cost for the Tucker core is exponentially in d. Representing the core tensor w of
the Tucker format in a di�erent structure, such that tree like shapes will be created, is
an option to avoid the Tucker format's main disadvantage.

Remark 2.1.3. Technically, the Tucker format as of Subsection 2.1.2 is also a tree
structured format. However, due to its importance, we separated the description of this
format.

Just as the name suggests, the formats that we want to brie�y describe in this subsec-
tion are based on a tree in the sense of graph theory. In contrast to the r-Term format,
tree-like formats are closed as shown in [1, Theorem 3.2] (this also includes the Tucker
format).

In [15], the hierarchical format has been introduced. We want to de�ne a simpli�ca-
tion of that format as follows:
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De�nition 2.1.4 (Hierarchical format (balanced)). For simplicity, we assume that N Q
d “ 2k for some k P N. Then the hierarchical tensor format (balanced) is de�ned as

˜

d
ą

µ“1

tf : NÑ Vµu

¸

ˆ
 

f : N2 Ñ K
(

ˆ

˜

d´1
ą

µ“2

 

f : N3 Ñ K
(

¸

Ñ V,

pv1, . . . , vd, w1, . . . , wd´1q ÞÑ
ÿ

j1,...,j2d´2

w1pj1, j2q
k
ź

ν“2

¨

˝

2ν´1
ź

µ“2ν´1

wµpjµ´1, j2µ´1, j2µq

˛

‚

d
â

µ“1

vµpjµ`2k´2q.

We say, a tensor v is a hierarchical tensor (balanced) (or a tensor in hierarchical
(balanced) representation) with representation rank pr1, . . . , r2d´2q P N2d´2 if we repre-
sent v by

r1,...,r2d´2
ÿ

j1,...,j2d´2“1

w1pj1, j2q
k
ź

ν“2

¨

˝

2ν´1
ź

µ“2ν´1

wµpjµ´1, j2µ´1, j2µq

˛

‚

d
â

µ“1

vµpjµ`2k´2q

with w1, . . . , wd´1, v1, . . . , vd as de�ned above. Compare [1, Example 2.7].

Remark 2.1.5. In comparison to the hierarchical format, a similar structure was intro-
duced as tree tensor network in [16].

The graph structure is illustrated in Figure 2.5. The general hierarchical format as
of [15] allows general trees. For applications of this format, we refer to [6].

Figure 2.5: Hierarchical tensor (balanced) of order d
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If we force the tree to have maximal depth, we still remain in the setting of the
hierarchical format, but the visualization and numerical properties change and we end
up with a structure as follows:

De�nition 2.1.6 (Hierarchical format (linear)). Let d P Nzt1u, then we de�ne the hier-
archical tensor format (linear) as
˜

d
ą

µ“1

tf : NÑ Vµu

¸

ˆ

˜

d´1
ą

µ“1

 

f : N2 Ñ K
(

¸

ÑV,

pv1, . . . , vd, w1, . . . , wd´1q ÞÑ
ÿ

j1,...,j2d´2

w1pj1, j2q
d´1
ź

µ“2

wµpj2µ´2, j2µ´1, j2µq

d´1
â

µ“1

vµpj2µ´1q b vdpj2d´2q.

We say, a tensor v is a hierarchical tensor (linear) (or a tensor in hierarchical (linear)
representation) with representation rank pr1, . . . , r2d´2q P N2d´2 if we represent v by

r1,...,r2d´2
ÿ

j1,...,j2d´2“1

w1pj1, j2q
d´1
ź

µ“2

wµpj2µ´2, j2µ´1, j2µq
d´1
â

µ“1

vµpj2µ´1q b vdpj2d´2q

with w1, . . . , wd´1 and v1, . . . , vd as de�ned above.

A graphical representation of this format can be found in Figure 2.6.

Figure 2.6: Hierarchical tensor (linear) of order d
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Remark 2.1.7. The de�nition of the general hierarchical format can be found in [5,
Chapter 11] and in Example 3.3.7 of Chapter 3. In this section, we will neglect the
general hierarchical format for the sake of simplicity. For our purposes, the balanced
version of this format is su�cient.

Having de�ned the linear hierarchical format, we also have to and want to give the
de�nition of the equivalent so called TT (or Tensor Train) format that is introduced in
[17], [18] and [19]. The di�erence to the hierarchical linear format is that the TT format
integrates the scalar factors into the spatial vectors. That is, for µ P t2, . . . , d ´ 1u we
rede�ne vµ

vTTµ pj2µ´2, j2µq ÞÑ

r2µ´1
ÿ

j2µ´1“1

wµpj2µ´2, j2µ´1, j2µqvµpj2µ´1q

and v1

vTT1 pj2q ÞÑ
r1
ÿ

j1“1

w1pj1, j2qv1pj1q

such that we obtain new mappings vTTµ and the mappings w1, . . . , wd´1 vanish as well as
the summations over j1, j3, . . . , j2d´3. Therefore, we obtain

De�nition 2.1.8 (TT format). Let d P N, then the TT format (or Tensor Train format)
is de�ned as

tf : NÑ V1u ˆ

˜

d´1
ą

µ“2

 

f : N2 Ñ Vµ
(

¸

ˆ tf : NÑ Vdu Ñ V

pv1, . . . , vdq ÞÑ
ÿ

j1,...,jd´1

v1pj1q b

˜

d´1
â

µ“2

vµpjµ´1, jµq

¸

b vdpjd´1q.

We say, a tensor v is a TT tensor (or a tensor in TT representation) with represen-
tation rank pr1, . . . , rd´1q P Nd´1, if we represent v by

r1,...,rd´1
ÿ

j1,...,jd´1“1

v1pj1q b

˜

d´1
â

µ“2

vµpjµ´1, jµq

¸

b vdpjd´1q

with v1, . . . , vd as de�ned above. Compare [1, Example 2.7].

The name train is motivated by the visual representation that is shown in Figure 2.7.

Figure 2.7: Tensor Train of order d
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Remark 2.1.9. This TT format is known to chemists as MPS (matrix product states),
see [20].

In [18, Section 3] the Tucker core is represented in the TT format. If we additionally
interpret the Tucker legs as tensors where each vector space dimension is 2, we obtain
the following format which has been introduced in [14]:

De�nition 2.1.10 (QTT-Tucker format). Let d,m1, . . . ,md P N where dimVµ “ 2mµ

for µ P t1, . . . , du and de�ne sj “
j
ř

i“1
mi and s0 :“ 0, then the QTT-Tucker format is

de�ned as

d
ą

µ“1

˜

mµ´1
ą

ν“1

tf : N2 Ñ K2u ˆ tf : NÑ K2u

¸

ˆ tf : N2 Ñ Ku ˆ

˜

d´1
ą

µ“2

tf : N3 Ñ Ku

¸

ˆ tf : N2 Ñ Ku Ñ V,

pv1, . . . , vsd , w1, . . . , wdq ÞÑ
ÿ

j1,...,jsd`d´1

w1pj1, jm1`1q

˜

d´1
ź

µ“2

wµpjsµ´1`µ´1, jsµ´1`µ, jsµ`µq

¸

wdpjsd´1`d´1, jsd´1`dq

d
â

µ“1

˜˜

sµ´1
â

ν“sµ´1`1

vνpjµ`ν´1, jµ`νq

¸

b vsµpjsµ`µ´1q

¸

,

where the Q stands for quantized (see [21, 22] for an introduction into the quantized TT
format, [23] for an example of its advantages and [24] for an application).

We say, a tensor v is a QTT-Tucker tensor (or a tensor in QTT-Tucker representa-

tion) with representation rank pr1, . . . , rsd`d´1q P Ns
d`d´1 if we represent v by

r1,...,rsd`d´1
ÿ

j1,...,jsd`d´1“1

w1pj1, jm1`1q

˜

d´1
ź

µ“2

wµpjsµ´1`µ´1, jsµ´1`µ, jsµ`µq

¸

wdpjsd´1`d´1, jsd´1`dq

d
â

µ“1

˜˜

sµ´1
â

ν“sµ´1`1

vνpjµ`ν´1, jµ`νq

¸

b vsµpjsµ`µ´1q

¸

with w1, . . . , wd and v1, . . . , vsd as de�ned above.

The main di�erence to the so called extended TT format (see [18, Section 3]) is the
arti�cial interpretation of the Tucker legs as 2ˆ 2ˆ . . .ˆ 2 tensors (so called quantics).

Since the vector spaces Vµ may have di�erent dimensions for di�erent µ, the Tucker
legs (see De�nition 2.1.2) can have di�erent length. The general QTT-Tucker format is
visualized in Figure 2.8. This �gure is also valid for the extended TT format.
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Figure 2.8: QTT-Tucker tensor of order d

2.1.4 Tensor Chain format

In the physicists community, there is the need to treat problems that have an underlying
structure of a ring to respect periodic boundary conditions. In [21, De�nition 2.1], the
following format has been introduced:

De�nition 2.1.11 (Tensor Chain format). Let d P N, then the Tensor Chain format (or
TC format) is de�ned as

d
ą

µ“1

 

f : N2 Ñ Vµ
(

Ñ V,

pv1, . . . , vdq ÞÑ
ÿ

j1,...,jd

v1pj1, jdq b
d
â

µ“2

vµpjµ´1, jµq.

We say, a tensor v is a TC tensor (or a tensor in TC representation) with represen-
tation rank pr1, . . . , rdq P Nd if we represent v by

r1,...,rd
ÿ

j1,...,jd“1

v1pj1, jdq b
d
â

µ“2

vµpjµ´1, jµq

with v1, . . . , vd as de�ned above.
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Figure 2.9: Tensor Chain of order d

Remark 2.1.12. The Tensor chain format is not closed as shown in [25] and [26, The-
orem 14.1.2.2] which leads to numerical instability.

Remark 2.1.13. The TT format as of De�nition 2.1.8 is a special case of the TC format
where the �rst summation index is �xed, see [21]. The reversal is not true.

2.1.5 PEPS format

The PEPS format is a tensor format that is used in quantum chemistry together with
various modi�cations, see for instance [27] for an introduction. PEPS stands for projected
entagled pair states. An entangled state is understood to be a tensor that cannot be
represented as an elementary tensor. The state is called projected because not the real
physical state is used, but a projection to some subspace. The term pair refers to the
entanglement being only considered in terms of maximally entangled state pairs (compare
[28, Chapter 7]). Each dimension in this format also has a physical meaning. See [29]
for applications.

Extending the TT format from a one dimensional to a two dimensional tensor struc-
ture in the shape of a 2D grid.

De�nition 2.1.14 (PEPS format). Let d1, d2 P N. Then PEPS format of order pd1, d2q
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is de�ned as

tf : N2 Ñ V1u ˆ

d1´1
ą

µ“2

tf : N3 Ñ Vµu ˆ tf : N2 Ñ Vd1u

ˆ

d2´1
ą

z“2

˜

tf : N3 Ñ Vpz´1qd1`1u ˆ

d1´1
ą

µ“2

tf : N4 Ñ Vpz´1qd1`µu ˆ tf : N3 Ñ Vzd1u

¸

ˆ tf : N2 Ñ Vpd2´1qd1`1u ˆ

d1´1
ą

µ“2

tf : N3 Ñ Vpd2´1qd1`µu ˆ tf : N2 Ñ Vd1d2u

Ñ V,

pv1, . . . , vd1d2q ÞÑ
ÿ

j1,...,j2d1d2´d1´d2

v1pjÓÑq b
d1´1
â

µ“2

vµpjÐÑÓpµqq b vd1pjÐÓq

b

d2´1
â

z“2

˜

vpz´1qd1`1pjÒÑÓpzqq b
d1´1
â

µ“2

vpz´1qd1`µpjÒÐÑÓpz, µqq b vzd1pjÒÐÓpzqq

¸

b vpd2´1qd1`1pjÒÑq b
d1´1
â

µ“2

vpd2´1qd1`µpjÒÐÑpµqq b vd1d2pjÒÐq

where

jÑÓ :“ pj1, jd1q

jÐÑÓpµq :“ pjµ´1, jµ, jd1´1`µq

jÐÓ :“ pjd1´1, j2d1´1q

jÒÑÓpzq :“ pjpz´1qpd1´1q`pz´2qd1`1, jpz´1qp2d1´1q`1, jzpd1´1q`pz´1qd1`1q

jÒÐÑÓpz, µq :“ pjpz´1qpd1´1q`pz´2qd1`µ, jpz´1qp2d1´1q`µ´1, jpz´1qp2d1´1q`µ, jzpd1´1q`pz´1qd1`µq

jÒÐÓpzq :“ pjpz´1qpd1´1q`pz´2qd1`d1
, jpz´1qp2d1´1q`d1´1, jzpd1´1q`pz´1qd1`d1

q

jÒÑ :“ pjpd2´1qpd1´1q`pd2´2qd1`1, jpd2´1qp2d1´1q`1q

jÒÐÑpµq :“ pjpd2´1qpd1´1q`pd2´2qd1`µ, jpd2´1qp2d1´1q`µ´1, jpd2´1qp2d1´1q`µq

jÒÐ :“ pjpd2´1qpd1´1q`pd2´2qd1`d1
, j2d1d2´d1´d2q

such that we end up with the structure that is visualized in Figure 2.10. So the arrows
Ò,Ð,Ñ and Ó of the mappings j¨ indicate what kind of connection (in terms of the grid)
the vertex at position pz, µq has. The parameter z stands for the row and µ for the column
where we omit the parameters if they are out of question.

We say, a tensor v is a PEPS tensor (or a tensor in PEPS representation) with



2.1. FORMATS 35

representation rank pr1, . . . , r2d1d2´d1´d2q P N2d1d2´d1´d2 if we represent v by

r1,...,r2d1d2´d1´d2
ÿ

j1,...,j2d1d2´d1´d2“1

v1pjÓÑq b
d1´1
â

µ“2

vµpjÐÑÓpµqq b vd1pjÐÓq

b

d2´1
â

z“2

˜

vpz´1qd1`1pjÒÑÓpzqq b
d1´1
â

µ“2

vpz´1qd1`µpjÒÐÑÓpz, µqq b vzd1pjÒÐÓpzqq

¸

b vpd2´1qd1`1pjÒÑq b
d1´1
â

µ“2

vpd2´1qd1`µpjÒÐÑpµqq b vd1d2pjÒÐq

with v1, . . . , vd1d2 as de�ned above. Compare [1, Example 2.7].

Figure 2.10: PEPS tensor of order pd1, d2q

A detailed overview over the PEPS format can be found in [28].
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2.2 Conversion into other formats

This section will contain algorithms that describe the exact (i.e. no approximation)
conversion between the described representations up to a certain extend. Note that
we will only describe the conversions for represented tensors (i.e. tensor formats with
a representation rank, see De�nition 3.2.5). Therefore, we are not exactly converting
formats, but representations of a certain format into representations of other formats.

We neglect the algorithm that will be proposed in Chapter 5, which can in general
be used to perform the conversion.

In order to shorten the notation that we need, we �rst state the tensors that are
going to be converted. The following representations will be used in the subsequent
subsections:

• r-term representation with representation rank prCP q

vCP “
rCP
ÿ

j“1

d
â

µ“1

vCPµ pjq,

with vCP1 , . . . , vCPd as of De�nition 2.1.1

• Tucker representation with representation rank prT1 , . . . , r
T
d q

vT “

rT1 ,...,r
T
d

ÿ

j1,...,jd“1

wT pj1, . . . , jdq
d
â

µ“1

vTµ pjµq

with wT , vT1 , . . . , v
T
d as of De�nition 2.1.2

• Hierarchical (balanced) representation with representation rank prH1 , . . . , r
H
2d´2q and

2k “ d

vH “

rH1 ,...,r
H
2d´2

ÿ

j1,...,j2d´2“1

wH1 pj1, j2q
k
ź

ν“2

¨

˝

2ν´1
ź

µ“2ν´1

wHµ pjµ´1, j2µ´1, j2µq

˛

‚

d
â

µ“1

vHµ pjµ`2k´2q

with wH1 , . . . , w
H
2k´1

, vH1 , . . . , v
H
d as of De�nition 2.1.4

• TT representation with representation rank prTT1 , . . . , rTTd´1q

vTT “

rTT1 ,...,rTTd´1
ÿ

j1,...,jd´1“1

vTT1 pj1q b

˜

d´1
â

µ“2

vTTµ pjµ´1, jµq

¸

b vTTd pjd´1q

with vTT1 , . . . , vTTd as of De�nition 2.1.8
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• TC representation with representation rank prTC1 , . . . , rTCd q

vTC “

rTC1 ,...,rTCd
ÿ

j1,...,jd

vTC1 pj1, jdq b
d
â

µ“2

vTCµ pjµ´1, jµq

with vTC1 , . . . , vTCd as of De�nition 2.1.11

So any time we reference vCP3 p4q for instance, we mean the vector of direction 3 of the
4th addend of the r-term tensor.

2.2.1 r-term to Tucker

For this conversion, we set

prT1 , . . . , r
T
d q :“ prCP , . . . , rCP q,

vTµ :“ vCPµ

and

wT pj1, . . . , jdq :“

#

1 if j1 “ . . . “ jd

0 else.

2.2.2 r-term to hierarchical (balanced)

Here we set

rHµ :“ rCP @µ P t1, . . . , j2d´2u

and for all �xed pi, j, kq P t1, . . . , rCP u3

vHµ piq :“ vCPµ piq,

wH1 pi, jq :“

#

1 if i “ j

0 else

and

wHµ pi, j, kq :“

#

1 if i “ j “ k

0 else
@µ P t2, . . . , d´ 1u.
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2.2.3 r-term to TT

We set

prTT1 , . . . , rTTd´1q :“ prCP , . . . , rCP q,

vTT1 pj1q :“ vCP1 pj1q,

vTTµ pjµ´1, jµq :“

#

vCPµ pjµq if jµ´1 “ jµ

0 else

and

vTTd pjd´1q :“ vCPd pjd´1q.

2.2.4 Tucker to r-term

De�ne

i “ argmax
µ“1,...,d

rTµ ,

then we set

rCP :“
d
ź

µ“1
µ‰i

rTµ .

The �rst step is to combine the Tucker core with the Tucker leg vertex that has the
maximal Tucker rank (see Figure 2.11 and the resulting Figure 2.12), so for all �xed

pj1, . . . , ji´1, ji`1, . . . , jdq P
d
Ś

µ“1
µ‰i

t1, . . . , rTµ u we de�ne

fi :
d

ą

µ“1
µ‰i

t1, . . . , rTµ u Ñ t1, . . . , rCP u

to be an arbitrary bijective mapping and then set

vCPi pfipj1, . . . , ji´1, ji`1, . . . , jdqq :“

rTi
ÿ

ji“1

wT pj1, . . . , jdqv
T
i pjiq.

Finally, we interpret all remaining d´ 1 summations as one large summation, that is

vCPµ pfipj1, . . . , ji´1, ji`1, . . . , jdqq :“ vTµ pjµq @µ P t1, . . . , duztiu.
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So we obtain

rT1 ,...,r
T
d

ÿ

j1,...,jd“1

wT pj1, . . . , jdq
d
â

µ“1

vµpjµq “

rT1 ,...,r
T
i´1,r

T
i`1,...,r

T
d

ÿ

j1,...,ji´1,ji`1,...,jd“1

i´1
â

µ“1

vµpjµq b

¨

˝

rTi
ÿ

ji“1

wT pj1, . . . , jdqvipjiq

˛

‚

b

d
â

µ“i`1

vµpjµq

“

rT1 ,...,r
T
i´1,r

T
i`1,...,r

T
d

ÿ

j1,...,ji´1,ji`1,...,jd“1

d
â

µ“1

vCPµ pfipj1, . . . , ji´1, ji`1, . . . , jdqq

which is an r-term tensor if we interpret the summation indices as one multi-index

Figure 2.11: Merging one spatial vertex and the Tucker core

Figure 2.12: New structure after vertex merge (not yet an r-term tensor)

2.2.5 Tucker to hierarchical (balanced)

In this case, we consider the Tucker core wT as a full tensor of order d where w.l.o.g.
d “ 2k for some k P N. The dimension of the Tucker core vector spaces is equal to the
corresponding Tucker rank. We can convert this full tensor into a (balanced) hierarchical
tensor with representation rank prH1 , . . . , r

H
2d´2q P N2d´2 (see [5, Chapter 11 and especially

Section 11.3] for a detailed overview) such that we obtain for each scalar entry of wT
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through

wT pj1, . . . , jdq “

rH1 ,...,r
H
2d´2

ÿ

i1,...,i2d´2“1

wH1 pi1, i2q
k
ź

ν“2

¨

˝

2ν´1
ź

µ“2ν´1

wHµ piµ´1, i2µ´1, i2µq

˛

‚

d
ź

µ“1

ṽHµ pid´2`µqjµ .

Now we de�ne for all µ P t1, . . . , du, id´2`µ P t1, . . . , r
H
d´2`µu

vHµ pid´2`µq :“

rTµ
ÿ

jµ“1

ṽHµ pid´2`µqjµv
T
µ piq.

and obtain a balanced hierarchical tensor representation.

2.2.6 Tucker to TT

In the �rst step, we compute (i.e. no approximation) the TT representation with repre-
sentation rank prTT1 , . . . , rTTd´1q P Nd´1 of the Tucker core wT , such that

wT pj1, . . . , jdq “

rTT1 ,...,rTTd´1
ÿ

i1,...,id´1“1

c1pi1qj1

˜

d´1
ź

µ“2

cµpiµ´1, iµqjµ

¸

cdpid´1qjd

with

c1 : NÑ V1,

cµ : N2 Ñ Vµ for µ “ 2, . . . , d´ 1

and

cd : NÑ Vd.

