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Abstract

Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate
the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on
NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells)
and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in
hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in
hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and
apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol
treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol
induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was
absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by
EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53
hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that
NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that
resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells.
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Introduction

Resveratrol, a dietary polyphenol, is reported to possess both

chemopreventive and chemotherapeutic properties in several

cancers [1]. In 1997, Jang and colleagues published a seminal

paper reporting that resveratrol is able to inhibit carcinogenesis in

all three stages (initiation, promotion and progression) [2].

Resveratrol was shown to inhibit cell proliferation, induce

apoptosis and cell cycle arrest in different cancer types and cancer

cell lines [3–9]. However, only one study compared the apoptotic

effects of resveratrol on cancer and normal cells. Baarine et al.

found apoptotic effects in murine tumoral cardiac cells which were

absent in normal cardiomyocytes [8]. The molecular mechanisms

are currently not completely understood. SIRT1 has originally

been described as a target of resveratrol [10] although some of the

data are still controversial, especially concerning resveratrol acting

as SIRT1 activator in cancer cells [11–13]. SIRT1 belongs to the

NAD (Nicotinamide adenine dinucleotide) dependent histone

deacetylases, called sirtuins. SIRT1 is involved in many cellular

pathways, such as cellular survival, apoptosis, cellular stress

response and energy metabolism. An increased expression of

SIRT1 has been reported in a variety of human cancers, including

prostate, ovarian, gastric and colorectal cancer. The role of SIRT1

in tumorigenesis is still controversially discussed. SIRT1 has been

shown to act as both tumor promoter and tumor suppressor

[14,15]. SIRT1 was shown to deacetylate the tumor-suppressor

protein p53 on lysine residue 382 leading to its inhibition and

subsequent tumorigenesis [16,17]. Thus, the inhibition of SIRT1

would induce cell death of cancer cells by activating and

acetylating p53.

It is known that cancer cells have increased energy demands

because of their rapid cell proliferation and increased DNA repair

[18]. NAD is required for both processes [19] and regulates crucial

biological processes, including transcription, cell cycle progression,

DNA repair and metabolic pathways [20,21]. Therefore, cancer

cells have a higher rate of NAD turnover than normal cells. The

regeneration of intracellular NAD pools is regulated by NAMPT

(Nicotinamide phosphoribosyltransferase). NAMPT can be found

intracellularly (iNAMPT) and extracellularly (eNAMPT). Howev-

er, neither structural differences between these forms nor the

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e91045

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226105754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


mechanism of NAMPT secretion are known so far. As an

intracellular protein, NAMPT catalyses the rate-limiting step in

the NAD salvage pathway starting from nicotinamide and yielding

nicotinamide mononucleotide (NMN) which is then converted to

NAD [22–25]. Some cancer cells maintain intracellular NAD

levels by overexpressing NAMPT which has been shown in

different cancer types, such as colorectal and breast cancer [26–

28]. The expression and regulation of intracellular NAMPT in

hepatocarcinoma cells has not been characterized so far. NAMPT

inhibition by its highly specific inhibitor FK866 induces apoptosis

and/or autophagy in tumor cells [29–32]. Moreover, previous

studies pointed out that inhibition of NAMPT enzymatic activity

by FK866 or inhibition of SIRT1 activity decreased proliferation

and triggered cell death in cancer cells which was associated with

increased acetylation of p53 (K382) [16,17,33,34].

Here we investigated the molecular mechanisms of resveratrol-

induced apoptotic effects on hepatocarcinoma cells and non-

cancerous human hepatocytes and asked whether NAMPT and

SIRT1 are differentially regulated in hepatocarcinoma cells and

non-cancerous human hepatocytes.

Materials and Methods

Ethics Statement
Non-cancerous primary human hepatocytes were supplied by

the ‘‘virtual liver’’ program (German Federal Ministry of

Education and Research) and the non profit foundation HTCR,

including the informed patient’s consent. The use of human

hepatocytes for research purposes was approved by the local ethics

committee of the Charité University Berlin. Written informed

consent was obtained from all patients. The Charité University

Berlin institutional review board specifically approved this study.

Material
Cell culture media, supplements and antibiotics were obtained

from PAA (Cölbe, Germany) or Invitrogen (Karlsruhe, Germany).

Resveratrol (trans isomer), nicotinamide and camptothecin were

purchased from Sigma-Aldrich (Munich, Germany). FK866 was

kindly provided by TopoTarget A/S, Copenhagen, Denmark.

EX527 was obtained from Cayman Chemical (Ann Arbor, USA),

InSolution Trichostatin A (TSA) and etoposide were purchased

from Merck Millipore (Darmstadt, Germany). Flag-SIRT1

expression vector was obtained from Addgene (Addgene plasmid

1791) [35].

Cell Culture
HepG2 cells were purchased from Leibniz Institute DSMZ

(German Collection of Microorganisms and Cell cultures) and

Hep3B cell were kindly provided by Prof. Dr. Kurt Engeland

(Molecular Oncology, Medical School, University of Leipzig).

Cells were maintained in MEM medium supplemented with 10%

fetal bovine serum (FBS) and 2 mmol/L glutamine and 100 IU

penicillin and 100 mg/mL streptomycin. Primary human hepato-

cytes were isolated and cultured essentially as described [36]. Cells

were seeded in Williams’ Medium E containing 2 mmol/L

glutamine, 1027 mol/L dexamethansone, 100 IU penicillin and

100 mg/mL streptomycin and 10% FBS. All cells were grown at

37uC in a humidified atmosphere of 95% air and 5% CO2.

Cell Treatments
Resveratrol was dissolved in 100% ethanol to create a stock

solution of 100 mM. Cells were stimulated with 10/25/50/

100 mM resveratrol and the equivalent amount of solvent control

(ethanol) to exclude solvent-mediated effects. To inhibit SIRT1

and deacetylases other than histone deacetylases class III, we used

the compound EX527 [20 mM], a cell-permeable selective

inhibitor of SIRT1 dissolved in DMSO [37] and 1 mM of TSA

which were added to the incubation medium.

Measurement of Cell Viability and Apoptosis
To investigate the effects on proliferation and cell viability, we

used the commercial Cell Proliferation Reagent WST-1 (Roche,

Grenzach-Wyhlen, Germany) and measured absorbance at

450 nm. To evaluate the effects of resveratrol on apoptosis the

number of apoptotic cells was measured by flow cytometry using

the FITC Annexin V Apoptosis Detection Kit (BD Pharmingen,

Franklin Lakes, USA). Adherent and floating cells were used. 5–

10 mL of Annexin V-FITC (An) and 2 mL of propidium iodide (PI)

were added to the cell suspension. Samples were analysed using a

Beckton-Dickinson FACS LSRII. As positive control, apoptosis

was induced via camptothecin [2 mM] and etoposide [85 mM] for

24 h. An+ and double-stained An+/PI+ cells were considered

apoptotic. To exclude cytotoxic effects of resveratrol, we used

supernatant of HepG2 cells and primary human hepatocytes to

measure the release of the enzyme, adenylate kinase, from

damaged cells. Therefore, we used the ToxiLightTM Non-

destructive Cytotoxicity BioAssay Kit (Lonza, Cologne, Germany).

Cell Cycle Distribution Analysis
PI staining was used to analyse DNA content and cell cycle

distribution. After cell treatment, adherent and floating cells were

harvested and fixed with 2 mL of 70% ethanol (4uC). The cell

pellet was resuspended in 50 mL PBS with 3.3 mL RNase A

[30 mg/mL], 450 mL FACS-buffer (PBS+2% FBS) and PI

[50 mg/mL] were added to the flow cytometry tubes. Cells were

analysed using a Beckton-Dickinson FACS LSRII by measuring

the PI signal in the FL2 channel.

Table 1. Sequences of Primer and Probes used for real-time PCR (TaqMan).

