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Chapter 1

Introduction

The human brain is a network consisting of a huge number of interacting agents (neurons),
which are able to organize themselves into countless functional subnetworks. The local and
global interplay of neurons and networks of neurons ultimately makes available everything that
constitutes our personal reality - from the memories of the past to the endless stream of thoughts
and perceptions.

With the advent of techniques such as functional magnetic resonance imaging (fMRI),
it has become possible to observe the activity of the living human brain on a macroscopic scale.
Brain scanners based on fMRI have the huge advantage that they are fully noninvasive, since
blood was found to be a natural contrast agent linked to neuronal activity. Modern fMRI
scanners are capable of sampling the dynamics related to the blood flow and hence neuronal
activity of the entire brain at an ever-increasing resolution. Recordings on the scale of few cubic
millimeters or smaller are possible by now; the recordings are of the form of three-dimensional
pixels, known as voxels.

Researchers affiliated with imaging-based human brain sciences commonly aim to con-
struct a map of brain function, i.e. to map the functional organization of the brain. The most
widespread ways for doing so are activity-based univariate analysis methods: in here, each
recorded image element (voxel) is analyzed separately (hence the term univariate) in regards to
differences of their activity. For instance, the activity level of a voxel in the visual cortex may
be systematically higher if visual stimulation is presented as compared to a control condition
with no visual stimulation (hence, the voxel in the visual cortex becomes activated here).

Recently, more sophisticated analysis methods for brain imaging data from fMRI have
become increasingly popular. Many of these new techniques originated from machine learning
methods. The main difference between the traditional univariate activation-based methods and
the recently adopted machine learning methods is that not only is the activity from one voxel
solely considered, but the activity of many voxels is analyzed simultaneously. Furthermore,
the new methods make it possible to delineate differences in brain function which manifest
themselves rather in the form of a complex fingerprint of brain activation as opposed to sim-
ple voxel-wise differences of activity. Multivariate machine learning approaches also enable a
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mapping of brain function; this group of approaches is commonly referred to as information

mapping methods.

While the newly introduced information mapping techniques often offer a higher sen-
sitivity and enable more detailed insights into patterns of brain activity, the statistical methods
for data analysis applied in research often are of a rather premature nature. However, appro-
priate statistical frameworks are absolutely indispensable in the search of robust principles of
functional organization, as the brain is an inherently noisy system. Most commonly, researchers
use statistical frameworks for the new machine learning based methods that have been devel-
oped for the analysis of univariate activation-based methods. This course of action, however, is
problematic as the underlying assumptions of the univariate statistical frameworks are unmet
if applied here. For exactly this point, my work offers a novel solution, which is fully adapted
for information mapping techniques based on machine learning methods.

The solution introduced in my thesis is based on previous resampling-based statistics
for classification methods[1, 2, 3, 4, 5], however is extended to offer a full solution for the
characteristics of fMRI data (in particular the multiple comparison problem). The proposed
framework is capable of analysis both on the level of single subjects but also for group-level
analysis.

I demonstrate the applicability of the statistical framework for two distinct infor-

mation mapping techniques (for a more detailed differentiation between information-mapping
techniques and activation based brain images see Section 4.5 on page 29):

1. Volumetric searchlight decoding (SLD)

2. Feature weight mapping (FWM) using matrix decompositions

Both information-mapping methods have in common that they attempt to reveal brain regions
which are informative about the stimulus condition. The underlying rationale and implemen-
tation of the two information mapping methods, however, is strikingly different: while the
SLD method uses local neighborhoods of voxels and yields decoding accuracy maps, the FWM
method uses pattern information of the whole brain and establishes feature weight maps.

As both of these information mapping techniques have a different methodology and
rationale, the scope of this work is two-fold: Firstly, I investigate the characteristics and differ-
ences between the two information mapping approaches (SLD and FWM), both in light of the
novel nonparametric statistical framework. This characterization is performed using fMRI data
and simulations, both on the single-subject and group level. The second scope of my thesis
is to compare the proposed nonparametric framework with other parametric frameworks for
assessing statistical significance that are commonly used for classification-based fMRI (which
originated from univariate analysis methods). The comparison between nonparametric and
parametric inference, however, is carried out on the group level only, due to limitations in the
applicability of parametric methods for single subject inference.

My work is organized as follows: first I will introduce the physical principles behind
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magnetic resonance imaging and the biophysical principles allowing the usage of this technique
for in-vivo functional brain imaging. This is followed by a state of the art review of functional
brain imaging techniques including univariate and different multivariate machine learning tech-
niques. Next I will provide an overview over the statistical inference principles and methods
tailored for the statistical analysis of fMRI data.

In the methods section I describe the two fMRI experiments that I use in this thesis
and the data generation of the simulations that are employed. Furthermore, I describe the
methods and pipelines that are used for the nonparametric framework.

The results section is divided into the single-subject and group level. On both levels,
the results of fMRI studies and various simulations are shown. The following discussion is
split into three sections; in the first section I discuss the theoretical issues with commonly
used parametric statistical frameworks when applied to information mapping methods and
the further aspects of the novel nonparametric framework. In the following section of the
discussion I compare the two information-mapping methods that are used for my thesis (the
SLD and FWM method). Lastly, I finish with a short section on the rationale of group studies
versus single subject level studies.
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Chapter 2

Magnetic Resonance Imaging

2.1 Nuclear Magnetic Resonance

Magnetic Resonance Imaging (MRI) is a relatively new imaging technology, with the first
image1 acquisition taking place in 1973 [6]. MRI is based on the physical principle of Nuclear
Magnetic Resonance (NMR), which is a quantum mechanical phenomenon describing how the
magnetic cores of atoms, known as nuclei, absorb and emit energy in the form of photons in
the presence of an external magnetic field.

The atomic nuclei consist of two kinds of constituents, known as nucleons: protons
(which carry electric elementary charge2 of +1e ) and neutrons (which are electrically neutral).
The nucleons are bound together by the nuclear force, which on short length scales massively
exceeds the electrostatic repulsion that protons otherwise exert onto each other. In the quantum
mechanical description, each nucleon possesses a spin angular momentum (short: spin). As a
fundamental intrinsic property of all elementary particles and their composites, the spin does
not have a direct counterpart in the regime of classical physics. The spin angular momentum
sometimes is thought to be analogous to the angular momentum known from classical mechan-
ics, such as for instance the angular momentum of the rotation of our planet. However, the
spin angular momentum is an intrinsic quantum mechanical parameter, which is also carried
by point-like particles such as the electron, which due to their lack of spatial extension cannot
have classical angular momentum.

The spin of a particle determines the possible quantum states that it can occupy.
Furthermore, the property of spin causes the nucleus to have a magnetic moment (known as
the nuclear magnetic moment). The magnetic moment is a vector quantity, incorporating the
size and direction of a magnetic dipole of the nucleus. Most crucially, the magnetic moment
interacts with an external magnetic field B0, which for convenience is set here in the direction
of the z-axis. According to the description of classical mechanics [7, page 65], it can be shown
that the spins start to precess around the direction of B0 at whatever deflection angle ✓ relative

1
image in the sense of an at least two-dimensional representation

2+1e = 1.60217⇥ 10−19C
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to the z -axis which they happen to be aligned with. The frequency of the precession is known
as the Larmor frequency, which depends linearly on the magnetic field strength:

!0 = �B0 (2.1)

where � is the gyromagnetic ratio, which depends on the type of nucleus considered.
As stated before, in the classical (not quantum mechanical) description, the precession can take
any value for the angle ✓. Initially the nuclear magnetic moments from a sample cancel each
others out and the net magnetization is zero, as the magnetic moments principally underlie the
superposition principle [8]. However, there exists a difference in potential energy of a single
magnetic moment in the presence an external field; this energy is at a minimum if the magnetic
momentum and the external field are parallel (✓ = 0) and at a maximum, if they are antiparallel
(✓ = ⇡). When regarding a macroscopic sample, which typically consists of 1020 to 1026 spins,
over the time scale of seconds (which is very slow compared to the frequency of precession),
thermal fluctuations cause the spins to slightly favor the lower energy state (according to
Maxwell-Bolzmann statistics), until thermal equilibrium is reached[9]. The discrepancy of
the occupation depends on the strength of the external magnetic field and the temperature.
Note that the equilibrium is dynamic, i.e. the spins are allowed to change their alignment and
therefore energy, as long as the total energy of the system remains constant. Given this favoring
of occupation levels between the parallel and antiparallel states, a net magnetization M

z

in the
direction of the external field B0 (z -direction) is built up. The magnetization in the x-y plane
is cancelled out, as there is no preferred alignment.

As demonstrated in the ground breaking Stern-Gerlach experiment [10], the classical
approach does not fully capture the physical reality, since the energy of the system can only
take certain, quantized values. Consequently, only a discrete set of possible orientations for the
angular momentum exist. In the simplest case of a hydrogen nucleus (which consists of a single
proton) in an external magnetic field, there are only two possible energy states. This splitting
of an energy level in presence of a magnetic field is known as Zeeman effect.

E" = �1

2
~�B0 (2.2)

E# = +
1

2
~�B0 (2.3)

If a proton of the parallel E" state absorbs the energy �E in form of a photon,
which carries the energy difference between the two states �~B0, the proton can switch into
the antiparallel E# state. This energy precisely corresponds to the energy that is carried by a
photon of the frequency corresponding to the Larmor frequency of precession:

�E = ~�B0 = ~!0 (2.4)
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It should be noted that in the full quantum mechanical description, single spins do not have
a deterministic direction and energy level, as they are principally in a superposition of all
possible states (in case of hydrogen the proton would be in both states simultaneously). On
a level of a macroscopic sample, an observable population difference between the two energy
states arises[9]. The observable population difference between the two energy states causes the
sample to have a net magnetization in z -direction.

2.2 Perturbation and relaxation

The underlying idea behind MRI is that the dynamic equilibrium of a spin system is perturbed,
i.e. brought into a disequilibrium. Next, the system falls back into its equilibrium state. This
process is called relaxation and is the key to the MR signal. The relaxation process is governed
by the first two laws of thermodynamics as the system transits into a low-energy and high-
entropy state. The perturbation of the system usually is implemented by a second magnetic field
B1, which rotates at the Larmor frequency in the x-y plane. As the Larmor frequency typically
is within the wavelength range of radio signals (for the magnetic field strengths commonly
used), the perturbation is commonly denoted as radio frequency (RF) pulse.

As a result of this RF pulse, the spins absorb energy and the magnetization of the
system develops a component in the x-y plane and the size of the component in the z -direction
(the direction of the B0 field) is decreased. The angle ↵ between the z -axis and the net
magnetization of the system is known as the flip angle. All spins are exposed to the same
B1 radio frequency field, hence their magnetization is in phase and rotates around the z -axis.
During application of the RF pulse, the spins rotate in the same phase, i.e. their phases are
coherent. The RF pulse is only applied for a brief period of time, after which the system evolves
back into its equilibrium state.

It is possible to distinguish two kinds of relaxation processes [7, page 69]: Spin-lattice
relaxation and spin-spin relaxation.

2.3 Spin-lattice relaxation

The perturbation of the system caused by the application of the RF pulse implies the absorption

of energy. As the disequilibrium state is thermodynamically unstable, the spin system returns
the energy of the RF pulse into the surrounding tissue. In other words the excess energy that
previously had been absorbed is dissipated. More precisely, the energy is redistributed into
rotational and vibrational degrees of freedom in the surrounding tissue, in the format of heat.
This implies a (very small) rise in temperature of the surrounding materials. Over time, the
longitudinal component of the magnetization M

z

(in direction of the B0 filed) is fully restored.
The recovery of the z-magnetization can be approximated[11, page 54] as

M
z

(t) = M0

⇣
1� (1� cos↵)e�t/T1

⌘
(2.5)
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with the flip angle ↵ and the equilibrium net magnetization M0 in z -direction. The
time constant T1 found in the denominator of the exponential is defined as spin-lattice relaxation
time and depends highly upon the type of material surrounding the spins. As an example, the
T1 time for grey matter in the frontal lobes is around 1200ms, while the T1 time for cerebrospinal
fluid is around 4300ms for B0 = 3T [11, page 50]. The recovery of the longitudinal magnetization
hence is much faster for smaller values of T1.

2.4 Spin-spin relaxation

The magnetic fields of spins can interact with each other’s, therefore it is possible that the
Larmor frequency is temporarily shifted. This causes the loss of phase coherence, which implies
the decay of the transverse magnetization in the x-y plane. The temporal decay of the transverse
magnetic component can be approximated[7, page 69] as

M
tr

(t) = M0sin↵e
�t/T2 (2.6)

where ↵ is the flip angle and M0 the net magnetization in z -direction in the equilib-
rium state. The constant T2 in the denominator of the exponential is known as the spin-spin
relaxation time. The T2 time constant depends highly on the molecular and chemical environ-
ment of the spins which itself depends on the nature of the surrounding tissue. For instance, the
T2 time for grey matter in the frontal lobes is around 88ms, while the T2 time for cerebrospinal
fluid is around 1442ms for B0 = 3T [11, page 50]. Therefore, the transverse magnetization de-
cays much faster for grey matter that for cerebrospinal fluid. In general terms, the transverse
T2 relaxation is faster than the longitudinal T1 recovery.

2.5 Apparent spin-spin relaxation

In more realistic circumstances, local variations of the magnetic field strength speed up the loss
of phase coherence[12, page 159]. There are two factors for different local fields; on one hand
inhomogeneities in the B0 field, and on the other susceptibility effects, i.e. local variations in
the degree of magnetization given an external magnet field. The transversal relaxation time
incorporating this effect is known as apparent spin-spin relaxation time T ⇤

2 , and is generally
lower than the T2 time given the same material.

2.6 Detection of the MR signal

In summary, a perturbation in the form of a RF pulse causes a non-zero transverse component
of the magnetization (i.e. in the x-y plane), which decays according to Equation 2.6. The
transverse component induces an electric field in the receiver coil of the MR system - which
can be measured and is known as the MR signal. When returning to the equilibrium state, the
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transverse magnetization is lost and the MR signal decays. Typically, more than one measure-
ment is applied and the time constant between the perturbations is called the repetition time
TR. Note that the longitudinal magnetization does not have to be restored to the full equilib-
rium magnetization M0 for the application of another RF pulse; the size of the longitudinal
magnetization can be determined by substituting t = TR in Equation 2.5. At this moment,
the detected MR signal does not contain spatial information, as the signal’s position within the
sample cannot be deduced.

2.7 Position encoding

In general terms, a 3D image can be considered as a stack of 2D images. In the realm of MRI,
the 2D images are termed slices. Each slice consists of a 2D matrix (the in-plane matrix). For
convenience, the normal vector of the slices is set the direction of the z -axis here.

For position encoding, the dependency of the Larmor frequency on the strength of
the magnetic field (see Equation 2.1) can be exploited: if a second, additional magnetic field is
applied, which has a spatial variation in the form of a gradient in field strength, then a gradient
in Larmor frequency is produced. Usually, a linear gradient is applied, i.e. the rate of change
over space is a constant:

@B
z

@z
= G

z

(2.7)

Hence, the net magnetic field now depends on the z -position:

B(z) = B0 + z ·G
z

(2.8)

together with Equation 2.1 follows:

!(z) = �(B0 + z ·G
z

) (2.9)

In other words, the Larmor frequency is now dependent on the z -position. If an RF
pulse centered around a certain Larmor frequency is applied in the presence of this gradient
field, (which for convenience was set in z -direction), then only the spins around the selected

Larmor frequency and thus a specific location will be excited.

The MR signal at this moment is a mix from all signals in the slice, since the region
with constant net magnetic field is an orthogonal plane in the x-y-direction. For enabling in-
plane position encoding, it is necessary to apply two further magnetic field gradients in x and
y direction. The basic idea is to use two additional gradients to manipulate the MR signal
in a way whereby it is possible to sample all spatial frequencies contained in the 2D slice.
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Importantly, these two gradients are applied after the excitation pulse which initially perturbs
the system. The 2D spectra containing the spatial frequencies are collectively referred to as
k-space.

One of these gradients (set in y-direction here) introduces a phase difference of the spin pre-
cession. Crucially, this phase difference of the precession depends on the position along the
y-axis, hence this gradient is known as phase encoding gradient. Depending on the y-position,
the precession is either sped up or slowed down.

At the same time, on the x -axis, a frequency-encoding gradient is applied. This gradient
changes the signal frequency depending on the location along the x -axis. Using both gradients,
it is possible to sample the spatial frequencies contained in the 2D slice; in the simplest case one
spatial frequency (and hence element of the k-space) at a time. After collection of all spatial
frequencies, a 2D Fourier-Transformation is applied to the k-space to reconstruct the image[12,
page 127].

2.8 T1 and T2 weighted images

Two main types of MRI images were acquired for my thesis: T1 and T2 weighted images.
The former are used as anatomical reference (e.g. for spatial normalization of the brains into a
common group space), the latter for functional images measuring brain dynamics (see Section 3
on the next page). In general, tissues with long T1 time give a weak MR signal, while tissues
with long T2 time give a high MR signal[12, page 32].

It should be noted that both T1 and T2 weighted images profit from a higher external
magnetic field strength B0, since the signal to noise ratio improves for higher field strengths
and other factors (regarding the chemical environment of the spins) also contribute to an
improvement at higher field strengths[12, page 168]. A qualitative comparison between the
different field strengths for T2 weighted images can be found in Figure 3.1 on page 15.
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Chapter 3

Functional MRI

3.1 Blood as contrast agent for MRI

The brain is traversed by a dense network of blood vessels, which provide it with impor-
tant resources such as oxygen, glucose and various nutrients. At the same time, metabolic
waste products have to be transported away (e.g. carbon dioxide, lactic acid etc.). The
oxygen transport system has special properties, which can be exploited for functional MRI
(fMRI), making it possible to visualize in-vivo changes of brain function. In the finest capil-
laries of the lungs, haemoglobin molecules residing in red blood cells bind oxygen. Hence the
haemoglobin molecules become oxygenated. After releasing the oxygen at the target, the oxy-
genated blood can release the bound oxygen molecules and become deoxygenated. Importantly,
the haemoglobin molecules change their magnetic properties depending on their oxygenation

state. This effect was already discovered in the first half of the 20th century[13]. While oxy-
genated haemoglobin was demonstrated to be diamagnetic1, deoxyhaemoglobin was shown to
be paramagnetic2. The different magnetic properties of the haemoglobin have an impact on
measurements of magnetic resonance, because the paramagnetic deoxyhaemoglobin causes small
local field inhomogeneities[7, page 90]. The magnetic inhomogeneities cause a decrease of the
apparent transverse relaxation time T ⇤

2 (see Section 2.5) [14]. In other words, the oxygenation
level of the haemoglobin drives the MR signal as haemoglobin is a natural contrast agent for
MR techniques. For this reason, the signal had been termed later on as blood oxygen-level
dependent (BOLD) signal. Less than a decade after the discovery of the in vitro MR properties
of haemoglobin, it was possible to perform a in vivo

3 measurement of the BOLD signal [15].

1
diamagnetic materials generate a magnetic field in opposition to the external field and do not become mag-

netized

2
paramagnetic materials enhance the external field and become magnetized as long as an external field is

present

3
the measurement took place in a rat’s brain
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3.2 Biophysics of the BOLD signal

To understand the origin of the BOLD signal in neural systems in vivo, the properties and
mechanics of the cerebral blood circulation system have to be taken into account, in particular,
the non-stationarity of blood flow: Blood vessels are able to increase their diameter, resulting in
a local change (increase) of cerebral blood flow. As shown over a century ago[16], the dynamics
of blood flow appear to be closely linked to the functional activity of the neural tissue. An
increase in functional activity results in higher metabolic rates and thus a higher demand for
blood supply, which is then met by enlarging the local vessels and thereby the blood flow.
However, the underlying link between physiological mechanisms and the local neural activity
are not yet fully understood [17]. In a general sense, it can be stated that neural activity
is followed by a complex interplay between cerebral blood flow, cerebral blood volume and
cerebral metabolic rate of oxygen consumption[18].

Interestingly, oxygen consumption increases in a disproportionally smaller rate than
the cerebral blood flow [19]. In other words, the vascular response to increased local neural
activity (often called the haemodynamic4 response) makes more oxygenated blood available,
resulting in an increase of the BOLD signal.

The detailed mechanism of this overcompensation in oxygenated blood remains not
fully understood to this date [20]. In contrast to the overcompensation of oxygenated blood, the
glucose consumption levels are in line with the increase in supply [21]. Therefore, the surplus
of oxygenated blood can be explained in two ways: it is possible that the demand is mainly
driven by glucose metabolism. Since the ratio of oxygen and glucose is fixed and proportionally
more glucose is extracted (as compared to the oxygen), it would be expected that the levels
of oxygenated blood rise [20, 22]. Alternatively it is possible that the surplus arises from an
inefficient delivery process of oxygen. In this scenario, the overcompensatory changes in blood
flow are necessary to drive comparably smaller changes in the oxygen metabolic rate [23].

Furthermore, it should be mentioned that it remains elusive which type of neural
activity drives the BOLD effect. It has been assumed that an increase of activity in local
excitatory neuronal circuits causes an increase in BOLD signal. Recently, this assumption has
been verified empirically using an optogenetic approach[24]. In brief, in vivo excitatory neurons
were genetically modified to fire whenever they are illuminated with light of a certain frequency.
Strikingly, the BOLD signal corresponded very closely to the optically induced firing patterns
of the excitatory neurons. However other factors and their interplay may also play a role (given
that any sufficient factor which drives the BOLD signal is not automatically necessary for it),
for instance changes in excitation and inhibition balances[17].

4
the ancient greek word for “haemo” translates to “pertaining to blood”
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Figure 3.1: Comparison of a 3 Tesla BOLD fMRI scan (upper row) and a 7 Tesla BOLD fMRI scan
(lower row) within the same subject.

3.3 Functional MRI recordings

In scanning practice, a BOLD image is acquired for every scanner repetition time TR. Typical
values for the repetition times lie between two and three seconds, in this time a full 3D image of
the BOLD signal of the participants head is acquired. The images consist of voxels, which have
a resolution between 0.5mm and 4mm, depending on the MRI hardware and brain coverage. For
a TR time of two seconds and whole brain coverage, typical resolutions are approximately 3mm
isotropic for a 3 Tesla scanner and 2mm isotropic for a 7 Tesla scanner and about (see Figure
3.1). When only a Section of the brain is scanned and larger TRs (> 3s) are used, isotropic
resolutions as high as 0.7mm may be achieved in a 7T environment. Recent developments,
such as parallel imaging techniques[25] or compressed sensing[26] (where not the full k-space
is sampled but only the parts of it) will likely make faster scanner repetition times or higher
resolutions possible.

Over the timespan of an experiment, often a large number of 3D images are acquired,
resulting in a 4D array Y (x, y, z, t). The time series of the i-th voxel Y (x

i

, y
i,

z
i

, t) is displayed
in Figure 3.2. The displayed voxel was located at the auditory cortex of a participant who
tapped with his finger in synchronization to an auditory pacing sequence.

3.3.1 Correlational structure of the data

MRI recordings exhibit a correlational structure, both in spatial and in the temporal domain.
Regarding the spatial domain, neighboring voxels are correlated to each other[27], which is
likely due to the complex ways that the neuronal activity is measured by means of the under-
lying blood vasculature. Furthermore, specific preprocessing steps of the data (such as spatial
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Figure 3.2: Exemplary BOLD time series of one single voxel

normalization to a common brain space or motion correction) may itself increase the correlation
between neighboring voxels due to aliasing and interpolation effects.

FMRI data exhibits also a correlation in the temporal domain, subsequent scans show a
considerable degree of correlation. The source of this temporal correlation lies in the underlying
physiological fluctuations[28], which take place on much lower time scales than the temporal
sampling rate.
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Chapter 4

State of the art brain analysis

4.1 Human brain mapping

Over the last two decades, brain-mapping approaches have played a predominant role in human
cognitive neuroscience. The principal idea behind brain mapping methods is to investigate
where in the brain neuronal correlates of certain cognitive processes can be located1.

The most straightforward and simple experimental design for brain mapping techniques utilizes
a set of two experimental conditions, which are termed in the following A and B (see Figure
4.1). These conditions are presented repeatedly in a randomized fashion, and each presentation
of such a stimulus is termed an experimental trial. In most cases, the experimental conditions
are cued to the participants (often with a computer screen projection or headphones) and can
involve task descriptions. For example, condition A could be a prompt to recall a memory
from childhood and condition B be a prompt to recall an event from more recent time. Special
emphasis is put on the design of the conditions so that that the difference between the conditions
depicts the desired experimental factor, while other factors are minimized (so-called hidden
variables). In the memory recall example above, the type of memory (short-term or long-term)
could be regarded as the main experimental factor. However, this example may be prone to
hidden variables such as the intensity of the memory recall or even the state of mind of the
experimental subject, which covary with the condition in an unclear way.

Crucially, it is assumed that each experimental trial causes the subject to transition
into one of the distinct measurable brain states ↵ or � (see Figure 4.1), which are reflected in
the recorded functional imaging data to a certain extent. Furthermore, it is generally assumed
that the brain response of all experimental trials within a condition have highly comparable
neuronal fingerprints, in other words that the brain responses of one condition are assumed to
be similar to each other.

After data collection, the changes in the functional imaging data between the two brain states
are computed. For this, a large variety of different statistical methods and analysis techniques

1
under a locationist’s assumption, where brain function is no holistic but local
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experimental
factors

changes in
functional data

Figure 4.1: Experimental rationale for brain mapping studies

can be employed. Two kinds of such statistical methods form the centerpiece of this thesis;
both are based on machine learning techniques and aim to visualize the locations containing
information about task-related neuronal processing.

Ultimately, scientific inference is accomplished by causally linking the statistical changes of
the functional brain image data to the variation of the experimental factors. To return to the
example of a memory study described above, regions showing different responses to long-term
versus short-term memories may be localized in the parietal cortex and the hippocampus of
the test subjects, hence it may be concluded that these regions would be involved in encoding
the type of memory.

4.2 Overview of fMRI analysis methods

In general terms, fMRI analysis methods can be divided into two classes. The first includes
methods that analyze each voxel independently from each other, i.e. by treating each voxel
as isolated and neglecting interactions between voxels. Hence, this class of analysis method is
termed univariate analysis. Due to their conceptual simplicity and accessibility2, univariate
analysis methods have played a dominant role in the domain of imaging-based cognitive neu-
roscience. The second class of methods does regard interactions between voxels by analyzing
multiple voxels simultaneously. Therefore, these methods are referred to as multivariate analy-
sis techniques. The two analysis techniques used in this thesis (searchlight decoding and feature
weight mapping) are both members of the second class, i.e. they are both multivariate. In the
following, I will provide a brief overview of the most important univariate method, the general

linear model (GLM), and will also introduce the most important and influential multivariate
pattern analysis methods that have been used in fMRI research. It should be noted that to
this day there exists a multitude of different analysis methods for fMRI data, and it is out of
the scope of this thesis to give a complete review over all methods. A more general review

2
implementations of the most common univariate analysis method, the general linear model, have been made

available publicly in software packages such as SPM[29], FSL[30] and AFNI[31].
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about current analysis algorithms can be found elsewhere [32], providing a larger frame for the
methods discussed here.

4.3 The general linear model

The best-known member member of univariate analysis methods in imaging neuroscience is the
general linear model (GLM). The earliest explicit usage of the GLM for imaging data dates
back to 1995[33]. In a nutshell, the idea of the GLM approach is to find the best possible fit of
an a-priori generated time course into the measured voxel-wise BOLD time course [32].

4.3.1 Mathematical formulation of the GLM

Assuming t time points, n voxels and m explanatory variables (experimental conditions and
other variables of interest), the general linear model approach can be formulated as[34]

Y = X · � + ✏ (4.1)

where Y is a t⇥ n matrix containing the generated time-course data of all voxels and
X is a t ⇥ m matrix containing the expected time courses of activity corresponding to each
explanatory variable (which are generated by convolving the onset times with the hemodynamic
mass response function, resulting in a simplistic time course as depicted in Figure 4.2). In other
words, each column of X represents an explanatory variable. Most commonly, X is referred to
as the design matrix. The matrix � of size m ⇥ n contains the unknown and to be estimated
weight or scaling parameters, where each row in � corresponds to one explanatory variable.
The error term (or model residual) ✏ of size 1⇥n contains everything that has not been captured
by X and is assumed to be identically normally distributed.

The least squares estimates of �, commonly denoted as �̂ is given by[35]

XTX · �̂ = XTY (4.2)

Multiplication of both sides of Equation 4.2 with (XTX)�1 then solves for �̂:

�̂ = (XTX)�1XTY (4.3)

The absolute size of �̂ usually is identified as the level of activity ; large values for �̂
reflect a high level of activity and low values for �̂ a low level. The statistical analysis is carried
out on the estimates �̂, and in summary aim to detect how likely certain levels of activity arise
by chance.
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fMRI time series with GLM model fit

 

 
BOLD signal
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Figure 4.2: BOLD time series of one single voxel (blue) with a GLM data fit (red dashed). The data
fit is derived by convolution of the onset times of the experimental condition (the onsets
are depicted as green stars) with a generic haemodynamic response function
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4.3.2 Criticism of GLM methods

Despite it’s simplicity, there are several points of criticism to the GLM approach. As the inten-
tion of this thesis is not to broadly exercise critique on univariate methods, I will limit myself
to give a short summary of the three most important concerns. Firstly, the GLM approach is
based on the idea of the logic of cognitive subtraction. According to this idea, cognitive tasks
are additive, in other words a cognitive process is inset into another task or resting fluctuations
without changing the latter (hence this assumption is termed “pure insertion”). To say the least,
this assumption is extremely crude and fails at the fundamentally nonlinear nature by which
most brain processes are governed[17]. Secondly, the generated data fits are not adequate. For
instance, a large part of information is still found in the residuals ✏ of the GLM model, it has
been shown that even after regressing out the experimental design, information about task-
specific networks can be present[36]. Lastly, the human brain inherently processes information
in local networks which interact together, often over large spatial scales. The importance of
neuronal communication hence can hardly be understated. However, the GLM method does
not explicitly consider neuronal communication processes. In light of this, it can be stated that
the essentially multivariate nature of brain function is not taken into account by univariate
models.