Then we de�ne for all �xed pi1, . . . , id´1q P
d´1
Ś

µ“1
t1, . . . , rTTµ u

vTT1 pi1q :“

rT1
ÿ

j1“1

c1pi1qj1v
T
1 pj1q,

vTTµ piµ´1, iµq :“

rTµ
ÿ

jµ“1

cµpiµ´1, iµqjµv
T
µ pjµq @µ P t2, . . . , d´ 1u

and

vTTd pid´1q :“

rTd
ÿ

jd“1

cdpid´1qjdv
T
d pjdq.
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2.2.7 Hierarchical (balanced) to r-term

Similar to Subsection 2.2.4, we �rst de�ne

f :
d

ą

µ“2

t1, . . . , rHd´2`µu Ñ t1, . . . , rCP u

to be an arbitrary bijective mapping,

rCP :“
d
ź

µ“2

rHd´2`µ

and for all �xed pjd, . . . , j2d´2q P
d
Ś

µ“2
t1, . . . , rHd´2`µu

vCP1 pfpjd, . . . , j2d´2qq :“

rH1 ,...,r
H
d´1

ÿ

j1,...,jd´1“1

wH1 pj1, j2q
k
ź

ν“2

¨

˝

2ν´1
ź

µ“2ν´1

wHµ pjµ´1, j2µ´1, j2µq

˛

‚

¨ vH1 pjd´1q

and

vCPµ pfpjd, . . . , j2d´2qq :“ vHµ pjd`µ´2q @µ P t2, . . . , du.

is again an arbitrary bijective mapping. So we �rst merge the scalar vertices with a
spatial vertex (as visualized in Figure 2.13) such that we end up with a representation
shown in Figure 2.14. Instead of combining the scalar vertices with the �rst spatial
vertex, one could also combine the scalar vertices with any other spatial vertex. The
choice of the spatial vertex has an in�uence on rCP (see Subsection 2.2.4). Finally, we
interpret the d´ 1 summations over jd, . . . , j2d´2 as one summation over a multi-index.
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Figure 2.13: Merging the non-leaf vertices and one spatial vertex

Figure 2.14: Newly summarized spatial vertex v1 (not yet an r-term tensor)

2.2.8 Hierarchical (balanced) to Tucker

In the case of the reformulation of a hierarchically represented tensor to a Tucker repre-
sented one, we just have to de�ne a new Tucker core. That is, we have d “ 2k for some
k P N and

rTµ :“ rHd´2`µ @µ P t1, . . . , du

and for all �xed pj1, . . . , jdq P
d
Ś

µ“1
t1, . . . , rTµ u

vTµ pjµq :“ vHµ pjµq

and de�ne the new Tucker core as of Figure 2.15, i.e.

wT pjd´1, . . . , j2d´2q :“

rH1 ,...,r
H
d´2

ÿ

j1,...,jd´2“1

wH1 pi1, i2q
k
ź

ν“2

¨

˝

2ν´1
ź

µ“2ν´1

wHµ pjµ´1, j2µ´1, j2µ

˛

‚
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for all pjd´1, . . . , j2d´2q P
2d´2
Ś

µ“d´1

t1, . . . , rHµ u.

Figure 2.15: Summarizing the non-leaf vertices as the new Tucker core

2.2.9 Hierarchical (balanced) to TT

For this conversion of the tensor representation, we refer to [5, Section 12.3.3]. It involves
the underlying topological structure of the hierarchical format, which we want to neglect
in this work completely.

2.2.10 TT to r-term

We de�ne

f :
d´1
ą

µ“1

t1, . . . , rTTµ u Ñ t1, . . . , rCP u

to be an arbitrary bijective mapping, then set

rCP :“
d´1
ź

µ“1

rTTµ

and for all �xed pj1, . . . , jd´1q P
d´1
Ś

µ“1
t1, . . . , rTTµ u

vCP1 pfpj1, . . . , jd´1qq :“ vTT1 pj1q,

vCPµ pfpj1, . . . , jd´1qq :“ vTTµ pjµ´1, jµq @µ P t2, . . . , d´ 1u
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and

vCPd pfpj1, . . . , jd´1qq :“ vTTd pjd´1q.

2.2.11 TT to Tucker

We set

rT1 :“ rTT1 ,

rTµ :“ rTTµ´1r
TT
µ @µ P t2, . . . , d´ 1u,

rTd :“ rTTd´1

and de�ne for µ P t1, . . . , d´ 2u

fµ : t1, . . . , rTTµ u ˆ t1, . . . , rTTµ`1u Ñ t1, . . . , rTTµ rTTµ`1u

as an arbitrary bijective mapping, as well as

c : Nˆ NÑ t0, 1u,

pa, bq ÞÑ

#

1 if a “ b

0 else.

Then we have for all �xed jµ, j
1
µ P t1, . . . , r

TT
µ u for µ “ 1, . . . , d´ 1

wT pj1, f1pj
1
1, j2q, f2pj

1
2, j3q, . . . , fd´2pj

1
d´2, jd´1q, j

1
d´1q :“

d´1
ź

µ“1

cpjµ, j
1
µq,

vT1 pj1q :“ vTT1 pj1q,

vTµ pfµ´1pjµ´1, jµqq :“ vTTµ pjµ´1, jµq @µ P t2, . . . , d´ 1u

and

vTd pjd´1q :“ vTTd pjd´1q,

such that

rTT1 ,...,rTTd´1
ÿ

j1,...,jd´1“1

vTT1 pj1q b

˜

d´1
â

µ“2

vTTµ pjµ´1, jµq

¸

b vTTd pjd´1q “

rTT1 ,rTT1 ,...,rTTd´1,r
TT
d´1

ÿ

j1,j11,...,jd´1,j
1
d´1“1

d´1
ź

µ“1

cpjµ, j
1
µqv

TT
1 pj1q b

˜

d´1
â

µ“2

vTTµ pj1µ´1, jµq

¸

b vTTd pj1d´1q “

rTT1 ,rTT1 ,...,rTTd´1,r
TT
d´1

ÿ

j1,j11,...,jd´1,j
1
d´1“1

wT pj1, f1pj
1
1, j2q, f2pj

1
2, j3q, . . . , fd´2pj

1
d´2, jd´1q, j

1
d´1q

¨ vT1 pj1q b

˜

d´1
â

µ“2

vTµ pfµ´1pj
1
µ´1, jµqq

¸

b vTd pj
1
d´1q.
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This procedure has two steps. In the �rst one, we introduce the arti�cial factors c
such that we end up with a representation that can be visualized as of Figure 2.16.
Subsequently, we merge the c-factors into the new Tucker core (see Figure 2.17). These
two steps are needed since we have to obtain disjoint summation indices for the Tucker
format.

Figure 2.16: Introduction of arti�cial vertices for TT

Figure 2.17: Summarizing arti�cial vertices to new Tucker core

2.2.12 TT to hierarchical (balanced)

Analogously to Subsection 2.2.9, we refer to [5, Section 12.3.2].

2.2.13 TC to TT

At �rst, we de�ne for each µ P t1, . . . , d´ 1u

fµ : t1, . . . , rTCµ u ˆ t1, . . . , rTCd u Ñ t1, . . . , rTCµ rTCd u

as an arbitrary bijective mapping. We set, by using the mapping c from Subsection
2.2.11,

rTTµ :“ rTCµ ¨ rTCd , µ P t1, . . . , d´ 1u

and for all pj1, . . . , jd, j
1
dq P

d
Ś

µ“1
t1, . . . , rTCµ u ˆ t1, . . . , rTCd u we de�ne

vTT1 pf1pj1, jdqq :“ vTC1 pj1, jdq,

vTTµ pfµ´1pjµ´1, jdq, fµpjµ, j
1
dqq :“

#

vTCµ pjµ´1, jµq if jd “ j1d
0 else

, µ P t2, . . . , d´ 1u

“ cpjd, j
1
dqv

TC
µ pjµ´1, jµq
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and

vTTd pfd´1pjd´1, jdqq :“ vTCd pjd´1, jdq,

such that we get

rTC1 ,...,rTCd
ÿ

j1,...,jd“1

vTC1 pj1, jdq b
d
â

µ“2

vTCµ pjµ´1, jµq “

rTC1 ,rTCd ,...,rTCd´1,r
TC
d

ÿ

j1,j
p1q
d ,...,jd´1,j

pd´1q
d “1

vTC1 pj1, j
p1q
d q b

˜

d´1
â

µ“2

´

cpj
pµ´1q
d , j

pµq
d qvTCµ pjµ´1, jµq

¯

¸

b vTCd pjd´1, j
pd´1q
d q “

rTC1 ,rTCd ,...,rTCd´1,r
TC
d

ÿ

j1,j
p1q
d ,...,jd´1,j

pd´1q
d “1

vTT1 pf1pj1, j
p1q
d qq b

˜

d´1
â

µ“2

vTTµ pfµ´1pjµ´1, j
pµ´1q
d q, fµpjµ, j

pµq
d qq

¸

b vTTd pfd´1pjd´1, j
pd´1q
d qq.

Remark 2.2.1. The choice of the d-th summation as an indicator is arti�cial. Instead,
one could also chose any other summation. Compare Subsections 2.2.4 and 2.2.7.

2.2.14 Summary of conversions

We described some conversions of tensor representations that do not change the tensor
itself, but its representation. If only an approximated conversion is needed, other algo-
rithms should be used. Figure 2.18 shows the algorithms that we described for converting
representations.
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r-term

Tucker

Hierarchical (balanced) TT

TC

Figure 2.18: Described conversions of tensor representations

It is important to understand that performing conversions has a certain price. That
is, a conversion from a tensor representation in format A into a tensor representation in
format B and then converting back into a representation in format A is in general not
the identity. In theses cases, the representation rank increases. If we know the origin of
a converted tensor representation however, we might be able to use that knowledge to
exploit the structure and perform a perfect (i.e. A Ñ B Ñ A ” Id) reconversion (see
[30, Special example]).
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Chapter 3

Tensor network approach

In this chapter, we will de�ne what we understand of tensor networks and give prominent
examples of formats that �t into the same framework. We are going to explain an
important connection to the r-term format which gives some bene�ts.
The content is heavily based on the joint paper [1] with Mike Espig, Wolfgang Hackbusch
and Reinhold Schneider.

We start with a short De�nition.

De�nition. Let A and B be sets. Then we de�ne

A
ě

B :“ tta, bu : a P A, b P B, a ‰ bu

which is basically AˆB with a neglected order. Analogously the n-fold
Ţ

is de�ned.

3.1 Graph related de�nitions

As we will utilize graphs to de�ne tensor network structures, we start with general graph
related de�nitions.

We modify and combine de�nitions from [31, p. 2] and [31, p. 32] and obtain

De�nition 3.1.1 (Undirected graph, connected graph). Let V be the set of vertices and
E Ă V

Ţ

V be the set of edges, which we de�ne to be totally ordered sets with the relation
ă, such that

@e P E : #e “ 2

then G “ pV,Eq is de�ned as an undirected graph. For simplicity, we assume that
@ϑ1, ϑ2 P V with ϑ1 ‰ ϑ2 there exists a sequence pe1, . . . , ekq P E

k for some k P N with
ϑ1 P e1, ϑ2 P ek and eiYei`1 ‰ H @i P t1, . . . , k´1u. That de�nes pV,Eq as a connected
graph.

Remark 3.1.2. Without loss of generality, we can assume in our context that all graphs
are connected. Therefore, even if we are only using the word graph, we actually mean
connected and undirected graph. The set of edges will always be a totally ordered set with
the relation symbol ă.

49
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Generalizing the graph de�nition slightly, leaves us with

De�nition 3.1.3 (Multi-graph). Let V be the set of vertices and E Ă PpV q be the set
of edges with

@e P E : #e ě 2

then G “ pV,Eq is de�ned as an (undirected) multi-graph. Here we also assume for
simplicity that @ϑ P V De P E : ϑ P e. Any graph as of De�nition 3.1.1 is also a
multi-graph. So a multi-graph may have edges that connect more that two vertices. PpV q
denotes the power set of V .

Note that this de�nition of a multi-graph di�ers from the multi-graph de�nition in
[31, p. 3]. In [31] a multi-graph is de�ned to have di�erent edges that connect the same
two vertices.

Remark 3.1.4. Since all e P E are sets that have a cardinality of at least two, we do not
allow self loops. Therefore, we are dealing with simple undirected connected multi-graphs.

By [1, De�nition 2.4 (degree map)], we get

De�nition 3.1.5 (Incidence map, degree map). Let G “ pV,Eq be an undirected multi-
graph as of De�nition 3.1.3. Then we de�ne

I : V Ñ PpEq
ϑ ÞÑ te P E : ϑ P eu

as the incidence map of G. We further de�ne

g : V Ñ N
ϑ ÞÑ #Ipϑq

as the degree map of G.

Just like [1, directly after De�nition 2.5], we simplify the notation with the help of
the following Remark.

Remark 3.1.6. We identify each element of V by a natural number such that we can
identify each edge uniquely by a natural number from 1 to #V . Therefore in the following,
we do not distinguish between the vertex and its number. To be more precise,

V – t1, . . . ,#V u.

The same will be applied to E, i.e.

E – t1, . . . ,#Eu.
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This remark has also an in�uence on both the de�nition of the incidence map and
the degree map as well as on the upcoming de�nitions. Using the identi�cation, we can
formulate expressions like

ei ă ej for some ei, ej P E

and

ϑi ă ϑj for some ϑi, ϑj P V

in the sense of non-negative integers, which will correspond with the ă relation of the
totally ordered set E and alter the de�nition of the degree map to be

g : t1, . . . ,#V u Ñ N.

However, ei ă ej does not automatically imply i ă j. For instance we can set

E :“ te1, e2, e3, e4u

with e2 ă e3 ă e1 ă e4 such that in the sense of the identi�cation of E with t1, 2, 3, 4u,
e1 represents the 3rd edge of E. Consequently, E and V are treated as ordered sets in
our context. We are going to use this identi�cation implicitly through the whole work.

In [1, De�nition 2.5], the following de�nition has been used to de�ne the term inci-
dence map. Since in this work, we use the standard de�nition of this term in De�nition
3.1.5, we give

De�nition 3.1.7 (Incidence* map). Let G “ pV,Eq be an undirected connected multi-
graph where N Q ` “ #E is the number of edges of G such that E “ te1, . . . , e`u. Then

I : V ˆ N` Ñ
ď̀

i“1

Ni

pϑ, pj1, . . . , j`qq ÞÑ pjeh1
, . . . , jehgpϑq q

where teh1 , . . . , ehgpϑqu “ Ipϑq and ehf ă ehf`1
for f “ 1, . . . , gpϑq ´ 1 is de�ned as the

incidence* map of G (read incidence-star map).

3.2 Tensor networks

Our approach for tensor networks is based on multi-graphs and with the de�nitions of
the previous section, we can construct a framework to treat structured sums of tensors
to represent multi-dimensional data. When we neglect the word network from the terms
tensor format and tensor representation as it is clear, that we are referring to tensor
networks.
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Remark 3.2.1. In the following, we will de�ne mappings by using graphs. In this context,
we are going to interpret vertices of graphs as mappings. We will use the simple notation
that vertex ϑi represents the mapping vi if the vertex is of vector space meaning and wi´d
if the vertex is of scalar meaning. See also Remark 3.2.4.

Generalizing [1, De�nition 2.4 (Tensor network graph)], we get

De�nition 3.2.2 (Tensor format graph set). Let k P N, V be the set of vertices and
pV,E1q, . . . , pV,Ekq be multi-graphs as of De�nition 3.1.3. Then pV, Eq with E :“ tE1, . . . , Eku
is de�ned as a tensor format graph set of cardinality k.

We now want to de�ne another central object of this work, which is the tensor format.
We will use the de�nition for the tensor format of [1, De�nition 2.6] with the di�erence
that we do not de�ne and utilize a parameter space and with the extension to use multi-
graphs:

De�nition 3.2.3 (Tensor format). Let pV, Eq be a tensor format graph set of cardinality
k with E “ tE1, . . . , Eku, `i :“ #Ei for i “ 1, . . . , k and d P N, L P N0 with #V “ d`L.
Let further gi be the degree map of pV,Eiq and Ii the incidence* map of pV,Eiq for
i “ 1, . . . , k. Then we de�ne

Ti :
d

ą

µ“1

!

f : Ngipµq Ñ Vµ
)

ˆ

L
ą

µ“1

!

f : Ngipd`µq Ñ K
)

Ñ V

pv1, . . . , vd, w1, . . . , wLq ÞÑ
ÿ

jPN`i

L
ź

µ“1

wµpIipd` µ, jqq
d
â

µ“1

vµpIipµ, jqqq

for all i “ 1, . . . , k. Then

tT1, . . . , Tku

de�nes a tensor format of order pd, Lq. If L “ 0 we simply say tensor format of order d.
For a proper de�nition, we also require all mappings v1, . . . , vd, w1, . . . , wL to have �nite
support (compare Section 2.0).

Remark 3.2.4. A tensor format is uniquely de�ned by its tensor format graph set. We
need a set of graphs to de�ne a format since one format can be based on multiple graphs
(see De�nition 2.1.4 and De�nition 2.1.6 which both de�ne a hierarchical format). A
tensor format is a mapping which is de�ned by its underlying graph. Note that the graph
vertices ϑi are not equal to the mappings vi. However, in the graphical notation, we
identify them with each other for the sake of the readability of the formulas. The vertices
are needed to de�ne the mappings. By using the underlying multi-graph, we can de�ne
the signatures of the mappings vi and wi. See also Section 2.0.

A tensor representation as of [1, De�nition 2.6] (while neglecting again a parameter
space) is de�ned as follows
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De�nition 3.2.5 (Tensor representation). Let pV,Eq be a tensor format graph with
d P N, L P N0 and d ` L “ #V with corresponding degree map g, incidence map I and
incidence* map I. Let further ` :“ #E, pr1, . . . , r`q P N` and teµ,1, . . . , eµ,gpµqu “ Ipµq
with eµ,s ă eµ,s`1 for s “ 1, . . . , gpµq ´ 1 and µ “ 1, . . . , d` L. Then we de�ne

T̃ :
d

ą

µ“1

$

&

%

f :

gpµq
ą

j“1

t1, . . . , reµ,ju Ñ Vµ

,

.

-

ˆ

L
ą

µ“1

$

&

%

f :

gpd`µq
ą

j“1

t1, . . . , red`µ,ju Ñ K

,

.

-

Ñ V

pv1, . . . , vd, w1, . . . , wLq ÞÑ

r1,...,r`
ÿ

j1,...,j`“1

L
ź

µ“1

wµpIpd` µ, pj1, . . . , j`qqq

d
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

as tensor representation of order pd, Lq for tensor format graph pV,Eq with representation
rank pr1, . . . , r`q. Analogously to De�nition 3.2.3, we neglect L if it is zero.

We will also use XYZ tensor as a synonym for tensor in XYZ format or tensor in
XYZ representation, where XZY is a tensor format, compare the format de�nitions of
the previous section.

Frankly speaking, a tensor representation is an element of a tensor format where we
limit the number of terms (note that the support of vi and wj is �nite by de�nition). Also,
the structure of the underlying tree is �xed for one speci�c tensor representation. This
means that there is exactly one graph per tensor representation. Even if only the graph is
changed without leaving a certain tensor format, it will lead to a di�erent representation.

Remark 3.2.6. As the representation rank is a tuple, one cannot without loss of gen-
erality say what rank the best representation rank in a certain format is (unless it is
a 1-tuple, like in the r-term format). In practice, one measures the rank based on the
application and makes comparisons based on certain operations (e.g. the inner product).
See [5, Chapter 13] for a comparison.

The L scalar vertices can and should be treated separately. This is emphasized in
the following

Lemma 3.2.7 (Adding of scalar vertices). Let pV,Eq be a tensor format graph of order
pd, Lq P Nˆ N0 which de�nes a mapping v. Then for each tϑ1, ϑ2u P E, we can de�ne a
mapping v1 that is equal to mapping v and de�ned by the tensor format graph pV 1, E1q of
order pd, L` 1q with

ϑd`L`1 R V,

@ϑ P V : ϑ ă ϑd`L`1,

V 1 :“ V Y tϑd`L`1u

and

E1 :“ pEzttϑ1, ϑ2uuq Y ttϑ1, ϑd`L`1u, tϑd`L`1, ϑ2uu.
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Without loss of generality, e ă tϑ1, ϑd`L`1u ă tϑd`L`1, ϑ2u for all e P E (remember that
the edge set is an ordered set per de�nition).

Proof. We de�ne

wL`1 : Nˆ NÑ K

pi, jq ÞÑ

#

1 if i “ j

0 else.

and set ` :“ #E. W.l.o.g., we can assume e ă tϑ1, ϑ2u for all e P Ezttϑ1, ϑ2uu. Due to
our assumption on the ordering of E, we have

tϑ1, ϑ2u ă tϑ1, ϑd`L`1u ă tϑd`L`1, ϑ2u.

Additionally, we can assume ϑ1 ă ϑ2 ă ϑi @i P t3, . . . , d` Lu. By adding an additional
edge to the graph, the incidence map also changes. We de�ne I to be the incidence*
map with respect to graph pV,Eq and I 1 to be the incidence* map w.r.t. pV 1, E1q. Then
we have

ÿ

j1,...,j`

L
ź

µ“1

wµpIpµ` d, pj1, . . . , j`qqq
d
â

µ“1

vµpIpµ, pj1, . . . , j`qqq “

ÿ

j1,...,j``1

L
ź

µ“1

wµpI 1pµ` d, pj1, . . . , j``1qqq ¨ wL`1pj`, j``1q
â

vµpI 1pµ, pj1, . . . , j``1qqq

per de�nition of wL`1. The following properties therefore hold

Ipµ, pj1, . . . , j`qq “ I 1pµ, pj1, . . . , j``1qq @µ P t3, . . . , d` Lu

I 1p1, pj1, . . . , j``1qq “ I 1p1, pj1, . . . , j`, ¨qq
I 1p2, pj1, . . . , j``1qq “ I 1p2, pj1, . . . , j`´1, ¨, j``1qq

for all pj1, . . . , j``1q P N``1 where ¨ means that we can put in any value x P N. Con-
sequently, if v is the mapping that is de�ned by pV,Eq and v1 is the mapping that is
de�ned by pV 1, E1q as stated above, we have

vpv1, . . . , vd, w1, . . . , wLq “ v1pv1, . . . , vd, w1, . . . , wL, wL`1q

for all v1, . . . , vd, w1, . . . , wL de�ned as before with wL`1 as de�ned above.

Lemma 3.2.7 means in terms of our graph based notation that we can add arbitrary
many scalar vertices between two vertices of our graph. Note that the type of the two
vertices is not of importance. That is, we can add a scalar vertex between other scalar
vertices as well as between vector space vertices and between a vector space vertex and
a scalar vertex.

We used this property implicitly in Subsection 2.2.11 to convert the representation
of a tensor from the TT format to the Tucker format. In the same way, we can use
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Lemma 3.2.7 to convert the linear hierarchical representation to a TT representation. In
[5, Section 12.2], the TT representation is interpreted as a hierarchical representation,
which we also can formulate if we consider the representation of a tensor only up to the
existence of scalar vertices. If the more general hierarchical format is used, there are
some di�erences in terms of representation rank and the computational complexity as
shown in [32]. We can always combine a scalar vertex ϑ2 with a spatial vertex ϑ1 if
the underlying graph pV,Eq has an edge tϑ1, ϑ2u. Having this in mind, we could also
interpret a Tucker representation as a hierarchical representation such that the Tucker
format would become a special case of the hierarchical format.