Target Forward Primer Reverse Primer Probe

NAMPT GCA GAA GCC GAG TTC AAC ATC TGC TTG TGT TGG GTG GAT ATT G TGG CCA CCG ACT CCT ACA AGG TTA CTC AC

beta-ACTIN CGA GCG CGG CTA CAG CTT CCT TAA TGT CAC GCA CGA TTT ACC ACC ACG GCC GAG CGG

TBP TTG TAA ACT TGA CCT AAA GAC CAT TGCTTC GTG GCT CTC TTA TCC TCA TG AAC GCC GAA TAT AAT CCC AAG CGG TTT G

HPRT GGC AGT ATA ATC CAA AGA TGG TCA A GTC TGG CTT ATA TCC AAC ACT TCG T CAA GCT TGC TGG TGA AAA GGA CCC C

p21 CGAAGTCAGTTCCTTGTGGAG CATGGGTTCTGACGGACAT –

NAMPT (nicotinamide phosphoribosyltransferase, also known as PBEF, visfatin); p21; housekeeping genes beta-ACTIN, TBP (TATA-box-binding protein) and HPRT
(hypoxanthine phophoribosyltransferase).
doi:10.1371/journal.pone.0091045.t001
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Reverse Transcription-quantitative Real-time PCR
(RTqPCR)

To measure mRNA expression, total RNA was extracted using

the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions. Reverse transcription was performed

using 200 U M-MLV reverse transcriptase (Invitrogen, Karlsruhe,

Germany) per 500 ng or 1 mg total RNA with random hexamer

[p(dN)6] primers. mRNA expression was quantified by real-time

PCR with TaqMan probe based (Eurogentec, Cologne, Germany)

or SYBR green based (Primerdesign, Southampton, UK) gene

expression assay on the ABI 7500 Sequence Detection System

(Applied Biosystems, Darmstadt, Germany). The housekeeping

genes TATA-box-binding protein (TBP), hypoxanthine phosphoribosyl-

transferase (HPRT) or beta-ACTIN were quantified simultaneously.

Sequence information of primers and probes are given in Table 1.

For standardization of gene expression, the target gene amount

was normalized to the mean of the housekeeping gene expression

in each sample.

Figure 1. NAMPT and SIRT1 expression in hepatocarcinoma cells and primary human hepatocytes. A) mRNA expression and B) protein
expression of NAMPT and SIRT1 in primary human hepatocytes (n = 7), HepG2 cells (n = 8) and Hep3B cells (n = 3). Representative Western Blot is
shown out of three independent experiments. Measurement of C) intracellular NAD levels (left panel, primary hepatocytes n = 4, HepG2 cells n = 6),
basal NAMPT enzymatic activity (middle panel, primary hepatocytes n = 3, HepG2 cells n = 4) and extracellular NAMPT (eNAMPT) levels (right panel,
primary hepatocytes n = 3, HepG2 cells n = 6) in primary human hepatocytes and HepG2 cells. Data are shown as mean6 SEM. Difference between
two groups was evaluated using unpaired Student’s t-test (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0091045.g001
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Protein Extraction and Immunoblotting
For protein analyses, cells were lysed in modified RIPA buffer

(50 mM TrisHCl pH 7.4; 1% NP-40; 0.25% sodium deoxycho-

late; 16Roche complete proteases inhibitor cocktail; 1 mM

EDTA; 1 mM sodium orthovanadate; 1 mM sodium fluoride;

5 mM nicotinamide; 5 mM TSA, 1 mM sodium butyrate) and

separated by SDS-PAGE (8–15%). Protein concentration of

lysates was measured by BCA protein assay (Pierce, Thermo

Scientific). After transfer to nitrocellulose membranes (Millipore,

Bedford, MA, USA), blots were blocked with 5% (w/v) non-fat dry

milk in 16TBS buffer containing 0.1% Tween 20 (TBS-T).

Primary antibodies used for immunoblotting included anti-

NAMPT clone OMNI 379 (1:5000) (Cayman Chemical, Ann

Arbor, MI, USA), anti- acetylated p53 (K382) (1:1000), anti-p53

(1:1000), anti-p53 (1C12) (1:1000), anti-phospho-p53 (Ser15)

Figure 2. Resveratrol reduces cell proliferation and induces cell cycle arrest and apoptosis in hepatocarcinoma cells which is absent
in primary human hepatocytes. Cell viability of A) primary human hepatocytes (n = 2), HepG2 and Hep3B cells (n = 3) after stimulation with
resveratrol for 24 h. Data were normalised to serum-free medium control which was set 1. B) Cell cycle distribution of HepG2 cells treated with
resveratrol for 24 h. A representative result is shown out of three independent experiments. A representative dot plot is given in Fig. S2B. C) Annexin
V/PI apoptosis assay of HepG2 (n = 3) and Hep3B cells (n = 3) treated with resveratrol for 24 h. D) A representative dot plot of the Annexin/PI staining
in HepG2 cells is shown including the mean percentage of An+ and double An+/PI+ cells of three independent experiments. Data are shown as
mean6 SEM and statistical analysis was performed using one-way ANOVA and the Bonferroni post hoc test (*p,0.05; **p,0.01 compared to serum-
free medium).
doi:10.1371/journal.pone.0091045.g002

Resveratrol Differentially Regulates NAMPT and SIRT1

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91045



(1:1000), anti-SIRT1 (D379) (1:1000), anti-p21 (1:1000), anti-Bax

(1:1000), anti-caspase3 (1:500), anti- cleaved caspase3 (1:500) (Cell

Signaling, Beverly, MA, USA) and anti-GAPDH (MerckMillipore,

Schwalbach, Germany). Secondary antibodies were purchased

from DAKO (Hamburg, Germany). Immunoblotting for GAPDH

was performed to verify equivalent amounts of loaded protein.

Detection was performed using enhanced chemiluminescence.

Densitometric analysis was performed using ImageJ 1.41 Software

(NIH, USA).

Measurement of NAMPT Release
NAMPT concentration in supernatants of HepG2 cells and

primary hepatocytes was quantified using the human extracellular

NAMPT/PBEF/Visfatin ELISA Kit (AdipoGen Inc., Seoul,

South Korea), respectively, according to manufacturer’s instruc-

tions. NAMPT concentration was normalised to the correspond-

ing total protein amount in each sample. For semiquantitative

measurements, NAMPT levels were detected by using supernatant

of cultured cells for Western Blot analysis.

NAMPT Enzymatic Activity
NAMPT activity was measured by the conversion of 14C-

labelled nicotinamide to 14C-NMN using a method previously

described [38]. For preparation of lysates, cells were harvested and

resuspended in 100 mL of 0.01 mol/L sodium phosphate buffer,

pH 7.4, frozen at –80uC for 24 h and thawed at room

temperature. Cell debris was removed by centrifugation at

23,000 rcf, 90 min at 0uC. Protamine sulphate solution (1% in

NaHPO4 buffer) was added to the supernatant (70 mL/mL

supernatant) to precipitate DNA by incubation on ice for

15 min. After centrifugation at 23,000 rcf, 30 min at 0uC, aliquots

of the supernatant were stored at –80uC. Lysates (50 mg) were

added to 50 mL reaction mix (50 mmol/L TrisHCl; 2 mmol/L

ATP; 5 mmol/L MgCl2; 0.5 mmol/L PRPP; 6.2 mmol/L 14C-

nicotinamide; American Radiolabelled Chemicals, St. Louis; MO,

USA) and incubated at 37uC for 1 h. Optimal conditions for the

NAMPT activity assay (amount of total protein, incubation time,

pH value) were determined (Fig. S1A,B,C). For measuring

extracellular NAMPT activity we used supernatant of HepG2

cells and concentrated it 80-fold using Amicon Ultra Centrifugal

Filter Units (Ultracel-50k) (Millipore). Then, 10 ml of concentrated

supernatant was used for the enzyme assay reaction mix and

incubated for 2 h at 37uC. The NAMPT enzymatic reaction was

terminated by mixing with 2 mL of acetone. The mixture was

then transferred onto acetone-pre-soaked glass microfiber filters

(GF/A Ø 24 mm; Whatman, Maidstone, UK). After rinsing with

261 mL acetone, filters were dried, transferred into vials with

6 mL scintillation cocktail (Betaplate Scint, PerkinElmer, Wal-

tham, MA, USA) and radioactivity of 14C-NMN was quantified in

a liquid scintillation counter in counts per minute (cpm) (Wallac

1409 DSA, PerkinElmer). NAMPT activity was normalised to

total protein concentration as measured by the BCA protein assay.