4.4 Multivariate pattern analysis

Multivariate pattern analysis (MVPA) methods adopt a different approach than the univariate
method described above. The basic idea is to capture and analyze large-scale patterns of
neuronal activity, which are spread over multiple voxels[32]. MVPA techniques have found
their way into neuroimaging data analysis since the beginning of the 1990s when they were first
applied to positron emission tomography (PET) data [37, 38]. In these earliest applications, the
main focus of application was clinical, such as the diagnosis of brain diseases. Later on, when
MVPA techniques were applied to task designs of cognitive neuroscience studies, they became
increasingly widespread[39, 40, 41, 42]. Presumably, todays popularity of MVPA methods
partially stems from the debate surrounding studies in the context of reading out unconscious
thought [43, 32].

4.4.1 MVPA in neuroimaging

There are three main varieties of pattern-based methods for neuroimaging using fMRI: decoding,

regression and encoding.

The most widely adopted approach is pattern classifier decoding [44]. Decoding tech-
niques assume that different classes (categories) of experimental conditions or stimuli evoke
different brain states (see Figure 4.1). Most crucially, it is assumed that diverging patterns of
brain activation are produced by the different stimuli classes. This gives rise to the usage of
pattern classifier algorithms, which make it possible to categorize the different brain response
patterns and to predict their corresponding experimental category. In other words, pattern
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classification methods use information from a pattern of brain activation to infer the task or
state in which the brain is engaged [45][32]. At this point, it should be mentioned that both
of the information mapping techniques utilized in my thesis are from this category of MVPA
techniques (decoding-based) as they both implement classification.

The other two varieties of MVPA techniques, regression and encoding, are reviewed
in more detail at the end of this Section (see 4.4.5 on page 27).

4.4.2 Classifiers

Decoding techniques rely on the principle of classification. The most simple classifier is a
function that partitions a set of data into two classes [46]. The data space Y is of the dimension
t ⇥ n, where t is the number of examples ~y 2 Y (also known as observations), each of which
consists of n features ~y = [y1, y2, ..., yn].

As an illustrative example, let Y be the data space of weather recordings of some
region. Y consists of the weather recordings of n weather stations, each of which recorded
weather data at t time points. An example ~y 2 Y hence corresponds to the weather measure-
ments of all weather stations for a given time point t. The individual elements of ~y (i.e. the
features) are then the data value of a single weather station at the given time t.

Assuming the most simple case where only two classes of data points exist, the output
space of the classifier are the labels Z = {�1, 1}. Crucially, there exists a distribution D : Z⇥Y .
Using this notation, we can define a classifier as function f(~y) = z, which maps an example
~y 2 Y onto a label z 2 Z . For this, the classifier first has to be trained on a subset of Y . The
training (or design) of the classifier yields a decision boundary. Once this boundary has been
derived, the classifier can be used to predict the labels of an unseen subset of Y in order to
assess the generalizability of the learned relationship between features and labels. Classifiers
differ in the way the decision boundary (often termed as hyperplane) is derived[32].

Linear classifiers achieve the classification decision by computing the dot product
between the example ~y with a weight vector ~w, the latter of which is derived by the training.
If the product ~w · ~y > c, the classifier decides for the first class, while the classifier determines
the second class for ~w · ~y < c , where c is a constant (all under the assumption of a two-class
design).

By usage of the dot product, each feature influences the decision only by its weight
(interactions across features have no direct influence) [47]. The following linear classifiers have
been used extensively in the context of fMRI decoding:

• Fisher’s linear discriminant analysis

• Linear support vector machines

• Pattern correlation classifiers
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Non-linear classifiers, on the other hand, allow interaction between the features. The most
widely used non-linear classifiers in the context of fMRI are

• Gaussian naive Bayes

• non-linear support vector machines (Gaussian radial basis or polynomial kernels)

• Artificial neural networks

This group of classifiers provides a more flexible decision boundary, however they are also more
prone to overfit the training data, i.e. adjusting the decision boundary to aspects of the data
that are actual noise[32](see Figure 4.3).

The different types of classifiers adopted for fMRI data have been compared quantita-
tively in literature[47, 48]. It was found that linear classifiers appear to perform comparably to
non-linear classifiers. Linear classifiers also exhibit a better stability and interpretability of the
results[44], while lowering the risk of overfitting (see Figure 4.3). Moreover it should be noted
that linear classifiers often have a smaller computational cost.

4.4.3 Feature Selection

The data matrix Y in fMRI data is of the size t ⇥ n, where n is the number of voxels and t

the number of examples (e.g. experimental trials); typically n is very large (about 50000 for
3 Tesla data and 500000 or more for 7 Tesla data, see Figure 3.1), while t is small (between
10 to 100). As t is comparably very low, there exists a high chance that the classifier overfits
the data[49]. Therefore, the dimensionality of the feature space n most commonly is reduced.
The reduction of the feature space in the case of fMRI usually increases performance, for
instance it appears straightforward that it may well be beneficial to exclude a voxel containing
both negligible levels of information and high levels of noise. There exist a variety of different
strategies for the selection of features. In the following I will briefly describe the most common
approaches used in the context of fMRI. Two of these approaches are especially important for
this thesis: the searchlight approach and the dimensionality reduction approach using matrix
decompositions.

4.4.3.1 Wrapper methods

For distinguishing important from less informative features (voxels), so-called wrapper methods
can be used [50]. In a nutshell, wrapper methods treat the classifier as a black box and score
subsets Y 0⇢Y of the data space by comparing the predictive power of each subset. Ultimately,
the subset with maximum predictive power is attempted to be found.

There exist two types of wrapper methods; backward elimination and forward selection

[51]. Backward elimination techniques such as the recursive feature elimination (RFE) approach
start with a large set of features (for instance, the entire space Y ) and compute a metric for the
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Figure 4.3: Comparison between linear and non-linear classifiers. The classifier labels data points
within the orange area as belonging to class 1, while data points within the light blue
areas are classified as class 2. The actual class (ground truth) of each data point is
represented by the filling and shape of the data points; orange squares are data points of
class 1 and blue circles are data points of class 2. (A) A linear classifier is trained on
a data set. The resulting decision plane does not separate the classes perfectly. (B) In
contrast, a non-linear classifier (in this case a higher order polynomial) may find a decision
boundary with an error rate of zero. However, an overfitting problem could arise from
this decision boundary, as it reflects potential noise in the data. (C) The decision plane
derived in A is now used to classify a test set of new, unseen data. Since the error rate
in the classification of the test set is low, the generalizability of the classifier regarded as
high. (D) When the decision boundary derived in B is used for new, unseen data, it is
possible that the classification result is prone to error. This is due to the overfitting that
took place in the classifier’s training (in B).
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features. This allows a ranking of the features. In an iterative way, the most irrelevant features
(the ones with lowest ranks) are discarded until a set of the most discriminative features is
distilled, which yields a discriminating map of voxels[52].

Examples for forward selection techniques include genetic algorithms [53]. In an simi-
lar fashion to evolutionary processes, features are exchanged (mutation) and the discriminative
power of the new set is evaluated (selection). Over many iterations (generations), a maximally
discriminative set of voxels can be worked out [54]. The crucial question when using wrapper
methods is the definition of the stopping criterion. Generally, either a criterion based on the
change rate of performance between subsequent iterations is used, or the best feature set is
selected post-hoc as the one with the highest performance [52, 32].

4.4.3.2 Region of interest analysis

A simplistic solution for narrowing down the number of features is to perform a spatial selection,
i.e. to select a region of interest (ROI)[32]. Hence, the reduced data space is a subset of the
original data space Y 0⇢Y . In general, ROIs can be defined by two different approaches; either
by an inclusion criterion based on functional MRI data, or alternatively by anatomical (or
structural) means [55]. A very common approach for determining functional ROIs are so called
functional localizer scans. The localizer scans are run before or after the actual experiment
and consist of a paradigm (the localizer task), that serves to functionally map out an area of
interest. Usually, an univariate inclusion criterion in the form of a GLM is used. In other
words, voxels showing large levels of activity (large �-estimates, see Section 4.3) in the localizer
task are selected to be part of the ROI [40, 41, 56, 57]. It should be noted that univariate
methods for feature selection may very well discard voxels that actually do encode information
in regards to the localizer task, but the information is not reflected in the sole magnitude of the
univariate �-estimates [58]. It is possible that, this issue is mitigated if multivariate approaches
are used for the feature selection itself, such as the searchlight approach or wrapper methods
(see Section 4.4.3.4 and Section 4.4.3.1).

On the other side, anatomically defined ROIs also can provide interesting insights,
especially if connections between structure and function are of interest. There are many routes
to the derivation of anatomical regions of interest. One possibility for defining structural ROIs is
the usage of probabilistic atlases, which indicate the probability of membership of a given voxel
coordinate to distinct brain areas[59, 60]. The golden road to a perfect anatomical parcellation
into regions of interest, however, would be a microstructural parcellation based on the cyto-
and myeloarchitecture of the cortex[61]. This would allow the tailoring of anatomical ROIs for
each individual subject. Most importantly, this approach would overcome the limitations of
spatial normalization into a common inter-subject brain space (see Section 8.3 on page 63). At
present, however, there is no implementation of “in vivo Brodmann mapping” available that
automatically parcellates the cortex into ROIs based on anatomical fine structure measured by
MRI[32].
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4.4.3.3 Dimensionality reduction of the feature space

As their name already suggests, dimensionality reduction approaches transform the data space
Y to a space Y ⇤ with fewer dimensions. Most commonly in the context of fMRI, the number
of examples is kept unchanged while the number of features is reduced. There exist numerous
approaches for doing so, for instance clustering, basic linear (and other) transformations or
convolutions[51, 32]. In this thesis, I will focus on one class of linear transformations, namely the
principal component analysis (PCA). The PCA approach is one of the most commonly practiced
dimensionality reduction methods used for functional MRI data [37, 62, 42], particularly in
regards to a subsequent application of pattern classification methods within the dimensionality
reduced space Y ⇤. Pattern classification results can then be projected back from the PCA space
Y ⇤ into the voxel space Y for visualization and voxel-wise statistics[4]. One of the information
mapping techniques (the feature weight mapping method) described in my thesis builds on this
dimensionality reduction using PCA and also involves a back-projection into the voxel space.

4.4.3.4 Searchlight approach

Searchlight methods traverse the three spatial dimensions of functional MRI data in a ’scan-
ning’ fashion [63] and select a (commonly spherical) neighborhood of voxels as features for
classification. Typical spherical diameters are in the range of about one centimeter. In other
words, as in the ROI approach, the reduced data space is a subset of the original data space.
However, the searchlight procedure is repeated for every location. It is then common to map
the classification result back into each investigated location, which yields a map of classification
results if repeated over all locations.

Most commonly, the searchlight is volumetric, however recently, this approach has
been adopted for cortical surfaces [1]. The searchlight method yields a high performance
in classification and gives spatially unbiased estimates (as there is no spatial hypothesis) of
local information content. As only local environments are taken into account, the searchlight
approach does not capture large-scale interactions and jointly encoded information of distinct
brain areas[32].

4.4.4 Cross-validation

In order to estimate the generalization error of the classification, a cross-validation often is
applied[64, page 483]. For this, the data set Y is split into a training and a test set. Most
commonly in the context of fMRI classification and a two-class design, a leave-one-out cross-
validation scheme is applied. Given a data matrix Y of the size t ⇥ n, a total number of t/2

cross-validations is used. Each time, the classifier is trained on a subset of size t
tr

⇥ n, where
t
tr

= t� 2, in other words one single training point from each class is excluded for the training.
The remaining two examples (one of each class) are used as test sets. In the case of fMRI, the
examples are not chosen at random but rather in a subsequent fashion.
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The resulting estimate of accuracy is the number of correctly predicted labels from all
cross-validation folds divided by the total number of predicted labels.

4.4.5 Pattern analysis methods beyond classification

In the following, I will briefly discuss the two remaining main categories of pattern classification
approaches; regression and encoding.

4.4.5.1 Regression

Instead of classifying the fMRI data into different classes using a discrete output label space
(in a two-class design Z = {�1, 1}), it is also possible to regress the data to a continuous

response variable of a given interval, e.g. Z = [0, 1]. The response variable Z usually is not
an fMRI measurement, but likewise is a response variable provided by the subject directly (for
instance a continuous task response such as reporting how positive the current thoughts are).
Alternatively, Z may be a measurement from another modality, such as heartbeat, respiratory
or electrophysiological signals.

Linear regression allows the determination of a set of voxels, which best describes the
response variable Z. The best estimate of the response variable Z then is given by

Ẑ = Y � (4.4)

where Y was the t ⇥ n matrix containing the time-course data of all voxels and a
total of n �-coefficients are estimated. The approach looks similar to the GLM approach (see
Section 4.3.1 on page 19), however in this case, all voxels simultaneously regress a response
variable, whereas in the GLM approach a linear combination of a generated BOLD signal (the
design matrix) regresses the actual BOLD signal of a single voxel.

Similarly to GLM, the standard method for coefficient estimation is an ordinary least
squares approach. Alternatively, a regularization can be introduced[65], by applying a con-
straint on the �-coefficients of the regression model. For instance, L1 norm regularizations can
be applied which introduce a constraint on the sum of the absolute values of the coefficients[32].
The LASSO method [66] uses such a constraint and was shown to result in sparse solutions. Fur-
ther regularization constraints use L2 norm regularizations[67] (introducing a constraint on the
sum of the square values of the coefficients) or combination of both [68, 65, 69]. Alternatively,
multivariate regression can also be performed using support vector regression[70].

Note that multivariate regression is strongly underdetermined, as in general there are
vastly more voxels than time points in fMRI data. Therefore, the results of this procedure de-
pend heavily on the choice of constraints. For instance, sparsity constraints may be problematic
as it is not clear to what extent brain function really is sparse[32].
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4.4.5.2 Encoding

Arguably, one of the the weak points of classification or regression methods is the limitation
regarding the neurophysiological interpretability of the data. While these methods allow one
to claim that there exists a difference in the evoked response patterns of two conditions and
possible also, where this difference is located within the feature space, it is factually impossible to
gain insight into the underlying mechanisms driving the formation of these patterns. In other
words, classification and regression methods treat the underlying brain function as a “black
box”. However, the understanding of such neuronal mechanisms is arguably a centerpiece of
any meaningful theory of brain function.

Encoding approaches are complementary and attempt to fill the gap described above.
In contrast to decoding approaches, encoding methods generate the BOLD response given an
experimental stimulus. Unlike the GLM approach (see Section 4.3), which commonly only
takes the onset times and a generic hemodynamic response function to generate a BOLD time
course, encoding approaches use the entire experimental stimulus. Commonly, a number of
features are extracted from the experimental stimuli (as the dimensionality of the experimental
stimulus often is very high). For instance, given movies as experimental stimulus[71], infor-
mation regarding the edges and corners could be extracted from the video directly and used
as features. In a next step, a relationship between these stimulus features and the recorded
BOLD signal is estimated (e.g. by using regression techniques as described in Section 4.4.5.1
on the preceding page). Given this model of brain response to specific experimental input, it
is possible to predict the brain response for previously unseen experimental stimuli. Crucially,
the quality of the model can be evaluated by a simple comparison, for instance by assessing
how much of the variance in the data can be described by the model. Encoding approaches
mostly find application in prediction of early sensory (mostly visual) areas [71, 72].

4.4.6 Criticism of MVPA methods

4.4.6.1 Decoding and regression

The main critique on pattern based techniques for fMRI analysis is commonly that it is only
possible to determine where informative features for classification are located (e.g. by the
usage of feature selection methods). From a neuroscientific point of view, the more interesting
question would be how information and information processing are represented and carried out
in the living human brain. However, classification- and regression-based methods can rather be
described as “black box” models, and do not offer insight into the characteristics of neuronal
representations.

4.4.6.2 Encoding

Encoding models do not have the above limitation of interpretability. On the other hand,
encoding models have a conceptual weakness in the construction of the model, where features
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are computed from the experimental stimuli. Presently, at best, these features are extracted
from the experimental stimuli by “neurally inspired” mechanisms [72]. It remains unclear to
what extent these mechanisms reflect the actual underlying neuronal computations - a problem
shared by almost all models proposed in cognitive neuropsychology[32].

4.5 Activation vs. Information mapping

Over the last two decades, so-called activation-based methods have been predominant in
imaging-based cognitive neuroscience. The idea behind activation based paradigms is to es-
timate the magnitude of a large-scale neuronal response to an experimental stimulus, and to
compare these response magnitudes across experimental conditions. For this, most commonly,
the general linear model (see Section 4.3) is used.

Information based approaches, on the other hand, attempt to quantify the mutual
information between the experimental stimulus/condition and the measured brain signal[45].
For assessing the mutual information, multivariate methods (see Section 4.4) such as decoding
methods are often employed.

Both approaches differ substantially in the underlying assumptions about the neuronal
representations elicited by experimental stimulation. While in activation-based methods, the
size (and variance) of the responses determines the statistical difference, the absolute response
size does not necessarily have to be dissimilar to information based methods, as information
may be present in the form of a relationship amongst voxels or pattern of voxels.

Commonly the overall signal is assumed to consist of two components. Firstly, a
smooth component (which is spread out over a neighborhood of voxels) and secondly, a fine-

grained component[45]. In activation based approaches, the fine-grained component is consid-
ered to be noise. Therefore, spatial filtering in the form of a Gaussian filter kernel is applied
prior to the data analysis, which effectively removes the fine grained component. Usually, this
smoothing drastically improves the GLM fit.

Information-based approaches, however, do not require spatial smoothing, as also the
fine-grained component is suggested to contribute to the discriminability of the patterns. At
higher resolutions or smaller voxel sizes, the smooth component typically is smaller, while the
fine grained component is more pronounced[45]. Therefore, information-mapping techniques
are often the preferred methods for analyzing high-resolution data.

In the following, I will present two of the most relevant information mapping techniques
for the present thesis, namely searchlight decoding and information mapping using feature
weights.
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4.5.1 Searchlight decoding

As the searchlight approach was already introduced in Section 4.4.3.4 on page 26, I will only
briefly summarize the logic behind information mapping using searchlight decoding. In essence,
task-related neural information at every location in the brain is assessed by analyzing the signal
patterns extracted from a spatial neighborhood (the searchlight) centered at each location
of the brain[5]. Searchlight decoding can be regarded as a type of analysis strategy using
the searchlight approach, which uses classification-based MVPA. Decoding involves training a
classifier on a subset of the data and predicting the class labels of another, yet unseen subset of
the data. Thereby, the generalizability of the classifier is assessed[44]. Usually, this procedure
is repeated for different subsets of data, in other words a cross-validation procedure is applied
(see Section 4.4.4 on page 26). The average percentage of correctly predicted labels, known
as the decoding accuracy, is taken as an indicator of the information content of the searchlight
volume. Customarily, the accuracy is mapped to the central voxel of the searchlight. The
repetition of this procedure for all searchlight locations in the brain mask hence results in a
three-dimensional accuracy map, which reflects the spatial distribution of information decodable
from the functional brain images. It should be noted that in the context of neuroscientific
studies, the decoding accuracies themselves are usually not of primary interest. Instead, the
statistical significance of the decoding accuracy is of highest relevance[5].

4.5.2 Feature weight mapping

Alternatively, information maps can be computed without the spatial preselection of voxels
applied in the searchlight approach, by training a (linear) classifier directly on whole brain
fMRI data. This yields the weight vector ~w (see Section 4.4.2 on page 22). Crucially, each
component of this weight vector belongs to a feature dimension and indicates what influence

this feature exerts in regard to the classification decision[? ]. Since the feature space (i.e. the
number of voxels) in fMRI data typically is very large, a dimensionality-reduction procedure is
commonly applied before the classifier is trained (see Section 4.4.3.3 on page 26).

In analogy of the decoding accuracies for the searchlight decoding approach, the size
of the feature weights are not of the primary interest, but rather their statistical significance.
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Chapter 5

Statistical inference

5.1 Hypotheses testing

The term "statistical inference" refers to those methods and procedures, which allow one to
draw reliable conclusions on the basis of experimental data. More precisely, statistical inference
methods allow a selection of an optimal explanation from a set of possible explanations, provided
experimental data. The explanations are commonly referred as hypotheses.

As illustrative example a data set can be considered which includes treatment reports
of two groups of clinical patients, who all are suffering from the same disease. One group
is given a new drug that is anticipated to treat the illness, while the other group is given a
placebo medication. Statistical inference methods allow one to gain quantitative insights in
data, effectively making it possible to draw conclusions about the curative effects of the new
drug. In this example, the following sets of hypotheses appear plausible:

H0: The new drug does not have any curative effect in regards to the illness other
than the placebo-effect1

H1: The new drug does have healing effects and cures the illness

The hypothesis H0 is known as the null hypothesis. The hypothesis H1 is usu-
ally referred to as alternative hypothesis. The central idea behind scientific reasoning using
frequentist[73] statistical inference is to estimate how likely is it to obtain the measures given

chance, i.e. given that the null hypothesis H0 actually is true. Most importantly, it is desired
to avoid the scenario where the null hypothesis indeed was true, but was rejected on the false
premises. The incorrect rejection of a true null hypothesis is known as type I error or false

positivity. As the prerequisite of frequentist statistical inference is to minimize the occurrence
of type I errors, a statistical threshold ↵ is defined, indicating the probability for committing a
type I error. Only if the probability for the null hypothesis H0 being true is determined to be
smaller than ↵, the null hypothesis H0 is rejected. The threshold ↵ is commonly denoted as
significance level. Typical values for ↵ are 0.05 or 0.01, i.e. the null hypothesis H0 is rejected

1
in other words, H0 can be formulated as: the new drug has the same curative effects as the placebo medication
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In reality H0 is true In reality H0 is false

test rejects H0
false positive true positive
type I error

test doesn’t reject H0 true negative false negative
type II error

Table 5.1: Relations between the truth or falseness of the null hypothesis H0 and the outcomes of a
test

if the probability of H0 being true is smaller than 5% or 1%. The probability of H0 being true
is commonly denoted as p-value.

In order to decide what probability the null hypothesis H0 has given data, the null distribution of
the test statistic has to be assumed or alternatively computed empirically. This then allows to a
determination of the probability of H0 being true (i.e. the p-value) given the data and a decision
of whether H0 is rejected or not. If the form of the underlying null distribution is known, the
problem is parametric and can be solved using parametric statistical inference. On the other
hand, if there is no knowledge about the distribution, the problem requires nonparametric
statistical inference methods[74, page 34]. In the following Sections, I will discuss the most
important parametrical and non-parametrical statistical tests.

The reverse scenario of a type I error is also possible, where the alternative hypothesis
H1 was factually true but the null hypothesis H0 is selected (i.e. the null hypothesis H0 was
not rejected). This decision is known as a type II error and commonly also denoted as a
false negative. An overview over false positivity and negativity is provided in Table 5.1. The
probability of a type II error is complementary to the power of the statistical test, which is
defined as the probability of deciding on the alternative hypothesis H1 when H1 is in fact true[74,
page 17]. Since in the normal experimental setting, the ground truth typically is inaccessible,
it is not possible to conclusively compute the number of type II errors. In simulations where
the ground truth is known, however, the computation of type II errors or power is possible2.

Another measure for the quality of a statistical test is the precision (assuming the ground truth
is known). The precision is defined as the ratio between true positives and all positives (i.e.
true positives divided by the sum of true and false positives, see Table 5.1). Hence, the precision
takes the value of the interval [0, 1], indicating the fraction of positive tests that had indeed
been true positives.

Furthermore, the sensitivity of a test can be computed, which is the number of true
positives divided by the sum of true positives and false negatives (see Table 5.1). Hence the
sensitivity also takes values of the interval [0, 1]. The sensitivity indicates what fraction of
ground truth positives had been correctly identified as positives.

In general terms, frequentist statistical testing procedures always effectively incorpo-
rate a trade-off between the precision and the sensitivity: The higher the sensitivity, the lower
the precision; the higher the precision of a test, the lower it’s sensitivity. The issue is illustrated
schematically in Figure 5.1.

2
For this reason, the proposed statistical frameworks of my work are applied to a variety of artificial data in

the form of simulations of brain activity data.
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Figure 5.1: Trade-off between sensitivity and precision of statistical testing procedures. (A) Summary
of the relations between the truth or falseness of the null hypothesis H0 and the outcomes
of a test, as in Table 5.1. However in here, four symbols are introduced in the form of the
two letters P and N and two colors red and green. The P’s indicate that the test result was
positive (H0 was rejected), the N’s indicate negative test results (H0 was not rejected).
The colors indicate whether the outcome of the test was in accordance with the ground
truth; green indicates that this was the case, red indicates a mismatch between the ground
truth and the test result. (B) Outcome of a statistical test which has a high sensitivity
but therefore a low precision. According to the ground truth, all tests in the upper half of
the cube (separated by the blue dashed line) should have been labeled positive, while all
tests in the lower half of the cube should have been labeled negative. As the sensitivity
of the test is high, most tests in the upper cube are labeled correctly (i.e. as positive).
On the other hand, the price for the high sensitivity is that the precision of the test is
low, a large fraction of the tests in the lower half had been falsely labeled positive (instead
of negative). (C) Outcome of a test featuring a lower sensitivity but therefore a higher
precision. As before, the upper half of the cubes should have been labeled positive and
the lower half negative, in accordance to the ground truth. Since the sensitivity of the test
is low, many positives in the upper half remain undetected (i.e. labeled negative). In the
lower half, however, most tests are labeled correctly as negatives, as the precision of the
test is high.

33



5.2 Parametrical statistical inference

Parametrical test procedures imply certain assumptions on the distribution of the experimental
data. For instance, parametric statistics impose assumptions on the form of the distribution
from which the data points are drawn, for instance an underlying normal distribution. Fur-
thermore, the parameters of this distribution are also assumed (or approximated). It can be
shown that parametric tests are the most powerful statistical tests (i.e. they have the lowest
probability for type II errors)[74, page 37], provided the above assumptions are true.

5.2.1 Z-test

The Z-test (or Gauss-test) is one of the simplest parametric tests and assumes that the ob-
servations x1, . . . , xN are drawn independently from a normal distribution. Furthermore, the
standard deviation � and mean µ0 of the underlying normal distribution are assumed to be
known.

The mean µ of the observation is given by:

µ = 1
N

P
N

i=1 xi

The null hypothesis for Z-tests states that there is no effect, in other words the population
mean µ0 given no effect and the measured sample mean µ are identical:

H0 : µ = µ0

The Z-test statistic then can be formulated as[74, page 37]

Z =

p
N(µ� µ0)

�
(5.1)

The probability density of Z is:

f(Z) =
e�

(Z�µ0)
2

2�2

p
2⇡�2

(5.2)

The probability density f(Z) is normalized:

1̂

�1

f(Z)dZ = 1 (5.3)

The probability of an observation with the value Z � Z0 is then given by the integral over the
probability density f(Z):
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p(Z)

Z

Figure 5.2: Z-distribution with the parameters µ0 = 0 and � = 1. The probability for finding a
Z-value of Z0 or larger is given by the area under the probability density of Z. In this
illustration this value is determined as Z0 = 1.645. The probability of finding a Z value
bigger than 1.654 then corresponds to the relationship between the red shaded area to
the total area under the curve. In here, the red shaded area covers 5% of the total area,
corresponding in a p-value of 0.05

Pr{Z � Z0} =
´1
Z0

f(Z)dZ

A visualization and geometrical interpretation of this derivation of probability given the null
distribution are displayed in Figure 5.2.

5.2.2 T-test

Usually, the standard deviation � of the underlying population is unknown. The student’s
T-test (or short T-test) resolves this lack of knowledge by substituting the standard deviation
of the population � in Equation 5.1 with an estimation of the sample variance �̂

�̂ =

vuut 1

N � 1

NX

i=1

(x
i

� x̄)2 (5.4)

The test statistic then becomes[74, page 38]:

T =
p
N

µ� µ0

�̂
=

p
N(µ� µ0)q

1
N�1

P
N

i=1(xi � x̄)2
(5.5)

In analogy to the Z-test, the probability of finding a value T � T0 is derived by integration
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over the probability density over T . The probability density of T can be derived[75] as:

f(T, ⌫) =

r
⌫

2⇡µ
e

�T

2
⌫

�̂ (5.6)

where ⌫ = N � 1 is the degree of freedoms of the test.

The T-test is one of the most widely used statistical tests and assumes the data to
be normally distributed and sampled from a continuous distribution. T-tests have also been
employed for classification-based decoding methods to determine the statistical significance of
decoding accuracies (which was defined as the percentage of correctly estimated labels). For
this, the following null hypothesis is formulated:

H0: The mean decoding accuracy µ is identical to the chance level mean decoding
accuracy µ0 = 0.5

Most commonly in the context of classification-based fMRI, the T-test is carried out on the
group level, using the mean decoding accuracies from each individual subject as data points.
In other words, given N

sub

subjects, the mean decoding accuracies x1, . . . , xN
sub

are used for
computing �̂ and µ0.

5.2.3 Binomial models

In the context of classification, there exists another way of parametrically deriving the null
distribution of accuracies: the classifier can be modeled as a Bernoulli trial [47]. Here, the null
hypothesis can be broadly defined as:

H0: There is no class information present in the data

This has as a consequence the need for the classifier in practice to guess the labels of the test
set[5]. Let us assume that an already trained classifier is used to estimate N class labels of
an unseen test set, containing N data points. Since the N data points are independent from
each other, it is possible to compute a theoretical null distribution by assuming N independent
Bernoulli trials. The number of correctly estimated labels of the N trials thus can be represented
by the binomial random variable X, which depends on the parameters (N, p). The probability
mass function3 of X then is:

f
X

(c) =

✓
N

c

◆
pc(1� p)N�c (5.7)

where the number of correctly classified examples c = 1, . . . , N and p is usually set
to 0.5 in a two-class paradigm[5]. An example for the application of such Binomial models is
given at a later point for illustrating the multiple comparisons problem in Section 5.4.

3
since the values that X can take are discrete, a probability mass function is associated (instead of a density

function as in the other examples of parametric tests)
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5.2.4 Tests for normality

All above parametric tests assume the observations x1, . . . , xN to be drawn from a normal dis-
tribution. In order to test whether this assumption holds given experimental data, a normality

test procedure can be implemented.