For some theoretical aspects, it is not important to treat the scalar vertices in a
special manner. We can treat them as spatial vertices with vector space dimension 1.
This leads to

De�nition 3.2.8 (Simpli�ed notation). Let pV,Eq “ ptϑ1, . . . , ϑd`Lu, Eq be a tensor
format graph of order pd, Lq P NˆN0 with corresponding incidence* map I with ` :“ #E.
Let further

r1,....r`
ÿ

j1,...,j`“1

L
ź

µ“1

wµpIpµ` d, pj1, . . . , j`qqq
d
â

µ“1

vµpIpµ, pj1, . . . , j`qqq (3.1)

be a tensor representation of order pd, Lq with representation rank pr1, . . . , r`q P N` for
tensor format graph pV,Eq as of De�nition 3.2.5. Then we de�ne

r1,...,r`
ÿ

j1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

to be the simpli�ed notation of the tensor representation (3.1) with

vµpIpµ, pj1, . . . , j`qqq :“ wµ´dpIpµ, pj1, . . . , j`qqq

for all µ P td` 1, . . . , d`Lu. This representation is in a tensor network format of order
pd` L, 0q where the vector space dimension of Vd`1, . . . ,Vd`L are equal to 1.

We can - in some sense - formulate the reversal of Lemma 3.2.7:

Lemma 3.2.9 (Negligibility of scalar vertices). Let G “ pV,Eq “ ptϑ1, . . . , ϑd`Lu, Eq
with ϑi ă ϑi`1 for all i P t1, . . . , d`L´1u be a tensor network graph of order pd, Lq P N2

with degree map g, which de�nes a mapping v. Then we can �nd for all for all e “
tϑ̃1, ϑ̃2u P E where w.l.o.g

ϑ̃2 ą ϑd

and

ϑ̃1 ď ϑd
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with

@e1 P Ezteu : e1 X e “ H,

a mapping v1 that is equal to v and induced by the tensor format graph pV 1, E1q of order
pd, L´ 1q with

V 1 :“ V ztϑ̃2u

and

E1 :“ pEzte1 P E | ϑ̃2 P e
1uq Y tpe1ztϑ̃2uq Y tṽ1u | e

1 P Ezteu, ϑ̃2 P e
1u.

Proof. Without loss of generality, we assume that ϑ̃1 “ ϑd, ϑ̃2 “ ϑd`1,

e ă tϑ̃1, ϑ̃2u @e P Ezttϑ̃1, ϑ̃2uu

and

@e1 P Ipϑ̃2qzttϑ̃1, ϑ̃2uu, e2 P Ipϑ̃1qzttϑ̃1, ϑ̃2uu : e1 ă e2,

where I is the incidence map (see De�nition 3.1.5). As usual, ` :“ #E. We de�ne

v1d : Ngpdq`gpd`1q´1 Ñ Vd
pj1, . . . , jgpdq`gpd`1q´1q ÞÑ

ÿ

j

w1pj1, . . . , jgpd`1q´1, jqvdpjgpd`1q, . . . , jgpdq´1, jq,

with g being the degree map as of De�nition 3.1.5, such that we obtain the formula

vpv1, . . . , vd, w1, . . . , wLq “ v1pv1, . . . , vd´1, v
1
d, w2, . . . , wLq,

which satis�es our conditions.

Expressed in simple words, this lemma means that we can neglect vertices of the graph
that have a scalar meaning in a certain sense. We have to bind the scalar vertex either
to a vector space vertex or another scalar vertex which this scalar vertex is connected
to by one edge. The other edges of the neglected vertex will be connected to the bound
vertex. This can be successively applied.

In Subsection 2.2.8, we implicitly used Lemma 3.2.9 to convert a hierarchical tensor
to a tensor that is represented in the Tucker format.

3.3 Examples

In Section 2.1, we described various examples of common tensor formats. As we now
have de�ned a general framework, we are able to describe the de�nitions in this context.

The r-term format is the most simple and fundamental structure in the tensor network
context (see Section 3.4), as there is only one edge.
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Example 3.3.1 (r-term format). Let V “ tϑ1, . . . , ϑdu with d P N be the set of vertices
and

E :“ tEu

with

E :“ ttϑ1, . . . , ϑduu

the set of edge sets. Then the tensor format graph set pV, Eq de�nes the r-term format
of order d which has only one edge that connects all vertices.
Note that pV,Eq is a multi-graph as of De�nition 3.1.3. Compare De�nition 2.1.1.

Example 3.3.2 (Tucker format/ subspace format). Let V “ tϑ1, . . . , ϑd`1u with d P N
be the set of vertices and

E “ tttϑ1, ϑd`1u, . . . , tϑd, ϑd`1uuu

the set of edge sets. Then the tensor format graph set pV, Eq de�nes the Tucker format (or
subspace format) of order d which is a tensor format of order pd, 1q. Compare De�nition
2.1.2.

Example 3.3.3 (TT format/ MPS format). Let V “ tϑ1, . . . , ϑdu with d P N be the set
of vertices and

E “ tttϑ1, ϑ2u, tϑ2, ϑ3u, . . . , tϑd´1, ϑduuu

the set of edge sets. Then the tensor format graph set pV, Eq de�nes the TT format (or
MPS format) of order d. Compare De�nition 2.1.8.

By adding an additional edge tϑd, ϑ1u to the set of edges of the TT format, we get

Example 3.3.4 (TC format). Let V “ tϑ1, . . . , ϑdu with d P N be the set of vertices and

E “ tttϑd, ϑ1u, tϑ1, ϑ2u, tϑ2, ϑ3u, . . . , tϑd´1, ϑduuu

the set of edge sets. Then the tensor format graph set pV, Eq de�nes the TC format of
order d. Compare De�nition 2.1.11.

As of [31, de�nition of a cycle of a graph on p. 40], we get

De�nition 3.3.5 (Cycle of a graph). Let G “ pV,Eq be an undirected and connected
graph. We say, G has a cycle, if and only if there are at least one sequence pa1, . . . , anq P
V n with n P Nzt1, 2u such that

tai, ai`1u P E @i P t1, . . . , n´ 1u,

a1 “ an

and

ai ‰ aj @i P t1, . . . , j ´ 1u, j P t2, . . . , n´ 1u.
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The TC format graph as of Example 3.3.4 has a cycle.

De�nition 3.3.6 (Tree ([31, De�nition on p. 43]), leaf set). Let G “ pV,Eq be a graph.
G is called a tree if it does not contain cycles. The leaf set of a tree G “ pV,Eq is de�ned
as

tϑ P V : gpϑq “ 1u

where g is the degree map of G (see De�nition 3.1.5).

Example 3.3.7 (Hierarchical format). Let V “ tϑ1, . . . , ϑ2d´1u with d P N be the set of
vertices and

E “
!

E Ă V
ě

V : pV,Eq is a tree with leaf set tϑ1, . . . , ϑdu
)

the set of edge sets. Then the tensor format graph set pV, Eq de�nes the hierarchical
format of order d which is a tensor format of order pd, d´ 1q.

With De�nition 2.1.4 and De�nition 2.1.6, we introduced two special cases of the
hierarchical format.

De�nition 3.3.8 (Grid graph). Let d1, d2 P N, V “ tϑ1,1, . . . , ϑd1,1, ϑ1,2, . . . , ϑd1,d2u be
a set of vertices such that #V “ d1 ¨ d2 and edge set

EgridpV, d1, d2q :“
d2
ď

i“1

d1´1
ď

j“1

ttϑj,i, ϑj`1,iuu Y

d1
ď

i“1

d2´1
ď

j“1

ttϑi,j , ϑi,j`1uu

then pV,EgridpV, d1, d2qq is de�ned as the grid graph of order pd1, d2q with vertex set V .

Example 3.3.9 (PEPS format). Let V “ tϑ1, . . . , ϑdu with d P N be the set of vertices
and

E “
ď

d1,d2PN
d1¨d2“d

tEgridpV, d1, d2qu

the set of edge sets such that for all E P E holds, that pV,Eq is a grid graph. Then the
tensor format graph set pV, Eq de�nes the PEPS format of order d.

Another example for a non-trivial multi-graph tensor network is the tensor hyper-
contraction (or THC) format that has been introduced in [33, (see Equation (20) for the
formulation)].

Example 3.3.10 (THC format). Let V “ tϑ1, . . . , ϑ5u be the set of vertices and

E “ tttϑ1, ϑ2, ϑ5u, tϑ3, ϑ4, ϑ5uuu

be the set of edge sets. Then the tensor format graph set pV, Eq of order p4, 1q de�nes the
THC (or tensor hypercontraction) format.
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This leads a THC tensor format to be de�ned by the summation structure

4
ą

µ“1

tf : NÑ Vµu ˆ tf : N2 Ñ Ku Ñ V

pv1, . . . , v4, wq ÞÑ
ÿ

j1,j2

wpj1, j2q ¨ pv1pj1q b v2pj1q b v3pj2q b v4pj2qq

which is represented in Figure 3.1 (the reader is reminded of Section 2.0 which contains
the explanation of the graphical notation).

Figure 3.1: THC tensor1

3.4 Connection to the r-term format

As each tensor network representation can be interpreted as an r-term representation
(with a possibly very large rank, see Section 2.2), one can also use a lot of algorithms
that act on the spatial directions of a r-term tensor.

All algorithms that we use and describe for tensor network representations are es-
pecially valid for r-term tensors. A tensor representation in the r-term format has the
advantage of being optimal in terms of complexity with respect to tensor network rep-
resentations. That means that if the tensor is represented as an r-term tensor, we can
treat it as a general tensor network representation without loosing properties of the r-
term tensor as long as we do not act on single terms. A direct result of this is, that
the implementation for general tensor network representations can be used also directly
for r-term tensors without having a relevant computational disadvantage with respect to
implementations that are meant and optimized for r-term tensors with the exception of
working on single terms (see Subsection 4.1.2 and Section 4.2).

Remark 3.4.1. For d “ 2, all formats, that we described in this chapter, are equal (if
L ą 0, we can apply Lemma 3.2.9).

1source: [34, Figure 1]
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Chapter 4

Approximation algorithms

One of the main task of numerical analysis in the tensor representation context is to
perform rank-compressions of the represented tensor in order to reduce the storage cost
and to decrease the computational complexity. This can be done by computing low rank
approximations of given tensors.

In this chapter, we will explain a selected set of algorithms that can be used in the
tensor network framework to obtain approximating tensor representations within a given
error bound.

4.0 Objective functions

In general, our goal is to minimize a certain function that has a tensor representation
as its very own argument. This tensor is represented in some tensor format. As of [1,
Section 1, (i)�(iv)] functions of interest may be

v ÞÑ }Av ´ a}2, (4.1)

which can be used to approximate the solution of the equation Av “ a, the function

v ÞÑ
1

2
xv, vy ´ xv, ay (4.2)

or the Rayleigh quotient, that can be used to determine the smallest Eigenvalue of A:

v ÞÑ
xAv, vy

xv, vy
(4.3)

where v, a P V are tensor representations and A : V Ñ V. If A is the identity in V and
if the inner product is symmetric with respect to V, functions (4.1) and (4.2) have their
minimum at the same point.

In the approximation algorithms that we will describe in this chapter, we use function
(4.2) as the objective function such that we require the inner product to be symmetric.
Therefore, we will refer to function (4.2) as the objective function or our objective function.
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4.1 Non-linear block Gauss-Seidel

The Gauss-Seidel iteration is characterized in [35, Section 7.4] as follows:

Description. We have a linear system

Ax “ b

that we want to solve iteratively where A is a K-valued n ˆ n matrix that is given as

well as b P Kn. For 0 ă i ď n, the ith component x
pk`1q
i of the pk ` 1qth iterate xpk`1q

is computed by the the components x
pk`1q
1 , . . . , x

pk`1q
i´1 of the pk ` 1qth iterate and the

components x
pkq
i`1, . . . , x

pkq
n of the kth iterate xpkq.

Compare also [1, Section 6]. A possibility for the initial guess xp0q is treated in Section
4.2. An alternative approach for the initial guess can be found in [1, Subsection 7.3].

This section also is based on [1] such that Subsections 4.1.2 and 4.1.3 are generalized
versions of the corresponding sections and de�nitions of [1, Subsection 7.1 and Subsection
7.2].
The ALS and DMRG method is formulated in the setting of general tensor networks.

4.1.1 Partitioning of coordinates

To abstractly de�ne the components of an iterate (e.g. ith component of the kth iterate
above), we state a general partitioning scheme which has been introduced in [1, De�nition
6.1]. Since we do not use a so called parameter space, we are going to adjust and modify
the de�nition as follows:

De�nition 4.1.1 (Partitioning of coordinates). Let Xi Ă t1, . . . , d`Luˆ

ˆ

Ś̀

k“1

t1, . . . , rku

˙

for ` P N, r1, . . . , r` P N and i P I where I is an arbitrary index set. Then we de�ne

X :“ tXi | i P Iu

to be a partitioning of coordinates i�

ď

iPI

Xi “ t1, . . . , d` Lu ˆ

˜

ą̀

k“1

t1, . . . , rku

¸

.

We say the partitioning is disjoint, if for all Xi, Xj P X with Xi ‰ Xj we have XiXXj “

H.

By that de�nition, the partitioning of coordinates is a decomposition of the directions
and the representation rank tuples of a tensor representation.
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4.1.2 ALS

The Alternating Least Squares (ALS) method is a non-linear block Gauss-Seidel method
that depends on a partitioning that does not allow a structural change of the tensor
representation and the representation rank. In general, for a tensor representation of
order pd, Lq P NˆN0 that is de�ned by the tensor format graph pV,Eq with representation
rank pr1, . . . , r`q P N` where ` :“ #E, we have two di�erent types of partitionings:

Xi :“

#

pi, j1, . . . , j`q | pj1, . . . , j`q P
ą̀

µ“1

t1, . . . , rµu

+

(4.4)

on the one hand, where the index set I is t1, . . . , d` Lu, and on the other hand

Xi :“ tpµ, i1, . . . , i`q | µ P t1, . . . , d` Luu (4.5)

where the index set I is
Ś̀

µ“1
t1, . . . , rµu, compare [1, before De�nition 6.1]. Partitioning

(4.4) allows to optimize over each spatial dimension separately, whereas partitioning (4.5)
allows to optimize over single terms of the representation sum. However, optimizing over
single terms has huge hassles in complex tensor networks whereas it is easy in the r-term
format (i.e. rank-one updates), which we describe later on.

Optimizing w.r.t. spatial directions

So we are now �xing all spatial direction but the one that we want to optimize, compare
[1, Subsection 7.1]. We di�erentiate with respect to this �xed direction in terms of
our objective function (4.2). Let pV,Eq and pṼ , Ẽq be two tensor network graphs of
order pd, Lq P N ˆ N0 with ` :“ #E and k :“ #Ẽ. Let furthermore v and a be
tensor representations de�ned by pV,Eq and pṼ , Ẽq, respectively with representation
ranks pr1, . . . , r`q P N` and pr̃1, . . . , r̃kq P Nk, respectively. We di�erentiate with respect
to direction ν P t1, . . . , d` Lu where we assume

IpV,Eqpνq “ p1, . . . , `1q

and

I
pṼ ,Ẽqpνq “ p1, . . . , k1q

are the corresponding incidence maps and consequently

IpV,Eqpν, pj1, . . . , j`qq “ pj1, . . . , j`1q (4.6)

and

I
pṼ ,Ẽqpν, pj1, . . . , jkqq “ pj1, . . . , jk1q (4.7)



64 CHAPTER 4. APPROXIMATION ALGORITHMS

are the corresponding incidence* maps, where `1 ď ` and k1 ď k. To keep the notation
slightly shorter, we set I :“ IpV,Eq, Ia :“ I

pṼ ,Ẽq, I :“ IpV,Eq and Ia :“ I
pṼ ,Ẽq and obtain

(in the simpli�ed notation, see De�nition 3.2.8)

v “

r1,...,r`
ÿ

j1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

–

r1,...,j`1
ÿ

j1,...,j`1“1

vνpj1, . . . , j`1q b

¨

˝

r`1`1,...,r`
ÿ

j`1`1,...,j`“1

d`L
â

µ“1
µ‰ν

vµpIpµ, pj1, . . . , j`qqq

˛

‚

as of (4.6) and analogously

a “

r̃1,...,r̃k
ÿ

i1,...,ik“1

d`L
â

µ“1

ṽµpIapµ, pi1, . . . , ikqqq

–

r̃1,...,r̃k1`1
ÿ

i1,...,ik1
“1

ṽνpi1, . . . , ik`1q b

¨

˝

r̃k1`1,...,r̃k
ÿ

ik1`1,...,ik“1

d`L
â

µ“1
µ‰ν

ṽµpIapµ, pi1, . . . , ikqqq

˛

‚

as of (4.7) such that we have

xv, vy “

r1,...,r`1
ÿ

j1,...,j`1“1

r1,...,r`1
ÿ

i1,...,i`1“1

xvνpj1, . . . , j`1q, vνpi1, . . . , i`1qy

¨

˚

˝

r`1`1,...,r`
ÿ

j`1`1,...,j`“1

r`1`1,...,r`
ÿ

i`1`1,...,i`“1

d`L
ź

µ“1
µ‰ν

xvµpIpµ, pj1, . . . , j`qqq, vµpIpµ, pi1, . . . , i`qqqy

˛

‹

‚

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“:Vrνspj1,...,j`1 ,i1,...,i`1 q

and

xv, ay “

r1,...,r`1
ÿ

j1,...,j`1“1

r̃1,...,r̃k1
ÿ

i1,...,ik1
“1

xvνpj1, . . . , j`1q, aνpi1, . . . , ik1qy

¨

˚

˝

r`1`1,...,r`
ÿ

j`1`1,...,j`“1

r̃k1`1,...,r̃k
ÿ

ik1`1,...,ik“1

d`L
ź

µ“1
µ‰ν

xvµpIpµ, pj1, . . . , j`qqq, aµpIapµ, pi1, . . . , ikqqqy

˛

‹

‚

loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

“:Arνspj1,...,j`1 ,i1,...,ik1
q

.
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Di�erentiating with respect to direction ν, leaves us for all �xed pj1, . . . , j`1q P
`1
Ś

µ“1
t1, . . . , rµu

with

B
`

1
2xv, vy ´ xv, ay

˘

Bvνpj1, . . . , j`1q
“

r1,...,r`1
ÿ

i1,...,i``1“1

vνpi1, . . . , i`1qVrνspj1, . . . , j`1 , i1, . . . , i`1q

´

r̃1,...,r̃k1
ÿ

i1,...,ik1
“1

aνpi1, . . . , ik1qArνspj1, . . . , j`1 , i1, . . . , ik1q,

which leads in the derivative set equal to zero to

r1,...,r`1
ÿ

i1,...,i`1“1

vνpi1, . . . , i`1qVrνspj1, . . . , j`1 , i1, . . . , i`1q

“

r̃1,...,r̃k1
ÿ

i1,...,ik1
“1

aνpi1, . . . , ik1qArνspj1, . . . , j`1 , i1, . . . , ik1q

(4.8)

for all �xed j1, . . . , j`1 . Analogously to [1, Subsection 7.1], in terms of a matrix notation
with

Arνs “
´

`

Arνspj1, . . . , j`1 , i1, . . . , ik1q
˘

pj1,...,j`1 q,pi1,...,ik1
q

¯

P K
ś`1
µ“1 rµˆ

śk1
µ“1 r̃µ ,

aν “

¨

˚

˝

aνp1, . . . , 1q
...

aνpr̃1, . . . , r̃k1q

˛

‹

‚

P Knν
śk1
µ“1 r̃µ ,

Vrνs “
´

`

Vrνspj1, . . . , j`1 , i1, . . . , i`1q
˘

pj1,...,j`1 q,pi1,...,i`1 q

¯

P K
ś`1
µ“1 rµˆ

ś`1
µ“1 rµ

and

vν “

¨

˚

˝

vνp1, . . . , 1q
...

vνpr1, . . . , r`1

˛

‹

‚

P Knν
ś`1
µ“1 rµ

we get an alternative notation of Equation (4.8)

pArνs b IdVν qaν “ pVrνs b IdVν qvν (4.9)

that we have to solve in one, so called, ALS step. We can either do this by inverting
Vrνs directly or, if the inverse does not exist, by computing its pseudo-inverse based on
[1, Remark 7.1].

The computation of Arνs and Vrνs, respectively, depends on the tensor format. It has
been described it in details in [1, Subsection 7.1] for the Tensor Chain format where, as
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of [1, Corollary 7.3], the computational complexity is Opdr3r̃3q for Arνs and Opdr6q for
Vrνs with

r :“ max
iPt1,...,`u

ri

and

r̃ :“ max
iPt1,...,ku

r̃i.

Now we can describe the ALS Method for arbitrary tensor networks. Similar to [1,
Algorithm 2], we state Algorithm 1.