The validity of the assay was evaluated by adding the specific

NAMPT inhibitor, FK866 (Fig. S1C). FK866 induced a dose-

dependent decrease in NAMPT activity with an IC50 value of

8.2 nM.

NAD Measurements
Concentrations of NAD from whole-cell extracts were quanti-

fied by High-performance liquid chromatography (HPLC) and the

NAD/NADH assay kit (EnzyChrom NAD/NADH Assay Kit,

Biotrend, Köln, Germany), applied according to manufacturer’s

instructions. HPLC analysis was performed with Chromaster

Purospher STAR RP-18 endcapped 3 mm Hibar RT 150-3 HPLC

column (Merck). Briefly, cultured cells were extracted in 1 M

HClO4 and neutralized in 3 M K2CO3 on ice as described

previously [39]. After centrifugation for 10 min at 18,000 rcf

(4uC), the supernatant was filtered and loaded onto the column.

For NAD measurement, the HPLC was run at a flow rate of

0,4 ml/min with 100% buffer A from 0–5 min, a linear gradient

to 95% Buffer A/5% Buffer B (100% methanol) from 5–6 min,

95% Buffer A/5% Buffer B from 6–11 min, a linear gradient to

85% Buffer A/15% Buffer B from 11–12 min, 85% Buffer A/15%

Buffer B from 12–16 min, and a linear gradient to 100% Buffer A

from 16–17 min. NAD was eluted as a sharp peak at 15 min and

quantitated based on the peak area compared to a standard curve

and normalised to protein content of cultured cells.

Figure 3. Resveratrol activates apoptotic mechanisms in
hepatocarcinoma cells. Cells were treated with resveratrol or
serum-free medium (con) for 24 h. Activation of p53 through
phosphorylation at serine residue 15 and cleavage of caspase-3 in A)
HepG2 cells, B) Hep3B cells and C) primary human hepatocytes were
analysed by Western Blot. GAPDH was used as loading control. One
representative blot out of at least 3 independent experiments is shown.
doi:10.1371/journal.pone.0091045.g003
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Plasmid Transfection
Transfection was conducted using NEON Transfection System

(100 ml Kit, invitrogen) according to the manufacturer’s manual.

Briefly, HepG2 cells were splitted 1:3 one day before transfection.

Cells were transiently transfected with pECE-Flag-SIRT1 (2 mg

DNA/0.56106 cells) or the empty vector (mock-control). After

24 h of transfection, medium was changed for a further 24 h

resveratrol-containing medium at 37uC.

Statistical Analyses
Data are presented as mean 6 SEM. Data were analysed for

statistical significance by one-way analysis of variance (ANOVA)

followed by Bonferroni post hoc test. Differences between two

groups were evaluated using unpaired Student’s t-test. All analyses

were performed using GraphPad Prism 5 software (GraphPad

Software, Inc., San Diego, USA). The level of significance for all

comparisons was set at p,0.05.

Results

NAMPT and SIRT1 are Differentially Expressed in
Hepatocarcinoma Cells and Primary Human Hepatocytes

The expression levels of NAMPT and SIRT1 were evaluated

using qPCR and Western Blot analysis. Our data revealed that

NAMPT expression is lower in HepG2 (275.6%65.2%) and

Hep3B cells (284.6%60.5%) compared to non-cancerous

primary human hepatocytes (Fig. 1A,B). In contrast, the

NAD-dependent deacetylase SIRT1 is significantly higher

expressed in both cancer cell lines compared to primary human

hepatocytes (HepG2 cells 2.8-fold, Hep3B cells 2.5-fold)

(Fig. 1A,B). Intracellular NAD levels in HepG2 cells and

primary hepatocytes were not significantly different (HepG2

cells 1.960.3 mmol NAD/g protein compared to 1.760.3 mmol

NAD/g protein in primary human hepatocytes) (Fig. 1C, left

panel). A comparison of the NAMPT enzymatic activity in

HepG2 cells and primary human hepatocytes showed a 3-fold

higher (p,0.05) enzymatic activity of NAMPT in HepG2 cells

(57.267.7 cpm/mg protein6h) than in primary human hepato-

cytes (19.363.8 cpm/mg protein6h) (Fig. 1C, middle panel).

Additionally, we measured higher eNAMPT levels in the

supernatant of primary human hepatocytes (3.260.3 ng/mg

protein) than in HepG2 cells (0.460.2 ng/mg protein) (Fig. 1C,

right panel).

Resveratrol Induces Cell Cycle Arrest and Apoptosis in
Hepatocarcinoma Cells

Resveratrol has been shown to induce growth arrest and

apoptosis in many different cancer cell lines. In the present

study, we wanted to investigate whether the effects of resveratrol

are p53-dependent. Therefore, we used HepG2 cells, known to

be p53 wild-type, Hep3B cells - a p53 deficient cell line due to

a deletion of the p53 gene, and primary human hepatocytes as

non-cancerous hepatocyte control. Cells were treated with

resveratrol as described above. After 24 h, hepatocarcinoma

Figure 4. Effects of FK866 and EX527 on p53 acetylation and cell viability in HepG2 cells. Cells were stimulated with FK866 [10 nM] or
EX527+TSA [20 mM EX527+1 mM TSA] in serum-free medium (con). Cells treated with A) FK866 and expression of acetylated p53 (K382) after 24 h. B)
Cell viability of HepG2 cells after stimulation with FK866 for 48 h measured by WST-1 assay (n = 4). Data were normalised to serum-free medium (con)
which was set 1 (**p,0.01; ***p,0.001 compared to serum free medium). C) Expression of acetylated p53 (K382), p21 protein and cleavage of
caspase-3 were analysed in HepG2 cells treated with EX527+TSA for 24 h. GAPDH was used as loading control. One representative blot out of 3
independent experiments is shown.
doi:10.1371/journal.pone.0091045.g004
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cells showed a dose-dependent decrease in viability (Fig. 2A).

Resveratrol [100 mM] markedly decreased cell viability by

45.862.7% (p,0.05) in HepG2 cells and by 63.763.4% (p,

0.01) in Hep3B cells (Fig. 2A). Primary human hepatocytes

treated with the same concentrations of resveratrol exhibited no

significant changes in viability (Fig. 2A). To investigate the

cause of cell viability reduction by resveratrol, we analysed cell

cycle distribution. As shown in Fig. 2B, resveratrol [25, 50 mM]

Figure 5. Resveratrol differentially regulates NAMPT and NAD levels in HepG2 cells and primary human hepatocytes. Cells were
stimulated with resveratrol or serum-free medium (con) for 24 h. For measuring NAMPT enzymatic activity in A) HepG2 cells and (n = 4) B) primary
human hepatocytes (n = 3), 50 mg of protein lysate was used for the assay and incubated for 1 h. Counts (cpm) were normalised to mg total protein.
Lysates from C) HepG2 cells (n = 3) and D) primary human hepatocytes (n = 3) were used to measure NAMPT protein levels by Western Blot.
Determination of intracellular NAD levels in E) HepG2 cells (n = 6) and F) primary human hepatocytes (n = 4). NAD levels were normalised to total
protein amount in each sample.
doi:10.1371/journal.pone.0091045.g005
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caused an increase of cells in the S-phase ([con] 4.760.6%,

[25 mM] 21.765.1%, [50 mM] 17.062.6%, p,0.05) and in the

G2/M-phase ([con] 13.761.8%, [25 mM] 23.964.2%, [50 mM]

27.066.1%, p,0.05) and a corresponding decrease of cells in

the G1-phase. The cell cycle distribution was not significantly

modified in p53-deficient Hep3B cells (Fig. S2A), which

indicates that the resveratrol-induced cell cycle arrest is

mediated by a functional p53. However, in both hepatocarci-

noma cell lines apoptotic mechanisms were activated. As

indicated in Fig. 2C, stimulation with increasing concentrations

Figure 6. Resveratrol differentially regulates p53 acetylation and SIRT1 protein level in HepG2 cells and primary human
hepatocytes. Acetylation of p53 (K382) in A) HepG2 cells (n = 4) and B) primary human hepatocytes (n = 3) was evaluated by Western Blot.
Densitometric analysis of at least three independent experiments is shown. Data are represented as mean6 SEM and statistical analysis was
performed using one-way ANOVA and the Bonferroni post hoc test (*p,0.05, n.s. not significant). As a downstream target of acetylated and activated
p53, the expression of p21 was analysed by Western Blot. As positive control for SIRT1 inhibition, EX527+TSA was used. SIRT1 protein expression was
analysed by Western Blot in C) HepG2 cells and D) primary hepatocytes and densitometric analysis was performed. GAPDH was used as loading
control, respectively. One representative blot out of at least 3 independent experiments is shown.
doi:10.1371/journal.pone.0091045.g006
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of resveratrol led to a dose-dependent increase in the number of

apoptotic cells in HepG2 (Fig. 2C,D) and Hep3B cells (Fig. 2C).