For determining, whether the underlying observations are normally distributed or
not, I will use Shapiro-Wilk’s W-test for normality[76], which had been found to be the most
powerful test for normality[77], in particular for small sample sizes.

5.3 Nonparametric statistical inference

In certain cases the assumptions required for parametric tests are not met by the experimental
data, such as if the data, for instance, is not distributed normally. The parametric assumptions
are often not met the context of statistics on classification-derived data. A possible remedy of
such situations is the recourse to nonparametric statistics. The most widely used nonparamet-
ric tests used in this context are resampling techniques, in particular permutation tests and
bootstrapping methods.

5.3.1 Permutation tests

Permutation methods empirically construct a null distribution under the null hypothesis

H0: There exists no dependency between the class label and the data points

In other words, the null hypothesis states that manipulating the relationship between the labels
and the data points does not have any impact on the results. The null distribution is derived
by exchanging the class labels of the observations (e.g. by applying a random permutation to
the order of observations while keeping the labels fixed). Next, a test statistic is computed
using the new random relationship between class labels and data points. The procedure is
repeated for many times, resulting in an empirical null distribution. This null distribution can
then be used to assess the probability of the original (non-permuted) result in the light of the
null hypothesis.

As an example, consider the thought experiment of Section 5.1 on page 31, where
two groups each of ten patients suffering the same disease are given a new drug and a placebo
medication, respectively. Let us assume that after a month of treatment the following health
values are measured (by virtue of an idealized measurement procedure, which maps a value of
100 to perfect health and a value of 1 to near death):

Health given new drug: {73, 66, 63, 74, 75, 58, 67, 75, 72, 73}

Health given placebo: {69, 54, 69, 53, 60, 69, 63, 50, 70, 66}
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Figure 5.3: Histogram of the difference of health values under permutation: For 100000 repetitions,
the participants were randomly distributed into the patient and control group and the
difference between the mean health values of each group was computed. This resulted
in an empirical null distribution. The original (non-permuted) difference of group mean
�µ = 7.3 is marked as dotted red line. The probability of finding the original difference
�µ is the relationship between the right-tailed area (the red bars) and the rest of the
distribution (the blue bars). As the red bars cover 1.31% of the total are of the histogram,
the p-value for �µ is 0.0131

The mean health of the new drug group is µ
drug

= 69.6, the mean health of the placebo group
is µ

plac

= 62.3. The difference between both means is �µ = µ
drug

� µ
plac

= 7.3. Permutation
methods allow the computation of the probability that the new drug actually has no curative
effect, i.e. that it has the same effect as a placebo treatment. Hence, the probability of the
original difference �µ given chance is determined. Following the rationale of the permutation
test, a random permutation to the order of the data points is applied, i.e. the observations are
randomly shuffled and reassigned into both groups (allowing a to crossing between the groups).
For instance, one instance of shuffled data points may look like

Health given new drug: {50, 58, 66, 53, 54, 63, 69, 73, 75, 75}

Health given placebo: {66, 69, 72, 69, 70, 74, 63, 73, 60, 67}

Under the permutation, the difference between both means is �µ0 = µ0
drug

� µ0
plac

= 63.6 �
68.3 = �4.7. The permutation procedure is repeated over many repetitions (e.g. 100000 times)
and the difference between both means under permutation �µ0 is noted. Next, the histogram
H�µ

0 of �µ0 is computed (as shown in Figure 5.3).
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Using the null histogram H�µ

0 , it is possible to compute the probability of the original difference
(without any permutation applied) �µ:

p(�µ) = 1
N

P1
�µ

0
>�µ

H�µ

0

In here, the factor 1/N serves as normalization constant, rendering the overall sum of
the histogram equal to 1. In our example the probability for the null hypothesis being true is
derived as p(7.3) = 0.0131. As this probability is lower than the significance level ↵ = 0.05,
it can be stated that the treatment using the new drug has a significant effect for curing the
illness.

In summary, permutation methods aim to empirically construct the null distribution
and use this null distribution for estimating the probability of the non-permuted result (under
the null hypothesis). If the probability is lower than the significance level ↵, the null hypothesis
is rejected.

Permutation methods have the property of an exact test, i.e. the probability of oc-
currence of a type I error is equal to ↵[74, page 39]. The permutation method relies on the
assumption of exchangeability of the observations. For this, the joint distribution of the obser-
vations does not depend on the order of the subscripts of the observations[74, page 269]. In the
illustrative example of patients this assumption is justified, as it appears unlikely that there
exists a dependency structure between the health values of different patients.

5.3.2 Bootstrapping methods

The idea behind bootstrap methods is to resample repeatedly, however with replacement, from
the original sample. For this, each group is resampled entirely from the samples within the
group (with replacement) and the desired estimate is computed[78, page 8]. This allows to an
empirical approximation of the (unknown) population distribution on the basis of the measured
samples.

For illustration, suppose the same example as used above in the permutation statistics
(see Section 5.3.1 on page 37), with health values of two groups of patients, one treated with a
illness-curing drug and the other one with a placebo.

Health given new drug: {73, 66, 63, 74, 75, 58, 67, 75, 72, 73}

Health given placebo: {69, 54, 69, 53, 60, 69, 63, 50, 70, 66}

For each bootstrap draw, the health values of both groups are resampled with replace-
ment, however for each group separately. For instance, this may results in

Health given new drug: {63, 67, 67, 72, 72, 73, 73, 74, 75, 75}

Health given placebo: {53, 54, 54, 60, 60, 63, 66, 69, 70, 70}
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Figure 5.4: Approximation of the population of exemplary health data using the bootstrap method and
N = 100000 resampling steps.

The difference between both means in this example is �µ0 = µ0
drug

� µ0
plac

= 71.1 �
61.9 = 9.2. The procedure is repeated for N repetitions (e.g. N = 100000), each time the
difference �µ0 is noted, resulting in an approximation of the population distribution. The
approximation of this example is displayed in Figure 5.4.

It should be noted that the application of the bootstrap procedure for this illustrative
example may be ill-advised, as bootstrap procedures are generally not recommended for sample
sizes of less than 100 observations[78, page 19].

In my work a similar technique is used for computing group statistics. As the pro-
cedure is not adequately classified as a bootstrap procedure, I will refer to it as Monte-Carlo

resampling.

5.4 The multiple comparisons problem

In all above examples for statistical testing I have described significance testing for one single

statistical test. However, if a set of many statistical tests is carried out simultaneously, it is
possible that some number of these tests return significant results only due to the fact that
many tests had been carried out.

As an example, a simple dice experiment can be considered, using a standard dice
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which has six faces (which conveniently are numbered from 1 to 6). The assumption that the
dice is fair can be tested, i.e. if each face is being equally likely with the probability of p

i

= 1
6 if

thrown once. The experiment is comprised of three successive throws of the (same) dice. Since
each of the successive three throws is independent, it is possible to use a binomial model to
compute the probability that all three throws show each the number 6.

p666 = f(3, 3, 16) =
�
n

k

�
pk6(1� p6)n�k =

�
1
6

�3 t 0.0046

In other words, the probability p666 of three successive trials that each show face number 6 (in

the following abbreviated by ) is very low and around 0.46%.

Let us put forward the null hypothesis for a statistical test:

H0: the dice is fair

and the complementary alternative hypothesis

H1: the dice is unfair4 and biased towards showing the face with number 6.

Using a significance level of ↵ = 0.05, the null hypothesis H0 (of a fair dice) would be rejected

in case the outcome of the experiment were , as the probability for this is very low given
a fair dice and below the significance level, i.e. p666 ⌧ ↵.

However, if one would use this experimental procedure for testing the fairness of
more than one dice, a problem known as the multiple comparisons problem would arise: The

probability that at least one of the multiple dices would show is much larger than the
previously calculated probability p666. In other words, our single-dice experimental procedure
and statistics are inappropriate if we test many dices, as even a fair dice can come up three
times successively showing the number 6 if many dices are thrown. Let us for now assume
that we want to test the fairness of N = 10000 dices with the above method. Analytically, it
is possible to derive the probability that at least one of the dices will show a pattern of three
successive trials with face 6, given that all dices are fair :

p
pos

= 1� p
none

where p
pos

is the probability that at least one of the dices shows three successive trials showing
face number 6, and p

none

is the probability that none of the dices shows three successive trials
with number 6. Using another binomial model, it can be derived that

p
none

= (1� p666)10000 t 7 · 10�21

In other words it is extremely unlikely, that not a single one of the 10000 fair dices does show a
pattern of three successive trials. Hence, in good approximation, p

pos

t 1, i.e. it is practically
almost certain that at least one of the fair dices shows three successive trials with face 6.

4
consider for instance a dice where the center of gravity is not at the geometric center, thus introducing a bias
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Figure 5.5: Visualization of the multiple comparisons problem, which implies that even rare events
can occur by chance if there are enough repetitions. (A) Sum of three subsequent dice
throws, repeated for 10000 times. For better visualization, all trials have been rearranged
in a 100x100 matrix. The bluest color, which stands for a sum of 3, implies the dice throw
combination 1-1-1. The reddest color corresponds the sum 18 which only is achieved for
the combination 6-6-6 (B) The matrix is displayed in thresholded form, where only the
sum 18 is above the threshold. Hence all red dots imply a dice throw combination 6-6-6. In
total, there were 51 trials with this combination. In other words, although the probability
of three successive trials for a single dice throw experiment with the outcome of three times
face 6 was thrown was very low (about 0.46%), if repeated often enough it is exceedingly
likely to happen.

For the purpose of illustration, I will provide a toy simulation of the above example:
Three dice throws are simulated by randomly selecting three numbers between 1 and 6 with
uniform probability; hence the virtual dice throws are a priori fair. The procedure was repeated
for 10000 times. For visualization, only the sum of the three trials is taken into account and the
data is rearranged in a matrix of size 100 x 100 and displayed in Figure 5.5A. Hence in this figure,
a value of 18 corresponds to three successive trials where number 6 was selected. In Figure
5.5B, a threshold was applied, so that only number 18 is displayed. In total, the combination

occurred 51 times in this simulation, which (in good approximation) corresponds to the
product of the probability p666 of three successive trials where face 6 is up with the number N
of repetitions5.

Conclusively, statistical testing procedures that imply many tests may result in ex-
ceeding rates of false positivity if no correction for the multiple testing is applied. This is
especially critical for fMRI data, where the number of statistical tests commonly is equal to
the number of voxels, in other words extremely large. In the following, I will discuss the most
important multiple comparison correction methods currently used in fMRI.

5
if the simulation was repeated often, the mean number of 6-6-6 occurrences would converge to N · p666
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5.4.1 Bonferroni correction

The Bonferroni correction is the most stringent and conservative multiple-testing correction.
It states that if N statistical tests are carried out simultaneously, the significance level ↵ has
to adjusted to[74, page 79]

↵
bonf

= ↵

N

A Bonferroni-corrected test has the property of strong control, as the number M
fp

of false
positives (where the null hypothesis is rejected but in truth holds) is constrained by ↵

bonf

[79]:

E(
M

fp

N

)  ↵
bonf

where E(
M

fp

N

) is the expectation value for the rate of false positivity.

However in case of fMRI data, where N typically is very large (N � 50000), the corrected
significance level ↵

bonf

is overly stringent. Effectively, whole-brain statistics using Bonferroni
type I error correction would label practically no voxels significant. On the other hand, the
type II error rate (false negativity) is drastically increased, rendering the Bonferroni correction
not sensitive enough to be useful for the statistical analysis of fMRI data[80].

The Bonferroni method implements the (pessimistic) assumption, that all carried out
tests are independent from each other (however independency is not required). This assump-
tion, however, is not realistic in case of fMRI data, since neighboring voxels feature a spatial
correlation[27] (and hence are not fully independent from each other). In the following, I will
briefly sketch out other strategies for the correction of the multiple testing problem that are
tailored for dealing with fMRI data.

5.4.2 False discovery rate

The false discovery rate (FDR) is defined as the proportion of false positives among the sub-
set of tests, where the null hypothesis was rejected. This is in contrast to the Bonferroni
method described above, as the Bonferroni method controls for the false positives over all tests
performed, regardless whether the null hypothesis was rejected or not[80]. In other words,
FDR methods control the false positivity rate exclusively for the tests that have been labeled
significant. Given M

sign

tests that are labeled as significant, and among these M
fp

tests are
erroneously labeled significant (i.e. total number of false positives), the rate Q of false discovery
is defined as[81]:

Q =
M

fp

M

sign

Procedures controlling the false discovery rate then ensure the following:

E(Q)  q

Conventionally, q is set between 0.01 and 0.05. In the original formulation of the FDR
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procedure[81], the set of p-values of each of the N hypotheses being tested are rearranged
in ascending order:

p1  p2  · · ·  p
N

corresponding to the hypotheses H1, H2, . . . , HN

, which were reordered according to their re-
spective p-values. Then the following cutoff criterion is proposed: let k be the largest index
i for which p

i

 i

N

· q holds, then reject the hypotheses H1, . . . , H
k

. Note that given the case
that the above condition does not hold for any value of k, no hypotheses are rejected.

In case of a large number N of hypotheses being tested and a correlation amongst
the hypotheses, another formulation is used. Instead of defining the cutoff for p-values smaller
than i

N

· q, another, less conservative cutoff condition can be employed: let k be the largest
index i for which p

i

< i

N

· q · 1
c(V ) , where c(V ) =

P
N

i=1
1
i

is the harmonic series. As before,
the hypotheses H1, . . . , H

k

are rejected then. The preference for the latter cutoff criterion in
case of fMRI data is motivated by the dependency between hypotheses, as there exists a spatial
correlation across voxels[80].

Alternatively, in case of a small numberN of hypotheses being tested, a step-down
FDR procedure can be applied[82]. Firstly, N critical values are defined by:

�
i

⌘ 1�
h
1�min

�
1, N ·q

N�i+1

�i 1
N�i+1 for i = 1, . . . , N

The cutoff criterion is defined as the following: let k be the largest i for which p
i

> �
i

.
Then all hypotheses H1, . . . H

k�1 are rejected.

5.4.3 Random field methods

The multiple comparisons methods described above apply for voxel-wise statistical inference,
i.e. each voxel or location corresponds to a single hypotheses. Alternatively, methods tailored
for the characteristics of fMRI data have been proposed, which are not applied on the voxel-level
but rather establish inference on topological features[83], which consists of many voxels. This
greatly reduces the amount of hypotheses tested and hence alleviates the multiple comparisons
problem. Commonly, topological features are defined as clusters (i.e. connected excursion sets)
of voxels, where each voxel exceeds some predefined probabilistic threshold.

Gaussian random field methods are one class of topological inference methods. The
underlying idea behind this multiple comparisons strategy is to assign a probability (i.e. a
p-value) to a cluster given the observed attributes[83](e.g. image smoothness, cluster size etc.).
If the probability for a cluster is small and below the predefined cluster-level ↵, the cluster
is labeled significant. The derivation of the probability of finding a supra-threshold cluster
is based on a parametric distribution approximation of cluster attributes, requiring several
assumptions on the data[84]. Most importantly, the data is assumed to be smooth (i.e. there
exists a high spatial correlation between neighboring voxels) and the smoothness of the data
is uniform across the brain. This requires spatial smoothing of the data, which commonly

44



is performed by a Gaussian smoothing kernel with a full width at half maximum (FWHM)
between 3 and 8mm.

In the framework of the Gaussian random field theory, fMRI data is considered as a
lattice approximation of a smooth Gaussian random field[85, 86, 87] and furthermore sufficiently
high voxel-wise thresholds p

vox

(to be included into a cluster) are required. As a full derivation
of the cluster statistics given random field theory is out of the scope of my thesis, I will only
provide the most important results: the approximation for the distribution for cluster size s0

of a three-dimensional Gaussian random field, which is used in the SPM software package[29],
is derived as[84]:

Pr{s0 > s} ⇡ e� s
2
/3

(5.8)

where  =
h
�(5/2)E(L)

E(U)

i2
/3

and the expectation value of the search volume L is defined as

E(L) =
P3

d=0Rd

⇢
d

(p
vox

). This implements the resel count R
d

, which is the volume measured
in terms of the estimated image smoothness and their respective densities ⇢

d

. The expectation
value for the distribution of the supra-threshold volume[84] is defined as E(U) = V (1�F (p

vox

)),
where V is the overall search volume and F the underlying cumulative distribution function of
a Gaussian random variable.

5.4.4 Non-parametric cluster statistics

Permutation based methods for solving the multiple comparisons problem have been pioneered
in the mid 90’s[79] and became increasingly popular in the following years[88, 2, 84]. The ratio-
nale behind these methods is to construct a pool of chance images (maps) from the underlying
data using a large number of permutations on the data labels. For example, the data may
consist of anatomical images of two subject groups (patients and control). A plausible null
hypothesis here would state that there is no difference between patients and control in terms
of the recorded images.

Following the rationale of the permutation method (as already described in Sec-
tion 5.3.1 on page 37), a random permutation is applied to the labels of the data points
(patient and control). Crucially, this permutation is applied to the whole image at once (and
not voxel-wise), yielding one chance map per permutation. On the chance maps, the desired
test statistic is computed (e.g. T-tests). Repeating this procedure many times yields a pool of
chance statistical maps, which are thresholded voxel-wise using the threshold p

vox

for the given
test statistic. Next, a search for supra-threshold clusters is performed in this pool, yielding
a cluster size distribution under the null hypothesis. The same cluster search is performed
in the test statistic given the original (non-permuted) images. Ultimately, using the chance
cluster distribution, each cluster size of the original data can be assigned a probability. As each
assignment between cluster size and cluster probability represents a statistical test, a multiple
comparisons correction on cluster level has to be applied (commonly a Bonferroni correction or
FDR methods are used for this).
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Chapter 6

fMRI data sets

In total, two different fMRI data sets were used for my thesis. The data sets were recorded in
different resolutions, one with a rather standard resolution and the second with an ultra-high
resolution (see Figure 6.1). Both studies were finger tapping studies, however they comprised
different experimental paradigms.

The first study had been performed with a 3T system and whole-brain coverage (3T
tapping synchronization experiment). The aim of the study was to measure the subject’s brain
response while they were synchronizing to auditory or visual pacing sequence, which was either
continuous or discrete. Hence in total, the experiment consisted of four conditions. The data
set was originally recorded by Dr. Mike Hove.

The second study was acquired on a 7T system (7T finger tapping and imagination)

and only covered a small region in the left hemisphere of the subjects (see Figure 6.2). The
paradigm consisted of four conditions; one rest condition, where subjects were not instructed
with any task, and two finger movement conditions, where subjects either tapped freely with
four fingers or tapped with four fingers touching their thumb. In the last condition, the subjects
were instructed to imagine tapping of the four fingers without moving them. The data set was
originally recorded by Dr. Robert Trampel.

6.1 3T tapping synchronization experiment

6.1.1 Experimental design

Fourteen healthy subjects participated in the study[89, 5] (age range 24 to 34, all right-handed).
The subjects were paid for their participation and gave written consent. The data sets of
two subjects were incomplete and therefore were excluded from further analysis, leaving a
total of 12 participants. The experiment consisted of 80 trials, which were split into two
recording sessions. Each trial lasted 19.2s and was separated by a variable inter-trial interval
of between 9.4 and 12.2s. Participants were instructed to tap with their right index finger in
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A B

Figure 6.1: Illustration showing the difference in resolution of the two fMRI experiments used in this
thesis. (A) 3T tapping synchronization experiment, voxel size = 3⇥ 3⇥ 4mm3, B0 = 3T
(B) 7T finger tapping and imagination, voxel size = 0.75⇥ 0.75⇥ 0.75mm3, B0 = 7T

time with four isochronous experimental conditions: a discrete auditory pacing sequence (50ms

sine beeps at 1350Hz), a continuous auditory pacing sequence (pitch sweeps between 1350Hz

and 450Hz, T
cycle

= 600ms), a discrete visual sequence (a white bar flashed for 50ms over a
black background), and a continuous visual sequence (a white bar moving up and down). In
the fMRI study, each of the four conditions was presented with a slow and a fast variant (inter-
stimulus-interval �t

event

= 400ms or �t
event

= 600ms). Throughout this thesis, the slow and
fast variants of each condition were merged together. The presentation of the pacing sequences
was randomized using a computer and the software Presentation[90], which also recorded the
tap timing[5].

For the sake of simplicity and clarity, only two the two visual experimental conditions are
analyzed throughout this thesis, the two auditory conditions were not used.

6.1.2 Data acquisition

Functional MRI data (gradient EPI) was collected on a 3T system (TRIO 3T, Siemens Health-
care, Erlangen, Germany) with a standard head coil[5]. The scans contained 36 axial slices
covering the whole brain (TR = 2000ms, TE = 24ms, slice thickness 4mm with 1mm gap,
in plane resolution 3⇥ 3mm2). A sagittal T1-weighted anatomical scan was obtained from the
database of the Max-Planck-Institute for human cognitive and brain sciences for all subjects
(3T Siemens Trio system, TR = 1300ms, TE = 3.93ms and an isotropic voxel size of 1mm3).

6.1.3 Data preprocessing

The data was corrected for head motion (as described in Section 8.1 on page 61), coregistered to
the anatomical scan (using a rigid body transformation with three spatial and three rotational
degrees of freedom) and spatially normalized to the MNI305 space (see 8.3). A temporal high-
pass filter with a cutoff-frequency of f

highpass

= 1
80s was applied to the data to remove low

frequency drifts (as described in Section 8.2 on page 61). After this, a standard GLM was
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fitted to each experimental trial to estimate its �-parameters (see Section 8.4 on page 63).
Hence, for each of the four conditions 20 three-dimensional �-maps were obtained. However,
as stated before, the two auditory conditions were not further regarded in this thesis; only the
two visual conditions are analyzed.

6.2 7T finger tapping and imagination

6.2.1 Experimental design

Ten healthy subjects took part in the study (age range 23 to 28, all right-handed). All subjects
were paid for their participation and gave written consent. The data sets of two subjects
were incomplete and were discarded from further analysis, leaving a total of 8 participants.
As the normalization to the standard MNI305 space was not feasible for data covering only a
part of the brain with a very high resolution, one single subject was selected1, omitting group
analysis. The experiment was comprised of 15 trials per experimental condition, each lasting
for 26.4 seconds. In total, the experiment consisted of four experimental conditions, which were
presented subsequently (without randomization) in a block-design fashion: The first condition
was a rest condition, where subjects were instructed not to move and not to imagine movement.
Following the rest condition the subjects were asked to imagine finger tapping, without involving
actual finger movement. This was followed by the tapping condition, where subjects sequentially
tapped with the four fingers of their right hand to the thumb of the right hand. No external
pacing sequence was used, however, subjects were asked to maintain a frequency of 2Hz. In
the last condition, subjects performed the same tapping sequence as before, however, without
touching their thumb.

In this study, two conditions (rest and tapping with touch) were selected for further
analysis, the other two remaining conditions were not included here.

6.2.2 Data acquisition

The experiment was performed using a 7T system (MAGNETOM 7T, Siemens Healthcare,
Erlangen, Germany), using a 24 channel head coil (NOVA Medical Inc., Wilmington MA,
USA). T1-weighted structural scans were acquired using a MP2RAGE[91] scanning sequence
(TR = 8250ms, TE = 2.59ms and a isotropic voxel size of (0.7mm)3). The functional scans
contained 17 to 31 axial slices (depending on the subject) covering the left motor cortex of
the subject’s brains (TR = 3300ms, TE = 25ms, slice thickness 0.75mm, in plane resolution
0.75⇥ 0.75mm2) using a novel acceleration technique[92].

1
a representative subject was selected. All results given in this thesis are comparable throughout all subjects

of this experiment
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Figure 6.2: Brain coverage of the ultra-high resolution fMRI data set. Only a small part of the left
hemisphere (marked in blue color) containing motor, sensory, parietal and frontal regions
was scanned since a whole-brain coverage would result in too slow of a scanner repetition
time TR at the isotropic resolution of 0.75mm.
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6.2.3 Data preprocessing

Head motion correction was carried out as first preprocessing step using SPM8[29] (see Sec-
tion 8.1). Low frequency drifts were removed using a temporal high-pass filter with a cutoff-
frequency of f

highpass

= 1
80s (see Section 8.2). Subsequently, a standard GLM was fitted to

each experimental trial to estimate its �-parameters (see 8.4). This resulted in a total of 15
three-dimensional �-maps per experimental condition. As well as in the other fMRI study,
only two conditions were selected for further analysis, namely the rest and tap condition (with
touch). The two remaining conditions were not further analyzed in this work.
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Chapter 7

Synthetic data sets (simulations)

7.1 Single Subject Simulations

The goal of the single subject simulations was to artificially recreate volumes with pre-defined
properties and to analyze these with identical methods as the fMRI data. In particular, the
simulations allowed the manipulation of the geometry of the distribution of information in a
meaningful way, mimicking the geometry of cortical activation patterns in a controlled fash-
ion. This allowed a quantitative investigation of the behavior of the two information mapping
methods used in this thesis (the feature weight mapping method and the searchlight decoding
method). Furthermore, I created a null simulation to validate the false positivity rate.

The nonparametric statistics of all simulated single subject data sets was carried out
on the permutations directly (without the Monte-Carlo resampling procedure). For this reason,
in 10000 permutations were computed for each data set except for the null simulation, where
for computational reasons only 1000 permutations were obtained.

7.1.1 Single subject geometric simulation

A data set representing one virtual subject was created. The dataset was comprised of 30
volumes in total; 15 volumes were assigned to class A and 15 to class B. Each volume had
the size 66 ⇥ 22 ⇥ 22 voxels. The volumes of both classes were filled with Gaussian noise of
the normal distribution N (0, 1) and smoothed slightly with a Gaussian smoothing kernel, the
FWHM of the kernel was set to one voxel. After this, an offset of size 0.5 was added at three
locations in class A and three different locations in class B. These locations constituted three
half-cubes for each class, positioned at the centerline of the volume (see Figure 7.1). For class
A, the offset was added for the three upper half-cubes, for class B the offset was added for the
three lower half-cubes. Importantly, the size of the half-cubes varied; the leftmost half-cube
was of the size of 6 ⇥ 6 ⇥ 1 voxels (representing fine information spread), the second one had
the dimension of 6⇥ 6⇥ 2 voxels (representing medium information spread) and the rightmost
half-cube 6 ⇥ 6 ⇥ 3 voxels (coarse information spread). Effectively there was a 4-voxel gap
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Figure 7.1: Information spread of the single-subject geometric simulation. Information was deposited
in a total of 6 half-cubes. For class A, information was deposited in the three upper half-
cubes, displayed in violet color, while for the three blue half-cubes information was present
only for class B. The half-cubes varied in their size in z -direction and hence the size of the
gap between the half-cubes.

between the leftmost, a 2 voxel gap between the middle, and no gap between the two rightmost
half-cubes.

7.1.2 Single subject null simulation

100 single-subject null data sets were generated. The intention of the simulation was to em-
pirically validate the false-positivity rate, hence there was no class information deposited at
any location. The data sets constituted each 30 volumes (15 for class A and 15 for class B).
The volumes were blocks of the size 40⇥ 40⇥ 40 voxels and were filled with noise drawn from
a uniform distribution in the interval [0, 1]. The volumes were smoothed smoothed with a
Gaussian smoothing kernel, the FWHM of the kernel was set to one voxel. Next, an area of
30 ⇥ 30 ⇥ 30 voxels was cut out from the center of the volume in order to avoid distortional
effects at the border of the volumes due to the spatial smoothing. For computational reasons,
only 1000 permutations were carried out for the SLD approach, the number of permutations
for the FWM approach was set to 10000.

Furthermore, I created 10 single-subject simulations as above, however with differing
levels of smoothness (by varying FWHM of Gaussian smoothing kernel). For this I used 10
equidistant values between 0 and 3 voxels. This procedure allowed the empirical investigation
of the impact of the intrinsic smoothness on the nonparametric framework.

7.2 Group Simulations

The point of the group-level simulations was to emulate group data sets with pre-defined prop-
erties and to analyze them with the different statistical frameworks. On one hand this allowed a
detailed comparison between parametric T-based frameworks with the proposed nonparametric
framework; on the other, the two information mapping methods (FWM and SLD) could also
be compared between each other.

7.2.1 Group simulation 5 cubes

Twelve data sets representing virtual single subjects were created[5], and all subsequent analysis
was carried out identically as the fMRI data sets. Each simulated data set consisted of 16
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Figure 7.2: Information spread for the group simulation 5 cubes. The offset which was added to
the background noise depended on the cubes location, the leftmost one had the smallest
amount of information deposited while the rightmost one had the highest information
content.

volumes in two classes (eight for A and eight for B). The volumes comprised blocks of the size
of 108⇥ 17⇥ 17 voxels, the format was chosen for illustrative reasons. For class A, the volumes
were filled with uniformly distributed random numbers sampled from the interval [0, 1]. The
volumes for class B were created in the same way, but at specific spatial locations an offset was
added. Therefore, only in these locations was information about the class present. The spatial
locations where an offset was added were five cubes with an edge length of six voxels, which
were aligned in the middle of the volumes with equal distances. Within the cubes, I added an
offset between 0.15 and 0.2 to the uniform noise (with the most left cube having an offset of
0.15 and the most right at 0.2, see Figure 7.2)[5].

Furthermore, two information degradation procedures were applied[5], since in real
fMRI group data there are two distinct sources of variability: On one hand, the neural ac-
tivity may be dependent over time, i.e. the response elicited by the same stimulus presented
at different times may systematically vary with time. This source of variability is known as
inter-session or inter-run variability. The second source of variability stems from the fact, that
neuronal response profiles depend on the subject (e.g. differences in individual anatomy or cog-
nitive strategies). Consequently, this source of variability is known as inter-subject variability.
In order to account for the first source of variability, the inter-run variability, a random value
between 0% and 50% of the offset of the corresponding cube was subtracted for each of the eight
volumes (in class B). To account for the inter-subject variability, I randomly subtracted 0–50%
of the offset of the corresponding cube for each data set, in other words the same percentage
was subtracted for all eight volumes. Therefore, the information content in the cubes depended
on the session, the virtual subject and the position of the cube, with the leftmost cube having
an offset between 0 and 0.15 and the rightmost cube having an offset between 0 and 0.20[5].