Algorithm 1 ALS algorithm for general tensor networks w.r.t. spatial directions

1: while error condition not ful�lled do
2: for ν P t1, . . . , d` Lu do
3: �nd ṽν such that

pArνs b IdVν qaν “ pVrνs b IdVν qṽν

as of Equation (4.9)
4: vν ÞÑ ṽν
5: end for

6: end while

The error condition is usually that }vν ´ ṽν} ă some threshold. The order in which
we choose ν out of t1, . . . , d`Lu does a priori not matter. Solving Equation (4.9) is the
crucial part of the algorithm (ALS step). Depending on the tensor format of v and a, we
have di�erent computational costs for solving one ALS step. As of [1, Lemma 7.4], if the
tensor format of a and v is the TC format, the computational cost of solving Equation
(4.9) is in

Opdr6q `Opdr3r̃6q `Opnpr2r̃2 ` r4qq

(note that L “ 0 in the TC format). Optimizing over all dimensions (i.e. performing the
for loop of Algorithm 1) has in general d`L times the complexity of a single ALS step.
For certain formats however, this complexity can be reduced by introducing a prephase
before each loop where intermediate matrices are computed (see [1, before Algorithm
2]). For our frequently used example of the TC format, as shown in [1, Lemma 7.5], this
results in a complexity of

Opdr6q `Opdr3r̃3q `Opdnpr2r̃2 ` r4qq,

which is still linear in d, for a whole ALS cycle. So we see that the complexity highly
depends on the structure of the tensor representation. For the TC format, this however
adds a constraint about the order in which to traverse t1, . . . , du (the set has to be
traversed ascending or descending).
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Optimizing w.r.t. single terms

Instead of �xing the spatial directions, we �x one single term of the sum of elementary
tensors that de�ne the tensor (see partitioning (4.5)). The tensor representations v and
a are as de�ned before. Here, we choose a �xed

pb1, . . . , b`q P
ą̀

µ“1

t1, . . . , rµu

we are optimizing the term such that we have

v “
d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq `
r1,...,r`
ÿ

j1,...,j`“1

pj1,...,j`q‰pb1,...,b`q

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

where we only optimize the �rst term. In the r-term format, we can perform an opti-
mization with respect to the �rst term. In the case of general tensor networks however,
this is not possible. We will state the reasons below. We have

xv, vy “

C

d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq,
d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq

G

`

r1,...,r`
ÿ

j1,...,j`“1

pj1,...,j`q‰pb1,...,b`q

C

d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq,
d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

G

`

r1,...,r`
ÿ

j1,...,j`“1

pj1,...,j`q‰pb1,...,b`q

C

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq,
d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq

G

`

j1,...,r`
ÿ

j1,...,j`“1

pj1,...,j`q‰pb1,...,b`q

r1,...,r`
ÿ

i1,...,i`“1

pi1,...,i`q‰pb1,...,b`q

C

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq,
d`L
â

µ“1

vµpIpµ, pi1, . . . , i`qqq

G

and

xv, ay “

r̃1,...,r̃k
ÿ

i1,...,ik“1

C

d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq,
d`L
â

µ“1

aµpIapµ, pi1, . . . , ikqqq

G

`

r1,...,r`
ÿ

j1,...,j`“1

pj1,...,j`q‰pb1,...,b`q

r̃1,...,r̃k
ÿ

i1,...,ik“1

C

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq,
d`L
â

µ“1

aµpIapµ, pi1, . . . , ikqqq

G
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such that by di�erentiating with respect to
d`L
Â

µ“1
vµpIpµ, pb1, . . . , b`qqq, we obtain

B
`

1
2xv, vy ´ xv, ay

˘

B
d`L
Â

µ“1
vµpIpµ, pb1, . . . , b`qqq

“

r1,...,r`
ÿ

j1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

´

r̃1,...,r̃k
ÿ

i1,...,ik“1

d`L
â

µ“1

aµpIapµ, pi1, . . . , ikqqq.

Setting this derivative equal to zero allows us to exactly determine
d`L
Â

µ“1
vµpIpµ, pb1, . . . , b`qqq:

d`L
â

µ“1

vµpIpµ, pb1, . . . , b`qqq “ ´
r1,...,r`
ÿ

j1,...,j`“1

pj1,...,j`q‰pb1,...,b`q

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

`

r̃1,...,r̃k
ÿ

i1,...,ik“1

d`L
â

µ“1

aµpIapµ, pi1, . . . , ikqqq

(4.10)

but this does not help at all, which is what we explain next. If the set

Hµpbq :“

#

c P
ą̀

i“1

t1, . . . , riu | c ‰ b, Ipµ, bq “ Ipµ, cq

+

(4.11)

is empty for all µ P t1, . . . , d` Lu and all b P
Ś̀

i“1
t1, . . . , riu, we get

¨

˚

˚

˚

˚

˝

ď

cP
Ś̀

i“1
t1,...,riu

c‰b

tIpµ, cq | µ P t1, . . . , d` Luu

˛

‹

‹

‹

‹

‚

XtIpµ, bq | µ P t1, . . . , d` Luu “ H, (4.12)

so the LHS of Equation (4.10) is independent of the RHS of Equation (4.10).
We can state the following theorem, which tells us that we can perform ALS with

respect to single terms if and only if the tensor is representation in the r-term format.

Theorem 4.1.2. Hµpbq as of (4.11) is empty for all µ P t1, . . . , d ` Lu and all b P
Ś̀

i“1
t1, . . . , riu if and only if v is a tensor represented in the r-term format.

Proof. Let us assume that v is represented in the r-term format with representation rank
r P N. Then we have Ipµ, bq “ b for all b P t1, . . . , ru and all µ P t1, . . . , d`Lu. Therefore,
Hµpbq is always an empty set since by de�nition, it cannot contain b.

On the other hand, Equation (4.12) implies the terms of the tensor representation to
be independent of each other with respect to the summation index. This is only true for
the r-term format (and for elementary tensors).
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We may conclude in saying that the ALS method applied to single terms of a tensor
representation as we described it above, is not possible in general, but only for the
r-term format. This renders the method to be less important in comparison to the
other optimization methods that are mentioned in this work. Single parameters cannot
identify single terms (i.e. multiple terms have a dependency to one single summation
index value) and therefore, we cannot optimize these single terms with respect to the
single parameters, which is the underlying problem.

4.1.3 DMRG

If we allow partitionings to overlap (i.e. forXi, Xi P X we allow forXi ‰ Xj , XiXXj ‰ H

for some i, j P I w.r.t. De�nition 4.1.1 � see [1, before De�nition 6.1]), we can get to a
di�erent kind of Gauss-Seidel algorithm as described for the TC format in [1, Subsection
7.2].

This leads us to the so called Density Matrix Renormalization Group algorithm -
or DMRG algorithm. This method allows us to adjust two directions in one step which
enables us to adjust the rank of the edge between both vertices that represent the two
directions, if there is a non-trivial (i.e. rank ą 1) edge between them. We have the
same objective function (4.2) as before, i.e. we minimize the distance between the two
tensors v and a with respect to some norm by adjusting the representation of v (and v
itself). The algorithm is well known in the chemists community since 1992 (see [36]) and
has been extended and brought to the tensor representation context (in the sense of this
thesis) in 20101 by Reinhold Schneider2 (see also [37]).

We use the same notation as before in Subsection 4.1.2 for the tensor representations
of v and a as well as for their corresponding incidence maps I, Ia and incidence* maps
I, Ia. In terms of our de�nition of the partitioning of the coordinates, we �rst de�ne the
index set

I :“ tta, bu P t1, . . . , d` Lu
ě

t1, . . . , d` Lu | #pIpaq X Ipbqq “ 1,

Ipaq X Ipbq X Ipcq “ H @c R ta, buu

such that we de�ne @ i “ pi1, i2q P I the partitionings

Xi :“

#

pi1, j1, . . . , j`q, pi2, j1, . . . , j`q | tj1, . . . , j`u P
ą̀

µ“1

t1, . . . , rµu

+

.

Note that each element of I is a 2-tuple. So I contains the edges that connect exactly
two vertices.
We simplify the notation slightly: Let ν1, ν2 P t1, . . . , d ` Lu with ν1 ‰ ν2 and `1, `2 P
t1, . . . , `u with `1 ă `2. Furthermore, Ipν1q “ t1, . . . , `1u, Ipν2q “ t`1, . . . , `2u and `1 R
Ipµq @µ P t1, . . . , d ` Luztν1, ν2u such that vertex ν1 and ν2 have exactly one edge in

1http://www.mis.mpg.de/calendar/conferences/2010/wskhor.html
2http://page.math.tu-berlin.de/~schneidr/

http://www.mis.mpg.de/calendar/conferences/2010/wskhor.html
http://page.math.tu-berlin.de/~schneidr/
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common (which is `1) that only connects the vertices ν1 and ν2. We additionally assume
Iapν1q Y Iapν2q “ t1, . . . , k1u for simplicity. As a generalization of [1, Subsection 7.2], we
therefore have

v –

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,j`2“1

¨

˝

r`1
ÿ

j`1“1

vν1pj1, . . . , j`1q b vν2pj`1 , . . . , j`2q

˛

‚

b

¨

˚

˝

r`2`1,...,r`
ÿ

j`2`1,...,j`“1

d`L
â

µ“1
µRtν1,ν2u

vµpIpµ, pj1, . . . , j`1´1, 0, j`1`1, . . . , j`qqq

˛

‹

‚

where we keep in mind that `1 R Ipµq for µ P t1, . . . , d` Luztν1, ν2u, and analogously

a –

r̃1,...,r̃k1
ÿ

j1,...,jk1
“1

aν1pIapν1, pj1, . . . , jk1 , 0, . . .qqq b aν2pIapν2, pj1, . . . , jk1 , 0, . . .qqq

b

¨

˚

˝

r̃k1`1,...,r̃k
ÿ

jk1`1,...,jk“1

d`L
â

µ“1
µRtν1,ν2u

aµpIapµ, pj1, . . . , jkqqq

˛

‹

‚

such that by de�ning

vν1,ν2pj1, . . . , j`1´1, j`1`1, . . . , j`2q :“

r`1
ÿ

j`1“1

vν1pj1, . . . , j`1q b vν2pj`1 , . . . , j`2q

and

aν1,ν2pi1, . . . , ik1q :“ aν1pIapν1, pi1, . . . , ik1 , 0, . . .qqq b aν2pIapν2, pi1, . . . , ik1 , 0, . . .qqq

we conclude in

xv, vy “

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,...j`2“1

r1,...,r`1´1,r`1`1,...,r`2
ÿ

i1,...,i`1´1,i`1`1,...,i`2“1

xvν1,ν2pj1, . . . , j`1´1, j`1`1, . . . , j`2q,

vν1,ν2pi1, . . . , i`1´1, i`1`1, . . . , i`2qy

¨

¨

˚

˝

r`2`1,...,r`,1
ÿ

j`2`1,...,j`,j`1“1

r`2`1,...,r`,1
ÿ

i`2`1,...,i`,i`1“1

d`L
ź

µ“1
µRtν1,ν2u

xvµpIpµ, pj1, . . . , j`qqq, vµpIpµ, pi1, . . . , i`qqqy

˛

‹

‚

loooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooon

“:Vrν1,ν2spj1,...,j`1´1,j`1`1,...,j`2 ,i1,...,i`1´1,i`1`1,...,i`2 q
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and

xv, ay “

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,...,j`2“1

r̃1,...,r̃k1
ÿ

i1,...,ik1
“1

xvν1,ν2pj1, . . . , j`1´1, j`1`1, . . . , j`2q, aν1,ν2pi1, . . . , ik1qy

¨

¨

˚

˝

r`2`1,...,r`,1
ÿ

j`2`1,...,j`,j`1“1

r̃k1`1,...,r̃k
ÿ

ik1`1,...,ik“1

d`L
ź

µ“1
µRtν1,ν2u

xvµpIpµ, pj1, . . . , j`qqq, aµpIapµ, pi1, . . . , ikqqqy

˛

‹

‚

looooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooon

“:Arν1,ν2spj1,...,j`1´1,j`1`1,...,j`2 ,i1,...,ik1
q

.

In contrary to the ALS algorithm of the previous subsection, we now di�erentiate with re-

spect to vν1,ν2pj1, . . . , j`1´1, j`1`1, . . . j`2q for �xed pj1, . . . , j`1´1, j`1`1, . . . , j`2q P
`2
Ś

µ“1
µ‰`1

t1, . . . , rµu

which leads us to

Bp1
2xv, vy ´ xv, ayq

Bvν1,ν2pj1, . . . , j`1´1, j`1`1, . . . , j`2q
“

r1,...,r`1´1,r`1`1,...,r`2
ÿ

i1,...,i`1´1,i`1`1,...,i`2“1

vν1,ν2pi1, . . . , i`1´1, i`1`1, . . . , i`2q

¨ Vrν1,ν2spi1, . . . , i`1´1, i`1`1, . . . , i`2 , j1, . . . , j`1´1, j`1`1, . . . , j`2q

´

r̃1,...,r̃k1
ÿ

i1,...,ik1
“1

aν1,ν2pi1, . . . , ik1q

¨Arν1,ν2spj1, . . . , j`1´1, j`1`1, . . . , j`2 , i1, . . . , ik1q.

So by de�ning

Arν1,ν2s :“
´

`

Arν1,ν2sp. . .q
˘

pj1,...,j`1´1,j`1`1,...,j`2 q,pi1,...,ik1
q

¯

P K
ś`2
µ“1,µ‰`1

rµˆ
śk1
µ“1 r̃µ

aν1,ν2 :“

¨

˚

˝

aν1,ν2p1, . . . , 1q
...

aν1,ν2pr̃1, . . . , r̃k1q

˛

‹

‚

P pVν1 b Vν2q
śk1
µ“1 r̃µ

Vrν1,ν2s :“
´

`

Vrν1,ν2sp. . .q
˘

pj1,...,j`1´1,j`1`1,...,j`2 q,pi1,...,i`1´1,i`1`1,...,i`2 q

¯

P K
ś`2
µ“1,µ‰`1

rµˆ
ś`2
µ“1,µ‰`1

rµ

vν1,ν2 :“

¨

˚

˝

vν1,ν2p1, . . . , 1q
...

vν1,ν2pr1, . . . , r`1´1, r`1`1, . . . , r`2q

˛

‹

‚

P pVν1 b Vν2q

ś`2
µ“1,µ‰`1

rµ

we consequently have to solve

pArν1,ν2s b IdVν1bVν2 qaν1,ν2 “ pVrν1,ν2s b IdVν1bVν1 qvν1,ν2 (4.13)
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which is equivalent to Equation (4.9) in terms of the structure and in terms of the
necessary computation of V´1

rν1,ν2s
(see [1, Remark 7.1] for the treatment of non-regular

matrices). The main di�erence to the ALS algorithm is that by solving Equation (4.13),
we obtain vν1,ν2pj1, . . . , j`1´1, j`1`1, . . . , j`2q for all

pj1, . . . , j`1´1, j`1`1, . . . , j`2q P
`2
Ś

µ“1,µ‰`1

t1, . . . , rµu. Each vν1,ν2p. . . q however, is an ele-

ment of the tensor space Vν1 b Vν2 such that we have to compute a decomposition into
separate vector spaces. In general, vν1,ν2 is a matrix, where the entries are in Vν1 b Vν2 .
So we decompose this matrix into a product of matrices X and Y T such that the columns
of X are elements of Vν1 and the columns of Y are elements of Vν2 , where the number of
columns of X and Y are equal to the matrix rank of vν1,ν2 . The result are the individual
components vν1 and vν2 . In terms of matrix decompositions, we decompose

´

`

vν1,ν2pj1, . . . , j`1´1, j`1`1, . . . , j`2qiν1 ,iν2
˘

pj1,...,j`1´1,iν1 q,pj`1`1,...,j`2 ,iν2 q

¯

(4.14)

into a minimal sum (w.r.t. the number of addends) of elementary order two tensors. If
we allow the matrix (4.14) to be decomposed only approximatively (see Equation (4.15)
and in the Error estimate part of this subsection), we may be able to reduce the
decomposition rank for the price of accuracy. The main advantage in comparison to the
ALS algorithm is the possibility of a rank adjustment.

The formal description of the DMRG algorithm, analogous to [1, Algorithm 3] is as
in Algorithm 2. The error condition is usually chosen similarly to the one of the ALS
algorithm (see Algorithm 1).
By �nding v̄ν1 and v̄ν2 only approximatively, i.e. only requiring

›

›

›

›

›

›

reshapepv̄ν1,ν2q ´

r̄
ÿ

j`1“1

v̄ν1pj`1q b v̄ν2pj`1q

›

›

›

›

›

›

ă ε (4.15)

for some ε ą 0 in the Frobenius norm, we introduce an error to the tensor representation.
We will discuss the in�uence of this approximation subsequently.

Error estimate

At �rst, we want to specify the norm properties that we are using more precisely:

De�nition 4.1.3 (Crossnorm, [5, De�nition 4.31]). Let } ¨ }V be a norm in V and } ¨ }W
be a norm in W , then a norm } ¨ } is called a crossnorm on V bW if

}v b w} “ }v}V ¨ }w}W

for all v P V,w PW .

Taking Equation (4.15) as a basis, we assume we have

v̂ν1 : NÑ V
ś`1´1
i“1 ri

ν1
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Algorithm 2 DMRG algorithm for general tensor networks

1: let a and v be tensor network representations with with representation rank
pr1, . . . , r`q P N` of same order in the same tensor space with equal underlying vector
spaces just as de�ned before where v is the initial guess of a w.r.t. }a´v} and pV,Eq
is the tensor network graph that de�nes v; let the de�nitions and premises of this
subsection are also be valid

2: while error condition not ful�lled do
3: for tν1, ν2u P E do

4: �nd v̄ν1,ν2 such that

pArν1,ν2s b IdVν1bVν2 qaν1,ν2 “ pVrν1,ν2s b IdVν1bVν2 qv̄ν1,ν2

as of Equation (4.13)
5: reshape v̄ν1,ν2 as of (4.14) and decompose this reshaped matrix, i.e.

reshapepv̄ν1,ν2q “

r̄
ÿ

j`1“1

v̄ν1pj`1q b v̄ν2pj`1q

where

v̄ν1pj1, . . . , j`1qiν1 :“ v̄ν1pj`1qpj1,...,j`1´1,iν1 q

v̄ν2pj`1 , . . . , j`2qiν2 :“ v̄ν2pj`1qpj`1`1,...,j`2 ,iν2 q

6: vν1 ÞÑ v̄ν1

7: vν2 ÞÑ v̄ν2

8: r`1 ÞÑ r̄
9: end for

10: end while
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and

v̂ν2 : NÑ V
ś`2
i“`1`1 ri

ν2

and with } ¨ } being crossnorms on the corresponding vector spaces, such that

›

›

›

›

›

›

r̂
ÿ

j`1“1

v̂ν1pj`1q b v̂ν2pj`1q ´
r̄
ÿ

j`1“1

v̄ν1pj`1q b v̄ν2pj`1q

›

›

›

›

›

›

ă ε (4.16)

for r̂ ă r̄. Together with

v̂ν1pj1, . . . , j`1qiν1 :“ v̂ν1pj`1qpj1,...,j`1´1,iν1 q
,

v̂ν2pj`1 , . . . , j`2qiν2 :“ v̂ν2pj`1qpj`1`1,...,j`2 ,iν2 q
,

v̄– :“

r1,...,r`1´1,r̄,r`1`1,...,r`2
ÿ

j1,...,j`2“1

v̄ν1pj1, . . . , j`1q b v̄ν2pj`1 , . . . , j`2q

b

¨

˚

˝

r`2`1,...,r`
ÿ

j`2`1,...,j`“1

d`L
â

µ“1
µRtν1,ν2u

vµpIpµ, pj1, . . . , j`qqq

˛

‹

‚

and

v̂– :“

r1,...,r`1´1,r̂,r`1`1,...,r`2
ÿ

j1 ...,j`2“1

v̂ν1pj1, . . . , j`1q b v̂ν2pj`1 , . . . , j`2q

b

¨

˚

˝

r`2`1,...,r`
ÿ

j`2`1,...,j`“1

d`L
â

µ“1
µRtν1,ν2u

vµpIpµ, pj1, . . . , j`qqq

˛

‹

‚

,
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we end up with

}v̄– ´ v̂–} “

›

›

›

›

›

›

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,...,j`2“1

¨

˝

r̄
ÿ

j`1“1

v̄ν1pj1, . . . , j`1q b v̄ν2pj`1 , . . . , j`2q

´

r̂
ÿ

j`1“1

v̂ν1pj1, . . . , j`1q b v̂ν2pj`1 , . . . , j`2q

˛

‚

b

¨

˚

˝

r`2`1,...,r`
ÿ

j`2`1,...,j`“1

d`L
â

µ“1
µRtν1,ν2u

vµpIpµ, pj1, . . . , j`1´1, 0, j`1`1, . . . , j`qqq

˛

‹

‚

›

›

›

›

›

›

›

ď

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,...,j`2“1

›

›

›

›

›

›

r̄
ÿ

j`1“1

v̄ν1pj1, . . . , j`1q b v̄ν2pj`1 , . . . , j`2q

´

r̂
ÿ

j`1“1

v̂ν1pj1, . . . , j`1q b v̂ν2pj`1 , . . . , j`2q

›

›

›

›

›

›

¨

›

›

›

›

›

›

›

r`2`1,...,r`
ÿ

j`2`1,...,j`“1

d`L
â

µ“1
µRtν1,ν2u

vµpIpµ, pj1, . . . , j`1´1, 0, j`1`1, . . . , j`qqq

›

›

›

›

›

›

›

ď

¨

˝

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,...,j`2“1

›

›

›

›

›

›

r̄
ÿ

j`1“1

v̄ν1pj1, . . . , j`1q b v̄ν2pj`1 , . . . , j`2q

´

r̂
ÿ

j`1“1

v̂ν1pj1, . . . , j`1q b v̂ν2pj`1 , . . . , j`2q

›

›

›

›

›

›

2˛

‚

1
2

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

“

›

›

›

›

›

›

r̄
ř

j`1
“1

v̄ν1 pj`1 qbv̄ν2 pj`1 q´
r̂
ř

j`1
“1

v̂ν1 pj`1 qbv̂ν2 pj`1 q

›

›

›

›

›

›

(4.16)
ă ε

¨

¨

˚

˝

r1,...,r`1´1,r`1`1,...,r`2
ÿ

j1,...,j`1´1,j`1`1,...,j`2“1

›

›

›

›

›

›

›

r`2`1,...,r`
ÿ

j`2`1,...,j`“1

d`L
â

µ“1
µRtν1,ν2u

vµpIpµ, pj1, . . . , j`1´1, 0, j`1`1, . . . , j`qqq

›

›

›

›

›

›

›

2˛

‹

‚

1
2

.

As a consequence, we may conclude with

Remark 4.1.4. So we are able to control the error that we introduce within one DMRG-
step w.r.t. the current approximation v. However, only the �rst factor of the product
(which we can control by the error that we may introduce by the SVD) is bounded. The
second factor can be arbitrarily large. Therefore it is only recommended to use this scheme
for formats that are stable in their representation. For instable formats, one has to add
additional constraints about the norm of the second factor (i.e. its boundedness by some
constant).
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4.2 Initial guess

In all approximation cases involving iterative methods, it is crucial to �nd and use a
proper initial guess, see for instance [5, Subsubsection 9.5.2.1]. For linear iteration
schemes, a good initial guess helps to decrease the number of iteration steps that are
needed to reach a certain accuracy, but it does not change the approximation result. For
non-linear iteration schemes, the approximation result (i.e. the limit) may depend on the
initial guess. We can try to use a gradient method together with the successive initial
rank-one approximation to �nd a reasonable initial guess. This however does not over-
come the problems for the general successive guess method for arbitrary tensor network
formats.

Getting a good initial guess by successively increasing the tensor representation by
a rank-one tensor is a good idea for tensor representations in a format with few edges,
such as the r-term format. In even slightly more complex formats however, there are
additional restrictions to the new rank-one terms such that it becomes almost unfeasible.