At 100 mM resveratrol, the percentage of apoptotic cells in

HepG2 cells and Hep3B cells increased to 40.665.6% (p,0.01)

and to 32.263.7% (p,0.05), respectively.

Figure 7. Effects of resveratrol on NAMPT release and NAMPT mRNA expression. Cells were stimulated with resveratrol in serum-free
medium for 24 h. Supernatants of resveratrol treated A) HepG2 cells (n = 7) and B) primary human hepatocytes (n = 3) were used for quantifying
extracellular NAMPT protein amount using a specific eNAMPT ELISA. eNAMPT protein concentration was normalised to the total protein amount.
NAMPT mRNA expression in resveratrol treated C) HepG2 cells (n = 5) and D) primary human hepatocytes (n = 4) was quantified by qRT-PCR and
normalised to housekeeping genes. NAMPT gene expression was then related to its expression in serum-free control medium (0), which was set 1.
Data are represented as mean6 SEM and statistical analysis was performed using one-way ANOVA and the Bonferroni post hoc test (*p,0.05; ***p,
0.001; n.s. not significant). E) Supernatant of resveratrol [100 mM] or serum-free medium (con) treated HepG2 cells was used to measure NAMPT
enzymatic activity and extracellular NAMPT protein levels. Counts (cpm) measured by NAMPT enzyme assay were referred to densitometric data of
NAMPT protein levels in the supernatant of the same sample. Data were then normalised to serum-free control medium which was set 1. Data are
shown as mean6 SEM. The difference between these two groups was evaluated using unpaired Student’s t-test (***p,0.001).
doi:10.1371/journal.pone.0091045.g007
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p53 and Caspase-3 are Involved in Resveratrol-mediated
Apoptotic Effects

In HepG2 cells, resveratrol increased the phosphorylation of

p53 at residue serine 15 in a dose-dependent manner (Fig. 3A). At

high concentration of resveratrol [100 mM], we found increased

cleavage of caspase-3 (Fig. 3A). The activation of caspase-3 by

resveratrol was also increased in p53-deficient Hep3B cells even at

lower concentration [25, 50 mM] (Fig. 3B). These results indicate

that resveratrol induces caspase-3 activation in a p53-independent

manner. Then, we stimulated primary human hepatocytes with

the same concentrations of resveratrol and found no induction of

apoptosis (Fig. 3C) or cytotoxicity (Fig. S3A).

Inhibition of NAMPT and SIRT1 Activity in
Hepatocarcinoma Cells Induces Growth Arrest and
Apoptosis

Several studies have shown that the NAD metabolism is

essential for cancer cell survival and proliferation [40–42].

However, little is known about the effects of resveratrol on

NAMPT and SIRT1 activity in hepatocarcinoma cells. Human

SIRT1 targets and deacetylates the p53 tumor suppressor protein

[16,17,34]. Therefore, we investigated whether a specific inhibi-

tion of NAMPT and SIRT1 would affect cell survival and

apoptotic mechanisms. We used the specific NAMPT inhibitor

FK866 and the SIRT1 inhibitor EX527 [34]. FK866 increased

p53 acetylation (K382) (Fig. 4A) and reduced HepG2 cell viability

after 48 h (Fig. 4B). Cells treated with the SIRT1 inhibitor,

EX527, showed also increased p53 acetylation (K382), enhanced

expression of p53 downstream target p21/WAF1/Cip1 and

activation of caspase-3 (Fig. 4C).

Resveratrol Differentially Regulates NAMPT Enzymatic
Activity in Hepatocarcinoma Cells and Primary Human
Hepatocytes

Based on our findings that an inhibition of NAMPT and SIRT1

activity induced growth arrest and apoptosis in hepatocarcinoma

cells we then asked whether resveratrol would also affect NAMPT

enzyme activity as well as intracellular NAD levels. We found that

resveratrol differentially regulated NAMPT activity in hepatocar-

cinoma cells (Fig. 5A) and primary hepatocytes (Fig. 5B) without

affecting NAMPT protein expression (Fig. 5C,D). We measured a

dose-dependently decreased NAMPT activity in HepG2 cells

([100 mM] 238.9614.0%, p,0.01) (Fig. 5A) and in Hep3B cells

([100 mM] 238.569.4%, p,0.05) (Fig. S4). In contrast, NAMPT

enzymatic activity in primary hepatocytes significantly increased

by +64.7613.8% (p,0.05) after stimulation with 100 mM

resveratrol (Fig. 5B). We then measured the NAD level after

resveratrol treatment in HepG2 cells and found a trend towards

reduction ([con] 2.060.4 mmol NAD/g total protein, [100 mM]

1.560.2 mmol NAD/g total protein) (Fig. 5E). In contrast,

intracellular NAD levels in primary hepatocytes were increased

by resveratrol ([con] 1.760.3 mmol NAD/g total protein, [50 mM]

6.462.5 mmol NAD/g total protein (p,0.05), [100 mM]

5.461.7 mmol NAD/g total protein) (Fig. 5F).

Resveratrol Differentially Regulates p53 Acetylation and
SIRT1 Protein in Hepatocarcinoma Cells and Primary
Human Hepatocytes

We further addressed whether resveratrol could influence p53

acetylation at lysine residue 382, a main target site of SIRT1

[16,17,34], and demonstrated that resveratrol treatment of HepG2

cells increased acetylation of p53 ([50 mM] 12.8-fold, [100 mM]

13.4-fold) (Fig. 6A). As positive control for SIRT1 inhibition, we

used the specific SIRT1 inhibitor EX527 [34,37] (Fig. 6A). In

contrast, primary human hepatocytes from different donors

showed a trend towards reduced p53 acetylation after resveratrol

stimulation (Fig. 6B). Since the acetylation of p53 activates its

transcriptional activity, we analysed the expression of the p53

downstream target p21/WAF1/Cip1, which functions as a

regulator of cell cycle progression. In correspondence to the

acetylation state of p53 we found increased expression of p21

mRNA (Fig. S5A) and protein in HepG2 cells (Fig. 6A). Primary

human hepatocytes from different donors showed variable results

with either no changes in p21 protein expression or a p21 down

regulation (Fig. 6B, Fig. S5B). Nonetheless, we can exclude an

activation of p53 in primary human hepatocytes. Furthermore,

SIRT1 protein levels in HepG2 cells were reduced at 100 mM

resveratrol (p,0.01) (Fig. 6C) whereas primary human hepato-

cytes showed a trend towards increased SIRT1 protein expression

at the same dose of resveratrol (Fig. 6D). Due to the variability of

primary hepatocytes the changes were not significant.

