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Abstract

Eukaryotic genomes are typically organized as chromatin, the complex of DNA and proteins that
forms chromosomes within the cell’s nucleus. Chromatin has pivotal roles for a multitude of
functions, most of which are carried out by a complex system of covalent chemical modifications of
histone proteins.

The propagation of patterns of these histone post-translational modifications across cell divisions is
particularly important for maintenance of the cell state in general and the transcriptional program
in particular. The discovery of epigenetic inheritance phenomena — mitotically and/or meiotically
heritable changes in gene function resulting from changes in a chromosome without alterations
in the DNA sequence — was remarkable because it disproved the assumption that information is
passed to daughter cells exclusively through DNA. However, DNA replication constitutes a dramatic
disruption of the chromatin state that effectively amounts to partial erasure of stored information.
To preserve its epigenetic state the cell reconstructs (at least part of) the histone post-translational
modifications by means of processes that are still very poorly understood. A plausible hypothesis
is that the different combinations of reader and writer domains in histone-modifying enzymes
implement local rewriting rules that are capable of “recomputing” the desired parental patterns of
histone post-translational modifications on the basis of the partial information contained in that
half of the nucleosomes that predate replication.

It is becoming increasingly clear that both information processing and computation are omnipresent
and of fundamental importance in many fields of the natural sciences and the cell in particular. The
latter is exemplified by the increasingly popular research areas that focus on computing with DNA
and membranes. Recent work suggests that during evolution, chromatin has been converted into a
powerful cellular memory device capable of storing and processing large amounts of information.
Eukaryotic chromatin may therefore also act as a cellular computational device capable of performing
actual computations in a biological context. A recent theoretical study indeed demonstrated that
even relatively simple models of chromatin computation are computationally universal and hence
conceptually more powerful than gene regulatory networks.

In the first part of this thesis, I establish a deeper understanding of the computational capacities
and limits of chromatin, which have remained largely unexplored. I analyze selected biological
building blocks of the chromatin computer and compare it to system components of general purpose
computers, particularly focusing on memory and the logical and arithmetical operations. I argue that
it has a massively parallel architecture, a set of read-write rules that operate non-deterministically on
chromatin, the capability of self-modification, and more generally striking analogies to amorphous
computing. I therefore propose a cellular automata-like 1-D string as its computational paradigm
on which sets of local rewriting rules are applied asynchronously with time-dependent probabilities.
Its mode of operation is therefore conceptually similar to well-known concepts from the complex
systems theory. Furthermore, the chromatin computer provides volatile memory with a massive
information content that can be exploited by the cell. I estimate that its memory size lies in
the realms of several hundred megabytes of writable information per cell, a value that I compare
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with DNA itself and cis-regulatory modules. I furthermore show that it has the potential to not
only perform computations in a biological context but also in a strict informatics sense. At least
theoretically it may therefore be used to calculate any computable function or algorithm more
generally. Chromatin is therefore another representative of the growing number of non-standard
computing examples.

As an example for a biological challenge that may be solved by the “chromatin computer”, I formulate
epigenetic inheritance as a computational problem and develop a flexible stochastic simulation system
for the study of recomputation-based epigenetic inheritance of individual histone post-translational
modifications. The implementation uses Gillespie’s stochastic simulation algorithm for exactly
simulating the time evolution of the chemical master equation of the underlying stochastic process.
Furthermore, it is efficient enough to use an evolutionary algorithm to find a system of enzymes
that can stably maintain a particular chromatin state across multiple cell divisions. I find that it
is easy to evolve such a system of enzymes even without explicit boundary elements separating
differentially modified chromatin domains. However, the success of this task depends on several
previously unanticipated factors such as the length of the initial state, the specific pattern that
should be maintained, the time between replications, and various chemical parameters. All these
factors also influence the accumulation of errors in the wake of cell divisions.

Chromatin-regulatory processes and epigenetic (inheritance) mechanisms constitute an intricate
and sensitive system, and any misregulation may contribute significantly to various diseases such as
Alzheimer’s disease. Intriguingly, the role of epigenetics and chromatin-based processes as well as
non-coding RNAs in the etiology of Alzheimer’s disease is increasingly being recognized. In the
second part of this thesis, I explicitly and systematically address the two hypotheses that (i) a
dysregulated chromatin computer plays important roles in Alzheimer’s disease and (ii) Alzheimer’s
disease may be considered as an evolutionarily young disease. In summary, I found support for both
hypotheses although for hypothesis 1, it is very difficult to establish causalities due to the complexity
of the disease. However, I identify numerous chromatin-associated, differentially expressed loci
for histone proteins, chromatin-modifying enzymes or integral parts thereof, non-coding RNAs
with guiding functions for chromatin-modifying complexes, and proteins that directly or indirectly
influence epigenetic stability (e.g., by altering cell cycle regulation and therefore potentially also the
stability of epigenetic states).

For the identification of differentially expressed loci in Alzheimer’s disease, I use a custom expression
microarray that was constructed with a novel bioinformatics pipeline. Despite the emergence of more
advanced high-throughput methods such as RNA-seq, microarrays still offer some advantages and
will remain a useful and accurate tool for transcriptome profiling and expression studies. However,
it is non-trivial to establish an appropriate probe design strategy for custom expression microarrays
because alternative splicing and transcription from non-coding regions are much more pervasive
than previously appreciated. To obtain an accurate and complete expression atlas of genomic loci
of interest in the post-ENCODE era, this additional transcriptional complexity must be considered
during microarray design and requires well-considered probe design strategies that are often neglected.
This encompasses, for example, adequate preparation of a set of target sequences and accurate
estimation of probe specificity. With the help of this pipeline, two custom-tailored microarrays
have been constructed that include a comprehensive collection of non-coding RNAs. Additionally, a
user-friendly web server has been set up that makes the developed pipeline publicly available for
other researchers.



Zusammenfassung

Eukaryotische Genome sind typischerweise in Form von Chromatin organisiert, dem Komplex aus
DNA und Proteinen, aus dem die Chromosomen im Zellkern bestehen. Chromatin hat lebenswichtige
Funktionen in einer Vielzahl von Prozessen, von denen die meisten durch ein komplexes System von
kovalenten Modifikationen an Histon-Proteinen ablaufen.

Muster dieser Modifikationen sind wichtige Informationsträger, deren Weitergabe über die Zellteilung
hinaus an beide Tochterzellen besonders wichtig für die Aufrechterhaltung des Zellzustandes im
Allgemeinen und des Transkriptionsprogrammes im Speziellen ist. Die Entdeckung von epigeneti-
schen Vererbungsphänomenen — mitotisch und/oder meiotisch vererbbare Veränderungen von
Genfunktionen, hervorgerufen durch Veränderungen an Chromosomen, die nicht auf Modifikationen
der DNA-Sequenz zurückzuführen sind — war bemerkenswert, weil es die Hypothese widerlegt hat,
dass Informationen an Tochterzellen ausschließlich durch DNA übertragen werden.

Die Replikation der DNA erzeugt eine dramatische Störung des Chromatinzustandes, welche
letztendlich ein partielles Löschen der gespeicherten Informationen zur Folge hat. Um den epigeneti-
schen Zustand zu erhalten, muss die Zelle Teile der parentalen Muster der Histonmodifikationen
durch Prozesse rekonstruieren, die noch immer sehr wenig verstanden sind. Eine plausible Hypo-
these postuliert, dass die verschiedenen Kombinationen der Lese- und Schreibdomänen innerhalb
von Histon-modifizierenden Enzymen lokale Umschreibregeln implementieren, die letztendlich das
parentale Modifikationsmuster der Histone neu errechnen. Dies geschieht auf Basis der partiellen
Informationen, die in der Hälfte der vererbten Histone gespeichert sind.

Es wird zunehmend klarer, dass sowohl Informationsverarbeitung als auch computerähnliche Berech-
nungen omnipräsent und in vielen Bereichen der Naturwissenschaften von fundamentaler Bedeutung
sind, insbesondere in der Zelle. Dies wird exemplarisch durch die zunehmend populärer werdenden
Forschungsbereiche belegt, die sich auf computerähnliche Berechnungen mithilfe von DNA und
Membranen konzentrieren. Jüngste Forschungen suggerieren, dass sich Chromatin während der
Evolution in eine mächtige zelluläre Speichereinheit entwickelt hat und in der Lage ist, eine große
Menge an Informationen zu speichern und zu prozessieren. Eukaryotisches Chromatin könnte also
als ein zellulärer Computer agieren, der in der Lage ist, computerähnliche Berechnungen in einem
biologischen Kontext auszuführen. Eine theoretische Studie hat kürzlich demonstriert, dass bereits
relativ simple Modelle eines Chromatincomputers berechnungsuniversell und damit mächtiger als
reine genregulatorische Netzwerke sind.

Im ersten Teil meiner Dissertation stelle ich ein tieferes Verständnis des Leistungsvermögens
und der Beschränkungen des Chromatincomputers her, welche bisher größtenteils unerforscht
waren. Ich analysiere ausgewählte Grundbestandteile des Chromatincomputers und vergleiche
sie mit den Komponenten eines klassischen Computers, mit besonderem Fokus auf Speicher
sowie logische und arithmetische Operationen. Ich argumentiere, dass Chromatin eine massiv
parallele Architektur, eine Menge von Lese-Schreib-Regeln, die nicht-deterministisch auf Chromatin
operieren, die Fähigkeit zur Selbstmodifikation, und allgemeine verblüffende Ähnlichkeiten mit
amorphen Berechnungsmodellen besitzt. Ich schlage deswegen eine Zellularautomaten-ähnliche
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eindimensionale Kette als Berechnungsparadigma vor, auf dem lokale Lese-Schreib-Regeln auf
asynchrone Weise mit zeitabhängigen Wahrscheinlichkeiten ausgeführt werden. Seine Wirkungsweise
ist demzufolge konzeptionell ähnlich zu den wohlbekannten Theorien von komplexen Systemen.
Zudem hat der Chromatincomputer volatilen Speicher mit einem massiven Informationsgehalt, der
von der Zelle benutzt werden kann. Ich schätze ab, dass die Speicherkapazität im Bereich von
mehreren Hundert Megabytes von schreibbarer Information pro Zelle liegt, was ich zudem mit DNA
und cis-regulatorischen Modulen vergleiche. Ich zeige weiterhin, dass ein Chromatincomputer nicht
nur Berechnungen in einem biologischen Kontext ausführen kann, sondern auch in einem strikt
informatischen Sinn. Zumindest theoretisch kann er deswegen für jede berechenbare Funktion
benutzt werden. Chromatin ist demzufolge ein weiteres Beispiel für die steigende Anzahl von
unkonventionellen Berechnungsmodellen.

Als Beispiel für eine biologische Herausforderung, die vom Chromatincomputer gelöst werden
kann, formuliere ich die epigenetische Vererbung als rechnergestütztes Problem. Ich entwickle
ein flexibles Simulationssystem zur Untersuchung der epigenetische Vererbung von individuellen
Histonmodifikationen, welches auf der Neuberechnung der partiell verlorengegangenen Informationen
der Histonmodifikationen beruht. Die Implementierung benutzt Gillespies stochastischen Simulations-
algorithmus, um die chemische Mastergleichung der zugrundeliegenden stochastischen Prozesse über
die Zeit auf exakte Art und Weise zu modellieren. Der Algorithmus ist zudem effizient genug, um in
einen evolutionären Algorithmus eingebettet zu werden. Diese Kombination erlaubt es ein System
von Enzymen zu finden, dass einen bestimmten Chromatinstatus über mehrere Zellteilungen hinweg
stabil vererben kann. Dabei habe ich festgestellt, dass es relativ einfach ist, ein solches System
von Enzymen zu evolvieren, auch ohne explizite Einbindung von Randelementen zur Separierung
differentiell modifizierter Chromatindomänen. Dennoch ängt der Erfolg dieser Aufgabe von mehreren
bisher unbeachteten Faktoren ab, wie zum Beispiel der Länge der Domäne, dem bestimmten zu
vererbenden Muster, der Zeit zwischen Replikationen sowie verschiedenen chemischen Parametern.
Alle diese Faktoren beeinflussen die Anhäufung von Fehlern als Folge von Zellteilungen.

Chromatin-regulatorische Prozesse und epigenetische Vererbungsmechanismen stellen ein komplexes
und sensitives System dar und jede Fehlregulation kann bedeutend zu verschiedenen Krankheiten,
wie zum Beispiel der Alzheimerschen Krankheit, beitragen. In der Ätiologie der Alzheimerschen
Krankheit wird die Bedeutung von epigenetischen und Chromatin-basierten Prozessen sowie nicht-
kodierenden RNAs zunehmend erkannt. Im zweiten Teil der Dissertation adressiere ich explizit und
auf systematische Art und Weise die zwei Hypothesen, dass (i) ein fehlregulierter Chromatincomputer
eine wichtige Rolle in der Alzheimerschen Krankheit spielt und (ii) die Alzheimersche Krankheit eine
evolutionär junge Krankheit darstellt. Zusammenfassend finde ich Belege für beide Hypothesen,
obwohl es für erstere schwierig ist, aufgrund der Komplexität der Krankheit Kausalitäten zu etablieren.
Dennoch identifiziere ich zahlreiche differentiell exprimierte, Chromatin-assoziierte Bereiche, wie
zum Beispiel Histone, Chromatin-modifizierende Enzyme oder deren integrale Bestandteile, nicht-
kodierende RNAs mit Führungsfunktionen für Chromatin-modifizierende Komplexe oder Proteine,
die direkt oder indirekt epigenetische Stabilität durch veränderte Zellzyklus-Regulation beeinflussen.

Zur Identifikation von differentiell exprimierten Bereichen in der Alzheimerschen Krankheit benutze
ich einen maßgeschneiderten Expressions-Microarray, der mit Hilfe einer neuartigen Bioinformatik--
Pipeline erstellt wurde. Trotz des Aufkommens von weiter fortgeschrittenen Hochdurchsatzmethoden,
wie zum Beispiel RNA-seq, haben Microarrays immer noch einige Vorteile und werden ein nützliches
und akkurates Werkzeug für Expressionsstudien und Transkriptom-Profiling bleiben. Es ist jedoch
nicht trivial eine geeignete Strategie für das Sondendesign von maßgeschneiderten Expressions-
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Microarrays zu finden, weil alternatives Spleißen und Transkription von nicht-kodierenden Bereichen
viel verbreiteter sind als ursprünglich angenommen. Um ein akkurates und vollständiges Bild der
Expression von genomischen Bereichen in der Zeit nach dem ENCODE-Projekt zu bekommen,
muss diese zusätzliche transkriptionelle Komplexität schon während des Designs eines Microarrays
berücksichtigt werden und erfordert daher wohlüberlegte und oft ignorierte Strategien für das
Sondendesign. Dies umfasst zum Beispiel eine adäquate Vorbereitung der Zielsequenzen und eine
genaue Abschätzung der Sondenspezifität. Mit Hilfe der Pipeline wurden zwei maßgeschneiderte
Expressions-Microarrays produziert, die beide eine umfangreiche Sammlung von nicht-kodierenden
RNAs beinhalten. Zusätzlich wurde ein nutzerfreundlicher Webserver programmiert, der die ent-
wickelte Pipeline für jeden öffentlich zur Verfügung stellt.
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Chapter 1
Motivation

1.1 The Increasing Significance of Chromatin and Epigenetics

Eukaryotic genomes are of unprecedented complexity, and we are just beginning to unravel the
magnitude of the intricacy that underlies their genomic regulation. In the last years, our under-
standing of the significance of epigenetic mechanisms has steadily increased. Generally, epigenetics
may be defined as “the study of mitotically and/or meiotically heritable changes in gene function
that cannot be explained by changes in DNA sequence” [1] although the term is often used for
non-heritable processes, as exemplified by the definition “the structural adaptation of chromosomal
regions so as to register, signal or perpetuate altered activity states” [2].

Eukaryotic genomes are organized as chromatin, the complex of DNA and proteins that forms
chromosomes within the cell’s nucleus. Its basic structure consists of proteins called histones with
DNA wrapped around them, together referred to as nucleosome. Chromatin generally controls DNA
accessibility and has pivotal roles in the cell for regulating gene expression, maintaining cell identity,
genome packaging, and DNA damage repair. It also carries a partial “annotation” of genomic
features. Indeed, it may be considered the “Swiss army knife” of biology, an all-in-one device
suitable for every purpose. Collectively, the chromatin regulatory system displays high evolutionary
variability and plasticity and consists of an incredibly complex network of diverse molecular players
with dependencies among nearly all participants.

Eukaryotes have evolved a complex system of covalent chemical modifications of histones. These
histone post-translational modifications (PTMs) play a particularly important role in a plethora of
biological tasks. For example, H3K9me3 (i.e., trimethylation of the histone protein H3 at position
9, which is a lysine residue) is highly correlated with transcriptional repression and stably silences
genes.

1
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1.2 Chromatin as a Biological Computer

Computers are typically immediately associated with the traditional silicon-based computer tech-
nology that is omnipresent in our daily lives. However, more and more information processing
and computation are discovered as fundamental processes of many fields [3]. Natural computing
in particular is a fast-emerging, diverse, and fascinating area because it originates from naturally
occurring biological systems. Ever since their initial discovery, natural computing techniques inspired
the development of novel problem-solving techniques, for example by evolutionary optimization
and swarm intelligence algorithms. Intriguingly, it becomes increasingly clear that computing may
not only be regarded as an artificial science but also as a natural one [3–5]. An excellent example
for computational processes that are observed in nature is molecular computing, which tries to
both use molecules for computation and understand the information processing and computational
nature of molecular processes in general.

Cells, the “building blocks of life”, are incredibly complex and highly sophisticated biological units
with huge information processing capabilities. Researchers therefore regarded the cell or specific
cellular components repeatedly and with increasing frequency as a cellular computer capable of
performing complex biological (in vivo) “computations” [4, 6–14]. Indeed, advanced information
processing with molecules inside living cells is omnipresent and occurs on all scales. It can be found,
for example, in complex structures such as the brain [15], in regulatory and signaling pathways
within cells, and even within single biomolecules [16].

Work from Prohaska et al. [12] suggests that during evolution, chromatin has been converted into
a potentially powerful computational device capable of storing and processing large amounts of
information, caused by a number of key molecular inventions that substantially expanded the cell’s
regulatory scope [12]. Consequently, it has recently been postulated repeatedly that eukaryotic
chromatin may act as a computational device capable of performing “computations” in a biological
context [12, 13, 17]. Indeed, a recent theoretical study showed that a simple model of chromatin
computation, very similar to that proposed in Prohaska et al. [12], is computationally universal and
hence conceptually more powerful than gene regulatory networks, for example [13].

1.3 Epigenetic Inheritance

A set of phenomena termed epigenetic inheritance is particularly important for the maintenance of
cell identity. Its discovery was a remarkable and unconventional finding because it disproved that
information is passed to daughter cells only through DNA. Epigenetic inheritance phenomena can
principally be divided into (i) somatic or mitotic epigenetic inheritance and (ii) transgenerational or
meiotic epigenetic inheritance. The former thus concerns information transfer across cell divisions
and the latter across organisms. For both types, a diverse set of putative theories have been
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proposed for how such mechanisms work mechanistically. Because the existence and significance of
transgenerational epigenetic inheritance in higher eukaryotes in particular is still highly debated and
questioned [18], I will hereafter only focus on somatic epigenetic inheritance.

To maintain cellular identity, epigenetic patterns must be stably inherited across cell divisions.
However, DNA replication constitutes a dramatic disruption of the chromatin state that effectively
amounts to partial erasure of stored information. To preserve its epigenetic state the cell reconstructs
(at least part of) the histone PTMs by means of processes that are still very poorly understood. A
plausible hypothesis for the propagation of patterns of histone PTMs across cell divisions is that
the different combinations of reader and writer domains in histone-modifying enzymes implement
local rewriting rules that are capable of “recomputing” the desired parental patterns of histone
PTMs on the basis of the partial information contained in that half of the nucleosomes that predate
replication.

This recomputation-based model is based on positive feedback loops in nucleosome modification.
Its popularity is based on its simplicity and experimental support that for various histone PTMs,
histone-modifying enzymes bind to modified histones of the same type with higher affinity [19–26].
The existence of such recruitment-based conversions have been demonstrated for a number of
histone PTMs such as H3K9/H3K27 methylation and H4K16 deacetylation [27–29].

Reconstituting the parental patterns of histone PTMs by histone-modifying enzymes to maintain
epigenetic stability may be regarded as a chemical reaction system. A property of all biological
systems is their intrinsic stochastic nature, and explicitly including stochasticity in the underlying
model greatly enhances physical and biological accuracy. Indeed, due to the exponential increase in
computing power, stochastic in silico modeling of such chemical reaction systems has emerged as a
realistic and powerful means to improve understanding of these highly complex systems.

The recruitment model has furthermore been particularly intensively analyzed, both analytically
and computationally, with important insights into the dynamics of the system and their overall
potential and limitations. However, all approaches are subject to various limitations that limit
their explanatory power such as insufficient realism in the modeling of the corresponding chemical
reaction system [30–35] and highly simplified mathematical descriptions of the system [36–39].
Additionally, analyzing the potential of stably inheriting more complicated patterns of histone PTMs,
which are likely to occur in nature simply due to the sheer complexity of histone PTMs and their
crosstalk (histone code), has yet to be performed.
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1.4 The Significance of the Chromatin Computer in Alzheimer’s
Disease

Maintaining correct epigenetic patterns throughout the lifetime of an organism is crucial for cellular
stability and identity [40]. Misregulation of epigenetic (inheritance) mechanisms often has fatal
consequences that may contribute significantly to various diseases. For example, chromatin has
been increasingly associated with cancer [41] and Alzheimer’s disease (AD) [42, 43]. The latter
is the most common, irreversible form of dementia with no effective treatment being available so
far [44]. It is mostly diagnosed in elderly people of age 65 or older [45]. The number of AD cases
is estimated to triple by 2050 to over 100 million worldwide due to population aging [46]. It also
poses a major challenge for health care systems due to its long duration, its current incurability,
and its degenerative and terminal nature, with estimated costs of over $600 billion per year [46].

AD is characterized by severe memory loss, an impairment of other cognitive functions, and a
substantial overall loss of brain volume [47]. A large array of putative causes has been postulated,
and a multitude of genetic studies indicate that AD is not caused by a simple mutation because
only a very small percentage of AD cases can be linked to mutations in specific genes. Intriguingly,
the role of epigenetics in the etiology of AD is increasingly being recognized [48–54] although the
causality of epigenetic changes in AD have yet to be established [51].

AD seems to be evolutionarily young disease and is currently believed to occur only in humans. No
other mammalian species recapitulates all of the key features of AD [55] although some are also
susceptible to Alzheimer-like symptoms [55, 56]. Data availability for non-human primate species
is very rare and it therefore remains unclear to what extent Alzheimer is indeed a human-specific
disease. An intriguing hypothesis concerns whether the genomic loci that are differentially regulated
in AD are similarly evolutionarily young (i.e., whether they show signs of recent changes in their
genomic structure). Additionally, if chromatin plays decisive roles in AD, one would expect to find
an abundant number of differentially expressed chromatin-associated transcripts.

To identify disease-associated loci, biological experiments involving genome-wide transcriptome
profiling must be performed. One specific technology for that purpose are microarrays. They
have been used ubiquitously in biomedical research for over a decade now for applications such
as single nucleotide polymorphisms detection, chromatin immunoprecipitation, gene expression,
and DNA methylation. They provide a way to quantify the expression of thousands of nucleic
acid samples (targets) by hybridizing them to known sequences (probes) in a massively parallel
and often genome-wide manner in a single experiment. Despite the emergence of more advanced
high-throughput methods such as RNA-seq, microarrays still offer some advantages and will remain
a useful and accurate tool for expression measurements [57]. Most microarray providers offer custom
expression microarrays (CEMs) for which the represented RNA transcripts can be precisely defined.
CEMs are increasingly popular because they are more cost-effective than tiling arrays and offer more



5

flexibility. Although microarray technology is relatively mature, the compilation and preprocessing
of target sequences prior to probe design is non-trivial. Due to the pervasiveness of transcription in
mammalian genomes [58–61], various design issues for CEMs are often neglected although they
may have a profound impact on microarray data analysis and statistical validation. Thus, the
development of methods for the design of high-quality CEMs is important to improve the reliability,
accuracy, and interpretability of expression measurements.

1.5 Objectives and Outline

The overall objectives of this thesis are twofold. First, I aim to elaborate on the notion that
chromatin may be regarded as a cellular computer able to perform biological computation. I also aim
to formulate epigenetic inheritance as a computational problem. To the best of my knowledge, these
computational aspects of chromatin have remained largely unexplored. Second, I aim to identify
differentially expressed loci in AD, with a particular focus on chromatin-associated transcripts
to address the hypothesis that a dysregulated chromatin computer plays important roles in AD.
Additionally, I assess whether AD may be considered as an evolutionarily young disease. To the best
of my knowledge, these two hypotheses have yet to be addressed explicitly in a systematic fashion.

This thesis will be laid out as follows. First, in Chapter 2, I introduce the chromatin-based regulatory
system and epigenetic inheritance and give required biological background. I discuss the significance
of epigenetics for gene regulation, with a particular focus on candidate players such as histone PTMs
and proposed models for epigenetic inheritance. I also highlight the consequences of cell division
for epigenetic inheritance and review existing computational and analytical models for epigenetic
inheritance. The remainder of the thesis is split into two parts.

In the first part, the focus is on the notion that chromatin may be regarded as a cellular computer
able to perform biological computation. In Chapter 3, I specifically elaborate on that notion, analyze
its major components, and investigate similarities and differences to ordinary computers. I compile
properties of the CC, its mode of action, estimated memory size, computational power, and other
characteristics. This chapter is mainly based on:

Arnold C, Stadler PF, Prohaska SJ. 2013. The Eukaryotic Chromatin Computer: Tasks,
Components, Properties, Computational Power. in preparation.

In Chapter 4, I investigate if epigenetic inheritance can be considered as a computational problem
and if so, whether the CC is organized in a way that is amenable to the solution of this problem. For
this, I implement a flexible and chemically and biologically accurate stochastic simulation system for
the study of recomputation-based epigenetic inheritance of individual histone PTMs. I also analyze
which parameters are most decisive for the stability of epigenetic states across cell divisions, and
assess to what extent the potential power of chromatin computation is harnessed in real biological



6

systems. The chapter is mainly based on the following publication:

Arnold C, Stadler PF, Prohaska SJ. 2013. Chromatin Computation: Epigenetic
Inheritance as a Pattern Reconstruction Problem. Journal of Theoretical Biology
336(7): 61-74.

In the second part of the thesis, I first discuss various previously neglected issues in the design
of CEMs that may have a profound impact on microarray data analysis and statistical validation.
Specifically, in Chapter 5, as a prerequisite for the chapter that follows, I describe a bioinformatics
pipeline that has been developed for the design of high-quality CEMs in the post-ENCODE era. I
also describe the Alzheimer Custom Array, one of two CEMs that have been produced with the
help of this pipeline. The chapter is based on the following publication:

Arnold C, Externbrink F, Hackermüller J, Reiche K. 2013. Design of Custom Expression
Microarrays in the Post-ENCODE Era. Bioinformatics. submitted.

In Chapter 6, I identify differentially expressed loci in AD, based on the Alzheimer Custom Array.
I particularly focus on chromatin-associated loci and explore the significance of the CC in AD. I also
assess whether AD may be considered as an evolutionarily young disease and what role chromatin
regulation may play. The chapter is mainly based on:

Arnold C, Stadler PF, Hackermüller J, Reiche K, Überham U, Arendt T. 2013.
Widespread and Diverse Differential Expression of Chromatin-Associated Transcripts in
Alzheimer’s Disease. in preparation.

Finally, in Chapter 7, I summarize and conclude the results of this thesis. The Appendices provide
supplementary material that is helpful for the interested reader.

1.6 Author Contributions and Note on the Use of Personal Pro-
nouns

Impersonal style used to be required in academic writing, but this convention has changed. The
use of personal pronouns is now common and encouraged. In this thesis, I follow this style. I will
therefore continue using the first person pronoun “I” even though some parts represent the collective
work of multiple individuals as stated above in the publication entries (e.g., parts of Chapter 4,
Chapter 5, and Chapter 6).

I hereby explicitly acknowledge all individuals who contributed significantly to parts of this thesis. I
also want to state and emphasize that the usage of the first person pronoun “I” does in no way
discredit the individual author contributions.



Chapter 2
Chromatin Regulatory Mechanisms and
Epigenetic Inheritance

2.1 Epigenetics, Chromatin, Chromatin Regulatory Mechanisms,
and Transcriptome Complexity

2.1.1 Defining Epigenetics and Epigenetic Phenomena

Historically, the meaning of the term epigenetics has shifted multiple times [62]. Conrad Waddington
first coined it in 1942 by fusing the word “genetics” with “epigenesis” to generally describe the
interactions between genes and their surroundings to produce a phenotype [63, 64]. He thereby
grounded epigenetics in a developmental context, and inherent in the original meaning of the word
was the “view that epigenetic mechanisms are reset (that is, erased and re-established) at one point
in the lifecycle of an organism” [65, p. 396].

Until the mid-1980s / early-1990s, a lack of knowledge of specific epigenetic mechanisms for genetic
activity meant every scientist used his own definition of the term [62]. Robin Holliday, for example,
defined it as “the study of the mechanisms of temporal and spatial control of gene activity during the
development of complex organisms” [66]. In the mid-1990s, with the realization that inheritance may
not only be DNA-based due to the discovery of inheritable DNA methylation patterns, researchers
defined epigenetics as “the study of mitotically and/or meiotically heritable changes in gene function
that cannot be explained by changes in DNA sequence” [1], which is still used widely today.

With the realization that histone post-translational modifications (PTMs) (see Section 2.1.4.1) play
crucial regulatory roles that correlate with transcription, various authors often used epigenetics for
non-heritable phenomena, as exemplified by the definition “the structural adaptation of chromosomal
regions so as to register, signal or perpetuate altered activity states” [2]. David Shechter1 defines
epigenetics as “information content that increases the complexity of the genome without changes in

1Assistant Professor in the Department of Biochemistry of the Albert Einstein College of Medicine, NY, USA
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the gene sequence”2. Finally, in 2008, researchers agreed on a consensus definition of the term
“epigenetic trait”, defining it as a “stably heritable phenotype resulting from changes in a chromosome
without alterations in the DNA sequence” [67] but it remains to be seen whether this will generally
be accepted. In summary, the term epigenetics is nowadays often employed loosely, inconsistently,
and sometimes synonymously to “epigenetic inheritance” [68].

In this thesis the last definition will also be adopted although the term epigenetics is often used in the
context of “maintaining stable states of gene expression” [67] without involving chromosomal changes.
For example, in medicine, the proteosome and particularly transcription factor (TF) networks are
often called “epigenetic”. Undoubtedly, TFs alone may play pivotal roles for the inheritance of
expression states, and it seems conceivable that the transcriptional status of chromatin, rather
than the specific histone PTM patterns or other chromosomal changes, may be transmitted during
cell division [69–71]. The maintenance of particular expression states then depends on sufficient
quantities of the TF that may be established by positive feedback loops to maintain its own
expression in the absence of the original signal that once activated it [69]. Indeed, transient
transcriptional errors caused by a single altered transcript in a TF may cause heritable phenotypic
changes by reprogramming the transcriptional network [72].

A detailed description of epigenetic phenomena is out of the scope of this thesis and covered in
myriads of excellent reviews (e.g., [73]). However, they include, but are not limited to, position-effect
variegation, X-chromosome inactivation, paramutation, genomic imprinting, and gene silencing.

2.1.2 Chromatin Regulatory Mechanisms

Eukaryotic genomes organize as chromatin in the cell’s nucleus. With the notable exception of
dinoflagellates [74], the basic structure of chromatin consists of proteins (called histones) with
≈147 bp of DNA wrapped around them in ≈1.6 superhelical turns, together referred to as nucleosome
(Figure 2.1B). The nucleosome is the most fundamental repeating unit of chromatin, composed
of an octamer of histones (two copies of H2A, H2B, H3 and H4, respectively). Each histone has
two domains: a globular domain that forms the nucleosomal core around which the DNA wraps
[75], and long disordered tails that protrude from the nucleosomal core (Figure 2.1B). Indeed, their
intrinsic disorder is crucial for their various functions [76]. Notably, both domains are structurally
and functionally distinct [75]. The linker histone H1 binds the nucleosome at the entry and exit
sites of the DNA and locates outside of the nucleosome. In contrast to the other histone proteins, it
has no histone fold. Emerging evidence suggests that histone H1 PTMs also have various important
functions (e.g., H1.4K34ac is involved in transcriptional activation and H1 may also regulate DNA
methylation and histone H3 methylation) [77–79]. More generally, H1 seems to have important
functions in establishing and maintaining higher-order chromatin structures.

2http://www.shechterlab.org/2009/science/chromatin-and-the-histone-code, last accessed
in June 2013

http://www.shechterlab.org/2009/science/chromatin-and-the-histone-code
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During both DNA replication (see Section 2.2) and transcription, histones temporarily loosen
their association with DNA and therefore cause a disruption of the nucleosome structure. Notably,
histones may be bound by various proteins that aid and regulate chromatin assembly and disassembly
as well as histone import into the nucleus (denoted histone chaperones).

An array of relatively regularly spaced nucleosomes (âĂŸbeads-on-a-stringâĂŹ fiber with a diameter
of 11 nm) that, however, can change their precise location (nucleosome positioning) densely cover
the genome. Among cells, nucleosomes may differ in their spacing and occupancy [82]. Various
factors dynamically regulate nucleosome positioning, which is at least in part DNA-dependent [83,
84]. However, nucleosomes do not cover all genomic regions — active promoters and particularly
enhancers frequently have nucleosome depleted regions, and these areas are especially accessible
for TFs and more generally chromatin remodelers (reviewed in [84]). Furthermore, various factors
tightly regulate nucleosome stability [85]. For example, newly assembled histones frequently replace
“old” histones (histone turnover or exchange), which is particularly relevant for H2A and H2B [85–88].
In Drosophila and possibly also in human, histone turnover rates are even higher for active regions,
epigenetic regulatory elements, and replication origins [89]. Nucleosomes can also be degraded
(nucleosome eviction), replaced by newly assembled nucleosomes, composed of various histone
variants (see Section 2.1.4.5), all of which adds yet another layer of regulatory complexity.

For the genomic DNA to fit inside the nucleus, nucleosomes are further hierarchically compacted to
form various higher-order structures (e.g., the 30-nm chromatin fiber, Figure 2.1) that, however,
remain only poorly understood [80, 90, 91]. These states have important roles for gene regulation
and other biological processes because accessibility hinders with further compaction.

Chromatin also carries a partial “annotation” of genomic features such as promoters and enhancers
[92], the exon/intron structure [93, 94], and the current state of transcription [95, 96]. Traditionally,
researchers divided chromatin into two classes: eu- and heterochromatin. Whereas euchromatin is
easily accessible, rich in genes and often associated with active transcription, heterochromatin is
the opposite. However, Filion et al. [81] recently refined this crude binary classification (at least for
Drosophila), and they identified five principal chromatin types (Figure 2.1 C).

Chromatin generally controls DNA accessibility and contributes to the recruitment of TFs. Indeed,
chromatin can be considered the “Swiss army knife” of biology due to its utmost importance for
a multitude of functions. It consists of an incredibly complex network of molecular players with
dependencies among nearly all participants, and various factors collectively coordinate, regulate
and maintain it. Therefore, chromatin can be seen as an advanced signaling module [97] that is a
critical responder to external cues such as stress [98].

Lastly, chromatin-based regulation and epigenetic mechanisms display high evolutionary variability
and plasticity. Their specific mode of action may thus be fundamentally differ among species, and
any conclusions drawn from one particular species should be treated with caution.
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Figure 2.1: Chromatin organization and higher-order structures. In A–D, fundamental features of the
organization of chromatin and the various higher-order structures are shown. For details, see text. A and
B are Wikimedia Commons files (“Chromatin Structures.png” and “Nucleosome 1KX5 colour coded.png”,
respectively), both of which are licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license. C and D taken from Steensel [80].
A: Overview of chromatin organization and higher-order chromatin structures. From left to right, the degree
of compaction increases.
B: Crystal structure of an eukaryotic nucleosome core particle. For clarity, the coloring of individual histones
and their protruding tails is distinctive, and the DNA wrapping around the nucleosome octamer is also
visible.
C: Model of the five principal chromatin types in Drosophila as identified by Filion et al. [81]. Two types
that regulate different classes of genes correspond to the classical euchromatin, two to known types of
heterochromatin, and the last type represents a previously unknown repressive chromatin type.
D: Various principles of higher-order chromatin organization as illustrated by 3D computer simulations. I
and II shows a nucleosome fiber consisting of 60 nucleosomes that is very flexible due to the variable degree
of bending of the linker DNA and can adopt a range of configurations (I:extended configuration, II: more
compacted configuration). III shows the frequent phenomenon of long-range chromatin interactions. Thus,
spatially separated genomic regions come in close proximity due to the higher-order folding. IV illustrates
another mechanism contributing to higher-order folding, namely interactions of particular genomic segments
to fixed nuclear landmarks (gray lattice) such as the nuclear lamina, for example. These landmarks may act
as anchoring sites for the chromatin structure.
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2.1.3 Transcriptome Complexity and Pervasive Transcription

Eukaryotic genomes are incredibly complex, and we are just beginning to unravel some of the
underlying mysteries. For example, since the completion of the human genome project, researchers
now recognize that transcription is much more pervasive than previously imagined. The cell not
only transcribes the 1.2% of the human genome coding for proteins but instead a total of ≈75%
may be capable of transcription across cell lines [59], with a large number of overlapping transcripts
(≈10–12 for each traditional protein-coding gene per cell line). Even more remarkably, 80% of
the genome may be functional [99]. Furthermore, the gene regulatory network is highly complex
and cell and tissue-specific with a large number of long-range interactions [100–103] and complex
patterns of chromatin accessibility [103]. It is noteworthy, however, that these 2012 ENCODE
Consortium publications have also generated harsh critique. Graur et al. [104], for example, argue
that the authors use an extremely vague definition of function, isolate genomic analyses from their
evolutionary context, and employ methods that consistently overestimate functionality.

The high complexity of the transcriptome is, however, indisputable and necessitates a reconsideration
of what a gene is. Current attempts to define a gene therefore often categorize them by functional
products instead of specific DNA loci. This is exemplified by the definition “a union of genomic
sequences encoding a coherent set of potentially overlapping functional products” [105, p. 677].

For protein-coding and potentially also non-coding genes in eukaryotes, alternative splicing is a key
mechanism to create diversity, and an estimated 95% of all multi-exon genes may be alternatively
spliced [106]. The discovery of alternative splicing finally disproved the “one gene, one enzyme”
hypothesis [107]. Splicing regulation is complex, and many factors control it [106, 108, 109].
Barash et al. [110] even proposed that a splicing code exists that describes how alternative splicing
operates. Whereas alternative splicing is one of the most important mechanisms to generate mRNA
structural complexity, its misregulation may lead to various diseases such as cancer [111, 112] and
Alzheimer’s disease (AD) [113, 114]. Splice sites can also be used as a conservation measure, as
exemplified by a comparative analysis of the conservation of splice sites among mammalian species
that demonstrated the evolutionary conservation of lncRNAs [115].

2.1.4 Selected Candidate Players in Epigenetics

2.1.4.1 Histone Post-Translational Modifications

Histone PTMs are covalent post-translational modifications deposited on histones by different
histone-modifying enzymes. They are mostly present on the N-terminal tails protruding from the
nucleosome (histone tail PTMs), which facilitates enzymatic access. The globular internal domain
may, however, also be modified (histone core PTMs), and the majority of known histone PTMs
located in the globular domain are lateral-surface histone PTMs (i.e., histone PTMs mapping to
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Table 2.1: Common nomenclature of histone PTMs. A common nomenclature names histone PTMs. It
starts with the name of the modified canonical histone or histone variant, followed by the single-letter
amino acid abbreviation and its position in the histone protein (relative to the N-terminal domain), an
abbreviation of the modification type, and lastly the number of modifications and other modification details
(such as symmetry information). The latter is currently only relevant for histone methylation because no
other histone PTM is known to occur in multiple copies per residue. Particular residues may be subject to
multiple histone PTMs although at most one distinct type of modification may occur at each residue.

Histone PTM Histone Position Modification type Modification specifics

H2AXub H2A.X unspecified ubiquitination (ub)

H3K4me1 H3 Lysine at pos. 4 methylation (me) monomethylation (me1)

H3K4me3 H3 Lysine at pos. 4 methylation (me) dimethylation (me3)

H3K4ac H3 Lysine at pos. 4 acetylation (ac)

H3R2me2a H3 Arginine at pos. 2 methylation (me)
asymmetric

dimethylation (me2a)

H3R2me2s H3 Arginine at pos. 2 methylation (me)
symmetric

dimethylation (me2s)

H4K5cr H4 Lysine at pos. 5 crotonylation (cr)

residues in the globular domain that locate on the lateral surface of the histone octamer in close
proximity to the DNA) [75].

Histone PTMs include various chemical alterations of lysine (acetylation, monomethylation, dimethy-
lation, trimethylation, formylation, crotonylation [116], ubiquitination, sumoylation, biotinylation,
succinylation [117], malonylation [117], propionylation [118], butyrylation [118], 5-hydroxylation
[119], ADP ribosylation [120]), arginine (monomethylation, symmetric dimethylation, asym-
metric dimethylation, deimination/citrullination), serine (phosphorylation, O-glycosylation/O-
GlcNAcylation [121], hydroxylation), threonine (phosphorylation, O-glycosylation or O-GlcNAcylation
[121]), tyrosine (hydroxylation [116]), glutamic acid (ADP ribosylation), and proline (isomerization)
residues (Figure 3.5).

The discovery of at least 223 distinct3 histone PTMs for the canonical histones H2A, H2B, H3, and
H4 as well as H1.2 (191 if histone H1.2 PTMs are excluded, see Section 3.2.3 for more details) in
humans alone revealed how fine-tuned and intricate the system of these covalent modifications is.
To cope with this complexity, Turner [122] introduced the Brno nomenclature in 2005 [122] that is
also consistently used throughout this thesis (Table 2.1).

Histone PTMs seem to be generally reversible because researchers already identified enzymes
catalyzing the reversible reactions for almost all of them (e.g., decitrullination [123], desuccinylation
[124], demalonylation [124], depropionylation [125]).

3counting the different forms of histone methylation separately because they may indeed have different functions
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Researchers originally thought that histone PTMs always exist in a symmetrical fashion on both
copies of the core histones in the nucleosomal octamer. However, nucleosomes can indeed be
symmetrically and asymmetrically modified, and that these distinctions may even signal different
biological outcomes [126, 127].

Histone methylation and acetylation are by far the best-studied modifications but studying other
histone PTMs, such as histone phosphorylation, is increasingly common [128]. Confirmed by a
wealth of experimental data, they play a decisive role in a wide array of biological processes such
as regulation, cell differentiation, alternative splicing, DNA repair, stress response, development,
cell cycle and mitosis, DNA replication, and various diseases [129–132]. Additionally, they can
generally control the packaging of chromatin and therefore also DNA accessibility by altering either
the positive charge of the histone tails (e.g., histone acetylation) or inter-nucleosomal interactions
(e.g., histone methylation) [19, 116]. They can also either attract or inhibit chromatin binding
complexes, causing subsequent regulatory changes [133]. Particular histone PTMs may also have
functions outside of a nucleosomal context, for example by altering the binding affinities of histone
chaperones (e.g., H4S47ph) [75]. Lastly, the linker histone H1 can also be covalently modified by
various PTMs [116] but their functions are still elusive. Collectively, histone PTMs constitute a
fine-tuned mechanism for regulating the structure and dynamics of chromatin. Their functional
relevance is further supported by the observation that histone PTMs show signs of evolutionary
conservation [134].

Generally, the functions of histone PTMs seem to be location-dependent. Histone tail PTMs
mostly act as signaling factors that have no or only limited direct impact on the structure of
chromatin, and specialized binding proteins carry out the function [75]. Histone core PTMs and
particularly lateral-surface histone PTMs, however, seem to have a more direct structural and
functional effect [75, 116, 135] because they alter intranucleosomal histone-DNA interactions. This
may be achieved, for example, by forcing local increases in DNA unwrapping or by altering the
affinity of the DNA-ïż£histone octamer. Consequently, they can influence nucleosome stability and
mobility, accessibility of nucleosomal DNA to regulatory factors (e.g., H3K56ac). Lateral-surface
histone PTMs may thus have a functional or even causative role for various regulatory events, such
as transcription (e.g., H3K122ac), even in the absence of specific binding proteins, contrary to
histone tail PTMs that may only be a non-causal byproduct of transcription. For example, a point
mutation in H3K27 may cause a failure of transcriptional repression of genes normally repressed by
Polycomb repressive complex 2 (PCR2) [136]. However, other histone PTMs, such as H3K4me3 (a
hallmark of actively transcribed regions), may not necessarily be functionally important because
transcriptional regulation may occur even in its complete absence [137].