So an important question is how to construct an initial guess that is reasonable with
respect to the approximation algorithm independently of the structure that the original
tensor is given in. In [4, Section 5.4] is the description of an accelerated conjugated
gradient method for the r-term format that acts roughly like the following to obtain a
lowrank approximation v̂, which is a tensor representation, of a given tensor a:

1. �nd the best rank 1 approximation v̂ of a

2. �nd the best rank 1 approximation of v̂ ´ a and add this result to v̂ such that the
rank of v̂ increase by 1

3. minimize v̂ ÞÑ }v̂ ´ a} for �xed a

4. goto 2. until v̂ has the maximum representation rank or }v̂ ´ a} has the desired
accuracy

The algorithm in its current form is formulated for the r-term format. We want to
generalize the approach to be usable for arbitrary tensor network representations.
In fact basically the only modi�cation that we have to make, is to take care of the rank
increment procedure.

4.2.1 Algorithm

The general setting is, as before, that we have �nite dimensionalK-vector spaces V1, . . . ,Vd
with d P N being the order of the tensor space V :“

d
Â

µ“1
Vµ.

In this section, our main goal will be to approximate a given tensor a P V by a tensor
representation v̂ in a speci�c format that represents tensor v P V. So we are trying to
minimize

}v ´ a}
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in some norm in V (see Section 4.0). Subsequently, we will identify v with v̂ such that
we may write

}v ´ a} “ }v̂ ´ a}

For the tensor representation v̂ of tensor v, we are limited to one are limited to one tensor
format graph. That is, the structure of the underlying graph may not be changed during
the execution of the algorithm (for instance, the hierarchical format is based on multiple
tensor format graphs). To compute an approximation, one could �x the rank of v's
representation v̂ and perform standard optimization algorithms such as non-linear block
Gauss-Seidel (see Section 4.1 and [1, Section 6]) or CG methods, where the initial value
may be chosen as of [1, Subsection 7.3]. In order to faster obtain a tensor representation
that matches the desired error bound, we describe an algorithm that successively increases
the representation rank of the tensor representation of v, starting from a rank-one tensor.

The algorithm that we will explain here, is a generalization of [4, Algorithm 5.4.1] for
arbitrary tensor networks where the main di�erence is, that we have to handle a tuple of
ranks instead of just one single rank. Increasing one of the components of the rank-tuple
by one, results in adding in general more than one term to the tensor.

To clarify the di�erence to the existing approach, we state a small example for the r-
term format. Let a be an order d tensor with unspeci�ed tensor representation. One may
think of a as a full tensor (in practice however, a should be represented more e�ciently).
Following the sketch from above, we perform

1. v̂ :“ argmin
b:“

Âd
µ“1 bµ,bµPVµ

}b´ a}

2. ṽ :“ argmin
c:“

Âd
µ“1 cµ,cµPVµ

}a´v̂´c} and afterwards v̂ ÞÑ v̂`ṽ such that the representation

rank of v̂ increases by one

3. minimize }v̂ ´ a} with respect to v̂ where representation rank of v̂ is �xed

4. goto 2. until v̂ has the maximum rank or }v̂ ´ a} has the desired accuracy

This procedure works very well as the rank increment requires only adding an elementary
tensor b1 b . . .b bd. On the contrary, we have the procedure for a tensor representation
in the TC format (see De�nition 2.1.11):
The crucial part is the rank increment since the representation rank is a tuple of integers
instead of just one integer. By looking at a tensor of order 3, represented in the TC
format of order 3 with representation rank pr1, r2, r3q “ p2, 2, 2q the important di�erence
is immediately visible. Increasing r1 by one such that the representation rank is going
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to be p3, 2, 2q leads us to

3,2,2
ÿ

j1,j2,j3“1

v1pj1, j3q b v2pj1, j2q b v3pj2, j3q “

2,2,2
ÿ

j1,j2,j3“1

v1pj1, j3q b v2pj1, j2q b v3pj2, j3q

` v1p3, 1q b v2p3, 1q b v3p1, 1q

` v1p3, 2q b v2p3, 1q b v3p1, 2q

` v1p3, 1q b v2p3, 2q b v3p2, 1q

` v1p3, 2q b v2p3, 2q b v3p2, 2q

(4.17)

such that we have to add four terms if we want to increase r1 to 3 instead of just one
additional term for increasing the rank of a r-term tensor by one. Di�erent representation
ranks lead to a di�erent number of terms that we have to add. For more complicated
structures, like the PEPS format (see De�nition 2.1.14 and [29] for applications), the
number of terms also increases.
However, generalizing this scheme to arbitrary tensor networks is straightforward and
omitted here (with the exception of Algorithm 3) in order to not disturb the reader from
the idea behind this approach. A general rule for the number of terms that have to be
added is a straightforward computation that result in

Remark 4.2.1. Let v be a tensor representation of order pd ` Lq that is based on the
tensor format graph pV,Eq with corresponding incidence* map I � with corresponding
incidence map I � and has representation rank pr1, . . . , r`q P N` where ` :“ #E. Let
further i P t1, . . . , `u where we can assume without loss of generality that ri ą 1. Then
we have

v –

r1,...,r`
ÿ

j1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

“

r1...,ri´1,ri´1,ri`1,...,r`
ÿ

j1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

`

r1,...,ri´1,ri`1,...,r`
ÿ

j1,...,ji´1,ji`1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , ji´1, ri, ji`1, . . . , j`qqq

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“:S

.

The number of addends in the second sum S that depend on the i-th summation is given
by

ź

kPIi

rk
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where

Ii “
 

Ipµq | µ P I´1piq
(

ztiu.

Generalizing the algorithm for �nding an initial guess can be summarized as Algo-
rithm 3.

Algorithm 3 Successive initial guess algorithm

1: Let T “ pV,Eq be an undirected, connected multi-graph with ` :“ #E and
r :“ pr1, . . . , r`q P N` such that T and r de�ne a tensor representation v̂ with repre-
sentation rank r.
Set v̂ to the best rank 1 approximation of order d tensor a (whose representation
does not matter), choose ε ą 0, the maximal representation rank pr̄1, . . . , r̄`q P N`
and initial representation rank pr1, . . . , r`q :“ p1, . . . , 1q

2: while }v̂ ´ a} ą ε and pr1, . . . , r`q ‰ pr̄1, . . . , r̄`q do
3: Select k P ti P t1, . . . , `u | ri ă r̄iu
4: Find approximation ṽ of v̂´a such that T speci�es v̂` ṽ with representation rank

pr1, . . . , rk´1, rk ` 1, rk`1, r`q
5: v̂ ÞÑ v̂ ` ṽ, rk ÞÑ rk ` 1 such that the representation rank of v̂ changes
6: Minimize }v̂ ´ a} w.r.t. v̂ where the representation rank of v̂ is �xed
7: end while

Except for the rank increment of this algorithm's line 4, the algorithm very similar
to [4, Algorithm 5.4.1] such that we will focus on the description of the rank increasing
procedure. Increasing one element of the representation rank by one is done by adding
several terms to the tensor representation v̂. It is immediately clear, that in general not
all components of the new terms have to be unknown. In Equation (4.17) for instance,
there is no new value needed for v3 as all v3pi, jq with i, j P t1, 2u are already determined
by the original tensor representation v with the representation rank p2, 2, 2q.
Consequently, we have to come up with a way to determine the unknown components.
In contrary to [4, Algorithm 5.4.1, line 4], we cannot do this by rank 1 approximations.

We now state the rank increment algorithm for the TC format as an example. This
algorithm explains how to increase the kth rank component with k P t1, . . . , du of a TC
tensor representation v̂ which represents the tensor v with representation rank pr1, . . . , rdq
while approximating the tensor a. In general, we have to perform
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Algorithm 4 Increase of the kth rank component for the TC format

Let v̂ be a TC tensor representation of order d with representation rank pr1, . . . , rdq P
Nd as of De�nition 2.1.11 which represents a tensor v P V and a P V be
some order d tensor. Without loss of generality, we choose k P t2, . . . , d ´
1u.

1: Set jk :“ rk ` 1
2: Find approximation

ṽ :“

r1,...,rk´1,rk`1,...,rd
ÿ

j1,...,jk´1,jk`1,...,jd“1

v1pj1, jdq b
k´1
â

µ“2

vµpjµ´1, jµq b vkpjk´1, jkq b vk`1pjk, jk`1q

b

d
â

µ“k`2

vµpjµ´1, jµq

of v ´ a with �xed v1, . . . vk´1, vk`2, . . . , vd
3: v̂ ÞÑ v̂ ` ṽ

Remark 4.2.2. After obtaining the new representation v̂, one could perform an addi-
tional optimization iteration for minimizing }v ´ a} with ALS or CG as in line 6 of
Algorithm 3. In practice, this is highly recommended and usually consumes only very few
iterations (see Subsection 4.2.4). This step however, is not mandatory.
Note that if v̂ changes, the values of tensor v also change in general.

In the subsequent Section 4.2.2, we will illustrate the whole process in more details.
Since in the case of a TC tensor, each summation is associated to exactly two directions
of the tensor, the inner approximation in line 2 of Algorithm 4 is a problem of two
dimensions (i.e. vk and vk`1 have to be determined for some indices) such that we can
compute it very fast.

4.2.2 Example

We want to give the reader a detailed example of the application of Algorithm 3 together
with Algorithm 4 such that the main idea and the problems that arise from this approach
become clearly visible.

The goal is to �nd an approximated representation v̂ (which represents the tensor v) in
the TC format with representation rank pr1, r2, r3, r4q P N4 of tensor a (represented in an
arbitrary format) of order d “ 4. The maximal representation rank of v is pr̄1, r̄2, r̄3, r̄4q P

N4 and we want to �nd the minimal distance }v̂ ´ a} for this representation rank. The
initial representation rank of v̂ is p1, 1, 1, 1q such that we start with an elementary tensor.

As the interesting part is the rank increment, we will demonstrate this at �rst by
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increasing r2 by one. Similar to Equation (4.17), we de�ne

v̂ :“

r1,r2,r3,r4
ÿ

j1,j2,j3,j4“1

v1pj1, j4q b v2pj1, j2q b v3pj2, j3q b v4pj3, j4q

“

r1,r2`1,r3,r4
ÿ

j1,j2,j3,j4“1

v1pj1, j4q b v2pj1, j2q b v3pj1, j3q b v4pj4, j4q

´

r1,r3,r4
ÿ

j1,j3,j4“1

v1pj1, j4q b v2pj1, r2 ` 1q b v3pr2 ` 1, j3q b v4pj3, j4q

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

ṽ

such that we are interested in �nding ṽ (which is a tenor train representation). The

values of v1pj1, j4q and v4pj3, j4q are known for all pj1, . . . , j4q P
4
Ś

µ“1
t1, . . . , rµu so they

have to be left unchanged. On the other side, v2pj1, r2 ` 1q and v3pr2 ` 1, j3q are to
unknown for all pj1, j3q P t1, . . . , r1u ˆ t1, . . . , r3u such that values are to be determined.
Therefore, we need to �nd the tensor representation ṽ that minimizes

}v̂ ` ṽ ´ a}

under the constraints for the known values. This results in the complete algorithm to
�nd an initial guess as follows:

Without loss of generality, r̄4 ě r̄i @i P t1, 2, 3u.

1st step

r :“ p1, 1, 1, 1q

• Find best rank 1 approximation

v1p1, 1q b v2p1, 1q b v3p1, 1q b v4p1, 1q

of a, i.e.

v̂ :“ v1p1, 1q b v2p1, 1q b v3p1, 1q b v4p1, 1q

2nd step

r :“ p2, 1, 1, 1q

• Find best rank 1 approximation

v1p2, 1q b v2p2, 1q b v3p1, 1q b v4p1, 1q

of v̂ ´ a with v3p1, 1q and v4p1, 1q �xed since both v3p1, 1q and v4p1, 1q were
already determined in the �rst step
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ñ

v̂ :“
2
ÿ

j1“1

v1pj1, 1q b v2pj1, 1q b v3p1, 1q b v4p1, 1q

3rd step

r :“ p2, 2, 1, 1q

• Find approximation

2
ÿ

j1“1

v1pj1, 1q b v2pj1, 2q b v3p2, 1q b v4p1, 1q

of v̂ ´ a with �xed v1pj1, 1q for j1 P t1, 2u and v4p1, 1q �xed

ñ

v̂ :“

2,2
ÿ

j1,j2“1

v1pj1, 1q b v2pj1, j2q b v3pj2, 1q b v4p1, 1q

4th step

r :“ p2, 2, 2, 1q

• Find approximation

2,2
ÿ

j1,j2“1

v1pj1, 1q b v2pj1, j2q b v3pj2, 2q b v4p2, 1q

of v ´ a with v1pj1, 1q and v2pj1, j2q for j1, j2 P t1, 2u �xed

ñ

v̂ :“

2,2,2
ÿ

j1,j2,j3“1

v1pj1, 1q b v2pj1, j2q b v3pj2, j3q b v4pj3, 1q

5th step

r :“ p2, 2, 2, 2q

• Find approximation

2,2,2
ÿ

j1,j2,j3“1

v1pj1, 2q b v2pj1, j2q b v3pj2, j3q b v4pj3, 2q

of v ´ a with v2pj1, j2q and v3pj2, j3q for j1, j2, j3 P t1, 2u �xed

...
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pr̄1 ` r̄2 ` r̄3 ` r̄4 ´ 3qth step

r :“ pr̄1, r̄2, r̄3, r̄4q

• Find approximation

r̄1,r̄2,r̄3
ÿ

j1,j2,j3“1

v1pj1, r̄4q b v2pj1, j2q b v3pj2, j3q b v3pj3, r̄4q

of v ´ a with v2pj1, j2q and v3pj2, j3q for j1, P t1, . . . , r̄1u, j2 P t1, . . . , r̄2u and
j3 P t1, . . . , r̄3u �xed

In principle, we are not bound to any rank increasing order such we also could increase
r1 until r̄1 before increasing the other representation rank components. We will address
this problem in the next subsection.

The algorithm can be also used to obtain not only an initial guess, but also an
approximation result if we choose ε su�ciently small (see Remark 4.2.2).

4.2.3 Problems

We named one major problem (uncertainty in the increment order) in the proposed
procedure and now, we will explain it together with the consequences. Additionally, we
basically have the same problem as for the ALS algorithm for single terms (see conclusion
about the ALS algorithm for single terms at page 69).

At �rst, we are going to show that changing the order of the rank increments leads
to a di�erent number of iterations that is needed to reach a certain error bound. The
following setup is used for the computations

• a is tensor, represented by order d TC tensor representation with representation
rank pr1, . . . , rdq “ p10, . . . , 10q �lled with pseudo-random values P r0, 1s

• v̂ is a tensor representation that represents the tensor v

• all vector space dimensions dimV1, . . . ,dimVd are equal to 10

• the maximal representation rank of TC tensor representation v̂ is p10, . . . , 10q

• the initial representation rank of v̂ is p1, . . . , 1q and its values is computed via
adaptive cross approximation (ACA) as described in [1, Subsection 7.3])

• the initial values for the unknown components of each step are set to 1{
?
nµ where

µ is the direction of the unknown component; afterwards ALS is used to determine
the unknown values

• after the initial guess has been determined, standard ALS is applied to obtain the
approximation result (with error condition threshold of 1 ¨ 10´8 as of Algorithm 1)

• implementation: [38, test/Representation/TensorChainTest.cpp]
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• Intel i3-3220T CPU

For the �rst option (option 1), we increase each representation rank component one after
another by one, just as described in the previous subsection. For the second option
(option 2) however, we increase the �rst representation rank component successively by
one until p10, 1, . . . , 1q is the representation rank of v. Afterwards, we increase component
two until p10, 10, 1, . . . , 1q, etc.

d
}a´ v}{}a} CPU time

option 1 option 2 option 1 option 2

4 6.56 ¨ 10´4 5.84 ¨ 10´4 16.65s 22.54s
6 5.40 ¨ 10´5 1.37 ¨ 10´7 15.73s 24.77s
8 5.64 ¨ 10´5 1.16 ¨ 10´4 41.67s 67.67s
10 1.85 ¨ 10´4 2.40 ¨ 10´4 66.47s 67.90s

Table 4.1: Di�erent rank increment orders

The results in Table 4.1 emphasizes the problem, that has been stated above, very
well. Although the ALS error condition for the �nal ALS approximation is equal, the
results di�er with respect to the relative error and the CPU time.

As a result of the unknown optimal increment order, we cannot tell when we should
stop increasing a rank component if the maximal or reasonable value is unknown. If we
want to have balanced rank components, this is an easy task, as we simply have to use
option 1, but as soon as non-balanced rank components can be considered, we have to
use other indications for a good rank distribution.
More complicated formats are of course more complicated to handle but if there is some
indication about the rank distribution (from the physical background for instance), it
should be applied to the algorithms in order to obtain reasonable results.

4.2.4 Numerical experiments

Performing actual computations with this approach in this example show that the pro-
posed algorithm may result in a bene�t in terms of the CPU time that is needed to
reach a certain accuracy. Despite the problems, that we have described in Subsection
4.2.3, for certain structured data, we are able to improve the time that is needed to get a
reasonable approximation in comparison to the ACA/ALS method in [1, Subsection 7.3]
in some constellations. For random data, the successive approach performs signi�cantly
worse in most of the tested cases.

All our numerical experiments are performed with the help of the implementation in
[38]. We have the following general setup for the subsequent experiments:

• random tensor a of order d that is represented in the TC format with representation
rank pr1, . . . , rdq “ p10, . . . , 10q and vector space dimension dimVµ “ 10 @µ P
t1, . . . , du
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• we try to approximate a by a TC tensor representation v̂ where we start from
representation rank p1, . . . , 1q and successively increase each rank component by
one until p9, . . . , 9q (option 1 of the previous subsection)

• use ACA for the rank 1 initial guess

• the initial values for the unknown components of each step are set to 1{
?
nµ where

µ is the direction of the unknown component (nµ “ dimVµ); afterwards ALS is
used to determine the unknown values

• the relative error is computed using the successive initial guess with subsequent
ALS (with error condition threshold of 1 ¨ 10´8 as of Algorithm 1)

• for comparison, the ACA/ALS method (where the initial guess is computed via
ACA as of [1, Subsection 7.3]) will be used until the relative error from above is
reached

• implementation: [38, test/Representation/TensorChainTest.cpp]

• Intel i3-3220T CPU

The results are shown in Table 4.2.

d Rel. error CPU time CPU time ACA/ALS

4 7.77 ¨ 10´4 13.86s 0.20s
6 4.78 ¨ 10´4 3.10s 70.59s
8 7.90 ¨ 10´4 8.41s 0.092s
10 8.65 ¨ 10´4 25.79s 0.12s

Table 4.2: Comparison of successive approach/ALS and ACA/ALS for pseudo-random
data

These were only tests with random function values to show that the algorithm does
not perform very well for this worst case scenario. However, if it comes to structured
data, the successive approach is more e�ective.

Like in [30], we want to approximate the function

fpx1, . . . , xdq “
1

b

1` x2
1 ` . . .` x

2
d

(4.18)

in r0, 1sd. The representation rank of the approximation result TC tensors is p3, . . . , 3q.
As before, we determine the relative error using the successive initial guess approach and
try to reach this error using ALS with an initial guess that has been generated using
ACA. The orig. rank in Table 4.3 denotes the rank of the tensor representation that
we want to approximate. We generate the to be approximated TC tensor by using the
method, that is described in [30] (we use the SVD version with an SVD approximation
accuracy of 1 ¨ 10´5 for d P t3, . . . , 7uq and 1 ¨ 10´4 for d P t8, 9u).
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d nµ Orig. rank Rel. error CPU
time

CPU time ACA/ALS

3 129 p3, 3, 15q 2.2408 ¨ 10´6 0.05s 1.09sp˚qp2.2411 ¨ 10´6q

4 33 p3, 3, 15, 19q 1.46 ¨ 10´5 0.16s 0.07s

6 10 p3, 3, 15, 20, 25, 29q 3.75 ¨ 10´5 1.25s 8.85sp˚qp3.77 ¨ 10´5q

7 10 p3, 3, 15, 21, 29, 89, 30q 4.54 ¨ 10´5 20.34s 33.09sp˚qp5.77 ¨ 10´5q

8 10 p3, 3, 14, 19, 23, 27, 35, 30q 4.93 ¨ 10´5 4.55s 17.97sp˚qp5.60 ¨ 10´5q

9 7 p3, 3, 13, 20, 24, 27, 30, 44, 21q 7.20 ¨ 10´2 42.73s 22.22sp˚qp1.39 ¨ 10´1q

Table 4.3: Comparison of successive approach/ALS and ACA/ALS for structured data

The results are shown in Table 4.3 where the p˚q means that the given approximation
error was not achieved using ACA/ALS (the �nal relative error is stated in brackets)
after at most 5000 ALS steps over all d directions. This indicates that there may be an
advantage using this approach for certain data. Due to the problems that we mentioned
before, it is not surprising that the general approach does not result in a signi�cant
bene�t. If it comes to real data that has to be approximated with high accuracy however,
the successive initial guess algorithm with a subsequent ALS seems to be worth trying.

Remark 4.2.3. The examples of this subsection have been chosen to show that the algo-
rithm works for certain data. There have been no non-regular matrices during the ALS
iteration. The initial values for the to be determined components have been set arti�cially
to 1{

?
nµ; choosing other initial values will lead to di�erent results. The reader is also

reminded of the instability of the TC format.



Chapter 5

Constructive algorithms

Creating arbitrary tensor network representations out of a given tensor (the tensor may
be de�ned by a tensor representation or pointwise) is a very important task as this
step allows us to actually perform computations and optimizations in the tensor net-
work framework. We want to describe how to change the topology of tensor network
representations and give an outlook on future work in this area.

5.1 Changing the representation topology

If there is the need for a small structural (i.e. local) change of a tensor network represen-
tation, it should be done using the existing structure. An algorithm will be introduced
and explained that can perform local changes of the tensor network structure. We do not
change the tensor itself, we only change the way it is represented by sums of elementary
tensors.

We can also utilize this algorithm for performing complete conversions of tensor for-
mats such as a conversion from PEPS to the hierarchical format.

The content of this section is already published in the author's report [39].

5.1.1 Direct conversion from TC to TT without approximation

Our �rst example will be the topology change from a ring structure (Tensor Chain or
TC, see De�nition 2.1.11) to a string structure (Tensor Train or TT, see De�nition 2.1.8).
The two topologies di�er only in one edge and therefore they have a lot in common which
we can use for our advantage.

In Subsection 2.2.13 we already described the exact conversion without any kind
of approximation, simply by copying values. We still want to describe a method that
is more general with the help of this example. The initial results indicate that the
exact conversion with the method of this section produces ridiculously high ranks in
comparison to the previously described method. It turns out however that we can use
approximations for the conversion (see Table 5.2) such that the results are from the same
quality (in terms of representation ranks and the error) as the direct exact conversion

87
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of Subsection 2.2.13. Considering Remark 4.1.4 and the fact that the TC format is not
closed, we have to enforce a certain limit to the factors of the error estimate of Subsection
5.1.5 if they exceed some border (for our simple experiments, we do not need to do this).