7.2.2 Group null simulation

In total, 100 group null data sets were generated [5]. No class information was deposited at
any location, as the intention of this simulation was to empirically validate the false-positive
rate. Each of these group data sets consisted of 10 virtual single-subject data sets. Each of the
single-subject data sets consisted of 10 volumes (five for class A and another five for class B).
The volumes comprised blocks of 30⇥ 30⇥ 30 voxels. All volumes were filled with noise drawn
from a uniform distribution in the interval [0, 1].
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7.3 General simulations

Besides single-subject and group-level simulations, I created two further types of simulations.
The first simulation investigates the influence of the applied cross-validation scheme to the
distribution of classification accuracies. This is especially relevant for the binomial models,
which are assumed to not show any difference in regards to the underlying cross-validation
scheme. The second simulation investigates empirically how many permutations are necessary
on single-subject level for the Monte-Carlo group recombination procedure.

7.3.1 Cross-validation influence simulation

In order to test the effect of correlation between cross-validation folds, six different scenarios
were created. Each scenario was repeatedly computed for 106 repetitions and consisted of 100
observations per class. The data points were filled with uniform noise of the interval [0, 1]. The
number of features was set to 10 (for computational reasons). The scenarios differed in the
number of applied cross-validations: I applied 2, 5, 10, 20, and 50 cross-validations. The size of
the respective test sets were as follows: 50, 20, 10, 5, and 2, so that the product between number
of cross-validations and size of the test set was constant for all scenarios. In the sixth scenario
the classifier was trained 106 times on 200 samples (100 observations per class) and then tested
on another, completely unseen data set of 200 samples, without applying cross-validation. For
each scenario and repetition, the sum of correctly identified labels over all cross-validation folds
was noted.

To quantify the deviation between theoretic binomial distribution (200, 0.5) and the
six empirical distributions, the following error term was used:

� =

rP
(H

bin

(i)�H
emp

(i))2

n
(7.1)

where H
bin

(i) is the i -th entry in the histogram of the binomial distribution and
H

emp

(i) is the i -th entry of one of the six empirical histograms. The i -th entry of the histograms
indicates how often a number of i labels were predicted correctly (or are expected to be predicted
correctly in case of the binomial histogram).

7.3.2 Simulation undersampling the permutation space

On the group level it is a priori not clear to which number of permutations on the single-
subject level are required. In order to investigate the influence of the number of single-subject
permutations on the group result, I undersampled the overall available permutation space using
different levels of undersampling.

For this I simulated datasets consisting of 12 virtual subjects and their respective data
matrices Y

i

, consisting of a fixed number of features (5 features) and 16 examples in total. Half
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of the examples were assigned to class A, the other half to class B. The data matrices were
filled with noise from a uniform distribution of the interval [0, 1].

I varied the number of permutations on single-subject basis using four levels of under-
sampling: either 10, 100, 1000 or 10000 permutations were carried out. After the single-subject
permutations were obtained, a group statistic was computed using Monte-Carlo resampling
(see Section 9.5 on page 70). This yielded one null distribution H

emp

for each of the four
levels. Next, a normal distribution was fitted to H

emp

, using the normfit function built-in
MATLAB. As a result, the two best fitting parameters µ and � of the normal distribution were
estimated. For each level of undersampling, the simulation was repeated 1000 times (including
data generation at each level).
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Chapter 8

Preprocessing of the fMRI data

8.1 Motion Correction

Although experimental subjects are carefully instructed to avoid movement while inside of the
MRI scanner, it is virtually impossible to remain perfectly still for any living human being. Sub-
ject motion manifests itself as a complex function on the fMRI data [93], since the MRI signal
depends not only on the current position but also on the spin excitation history. Furthermore,
movement causes a spatial shift in the resulting image matrices.

To compensate for the head motion, the movement effects are corrected post-hoc by
computational means. Most commonly, a rigid body transformation with 6 degrees of freedom
is applied, where three degrees are translational and the other three rotational. This most
simple type of movement correction based on realignment was applied for all fMRI experiments
in my thesis, using an implementation of the fMRI analysis software package SPM8[29].

It should be mentioned that pattern based analysis methods, such as the ones described
in my thesis, are especially prone to movement related problems: On one hand, no spatial
smoothing is applied beforehand and on the other it is intuitively accessible that any classifier
will perform worse if a spatial pattern is shifted in its coordinates for subsequent examples
(i.e. scans). Furthermore, motion related problems scale with the spatial resolution, since also
smaller magnitudes of movement may have an effect in high-resolution scanning, while the same
movement does not have a considerable effect for low-resolution data sets (see Figure 8.1).

8.2 Temporal filtering

The fMRI signal underlies fluctuations on all timescales and can be considered non-stationary.
The fluctuations have a variety of sources such as low-frequency drifts caused by the scanner[94],
and also importantly, spontaneous neuronal activity. The latter partly is due to the intrinsic

nature of the brain as a system [95] and may reflect ongoing large-scale interactions and adap-
tations between different neuronal networks. Furthermore, there are physiological effects due
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A B C

D E F

Figure 8.1: Effects of subject head motion on a high-resolution data set (upper row, simulating a voxel
size of 0.75mm) and a data set in lower resolution (lower row, simulating a voxel size of
3mm). The columns represent time steps; the displacement between the time steps has
the same physical size regardless of the resolution of the data sets. The small red square
in the upper row is a highlighting of one voxel for illustrative reasons. The blue voxels
represent activated areas. (A) 1st time step in the high-resolution data set. (B) 2nd time
step introducing a small movement in the high-resolution data. It is clearly visible that
the entire pattern has shifted, a large fraction of the pixel values has changed (e.g. the
red square). (C) 3rd time step with a heavier movement in the high-resolution data set.
The values for the largest part of the voxels has changed. (D) 1st time step in the low-
resolution data set. (E) 2nd time step in the low resolution data set, introducing a small
translation of the same physical dimension as in B. Most voxels have a comparable value as
in the 1st time step of the low-resolution data set. (F) 3rd time step of the low-resolution
data set, introducing a larger movement. The large movement has a high impact on the
data set, about half of the (activated) voxels change their value to a considerable degree.
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to cardiac and respiration cycles and changes respiratory flow rates[94].

Since the underlying idea of the pattern analysis methods discussed in this thesis is to
map experimental control variables onto statistical changes in brain signals (see Section 4.1 on
page 17), only signals on the temporal scale of the experimental trials are of interest. Ultimately,
the low frequency content is not considered here and filtered out using a high-pass filter with
a cutoff frequency of f

hp

= 1
80s .

8.3 Normalization to standard brain space

Human brains differ from person to person. While not only shape and volume are varying,
relative positions of anatomical landmarks are also diverse. On the other hand, it is often
desired to analyze data on a group-level, as only the most consistent patterns of activation
related to a cognitive function are of interest. Hence, a spatial transformation of the data
into a common coordinate space is necessary. This transformation is also known as spatial

normalization. Most commonly, each brain is transformed onto an anatomical template given
by the Montreal Neurological Institute (MNI): the template was created by averaging 305
anatomical brain scans, which had previously been linearly mapped to another template [96]
(the latter had been constructed by manually aligning anatomical landmarks).

The spatial normalization was carried out using SPM8[29], where an optimum 12-
parameter affine transformation was computed. However, due to the variability between in-
dividual brain anatomies, a perfect matching can never be achieved[97]. Depending on the
location, inaccuracies on the order of a few centimeters are possible, which can result in diffuse
group activation patterns given very localized activations on a single subject level[98].

8.4 Temporal bundling of scans

FMRI data typically exhibits a considerable degree of temporal autocorrelation[28]. The cor-
relation is commonly regarded to be due to intrinsic physiological fluctuations. This temporal
autocorrelation would create a problem if each acquired 3D volume would serve as its own
observation, as both classification and permutation methods require independent samples (ob-
servations).

Mainly, there exist two different approaches for dealing with this problem: firstly, a
specific filter can be applied to the data, which decreases the temporal autocorrelation. These
filters attempt to flatten the power spectrum of the fluctuations in the fMRI data, hence the
procedure is known as whitening. However the whitening procedures do not fully assure the
prerequisite of full independence of the observations. An alternative strategy for dealing with
the autocorrelation problem is to concatenate multiple observations into one observation. As
the temporal range of the autocorrelations typically is on a smaller order than the time scale
spanned by the concatenation, the resulting concatenated observations can be regarded as
independent from each other. Most commonly, the concatenation is applied for all scans within
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one experimental trial. The trial length typically is on the range of 15s to 30s, therefore given a
repetition time of 2s this results in 8 to 15 scans being concatenated to one observation. There
exist many variants of concatenating the scans, such as simple averaging, weighted averaging or
the general linear model (GLM, see Section 4.3 on page 19). The latter method is most widely
used, since it integrates the task-evoked BOLD-response properties of the brain.

More precisely, for every single experimental trial of an experiment, a custom GLM
regressor in the form of a column in the design matrix X (see Equation 4.1 on page 19)
is constructed. Given n voxels, m experimental conditions and with each of the conditions
consisting of k trials, the design matrix X would consist of m · k columns. After solving for
the scaling parameters � in Equation 4.3, a total of t = m · k observations is yielded (each
observation is then compromised of a 3D volume containing m voxel-wise �-estimates, i.e. one
for each trial).
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Chapter 9

Multivariate Analysis & Statistics

In the following, the multivariate analysis and the nonparametric framework introduced in this
thesis will be described. For the sake of overview the logic of the nonparametric framework of
the single-subject analysis is displayed in Figure 9.1. The rationale of the group-level analysis
is shown in Figure 9.2.

9.1 Support vector classification

For my work, I chose support vector machines (SVMs) as classifiers. SVMs have two main
advantages over other classifiers, which render them as great test platforms for non-parametric
analysis of fMRI data. Firstly, SVMs are extremely efficient from a computational point of
view. As the nonparametric permutation-based methods used in this thesis require elaborate
and hence time-intensive computations, this aspect is of essential importance. Secondly, SVMs
are able to find good classification boundaries even in very high-dimensional feature spaces[99,
page 93], which is the case for fMRI data. A third advantage of SVMs, which however is not
used in this work but given here for the sake of completeness, is the possibility to efficiently
perform a non-linear classification by mapping into a kernel space.

For my thesis I have used a linear SVM, albeit the classification performance may be
superior for an optimized non-linear SVM. The reason for this choice is mainly its higher com-
putational efficiency and a simpler interpretability of the results for the feature weight mapping
method. Furthermore, since n � t in fMRI data (n is the number of features, t the number
of examples), the advantages of non-linear classifiers are likely rather small. Throughout this
work, I use the support vector machine implementation given by the LIBSVM software package
[100]. More precisely I used LIBSVM’s two-class C -Support Vector Classification[101].

Given the data space Y (of dimension n⇥t), the label (or indicator) space Z = {�1, 1}
and the distribution D : Z ⇥ Y , a training subset is selected:

{(y1, z1), . . . , (ytr, ztr)|yi 2 Y, z
i

2 {�1, 1}}
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Figure 9.1: Schematic overview of the nonparametric framework on the single-subject level. (A)
Original order of the observations. In this illustrative example, three data points are
assigned to class A (in orange) and three to class B (in blue). (B) Permuted order of
the observations. Note that for each of the permutations, the order of the observations
had been shuffled randomly. Three permutations are depicted here, however, in the actual
data sets, up to 10000 permutations were carried out. (C) Classification using the original
data set yields the original information map. (D) Classification using the permuted data
sets yields chance information maps (one for each permutation). The resulting pool of
chance information maps is then used to construct a nonparametric voxel-wise threshold
map (e.g. p

vox

= 0.001). (E) Voxel-wise thresholding of the original map, only allowing
voxels of the original map with a voxel-wise p-value lower than set by the voxel threshold
threshold map . All supra-threshold voxels are set to 1, while the rest of the map is set
to 0. (F) Voxel-wise thresholding of the chance maps, only allowing voxels of the chance
maps that surpass the voxel-wise threshold. The same threshold is used as before for the
original map. All supra-threshold voxels are set to 1, while the rest of the map is set to
0. (G) Cluster search in the binarized chance maps, yielding a cluster-size record. (H) A
cluster search within the original binarized map yields a list of cluster sizes. Cluster-level
p-values can be assigned to this list by usage of the chance cluster size record of step G,
allowing an application of a cluster-level threshold (including a FDR correction on the
cluster p-values).
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Figure 9.2: Schematic overview of the nonparametric framework on the group-level. (A) Classification
using the original data set yields the original information maps, one for each subject.
(B) Classification using the permuted data sets yields chance information maps for of
the subjects (one for each permutation). For the group-level analysis, 100 permutations
per subject were used. (C) Averaging of the single-subject original maps, yielding one
group map. (D) Monte-Carlo resampling procedure, one permutation of each subject is
selected at random and the selected maps are averaged. The procedure is carried out
for 105 repetitions, yielding 105 group chance maps. The resulting pool of chance group
information maps is then used to construct a nonparametric voxel-wise threshold map
(e.g. p

vox

= 0.001). (E) Voxel-wise thresholding of the original group map, only allowing
voxels of the original map with a voxel-wise p-value lower than set by the voxel threshold.
All supra-threshold voxels are set to 1, while the rest of the map is set to 0. (F) Voxel-
wise thresholding of the group chance maps, only allowing voxels of the chance maps that
surpass the voxel-wise threshold. The same threshold is used as before for the original
map. All supra-threshold voxels are set to 1, while the rest of the map is set to 0. (G)
Cluster search in the binarized group chance maps, yielding a cluster-size record. (H) A
cluster search within the original binarized group map yields a list of cluster sizes. Cluster-
level p-values can be assigned to this list by usage of the chance cluster size record of step
G, allowing an application of a cluster-level threshold (including a FDR correction on the
cluster p-values).

67



where t
tr

< t. In the case of a leave-one-out cross-validation (LOOCV) scheme, for
each cross-validation step two examples are used as test set and the rest as training data, hence
t
tr

= t� 2. The C -SVM solves the following problem, in finding the minimum for[101]

minw,b,⇠

1

2
wTw + C

t

trX

i=1

⇠
i

(9.1)

so that the constraint

z
i

(wT y
i

+ b) � 1� ⇠
i

(9.2)

is fulfilled for all slack variables ⇠
i

� 0 and for all i = 1, . . . , t
tr

. The positive parameter C is
a regularization parameter here, which penalized non-zero slack variables ⇠

i

. Effectively, these
slack variables allow misclassification of training examples, therefore the C -SVM is referred to
as a soft margin classifier.

It should be noted that for computational reasons, SVM algorithms do not solve
the primal problem of equation 9.1 but rather in the the dual form, which gives equivalent
solutions to the problem in its primal form. Furthermore, it should be mentioned that prior
to classification, each column of the data matrix Y had been linearly scaled (by means of
multiplication and addition of an offset), so that the data falls in the interval [�1,+1].

The result of the (linear) classifier training is a training weight vector ~w. Given the
data of an experimental trial, which is a vector of features y, with y 2 Y (i.e. a row in the
data matrix Y ), the class membership is derived by the following: if the dot product between
the weight and feature vector ~w · ~y > 0, then the the trial is classified as belonging to class A,
while class B is determined if the product is negative. The training vector ~w can then be used
for unseen data points of the test set. As the labels of the test set are known, the predicted
labels of the classifier can be compared to the known labels.

9.2 Searchlight decoding (SLD)

For searchlight decoding, the standard volumetric spherical searchlight approach [63, 102] was
used. The diameter d of the searchlight was set to five voxels. This corresponded to a physical
diameter of 1.5mm in case of a voxel size of 3mm. For each location within the brain, all voxels
within the searchlight centered at the location were extracted (for all of the t observations). In
case of the fMRI experiments, these observations were the three-dimensional �-estimate maps.
This spatial selection of voxels was put into a linear support vector machine (see Section 9.1 on
page 65), performing a t/2-fold LOOCV procedure (see Section 9.1 and Section 4.4.4 on page 26).
In short, each cross-validation step used t � 2 observations (t/2 � 1 from each condition) as a
training set and two observations (one from each condition) as a test set. Over the course
of t/2 cross-validation folds, the classifier was trained on the training set and the labels of the
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unseen test set were predicted. The average accuracy (i.e., the percentage of correctly predicted
labels) of the t/2 cross-validation steps was then mapped onto the center of the location. The
procedure was applied to all locations of a whole brain mask and resulted in a map A of
decoding accuracies [5].

9.3 Feature weight mapping (FWM)

In the feature weight mapping method, each feature dimension is assigned a weight, which
is directly derived from the underlying classifier’s mathematical model (in this thesis a linear
SVM). The weight of a feature is an indicator of the contribution to the classification decision
and can thus be interpreted as the feature importance. More precisely, training a linear classifier
on a the full data set yields a weight vector weight vector ~w, which was derived by the classifier’s
training (see Section 9.1).

As the number of features of the data matrix Y is very high in the case of fMRI, the
classification performance is likely inferior. For this reason, a dimensionality reduction proce-
dure is applied prior to classification. For my thesis, the principal component analysis (PCA)
method is used for this reduction. The idea behind PCA is to compress the information from
Y while maximizing the information content. The PCA procedure obtains a new representa-
tion Y ⇤ of the matrix as a linear combination of the columns (features) of Y , so that the first
principal component (i.e. the first row of Y ⇤) contains the largest part of information about
the original data matrix Y [103]. The maximal number of principal components is equal to
the number of observations, i.e. the number of rows in the original data matrix Y . For the
computation of the PCA projection, the singular value decomposition of Y is obtained [103]:

Y = P�QT (9.3)

where P is the matrix of left singular values, Q the matrix of right singular values and
� is the diagonal matrix of singular values, which is equivalent to the nonzero eigenvalues of
Y TY . As the values of Y are real numbers, the matrices P and Q can be regarded as rotation
matrices.

The transformation of the data matrix Y into the PCA space Y ⇤ is then given by[103]:

Y ⇤ = Y Q (9.4)

and similarly, the transformation from the PCA space Y ⇤ into the voxel space is given by

Y = Y ⇤QT (9.5)
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9.4 Permutation testing

On the single-subject level, permutation tests were employed. The starting point for this was
the data space Y of the dimension t⇥ n, where t is the number of examples and n the number
of features. Note that Y is not the entire data space of an fMRI experiment or a simulation,
but either a spatial preselection of voxels (SLD method), or the dimensionality-reduced data
space (FWM method). The permutation is carried out by randomly shuffling the order of the
examples, i.e. by interchanging the rows of Y .

It should be highlighted that the permutation of the rows was carried out before the
data set was split into training or test sets. This ensured that there is no bias due to an uneven
class distribution in the test or training sets [5]. In case of the SLD method, one permutation
was used for a full searchlight decoding on all locations. This ensured the preservation of
the spatial correlations present in the data. As a result of one single permutation, one chance

decoding accuracy map eA was created. For the FWM method, the permutations were computed
in the PCA space, i.e. the rows of the matrix Y ⇤ were shuffled. After the computation of the
permutations, the resulting chance weights were projected back into the voxel space. Hence
the result of one single permutation procedure was a chance weight map fW in voxel space.

Depending on the type of analysis in terms of single-subject or group studies, a different
number of permutations was used: in case of single-subject analysis, up to 104 permutations
were computed, while 102 permutations per subject were sufficient for a group-level analysis.

9.5 Group level Monte-Carlo recombination

For the group analysis, an intermediate step had to be carried out which combined the results of
single-subject analysis on the group maps (this step was hence unnecessary for a single-subject
analysis). In case of SLD these were the chance accuracy maps eA

i,j

(i denotes the index of
the accuracy map, i.e. a number between 1 and 102, j denotes the subject), in case of the
FWM method the single-subject maps were chance weight maps fW

i,j

(i stands for index of the
weight map, i.e. a number between 1 and 102, j denotes the subject). The group recombination
procedure was identical for the SLD and FWM methods and was based on 100 permutations
for each of the N

sub

subjects. Then, for each subject, one out of the 100 chance maps from the
permutation procedure was drawn randomly (with replacement). Next, this selection of N

sub

chance maps was averaged voxel-wise, yielding one chance map on group-level, i.e. one chance
group accuracy map eF (SLD) or one chance group weight map eG (FWM). The procedure of
random selection and averaging was repeated 105 times, which resulted in a large pool of chance
group maps eF

m

or eG
m

, m = 1 . . . 105.

The averaging procedure was also carried out on the original (not permuted) accuracy
or weight maps. For this, in case of the SLD method, the accuracy maps A

j

were averaged
over all N

sub

subjects, resulting in a group accuracy map F . Equivalently, in case of the FWM
method, the weight maps W

j

were averaged across the N
sub

subjects, which resulted in a group
weight map G.
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9.6 Threshold map procedure

As a prerequisite for the subsequent cluster-based analysis, an empirical voxel-wise chance

distribution is required. In the case of single-subject analysis, the permuted chance maps ( eA
i

in SLD or fW
i

in FWM; i = 1 . . . N
perms

) were used directly for constructing this voxel-wise
distribution. In the case of group studies, the recombined group chance maps were utilized ( eF

i

in SLD or fG
i

in FWM; i = 1 . . . 105). For the threshold procedure, the voxel-wise histogram
of chance values was computed first. This allowed the determination of the threshold value,
which was either an accuracy value (SLD) or a feature weight (FWM). In the case of accuracy
maps, the accuracy for which the right-tailed area of the normalized histogram of voxel-wise
accuracies was below p

vox

was determined. In the case of training weights, both a left-tailed
and a right-tailed threshold weight was determined, since the voxel-wise training weight could
take both negative and positive values. In the latter case, the voxel-threshold p

vox

was divided
by a factor of two, so that the right-tailed and left-tailed area taken together was equally large
as the the right-tail area in the accuracy maps of the SLD method. The procedure was repeated
for all voxels, yielding one threshold map T (SLD) or two threshold maps T+ and T� (FWM).
Hence, in a statistical notion, the threshold maps represent the accuracy or weight level which,
if surpassed, would label the voxel as being less probable than p

vox

.

Next, the threshold maps were used to binarize both the original maps and chance
maps. If a voxel surpassed the threshold, it was set to 1, otherwise it was set to 0. For the
FWM method and the negative weight map, the voxel in the binary image was set to 1 if it
was below the threshold.

In case of the SLD method, this resulted in a binarized original accuracy map B and a
pool of binarized chance accuracy maps eB

i

where i = 1 . . . N
perms

for a single-subject study and
i = 1 . . . 105 for a group-level study. In case of the FWM method, two binarized weight maps for
positive and negative weights C+ and C� were the result form the thresholding procedure. In
analogy to the SLD method, a pool of binarized chance weight maps eC+

i

and eC�
i

were created,
where i = 1 . . . N

perms

for a single-subject study and i = 1 . . . 105 for a group-level study.

9.7 Cluster size statistics

Given the binarized chance maps ( eB
i

in case of SLD and eC+
i

respectively eC�
i

in case of FWM), it
was possible to investigate the spatial features of these maps in terms of connected components,
i.e. clusters. To perform a cluster search, I used a 6-connectivity scheme; two nonzero voxels
were considered connected if they shared a face, but not if they only shared an edge or vertex.
In other words, in the example of SLD, a voxel was joined to a cluster only if its accuracy
exceeded the accuracy corresponding to the p

vox

in the threshold map.

I applied the cluster search using the above algorithm either for the N
perms

permuta-
tion maps directly in the case of single-subject studies to the or in the 105 recombined group
maps. The occurring cluster sizes were collected in form of a cluster list (eL

cl

in case of SLD or
two cluster lists, one for negative and one for positive weights; eL+

cl

and eL�
cl

in case of FWM).
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For each of the chance maps all occurring cluster sizes were recorded (the minimum size for a
cluster was two voxels). This allowed the computation of an empirical cluster size distribution
H

cl

(SLD) or H+
cl

and H�
cl

(FWM), which was defined as the normalized histogram of cluster
sizes in the chance record:

H
cl

=
N

s

P
max(L

cl

)
s=1 N

s

(9.6)

where N
s

is the occurrence of a cluster of the size s and max(L
cl

) the largest cluster
detected.

Critically, the same cluster search was applied to the original, binarized accuracy map
B or weight maps C+ and C� and the present cluster sizes were gathered into a list L

cl

(SLD)
or L+

cl

and L�
cl

in case of FWM (for clusters with positive and negative weight). Given this
cluster size record L

cl

and the empirical chance cluster size distribution H
cl

, it is possible to
compute the probability for the occurrence of a discovered cluster size in the original data: a
cluster with the size s is computed to have a p-value of

p
cl

=

max(L
cl

)X

s

0
>s

H
cl

(s0) (9.7)

Hence, it is possible to assign a p-value to each cluster size and introduce a threshold of
cluster size for reaching significance. For the FWM method, p-values were computed separately
for positive and negative weights.

To correct for multiple comparisons at cluster level, I implemented a step-down FDR
method (as introduced in Section 5.4.2 on page 43) for the list P

cl

of all cluster p-values of
the original map. All clusters with a probability p

cl

> 0.05 were discarded, which yielded
cluster-size controlled accuracy or weight maps.

9.8 Parametric framework for comparison

The proposed nonparametric statistical framework was compared with T-tests, which are the
most commonly practiced parametrical alternative[102, 104, 105]. All T-based analysis was
carried out in SPM8[29]. In case of searchlight decoding (SLD), a one-tailed T-test against
the theoretical chance level of 0.5 was carried out. In the case of classification weight mapping
(FWM), a two-tailed T-test against 0 was carried out. The resulting T-maps were thresholded
with a voxel-wise p-value of p

vox

. For the two-tailed T-test, two one-tailed T-tests were carried
out, each thresholded at p

vox

2 (which effectively corresponds to a two-tailed tests at p
vox

). This
procedure ensured full comparability to procedure of two threshold maps in the feature weight
mapping method for the nonparametric framework. A multiple comparisons correction using
Gaussian random field methods (see Section 5.4.3 on page 44) allowed the derivation of p-
values for the resulting supra-threshold clusters (using SPM8[29]). These p-values were then
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corrected using either standard false-discovery rate based (FDR, see Section 5.4.2 on page 43)
or Bonferroni based methods (Familywise error FWE correction, see Section 5.4.1 on page 43)
as implemented in SPM8.

9.9 Processing pipelines

In the following, I will summarize the processing pipelines for the SLD and FWM method, both
on the single-subject level and group-level. As a zeroth step of each pipeline, preprocessing1

(motion correction, temporal filtering, spatial normalization to standard brain space, temporal
bundling resulting in one �-estimate map per trial) was carried out. This resulted in a data
matrix Y consisting of N

vox

voxels and t examples for each of the N
sub

subjects.

9.9.1 SLD on single subject level

1. Searchlight procedure, extraction of a spherical neighborhood of diameter d for every location
k, yielding a searchlight data matrix Y 0(k) for every voxel k = 1 . . . N

vox

. For each searchlight
location, a leave-one-out cross-validation support vector classification was computed. The mean
percentage of correctly identified labels of the test set was copied into the accuracy map matrix
A(k), i.e. to the location corresponding to the searchlight’s center voxel.

2. Permuted searchlight procedure, extraction of a spherical neighborhood of diameter d for ev-
ery location k, yielding a searchlight data matrix Y 0(k) for every voxel k = 1 . . . N

vox

and
j = 1 . . . N

sub

. For each searchlight location, a leave-one-out cross-validation support vector
classification was performed 104 times with permuted order of the rows of Y 0(k). For each per-
mutation i = 1 . . . 104, the mean percentage of correctly identified labels of the test set was copied
into the chance accuracy map matrices to the location corresponding to the searchlight’s center
voxel eA

i

(k), i = 1 . . . 104. Importantly, each permuted order i was held fixed for all searchlight
locations.

3. Threshold map procedure, computation of a voxel-wise histogram of the permuted accuracy maps
eA
i

, i = 1 . . . 104, determining the threshold map T according to the right-sided accuracy value
which corresponds to a probability of p

vox

or smaller.

4. Binarization of the original accuracy map A. If the k -th voxel A(k) surpasses the threshold set by
T (k) then B(k) = 1, otherwise B(k) = 0. The procedure is repeated for all voxels, k = 1 . . . N

vox

.

5. Binarization of the permuted accuracy maps eA
i

. If the k -th voxel eA
i

(k) surpasses the threshold
set by T (k) then eB

i

(k) = 1, otherwise eB
i

(k) = 0. The procedure is repeated for all voxels,
k = 1 . . . N

vox

and all permutations i = 1 . . . 104.

6. Cluster search in the binarized accuracy map B, resulting in cluster list L
cl

7. Cluster search in the binarized chance maps eB
i

with i = 1 . . . 104. This resulted in a cluster list
eL
cl

1
this step was omitted for all simulations. For the 7T ultra-high resolution data set no spatial normalization

to MNI space was carried out.
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8. Computation of the histogram of eL
cl

, resulting in H
cl

9. Derivation of cluster-wise p-values for all clusters in the (not permuted) cluster size list L
cl

using
chance cluster size histogram H

cl

. This resulted in a list of p-values P
cl

10. Step-down FDR-correction of the p-value list P
cl

and thresholding of original accuracy map A,
only allowing clusters with a corrected cluster p-value smaller than 0.05.

9.9.2 SLD on the group level

1. Searchlight procedure, extraction of a spherical neighborhood of diameter d for every location
k, yielding a searchlight data matrix Y 0

j

(k) for every voxel k = 1 . . . N
vox

and all subjects
j = 1 . . . N

sub

. For each searchlight location, a leave-one-out cross-validation support vector
classification was computed and the mean percentage of correctly identified labels of the test
set was copied into the accuracy map matrix A

j

(k), i.e. to the location corresponding to the
searchlight’s the center voxel. The procedure was repeated for all subjects j = 1 . . . N

sub

.

2. Permuted searchlight procedure, extraction of a spherical neighborhood of diameter d for every
location k, yielding a searchlight data matrix with shuffled rows eY 0

i,j

(k) for every voxel k =

1 . . . N
vox

and every subject j = 1 . . . N
sub

(with the permutation index i = 1 . . . 102). For each
searchlight and permutation i, a leave-one-out cross-validation support vector classification was
performed. The mean percentage of correctly identified labels of the test set was copied into
the chance accuracy map matrices to the location corresponding to the searchlight’s center voxel
eA
i,j

(k), i = 1 . . . 102. Importantly, the permutation was held fixed for all locations k = 1 . . . N
vox

.
The procedure was repeated for all subjects j = 1 . . . N

sub

.