The cell already establishes various histone PTMs on the H4 tail during synthesis of new histones.
Such pre-existing histone PTMs seem to be required for chromatin assembly and DNA damage
response signaling [138], and maybe even for epigenetic inheritance of particular histone PTMs
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[139]. Their establishment after histone segregation may depend, for example, on sequence-specific
factors through non-coding RNAs (ncRNAs) or TFs [140–142].

Importantly, most histone PTM do not function independently of one another. Instead, they act in
concert to establish highly specific cellular signals. That is, the combination of different histone
PTMs specifies unique downstream functions that can be interpreted by the cell. Researchers now
commonly refer to this as the histone code hypothesis [143]. The histone code has the potential of
massive complexity; however, only a small subset of all possible combinations seems to be used by
the cell. For example, in human, Wang et al. [144] detected a common backbone of 17 distinct
histone PTMs that colocalize and associate with promoters and enhancers. Since the description
of the histone code hypothesis, researchers repeatedly observed crosstalk between two histone
PTMs within and among histones of the same [145–148] and different nucleosomes in proximity
(reviewed in [149, 150]). Examples include H2Bub and H3K4me2/H3K4me3 at actively transcribed
genes [151, 152], H3S10ph and H4K16ac to mediate transcription elongation [153]. Furthermore,
H3K9me and H3S10ph [154, 155] as well as H3S10ph and H3K14ac [156, 157] are linked.
Crosstalk may also be specific to particular cellular processes. For example, Latham et al. [158]
observed mitosis-specific crosstalk for histone and non-histone proteins (specifically, between
H2BK123ub and methylation of Dam1, a kinetochore protein). The finding that histones can be
symmetrically and asymmetrically modified further expands the histone code [126, 127].
Due to the sheer number of histone PTMs and effector modules, crosstalk among more than two
histone PTMs seems likely but current knowledge is still coarse, fragmented and incomplete due to
the limited capacity to directly measure combinations of histone PTMs [145]. However, recently
developed methodologies to systematically analyze combinatorial histone PTMs may shed new light
on the magnitude of histone PTM crosstalk [159, 160].

Because histone PTMs mostly act and function in combination, correlating a single histone PTM
with a definite functional outcome is difficult [161]. However, some broad generalizations can
be made. For example, H4K20me3 marks centric (constitutive) heterochromatin, H4K36ac is
important for transcription elongation, H3K27me3 associates with stable gene silencing mediated
by the Polycomb complex, H2AS139ph has important functions in DNA repair [162], and H3K9me3
is a mark of transcriptional repression (reviewed, for example, in [141, 163, 164]). Furthermore,
H3K36me has important roles in transcription elongation [132], alternative splicing [165], DNA
repair [166], cell cycle and mitosis [132]. Due its diverse functions, it seems unsurprising that
dysregulation of H3K36me levels associates with various diseases [132]. Another vital histone PTM
is H4K20me, with functions in DNA repair (e.g., H4K20me2 as marker for double-strand breaks
[167]), cell cycle regulation, DNA replication and chromatin compaction (reviewed in [168]). Lastly,
H3K79me also plays a role in the cell cycle and mitosis in particular [169] but may also act as a
marker or molecular timer for histone age [170]. Thus, histone PTMs often have multiple functions
that may additionally be species-specific or even tissue-specific. For example, in addition to its
function as marker for transcription start sites of active genes, H3K4me3 also has a protection
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function against DNA methylation [141].

Histone PTMs play important roles for cellular memory and the re-establishment of regulatory
programs after cell division [171]. The potential for a particular PTM to act as a heritable signal,
however, depends on multiple factors:

• The modified histone
H2A and H2B are much more mobile and more frequently exchanged than H3 and H4 [86,
172]. Thus, histone PTMs on H3 and H4 are more attractive candidates for epigenetic
memory.

• Modification type
Histone PTMs have strikingly different lifetimes and their deposition occurs at different rates.
Acetylation events are measured in the order of minutes, whereas methylation events are
stable for days [87, 173]. Thus, histone methylations are more stable than histone acetylations
and therefore also more likely candidates for epigenetic inheritance, particularly because they
predominantly occur on the H3 or H4 histone (see above).

• Modification function
Francis [174] hypothesized that inheritance of histone PTMs is more likely for silent states
than for active ones. Histone PTMs associated with active states, such as histone acetylations
and phosphorylation, are often only transient signals that are set in response to a particular
environmental stimulus (e.g., DNA damage caused by UV light).

• Position on the histone
Particular histone PTMs located at the N-terminal tails (e.g., on histone H3) may be subject
to position-specific phenomena such as histone tail clipping (i.e., the loss of amino acids)
[175–177], which reduces the lifetime of histone PTMs and therefore its epigenetic inheritance
potential. However, we know little about the frequency and significance of this process and its
specific function. Nevertheless, histone clipping may have important roles for gene regulation
and therefore also contributes to their inheritance potential. Furthermore, some residues,
particularly in the globular domains of the histones in the core of the nucleosomes, may only
sometimes be accessible (e.g., during transcription after nucleosome disassembly).

Only primary modifications, such as H3K9me3, may truly be epigenetic because they seem to be
able to be inherited independently of the initial signal that triggered their formation, therefore
contributing to cellular memory [178]. Secondary modifications such as most histone acetylations
and histone sumoylation, however, require the initial trigger for their continuous presence or depend
on either primary histone PTMs or other factors. They constitute dynamic signals to various cellular
response pathways such as heat shock [179] and DNA damage. Indeed, the functional significance
of histone PTMs in the processes they associate with is presently still unclear [75]. In particular,
researchers still hotly debate whether histone PTMs and the presence of histone variants are a
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cause or consequence of the transcriptional status [82, 178, 180, 181].

2.1.4.2 Higher-Order Chromatin Organization and Genome Topology

Inherent properties of mammalian genome topology are the existence of chromosome-specific
territories and the arrangement of chromatin into local, megabase-sized chromatin interaction
domains. They are highly conserved across species and stable across cell types [182, 183], with
pluripotent stem cells having particularly distinct higher-order structures for increased robustness
[184]. These topological domains do not seem to be a consequence of heterochromatin formation
because they and particularly their boundaries appear to mark the end points of heterochromatin
spreading [182]. Thus, they seem to act as crucial boundary elements to constrain H3K9me3
spreading.

Higher-order chromatin organization is likely to also play significant roles for epigenetic inheritance
although we know little if and how higher-order structures are transmitted during cell division
or whether particular higher-order structures are a cause or consequence of the transcriptional
status and/or histone PTMs or other chromatin-related marks [90, 185, 186]. Higher-order
chromatin organization is, however, associated with distinct histone PTM patterns [186] in pericentric
heterochromatin and may promote or at least facilitate the spread of gene silencing [185]. Probst
et al. [88] found that chromocentres (higher-order structures consisting of multiple pericentric
heterochromatin domains) in mice are subject to only minor chromosomal rearrangements. They are
mediated and regulated by Polycomb group proteins and may have crucial roles for the inheritance
of repressive chromatin domains. Recent work found that cohesin complexes have important
architectural roles for the establishment of higher-order structures and chromosome territories and
therefore potentially also for epigenetic inheritance [187].

2.1.4.3 Non-coding RNAs

ncRNAs constitute a substantial portion of the transcriptome [59, 188]. They form a very heteroge-
neous, almost limitless versatile and abundant class of transcripts that can act both in cis and in
trans. Their evolutionary conservation strongly indicates functionality [189]. Indeed, researchers
associated them with a multitude of different functions [59, 190]. ncRNAs may achieve their intricate
regulatory specificity by means of modularity, therefore assembling diverse protein combinations as
well as interactions with the DNA and potentially also RNA [190].

Generally, ncRNAs can be divided in house-keeping or structural ncRNAs (e.g., tRNAs, snoRNAs,
snRNAs, rRNAs) and regulatory ncRNAs. Due to their sheer diversity, the latter may be further
subdivided into short (< 50 bp such as miRNAs, siRNAs, and piRNAs), medium-long (50–200 bp
such as promoter-associated RNAs), and long ncRNAs (lncRNAs) with a length of > 200 bp
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[191] although this length classification is somewhat arbitrary. lncRNAs show the greatest variety,
with even further subdivisions into intergenic, intronic, UTR-associated, antisense, pseudogene,
or enhancer-like ncRNAs. Generally, ncRNAs seem to have an almost boundless versatility. For
example, ncRNAs may also exist as circular RNAs that are more stable and therefore less easily
subject to degradation. They seem to form a large class of post-transcriptional regulators, and
researchers already detected thousands of well-expressed, stable, and tissue-specific circRNAs [192].
circRNAs can, for example, counteract the function of miRNAs and therefore desuppress mRNA
target expression [192, 193]. mRNAs, on the other hand, may also function as both mRNA
and lncRNA [194]. Due to their functional diversity, cell type or tissue specificity, and frequent
disease-association (see Chapter 6), they also offer great potential for the application as biomarkers,
and researchers already use some of them [195, 196].

Epigenetic regulatory and inheritance roles of lncRNAs were first identified in the context of genomic
imprinting (parent-specific gene expression) for the phenomenon of X-chromosome inactivation
[197, 198]. lncRNAs are crucial for the silencing of the inactive X-chromosome (Xi) by forming
repressive heterochromatin that prevents expression of most of the genes from Xi (reviewed in
[199]). Prominent lncRNAs implicated in epigenetic inheritance include HOTAIR, Kcnq1ot1, Airn,
and Xist, for example.

Numerous recent findings indicate that ncRNAs have important roles in modulating chromatin and
its structure and therefore also for epigenetic inheritance (e.g., see [199–204]). Indeed, various
lncRNAs can be bound by chromatin-modifying enzyme complexes such as Polycomb repressive
complex 2 (PCR2). For example, Khalil et al. [201] showed that a large number (≈20%) of lncRNAs
play a role in the establishment of heterochromatin by binding PCR2 (e.g., HOTAIR). Mondal et al.
[188] came to a similar conclusion. They identified a number of intronic and intergenic regions in
human fibroblast cells that harbor chromatin-associated RNAs. These regions additionally showed
significant conservation across 44 mammals, thus strongly indicating functional significance.

These chromatin-associated RNAs may therefore have an important function in regulating gene
expression by guiding chromatin-modifying complexes to particular genomic loci (Figure 2.2), for
example those that must maintain an epigenetic memory [40, 185, 205].

lncRNAs typically act in cis but in trans regulation also seems to be common [199]. Lai et al. [206]
showed that they may activate neighboring genes in cis by interacting with the co-activator complex
Mediator. Interestingly, such enhancer-like lncRNAs seem to be a significant stimulator of the
Mediator kinase activity towards H3S10ph, a histone PTM strongly associated with transcriptional
activation [207]. lncRNAs may also prevent spreading of repressive histone PTMs [208].

In lower eukaryotes, another non-coding RNA phenomenon, namely RNA interference (RNAi),
plays a role in epigenetic inheritance and even transgenerational epigenetic inheritance [209]. In
yeast, for example, RNAi and small interfering RNAs (siRNAs) are crucial for the inheritance of
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heterochromatin (i.e., H3K9me) [90, 210–214]. Specifically, RNA polymerase II shortly transcribes
heterochromatin in the S phase during the cell cycle, and the RNAi machinery processes the
resulting transcripts into siRNAs. In conjunction with other silencing factors, these siRNAs then
recruit histone H3K9 methyltransferases to establish H3K9me. Additionally, DNA polymerase
components help to mediate recruitment of the various epigenetic factors that are required for
the faithful establishment of heterochromatin formation. They thus orchestrate DNA replication,
RNAi, and histone methylation, which would also explain the cell cycle-regulated, RNAi-dependent
heterochromatin silencing [213]. Cernilogar et al. [215] showed that in Drosophila, Dicer 2 and
Argonaute 2, two key players in RNAi, globally associate with transcriptionally active loci by
interacting with the core transcription machinery, thereby controlling the processivity of RNA
polymerase II. However, the significance of RNAi mechanisms in higher eukaryotes remains unclear.

A legitimate question is why lncRNAs often function as epigenetic regulators, and not proteins
or small RNAs. Indeed, lncRNAs seem to offer certain advantages as compared to proteins for
epigenetic regulation [199]. First, they have the ability of allelic marking as a consequence of
their tethering capabilities and their rapid turnover, in contrast to proteins (as their origin of
transcription is lost when mRNA is shuttled to the cytoplasm) and small RNAs. Second, due to
their large size, lncRNAs can specify a unique genomic loci (Figure 2.2), whereas TFs, despite their
effective recruiting of regulatory factors, typically affect a large number of genes at once due to
their recognition of relatively short and therefore abundant DNA motifs. Thus, lncRNAs and TFs in
combination with chromatin-modifying enzymes may account for the required specificity (both in
terms of space and time) during development [199].

2.1.4.4 Chromatin-Modifying Enzymes

Chromatin-modifying enzymes generally describe classes of macromolecules that physically associate
with chromatin to modify and/or regulate chromatin structure, composition, and function. They
may generally be divided into ATP-independent and ATP-dependent chromatin-modifying enzymes.
ATP-independent complexes denote several distinct classes of enzymes able to modify histone
proteins, whereas ATP-dependent complexes remodel chromatin to induce structural chromatin
changes (e.g., reposition or deplete nucleosomes, exchange histones) by using the energy provided by
the hydrolysis of ATP. Both have crucial roles for the maintenance of epigenetic states and epigenetic
inheritance. Polycomb and Trithorax group proteins are particularly well-studied chromatin-modifying
enzymes for the silencing and activation of gene expression, respectively, with pivotal functions
as regulators of numerous developmental genes and more generally chromatin-remodeling [216].
Chromatin-modifying enzymes may specifically add/write (histone writer) or remove (histone
eraser) histone PTMs (Figure 2.3 A). In eukaryotes, histone writers tend to be more numerous
than the corresponding histone erasers [12]. Widely studied classes of chromatin-modifying, or

4Hereafter, the latter is used repeatedly throughout this thesis without repeated credit.
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PRC2

RNAP

Figure 2.2: Example of epigenetic regulation by lncRNAs. The figure shows a genomic locus that harbors
a cis-acting lncRNA and the transcription elongation machinery. Upon transcription via RNA polymerase
(RNAP), it can silence a surrounding gene by targeting and physically associating with PCR2. This
subsequently methylates histone at position H3K27 co-transcriptionally (red stars at the protruding histone
tails) and thereby silences the gene. For details, see text. The image is a composite image of parts of an
image released to the public domain (transcription elongation machinery) and the Wikimedia Commons file
“Nucleosome organization.png”, which is licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license4.

more specifically histone-modifying, enzymes include histone acetyltransferases (HATs), histone
deacetylases (HDACs), histone methyltransferases (HMTs), and histone demethylases (HDMs).
HATs, for example, acetylate lysine residues on various histone proteins by transferring an acetyl
group from acetyl-CoA to form ε -N-acetyl lysine, whereas HDACs5 can perform the opposite
reaction. Similarly, histone methyltransferases (HMTs) catalyze the transfer of one to three methyl
groups from the cofactor S-Adenosyl methionine to lysine and arginine residues of histone proteins.
Scientists initially believed that histone methylations are permanent (irreversible) but the discovery
of a H3K4 demethylase showed that they can also be actively removed. One such example are
Jumonji domain-containing proteins [217] such as KIAA1718, which can demethylate mono-, di-,
and even trimethylated lysines.

Additionally, chromatin-modifying enzymes often associate with reader domains able to specifically
recognize the presence or absence of particular histone PTMs (Figure 2.3). Such histone readers
contain binding domains with a size of ≈50–150 residues that contain binding pockets for the
recognition of individual histone PTMs (e.g., bromodomains for various acetylated H3 and H4 lysine
residues, PHD domains for H3K4 methylation, 2014-3-3 domains for H3S10ph, see [218] for further
examples) [145] (Figure 2.3 B).

5also more generally called lysine deacetylases (KDAC) because they also modify non-histone proteins
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Figure 2.3: Histone-modifying enzymes and their mode of action. Figures taken from Gardner et al. [219].
A: Schematic illustration of histone writers (left), erasers (middle) and readers (right), all of which can
specifically or unspecifically associate with histone PTMs. See text for details.
B: Mechanisms and diversity of histone reader modules. Binding of particular histone PTMs or their
unmodified residues may occur in cis on the same histone tail (I), in trans across histone tails (II), or even
across nucleosomes (not depicted). Single histone PTMs may serve as a docking site for multiple proteins,
with additional histone PTMs dictating the specific recruitment process (III). Lastly, histone-modifying
enzymes often consist of multiple individual proteins that collectively form a multimeric complex and
functionally distinct domains (IV, see also Figure 2.5).

In contrast to TFs, many chromatin-modifying enzymes do not bind to specific DNA motifs and often
even lack DNA-binding domains [200]. Consequently, they often bind more ubiquitously. However,
binding specificity may be achieved through interactions with cis-acting ncRNA (see Section 2.1.4.3).
Notably, numerous chromatin-modifying enzymes associate with the DNA replication machinery
and their mode of action may therefore be intimately coupled to DNA replication (see Section 2.2).
Similarly, these enzymes often associate with the transcription machinery [130, 181].

Histone writers can have very different mode of actions. HMTs, for example, can either be processive
or non-processive (Figure 2.4). Most HMTs are processive (e.g., SET) but Frederiks et al. [220],
for example, also discovered the non-processive HMT Dot1. Importantly, the kinetic mechanisms
for processive and non-processive enzymes are very different. A non-processive mode of action, for
example, implies that the different methylation states are not independent from one another, which
may introduce functional redundancy (e.g., H3K79 methylation by Dot1) [170, 220]. Methylation
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A B

Figure 2.4: Processive and non-processive histone-modifying enzymes. Methyl groups can be added in a
step-wise and gradual fashion (i.e., catalyzing only one reaction at a time before releasing its substrate,
non-processive, A) or in a continuous fashion by adding multiple methyl groups at a time and skipping one
or two intermediate steps (processive, B) [222]. Figure taken from Scharf et al. [222].

loss, on the other hand, is typically processive [221].

Histone-modifying enzymes are often part of large multisubunit complexes with almost arbitrarily
complex combinations of reader, writer and eraser domains (Figure 2.5) [223]. Paired modules
are particularly common for short-range histone crosstalk and include reader-reader, reader-writer
and reader-eraser pairs [145]. Many multi-component chromatin-modifying enzyme complexes
also contain multiple reader domains [24]. The chromatin-remodeling complex RSC, for example,
consists of three and the Polybromo protein of six bromodomains (summarized in [218]). Various
authors proposed that specific interactions among different histone PTMs play crucial regulatory
roles, and subsequently extensively investigated to what extent the cell may achieve a combinatorial
recognition of histone PTMs and how it functions mechanistically [223]. For example, multiple
copies of reader domains may prefer cumulative effects of particular types of histone PTMs (e.g.,
histone acetylation) because their presence may lead to cooperative effects resulting from each
individual domain [218]. However, single reader domains may also selectively recognize multiple
histone PTMs. One such example is a single bromodomain from a testis-specific member of the
BET protein family that is responsible for selectively recognizing diacetylated histone H4 tails [224].

Importantly, individual histone PTM readers may also be influenced by the modification state of
adjacent residues. Thus, for effective binding and execution of their designated reaction, histone-
modifying enzyme complexes may require a particular combination of histone PTM states (i.e., the
presence and/or absence of multiple histone PTMs). Because recent data indicates the existence of
both symmetrically and asymmetrically modified populations of nucleosomes [126], histone-modifying
enzymes may also specifically recognize and/or require a symmetric or asymmetric modification
state for a particular histone PTM. Such crosstalk is ubiquitous (see above and [150] for a review)
and examples include the dual recognition of H4K20me2 and H2AK15ub by the bivalent histone
PTM reader 53BP1 [225] and H2Bub-dependent H3K4 methylation by Set1 [151, 152]. Generally,
such crosstalks can either be of sequential or combinatorial nature. Sequential interactions occur
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step-wise, as exemplified by a lysine methyltransferase that binds a particular histone tail through
recognition of a histone PTM and subsequently deposits a second histone PTM. Combinatorial
interactions, on the other hand, denote the recognition of multiple histone PTMs at once. Examples
include antagonistic mechanisms where histone PTM readers recognize a particular PTM, which is,
however, impaired if a second PTM is deposited [150]. Whether histone-modifying enzymes read
individual histone PTMs simultaneously or sequentially, however, is still subject to intense research
[145].

Chromatin-modifying enzymes often also link histone PTMs with other cellular processes or phe-
nomena such as:

• DNA methylation (e.g., the HDM LSD1 links H3K4 and DNA methylation [227])

• cell metabolism (e.g., the kinase WEE1 links H2B phosphorylation and cell-cycle progression
[228])

• environmental signals such as temperature (e.g., vernalization in flowering plants requires
various HMTs, reviewed in [229])

• sex-determination (e.g., in mice, the H3K9 HDM Jmjd1a controls expression of the sex-
determining gene Sry through the regulation of H3K9me2, and mice lacking Jmjd1a were
subject to male-to-female sex reversal [230])

Various histone-modifying enzymes, such as kinases, methylases, and acetylases, depend on high
energy co-substrates and can therefore be influenced in their level of activity by environmental
and metabolite signals [161]. Intriguingly, histone-modifying enzymes from pathogens can also
manipulate histone PTM patterns to promote their own survival by depositing novel histone PTMs.
For example, a methyltransferase in the bacterium Legionella pneumophila may establish H3K14me3
to repress host gene expression and enhance its own intracellular replication [231].

Lastly, mutations in genes that code for chromatin-modifying enzymes may also cause severe
diseases. For example, Zaidi et al. [232] found that ≈10% of severe cases of congenital heart
disease may be caused by de novo mutations of heart-expressed chromatin-modifying genes with
important developmental functions. Another prominent example is cancer, and researchers identified
multiple mutations for various chromatin-modifying enzymes, such as somatic mutations of UTX
(encoding a H3K27 demethylase), mutations of EZH2 (encoding a H3K27 methyltransferase), and
a translocation of MLL (encoding a protein that is recruited to many promoters and mediates H3K4
methyltransferase activity), that occur with high frequencies in multiple hematological malignancies
(summarized in [233]). Therefore, understanding the role and importance of chromatin-modifying
enzymes for the dynamics of chromatin states may also be important to improve understanding of
“epigenetic” diseases (see also Chapter 6).
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Symbol Class Functional description

HISTONE PTM 
WRITER

1a) Histone acetyltransferase activity

1b) General protein lysine methyltransferase activity

1c) H3K79 methyltransferase activity

HISTONE PTM
ERASER

2a) Histone deacetylase activity

2b) Histone demethylase activity

HISTONE (PTM) 
READER

3a) General H3 binding

3b) Methylated H3 binding

3c) H4K20me binding

BINDING 
DOMAINS

4a) DNA-binding

4b) DNA-binding, methylase activity

4c) Methylated DNA-binding

4d) ATP-binding

4e) ncRNA binding

CHROMATIN 
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Figure 2.5: Functional and structural complexity and diversity of chromatin-modifying enzymes and
chromatin remodelers. The figure shows four different enzyme complexes for a genomic region composed
of five nucleosomes. Each enzyme complex consists of several proteins and domains with their respective
functions (Table below, which is adapted from Pu et al. [226]). As indicated, enzymes may either specifically
or unspecifically recognize and/or modify histone PTMs and DNA methylation. Some complexes may even
be important for higher-order chromatin organization and structural stability.

2.1.4.5 Histone Variants

During evolution, various universal and lineage-specific variants of canonical histones have arisen.
They acquired a diverse set of specialized functions in chromosome segregation, DNA repair,
transcriptional regulation, sperm packaging, centromere maintenance [234], and sex chromosome
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condensation [235, 236], for example. In contrast to their canonical paralogues, they are constitutively
and not only replication-dependently synthesized. They mostly differ in only a few amino acids in
their primary sequence [235] but can cause major structural differences, stability changes, and the
addition or deletion of particular functional domains or histone PTMs, all of which generally may
alter nucleosome dynamics.

In mammals, common variants of histone H2A include H2A.X, and H2A.Z, for example. The latter
associates with the promoters of actively transcribed genes. Histones H4 and H2B so far have no
known ubiquitously expressed variants, and researchers so far only identified a few tissue-specific
variants of H2B (e.g., sperm-specific and testis-specific variants) [236]. A particularly important
variant of H3 is CENP-A, which is a key determinant of centromere function and both necessary
and sufficient for the epigenetic maintenance of centromers [237, 238]. Interestingly, even minor
differences between histone variants may be specifically recognized (e.g., human H3.1 and H3.2 differ
only at a single residue but nevertheless display differences in the abundance of particular PTMs)
[239]. Lastly, particular histone variants, such as H3.3, also influence nucleosome disassembly
dynamics because their incorporation may alter the likelihood of a split of H3-H4 tetramers (see
Section 2.2.2).

Importantly, researchers repeatedly suggested that various histone variants (e.g., CENP-A, H3.3,
H2A.Z, and H2A.X) are crucial for epigenetic inheritance (reviewed in [88, 236]) but except for
CENP-A [234], the precise mechanisms remain elusive. For example, whether histone variants may
be specifically recognized by particular enzymes or if their primary function is to induce structural
changes of the surrounding chromatin is currently an open question [236]. Henikoff [85] hypothesized
that the H3 variant H3.3 may be a carrier of epigenetic information, based on the finding that
active transcription during interphase leads to higher levels of H3.3 incorporation, which after
cell division then serves as signal for transcription. However, this model has only limited support
and researchers could not yet validate its various assumptions. Fachinetti et al. [234] showed
that CENP-A is indeed the epigenetic carrier of centromere identity that identifies, maintains and
propagates centromere function through a conserved two-step mechanism. Thus, histone variants
can be bona fide epigenetic marks.

2.1.4.6 DNA Methylation

DNA methylation generally denotes the conversion of the DNA base cytosine to 5-methylcytosine
(5mC) by adding a methyl group. It is common in most eukaryotes with a large genome but can also
be found in some small-genome eukaryotes and even bacteria. DNA methyltransferases (DNMTs), a
set of very conserved proteins, mediate it. It is typically present within cytosine-guanine dinucleotide
(CpG) islands [221, 240] around gene promoters and within gene bodies although it may also occur in
a non-CpG context in, for example, embryonic stem cells [241]. It generally affects the transcription
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of genes and therefore has crucial rules in gene regulation, carcinogenesis, allele-specific expression
of imprinted genes, silencing of transposons, and X-chromosome inactivation, for example. Recently,
however, an increasingly complex picture emerges between DNA methylation and gene expression
(reviewed in [242]).

Various factors faithfully preserve DNA methylation during DNA replication and therefore constitutes
a bona fide epigenetic mechanism. After DNA replication, DNA is originally only hemi-methylated
because the newly synthesized daughter strand lacks any DNA methylation, whereas the other
daughter strand carries the parental DNA methylation marks. In contrast to de-novo DNMTs,
maintenance DNMTs can specifically recognize hemi-methylated DNA (e.g., DNMT1). After their
recruitment to the corresponding genomic locations through UHRF1, they methylate DNA also on
the other strand and therefore restore the parental modification pattern (reviewed in [178]). DNMT1
preferentially associates with ubiquitylated histone H3, and UHRF1 provides the mechanistic link
between DNA methylation and DNA replication through H3 ubiquitylation [243].

Notably, DNA methylation interacts with almost all other putative candidate players of epigenetic
inheritance, for example by recruiting chromatin-modifying enzymes [40, 242]. Due to its stable
inheritance, it may act as primary signal for the (re-)establishment of histone PTMs (e.g., replication-
coupled deposition of H3K9me2 with DNMT1 and UHRF1 [181]). However, several lines of evidence
in genome-wide studies in cancer cells suggest that silencing of particular chromatin domains precedes
DNA methylation but it remains unclear if this is generally true (reviewed in [242]).

Researchers originally thought that DNA methylation is irreversible but it is now clear that removal
of DNA methylation is widespread and may occur via multiple active and passive mechanisms
(reviewed in [221, 240]). This is particularly important for germline cells because genome-wide
demethylation happens shortly after fertilization to reset the DNA methylation status.

Methylcytosines may be further converted to 5-hydroxymethylcytosine (5hmC), which can be
catalyzed by the ten-eleven translocation 1 (TET1) enzyme, for example. Hydroxymethylation is
likely to represent a distinct epigenetic state with important functions in transcriptional regulation
during embryonic development [244], passive DNA demethylation [245], genomic imprinting, main-
tenance of cellular identity, epigenetic regulation of gene expression, and suppression of transposable
elements [246, 247]. Researchers also reported further cytosine derivatives such as 5-formylcytosine
(5fC) and 5-carboxylcytosine (5caC) [247–249] although they are less abundant. Their functional
and epigenetic significance is also presently unclear [250]. So far, researchers established their
involvement in the cytosine demethylation pathway. For example, after oxidation of 5mC and
5hmC to 5caC, 5caC can be specifically recognized and excised [248]. They may also play a role
in transcriptional regulation by reducing the rate and substrate specificity of RNA polymerase II
transcription [250].
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2.2 DNA Replication and Mitosis

2.2.1 DNA Replication

DNA replication is a complex but relatively well-understood process. Therefore, due to space
limitations, only details relevant for the maintenance of epigenetic states will be presented.

In the synthesis phase of the cell cycle during mitosis, the cell replicates its DNA in a semi-
conservative manner. DNA replication has an intrinsic strand bias because it only occurs in the 5’
to 3’ direction. Whereas the leading strand replicates in a continuous fashion, the lagging strand
synthesizes discontinuously.

Notably, the genome replicates at different times. For example, transcription of active genomic loci
occurs earlier than transcription of silent loci. Indeed, the specific replication timing program is
evolutionary well conserved [251]. Replication timing in turn correlates with levels of chromatin
compaction and therefore associates vaguely with the replicated chromatin type (e.g., eu- and
heterochromatin) [178, 252–254]. This has led to the idea that different loci replicate in dependence
of their transcriptional status, which may establish the decisive component for potential epigenetic
inheritance mechanisms (reviewed in [178]).

During each DNA replication, chromatin must undergo dramatic perturbations due to the melting of
the DNA double helix, and this wave of disruption poses major challenges for any chromatin-based
inheritance mechanism. For example, histones must temporarily dissociate from the original position
during passage of the replication fork. Histones (or histone oligomers) then distribute (segregate)
between the two daughter strands and are deposited in new nucleosomes. Due to the crucial
importance for epigenetic inheritance, models for nucleosome disassembly and histone segregation
are discussed in more detail below.

2.2.2 Nucleosome Disassembly

During DNA replication or transcription, the nucleosome octamers disassemble (temporarily) to
allow access to DNA, followed by immediate reassembly after DNA replication. Multiple models of
nucleosome disassembly are theoretically possible but as depicted in Figure 2.6, only two of them
have experimental support: (i) splitting of the nucleosome octamer into two individual H2A-H2B
dimers and the H3-H4 tetramer (model 1) and (ii) further tetramer splitting of H3-H4, resulting
in H2A-H2B and H3-H4 dimers (model 5). Thus, nucleosome disassembly occurs in a stepwise
manner, starting with the removal of H2A-H2B dimers and followed by the H3-H4 tetramer [255].
Histones H3-H4 predominantly segregate as tetramers and only rarely as dimers [172, 181, 256].
The relative frequencies for these two models seem to depend mainly on whether the assembly
machinery incorporates histone variants. For example, splitting of (H3.1-H4)2 is rare compared to
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(H3.3-H4)2 tetramers [172, 256]. Because H3.3 mainly enriches in euchromatin, an alternative
formulation for the relative frequencies of the two models is whether active or passive regions
replicates.
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Figure 2.6: Overview of different nucleosome disassembly models. Five different models that are theoretically
possible are presented. For each model, a summary of the final disassembly, a graphical depiction, and its
experimental support is provided. For clarity, the octameric nucleosome is color-coded (see bottom). The
values for the relative frequencies of the two models with experimental support were taken from [172, 256].
For more details, see text.

2.2.3 Mitosis

Mitosis is the first event in the M phase of the cell cycle and denotes the separation of previously
replicated chromosomes into two identical sets of chromosomes. After mitosis, each chromosome set
is in its own new nucleus, and cytokinesis6 follows immediately. During mitosis, the nuclear envelope
dissolves and chromatin and the nuclear architecture undergo massive and global reorganization.
It also globally silences transcription and ejects sequence-specific TFs and therefore theoretically
also provides a window of opportunity for remodeling gene expression and epigenetic patterns [71].
Thus, mitosis can be seen as a labile state susceptible to global gene expression changes.

6cytoplasmic division at the end of mitosis or meiosis
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2.2.4 Histone Segregation

Histone segregation denotes the distribution of the individual histone oligomers to the two daughter
strands following replication. From a systematic point of view, models of histone segregation
may principally be classified according to two different criteria: (i) whether histones segregate as
dimers or tetramers and (ii) whether histone segregation occurs in a random or non-random fashion
(Figure 2.7). As indicated in Figure 2.7, researchers proposed various models in the literature, and
the three models with experimental support are now described in more detail.

Random model
The random model assumes that parental histones segregate randomly between both strands [26,
257, 258]. For each of the two strands at each position, the probability of incorporation of parental
histones is therefore 50%. Because of the disassembly of nucleosomes into individual histone dimers
and tetramers and its octameric structure, a joint deposition of parental and newly assembled
histones is therefore frequent for newly formed nucleosomes. This results in a replication-coupled
dilution of parental histone PTMs during subsequent DNA replication events if the cell does not
specifically modify newly assembled histones to reconstitute the parental histone PTM pattern.
This model has the best experimental support among all models [181, 259, 260]. Furthermore, it is
relatively irrelevant whether H3-H4 complexes segregate as dimers or tetramers because the overall
enrichment for a particular histone PTM is of primary importance [185].

Semi-conservative model
The semi-conservative model assumes that parental histones distribute equally between both daughter
strands. Although it provides a simple and elegant inheritance mechanism because intranucleosomal
templated modification copying events may theoretically easily restore the premitotic histone PTM
patterns, the model requires an identical modification state within each nucleosome (i.e., identical
modifications of the two copies each of the four core histones). However, only a minority of H3-H4
complexes segregate as dimers (see above) and nucleosomes may indeed exist in symmetric and
asymmetric populations [126, 127], thus arguing against its existence.
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Figure 2.7: Overview of different histone segregation models during DNA replication. A systematic
overview of various possible histone segregation models is shown, based on a genomic region consisting of
five nucleosomes (numbered from 1 to 5) and various histone PTMs (as indicated by the colored rectangles
within the histones). Note that nucleosomes may be modified symmetrically (1–3) or asymmetrically (4–5).
The models are divided into tetramer (1–2) and dimer (3–5) segregation models, respectively. Furthermore,
models with experimental support are highlighted with a star next to the exemplary model number (1, 4, 7)
and newly assembled histones or nucleosomes are drawn with transparency to distinguish them from their
parental counterparts. For simplicity, (i) parental nucleosomes retain at their original position following
DNA replication, (ii) only the histone oligomers relevant for the various models are shown and not the
full nucleosomes, (iii) newly assembled histones are generally unmodified, (iv) only H3-H4 dimers for the
dimer segregation models are shown although the model also applies to H2A-H2B dimers (as illustrated
left), and (v) common names are also provided (e.g., see [88, 185]). To the best of my knowledge, however,
nobody made the explicit distinction between dimer and tetramer segregation so far. The color coding of
the histones is identical to Figure 2.6. For more model details, see text.
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Conservative or asymmetric model
The conservative or asymmetric model [88] assumes that parental histones distribute asymmetrically
onto daughter strands. For example, one of the daughter strands may contain all parental and the
other strand only newly assembled histones. Such a model may be possible by the intrinsic strand
bias (see above). However, the re-establishment of premitotic histone PTM patterns requires not
yet observed interstrand crosstalk. Such a model may nevertheless exist for specialized chromatin
domains or particular time intervals but it seems unlikely that it plays a dominant role.

Reset model
Petruk et al. [261] proposed a model in which the cell only incorporates newly assembled histones
(Figure 2.7). Despite the complete loss of information, inheritance of the patterns of histone PTMs
may still be possible because the corresponding histone-modifying enzymes may remain bound
during replication or quickly rebind afterwards (see Section 2.3.2.1 for more details).

2.2.5 Retainment of Parental Histones After DNA Replication

Whether parental histones reassemble close to their original loci from which they were evicted by
the replication fork during DNA replication also has major implications for the stability of epigenetic
information and epigenetic inheritance. Radman-Livaja et al. [260] addressed this important issue,
which is mechanistically distinct from histone segregation. Using a quantitative model partly based
on experimental data, they estimate that during replication, two-thirds of all histones reincorporate
within ≈400 bp (which vaguely corresponds to two nucleosomes) of their prereplication locus. These
values are in agreement with related previous observations and therefore suggest that although
histones stay in close vicinity of their prereplication locus, segregation mechanisms are inherently
stochastic and rather imprecise.

Radman-Livaja et al. [260] also followed the inheritance of parental histone H3 through multiple
generations and surprisingly observed a tendency for parental histones to cluster preferentially
downstream of the 5’ ends of most genes (peaking around the +3 nucleosome, with respect to the
promoter). Interestingly, the effect was strongest for long and poorly transcribed genes. With the
help of a quantitative model, they find that the parental distribution of H3 histones fits well to the
model if (i) histones reincorporate in proximity of their original locus during replication (see above),
(ii) replication-independent replacement occurs and (iii) transcription-associated lateral movement
or histone “passback” (histone displacement from 3’ to 5’) occurs. The last phenomenon contributes
most to the net accumulation of parental histones near the 5’ end of genes, and has an estimated
value of ≈90 bp per cell cycle. However, as mentioned explicitly by Radman-Livaja et al. [260],
because the majority of nucleosomes in yeast are well positioned [262], the transcription-dependent
passback value cannot be taken literally and must be interpreted probabilistically. That is, “an
octamer will be passed back in a given cell cycle in each cell — a passback value of ≈80 bp suggests
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that there is a 50% chance that histones on a given gene will be shifted back one position towards
the 5’ end in a single cell cycle.” [260, p.14].

However, the significance of these results remains to be determined. For example, experiments were
done using yeast, and whether the mechanisms are also applicable to higher eukaryotes is presently
unclear. The authors also note explicitly that all results must be interpreted with caution because
the effect of “wild-type, untagged nucleosomes on the behavior of the epitope-tagged histones”
[260, p.11] is unknown.

2.3 Epigenetic Inheritance

2.3.1 Definition, Differentiation, Evolutionary Implications

I already introduced epigenetic inheritance in Chapter 1, and in what follows, I want to provide an
overview of some of the proposed models for epigenetic inheritance. I note again that the focus of
this work is on somatic and not transgenerational epigenetic inheritance. Although the presented
candidate players and models may also be applicable, transgenerational epigenetic inheritance
encompasses additional key players and a highly specialized set of mechanisms not discussed here
[18] such as PIWI-interacting RNAs [263] and other RNA molecules [264]. In addition to these
two types of vertical transmission of epigenetic states, Molnar et al. [265] described RNA-mediated
horizontal transmission in plants, which, however, will not be further discussed.

The realization of the existence of epigenetic inheritance phenomena and the possibility of
environmentally-directed inheritance revitalized Lamarck’s theory of inheritance of acquired charac-
teristics (theory of adaptation). Subsequently, a wealth of studies discussed and requestioned the
precise contributions of Darwinian and Lamarckian modalities of evolution and whether we have to
alter our thinking about evolutionary change [65, 68, 266]. Various proposed models of evolution
integrate epigenetic inheritance phenomena into general theories of evolution but much controversy
remains with respect to the precise role and importance of epigenetic inheritance phenomena in
shaping phenotypic variation and the course of evolution [267].

2.3.2 Models

Biological reality is extremely versatile and complex, and epigenetic inheritance cannot be explained
by any single mechanism. Instead, it must be seen as a set of diverse and non-mutually exclusive
mechanisms and interconnected molecular pathways acting in combination to collectively restore the
parental modification state. Indeed, virtually all models for epigenetic inheritance utilize multiple
components of the chromatin regulatory system but the individual significance of the various
epigenetic key players and their precise mode of action remains to be determined [69, 242].
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In recent years, researchers proposed numerous divergent models for epigenetic inheritance [181,
268]. Generally, they all rely on particular chromatin-associated marks or signals to re-establish
the premitotic chromatin state. Such marks can be very diverse and include, for example, the
presence or even absence of the presented key players (e.g., histone variants, histone PTMs, DNA
methylation, bound ncRNAs or proteins, chromatin-modifying enzymes).

For DNA methylation, a bona fide epigenetic inheritance mechanism exists (see Section 2.1.4.6).
Similarly, for particular chromatin domains, specialized inheritance mechanisms exist that involve
epigenetic key players. For example, the cell faithfully inherits centromeres epigenetically, as
illustrated in Section 2.1.4.5. The inheritance of silent ribosomal DNA (rDNA, the DNA that codes
for ribosomal RNA) may also occur via epigenetic mechanisms involving ncRNAs, histone PTMs,
DNA methylation and chromatin-modifying enzymes. Specifically, the NoRC complex is crucial for
the stable inheritance of silent rDNA by establishing heterochromatin structures at the silent rDNA
region by recruiting DNA methyltransferases and HDACs to the rDNA promoter (reviewed in [269]).
PARP1, a histone-modifying enzyme with NAD+-dependent ribosyltransferase activity that can also
establish ADP-ribosylation on histones, plays a particularly central role. PARP1 and its enzymatic
activity is critical for the maintenance of silent rDNA chromatin by associating with a subunit of
the NoRC complex via the ncRNA pRNA, which ultimately leads to heterochromatin formation.

Inheritance of DNA methylation and particular specialized chromatin domains are replication-bound
and represent faithful “copying” mechanisms. Inheritance of histone PTMs, on the other hand,
is more diverse. Whereas templated copying mechanisms exist for some histone PTMs that are
governed and facilitated by their own presence, other histone PTMs are re-established de novo
after replication by various factors using histone-independent mechanisms [181]. The former
therefore represent primary histone PTMs that may truly be epigenetic. However, even for primary
histone PTMs such as H3K9me3, inheritance mechanisms are much more imprecise. As shown in
Section 2.2.4 and Section 2.2.5, after DNA replication, no faithful bona fide mechanism seems to
exist that re-establishes the premitotic histone PTM pattern on both daughter strands. Instead,
because of the replication-coupled dilution of histone PTMs, the parental modification state has
to be “recomputed” using more error-prone, replication-independent maturation mechanisms. For
example, higher forms of H4K20 and H3K79 methylation are gradually re-established throughout
the cell cycle [270, 271].

Therefore, the inheritance of histone PTMs does not occur in a pinpoint fashion, and the minimal
unit of epigenetic inheritance is therefore likely to span multiple adjacent nucleosomes. The cell
may therefore be able to recognize and interpret average modification levels of chromatin domains
spanning several nucleosomes. For example, De Vos et al. [170] suggested this for multiple histone
PTMs such as H3K9me and H3K79me. Consistent with this, histone PTMs with putative epigenetic
inheritance mechanisms associate with long domains (e.g., H3K9me3). One possible explanation
for the existence of such imprecise mechanisms for histone PTMs is that the cell has to remain
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somewhat flexible after DNA replication to provide a window of opportunity for remodeling gene
expression patterns and to allow changes in the cell fate [71].

The presented mechanism for the inheritance of rDNA is also an excellent example of the potential
significance of the specific replication timing (see Section 2.2) because contrary to silent rDNA that
replicates in late S phase during the cell cycle, active rDNA replicates in early S phase [269, 272]. It
also demonstrates how different actively transcribed and transcriptionally inactive chromatin may be
inherited. Indeed, epigenetic inheritance mechanisms seem to differ fundamentally between active
and repressive chromatin domains. For each of these two generic chromatin types, I now present
one specific model with good experimental support.

2.3.2.1 Mitotic Retention of Proteins and RNA

A cellular âĂŸmemoryâĂŹ of the transcriptional program across cell divisions may be sustained
by gene or mitotic bookmarking [71, 273–275], which denotes a collection of mechanisms that
either facilitate the retention of proteins or RNA at previously active gene loci [275] or their fast
post-mitotic transcriptional reactivation [274]. The former may therefore be called epigenetic
according to the definition I use in this thesis due to the continuous binding of proteins or RNA.
Generally, gene bookmarking involves a large variety of genetic and epigenetic players such as histone
PTMs, histone variants, nucleosome architecture, TFs, sequence-specific DNA binding proteins,
DNA topology, and ncRNAs.

One specific mechanism is the marking of active loci by promoter-associated H4K5ac and subsequent
post-mitotic recognition by a protein called BRD4, which remains associated with the region through
strong binding with H4K5ac [274]. After exit from mitosis and recruiting additional BRD4 molecules,
various factors gradually decompact chromatin in the vicinity of the promoters so that it becomes
transcriptionally active. As noted by Wang et al. [171], histone PTMs may therefore “act as
’countermarks’, ’landmarks’, and ’bookmarks’ to displace, recruit, and ’remember’ the location of
regulatory proteins during and shortly after mitosis” [171, p. 175].