Let d P Nzt1, 2u, n1, . . . , nd, r1, . . . , rd P N and set the vector spaces of De�nition
2.1.11 to be

Vµ “ Knµ @µ P t1, . . . , du.

We de�ne

v “

r1,...,rd
ÿ

j1,...,jd“1

v1pj1, jdq b
d
â

µ“2

vµpjµ´1, jµq P
d
â

µ“1

Vµ

with

v1 : t1, . . . , r1u ˆ t1, . . . , rdu Ñ V1

vi : t1, . . . , ri´1u ˆ t1, . . . , riu Ñ Vi for i “ 2, . . . , d

such that in terms of De�nition 2.1.11, v is a tensor represented in the Tensor Chain
format with representation rank pr1, . . . , rdq, see Figure 5.1.

Figure 5.1: Tensor Chain of order d

This �gure is in general the same as Figure 2.9 with the only di�erence of an emphasis
on the central edge jr d2 s. We want to change the tensors representation, i.e. our goal

structure is de�ned by

r̃1,...,r̃d´1
ÿ

j1,...,jd´1“1

ṽ1pj1q b
d´1
â

µ“2

ṽµpjµ´1, jµq b ṽdpjd´1q

with

ṽ1 : t1, . . . , r̃1u Ñ V1

ṽi : t1, . . . , r̃i´1u ˆ t1, . . . , r̃iu Ñ Vi for i “ 2, . . . , d´ 1

ṽd : t1, . . . , r̃d´1u Ñ Vd
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which is, in reference to De�nition 2.1.8, a tensor represented in the Tensor Train format
of order d with representation rank pr̃1, . . . , r̃d´1q P Nd´1 and visualized in Figure 5.2
(where in comparison to Figure 2.7, the central edge is emphasized). As stated in Remark
2.1.13, a tensor in the TT format is also a tensor in the TC format (but not vice versa).

Figure 5.2: Tensor Train of order d

To be able to use the given ring structure of the Tensor Chain, we will convert it to
the simplest possible order d tree, which is the Tensor Train. We successively move one
particular edge of the ring further and further to the edge that is at the center of the
ring without this speci�c moved edge. The following part visualizes this scheme.

In our description, we are using the singular value decomposition (SVD) to decompose
a matrix. We could also utilize other decompositions, like the QR decomposition, but
they have the same computational complexity as the SVD up to some constants. A
main advantage of the SVD is, that it provides a best rank k approximation where
k P t1, . . . , rankpMatrixqu for matrices which we want to use later in approximated
results.

1st step

We de�ne

v1,2pjd, j2qi,j :“
r1
ÿ

j1“1

pv1pj1, jdq b v2pj1, j2qqi,j

for all jd P t1, . . . , rdu, j1 P t1, . . . , r1u and interpret v1,2 as n1 ˆ n2 ¨ rd ¨ r2 matrix
`

pv1,2pjd, j2qi,jqi,pj,jd,j2q
˘

of which we compute the SVD to obtain

´

pv1,2pjd, j2qi,jqi,pj,jd,j2q

¯

“

¨

˝

˜

r̃1
ÿ

j1“1

`

ṽ1pj1q b v
1
2pj1, j2, jdq

˘

i,j

¸

i,pj,jd,j2q

˛

‚, (5.1)

with

ṽ1 : t1, . . . r̃1u Ñ V1
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and

v12 : t1, . . . r̃1u ˆ t1, . . . , r2u ˆ t1, . . . , rdu Ñ V2

where r̃1 ď minpn1, n2 ¨ rd ¨ r2q is the full matrix rank. Consequently,

v “
r̃1
ÿ

j1“1

r2,...,rd
ÿ

j2,...,jd“1

ṽ1pj1q b v
1
2pj1, j2, jdq b v3pj2, j3q b . . .b vdpjd´1, jdq,

whose schematic representation is Figure 5.3.

Figure 5.3: Structure after the 1st step

Remark 5.1.1. Instead of using the full matrix notation as of Equation (5.1), we will
use a much shorter notation. Instead of Equation (5.1) for instance, we will simply write

v1,2pjd, j2q “
r̃1
ÿ

j1“1

ṽ1pj1q b v
1
2pj1, j2, jdq

from now on.

2nd step

Analogous to step 1, we de�ne

vd´1,dpjd´2, jdqi,j :“

rd´1
ÿ

jd´1“1

pvd´1pjd´2, jd´1q b vdpjd´1, jdqqi,j

for all jd´2 P t1, . . . , rd´2u, jd P t1, . . . , rdu and interpret vd´1,d as nd´1 ¨ rd´2 ¨ rd ˆ nd
matrix

`

pvd´1,dpjd´2, jdqi,jqpi,jd´2,jdq,j

˘

of which we compute the SVD, in order to get

vd´1,dpjd´2, jdq “

r̃d´1
ÿ

jd´1“1

v1d´1pjd´2, jd´1, jdq b ṽdpjd´1q
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with

v1d´1 : t1, . . . , rd´2u ˆ t1, . . . , r̃d´1u ˆ t1, . . . , rdu Ñ Vd´1

and

ṽd : t1, . . . , r̃d´1u Ñ Vd
where again r̃d´1 ď minpnd´1 ¨ rd´2 ¨ rd, ndq is the full matrix rank. The result is

v “

r̃1,r̃d´1
ÿ

j1,jd´1“1

r2,...,rd´2,rd
ÿ

j2,...,jd´2,jd“1

ṽ1pj1q b v
1
2pj1, j2, jdq b v3pj2, j3q b . . .b vd´2pjd´3, jd´2q

b v1d´1pjd´2, jd´1, jdq b ṽdpjd´1q

as visualized in Figure 5.4.

Figure 5.4: Structure after the 2nd step

Penultimate step

We apply the above written scheme successively, we end up in a situation that is equiv-
alent to Figure 5.5.

Figure 5.5: Structure before the penultimate step
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The penultimate step is to compute the SVD analogously to the procedure that we
described in the 1st and 2nd step to get

r
r d2 s`1
ÿ

j
r d2 s`1

“1

vr d2 s`1

´

jr d2 s, jr d2 s`1

¯

b v1
r d2 s`2

´

jr d2 s`1, jr d2 s`2, jd

¯

SV D
“

r̃
r d2 s`1
ÿ

j
r d2 s`1

“1

v1
r d2 s`1

´

jr d2 s, jr d2 s`1, jd

¯

b ṽr d2 s`2

´

jr d2 s`1, jr d2 s`2

¯

for all jr d2 s P t1, . . . , rr d2 su, jr d2 s`2 P t1, . . . , r̃r d2 s`2u with

v1
r d2 s`1

: t1, . . . , rr d2 su ˆ t1, . . . , r̃r d2 s`1u ˆ t1, . . . , rdu Ñ Vr d2 s`1

and

ṽr d2 s`2 : t1, . . . , r̃r d2 s`1u ˆ t1, . . . , r̃r d2 s`2u Ñ Vr d2 s`2

and obtain

v “

r̃1,...,r̃r d2 s´1
,r̃

r d2 s`1
,...,r̃d´1

ÿ

j1,...,jr d2 s´1
,j

r d2 s`1
,...,jd´1“1

r
r d2 s

,rd
ÿ

j
r d2 s

,jd“1

ṽ1pj1q b ṽ2pj1, j2q b . . .b ṽr d2 s´1

´

jr d2 s´2, jr d2 s´1

¯

b v1
r d2 s

´

jr d2 s´1, jr d2 s, jd

¯

b v1
r d2 s`1

´

jr d2 s, jr d2 s`1, jd

¯

b ṽr d2 s`2

´

jr d2 s`1, jr d2 s`2

¯

b . . .b ṽd´1pjd´2, jd´1q

b ṽdpjd´1q

with the corresponding Figure 5.6.

Figure 5.6: Structure after the penultimate step
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Remark 5.1.2. Formally speaking, this structure is already the Tensor Train format
since we can interpret edge jd and jr d2 s as together as one edge with multiplied ranks.

This situation however, can be improved (in terms of a possible rank reduction) by com-
puting one additional SVD to combine the two edges. This may also result in a rank
reduction, i.e. the rank of the combined edge is from above by the product of the rank of
the two edges.

Final step

In the last step, we compute the singular value decomposition of the matrix

M :“

¨

˚

˚

˚

˚

˝

¨

˚

˝

r
r d2 s

,rd
ÿ

j
r d2 s

,jd“1

´

v1
r d2 s

´

jr d2 s´1, jr d2 s, jd

¯

b v1
r d2 s`1

´

jr d2 s, jr d2 s`1, jd

¯¯

i,j

˛

‹

‚

ˆ

i,j
r d2 s

´1

˙

,

ˆ

j,j
r d2 s`1

˙

˛

‹

‹

‹

‹

‚

(5.2)
and obtain analogously to the previous step the structure

M
SV D
“

¨

˚

˚

˚

˚

˝

¨

˚

˝

r̃
r d2 s
ÿ

j
r d2 s

“1

´

ṽr d2 s

´

jr d2 s´1, jr d2 s

¯

b ṽr d2 s`1

´

jr d2 s, jr d2 s`1

¯¯

i,j

˛

‹

‚

ˆ

i,j
r d2 s

´1

˙

,

ˆ

j,j
r d2 s`1

˙

˛

‹

‹

‹

‹

‚

with

ṽr d2 s : t1, . . . , r̃r d2 s´1u ˆ t1, . . . , r̃r d2 su Ñ Vr d2 s

and

ṽr d2 s`1 : t1, . . . , r̃r d2 su ˆ t1, . . . , r̃r d2 s`1u Ñ Vr d2 s`1

which is visualized in Figure 5.7.

Figure 5.7: Completely converted structure
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So by computing the SVD of the above stated matrix M of in (5.2), we combine the
summations over jd and jr d2 s.

Ranks

If we consider the new ranks r̃1, . . . , r̃d´1, we have to look at the dimension of the matrices
of which we computed the SVD. With n :“ maxpn1, . . . , ndq and r :“ maxpr1, . . . , rdq we
have

r̃1 ď minpn1, n2 ¨ rd ¨ rd ¨ r2q ď n1 (5.3)

r̃i ď minpni ¨ r̃i´1, ni`1 ¨ rd ¨ ri`1q ď minpni, ni`1 ¨ rd ¨ ri`1q for i “ 2, . . . ,

R

d

2

V

´ 1

(5.4)

r̃d´1 ď minpnd, nd´1 ¨ rd´2 ¨ rdq ď nd (5.5)

r̃i ď minpni`1 ¨ r̃i`1, ni ¨ rd ¨ ri´1q ď minpnd´i, ni ¨ rd ¨ ri´1q for i “ d´ 2, . . . ,

R

d

2

V

` 1

(5.6)

r̃r d2 s ď minpnr d2 s ¨ r̃r d2 s´1, nr d2 s`1 ¨ r̃r d2 s`1q ď minpnr d2 s, n2 ¨ r2q, (5.7)

which is summarized in Figure 5.8.

Figure 5.8: Final rank overview

Remark 5.1.3. With this approach the upper bounds for the ranks are the full TT ranks
(see [40] and compare with (5.3) � (5.7)), but also the original representation rank of the
TC representation in�uence the resulting representation rank.

Theorem 5.1.4. The overall computational cost for the conversion is in

O
`

pd´ 2q ¨ n4r6 ` n6r6
˘

,

so it is linear in d where r is de�ned as before.
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Proof. Due to (5.3) � (5.6), we have

r̃i ď n ¨ rd ¨ ri ď n ¨ r2 @i P t1, . . . , d´ 1uzt

R

d

2

V

u.

Consequently, the matrices, that we have to decompose by computing the SVD, have at
most the size

n ¨ r̃i ˆ n ¨ rd ¨ r @i P t1, . . . , d´ 1uzt

R

d

2

V

u

except for the �nal step, the complexity for the SVD is in Opn4 ¨ r6q (see [41, Subsection
5.4.5] for the SVD's computational complexity). There, the matrix has at most the size

n ¨ r̃r d2 s`1 ˆ n ¨ r̃r d2 s´1

due to (5.7), such that the complexity for the SVD is in Opn6 ¨ r6q which �nishes the
proof.

Remark 5.1.5. Steps 1, 3, . . . , d1 and 2, 4, . . . , d2 are independent of each other and
therefore parallelizable where

d1 :“

#

d´ 1 if d ” 0 mod 2,

d´ 2 otherwise

and

d2 :“

#

d´ 2 if d ” 0 mod 2,

d´ 1 otherwise.

Remark 5.1.6. Instead of moving the edge jd to the center of the chain, we can also
for instance �x the vd ´ jd connection and move the edge through the whole chain. This
however would have the drawback of being not parallelizable.

Approaches between both possibilities are also possible (e.g. perform step 3 directly
after step 1 such that the resulting double edge will not be in the center of the chain).

We can easily extend this scheme to more complex structures which we will do in Sub-
section 5.1.2 by converting a rectangular grid structured tensor into a string structured
one.

Numerical example

All numerical experiments in this section have been done with
[38, test/Representation/TreeConversionTest.cpp] using an Intel i3-3220T CPU and the
following setup:

• the function values have are generated with a pseudo-random number generator
(i.e. the initial TT tensor is �lled with pseudo-random values P r0, 1s)
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• each direction has 7 entries, i.e. n1 “ . . . “ nd “ 7

• the representation rank of the Tensor Chain tensor is pr1, . . . , rdq “ p6, . . . , 6q

The �rst example will be the full conversion, where we use the maximal matrix rank after
each edge move. The results are shown in Table 5.1.

d CPU Time Avg. rank Max. rank

4 0.004s 16.67 36
5 0.008s 24.75 49
6 0.19s 29.60 49
7 0.57s 66.67 252
8 25.2s 93.14 252

Table 5.1: Exact TC to TT conversion

In practice, it is often su�cient to convert a tensor representation only approximately
instead of an exact conversion. Our approach can be easily changed to an approximate
conversion by using the SVD only up to a certain accuracy (i.e. we cut o� small singular
values σi for which σi ă σ1 ¨ 10´10 where σ1 is the largest singular value). We will
demonstrate this by simple computations where the results are shown in Table 5.2.

d CPU Time Avg. rank Max. rank rel. error

4 0.0017s 16.67 36 2.58 ¨ 10´8

10 0.35s 29.56 36 2.98 ¨ 10´8

100 6.3s 35.41 36 4.47 ¨ 10´8

1000 65.83s 35.94 36 1.35 ¨ 10´6

10000 640.7s 35.99 36 1.18 ¨ 10´5

Table 5.2: Approximated TC to TT conversion

So we see that in case of using an approximated SVD, we obtain a conversion that is
equivalent to the specialized conversion algorithm of Subsection 2.2.13.

Remark 5.1.7. We do not need to hold the whole tensor representation in the RAM
since the conversion acts only locally on the two involved edges. This reduces the prac-
tical memory consumption to a very small fraction of the theoretical consumption (when
storing the whole tensor representation in the RAM). Especially if we increase the accu-
racy of the singular value decomposition by increasing the rank, this locality-advantage is
important.

5.1.2 Converting PEPS to TT without approximation

In the previous Subsection 5.1.1, the topology changed only slightly as we removed just
one edge from the graph to obtain a tree. The method that has been used there can
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be also used for more complicated structures, such as grids or latices, which we want to
explain in this subsection.

We are going to convert a PEPS (see De�nition 2.1.14) structured tensor into a tree
structured tensor in the TT format. In our framework of arbitrary tensor networks,
a PEPS tensor representation v of order p4, 4q with representation rank pr1, . . . , r24q is
represented as follows:

v “

r1,...,r24
ÿ

j1,...,j24“1

v1pj1, j4q b v2pj1, j2, j5q b v3pj2, j3, j6q b v4pj3, j7q

b v5pj4, j8, j11q b v6pj5, j8, j9, j12q b v7pj6, j9, j10, j13q b v8pj7, j10, j14q

b v9pj11, j15, j18q b v10pj12, j15, j16, j19q b v11pj13, j16, j17, j20q b v12pj14, j17, j21q

b v13pj18, j22q b v14pj19, j22, j23q b v15pj20, j23, j24q b v16pj21, j24q,

see Figure 5.9 for the visualization. The Motivation for this conversion is due to the
fact that the complexity of contracting (i.e. performing the summations) a PEPS tensor
representation is very high and the optimization procedure is not stable (see [42] for an
approximated contraction scheme). Tree structured tensor representations on the other
hand are stable (as mentioned in Subsection 2.1.3) and easy to contract.

Each tree with p vertices has p ´ 1 edges such that it is reasonable to choose the
simplest tree structure, which is a string, as the destination structure. This is no restric-
tion of the method, we just chose the string structure only for the sake of clearness ans
simplicity.

In order to keep the notations simple, we set n1 “ . . . “ nd “: n P N, so all our vector
spaces Vµ have the same dimension n.
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Figure 5.9: PEPS tensor of order p4, 4q

We want to visualize the scheme that we introduced in Subsection 5.1.1 by looking
at the upper left corner of the PEPS tensor representation. Figure 5.10a displays the
initial situation.
The �rst step, that we want to perform, is moving the edge j4 to the left. Analogously
to before, we are doing this by computing the singular value decomposition, such that
we obtain (in compliance with Remark 5.1.1)

r1
ÿ

j1“1

v1pj1, j4q b v2pj1, j2, j5q
SV D
“

r̃1
ÿ

j1“1

ṽ1pj1q b v
1
2pj1, j2, j4, j5q

for all j4 P t1, . . . , r4u, j2 P t1, . . . , r2u and j5 P t1, . . . , r5u with

ṽ1 : t1, . . . , r̃1u Ñ V1

and

v12 : t1, . . . , r̃1u ˆ t1, . . . , r2u ˆ t1, . . . , r4u ˆ t1, . . . , r5u Ñ V2.

We get the structure as of Figure 5.10b. Hereafter, we apply the same procedure to get

r8
ÿ

j8“1

v5pj4, j8, j11q b v6pj5, j8, j9, j12q
SV D
“

r̃8
ÿ

j8“1

v15pj8, j11q b v
1
6pj4, j5, j8, j9, j12q

for all ji P t1, . . . , riu, i P t4, 5, 9, 11, 12u with

v15 : t1, . . . , r̃8u ˆ t1, . . . , r11u Ñ V5
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and

v16 : t1, . . . , r4u ˆ t1, . . . , r5u ˆ t1, . . . , r̃8u ˆ t1, . . . , r9u ˆ t1, . . . , r12u Ñ V6,

which is shown in Figure 5.10c. The next step could be to move those two edges j4 and
j5 both further to the left, but this would increase the complexity of the formulas as well
as of the schematic drawings. Additionally, it might be the case that the product of the
moved edges ranks is unnecessarily high (see Remark 5.1.2).
So, we want to combine j4 and j5 into a new j5 and we can do this by one SVD analogously
to the Final Step of Subsection 5.1.3. We obtain

r4,r5
ÿ

j4,j5“1

v12pj1, j2, j4, j5q b v
1
6pj4, j5, j8, j9, j12q

SV D
“

r̃5
ÿ

j5“1

v22pj1, j2, j5q b v
2
6pj5, j8, j9, j12q

for all ji P t1, . . . , riu, i P t2, 9, 12u and jk P t1, . . . , r̃ku, k P t1, 8u with

v22 : t1, . . . , r̃1u ˆ t1, . . . , r2u ˆ t1, . . . , r̃5u Ñ V2

and

v26 : t1, . . . , r̃5u ˆ t1, . . . , r̃8u ˆ t1, . . . , r9u ˆ t1, . . . , r12u Ñ V6

such that we get a structure as of Figure 5.10d.



100 CHAPTER 5. CONSTRUCTIVE ALGORITHMS

(a) Initial state (b) State after 1st step (c) State after 2nd step

(d) State after 3rd step (e) State after 4th step

Figure 5.10: Iteration series 1 in details

Afterwards, we can proceed as before (see Figure 5.10e). If we apply this procedure
until we have eliminated also edges j5 and j6 with edge j7 left, we get a structure as in
Figure 5.11.
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Figure 5.11: PEPS series 1

Applying this scheme also on edges pj18, j19, j20q we �rst get the structure of Figure
5.12 and afterwards the structure of Figure 5.13 if we eliminate edges pj14, j13, j12q.

Figure 5.12: PEPS series 2
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The edge elimination processes of pj4, j5, j6q and of pj18, j19, j20q do not a�ect each
other such that we can state the rank distribution independently, where r̃i is the rank of
the edge labeled with ji after the elimination process:

r̃1 ď n ¨minp1, r2 ¨ r4 ¨ r5q “ n

r̃8 ď n ¨minpr11, r4 ¨ r5 ¨ r9 ¨ r12q

r̃5 ď n ¨minpr̃1 ¨ r2, r̃8 ¨ r9 ¨ r12q “ n ¨minpn ¨ r2, r̃8 ¨ r9 ¨ r12q

r̃2 ď n ¨minpr̃1, r3 ¨ r̃5 ¨ r6q “ n ¨minpn, r3 ¨ r̃5 ¨ r6q

r̃9 ď n ¨minpr̃8 ¨ r12, r̃5 ¨ r6 ¨ r10 ¨ r13q

r̃6 ď n ¨minpr̃2 ¨ r3, r̃9 ¨ r10 ¨ r13q

r̃3 ď n ¨minpr̃2, r̃6 ¨ r7q

r̃10 ď n ¨minpr̃9 ¨ r13, r̃6 ¨ r7 ¨ r14q

r̃7 ď n ¨minpr̃3, r̃10 ¨ r14q

r̃22 ď n ¨minp1, r18 ¨ r19 ¨ r23q “ n

r̃15 ď n ¨minpr11, r12 ¨ r16 ¨ r18 ¨ r19q

r̃19 ď n ¨minpr̃22 ¨ r23, r12 ¨ r̃15 ¨ r16q “ n ¨minpn ¨ r23, r12 ¨ r̃15 ¨ r16q

r̃23 ď n ¨minpr̃22, r̃19 ¨ r20 ¨ r24q “ n ¨minpn, r̃19 ¨ r20 ¨ r24q

r̃16 ď n ¨minpr12 ¨ r̃15, r13 ¨ r17 ¨ r̃19 ¨ r20q

r̃20 ď n ¨minpr̃23 ¨ r24, r13 ¨ r̃16 ¨ r17q

r̃24 ď n ¨minpr̃23, r̃20 ¨ r21q

r̃17 ď n ¨minpr13 ¨ r̃16, r14 ¨ r̃20 ¨ r21q

r̃21 ď n ¨minpr̃24, r14 ¨ r̃17q
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Figure 5.13: PEPS series 3

The edge elimination of the j12, j13 and j14 results in an additional adjustment of the

ranks, which are denoted with
«
r i for edge ji:

«
r10 ď n ¨minpr̃7, r̃9 ¨ r13 ¨ r14q

«
r17 ď n ¨minpr̃21, r13 ¨ r14 ¨ r̃16q

«
r13 ď n ¨minpr̃9¨

«
r10, r̃16¨

«
r17q

«
r9 ď n ¨minp

«
r10, r̃8 ¨ r12 ¨ r̃13q

«
r16 ď n ¨minp

«
r17, r12 ¨ r̃13 ¨ r̃15q

«
r12 ď n ¨minpr̃8¨

«
r9, r̃15¨

«
r16q

«
r8 ď n ¨minp

«
r9, r11 ¨ r̃12q

«
r15 ď n ¨minp

«
r16, r11 ¨ r̃12q

«
r11 ď n ¨minp

«
r15,

«
r8q,

resulting in the tree structure which had to be established.