3. Averaging of A
j

with j = 1 . . . N
sub

over all subjects, resulting in mean group accuracy map F

4. Monte-Carlo group resampling procedure: random selection of one permuted accuracy map per
subject eA

i,j

, i 2 [1, 100], j = 1 . . . N
sub

and averaging of these N
sub

maps. The step was repeated
for 105 times, resulting in chance group accuracy maps eF

m

with m = 1 . . . 105

5. Threshold map procedure, computation of a voxel-wise histogram of the permuted group accuracy
maps eF

m

, m = 1 . . . 105. This determines the threshold map T according to the right-sided
accuracy value which corresponds to a probability of p

vox

or smaller.

6. Binarization of the original group accuracy map F . If the k -th voxel F (k) surpasses the threshold
set by T (k) then B(k) = 1, otherwise B(k) = 0. The procedure is repeated for all voxels,
k = 1 . . . N

vox

.

7. Binarization of the chance group accuracy maps eF
m

. If the k -th voxel eF
i

(k) surpasses the
threshold set by T (k) then eB

i

(k) = 1, otherwise eB
i

(k) = 0. The procedure is repeated for all
voxels, k = 1 . . . N

vox

and all resampling steps m = 1 . . . 105.

8. Cluster search in the binarized group accuracy map B, resulting in cluster list L
cl

9. Cluster search in the binarized group chance maps eB
m

with m = 1 . . . 105. This resulted in the
cluster list eL

cl

10. Computation of the histogram of eL
cl

, resulting in H
cl
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11. Derivation of cluster-wise p-values for all clusters in the (not permuted) cluster size list L
cl

using
chance cluster size histogram H

cl

. This resulted in a list of p-values P
cl

12. Step-down FDR-correction of the p-value list P
cl

and thresholding of original group accuracy
map F , only allowing clusters with a corrected cluster p-value smaller than 0.05.

9.9.3 FWM on single subject level

1. Projection of the data matrix Y along its principal components, resulting in the matrix of reduced
dimension Y ⇤

2. Support vector classification of Y ⇤, resulting in a weight map W ⇤

3. Support vector classification of Y ⇤ using a random permutations of the rows of Y ⇤. Step repeated
for 104 times, resulting in fW ⇤

i

with i = 1 . . . 104.

4. Back-projection of W ⇤ into the voxel space, resulting in weight map W .

5. Back-projection of fW ⇤
i

into the voxel space, resulting in permuted weight maps fW
i

with i =

1 . . . 104.

6. Threshold map procedure, computation of a voxel-wise histogram of the permuted weight maps
fW

i

, i = 1 . . . 104, determining the threshold maps T+ and T� according to the right-sided and
left-sided weight value which corresponds to a probability of p

vox

2 .

7. Binarization of the original weight map W . If the k -th voxel W (k) surpasses the threshold set
by T+(k) then C+(k) = 1, otherwise C+(k) = 0. If the voxel W (k) falls below the threshold
set by T�(k) then C�(k) = 1, otherwise C�(k) = 0. The procedure is repeated for all voxels,
k = 1 . . . N .

8. Binarization of the permuted weight maps fW
i

. If the k -th voxel fW
i

(k) surpasses the threshold
set by T+(k) then eC+

i

(k) = 1, otherwise eC+
i

(k) = 0. If the voxel fW
i

(k) falls below the threshold
set by T�(k) then eC�

i

(k) = 1, otherwise eC�
i

(k) = 0. The procedure is repeated for all voxels,
k = 1 . . . N and all permutations i = 1 . . . 104.

9. Cluster search on the binarized weight map C+, resulting in the cluster list L+
cl

and separately a
cluster search on C�, resulting in the cluster list L�

cl

10. Cluster search in the binarized chance maps eC+
i

, i = 1 . . . 104, resulting in the cluster list eL+
cl

and
separately a cluster search on eC�, resulting in the cluster list eL�

cl

11. Computation of the histogram of eL+
cl

, resulting in H+
cl

. Separate computation of the histogram
of eL�

cl

, resulting in H�
cl

.

12. Derivation of cluster-wise p-values for all clusters in the (not permuted) cluster size list L+
cl

using
chance cluster size histogram H+

cl

, resulting in a list of p-values P+
cl

. Separate derivation of p-
values for all clusters in L�

cl

using the chance cluster size histogram H�
cl

, resulting in a list of
p-values P�

cl
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13. Step-down FDR-correction of both p-value lists P+
cl

and P�
cl

and thresholding of original weight
map W , only allowing clusters with a corrected cluster p-value smaller than 0.05.

9.9.4 FWM on the group level

1. Projection of the data matrix Y
j

corresponding to subject j along it’s principal components,
resulting in a matrix of reduced dimension Y ⇤

j

, procedure repeated for all subjects j = 1 . . . N
sub

.

2. Support vector classification of Y ⇤
j

, resulting in a weight map W ⇤
j

, procedure repeated for all
subjects j = 1 . . . N

sub

.

3. Support vector classification of eY ⇤
i,j

using a random permutations of the rows. Step repeated for
i = 1 . . . 102, resulting in fW ⇤

i,j

, i = 1 . . . 102, for all subjects j = 1 . . . N
sub

.

4. Back-projection of W ⇤
j

into the voxel space, resulting in weight map W
j

, j = 1 . . . N
sub

.

5. Back-projection of fW ⇤
i,j

into the voxel space, resulting in permuted weight maps fW
i,j

, i = 1 . . . 102,

j = 1 . . . N
sub

.

6. Averaging over all subjects of the original weight maps W
j

, j = 1 . . . N
sub

. This results in a mean
group weight map G

7. Monte-Carlo group resampling procedure: random selection of one permuted weight map per
subject fW

i,j

, i 2 [1, 100], j = 1 . . . N
sub

and averaging of the N
sub

maps. The step was repeated
for 105 times, resulting in chance group weight maps eG

m

, m = 1 . . . 105

8. Threshold map procedure, computation of a voxel-wise histogram of the permuted weight maps
eG
m

, m = 1 . . . 105. This determines the threshold maps T+ and T� according to the right-sided
and left-sided weight value which correspond to a probability of p

vox

2 .

9. Binarization of the original group weight map G. If the k -th voxel G(k) surpasses the threshold
set by T+(k), then C+(k) = 1, otherwise C+(k) = 0. If the voxel G(k) falls below the threshold
set by T�(k), then C�(k) = 1, otherwise C�(k) = 0. The procedure is repeated for all voxels,
k = 1 . . . N

vox

.

10. Binarization of the permuted weight maps eG
m

. If the k -th voxel eG
m

(k) surpasses the threshold
set by T+(k), then eC+

i

(k) = 1, otherwise eC+
i

(k) = 0. If the voxel eG
m

(k) falls below the threshold
set by T�(k), then eC�

i

(k) = 1, otherwise eC�
i

(k) = 0. The procedure is repeated for all voxels,
k = 1 . . . N

vox

and all resampling steps m = 1 . . . 105.

11. Cluster search in the binarized weight map C+, resulting in the cluster list L+
cl

and separately
cluster search on C�, resulting in the cluster list L�

cl

12. Cluster search on the binarized chance maps eC+
m

, resulting in the cluster list eL+
cl

and separately
a cluster search on eC�

m

, resulting in cluster list eL�
cl

for all resampling steps m = 1 . . . 105.

13. Computation of the histogram of eL+
cl

, resulting in H+
cl

. Separate computation of the histogram
of eL�

cl

, resulting in H�
cl

.
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14. Derivation of cluster-wise p-values for all clusters in the (not permuted) cluster size list L+
cl

using
the chance cluster size histogram H+

cl

resulting in a list of p-values P+
cl

. Separate derivation
of p-values for all clusters in L�

cl

using chance cluster-size histogram H�
cl

, resulting in a list of
p-values P�

cl

15. Step-down FDR-correction of both p-value lists P+
cl

and P�
cl

and thresholding of original weight
map W , only allowing clusters with a corrected cluster p-value smaller than 0.05.
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Chapter 10

Singe subject results

10.1 Single subject geometric simulation

The goal of this simulation was to investigate the behavior of the feature weight mapping
(FWM) method in comparison with the searchlight decoding (SLD) method, both analyzed
by the proposed nonparametric framework. The simulation exhibits a precise deposition of
information at pre-specified areas (see Figure 10.1A). Ultimately, this allowed the ability to
quantitatively compare the SLD and FWM methods in dependency of the underlying geometry
of the distribution of class information. In total, three levels of the graininess of information
distribution were used here (the leftmost, middle and rightmost half-cubes in Figure 10.1A,
representing fine, medium and coarse information distribution).

10.1.1 Qualitative comparison between the FWM and SLD method

Figure 10.1 allows a qualitative comparison between the feature weight mapping and searchlight
decoding methods. The information distribution is depicted in Figure 10.1A, the violet areas
stand for informative regions of condition A, while the blue areas stand for informative regions
of condition B. Both methods implemented the proposed nonparametric statistics, based on
random permutations and cluster size control. As the results highly depend on the voxel-wise
threshold, each method was computed using two voxel-wise thresholds.

For the low threshold (p
vox

= 0.05 one-sided in case of SLD and two-sided for the
FWM method), the SLD method labels most informative regions as significant, while also
labeling a considerable number of voxels outside the informative regions significant (Figure
10.1B). The effect becomes especially predominant in the leftmost and middle thirds of the
figure, representing fine and medium information distribution. Here, the SLD method appears
to overestimate the local information content. In contrast, the FWM method delineates the
informative regions with a high precision (see Figure 10.1C), and does not label voxels outside
of the informative regions as significant. The number of true positives, however, was smaller
as compared to the SLD method, as not all informative voxels are declared significant here.
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information spread

FWM nonparametric test
voxel-wise threshold 0.05

SLD nonparametric test
voxel-wise threshold 0.001

FWM nonparametric test
voxel-wise threshold 0.001

SLD nonparametric test
voxel-wise threshold 0.05

decoding accuracy
0.75 1.0

classifier weight
0.0 0.05

0.0-0.05

decoding accuracy
0.75 1.0

classifier weight
0.0 0.05

0.0-0.05

fine medium coarse

Figure 10.1: Overview of the single-subject geometric simulation results. (A) Distribution of informa-
tion, the three violet half-cubes contained class information for condition A, the three blue
half-cubes contained class information for class B. In total, three distinct levels of geom-
etry of information distribution were available, the leftmost half-cubes represented a fine
information spread, the middle ones an intermediate level and the rightmost half-cubes a
coarse information spread. (B) Results of the searchlight decoding method using the low
threshold. The results were corrected with the proposed nonparametric framework, using
a voxel-wise threshold of p

vox

= 0.05. (C) Results of the feature weight mapping method
using the low threshold. The blue-green colors stand for negative weights, the red col-
ors for positive weights. The results implement the nonparametric multiple comparisons
correction proposed in this thesis. The voxel-wise threshold was set to p

vox

= 0.05 (two-
sided) (D) Results for the SLD method, using a voxel-wise threshold of p

vox

= 0.001 (E)
Results for the FWM method, using a two-sided voxel-wise threshold of p

vox

= 0.001

A

B

C

FWM threshold map positive
voxel-wise threshold 0.025

FWM threshold map negative
voxel-wise threshold 0.025

SLD threshold map
voxel-wise threshold 0.001

decoding accuracy
0.75 1.0

classifier weight
0.0 0.05

classifier weight
0.0-0.05

Figure 10.2: Threshold maps for the single-subject geometric simulation using the optimal voxel-
wise thresholds for both SLD and FWM. The optimal thresholds are determined on a
heuristic basis (in the following section). (A) The optimal voxel-wise threshold for SLD
corresponds to p

vox

= 0.001. As the decoding accuracies are of discrete nature since, the
map displays only two values here. (B) For the FWM method and one-sided p

vox

= 0.025
for positive weights was used (which corresponds to a two-sided voxel-wise threshold of
p
vox

= 0.05). (C) For negative weight in the CWM method a one-sided p
vox

= 0.025
was used (corresponding to a two-sided voxel-wise threshold of p

vox

= 0.05).
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Figure 10.3: Cluster-size histogram for the single-subject geometric simulation analyzed by the SLD
method. The red line in the histograms marks the cluster size corresponding to the
(uncorrected) cluster p-value p

cl

= 0.05. (A) Cluster-size histogram using a voxel-wise
threshold of p

vox

= 0.05. Clusters with a size larger than 19 voxels obtain a p-value
p
cl

< 0.05 here (B) Cluster-size histogram implementing a voxel-wise threshold with
p
vox

= 0.001. The cluster size corresponding to the cluster p-value p
cl

= 0.05 was 5
voxels

Using the high threshold (p
vox

= 0.001), the SLD results appear improved, as the num-
ber of significant voxels outside the informative regions was smaller than for the low threshold.
On the other hand, using the high threshold the FWM method leads to almost no voxels la-
beled as significant. A more in-depth quantitative analysis of the impact of the voxel-wise
threshold in dependence of the geometry of information distribution is found in Section 10.1.2
on page 86.

The threshold maps for the nonparametric framework are displayed in Figure 10.2 for
both the SLD and FWM method. Note that the voxel-wise thresholds displayed here differ
for both methods, the threshold was set to p

vox

= 0.001 for SLD and a two-sided threshold of
p
vox

= 0.05 for the FWM method (which corresponds to two one-sided thresholds p
vox

= 0.025

for positive and negative weights respectively). Furthermore it should be stated that in the
case of the SLD method, there exists only 31 possible values for the decoding accuracy (as each
condition consisted of 15 examples), therefore the threshold map was very coarse.

The empirical cluster size histograms are depicted in Figure 10.3 (SLD method) and
Figure 10.4 (FWM method). For the SLD method and the low voxel-wise threshold of p

vox

=

0.05, the minimum cluster size for obtaining a cluster p-value of p
cl

< 0.05 was 19 voxels; for
the higher voxel thresholdp

vox

= 0.001 the minimum size for the SLD method was 3 voxels.
In case of the FWM method and the low threshold (p

vox

= 0.05 two-sided), the minimum
size for p

cl

= 0.05 was 7 voxels (both for positive and negative weights). For the high voxel-
wise threshold p

vox

= 0.001 (two-sided) the minimum size was 3 voxels (both for positive and
negative weights)

83



A B

C D

2 3 4 5 6
100

101

102

103

104

Cluster size

C
ou

nt

0 5 10 15 20 25 30 35 40
100

101

102

103

104

105

106

Cluster size

C
ou

nt

2 3 4 5
100

101

102

103

104

Cluster size

C
ou

nt

0 5 10 15 20 25 30 35 40
100

101

102

103

104

105

106

Cluster size

C
ou

nt

Figure 10.4: Cluster histograms for the FWM method applied to the single-subject geometric simu-
lation data. The red line in the histogram denotes the cluster size corresponding to a
cluster p-value of p

cl

= 0.05 (A) Cluster histogram for positive weights using a voxel-wise
threshold of p

vox

= 0.025. The minimum cluster size for a cluster p-value p
cl

< 0.05 was 7
voxels (B) Cluster histogram using the same voxel-wise threshold as in A (p

vox

= 0.025),
the minimum cluster size for p

cl

< 0.05 also was 7 voxels here (C) Cluster histogram
for positive weights and the higher voxel-wise threshold p

vox

= 0.0005. The minimum
cluster size for p

cl

< 0.05 was 3 voxels (D) Cluster histogram for negative weights and
p
vox

= 0.0005. The minimum cluster size for p
cl

< 0.05 was 3 voxels here

84



A simulation
fine information spread

B simulation
medium information spread

C simulation
coarse information spread

pr
ec

is
io

n
1

0 1sensitivity

pr
ec

is
io

n
1

0 1sensitivity
pr

ec
is

io
n

1

0 1sensitivity
pr

ec
is

io
n

1
0 1sensitivity

pr
ec

is
io

n
1

0 1sensitivity

pr
ec

is
io

n
1

0 1sensitivity

SLD

FWM

Figure 10.5: Precision/recall curves for the three different levels of information distribution of the
single-subject simulation. The precision is the number of significant voxels inside the
informative regions divided by the total number of significant voxels. The number of
significantly labeled voxels inside the informative regions divided by the total volume of
these regions is known as recall or sensitivity. The simulation had been cut into three
equally sized areas of size 22⇥ 22⇥ 22, voxels which were analyzed separately. The red
dots represent the FWM method, the blue dots the SLD method. (A) Precision/recall
curves for the leftmost third area, implementing a fine information distribution. The
left box is the precision/recall curve based on uncorrected voxel p-values (derived from
the permutation distribution), the right box implements the full nonparametric multiple
comparison correction (where the full cluster-based analysis was carried out for a large
number of p-values). (B) Precision/recall curves for the middle area with an interme-
diate distribution of information. Also here, the left box does not implement a multiple
comparisons correction, while the right box is corrected using the nonparametric cluster
size control. (C) Precision/recall curve for the rightmost area of the simulation, con-
taining the half-cubes with a coarse distribution of information. The left box in here
shows uncorrected data, while the right box is corrected for multiple comparisons with
the nonparametric cluster-size based framework.
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10.1.2 Influence of geometry

For analyzing the influence of geometry on the simulation, the total area was divided into three
parts of equal size (i.e. 22 ⇥ 22 ⇥ 22 voxels). The leftmost area contains the two half-cubes
representing a fine distribution of information, the middle one an intermediate level and the
rightmost one a coarse level of information distribution. The three areas had been analyzed
separately from each other. The analysis was carried out with and without application of the
multiple comparisons correction. If no multiple comparisons correction was used, the analysis
was based on p-value maps which were derived from the permutation distribution and the
original accuracy or weight maps. In both cases (uncorrected or corrected) the maps were
thresholded at certain p-values, repeated by counting of the total number of significant voxels
within and outside the informative regions. In case of the version with multiple comparisons
correction, the entire cluster-based analysis was carried out for different levels of threshold
maps.

The procedure allowed the computation of the precision (number of significant voxels
within informative regions divided by total number of significant voxels) and the recall or
sensitivity (which is defined as the number of significant voxels within the informative regions
divided by the volume of the informative regions). In other words, the precision gives a measure
of the fraction of true positives and the recall/sensitivity a measure of the fraction of informative
area labeled significant. Both values are plotted against each other in Figure 10.5.

The three subdivisions of areas are displayed separately in Figure 10.5A (fine informa-
tion spread), Figure 10.5B (intermediate) and Figure 10.5C (coarse information spread). The
left boxes in this figure depict the uncorrected charts (without cluster-based analysis, based on
permutation-derived p-values) while the right boxes implement the multiple comparisons cor-
rection (where for a large number of voxel-wise p-values the cluster-based analysis was carried
out). Evidently, in the case of the uncorrected maps (left boxes), for fine and intermediate
information spread the FWM method has a higher precision for any given level of sensitivity.
Only in the case of coarse information spread and low thresholds (hence high sensitivity), does
the SLD method return a higher precision. In general terms, the sensitivity increases for more
stringent p-values (i.e. lower p-values), while the precision declines (the p-values are not dis-
played in this figure). For any given p-value, the FWM method and SLD method show vastly
different ratios between precision and sensitivity, furthermore, this difference also depends on
the underlying geometry. While the FWM method performs very well (i.e. high sensitivity and
precision) for rather low p-values (e.g. p

vox

= 0.05), the SLD method performs better in the
regime of low p-values (e.g. p

vox

= 0.001).

In the case of additional multiple comparisons using cluster-size control (the right
boxes of Figure 10.5), the FWM method never achieves 100% sensitivity, i.e. does never label
all informative voxels as significant. The precision, however, is extremely high in this case,
indicating that the voxels labeled significant are actually almost exclusively in informative
regions. The SLD approach achieves higher sensitivities in the corrected case featuring cluster
size control. On the other hand the precision is very low here, in particular for the fine and
intermediate information spreads. In regards to the optimal p-values, also here the FWM
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p
cl

0.01 0.02 0.03 0.04 0.05
expected number of clusters 1 2 3 4 5

SLD number of clusters 2 2 2 4 4
FWM+ number of clusters 2 2 4 4 5
FWM�number of clusters 0 0 0 1 3

Table 10.1: Results of the null simulation on single-subject level, number of expected clusters given
the pre-specified type I error rate versus number of empirically found clusters. The first
row depicts the 5 values for the type I error rate p

cl

on cluster level. Given the total of
100 simulations, the number of expected clusters for each level of p

cl

is displayed in the
second row. In the third to fifth row, the number of empirically found clusters for the
SLD and FWM method is displayed. For the FWM method, the statistics were carried
out for positive and negative weights separately.

method performs well when using high p-values, while the SLD method performs better for
lower p-values.

10.2 Single subject null simulation

A total of 100 null simulations on single-subject level were carried out. The number of permuta-
tions was set 1000 for the SLD method and 10000 for the FWM approach (due to computational
limitations). The voxel-wise threshold for the SLD method was set to p

vox

= 0.001, while for
the FWM method the threshold was set to p

vox

= 0.05 (two-sided). The type I error rate speci-
fied by the cluster level p

cl

was varied using 5 equidistant values between 0.01 and 0.05. Hence,
given the expected error rate and the number of simulations, an expectation value for the num-
ber of false positive clusters could be computed. This expectation value could be compared to
the empirically found number of false positive clusters using the SLD or FWM method. The
results are displayed in Table 10.1.

The results indicate that the number of empirically found clusters only marginally
deviates from the number of expected clusters for value of p

cl

. As only 100 simulations were
be carried out, the results should be regarded as approximation of the limit of a high number
of simulations, therefore small deviations are possible. Given this consideration, it can be
stated that the number of empirically found false-positive clusters lies well within the number
of expected false-positive clusters for any given value of p

cl

.

10.2.1 Influence of underlying image smoothness

In order to demonstrate how the underlying smoothness (spatial correlation) in the images is
implicitly considered in the empirical cluster size histograms, I constructed 10 simulations in
the same manner as the single-subject null simulation above, however, varying the Gaussian
smoothing kernel FWHM using 10 equidistant values between 0 and 9 millimeters in equidistant
steps, corresponding to 0 to 3 voxels (the voxel size was set to 3mm). The nonparametric
statistics were computed both for the SLD method (using a voxel-wise threshold of p

vox

= 0.001)
and the FWM method (using a right-tailed threshold of p

vox

= 0.05). Next, the cluster size
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Figure 10.6: Impact of the underlying intrinsic smoothness on the cluster-size histograms. The
smoothness is varied using 10 values between 0 and 9mm, corresponding to 0 to 3 voxels
(with a voxel size of 3mm). The cluster size histograms for the SLD and FWM method
were computed for each level of spatial correlation. This allowed a determination of the
cluster size corresponding to a (uncorrected) p-value of p

cl

= 0.05 (which indicates the
broadness of the histogram). For both methods, this critical cluster size monotonically
increases for larger values of smoothness, implying broader cluster size histograms.

corresponding to a cluster p-value p
cl

= 0.05 was computed for each of the 10 cluster size
histograms for the SLD and respectively for the FWM method. The results are shown in
Figure 10.6. For both the SLD and FWM method, the critical cluster size (corresponding to
p
cl

= 0.05) monotonically depends on the smoothness of the underlying input data; more spatial
correlation effectively broadens the cluster size distributions monotonically. Hence the spatial
correlation between neighboring voxels is implicitly reflected in the cluster size histograms.

10.3 3T tapping synchronization experiment

The results for the 3T tapping synchronization fMRI experiment for a single-subject are dis-
played in Figure 10.7. The results depict the classification of a synchronization task with
a discrete visual versus a continuous visual target sequence. For the analysis, the proposed
nonparametric framework based on permutations and cluster size control was applied to the
searchlight decoding and the feature weight mapping method. Two levels of voxel-wise thresh-
olds were used for each method; a low one (p

vox

= 0.05) and a high one (p
vox

= 0.001). In
the case of the FWM method, the threshold accounted for a two-sided test equivalent with
two one-sided tests to each p

vox

2 . The SLD method did not yield any significant results for the
low threshold of p

vox

= 0.05, therefore the threshold was decreased here to p
vox

= 0.01. The
threshold maps are displayed in Figure 10.8.

For the low thresholds (p
vox

= 0.01), 3951 voxels were labeled significant using the
SLD method. For the FWM method (p

vox

= 0.05) 859 voxels were identified significant. The
overlap of voxels between both methods was 684 voxels, leaving 3267 voxels identified exclusively
from the SLD method and 175 voxels labeled significant solely by the FWM method . Both
methods label the primary visual cortex as significant (first and second slice of Figure 10.7A/B
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A SLD nonparametric test
voxel-wise threshold 0.01 

decoding accuracy

0.75 1.0

B FWM nonparametric test
voxel-wise threshold 0.05

C SLD nonparametric test
voxel-wise threshold 0.001

decoding accuracy

0.75 1.0

D FWM nonparametric test
voxel-wise threshold 0.001

classifier weight

0.0 0.01

classifier weight

0.0-0.01

classifier weight

0.0 0.01

classifier weight

0.0-0.01

Figure 10.7: Comparison between the SLD and FWM method on single-subject level for the 3T tap-
ping synchronization experiment. All results are corrected for multiple comparisons using
the proposed nonparametric framework. (A) Results of the SLD method, using a voxel-
wise threshold of p

vox

= 0.01 (using p
vox

= 0.05 no clusters were labeled significant).
(B) Results of the FWM method using p

vox

= 0.05 (two-sided). No negative weights
have been labeled as significant here. (C) SLD results for the high voxel-wise threshold
p
vox

= 0.001. (D) FWM results for the high threshold p
vox

= 0.001.
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A SLD threshold map
voxel-wise threshold 0.001 

decoding accuracy

0.75 0.9`

B FWM threshold map positive
voxel-wise threshold 0.025

C FWM threshold map negative
voxel-wise threshold 0.025

classifier weight

0.0 0.025

classifier weight

0.0-0.025

Figure 10.8: Threshold maps for the 3T tapping synchronization experiment on the single-subject level
for both the SLD and FWM method. (A) SLD threshold map, depicting the accuracy
level equivalent to p

vox

= 0.001 (B) FWM threshold map for the positive weights and
a voxel-wise threshold of p

vox

= 0.025 (C) FWM threshold map depicting the negative
weight level equivalent to p

vox

= 0.025
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Figure 10.9: Cluster size histograms for the 3T tapping synchronization experiment using the SLD
method on a single-subject level. The red line in the histograms marks the cluster size
corresponding to the uncorrected cluster p-value p

cl

= 0.05. (A) Cluster size histogram
using a voxel-wise threshold of p

vox

= 0.01. Clusters with a size of more than 31 voxels
obtain a p-value p

cl

< 0.05 (B) Cluster size histogram using a voxel-wise threshold was
p
vox

= 0.001. The cluster size corresponding to the cluster p-value of p
cl

= 0.05 was 25
voxels

). Secondary visual areas and the superior parietal lobule are found bilaterally significant in the
SLD method, however only on the right hemisphere for the FWM method (second slice of Figure
10.7A/B). Furthermore, the SLD method depicts the visual cortex V5, which is implicated in
motion processing (third slice of Figure 10.7A). The area remains undetected in the FWM
method (Figure 10.7B). Motor areas or thalamic areas are not detected on single-subject level
with either method.

For the higher threshold (p
vox

= 0.001), a total of 2719 voxels were labeled as sig-
nificant for the SLD method. The number of significant voxels in the FWM method was 266;
the overlap between both methods was 200 voxels (leaving 2519 identified exclusively by the
SLD method and 66 exclusively by FWM). The SLD method labels the primary visual regions
as significant (Figure 10.7C, the first two slices), furthermore secondary visual areas and the
superior parietal lobule are detected. The visual area V5 is not labeled as significant at this
threshold. The FWM method only labels parts of the primary visual regions as significant
(Figure 10.7D at the first slice), furthermore the right visual area V5 is detected (Figure 10.7D
at the third slice). Also here, neither the SLD nor the FWM method were able to identify any
motor related or thalamic areas.

The cluster size histograms for the SLD method are displayed in Figure 10.9. For
the lower threshold a cluster minimum size of 31 voxels was required for a cluster p-value
smaller than 0.05, for the higher threshold a cluster size of at least 25 voxels was needed. The
corresponding histograms of the FWM method for this data set are depicted in Figure 10.10.
For the lower threshold, the minimum size for clusters to obtain a p-value smaller than 0.05 was
14 voxels (both for the positive and negative weights). In the case of the higher threshold, the
minimum cluster size was 5 voxels (corresponding to a cluster p-value of p

cl

= 0.05). However it
should be noted that the cluster-size histograms for positive and negative weights differ slightly
in their long tails; very large clusters are more probable for positive weights.
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Figure 10.10: Cluster size histograms for the 3T tapping synchronization experiment using the FWM
method on single-subject level. The red line in the histogram marks the cluster size
corresponding to a cluster p-value of p

cl

= 0.05 (A) Cluster histogram for positive
weights using a voxel-wise threshold of p = 0.025. The minimum cluster size for a
cluster p-value p

cl

< 0.05 was 14 voxels (B) Cluster histogram using the same voxel-wise
threshold as in A (p = 0.025), the minimum cluster size for p

cl

< 0.05 was also14 voxels
here. (C) Cluster histogram for positive weights and the higher voxel-wise threshold
p
vox

= 0.0005. The minimum cluster size for p
cl

< 0.05 was 5 voxels. (D) Cluster
histogram for negative weights and p

vox

= 0.0005. The minimum cluster size for p
cl

<
0.05 was 6 voxels here.
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10.4 7T finger tapping and imagination

The ultra-high resolution 7T finger tapping and imagination experiment was analyzed using
the proposed nonparametric framework applied to the searchlight decoding and the feature
weight mapping method. The searchlight diameter was set to 3.75mm, corresponding to a
volume of 34mm3. Only the two conditions of rest versus tapping with touch were classified
against each other. The results for a single-subject analysis are shown in Figure 10.12 (using
a low voxel-wise threshold) and Figure 10.13 (using a high voxel-wise threshold). Both figures
consists of three axial slices, and the slice orientation is given in Figure 10.11. The low voxel-
wise threshold was set to p

vox

= 0.01 in the case of SLD (as no results were significant with
p
vox

= 0.05), with the results shown in Figure 10.12A. The threshold for the FWM method
was set to p

vox

= 0.05 (two-sided), and the results are displayed in Figure 10.12B. The SLD
method labels the part of the motor cortex which controls hand movements as significant. The
same regions are also labeled as significant when using the FWM method. In contrast to the
SLD method, however, only regions at the surface of the cortex are labeled significant, while
the SLD method labels considerable regions as significant. As only the surface of the cortex
contains grey matter and the inside of the cortex white matter, information representing the
stimulus should only be contained in the surface. In other words, the SLD method labels
considerable parts of uninformative regions inside the cortex as significant, which only contain
white matter. Furthermore the FWM method identifies regions in the parietal and frontal
cortex as significant, while these regions remain undetected for the SLD method. The total
significant volume for the SLD method was 3687 voxels, and the corresponding the significant
volume for the FWM method was 2065. While 865 voxels were labeled by both methods as
significant, 2837 voxels were labeled as significant exclusively by the SLD method and 1215
voxels were labeled as significant only by the FWM method.