Similarly, based on findings in Drosophila, Petruk et al. [261] proposed a model in which the
cell only incorporates newly assembled histones but chromatin-modifying enzymes remain bound
during replication or quickly rebind to restore the parental modification pattern, the former of
which qualifies as epigenetic mechanism. Similarly, Blobel et al. [276] observed the retention of
MLL (a histone methyltransferase), which accelerates transcription reactivation following mitotic
exit. However, it remains unclear if histone PTMs alone constitute bookmarks, or if associated
chromatin-modifying enzymes must remain bound or at least remain in vicinity [71].
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2.3.2.2 Recruitment-Copying Model

One of the models for epigenetic inheritance with the best experimental (e.g., [29, 277]) and
theoretical (e.g., [30, 34, 36, 38]) support is based on positive feedback loops in nucleosome
modification [278, 279] (Figure 2.10). It is also known as mark-copying model [178], recruitment-
copying model, signal reinforcement and spreading [64], and templated modification copying model
[181]. Similarly to mitotic bookmarking, it also uses various epigenetic key players. According to
the model, the premitotic histone PTM state may be gradually restored after DNA replication using
parental histones with existing histone PTMs in the vicinity of the newly synthesized histones as
a template [178] (Figure 2.8). The recruitment-copying model therefore belongs to the class of
replication-independent maturation (recomputation) although the name may imply otherwise.

The model is popular because of its simplicity and the experimental support that for various histone
PTMs, histone-binding enzymes bind to modified histones of the same type with higher affinity
[19–26]. Such recruitment-based conversions also exist for H3K9 and H3K27 methylation [26] (the
latter in the context of plant vernalization7 in Arabidopsis, which is a classic epigenetic process
that involves PRC2-based silencing of the floral repressor FLC, for example [280]) and H4K16
deacetylation [27–29].

A prerequisite for any recruitment-based inheritance model is the approximate reassociation of
parental histones in the vicinity of their original locus from which they were evicted, which indeed
seems to be the case, at least in yeast [260]. Hathaway et al. [277] recently determined the
propagation rate for H3K9me3. Emerging from nucleation centers that carry H3K9me3, the authors
showed that in in vivo mouse embryonic stem cells, H3K9me3 then propagates symmetrically (i.e.,
it spreads in both directions) and continuously at average rates of ≈0.18 nucleosomes per hour to
produce domains of up to 10 kb.

Despite direct chemical and theoretical support, various authors question it, mainly because of the
non-sufficient robustness of epigenetic states and the high nucleosome dynamics. However, as noted
by Dodd et al. [38], the idea that such dynamics prevent histone PTMs being able to transmit
epigenetic information misses the critical distinction between a system and its components because
although individual components (i.e., nucleosomes) may be subject to multiple modifications, the
system (i.e., histone PTM domains) can nevertheless achieve high stability (e.g., [36, 38] but see
also Chapter 4).

The stability of histone PTMs in very short domains is difficult to conceive with the recruitment-
copying model alone [178, 260] because they may easily get diluted throughout DNA replication
(e.g., H3K4me3 at transcriptional start sites of most genes) [185]. Gene bookmarking mechanisms
that integrate various components of the chromatin regulatory system therefore seem to be more
appropriate for this task.

7ability to flower in the spring by the perception and memory of winter
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or

Figure 2.8: Recruitment-copying model for the inheritance of epigenetic states. The main principle of the
recruitment-copying model is illustrated, namely the templated recruited modification of newly synthesized
nucleosomes based on neighboring, premitotic nucleosomes carrying histone PTMs. Positive feedback loops
arise by histone-modifying enzymes that preferentially bind to modified nucleosomes of the same type
(i.e., in the same state). Thus, nucleosomes with a particular histone PTM directly or indirectly recruit
histone-modifying enzymes to establish the same histone PTM on nucleosomes in close vicinity [36]. For
more details, see text.

2.3.3 Findings and Predictions of Analytical and Computational Models

Due to their relevance for the remainder of this thesis, in the last section of this chapter, I summarize
findings and predictions of analytical and computational epigenetic inheritance models. Notably,
I will introduce some phenomena and properties often found in biological systems that are also
important for epigenetic inheritance and models of epigenetic inheritance. To improve understanding
of the various model predictions and results, I also provide a brief explanation of these concepts in
Figure 2.10.

Using analytical or computational methods, researchers analyzed various models for epigenetic
inheritance in recent years (reviewed in [17]). Although most of these analyses were purely theoretical,
they provided important insights into the dynamics of the system and their overall potential and
limitations. The recruitment-copying model attracted particular attention, both analytically [30–35]
and computationally [36, 38, 39]. These studies all confirmed the potential of histone PTMs for
stable epigenetic inheritance. All computational models were based on an influential paper by Dodd
et al. [36] published in 2007, which provided several important and unexpected insights. The authors
used a very simple mathematical model based on positive feedback loops in nucleosome modification
(see Section 2.3.2.2), loosely inspired by the silenced mating-type locus of Schizosaccharomyces
pombe (Figure 2.9 for the basic model ingredients and selected results).

The main findings were:

• The model is able to produce high stabilities and heritability of either silenced or active states
(bistability, Figure 2.9 C).

• Histone PTM domains can be highly dynamic without compromising overall stability, suggesting
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that individual histone PTMs do not have to be stable permanently (Figure 2.9 B).

• Effective bistability of a system requires cooperativity in the positive feedback loops (Fig-
ure 2.10).

• Long range interactions (i.e., beyond nearest-neighbor nucleosomes) are advantageous because
the system is otherwise very sensitive to stochastic fluctuations.

In follow-up papers, Dodd and Sneppen developed extensions of this model. For example, they
investigated what effect TFs have in such a system [37]. The authors found that ultrasensitivity
(Figure 2.10 B) can be achieved by TF binding, and that bistable promoter responses are possible
by TFs that bind non-cooperatively to a single promoter.

In another variation of the model of Dodd et al. [36], Dodd et al. [38] added DNA elements, such
as barriers and silencers8, into the model to address the issue of potentially uncontrollable spreading
of particular chromatin states. They found that:

• few histone-modifying enzymes and “simple” barriers (e.g., DNA-bound proteins or nucleosome-
free DNA) may already suffice to obtain a system that (i) can be stably controlled in time
and space and (ii) is ultrasensitive and bistable.

• not all reactions in the system must be cooperative for effective bistability, and having only
one long-range positive feedback reaction with cooperative behavior may be already sufficient

• local silencer elements that exclusively act only on neighboring nucleosomes may control the
state of the silenced region

Finally, Sneppen et al. [39] extended the original Dodd et al. [36] model to simulate the dynamics
for two distinct histone PTMs rather than just one as modeled in previous approaches, each of
which may be in an unmodified or modified state. Due to the complexity of the methods and
results, see Sneppen et al. [39] for details. Briefly, the authors found that:

• even a small extension in the number of histone PTM states in combination with histone-
modifying enzymes able to specifically recognize combinations of these two histone PTMs
(histone code, see Section 2.1.4.1) creates large numbers of different modification and enzyme
recruitment schemes that establish heritable bistability

• most bistable schemes were constructed so that nucleosomes in opposing states (i.e., M and
A, in analogy to the model of Dodd et al. [36]) have different states at both histone PTMs

• all schemes include positive feedback and cooperativity between nucleosomes, and the system
has multiple possibilities to generate cooperativity in the positive feedback reactions

8a DNA sequence capable of binding repressors (i.e., a transcription regulation factor that inhibits the expression
of its target gene or genes)
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• from an evolutionary perspective, such a system may easily evolve because most bistable
schemes can easily be converted into each other due to their similarity while retaining
bistability9

Angel et al. [280] also extended the model of Dodd et al. [36] to study vernalization. After
fitting model parameters to experimental ChIP-Seq (chromatin immunoprecipitation followed by
sequencing) data, the model predicted a bistable gene expression pattern of the floral repressor FLC
in individual cells, which the authors indeed verified experimentally, thus confirming the suitability
and usefulness of the recruitment-copying model.

Based on the experimental data of Hathaway et al. [277] (see Section 2.3.2.2), Hodges et al. [288]
employed a mathematical model to study the spatial and temporal dynamics of H3K9me3 domains.
They showed that a model that includes three processes (nucleation, propagation, and turnover;
Figure 2.12) can reconstitute virtually all non-centromeric H3K9me3 domains in mouse embryonic
stem cells and explain why H3K9me3 domains seem to be inherently bounded to a length of
≈10 kb. Thus, contrary to the model of Dodd et al. [38], it does not require boundary or insulator
elements. Additionally, results suggest that inherently bounded domains arise if propagation occurs
primarily locally (i.e., neighboring nucleosomes) instead of non-locally (i.e., beyond nearest-neighbor
nucleosomes) although the latter may also produce them [288]. Hodges et al. [288] also found that
the observed domain lengths are only compatible with their model if the relative propagation rate
κ (Figure 2.12 D) does not exceed a value of ≈ 1.5. For higher values of κ, H3K9me3 spreads
without bounds.

Analytical approaches confirmed the general requirements for bistability and cooperativity [30].
They also addressed additional biological phenomena such as how perturbations in the activity
of histone-modifying enzymes affect the stability of epigenetic states [35] and what effect spatial
dependence and spatially heterogeneous enzymatic activity has in such systems [31].

9for this, all bistable circuits were arranged as nodes in a network in which two schemes are connected if they
have only one reaction catalyzed differently; see Figure 7 in Sneppen et al. [39]
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Figure 2.9: The stochastic model for dynamic nucleosome modification from Dodd et al. [36]. The figure
shows the basic model ingredients and selected results. For more details, see text. Figure taken from Dodd
et al. [36].
A: The model considers three distinct nucleosome states: U (unmodified), and the opposing states M
(methylated, marked by a black diamond) and A (acetylated, marked by a gray circle). States can be
interconverted by the recruitment of histone-modifying enzymes (names are abbreviated, see Section 2.1.4.4
for details) to nearby nucleosomes that are in the M or A state (dotted lines) or by random transitions.
B: In the silenced state, nucleosomes are predominantly methylated (M), whereas in the active state,
nucleosomes are predominantly acetylated (A). Each nucleosome can principally stimulate the modification
of any other [36]. Boundary elements are marked with black rectangles.
C: Illustration of the bistability of the system and its dependence on the feedback-to-noise ratio F using
a system with 60 nucleosomes. Left: Samples of the time development (measured as average attempted
conversions per nucleosome) of the number of nucleosomes M over a range of values for F (with F and
therefore also bistability increasing from top to bottom). Right: Corresponding probability distribution of
M obtained from long simulations.
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Figure 2.10: Phenomena and properties of biological systems that are of relevance for epigenetic
inheritance models. Three phenomena and properties are introduced, namely cooperativity in the feedback
loop (A), bistability (B), and ultrasensitivity (C). B and C are modified from Wikimedia Commons files
(“Bistability.svg” and “Ultrasensitivity.png”, respectively), both of which are licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license.
A: Cooperativity is a “phenomenon of universal importance in biological systems and has almost as much
variety as it has ubiquity” [281, p. 46841]. In enzymology, enzymes with multiple binding sites, each of
which positively or negatively affects the affinity of the other binding site upon binding of a ligand by
triggering an intramolecular conformational change, display cooperativity. In the epigenetic inheritance
models as discussed here, the activity of more than one nucleosome in the modification reactions (i.e.,
reactions do not only depend on the state of the nucleosome that is subject to change but also on the
states of additional nucleosomes) introduces cooperativity, for example by stimulating the addition of the
same histone PTM on nearby nucleosomes (I.) or the removal of competing modifications (II.) [36]. The
transition between opposing states also introduces cooperativity (e.g., A and M) requires two consecutive
reactions (III.). Cooperativity therefore introduces a non-linearity in the feedback loop.
B: Ultrasensitivity (threshold behavior) is omnipresent in biological systems and particularly important for
signal transduction [282]. It can be defined as a property of a system where “small changes in a stimulus
near some threshold value produce a large change in a response but large changes in the stimulus far from
the threshold produce small changes in the response (i.e., a sigmoidal stimulus-response curve)” [37, p. 1].
Ultrasensitivity arises from non-linear feedback mechanisms such as cooperativity.
C: Bistability is fundamental for many biological systems and may be defined as a system that exhibits
two stable steady states that are separated by an unstable state [282]. Over time, the system may
alternate between these two mutually exclusive and often opposing states. Ultrasensitivity in the feedback
loops is a prerequisite for bistability [282, 283]. In models of epigenetic inheritance, these two states
often correspond to active/acetylated (A) and methylated/silenced (M) regions, respectively, whereas the
unmodified state (U) is only a non-stable transition state. Bistability requires both positive feedback and
some kind of non-linearity in the feedback loop [284–286]. As stated in B, such non-linearity may arise
through cooperativity in the feedback reactions, which, however, is not the only possibility (reviewed in [287]).
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Figure 2.11: The stochastic model for dynamic nucleosome modification from Dodd et al. [38]. Basic
model ingredients are shown (see text for more details). Figure taken from Dodd et al. [38].
A: The model considers the two opposing states A (acetylated) and S (silenced). Note that the S state
corresponds to the M state in Dodd et al. [36], whereas the U state is not part of the model. In analogy to
the model of Dodd et al. [36], states can be interconverted by the recruitment of histone-modifying enzymes
to nearby nucleosomes that are in the A or S state or by random transitions (noise). Each DNA replication
converts the S state to A.
B: Space-time plots of the evolution of a simulated system for the silenced mating-type locus (see C)
consisting of 30 nucleosomes to illustrate the dynamics and mode of action of the model. Note that the
authors displayed the nucleosome string vertically. In the middle of the simulation, the authors performed
one DNA replication event, resulting in each nucleosome having a 50% probability of being replaced with a
new nucleosome in state A.
C: Idealized structure of the silenced mating-type locus. The locus consists predominantly of a silenced
region (S). Barriers (depicted in purple) separate the silenced region from the surrounding A region. Silencer
elements (depicted in green), defined as particular DNA sequences able to recruit the SIR protein (a HDAC
that can modify neighboring nucleosomes), achieve maintenance of the S region. Additionally, positive
feedback reactions further stabilize the S region by recruiting the SIR complex to nucleosomes in the S state
to modify adjacent nucleosomes. In analogy to the model of Dodd et al. [36], conversion of the S state to A
may occur via random, noisy reactions or DNA replication.
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Figure 2.12: The inherently bounded model of histone modification dynamics from Hathaway et al. [277].
The figure shows the basic model ingredients. According to Hathaway et al. [277], inherently bounded
histone steady-state modification domains arise from the simultaneous action of three separate processes
(A–C), and D shows an exemplary simulation iterating these three processes. For more details, see text.
Figure taken from Hathaway et al. [277].
A: Nucleation: Unmodified target sites are modified with a probability of k+
B: Propagation: Unmodified neighboring nucleosomes are unmodified with a probability of k+.
C: Turnover: For each modified nucleosome, conversion to an unmodified state occurs with probability k−.
D: Exemplary simulation consisting of 8,192 time steps that iterates the processes in A–C to produce
an inherently bounded domain. The relative propagation rate κ = k+

k−
= 1.5. In this example, domains

transiently bifurcate to form multiple smaller domains.

In addition to the recruitment-copying model, researchers analyzed other epigenetic inheritance
phenomena either analytically or mathematically. Based on quantitative mass spectrometry measure-
ments for budding yeast, for example, De Vos et al. [170] specifically addressed whether H3K79me
qualifies as an epigenetic mark. They used an analytical model as well as in vivo experiments to
study the propagation of H3K79me by the non-processive enzyme Dot1 throughout cell division and
found that H3K79me never reaches a steady state because H3K79me1, H3K79me2, and H3K79me3
all differ in their kinetics [170, 289]. Instead, H3K79me accumulates over time, only counteracted
by the replacement of parental histones. Importantly, the authors observed the slow accumulation
of all levels of H3K79me during the cell cycle for both new and old (i.e., parental) histones. Thus,
H3K79 methylation represents a timer for histone age and couples cell-cycle length to chromatin
changes.

Lastly, Radman-Livaja et al. [260] investigated if parental histones reassociate in the vicinity of
their original locus from which they were evicted. The authors developed a mathematical model
to explain their experimental results. Although not directly a model for epigenetic inheritance,
retainment of parental histones after DNA replication is of relevance for the recruitment-copying
model, as pointed out in Section 2.3.2.2. For more details and results, see Section 2.2.5.
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Chapter 3
The Cellular Chromatin Computer

3.1 Motivation and Background

3.1.1 Standard and Non-Standard Computation

Computation is paramount to the discipline of computer science, yet a solid and universally accepted
definition is lacking because it is difficult to define precisely what it means to “compute” [290].
Consequently, computation has been intensively discussed and characterized in many different ways
[290–294]. A traditional and well-known definition stems from the Church-Turing thesis, which, in
brief, states that a function is algorithmically computable if and only if it is computable by a Turing
Machine (TM) [295]. Thus, computation encompasses everything that can be simulated by a TM.
This interpretation of the Church-Turing thesis continues to be the one most widely adopted by
computer scientists [290]. The TM is still the most commonly examined model of computation.

A more detailed discussion of how computation may be defined and what it encompasses is out of
the scope of this thesis. However, in its most general sense, computation may simply be regarded
as information processing. Information processing itself may be defined as a series of three step
sequences consisting of acquiring information from the outside world (input), transforming it in a
particular way (data manipulation), and finally providing the outcome to the outside world (output)
[290]. Both human-initiated and naturally occurring computations apply equally well to this general
definition. However, the question whether computation and information processing are identical
concepts has been discussed repeatedly by various authors [294, 296, 297]. Although both terms
are often used interchangeably and frequently indeed mean the same, some authors disagree that
they should be used synonymously in general [294, 296].

Despite its exact definition, computation is nowadays typically immediately associated with the
traditional silicon-based computer technology that is omnipresent in our daily lives. However, more
and more information processing and computation are discovered as fundamental processes of many
fields [3].
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These non-standard (also called unconventional or alternative) computing paradigms include, for
example, the following technologies and disciplines:

• ternary computing (using a ternary instead of the common binary logic)

• quantum computing (using the principles of quantum physics and quantum-mechanical
phenomena as operations such as superposition and entanglement)

• optical computing (using light instead of electricity for computation)

• natural computing (computational processes that are observed in nature)

Natural computing is particularly diverse and may furthermore be divided into the following fields:

• molecular computing1 (using chemical molecules such as DNA, RNA and proteins for compu-
tational tasks)

• evolutionary computing (computation based on fundamental principles of biological evolution
such as natural selection, recombination, and mutation)

• membrane computing (computation inspired from the structure and the mode of action of
living cells and their organization in higher order structures [298])

• neural computing (computational models that are inspired by the central nervous system and
the brain in particular)

Intriguingly, some phenomena and models in natural computing are based on methods of formal
language theory such as development of multicellular organisms (L systems [299]), cellular automata
(see Wolfram [300] and references therein), membrane computing (P systems [298]), and DNA
computing (splicing systems or H systems [301]). Particularly the work from Head [301] was highly
influential. He investigated the effect of the biomolecular operations of restriction enzymes from a
computational perspective, which subsequently stimulated the design of DNA computers (see next
section).

3.1.2 Natural Computing and the Role and Significance of Chromatin in the
Cellular Computation Machinery

Natural computing is a particularly fast-emerging and fascinating area because it originates from
naturally occurring biological systems. Ever since their initial discovery, natural computing tech-
niques inspired the development of novel problem-solving techniques, for example by evolutionary
optimization and swarm intelligence algorithms. Intriguingly, it becomes increasingly clear that
computing may not only be regarded as an artificial science but also as a natural one [3–5].
One somewhat exotic example for natural computation is membrane computing. It does not denote

1also called genomic [7], biochemical, natural or cellular computing
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a specific model or theory; instead, it must be seen as a general framework that pays particular
attention to membranes and compartmentalization and consequently also to various other related
concepts such as communication, distribution, localization, and hierarchization [302].

A more well-known example is molecular computing, which tries to both use molecules for computa-
tion and understand the information processing and computational nature of molecular processes
in general. Cells, the “building blocks of life”, are incredibly complex and highly sophisticated
biological units with huge information processing capabilities. Researchers therefore regarded the
cell or specific cellular components repeatedly and with increasing frequency as a cellular computer
capable of performing complex biological (in vivo) “computations” [4, 6–14]. Indeed, advanced
information processing with molecules inside living cells is omnipresent and occurs on all scales. It
can be found, for example, in complex structures such as the brain [15], in regulatory and signaling
pathways within cells, or even within single biomolecules [16].
In molecular computers, DNA is typically exploited as programmable matter to perform computation
and therefore exemplifies the information carrier and storage molecule, whereas its products —
proteins and RNAs — react to external stimuli and perform complex molecular tasks that ultimately
govern and control what occurs within the cell.

Two specific examples highlight the capability of cells to perform computation. First, in 1994,
Adleman et al. [303] demonstrated that computationally hard problems, such as specific instances
of the Hamiltonian path problem, can be solved by manipulating DNA strands [303]. Briefly, the
Hamiltonian path problem determines whether a Hamiltonian path exists in a given graph with a
set of vertices and edges. It belongs to the class of NP-complete problems. A Hamiltonian path is
a path that passes through every vertex in a particular graph exactly once2. Adleman et al. [303]
used a non-deterministic algorithm to solve the Hamiltonian path problem using a “DNA computer”.
It was the first real example of a cellular computer that can perform an actual calculation and
therefore denoted a milestone for synthetic biology. Due to the importance of this work and as
illustration of how a natural computer may function, the basic principles and mode of action of his
DNA computer are depicted in Figure 3.1. Another noteworthy demonstration of the computational
capabilities of DNA comes from Siuti et al. [304] who showed that Boolean logic functions may be
implemented solely with stable DNA-encoded memory.

2Note that a Hamiltonian path does not necessarily also pass through all the edges of the graph.
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Figure 3.1: Example DNA computer for the Hamiltonian path problem. The DNA computer solution is
based on the following non-deterministic algorithm: 1. Generate random paths; 2. Keep only those paths
that fulfill all criteria for a Hamiltonian path; and 3. If paths remain, a Hamiltonian path exists. The graph
and the DNA encoding is taken and modified from Adleman [305].
A: An example graph that represents a map of four cities (vertices) that are connected by various nonstop
flights (edges). For this graph, a Hamiltonian path exists (A – B – C – D).
B: Each vertex and each edge in the graph is assigned a particular single-stranded DNA sequence. DNA
encodings generally consist of two parts (see coloring). For each city, the complementary sequence of the
DNA encoding (denoted as Scity) and its abbreviation is also given. DNA flight encodings (Sflight) are
constructed by concatenating the last four nucleotides of the city of origin with the first four nucleotides of
the city of destination of the corresponding DNA encodings.
C: Generation of many copies of sequences of the types Scity and Sflight. The sequences are synthesized in
large numbers and then brought together in a tube.
D: Generation of random paths (step 1). Random paths are generated in a ligation reaction by mixing the
DNA strands with DNA ligase and adenosine triphosphate in a highly parallelized manner. DNA strands
with complementary sticky ends may therefore ligate. The stepwise construction of two example paths is
shown: I. A–B–C–D (Hamiltonian path) and II. B–A–B–C.
E: Elimination of solutions that do not represent Hamiltonian paths and determination whether a
Hamiltonian path exists (steps 2 and 3). Filtering occurs stepwise and is based on various biochemical tools
such as gel electrophoresis and PCR amplification (step 2). All paths that remain represent a solution to
the problem (step 3). Due to lack of space, I refer to Adleman et al. [303] for more details (in particular
how the various filtering steps are constructed).
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The second example for the capability of cells to perform computation comes from the gene
regulatory system. Various authors analyzed the gene regulatory system and particularly cis-
regulatory modules (CRMs) intensively in the last decade for their computational potential [7, 8].
CRMs are abundant (> 100,000), mostly relatively short (< 1 kb) stretches of DNA that can be
bound by multiple TFs. Upon binding, CRMs regulate the expression of nearby genes by interacting
with the transcription machinery (regulation in cis). One CRM may regulate several genes but
one gene may also be controlled by various CRMs. CRMs frequently have multiple TF binding
sites (inputs), and the output they produce depends on the combinatorial absence or presence of
all input molecules. Intriguingly, their regulatory outputs may often be derived by applying the
basic Boolean functions AND, OR, and NOT to the specific input pattern. However, the Boolean logic
operations are only a suitable approximation for particular instances and not a general principle for
CRMs [306]. Nevertheless, CRMs are capable of performing computational logic operations. Input
molecules themselves as well as down-stream effectors may be independently regulated by CRMs
[12], thus further increasing computational complexity. CRMs therefore may function as information
processing devices because they are interconnected and form large regulatory networks that control,
for example, organism development [7]. Istrail et al. [7] consequently termed the collection of all
CRMs a “genomic computer” due to their capability to produce complex circuits and compared
mode of action of CRMs and ordinary, man-made computers.

However, not only TFs serve as input for CRMs. Chromatin-associated phenomena, such as histone
PTMs, histone variants, DNA methylation, and the specific chromatin structure (e.g., higher-order
organization and nucleosome spacing), also determine the functional output of CRMs due to their
tight coupling to transcription and gene regulation more generally (see Chapter 2). TFs may not
be able to bind to their designated target sites (that is, CRMs) due to the wrapped structure
of the region in the presence of nucleosomes, for example (see Section 2.1.2). Thus, regulation
on the chromatin level is intermingled with CRM functionality but most likely also represents
an independent and additional regulatory circuit. Prohaska et al. [12, p. 37] even argued that
“chromatin regulation adds a computational layer that, in Eukarya, is qualitatively different and
potentially more powerful than the CRM networks”. The part of the cellular computation machinery
associated with chromatin has remained largely unexplored so far although various authors recently
postulated repeatedly that chromatin may act as a computational device capable of performing
“computations” in a biological context [12, 13, 17]. Indeed, as shown in Chapter 4, the reconstitution
of local patterns of histone PTMs after DNA replication is one example of the biologically important
computational tasks that can naturally be solved by the “chromatin computer” (CC).

3.1.3 Evolution of Chromatin and Chromatin-Based Regulation

To appreciate the computational capabilities of chromatin and to illustrate why computational
capabilities and memory capacities beyond cis-regulatory networks are useful for gene regulation, it
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is important to realize how chromatin and chromatin-based regulation in the cell evolved. In what
follows, a summary of the evolution of chromatin is presented that is mainly based on an inspiring
publication by Prohaska et al. [12] who employed a phylogenetic comparison of the chromatin-based
regulatory system among the three domains Eubacteria, Archaea and Eukarya.

CRMs evolved step-wise and therefore comprise a mixture of regulatory structures of different ages
[7]. Similarly, the chromatin regulatory system evolved step-wise through a number of key molecular
inventions that substantially expanded the cell’s regulatory scope and its computational power [12]
(Figure 3.2). Throughout evolution, the structure and organization of chromatin also became more
complex and diverse. For example, nucleosomes and histones are only found in Archaea and Eukarya
but not Eubacteria, whereas histone tails are only present in Eukarya.

Prohaska et al. found that mode of operation and complexity of chromatin-based regulation differs
substantially among the three domains (Figure 3.2). Initially, chromatin was a very general and crude
transcription regulator [12]. Ancestral ways of regulation include the destabilization of chromatin
by the incorporation of variants of chromosomal architectural proteins. Whereas this mechanism is
present and used in all three domains of life, it is particularly dominant in Eubacteria. To extend
the regulatory scope of the cell, chromosomal architectural proteins may be modulated either
structurally or by altering their binding properties. Whereas chemical modifications are very rare to
non-existent in Eubacteria, they are widespread in both Archaea and Eukarya. Such modulations
seem to be more flexible and resource-saving than the expression of different paralogs of particular
chromosomal architectural proteins as in Eubacteria. The ability to chemically modify them was
thus a major innovation in the evolution of chromatin.

In Eukarya, finally, a second significant component emerged: modification readers that can specifically
recognize particular (combinations of) histone PTMs. This transition from a write-delete to an
elaborate read-write-delete system resulted in a substantial increase in computational complexity,
memory capacity, and regulatory flexibility. It turned chromatin into a cellular memory device able
to keep a record of former metabolic states such as local transcriptional activity or DNA damage.
It therefore does not seem coincidental that different co-occurrences of reader and modifier (writer
or eraser) domains are increasingly common and diverse in Eukarya in general and particularly in
Metazoa and that the increase in computational complexity correlates well with the emergence
of complex multicellular life. The latter observation seems plausible because cell differentiation
and the subsequent retention of cellular identities seem to require chromatin-based and particularly
epigenetic mechanisms. Indeed, epigenetic inheritance seems to be the latest addition to the
chromatin-based regulatory system [12].
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Figure 3.2: Overview of conceptual innovations in the regulation of chromatin during evolution in Eubacteria,
Archaea, and Eukarya. The regulatory power and complexity increases from A to D. Selectors bind to a
specific DNA locus (e.g., DNA binding domain), effectors induce a particular event (e.g., a transcriptional
change), modifiers induce a chemical modification, and readers can read or recognize such modifications.
For more details, see text. Modified, with permission, after [12].
A: Selector-effector pairs have a direct effect on transcription (present in Eubacteria, Archaea and Eukarya
but the dominant regulatory principle in Eubacteria).
B: Selector-modifier pairs can covalently modify chromosomal architectural proteins (only Archaea and
Eukarya). Once the modification is set, a permanent effect is carried out.
C: Selector-modifier and reader-effector pairs allow to execute an effect independently of the original
establishment of the signal (only higher Eukarya). The modification now serves as a memory or a signal in
an information theoretic sense and can be interpreted differently by reader-effector pairs.
D: Selector-modifier, reader-modifier and reader-effector pairs finally allow even more complex computations
(left) and signal propagation as well as signal inheritance (right) (only higher Eukarya). Note that using this
mode of regulation, there may not even be an immediate regulatory effect.
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3.2 Methods and Results

3.2.1 Components

Ordinary silicon-based computers are composed of the four components input and output device,
memory, execution unit, and control unit [9]. To a greater or lesser extent, this holds also true for
the cellular computer, and Istrail et al. [7] and Moe-Behrens [9], for example, provided mappings
from cellular to ordinary computers. Whereas Istrail et al. [7] specifically focused on CRMs as
reference for a cellular computer, Moe-Behrens [9] more generally mapped various biological building
blocks to system components of general purpose computers. In what follows, I therefore focus on
parts specific to the CC that were not yet adequately described and similarly map them to the four
general system units.

3.2.1.1 Memory

Memory is a fundamental component of each computer. Similarly, particularly for more complex
organisms, it is crucial to keep a molecular memory of past stimuli and states. Such memories can
come in many facets and include, for example, a transcriptional and cell identity memory [64, 185],
DNA damage memory [166, 307], immunologic memory [308, 309], metabolic memory [310] and a
memory of prior stress exposure [311, 312]. More generally, these kinds of memories are frequently
referred to as epigenetic memory. Intriguingly, it has become increasingly apparent that chromatin
plays a significant role in all these examples, suggesting that chromatin provides enough flexibility
to store both transient and more permanent states (signals).

In the CC, the fundamental memory unit is the nucleosome or more specifically the histone octamer,
which represents a highly versatile memory page (Figure 3.3). Memory as a whole is therefore
constituted by the collection of all nucleosomes. Although the depiction of nucleosomes arranged
as a linear chain in Figure 3.3 may be generally a reasonable approximation, in reality, chromatin
forms higher-order structures (see Section 2.1.4.2). Thus, pairs of nucleosomes that are in large
spatial distance from one another when arranged as a linear chain may in fact be in close proximity
due to the three-dimensional organization of chromatin.

Similar to ordinary computers that typically consist of multiple kinds of memory (e.g., RAM and
hard disks), the CC also has additional memory capabilities such as the various forms of DNA
methylation to store both transient and more permanent information. In analogy to the histone
proteins, chromatin-modifying enzymes and more generally all proteins or RNAs that directly or
indirectly interact with chromatin (e.g., Polycomb and Trithorax group complexes) may be subject
to a wide array of PTMs, all of which have a particular meaning that may alter the specific “program”
that is executed. Even the particular higher-order chromatin structure or the absence of nucleosomes
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at particular positions may be regarded as a particular kind of memory because both typically
resemble the transcriptional status of the genomic region that was established previously.

The CC therefore predominantly utilizes a passive memory (that is, information is written once
and subsequently interpreted by the cell until erased or overwritten [7]) in the form of histone
and non-histone PTMs and DNA methylation. Pure CRMs do not have such an extensive passive
memory facility and use two forms of an active one instead. First, they maintain their transcriptional
state by continuously activating particular transcriptional subcircuits and therefore expressing genes
and corresponding downstream targets through intracellular positive feedback loops. Second, they
exhibit the “community effect”3 through intercellular positive feedback circuits [7]. Whereas it
may be sufficient for simple organisms to maintain transcriptional states solely by self-propagating
feedback loops and cis-regulatory TF networks [64], a cellular memory as exemplified by higher
organisms has the major advantage that it is no longer necessary to instantly activate or terminate
transcription by means of metabolites or environmental signals [12].

In contrast to hard disks of ordinary computers, memory in biological systems is inherently non-
permanent because the signals that represent the memory may be degraded, transformed, and
generally altered. As outlined in Section 2.1.4.1, histone PTMs, for example, have strikingly different
lifetimes. Acetylation events are measured in the order of minutes, whereas histone methylation are
more stable. To some extent, this therefore has some analogies to RAM, which typically also loses
its information in particular cases (i.e., when power is turned off). Although not part of the CC, TF
networks may also be compared with RAM because the memory has to be repeatedly re-established
in order to carry out its function.

3.2.1.2 Execution Unit

Arithmetic and logical operations are represented by chromatin-modifying enzymes, the “processors”
of the CC. They also mediate the transitions between chromatin states. Chromatin-modifying
enzymes work largely independently from one another and catalyze the often context-dependent
writing or erasing of histone PTMs and thus directly modify the memory of the CC (Figure 3.4).
For context-specificity, they often also contain reader domains that can specifically recognize the
presence or absence of one or multiple histone PTMs (see Section 2.1.4.4). Indeed, chromatin-
modifying enzymes implement logical operations through their reader domains. The combinatorial
recognition of distinct histone PTMs (histone crosstalk) already implements logical operations
analogous to AND, OR, or XOR gates in digital circuits. Two reader domains or even a single one
are sufficient for selectively recognizing multiple histone PTMs (see Section 2.1.4.4). These logical
operations may be represented as read-write rules. Due to the presence of multiple reader domains,
the semantic complexity of these rules can be arbitrarily high although little is known about the

3intra-territorial, mutual signaling among cells of a particular territory to retain a similar transcriptional state [7,
313]
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true biological complexity for large multisubunit complexes. Noteworthy, the available players in
the chromatin regulatory system (Figure 3.2) represent various logic control structures that have a
programming analogy. Selectors, for example, logically correspond to an “if” statement, whereas a
modification in Archaea implements a “while” statement because the effect is carried out as long as
the modification is present. The combination of these elements enables almost arbitrarily complex
operations and therefore a very fine-tuned regulation (particularly in higher eukaryotes).

From a theoretical point of view, the collection of rules may be regarded as a term rewriting system
(see Chapter 4 for specific rule examples). Term rewrite systems are sets of directed equations
with a particular simple syntax and semantics [314]. They replace certain patterns (i.e., the left
side of the rule) in terms by other terms (i.e., the right side) [315] and are standard for handling
strings in formal language theory. Generally, the right sight may sometimes be composed “simpler”
although this is not the case with the rules in the CC (see Section 4.2.2). Term rewrite systems are
Turing-complete and therefore conceptually very powerful models of computation (see Section 3.2.4)
(reviewed in [314]). They may therefore be used for computation because they provide a fully
general non-deterministic programming language [314]. For example, they may be used to execute
logic programs [314]
The addition of particular constraints how these rules are constructed may result in substantially
simpler modes of computation. For example, if variables are not allowed in the rules, one obtains
ground term rewrite systems. Another restricted kind of a term rewriting system is a string rewriting
system (also called a semi-Thue system), a term rewriting system over strings from a usually
finite alphabet. The rules that I construct in Chapter 4 (see Section 4.2.2 in particular) fulfill the
simplifying requirements of string rewriting systems although construction of more complex rules
that contain variables is easily imaginable and maybe even necessary for realistic modeling of the
underlying biology of chromatin-modifying enzymes.

lncRNAs are also important for the logical operations of the CC by guiding chromatin-modifying
complexes to particular genomic loci and therefore contributing to the regulation of gene expression
(see Section 2.1.4.3). Rather than representing simple scaffolds, they may even represent complex
“computer circuit boards” that link together various molecular components [316]. A CC therefore
has its own logic, independent of the logic from pure CRMs.

Histone-modifying enzymes may just evaluate the state of the histone residue(s) that they modify,
independent of the modification state of other histone residues on the same or neighboring
nucleosomes, or they may depend on the states of other histone residues (context-independent and
context-dependent rewriting rules, respectively, see Figure 3.4). As reviewed in Section 2.1.4.4,
context-dependent rewriting rules indeed seem to be common for eukaryotic systems.
The (relative) frequencies of rule execution may simply be modulated by altering the concentrations
of the corresponding histone-modifying enzymes (see Chapter 4).
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Figure 3.3: The nucleosome as a versatile memory page.
A: Crystal structure of a eukaryotic nucleosome with all four core histones (left) and its representation as
a memory page (right). The memory page is an abstraction and integrates all histones, each of which
is composed of those amino acid residues that may carry a PTM (Figure 3.5). For illustration purposes,
however, the beginning of the N-terminal domain is shown regardless of whether the residue may be in at
least two different states (based on human histones, shown as single letter codes). Note that the linker
histone H1 is not part of a nucleosome and therefore not included here.
B: Abstraction of chromatin as a linear sequence of memory pages, analogous to the well-known “beads-on-
a-string” picture. Two distinct histone PTMs are highlighted (yellow and red, respectively), each of which
with its own occurrence pattern.
C: Individual memory pages may dynamically change their structure, content and properties. Such versatile
changes include (from left to right) the temporal non-availability of individual registers/memory cells (marked
as dark shaded) due to their occupation with bound proteins, for example (i), the presence of histone variants
in symmetric and asymmetric configurations (ii and iii, respectively), tail clipping of individual histones (iv),
individual histone exchange with newly assembled and unmodified histones (v) or even modified histones (not
shown), and eviction (depletion) of full nucleosomes (resulting in a nucleosome depleted region) (vi). For
simplicity, in (vi), the nucleosome is depicted as a unit during eviction, whereas in reality it is decomposed
into histone multimers or individual histones.
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Figure 3.4: Variety and complexity of the chromatin computer rules. Two (spatially) adjacent nucleosomes (abstracted as memory pages, see Figure 3.3)
are shown and a total of ten reactions that may be performed by various chromatin-modifying enzymes. Each nucleosome is in a particular state, as
indicated by the different histone PTMs, each of which is colored distinctively. Histone PTMs irrelevant for the highlighted reactions are colored in gray.
Reactions can generally be context-independent (1, 2, and 5) or dependent on at least one other position/residue (all other rules). Rules may depend
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histones but on a different nucleosome (7), at different histones on a different nucleosome (6). These four classes may also be combined arbitrarily (4, 6,
and 8), particularly if rules take into account the modification states of more than two residues (3, 4, 6, and 8). Additionally, different rules may compete
for the same amino acid residue (1 and 2), of which only one is executed (2).
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3.2.2 Mode of Operation and General Properties

In this section, I specifically focus on mode of operation, general properties, memory size, computa-
tional universality and efficiency, and speed of operation of the CC. I will also investigate which of
the traditional computer architecture paradigms the CC has most similarities with. To the best of
my knowledge, all of this has not been done systematically so far.

The process of writing and erasing histone PTMs is intrinsically stochastic and crucially depends
on concentrations of the available histone-modifying enzymes. A CC consequently has a set of
read-write rules that operate non-deterministically on chromatin (see Section 3.2.1.2). Chromatin
itself can be abstracted as a string of nucleosomes, analogous to a TM (see Section A.2) on a finite
tape. A cellular automata-like 1-D string as the computational paradigm for the CC is therefore
proposed on which sets of local rewriting rules are applied asynchronously with time-dependent
probabilities. The “software” for this type of CC is thus a sequence of sets of rewriting rules
and concentrations that can be directly interpreted as part of the cell’s gene expression program.
However, rewriting rules are also the “hardware” because they represent physical entities that execute
a particular function: chromatin-modifying enzymes. A distinction into hardware and software is
therefore not useful for biological computers because they are physically inseparable [7].

A CC thus best belongs to the “Multiple Instruction, Multiple Data streams” (MIMD) architecture
in Flynn’s taxonomy [317] because multiple autonomous processors may simultaneously execute
different instructions on different data. Furthermore, a CC provides a shared memory because all
processors have access to a globally available memory.

Regarding computer architecture paradigms, a CC may be considered a register machine as opposed
to a stack machine due to the presence of a large number of mostly uniquely addressable registers.
Nucleosomes have relatively stable positions although phenomena such as nucleosome sliding may
occur. However, if nucleosome positions were solely determined by DNA, then nucleosomes in
repeat regions would be difficult to address uniquely due to the repetitive sequence in the vicinity
of the nucleosome.

The CC combines uniform and non-uniform memory access. Part of the memory cells are easier
to access than others due to different higher-order chromatin structures and accessibilities (e.g.,
heterochromatic versus euchromatic regions). However, access time within heterochromatic or
euchromatic regions is likely to be approximately equal. It is in general also independent of the total
size of the memory and directly accessible in any random order. Additionally, chromatin-modifying
enzymes may have their own local, limited memory that can be accessed faster. For example, they
may be modified in their structure, composition, and modification state, all of which represents
information that can be interpreted by the cell. In general, chromatin memory is largely addressable
and writable (e.g., histone PTMs and TFs that may specifically bind particular DNA sequences and
therefore also nucleosomes, respectively). However, memory pages are
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• variable with respect to their specific position (e.g., although each nucleosome typically
belongs to a particular genomic locus, this position may change due to nucleosome sliding
mechanisms [318])

• versatile (e.g., histone PTMs are partially reset after each DNA replication, see Section 2.2)

• heterogeneous (e.g., the structure of particular memory pages may be different, Figure 3.3)

Molecular computers, such as the CC, are principally asynchronous, because they are not governed
by any global clock over short time scales. Chromatin-modifying enzymes operate independently
and in a highly parallel manner. Indeed, such asynchrony provides many advantages as compared
to synchronous systems [319, 320]. For example, the CC is tolerant against temporal variation
and local asynchronies because temporal synchrony is replaced by causal dependencies among
regulatory networks [7]. However, considering longer time scales, eukaryotic cells do contain two
endogenous clocks that are interlocked to some extent: the circadian clock and the cell division
clock [321]. Shaped by the day-night cycle, the circadian clock generator produces a timing signal
with a periodicity of approximately 24 hours that regulate gene expression of a system of ’clock
genes’ [322, 323].
Intriguingly, the very same mechanisms that define the mode of action of the CC4 play important
but not yet fully elucidated roles for the establishment of cellular clocks [322, 323].

The CC has additional properties with striking analogies to amorphous computing5[11, 324]:

• Self-organizational and emergent behavior because the global system pattern “emerges solely
from numerous interactions among the lower-level components of the system. Moreover, the
rules specifying interactions among the system’s components are executed using only local
information, without reference to the global pattern.” [325, p. 8]

• Redundancy (e.g., various histone PTMs have identical or similar functions)

• potential presence of erroneous or faulty components that may lead to error-proneness (e.g.,
non-functional chromatin-modifying enzymes or misfolded histone proteins), which, however,
can be tolerated up to a given threshold without malfunctions.

• Chromatin-modifying enzymes, the workhorses of the CC,

– have no or very limited memory capacity and computational abilities

– typically have no a priori knowledge of their specific location (more universal binding,
see above)

– act asynchronously and perform their designated reactions independently of one another
4i.e., histone PTMs such as histone acetylation and deacetylation and more generally alterations of the chromatin

structure
5computational systems characterized by large numbers of irregularly placed, identical, and asynchronous computing

elements of limited computational ability that predominantly interact locally [11]
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– communicate mainly locally

– are present in large numbers (up to multiple millions of molecules [289]) and work in a
highly parallel manner

Thus, similar as for biochemical computers in general, the mode of operation for a CC is conceptually
similar to well-known concepts from the complex systems theory such as non-linear bifurcations;
interlocking positive and negative feedback loops; distributed networks and information control;
implicit and explicit cooperativity; redundancy; self-organizational (emergent) behavior; and context-
dependency [30, 36, 38, 39, 326]. A CC may also modify its own program during computation.
Such self-modification may be achieved, for example, by altering the level of transcription for the
chromatin-modifying enzymes that are part of the computation or by regulating chromatin structure.

The number of operations per second can hardly be reliably estimated, for reasons outlined in
Section 4.4. In particular, reported values for processes required to estimate the number of operations
per seconds, such as average residence times and the number of molecules per cell, span several
orders of magnitude and furthermore highly depend on the specific protein [289]. Bryant [13]
nevertheless estimated the number of operations per second using two different approaches and
yielded values of 10,000 and 1,000,000 (i.e., 0.01 MHz and 1 MHz), respectively. However, the
former calculation was only based on data for RNA polymerase II and is therefore an underestimation,
as also noted explicitly [13]. The latter estimate stems from the crude estimation that average read,
write, and/or delete operations take 1 second. Although average values are principally unknown and
in vivo kinetics for residence times vary widely among chromatin binding proteins [289], existing
data indicate that for some proteins, they can indeed be in the range of approximately one second
(e.g., human RNA polymerase I). The latter calculation also assumes that approximately 1% of
all nucleosomes are bound by chromatin-modifying enzymes, which is, however, not biologically
motivated and simply an educated guess.