Remark 5.1.8. Series 1 and series 2 are parallelizable without any restriction since they
do not a�ect a common vertex. Series 3 can be performed at the same time as series 1
and 2 but one has to be careful with overlapping cycle elimination series since it might
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be possible that v6 is changed by two processes at the same time, for instance. This can
be worked around by adding simple synchronization barriers. Note that there is at most
one edge of the edges in common of two processes that may be changed simultaneously.

Performing the conversion in parallel may lead to di�erent ranks in the ranks that
are adjusted more than once, since several ranks get adjusted twice and the order of these
adjustments in�uences the �nal rank.

Remark 5.1.9. The order of the series is not unique. One can choose any other series
that produces a string-like tree. For instance, one could also choose to eliminate edges
j1, j3, j8, j9, j10, j15, j16, j17 and j23.

5.1.3 Direct conversion from TT to TC without approximation

If the physical underlying structure of a problem suggests that a ring structure is more
suitable than a string structure, one is able to change the topology of the tensor network
that represents the tensor of interest. Due to the instability of the Tensor Chain format
(see Remark 2.1.12), the conversion is also unstable.

We want to convert the Tensor Train representation into a cyclic structured tensor
representation (Tensor Chain). In general, the Tensor Train format is a special Tensor
Chain format since there is a rank-one edge between v1 and vd on every Tensor Train
representation. Our objective here is to get a balanced distribution of the ranks for the
Tensor Chain representation. Therefore, we have to perform a procedure that successively
moves an arti�cially inserted edge to the start v1 and the end vd of the train. In practice
however, this leads to several problems that are inspected in Subsection 5.1.3.

This procedure also depends on the singular value decomposition (SVD). An inter-
mediate vertex (i.e. changed by a SVD but not yet the �nal vertex) will be denoted with
1 whereas the �nal converted vertex has a ,̃ just as in Subsection 5.1.1.

1st step

Our �rst step will be to introduce an arti�cial edge between vertex vr d2 s and vr d2 s`1 which

we want to name jd (see Figure 5.14 for the visualization).

Figure 5.14: Arti�cially added edge jd
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So we get a new tensor representation with representation rank pr1, . . . , rdq. We
choose rd and r̃r d2 s such that rd ¨ r̃r d2 s ě rr d2 s and de�ne the mapping

r¨, ¨s : t1, . . . , r̃r d2 su ˆ t1, . . . , rdu Ñ t1, . . . , rd ¨ r̃r d2 su

a, b ÞÑ a` r̃r d2 s ¨ b,
(5.8)

so r¨, ¨s is a bijective map to assign a 2-tuple to a natural number. Consequently, we have

r
r d2 s
ÿ

j
r d2 s

“1

vr d2 s

´

jr d2 s´1, jr d2 s

¯

b vr d2 s`1

´

jr d2 s, jr d2 s`1

¯

“

r̃
r d2 s

,rd
ÿ

j
r d2 s

,jd“1

vr d2 s

´

jr d2 s´1,
”

jr d2 s, jd

ı¯

b vr d2 s`1

´”

jr d2 s, jd

ı

, jr d2 s`1

¯

.

for all jr d2 s´1 P t1, . . . , rr d2 s´1u and jr d2 s`1 P t1, . . . , rr d2 s`1u. If rd ¨ r̃r d2 s ą rr d2 s, we have

to rede�ne vr d2 s and vr d2 s`1:

vrede�ne
r d2 s

: t1, . . . , rr d2 s´1u ˆ t1, . . . , rd ¨ r̃r d2 su Ñ Vr d2 s

´

jr d2 s´1, jr d2 s

¯

ÞÑ

#

vr d2 s

´

jr d2 s´1, jr d2 s

¯

if jr d2 s ď rr d2 s

0 else

and

vrede�ne
r d2 s`1

: t1, . . . , rd ¨ r̃r d2 su ˆ t1, . . . , rr d2 s`1u Ñ Vr d2 s`1

´

jr d2 s, jr d2 s`1

¯

ÞÑ

#

vr d2 s`1

´

jr d2 s, jr d2 s`1

¯

if jr d2 s ď rr d2 s

0 else
.

Note that even if we had to rede�ne the two mappings, we still use the original mapping
names vr d2 s`1 and vr d2 s`1 instead of vrede�ne

r d2 s
and vrede�ne

r d2 s`1
for the sake of a readable nota-

tion.
We may also choose any other bijective mapping that satis�es

t1, . . . , r̃r d2 su ˆ t1, . . . , rdu Ñ t1, . . . , rd ¨ r̃r d2 su

which will we address later in this subsection.

2nd step

In this step, we want to move the edge jd from vertex vr d2 s`1 to vr d2 s`2 and as written

before, we will do this with a single SVD and � again in compliance with Remark 5.1.1
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� end up with

r
r d2 s`1
ÿ

j
r d2 s`1

“1

vr d2 s`1

´”

jr d2 s, jd

ı

, jr d2 s`1

¯

b vr d2 s`2

´

jr d2 s`1, jr d2 s`2

¯

SV D
“

r̃
r d2 s`1
ÿ

j
r d2 s`1

“1

ṽr d2 s`1

´

jr d2 s, jr d2 s`1

¯

b v1
r d2 s`2

´

jr d2 s`1, jr d2 s`2, jd

¯

for all jr d2 s P t1, . . . , r̃r d2 su, jr d2 s`2 P t1, . . . , rr d2 s`2u, jd P t1, . . . , rdu with

ṽr d2 s`1 : t1, . . . , r̃r d2 su ˆ t1, . . . , r̃r d2 s`1u Ñ Vr d2 s`1

and

vr d2 s`2 : t1, . . . , r̃r d2 s`1u ˆ t1, . . . , rr d2 s`2u ˆ t1, . . . , rdu Ñ Vr d2 s`2

analogously to before. The visual representation of the situation after the 2nd step is
shown in Figure 5.15.

Figure 5.15: Situation after the 2nd step

3rd step

Edge jd has to be changed such that it connects vertex vr d2 s´1 and vertex v1
r d2 s`2

. This

will be done analogously to the second step, such that we get

r
r d2 s´1
ÿ

j
r d2 s´1

“1

vr d2 s´1

´

jr d2 s´2, jr d2 s´1

¯

b vr d2 s

´

jr d2 s´1,
”

jr d2 s, jd

ı¯

SV D
“

r̃
r d2 s´1
ÿ

j
r d2 s´1

“1

v1
r d2 s´1

´

jr d2 s´2, jr d2 s´1, jd

¯

b ṽr d2 s

´

jr d2 s´1, jr d2 s

¯

,
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for all jr d2 s´1 P t1, . . . , rr d2 s´2u, jr d2 s P t1, . . . , r̃r d2 su, jd P t1, . . . , rdu with

v1
r d2 s´1

: t1, . . . , rr d2 s´2u ˆ t1, . . . , r̃r d2 s´1u ˆ t1, . . . , rdu Ñ Vr d2 s´1

and

ṽr d2 s : ˆt1, . . . , r̃r d2 s´1u ˆ t1, . . . , r̃r d2 su Ñ Vr d2 s,

which is visualized in Figure 5.16.

Figure 5.16: Situation after the 3rd step

Remark 5.1.10. Step 2 and 3 are independent of each other and can be performed in
parallel.

Final step

After moving the edge successively further towards vd and v1, we get the situation that
is visualized in Figure 5.17. The last step in the conversion is to move edge jd such that
it connects vertices ṽd and v1 by using the described procedure.

Figure 5.17: Situation before the �nal step
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So in formulas, one SVD is computed to make the edge shift:

r1
ÿ

j1“1

v1pj1q b v
1
2pj1, j2, jdq

SV D
“

r̃1
ÿ

j1“1

ṽ1pj1, jdq b ṽ2pj1, j2q,

for all j2 P t1, . . . , r̃2u, jd P t1, . . . , rdu where

ṽ1 : t1, . . . , r̃1u ˆ t1, . . . , rdu Ñ V1

and

ṽ2 : t1, . . . , r̃1u ˆ t1, . . . , r̃2u Ñ V2,

which is resulting in the structure that we wanted to obtain (see Figure 5.18).

Figure 5.18: Situation after the �nal step

Ranks

After we have chosen the ranks rd and r̃r d2 s, we update all remaining d´ 2 ranks and get

the following upper bounds (with n and r as de�ned before)

r̃1 “ minpn1 ¨ rd, n2 ¨ r̃2q ď n ¨ r, (5.9)

r̃i “ minpni ¨ ri´1 ¨ rd, ni`1 ¨ r̃i`1q ď n ¨ r ¨ rd for i “ 2, . . . ,

R

d

2

V

´ 1 (5.10)

and

r̃i “ minpni`1 ¨ ri`1 ¨ rd, ni ¨ r̃i´1q ď n ¨ r ¨ rd for i “

R

d

2

V

` 1, . . . , d´ 1. (5.11)

Theorem 5.1.11. The computational cost of the described scheme is in

O
`

pd´ 2q ¨ n3 ¨ r3 ¨ r3
d ` n

3 ¨ r3
˘

so it linear in d.

Proof. Follows directly from Equations (5.9) � (5.11) since these equations determine the
upper bound for the matrix sizes.
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Problems

The main problem has its roots in the �rst step where an arti�cial edge is introduced into
the graph structure. There we do not a priori know what the best rank splitting is and
we also do not know which is the best assignment for the r¨, ¨s function (5.8). If we can
solve these problems, we are - for example - able to convert a Tensor Chain formatted
tensor into a Tensor Train formatted tensor and back without di�erent ranks for the
Tensor Chain tensor in before the conversion and after the back-conversion.

In [30, Section 4] for instance, there is an example where the represented tensor, that
was originally represented in the Tensor Chain format, is perfectly recovered by choosing
a suitable r¨, ¨s function. This example is arti�cial but it proves the point.

Numerical example

We have the same setup as in 5.1.1 (except that we are converting a Tensor Train repre-
sentation with representation rank pr1, . . . , rd´1q “ p6, . . . , 6q into a Tensor Chain repre-
sentation) and obtain the results in Table 5.3 with approximated SVD (i.e. we neglect
small singular values σi for which σi ă σ1 ¨ 10´10 where σ1 is the largest singular value)
where the relative error is w.r.t. the initial tensor representation. The implementation
[38, test/Representation/TreeConversionTest.cpp] was used with an Intel i3-3220T CPU.

d CPU Time Avg. rank Max. Rank Rel. error

4 0.0003s 7.25 12 6.14 ¨ 10´8

10 0.02s 10.1 12 8.16 ¨ 10´8

100 0.38s 11.81 12 4.52 ¨ 10´7

1000 4.09s 11.98 12 3.19 ¨ 10´6

10000 41.25s 12 12 1.78 ¨ 10´5

Table 5.3: Approximated TT to TC conversion

To illustrate the problem that has been described in Subsection 5.1.3, we will run a
second experiment: �rst, we will transform a Tensor Chain tensor representation into a
Tensor Train tensor representation and then, we will re-transform it back to the original
chain format. In this experiment (of which the results are shown in Table 5.4), we also
have the same setup as in Subsection 5.1.1 (initial TC representation rank is pr1, . . . , rdq “
p6, . . . , 6q). No SVD approximation is considered.

d Avg. converted TT rank Avg. re-converted TC rank

4 16.67 24
6 29.6 30
8 93.14 96

Table 5.4: Exact TC to TT to TC conversion

In the previous computation, we used the full matrix ranks such that we did not
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bene�t from the possibility of a matrix approximation. So we are going to change the
algorithm to not use the full rank, but a rank, generated by the SVD decomposition
(where we cut o� small singular values as before) for both conversions which results in
Table 5.5. The error in this table is again the relative error with respect to the initial
tensor representation. The initial TC representation rank is also pr1, . . . , rdq “ p6, . . . , 6q.

d Avg. converted
TT rank

Rel. error TT Avg. re-converted
TC rank

Rel. error TC

4 16.67 6.66 ¨ 10´8 24 4.71 ¨ 10´8

6 24.4 2.58 ¨ 10´8 26 7.15 ¨ 10´8

8 27.71 9.42 ¨ 10´8 28.5 6.32 ¨ 10´8

10 29.56 3.65 ¨ 10´8 30 1.03 ¨ 10´7

12 30.73 6.99 ¨ 10´8 31 1.07 ¨ 10´7

20 32.95 7.30 ¨ 10´8 33 1.81 ¨ 10´7

30 34 2.64 ¨ 10´7 34 1.24 ¨ 10´7

Table 5.5: Approximated TC to TT to TC conversion

5.1.4 General method

For the description of the general method, we mainly focus on graph theoretical aspects.
From the tensor network point of view, we only have to describe local changes, i.e. one
edge shift only involves the vertices that are connected by one edge before and after the
edge shift. The conversion of one graph into another is then performed by multiple local
topology changes. So the general task is to convert one connected simple graph with d
edges to another one.

At �rst, we want to give the de�nition of a walk in graph theoretical terms. We
simplify [31, p. 29, De�nition for Walk ] and combine it with [31, p. 29, De�nition for
Length of a walk ] to obtain

De�nition 5.1.12 (Walk). Let G “ pV,Eq be a connected simple undirected graph as of
De�nition 3.1.1. Then a walk of length ` P N, ` ą 1 from v P V to w P V is a sequence

pv, u1, . . . , u`´1, wq P V
``1

of vertices with

tv, u1u P E, tui, ui`1u P E @i P t1, . . . , `´ 2u, tu`´1, wu P E

and ui R tv, wu for all i P t1, . . . , `´ 1u. For simplicity, we assume v ‰ w.

So now let us assume we have a Graph G “ pV,Eq where we want to eliminate edge
e “ tv1, v``1u P V

Ţ

V for some ` P Nzt1u. The �rst requirement for our algorithm to
work, is that there is a walk pv1, . . . , v``1q P V

``1 of length ` from v1 to v``1. If such a
walk does not exist, we have no connection besides e from v1 to v``1. Due to Remark
3.1.2 (connectedness of the graphs) we have at least one of the walk or the edge e.
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Once we have found the walk, we can move the edge e successively along this walk to
eliminate it (see Subsection 5.1.1 for the example). Therefore, we conclude with the
following

Algorithm 5 Edge elimination algorithm (graph theory)

1: Let G “ pV,Eq be an undirected simple connected graph, pv1, . . . , v``1q P V
``1 be a

walk of length ` P Nzt1u from v1 to v``1 and e :“ tv1, v``1u P E
2: De�ne start :“ 1 and end :“ `` 1
3: while end´ start ą 1 do
4: Choose either start ÞÑ start` 1 or end ÞÑ end´ 1
5: E ÞÑ pEzteuq Y ttvstart, venduu
6: e ÞÑ tvstart, vendu
7: end while

The last step of this algorithm adds an edge e to the edge set that is already contained
in the edge set E. In line 5 of Algorithm 5, the topology of the graph is changed. In the
graph notation this is easily written down, but in the language of tensor networks, more
work has to be done. In Algorithm 5 we also did not consider double edges since we are
utilizing only simple graphs.

So for adjusting this algorithm to the tensor network context we have to treat the
single edge movement and the double edges in a special manner.

Example 5.1.13. Consider the graph G as of Figure 5.19 where we are going to eliminate
edge e “ tv6, v4u. W.r.t. Algorithm 5, we �rst choose a walk from v4 to v6 which does
not contain edge tv6, v4u. Two possible walks are

pv4, v2, v1, v5, v6q

and

pv4, v3, v8, v7, v6q.

There are of course also other walks that are possible. Let us choose the green walk to
continue with. At �rst, we de�ne w1 :“ v4, w2 :“ v2, w3 :“ v1, w4 :“ v5 and w5 :“ v6

such that we look at the walk

pw1, w2, w3, w4, w5q

to be able to use the notation with start-index and end-index just as in line 2 of Algorithm
5. We consequently have start “ 1 and end “ 5.
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Figure 5.19: Graph with highlighted walks form v4 to v6

According to our algorithm, we now choose start ÞÑ start `1 such that we get a new
edge

e1 :“ tw2, w5u “ tv2, v6u

that we add to the edge set of the graph. The next step is already where the graph topology
is changed, i.e.

E ÞÑ ttv1, v2u, tv1, v5u, tv2, v3u, tv2, v4u, tv2, v6u,

tv3, v4u, tv3, v8u, tv5, v6u, tv6, v7u, tv7, v8uu

as of Figure 5.20. The next task is to choose between incrementing start and decreasing
end and to continue as before until start `1 “ end.

Figure 5.20: Changed topology graph

In our de�nition of a graph, we did not allow double edges by de�ning the edge set
E as a set of sets. If in Algorithm 5, start ` 1 “ end, the algorithm �nishes by adding
twstart, wendu to the edge set E, which it already contained. In the numerical treatment
however we have to do additional work to perform this last step.
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At �rst, we de�ne the set of vertices that are directly connected (i.e. with one edge).
From the de�nition of the adjacency matrix (see [43, De�nition 1.1.17]), we deduce

De�nition 5.1.14 (Adjacency set of a vertex). Let G “ pV,Eq be a simple, undirected
and connected multigraph as of De�nition 3.1.3, v P V and I be the corresponding inci-
dence map of G (see De�nition 3.1.5). Then we de�ne

Av :“ tv1 P V | Di P Ipvq : v1 P iu

as the adjacency set of vertex v.

So Av is the set of vertices that are connected to vertex v via one edge. The general
edge movement algorithm is stated in Algorithm 6.

Remark 5.1.15 (Double edge elimination). In general, we can ignore double edges since
we can interpret a sum over two indices as a sum over one index where this one index
has the cardinality of the product of the two indices. In practice, as described in Remark
5.1.2, the edges can be combined by computing a singular value decomposition.

5.1.5 Error estimate

While shifting an edge, we can introduce an error in line 3 of Algorithm 6 by omitting
small singular values of the SVD's result. Doing that, we can represent matrix A by
an approximated matrix Ã where we can control the error }A ´ Ã} (with } ¨ } being a
crossnorm as of De�nition 4.1.3) with these singular values. The in�uence on the whole
tensor network representation has to be investigated: We �rst consider the change that
is made in the second step of the TC to TT conversion of Subsection 5.1.1 such that
the de�nitions of v1, . . . , vd, v

1
1, v

1
2, v

1
d´1, v

1
d that we made there are also valid for this

subsection. We de�ne

v :“
r̃1
ÿ

j1“1

r2,...,rd
ÿ

j2,...,jd“1

v11pj1q b v
1
2pj1, j2, jdq b v3pj2, j3q b . . .b vdpjd´1, jdq

and

ṽ :“

r̃1,r̃d´1
ÿ

j1,jd´1“1

r2,...,rd´2,rd
ÿ

j2,...,jd´2,jd“1

v11pj1q b v
1
2pj1, j2, jdq b v3pj2, j3q b . . .

b vd´2pjd´3, jd´2q b v
1
d´1pjd´2, jd´1, jdq b v

1
dpjd´1q,

such that we have to estimate }v ´ ṽ} where ṽ is the tensor representation after the
(approximated) edge shift. To shorten the notation, we introduce

v̂pjd, jd´2q :“
r̃1
ÿ

j1“1

r2,...,rd´3
ÿ

j2,...,jd´3“1

v11pj1q b v
1
2pj1, j2, jdq b v3pj2, j3q b . . .b vd´2pjd´3, jd´2q
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Algorithm 6 Single edge movement (tensor networks)

Let d P N and G “ pV,Eq be a tensor network graph of order pd, Lq P N ˆ N0 with

` :“ #E and representation rank pr1, . . . , r`q which represents a tensor v P V “
d
Â

µ“1
with

V “ tv1, . . . , vd`Lu. Let further I be the incidence map and g be the degree map of G
(see De�nition 3.1.5).
We choose a, b, c P t1, . . . , d` Lu such that a ‰ b, b ‰ c and a ‰ c and tva, vbu, tvb, vcu P
E, tva, vcu R E. We de�ne e0 :“ tvb, vcu, e :“ tva, vbu and e

1 :“ tva, vcu (remember that
vz represents a mapping into Vz for z P t1, . . . , du and into K for z P td`1, . . . , Lu). The
goal is to replace e in G by e1 and still represent tensor v (the representation rank may
di�er).

1: w.l.o.g., we assume Ipvbq “ t1, . . . , `0u, Ipvcq “ t`0, . . . , `1u and `0 ´ 1 P Ipvaq with
2 ă `0 ă `1 ă ` such that e0“̂`0 ´ 1 and e“̂`0

2: de�ne

A :“

¨

˚

˝

¨

˝

r`0
ÿ

j`0“1

pvbpj1, . . . , j`0q b vcpj`0 , . . . , j`1qqx,y

˛

‚

px,j1,...,j`0´2q,py,j`0´1,j`0`1,...,j`1 q

˛

‹

‚

as a K valued nb ¨
ś

µPIpvbqzt`0´1,`0u

rµ ˆ nc ¨
ś

µPpIpvcqzt`0uqYt`0´1u

rµ matrix where

nb :“ dimVb and nc :“ dimVc
3: compute a SVD of A such that

A “
¨

˚

˝

¨

˝

r̃`0
ÿ

j`0“1

`

v1bpj1, . . . , j`0´2, j`0q b v
1
cpj`0´1, j`0 , . . . , j`1q

˘

x,y

˛

‚

px,j1,...,j`0´2q,py,j`0´1,j`0`1,...,j`1 q

˛

‹

‚

where r̃`0 is the matrix rank of A
4: consequently we have obtained two mappings

v1b : Ngpvbq´1 Ñ Vb and v1c : Ngpvcq`1 Ñ Vc

5: replace vb by v
1
b and vc by v

1
c in V and all elements of E

6: de�ne

G1 :“ pV,E1q

with

E1 :“ pEzteuq Y ttva, v
1
cuu

Now, we have created a tensor representation with representation rank
pr1, . . . , r`0´1, r̃`0 , r`0`1, . . . , r`q and underlying tensor network graph G1, which
also represents the tensor v.
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and

Bpjd, jd´2q :“

rd´1
ÿ

jd´1“1

vd´1pjd´2, jd´1q b vdpjd´1, jdq ´

r̃d´1
ÿ

jd´1“1

v1d´1pjd´2, jd´1, jdq b v
1
dpjd´1q.