For the high voxel-wise threshold (p
vox

= 0.001) the SLD method (Figure 10.13A)
delineates the motor cortex in a similar fashion as when using a the lower threshold. However,
additional regions in the parietal cortex are now identified as well (the same regions that
had been found significant when using the FWM method with a low threshold). The (false
positive) identification of white matter voxels is improved to a small degree when using the
higher threshold in the SLD method. If the high voxel-wise threshold is applied to the FMW
method, the results remain very sparse (Figure 10.13B); while most regions that had been
identified previously with the low threshold are also found here, the significant volume shrunk
considerably. The total volume labeled as significant by the SLD method was 2206 voxels,
while the significant volume for the FWM method was 261 voxels. 187 voxels were labeled by
both methods as significant, leaving 2019 voxels identified solely by the SLD method and 74
voxels exclusively by the FWM method at this threshold.

In Figure 10.14, the empirical cluster size histograms for the SLD method are shown.
In the case of the lower voxel-wise threshold of p

vox

= 0.01, a minimum size of 22 voxels
was required (for a uncorrected cluster p-value smaller than 0.05). For the higher threshold
p
vox

= 0.001, a minimum size of 14 voxels was required. The cluster histograms for the FWM
method are shown in Figure 10.15. In here, a minimum size of 8 voxels was required for
the lower voxel-wise threshold of p

vox

= 0.05 (two-tailed), both for the positive and negative
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Figure 10.11: Slice orientation for the high resolution 7T finger tapping and imagination data set.
The coverage is shown in light blue color and the three slice positions are depicted in
green color in the coronal (upper left) and sagittal (upper right) views.
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SLD nonparametric test

voxel-wise threshold 0.01
decoding accuracy
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FWM nonparametric test
voxel-wise threshold 0.05

B
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Figure 10.12: Results of the high resolution 7T finger tapping and imagination data set, classify-
ing finger tapping with touch versus rest. The nonparametric framework proposed in
this thesis had been applied to the searchlight decoding and feature weight mapping
methods. This figure depicts the results for the low voxel-wise threshold. (A) SLD
method (diameter = 3.75mm) with a voxel-wise threshold of p

vox

= 0.01 (no results
were returned for p

vox

= 0.05). (B) FWM method, using a (two-sided) threshold of
p
vox

= 0.05.
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A
SLD nonparametric test

voxel-wise threshold 0.001
decoding accuracy
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FWM nonparametric test
voxel-wise threshold 0.001

B

classifier weight
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Figure 10.13: Results of the high resolution 7T finger tapping and imagination data set, classifying
between finger tapping with touch versus rest. The nonparametric framework proposed
in this thesis had been applied to the searchlight decoding and feature weight mapping
method. The current Figure shows the results for the high voxel-wise threshold (p

vox

=
0.001). (A) SLD method (diameter = 3.75mm) (B) FWM method, using a (two-sided)
threshold of p

vox

= 0.001.
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Figure 10.14: Cluster histograms for the SLD method, which was applied to the 7T finger tapping and
imagination data set on a single-subject level. The red line in the histograms denotes
the cluster size corresponding to the uncorrected cluster p-value of p

cl

= 0.05. (A)
Cluster-size histogram using a voxel-wise threshold of p

vox

= 0.01. Clusters with a size
larger than 22 voxels obtain a p-value p

cl

< 0.05 (B) Cluster-size histogram using a
voxel-wise threshold of p

vox

= 0.001. The minimum cluster size corresponding to the
cluster p-value p

cl

= 0.05 was 14 voxels.

weights. In the case of the higher voxel-wise threshold p
vox

= 0.001, the minimum cluster size
corresponding to a cluster p-value of smaller than 0.05 was 3 voxels both for the positive as
well as negative weights.
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Figure 10.15: Cluster histograms for the FWM method applied to the 7T finger tapping and imag-
ination data set. The red line in the histogram marks the cluster size corresponding
to a cluster p-value of p

cl

= 0.05. (A) Cluster histogram for positive weights using
a voxel-wise threshold of p = 0.025. The minimum cluster size for a cluster p-value
of p

cl

< 0.05 was 8 voxels. (B) Cluster histogram using the same voxel-wise thresh-
old as in A (p = 0.025), the minimum cluster size for p

cl

< 0.05 was also 8 voxels
here. (C) Cluster histogram for positive weights and the higher voxel-wise threshold
p
vox

= 0.0005. The minimum cluster size for p
cl

< 0.05 was 3 voxels. (D) Cluster his-
togram for negative weights and p

vox

= 0.0005. The minimum cluster size for p
cl

< 0.05
was also 3 voxels here.
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Chapter 11

Group analysis results

11.1 Group simulation 5cubes

The aim of this simulation was to emulate a virtual group of subjects which are in two dis-
tinct “brain”-states. Most crucially, the simulation allowed a precise determination of the local
information content. This made a quantitative comparison possible between the proposed non-
parametric framework and T-based methods. The comparison was carried out for both the
searchlight decoding and for the feature weight mapping method. Furthermore, the simulation
allowed a direct comparison between the searchlight method and feature weight method itself
(using the nonparametric framework). It should be noted that since in this simulation only a
positive class offset was added to the data points of one class, only a one-sided threshold was
applied for the FWM method.

11.1.1 Nonparametric vs parametric

In the following, the proposed nonparametric framework for group level analysis is compared to
the commonly applied T-based method for statistical inference. The comparisons are carried
out separately for the SLD and FWM method.

11.1.1.1 Searchlight decoding

Comparison of nonparametric vs parametric A detailed comparison between the proposed
method and T-based statistics is found in Figure 11.1. Here, one slice of the simulated data is
shown which includes the five cubes where information had been added. The arrangement of the
cubes is displayed in Figure 11.1A. The white regions indicate the five informative cubes and the
black regions represent the noise background. The raw group accuracy map, which is the average
of the 12 single-subject accuracy maps, is depicted in Figure 11.1B. Upon visual inspection, it
is possible to locate the five informative regions, while in some other areas (especially on the
right side) the noise background appears with a very similar structure. Figure 11.1C shows the
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Figure 11.1: Group simulation 5cubes data set analyzed by the SLD method comparing the paramet-
ric T-based versus the proposed nonparametric framework. (A) Information spread of
the raw data (which served as the input for the classifier). Note the five cubes where
information was stored and the variation of information content: the first cube from
the left had the smallest information content, progressing to the last on the right where
the information was at the maximum. (B) Mean decoding accuracy map over all 12
virtual subjects. (C) T-test on the accuracy maps, corrected for multiple testing using
Gaussian random fields and FDR cluster thresholding (SPM8) and a voxel-wise threshold
of p

vox

= 0.001. (D) Results of the new nonparametric method based on permutation
and Monte-Carlo resampling methods implementing the multiple comparisons correction.
The voxel-wise threshold p

vox

= 0.001 was set here to the same value as for the T-based
method. (E) Threshold map for the cluster search algorithm, depicting the accuracy
corresponding to p

vox

= 0.001. The map displays an inhomogeneity of the local chance
distribution. (F) Table with the cluster p-values for each of the five cubes (represented
as columns) using different statistical measures (represented as rows). The first two rows
display T-based methods, the last one indicates the new nonparametric method.
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Figure 11.2: Nonparametric cluster-size histogram from the group simulation 5cubes data set based
on searchlight decoding and a voxel-wise threshold p

vox

= 0.001. The red line marks
the (uncorrected) p

cl

= 0.05 percentile of the cluster size distribution (cluster size = 5
voxels).

standard T-test against chance level carried out in SPM8. The map was thresholded at a voxel-
level of p

vox

= 0.001 and corrected by Gaussian random fields methods and FDR-methods. The
minimum cluster p-level was set to p

cl

= 0.05. On the other hand, Figure 11.1D demonstrates
the new nonparametric cluster-size control, including multiple comparisons correction and using
the same voxel-level threshold of p

vox

= 0.001. The map here shows the supra-threshold voxel-
wise accuracy values. The (nonparametric) threshold map for a voxel-wise p

vox

= 0.001 level
is displayed in Figure 11.1E, revealing the spatial inhomogeneity found in the width of the
chance distribution. Figure 11.1F shows the detailed statistics for each cluster for both the
T-based and the nonparametric approaches. Out of the five informative regions in our data
simulation, four (FWE controlled) or all five (FDR controlled) were revealed using SPM8 and
T-tests. When the proposed method was used, all five informative regions could be decoded.
The total informative area principally contained 5 · 63 = 1080 voxels in total. The standard
SPM8 method with FDR correction on cluster level labeled approximately 12% of this volume
as significant (134 voxels), while the nonparametric approach determined that approximately
24% of the informative volume was significant (258 voxels). This represents an increase of
almost 100% in terms of sensitivity.

The cluster distribution of the 105 chance group accuracy maps from the nonparamet-
ric framework is shown in Figure 11.2. The red line indicates the cluster size corresponding
to the p

cl

= 0.05 level, where the right tail area of the (normalized) cluster size distribution is
smaller than 0.05. For this p-value (or smaller), clusters need to have an extent of five voxels
or more. Notably, this is the uncorrected threshold displayed for illustrative purposes here; in
the framework, a step-down FDR procedure had been applied to the uncorrected p-values and
hence a corrected threshold was set.

Influence of the initial voxel-wise threshold The voxel threshold p
vox

was varied (i.e. the
threshold for a voxel to be counted as belonging to a cluster), in order to investigate its impact
on the cluster statistics. A total of four different voxel thresholds were used (p1 = 0.05,
p2 = 0.01, p3 = 0.005, p4 = 0.001). For each threshold both the nonparametric method and
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Figure 11.3: Influence of the initial voxel threshold p
vox

for the SLD method in the group simula-
tion 5cubes. (A) Number of voxels declared significant, which were located within the
informative regions. With higher thresholds (i.e., smaller values for p

vox

), the number
of voxels declared significant decreases. For all values of p

vox

, the proposed method de-
clared more voxels significant as compared to the T-test based frameworks. (B) Number
of voxels declared significant in non-informative regions. Also here, for higher thresholds
(smaller p-values) less voxels are declared significant. For the three smallest thresholds
(p1, p2 and p3) the proposed nonparametric method declares a smaller fraction of voxels
significant in the non-informative regions. For the highest threshold (p4) the number of
significant non-informative voxels is comparable between the nonparametric and T-based
methods. (C) Precision, i.e. ratio of voxels labeled significant within informative regions
and the total number of voxels labeled significant. Throughout all thresholds (p1 to p4)
the nonparametric method has a higher precision as compared to T-based approaches.
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the standard T-test approaches were computed. Next, the subset of voxels that surpassed the
multiple comparisons corrections were further investigated in regards to whether they were
located inside or outside the informative regions (the 5 cubes). The results are displayed in
Figure 11.3. It should be mentioned that I apply a rather strict interpretation of false positivity
in the sense that if the center voxel of the searchlight is outside the informative region and the
searchlight is declared significant, the voxel is counted as false positive (even if a part of the
searchlight volume actually is within an informative region). For the lowest threshold (p1), the
amount of significant voxels in informative regions is comparable for all three implementations
(nonparametric, T-test and FDR, T-test and FWE). However, the number of voxels declared
significant in non-informative regions by T-tests for this threshold is very high, and about the
same as the number of voxels declared significant within the informative regions. For every
higher threshold (p2 to p4), the total number of voxels declared significant that are located
in informative regions is larger when the new proposed nonparametric method is used (see
Figure 11.3A). The number of significant voxels outside of informative regions is lower for the
nonparametric technique for all thresholds (see Figure 11.3B). The precision (ratio between
the volume labeled significant within the informative regions and the total volume labeled
significant) is shown in Figure 11.3C. For the all thresholds (p1 to p4), the nonparametric
method has a higher precision here.

Influence of the searchlight diameter I varied the searchlight diameter over five values within
the group simulation 5cubes: three, five, seven, nine and eleven voxels were used. Both the
proposed nonparametric method and standard T-based methods were analyzed with the dif-
ferent diameters. For this, I calculated the number of voxels declared significant inside and
outside the informative regions. Note that as the searchlight diameter increases, this rather
strict measure penalizes the searchlight method per se, as the center voxel of a searchlight
may be outside the informative region but a (increasingly larger) part of its content actually
stems from the informative regions. In other words, when larger searchlights are employed,
the likelihood of mapping accuracy values outside the informative regions increases, because a
sufficient fraction of the searchlight might lie inside informative regions while the center does
not. The results are depicted in Figure 11.4. Throughout all searchlight diameters, the new
nonparametric method defines a larger number of voxels as significant. For small searchlight
volumes (three and five voxels) a volumetric gain of more than 100% can be achieved (as com-
pared to T-based methods), while for larger diameters the gain is about 50–70% (Figure 11.4A).
The number of voxels declared significant outside the informative cubes, however, is larger for
the nonparametric method, especially for larger searchlight diameters (Figure 11.4B). The pre-
cision (ratio of significant volume within informative regions and total significant volume) is
displayed in Figure 11.4C and is higher for smaller diameters when using the nonparametric
method. For large searchlight diameters, however, the T-based method exhibits a higher value
for the precision.
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Figure 11.4: Influence of searchlight diameter in SLD maps from the group simulation 5cubes. The
number of voxels within and outside the informative regions for five different searchlight
diameters was computed. (A) Number of voxels inside the informative cubes declared
significant. (B) Number of voxels outside the informative cubes declared significant (C)
Precision, i.e. ratio of voxels labeled significant within the informative region and the
total volume labeled significant
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11.1.1.2 Feature weight mapping

In the following, the FWM method was applied to the group simulation 5cubes data. It
should be noted that since there was only a positive offset in one group in one condition of
this simulation, only one threshold map was computed. As before, I begin with a comparison
between the T-based method and the proposed nonparametric framework.

Comparison of nonparametric vs parametric An overview over the results can be found in
Figure 11.5. The same slice as in the analogous SLD figure (Figure 11.1) is displayed here. The
white cubes in Figure 11.5A also display the informative regions in white color. The mean of the
feature weights (of the 12 virtual single subjects) is displayed in Figure 11.5B. The result of the
one-tailed T-test including a multiple comparisons correction (Gaussian random fields methods
and FDR on the cluster p-values) is shown in Figure 11.5C. The voxel-wise threshold was set
to p

vox

= 0.05. Figure 11.5D displays the result of the proposed nonparametric statistical
framework. The voxel-wise threshold p

vox

= 0.05 was identical to the T-based methods. The
corresponding nonparametric threshold map is depicted in Figure 11.5E, which marks the
feature weight corresponding to a voxel-wise p-value of p

vox

= 0.05. The threshold map shows
inhomogeneities in the widths of the underlying voxel-wise null distributions. The cluster p-
values for each of the five clusters are shown in Figure 11.5F. Using FWM, regardless of the type
of statistic (nonparametric or parametric using FDR or FWE on cluster level), all informative
cubes could be identified.

Of the total informative area (5 · 63 = 1080 voxels), about 55% was labeled significant
with the T-based methods (591 voxels). With the nonparametric method, 54% of the informa-
tive volume was labeled significant (580 voxels). Hence, in terms of sensitivity, the methods
are comparable. However, the volume labeled significant outside of the informative regions
was 113 voxel in T-based methods, as compared to 34 voxels for the proposed nonparametric
framework.

The cluster-size distribution from the 105 resampled chance feature weight maps is
displayed in Figure 11.6. The (uncorrected) cluster-size threshold is indicated with the red
line; in here the right-tailed area of the normalized cluster size distribution is smaller than
0.05. The corresponding cluster size is 2 voxels or larger. Importantly, this is the uncorrected
cluster threshold; in the framework a step-down FDR procedure corrects the p-values of the
identified clusters.

Influence of the initial voxel-level threshold As the result of the statistical frameworks highly
depend on the initial voxel-wise threshold p

vox

, the impact of choice of this parameter on
the cluster statistics was investigated. In here, four different p-values were used (p1 = 0.05,
p2 = 0.01, p3 = 0.005, p4 = 0.001). For each threshold both the nonparametric method and
the standard T-test approaches were computed.

The subsets of voxels surpassing the multiple comparisons correction for each of the
four threshold values were investigated in regards to their spatial distribution. For this, the
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Figure 11.5: Group simulation 5cubes data set analyzed by the feature weight mapping method using
the proposed nonparametric inference and T-based methods. (A) Information spread of
the raw data, class information had been present within the white cubes. The first cube
from the left contained the smallest information content and the last on the right had the
maximum amount of information (realized by an additive offset in one data class). (B)
Mean feature weights over all 12 virtual subjects. (C) T-test on the feature weight maps,
corrected for multiple testing using Gaussian random fields and FDR cluster thresholding
(SPM8). The voxel-wise threshold was set to p

vox

= 0.05. (D) Thresholded feature
weight maps from the new nonparametric method based on permutation and Monte-
Carlo resampling methods implementing cluster size correction, at the same voxel-wise
threshold of p

vox

= 0.05. (E) Threshold map for the cluster search algorithm, indicating
the inhomogeneity of the threshold weights at a voxel-wise p-level of p

vox

= 0.05. (F)
Table with the cluster p-values for each of the five cubes (represented as columns) using
different statistical measures (represented as rows). The first two rows display T-based
methods, the last one indicates the new nonparametric method.
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Figure 11.6: Cluster size histogram from the group simulation 5cubes data set for nonparametric
analysis based on feature weight mapping and a voxel-wise threshold of p

vox

= 0.05.
The red line marks the p

cl

= 0.05 (uncorrected) percentile of the cluster size distribution
(cluster size = 2 voxels).

number of supra-threshold voxels inside the informative regions (the 5 cubes) was computed
as well as the number of supra-threshold voxels outside. As already done for the simulation
analyzed by the SLD method (see Section 11.1.1.1 on page 101), voxels labeled outside the
informative regions are strictly regarded as false positives. The results for the four voxel-wise
thresholds are shown in Figure 11.7. In the case of the lowest threshold p1, the number of
true positives is comparable for parametric and nonparametric methods. For the three higher
thresholds (p2 to p4), the nonparametric method surpasses the T-based approach in terms of
the number of correctly identified informative voxels (see Figure 11.7A). On the other hand,
the number of voxels that were falsely declared as significant, i.e. voxels residing outside of
the informative region, was drastically larger for the T-based methods in the case of the lowest
threshold p1. For the remaining three higher thresholds, both parametric and nonparametric
methods performed comparably (see Figure 11.7B). The ratio between the number of voxels
labeled as significant within the informative regions and the total number of voxels determined
significant is depicted in Figure 11.7C. Only for the lowest threshold p1, does the ratio show a
noteworthy difference, in here the ratio of the nonparametric method is considerably higher.

11.1.2 Searchlight decoding vs feature weight mapping

Qualitative comparison For the comparison, the nonparametric framework is applied both to
the searchlight decoding and to the feature weight method, hence making it possible to compare
the outcome of both methods directly. On a qualitative level, the results of the comparison
can be found in Figure 11.8. In here, two voxel-wise p-values were selected (p1 = 0.05 and
p2 = 0.001). The results for the first threshold are depicted in Figure 11.8B and 11.8C. The
SLD method is able to capture a large part of the informative areas, while the results of the
FWM method are much more sparse. On the other hand, the SLD method labels more volume
outside the informative cubes as significant. For the smaller threshold p2 (results shown in
Figure 11.8C and 11.8D), the SLD method clearly outperforms the FWM method, as the latter
is only able to identify two of the informative cubes to a partial degree (as opposed to all five
cubes for the SLD method).
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Figure 11.7: Group simulation 5cubes, influence of the initial voxel threshold p
voxel

in the case of
feature weight maps. (A) Number of voxels declared significant within the informative
areas. With higher thresholds (i.e. smaller initial voxel p-values), the number of vox-
els declared significant decreases. For the three lowest p-values, the proposed method
declares more voxels significant as compared to the T-test based frameworks. (B) Num-
ber of voxels declared significant in non-informative regions (false positives). For higher
thresholds (smaller p-values) the number of voxels labeled significant is smaller. The
number of falsely significant voxels is considerably lower for the nonparametric method
at the lowest threshold p1. The results of the higher thresholds are comparable. (C) The
precision of the nonparametric method is considerably higher for the lowest threshold p1,
while the precision values are comparable for the higher ones.
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Figure 11.8: Comparison between searchlight decoding and feature weight mapping in the group sim-
ulation 5cubes data set. Both approaches have been corrected for multiple comparisons
using the nonparametric framework, implementing permutation tests and Monte-Carlo
resampling for the group analysis. Two different values for the initial voxel-wise thresh-
old were used (p

vox

= 0.05 and p
vox

= 0.001). (A) Information spread of the raw data,
within the white cubes class information was present (in the form of an additive offset in
one data class). (B) Searchlight decoding map with a voxel-wise threshold of p

vox

= 0.05.
(C) Feature weight mapping, using the same threshold of p

vox

= 0.05. (D) Searchlight
decoding map implementing the lower threshold of p

vox

= 0.001 (E) The corresponding
feature weight map with p

vox

= 0.001.
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Figure 11.9: Influence of the voxel-wise threshold on the SLD and FWM method in the group sim-
ulation 5cubes, shown in blue and red colors respectively. Both results are computed
with the nonparametric framework. (A) Number of voxels inside the informative cubes
declared significant. (B) Number of voxels outside the informative cubes declared signif-
icant. (C) Precision, i.e. ratio of voxels labeled significant within the informative region
and the total volume labeled significant.

Influence of voxel-wise threshold In the following, the impact of the voxel-wise threshold is
investigated on a quantitative basis. As before, the number of significant voxels both inside and
outside the informative regions is computed, furthermore allowing a calculation of the precision.
This is done for each of the four voxel-wise thresholds p1 = 0.05, p2 = 0.01, p3 = 0.005 and
p4 = 0.001.

As was already visible in the qualitative comparison above, the number of significant
informative voxels is considerably larger for the SLD method (Figure 11.9A). This is true for
all of the four thresholds. On the other hand, the number of voxels labeled significant outside
of the informative regions is systematically larger for the SLD method too, indicating a higher
level of false positivity (Figure 11.9B). The ratio between the number of significant voxels in
informative areas and the total number of significant voxels (the precision) is displayed in Figure
11.9C. For each of the four thresholds, the precision is higher for the FWM method.
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Figure 11.10: Influence of the number of subjects included for the group statistics on the SLD and
FWM method in the group simulation 5cubes, shown in blue and red colors respectively.
Both were computed using the the nonparametric framework. The number of virtual
subjects included was varied between 2 and 12. The voxel-wise threshold for the SLD
method was p

vox

= 0.001 , for the FWM method the threshold was set to p
vox

= 0.05
(one-tailed). (A) For both information mapping methods, the number of true positives
(number of significant voxels within the informative regions) increases monotonically
with the numbers of subjects included (with the exception of the last data point in
the SLD method). (B) The number of non-informative voxels declared significant also
increases with the number of subjects included. In the case of the FWM method,
however, this increase is not monotonic. (C) The precision of both methods is low if
a small number of subjects is included and appears to minimally decrease for a higher
number of included subjects.
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Influence of the number of subjects To investigate the influence of the number of subjects
included in the nonparametric group framework, I computed both the SLD and FWM method
inclusion for only a part of the virtual subjects (between 2 and 12 subjects). For the SLD
method I used a voxel-wise threshold of p

vox

= 0.001, for the FWM method a (one-tailed)
threshold of p

vox

= 0.05. As already done in the sections before, the number of significantly
labeled voxels within the informative regions was computed. This was computed for each
of the 11 group sizes. The results for both SLD and FWM method are depicted in Figure
11.10. In this simulation, a higher number of included subjects generally increase the number
of significant voxels in informative regions (with one exception for the SLD method when
12 subjects are included). The false positivity (non-informative voxels labeled significant),
however, also increases for a larger number of included subjects. The ratio between true
positives and all positives (the precision) appears to remain stationary for a medium number
of subjects, but slightly decreases if all subjects are included. In the case of a small number of
included subjects, the values for the precision are comparably low.
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p
cl

0.01 0.02 0.03 0.04 0.05
expected number of clusters 1 2 3 4 5

SLD nonparametric number of clusters 0 1 1 1 1
SLD T-test number of clusters 4 7 11 13 17

Table 11.1: Number of expected clusters given type I error rate versus number of empirically found
clusters for the group null simulation analyzed by the SLD method using a voxel-wise
threshold of p

vox

= 0.001. The first row depicts the 5 values for the type I error rate p
cl

on cluster level that were used here. Given the total of 100 simulations, the number of
expected clusters for each level of p

cl

is displayed in the second row. In the third row, the
number of empirically found clusters for the nonparametric framework is displayed. In
the last row the number of empirically found clusters for the T-based method is shown.

11.2 Group null simulation

A total of 100 group null simulations were analyzed. The number of permutations was set to 100
on the single subject level for both the SLD and FWM method. The number of Monte-Carlo
resampling steps was set to 105 in both cases. In analogy to the null simulation on single-subject
level, five equidistant values for the type I error rate on the cluster level p

cl

between 0.01 and
0.05 were used here, allowing a computation of the expectation value for the number of false
positive clusters. This allowed a comparison between the number of empirically found clusters
using the nonparametric and T-based frameworks and the expected number of false-positive
clusters.

11.2.1 Searchlight decoding

The voxel-wise threshold for the SLD method was set to p
vox

= 0.001 for both the nonparamet-
ric framework and the T-test statistics. The results of the group null simulation for searchlight
decoding are shown in Table 11.1. The number of empirically found clusters for the nonpara-
metric framework does not exceed the expected number of false positive clusters. For the
T-based method, however, a systematic bias is present; the empirically found number of false
positive clusters exceeds the expectation value to a high degree. This bias is large and consis-
tent, even when allowing a certain amount of uncertainty or noise due to the the low number
of simulations.

11.2.2 Feature weight mapping

For the FWM method the voxel-wise threshold was set to p
vox

= 0.05 (two-sided), corresponding
to two one-sided tests with p

vox

= 0.025. These voxel-wise thresholds were applied for the
nonparametric and the T-test framework. The results of the group null simulation for feature
weight mapping are depicted in Table 11.2.

Given the nonparametric framework, the number of empirically found clusters does
not exceed the expected number of false positive clusters. On the other hand, the T-based
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p
cl

0.01 0.02 0.03 0.04 0.05
expected number of clusters 1 2 3 4 5

FWM+ nonparametric number of clusters 0 2 2 2 2
FWM� nonparametric number of clusters 0 1 1 1 1

FWM+ T-test number of clusters 1 2670 2670 2670 2670
FWM� T-test number of clusters 0 2548 2548 2548 2548

Table 11.2: Number of expected clusters given type I error rate versus number of empirically found
clusters for the group null simulation and the feature weight mapping method. The voxel-
wise threshold was set to p

vox

= 0.05 (two-sided). The first row depicts the 5 values for the
type I error rate p

cl

on the cluster level. Given the total of 100 simulations, the number
of expected clusters for each level of p

cl

is displayed in the second row. In the third to
fourth row, the number of empirically found clusters for the nonparametric framework is
displayed (for positive and negative weights). The number of empirically found clusters
for the T-based method is displayed in row 5 and 6 (for positive and negative weights).

method finds a very large number of significant clusters, which drastically exceeds the expected
number of false positive clusters.
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11.3 3T tapping synchronization experiment

11.3.1 Searchlight decoding

The results of the searchlight decoding method analyzing the 3T tapping synchronization ex-
periment on the group level using parametric and nonparametric statistics are shown in Figure
11.11. Both methods identify large parts of the occipital lobe (the first three slices) as sig-
nificant. An involvement of these structures is highly anticipated, as visual areas are located
in the occipital lobe and the classifier discriminates a sensorimotor synchronization task with
flashes and a moving bar. Furthermore, secondary visual areas and the superior parietal lobule
are found to be involved, which are known to be involved in visuomotor transformations and
spatial attention shifts[106, 107].

The volume labeled as significant using the nonparametric statistics (Figure 11.11C) is
considerably larger than for T-based statistics (Figure 11.11B). This is especially visible in the
last three slices in anterior direction, where the nonparametric method decodes the motor cortex
and also the lateral geniculate nucleus (LGN). Both brain structures are meaningful in regards
to representing information in the visual tapping task, however are not well all identified using
parametric statistics. The empirical voxel chance distributions differ greatly across locations.
Figure 11.11D shows the accuracy for which the area of the (normalized) chance distribution
is <0.1%, therefore depicting the accuracy level for p

vox

= 0.001 (this map served as threshold
map for the cluster search).

In total, 16794 voxels were labeled as significant using the proposed nonparametric
method, while only 9257 voxels were found significant for the T-based approach. 8894 voxels
were labeled as significant by both methods, leaving 363 voxels identified when solely using the
T-test framework and 7900 voxels by only the proposed nonparametric method.

The empirical cluster-size histogram is displayed in Figure Figure 11.12. The minimum
cluster size was 7 voxels in this data set for the given voxel-wise threshold p

vox

= 0.001 and a
cluster p-value of p

cl

= 0.05.

Testing on a voxel-wise level for normality of the decoding accuracies using the Shapiro-
Wilk test (see Section 5.2.4), a total of 7725 voxels is did not follow a normal distribution (on a
significance level ↵ = 0.05). In other words, the accuracy values of at least 13% of all locations
is not distributed normally (the total number of voxels was 59329).