3.2.3 Memory Size

Various authors suggested repeatedly that a CC may store and process more information than pure
cis-regulatory networks [12, 13]. However, few approaches explicitly estimated the information
content (IC) of a nucleosome and the total (writable) memory size of chromatin. I refer to
Appendix A.1 for details what the IC represents and how it is calculated.
First, Bryant [13] provided a back-of-the-envelope calculation for the lower bound on the size of the
human chromatin computer of individual nucleosomes and the full genome. This calculation was
solely based on the approximative number of histone residues that can be modified and estimated
to be 32 for the four core histones and 64 for the full nucleosome (because each of the four
core histones is present twice). Bryant also deliberately ignored the existence of multiple distinct
histone PTMs at particular residues. In her calculation, each nucleosome then contributes 64 bits
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of information. The number of nucleosomes was estimated as 10 million, yielding ≈ 80 MB of
memory.
Second, Prohaska et al. [12] also provided an estimate for the IC of individual nucleosomes but not
for the full genome. Their calculation was based on a comprehensive list of reported mammalian
histone PTMs that was collected from the literature. They calculated the IC of nucleosomes as
≈ 200 bits, which according to the authors constitutes up to one third of the total information
stored on a chromosome (in other words, DNA makes up two thirds of the total information and
epigenetic information one third).

However, both calculations are subject to various limitations. First, neither Bryant [13] nor Prohaska
et al. [12] included the IC of DNA methylation and histone H1 although they both contribute
to the memory capacity of chromatin. Second, both calculations are outdated because they, for
example, do not incorporate newly discovered types of histone PTMs such as various lysine PTMs
(succinylation [117], malonylation [117], crotonylation [116]) and tyrosine hydroxylation [116] as
well as numerous additional previously undescribed histone PTMs as identified by Tan et al. [116].
Until October 2013, at least 223 distinct histone PTMs have been described for human alone (191
for the four canonical histones H2A, H2B, H3, and H4 as well as 32 H1.2 PTMs, see Appendix A.1
for details). Third, the calculation of Bryant is overly simplistic, whereas the estimate of Prohaska
et al. is based on all known mammalian PTMs (i.e., not species-specific) and therefore difficult to
compare.

Because researchers continue to identify more and more histone PTMs, the real memory capacity
of chromatin was inevitably underestimated by previous calculations. In what follows, I provide an
updated estimate of the IC of individual histones, nucleosomes and the total writable memory size
of the full genome. I also provide an estimation of the theoretical upper limit, which has, to the
best of my knowledge, not yet been done before.

In Table 3.2, I summarize the results of the memory analysis. The full details how I calculated
these numbers are provided in Appendix A.1. The results suggest that the estimated theoretical
memory size for the CC lies in the realms of several hundred megabytes of writable information
per cell (Table 3.2). From the core histones that make up the nucleosome, H2B has the highest
theoretical IC, due to the comparatively large number of lysine residues (which have the highest
IC, see Table 3.1). However, based on the list of 223 known human histone PTMs (see above
and Appendix A.1), H3 has the highest IC, partly due to the comparably large number of lysine
residues that may be methylated. The information not encoded in DNA itself is non-negligible
and estimated as 42-82% and 32-69% for individual nucleosomes and the full genome, respectively.
This difference arises due to the presence of nucleosome-free regions. The IC for the CC is also
much higher than for TF networks. Prohaska et al. [12], for example, estimated an upper bound
for the IC of TF networks and argued that they have no more than 105 bit of information (i.e.,
≈ 0.001 Mb). This calculation was based on an approximative number of regulators (half of all
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Figure 3.5: Overview of all known types of histone PTMs and the amino acids where they occur. As of
September 2013, researchers identified only seven amino acids to carry a histone PTM, and lysine is by far
the most flexible residue (15 known histone PTMs), followed by arginine (4) and serine (3). For clarity,
each type of histone PTM is colored distinctively. Note that as stated in the text, histone PTMs seem to be
generally reversible.

human genes; i.e., 10,000) and 1,000 copies for each regulator6. Even if one assumes 100,000
different regulators (counting alternatively spliced isoforms separately), each of which contributes
100,000 states (individual TFs may indeed be present in very high concentrations [289]), the total
memory size of TF networks is still only ≈ 0.2 Mb. In reality, however, because TF networks display
ultrasensitivity or threshold behavior (see Section 2.3.3), not each molecule represents a distinct
state and consequently, the number of states for each TF can likely be encoded with only a few bits.
One bit may even be sufficient because it is either absent or present in only such low concentrations
that it has a negligible effect (state 0) or present with a concentration above a specific threshold so
that the effect is non-negligible (state 1).

3.2.4 Computational Power and Efficiency

In this section, I analyze the computational power and efficiency of the CC. For this purpose, I
compare the CC to the well-known TM, one of the standard models in computability theory (see
Section 3.1.1). For this purpose, I will first formally define both a TM and a CC. For a formal

6104 regulators and 10 bits per regulator to encode its concentration, yielding 104 × 10 = 105 if one assumes
that each copy equals a state that is distinguishable by the cell
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Amino acid # distinct
states

IC (in
bits)

Known histone PTMs

Lysine 16 4 acetylation; mono-, di-, and trimethylation; formylation;
crotonylation; ubiquitylation; sumoylation; biotinylation;
succinylation; malonylation; propionylation; butyrylation;
5-hydroxylation; ADP ribosylation

Arginine 5 2.3 mono-methylation; symmetric and asymmetric dimethylation;
deimination/citrullination

Serine 4 2 phosphorylation; O-glycosylation/O-GlcNAcylation;
hydroxylation

Threonine 3 1.6 phosphorylation; O-glycosylation/O-GlcNAcylation

Glutamic acid 2 1 ADP ribosylation

Proline 2 1 isomerization

Tyrosine 2 1 hydroxylation

All others 1 0 no known histone PTMs

Table 3.1: IC for each of the 20 amino acids with regard to known histone PTMs. As of October 2013,
only seven amino acids may be post-translationally modified. Lysine is by far the most flexible residue (15
known distinct histone PTMs), followed by Arginine (4) and Serine (3). The IC of a particular amino acid is
calculated as the logarithm to base 2 of the number of (known) distinct states. Note that the absence of
any histone PTM also counts as a state (see column “# distinct states”) and that both lysine and arginine
methylation each contribute three distinct states.

definition and mode of action of a TM, see Appendix A.2.

3.2.4.1 Formal Definition of a Chromatin Computer

For simplicity and comparison, I use the same notation as Bryant [13]. She defined a CC as the
following 3-tuple < M,B,R >:

1. M : Set of m possible chromatin marks

2. B: Blank symbol that represents the absence of any chromatin mark, B ⊂M

3. R: Transition function R = Mnk
∗ →Mnk

− , with M∗ = M ∪ {∗} and M− = M ∪ {−}

Similar to the definition of a TM (see Appendix A.2), M is finite and non-empty. R defines a set
of read-write rules, each of which reads the marks of n adjacent nucleosomes and overwrites them
with new ones according to the definition of the rule. Nucleosomes have a particular number of
positions (here: k, which I hereafter refer to as k-chromatin), each of which contains a valid symbol
from M and may be independently modified by the rule set. One may therefore consider these
positions as individual histone PTMs. For simplification purposes of the writing of the rules, in the
left side of the rules definition, the special symbol ∗ is used to read any mark m ∈M , whereas in
the right side of the rule, – is used to indicate that the original symbol remained unchanged (only
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Category Lower limit Upper limit

IC per histone (in bits)
H1.2 26 332

H2A 24 123

H2B 32 157

H3 44 138

H4 30 101

IC per nucleosome (including H1, in bits)
DNA 400 400

DNA methylation 0 460

Core histones 260 1037

H1 26 332

All 686 2228

All but DNA (%) 286 (42) 1828 (82)

Total memory size of chromatin (in Mb)
DNA 738 738

DNA methylation 6 27

Core histones 309 1236

H1 31 395

All 1084 2397

All but DNA (%) 346 (32) 1659 (69)

Table 3.2: Memory capacity of chromatin. The table estimates the IC for individual histones, nucleosomes,
and the full genome for various categories (DNA, DNA methylation, core histones, and histone H1), based
on two different calculations (lower and upper limit, respectively). Due to the complexity of the methods
and the restricted space in this table caption, see Appendix A.1 for the full details how I calculated these
numbers.

used for positions that are not uniquely determined). Collectively, this defines the configuration of
the CC at any time point in the computation.

A CC that operates on k-chromatin, with rules depending on n adjacent nucleosomes and reading
and writing marks from a set of m possible marks, is in the following referred to as a (m, k, n)-CC
(Figure 3.6). In the simulations in Chapter 4, for example, I used a (3, 1, 2)-CC with M = {0, 1, 2}
and B = 0.

Mode of operation of the CC is similar to a TM (see Appendix A.2). A finite number of nucleosomes
may contain valid input symbols m ∈ M , whereas the remaining ones are blank (B). At each
step, a particular number of rules may match to the current chromatin configuration at various
nucleosomes, and one rule is selected randomly. The states of the corresponding nucleosomes are
then updated. The CC therefore typically operates in a non-deterministic fashion. It halts if no rule
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matches.

Figure 3.6: Execution of a chromatin computer rule as defined by Bryant [13], which demonstrated the
application of the (2, 4, 2)-CC rule [XX∗∗][BB∗∗]→ [– – – –][XX – –]. For clarity, each nucleosome is enclosed
by [. . .]. Figure taken from Bryant [13].

3.2.4.2 Computational Power

In computability theory and computational complexity theory, analyzing the computational power of
a particular model and proofs of computability and upper bounds on their computational complexity
is typically performed by comparing it to well-known abstract models of computation such as the
TM, cellular automata, or term rewrite systems. Most models of computations are Turing-complete
(also called computationally universal) and therefore as powerful as TMs in terms of what they can
compute. Examples include cellular automata [327], term rewrite systems (reviewed in [314]), and
even computing with DNA [328] and membranes [302]. Although conceptually much simpler, string
rewriting systems are also Turing-complete.
In addition, Bryant [13] recently showed that a CC is also Turing-complete and hence computationally
universal. Briefly, she constructed a reversible mapping from any TM to 3-chromatin and from each
Turing configuration to a chromatin configuration by transforming each cell from the tape of the
TM to a nucleosome. In the mapping, each nucleosome has three positions (therefore 3-chromatin)
to store (i) the current position of the head of the TM, (ii) its state, and (iii) the content of the
current TM cell. Because the head of the TM is always at only one particular location, the first
position of each nucleosome is empty for all nucleosomes but one. The same applies to the current
state of the TM, which is also stored at the nucleosome where the head is located. Movements of
the TM head are easily accomplished in the CC by moving the information of the current position
of the head of the TM and its state to adjacent nucleosomes.
Bryant then showed that executing the CC results in a configuration of the CC that maps back to the
Turing configuration that would have been achieved by executing the TM. Lastly, she showed that
the CC halts whenever the corresponding TM halts. As an example for the computational power,
Bryant solved the Hamiltonian path problem (Figure 3.1) with her chromatin model using three
different algorithms, each of which has different requirements for memory space and computation
time. For more details, I refer to Bryant [13].
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In Chapter 4, I present a computational chromatin model that stays close to a physical model of
chromatin. Due to its chemical realism, it contains a number of components that are not contained
in the model of Bryant [13]. Nevertheless, I now demonstrate that the CC as presented in this
thesis is also computationally universal. My strategy will be to reduce the presented CC model to
the model of Bryant who previously proved Turing-completeness. For this purpose, I first compile a
list of differences between the two models7. I then demonstrate that each of these differences is
either a generalization of a concept already present in the model of Bryant or that it can also be
integrated into the reversible mapping that Bryant established.

1. DNA replication
In contrast to the model of Bryant, the CC model as presented in this thesis includes DNA replication.
However, this feature is an extension that may or may not be used in particular instances. For the
proof of computational universality, we therefore assume that no DNA replication events occur
(which is also biologically plausible, for example for amitotic cells such as neurons).

2. Reactions are associated with an explicit reaction rate
The CC model as presented in this thesis principally allows arbitrary reaction rates. They, however,
have no significance for the reversible mapping because reaction rates only influence the frequency
of selection in the Gillespie algorithm and the time increment. The former can be ignored because
in the mapping, only one enzyme/reaction is applicable at any time (determinism), whereas the
latter is irrelevant for the mapping (execution time is disregarded).

3. Enzymes may have arbitrary concentrations
In the model as presented here, enzymes and the rules they correspond to may have arbitrary
concentrations, which affects their frequency of selection in the Gillespie algorithm. However, similar
to the argument of the reaction rates, this has no significance for the reversible mapping. Due to the
deterministic mode of action of the CC that results from the mapping, at any time point, only one
type of enzyme (i.e., rule) is applicable at the specific position where the head of the corresponding
TM is positioned. Consequently, it will be selected in the Gillespie algorithm regardless of its specific
concentration.

4. Explicit distinction between binding and dissociation reactions
I model the dynamics of the “rewriting reactions” in a way that follows the mass action kinetics
of chemical reaction systems, distinguishing, for each enzyme and each chromatin position, their
elementary reactions. Bryant does not make such a distinction.
For retaining the reversible mapping between any TM and the CC, it must be ensured that the
binding and corresponding dissociation reaction are executed consecutively. This can easily be
achieved by converting each transition rule from the TM into two distinct rules in the CC as
presented in this thesis when mapping from a Turing configuration to a CC configuration. The first
rule corresponds to the binding reaction, whereas the second one realizes the state change and the

7see Chapter 4 for the specific model that is referred to here
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dissociation. To force their consecutive execution, the CC has to be extended from 3-chromatin to
4-chromatin in the mapping (see above) by adding a new position to each nucleosome that stores if
an enzyme is currently binding. By design, it thus has a value of 1 only for the nucleosome where
the head is located and therefore where the binding of the corresponding enzyme occurred and 0
for all other nucleosomes (Table A.2). The first rule changes the position of this “bound” bit of the
matching nucleosome to 1, whereas the second rule subsequently changes its state and resets the
bound bit to 0. The left side of the second rule is therefore identical to the left side of the first rule,
except that it requires the new fourth position to be 1 instead of 0 (which was set to 1 by rule 1 in
the step before). Thus, because the second rule is the only that matches, the consecutive execution
is forced by design. For an example TM program and the corresponding solution for the CC that
implements the explicit distinction between binding and dissociation reactions, see Figure A.1 and
Table A.2.

I now provide a generic mapping from a TM transition to the corresponding set of rules in the
CC. For this purpose, I use one of the standard notations for a TM and their transitions (see
Appendix A.2 for details). TM transitions that move the head to the left,

{qi, γk} → {qj , γl, L} with qi, qj ∈ Q and γk, γl ∈ Γ,

convert to the following two rules in the CC:

1 : [BB ∗ 0][Hqiγk0][BB ∗ 0] −→ [BB – 0][Hqiγk1][BB – 0]

2 : [BB ∗ 0][Hqiγk1][BB ∗ 0] −→ [Hqj – 0][BBγl0][BB – 0]

TM transitions that move the head to the right are constructed analogously. Finally, TM transitions
that do not move the head (head stays at position),

{qi, γk} → {qj , γl, S} with qi, qj ∈ Q and γk, γl ∈ Γ,

convert to the following two rules in the CC:

1 : [BB ∗ 0][Hqiγk0][BB ∗ 0] −→ [BB – 0][Hqiγk1][BB – 0]

2 : [BB ∗ 0][Hqiγk1][BB ∗ 0] −→ [BB – 0][Hqjγl0][BB – 0]

In summary, the CC model as presented in this thesis may therefore be regarded as an extension of
the model of Bryant [13] that retains the property of computational universality.
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3.2.4.3 Computational Efficiency

As compared to traditional TMs, the CC achieves computational efficiency by various “extensions”:

• Non-determinism: Different transitions may be applicable at a particular position (e.g.,
chromatin-modifying enzymes may acetylate a particular histone at different positions and
they usually have multiple target nucleosomes to bind; vice versa, a particular nucleosome
may be bound by multiple identical or heterogeneous chromatin-modifying enzymes)

• Probabilism: Choosing between multiple available transitions occurs according to some
probability distribution (e.g., according to their free energy)

• Stay-option: The head may stay in the same position (e.g., chromatin-modifying enzymes
may remain bound after a particular reaction)

• Multiple tapes: Each chromosome represents an individual and independent tape

• Multi-track: Each position in the tape consists of multiple symbols that correspond to the
different amino acid residues that may be post-translationally modified

• Multi-head: One tape is associated with many heads that work independently and in parallel
(e.g., multiple copies of particular chromatin-modifying enzymes)

• Random access: The head may not necessarily process the tape sequentially, it can also
randomly move to any position on the tape (e.g., induced by higher-order structures, which
bring distant nucleosomes in close proximity)

• Storage: Each transition is associated with a storage (e.g., the chromatin-modifying enzyme
itself may be modified in its structure, composition, and modification state, all of which
represents information that can be interpreted by the cell)

• Neighbor-dependency: Transitions not only depend on the state of the cell the heads points
to but also on an arbitrarily defined “neighborhood”. Different transitions (i.e., rules) may
also require different sizes of the neighborhood (Figure 3.4)

3.2.5 Comparison of Ordinary, Chromatin, and DNA Computers

Various authors compared the similarities and differences between ordinary computers and naturally
occurring biological computers in great detail (reviewed in [7, 9, 10]). Although these comparisons
are out of the scope for this chapter because they generally apply to any biological computer
and not just the CC, I want to highlight a few particularly noteworthy similarities and differences.
First, the CC is an excellent example of a collection of components that were assembled during
evolution on an as-need basis with a dynamic and changeable architecture, as compared to regular
computers which have a rigid and fixed architecture. Consequently, the CC evolved in a modular
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structure, which is also a key design principle for most programming languages as well as in complex
networks (reviewed in [10]). Similar to decentralized and distributed network architectures such
as peer-to-peer, the CC has no central control. Lastly, the CC flexibly operates through a large
number of largely independently working processors, which is in difference to ordinary computers
where fixed communication architecture severely limits both the variety of modes of operation as
well as the number of processors that can be coordinated and programmed in an effective and
fault-tolerant fashion [7].

Although DNA computers can solve specific problems8, solutions were so far often time-consuming,
laboratory-intensive, closely tailored to the problem, and rarely use a deterministic exploration of
the search space [13]. CRMs, however, are much easier to implement but they are often limited to
a subset of problems and typically cannot be programmed to solve arbitrarily complex problems
[13]. The theoretical work from Bryant [13] suggests that the CC has the potential to be better
suited to solve general-purpose programs (e.g., the Hamiltonian path problem) while also being
computationally universal.

In terms of memory capacity, both a DNA and a chromatin computer are not restricted to a planar
layer like general digital data [330] and are very promising candidates for high density storage of
information. Furthermore, information storage in DNA is extremely stable. This is particularly true
if considered double-stranded due to the increased stability and better readout [330] although it
divides the theoretical capacity in half. The existence of various DNA repair mechanisms furthermore
increases stability. For chromatin, it is more challenging to make efficient use of the theoretical
memory capacity due to various reasons. First, the highly complex structure of histones and the
interdependencies among individual histone PTMs and their corresponding reader, writer, and eraser
molecules makes it more difficult to specifically write and retrieve the modification state of individual
histone PTMs. Second, most histone PTMs are not particularly stable and have a short half-time
(see Section 2.1.4.1), which poses a problem for long-term and maybe even short-term storage if
not carefully designed. DNA methylation generally is more stable but may also be removed via
various passive or active mechanisms (see Section 2.1.4.6). Third, information on chromatin is
stored with high levels of redundancy to counteract the stochastic and highly dynamic mode of
action, therefore decreasing the effective and usable memory size. Lastly, it seems unlikely that
similar high accuracy repair mechanisms exist for chromatin.

3.3 Discussion

In this chapter, I analyzed composition, properties, mode of action, and computational power of the
CC in a thorough and systematic fashion. I showed that the CC is Turing complete and therefore,
at least in theory, able to not only perform computations in a biological context but also in a strict

8e.g., see [329] who implemented a particular matrix multiplication algorithm
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theoretical informatics sense. As opposed to the traditional TM with an infinite tape, the CC
has only a finite memory capacity. However, this similarly applies to all other naturally occurring
computational models such as computing with DNA and membranes as well ordinary silicon-based
computers that have been shown to be Turing complete. This limitation is, however, merely a
theoretical one and does, in principal, not limit the computational power because any decidable
problem that may be solved by a TM only requires a finite amount of memory. Thus, as long as
the memory that is required for the problem is sufficient, no limitation exists.

Any problem that can be computed by a deterministic or non-deterministic TM may therefore also
be computed by the CC with a specifically constructed rule set. Deterministic TMs are effectively
a special case of non-deterministic ones, and due to their equivalency in terms of what can be
computed, each non-deterministic TM can be simulated with a deterministic one. Different ways
exist how this simulation may be performed, for example by using a 3-tape deterministic TM.
Because the CC naturally contains multiple tapes (each tape abstractly correspond to one particular
histone PTM), such a mapping is relatively straightforward to construct. Alternatively, for particular
combinatorial problems that include a random selection of some kind, a CC may be constructed
that resets the configuration whenever it recognizes that the proposed solution is not valid, thereby
guaranteeing that the real solution is found in a single run in finite time (if a solution exists). This
strategy has been implemented by one of the three CC solutions to the Hamiltonian path problem
in Bryant [13]. The difficulty may be to formalize when a solution is valid, which will hardly be
possible for all problems.

In the simulations as presented in Chapter 4, I interpreted all of the rules as symmetric with
respect to their left and right neighbors as it seems not possible for the enzyme complexes to
determine directionality (e.g. towards the centromere) from the local chromatin structure. In the
proof of Turing completeness in this chapter, however, I assumed that rules are asymmetric. In
reality, it appears that asymmetries are induced locally and thus are oriented relative to features
such as promoters, insulators, and transcription factor binding sites. More generally, directionality
of chromatin-modifying enzymes and their corresponding rules may be coupled and dictated by
transcriptional directionality, which itself is influenced by a number of factors such as gene loops
[331] and by ATP-dependent chromatin remodeling [332]. For example, directionality may simply
be enforced by reposition or removing nucleosomes left or right to the position where the chromatin-
modifying enzymes may perform his designated reaction. However, the proof of Turing completeness
may principally also be performed with symmetric rules by adding a new position to each nucleosome
that stores information about directionality.

I drew special attention to the execution unit that provides the logical and arithmetical operations
of the CC and memory. Both are essential for the generation of complex, state-dependent responses
[304]. Logical operations may be represented as read-write rules that are executed by myriads of
“processors” — chromatin-modifying enzymes (see Chapter 4). As already highlighted in Chapter 4,
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read-write rules may either depend or not depend on the modification state of other histone residues
on the same or neighboring nucleosomes (context-independent and context-dependent rewriting rules,
respectively). Due to the potential presence of multiple reader domains, the semantic complexity of
these rules can be arbitrarily high although little is known about the true biological complexity for
large multisubunit complexes. However, it is established that they can implement elementary logical
operations that are analogous to AND, OR, or XOR gates in digital circuits. Chromatin therefore
provides a potent and universal “language” in which computer programs or biological procedures
may be written [13].

lncRNAs are also important for the logical operations of the CC by guiding chromatin-modifying
complexes to particular genomic loci and therefore contributing to the regulation of gene expression
(see Section 2.1.4.3). Rather than representing simple scaffolds, they may even represent complex
“computer circuit boards” that link together various molecular components [316]. A CC therefore
has its own logic, independent of the logic from pure CRMs.

The computational abilities of each chromatin-modifying enzyme seem to be very limited. They also
have no a priori knowledge of their specific location although they may be anchored by lncRNAs or
DNA binding proteins that are part of their complex. Furthermore, they work asynchronously and
in a massively parallel fashion. Collectively, the similarities to amorphous computing systems are
striking. Indeed, amorphous computing systems are widespread in biology and occur, for example, in
neuronal networks, evolution, and organism development (e.g., morphogenesis) [11, 324]. Chromatin
adds yet another example of a naturally occurring amorphous computation system that has not yet
been described previously in that context.

I showed that a eukaryotic CC provides an enormous memory capacity that is potentially larger than
the genome, which has also been noticed by others [12, 326]. Memory is predominantly realized
by PTMs of histones and particularly histone tails and their specific recognition by proteins, and
the sheer number of histone PTMs that are already known to occur indicate that the cell indeed
makes use of it. Thus, as also noticed by Walker et al. [333], DNA only encodes a fraction of the
total information in a cell. Information is not only stored in the DNA but instead in the current
state of the entire system that particularly includes chromatin and its various forms of memory cells.
Information not stored in DNA may thus serve as an extension of the IC by which the underlying
genome is interpreted [334]. However, as noted in previous chapters, information on chromatin is
stored with high levels of redundancy to counteract the stochastic and highly dynamic mode of
action, therefore decreasing the effective and usable memory size.

The existence of histone variants (see Section 2.1.4.5) does typically not change the IC of a
nucleosome because they replace the canonical histones with proteins of often very similar lengths
and amino acid distributions. In reality, however, their incorporation often result in major structural
changes of the nucleosome and therefore differential recognition by particular reader molecules.
Furthermore, various dynamic chromatin remodeling phenomena may (temporarily) decrease the
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memory capacity of chromatin such as histone tail clipping, the binding of proteins or ncRNAs to
particular residues, histone exchange, and nucleosome eviction (Figure 3.3 C).
The IC estimation may, however, have only limited explanatory value. Cells are semantic systems9

[335], and epigenetic information may not be stored in an information-theoretic sense [326].
Furthermore, the estimated theoretical upper limit is in practice smaller due to multiple reasons.
First, some amino acid residues do not carry a particular histone PTM because it may induce an
unfavorable change in the three-dimensional structure of the protein. Second, histone PTMs located
in the histone fold are generally rare due to the crucial importance of these residues to maintain a
functional structure. Third, particular combinations of histone PTMs are mutually exclusive and
sterically impossible due to their spatial proximity.
In terms of utilizing the memory capacity for synthetic engineered systems, DNA already provides
a stunning amount of useable memory. For example, Church et al. [330] recently encoded a
5.27 megabits bitstream (i.e., ≈0.7 Mb of information) onto DNA10, which converts to a theoretical
5.5 petabits or around 700 terabytes per mm3. As shown, chromatin has the potential to even
increase that limit.

Memory in the CC may dynamically change the structure, content and properties of individual
memory cells and is therefore less stable than DNA. To minimize the possibility of failure or
misregulation and to accommodate for such high versatility, the cell employs much higher levels of
redundancy for chromatin than for DNA. This is also in stark contrast to the mode of action of
ordinary computers, which are constructed in a more streamlined design [336]. As for any chemical
and biochemical information processing, noise control is of fundamental importance, and robustness
is ensured by backing up regulatory states multiple times [7]. In the decentralized chromatin
system, this is implemented, for example, through functionally redundant histone PTMs, particular
higher-order chromatin structures, or altered transcription of genes coding for chromatin-modifying
enzymes. Additionally, histone PTMs are arranged hierarchically to facilitate cellular modulation (i.e.,
primary histone PTMs are established first, whereas more secondary histone PTMs depend on the
primary ones and are subsequently set) [336]. They therefore establish a dynamical and autonomous
system of regulatory cascades that is “superimposed onto and uninfluenced by the underlying DNA”
[12, p. 14]. However, various cellular components, such as ncRNAs (see Section 2.1.4.3), have the
capability to anchor these chromatin-associated signals to the underlying DNA [12].

From an evolutionary perspective, redundancy may have naturally emerged from duplication and
divergence [10] and from the observation that different components of the CC have strikingly
different ages and origins. This is best exemplified by histones and particularly histone tails, the
latter of which are only present in Eukarya. Composition and mode of action of the CC are therefore
inevitably a product of evolution.
The chromatin regulatory system must allow that cells can alter their fate to produce distinct

9i.e., molecular information is associated with a particular meaning
10for details how these theoretical numbers were calculated, see Church et al. [330]
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cell types during differentiation (plasticity). Additionally, cells must maintain this state when
further differentiation is not necessary (inheritability) [139]. Inheritability must be achieved despite
the fundamentally dynamic nature of the chromatin regulatory system in the form of remodeling
processes and frequent DNA replications, the latter of which partly resets the stored information
whenever the cell replicates. Inheritability and plasticity, however, are difficult to reconcile with
one another [139]. The maintenance of correct epigenetic patterns throughout the lifetime of an
organism is crucial for cellular stability and identity, and any misregulation of epigenetic mechanisms
is likely to have fatal consequences. Indeed, it has long been speculated that an erroneously working
CC is a common source of pathology that significantly or even etiologically contribute to diseases
such as cancer and AD (see Chapter 6).



Chapter 4
Epigenetic Inheritance as a Computational
Pattern Reconstruction Problem

4.1 Motivation and Background

In previous chapters, we have seen that the coupling of reading and writing of histone PTMs, which
is a common feature of many histone-modifying proteins especially in crown-group eukaryotes, may
have converted chromatin into a powerful computational device capable of storing and processing
large amounts of information [12]. I also highlighted a recent theoretical study that showed that
a simple model of chromatin computation, very similar to that proposed in Prohaska et al. [12],
is computationally universal and hence conceptually more powerful than the logic circuits of cis-
regulatory networks [13]. Although it is plausible that the computational capacities of chromatin
play a role in the integration of external environmental signals and internal status information and
hence in cell-fate decision, these computational aspects have remained largely unexplored. It is
thus still unclear to what extent the potential power of chromatin computation is harnessed in real
biological systems.

We have seen that the inheritance or recomputation of histone PTMs is not a trivial achievement
since replication is associated with the partial replacement of histones and the deposition of newly
assembled and hence unmodified histones [259, 260]. In other words, replication and the subsequent
reconstitution of chromatin constitutes a dramatic disruption of the chromatin states that amounts
to a partial erasure of the information stored in histone PTMs.

Here, I propose that the reconstitution of local patterns of histone PTMs is one of the biologically
important computational tasks that is naturally solved by the “chromatin computer” (CC). The
need to propagate epigenetic information to subsequent generations comes in two variants. The
more stringent version concerns stable heritable bistability in which epigenetic information can
be transmitted for, in principle, an infinite number of generations, depending on the strength of
the bistability of the underlying system. As shown by Dodd et al. [36], this requires cooperative,
positive feedback recruitment reactions as well as non-local interactions. In that regard, Rohlf et al.
[17] provided a review of various modeling approaches for the dynamics and propagation of histone
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PTMs. In contrast, the maintenance of local patterns of histone PTMs over a limited number
of somatic cell divisions can potentially violate the conditions for long-term stability and tolerate
slow accumulation of errors. In this setting it therefore makes sense to dispense with the stringent
requirements outlined by Dodd et al. [36]. Indeed, it appears that this less stringent version is
the relevant mechanism in multi-cellular organisms because cells only replicate a limited number
of times (the Hayflick limit). Furthermore, particular epigenetic modifications can be gradually
changed over generations through a number of different settings. In particular, these include
the progressive reduction of higher histone methylation levels to lower methylation forms [271],
epigenetic reprogramming [337, 338], epigenetic silencing / heterochromatin formation [339, 340],
and transcription-coupled histone modifications [96]. Furthermore, researchers observed histone
PTM gradients for a number of different modifications along a particular genomic region (for
a review, see [82]). This effect may also indirectly result from multiple cell division due to the
preferential retention of parental histones at the 5’ end of genes [260]. Gradual changes of histone
PTM levels may play a crucial rule in aging [170, 341]. DNA methylation changes, finally, are also
are intimately linked to histone modifications [339], and therefore may be a direct result of the
dilution of one or more histone PTMs.

One of the best-studied mechanisms proposed for epigenetic memory is based on positive feedback
loops in nucleosome modification [278, 279]. The coupled reading, writing, and erasing of histone
PTMs is therefore of crucial importance. Given the multiple tasks histone PTMs are involved in,
I hereafter focus on whether a simple CC is capable of solving the pattern completion problem
for a diverse set of chromatin input states, despite the highly disruptive nature of frequent cell
divisions. More to the point, I ask whether it is feasible to find combinations of reader/writer
enzymes that are capable of propagating, with high accuracy, preset chromatin states across several
cell divisions. To answer this question I implement a generic stochastic simulation of rule-based
chromatin modifications as a model of the CC. I then employ an evolutionary algorithm (EA) to
evolve “programs” representing mixtures of rewriting rules to solve various pattern reconstruction
tasks.

4.2 Methods

4.2.1 A Coarse-Grained Chemical Model of Chromatin Computation

I begin by introducing the computational model of chromatin. Computation abstractly consists of a
system of states and transitions between them. My intention is to stay close to a physical model
of chromatin. Similar to much of the literature, I define a chromatin state as the set of chemical
modifications of histone molecules (or their absence) located at specific genomic positions. Although
this is a simplified view, the full biological complexity of the components that make up a particular
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1 0 21 0

Nucleosome state pattern 14 04 24  
consisting of three distinct chromatin domains

1 1 2 20 0 2

H3K9me and H4K20me 

H3K9me H3K9ac

No H3K9 and 
H4K20 modification 

H3K9ac and H4K20me 

Neighbors

  +   ≙ 1
  +   ≙ 0
  +   ≙ 2

H4K20me H4K20me

Figure 4.1: Illustration of nucleosomes, their corresponding states and terminology that will be used
throughout this chapter. A genomic region composed of 12 nucleosomes is shown, with H3K9 and H4K20
PTMs present at particular nucleosomes. For convenience, a translation table can then be used to assign
combinations of histone PTMs (or the lack thereof) to particular symbols. Each nucleosome can then be
assigned one of three distinct states (chromatin states): 0 (white), 1 (red), or 2 (blue). Homogeneously
modified regions form a chromatin domain that carries a particular signature (0: unmodified H3K9 and
H4K20, 1: H3K9me and H4K20me, 2: H3K9ac and H4K20me). Collectively, these 12 nucleosomes represent
the local nucleosome state pattern or, abbreviated, simply pattern 140424. Such patterns therefore usually
consist of multiple distinct chromatin domains (Table 4.3 for examples). The chromatin string uses a
modified version of the Wikimedia Commons file “Nucleosome organization.png” (licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license).

chromatin state cannot be integrated at this time given that the exact underlying mechanisms are
incompletely understood. Therefore, I disregard effects that can have an impact on gene expression
[342, 343] such as changes in nucleosome occupancy, the presence of histone variants, the effects
of the three-dimensional structure of chromatin and nucleosomes (e.g., see [344]), chromatin
remodeling events that increase the dynamic nature of chromatin (histone turnover, histone tail
clipping, histone passback; see [175, 260]), and DNA methylation as an epigenetic mechanism
that is known to at least partly interact with histone PTMs. I suggest that these details of the
underlying “hardware” are not required for the investigation of the capabilities of the computational
paradigm of the CC as a stochastic rewriting system.

These simplifications allow us to view chromatin as a linear sequence of nn nucleosomes, analogous
to the well-known “beads-on-a-string” picture of chromatin. Consequently, each nucleosome (except
the two boundary nucleosomes) has two immediate adjacent neighboring nucleosomes or abbreviated
simply “neighbors” (see also Figure 4.1). Because each nucleosome is completely specified by the
collection of histone modifications that it carries, it can be represented by a single character a ∈ A
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that encodes its modification state (nucleosome or chromatin state). The symbol 0 is reserved for
the unmodified state. As a technical simplification to save memory and to expedite the recognition
of patterns in practical simulations, I use a single character instead of a string to represent the
state of histone PTMs. I define a chromatin domain as a set of adjacent nucleosomes that are
in the same modification state ai ∈ A. Each chromatin domain has a particular characteristic
signature (e.g., methylated H4K20 and acetylated H3K9 residues) and length l and therefore can be
represented by a sequence of nucleosome states al. I call this a local nucleosome state pattern (or
simply pattern) to emphasize that the chromatin state is solely determined by the nucleosome state.
Naturally, such patterns may also be composed of multiple adjacent distinct chromatin domains
(e.g., see Figure 4.1 and Table 4.3).

Transitions between chromatin states are mediated by histone-modifying enzymes. These enzymes
catalyze the writing or erasing of histone PTMs in a context-dependent manner. Therefore, they are
implemented as string rewriting rules acting on the nucleosome state pattern. (Figure 4.2 A). They
recognize parts of the (local) nucleosome state patterns and cause a change in the modification
state of one or more nucleosomes. These rewriting rules are described in detail in the following
section.

Not all histone-modifying enzymes are present in the cell at the same time or in same concentrations,
and they may differ substantially in their affinity to their target patterns or in their catalytic efficiency.
Furthermore, different enzymes may compete for the same chromatin locations and, vice versa,
different chromatin positions may compete for low abundance enzymes (Figure 4.2 C). I therefore
model the dynamics of the “rewriting reactions” in a way that follows the mass action kinetics
of chemical reaction systems, distinguishing, for each enzyme and each chromatin position, their
elementary reactions (Figure 4.2 B):

1. Binding of an enzyme to a specific locus (i.e., one or more nucleosomes). I assume that
enzymes only bind to nucleosomes on the chromatin string that match the precondition of the
rewriting rule that they embody. Also, enzymes cannot bind if any of the nucleosomes that
are decisive for the applicability of the rewriting rule are bound by other enzymes, thereby
blocking the accessibility.

2. Dissociation of an enzyme and the application of a rewriting rule (i.e., writing or erasing of
one or multiple histone modifications). After dissociating, the enzyme is again available for
new reactions.

Contrary to most previous work and simulation systems for chromatin state dynamics (e.g., see [36,
38, 39]), I employ a chemical reaction system and model each reaction explicitly. Additionally, the
computational paradigm used here for the enzyme kinetics is a stochastic one. I argue that this
level of chemical realism is crucial, since concentrations of regulatory molecules, rather than their
mere presence or absence, are very well known to be of crucial importance in the regulation of gene
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expression. Indeed, few regulatory events are qualitative — typically changes in expression levels of
regulators are gradual and rarely exceeding a few-fold increases or decreases.

Chromatin state dynamics are thus dependent on enzyme abundances, the availability of local
patterns on which they can act, the current state of the system, and the rate constants for each
chemical reaction (Figure 4.2 C). The latter generally quantify the speed of a chemical reaction
and may differ substantially among different enzymes.

Histone PTMs have strikingly different lifetimes and are deposited at different rates. Acetylation
events are measured in the order of minutes, whereas methylation events are stable for days
[173]. These rate differences are determined by the enzymes that catalyze the corresponding
reactions [277]. A given mark can be removed either by specific de-modification enzymes or through
chromatin remodeling (e.g., histone turnover or histone tail clipping). Since chromatin remodeling
phenomena are at present not explicitly included in the model, different life-times can be modeled
by neighbor-independent rewriting rules with different rate constants. To the best of my knowledge,
spontaneous (i.e., enzyme-independent) decay has yet to be described for histone modifications
although it cannot be excluded that some of the more exotic or yet undescribed modifications may
not require an enzyme for de-modification.

For simplicity I use a single reaction rate parameter for the binding of histone-modifying enzymes
or enzyme complexes although mechanistically, this may require multiple steps (e.g., binding,
recruitment of other factors and oligomerization). The propensity for a particular binding reaction
is computed as the product of its reaction rate and the number of free (i.e., not bound) molecules
for that enzyme, whereas for any dissociation reaction the propensity equals its reaction rate and is
therefore independent of the number of free molecules.

The time course of the simulation between replications can be subdivided into discrete “phases”
(Figure 4.4) that can have varying durations. For each phase, enzymes can be arbitrarily set
to be present or absent (hereafter denoted enzyme availability) (Figure 4.4). However, enzyme
concentrations either have a constant value as specified by the programming of the CC (present) or
a value of 0 (absent). If an enzyme is still bound at the transition from one phase to the next, it
dissociates without performing a state change at the nucleosome it binds to. Collectively, these
phases abstract the cell’s gene expression program. I may interpret them for instance as the G1, S,
and G2 phase of the cell cycle. Alternatively, phases may be used to model distinct developmental
stages.

I also include replication in the model. At regular time intervals, a replication takes place and the
parental histones are distributed between the two daughter strands. As discussed in Section 2.2.4
and Figure 2.7, different models have been proposed for how histones are segregated after DNA
replication. For the purpose of the present study, I adopted the random model (Figure 4.2 D) because
it has the best experimental support. I treat nucleosomes as indivisible units, which, however, is only
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a simplification if multiple histone PTMs from different histones are modeled. I note, however, that
the simulation environment can easily be extended to other replication models if the need arises.
Again, I argue that this additional level of biological realism is irrelevant for the questions addressed
here. I also assume that parental histones are redeposited at their prereplication locus, which is
consistent with the finding that most parental histones in budding yeast are reincorporated in close
vicinity, i.e. within 400 bp, of their original locus [260]. Lastly, analogous to the phase change
transitions, enzymes that are still bound at the time of replication dissociate without performing
any reaction.

4.2.2 Chromatin Enzymes as Rewriting Rules

In the simplest case, histone-modifying enzymes evaluate only the state of the nucleosome that they
modify. The model of Dodd et al. [36], for example, considers three distinct states: unmodified
(0), methylated (M), and acetylated (A). Each state can be interconverted by the catalytic actions
of histone acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases
(HMTs), and histone demethylases (HDMs). The corresponding set of rewriting rules is

HAT: 0 → A
HDAC: A → 0
HMT: 0 → M
HDM: M → 0

(4.1)

As opposed to these simple, neighbor-independent rewriting rules, more complex ones, such as the
ones considered in Sneppen et al. [39] and Bryant [13], also depend on the neighboring nucleosomes
(neighbor-dependent rewriting rules). In my implementation, arbitrarily complex rewriting rules can
be specified (see Table 4.1 and Figure 4.2 for a few examples). For convenience, I allow wildcards in
the definition of the rewriting rule and the state of the neighboring nucleosomes can be incorporated
as well. Rules are interpreted as symmetric with respect to their left and right neighbors because it
is not possible for the enzyme complexes to determine directionality (e.g. towards the centromere)
from the local chromatin structure. In reality, it appears that asymmetries are induced locally and
thus are oriented relative to features such as promoters, insulators, and transcription factor binding
sites [345].

Such complex rewriting rules indeed seem to be common for eukaryotic systems because histone-
modifying enzymes are often part of large enzyme complexes with multiple protein domains, each of
which having a particular function such as DNA sequence recognition and histone binding. Individual
histone PTMs in the vicinity of the binding may substantially alter the binding affinity of the enzyme
complex or its formation. This crosstalk is frequent within histones, among histones of the same
nucleosome [145–148], and among histones of neighboring nucleosomes (for an overview, see [149]).
Even for single domain proteins, the presence of multiple modifications may be required for binding
[224].
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Figure 4.2: Basic ingredients of the chromatin model. An example of a genomic region is shown where
nucleosomes can either be in state 0 (white), 1 (red), or 2 (blue).
A: Enzymes and rewriting rules. A total of seven enzymes are defined that can be broadly divided into the
following four well-known classes (for illustration purposes): histone methyltransferases (HMTs), histone
demethylases (HDMs), histone acetyltransferases (HATs), and histone deacetylases (HDACs). Each enzyme
recognizes and binds to a particular, local nucleosome state pattern (embraced by square brackets in the
rewriting rules) and thereby blocks accessibility of these nucleosomes for other enzymes. Such recognition
patterns may be dependent or independent of neighboring nucleosome states and can be represented as
rewriting rules. They may proceed at different rates and change the state of at least one nucleosome.
B: Enzymes and their reactions. Binding of an enzyme to one or more nucleosomes and the corresponding
dissociation at a later time are modeled as separate reaction steps in the model. First, enzymes may
bind to one or more nucleosomes as described by their rewriting rules. They then remain bound until the
corresponding dissociation reaction is selected in the stochastic simulation. When the enzyme dissociates,
the bound nucleosome(s) change their state(s), as specified by the corresponding rewriting rule(s).
C: Enzyme competition and reaction dynamics. All eight possible reactions that can occur for various
enzymes and their corresponding concentrations are shown (see legend) as well as an exemplary genomic
region with seven nucleosomes. Each arrow indicates a possible reaction that may take place at this
particular time point. If enzymes are bound to particular positions (e.g., HAT), they block the accessibility
of other enzymes at bound nucleosomes. Note that particular enzymes can be present multiple times (e.g.,
HDM2) and that they may be able to bind to the same nucleosome (e.g., HMT1 and HMT2), resulting in
competition for nucleosome binding. Other enzymes may not be able to perform any reaction due to the
inapplicability of their rewriting rules given the current state of the nucleosomes (e.g., HDAC1 and one of
the two HAT molecules).
D: Replication and nucleosome segregation. The random distribution model of chromatin replication is
shown (see Section 2.2.4 for details).
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Table 4.1: Example of different valid nucleosome state rewriting rules for a chromatin-based system with
three possible nucleosome states A = {0, 1, 2}. The symbol “*” in the left part of the rewriting rule is a
wildcard matching any nucleosome state, whereas “.” on the right part of a rewriting rule means that the
nucleosome state is left unchanged. The nucleosomes bound and rewritten by the corresponding enzyme are
embraced by square brackets.