Figure 8. SIRT1 inhibition downregulates NAMPT activity and induces NAMPT release in HepG2 cells. HepG2 cells were treated with
EX527+TSA [20 mM EX527+1 mM TSA] or serum-free medium (con) for 24 h. Measurement of A) NAMPT enzymatic activity (n = 3). Counts (cpm) were
normalised to mg total protein in each sample (*p,0.05). B) NAD level were determined by HPLC (n = 5) and normalised to total protein amount in
each sample. C) Supernatant of EX527 treated HepG2 cells was used for determination of eNAMPT level. One representative Western blot out of 3
independent experiments is shown.
doi:10.1371/journal.pone.0091045.g008
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Figure 9. SIRT1 overexpression in HepG2 cells reversed resveratrol-induced SIRT1 inhibition, NAMPT release and S-phase arrest. A)
SIRT1 was transiently overexpressed in HepG2 cells [2.0 mg plasmid/0.5x106 cells] using the expression vector pECE_Flag-SIRT1 from addgene
(plasmid 1791; [35]). Lysates of cells transfected with the empty vector pECE (mock-control) (1) or pECE Flag-SIRT1 vector (2) were used for Western
Blot analysis. B) mock-transfected (mock-control) and Flag-SIRT1 transfected HepG2 cells were stimulated with resveratrol [50, 100 mM Resv.] for 24 h
and Western Blot analysis of acetylated p53 (K382), p21 and GAPDH was performed. Densitometric anaylsis of acetylated p53 of three independent
Western Blots is shown. Data were normalised to non-transfected HepG2 cells stimulated with resveratrol alone which was set 1. C) To analyse the
effect of SIRT1 overexpression on resveratrol-induced NAMPT release, supernatant of mock-transfected and Flag-SIRT1 transfected HepG2 cells
stimulated with or without resveratrol [100 mM] were used to measure eNAMPT level. One representative Western blot out of 3 independent
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Resveratrol Induces NAMPT Release in HepG2 Cells
Since NAMPT was found to be released from hepatocytes [43]

we determined NAMPT concentrations in supernatants from

resveratrol-treated HepG2 cells and primary hepatocytes. We

measured significantly increased amounts of extracellular

NAMPT in the supernatant of HepG2 cells treated with 50 mM

(4-fold) and 100 mM (19.8-fold) resveratrol (Fig. 7A) ([con]

0.460.2 ng NAMPT/mg total protein, [50 mM] 1.660.7 ng

NAMPT/mg total protein, [100 mM] 7.961.3 ng NAMPT/mg

total protein, p,0.001). We postulated that NAMPT mRNA

expression may be increased following resveratrol exposure in

HepG2 cells to maintain a steady-state of intracellular NAMPT

protein level. We found a significantly increased NAMPT gene

expression after stimulation with 50 mM (1.8-fold, p,0.05) and

100 mM (1.7-fold, p,0.05) resveratrol in HepG2 cells (Fig. 7C).

NAMPT release and NAMPT mRNA expression in primary

human hepatocytes were not influenced by resveratrol (Fig. 7B,D).

In parallel, a cytotoxicity assay was performed to verify that the

increase of extracellular NAMPT levels was not due to leakage

from damaged cells (Fig. S3B). We then asked at which time point

NAMPT release from HepG2 cells started. We found that there

was a time- and dose- dependent release of NAMPT already

starting after 6 h of resveratrol exposure (Fig. S3C). NAMPT is

known as a protein with dual function- an enzyme and a

cytokine-like function. We asked whether NAMPT that is

released after resveratrol exposure could lack NMN biosynthetic

action. We found a remarkable decrease in extracellular NAMPT

activity by 72.3611.9% (p,0.001) compared to control cells in

serum-free medium (Fig. 7E).

NMN does not Protect Against Resveratrol- induced
Apoptosis in Hepatocarcinoma Cells

Next, we investigated whether NMN would be able to

ameliorate resveratrol-mediated effects in HepG2 cells. Inter-

estingly, NMN did not protect from resveratrol-induced cell

cycle arrest and apoptosis in hepatocarcinoma cells (Fig.

S6A,B,C,D). Further, NMN was not able to abrogate p53

hyperacetylation after resveratrol treatment and to decrease

resveratrol-induced NAMPT release in HepG2 cells (Fig.

S6E,F).

SIRT1 Inhibition Decreases NAMPT Activity and Induces
NAMPT Release

Given that resveratrol increased p53 acetylation (K382),

downregulated NAMPT activity and induced NAMPT secre-

tion, we asked whether an inhibition of SIRT1 by EX527 would

exert the same effects. Indeed, our data revealed that HepG2

cells treated with EX527 showed the same cellular responses

as cells stimulated with resveratrol, such as decreased NAMPT

enzymatic activity (240.3611.5%, p,0.05) (Fig. 8A)

and slightly reduced intracellular NAD level (Fig. 8B).

Further, as observed in resveratrol-treated HepG2 cells,

extracellular NAMPT levels were increased upon SIRT1

inhibition (Fig. 8C).

SIRT1 Overexpression Abrogated Resveratrol- induced
p53 Hyperacetylation, NAMPT Release and S-phase Arrest

Since resveratrol and NMN co-treatment did not augment

resveratrol-induced p53 hyperacetylation in hepatocarcinoma

cells, we tried to overcome this effect by transiently overexpressing

SIRT1 in HepG2 cells (Fig. 9A). Our data revealed that SIRT1

overexpression significantly decreased resveratrol- induced p53

hyperacetylation ([50 mM] 276.666.5%, [100 mM] 2

69.9615.9%, p,0.05) and its transcriptional activity in HepG2

cells (Fig. 9B). We then investigated whether a SIRT1 overex-

pression would be able to abrogate resveratrol-induced NAMPT

secretion in HepG2 cells. SIRT1 overexpressing HepG2 cells

treated with 100 mM resveratrol led to decreased eNAMPT levels

in the supernatant compared to mock-transfected cells treated with

resveratrol alone (Fig. 9C). This suggests that SIRT1 may play a

crucial role in the mechanism of resveratrol-induced NAMPT

secretion. Reduction in cell viability upon resveratrol treatment

[100 mM] was not abolished by SIRT1 overexpression (Fig. 9D)

indicating that apoptosis inducing factors were still activated and

not dependent on SIRT1. However, the resveratrol- induced cell

cycle arrest in the S-phase was significantly decreased after SIRT1

overexpression ([con] 7.460.9%, [con+25 mM] 28.162.6%,

[Flag-SIRT1+25 mM] 18.563.8%; [con+50 mM] 26.663%,

[Flag-SIRT1+50 mM] 17.163.2%) (Fig. 9E).

Discussion

There is growing in vitro and in vivo evidence demonstrating the

inhibitory effects of resveratrol on liver cancer [44–46]. It is known

that resveratrol affects numerous signal transduction pathways

associated with tumorigenesis [47]. However, the mechanisms

how resveratrol selectively modulates proliferation and apoptosis

in tumor cells are not fully understood. A recent study

demonstrated that resveratrol has the chemical structure to inhibit

the activity of different human histone deacetylases (HDACs),

important transcriptional and post-translational regulators [48].

We investigated the molecular mechanisms of resveratrol-induced

reduction of cell viability in human hepatocellular carcinoma cells

and compared the results with non-cancerous primary human

hepatocytes. We found that resveratrol selectively induced

apoptosis in HepG2 and Hep3B cells, but not in primary

hepatocytes. Our data confirm the apoptotic effects of resveratrol

on hepatocarcinoma cells independent of p53 function. Further-

more, several other studies reported that resveratrol induced p53-

independent apoptosis in tumor cells [49,50], indicating that p53 is

not an absolute requirement for the apoptotic effect of resveratrol.

In contrast, we found an arrest of cells in the S- and G2/M-phase

of the cell cycle only in p53 wild-type HepG2 cells and not in

Hep3B cells lacking p53, which was also shown by other groups

[7,51,52].

Our study revealed that NAMPT and SIRT1 were expressed in

an opposite way in hepatocarcinoma cells and primary hepato-

cytes and were differentially regulated by resveratrol. Other

groups found SIRT1 expression to be significantly elevated in

hepatocellular carcinoma (HCC) compared to non-cancerous

tissues, the expression levels correlated with tumor grades and

experiments is shown. D) Cell viability of mock-transfected and Flag-SIRT1 transfected HepG2 cells treated with resveratrol [100 mM] (black bars) was
measured using WST-1 assay (n = 3). Data were normalised to untreated mock-control which was set 1. E) mock-transfected (white bars) and Flag-
SIRT1 transfected HepG2 cells (black bars) were stimulated with resveratrol [25, 50 mM] for 24 h. Percentage of cells in the S-phase were measured by
PI staining and FACS analysis. All data are shown as mean6 SEM (n = 4). The difference between two groups was evaluated using unpaired Student’s
t-test (##p,0.01 mock-transfected cells compared to mock-transfected cells treated with resveratrol (white bars, mock-control), **p,0.01, ***p,
0.001 Flag-SIRT1 transfected cells treated with resveratrol (black bars) compared to resveratrol-treated mock-transfected cells (white bars).
doi:10.1371/journal.pone.0091045.g009
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predicted poor prognosis. SIRT1 was shown to promote

tumorigenesis in HCC, and inhibition of SIRT1 consistently

suppressed the proliferation of HCC cells in vitro or in vivo via the

induction of cellular senescence or apoptosis [53–56]. The

expression and role of NAMPT in HCC has not been

characterised so far. In contrast to findings in other cancer cell

types [18], we found that hepatocarcinoma cells express lower

levels of NAMPT compared to non-cancerous primary hepato-

cytes. However, we found that HepG2 cells possess a higher basal

NAMPT activity than primary hepatocytes, which goes in line

with the comparable NAD levels in both cell types despite weaker

NAMPT expression in hepatocarcinoma cells.