11.3.2 Feature weight mapping

The raw feature weights of the fMRI tapping study are displayed in Figure 11.13A. Note that
the weights can take both positive and negative values. Figure 11.13B depicts the parametric
T-test method including Gaussian random fields and cluster level FDR. The Figure shows a
double overlay of a right-tailed T-test (for positive weights) and the left-tailed T-test (for neg-
ative weights). The results of the proposed nonparametric method are shown in Figure 11.13C.
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Figure 11.11: Comparison of the group-level searchlight decoding results of the 3T tapping synchro-
nization experiment between the nonparametric method and standard T-based meth-
ods. (A) Raw decoding accuracy map without further multiple comparisons corrections.
(B) The results of a standard T-test, corrected for multiple comparisons using Gaus-
sian random field and FDR methods on cluster level as implemented in SPM8, with a
voxel-wise threshold of p

vox

= 0.001. (C) Results of the new nonparametric method
implementing the multiple comparisons correction on cluster size level, using the same
p
vox

= 0.001. (D) Threshold map for the nonparametric cluster search algorithm,
revealing the inhomogeneity of the local chance distribution.
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Figure 11.12: Cluster-size histogram of the group-level analysis of the 3T tapping synchronization
experiment for the nonparametric analysis using searchlight decoding and a voxel-wise
threshold of p

vox

= 0.001. The red line marks the p
cl

= 0.05 percentile (uncorrected)
of the cluster size distribution (cluster-size =7 voxels).

In terms of positive weights, both the T-based and nonparametric method appear comparable.
For the negative weights, however, the T-based method labels areas within white matter as
significant (see Figure 11.13B, slice number 4), indicating false-positivity. The nonparametric
method, on the other hand, identifies a early-visual region (Figure 11.13C, first slice) that is
not found significant with the T-based method. The inhomogeneity of the empirical null distri-
bution for positive and negative weights are displayed in Figure 11.13D and E respectively.

In total, 5063 voxels are labeled as significant using the T-based method. The non-
parametric method yields 3803 significant voxels. 2872 voxels were determined as significant
by both methods, leaving 2191 voxels identified when using solely the T-test framework and
931 voxels by only the proposed nonparametric method .

The two empirical cluster-size histograms are displayed in Figure 11.14. The minimum
(uncorrected) cluster size was 4 voxels for both positive and negative weights in this data set
for the given voxel-wise threshold of p

vox

= 0.05 and a cluster p-value of p
cl

= 0.05.

The voxel-wise test for normality of the weights (Shapiro-Wilk test, see Section 5.2.4)
found that 8587 voxels did not follow a normal distribution (on a significance level ↵ = 0.05).
Therefore, the weights of at least 14% of all locations are not distributed normally (the total
number of voxels was 59329).

11.3.3 Comparison of SLD vs FWM

The results of the fMRI experiment for the searchlight decoding method (SLD) and the feature
weight mapping (FWM) approach are displayed for a direct comparison in Figure 11.15. Both
methods were corrected for multiple comparisons using the proposed nonparametric statistics
each using two different voxel-wise thresholds of p1 = 0.05 and p2 = 0.001.

Similar as in the group simulations before (see Section 11.1.2 on page 107), the SLD
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Figure 11.13: 3T tapping synchronization experiment analyzed by the feature weight mapping method
using parametric (T-based) and nonparametric frameworks. (A) Mean feature weights
over all 12 subjects without any further correction. (B) Results of a (two-tailed) T-test
applied on the feature weights, corrected for multiple comparisons by usage of Gaussian
random fields and FDR on the cluster p-values. The initial voxel-wise threshold was set
to p

vox

= 0.05 for the two-tailed test, which is equivalent to two one-tailed T-tests at
a threshold level of p

vox

= 0.025. vd>vc (in the color bar) indicates the left-tailed T-
test here (where the weights of condition vd=visual discrete are higher than vc=visual

continuous) and vc>vd vice versa (right-tailed test). (C) Proposed nonparametric
statistics based on random permutations and Monte-Carlo resampling implementing a
multiple comparisons correction using the same initial voxel-wise threshold of p

vox

=
0.05. Also here, effectively two one-tailed tests with a voxel-wise p

vox

= 0.025 had been
carried out. (D) Positive threshold map for the nonparametric method, weights that
surpass the voxel-wise threshold are labeled as supra-threshold voxels for the cluster
search. (E) Negative threshold map, weights that are below the voxel-wise value are
counted as supra-threshold voxels.
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Figure 11.14: Cluster-size histogram of the 3T tapping synchronization experiment for nonparametric
analysis based on feature weight mapping and a voxel-wise threshold of p

vox

= 0.05. The
red line marks the p

cl

= 0.05 percentile (uncorrected) of the cluster-size distributions.
(A) Cluster-size histogram for clusters with positive weight (minimum cluster size =
4 voxels for the p

cl

= 0.05 percentile). (B) Cluster-size histogram for clusters with
negative weight (minimum cluster size = 4 voxels for the p

cl

= 0.05 percentile).

method labels a considerably higher volume as significant (given a fixed voxel-wise threshold
p
vox

) while the results of the FWM method, are more fine-grained. However, both the visual
areas and other cortical (motor cortex) and subcortical structures (such as the lateral geniculate
bodies in 11.15 at slice 5) are much more clearly delineated using the FWM method and appear
inflated for the SLD method.

In contrast to the SLD method, the FWM method is able to discriminate the sign of
the classification decision in the visual cortex (see Figure 11.15, first slice): While the FWM
method finds regions of the primary visual cortex (Brodmann area 17) with positive weights,
other regions in visual association areas (Brodmann are 18) are labeled with negative weights.
It is noteworthy, that the SLD method finds the highest decoding accuracies in the border
region in between.
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Figure 11.15: Comparison of the FWM and SLD results of the 3T tapping synchronization experiment,
both using the nonparametric framework for the multiple comparisons correction. The
initial voxel-wise threshold had been varied between two values (p

vox

= 0.05 and p
vox

=
0.001). (A) Searchlight decoding map, analyzed with an initial voxel-wise threshold
of p

vox

= 0.05. (B) Feature weight mapping method using the same initial voxel-wise
threshold of p

vox

= 0.05. (C) Searchlight decoding map implementing the higher voxel-
wise threshold of p

vox

= 0.001. (D) Corresponding feature weight map with the higher
threshold p

vox

= 0.001.
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Chapter 12

General results

12.1 Cross-validation influence simulation

The aim of the cross-validation influence simulation was to show that the theoretical estimation
of the classifier’s significance level using a binomial model can only be applied if independency
is given, and that the empirical deviation to the approximation indeed depends on the degree of
correlation between the binomial variables. The results of the simulation are depicted in Figure
12.1A, where I computed the histogram of decoding accuracies for each of the six scenarios
(no cross-validation, 2-cv, 5-cv, 10-cv, 20-cv, 50-cv). Additionally, I plotted the binomial
distribution with parameters (200,0.5) using black dots. Figure 12.1B displays a magnification
of the grey dotted rectangular area of Figure 12.1A. The binomial model is exact only if no cross-
validations are applied. The empirical distributions using cross-validation have a substantially
higher variance compared to the binomial. Furthermore, the variance of the null distribution is
clearly dependent on the number of applied cross-validations; the more cross-validations that
are applied, the higher the variance of the null distribution. The deviation between binomial
and empirical distributions (using the error term described in Equation 7.1 on page 58) is shown
in Figure 12.1C. If no cross-validation is applied, the difference in the distributions becomes
zero, i.e. the binomial model is indeed exact. If cross-validation is applied, the deviation
monotonically increases for a higher number of applied cross-validations.

12.2 Simulation undersampling the permutation space

The goal of the simulation undersampling the permutation space was to investigate the impact
of undersampling on the group null distribution of decoding accuracies. For this, a varying
number of permutations on the single-subject level were carried out. In total, four numbers
of single subject permutations were computed: 10, 100, 1000 and 10000. Each undersampling
step was repeated for 1000 times, each time a group null distribution was computed using the
nonparametric framework (permutations and Monte-Carlo resampling), followed by a normal
fit and estimation of the two parameters µ and �.
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Figure 12.1: Cross-validation influence simulation showing the impact of different cross-validation
schemes on null data sets. (A) Six scenarios with different data partitions and hence
number of cross-validations are displayed here, ranging from no cross-validation to 2-, 5-,
10-, 20-, or 50-fold cross-validation. The theoretical distribution assuming independency
is depicted by black dots. (B) Zoomed-in image of the dotted grey area of the above
figure. It is clearly visible that the distributions get wider if more cross-validations are
applied. (C) Deviation of the empirical distributions to the binomial distribution (200,
0.5). If no cross-validations are applied, the distributions are matched exactly. The more
cross-validations that are used, the monotonically higher the deviation to the binomial
becomes.
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Figure 12.2: Results of the simulation undersampling the permutation space on the group level dis-
tributions of accuracies. In total, four levels of available permutations on single-subject
level were present. (A) Estimated mean value µ of the group level distribution of accu-
racies. The error bars depict the standard error of the 1000 repetitions. In regards to the
mean value µ, the number of available permutations on the single-subject level does not
appear to have influence (B) Estimated parameter � of the group level distribution of
accuracies. Also here the error bars are the standard error of the 1000 repetitions. The
estimation of the parameter appears convergent for 100 available permutations carried
out on the single-subject level.

The results are shown in Figure 12.2. As is visible in Figure 12.2A, there is no consid-
erable difference in the estimated mean parameter µ of the normal distributions depending on
the number of available permutations on single subject level. The standard deviation parame-
ter �, however, displayed a dependency on the number of permutations on single subject level.
Given 100 or more permutations, the parameter � converges (see Figure 12.2B). The error bars
in Figure 12.2 represent the standard error of the 1000 repetitions of the simulations for µ and
� respectively, and was calculated as SD

µ

= �̂

µp
N

or, respectively SD
�

= �̂

�p
N

, where �̂ is the
standard deviation of the 1000 repetitions and N = 1000.

The results indicate that on the single-subject level, at least 100 permutations should
be computed to ensure stability of the group null distribution. Furthermore the results show
that 100 permutations are a sufficient number for constructing the group distribution.
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Part IV

Discussion
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Chapter 13

Statistics in fMRI

In my thesis I have introduced a framework for computing nonparametric statistical inference
for classification-based fMRI. I have shown that the nonparametric framework is applicable to
two different information mapping methods, namely searchlight decoding and feature weight
mapping. In particular, I have extensively compared the nonparametric framework to para-
metric alternatives using simulations and actual fMRI data sets. In this section, I want to
outline the theoretical reasoning for why nonparametric statistics are a better choice for deal-
ing with classification-based data as compared to parametric alternatives. Furthermore, I want
to discuss the features and characteristics of the proposed nonparametric framework.

13.1 Pitfalls of parametric statistics in classification-based fMRI

For deriving statistical inference for classification-based fMRI on the group level, parametric
statistics are often employed. The two most widely-used parametric frameworks here are T-
based methods (which can be applied to accuracy and weight maps)[102, 104, 105] and theoret-
ical approaches based on Binomial models (which can be applied to decoding accuracies)[108].
In the following, I want to discuss the pitfalls of these two representatives of parametric methods
in the context of classification-based fMRI.

13.1.1 T-based statistics

The Student’s T-test is the most commonly practiced method for determining the probability
of a decoding result on the group level[5]. Furthermore, the same method can also be applied on
feature weights for the group-level inference. Importantly, T-tests impose certain assumptions
on the data. For instance, the samples need to be distributed normally, particularly if the
sample size is small. Furthermore, the underlying distribution from which samples are drawn
should be continuous. Both requirements are problematic if a T-test is performed for a second-
level group analysis of decoding accuracies. In general, decoding accuracies are not normally
distributed, because the unknown distribution of decoding accuracies is generally skewed and
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long-tailed. In practice, the distribution depends heavily on the classifier that is used and the
input data itself. I have shown that in practice a significant part of the experimental fMRI
data, analyzed with the SLD or FWM approach, exhibits non-normality (at least 13% or 14%
respectively, see Section 11.3 on page 115).

Moreover, in the case of searchlight accuracies, the samples are not drawn from a
continuous distribution. The indicator function, which maps the number of correctly predicted
labels to an accuracy value between [0, 1], can only take certain values: for k cross-validation
steps and a test set of size t

ts

, only k · t
ts

+ 1 different values between [0, 1] can be taken.
Furthermore, the high variance on the single-subject accuracies depicts a problem for T-based
frameworks. One of the most critical assumptions of any classification-based method is that
the observations are drawn independently from the data set[46]. This imposes a problem for
the typical fMRI data set, given the severe temporal contamination of subsequent scans due
to autocorrelation[109]. Therefore, the prerequisite of independence has to be approximated
by taking into account well-separated groups of scans or their statistical estimation parameters
(e.g., from a general linear model on separate trials, as done in this work). Hence, the ultimate
number of observations available for classification is greatly limited. This limitation of samples
imposes severe challenges, as demonstrated in recent work[110]. Most noteworthy, an inverse
relation between the number of samples and the variance of accuracies is found; the fewer
samples used, the larger the variance in the estimated accuracies. The variance is also driven
by the size of the test set, as had been shown previously[111]: The smaller the size of the
test set, the greater the variance in the estimated accuracy. It is important to emphasize that
the variance of the estimation of accuracies must not be confused with the true underlying
variance of the performance of the classifier (caused, for example, by inter-session and inter-
subject variability and generally non-observable in a real data set). However, simulations that
enable a measurement of true performance clearly demonstrate that the variance is, in fact,
dominated by the effects of a small sample size [110]. Furthermore, the indicator function
mapping the number of correctly predicted labels to an accuracy value between [0, 1] is of a
discrete nature, which additionally increases the variance for small data sets[112]. For these
reasons, a statistical inference method for classification-based decoding in fMRI should not
heavily rely on the variance of the decoding accuracies on a single-subject level. However,
the commonly practiced T-tests on single subject accuracies for carrying out group inference
fundamentally implement the variance, as the square root of the variance enters the denominator
of the T-formula (see equation 5.5 on page 35)[5].

13.1.2 Binomial models

For determining the statistical significance of a decoding accuracy on the single-subject or
group level, binomial models can be employed. For the sake of simplicity, I will base my
argument first on single-subject analysis and generalize it later on for group-level statistics.
This implies a binomial draw with the parameters (N, p), where N is the number of samples
whose labels are predicted (i.e. the size of the test set) and p is set to 1/2 in a two-class
paradigm (see Equation 5.7 on page 36). If cross-validation schemes are applied, however,
the situation becomes more complex. Given k leave-one-out cross-validation folds, it is often
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the practice to treat the k cross-validations as one single classifier[47]. The rationale behind
this is that each cross-validation fold yields one binomial random variable, hence the whole
cross-validation process yields k identically distributed binomial random variables X1, . . . , X

k

each with the parameters (N, p). As the accuracy is defined as the total number of correctly
classified samples over all the cross-validation folds (divided by a constant), the sum of these
k binomial variables is computed. Under the assumption of independency, this sum again is a
binomial random variable, however with the parameters (N · k, p)[113, page 214]:

f
Z

(c) =

✓
N · k
c

◆
pc(1� p)N ·k�c (13.1)

In other words, the k cross-validations are treated as one single classifier, which estimates N ·k
labels—under the assumption of independence of the respective binomial random variables.

The independence of test examples in each cross-validation fold, however, does not
automatically assure independence of the binomial random variables X1, . . . , X

k

. Most im-
portantly, the correlations between training sets and testing sets in different folds cause the
binomial random variables to be correlated to each other. This correlation violates the earlier
assumption of independence, and renders the above used procedure for summing independent
binomial variables formally incorrect[5].

The empirical results revealed that the deviation from the theoretically derived sum
Z monotonically depends on the degree of correlation between the binomial random variables
X1, . . . , X

k

; the higher the correlation between cross-validation folds, the larger the deviation
to the single classifier approximation (see Figure 12.1 on page 122). On the contrary, I showed
that in the case of no cross-validation and a true single classifier estimating of N · k labels,
the binomial model fits exactly. Moreover, the variance of the empirical null distributions
depends on the degree of correlation between cross-validation folds; the higher the correlation,
the broader the distribution. When applied in statistical inference, the smaller variance of
the null distribution from the binomial model has an effect of overestimating the p-values.
Effectively, smaller p-values will be reported from the binomial model, than from the empirical
ones, as reflected in studies[47]. Therefore, adopting the above binomial model in the case of
correlated cross-validation principally increases the false positivity[5].

The argument can be generalized to the group level, as the accuracy of one single voxel
on the group level could be modeled by a single classifier estimating N

sub

·N · k labels, where
N

sub

is the number of subjects. However, in case cross-validation procedures are applied on a
single subject level, the same argument holds here too: it is formally incorrect to model multiple
cross-validation steps as single classifier, regardless of the independence between subjects.

As a side note, it should be mentioned that the issue of correlation between cross-
validation steps may be mitigated by estimating the correlational structure between the cross-
validation folds and application of correlated binomial models[114]. The improved model, how-
ever, then relies on additional assumptions, e.g. about the reliability of estimation of the cor-
relation between cross-validation steps. Furthermore, the binomial model does not provide a
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solution to the multiple comparisons problem; it merely provides a map of uncorrected p-values.
As the number of voxels is very large, a correction is a necessity, requiring the development of
a further framework (e.g. local FDR methods[115, 116] or an adaptation of Gaussian random
field methods).

13.2 Characteristics of the nonparametric framework for classification-based
fMRI

Nonparametric tests, such as the permutation test, are exact regardless of whether the underly-
ing distribution is normal or not. Furthermore, permutation tests rely on minimal assumptions[74,
page 23], such as exchangeability of the data points. It should be noted that this assumption
is imposed not only for permutation tests but also for classification methods in general[46]. The
theoretical applicability of permutation tests for classification-based methods is well established[117].
A limitation for the usage in fMRI studies is that the available number of permutations on the
single subject level is relatively small, since the number of independent observations is limited.
Effectively this enforces procedures which maximize the number of data points while ensuring
independency, such as estimating one GLM-derived �-estimate per experimental trial. Since
the underlying numbers of data points (time steps, i.e. scans) which are used for obtaining
the �-estimates are rather small (in the case of the fMRI experiments used in my study 9 or 8
subsequent scans were used for the 3T / 7T study respectively), it is likely that the �-estimates
are subject to a large variability. Ultimately, the classification results of single subject studies
may well be increased if the number of experimental trials was larger, as this would allow rea-
sonable permutation based statistics using �-estimates derived from multiple trials (in contrast
to one �-estimate per experimental trial); this would effectively decrease that variance of the
data points and may improve the classifier’s model.

On the group level, this limitation is less severe; the Monte-Carlo resampling technique
circumvents the issue of a low number of available permutations on the single subject level.
Furthermore, the number of permutations necessary for each subject is comparably small; 100
permutations are already sufficient to construct a large pool consisting of up to 105 resampled
group chance maps (see Figure 12.2 on page 123).

Finally it should be noted that the proposed permutation scheme avoids potential
biases due to an uneven distribution of samples across classes (i.e. if one class dominates the
training or test subset). In the case of the searchlight decoding method, the correlational
structure between all cross-validations is also preserved, as the data is permuted before the
cross-validation scheme is applied and the permutation is held fixed for all cross-validation
folds.

13.2.1 Preservation of spatial structure in chance maps

The preservation of spatial structure is fundamental to the nonparametric statistical framework,
since it incorporates the analysis of the spatial structure in the chance maps (either on the
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single-subject level or group level). Most critically, this allows one to assign probabilities to
these features. The same analysis of spatial features is then carried out in the non-permuted
(original) maps. By recourse of the probabilities which were previously derived from the chance
maps, probabilities can ultimately be assigned to the spatial features in the original maps. If the
spatial correlations of the chance maps were not preserved, the obtained probabilities for spatial
features would either over- or underestimate the ground-truth probabilities of the original maps.
Effectively this would introduce a bias, which would imply high levels of false-positivity or false-
negativity. The proposed nonparametric framework holds one permutation of the order of data
points fixed for all voxels per chance map. This ensures that all spatial correlations which had
been present in the underlying data points are preserved in the resulting chance maps.

Furthermore, in the case of the searchlight decoding implementation, the method
itself acts as a spatial filter. Hence spatial correlations are introduced by the SLD method
itself, which depend on the diameter (and geometry) of the searchlight. By virtue of keeping
the permutation fixed for all locations, this source of spatial correlations is also fully reflected
in the chance accuracy maps.

The spatial structure is preserved not only on the single-subject level (i.e. the per-
muted chance maps) but also on the group level (i.e. in the Monte-Carlo resampled maps).
On the group level, however, the combined correlational structure is preserved in regards to
the spatial dimensions on the group level. The degree of spatial dependency may be smaller as
compared to the single subject level due to inter-subject variations.

13.2.2 Threshold map procedures

The proposed nonparametric approach incorporates the spatial inhomogeneity of the null dis-
tributions in the cluster-search algorithm. If the algorithm used a constant threshold level (e.g.
one global accuracy level for all locations in the SLD method or one size for the weights in the
FWM method), the resulting local cluster sizes would be biased: in the case of a local null dis-
tribution which is more broad, the local cluster size would be overestimated, while in the case
of a local chance distribution which is more narrow, the cluster sizes would be underestimated.
Hence, the overall cluster size distribution would be biased, depending on the degree of spatial
inhomogeneity and the choice of the global threshold.

The threshold map procedure on a single-subject level is effectively equivalent to per-
forming a permutation test on every voxel and use the results to apply a threshold. This is
the case because only voxels exceeding a certain statistical threshold defined by the permuta-
tion distribution do surpass. In the case of group-level studies, the threshold map procedure
is equivalent to a combined permutation and Monte-Carlo resampling test, where a statistical
voxel-wise threshold is derived.

Naturally, the width of the permutation or Monte-Carlo resampled distributions de-
pends on several factors such as the actual information content; in the presence of information,
the width and possibly location of the nonparametric distribution is increased or shifted to the
right. Hence the threshold at this location is rendered more conservative. Nevertheless, in the
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presence of information, the nonparametric procedure does not become overly conservative, as
on the group level it is possible to compare the obtained sensitivities to parametric methods;
the sensitivity of the nonparametric framework is superior here (for a further discussion and
comparison see Section 13.3 on page 134). The same argument holds for the opposite case
where no information is present. Here, the permutation/Monte-Carlo resampling distribution
does not become exceedingly permissive to false-positives, as demonstrated in the null simu-
lations for validation on both single-subject and group level (see Section 10.2 on page 87 and
Section 11.2 on page 113).

13.2.3 Cluster statistics

On the voxel-level, the multiple comparisons problem is rather severe, considering that up to
50000 tests are carried out for 3 Tesla data and 500000 tests or more for 7 Tesla data. This
issue is mitigated by performing the statistics on the spatial features of the underlying images.
A simplistic definition of spatial features describes them as spatially connected areas surpassing
a voxel-wise threshold, in other words clusters. Importantly, if cluster statistics are used, the
fundamental units of interest are regions and not voxels[118]. The principal advantage is that
if clusters are considered instead of voxels, the statistical tests are carried out on the clusters
themselves (e.g. by assigning probabilities to cluster sizes). This reduces the number of tests
carried out by several orders of magnitude. The absolute number of tests on the clusters,
however, highly depends on the voxel-wise threshold that is used for determining whether a
connected voxel can be joined into a cluster or not. Furthermore, it is worth mentioning that
cluster-based approaches have been demonstrated to be statistically more powerful than voxel-
based tests[84].

The basic idea of cluster size inference is to exploit the fact that the probability of two
voxels exceeding a given voxel threshold and simultaneously being contiguous is smaller than
the chance of one sole voxel surpassing a threshold[119]. The determination of the probability

of a cluster of a given size, however, is not trivial and also depends on the degree of spatial
correlations. For the group level1 this can be achieved by using (T-based) random field methods,
which enable a mapping between cluster size and probability (see Section 5.4.3 on page 44).
Most importantly, the random fields procedure critically depends on the correct estimation
of the underlying smoothness of the accuracy or weight maps, as the probability for a given
cluster size is a function of the estimated smoothness (see Equation 5.8 on page 45). It is
questionable, however, that the algorithms for the estimation of smoothness can be directly
applied to classification results (accuracy or weight maps), in particular for two reasons: firstly,
the application of the underlying T-based statistics is formally incorrect here. Secondly, no
prior spatial smoothing is carried out for the pattern based analysis, which is problematic since
random field method have been shown to perform poorly in case of not sufficiently smooth
images[84].

The nonparametric framework introduced in this work does not rely on an explicit
estimation of image smoothness for the derivation of a mapping between cluster size and prob-

1
Principally, T-based methods may also be applied on the single subject level if cross-validation is carried out.

The discussed problems regarding T-based methods, however, become more pronounced here.
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ability. The image smoothness is considered implicitly in the formation of the empirical cluster
size records of the chance maps. This is possible, as spatial correlations are preserved in the
chance maps. Hence, the size of underlying spatial correlations and image smoothness is di-
rectly reflected in the empirical cluster-size histograms (see Figure 10.6 on page 88). As an
direct estimation of smoothness is not necessary, it can be stated that the nonparametric clus-
ter size thresholding is the more elegant and versatile solution, however at the cost of larger
computation times.

Lastly, it should be noted that a correction for the multiple comparisons problem has
to be carried out on the derived cluster p-values, regardless whether these values had been
obtained by random field methods or computed by nonparametric means. As stated before,
this multiple comparisons problem is comparably mild, as the number of clusters in the original
maps usually is in the range of hundreds. Therefore, standard FDR methods are applied here
in both the T-based and the nonparametric framework.

13.2.4 Dependency on the voxel-wise threshold

The results of both the parametric and nonparametric cluster-based approaches depend highly
on the choice of the initial voxel-threshold, which effectively determines whether a voxel is joined
into a cluster or not. Since the threshold is a free parameter which cannot be deductively derived
from first principles, the choice of this threshold principally underlies a certain arbitrariness
of the experimenter. On one side of the spectrum, thresholds that are too high (i.e. low p-
values) drastically reduce the sensitivity (while increasing the precision); while on the other side
thresholds that are too low (i.e. high p-values) hurt the localization of the truly informative
regions as the sensitivity becomes high but the precision low2. In terms of a worst-case scenario,
lowering the initial voxel threshold might even lead to the merging of otherwise separated
clusters, which in turn is reflected in the empirical null distribution of clusters. By means of
this mechanism, clusters in the original maps may retrieve an insignificant probability. Indeed
this may have been the case in for the two fMRI studies on a single subject using searchlight
decoding (see Section 10.3 on page 88 and Section 10.4 on page 93), where no results were labeled
as significant for the lowest threshold of p

vox

= 0.05 (and hence a threshold of p
vox

= 0.01 had
to be used instead).

However, based on the simulations (see Figure 10.5 on page 85 and 11.9 on page 110),
a reasonable choice of voxel-wise thresholds which ensures a good degree of comparability could
be found heuristically: for the SLD method, this threshold is determined as p

vox

= 0.001, the
corresponding voxel-wise threshold for the FWM method is then p

vox

= 0.05. Both values
were selected on the basis of a comparable sensitivity and precision. However, the sensitivity
and precision of both methods highly depends on the geometric distribution and intensity of
the signal (see Figure (10.5)). Given this, the choice of a voxel-level threshold can only be an
approximated in a heuristic fashion.

An alternative method is to eliminate the choice of the voxel-wise threshold by substi-
2
This is a principal trade-off problem inherent to frequentist statistical methods, I have illustrated the problem

already in the introduction in Figure 5.1 on page 33
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tution with other parameters that themselves are optimized by receiver-operating-characteristics3

for a certain range of signal and noise characteristics[120]. While this method appears to be
more stable in regards to the choice of the (optimized) parameters, it is questionable whether
the range of signal characteristics can appropriately reflect searchlight decoding maps, since
here the signal characteristics depend highly on the searchlight parameters (such as the diam-
eter).

13.3 Comparison between nonparametric and parametric statistics in
classification-based fMRI

In the following I want to put aside the theoretical concerns on parametric T-based statistics
for classification-based fMRI and compare the parametric with the nonparametric approach
from a pragmatic and practical point of view. The comparison is oriented on the quality of
each statistical testing method, which I measure in a three-fold manner: Firstly, the overall
sensitivity of the method is of interest (which was defined as the fraction of true positives in
all positives, see Section 5.1 on page 31). The measurement of the sensitivity can be carried
out in a quantitative way using simulations, where the actual ground truth (i.e. informative
regions) is known. Additionally, in a more indirect and qualitative sense, the sensitivity of a
test can be estimated by real fMRI data: if it is highly plausible from a neuroscientific point of
view for a certain brain region to show involvement in a specific task and these brain regions
are identified as informative by one method but not another, then the sensitivity of the former
method can be presumed as higher.

The second measure of interest for determining the quality of a statistical test is its
precision (which was defined as the fraction of positively labeled tests that were in fact ground
truth positives, see Section 5.1). Similarly as before, a quantitive measure of precision can be
assessed by virtue of simulations, where the ground truth is known. Furthermore it is possible
to get an impression of the precision when using fMRI data: if it is highly implausible from
a neuroscientific point that certain brain region exhibits involvement in a task (e.g. white
matter, cerebrospinal fluid) and one statistical analysis method labels systematically more
voxels as significant in these regions, it can be concluded that the precision of this method is
likely lower.

The third criterion for measuring the quality of the statistical test is the credibility
in terms of overall type I error control. Using a large number of null simulations, where every

significant result represents a false positive, the expected error rate can be cross-checked with
the empirical error rate.

13.3.1 Sensitivity

For the group simulation, the sensitivity could be defined as the fraction of informative vox-
els (ground truth positives) which were correctly labeled significant. When comparing the

3
receiver-operating-characteristics are plots between the true positive rate against the false positive rate.
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sensitivity of the nonparametric and the parametric method for searchlight decoding, the non-
parametric method outperforms the T-based approach on all voxel-wise thresholds. When using
the optimal voxel-wise threshold p

vox

= 0.001 for the SLD method, the gain in sensitivity is
about 100% for for the nonparametric framework as compared to the T-based method (see
Figure 11.3 on page 102). The difference in sensitivity between nonparametric and parametric
tests for the feature weight mapping method is considerably smaller, and the nonparametric
method shows slightly higher sensitivity for all tested voxel-wise thresholds except the optimal
threshold of p

vox

= 0.05. For the latter threshold, the parametric method achieves a 1% higher
sensitivity than the nonparametric approach (see Figure 11.7 on page 108).