Rewriting rule Matching patterns for the rewriting rule Neighbor-
dependent

[1]
r1−→ [0] [1]

r1−→ [0] No
[(1|2)]

r2−→ [0] [1]
r2−→ [0], [2]

r2−→ [0] No
1[1]

r3−→ 1[0] 1[1]
r3−→ 1[0] Yes

1[1] ∗ 0
r4−→ 1[0].0 1[1]00

r4−→ 1[0]00, 1[1]10
r4−→ 1[0]10, 1[1]20

r4−→ 1[0]20 Yes
[11]

r5−→ [01] [11]
r5−→ [01] No

1[11]0
r6−→ 1[10]0 1[11]0

r6−→ 1[10]0 Yes

I represent these complex rules as follows: Each rule is specified by a pair of strings, the left part is
the template that must be matched to the local nucleosome state pattern. This precondition must
be met so that the rewriting rule can be applied to the matched string. Once a match is found, the
left string is replaced by the right string. I therefore regard the system of rules as string rewriting
system (see Section 3.2.1.2).

In my implementation, both strings consist of up to three parts: (i) a string of length l1 ≥ 0

for the required state(s) of the neighboring nucleosome(s) left of the actual binding site of the
corresponding enzyme; (ii) a string of length l2 > 0 for the required state(s) of the nucleosome(s)
that the enzyme binds to; (iii) a string of length l3 ≥ 0 for the required state(s) of the neighboring
nucleosome(s) right of the binding site. Only the nucleosomes of the binding part may be subject
to change in the right part of the rewriting rule (as indicated by a∗ in the equation below). Thus,
rules are not reversible per se; instead, reversible reactions must be formulated as separate forward
and backward reaction. Furthermore, each rewriting rule is associated with a rate constant. In
summary, it is formally specified in the following form:

a1 . . .al1 [al1+1 . . . al1+l2 ]al1+l2+1 . . . al1+l2+l3
rate−−→

a1 . . . al1 [a∗l1+1 . . . a
∗
l1+l2 ]al1+l2+1 . . . al1+l2+l3

(4.2)

where each ai ∈ A denotes a particular nucleosome state. Table 4.4 compiles the rewriting rules
with l1, l2, l3 ≤ 1 that are used throughout this chapter.

The nucleosome string can be either linear or circular. For the former, rewriting rules that require the
state of both neighboring nucleosomes cannot match the two boundary nucleosomes. This entails
that they keep their parental status unless replication replaces them with unmodified nucleosomes,
after which their original state is lost permanently (Figure 4.7). In the latter case, the two boundary
nucleosomes are directly connected, and rewriting rules may match.
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4.2.3 Modeling the Dynamics of Histone Post-Translational Modification States

4.2.3.1 General Modeling Approaches for Chemical Reaction Systems

Researchers modeled a large array of systems in the past, ranging from protein folding to networks
of metabolites to models of how the brain functions. The reconstitution of local patterns of histone
PTMs by histone-modifying enzymes may also be regarded as a chemical reaction system. Systems
can be modeled manifold, depending on the size of the system and associated time constraints
in the simulation itself, the addressed questions, and the level of detail the model should include.
Generally, system dynamics can be modeled using either deterministic or stochastic models. Before
describing my approach, I present a brief overview of deterministic or stochastic models.

Deterministic approaches
Deterministic approaches generally always produce identical output for a given input. For chemical
reaction systems, they typically refer to kinetic modeling of a set of ordinary differential equations
(ODEs). Each ODE describes a number of reactions, time-dependent concentrations of the
corresponding molecules are the variables of the system, and reaction rate constants represent the
parameters. ODE approaches thus describe changes in amounts of components over time [289].

However, this approach neglects of dependencies on spatial locations (i.e., reactions occur homoge-
neously throughout the reaction volume) and assumes that the number of molecules is sufficiently
large so that reaction discreteness and biological noise caused by stochastic processes have no
macroscopic effect (i.e., reactions occur simultaneously). Thus, for biological systems, they usually
do not constitute a physically accurate representation of the underlying processes. Therefore,
researchers did not employ them for epigenetic inheritance models.

Stochastic approaches
One challenge of all biological systems is their stochastic nature. The simplifying assumptions of
deterministic models break down if the number of molecules is small or if random fluctuations are
non-negligible because reactions may then occur in a particular order rather than simultaneously
and stochastic effects may have substantial influences on the system. Both of these phenomena
may result in macroscopic effects that influences the future dynamics of the system [289, 346].
Thus, including stochasticity in the model is appropriate. This typically entails the replacement of
differentiable concentrations of the ODE approach by state probabilities defined by the number of
molecules of each type at a given time and that evolve in time. However, stochastic approaches
generally require much more computation, which may not be always feasible. Nevertheless, due
to the exponential increase in computing power, stochastic in silico modeling has emerged as a
powerful means to improve understanding of complex systems.
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Three common approaches for stochastic modeling of chemical reaction systems exist, and to the
best of my knowledge, researchers only employed approximative CME approaches for epigenetic
inheritance models (e.g., by using a mean-field theory ansatz [30–33] or transfer matrix ansatz [34]).

Chemical Master Equation (CME) approach. The CME precisely describes the time-evolution
of a chemical reaction system. At any given time point, the system is in one particular state out of
a countable number of states, with probabilistic switching between states. Analytically solving the
CME for long time behavior is generally infeasible and often even mathematically intractable due to
its complexity. For example, in contrast to the ODEs approach for which only one ODE per species
is required, the CME approach requires one ODE per state of the system). Approximations, such as
the mean-field theory, may, however, be used [30].

Stochastic simulation approach. Instead of dealing with the CME directly, one can make
exact numerical calculations by using reaction probability density functions to determine when the
next reaction will occur and what type of reaction will be executed. This approach is called the
stochastic simulation approach. Unless approximative methods are used, it is rigorously equivalent to
solving the CME of the corresponding stochastic model because it exactly represents the stochastic
version of the trajectory of the corresponding CME that embodies the system. This approach is
computationally very expensive because each reaction is explicitly simulated. Furthermore, because
each simulation is subject to stochastic fluctuations, multiple independent simulations must be
performed and analyzed collectively to fully understand the properties of the system.

Stochastic differential equations (SDEs). Lastly, stochasticity may be modeled with SDEs.
SDEs generally combine ODEs with a stochastic component by mixing ODEs with random fluctua-
tions such as Brownian motion. However, SDEs are difficult to analyze numerically, and solving
SDEs is a relatively young field. To the best of my knowledge, researchers did not yet employ SDE
approaches for epigenetic inheritance models.

4.2.3.2 Stochastic Simulation with the Gillespie Algorithm

As outlined in Section 2.3.2.2, the recruitment-copying model attracted particular attention. However,
as pointed out in Chapter 1, existing approaches, such as the ones from Dodd and Sneppen [36,
38, 39], suffer from various limitations because they (i) utilize only very simplified mathematical
descriptions for the system that do not explicitly model chemical reactions, (ii) do not incorporate
cellular concentrations of chemical species, and (iii) use the simplifying assumption that the time
evolution of the system is continuous. In addition, they use only a fixed set of reactions/rules
that are suitable for the system ab initio and elementary histone PTM patterns that are ought to
be retained. For example, investigating whether such a system can easily evolve a set of histone-
modifying enzymes (i.e., rules) capable of stably inheriting a particular histone PTM pattern across
cell divisions in the first place has so far never been addressed explicitly. Furusawa et al. [347] used
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evolutionary simulation and optimization for a gene regulatory network that contained epigenetic
feedback loops (precisely, feedback loops between gene expression levels and their epigenetic control)
but this is entirely different from the model of epigenetic inheritance as discussed here. Their
model therefore cannot answer the question whether epigenetic inheritance can be formulated as a
computational problem.

For the chromatin system, I employ a stochastic simulation approach. Specifically, I use the
stochastic simulation algorithm as proposed by Gillespie [348, 349] (also called first reaction
method), which is a well-established, widely-used1 and numerically exact algorithm for the stochastic
modeling of cellular systems.

Requirements and Formalization
Conceptually, imagine a system with a finite number ns of chemical species Si (i = 1, . . . , ns), each
of which is present a particular number of times. At each time point t during the simulation, this
defines a vector X(t) of dimension ns representing the abundances of each chemical species at time
t (population state vector). These ns chemical species may interact through a finite number nr of
reaction channels Rj (j = 1, . . . , nr). Generally, each reaction channel Rj reflects any particular
process that changes the population size of at least one chemical species in the system, and it
is characterized by three quantities: its state-change vector (change of the concentrations of the
available chemical species upon execution of Rj), its rate constant rj , and its propensity function
aj(X(t)) (probability that one Rj reaction will occur in the time interval [t; t + dt), see [349]).
Such propensities are simply determined by multiplying rj with the number kj of chemical species
that can execute the reaction. For example, for a typical binding reaction of a protein complex
of type p to a particular genomic location l, kj equals the number of available complexes of type
p that can potentially bind l (as specified in X(t)). When the specific complex of type p later
dissociates, kj equals 1 because only this particular complex is involved in the reaction.

Algorithm
Given an initial time t0 and population state X(t0), the algorithm proceeds as follows. In each
iteration, two random numbers r1 and r2 are drawn from the uniform distribution in the unit interval.
Whereas r1 is used to determine the time increment τ , r2 is used for the selection of a reaction
channel. τ is calculated as the sum all reaction rates (propensities), i.e, τ = 1

a0(X(t)) ln(1/r1) where
a0(x) =

∑
aj(X(t)). If a particular reaction channel cannot be executed at a particular time, its

propensity is 0 and it therefore cannot be selected. The index of the next reaction to be executed is
the smallest integer j satisfying j =

∑j
i=1 ai(X(t)) > r2a0(X(t)). That is, a reaction channel is

selected proportional to their respective weights (Figure 4.3). The reaction Rj is then executed, the
state of the system changes according to the state change vector of Rj , and the current time t is

1as exemplified by over 2,500 citations in total and over 800 citations since 2010
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Figure 4.3: Illustration of the stochastic simulation algorithm as proposed by Gillespie. An exemplary
biological system with six possible reactions (numbered from 1–6, squares), each of which has a fixed
propensity of 1 (for simplicity). The first four iterations of the stochastic simulation algorithm are shown,
starting from time point t0 to t3. In each iteration, the available reactions, the values of the two random
numbers r1 and r2, the sum of all propensities a0 and the resulting values of the time increment τ and
the reaction j that is executed next (highlighted in black) are shown. The numbers in subscript next to
the reaction indexes illustrate the internal numbering of the reactions in that particular iteration (see the j
value), which may differ from the original reaction numbers because some reactions may not be available in
a particular iteration of the algorithm.

subsequently incremented by τ . Thus, time increments are not fixed but instead of variable length,
dependent on the current state of the system (i.e., the available reaction channels and population
sizes of all chemical species). This process is repeated until a stop criterion is reached (e.g., a
particular simulation time, either in terms of total computing time or time units in the simulation).

Limitations and Variants
The stochastic simulation algorithm also has limitations. First, although the algorithm is rejection-
less and hence efficient in terms of the simulation, it is too slow for biological systems with large
population sizes or the high reaction rates because the time increment τ between reactions decreases
dramatically, thus slowing down the simulation substantially. Researchers proposed a number of
computationally more efficient variants of the original stochastic simulation algorithm that improve
the worst-case time complexity with respect to selecting the next reaction to execute from O(nr)

to O(log nr) [350] and even O(1) using a composition and rejection algorithm [351]. Gibson et al.
[352] published an exact variant of the original algorithm (termed next reaction method) in 2000
that also scales in O(log nr) by reusing unused reaction times and making the sampling of reactions
therefore more efficient. The variant by Slepoy et al. [351] is especially efficient because it also scales
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in O(1) in the rest of the algorithm, and except for exceptionally large cellular systems, this calls the
necessity to use approximative methods into question. Approximative methods, such as the explicit
(e.g., see [353]), binomial (e.g., see [354, 355]), and optimized tau-leap method (e.g., see [356]),
generally do not simulate one reaction at a time but instead a bunch of reactions. Various authors
proposed additional approximative variants, such as stiff system methods, that improve efficiency
for systems containing reactions with vastly different time scales [357] and adaptive methods for
automatically choosing between explicit and implicit tau-selection methods for improved efficiency
[358].

Another limitation occurs in cellular systems where chemical species with multiple states are used,
as mentioned by Le Novere et al. [359] and analyzed more thoroughly by Liu et al. [360]. The
stochastic simulation algorithm may not be applicable due to the sheer combinatorial explosion of
all possible reactions that may take place. This is the case, for example, for proteins that can be
post-translationally modified at multiple independent sites, each of which may influence the reaction
rates of the complex [359]. If the number of possible states is high, the StochSim algorithm [359]
may be an alternative to consider, despite its approximative nature [360].

Implementation
Since the set of available reaction channels and their weights are, in general, dependent on the
current state of the system, the “book-keeping” of all reaction channels and their status is an
important issue for the practical implementation of the Gillespie algorithm. This is particularly
relevant for models with large numbers of different molecules and reactions. I next describe the
peculiarities and design decisions that are specific to the chromatin-based model. To do so, I
make use of abbreviations for relevant parameters that are summarized in Table 4.2. Consider a
system with ne enzymes, each of which has a particular number of rewriting rules. The sum of all
rewriting rules is then nrules =

∑ne
k=1 |ek|, where |ek| denotes the number of rewriting rules that are

defined for that particular enzyme. In the present system, each rewriting rule adds a total of 2nn

reaction channels (one corresponding to the binding and one to the dissociation for each of the nn
nucleosomes). Thus, the total number of reaction channels is 2nn × nrules. Equivalently, each of
the nn nucleosomes has 2nrules different reaction channels).

Internally, each rewriting rule is associated with a state change vector, which describes how
the concentrations of the available nl enzymes are affected upon execution of the reaction that
specifies the rewriting rule. For example, any binding reaction decreases the concentration of
the corresponding enzyme by 1, whereas any dissociation reaction frees the enzyme and thereby
increases its concentration by 1.

To save computing time, only the propensities of the reactions in the vicinity of the nucleosome(s)
subject to the last reaction are recomputed. A recomputation of the reaction propensities is also
necessary after each replication and phase transition.
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Each replication event occurs periodically after a fixed time interval tr. Similarly, each phase pi
has a defined duration and stops after a particular time tn. This requires a correction for the last
reaction event in each period — i.e., the one for which t + τ > tr and t + τ > tn, respectively.
Here, I draw a random number r3 and accept the reaction if r3 > (tr − t)/τ and r3 > (tn − t)/τ ,
respectively.

4.2.4 Evolutionary Optimization of the Rewriting Rule Sets

The CC may operate with rather complex instructions that correspond to a particular gene expression
pattern. More formally, an instruction consists of a list L of rewriting rules and associated enzyme
concentrations (Figure 4.4). This is similar to the computational model of Bryant [13], except
that I have incorporated a concentration associated with each rewriting rule that modulates the
probability with which it is applied. If the time course of the simulation is divided into np phases,
more complex programs can be implemented as sequences (Li, τi), i = 1, . . . , np of instructions
that are valid for a prescribed time period τi (i.e., a “phase”) before being supplanted by the next
instruction. Thus, if a particular rewriting rule rk ∈ Li, the enzyme performing this reaction is
available in phase i.

HMT1 HDAC1HDM1 HAT

HMT1

HDAC1

HDM1

HAT

HMT1

HAT1x

    1                    2               1                  3

✓ ✓ ✓

✓

✓✓ 1
1

1

1
2
3

Figure 4.4: Illustration of the phases concept. An example with four different enzymes (each of which has
a particular concentration) and three phases is represented. After each replication, these phases periodically
follow each other in sequential order. Formally, each phase i is described by a tuple (Li, τi). Each phase i
can be described by (i) a particular combination Li of enzymes that are available in that particular phase
(along with their individual fixed concentrations), and (ii) its duration τi > 0. Although replication is not
strictly considered as a phase, it can similarly be represented by (Lr, τr) with Lr = ∅ and τr = 0 because
each replication is modeled as an instantaneous event where enzymes cannot perform any of their reactions.

Following previous studies that used evolutionary optimization, I define mutation and recombination



87

operators for the individual instructions as follows:

• The concentration of a random enzyme can be decreased by up to two molecules. The
concentration of a different random enzyme is correspondingly increased to keep the total
number of enzymes constant.

• Up to two enzymes and their corresponding rewriting rules can be replaced by randomly
picked different enzymes. The concentration variables and rate constants remain unchanged.

• In principle, the rate constants can be changed. However, I disabled this option in the
simulations, as discussed below.

• The recombination (cross-over) operator builds a convex combination of two instructions L1
and L2 using the formula ξL1 + (1− ξ)L2 with a randomly drawn weight ξ ∈ [0, 1].

• A second cross-over operator may similarly construct a combination of two already present
enzymes and their associated rules, therefore adding a new enzyme in a non-random fashion.
Due to the relative simplicity of the rules used in simulations, however, I did not use such
operators here.

• If multiple instructions are used, their individual durations τi can be changed. For this, two
randomly picked phases increase and decrease their individual durations by 10%, respectively
(with respect to the time tr between two replications). In addition, independently for each
phase, enzyme availabilities (presence or absence, see Figure 4.4) of up to two random
enzymes can be inverted.

The fitness of an instruction (or a schedule of instructions) is evaluated by comparing the patterns
immediately before each of the cell divisions to the start pattern using the normalized Hamming
distance. The initial patterns used here are compiled in Table 4.3. This yields r + 1 distance values
d(i). For each start pattern and ni independent starting point, I run the Gillespie simulation ng
times with different random number seeds. Then, I average the distance values over the Gillespie
realizations, obtaining 1− 〈d(i)〉 as the autocorrelation function of the pattern. The fitness value
is next computed as the sum of this autocorrelation function over the nr cell divisions. It turns
out that a simple hill-climbing approach is sufficient to obtain good solutions. Hence, a proposed
mutation of the instruction (or schedule of instructions) is accepted if the estimated fitness increases.
I stop the search if the best solution among all runs does not improve for ni iterations.
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Table 4.2: Summary of the most relevant parameters for the EA. See text for details.

Parameter Value Description

Specific to the EA
ni 1000 Stop criterion
ns 10 No. of independent starting points / runs
np 1–4 No. of phases

Specific to the biology and the stochastic simulation
nr 50 No. of replications
nn 30–150 Total no. of nucleosomes
c Circular Nucleosome organization
tr 20 Time between two replications
ng 20 No. of independent Gillespie realizations
na 5 or 10 Maximal no. of distinct active enzymes (for elementary

and composite patterns, respectively; see Table 4.3)
nb 1–5 No. of distinct chromatin domains per pattern (Table 4.3

and Figure 4.1)
k 30 Chromatin domain length (in nucleosomes)
nm 10 No. of enzymes in the cell (per chromatin domain)
ne nb × nm Total no. of enzymes in the cell (all chromatin domains)
rb 1 Binding reaction rate constant
rd 5 Dissociation reaction rate constant

...

3. Calculate fitness of s
opt

* and compare to fitness of s
opt

   4x      6x      1x    10x          0x

5. Repeat 
until 

termination

1. Modify the current best solution s
opt 

using various crossover and mutation 

operators (all other simulation parameters are kept constant)

2. Simulate state dynamics for k cell divisions with new solution  s
opt

*

Propose new solution s
opt

*

4. Set s
opt 

=
 
s

opt
* if fitness of 

 
s

opt
* >  s

opt
 

(similarity after each generation as compared to 
the starting state – i.e., epigenetic stability)

Figure 4.5: Schematics of the main steps of the EA. See text for details.
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Table 4.3: Summary of the start patterns used for the fitness evaluations. State 0 designates an unmodified
nucleosome, whereas states 1 and 2 designate two distinct modified states of a particular histone PTM.
The parameter k (here set to 30) is the length of each individual chromatin domain in each pattern, see
Table 4.2 and Figure 4.1 for details.

Pattern summary Pattern length (nn) Pattern abbreviation

Elementary patterns
1k 30 1
0k1k 60 01
1k2k 60 12

Composite patterns
1k2k1k 90 121
1k2k2k 90 122
1k2k1k2k 120 1212
1k2k2k2k 120 1222
0k1k0k 90 010
0k1k1k 90 011
1k0k1k 90 101
0k1k0k1k 120 0101
1k0k1k1k 120 1011
1k0k2k 90 102
1k2k0k 90 120
1k2k0k0k 120 1200
1k2k0k2k1k 150 12021

4.2.5 Simulations

For all patterns, I generated ns initial instructions by randomly selecting nl out of a total of 28
rewriting rules (i.e., the enzymes that implement them) as listed in Table 4.4. I also assigned the
individual concentrations of these nl enzymes randomly so that the total number of molecules
equaled nm. I kept all other parameters constant between the independent runs. Table 4.2
summarizes the parameters that I used for the EA and the individual stochastic simulations required
for the fitness evaluation.

I simulated local chromatin state dynamics for a genomic region of 12 kb to 30 kb (depending on
the pattern), a range that researchers also used in previous approaches [36] and that provides a
good balance between computational speed and biological verisimilitude. I used a value of 50 for nr
because this reflects the Hayflick limit for how many times a cell can divide. Also, I used a circular
nucleosome organization throughout the simulations to avoid artifacts for the boundary nucleosomes
due to the rewriting rules and their neighbor-dependence. For a suitable number of enzymes
available for the modeled chromatin region, I chose a value of 10 per chromatin domain (parameter
nm). Dependence on the number of chromatin domains is necessary to ensure comparability among
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Table 4.4: Summary of the 28 rewriting rules with patterns on A = {0, 1, 2} used for the simulations. For
rewriting (RW) rules that are not intrinsically symmetric I also list their mirror image. The position in
brackets is bound and modified, the two flanking positions remain invariant. The second column gives a
rewriting rule abbreviation that will be used hereafter.

RW rules realizing 0→ 1 reactions α RW rules realizing 1→ 0 reactions γ
[0]→ [1] α1 [1]→ [0] γ1
0[0]0→ 0[1]0 α2 0[1]0→ 0[0]0 γ2
1[0]1→ 1[1]1 α3 1[1]1→ 1[0]1 γ3
2[0]2→ 2[1]2 α4 2[1]2→ 2[0]2 γ4
0[0]1→ 0[1]1 or 1[0]0→ 1[1]0 α5 0[1]1→ 0[0]1 or 1[1]0→ 1[0]0 γ5
0[0]2→ 0[1]2 or 2[0]0→ 2[1]0 α6 0[1]2→ 0[0]2 or 2[1]0→ 2[0]0 γ6
1[0]2→ 1[1]2 or 2[0]1→ 2[1]1 α7 2[1]1→ 2[0]1 or 1[1]2→ 1[0]2 γ7

RW rules realizing 0→ 2 reactions β RW rules realizing 2→ 0 reactions δ
[0]→ [2] β1 [2]→ [0] δ1
0[0]0→ 0[2]0 β2 0[2]0→ 0[0]0 δ2
1[0]1→ 1[2]1 β3 2[2]2→ 2[0]2 δ3
2[0]2→ 2[2]2 β4 1[2]1→ 1[0]1 δ4
0[0]1→ 0[2]1 or 1[0]0→ 1[2]0 β5 0[2]2→ 0[0]2 or 2[2]0→ 2[0]0 δ5
0[0]2→ 0[2]2 or 2[0]0→ 2[2]0 β6 0[2]1→ 0[0]1 or 1[2]0→ 1[0]0 δ6
2[0]1→ 2[2]1 or 1[0]2→ 1[2]2 β7 1[2]2→ 1[0]2 or 2[2]1→ 2[0]1 δ7

patterns with varying length due to the concentration dependence of the enzyme reactions in the
Gillespie algorithm. For the elementary patterns, up to five different enzymes may be selected,
whereas I increased na to 10 for composite patterns. I found these values to be sufficient to obtain
good solutions in the simulations. I chose the values for tr, rb, and rd so that (i) enough reactions
can take place between two subsequent replications, and (ii) the system tends to have free molecules
available rather than a condition where all molecules are bound.

The unmodified state behaves differently from modifications since it is not distinguishable from
erased information after replication. It may be helpful to allow more than one phase to obtain good
solutions. Coordinated, phase-dependent enzyme availabilities may make it easier to systematically
recompute the parental modification state. To identify the optimal number of phases np, I first ran
the EA for the pattern 01 for solutions with one, two, three, and four phases and identified the
solution with the highest score. I then ran all composite patterns that contain the unmodified state
with only np phases (instead of variants with one, two, three, or four phases, respectively).



91

4.3 Results

Using the flexible software system that I developed (see end of results for details) to study the
dynamics of histone PTM states, the difficulty of pattern reconstruction problem depends on
the structure of the start pattern. Therefore, I initially summarize the observations for simple,
elementary start patterns (Tables 4.5, 4.6 and Figure 4.6). The EA achieved stable solutions for
constant patterns and patterns that consist of only modified nucleosomes with relative ease. It
only rarely (or only in low concentrations) selected neighbor-independent rewriting rules because
they easily introduce noise to the system. Similar to the results of Dodd et al. [38] and Hodges
et al. [288], I found that chromatin domains can transiently multifurcate to form multiple smaller
domains that remain stable for a particular amount of time, which was particularly pronounced for
patterns that contain patches of unmodified nucleosomes (Figure 4.7). Noteworthy, I sometimes
observed a gradual accumulation of errors during the lifetime of a cell (e.g., see the least stable
solution for pattern 12 in Figure 4.6).

Constant patterns. As expected, it is trivial to find optimal solutions for the constant pattern 1

because the only rewriting rules required to recompute the parental pattern are either α1 ([0]→ [1])
or α5 (0[0]1 → 0[1]1 or 1[0]0 → 1[1]0). These must be present in higher concentrations than
rewriting rules that change 1 to 0 (class γ). Consequently, a large number of simulations achieved
the optimal score. Also, contrary to other patterns, the inclusion of neighbor-independent rewriting
rules, such as α1, pose no disadvantage to the system.

Pattern 12. I also found that it is relatively easy to evolve a system that can stably maintain patterns
when the parental nucleosome state consists of several chromatin domains of modified nucleosomes,
as exemplified by patterns 12 and 121. I also found that four rewriting rules with approximately
equal concentrations are sufficient for stable inheritance over 50 generations: α3 (1[0]1→ 1[1]1),
α5 (0[0]1→ 0[1]1 or 1[0]0→ 1[1]0), β4 (2[0]2→ 2[2]2), and β6 (0[0]2→ 0[2]2 or 2[0]0→ 2[2]0).
Notably, the boundary between differentially modified regions fluctuated stochastically because
solely the available rewriting rules controlled it (Figure 4.6).
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Figure 4.6: Results from the EA for the three elementary patterns (top: 1, middle: 12, bottom: 01, 2
phases). The leftmost figure in each row shows the evolution of the best score (separately for each of
the ns independent starting points). The second leftmost figure shows the evolution of the score of the
solution that the EA proposed in each particular iteration. The two rightmost figures in each row display
the stochasticity of the best solution among all ng independent stochastic simulations (left: most stable
(highest score), right: least stable (lowest score)). For each visualization, the state of the system is shown
directly before each replication (with the initial state at the top, and the state after the last replication
at the bottom). The coloring of the different nucleosome states is analogous to the previous Figures (0:
white, 1: red, 2: blue). For pattern 1, I detected no variation between the best and the worst performing
run when I compared states only compared directly before each replication event.

Pattern 01. It is substantially more difficult to find good solutions for patterns that contain a
mixture of modified nucleosomes and unmodified nucleosomes such as 01, 101, and 102. The
intuitive reason is that the 0-state in the target pattern is indistinguishable from the information
lost during the replication event. Thus, the program of the CC lacks means to determine where
states need to be regenerated and where the target state has already been reached. No good
solutions seem to exist for this problem when only a single phase is allowed between replication
events. To illustrate this, consider the pattern 0k1k. Rewriting rules are needed to re-establish the
right part of the pattern that contains the nucleosomes in state 1 after each cell division. These
can principally be constructed in two ways: (i) The rewriting rule α3 (1[0]1→ 1[1]1) ensures that it
can only be applied in the right part. However, having only this rewriting rule is too strict because
particular patterns, such as 01001, cannot be repaired otherwise. This would be possible with (ii)
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α5 (0[0]1→ 0[1]1 or 1[0]0→ 1[1]0); however, this is also applicable at the boundary of the 0 and
1 region and can therefore slowly spread into the 0-region, leading to gradual loss of the ancestral
signal. Rewriting rules that do not incorporate the state of neighboring nucleosomes (e.g., α1

([0]→ [1])) are also not helpful in this regard, since they introduce additional noise to the system.

Admitting more phases, i.e., variation of the gene expression program through the cell cycle, can
mitigate this difficulty. Different phases can then serve a particular purpose and, collectively, they
aim at restoring the parental pattern. In practice, I found that solutions with more than one phase
become only marginally better with two or more phases, possibly due to the greatly expanded
parameter space of the solution (Table 4.5). It may therefore be necessary to run the EA for a
substantially longer time to obtain good solutions that consist of more than one phase. Nevertheless,
the stability of the best solutions I found (independent of the number of phases) is not comparable
to solutions for patterns 1 and 12. This is indicated by both the attainable scores and by the time
course visualization of the patterns in Figure 4.6.

Composite patterns. For the composite patterns, the results were as follows: Patterns that
are combinations of all three elementary patterns (i.e., with 0-1, 0-2, and 1-2 chromatin domain
transitions) produced the lowest scores, despite allowing the EA to increase the maximal number of
active enzymes (see below). Variations of the pattern 12 produced the best scores. For the pattern
12021 and 1011, the simulations consistently lost the 0 patch in the middle of the patterns, even
in the best solutions.

I also found that solutions for the three elementary patterns can be used with comparable quality
for repetitions of elementary patterns. A good example is the pattern 12, where all of the variations
tested produced scores that differed by less than 10% from the original score. This occurred even
though the patterns were either more complex (121, 1212) or contained chromatin domains of
unequal length (122, 1222). For the pattern 01, I observed a similar result with the patterns
010, 011, 101, 0101, and 1011 although the scores were up to 20% smaller (data not shown).
In all cases, the score may be improved by adjusting enzyme concentrations and phase durations,
particularly for patterns with a different length than the original pattern.

However, I found that individual solutions from elementary patterns cannot merely be combined for
a more complex pattern, particularly with multiple phases. For example, the combination of the
individual solutions for the patterns 01, 02, and 12 does not produce a good result for patterns that
contain all these three types of transitions such as 102. The combination of different solutions —
i.e., the simultaneous presence of more enzymes — apparently interferes with the “strategy” of the
partial solutions: The additional enzymes act at the newly produced modifications and obliterate
the nascent pattern.

I also investigated whether the performance could be improved by optimizing the rate constants for
binding and/or dissociation rates, along with the rewriting rules themselves. Although the scores
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Table 4.5: Summary of the results from the EA. For each pattern, I give the number of iterations nit after
which the EA finished, as well as the score of the best solution, the number of phases np that solution
consisted of, and the number of distinct enzymes that the EA selected (na). For more details on the
composition of the solutions, see Table 4.6.

Pattern np nit na Best score

Elementary patterns
1 1 1001 4 51
12 1 1180 5 45.6
01 1 4083 5 35.1
01 2 5360 3 36.6
01 3 2259 5 35.5
01 4 4823 5 35.6

Composite patterns
121 1 2717 4 47.8
122 1 1346 6 44.7
1212 1 1367 4 45.0
1222 1 3595 4 48.4
010 2 5229 7 43.2
011 2 6574 6 36.6
101 2 5834 5 35.0
0101 2 5106 6 35.9
1011 2 1002 5 38.4
102 2 5116 5 33.4
120 2 3840 6 33.2
1200 2 5231 6 34.4
12021 2 3429 7 39.1

were comparable, I obtained solutions that are much more tailored towards the reconstruction of a
particular initial pattern length (data not shown). This is because the reaction rate constants also
control how many reactions may take place during a particular time in the stochastic simulation.
By allowing them to vary, the enzymes and the corresponding reaction rates become tailored to the
specific pattern length. The EA then also more frequently selected neighbor-independent enzymes
because their frequency of selection can be controlled by the reaction rates.

Finally, I examined to what extent the parameter na, which limits the maximal number of active
enzymes, has an influence on the quality of the solutions. I found that selection sometimes tends to
increase the number of enzymes by including rewriting rules that are rarely applicable. This was
particularly true for the pattern 01, where the score for the best solution with one phase increased
to that of solutions with multiple phases using the original value of na (data not shown). This
appears to be a means of adjusting reaction rates to decrease the number of reactions that take
place between replications.

To verify that the best solutions for the different patterns are not specific to the parametrization of
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Table 4.6: Summary of the best simulation for each of the elementary patterns. The second column
presents the number of phases np that compose the solution. The third column summarizes the best
solution and lists the enzymes active in a particular phase, together with their abundance (in brackets). For
the patterns 1 and 01 with a single phase, I found many distinct optimal solutions (see text), and only
one representative is included here. For the pattern 01, I performed multiple independent evolutionary
optimizations with a different number of phases (see text). If I set multiple phases, the individual phase
durations are also presented (in percent).

Pattern np Best solution τi,Li
1 1 τ1(100%), L1:α3(3), α5(4), α7(1),δ2(2)
12 1 τ1(100%), L1:α3(3), α5(5), β4(3), β6(5), γ7(4)

01

1 τ1(100%), L1:α3(2), α5(8), α7(2),δ4(4)

2
τ1(17.8%), L1:α3(6),α5(1),δ5(13)
τ2 (82.2%), L2:α3(6)

3
τ1(45.5%), L1: see phase 3, + α5(7)
τ2(31.8%), L2: see phase 1
τ3(22.8%), L3:α3(4),α6(4),α7(3),δ4(2)

4

τ1(35%), L1:α5(7),α7(4),β5(4)
τ2(35%), L2:α5(7),α7(4),δ4(3)
τ3(15%), L3:α5(7),α7(4),β5(4),δ4(3)
τ4(15%), L4:α3(2),α7(4),δ4(3)

the model and the specific pattern length, I also tested the sensitivity to parameter variations (Table
4.7). Specifically, I tested the effect of a linear nucleosome string rather than a circular one, the
time between two replications, the number of nucleosomes and replications, and the dissociation
rate of all enzymes. In summary, I found that the solutions produce very similar scores in most of
the parameter space for the patterns 1 and 12, whereas for the pattern 01 and its compositions
the best solutions strongly depended on the kinetic parameters. I also found that the number of
nucleosomes must not be too low (a value around 40 sufficed for robustness). Otherwise, stochastic
effects may irreversibly destroy the parental signal. Similarly, the time tr between two replications
must be long enough to allow for recomputation of the parental pattern. Some noteworthy effects
that I observed while varying the parameters are summarized in Figure 4.7.

The source code of a C implementation of the software system can be obtained under the GNU
Public License from http://www.bioinf.uni-leipzig.de/Software/StoChDyn and consists of two
separate programs: the stochastic simulation of the dynamics of histone PTMs using Gillespie’s
approach (StoChDyn) and the EA (Evo-ES) that uses StoChDyn to evaluate its solutions.

http://www.bioinf.uni-leipzig.de/Software/StoChDyn
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Figure 4.7: Visualizations from selected simulations for pattern 12 of the robustness analysis. One distinct
parameter is fluctuated in each row (A–E, as indicated on the left) as compared to the best solution for
this pattern, and two exemplary runs of the same simulation (except for E) are shown that highlight some
noteworthy effects that we observed. The coloring is analogous to Figure 4.6.
(A) Variations in the chromatin organization at the boundaries (here: linear instead of circular).
(B) Variations in the number of nucleosomes (here: 20 instead of 60), illustrating that reducing the number
of nucleosomes increases the likelihood that the signal is lost due to stochasticity.
(C) Variations in the number of replications (here: 100 instead of 50), showing that chromatin domains can
gradually disappear (left) or change their exact location due to stochasticity (right).
(D) Variations in the time between replications (here: 0.5 instead of 20), highlighting that the original signal
may gradually get lost if the cell has not enough time to recompute the parental pattern.
(E) Variations in the dissociation rate of the enzymes (here: 0.05 (left) and 0.15 (right), respectively, instead
of 1), illustrating that the enzyme kinetics may also have a large effect on pattern stability. I did not modify
the binding rate constants; however, I reduced the dissociation rate constants, which means that enzymes
need more time to perform their designated reaction.
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Table 4.7: Summary of the robustness analyses for the best solution for each elementary pattern. The table
lists the parameter value intervals when the score of the modified solution (with one changed parameter)
achieved more than 90% of the score of the original best solution. The variable s denotes the step size.
When I varied the number of replication nr, I calculated the ratio of the score and the corresponding maximal
possible score and compared the two ratios using the 90% threshold for better comparability because nr has
a direct influence on the maximal possible score.

Parameter Parameter values Pattern

Original New, varied 1 12 01

Nucleosome organization (c) Circular Linear All All All
Number of nucleosomes (nn) 60 10–200 (s = 10) All > 40 60–90,140
Number of replications (nr) 50 5–100 (s = 5) All All < 55

Time between replications (tr) 20 0.5–40 (s variable) > 5 > 1 19–20
Dissociation rate (rd) 5 0.05–100 (s variable) > 0.5 > 0.15 4

4.4 Discussion

I have queried whether the propagation of patterns of histone PTMs across cell divisions can
be seen as a computational problem and if so, whether chromatin is organized in a way that
is amenable to the solution of this problem. The answer is twice affirmative. I demonstrated
that the faithful propagation of patterns of histone PTMs can be interpreted as a computational
problem that is achievable through a small collection of rewriting rules. These rewriting rules
are abstractions of a well-described class of enzymes and enzyme complexes combining reader,
writer, and eraser domains for specific histone PTMs. For the best solutions, the EA selected
almost exclusively enzymes that are dependent on the states of neighboring nucleosomes (except
for the trivial pattern 01). This highlights that context-dependency is crucial for such inheritance
systems because context-independent enzymes easily introduce too much noise to the system that
further complicate the recomputation of parental state patterns after cell division. Indeed, for many
histone-modifying enzymes, it is well-known that their binding affinities are highly influenced by the
presence or absence of particular histone PTMs or other signals nearby.

This modification process is intrinsically stochastic and crucially depends on concentrations of the
available enzymes and histone PTMs. As a practical implementation, I employ a detailed stochastic
simulation of chromatin state dynamics to approximate the physico-chemical constraints of my
approach. Here, the probability for applying rewriting rules is modeled explicitly in reaction rates
for binding and dissociation following the laws of mass action.

I showed that stable propagation of complex patterns without the need for explicit boundary
elements is possible in the model although not for all types of patterns. This is consistent with
the findings of Hodges et al. [288] who recently proposed that explicit boundary elements may not
be required for H3K9me3 domains because their size and propagation may be naturally limited
by chromatin remodeling processes. Nevertheless, the maintenance of (approximate) boundaries
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between differentially modified chromatin domains is a main challenge of any epigenetic inheritance
mechanism. In practice, additional security measures that prevent spreading may furthermore be
required for faithful long-term inheritance. Indeed, several mechanisms that prevent spreading may
trivially solve the problem of restoring the parental modification pattern when exact boundaries
are important. Examples include nucleosome-depleted regions (for example, see [361–363]), bound
proteins (e.g., CTCF) or histone variants (e.g., H2A.Z) in the vicinity of positions that border the
different chromatin domains, ncRNAs [208], or the marking with a particular histone PTM directly
after replication due to other signaling factors.

In the model presented here, long-range interactions are not necessarily required for stability, which
contrasts to what is argued by Dodd et al. [36]. However, the presence or absence of long-range
interactions has no impact on the computational power of the CC or the conclusions with respect to
epigenetic inheritance. Generally, epigenetic inheritance should be seen as an ensemble of different
strategies that collectively aim to transmit a particular chromatin state throughout cell division.
Patterns of histone PTMs fit this bill. The propagation of one out of several alternative modified
states provides the required memory across divisions. Nevertheless, only a few primary histone
PTMs that typically form large and homogeneous chromatin domains (e.g., H3K9me3) may be
copied in a self-propagating manner as described here. The transmission or recomputation of other
more secondary histone PTMs, however, likely depends on other factors [178]. On the other hand,
the inheritance of promoter-specific modifications (which typically cover only a few nucleosomes)
is likely implemented in a different way than the propagation of large homogeneous chromatin
domains because short domains are much more difficult to inherit due to pure stochasticity (e.g.,
see Figure 4.7 B).

Pattern stability is influenced by a number of factors such as dynamic chromatin remodeling events,
the up- and downregulation of genes that code for or regulate the corresponding histone-modifying
enzymes, pattern complexity [39], and the length of the state to be maintained. In summary,
patterns of histone PTMs are often an ongoing enzymatic competition between their placement
and removal. Altering this steady-state balance pushes either towards the accumulation of the mark
or its erasure [288]. This is apparent most clearly in embryonic reprogramming [338, 364].

The finding that patterns containing patches of unmodified nucleosomes are more difficult to
inherit than modified ones (irrespective of the number of phases) due to the ambiguity of the
unmodified state raises the question of biologically relevance. Due to the sheer complexity of histone
modifications, the vast majority of nucleosomes may carry at least one modification, which could
facilitate recomputation of the parental patterns and resolve the difficulty of stably inheriting such
domains. Additionally, other chemical signals within the vicinity of a nucleosome, such as DNA
methylation, the presence of histone variants or spatial contacts with genomic loci, and protein
complexes that are themselves retained through cell division, may be specifically used to backup
the information of nucleosome left unmodified intentionally.
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I emphasize that the focus in this thesis is on the computational task of re-constructing complex
patterns of histone PTMs that is typical for somatic cells. I do not claim that epigenetic inheritance
across the germ line follows the same paradigm. Information inherited through the germline for an
effectively infinite number of generations is subject to Eigen’s error threshold [365], which links
the amount of stably inheritable information to the accuracy of information propagation. Whereas
effective proofreading mechanisms limit replication errors to a single mutation per round of replication
for genomic DNA, no mechanism is conceivable that would achieve a similar accuracy for histone
PTMs. As a consequence, the amount of stably inheritable epigenetic information is severely limited.
Consistent with this theory, most, if not all, of the extraneous epigenetic information is erased
during spermatogenesis and oogenesis. The resulting totipotent state is characterized by global
erasure of DNA methylation, chromatin reorganization, differential regulation of histone-modifying
enzymes (e.g., the tendency for the upregulation of histone de-modifying and downregulation of
histone-modifying enzymes) [366]. The initial stages of embryogenesis are governed by a gene
regulatory network dominated by transcription factors (e.g., reviewed in [367]), partial ejection of
nucleosomes [368] and therefore a reduction in the availability of a major epigenetic information
carrier. Indeed, it seems that only few epigenetic modifications are part of the epigenomic basal
state (e.g., strong heterochromatin formation of genes linked to differentiation [368] or imprinting
and poised promoters). In contrast, the error threshold does not preclude inheritance of complex
patterns of histone marks in somatic cell lines because the number of generations is limited, and
usually small. Here, the degradation of the epigenetic information is acceptable for a while but
inevitably leads to daughter cells whose epigenetic patterns are damaged beyond repair. This effect
may thus constitute an epigenetic version of aging. Intriguingly, histone PTMs may also function as
molecular timers, as evidenced by H3K79me that couples cell cycle progression to changes in the
epigenome [170].

The model contains a number of biological parameters. However, experimentally validated and
reliable values are only available for a few of them (such as the number of DNA replications and
typical chromatin domain lengths). For other parameters, such as the various rate constants for
binding and dissociation reactions and the number of active enzymes, reported values span several
orders of magnitude (see [289] for an excellent overview on the subject). For example, rate constants
for chromatin-associated proteins have strikingly different kinetics, with average residence times
ranging from a few milliseconds for some TFs and remodelers up to several hours for nucleosome
components [289]. However, until recently, different methods to determine these average residence
times of TFs on chromatin such as FRAP (fluorescence recovery after photobleaching) yielded
highly unequal results, with differences of up to three orders of magnitude (reviewed in [369]).
Newer methods, such as SMT (single molecule tracking) and improvements of the FRAP method
corrections, now finally seem to reach a consensus [369]. Likewise, the concentrations of various
chromatin-associated proteins and binding affinities also vary greatly (reviewed in [289]).
In terms of total numbers of enzymes present and active for a particular genomic region, Steensel
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[80] provided some estimates and calculated that each nucleosome may be in contact with up to 30
proteins (see [80] for more details), which is much higher than the values I used in the simulations
(Table 4.2). However, their individual residence times as well as the binding influence with respect
to other proteins remains unclear. Lastly, as mentioned in Section 2.3.3, Hathaway et al. [277]
estimated that H3K9me3 domains spread with ≈0.18 nucleosomes per hour up to a length of
≈10 kb. The authors also found that the observed domain lengths are only compatible with their
model if the relative propagation rate does not exceed a particular threshold.
All of these estimates theoretically allow to adjust the simulation parameters accordingly. Thus, in
summary, for a specific set of enzymes and histone PTMs, it may be possible to run the chromatin
model primarily with biologically validated and plausible parameters in the near future.