Under basal conditions primary hepatocytes released higher

amounts of NAMPT into the supernatant than HepG2 cells. As

shown by our group, HepG2 cells and primary human hepato-

cytes constitutively release NAMPT in its dimeric, enzymatically

active form [43]. Presumably, due to the higher amount of cellular

NAMPT protein in primary human hepatocytes compared to

hepatocarcinoma cells, NAMPT is constitutively more released

from primary hepatocytes leading to higher basal eNAMPT level.

However, we cannot completely preclude, that due to necrosis of

fragile or dead primary hepatocytes, proteins are released into the

supernatant.

There are several reports showing that resveratrol acts as a

natural SIRT1 activator [10,57–60]. We observed increased

NAMPT activity and intracellular NAD levels in primary

hepatocytes providing evidence for resveratrol as SIRT1 activator

in non-cancerous cells. However, recent data showed that

resveratrol is not a direct activator of SIRT1 and therefore some

mediators are may be involved in this interplay [48,61–63].

Moreover, little is known about NAMPT and SIRT1 regulation

by resveratrol in cancer cells. A recent report showed that SIRT1

inhibition is involved in resveratrol-induced cell death in Hodgkin

lymphoma (HL)-derived L-428 cells [11]. Additionally, neuroblas-

toma cells treated with resveratrol also underwent apoptosis and

showed a downregulaton of SIRT1 [64]. In our study, resveratrol-

stimulated HepG2 cells showed similar responses like cells treated

with the SIRT1 inhibitor EX527. Thus, we assume that

resveratrol is rather acting as a NAMPT and SIRT1 inhibitor in

hepatocarcinoma cells. However, there are several reports

demonstrating other mechanisms leading to p53 acetylation by

resveratrol [65,66].

Our findings indicate that NMN did not ameliorate resveratrol-

induced effects on apoptosis, cell cycle arrest and NAMPT release,

suggesting that the availability of NAD is not a limiting factor in

this scenario. A variety of posttranslational modifications in SIRT1

N- and C-terminal extensions have been reported, effecting

SIRT1 enzyme activity and protein interactions [67,68]. Our

findings raise the possibility that, in some cases, the regulation of

SIRT1 by other proteins may be more important than NAD

availability. Increase in p53 transcriptional activity and induction

of S-phase arrest observed upon treatment with resveratrol were

abrogated upon SIRT1 overexpression. However, SIRT1 over-

expression was not able to augment reduced cell viability in

HepG2 cells under high resveratrol concentrations. Resveratrol

affects a multitude of other signal transduction pathways

associated with apoptotic mechanisms and transcriptional regula-

tion [66,69] that are still activated and not SIRT1 dependent [64].

Thus, these collective activities, rather than just a single effect, may

account for the anticancer properties of resveratrol. However, our

data give evidence that resveratrol regulates NAMPT activity in

cancer cells and non-cancerous cells. Resveratrol could regulate

NAMPT enzymatic activity by at least two hypothetical mecha-

nisms: i) by direct interaction inducing conformational changes

that lead to alterations of enzymatic activity, or ii) by inducing a

posttranslational modification of NAMPT. Our study revealed

that SIRT1 inhibition downregulates NAMPT activity and

induces NAMPT secretion. This provides the basis for further

mechanistic studies on NAMPT-SIRT1 interaction and their

regulation.

Further, we found a time- and dose-dependent NAMPT release

after resveratrol stimulation of HepG2 cells which was associated

with increased NAMPT mRNA expression. The association of

increased NAMPT release and mRNA expression has also been

shown by Kover et al. in human islets [70]. eNAMPT has been

described to act as a cytokine (as pre-B cell colony enhancing

factor, PBEF) [71] or as an adipokine (visfatin) [72,73] but also has

extracellular enzymatic function to yield NMN [74]. To our

knowledge, for the first time our data point to SIRT1 as regulator

of NAMPT secretion and NAMPT enzymatic activity in the

supernatant. We could show that the resveratrol-induced NAMPT

release was significantly reduced after SIRT1 overexpression,

indicating a crucial role for SIRT1 in resveratrol-mediated

NAMPT secretion.

In summary, our study revealed that resveratrol selectively

induced p53-independent cell death in hepatocarcinoma cells and

differentially regulated NAMPT and SIRT1 in cancer cells and

non-cancerous cells. Our data give evidence that in contrast to

normal hepatocytes, resveratrol does not act as a NAMPT and

SIRT1 activator in hepatocarcinoma cells. However, it remains to

be investigated whether NAMPT interacts with SIRT1 and how it

is regulated by resveratrol or other mediators and linked to cellular

metabolism and apoptosis. This will provide novel insights

concerning the potential of NAMPT and SIRT1 as therapeutic

targets in hepatocellular carcinoma.

Supporting Information

Figure S1 Establishment of parameters for a NAMPT
enzymatic assay. Assay conditions, such as A) protein amount,

B) pH value and C) incubation time were optimized for measuring

NAMPT enzymatic activity. D) We validated the assay perfor-

mance by adding the specific NAMPT inhibitor FK866 to the

lysate before measuring NAMPT activity. As expected, FK866

induced a dose-dependent decrease in NAMPT activity with an

IC50 value of 8.2 nM. Experiments were performed in HepG2

cells. Data are presented as mean6 SEM.

(TIF)

Figure S2 Cell cycle arrest in Hep3B and a representa-
tive dot plot of HepG2 cells. A) PI staining of cell cycle

distribution of Hep3B cells (n = 2) stimulated with different

concentration of resveratrol [25/50/100 mM] for 24 h. B) A

representative dot plot of cell cycle analysis of HepG2 cells. The

left plot shows pulse width versus area; this is the plot used to

distinguish between single cells and aggregates. Single cells have

been gated and a FL2-Area histogram has been drawn and

formatted to show only the events inside of the single cell region.

(TIF)

Figure S3 Resveratrol does not have cytotoxic effects on
HepG2 cells and primary human hepatocytes. HepG2

cells and primary human hepatocytes were stimulated with

resveratrol [10/25/50/100 mM] in serum-free medium for 24 h

and supernatant was used for the ToxiLight Non-destructive

Cytotoxicity BioAssay. A) Primary human hepatocytes (n = 3) and

B) HepG2 cells (n = 3) showed no cytotoxic effects after stimulation

with resveratrol. Data are shown as mean6 SEM. Statistical

analysis was performed using one-way ANOVA and the
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Bonferroni post hoc test (n.s. not significant). C) Supernatants of

resveratrol [100 mM] or serum-free medium (con) treated HepG2

cells after 6, 12 and 24 h were used to measure extracellular

NAMPT levels by Western Blot.

(TIF)

Figure S4 Resveratrol downregulates NAMPT enzymat-
ic activity in Hep3B cells. Hep3B cells were stimulated with

resveratrol [10/25/50/100 mM] in serum-free medium for 24 h.

NAMPT enzymatic activity was measured by the conversion of
14C- labelled nicotinamide to 14C-NMN (see Material and

Methods). Counts (cpm) were normalised to mg total protein in

each sample measured by BCA protein assay. Data are

represented as mean6 SEM and statistical analysis was performed

using one-way ANOVA and the Bonferroni post hoc test (*p,

0.05).