In the 3T tapping synchronization experiment group-level analysis, the searchlight-
based nonparametric method decodes brain regions such as the motor cortex and LGN, which
both are not revealed using T-based methods and the searchlight method (see Figure 11.11
on page 116). It seems very plausible that both brain regions are highly involved in encoding
information for a visual tapping paradigm, because different kinds of visual synchronization
stimuli are classified against each other. This not only involves the subcortical visual relay nuclei
located within the LGN but it is also highly likely that the different synchronization paradigms
exhibit distinguishable fingerprints in the motor cortex. Therefore, the surplus of decodable
areas for the SLD method when using the nonparametric framework gives evidence for an
increase in statistical sensitivity. The differences for the FWM method between nonparametric
and parametric tests is smaller for the same fMRI data set. Whereas the positive weights
seem to be comparable for both types of statistics, the nonparametric framework is able to
identify additional plausible brain areas for negative weights: while primary visual areas remain
undetected using T-based methods, the area is labeled as significant when the nonparametric
framework is employed (see Figure 11.13 on page 118). As I have argued above, an involvement
of the visual system in encoding information in regards to the type of visual stimulation is most
highly anticipated. Hence it can be concluded that the sensitivity is indeed increased for the
nonparametric statistics, regardless of the underlying information mapping technique (SLD or
FWM).

13.3.2 Precision

For the group simulation it was possible to define the precision quantitatively as the ratio be-
tween voxels that were labeled as significant within the informative regions and all voxels that
were found significant, hence allowing a quantitative comparison. In the case of searchlight
decoding, the precision was found to be higher throughout all voxel-wise thresholds for the
nonparametric framework as compared to the T-based approach (see Figure 11.3 on page 102).
When using the optimal voxel-wise threshold for the SLD method (p

vox

= 0.001), the precision
was found to be about 6% higher (for the nonparametric framework). For the feature weight
mapping method, the difference in terms of precision between the nonparametric and para-
metric framework turned out higher than in case of searchlight decoding. Over all voxel-wise
thresholds, the nonparametric method showed higher values for the precision here (see Fig-
ure 11.7 on page 108). At the optimal voxel-wise threshold p

vox

= 0.05 for the FWM method,
the precision of the nonparametric framework was found to be about 13% higher than for the
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parametric framework.

For the 3T tapping synchronization study, there was no clear difference visible in terms
of precision between nonparametric and parametric frameworks when searchlight decoding was
employed. None of the statistical frameworks labeled additional, implausible brain regions as
significant (see Figure 11.11 on page 116). However, it should be noted that the nonparamet-
ric method labeled a considerably larger overall area as significant, which likely is due to a
searchlight specific effect described later (see Section 14.1 on page 139). For the feature weight
mapping method, the situation appears different, as the T-based methods label brain regions
within white matter as significant (see Section 11.13 on page 118 in the fourth slice). As the
BOLD signal from the white matter fibers is not expected to contain information about the
type visual stimulation, these results most probably are false positives. Since a higher fraction
of false positives implies a loss in precision, it can be stated that from a qualitative point of
view, the precision of the nonparametric framework is superior to the parametric for the 3T
tapping synchronization experiment using feature weight mapping.

13.3.3 Credibility

The credibility of the nonparametric framework could be measured both on the single-subject
and group level using null simulations, while the parametric framework could only be employed
on the group level. On the single-subject level, the null simulations were only performed for
the nonparametric framework (see Section 10.2 on page 87). The results suggest that the
empirically found level of false positivity for both the SLD and FWM method is within the
limits, i.e. that the type I error rate is not exceeded for the nonparametric method.

On the group level, the null simulation was computed both for the nonparametric
framework and T-based statistics. The level of false positivity for the nonparametric framework
was within the limits for both information mapping methods (SLD and FWM). The false
positive rate for T-based methods, however, was unacceptably high and drastically exceeded
the expected level, both for the SLD and the FWM methods (see Section 11.2 on page 113).
This suggests that type I error control is not ensured if T-based approaches implementing a
multiple comparisons correction using Gaussian random fields are used for classification based
fMRI.

13.3.4 Conclusion on the quality of nonparametric and parametric tests

In regards to the quality of the nonparametric and parametric statistical frameworks for
classification-based fMRI, the nonparametric framework clearly outperforms the parametric T-
based methods. This is well in line with previous research indicating an advantage to applying
nonparametric statistics for univariate fMRI data analysis[121]. The advantage of nonparamet-
ric methods was found for both information mapping methods, i.e. for searchlight decoding
and for feature weight mapping that I have used in my work. The results showed improve-
ment in terms of sensitivity or precision, or, as in most cases both in sensitivity and precision
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simultaneously. Furthermore, the T-based framework exhibited an extremely high degree of
false positivity when tested repeatedly using a large number of null simulations, corrupting
the credibility of the T-based method. The nonparametric framework, on the other hand, was
found within the theoretically expected limits of false positivity.

The loss in statistical power and reliability for the T-based framework presumably re-
flects the previously discussed violations of the underlying formal assumptions that are violated
if T-statistics are applied to group statistics for accuracy or weight maps (see Section 13.1.1
on page 127). In addition to this, the assumptions of Gaussian random field theory that are
imposed on the data (e.g. sufficient smoothness) are possibly violated as well.

137



138



Chapter 14

Information mapping methods

In my thesis I present a novel nonparametric statistical framework tailored for two multivari-
ate information mapping methods: searchlight decoding (SLD) and feature weight mapping
(FWM). The underlying nonparametric frameworks for performing statistical inference are
very similar for both information mapping methods. The statistical framework is based on
random permutations of the order of the data points and additional resampling techniques (in
the case of group studies). Notably, the same classifier algorithm including its parameters is
used for both information mapping methods (SLD and FWM). As the performance and quality
of the nonparametric framework has been discussed in detail in the prior Section 13.2, I want
to now focus on the differences between the two information mapping techniques, by further
characterizing the properties of the SLD and FWM method[122].

14.1 Searchlight decoding

The basic idea behind the searchlight approach is that the central voxel of a searchlight repre-
sents the aggregate classification result of a (commonly spherical) neighborhood of voxels[63, 5].
Repeating this over all locations yields in an information map, which is unbiased as there is
no a priori spatial restriction to a subset of voxels. Importantly, the searchlight procedure
implies that adjacent searchlights share a common subset of voxels, which consequently results
in a spatial correlation in the accuracy maps between neighboring locations, analogously to a
complex spatial filter: the spatial correlation between adjacent voxels in the accuracy maps
depends on the local distribution of information and also the diameter of the searchlight, as
larger searchlights share a larger subset of voxels.

Under the (credible) assumption that activity-based information is distributed rela-
tively sparsely in the brain (i.e. mostly in the cortical surface and other grey matter locations),
it appears quite intuitive that searchlight information maps are likely inflated and possibly
even distorted: For instance, consider a null image containing no signal, except one single voxel
containing a large amount of class information (see Figure 14.1B). The resulting searchlight
information map will label practically every searchlight location which contains this voxel as
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Figure 14.1: Schematic illustration of the searchlight induced inflations and distortions (A) Search-
light shape (down-projection to 2D) with a 5 voxel diameter (corresponding to 15mm
physical size at typical 3T resolutions). The violet shaded voxels are located within the
searchlight. (B) No voxels carry class information, except the center voxel featuring the
green sphere labeled with the letter “i”: this voxel is the sole voxel carrying class infor-
mation. As a result of the SLD procedure using the searchlight of A, many voxels are
being labeled as informative (these voxels are depicted in orange). The inflating effect
has previously been termed as “needle in the haystack effect” [123] (C) Here, no voxels
except the two voxels with the green sphere labeled with “i” carry class information. The
information carried by one voxel, however, is sufficiently small so that a searchlight has
to include both informative voxels in order to be labeled significant. Hence only the vox-
els in the middle, where the searchlight contains both informative voxels are be labeled
informative, resulting in inaccurate and distorted information maps.

informative, effectively grossly inflating the actual informative regions. In a recent study, this
effect had been termed as “needle in the haystack effect" [123]. The reverse of this effect is also
conceivable, where the center voxel of a searchlight does not contain any information, while
information is solely present at the searchlight’s edge. Labeling the center voxel significant
thus results in a distortion (see Figure 14.1C); conveniently this effect had been given the name
“haystack in the needle" [123]. Furthermore, it has been shown that the latter effect depends
on the searchlight diameter, as the number of informative voxels monotonically depends on the
diameter of the searchlight. However, the effect also depends on the distribution of information
and overall geometry. Lastly, the (multivariate) signal to noise ratio presumably also plays an
important role.

In this regard, it appears questionable whether the searchlight is the optimal weapon
of choice when it comes to maximally exploiting the benefits of high-field or even ultra-high-
field fMRI[45]. From an empirical point of view, the above considerations in regards to inflation
and distortion are fully supported: the searchlight method indeed yields inflated estimates of
information distribution in both the simulated and real fMRI data sets. This effect becomes
especially visible for high-resolution data sets (7T finger tapping and imagination, see Figure
10.12A), where there is a high fraction of significant voxels outside of grey matter areas, ob-
scuring the actual distribution of information in the cortex. Also in simulations where the
information is distributed in fine spatial scales (the single subject geometric simulation, see
Figure 10.1 on page 82), the spatial inaccuracies of the resulting information maps are clearly
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visible. The effect of inflation and distortion is also noticeable at lower fMRI resolutions and
group studies (see Figure 11.15 on page 120). Especially problematic is the case where there
exist two adjacent regions, which each encode class information of different classes. In here, the
searchlights centered around the border between both of these regions are possibly the most
informative ones. This effect likely took place in the group 3T tapping synchronization experi-
ment (see Figure 11.15, first slice), where the two differently coding regions (primary visual and
visual association area) were identified by the FWM method. The searchlight method assigned
the highest decoding accuracies at the border of both regions. Similarly, the effect could also
be reproduced in the single-subject simulation, where the border areas received (on average)
the highest accuracies (see Figure 10.1 on page 82).

The inflation effect clearly depends on the searchlight’s diameter, as larger searchlight
diameters also increase the sensitivity in general terms. (however, this gain also depends on
the distribution of information). On the other hand, larger searchlight diameters decrease
the precision obtained (see Figure 11.4 on page 104). A further effect of larger searchlight
diameters is an increase in spatial correlation in the resulting searchlight maps. This is the
case because the volume of overlap between adjacent searchlights, i.e. the number of features
that are shared across two neighboring searchlight locations, monotonically depends on the
diameter of the searchlights. As the nonparametric method implicitly considers the underlying
smoothness of the images (see Figure 10.6 on page 88), the resulting in broader empirical cluster
histograms may obscure ground truth clusters.

The issue of inflation may be mitigated by limiting the searchlight only to grey matter
voxels or even directly applying it on the cortical surface[1]. However I want to point out that
the reduction of inflation is only constrained to one of three spatial dimensions for the surface-
based methods; while the spatial accuracy in the direction normal to the cortical surface is
improved, the two in-plane dimensions (along the cortical sheet) remain inflated and distorted.
Furthermore, it should be mentioned that in the case of the grey matter masking, it is crucially
necessary to find a mask that is valid for the entire group of subjects for performing voxel-wise
group statistics, since all subjects need to have accuracy values for a given voxel to properly
compute statistics.

Another aspect worth discussing is the property of localness of the searchlight method.
I want to stress that the searchlight approach only analyzes a small neighborhood of voxels at a
time. However, given that the brain is a large and heavily interconnected network, it appears
very plausible that the fingerprint of distinct brain states does not solely exist at small spatial
scales, i.e. from local processing. More likely, the brain processes information on larger spatial
dimensions across distinct networks. For instance, remote brain areas do jointly exhibit patterns
of activation governed by long-range neural communication[124]. Evidently, such large-scale
interactions cannot be captured by the searchlight method. However, capturing large-scale
information patterns is not always the goal of imaging studies, as sometimes a strict locality
and investigation of small spatial scales is desired. An example for such a case is a study where
finger movement is decoded from within the ipsilateral

1 cortical hemisphere[125].

1
on the same side of the body as the hand is, e.g. both on the left body side
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14.2 Feature weight mapping

As in the case for the searchlight method, the feature weight mapping approach is spatially
unbiased, since the whole brain is analyzed without prior restriction to a specific spatial hy-
pothesis (e.g. region of interest). In contrast to the searchlight method, however, the FWM
approach uses the information of all voxels simultaneously as input. In the implementation
used in my thesis, a PCA-based procedure for the reduction of the dimensionality of the data
is applied beforehand in order to decrease the number of degrees of freedom for the classifier’s
parameters. A second mark of distinction to the SLD method is that no cross-validation is
carried out in the FWM method, the classifier is only trained once on the entire data set of a
single subject. This results in a weight vector for the classifier’s training, which is mapped back
from the PCA space into the voxel space. Using the nonparametric framework, the statistical
inference is then carried out on the weight vector acquired from the classifier’s training in the
voxel space[122].

Since the classification has to be computed only a single time on a relatively small
data set (for each permutation), the computational resources necessary for the nonparametric
statistical framework are drastically lower than compared to the ones needed for searchlight
decoding (as in the SLD method classification is computed for every location and every cross-
validation step). Depending on the size of the data set in terms of voxels (resolution) and
experimental trials, the computation of the permutations in the FWM method is between 5000
and 30000 times faster than the SLD method. For instance, the average computation time for
one permutation in the group simulation 5cubes was 0.008s for the FWM method, while the
same computation took 38s for the SLD method (carried out on a single CPU). For the ultra-
high resolution data set (7T finger tapping and imagination), the difference in computation
speed was even larger; one permutation was computed in 0.0057s for the FWM method while
one permutation took 167s for the SLD method.

A further distinction between the FWM and SLD method is that in the FWM method
each feature dimension (i.e. voxel or principal component) is assigned a weight as a result of the
classifier’s training (in contrast to decoding accuracies for the SLD method). The weight itself
is directly derived from the underlying classifier’s mathematical model (in the case of my thesis,
a linear support vector machine) and is an indicator of the contribution of the corresponding
feature dimension to the classification decision. For a linear classifier, the predicted class of an
unseen data point ~y is determined by the sign of the dot product between the weight vector
and the data point ~w · ~y = w1y1 + w2y2 + ...+ w

N

vox

y
N

vox

. Thus, the size of the weight vector
at the k -th dimension w

k

can be interpreted as the importance of the k -th feature dimension
(the k -th voxel). In other words, the absolute size of the component w

k

directly translates
into a high involvement in the class prediction of the corresponding feature dimension k. It
should be highlighted that a weight component w

k

is either of positive or negative algebraic
sign. The sign of the component indicates to which class the k -th feature or voxel influences

the classification decision; for instance if a voxel activates consistently when in class A but does
not activate when in class B, the resulting weight component would be positive. On the other
hand, if the voxel activates consistently when in class A but does not activate when in class B,
the weight component would be determined negative. Hence, the individual weight component
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reveals how the corresponding feature dimension (voxel) influences the classification decision
depending on the level of activation found in the feature. In an area with positive weights,
a high activity level would have a impact for the classifier to decide for class A, while a low
level of activity favors the decision for class B. For negative weights, an analogous argument
can be made; in here a high level of activity would influence the classifier to decide for class B
and a low level of activity brings a favor for class A. In contrast, the SLD method is not able
to deliver such information about the direction of influence for any given features, as the SLD
method only determines whether class information is present or not.

The directionality of the weight components effectively increases the interpretability of
the data. This becomes most clear in the group-level analysis of the 3T tapping synchronization
experiment (see Figure 11.15 on page 120), where two visual tapping conditions (visual discrete
and visual continuous) are classified against each other. The FWM method depicts the primary
visual cortex with positive weights and secondary visual regions (Brodmann area 18) with
negative weights. This implies that large activations in the primary visual system influence
the classifier to decide for continuous visual stimulation, while large activations in the visual
association areas favor a decision for discrete visual stimulation. It should be noted, however,
that the reverse is also true, i.e. low activations in primary regions favor the classifier for
discrete visual stimulations and low activations in the visual association areas favor a decision
for continuous visual stimulation. On the other hand, the searchlight method solely is able
to map out the visual cortex being discriminative for the two conditions, with especially high
accuracies at the class borders derived from the FWM method.

Another aspect in regards to interpretability is that a weight component in the FWM
method located at voxel k does solely represent the influence to the classification of the k -
th voxel. As a result, information maps with a very high spatial accuracy can be obtained.
This is especially advantageous for single-subject studies, where due to the lack of anatomical
variability (which is present in between a group of subjects) a very precise localization of
informative regions is principally possible. Indeed, for the single-subject geometric simulation
(see Figure 10.1 on page 82), the FWM method precisely delineates the informative regions.
Also in the case of the ultra-high 7T finger tapping and imagination data (see Figure 10.12
on page 95), only the surface of the cortex is labeled as informative. Since white matter
fibers, which do not contain task-information in their BOLD signal are located inside cortical
regions, the FWM results are rendered very credible. Hence the FWM method is especially
advantageous for maximally exploiting higher resolutions in the sense that the mapping local
information content is reliable and precise.

In contrast, in the searchlight decoding method the accuracy at voxel k characterizes
the aggregate decodability of a neighborhood of voxels around the k -th voxel (typically this
neighborhood is spherical). In other words, for the SLD analysis technique, voxels with high
accuracies do not necessarily have to be informative; the informative voxels may be located
elsewhere in the voxel’s neighborhood. This aspect is problematic, as this important distinc-
tion commonly is ignored in the neuroscientific practice where searchlight-based analysis are
employed[126].
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14.3 Conclusion on information mapping techniques

To summarize, the main difference between the two information mapping methods used in my
work (namely searchlight decoding and feature weight mapping) in terms of empirical results is
their spatial precision. The searchlight decoding method returns inflated and distorted results
and has the inherent limitation that a voxel of a searchlight accuracy map does not represent
the information content of this voxel but rather the information content of the neighborhood
of voxels around this voxel. In contrast to this, a voxel in a weight map computed by the
feature weight mapping method does represent the influence of each voxel exclusively to the
classification decision. Consequently, the FWM method returns very precise information maps
in practice[122].

The statistical power of both methods critically depends on the underlying geometry
of the distribution of information: if the information is distributed in a concentrated fashion at
coarse scale (e.g. cubes of information, see Figure 10.5 on page 85), the searchlight decoding
method is favored. In the case of a fine information distribution (e.g. cortical layers), the
feature weight mapping method is favored (see see Figure 10.5). Ultimately, the distribution of
information may be tend towards a fine distribution; this is especially true for higher resolutions
and single subject studies, where it is possible to resolve the structure of the cortical layering.

In terms of computational time, the picture is very clear: in the simulations and fMRI
data sets used for this thesis, the gain in speed was between 5000 and 30000 times for the FWM
method as compared to searchlight decoding.

144



Chapter 15

Single subject or group studies

In my thesis I have applied the new proposed nonparametric statistical framework on two
levels on inference: on the level of single-subject studies and on the group level. Both levels of
inference compromise distinct motivations and imply different assumptions. Consequently, the
scientific statements based on the two inference methods are also differing. In the following, I
want to discuss the rationale behind each level of inference and their underlying assumption
from a general neuroscientific point of view.

15.1 Motivation for group level inference

Most commonly, experiments in imaging-based cognitive neuroscience are carried out on the
group level. The main theoretical motivation to study brain function on a group level is the
fact that it is desirable to identify brain processes that are universal within a population. This
implies the assumption that there exist universal spatio-temporal aspects of brain dynamics
that are shared amongst a group of subjects. The assumption of universality is compounded
by the further assumptions, e.g. that deviations from the universal “fingerprint” of these brain
processes are due to the noisy character of brain function.

The above approach has been proven to enable profound insights into body function
from a physiological point of view. Consider for instance the study of any internal organ of
the human body: Following the above assumptions, it is possible to abstract general features
of functionality that are universal amongst the population of human beings. Using these ab-
stracted features, the role of the organ and all its constituents can be understood in a general
sense. Furthermore, it is possible to clearly delineate inter-individual differences, which may
themselves be linked to genetic or environmental factors. As the principle of universal func-
tion has been extremely fruitful for vast fields of biology and in particular physiology, it seems
reasonable to conclude that the same principles can be applied to study the organ of ultimate
interest and highest complexity: the human brain.

From a more pragmatic point of view, the power of statistical tests is higher on a
group level as compared to single-subject studies, especially if the number of included subjects
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is large[121]. This relation also holds for the case for pattern classification, as I have shown
that the sensitivity of the group simulation 5cubes result depends on the number of included
subjects (see Figure 11.10 on page 111). In regards to fMRI data, the results of the 3T tapping
synchronization experiment on the group level (see Figure 11.15 on page 120) are much richer
as compared to the single-subject analysis (Figure 10.7 on page 89). The reason for the gain
in statistical power on a group level as compared to the single-subject studies is the high
experimental variance. Critically, this variance is considered as noise and it is assumed that
through averaging, the effects of this noise can be removed[127].

15.2 Motivation for the analysis on the single-subject level

With the advent of more sensitive analysis methods, higher magnetic field strengths and more
advanced study designs1it has become clear that group level studies are not the optimal basis
for an adequate description of brain dynamics. This is mainly due to the fact that the variations
across subjects are comparably large across subjects, resulting in group maps that are not any
more representative for the individual scale[127]. In other words, group level inference methods
depict only the smallest common denominator of the local activation or information content;
only if a sufficiently large number of subjects features brain activity at a given location, the
group map at this location will include the effect. If an activation is shared only within a small
subset of the entire group, the activation is considered as noise. Most crucially, however, it
was shown that the single subject spatial patterns of activity are stable over scanning session,
i.e. reproducible [128, 129]. The inter-individual differences arise from a variety of factors, in
particular the cognitive style and strategy: for instance, it has been shown that subjects with
similar cognitive strategies in regards to brain tasks exhibit a greater number of similar brain
activation patterns [130]. Furthermore, it should be noted that the variability is not only found
on functional side, but also in terms of brain anatomy[98].

Conclusively, it can be stated that it is premature to consider inter-subject variations
as a manifestation of noise, as there is compelling evidence showing that these variations are
indeed related to the brain function on the scale of an individual level. The stability of the
variations rather supports the hypotheses that every brain is used differently and that claims
about universal brain processes, in particular for high-level cognition, should be looked upon
rather critically.

Studying brain imaging data on the level of single subjects resolves many of the above
issues. Ultimately, single-subject analysis even allows one to draw conclusions on the population
of subjects, as it can be investigated which individual brain activity patterns are normative for
a group[127]. Seen from another perspective, single subject analysis allow insights into the
source of the variability.

Another aspect worth considering is that from a principle point of view, single-subject
analysis makes it possible to also categorize subjects on basis of their spatio-temporal patterns
of brain activity into distinct groups. For instance, a possible categorization can be done in

1
such as systematic test-retest studies

146



correspondence to certain cognitive strategies or even risk groups for brain diseases such as
schizophrenia[131].

In regards to the data analysis on the single-subject level, the otherwise indispensable
preprocessing step of spatial normalization is not strictly necessary2. The main advantage of
this is the possibility of an extremely precise localization of activation patterns. This gain of
spatial specificity ultimately makes it possible to infer highly precise relations between brain
structure and brain function, which are not possible on a group level due to inter-subject
anatomical variability: the spatial normalization into a common brain space effectively implies
a loss in resolution, which is in the range of centimeters. Hence, for ultra-high field studies
using high resolutions, the disadvantages of standard spatial normalization undermine the gain
in resolution, rendering the analysis on the single-subject level as the only feasible choice.

15.3 Conclusion on level of inference

In conclusion it can be stated that studies on a level of the single subject are likely going to play
a larger role in the future of imaging-based cognitive neuroscience, as they principally allow
insights that are outside the range of group inference. However, progress in terms of sensitivity
and power for the image acquisition, analysis and modeling methods are a condition sine qua

non for this. For instance it is possible that the average scanning times used in neuroscientific
experiments may not be sufficient, as an increase in scanning time beyond one hour results in
a monotonic gain of statistical power[132].

2
the spatial normalization is not necessary unless conclusions on group level based on single-subject analysis

are of special interest. This was the case for the 3T tapping synchronization experiment, the single subject

analysis took place in the MNI standard space to ensure comparability to the group results.
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Part V

Conclusion
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Chapter 16

Summary

In the following, I want to briefly summarize the most important findings and conclusions of
my thesis. For the sake of clarity I present the summary in bullet point form.

I have introduced a novel nonparametric statistical framework for classification-based
fMRI, which is based on random permutations (on the single-subject level) and random permu-
tations in combination with resampling techniques (on the group level). In both cases, cluster-
based statistics are employed for multiple-comparisons correction. The framework hereby relies
on minimal assumptions. The main results and conclusions are:

• the nonparametric framework is applicable for two distinct information mapping methods
(searchlight decoding and feature weight mapping)

• the framework makes it possible to infer statistical significance on the single-subject level

• on the group level, I have extensively compared the nonparametric framework versus
commonly practiced T-based statistics. Here, the main findings were:

– the nonparametric framework has a higher sensitivity than T-based methods

– the spatial precision is higher for the nonparametric method

– the credibility (in terms of false positivity) is on an adequate level for the non-
parametric framework, however, for T-based methods the credibility is substantially
inferior

– T-based methods are inappropriate from a theoretical point of view if applied to
classification-based fMRI; the same holds for the parametric binomial model if cross-
validations are applied

The two information mapping methods, namely searchlight decoding an feature weight map-
ping, were compared extensively. The main results and conclusions were:
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• In order to achieve a comparable ratio between the sensitivity and precision of both
information mapping methods, the voxel-wise thresholds for searchlight decoding has to
be set considerably higher (i.e. lower p-values)

• Searchlight decoding systematically produces inflated and distorted results

• In scientific practice, searchlight accuracy maps should be interpreted with caution, as a
significant voxel does not imply that this voxel indeed carries information (it implies that
the neighborhood of voxels contains information)

• The feature weight mapping method returns information maps of a very high spatial
precision. This especially holds if the distribution of information is rather fine, which is
the case for ultra-high resolution fMRI

• The computation time needed for the feature weight mapping method is tiny compared
to the time needed to perform searchlight decoding

16.1 Limitations

While I have shown that the proposed nonparametric framework clearly outperforms T-based
statistics for carrying out statistical inference, the proposed framework also exhibits certain
limitations. In the following, I want to discuss the main limitations given my point of view.
It should be noted that for some of these limitation, I provide possible solutions in the next
Section 16.2.

In practical terms, the biggest limitation is the choice of the free parameter p
vox

. This
parameter specifies how unlikely a decoding accuracy or feature weight needs to be in order to
be considered as candidate for an informative region. There is no first principle deduction of
this value, however by convention values of p

vox

> 0.05 are generally considered inadequate.
The results of the nonparametric framework highly depends on the choice of this threshold. If
the threshold is set too high (i.e. low p-values), the sensitivity of the tests becomes too small.
At the same time, the spatial precision becomes better for higher thresholds. Notably, the same
relation holds for parametric frameworks, such as the T-based method. More generally, this
trade-off between sensitivity and precision is inherent to frequentist statistics and depends on
the free parameters of the test (see Figure 5.1 on page 33).

A further limitation of the current nonparametric framework is that the spatial cor-
relation (i.e. smoothness) of the underlying images is considered implicitly and influences the
empirical cluster statistics on a global scale, as the underlying smoothness has a global effect
on the statistics applying on the entire volume. Local deviations in terms of smoothness are
not directly considered: consider for instance the extreme case of two areas of similar size, one
with a very small amount of spatial correlation and the other with a large smoothness. Both
areas will have equal impact on the empirical cluster statistics, however if considered separately,
the empirical cluster size records would differ. Effectively, due to the above considerations in
regards to the global impact, it is possible that in this scenario higher levels of false negativity
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within the area of low smoothness may occur. In the area of higher smoothness, however,
higher levels of false positivity could theoretically occur. On the other hand, it should be noted
that the T-based corrections in SPM8 used in my work also consider the smoothness only on a
global level.

Another limitation is the inherent assumption of the proposed framework, that infor-
mation is distributed in clusters of voxels as opposed to information within very small spatial
scales (smaller than one voxel). With the current framework, such fine-distributed information
cannot be captured. It should be noted, however, that the cluster assumption to some degree
is undermined in the spatial correlations inherent in the data, which potentially dilutes very
small spatial scales of brain activation.

Finally, I want to stress a more general point regarding the usage of machine learning
approaches in neuroimaging, namely the black-box problem. As I have already stated in Sec-
tion 4.4.6.1 on page 28, information mapping methods allow the delineation of brain regions
which contain information about specific brain states that are for instance provoked by differ-
ent stimulus conditions. While information mapping methods make it possible to know where

brain-state specific information is present in the brain, the machine learning approaches used
in my work do not allow any further insight into how these brain-states are realized on a deeper
biophysical level. However, a quantitative description of the underlying biophysical processes
in the form of a model is ultimately one of the most important goals of neuroscience, if not
the most important1. The information mapping approaches do not offer any insights into these
research questions and possibly even obscure a more biophysically motivated point of view.

16.2 Outlook

In the following I want to provide the most promising extensions to the nonparametric frame-
work, that might be applied to the groundwork introduced in this thesis.

An interesting extension would be an adaptation of the threshold-free cluster enhance-
ment techniques [120] tailored for classification-based fMRI. Effectively, an adaptation would
render the choice of the voxel-wise threshold obsolete and substitute this choice by a set of
parameters, which have a smaller impact on the resulting test statistics. However, as discussed
above, the derivation of this substitution suitable for general classification-based fMRI data
may not be trivial.

Another point is that the main computational bottleneck is the computation of the
permutations, followed by the cluster-based statistics. Since these computations are not overly
memory intensive and can be parallelized to a high degree, the calculation can be performed
on modern graphics processing units (GPUs). This results in a vast reduction of computation
time, especially for the searchlight decoding approach. Furthermore, GPU methods may also
accelerate the processing for the feature weight mapping method, eventually making a full
inference within the timeframe of seconds possible.

1
given the author’s point of view
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Building on an availability of increased processing power, it also would be possible to
fully integrate differences in local spatial correlation, which in the proposed current framework
are only considered on a global level. By carrying out the empirical cluster statistics for
each location (yielding location-specific cluster size histograms), it would be possible to further
increase both the sensitivity and precision of the nonparametric framework. Furthermore, using
voxel-specific cluster statistics it would be possible to nonparametrically derive a measure for
the local spatial correlations.
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