The chromatin model and implementation can furthermore be extended in various directions. First,
to reduce computing time and to allow the modeling of larger genomic regions, approximative
stochastic simulation algorithm variants as well as the faster but still exact next reaction method as
proposed by Gibson et al. [352] may be implemented. Additionally, the efficiency of the EA may be
improved by including ant colony optimization algorithms (reviewed in [370, 371]), for example.
Although it is not entirely clear if such algorithms indeed find better solutions, they seem to be
particularly worthwhile for solutions with multiple phases due to the greatly increased search space.
Second, additional components may be added to the system to account for biological complexity
and realism such as different DNA replication and histone segregation models, the explicit modeling
of nucleosomes as an octamer (i.e., modeling that each histone is present twice), different models
for the retainment of parental histones after DNA replication, and the inclusion of histone turnover.
The latter is particularly relevant because it seems to be a necessary component in real systems, as
exemplified by H3K9me3 domains [277, 288]. However, the modeling and applicability of some
additional phenomena is somewhat limited by the insufficient current biological knowledge and
therefore awaits further research. An extension of the phases concept that allows phase-dependent
concentration of enzymes rather than their mere presence or absence would also be worthwhile.
Alternatively, this could be achieved by the inclusion of “events” (i.e., specific time points when,
for example, the concentration of a particular enzyme changes). These extensions would allow
to investigate what effect abrupt or gradual changes in the concentration of particular enzymes
have for epigenetic stability, and how vulnerable the system is to small perturbations of the enzyme
concentrations (although I performed the latter already to some extent, data not shown), for
example. A third extension is to model the dynamics of more than one histone. Although this
is already possible in the implementation, I never explicitly modeled this. As shown by Sneppen
et al. [39], the combination of two distinct histone PTMs creates large numbers of different circuits
capable of heritable bistability, and it would be interesting to study the results of the EA.
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Chapter 5
Designing Custom Expression Microarrays
in the Post-ENCODE Era

5.1 Motivation and Background

Microarrays are a powerful technology for genome-wide transcriptome profiling that have been
used ubiquitously in biomedical research for almost two decades now. They allow quantifying
the expression of thousands of nucleic acid samples (RNA transcripts or target sequences) by
hybridizing them to known sequences (probes) in a massively parallel and often genome-wide
manner in a single experiment. Probes are typically 25–60 bp oligonucleotides long, and in essence,
they are immobilized on a solid surface and bind to complementary targets (hybridization) [372].
Microarrays can be applied in many different areas such as comparative genomic hybridization/copy-
number analysis (CGH microarrays), single nucleotide polymorphisms detection (SNP microarrays),
chromatin immunoprecipitation (ChIP-on-chip microarrays), gene expression and microRNA profiling
(gene expression microarrays), and DNA methylation (methylation microarrays).

Most microarray providers offer custom expression microarrays (CEMs) for which the represented
target sequences can be precisely defined. CEMs are increasingly popular because they are more
cost-effective than tiling arrays and offer more flexibility. They have been used frequently to address
a variety of questions such as the development of genetic markers [373] and the generation of gene
models for particular treatments [374] to improve understanding of the molecular mechanisms [375]
or the transcriptome response to different external signals [376].

The workflow of custom expression microarray design can broadly be divided into three parts: target
sequences selection, probe design, and probe selection (Figure 5.1). Probe design is important and
a high-quality oligonucleotide probe must be (i) sensitive, (ii) specific, and (iii) isothermal with the
other probes [377]. Although numerous tools exist for designing probes for a set of RNA targets, they
only address the first and third criteria accordingly. The measures taken to ensure probe specificity
are often too simplistic. For example, available probe designers only find probes that are unique with
respect to currently annotated transcripts. However, such a strategy is insufficient because RNA
samples may contain novel transcripts not yet contained in any public database. Cross-hybridization

103



104

must therefore, in theory, be tested against the complete (unknown) transcriptome in order to not
overestimate probe specificity. This is particularly important in light of the growing importance of
ncRNAs and chromatin-associated RNAs in particular (see Section 2.1.4.3).
Vertebrate genome complexity is indeed often neglected and underestimated by existing tools
although the large majority of the genome is capable of transcription in a highly time-, tissue-,
and developmental-specific manner (see Section 2.1.3). Genomic loci often encode a variety of
transcripts comprising several isoforms of protein-coding and non-coding RNAs with a large number
of (partly) overlapping transcripts. A careful selection of specific regions in target sequences in
which probes should be placed is therefore necessary. If probes are designed independently for each
of these overlapping transcripts, a probe may be located in exons that are shared between isoforms
(transcripts) of the same (different) gene(s). Specificity of those probes is then low due to possible
cross-hybridization with different RNAs transcribed from the same genomic locus. Probes should
therefore be placed in exons or splice-sites that are unique to a target sequence.

In addition, if multiple datasets are integrated, the selection, unification, and generally preprocessing
of heterogeneous target sequences is time-consuming, error-prone, and non-trivial. Surprisingly,
however, this has yet to be addressed in a systematic and thorough fashion [378]. For example,
none of the existing tools provide a framework to address the following “design strategies” before
and after probe design:

• How can overlapping target sequences be handled and what individual advantages and
disadvantages do different approaches have? How can cross-hybridization be minimized?

• Which strategies exist to efficiently use the limited available space on the CEM? Which
criteria may be used to select among a set of target sequences?

• How can target sequences be processed so that flexible strategies with respect to the number
of probes per target sequence can be realized?

• Which measures may be useful to evaluate the success of target selection and subsequent
probe design? In particular, what is the coverage of target sequences with probes?

All of these issues may substantially influence the reliability, accuracy, and interpretability of the
resulting expression measurements [379]. Indeed, high-quality microarrays are fundamental for
any meaningful interpretation of the data. As we will see in Chapter 6, the development of a
pipeline that aims in the production of high-quality CEMs is therefore an important prerequisite for
addressing biologically relevant questions such as the significance of chromatin and the chromatin
computer in Alzheimer’s disease (AD).
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5.2 Methods and Results

5.2.1 The Custom Array Design Pipeline

I developed a bioinformatics pipeline (CAD pipeline) that addresses the first and last step in a
typical custom expression microarray design workflow (i.e., suitable selection of target sequences
and probes) more profoundly than available tools (Figure 5.1). Specifically, it may be used as
an automated tool assisting in the error-prone and time-consuming steps of generating a set of
unified target sequences suitable for probe design out of a set of (heterogeneous) input datasets
(target sequences selection), given specific design strategies with respect to the representation of
complex transcriptional loci (see Section 2.1.3) and user-defined, dataset-specific parameters. After
subsequent probe design using external programs, the CAD pipeline may also be used for probe
selection by rigorously evaluating their specificity, discarding non-specific probes, and calculating
various statistics that evaluate to what extent the target sequences are represented by high-quality
probes.

Generate a set of target
sequences from 

heterogenous input sets

Realized by third party 
software like eArray or 

OligoWiz

Evaluate probe specificity

Summary statistics of 
current design

Target sequences selection 
Step 1

Probe design
Step 2

Probe selection
Step 3

Figure 5.1: Schematics of the concept and positioning of the CAD pipeline in the workflow of CEM design.
The CAD pipeline specifically addresses the target and probe selection but leaves the probe design to external
tools. See text for details.

The CAD pipeline integrates particularly well with the eArray platform from Agilent but also supports
other probe design software due to the use of standard file formats. A detailed schematic overview
of all its steps (and the corresponding web server, see Section 5.2.2) is presented in Appendix B. In
the following, the main features of the pipeline are described.

5.2.1.1 Dataset Unification

Dataset unification specifically addresses the conversion of all datasets to one format with identical
genome assembly versions. The CAD pipeline accounts for the variety of known classes of RNA in
complex genomes [380] by allowing the incorporation of an arbitrary number of input files (therefore
collectively representing, for example, small ncRNAs, protein-coding genes, and long ncRNAs).
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This is particularly useful if heterogeneous datasets from different public databases are integrated
because dataset unification may be time-consuming and error-prone. In the CAD pipeline, both
sequence-based as well as position-based formats (FASTA and BED, respectively) are supported.
Whereas position-based formats may require a conversion of the genomic coordinates to a particular
target genome assembly version, sequence-based formats necessarily require a mapping step. For
mapping genomic coordinates from one assembly to another one (e.g., from hg18 to hg19), I
use the program liftOver1. The mapping of sequences is performed using BLAT2 [381], and its
parameters may be arbitrarily customized. Non-uniquely mapping target sequences are discarded
due to their inherent ambiguity. If sequences map to multiple spatially separated blocks or regions
(e.g., two exons interspersed by an intron), each block is subsequently treated as a separate target
sequence.

For some target sequences (reliable) strand information may not be available, and it may therefore
be useful to additionally include the sequences from the complementary strand. In the CAD pipeline,
this option can be enabled file-specifically and therefore provides maximum flexibility. Examples are
datasets containing genomic regions that are known to harbor ncRNAs with conserved secondary
structures based on structure prediction tools such as Evofold [382] and RNAz [383, 384] or
datasets derived from chromatin immunoprecipitation (ChIP) experiments or any of its variants
(e.g., see [188]). Additionally, antisense sequences may be deliberately included to investigate if
sense transcripts are regulated by their corresponding antisense transcripts.

In the CAD pipeline, the automatization is realized through a central configuration file that summarizes
all datasets and their specific parameters such as file format (e.g., FASTA or BED), genome
assembly version (e.g., hg18), the various filters that should be applied, specific mapping options
(if applicable), and if sequences on the complementary strand should also be included. Furthermore,
global parameters are defined such as the specific strategy to handle overlapping target sequences,
the target genome assembly version (e.g., hg19), and various filter-related parameters (see the
following pages for details).

5.2.1.2 Target Sequence Filters

The CAD pipeline provides a set of sequence filters to discard (parts of) target sequences that are
redundant or negligible for the purpose of the study. Additionally, they may also be used to reduce
the number of target sequences if the array capacity is reached for speeding up the probe design
process or to improve interpretability of the expression results (see below for an example). For
maximum flexibility the following filters may be applied individually for each input dataset:

• Length filter: A length filter may discard target sequences that are too short or, optionally,
1available at http://genome.ucsc.edu, last accessed in August 2013
2available at http://genome.ucsc.edu, last accessed in August 2013

http://genome.ucsc.edu
http://genome.ucsc.edu
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too long. This is useful for target sequences shorter than the actual probe length, for example.

• Redundancy filter: Target sequences from different input datasets may be redundant (i.e.,
identical start and end positions), particularly if they originate from publicly available databases.
Thus, only one representative target sequence is retained that combines the individual
annotations of all discarded ones.

• Negative set filter: The negative set filter specifies genomic loci that should not be included
for probe design (e.g., repeat regions, UTRs, coding exons). Application of this filter is useful,
for example, in the following scenarios:

– The number of target sequences must be reduced.

– The study focuses primarily on a particular set of transcripts such as ncRNAs. For
ensuring that non-coding and coding transcripts can be distinguished, all coding parts
may be eliminated to design probes for the non-coding part of the sequences only
(Figure 5.2). Similarly, this strategy is useful for alternative splicing forms of coding
and non-coding sequences because probes in overlapping parts can also not distinguish
between coding and non-coding variants.

However, the application of this filter may (i) split a particular target sequence in multiple
target sequences if one or more parts in the middle of the target sequence overlaps with regions
that should be excluded, (ii) remove a target sequence altogether if it overlaps completely
with an excluded region, and (iii) retains only such a small fraction of the target sequence
that the length filter takes effect.

Coding gene

Non-coding isoform
(original target sequence)

Target sequence
after eliminating

coding exons

UTR UTR

Figure 5.2: Illustration of the negative set filter. An example for the application of the negative filter is
shown for a non-coding isoform (target sequence) of a particular gene that is subject to splicing. Only the
elimination of the coding sequences (exons) in between ensures that a distinction between non-coding and
coding transcripts is possible on the probe level. For more details, see text.

5.2.1.3 Handling of Overlapping Sequences

If target sequences from several sources are integrated, an important design decision is how to
handle overlapping target sequences. This is particularly relevant because one the one hand,
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genomic loci often encode a variety of transcripts comprising several isoforms of protein- and
non-coding transcripts (see Section 2.1.3 and [385]), and on the other hand, sequences from publicly
available databases also show a large amount of overlap. The mapping of a probe to a particular
transcript/target sequence should be as unique as possible, and sequence redundancy should be
minimized.

1) Probes overlap partly or fully with 
    one another

2) Probes are located in non-specific
    parts of target sequences

3) Probes are distributed so that particular target 
    sequences are not represented by any probe 

✓
✓

4) Probes may be designed that do not map to 
    any of the individual target sequences

If overlapping target sequences are merged to one combined sequence:

If probes are designed individually for each target sequence:

Figure 5.3: Issues introduced by overlapping target sequences with regard to subsequent probe design and
probe distribution. A schematic depiction of four issues introduced by overlapping target sequences with
respect to subsequent probe design and probe distribution are shown. Regions marked in blue are not shared
by any of the other target sequences and are therefore “specific” or unique for the particular target sequence.
Designed probes are colored in red. For more details, see text.

Overlap of target sequences introduces at least four issues with regard to the distribution and
location of probes (see also Figure 5.3):

• Probes from overlapping target sequences may also overlap, thus causing potential cross-
hybridization problems (non-specificity).

• Probes may be located in parts of target sequences that are shared by at least one other
target sequence. Therefore, because the part is not unique to the sequence (Figure 5.4) it
is inherently impossible to map this probe to a unique transcript, causing ambiguity with
respect to from which transcript the expression signal originates.
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• If overlapping target sequences are merged to one combined sequence (second strategy, see
below), the following two additional peculiarities may arise:

– If probes have been designed for a set of partly overlapping alternative transcripts for a
particular gene, for example, they may be distributed so that individual transcripts are
not represented by any probe, which renders their expression measurements impossible.

– Probes may be designed that do not map to any of the individual target sequences
because they are located at the boundaries of two adjacent or overlapping target
sequences.

Therefore, sequence overlap may have major consequences for the interpretability of expression
results and has, to the best of my knowledge, not yet been addressed explicitly and systematically.
A specific strategy should thus be well-considered. In the CAD pipeline, the following three distinct
strategies to handle overlapping target sequences can be selected, each of which has its own
advantages and disadvantages (Table 5.1 and Figure 5.4):

1. Do not merge overlapping sequences and ignore overlap among target sequences
Each target sequence is treated individually irrespective of any sequence overlaps. The main
advantage of this approach is that probes can subsequently be specifically designed for each
sequence. However, they may substantially overlap, they may be rarely located in parts that
are not shared by any other target sequence, and the maximum number of designed probes
may be (too) large, thus potentially wasting array capacity due to probe redundancy.

2. If target sequences overlap, merge them to one combined sequence
All overlapping target sequences are merged to one combined sequence, therefore eliminating
any overlap among target sequences. Thus, probes will also not overlap (unless specified
explicitly) and the number of designed probes is, in general, smaller compared to the first
strategy (Table 5.1). However, probe specificity and individual target sequence coverage may
be low. This strategy is favorable if genes should be represented on the microarray but a
distinction into different isoforms is irrelevant.

3. If target sequences overlap, use only the non-overlapping specific regions of each
target sequence
Only the part(s) specific for each target sequence (i.e., the part(s) not overlapping with any
other target sequence) are retained, and all unspecific parts are eliminated. Although this
strategy results in non-overlapping probes with high specificity, sequence coverage may be
very low, particularly if only a small percentage of target sequences have any specific sequence
parts of sufficient length so that probes can in fact be designed. This strategy allows a distinct
quantification of the expression of various isoforms for a particular loci.
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a
b
c
d

1: Do not merge overlapping 
    target sequences

2: If target sequences overlap, 
    merge them to one combined
    sequence

3: If target sequences overlap, 
    use only the non-overlapping 
    specific regions

Set of overlapping target sequences

Three strategies to handle overlapping target sequences

e

Figure 5.4: Schematic overview of three different strategies to handle overlapping target sequences. The
three different strategies are applied to a set of five overlapping target sequences for which probes should be
designed (labeled a–e). Note that for some target sequences or parts thereof, probes cannot be designed
because the sequence length is shorter than the length of the actual probes (indicated by x). The color
scheme is analogous to Figure 5.3. For more details, see text.

5.2.1.4 Number of Probes per Target Sequence

Expression measurements from sequences with only a single probe may yield substantial signal
differences [386, 387]. For example, Chou et al. [387] examined the effect of this so-called
measurement bias and found a strong dependence with the number of probes per target sequence
(hereafter called np). If np is very low, measurement bias may be very high, whereas the bias
decreases non-linearly if np is increased. To tackle this problem, one can use large np values to
obtain more accurate expression measurements. However, due to the limited space on the microarray,
np must not be too large. Furthermore, using a fixed value for np cannot adequately represent all
target sequences due to their length differences that are frequently large.

While the number of probes per target sequence is only relevant for probe design itself, which is
not integrated into the CAD pipeline, I implemented a very flexible way of preprocessing target
sequences that easily allows to employ different strategies in the probe design with respect to the
number of probes per target sequence. The approach presented here is to partition target sequences
into different distinct sets according to their sequence length (Figure 5.5). By defining only one
partition that covers all target sequences a fixed value of np can be used, whereas classifying target
sequences into multiple partitions allows a more fine-tuned and length-dependent assignment of np.
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Table 5.1: Comparison of three different design strategies to handle overlapping sequences. The table
gives a crude estimation for various criteria, based on “typical” datasets with a medium level of overlapping
target sequences. Trivially, for datasets with no overlaps among target sequences, all three strategies yield
identical results. Probe-sequence coverage denotes the percentage of target sequences that are represented
by at least one probe. See Figure 5.4 and text for details (in particular, what the names of the different
strategies correspond to).

Criteria Strategy 1 Strategy 2 Strategy 3

Amount of overlapping probes zero–high zero zero
Probe specificity with respect to individ-
ual target sequences

low–high low–high high

Probe-sequence coverage high low–high low–high
Typical amount of probes that will be
designed

medium–large medium few–medium

Typically, larger np values may be used for longer sequences, and particularly long target sequences
may optionally be split into shorter subsequences. To ensure that probes may also be designed in
the vicinity of the split positions, a specific overlap can be defined that should be at least as large
as the probe length (Figure 5.5).
Application of that strategy therefore has multiple advantages. It can be very flexibly adjusted to
best meet the requirements of the particular experiment and dataset, it uses the available array
capacity efficiently while simultaneously controlling measurement bias if reasonably set, and it may
also be used for traditional length-independent np values.

The CAD pipeline also provides various statistics to estimate the maximum number of probes that
may be designed for a particular set of target sequences and design strategies. This is useful
to obtain a crude estimate of the used space on the CEM after probe design and to evaluate if
additional target sequences can be included. If the estimated number of probes exceeds the array
capacity, for example, the number of target sequences may be reduced by discarding particular
datasets, adding negative set filters, excluding sequences on the complementary strand for selected
datasets, or by reducing the value(s) for np.

5.2.1.5 Probe Design

The design of high-quality probes is essential for accurate expression measurements [372, 388,
389]. Probes should have high specificity (to what degree they bind to non-target sequences) and
sensitivity (binding strength to its target sequence). Thus, probes should have a high intensity if
its target sequence is contained in the RNA sample and a low intensity otherwise. Furthermore,
they must be isothermal with respect to their hybridization temperature [377] because they are all
subject to identical experimental conditions.

I provide selected and preprocessed target sequences in universally accepted file formats that can
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chr1: -230,000-230,980 chr3: +1,110-1,315 chr7: +55,110-55,560 chr7: +980,600-981,705

980 bp 205 bp 450 bp 1,105 bp

LONG MEDIUMSHORT

Split into overlapping loci of length ≤ 1,000 bp

LONG SHORT

1,000 bp
165 bp
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Figure 5.5: Visualization of the first strategy to handle overlapping sequences in conjunction with target
sequence partitioning into different sets. An exemplary set of (partly) overlapping target sequences is shown,
originating from four different loci. Here, the first strategy is employed: overlapping target sequences are
merged to one combined sequence and subsequently partitioned into three different sets (short: 60–300 bp,
medium–long: 301–600 bp, and long: 601–1000 bp). If combined target sequences are longer than 1000 bp,
they are split into subsequences of length ≤ 1000 with an overlap of 60 bp. The resulting target sequences
may then be treated separately for subsequent probe design (e.g., in terms of the number of probes per
target sequence). For more details, see text.

be directly used as input for various probe design tools. For two reasons, I do not include the
possibility to design oligonucleotide probes within the CAD pipeline. First and most importantly,
CEM manufacturers like Agilent or Nimblegen provide their own models for probe design to optimize
melting temperatures for their specific array technology. Second, although numerous software tools
are available to design oligonucleotide probes (e.g., see [372, 389]), they are not suited to integrate
with the CAD pipeline because they are:

• not freely available or require an official institutional agreement to obtain a free license (e.g.,
Picky [390], Array Designer3)

• not available anymore or non-functional (e.g., HiSpOD [391], EvoOligo [392])

• cannot be downloaded and only run on a web server (e.g., HiSpOD [391], ExonPrimer4)

• not available for Unix-based operating systems, cannot be run in a command-line mode, or
are only accessible via a GUI (e.g., Picky [390], Mprobe 2.0 [393], PerlPrimer [394])

• specialized for particular types of microarrays or application areas (e.g., Teolenn [395]: only
3http://www.premierbiosoft.com/dnamicroarray, last accessed in August 2013
4http://ihg.gsf.de/ihg/ExonPrimer.html, last accessed in August 2013

http://www.premierbiosoft.com/dnamicroarray
http://ihg.gsf.de/ihg/ExonPrimer.html
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suitable for tiling arrays, ProDesign [396]: designed primarily for metagenomics)

• restricted with respect to the reference genome that may be used (almost all tools)

5.2.1.6 Probe Specificity

Cross-hybridization to similar sequences is typically the most relevant source of non-specificity.
The threshold for when a probe is considered non-specific is non-trivial and depends on the probe
length, for example. A good determinant for specificity is its similarity to other sequences [397],
and cross-hybridization may already occur if the sequence similarity is as low as 75% or 70% (for
probes of length 50 and 70, respectively) or if at least 15 contiguous bases are identical in sequence
[397]. Therefore, evaluation of probe specificity is crucial, particularly because available probe
designers only find probes that are unique with respect to currently annotated transcripts (e.g.,
Agilent’s eArray). Due to the pervasiveness of transcription (see Section 2.1.3), however, such a
strategy is insufficient, and cross-hybridization must be tested against the complete genome to not
overestimate probe specificity. Thus, although probes may map uniquely to RefSeq, for example, in
reality, multiple perfect or near-perfect hits are frequently identified when mapped against the whole
genome. This is caused by highly similar sequences not included in RefSeq that, however, may also
be transcribed, making it impossible to pinpoint where the expression signal originally comes from.

In the CAD pipeline, probe specificity is therefore evaluated using the full genome as a reference.
The mapping of probes to the genome is performed using BLAT [381], and its parameters may be
arbitrarily customized to maximize flexibility. However, I encourage the usage of parameters that
allow the splitting of probes (e.g., for probes overlapping a splice site in a particular RNA target
sequence). Uniquely and non-uniquely mapping probes are provided separately, and non-uniquely
mapping probes are discarded for further analyses. Although the removal of probes reduces the
number of target sequences covered by at least one probe, it ensures that the origin of the expression
signal is unambiguous.

5.2.1.7 Probe Coverage

After evaluating probe specificity and discarding non-specific probes, the analysis of probe coverage
with respect to the target sequences is important. In particular, what is of interest is the percentage
of target sequences that are represented by at least one specific probe (hereafter denoted c>0).
Generally, because each target sequence without a probe will not be represented on the CEM, c>0

should be maximized and is therefore a measure for the probe coverage of the target sequences.
Estimating c>0 can principally be done based on different stages during the execution of the CAD

pipeline: (i) after unification of all original target sequences but before any additional filters were
applied, (ii) after the negative set filter were applied but before partitioning target sequences and
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applying a strategy for handling overlapping target sequences, and (iii) after all steps of the CAD

pipeline.

If c>0 is not sufficiently high, additional probe designs with the same probe designer or runs of the
CAD with altered parameters may be performed (e.g., increasing the number of probes per target
sequence so that new potentially specific probes are produced and alternative design strategies,
respectively). I discourage from using alternative probe designers, however, because they may design
probes with very different chemical properties (such as hybridization temperatures).

5.2.2 The CEM-Designer Web Server

In addition to the CAD pipeline, a web server (CEM-Designer) was designed to make the CAD

pipeline publicly available for other researchers (http://designpipeline.bioinf.uni-leipzig.de).
It provides a user-friendly, flexible, and dynamic interface and is organized in three independent
steps (Figure B.3): target sequences selection (step 1), and probe selection and design statistics
(step 3). As discussed before, probe design (step 2) must be performed with external tools and is
not integrated into the CEM-Designer. A major goal in the development of the web server was to
design a user interface that minimizes manual user interactions and input but which can nevertheless
be flexibly adjusted for more advanced users (Figure B.3 and Appendix B for details).

In step 1, an arbitrary number of files containing positions or sequences from genomic regions
(target sequences) may be uploaded by the user. The user must then select and choose among
various options (as discussed in Section 5.2.1) in the user interface of the CEM-Designer web
server.
In step 3, probe specificity is evaluated (see Section 5.2.1.6), various statistics are calculated, and
target sequences may be identified that are not yet represented by any uniquely mapping probes.
Step 3 can optionally be performed independently of step 1, in which case only limited functionality
is available (probe specificity evaluation only). Specifically, the following files and statistics are
generated during the execution of step 3:

• Probe-associated files and statistics
I provide various files that summarize all probes that could or could not be mapped uniquely
(including a list of all found hits) or could not be mapped at all, both as BED and FASTA
format. The files are in a human-readable, comma-separated text format and can therefore
easily be opened with any spreadsheet program.

• Target sequences-associated files and statistics
I provide various files that summarize the coverage statistics of all specific probes with respect
to the target sequences at different stages during the execution of the CAD pipeline (see above).
Furthermore, summary statistics are created that list target sequences that are represented by
the envisioned number of probes, fewer probes, and no probes at all. I also generate graphical

http://designpipeline.bioinf.uni-leipzig.de
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representations of various statistics such as histograms (e.g., target sequence length and
number of probes per target sequence), and the correlation of target sequence length and the
number of overlapping probes.

To minimize waiting times, the CEM-Designer web server can handle several requests in parallel. It
also implements a job system, allowing users to submit an arbitrary number of jobs that are started
upon availability of computational resources (Figure B.3). If not enough resources are available
for a newly submitted job, it will be placed in a queue. Jobs can furthermore be canceled at any
time. Once a job is finished the user is notified by email. All result files that the CEM-Designer

web server produced are accessible via a designated website and also available as a download.

The running time of individual jobs depends on the complexity of the input datasets and varies in
step 1 and 3 from minutes to multiple days. However, jobs are aborted if they cannot be completed
within 72 hours. The most time-consuming step is the mapping of probes and target sequences
that are available only in FASTA format. This is particularly the case because mapping parameters
may be arbitrarily user-adjusted, which can dramatically increase the running time as compared to
the default mapping options.

5.2.3 The nONCOchip 2.0 and the Alzheimer Custom Array

Two CEMs have been designed using the CAD pipeline: the nONCOchip 2.0 and the Alzheimer

Custom Array. The exact composition of both arrays, including methodological details for the
application of the CAD pipeline, are described in Appendix B. Here, I only describe general application
areas for the CEMs and highlight datasets of particular relevance.

Both the nONCOchip 2.0 and the Alzheimer Custom Array contain a comprehensive set of coding
and particularly non-coding sequences. The nONCOchip 2.0 is especially designed for the detection
of oncologically relevant ncRNAs. It contains known and predicted as well as experimentally
detected ncRNAs that are regulated in the context of tumor-relevant signaling pathways such as p53,
STAT3, and in the cell cycle. Due to the potential of ncRNA as biomarkers (see Section 2.1.4.3),
the nONCOchip 2.0 may therefore be used as a cost-effective tool for their identification and
development.

The Alzheimer Custom Array is in large parts identically composed as the nONCOchip 2.0 but
differs in a few notable details. It is well suited for the identification of differentially expressed loci
in AD (see Chapter 6) because it contains various disease-associated loci.

Notably, both arrays contain two ncRNAs datasets with chromatin-regulating functions.
The first dataset comes from Khalil et al. [201] and contains a set of lncRNAs originating from
actively transcribed genes. They were identified based on their particular chromatin signature,
namely the presence of promoter-associated H3K4me3 and transcription-associated H3K36me3
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(K4-K36 domains). Using tiling microarrays at a resolution of 10 bp, the authors showed that in
nearly 75% of all K4-K36 domains, multi-exonic ncRNA are present with four exons per domain
on average. This adds up to a total of 4,860 exons5 that were used as input for the CAD design
pipeline. Khalil et al. [201] also showed that many lncRNAs expressed in HeLa cells are bound
by chromatin-modifying enzyme complexes such as PCR2 and CoREST (≈ 20% and ≈13%,
respectively) as well as SMCX (a histone H3K4me3 demethylase). Because CoREST is a repressor
of neuronal genes, it is particularly interesting for the Alzheimer Custom Array.
The second chromatin-associated dataset comes from Mondal et al. [188] and contains 141 intronic
and 74 intergenic regions from human fibroblast cells. The authors isolated, purified, and deep
sequenced chromatin-associated RNA from fractionated chromatin and then focused on transcripts
originating from intronic and intergenic transcripts. They subsequently successfully verified the
chromatin-association property of a few of these putative transcripts and functionally examined one
candidate further (see Section 2.1.4.3).

5.3 Discussion

Microarray technology is relatively mature and well-established. CEMs, in particular, are increasingly
popular. However, mammalian transcriptomes are pervasively transcribed, with large numbers of
overlapping transcripts for each traditional protein-coding gene (see Section 2.1.3). A suitable
selection and preprocessing of target sequences prior to probe design as well as the evaluation of
probe specificity are therefore non-trivial. On average, each traditional protein-coding gene has
large numbers of overlapping transcripts (see Section 2.1.3), and protein-coding and non-coding
transcripts often originate from the same genomic locus. Confidently measuring expression of
particular non-coding variants is therefore challenging because it must be ensured that one can
distinguish between non-coding and coding transcripts. Similarly, if multiple diverse datasets are
integrated on the CEM, selecting a suitable strategy for how to treat overlapping target sequences
and how to choose the number of probes per target sequence appropriately is a more complex task
than previously appreciated. All of these considerations may have a profound impact on microarray
data analysis and statistical validation and must therefore be addressed with great care.

The developed bioinformatics pipeline is the first tool that explicitly addresses these issues in a
systematic and thorough fashion. It automates and facilitates the design of CEMs emphasizing
in particular on target and probe selection. It provides high flexibility for the selection and
preprocessing of target sequences because various specific design strategies with respect to handling
overlapping target sequences or partitioning target sequences into smaller sets can be user-adjusted.
It furthermore allows the identification of probes with high specificity for the desired target sequences
and vice versa target sequences with low coverage of high-quality probes. To fully ensure high

5Table 2 in Dataset S1 in Khalil et al. [201]
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probe specificity one would need the complete transcriptome, which is not yet available for complex
transcriptomes. The approach presented here alleviates the shortcomings of available probe designers
with respect to evaluating probe specificity by using genome-wide alignments that include alignments
spanning introns. It also minimizes the effects of cross-hybridization to other target sequences, even
those on yet unannotated transcripts that may nevertheless be contained in the RNA sample.

I introduced three different strategies to handle overlapping target sequences, each of which with
its own application areas. Thus, their individual advantages and disadvantages have to be carefully
considered. For the nONCOchip 2.0 and the Alzheimer Custom Array I found that a combination
of these strategies provided a good compromise between representing a large fraction of target
sequences with at least one probe and minimizing probe overlap. The large majority of the probes for
both arrays originate from non-coding sequences. Importantly for the scope of this thesis, however,
they also include genomic regions and transcripts with known or predicted chromatin-regulating
functions.

As mentioned, to maximize the c>0 value6 I performed up to two additional designs after the first
design using a reduced dataset containing only those target sequences that were not yet represented
by any specific probe after the respective previous design. In summary, this scheme generally worked
well. For Gencode lncRNAs, for example, the c>0 value after the first design was ≈77%. Other
classes of RNAs had substantially higher values (e.g., c>0 ≈ 96% for coding exons and c>0 ≈ 88%

for UTRs). For the ncRNA datasets it was more difficult to design uniquely mapping probes. After
the first design round, for example, the c>0 value was only 66% (Figure B.4 A), and I improved it
to ≈73% after the third design.

The overarching goal of the CEM-Designer web server is to provide a publicly available, easy to
use, and flexible tool that implements the functionality of the CAD pipeline. User friendliness was
particularly important, and the web server make use of various JavaScript libraries to optimize,
for example, navigation and orientation, visual clarity, consistency, and comprehensibility. I expect
that the web server itself will evolve over time to further increase flexibility and functionality. For
example, it currently only supports hg19 as target genome assembly version but additional genomes
can easily be added if the need arises.

The CAD pipeline and the CEM-Designer web server may be further improved and extended
by providing additional probe specificity tests such as more rigorous testing for potential cross-
hybridization issues. For example, it has been shown repeatedly that cross-hybridization may occur
if probes are too similar (>90%), identical in more than 15–20 consecutive positions [397, 398], or
if the binding free energy is too low [398].

Despite the emergence of more advanced high-throughput methods such as RNA-seq, microarrays
still offer multiple advantages. First, they are still more cost-effective compared with sequencing

6fraction of target sequences that are represented by at least one uniquely mapping probe
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technologies although sequencing costs will continue to decrease. Second, microarrays are a matured
technology. In contrast to RNA-Seq, sources of bias are better known, and powerful analytical
strategies and experimental designs to deal with them are available [57]. Third, microarray data
are easier and faster to analyze compared to RNA-Seq due to the immensely decreased size of
the data. This reduction in complexity is particularly relevant for biologists and labs without
extensive bioinformatics support. Fourth, microarrays have been found to perform better in various
specialized tasks such as network reconstruction [399]. Thus, they will remain a useful, accurate,
and ubiquitously used7 tool for transcriptome profiling for at least a few more years.

7e.g., a PubMed search reveals that in 2012, the number of citations for microarray-related studies is over ten
times higher than for RNA-Seq studies (search terms: “microarray” and “RNA-Seq” (or “RNASeq”), respectively)



Chapter 6
The Significance of the Chromatin
Computer in Alzheimer’s Disease

6.1 Motivation and Background

As outlined in previous chapters, the maintenance of correct epigenetic patterns throughout the
lifetime of an organism is crucial for cellular stability and identity. Misregulation of epigenetic
mechanisms is likely to have fatal consequences that may contribute significantly to diseases such
as Alzheimer’s disease (AD). Indeed, epigenetic mechanisms have been increasingly associated
with AD. Consequently, they are of growing importance in the etiology of AD [42, 43, 48–
54]. Zawia et al. [48], for example, suggested that the promoters of AD-associated genes may
be hypomethylated due to environmental influences during brain development that cause the
inhibition of DNA-methyltransferases, followed by a cascade of events such as increased rate of
DNA damage and neurodegenerative processes. Lithner et al. [400] hypothesized that soluble
amyloid-ß may be a signaling molecule that modulates the transcriptional activity of DNA by
disrupting histone H3 homeostasis. Lastly, Rao et al. [50] measured global AD-associated DNA
hypermethylation and histone H3 phosphorylation in genomic regions that involve, among other
functions, neuroinflammation.

In summary, DNA methylation and histone PTMs are promising candidates for further investigation
and drug development [48–51], as well as long non-coding RNAs and particularly chromatin-
associated RNAs [52–54]. Additionally, histone acetylation is also believed to contribute to the
pathogenesis of AD and has recently spurred substantial interest due to its importance for learning
and memory [401]. Hypoacetylation is generally associated with repressive chromatin states, and
hypoacetylation of histones H3 and H4 in particular may initiate apoptosis in neurons [402]. Histone
deacetylase inhibitors in particular are therefore currently promising candidates for treating central
nervous system disorders [403, 404].

A multitude of putative causes for AD have been postulated. Various genetic studies suggest that
AD is not caused by a simple mutation, because only a very small percentage of AD cases can be
linked to mutations in specific genes. Instead, it has been hypothesized that the cognitive decline is
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caused by abnormal network-related activities that interfere with cognitive functions such as learning
and memory, apoptosis of particular neuronal populations, as well as dysfunction and aberrant
loss of synapses [405]. More specifically, a plethora of gene expression profiling studies revealed
dysregulation of genes related to neuroinflammation, intracellular signaling pathways such as calcium,
zinc or Wnt signaling and signal transduction [406, 407], metal ion binding and dyshomeostasis
[408, 409], mitochondrial dysfunction [410], cell cycle regulation [411, 412], membrane integrity
[413], the immune system and inflammation [414], protein kinases and phosphatases [415], neuronal
and synaptic plasticity as well as neurotransmission [416], the cytoskeleton [417], cell adhesion
[418], and olfactory dysfunction [419]. However, some of the observed dysregulations may only be
downstream effects (e.g., neuroinflammation [410]). In addition, the pathological cascade of AD
seem to begin at least ten years before the appearance of the first clinical symptoms [420–422].

For AD and age-related neurodegenerative disorders more generally, the prion hypothesis has recently
gained experimental momentum [422]. Briefly, prions are typically infectious agents composed of
misfolded proteins. These so-called proteinaceous seeds may serve as self-propagating agents for the
instigation and progression of particular diseases. In AD, ultimately, they functionally compromise
the nervous system due to aggregated proteins that either gain a toxic function and/or lose their
normal function [422]. Whereas prion diseases in general may also be infectious in origin, this does
not seem to be the case for AD.

Biochemically, AD is associated with amyloid plaques and neurofibrillary tangles in the brain [423]
but a clear causative pathway is yet missing [47] (Figure 6.1). As an example for the causal
complexity, Ciarlo et al. [424] demonstrated that the ncRNA 51a, located antisense to an intron
of the AD risk gene sortilin-related receptor 1 (SORL1), is frequently upregulated in AD. This
promotes the synthesis of an alternative splicing variant of SORL1, which subsequently causes
increased ß-amyloid formation [424].

AD seems to be an evolutionarily young disease and is currently believed to occur only in humans.
No other mammalian species recapitulates all of the key features of AD [55] although some are also
susceptible to AD-like symptoms [55, 56]. Data availability for non-human primate species is very
rare, and it therefore remains unclear to what extent AD is indeed human-specific. An intriguing
hypothesis concerns whether the genomic loci that are differentially regulated in AD are similarly
evolutionarily young (hypothesis 1). To this extent, I am interested in identifying whether they
show signs of recent changes in their genomic structure. It is reasonable to speculate that this is
particularly true for non-coding regions and only to a much lesser extent for protein-coding ones.
Because the latter have high evolutionary pressure, they are largely conserved across mammals and
evolutionarily much more conserved.

Additionally, if epigenetics indeed plays decisive roles in AD as suggested by the large array of
studies, chromatin-associated loci and loci associated with epigenetic stability should be differentially
expressed in AD. I therefore hypothesize that a dysregulated CC may play important roles in AD
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Figure 6.1: Pathophysiology of AD.
A: Schematics of how microtubules disintegrate in AD brain cells caused by changes in the tau protein,
which destroys the neuron’s transport system [425]. Microtubules are essential for the cytoskeleton of every
neuron. Credit: National Institute on Aging/National Institutes of Health.
B: Comparison of two brain diagrams (top: normal brain, bottom: AD brain). Credit: Image is released to
public domain.
C: In AD, amyloid precursor protein, a single-transmembrane protein present in neuronal synapses with
important neuron-related functions, is cleaved into fragments. Most notably, this yields beta-amyloid, which
forms amyloid plaques (insoluble fibrils that accumulate outside neurons) that are characteristic for AD.
Credit: NIH National Institute on Aging.

(hypothesis 2).

In this chapter, I explicitly address the two hypotheses about the evolution of AD and its association
with chromatin using the Alzheimer Custom Array that has been developed (see Section 5.2.3).
Due to the complexity of the bioinformatic analyses that I performed, for some analyses, full
methodological details are listed in Appendix C and only a brief summary of the methods is given in
the main text.
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6.2 Methods and Results

6.2.1 Microarray Workflow

Analyzing microarray data poses significant bioinformatics challenges, for example in terms of the
large amount of data that has to be analyzed, the assessment of data quality and comparability, and
finally in the obtainment of accurate and reproducible results. Figure 6.2 depicts a general schematic
overview of a typical microarray workflow, and as highlighted, only steps 4–8 are described in the
following.

Steps 1–3, particularly the preparation and microarray processing of the control and AD samples for
the Alzheimer Custom Array, were performed in the RNomics group at the Fraunhofer Institute
for Cell Therapy and Immunology (Fraunhofer IZI, Leipzig, Germany) in collaboration with the
Paul-Flechsig-Institute for Brain Research, Leipzig, Germany. Methodological and experimental
details are therefore not described here but can be requested from the following individuals:

• Dr. Kristin Reiche (kristin.reiche@izi.fraunhofer.de)

• Prof. Dr. Thomas Arendt (Thomas.Arendt@medizin.uni-leipzig.de)

• Dr. Jörg Hackermüller (joerg.hackermueller@izi.fraunhofer.de)

Steps 4–8 were performed using the statistical software package R and Bioconductor [426]. After
the identification of differentially expressed probes, I employed a variety of additional methods and
analyses to unravel the significance and meaning of the expression results and to relate targets to
biological functions.

6.2.2 Quality Control and Data Normalization

Quality control measures encompass a variety of methods and techniques to critically assess the
quality of each array in order to identify artifacts of any kind. Upon visual inspection of the
arrays and based on sample similarity heatmaps, I excluded four arrays because they displayed
spatial artifacts, thereby improving data quality. For example, these arrays contained regions with
artifactually low or high intensities relative to the majority of the array [427]. Using sample similarity
heatmaps, I furthermore uncovered that the age of the patient contributed non-negligibly to array
similarity and subsequently included the variable age in the linear model for the identification of
differentially expressed probes (see Section 6.2.3). For noise reduction (i.e., removing probes with
consistently low intensity values or low variance across all samples), I filtered probes if their intensity
scores had (i) an interquartile range1 of less than 1 (unspecific filtering) or (ii) an expression

1a common statistical measure that is equal to the difference between the upper and lower quartiles of the
intensity scores for each probe (i.e., a measure of the spread of the middle 50%)
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1. Experimental design

2. Prepare samples, 
hybridize to microarrays

3. Visualize data/ 
image analysis

5. Normalize data*

6. Find differentially 
expressed genes* 7. Further analyses*

8. Interpretation of results 
and biological verification*

4. Critically evaluate data 
quality, remove outliers*

Figure 6.2: Schematic of tasks and steps in a classical gene expression microarray experiment. Only steps
marked with an asterisk are described here. Image modified after Slonim et al. [378].

determination above the background in less than one third of all arrays. From the original 931,898
probes, this retained 113,047 that passed all quality filters.

Although performing a background correction is useful because it eliminates unspecific background
noise and local fluctuations of the overall signal level, it typically also lowers signal intensities.
Because Agilent microarrays already have relatively low signal intensities, I therefore decided against
a background correction.

Data normalization is crucial to reduce systematic sources of variation (technical variation) such as
among-array differences in the amount of starting RNA and the efficiency of various experimental
issues (photodetection, reverse transcription), and other systematic biases that hinder or prevent
meaningful biological comparisons. Also, comparability among experiments and arrays within one
experiment is increased. Importantly, biological variation should be left untouched. I decided to
quantile normalize expression intensities [428].
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6.2.3 Identification of Differentially Expressed Probes

To identify differentially expressed probes between AD and control samples, I defined a linear model
that explicitly includes the patient age because on average, individuals from AD samples were much
older as compared to the control samples (∼81 and 65 years, respectively). The model also included
error terms to account for stochastic variation. For more details, see Appendix C.1. I then identified
differentially expressed probes based on different q-value thresholds to control the false discovery
rate (0.2: 4,184; 0.1: 2,021; 0.05: 1,038; 0.01: 214). In Figure 6.3, I show two example heatmaps
based on q = 0.1 and q = 0.2. Finally, I chose a q-value threshold of 0.2. I set q to a relatively
high value because I employed a two-step procedure to identify differentially expressed loci (see
Section 6.2.5). Of the 4,184 differentially expressed probes with q < 0.2, 3,263 were upregulated
in AD and 4,095 mapped uniquely. The latter defined the set sdiff that I used for all subsequent
analyses.

6.2.4 Feature Enrichment Analyses

I then performed a feature enrichment analysis for sdiff (e.g., analyzing the location of probes with
respect to specific genomic features such as exons, introns, and UTRs).