(TIF)

Figure S5 p21 and Bax expression in HepG2 cells and
primary human hepatocytes. HepG2 cells and primary

human hepatocytes were stimulated with resveratrol [10/25/50/

100 mM] in serum-free medium (0) for 24 h. p21 mRNA

expression in A) HepG2 cells (n = 3) and B) primary human

hepatocytes (n = 4). C) Lysates of HepG2 cells (n = 3) were used for

Western Blot analysis of Bax protein expression. GAPDH was

used as loading control. One representative blot out of 3

independent experiments is shown.

(TIF)

Figure S6 NMN does not ameliorate resveratrol-medi-
ated effects on cell viability, NAMPT activity, NAMPT
release and p53 hyperacetylation. Given that resvertarol

down-regulates NAMPT and increases p53 acetylation in

hepatocarcinoma cells which was absent in primary hepatocytes

we hypothesised that the administration of NMN, the reaction

product of NAMPT and a precursor of NAD, is able to ameliorate

the resveratrol-mediated effects by increasing SIRT1 activity. At

the beginning, we tested whether HepG2 cells are able to utilize

exogenous NMN [500 mM] and to synthesize NAD. Therefore, we

stimulated the cells with FK866 [10 nM] to inhibit NAMPT

activity and co-stimulated the cells with NMN [500 mM]. We

could show that FK866 depleted the intracellular NAD levels by 2

79.463.3% in HepG2 cells which could be restored by NMN

supplementation. A) NAD levels of HepG2 cells (n = 5) treated

with the NAMPT inhibitor FK866 [10 nM] (white bars) in serum-

free medium (con) and NMN [500 mM] (black bars) for 24 h.

Annexin V/PI apoptosis assay of B) HepG2 cells (n = 3) and C)

Hep3B cells (n = 2) treated with resveratrol [25/50/100 mM] in

serum-free medium and co-stimulated with NMN [500 mM] for

24 h. An+ and An+/PI+ cells were considered apoptotic. Data are

represented as mean6 SEM. Differences between two groups

were evaluated using unpaired Student’s t-test (resvertarol (white

bar) compared to resveratrol +NMN (black bar)). Then D)

Western Blot analysis of cleaved caspase-3, E) acetylated p53

(K382) and F) eNAMPT levels in supernatant of these cells were

performed. One representative blot out of at least 3 independent

experiments is shown.

(TIF)

Acknowledgments

Primary human hepatocytes were kindly provided by the ‘‘virtual liver’’

program, a major national initiative on Systems Biology of the Liver.

FK866 was kindly provided by TopoTarget A/S, Copenhagen, Denmark.

We thank Prof. Dr. Kurt Engeland for providing Hep3B cells and our

technicians Anja Barnikol-Oettler and Sandy Richter as well as Doris

Mahn and Frank Struck for excellent work.

Author Contributions

Conceived and designed the experiments: SS MP SPQ AG WK TG.

Performed the experiments: SS MP SPQ AG. Analyzed the data: SS MP

SPQ AG TG. Contributed reagents/materials/analysis tools: GD RG

SPQ. Wrote the paper: SS.

References

1. Bishayee A, Politis T, Darvesh AS (2010) Resveratrol in the chemoprevention

and treatment of hepatocellular carcinoma. Cancer Treat Rev 36: 43–53.

2. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, et al. (1997) Cancer

chemopreventive activity of resveratrol, a natural product derived from grapes.

Science 275: 218–220.

3. Delmas D, Lancon A, Colin D, Jannin B, Latruffe N (2006) Resveratrol as a

chemopreventive agent: a promising molecule for fighting cancer. Curr Drug

Targets 7: 423–442.

4. Delmas D, Solary E, Latruffe N (2011) Resveratrol, a phytochemical inducer of

multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe.

Curr Med Chem 18: 1100–1121.

5. Vang O, Ahmad N, Baile CA, Baur JA, Brown K, et al. (2011) What is new for

an old molecule? Systematic review and recommendations on the use of

resveratrol. PLoS One 6: e19881.

6. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo

evidence. Nat Rev Drug Discov 5: 493–506.

7. Joe AK, Liu H, Suzui M, Vural ME, Xiao D, et al. (2002) Resveratrol induces

growth inhibition, S-phase arrest, apoptosis, and changes in biomarker

expression in several human cancer cell lines. Clin Cancer Res 8: 893–903.

8. Baarine M, Thandapilly SJ, Louis XL, Mazue F, Yu L, et al. (2011) Pro-

apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and

normal cardiac cells. Genes Nutr 6: 161–169.

9. Kuo PL, Chiang LC, Lin CC (2002) Resveratrol- induced apoptosis is mediated

by p53-dependent pathway in Hep G2 cells. Life Sci 72: 23–34.

10. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. (2003)

Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.

Nature 425: 191–196.

11. Frazzi R, Valli R, Tamagnini I, Casali B, Latruffe N, et al. (2012) Resveratrol-

mediated apoptosis of hodgkin lymphoma cells involves SIRT1 inhibition and

FOXO3a hyperacetylation. Int J Cancer.

12. Bjorklund M, Roos J, Gogvadze V, Shoshan M (2011) Resveratrol induces S.

Cancer Chemother Pharmacol 68: 1459–1467.

13. Yang Q, Wang B, Zang W, Wang X, Liu Z, et al. (2013) Resveratrol inhibits the

growth of gastric cancer by inducing g1 phase arrest and senescence in a sirt1-

dependent manner. PLoS One 8: e70627.

14. Deng CX (2009) SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol

Sci 5: 147–152.

15. Liu T, Liu PY, Marshall GM (2009) The critical role of the class III histone

deacetylase SIRT1 in cancer. Cancer Res 69: 1702–1705.

16. Vaziri H, Dessain SK, Ng EE, Imai SI, Frye RA, et al. (2001) hSIR2(SIRT1)

functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

17. Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, et al. (2012) A small molecule

Inauhzin inhibits SIRT1 activity and suppresses tumour growth through

activation of p53. EMBO Mol Med 4: 298–312.

18. Bi TQ, Che XM (2010) Nampt/PBEF/visfatin and cancer. Cancer Biol Ther

10: 119–125.

19. Berger F, Ramirez-Hernandez MH, Ziegler M (2004) The new life of a

centenarian: signalling functions of NAD(P). Trends Biochem Sci 29: 111–118.

20. Chiarugi A, Dolle C, Felici R, Ziegler M (2012) The NAD metabolome–a key

determinant of cancer cell biology. Nat Rev Cancer 12: 741–752.

21. Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of

NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr

Rev 31: 194–223.

22. Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated

by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian

cells. J Biol Chem 279: 50754–50763.

23. Revollo JR, Grimm AA, Imai S (2007) The regulation of nicotinamide adenine

dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin

Gastroenterol 23: 164–170.

24. Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, et al. (2009)

Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene

promoters. J Biol Chem 284: 20408–20417.

25. Ho C, van d, V, Akawi O, Pickering JG (2009) SIRT1 markedly extends

replicative lifespan if the NAD+ salvage pathway is enhanced. FEBS Lett 583:

3081–3085.

Resveratrol Differentially Regulates NAMPT and SIRT1

PLOS ONE | www.plosone.org 14 March 2014 | Volume 9 | Issue 3 | e91045



26. Hufton SE, Moerkerk PT, Brandwijk R, de Bruine AP, Arends JW, et al. (1999)

A profile of differentially expressed genes in primary colorectal cancer using
suppression subtractive hybridization. FEBS Lett 463: 77–82.

27. Van Beijnum JR, Moerkerk PT, Gerbers AJ, de Bruine AP, Arends JW, et al.

(2002) Target validation for genomics using peptide-specific phage antibodies: a
study of five gene products overexpressed in colorectal cancer. Int J Cancer 101:

118–127.
28. Folgueira MA, Carraro DM, Brentani H, Patrao DF, Barbosa EM, et al. (2005)

Gene expression profile associated with response to doxorubicin-based therapy

in breast cancer. Clin Cancer Res 11: 7434–7443.
29. Hasmann M, Schemainda I (2003) FK866, a highly specific noncompetitive

inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mech-
anism for induction of tumor cell apoptosis. Cancer Res 63: 7436–7442.

30. Thakur BK, Dittrich T, Chandra P, Becker A, Kuehnau W, et al. (2013)
Involvement of p53 in the cytotoxic activity of the NAMPT inhibitor FK866 in

myeloid leukemic cells. Int J Cancer 132: 766–774.