This leads into the following estimate

}v ´ ṽ} “

›

›

›

›

›

›

rd,rd´2
ÿ

jd,jd´2“1

v̂pjd, jd´2q bBpjd, jd´2q

›

›

›

›

›

›

ď

rd,rd´2
ÿ

jd,jd´2“1

}v̂pjd, jd´2q} ¨ }Bpjd, jd´2q}

ď

¨

˝

rd,rd´2
ÿ

jd,jd´2“1

}v̂pjd, jd´2q}
2

˛

‚

1
2
¨

˝

rd,rd´2
ÿ

jd,jd´2“1

}Bpjd, jd´2q}
2

˛

‚

1
2

“

¨

˝

rd,rd´2
ÿ

jd,jd´2“1

}v̂pjd, jd´2q}
2

˛

‚

1
2

¨ }A´ Ã}

with the help of the triangle inequality and the Cauchy-Schwarz-inequality (in that order)
and the crossnorm property. This gives us a precise estimate on when we are allowed to
cut o� singular values while still maintaining a certain error bound for }v ´ ṽ}. There is
a severe issue due to the non-closedness of the Tensor Chain format that we will explain
after the general error estimate.

This error estimate can be easily generalized to other tensor representations. We
want to state the proper error estimate for general tensor networks as well.

We will use the simpli�ed notation as of De�nition 3.2.8 for the represented tensor. We
are going to write down everything explicitly without using abbreviations. As before,
we are utilizing the Cauchy-Schwarz-inequality and the crossnorm property. Let the
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notation of Algorithm 6 hold with the extension that w.l.o.g. c “ b` 1, such that we get

}v ´ ṽ} “

›

›

›

›

›

r1,...,r`
ÿ

j1,...,j`“1

d`L
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

´

r1,...,r`0´1,r̃`0 ,r`0`1,...,r`
ÿ

j1,...,j`“1

b´1
â

µ“1

vµpIpµ, pj1, . . . , j`qqq

b v1bpj1, . . . , j`0´2, j`0q b v
1
cpj`0´1, j`0 , . . . , j`1qb

d`L
â

µ“c`1

vµpIpµ, pj1, . . . , j`qqq

›

›

›

›

›

“

›

›

›

›

›

›

›

r1,...,r`0´1,r`0 ,...,r`1
ÿ

j1,...,j`0´1,j`0`1,...,j`1“1

¨

˚

˝

r`1`1,...,r`,1
ÿ

j`1`1,...,j`,j`0“1

d`L
â

µ“1
µRtb,cu

vµpIpµ, pj1, . . . , j`qqq

˛

‹

‚

b

¨

˝

r`0
ÿ

j`0“1

vbpj1, . . . , j`0´1, j`0q b vcpj`0 , . . . , j`1q

´

r̃`0
ÿ

j`0“1

v1bpj1, . . . , j`0´2, j`0q b v
1
cpj`0´1, j`0 , . . . , j`1q

˛

‚

›

›

›

›

›

›

ď

r1,...,r`0´1,r`0`1,...,r`0
ÿ

j1,...,j`0´1,j`0`1,...,j`1“1

›

›

›

›

›

›

›

r`1`1,...,r`,1
ÿ

j`1`1,...,j`,j`0“1

d`L
â

µ“1
µRtb,cu

vµpIpµ, pj1, . . . , j`qqq

›

›

›

›

›

›

›

¨

›

›

›

›

›

›

r`0
ÿ

j`0“1

vbpj1, . . . , j`0´1, j`0q b vcpj`0 , . . . , j`1q

´

r̃`0
ÿ

j`0“1

v1bpj1, . . . , j`0´2, j`0q b v
1
cpj`0´1, j`0 , . . . , j`1q

›

›

›

›

›

›

ď

¨

˚

˝

r1,...,r`0´1,r`0`1,...,r`1
ÿ

j1,...,j`0´1,j`0`1,...,j`1“1

›

›

›

›

›

›

›

r`1`1,...,r`,1
ÿ

j`1`1,...,j`,j`0“1

d`L
â

µ“1
µRtb,cu

vµpIpµ, pj1, . . . , j`qqq

›

›

›

›

›

›

›

2˛

‹

‚

1
2

¨

¨

˝

r1,...,r`0´1,r`0`1,...,r`1
ÿ

j1,...,j`0´1,j`0`1,...,j`1“1

›

›

›

›

›

›

r`0
ÿ

j`0“1

vbpj1, . . . , j`0´1, j`0q b vcpj`0 , . . . , j`1q

´

r̃`0
ÿ

j`0“1

v1bpj1, . . . , j`0´2, j`0q b v
1
cpj`0´1, j`0 , . . . , j`1q

›

›

›

›

›

›

2˛

‚

1
2

“

¨

˚

˝

r1,...,r`0´1,r`0`1,...,r`1
ÿ

j1,...,j`0´1,j`0`1,...,j`1“1

›

›

›

›

›

›

›

r`1`1,...,r`,1
ÿ

j`1`1,...,j`,j`0“1

d`L
â

µ“1
µRtb,cu

vµpIpµ, pj1, . . . , j`qqq

›

›

›

›

›

›

›

2˛

‹

‚

1
2

}A´ Ã},
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which also matches the error estimate for the TC to TT conversion from before. We want
to emphasize again the importance of Remark 4.1.4. That is, we have to add constraints
to the �rst factor of the above written product in order to preserve the error bound.

5.1.6 Alternative approaches

The proposed algorithm is of course not the only way to convert an arbitrary tensor
network into a tensor tree network. For example, one could also evaluate the tensor
network to obtain the full tensor and perform the Vidal decomposition (see [44, 45]) in
order to obtain a tensor in the Tensor Train format. Another possibility is to decompose
the full tensor with a high order SVD (HOSVD, see [46]) into a hierarchically formated
tensor (see [15]). Evaluating all entries of a full tensor for large d however is in general not
feasible due to the large number of elements of an order d tensor (which is exponential
in d).

Another general approach is to �x the resulting format and use approximation al-
gorithms such as ALS or DMRG (both are non-linear block Gauss-Seidel methods, see
Section 4.1). This however is no direct conversion, but an approximation that has certain
convergence rates.

5.2 Outlook on black-box construction

In [30, Section 5], a sketch of the description of an algorithm that may be used to create
tensor representations in arbitrary formats out of black-box data. This approach is based
on the algorithm that has been proposed in the same work ([30]) which describes how
to create a tensor chain formatted tensor with the help of cross approximations out of a
given black-box tensor.
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Chapter 6

Open problems

In the treatment of tensor networks many di�erent problems appear. We already named
a few in the prior chapters. In this chapter, we want to describe the general problems
and try to give approaches for overcoming the di�culties.

6.1 E�cient contraction

Contracting (i.e. performing the summations) a complex tensor network representation is
also a hard task that requires huge computational e�ort. For some cases, we can state an
optimal complexity about for the contraction (such as for the CP, TT, TC, Hierarchical
and the Tucker format). Using more and more complex network structures (such as the
PEPS representation, see De�nition 2.1.14), the time that is needed to perform an exact
contraction can increase exponentially with respect to the order of the tensor.

As mentioned before, [42] states a contraction algorithm for the PEPS format that
results in an approximated contraction. This may be su�cient for certain applications
but it may lead to an inappropriate error in some cases.

6.2 Finding the best network structure

In order to de�ne what the best tensor network structure is, the purpose has to be stated
in advance. For some applications it might be su�cient to reduce the storage cost for
storing the tensor representation on a hard disk whereas for other applications, it may be
important how fast certain operations can be performed (such as evaluating one single
entry or computing the inner product).

In practice, something about the structure of the data is known and we can derive an
appropriate underlying tensor network from it. However, there might be better (w.r.t. to
the purpose) tensor network formats for a speci�c class of problems that do not originate
from the data structure directly. The results may also di�er from to be represented tensor
to to be represented tensor.

119
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6.3 Acting on single terms

As stated earlier, when performing a successive rank increment of a tensor network
representation, we have - based on the structure of the network - a very restricted choice
of arguments. This leads in general to adding terms that have a very small norm such
that the approximation algorithm is unstable. This problem occurred Subsection 4.1.2
where we tried to optimize single terms and also in Section 4.2 where we created an
initial guess by successively adding rank one tensors.

6.4 Unknown necessary information to recover a tensor rep-

resentation

Another open question is what information is needed to perfectly recover a tensor network
out of a full tensor that is de�ned by an unknown tensor representation.

In [30, Section 4] for instance, a given (arti�cial) full tensor that has been generated
out of a Tensor Chain representation, could be perfectly recovered using the SVD. The
important piece of information in that case was the ordering of the �rst edge split as it
has been also done in in the �rst step of Subsection 5.1.3. This ordering problem has
been also mentioned in [39].



Chapter 7

Tensor formats beyond tensor

networks

By using the tensor network approach, we can cover a lot of currently used tensor formats.
On the contrary, it is clear that there exist also other formats that do not match the
described structure.

In this chapter we will describe the motivation of selected di�erent approaches and
describe some advantages and disadvantages of the with respect to the tensor network
approach.

7.1 Toeplitz-like tensor representation

An idea by Aram Khachatryan, that has been communicated during discussions, is a
method for handling certain breakage kernel functions, that have singularities on the
diagonal, e�ciently. We will describe the idea in this section.

Consider a matrix paijq “ A P Rnˆn with n P N where

aij :“

$

&

%

b

i´j
n `

b

i
n for i ą j

0 else

such that A has singularities on the diagonal. This is a discretization of the function

f : p0, 1s ˆ p0, 1s Ñr0, 1s,

px, yq ÞÑ

#?
x´ y `

?
x if x ą y

0 else

on the interval p0, 1s ˆ p0, 1s Ă R ˆ R with n grid points in each direction. Due to
Remark 3.4.1, we only have one choice of representing this function in the tensor network
framework by

fpx, yq «
r
ÿ

i“1

f
piq
1 pxqf

piq
2 pyq
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where f
piq
1 , f

piq
2 : R Ñ R for i P t1, . . . , nu, which usually yields in a large rank r . The

idea by Aram Khachatryan is to use a slightly di�erent approach that adds some focus on
the diagonal (which is important for handling singularities there) by adding an additional
factor to each term, such that

fpx, yq «
r̃
ÿ

i“1

f̃
piq
1 pxqf̃

piq
2 pyqf̃

piq
3 px´ yq,

where f̃
piq
j : R Ñ R for i P t1, . . . , r̃u and j P t1, 2, 3u. Having such a structure, we can

represent f by

fpx, yq “ 1
loomoon

f̃
p1q
1 pxq

¨ 1
loomoon

f̃
p1q
2 pyq

¨
?
x´ y

loomoon

f̃
p1q
3 px´yq

`
?
x

loomoon

f̃
p2q
1 pxq

¨ 1
loomoon

f̃
p2q
2 pyq

¨ 1
loomoon

f̃
p2q
3 px´yq

,

so r̃ “ 2 and we obtain an exact representation for fpx, yq.
Of course, this is a constructed example but it actually re�ects a practical use.

Breakage kernels for instance do have exactly such a structure and can be therefore
well approximated using the modi�ed approach. Also for computing the Hamiltonian of
the Schrödinger Equation, this structure appears, which leads to an e�cient numerical
treatment.

7.2 Sparse tensors

Consider having an order d tensor t P V1b . . .bVd “ V given as before such that we can
address each entry

ti

for each i P
d
Ś

µ“1
t1, . . . ,dimVµu “: I0. The tensor is called a sparse tensor if

ti “ 0

for a vast majority of the indices i P I0. The term sparse arises from Sparse Matrices
where we have a grid that has only very few non-zero entries. See [47] for an overview.
We further de�ne

I :“ ti P I0 : ti ‰ 0u

such that t is uniquely determined by the index set I and the corresponding values of
t, compare [5, Section 7.2]. In practice this means a reduction in terms of storage that
is needed to exactly store t. Such a representation is not covered by the tensor network
approach as the index set I is in general arbitrarily distributed amongst I0.

In [48, Section 5], the sparse tensor is converted into the r-term format. The naive
approach would be to put each non-zero entry of t into a separate term such that

t “
ÿ

iPI
ti

d
â

µ“1

eµ,iµ
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where eµ,iµ is the iµth unit basis vector of Vµ. This would lead the rank of t in the r-term
format to be equal to #I. Using the full tensor to r-term tensor conversion as described
in [5, Subsection 7.6.1], the representation rank would be at most

śd
µ“1 dimVµ
d

max
µ“1

dimVµ
.

However, [48, Section 5] describes a possibility to obtain a lower representation rank for
the r-term format (exact representation of the sparse tensor).

It highly depends on the application whether the representation in the r-term format
is of any use. Representing a sparse tensor in a tensor format that �ts in the tensor
network framework however, frees the data from problems that arise from the sparsity
(i.e. one can treat the tensor without paying attention to the original sparsity properties).
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Summary and conclusions

In this work, we described a framework for handling some of the most commonly used
tensor formats in dealing with high dimensional data. We have shown that by using
the tensor network framework, we can describe e�cient algorithms in an abstract way.
We have described the approximation algorithms ALS and DMRG for arbitrary tensor
networks and explained, where the instability of formats that contain a cycle may lead
to problems.

The problems that have been pointed out throughout this thesis also show the limits
of the above mentioned approach. It is usually recommended to use a tensor format that
is well applicable to the problem that one wants to address. Unfortunately, we cannot
provide a solution as to how one may exactly evaluate a tensor representation with a
very complex structure (like the described PEPS format) e�ciently. It is still a problem
to treat tensor representations that have an instable format.

Another contribution of this thesis is the general conversion of di�erent tensor formats
in the context of tensor networks. We are able to e�ciently change the underlying topol-
ogy of a given tensor representation while using the similarities (if present) of both the
original and the desired structure. This is an important feature if only minor structural
changes are required.

With the help of di�erent numerical experiments we were able to justify the new
approach and show its �exibility.

We introduced a method to successively create an initial guess that improves some
approximation results. This algorithm is based on successive rank 1 increments for the
r-term format.

There are still open questions about how to �nd the optimal tensor format for a
given general problem (e.g. storage, operations, etc.). For instance in the case where
a physical background is given, we might have a clue as to how a good structure may
look like. There is however, no guarantee that a better (with respect to the problem)
representation structure does not exist.
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Appendix A

Implementation

Describing and de�ning a framework for representing tensors in the form of tensor net-
works e�ciently with respect to the mathematical notation is one important point of this
thesis. However, it is also very important to design the program code e�ciently with
respect to the algorithms that are supposed to be implemented.

A.1 Data structures

The data structure to represent a tensor network formatted tensor has been developed
together with Mike Espig and Philipp Wähnert at the Max-Planck-Institute for Mathe-
matics in the Sciences in Leipzig, Germany (see [38] for the source code).

First of all, one has to think about how to store a d-dimensional object. One way to
start this development is to store each dimension separately. Once we have made this
substantial decision, we can think about how to store a single dimension of the tensor
representation. When we look at the de�nition, of a mapping vµ in De�nition 3.2.3, we
see that we can de�ne this mapping by all possible argument-value-pairs. That is for
each function argument, we store the function result. Since the de�nition requires the
support of the mappings to be �nite, this procedure leads to a �nite number of to be
stored pairs.

In [4, Notation 5.1.1] a block structure is de�ned that orders the values lexicograph-
ically with respect to the index and the dimension. Since we store each dimensions
separately, we order the vectors lexicographically with respect to the index. For instance
consider a TC tensor representation of order d

v “

r1,...,rd
ÿ

j1,...,jd“1

v1pj1, jdq b
d
â

µ“2

vµpjµ´1, jµq P
d
â

µ“1

Vµ

with representation rank pr1, . . . , rdq “ p2, . . . , 2q P Nd as of De�nition 2.1.11 (i.e.
v1, . . . , vd is de�ned as before). In this case, we store v2 similarly to [4, Equation (5.6)]
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TensorRepresentation<T>

# d: int
# comonentDimensions: std::vector<int>
# summations: std::vector<int>
# v: std::vector<std::vector<T>>
- incidenceMatrix: std::vector<std::vector<int>>
- L: int
- w: std::vector<std::vector<T>>

Figure A.1: Datastructure

as follows:

v2 –

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

v2p1, 1q1
v2p1, 1q2

...
v2p1, 1qn
v2p2, 1q1

...
v2p2, 1qn

...
v2pr1, r2q1

...
v2pr1, r2qn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(A.1)

where each dimV2 “ n, v2p¨, ¨q P V2 and v2px, yqi is the i-th entry of the vector v2px, yq.
Since each dimension may be connected to other dimensions (in the graph-sense), we

also have to store the information about the underlying graph. As we are dealing with
multi-graphs (see De�nition 3.1.3), we cannot use a adjacency matrix. Analogously to
the de�nition of the tensor format (see De�nition 3.2.3), we will use an incidence matrix
stored sparsely (i.e. for each dimension, we only store what vertices it is connected to).

In our de�nition, we distinguish between vector space vertices and scalar vertices.
The same distinction can be found in the implementation. That is, we store the data
that represents v1, . . . , vd in a di�erent �eld than the data that represents w1, . . . , wL.

Altogether, we end up with data structure as of Figure A.1. Where the component
dimensions are the dimensions of the vector spaces V1, . . . ,Vd.

Storing the data as of Equation (A.1) leads to some computational advantages. For
instance if the Gramian matrix is has to be computed, this can be done by one simple
matrix matrix multiplication since the store for the µth dimension can be interpreted as
a matrix with columns in Vµ with:
We interpret v2 as nˆ r1 ¨ r2 matrix

v2 –

¨

˚

˝

v2p1, 1q1 v2p2, 1q1 . . . v2pr1, r2q
...

...
...

v2p1, 1qn v2p2, 1qn . . . v2pr1, r2qn

˛

‹

‚

:“ V2, (A.2)
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such that we can compute all xv2p¨, ¨q, v2p¨, ¨qy in one step by computing V T
2 ¨ V2 P

Kr1¨r2ˆr1¨r2 .

A.2 Special format implementations

Analogously to the general tensor representation de�nition (De�nition 3.2.5), we have a
general implementation that covers all tensors that are representable by a tensor network.
However, the generalization is done at the price of computational e�ort and therefore
speed.

To avoid this in practice severe problem, there are special implementations for several
tensor formats that override crucial methods such as ALS and the computation of a single
entry. Consequently, we have specialized implementations for ALS (Subsection 4.1.2) and
DMRG (Subsection 4.1.3) for the Tensor Chain format (and therefore also for the Tensor
Train format). According to [1, Lemma 7.2] the matrices Arµs and Vrµs of Equation
(4.9) (that are needed to perform an ALS step) can be computed by reshaping a product
of reshaped Gramian matrices. The ring structure of the Tensor Chain format also
allows us to utilize the prephase as described in Subsection 4.1.2 in order to reduce the
computational complexity.

A.3 Class hierarchy

Since we use C++ for implementing the algorithms, we utilize derived classes. We can
stick to the theoretical inheritance, e.g. every Tensor Train representation is a Tensor
Chain representation. This leads to a class structure a of Figure A.2.



130 APPENDIX A. IMPLEMENTATION

TensorRepresentation<T>

# d: int
# comonentDimensions: std::vector<int>
# summations: std::vector<int>
# v: std::vector<std::vector<T>>
- incidenceMatrix: std::vector<std::vector<int>>
- L: int
- w: std::vector<std::vector<T>>

+ ballance(std::vector<int>): void
+ computeOrthonormalBasis(): void
+ evaluate(): std::vector<T>
+ evaulateAt(std::vector<int>): T
+ getRankOneApproximation(): TensorRepresentation
+ getStorage(): long
+ hadamardAdd(TensorRepresentation): TensorRepresentation
+ normalize(): T
+ performALS(TensorRepresentation): int
+ scalarProduct(TensorRepresentation): T
+ scale(T): RensorRepresentation
+ setRankOneApproximation(TensorRepresentation): void
+ toDot(): void
+ toMat(): void

TensorChainRepresentation<T>

 

+ acaAppriximation(int, int): void
+ evaluate(): std::vector<T>
+ evaulateAt(std::vector<int>): T
+ isChain(): bool
+ l2norm(): T
+ l2dist(TensorChainRepresentation): T
+ performALS(TensorChainRepresentation): int
+ performDMRG(TensorChainRepresentation): void

CPTensorRepresentation<T>

 

+ setValue(int, int, int, T): void

TensorTrainRepresentation<T>

 

+ isChain(): bool

Figure A.2: Class inheritance

A.4 Helper classes

Based on an idea by Mike Espig, we generalized a summation index to a multi-index.
Since the number of summations is equal to the number of edges of the underlying graph,
we need a �exible summation index.

We also added convenient methods to increment the index by one, convert the index
to a single integer value and to �x certain components of the index while incrementing
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the other components. The index class (see Figure A.3) also increments its components
lexicographically.

Index

- bounds: std::vector<int>*
- fixedIndices: std::vector<int>*
- current: std::vector<int>
- changeCount: int
- boundsCount: int
- position: int
- elementCount: long
- increment: int
- init(std::vector<int>*): void

+ getCurrent(): std::vector<int>&
+ moveTo(long): Index&
+ getPartialProducts(): std::vector<long>
+ size(): long
+ count(): long
+ begin(): Index&
+ end(): bool
+ getBounds(): std::vector<int>*
+ getIncrement(): int
+ ++(): Index&
+ (): long
+ (): std::vector<int>
+ [](int): int
+ getPosition(): long

Figure A.3: Multi index UML diagram

A.5 Source code access

At the time of the submission of this thesis, the source code of the implementation that
has been described in this chapter, is supposed to be available at [38]. The reader is
warned that the availability and/or the location of the source code may change at any
time.

A.6 Overview over implemented experiments

Summarizing all implemented experiments that we used in this thesis, we get:

• Performing ALS approximation in the Tensor Chain format

• Converting a Tensor Chain representation to a Tensor Train representation and
vice versa

• Creating an initial guess in the Tensor Chain format by successively increasing the
representation rank
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• Creating a Tensor Chain representation out of given black-box data; this experi-
ment is also used in [30]

The implementation is done to show how one can perform computations with arbi-
trary tensor networks. We had to limit the experiments to speci�c formats to be able to
compute with larger d. Therefore, the code may be understood as an example on how
to treat tensor networks in practice.
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