I performed the enrichment analysis based on the Gencode v14 annotation for the following three
annotation fields: feature type, gene type and transcript type2 and the various annotation (source)
files that I integrated (see Appendix B.2 for details). In addition to the feature types as provided
by Gencode, I also introduced three additional ones (intron, intergenic and lncRNA). Introns were
defined as intragenic regions that are not exons. Intron positions were derived from Gencode, based
on the positions of exons and genes. Intergenic regions were defined as regions that overlap with
neither any protein-coding transcript nor any kind of pseudogene. To estimate the number of
probes that do not overlap with any protein-coding transcript but with a pseudogene, I additionally
included a second intergenic category that ignores any pseudogene overlap and therefore only
incorporates the protein-coding overlap information (labeled as Intergenic (ignoring pseudogenes) in
Figure 6.4). lncRNA finally indicates that the probe overlapped with a transcript from the Gencode
long non-coding RNA subset. Except for intergenic regions, I distinguished between sense and
antisense hits for all overlaps. For the calculation of the observed frequencies, I counted the number
of (distinct) probes that overlap at least 95% of their length (i.e., 57 nucleotides) with a particular
annotation feature or dataset (see Appendix B.2). Because categories were not mutually exclusive,
individual probes might be associated with multiple categories.

The results of the enrichment analysis based on the Gencode fields feature type, gene type, and
2The feature type can have the following values: gene, transcript, exon, CDS, UTR, start codon, stop codon,

or Selenocysteine. For valid gene and transcript biotypes, see http://www.gencodegenes.org/gencode_
biotypes.html, last accessed in June 2013

http://www.gencodegenes.org/gencode_biotypes.html
http://www.gencodegenes.org/gencode_biotypes.html
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Figure 6.3: Example heatmaps of differentially expressed probes. Two heatmaps (with dendrograms) of
differentially expressed probes are shown, based on normalized expression values for q = 0.1 (A) and q = 0.2
(B). Each row shows one differentially expressed probe and each column a particular array (i.e., patient). For
each array, additional metadata, such as patient group (blue: AD, red: control), age, and gender (green:male,
red:female), are depicted as well as experimental metadata associated with the array of the patient such as
RIN value and array hybridization date. The original values for age, RIN value and array hybridization date
(AHD) were subject to a linear transform and are colored on a yellow-red scale (yellow/bright: young/low
RIN/early AHD, red/dark:old/high RIN/late AHD, gray indicates missing data). Variable ranges: age:21–98
years, RIN:5–8.3, AHD:one of four possible consecutive days. For visualization purposes, values have been
centered and scaled in the row direction (Figure C.1 for a variant without scaling). See text for further
details. (Continued from previous page.)
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transcript type are summarized in Figure 6.4 A–C. For the feature type, I found an enrichment of
intergenic regions, lncRNAs (sense), and introns (antisense). I also found less hits than expected
for UTRs, coding regions and exons (sense and antisense) and introns (sense). For almost all
categories, I found less sense hits than expected, while antisense transcripts were mostly enriched.
The gene type enrichment analyses revealed an increased occurrence of a diverse set of ncRNAs
such as snoRNAs, lncRNAs, and antisense hits of protein-coding regions. I found that pseudogenes
and particularly processed pseudogenes were also highly enriched.

The results of the enrichment analysis based on the source files the regions originated from (see
Appendix B.2) are summarized in Figure 6.4 D and E. I found enrichment of TP53 (sense and
antisense), snoRNAs, ncRNA predictions based on RNAz and Evofold, and totally and partially
intronic RNAs as identified by Nakaya et al. [429] (denoted as TINs and PINs, respectively).
Intriguingly, both chromatin-associated datasets and the vast majority of the cell cycle tiling array
regions (see Appendix B.2) were also enriched both in sense and antisense direction, with few
exceptions.

6.2.5 Identification of Differentially Expressed Loci

Next, I aimed to identify differentially expressed loci rather than probes. Due to the complexity of
the methods, I only provide a brief methodological summary here, and the full details are described in
Appendix C.2. The rationale behind this step was to identify the set of genes that show particularly
trustworthy signs of differential expression. I argue that the differential expression of an individual
probe may not be a sufficient criterion for the corresponding gene to be considered differentially
expressed. For example, consider the following case for a particular gene g for which one differentially
expressed probe pdiff mapping to g has been identified. Among all probes that map to g, pdiff may
be a false positive, and all other probes do not show signs of differential expression. Thus, further
incorporating g may not be useful because other genes show much stronger and homogeneous
signals with respect to differential expressions of probes.

Briefly, I employed a two-step procedure for the identification of differentially expressed loci. The
first step encompassed the identification of differentially expressed probes as described above, based
on a relatively high q-value threshold. The second step entailed rigorous testing of all loci for
which at least one probe p ∈ sdiff maps in sense direction. Only loci were classified as differentially
expressed if a significant proportion (based on a p-value threshold of 0.05 using a binomial test) of
probes mapping to that loci had an expression change in the same direction as p ∈ sdiff. Thus, the
false discovery rate was also controlled in a two-step fashion.
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(Continued on next page.)
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(Continued on next page.)
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Figure 6.4: Results of the enrichment analysis.
A–C: Expected and observed frequencies with respect to the Gencode annotation for the three Gencode
annotation fields feature type (A), gene type (B), and transcript type (C) are shown (separately for sense
and antisense overlap). Only types for which either the background or the observed frequency were larger
than 10 are shown.
D–E: Expected and observed frequencies with respect to the manually collected datasets (separately for
sense and antisense overlap). In D, only datasets for which either the background or the observed frequency
were larger than 10 are shown, whereas in E, the remaining datasets are depicted.
(Continued from previous page.)
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Figure 6.5: Summary of the results and the methodology for identifying differentially expressed loci. For details, see text.
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Collectively, I identified a set of 764 differentially expressed genomic loci, 31 of which were associated
with at least three distinct differentially expressed probes (Table 6.1). I classified each genomic loci
to one of the four following classes: protein-coding, non-coding, pseudogenes, and uncharacterized.
The first three classes correspond to known transcripts, whereas the latter represents loci with
uncharacterized transcript structure and strand. They were previously identified by transcriptome-
wide expression variation studies utilizing Affymetrix Human Tiling Arrays (tiling array regions —
TARs, see Appendix B.2), RNAs with conserved secondary structures, and caRNAs as identified by
Mondal et al. [188]. For details how I assigned a class for each loci, see Appendix C.2. In summary,
the 764 loci split up in the four classes as follows (Figure 6.5):

• 162 putative protein-coding genes

• 460 putative non-coding genes or non-coding loci

• 29 putative pseudogenes

• 113 loci with unknown/uncharacterized transcript structure and type

Initially, a total of 208 loci were found that originated from annotations with unknown transcript
structures and strand (loci from the tiling array experiments, ncRNA predictions, caRNAs [188]).
However, only 113 of them did not overlap with any other annotation with known transcript
structure (e.g., Gencode or any of the non-coding databases that I included, see above), whereas 95
overlapped with known transcripts. The former therefore require further study. For the latter, I used
the overlapping annotation with known transcript structure and strand and ignored the overlap with
the annotations with unknown transcript structure. Of these 113 (208) loci, 19(25) correspond to
tiling array regions with putative cell cycle regulating functions (G0-G1: 11 (17), G1-S:1, G2-G1:7),
25 (33) to tiling array regions that were significantly higher expressed in a preliminary study with one
AD patient sample and one control brain tissue sample, 18 (24) tiling array regions with RNAs that
have been found to be controlled by major cancer-related pathways, 7 (10) caRNAs as identified
by Mondal et al. [188], 42 (48) RNAs with conserved secondary structures (39 (45) RNAz [384], 3
Evofold predictions [382]), and 10 (89) operational genes (EST cluster).

6.2.6 Functional Characterization of Differentially Expressed Loci and Overlap
with Known AD-Associated Loci

For differentially expressed protein-coding and non-coding genes, I collected functional descriptions
of each gene using the GeneCards3 [430, 431] and Ensembl4 website. Additionally, I used the Gene
Ontology (GO) project [432] to retrieve GO terms for each gene.

I found that most of the differentially expressed loci have known AD associations or hypothesized
3http://www.genecards.org, last accessed in August 2013
4http://www.ensembl.org, last accessed in August 2013

http://www.genecards.org
http://www.ensembl.org
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Table 6.1: Selected differentially expressed loci. Differentially expressed loci associated with at least
three distinct differentially expressed probes are listed. Gene name: Ensembl gene name (if available).
ID/Location: Ensembl ID (if available) or chromosomal location. Signal origin: Characterization of the
location/source from which the signal (differentially expressed probe) originates from (TAR — tiling array
region, see Appendix B.2). Reg. in AD: Is the transcript downregulated (-) or upregulated (+) in AD in
the Alzheimer Custom Array? ndiff: Number of distinct differentially expressed probes associated with
the locus.

Gene name ID/Location Signal origin Reg.
in AD ndiff

SLC1A2 ENSG00000110436.6 exon of protein-coding gene − 15
INHBA-AS1 ENSG00000224116 antisense lncRNA − 12

RAB3B ENSG00000169213.5 exon of protein-coding gene − 11
C1orf95 ENSG00000203685.5 exon of protein-coding gene − 10
NA chr11:+35272757–35277591 uncharacterized (AD-associated TAR) − 10

FREM2 ENSG00000150893.9 exon of protein-coding gene − 9
NA chr11:+35277781–35280190 uncharacterized (AD-associated TAR) − 9

SDC4 ENSG00000124145.5 exon of protein-coding gene − 7
AGXT2L1 ENSG00000164089.4 exon of protein-coding gene − 6
NKAIN3 ENSG00000185942.7 intron of protein-coding gene − 6

CTD-2015H6.1 ENSG00000240003.2 pseudogene + 6
NA chr10:+129901418–129907741 uncharacterized (cell cycle- and

cancer-associated TAR)
+ 6

NA chr18:+41591002–42006002 uncharacterized (cancer-associated TAR) + 6
PDGFRA ENSG00000134853.7 exon of protein-coding gene − 5

TEA chr14:+22942568–23016566 lncRNAdb (ncRNA from the T early
alpha promoter)

+ 5

MIR31HG ENSG00000171889.3 lncRNA + 5
ZCCHC12 ENSG00000174460.3 exon of protein-coding gene − 4

ZIC4 ENSG00000174963.13 exon of protein-coding gene + 4
TARBP1 ENSG00000059588.5 exon of protein-coding gene − 4
RUNX1 ENSG00000159216.13 intron of protein-coding gene + 4
ZIC4 ENSG00000174963.13 exon of protein-coding gene + 4
NA chr11:+35280523–35282998 uncharacterized (AD-associated TAR) − 4
NA chr3:+123380693–123498543 uncharacterized (caRNA [188]) + 4

TTC6 ENSG00000139865.12 exon of protein-coding gene − 3
ADAM12 ENSG00000148848.9 intron of protein-coding gene + 3

FLI1 ENSG00000151702.11 intron of protein-coding gene + 3
FRMD6 ENSG00000139926.11 intron of protein-coding gene − 3

KIAA1199 ENSG00000103888.11 intron of protein-coding gene + 3
CRIM1 ENSG00000150938.5 intron of protein-coding gene − 3
COL6A3 ENSG00000163359.10 intron of protein-coding gene + 3

LL22NC03-
13G6.2

ENSG00000224404.1 lncRNA − 3

EXT1 ENSG00000182197.6 intron of protein-coding gene − 3
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implications in AD neuropathology. Examples include CALHM1 [433], BDNF [434, 435], SLC1A2
[436], KCNIP4 [52], RAB3B [437], TP53 [438], and various other genes related to different
signaling pathways such as calcium, zinc or Wnt signaling and signal transduction; metal ion
binding and dyshomeostasis; cell cycle regulation; membrane integrity; the immune system and
inflammation; protein kinases and phosphatases; neuronal and synaptic plasticity; neurotransmission;
the cytoskeleton; cell adhesion; and olfactory dysfunction (see Section 6.1).

I found differentially expressed probes that map either in sense or antisense direction to various
other previously reported AD-associated genes such as FYN (ENSG00000010810, antisense) [439],
PICALM (ENSG00000073921, sense) [440], NOVA1 (ENSG00000139910, antisense) [114], GABBR2
(ENSG00000136928, sense and antisense) [441], and LRP6 (ENSG00000070018, antisense)[442].
Particularly noteworthy are the following genes, for which probes in sense direction were classified
as differentially expressed:

• CALHM1: This gene encodes a transmembrane glycoprotein that regulates cytosolic Ca2+

concentrations and amyloid-ß levels. Particular polymorphisms have been found to be
significantly associated with AD [433].

• BDNF: see Section 6.2.7 for details

• SLC1A2: This gene has crucial roles for synaptic activation and for neuronal damage
prevention from excessive activation of glutamate receptors. Its observed downregulation
in AD may result in a low conductance state of synapses, which could be indicative for the
activation of inhibitory pathways [443].

• KCNIP4: This gene encodes a potassium channel-interacting protein and regulates neuronal
excitability in response to intracellular calcium changes. Recently, a ncRNA located antisense
to an intron of KCNIP4 has been identified that drives the synthesis of an alternatively spliced
form of the gene. Upregulation of this particular isoform results in various dysregulated
biochemical outcomes that may contribute significantly to brain homeostasis and pathogenesis
[52]. KCNIP4 also interacts with presenilin, one of the few genes with known mutations that
may cause AD [444].

• TP53: see Section 6.2.7 for details

I also analyzed overlap with known AD-associated loci more systematically using a total of 451
genomic loci (genes) that have been collected from the literature (see Appendix C.3 for details). I
successfully designed probes for all these 451 loci, each of which is covered by a median number
of 21 probes (range:0–1,106). For 444 of them, at least two probes have been designed. I then
determined the set of AD-associated genes that overlap with the set of differentially expressed loci.
In summary, I found 22 overlaps in sense and 9 in antisense direction, thereby confirming their
AD-association (Table C.1).
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I also identified several putative protein-coding genes that are so far either uncharacterized or of
unknown function but with potential pathogenic significance in AD. This list includes, for example,
TTC6 (ENSG00000139865), RP1-27O5.3 ( ENSG00000215897), RGSL1 ( ENSG00000121446),
GCSAML (ENSG00000169224), CLLU1OS (ENSG00000205057), CCDC60 (ENSG00000183273),
KIAA0125 (ENSG00000226777), WDR76 (ENSG00000092470), AC005544.1 (ENSG00000214167),
KIAA1328 (ENSG00000150477), and LL22NC03-63E9.3 (ENSG00000220891).

I also checked whether I find evidence for transcription of the AD-associated upregulated ncRNA
51A that has been recently identified (see Section 6.1) [424]. I indeed observed a differentially
expressed probe that is upregulated in AD (p ∼ 0.002, q ∼ 0.11) mapping antisense to the SORL1
gene but it is not located antisense to intron 1 of the gene.

Recently, the lncRNA LINC00299 has been found to be disrupted in subjects with neurodevelopmental
disabilities, adding yet another example to the set of ncRNAs that may play a significant role in
human developmental disorders [445]. Although LINC00299 was not found to be classified as
differentially expressed in the presented analysis, a total of six probes out of the 32 sense probes
that were designed for LINC00299 had a q-value of smaller than 0.2. However, due to the strict
quality criteria, all these six probes were filtered and therefore not considered in subsequent analyses.
It is therefore possible that LINC00299 is a false negative, particularly because lncRNAs sometimes
have very low expression values and may therefore be barely distinguishable from the background
expression level.

I also characterized the functionality of differentially expressed loci more systematically by a GO terms
enrichment analysis. The analysis was done separately for each of three available GO domains5:

• “Biological process”: operations or sets of molecular events with a defined beginning and end,
pertinent to the functioning of integrated living units: cells, tissues, organs, and organisms

• “Molecular function”: the elemental activities of a gene product at the molecular level such as
binding or catalysis

• “Cellular component”: the parts of a cell or its extracellular environment

To identify enriched GO terms, I used GOrilla (last updated on August 3, 2013) [446, 447] and
GO-TermFinder [448] but I hereafter focus on the results of the latter. For summarization and
visualization, I used REVIGO [449].

I performed a GO terms enrichment analysis separately for putative protein-coding and non-coding
loci. For pseudogenes, no enrichment analysis was possible due to the small number of differentially
expressed pseudogenes and their unknown function. Because I integrated multiple sources for
non-coding loci, I could only use those that overlapped with annotated Gencode v14 genes (321
out of 460). For non-coding loci originating from introns (e.g., as identified by Nakaya et al. [429]),

5taken from ftp://ftp.geneontology.org/go/www/GO.doc.shtml, last accessed in August 2013

ftp://ftp.geneontology.org/go/www/GO.doc.shtml
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I used the ID of the surrounding gene if available regardless of its class (e.g., coding or non-coding).
For the background population, I used all annotated Gencode v14 genes that overlapped in sense
direction with any of the 113,047 probes that passed all quality filters.

In summary, the results revealed a diverse set of specific dysregulations. Most of the enriched GO

terms had known AD-associations, and representative and dominant subsets include the following
(Figure C.2 and Figure C.3 for a full list):

• Biological process: fibrinolysis, glycoprotein biosynthesis, cellular response to acid (including
cell cycle), collagen fibril organization, regulation of blood coagulation, extracellular matrix
organization, L-serine metabolism, anatomical structure formation involved in morphogenesis

• Molecular function: phospholipase inhibitor activity, calcium-dependent phospholipid bind-
ing, glycine hydroxymethyltransferase activity, lipoteichoic acid receptor activity, Rab GTPase
binding, ryanodine-sensitive calcium-release channel activity, phospholipase inhibitor activ-
ity, beta-galactoside alpha-2,6-sialyltransferase activity, calcium ion binding, transcription
regulatory region DNA binding

• Cellular component: extrinsic to (plasma) membrane, early endosome, myelin sheath
adaxonal region, myelin sheath, (proteinaceous) extracellular matrix, extracellular region

6.2.7 Characterization of Differentially Expressed Loci Associated with Chro-
matin and Epigenetic Stability

I found a large number of differentially expressed loci with known or unknown chromatin-associated
functions (Table 6.2 and Table 6.3, respectively) as well as functions for maintaining epigenetic
stability. These are described in more detail below.

6.2.7.1 Chromatin-Associated Loci with Known Functions

The GO enrichment analysis identified an enrichment of the GO term ‘histone deacetylase regulator
activity” (GO:0035033). Such altered activity of histone deacetylases may be mediated, for example,
by TP53, which is found to be upregulated in AD. It is known that TP53 may positively regulate
histone deacetylation, among the myriad of functions in response to cellular stress. Intriguingly, it
has been argued that hypoacetylation may already be sufficient to trigger apoptosis [402].
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Table 6.2: Functionally characterized differentially expressed loci with known chromatin-associations. For
column explanations, see Table 6.1. Note that because functions for non-coding genes are largely unknown,
the list contains only loci originating from functionally characterized protein-coding genes.

(Surrounding)
Gene

Ensembl ID Signal origin Reg.
in AD ndiff

BDNF ENSG00000176697 Exon of protein-coding gene − 2
KIF20A ENSG00000112984 Exon of protein-coding gene + 2
MKI67 ENSG00000148773 Exon of protein-coding gene + 2
PPARG ENSG00000132170 Intron of protein-coding gene + 2
TCF7L2 ENSG00000148737 Intron of protein-coding gene + 2
ZBTB8B ENSG00000215897 Exon of protein-coding gene − 2
BARX2 ENSG00000043039 Exon of protein-coding gene + 1
BRE ENSG00000158019 Intron of protein-coding gene − 1

C21orf7 ENSG00000156265 Exon of protein-coding gene + 1
CASC5 ENSG00000137812 Exon of protein-coding gene + 1
CEP55 ENSG00000138180 Exon of protein-coding gene + 1
CHD8 ENSG00000100888 Intron of protein-coding gene − 1
CUX1 ENSG00000257923 Intron of protein-coding gene + 1
ESCO2 ENSG00000171320 Exon of protein-coding gene + 1
HES2 ENSG00000069812 Exon of protein-coding gene + 1

HIST1H3I ENSG00000182572 Exon of protein-coding gene + 1
HMGA2 ENSG00000149948 Intron of protein-coding gene + 1
ISL1 ENSG00000016082 Exon of protein-coding gene + 1
MSH3 ENSG00000113318 Intron of protein-coding gene − 1
MTF2 ENSG00000143033 Exon of protein-coding gene − 1
NSD1 ENSG00000165671 Intron of protein-coding gene − 1
RUNX2 ENSG00000124813 Intron of protein-coding gene + 1
SHMT2 ENSG00000182199 Exon of protein-coding gene + 1
SMAD6 ENSG00000137834 Intron of protein-coding gene + 1

SMARCA5 ENSG00000153147 Intron of protein-coding gene − 1
TFAP2A ENSG00000137203 Exon of protein-coding gene + 1
TP53 ENSG00000141510 Intron of protein-coding gene + 1
TP53 ENSG00000141510 Exon of protein-coding gene + 1
YAP1 ENSG00000137693 Intron of protein-coding gene + 1
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Among the differentially expressed loci, I also identified a number of other genes with known
chromatin-associations (Table 6.2). A few of them are particularly noteworthy and are described in
more detail in the following6:

• BDNF has crucial functions in neuron survival, growth and differentiation of neurons and
synapses, long-term memory, and chromatin regulation [434, 435]. I observed downregulation
in AD, which is consistent with previous findings. The activity of BDNF has been shown
to be under strong epigenetic control via DNA methylation, chromatin-modifying enzymes
and the microRNA machinery (reviewed in [450]). Because splicing isoforms in particular are
controlled through epigenetic mechanisms, the observed downregulation of BDNF may thus
be a direct consequence.

• HMGA2 is implicated in a myriad of processes such as apoptosis, mitosis, cell signaling,
DNA damage, chromosome condensation, and regulation of transcription. HMGA2 encodes a
protein that can phosphorylate histone H2A at position 139 (H2AS139, see Section 2.1.4.1 for a
functional description of this histone PTM), with additional functional roles in heterochromatin
assembly and chromatin organization. Intriguingly, HMGA2 has been found to contribute
significantly to brain volume [451].

• ESCO2 encodes a protein with acetyltransferase activity and has recently shown to be
required for cohesin acetylation in pericentric heterochromatin and more generally chromosome
segregation [452]. Expression of ESCO2 is cell cycle-dependent and only transiently expressed
during S-phase (reviewed in [452]).

• C21orf7 encodes a protein that is implicated in the Mitogen-activated protein kinases signaling
cascade. C21orf7 interacts with GPS2 and is an integral subunit of the NCOR1 -HDAC3
complex, which is a critical epigenetic regulator for circadian clock genes [453].

• CHD8 encodes a DNA helicase with chromatin remodeling functions. It acts as a transcription
repressor (negative regulator of the Wnt signaling pathway, suppressor of STAT3 activity and
TP53 -mediated apoptosis) and also interacts with CTCF. Recently, it has been shown that
in order to carry out its inhibitory effect, CHD8 -mediated recruitment of histone H1 to Wnt
target genes is essential [454].

• SMARCA5 has helicase and ATPase activities and may therefore alter chromatin structure by
nucleosome remodeling (see Section 2.1.4.4). It is also implicated in the cell cycle; specifically,
it is involved in the replication of pericentric heterochromatin and the maintenance of
chromatin structures during DNA replication. Furthermore, it is part of various chromatin
remodeling complexes such as the WICH complex. It is also associated with various histone

6The following gene descriptions have in part been taken from Entrez Gene (http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=gene, last accessed in August 2013) and UniProtKB/Swiss-Pro (http://www.
uniprot.org/, last accessed in August 2013)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
http://www.uniprot.org/
http://www.uniprot.org/
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PTMs such as H2AXS142ph (which it mediates) and histone deacetylation (by interacting
with histone deacetylase 2 [455]).

• NSD1 encodes a histone methyltransferase that preferentially methylates H3K36 and H4K20
(see Section 2.1.4.1 for a functional description of these histone PTMs). It is also associated
with metal ion binding (zinc). Dysregulation of NSD1 has furthermore been repeatedly
implicated in various diseases and cancer types [132] but direct links between NSD1 and AD
have yet to be established.

• MTF2 encodes a Polycomb group protein that specifically binds H3K36me3 and subsequently
recruits the PRC2 complex, resulting in increased H3K27me3. It also regulates the transcrip-
tional program during cell differentiation. It, however, may also act as local inhibitor of PRC2
activity. Similar to NSD1, it also has zinc ion binding activity.

In summary, I identified various genes with histone-modifying functions (H2AS139ph — HMGA2 ;
H2AXS142ph — SMARCA5 ; H3K27me3 — MTF2 ; H3K36me — NSD1 ; H4K20me — NSD1 ;
histone acetylation — ESCO2 ; histone deacetylation — C21orf7) and histone PTM readers
(H3K36me3 — MTF2 ; methylated histone residue binding — CHD8 ; histone acetylated lysine
binding — SMARCA5).

Using GOrilla based on a gene list that has not been further filtered (see last paragraph in
Appendix C.2), I also found a weak significant enrichment of proteins involved in chromatin assembly
(HMGA2, TP53, SMARCA5) and chromatin binding (PPARG, NSD1, TCF7L1, TCF7L2, WHSC1,
SUV39H1, HMGA2, SHMT2, CUX1, SMAD6, YAP1, TP53, SMARCA5, RUNX2). Although the
term “chromatin assembly” did not show up as significantly enriched with the more stringent filtered
list, these results suggest that altered regulation of genes implicated in chromatin assembly and
binding may also play important roles in the etiology of AD.

6.2.7.2 Chromatin-Associated Loci with Unknown Functions

I also found a number of loci with known chromatin-associations but uncharacterized functions. In
Table 6.3, I summarize differentially expressed loci from Mondal et al. [188] and Khalil et al. [201]
that did not overlap with known genes (according to Gencode v14) and therefore have unknown
functions. However, their chromatin-association has been experimentally verified.
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Table 6.3: Functionally uncharacterized differentially expressed loci with known chromatin-associations.
Only loci that did not overlap with known genes (according to Gencode v14) and that have been identified
by Mondal et al. [188] and Khalil et al. [201] are shown. For column explanations, see Table 6.1.

Location Reg. in
AD

Source ndiff

chr10:+127758121–127963700 + Mondal et al. [188] 9
chr3:+123380693–123498543 + Mondal et al. [188] 4
chr9:+21506439–21507378 + Khalil et al. [201] 2
chr14:+101447501–101448399 − Mondal et al. [188] 2
chr18:+459593–477126 + Mondal et al. [188] 2
chr21:+36173450–36255426 + Mondal et al. [188] 2
chr1:+98459693–98460854 − Khalil et al. [201] 1
chr2:+238235835–238304366 + Mondal et al. [188] 1
chr5:+39416553–39421200 + Mondal et al. [188] 1
chr5:+172745556–172752745 + Mondal et al. [188] 1
chr6:+43828988–43829296 + Khalil et al. [201] 1
chr6:+98429073–98429545 + Khalil et al. [201] 1
chr6:+169621368–169653239 + Mondal et al. [188] 1
chr8:+130696593–130700510 + Khalil et al. [201] 1
chr11:+72447205–72450376 + Khalil et al. [201] 1
chr11:+86625764–86626534 + Khalil et al. [201] 1
chr11:+122011788–122012636 + Khalil et al. [201] 1
chr13:+111545560–111557540 − Mondal et al. [188] 1
chr17:+57719–58170 + Khalil et al. [201] 1
chrX:+68299562–68301518 + Khalil et al. [201] 1

6.2.7.3 Loci Implicated in the Cell Cycle and Epigenetic Stability

Typically, vertebrate neurons are amitotic (with few exceptions such as sensory neurons of the olfac-
tory epithelium) and the cell replication machinery therefore seems to be switched off. Intriguingly,
however, in AD, it is now well established that vulnerable neurons display aberrant re-entry into
the cell cycle despite their terminally differentiated status [456–458]. Altered cell cycle regulation
seems to be indeed particularly pronounced in AD because I similarly found at least 27 differentially
expressed genes with known functional roles in the cell cycle (TCF7L2, TP53, HMGA2, SMAD6,
KIF20A, MKI67, CEP55, CASC5, ESCO2, NCAPG, ASPM, WDR11, TGFBR1, CCNB2, KIF23,
RRM2, APOBEC3G, DBC1, PRKCE, SEPT11, NUF2, PARD3B, SEPT9, MCM8, HNF4A, NEDD9,
RALA). Additionally, I identified various differentially expressed probes located in antisense direction
to genes with cell cycle (regulatory) functions. For example, I identified an antisense probe to
the gene RCC1 (ENSG00000180198), which plays a key role in mitosis and is implicated in the
regulation of chromosome condensation in the S phase of the cell cycle. It also binds to both
nucleosomes and double-stranded DNA.
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Importantly, as shown in Chapter 2 and Chapter 4, DNA replication and mitosis more generally have
crucial roles for epigenetic stability. For example, gradual accumulation of errors during the lifetime
of a cell caused by the inability to precisely restore the parental modification pattern (Figure 4.7) may
quickly exceed the tolerable error threshold, therefore ultimately resulting in non-negligible changes
in the transcriptional program. Typically, neurons are long-lived and therefore permanently maintain
a precisely defined transcriptional state [64]. Vulnerable neurons in AD, however, re-enter the cell
cycle and therefore it seems plausible to hypothesize that this may cause epigenetic instability that
initiates a cascade of downstream effects. This seems to be particularly the case if the abundance
and activity of chromatin-modifying enzymes that are crucial for restoring the premitotic histone
modification pattern are also altered (e.g., HATs and HDACs).

In agreement with this, I also observed upregulation of the gene HIST1H3I (ENSG00000182572),
which encodes a member of the histone H3 family. Histones are among the most abundant proteins
in the cell, and their cell cycle-dependent gene expression is well-established. It therefore appears
plausible that dividing neurons have an increased need for newly synthesized histones. Indeed,
H3 seems to play a central role for learning and memory function (reviewed in [400]). In AD,
altered histone H3 homeostasis may be caused by soluble Aβ, which can act as a powerful signaling
molecule [400]. Additionally, cytoplasmic histone H3 has been shown to be subject to increased
phosphorylation, which may contribute to neuronal dysfunction and neurodegeneration in AD [459].

6.2.8 Alzheimer as an Evolutionarily Young Disease

To address the hypothesis that AD is an evolutionarily young disease, I analyzed the conservation
of AD-associated genes (both protein-coding and non-coding) by employing splice maps based
on multiple alignments [115]. I chose this method because the evolutionary histories of ncRNAs
have been notoriously hard to study due to their low level of sequence conservation that precludes
comprehensive homology-based surveys and makes them nearly impossible to align. However, the
conservation of gene structure and particularly the conservation of splice sites may also be used
to establish homology [115]. Splice sites therefore leave phylogenetic footprints, and conserved
patterns of splice sites may be used to predict novel transcripts from multiple genome alignments
(hereafter called splice maps). This has been performed successfully and repeatedly in the past
(reviewed in [115]).

I now briefly explain the methods, and I refer to Appendix C.4 for more details. The splice site
analysis was done in collaboration with Anne Nitsche7. In summary, we compared the conservation
of the differentially expressed protein-coding and non-coding genes that are annotated in Gencode
v14 (147 genes with multi-exonic transcripts and a total of 3,354 splice sites and 122 genes with

7Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig,
anne@bioinf.uni-leipzig.de
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multi-exonic transcripts and a total of 1,249 splice sites, respectively) for 35 mammalian species
(human to opossum).

For both differentially expressed protein-coding and non-coding genes, we first generated a splice map
that contained the exact aligned genomic coordinates for all available species and the corresponding
MaxEntScan score for each listed splice site. For comparison and for assessing the significance of
the observed values, we also constructed corresponding background datasets based on all Gencode
v14 annotated protein-coding and non-coding genes, respectively. Based on human as reference,
for each annotated gene, we then compiled a list of all splice sites located at their exon/intron
boundaries. For each of the other mammalian species, we then calculated the fraction of “conserved”
splice sites (according to various criteria, see Appendix C.4). This procedure therefore allowed us to
determine gene conservation between pairs of species. One advantage of this approach, as compared
to alternative approaches that do not work on the gene level but rather on the splice site level
directly, is that it weights each gene equally regardless of its length and the number of splice sites it
contains. We considered a gene between two species as conserved if a particular percentage of the
splice sites located in that gene (hereafter denoted gene conservation threshold c) was conserved.
Because c is expressed as a percentage, it therefore makes comparisons among genes of unequal
length possible. To examine the effect of the exact value of c, we varied c (c > 0%, c > 10%,
. . . ,c > 90%, c = 100%). Using the corresponding background splice maps, it was then possible to
measure the evolutionary conservation of differentially expressed protein-coding and non-coding
genes and to assess their statistical significance.

For protein-coding genes, we expectedly found that conservation is generally very high among
mammals. Independent of the gene conservation threshold, we found only negligible conservation
differences between AD-associated and all protein-coding genes and therefore no indication for
stabilizing selection (although some differences were statistically significant).
For non-coding genes, we found that conservation in general decreased rapidly with the evolutionary
distance (Figure 6.6). This was particularly apparent for non-primate mammals and c > 40%.
However, we found evidence for stabilizing selection for AD-associated non-coding genes (AD-ncRNA
genes) because independent of the specific gene conservation threshold, AD-ncRNA genes had higher
conservation values as compared to all ncRNA genes, with significant differences particularly in
closely related species (primates). The higher the gene conservation threshold, the less pronounced
the differences were in more distantly related species, whereas the differences in closely related
species remained.
Collectively, the findings are in agreement with the hypothesis that AD-ncRNA genes are evolutionarily
young because they were subject to extensive recent changes in their gene structure. However,
extremely low conservation values (particularly if they are very different from the values from closely
related species) have to be treated with caution (see Discussion).
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Figure 6.6: Results of the splice site conservation analyses based on differentially expressed genes with
different values for the gene conservation threshold c. The fraction of conserved genes across various
mammals from chimpanzee (panTro2) to opossum (monDom5) is shown as compared to human. Left
(A,C,E): protein-coding genes. Right (B,D,F): non-coding genes. (A,B): c > 0%; (C,D): c > 40%; (E,F):
c > 80%. Filled dots indicate significant differences.
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6.3 Discussion

In this chapter, I characterized AD-associated genomic loci using the Alzheimer Custom Array.
To identify differentially expressed probes and genes and for their quantification and initial char-
acterization, I used rigorous bioinformatics approaches. A distinctive feature of the presented
study is that a large variety of caRNAs and ncRNAs more generally are deliberately included on
the Alzheimer Custom Array. Although their disease-relevance is increasingly being recognized
(see Section 2.1.4.3), previous systematic gene expression profiling studies nevertheless focused
predominantly on protein-coding genes (reviewed in [410]). Consequently, so far, only individual
AD-associated ncRNAs have been identified and functionally characterized (e.g., [424, 441]).

I identified a total of 764 differentially expressed genomic loci that belong to very different classes.
Due to the composition of the Alzheimer Custom Array, the majority of them are putative
ncRNAs. A preliminary functional analysis using the GO database revealed that dysregulations in AD
are numerous and diverse, which is in agreement with previous work (reviewed in [410]). However,
due to the complexity of any gene expression profiling study, the results presented here provide only
a first glimpse into the data. For example, although performing a GO enrichment analysis is useful
to identify general patterns in the data, to generate hypotheses, and to some extent also to assess
the validity of the underlying methodology, further analyses and studies based on the enrichment
results are certainly required.
Follow-up analyses include, but are not limited to: further characterizing putative novel anti-
sense transcripts and ncRNA in general, attempts to identify particular splicing variants that are
differentially expressed rather than full genes, and importantly also experimental validation for
selected candidates. The latter is already ongoing and results are expected soon. Also, differentially
expressed loci with unknown transcript structure can be further analyzed by integrating information
from additional sources (e.g., tblastx or RNACode [460] to test for coding potential). Further
characterization of identified differentially expressed pseudogenes also seems worthwhile, particularly
because little is known about their AD significance and precise biological function. Indeed, increasing
evidence suggests that pseudogenes may have special regulatory functions [461–464].

To identify differentially expressed loci, I employed a novel two-step procedure that aims to reduce
false positive and false negative rates. Only loci that passed both the q-value filter (step 1)
and the binomial test (step 2) were further considered. The results of the GO terms enrichment
analyses suggest that this approach worked well because the vast majority of genes with functional
characterizations have immediately apparent AD associations. Clearly, however, this is only an
indication, and it should be further strengthened by experimental validation (see above).

I explicitly addressed two hypotheses in this chapter. First, I asked whether the genomic loci
that are differentially regulated in AD are evolutionarily young (i.e., whether they show signs of
recent changes in their genomic structure). I expected that this should be particularly evident for
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non-coding regions and only to a much lesser extent for protein-coding regions because the latter
have a high evolutionary pressure and are therefore largely conserved across mammals. Estimating
the evolutionary age of lncRNAs is generally non-trivial because they have been notoriously hard
to study due to their low level of sequence conservation that precludes comprehensive homology-
based surveys and makes them nearly impossible to align. However, Nitsche et al. [115] showed
that lncRNAs have a fast turnover of their intron/exon structures although they are evolutionary
ancient components of vertebrate genomes. Estimating their evolutionary age by analyzing the
conservation of splice sites is therefore an appropriate method. However, alignment quality and
completeness may have a substantial influence on the conservation results. Alignment quality issues
generally may arise from alignment gaps as a consequence of incomplete or erroneous genome
annotations or inaccuracies of the multiple alignment in regions of splice junctions, for example,
which was particularly an issue for non-model organisms (see Appendix C.4). As a control, I
therefore also calculated the percentage of positions that can be aligned (independent of any
splice site conservation, see Figure C.4) and the fraction of conserved genes among alignable genes
(Figure C.5). This revealed that conspicuously low gene conservation values for particular species
with respect to their closely related species are often caused by a low fraction of alignable genes.
Thus, extreme values in Figure 6.6 have to be treated with caution and should be interpreted
only in conjunction with the control measures. Nevertheless, the results indicate that differentially
expressed non-coding loci are indeed evolutionarily young and particularly exposed to changes in
their exon/intron structure in the primate lineage. For protein-coding loci, however, I expectedly
observed only negligible differences.

The second hypothesis I addressed concerned the significance of chromatin in AD. Specifically,
I explored the possibility that a dysregulated CC may play important roles in AD. Generally,
dysregulation of the CC may be achieved by differential expression of chromatin-associated loci or by
altered epigenetic control of AD-associated genes. Chromatin-associated loci come in many facets.
They may, for example, encode the most fundamental components of chromatin such as histone
proteins or chromatin-modifying enzymes or integral parts of the chromatin-modifying enzyme
complexes. In addition, they may encode molecules that guide chromatin-modifying complexes to
particular genomic loci (e.g., lncRNAs) or proteins that directly or indirectly influence epigenetic
stability (e.g., by altering cell cycle regulation and therefore the stability of epigenetic states). In
support of the hypothesis, I identified chromatin-associated, differentially expressed loci for all of
these four general classes. For example, I found that various genes encode proteins that directly or
indirectly, via association with additional proteins, constitute histone reader (e.g., H3K36me), writer
(e.g., H2AS139ph, H2AXS142ph, H3K27me3, H3K36me, H4K20me, unspecific histone acetylation)
and eraser functions (e.g., unspecific histone deacetylation).

In agreement with previous work, I found aberrant evidence for altered cell cycle regulation in
AD. Although AD-associated re-entry into the cell cycle seems to precede amyloid-ß plaques and
neurofibrillary tangles formation and therefore is more likely to be a consequence rather than a
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cause of the disease [457, 459, 465], it has important implications for epigenetic stability. Neurons
are typically long-lived and maintain a precisely defined transcriptional state for a long time [64]
but gradual accumulation of errors caused by DNA replications may constitute the final straw
towards an irreversible and uncontrollable cascade of downstream effects that ultimately leads to
apoptosis. Such transcriptional dysregulation is furthermore exacerbated by unbalanced activities of
chromatin-modifying enzymes such as HATs and HDACs [466].

Consistent with the finding of a large number of differentially expressed loci with chromatin
associations, both chromatin-associated datasets and almost all cell cycle tiling array regions that
were included on the Alzheimer Custom Array were also enriched on the probe level. The feature
enrichment analysis also revealed a general tendency for enrichment of probes located in antisense
direction to known transcripts and enrichment of a diverse set of ncRNAs such as snoRNAs,
lncRNAs, and pseudogenes. Particularly the finding of enrichment of lncRNAs is in agreement with
the dysregulated CC hypothesis, due to the guiding function of lncRNAs for chromatin-modifying
complexes. Indeed, it is increasingly recognized that particularly lncRNAs often associate with
chromatin regulators [467] (see also Section 2.1.4.3). However, in contrast to protein-coding genes,
functional annotation of ncRNAs is only in its infancy and so far, only several dozen candidate
ncRNAs have been functionally characterized. Similarly, automated annotation attempts are only
beginning to emerge (e.g., Linc2GO [468]). Therefore, it is not particularly surprising that the
GO terms enrichment analysis was largely devoid of immediately apparent chromatin associations
because a non-negligible part of the differentially expressed loci may correspond to functionally
uncharacterized chromatin-associated transcripts.

The feature enrichment analysis revealed a general depletion of probes located in introns in sense
direction, whereas probes located antisense to introns, particularly introns that were previously
identified to harbor ncRNAs [429], were enriched. Indeed, transcripts located in antisense direction
to introns seem to be of increasing significance. For example, in AD, two disease-associated ncRNAs
have recently been identified [52, 424], and it seems plausible that this is a much more pervasive
phenomenon than currently recognized. Thus, the data suggest that intronic transcription in general
is not globally enriched but it instead occurs predominantly in particular introns. This would explain
both the depletion and enrichment result as described above.

Aberrant transcription within introns may be a consequence of a differential chromatin structure.
This is consistent with the findings of Zhu et al. [469], who measured chromatin states for a
total of seven common histone PTMs for a large and diverse set of human tissues, including cells
from different brain sections. The authors found that cells from brain sections display particularly
strong evidence for preferential utilization of intronic regulatory elements. Thus, in brain cells, a
highly specialized and restrictive chromatin structure may facilitate access to and consequently
transcription from intronic regions. In agreement with this, genes with “a high density of conserved
noncoding sequences in their introns are expressed at higher levels in brain and enriched for functional
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annotations related to neuronal physiology” [469, p. 648]. Thus, many of the identified differentially
expressed non-coding loci may have important chromatin-associated functions that are implicated
in the etiology of AD, either directly or indirectly. In summary, I find various indications that a
dysregulated CC plays important roles in AD although it is very difficult to establish causalities due
to the complexity of the disease (see below) and its largely unknown nature. Intriguingly, both the
chromatin regulatory system and AD are evolutionarily young (see Section 3.1.3 for the former),
and it is tempting to speculate that this is indeed not a coincidence.

Although recent studies indicate that microarray results are acceptably consistent among platforms
and analysis techniques [410, 470], a number of other technical considerations and limitations
are noteworthy for the interpretation of the results and as potential explanation for the failure
of detection of differential expression of some known AD-associated genes. Generally, AD is
extraordinarily difficult to study due to its complexity and heterogeneity. This is, for example, also
exemplified by the functional diversity of GO enrichment terms. Indeed, as mentioned earlier, only a
small percentage of AD cases can be linked to mutations in specific genes, and a large array of
putative causes have been postulated. A frequent issue in AD studies is limited reproducibility,
and except for a few AD hot spots that are frequently identified, different studies often have little
overlap. However, gene expression profiling as well as bioinformatics analytical and evaluation tools
have advanced considerably during the last few years [410]. In conjunction with increased scientific
rigor, data is now more reproducible than before.

Limited reproducibility is at least partly caused by the following technicalities. Sample acquisition
and preparation are crucially important, particularly for post-mortem tissue as used in this study.
First, it is not clear whether the survived neurons obtained in final stages of AD are generally
representative of AD in the disease. Second, the collected brain tissue may contain a mixture
of different cell types that may reflect the AD pathophysiology to varying degrees [410, 471].
Third, samples from healthy individuals may be neuron-rich, whereas AD samples are typically
neuron-depleted, therefore introducing potential biases in subsequent analyses [410]. More generally,
the origin of the samples is also of relevance. For example, the temporal lobe-hippocampus and the
prefrontal cortex seem to be particularly rich in differential gene expression [410, 472, 473]. The
samples in this study are also from the temporal lobe.

Furthermore, RNA integrity is a major concern for any gene expression study because sufficiently
high RNA quality is fundamentally important for reproducibility. RNA integrity numbers (RIN)
are the current gold standard to assess RNA quality, and they have been determined for all of the
samples. RIN values of post-mortem samples are typically very low due to natural RNA degradation.
In this study, only samples with a RIN ≥ 5.0 entered the processing, with an average RIN value of
6.6. This is substantially larger than reported values for post-mortem brain samples. For example,
Koppelkamm et al. [474] reported mean values of 2.8 for brain tissue.

Another complication in AD gene expression profiling studies is the degree of pathology of disease
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samples. It is widely known that different stages in AD are neuropathologically recognizable and
correspond to unique biochemical outcomes (Braak stages [475]). For example, synapse-related
genes are upregulated in early stages and downregulated in later stages of AD [476]. Controlling for
the disease stage is also important because it has been shown that the largest aberrant expression
changes occur during progression from mild to moderate dementia [410, 477]. I predominantly
included patients with severe AD (Braak stage 5 in particular) and therefore circumvented the need
to explicitly control for disease stage.
Similarly, age is often a confounding variable because gene expression generally changes with age
(e.g., age-related differences in the dysregulation of genes related to neuroinflammation [478]),
and AD patients are frequently older than healthy individuals. In the identification of differentially
expressed probes, this may introduce an additional bias unless explicitly controlled for, and I therefore
included the variable age in the model.