31. Drevs J, Loser R, Rattel B, Esser N (2003) Antiangiogenic potency of FK866/
K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell

carcinoma. Anticancer Res 23: 4853–4858.
32. Muruganandham M, Alfieri AA, Matei C, Chen Y, Sukenick G, et al. (2005)

Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor

apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy.
Clin Cancer Res 11: 3503–3513.

33. Thakur BK, Dittrich T, Chandra P, Becker A, Lippka Y, et al. (2012) Inhibition
of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells.

Biochem Biophys Res Commun 424: 371–377.
34. Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, et al. (2006)

Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter

cell survival following DNA damage. Mol Cell Biol 26: 28–38.
35. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al. (2004) Stress-

dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.
Science 303: 2011–2015.

36. Nussler AK, Nussler NC, Merk V, Brulport M, Schormann W, et al. (2009) The

Holy Grail of Hepatocyte Culturing and Therapeutic Use. In: Santin M, editors.
Strategies in Regenerative Medicine. New York, USA. 283–320.

37. Peck B, Chen CY, Ho KK, Di Fruscia P, Myatt SS, et al. (2010) SIRT inhibitors
induce cell death and p53 acetylation through targeting both SIRT1 and

SIRT2. Mol Cancer Ther 9: 844–855.
38. Elliott GC, Ajioka J, Okada CY (1980) A rapid procedure for assaying

nicotinamide phosphoribosyltransferase. Anal Biochem 107: 199–205.

39. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, et al. (2009)
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.

Science 324: 651–654.
40. Chini CC, Gonzalez GA, Nin V, Camacho-Pereira J, Escande C, et al. (2013)

Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy

for pancreatic tumors. Clin Cancer Res.
41. Cagnetta A, Cea M, Calimeri T, Acharya C, Fulciniti M, et al. (2013)

Intracellular NAD(+) depletion enhances bortezomib-induced anti-myeloma
activity. Blood 122: 1243–1255.

42. Tan B, Young DA, Lu ZH, Wang T, Meier TI, et al. (2013) Pharmacological
inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme

essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and

potential clinical implications. J Biol Chem 288: 3500–3511.
43. Garten A, Petzold S, Barnikol-Oettler A, Korner A, Thasler WE, et al. (2010)

Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitu-
tively released from human hepatocytes. Biochem Biophys Res Commun 391:

376–381.

44. Delmas D, Jannin B, Cherkaoui MM, Latruffe N (2000) Inhibitory effect of
resveratrol on the proliferation of human and rat hepatic derived cell lines.

Oncol Rep 7: 847–852.
45. De L, V, Monvoisin A, Neaud V, Krisa S, Payrastre B, et al. (2001) Trans-

resveratrol, a grapevine-derived polyphenol, blocks hepatocyte growth factor-

induced invasion of hepatocellular carcinoma cells. Int J Oncol 19: 83–88.
46. Carbo N, Costelli P, Baccino FM, Lopez-Soriano FJ, Argiles JM (1999)

Resveratrol, a natural product present in wine, decreases tumour growth in a rat
tumour model. Biochem Biophys Res Commun 254: 739–743.

47. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, et al. (2004)
Role of resveratrol in prevention and therapy of cancer: preclinical and clinical

studies. Anticancer Res 24: 2783–2840.

48. Venturelli S, Berger A, Bocker A, Busch C, Weiland T, et al. (2013) Resveratrol
as a pan-HDAC inhibitor alters the acetylation status of jistone proteins in

human-derived hepatoblastoma cells. PLoS One 8: e73097.
49. Mahyar-Roemer M, Katsen A, Mestres P, Roemer K (2001) Resveratrol induces

colon tumor cell apoptosis independently of p53 and precede by epithelial

differentiation, mitochondrial proliferation and membrane potential collapse.

Int J Cancer 94: 615–622.

50. Gogada R, Prabhu V, Amadori M, Scott R, Hashmi S, et al. (2011) Resveratrol
induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-

mediated Bax protein oligomerization on mitochondria to initiate cytochrome c
release and caspase activation. J Biol Chem 286: 28749–28760.

51. Bernhard D, Tinhofer I, Tonko M, Hubl H, Ausserlechner MJ, et al. (2000)
Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in

CEM-C7H2 acute leukemia cells. Cell Death Differ 7: 834–842.

52. Zhou R, Fukui M, Choi HJ, Zhu BT (2009) Induction of a reversible, non-
cytotoxic S-phase delay by resveratrol: implications for a mechanism of lifespan

prolongation and cancer protection. Br J Pharmacol 158: 462–474.

53. Chen J, Zhang B, Wong N, Lo AW, To KF, et al. (2011) Sirtuin 1 is upregulated

in a subset of hepatocellular carcinomas where it is essential for telomere
maintenance and tumor cell growth. Cancer Res 71: 4138–4149.

54. Chen HC, Jeng YM, Yuan RH, Hsu HC, Chen YL (2012) SIRT1 promotes

tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and
its expression predicts poor prognosis. Ann Surg Oncol 19: 2011–2019.

55. Wang H, Liu H, Chen K, Xiao J, He K, et al. (2012) SIRT1 promotes
tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signal-

ing. Oncol Rep 28: 311–318.

56. Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, et al. (2013)
Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and

in vivo. Mol Cancer Ther 12: 499–508.

57. Zhang C, Feng Y, Qu S, Wei X, Zhu H, et al. (2011) Resveratrol attenuates

doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated
deacetylation of p53. Cardiovasc Res 90: 538–545.

58. Wang RH, Zheng Y, Kim HS, Xu X, Cao L, et al. (2008) Interplay among

BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol

Cell 32: 11–20.

59. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006) Resveratrol
improves health and survival of mice on a high-calorie diet. Nature 444: 337–

342.

60. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, et al. (2005)

Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280: 17038–
17045.

61. Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, et al. (2010)

SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of
SIRT1. J Biol Chem 285: 8340–8351.

62. Hu Y, Liu J, Wang J, Liu Q (2011) The controversial links among calorie

restriction, SIRT1, and resveratrol. Free Radic Biol Med 51: 250–256.

63. Beher D, Wu J, Cumine S, Kim KW, Lu SC, et al. (2009) Resveratrol is not a

direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74: 619–624.

64. Pizarro JG, Verdaguer E, Ancrenaz V, Junyent F, Sureda F, et al. (2011)
Resveratrol inhibits proliferation and promotes apoptosis of neuroblastoma cells:

role of sirtuin 1. Neurochem Res 36: 187–194.

65. Kai L, Samuel SK, Levenson AS (2010) Resveratrol enhances p53 acetylation

and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex.
Int J Cancer 126: 1538–1548.

66. Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2012) Inhibition of Casein

kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells

to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1
inhibition. Cell Death Dis 3: e271.

67. Flick F, Luscher B (2012) Regulation of sirtuin function by posttranslational

modifications. Front Pharmacol 3: 29.

68. Kang H, Jung JW, Kim MK, Chung JH (2009) CK2 is the regulator of SIRT1
substrate-binding affinity, deacetylase activity and cellular response to DNA-

damage. PLoS One 4: e6611.

69. Whitlock NC, Baek SJ (2012) The anticancer effects of resveratrol: modulation

of transcription factors. Nutr Cancer 64: 493–502.

70. Kover K, Tong PY, Watkins D, Clements M, Stehno-Bittel L, et al. (2013)
Expression and regulation of nampt in human islets. PLoS One 8: e58767.

71. Samal B, Sun Y, Stearns G, Xie C, Suggs S, et al. (1994) Cloning and

characterization of the cDNA encoding a novel human pre-B-cell colony-

enhancing factor. Mol Cell Biol 14: 1431–1437.

72. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, et al. (2005)
Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.

Science 307: 426–430.

73. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, et al. (2007)

Retraction. Science 318: 565.

74. Revollo JR, Korner A, Mills KF, Satoh A, Wang T, et al. (2007) Nampt/PBEF/
Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic

enzyme. Cell Metab 6: 363–375.

Resveratrol Differentially Regulates NAMPT and SIRT1

PLOS ONE | www.plosone.org 15 March 2014 | Volume 9 | Issue 3 | e91045