Lastly, it is difficult to identify the most relevant differentially expressed probes or genes because
the most significant ones (either by using p-values or fold changes) may not be most relevant from
a biological and pathophysiological perspective [410]. This is particularly evident for regulatory
structures such as TFs networks due to their ultrasensitivity (Figure 2.10) [479]. The correct
differential detection of transcripts with low expression levels (e.g., lncRNAs) poses additional
problems due to their proportionally increased expression variability and noise levels [410]. The
two-step approach for the identification of differentially expressed genes may be particularly useful
in that regard.

I addressed the hypothesis that AD is an evolutionarily young disease by analyzing splice site
conservation. Intriguingly, the importance of (alternative) splicing for AD has steadily increased
recently, and it seems to play a non-negligible role in the pathology of AD and neurodegeneration
more generally [114, 441, 442, 480–482]. For example, Merkin et al. [483] established a link between
alternative splicing and protein phosphorylatability. This therefore delimits the scope of kinase
signaling pathways, which play important roles in AD and have also been identified in the GO terms
enrichment analysis. As shown by Barbosa-Morais et al. [484], most splicing patterns in vertebrates
are cis-directed. Variation of in cis splicing may be initiated, targeted and executed by ncRNAs,
as exemplified by 51a and 38A [52, 424], both of which are upregulated in AD. Indeed, the vast
majority of multi-exon genes undergo alternative splicing (reviewed in [109, 484]) but such transcript
isoform variation is not captured by gene-level analyses [410]. Identification of splicing isoforms
for complex transcriptomes is, however, challenging with microarray platforms, even with carefully
designed CEMs (see Chapter 5). Expression measurements of individual exons may show large
variability due to the decreased number of probes per exon as compared to the number of probes
per gene for gene-level analyses, therefore making it difficult to reliably identify isoform differences.
RNA-seq and next-generation sequencing more generally offer great potential in that regard, and the
next years may advance the understanding of the significance and causality of alternative splicing
for the pathogenesis of neurodegenerative diseases substantially.



Chapter 7
Conclusions and Outlook

Chromatin is a highly dynamic and incredibly complex structure with crucial roles for cell differentia-
tion, transcription, and the heredity of gene expression patterns across cell divisions (i.e., epigenetic
inheritance). The cellular memory capacity that it harbors is vital in the development of multicellular
organisms and also underlies cell differentiation. A great variety of chromatin-modifying enzymes in
general and histone-modifying enzymes in particular are able to read/recognize, write, and erase
chromatin marks in a context-dependent and/or context-independent manner, thereby establishing
a very dynamical and complex information processing system.

In this thesis, I elaborated on the relatively new notion that chromatin may be regarded as a
biological computer and strengthened the idea that it provides a potent and universal “language” in
which computer programs or biological procedures may be written. In Chapter 3, I analyzed selected
biological building blocks of the chromatin computer and showed that histone PTMs constitute
the main memory with a capacity of several hundred megabytes of writable information per cell.
However, redundancy is fundamentally important for the chromatin computer due to its inherently
stochastic nature and volatility, therefore lowering the real memory capacities. But what is the
biologically required level of redundancy in the chromatin regulatory system? Is the existing level
of redundancy comparable or substantially higher than the biologically required level due to the
step-wise increase in complexity and computational power of chromatin during evolution? These
exciting questions remain to be tackled explicitly.

Chromatin-modifying enzymes represent the execution unit of the chromatin computer and implement
the logical and arithmetical operations in the form of rewriting rules. Using these rules, I demonstrated
that the chromatin computer is, at least in theory, computationally universal and may therefore be
used to calculate any computable function or algorithm more generally. The results are therefore in
agreement with the notion that eukaryotic chromatin may be regarded as a molecular computer able
to perform computations, both in a biological context but theoretically also in a strict informatics
sense. Chromatin is therefore another representative of the growing number of non-standard
computing examples.

However, the question remains whether the computational and memory capabilities of chromatin
are only interesting from a theoretical point of view or if the cell indeed utilizes and requires them.
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Clearly, composition and mode of action of the chromatin computer are a product of evolution.
Inevitably, therefore, the rules that govern the biological computations (i.e., the reading, writing,
and erasing of chromatin marks such as histone PTMs) also changed fundamentally during evolution
to implement the increase in complexity and to remain adaptive to the environment. The results
in Chapter 4 suggest, however, that evolving a system of enzymes that can maintain a particular
chromatin state roughly stably may be a relatively easy task. Epigenetic inheritance seems to require
computational capabilities but if they are utilized by the cell to their full extent remains an open
and extraordinarily interesting and relevant question.
Another interesting question is whether the computational power of chromatin may be exploited for
artificially designed systems. It has previously been suggested that a chromatin computer may be
more widely applicable for a variety of problems than a DNA computer. In addition, a chromatin
computer may provide solutions that are easier to implement and it therefore may be better suitable
for general-purpose programs. However, its inherently stochastic nature, volatility, complexity and
the interdependency among its individual components raise the question whether it will be possible
to design algorithms that produce trustworthy results.

In Chapter 4, as an example for the computational power that is harnessed in real biological
systems, I formulated epigenetic inheritance as a computational problem. Epigenetic inheritance (see
Chapter 2) is generally characterized by a high underlying complexity and an intricate interplay of its
individual components. To address the complexity systematically and to identify the major players
of the system and their interdependencies, I developed a flexible and chemically accurate stochastic
simulation system for the study of recomputation-based epigenetic inheritance of individual histone
PTMs. Theoretical analyses using rigorous computational models as performed in this thesis are
important contributions that have already provided plenty of new insights and perspectives and will
continue to do so. Because faithful propagation and reconstruction of patterns of histone PTMs
across cell divisions may be solved with sufficient stability and accuracy by the chromatin computer,
propagation of patterns of histone PTMs can therefore indeed be interpreted as a computational
problem that is achievable through a small collection of rewriting rules. These rewriting rules are
abstractions of a well-described class of enzymes and enzyme complexes combining reader, writer,
and eraser domains for specific histone PTMs.

The finding that patterns containing patches of unmodified nucleosomes are more difficult to
inherit than modified ones due to the ambiguity of the unmodified state (i.e., unmodified from
the beginning versus information loss) raises the question of biological relevance. As argued in
Chapter 4, although the absence of a signal may also be informative, it is tempting to speculate
that inheriting the unmodified state is indeed not particularly relevant. Nevertheless, future work is
necessary to shed light on the significance of this result.

I emphasize again that the focus in this thesis is on the computational task of reconstructing complex
patterns of histone PTMs after DNA replication that is typical for somatic cells. In particular, I
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do not claim that epigenetic inheritance across the germ line follows the same paradigm because
information inherited through the germline for an effectively infinite number of generations is subject
to Eigen’s error threshold. As shown in Chapters 2 and 4, epigenetic inheritance mechanisms are
less faithful as compared to genetic inheritance mechanisms, and consequently, the amount of stably
inheritable epigenetic information is severely limited. Consistent with this, most, if not all, of the
extraneous epigenetic information is erased during spermatogenesis and oogenesis. In contrast, the
error threshold does not preclude inheritance of complex patterns of histone PTMs in somatic cell
lines because the number of generations is limited, and usually small. Here, the degradation of the
epigenetic information is acceptable for a while and counteracted by multiple layers of redundancy.
However, it may eventually also relatively quickly lead to daughter cells whose epigenetic patterns
are damaged beyond repair. To some extent, this effect may thus constitute an epigenetic version
of aging.

Whether histone PTMs and the presence of histone variants are a cause or consequence of the
transcriptional status is still hotly debated. In this thesis, I am completely agnostic about this issue
since it has no impact on the conclusions. The programs that run on the chromatin computer
(i.e., the schedules and concentrations of rewriting enzymes) are externally specified in the model.
In particular, I make no statement in regards to whether the gene expression program is a direct
consequence of, or at least dominated by, the chromatin state or whether it is entirely determined
by classical transcription factor networks that are largely or even completely independent of the
chromatin state. In computer science terms, I employ a model of computation that strictly
distinguishes between (gene expression) programs and (histone modification) data.
It appears natural, in a next step, to remove this distinction and to ask whether chromatin itself
can “learn” to reprogram itself, by making the gene expression programs an intrinsic function of
the histone PTM data. Although this may be an extreme model that implicitly views transcription
factors as being enslaved by histone PTM states at their gene loci, it is an important limiting case
given that gene expression is clearly not independent of chromatin state.

Indeed, transcription and the dynamics of histone PTMs are tightly linked. Although a number of
distinct mechanisms evolved that anchor chromatin modifications to the underlying DNA sequence,
the chromatin regulatory system is neither completely determined by the underlying DNA nor fully
detached from it. It has long been speculated that this semi-independence may be a common
source of pathology that significantly or even etiologically contributes to diseases such as cancer
and AD. As an example, I stressed the importance of the chromatin regulatory system in AD,
the most common and irreversible form of dementia. The identification of numerous differentially
expressed loci that belong to different classes of chromatin-associated transcripts indicates that
dysregulation occurs in a heterogeneous, almost global fashion. Furthermore, the preferential
utilization of intronic regulatory elements, which seems to be common principle in brain cells and
AD in particular, have been suggested to be a consequence of a differential chromatin structure
caused by chromatin-associated transcripts. I thus found good support for the hypothesis that a
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dysregulated chromatin computer plays important roles in the etiology of AD although it is very
difficult to establish causalities due to the complexity of the disease.
The finding of aberrant reactivation of cell cycle related genes is in agreement with the mounting
evidence that suggests that in AD, the DNA replication machinery is indeed switched back on, which
may ultimately accelerate the epigenetic aging of neurons. The progressive memory impairment in
AD may therefore be a direct or indirect result of epigenetic processes. As shown in Chapter 4,
several factors contribute to the task of recomputing the parental histone PTM state and thereby
also influence the accumulation of errors in the wake of cell divisions. Altered regulation of genomic
regions implicated in epigenetic stability may therefore easily maneuver the cell into an erroneous
state that is difficult to recover from.

A multitude of open and exciting AD-related questions should be addressed more explicitly and
systematically in the near future. First, for AD and age-related neurodegenerative disorders
more generally, the prion hypothesis has recently gained experimental momentum. However, the
connection to the overall and diverse dysregulation that occurs in AD is presently unclear. It remains
to be seen whether the chromatin computer has a non-negligible role in this process. Second, it
would be very interesting to determine which genomic regions and chromatin-associated transcripts
in particular first show signs of dysregulation. This is particularly interesting because it is speculated
that the pathological cascade of AD begins at least ten years before the appearance of the first
clinical symptoms. Lastly, given the computational capabilities of chromatin, may it be possible
to specifically reprogram the chromatin computer to counteract the detrimental and progressing
effects of AD? Histone deacetylase inhibitors are promising candidates in that regard although it
seems unlikely that they alone can reverse the globally altered expression landscape of AD.

For the identification of differentially expressed loci in AD (see Chapter 6), I designed a custom
expression microarray. As shown in Chapter 5, high-quality microarrays for complex genomes
require an appropriate and well-considered probe design strategy. The developed bioinformatics
pipeline and the web server considerably automate and facilitate the design of custom expression
microarrays, emphasizing in particular on target and probe selection and providing high flexibility for
the selection and preprocessing of target sequences. Although microarrays in general are gradually
replaced by superior technologies such as RNA-seq, they are still used ubiquitously for transcriptome
profiling. Indeed, it has been shown repeatedly that microarrays and RNA-seq produce very similar
and reproducible results. In addition, the technologies often even complement each other in
transcriptome profiling. It can therefore be expected that microarrays will continue to be used for
at least a few more years. Indeed, they can still provide novel biological insights, as evidenced by
the Alzheimer Custom Array.

Lastly, the following question must be raised: What did we ultimately gain from considering
chromatin as a molecular computer? Although this view may initially seem somewhat abstract and



153

artificial, it helped to make us realize at least the following four issues. First, it highlighted the
complexity, ubiquity, and versatility of the chromatin regulatory system. In order to construct
a simulation system, it also contributed to think about the rules of the system that ultimately
execute a particular program, how they may be constructed, how complex they are, and how
they are coordinated. Second, by the explicit comparison to ordinary, silicon-based computers, it
emphasized that computation is not only an artificial idea but also a natural one and that chromatin
is, at least in theory, computationally universal. In addition, it demonstrated that the chromatin
regulatory system has striking analogies to amorphous computing, which has, to the best of my
knowledge, not yet been observed before. Third, by analyzing its components and their interplay
and by backtracking the evolution of the chromatin regulatory system, it stressed the fundamental
importance of redundancy and memory in the system. Memory in particular allows the cell to keep
a record of former states and to execute a specific program at any time point given a particular
input (trigger). Thus, chromatin-associated changes may not be immediately phenotypically visible.
In contast to TF networks, for example, the chromatin regulatory system is also not dependent on
direct feedback mechanisms that actively maintain a particular state. Lastly and more generally, it
helped to establish a deeper understanding of the capacities and limits of chromatin in general and
somatic epigenetic inheritance in particular.
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Appendix A
Additional Details and Definitions for the
Chromatin Computer

A.1 Details for the Memory Calculations for the Chromatin
Computer and the Full Genome

In Table 3.2, I summarize the estimated information content (IC) of individual histones, nucleosomes
and the total writable memory size of the full genome. Generally, the amount of information that
can be stored in an entity represents its IC and is expressed in a unit of information, typically bits
or multiples of bits (e.g., bytes, kilobytes, . . .). In traditional information theory, one bit is typically
defined as the uncertainty of a binary random variable xb, under the assumption that the possible
values 0 and 1 have equal probability [485]. Alternatively, one bit represents the information that is
gained when the value of xb becomes known.

For individual histone residues, the IC can be calculated as the logarithm to base 2 of the number
of distinct states. Both the unmodified state and all types of modified states (e.g., methylation,
acetylation, see Section 2.1.4.1 for a list) count as separate states because they may represent
particular signals that are distinguishable by the cellular machinery. The IC of nucleosomes is then
simply calculated as the sum of the IC of all residues, assuming that all residues may be modified
independently from one another [12].

For the IC of core histones on the nucleosome scale, I summed over their individual IC, counting
each of the four core histones twice. This was necessary because histones of the same type may
indeed be modified distinctively, which can have functional consequences (see Section 2.1.4.4). For
calculating the total memory capacity of the core histones and histone H1, I multiplied the IC of an
individual nucleosome with the approximate number of total nucleosomes. For the latter, I used a
value of 10 million, which accounts for the presence of nucleosome-free regions and was also used
in previous calculations (e.g., [13]).

I calculated the values of the IC of individual histones as follows. For the lower limit, I used only
histone PTMs that have been reported in humans. For this, I performed a comprehensive literature
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search of reported human histone PTMs based on Tan et al. [116] (130, including PTMs to the
linker histone H1.2), Xie et al. [117], the HIstome database [486] (only PTMs of the canonical
histones and H1.2), Migliori et al. [487], Chen et al. [118] (only in vivo verified histone PTMs),
Migliori et al. [487] (H3R2me2a and H3R2me2s), and Jack et al. [488] (H3K56me3). In total, I
collected 223 distinct histone PTMs (191 for the four canonical histones H2A, H2B, H3, and H4 as
well as 32 H1.2 PTMs). I, however, counted the different forms of histone methylation separately
because they may indeed have distinct functions. Although the linker histone H1 is located outside
of the nucleosome, it may also be post-translationally modified (see Section 2.1.2). The significance
of histone H1 PTMs is still largely unexplored but evidence suggest that they also have important
functions (see Section 2.1.2). To analyze the potential contribution of H1 for the memory of the
CC, I therefore additionally included histone PTM on H1 in the memory size calculations.

For the calculation of the upper limit for the memory size, I first selected a reference sequence for
each histone (Table A.1). Then, I determined the number of possible states (with respect to known
types of histone PTMs) and correspondingly its IC at each amino acid residue for each of the four
core histone proteins (Table 3.1).

I estimated the IC and total memory capacity for DNA based on two bits per base (corresponding
to the four possible combinations of bases). I used a value of 200 bp for the length of one individual
nucleosome, and the total memory size was calculated with 3,095,677,412 bp (i.e., ≈3 billion bp).

For DNA methylation, I used 1 bit per methylcytosine for the lower limit (absent versus present) and
2.3 bits per methylcytosine for the upper limit (absent versus one of the four cytosine derivatives
that may be present and distinguishable by the cell: 5-methylcytosine, 5-hydroxymethylcytosine,
5-formylcytosine and 5-carboxylcytosine; see Section 2.1.4.6). For the IC of DNA methylation for
individual nucleosomes, I used a lower limit of 0 (no CpG dinucleotides and therefore no possible DNA
methylation) and an upper limit of 200 (CpG island and therefore every base may be methylated if
considered double-stranded). For the total memory capacity of DNA methylation, I was inspired by
Lister et al. [241] who experimentally identified 62 and 45 million methylcytosines in H1 and IMR90
cells, respectively. As an approximation, I used a value of 50 million for the lower limit (which
therefore approximately equals the average experimentally identified number of methylcytosines in
the two cell types) and 100 million for the upper limit (to account for non-detected methylcytosines
and more generally for the large temporal and spatial variation that has been observed for the
frequency of DNA methylation).
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Histone Length (in
amino acids)

IC (in
bits)

GenBank
accession number Amino acid composition

H1 215 331.5 NP_005316.1
G:13, P:19, A:42, V:14, L:10, I:3, M:1,
C:0, F:1, Y:1, W:0, H:0, K:57, R:4, Q:2,

N:4, E:6, D:1, S:23, T:14

H2A 142 123.0 NC_000011.9
G:17, P:7, A:20, V:9, L:16, I:6, M:0, C:0,
F:1, Y:4, W:0, H:3, K:13, R:12, Q:6, N:5,

E:7, D:2, S:7, T:7

H2B 125 157.3 NC_000001.10
G:7, P:6, A:13, V:8, L:6, I:7, M:2, C:0,
F:2, Y:5, W:0, H:3, K:20, R:8, Q:3, N:3,

E:7, D:3, S:14, T:8

H3 135 137.6 M26150.1
G:7, P:6, A:18, V:6, L:12, I:7, M:2, C:1,
F:4, Y:3, W:0, H:2, K:13, R:18, Q:8, N:1,

E:7, D:4, S:6, T:10

H4 102 100.6 NC_000012.11
G:17, P:1, A:7, V:9, L:8, I:6, M:1, C:0,
F:2, Y:4, W:0, H:2, K:11, R:14, Q:2, N:2,

E:4, D:3, S:2, T:7

Table A.1: Upper limit for the IC of histone H1 and the core histones that make up a nucleosome. For
each histone class, a representative human amino acid translation was downloaded from GenBank (see
accession number). The IC of a particular histone is calculated as the sum of the IC of its individual amino
acids (Table 3.1). The last column summarizes the amino acid composition of the corresponding histones
(i.e., the frequencies of each amino acid), with amino acids abbreviated as single letter codes.

A.2 Formal Definition and Mode of Action of a Turing Machine

A Turing machine (TM) may be defined as a 7-tuple < Q,Γ,#,Σ, q0, F, δ >:

1. Q: Set of states

2. Γ: Set of tape symbols

3. #: A special blank symbol, # ∈ Γ and # /∈ Σ

4. Σ: Set of input symbols, Σ ⊂ Γ

5. q0: Start state, q0 ∈ Q

6. F : Set of final or accepting states, F ∈ Q

7. δ: Transition function Q \ F × Γ→ Q× Γ× {L, S, R}

Q, Γ and Σ must all be finite and non-empty. The same typically applies to F although it may
be empty (TM that accepts no strings). Upon execution of a rule, we also allow the head to stay
(S) at its current position. This is in contrast to standard definitions of a TM, for which the head
moves either to the left or to the right but never stays at the same location. However, TMs with
the stay option are equivalent to standard TMs and therefore computationally not more powerful. I
adjusted the definition for practical reasons (e.g., histone-modifying enzymes may also stay bound
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Figure A.1: Example of a deterministic TM. The aim of the TM is to parse a string that consists of two
domains separated by a boundary element (I, insulator). Domain 1 left to I is predominantly in state 1,
whereas domain 2 is right to it and predominantly in state 2. The TM replaces all 0 symbols with their
respective symbols from the domain they are located in. The boundary elements of the domains (i.e., the
two cells adjacent to I) are furthermore marked by a special symbol E (end of domain). Black arrows mark
the current position of the head of the TM.
A: Finite state representation. Each rectangle represents a state of the TM, and the directionality of a
transition is shown by an arrow. Each transition is labeled: the first element specifies the scanned symbol
or symbols (denoted in curly brackets) that causes a particular transition when the TM is in the state
the arrow originates from, the second one the symbol that is written, and the third one the direction in
which the head moves. The TM is therefore specified as follows: Q = {q0, . . . , q6}, Γ = {#, 0, 1, 2, E, I},
# as blank symbol, Σ = {0, 1, 2, I}, q0 = q0, F = {q6}, δ = {q0,#} → {q1,#, R}, {q1, 1} → {q1, 1, R},
{q1, 0} → {q1, 1, R}, {q1, I} → {q2, I, L}, {q2, 1} → {q3, E, R}, {q3, I} → {q4, I, R}, {q4, 0} → {q5, E, R},
{q4, 2} → {q5, E, R}, {q5, 0} → {q5, 2, R}, {q5, 2} → {q5, 2, R}, {q5,#} → {q6,#, S}.
B: Start configuration.
C: Snapshot during execution. The TM is in state q1 and currently parsing a cell with the tape symbol 0,
which will be overwritten with 1 upon execution of the transition function.
D: End configuration after the TM reached the final state q6.

after the performed a particular reaction). I now provide a brief summary of how a TM operates
(see also Figure A.1).

Initial configuration
A TM operates on a tape on which each cell i contains a particular symbol γi ∈ Γ. The tape
is infinitely long either on the left side, the right side, or both, depending on the definition. For
our purposes, this is irrelevant. A finite number of cells may contain valid input symbols σ ∈ Σ,
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whereas the remaining cells are blank (# is therefore the only symbol allowed to be represented
infinitely many times on the tape). The head is positioned at a particular start cell and the TM is
in the designated start state q0.

Computation
The TM then operates step-wise. In each step, it is in a particular state q ∈ Q and the head is at a
particular cell i that contains a tape symbol γ ∈ Γ. Unless q ∈ F , the TM operates as follows. It
determines its new configuration from the current configuration by selecting and executing one or
more “rules”. A deterministic TM has at most one rule that is applicable for any given state and
tape symbol, whereas for a non-deterministic TM, more than one rule is applicable for at least one
given state and tape symbol. If multiple rules match, one is selected according to some arbitrary
criterion (or randomly). Therefore, different runs of a non-deterministic TMs on the same input
string may produce different results. A rule is applicable if its left side matches; that is, if the
current state q ∈ Q and the tape symbol γ ∈ Γ at the cell where the head is positioned are as
specified in the left side of the rule. After execution of the rule, the tape symbol may be changed
and the head may change its position to adjacent cells (as specified by {L, S, R}), where L denotes
a movement to the left cell, R to the right cell, and S no movement — stay).

Termination
If the current state qc ∈ F (i.e., one of the final states), the TM halts and computation stops.

A.3 Mapping from a Turing Machine to the Chromatin Com-
puter

In Section 3.2.4.2, I described how any TM can be mapped to a CC, using the notation of Bryant
[13]. In this section, I want to give a specific example of such a mapping, based on the TM from
Figure A.1. In Table A.2, I construct the mapping and list the corresponding CC rules for each
transition from the TM as defined in Figure A.1. For the mapping, I utilize a (6, 4, 2)-CC (6 possible
states, 4 positions per nucleosome, rules depending on 2 adjacent nucleosomes), as defined in
Section 3.2.4. Each TM rule is encoded by two rules in the CC, which map to the binding and
dissociation of the corresponding enzymes, respectively. Because the head of the TM is always
at only one particular location, I note again that position 1 of each nucleosome is empty for all
nucleosomes but one. The same applies to the current state of the TM, which is also stored at the
nucleosome where the head is located. For more details, see Section 3.2.4.
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Transition in TM Corresponding transitions in the CC

{q0,#} → {q1,#, R}
1: [B B ∗ 0] [H q0#0] [B B ∗ 0] → [B B – 0] [H q0#1] [B B – 0]
2: [B B ∗ 0] [H q0#1] [B B ∗ 0] → [B B – 0] [B B#0] [H q1 – 0]

{q1, 1} → {q1, 1, R}
1: [B B ∗ 0] [H q1 1 0] [B B ∗ 0] → [B B – 0] [H q1 1 1] [B B – 0]
2: [B B ∗ 0] [H q1 1 1] [B B ∗ 0] → [B B – 0] [B B 1 0] [H q1 – 0]

{q1, 0} → {q1, 1, R}
1: [B B ∗ 0] [H q1 0 0] [B B ∗ 0] → [B B – 0] [H q1 0 1] [B B – 0]
2: [B B ∗ 0] [H q1 0 1] [B B ∗ 0] → [B B – 0] [B B 1 0] [H q1 – 0]

{q1, I} → {q2, I, L}
1: [B B ∗ 0] [H q1 I 0] [B B ∗ 0] → [B B – 0] [H q1 0 1] [B B – 0]
2: [B B ∗ 0] [H q1 I 1] [B B ∗ 0] → [H q2 – 0] [B B I 0] [B B – 0]

{q2, 1} → {q3, E, R}
1: [B B ∗ 0] [H q2 1 0] [B B ∗ 0] → [B B – 0] [H q2 1 1] [B B – 0]
2: [B B ∗ 0] [H q2 1 1] [B B ∗ 0] → [B B – 0] [B B E 0] [H q3 – 0]

{q3, I} → {q4, I, R}
1: [B B ∗ 0] [H q3 I 0] [B B ∗ 0] → [B B – 0] [H q3 I 1] [B B – 0]
2: [B B ∗ 0] [H q3 I 1] [B B ∗ 0] → [B B – 0] [B B I 0] [H q4 – 0]

{q4, 0} → {q5, E, R}
1: [B B ∗ 0] [H q4 0 0] [B B ∗ 0] → [B B – 0] [H q4 0 1] [B B – 0]
2: [B B ∗ 0] [H q4 0 1] [B B ∗ 0] → [B B – 0] [B B E 0] [H q5 – 0]

{q4, 2} → {q5, E, R}
1: [B B ∗ 0] [H q4 2 0] [B B ∗ 0] → [B B – 0] [H q4 2 1] [B B – 0]
2: [B B ∗ 0] [H q4 2 1] [B B ∗ 0] → [B B – 0] [B B E 0] [H q5 – 0]

{q5, 0} → {q5, 2, R}
1: [B B ∗ 0] [H q5 0 0] [B B ∗ 0] → [B B – 0] [H q5 0 1] [B B – 0]
2: [B B ∗ 0] [H q5 0 1] [B B ∗ 0] → [B B – 0] [B B 2 0] [H q5 – 0]

{q5, 2} → {q5, 2, R}
1: [B B ∗ 0] [H q5 2 0] [B B ∗ 0] → [B B – 0] [H q5 2 1] [B B – 0]
2: [B B ∗ 0] [H q5 2 1] [B B ∗ 0] → [B B – 0] [B B 2 0] [H q5 – 0]

{q5,#} → {q6,#, S}
1: [B B ∗ 0] [H q5#0] [B B ∗ 0] → [B B – 0] [H q5#1] [B B – 0]
2: [B B ∗ 0] [H q5#1] [B B ∗ 0] → [B B – 0] [H q6#1] [B B – 0]

Table A.2: Mapping from a TM to a chromatin computer and example of a specific chromatin computer
program. The mapping from the TM as defined in Figure A.1 to a (6, 4, 2)-CC (6 possible states, 4 positions
per nucleosome, rules depending on 2 adjacent nucleosomes) is shown (see Section 3.2.4). The left column
lists the transitions of the TM from Figure A.1 and the right column gives the corresponding rules set for
the CC. The notation is analogous to Bryant [13] (Figure 3.6), with one modification: for clarity, I enclosed
each nucleosome by [. . .]. B: special blank symbol that represents the absence of any chromatin mark; ∗:
special symbol that is used to read any mark; –: indicates that the original symbol remained unchanged
(only used for positions that are not uniquely determined); H: special symbol that stands for “head” and
indicates the current position of the head of the corresponding TM for which the reversible mapping is
constructed. For more details, see text, Section 3.2.4.1 and Section 3.2.4.2.



Appendix B
Methodological Details for the Custom
Array Design Pipeline,
CEM-Designer Web Server, nONCOchip 2.0
and Alzheimer Custom Array

B.1 Methodological Details for the Custom Array Design Pipeline
and the CEM-Designer Web Server

The CAD pipeline consists of a collection of Perl and R scripts and can be executed from the
command line. It is not publicly available; however, it is used in the CEM-Designer web server
and available upon request. The CAD pipeline requires the installation of several freely available
programs: R [489], BLAT [381], liftOver, and twoBitToFa1.

The CEM-Designer web server is implemented in Python and uses extensive JavaScript (jQuery
in particular2) and Ajax for its dynamic interface. Therefore, JavaScript must strictly be enabled.
The job and scheduling system of the CEM-Designer are based on the MITOS web server [490].
Currently, only one client executes jobs but this can be adjusted whenever more computational
resources are needed.

An overview of all relevant steps of the CAD pipeline and the CEM-Designer web server are presented
in Figure B.1 and Figure B.2.

1The latter three programs are available at http://genome.ucsc.edu, last accessed in August 2013.
2http://jquery.com/, last accessed in August 2013

163

http://genome.ucsc.edu
http://jquery.com/


164

Determine file format and assembly version for each file *

Coordinates already 
in target assembly

Coordinates in 
older assembly 

Unified datasets with identical genome assembly versions (hg19)

Map sequences 
with BLAT against 

target assembly
using file-specific 
mapping options

 * - ***
Convert coordinates to target 
assembly using liftOver *

Mapping statistics

Individually for each file: Eliminate overlap with the negative set (if applicable) * - **

Parse configuration file *

Convert all start coordinates to 
zero- based representation if necessary * 

Determine the sequences of each set using twoBitToFa and create 
final FASTA files that serve as input for subsequent probe design *

Merge all files strand-specifically and apply 
design strategy for how to handle overlapping sequences * 

FASTA BED

User opens website for step 1

Create Job ID as sha256 from time and random salt

User uploads files

Create a directory for job ID and put uploaded files in directory

User fills HTML form with parameters and submits job

1) Create configuration file and intervals file in job directory
2) Create job task for Python server

3) Find job, compress job directory and queue it for transferring to work clients
4) Client gets job and unzips the job directory 

Start design pipeline

1) Client compresses the results and sends it to server *
2) Send mail to user *

Server unzips results and presents it on webserver

User is 
redirected 
to a waiting 

page until job 
is finished

Send 
mail to 
user if 

an error
occurs

Delete results after one month

Individually for each file: Add sequences from the complementary strand 
to set of target sequences (if applicable) * 

Mapping statistics

End design pipeline

  **  - not time-consuming    (in the order of minutes)
  **  - time-consuming          (in the order of several hours)
 *** - very time-consuming  (up to one or multiple days)

Abort 
job at 

any time

Send 
mail to 
user

1: Do not merge 
overlapping sequences

2: If target sequences overlap, 
then merge them to one 

combined sequence

3: If target sequences overlap, 
then use only the 

non-overlapping specific regions

Delete
files

Delete
files

EXECUTION 
TIME

Partition target sequences into user-defined length sets, split long target 
sequences into overlapping subsequences, and apply length filter  *

Calculate all specific regions and 
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sequences into one combined 

sequence and combine original 
sequence annotations *

Figure B.1: Summary of relevant steps of the CAD pipeline in conjunction with the CEM-Designer web
server for step 1. Functions specific to the CEM-Designer web server are marked with a purple border. All
customizable parameters appear at the corresponding step where they are applied (blue: general design
parameters, red: file-specific parameters). The typical execution time for all relevant steps is also estimated
(see legend).
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Figure B.2: Summary of relevant steps of the CAD pipeline for step 3. Functions specific to the
CEM-Designer web server have been omitted and are analogous to Figure B.1. All customizable pa-
rameters appear at the corresponding step where they are applied and are colored in blue, whereas output
files are colored with an ocher boundary. The typical execution time for all relevant steps is also estimated
(see legend).
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Figure B.3: Snapshots of the CEM-Designer web server.
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B.2 Composition of the nONCOchip 2.0 and the Alzheimer Custom

Array

B.2.1 nONCOchip 2.0

The nONCOchip 2.0 has been developed at the Fraunhofer Institute for Cell Therapy and Immunology
(Fraunhofer IZI, Leipzig, Germany) to facilitate the analysis of expression changes of disease-
associated lncRNAs in parallel with protein-coding genes (human genome version hg19). It
comprises 913,413 probes of 60 bp each. The design strategy ensures that all probes are unique on
the DNA level (according to hg19) as well as on the RNA level (according to RefSeq). Overall, 65%
of probes correspond to lncRNAs and the remaining probes to protein-coding mRNAs (20%) and
regions antisense to 5’ or 3’ UTRs (11%) (Tables B.1 and B.2). In addition to Agilent’s 026652
probeset (composed of RefSeq Build 36.3, Ensembl Release 52, Unigene Build 216, and GenBank
from April 2009), I designed 190,362 (20.4%) probes for all protein-coding genes as annotated in
Gencode v4 such that a total of 93% of all protein-coding genes and 95% of their corresponding
alternative transcripts are represented by at least one probe on the microarray. Noteworthy, the
nONCOchip 2.0 contains more than 160,000 probes (18%) for ncRNAs that are not available on
any other commercial microarray platform. These probes represent RNAs that have been found to
be controlled by major cancer-related pathways (e.g., the oncogene Stat3, the tumor suppressor
protein TP53, or cyclins) and have been detected by transcriptome-wide expression variation studies
utilizing Affymetrix Human Tiling Arrays also performed at the Fraunhofer Institute for Cell Therapy
and Immunology in cooperation with the University of Leipzig (tiling array regions). They are largely
undescribed so far3. Furthermore, the nONCOchip 2.0 contains a comprehensive representation of
known lncRNAs retrieved from public databases (NONCODE [491], lncRNAdb [492], fRNAdb [493],
RNAdb [494], H-InvDB [495], Gencode v4 [380], RefSeq[496], literature — lncRNAs originating from
actively transcribed genes [201], chromatin-associated RNA [188], snoRNAs from the snoBoard

database [497], intronic RNAs as identified by Nakaya et al. [429], in total 42% of probes) as well as
long lncRNAs with conserved secondary structure (RNAz [384], Evofold [382], 8%). Since natural
antisense transcripts appear to regulate transcription and translation of neighboring genes [498], I
designed 156,698 (16.8%) probes mapping antisense to protein-coding genes (Gencode v4). Lastly,
nONCOchip 2.0 contains probes from the nONCOchip 1.0 that do not overlap with probes from the
nONCOchip 2.0.

For each dataset, I also calculated various statistics to analyze to what extend the intended design
strategies worked as expected (e.g., histograms of the number of probes per target sequence, target
sequence length or the correlation of target sequence length and the number of fully overlapping
probes) (Figure B.4).

3Hackermüller et al. “Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro
ncRNAs”, submitted.
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Table B.1: Overview of probe distribution for the nONCOchip 2.0. A probe corresponds to a category if it
overlaps to at least 95% (57 nucleotides) with at least one annotation of the category. Because categories
may overlap, a probe may be associated with multiple categories. The relative fraction is defined according
to overall number of probes on the nONCOchip 2.0, and the numbers may not add up to 100% due to the
mandatory control probes.

Category Number
of probes

Relative
fraction (in %)

Transcriptome-wide studies 160,884 17.61
-Cell cycle 60,178 6.59
-TP53 81,455 8.92
-Stat3 30,372 3.33

Predicted ncRNAs 77,771 8.51
ncRNAs from public databases 380,608 41.67
ncRNAs, in total 598,428 65.52
Protein-coding mRNAs (Gencode v4 annotation) 180,824 19.80
Probes on the reverse complementary strand of UTRs (5’ or 3’) 99,387 10.88

Table B.2: Genomic distribution of probes for the nONCOchip 2.0. A probe corresponds to a category if it
overlaps strand-specifically to at least 95% (57 nucleotides) with at least one annotation (i.e., feature or
sequence) of the category. For introns and intergenic regions, the strand information is ignored. 5’UTRs
and 3’UTRs correspond to 5’ and 3’ untranslated regions of mRNAs. CDS corresponds to the coding exons
of mRNAs. The relative fraction is defined according to overall number of probes on the nONCOchip 2.0.
Similar to Figure B.1, the numbers may not add up to 100% due to the mandatory control probes and
probes that overlap with no category with at least 95%, for example.

Annotation category Number of probes Relative fraction (in %)

5’UTRs 38,249 4.19
CDS 65,165 7.13
3’ UTRs 91,642 10.03
Introns 409,884 44.87
Intergenic regions 172,376 18.87
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Figure B.4: Design statistics for the collective ncRNA dataset from the nONCOchip 2.0 after the first probe
design. Various histograms (A–E) and one correlation plot (F) are shown. For clarity, only a fraction of
the values on the x-axis are shown (maximum values: a:1,457; b:415,001; c:136; d:1,340; e:458). In F, a
random sample of 20,000 target sequences has been selected for the correlation plot.

For both nONCOchip 2.0 and the Alzheimer Custom Array (see Section B.2.2), Agilent SurePrint
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Table B.3: Genomic distribution of probes for the Alzheimer Custom Array. The table is analogously
composed as Table B.2, and I refer to Table B.2 for details.

Annotation category Number of probes Relative fraction (in %)

5’UTRs (sense) 39,233 4.21
5’UTRs (antisense) 38,021 4.08
CDS (sense) 70,451 7.56
CDS (antisense) 43,799 4.70
3’UTRs (sense) 101,297 10.87
3’UTRs (antisense) 73,340 7.87
Introns 388,881 41.73
Intergenic regions 162,803 17.47
Pseudogenes 8,201 0.88
Repeats 17,706 1.90

G3 Custom Gene Expression Exon microarrays4 were used that comprise roughly one million features.
The probes have a length of 60 bp and are much more sensitive to expression changes than shorter
probes [e.g., see 499].

B.2.2 Alzheimer Custom Array

The Alzheimer Custom Array has been designed to facilitate the analysis of expression changes
for a larger set of samples with reliable variance estimations for Alzheimer’s disease (AD). In total, I
had 19 AD patient samples and 22 control samples. The Alzheimer Custom Array is in large parts
identically composed as the nONCOchip 2.0 (Table B.3) but differs in a few notable details. It does
not contain probes from the nONCOchip 1.0 and excludes a few probes from tumor-relevant signaling
pathways (see above) but instead includes almost 7,000 probes from AD-associated genes and a set
of roughly 600 mRNAs, previously identified to contain single nucleotide polymorphisms related to
AD [500] (compiled by Uwe Überham). Additionally, almost 200,000 probes for transcripts that were
significantly highly expressed (FDR < 0.05) or significantly differentially expressed (FDR < 0.05)
based on a preliminary study with one AD patient sample and one control brain tissue sample
assessing unbiased transcriptome-wide expression variations utilizing the Affymetrix Human Tiling
1.0 array set are included.

Overall, 931,898 probes have been designed for the Alzheimer Custom Array (26,701 Agilent
probes and 905,197 custom probes). 22.6% of all probes represent isoforms of protein-coding genes.
Analogously to the nONCOchip 2.0, probes represent ncRNAs from public databases, genomic loci
containing conserved secondary structures, novel transcripts controlled by major disease-relevant
pathways, and novel transcripts identified to be associated with AD by a preliminary study (see

4Exon arrays contain probes that can be arbitrarily distributed along the entire gene, unlike standard expression
arrays that contain probes biased toward the 3’ end of genes.
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above). This corresponds to 378,744 (40.6%), 72,877 (7.8%), 232,473 (24.9%) and 127,127
(13.6%) probes, respectively. lncRNAs [189, 201] are covered by 36,052 (3.8%) probes.

B.3 Methodological Details for the Application of the CAD Pipeline
for the nONCOchip 2.0 and the Alzheimer Custom Array

I used the CAD pipeline for the preprocessing of target sequences for both the nONCOchip 2.0 and
the Alzheimer Custom Array. If only sequences were known for a particular dataset and not
their genomic positions, I used BLAT for the sequence mapping to the hg19 genome and considered
only hits if they had at least 95% sequence identity. If multiple hits were found, I used only the
best-scoring one. If hits spanned multiple blocks due to introns, I treated each block as a separate
sequence. After unifying genomic coordinates among all datasets, eliminating duplicate sequences
(i.e., sequences with identical start and end coordinates), and applying a strategy for how to handle
overlapping sequences, I partitioned all sequences into three distinct sets and designed probes
individually for each set (Figure B.5). Because Agilent uses 60-mer probes, I additionally eliminated
target sequences shorter than 60 bp. Furthermore, for datasets containing ncRNAs, I eliminated
any overlap with coding regions (according to Gencode v4) to avoid probe overlap. To represent
each genomic loci only once, I merged overlapping target sequences to a combined sequence in the
first design round (second strategy, see Section 5.2.1.3 and below).

For probe design, I used the eArray software from Agilent and did not specify any preferred probe
position (i.e., probes were placed randomly across the sequence). Due to the impossibility of
choosing the full hg19 genome as reference genome, I used the default reference transcriptome
(which includes all RefSeq annotated transcripts) as provided by eArray. After probe design, I tested
probe specificity by similarity search against the genome by mapping all probes to the hg19 genome
using BLAT with settings that aim to improve sensitivity (-stepSize=5 -repMatch=1000000

-fine -minIdentity=90, whereas all other settings have default values). I then discarded any
probes that mapped non-uniquely (two or more hits with at least 95% identity).

After the first design, I calculated various coverage statistics (such as histograms and correlation
plots, see Figure B.4). In particular, I calculated what percentage of target sequence before
application of the CAD pipeline are represented by at least one specific probe (hereafter denoted
c>0, see also Figure B.4 A). If c>0 was smaller than 70%, I created a reduced dataset containing
only those target sequences not yet represented by any specific probe and performed up to two
additional designs rounds (including probe design using eArray, see above) with modified design
parameters (see below and Figure B.5 B). In contrast to the first design, overlapping sequences
were not merged in the second design, which expectedly produced overlapping probes but also
substantially increased c>0. In the third design, to further improve c>0, I used the same parameters
as for the second design but increased the number of probes per target sequence (Figure B.5 A).
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Figure B.5: General design strategy for the nONCOchip 2.0 and the Alzheimer Custom Array.
A: Visualization of the general strategy to maximize the number of target sequences that are represented by
at least one uniquely-mapping probe. Up to three independent probe designs were made, each of which
with different design parameters. Ultimately, uniquely mapping probes from all designs are merged. For
more details, see text.
B: Summary of the number of probes per target sequence after the partitioning of target sequences into
three distinct sets for the first, second, and third design.

Indeed, particularly for short target sequences (for which only one probe was designed in the first two
designs), I often successfully designed a considerable amount of new specific probes (see Section 5.3
for a discussion). I then merged all specific probes from all designs and recalculated c>0. Finally, I
removed duplicate probes by identifying probes that overlap with at least 59 bp with other probes
and then randomly deleted all but one of these overlapping probes.



Appendix C
Methodological Details and Additional
Results for the Alzheimer Custom Array

C.1 Identification of Differentially Expressed Probes

To identify differentially expressed probes, I defined the linear model:

E[Xi] = α× AD + β × Age + ε (C.1)

, where E[Xi] is the expected expression of probe i, ε an error term, α the coefficient modeling the
impact of AD on the expression variance of probe i, and β the coefficient modeling the influence
of the patient’s age. I used the Limma R package [501] for model fitting, and reliable variance
estimations were obtained by empirical Bayes moderated t-statistics.

The obtained p-values have to be adjusted for multiple testing because in the analysis of any
high-dimensional data such as microarray data, massive parallel testing introduces a multiple testing
problem. For this, I controlled the false discovery rate (expected proportion of Type I errors among
all significant hypotheses). Because the Benjamini-Hochberg (BH) procedure [502] suffers from
multiple flaws [503, 504], I employed a modified BH procedure that incorporates an estimated
proportion of the null p-values [503] to compute q-values (false discovery rate analogue of the
p-value, or the minimum false discovery rate at which a test may be called significant). This offers
distinct advantages over the traditional BH method (see [504] for details) and is implemented in
the fdrtool R package [504, 505]. A comparison between the traditional BH and the fdrtool

adjustment revealed that for a given q-value, slightly more probes were deemed significant with
fdrtool but all probes deemed significant using a BH adjustment were also significant with
fdrtool.

All following analyses were based on the set sdiff of the 4,095 uniquely mapping, differentially
expressed probes.
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(Continued on next page.)

C.2 Identification of Differentially Expressed Loci

To identify differentially expressed loci, I integrated different annotation sources with known (e.g.,
Gencode v14, including Gencode v14 long non-coding RNAs, and a ncRNA list collected by Cabili
et al. [58]; see Section B.2 for a full list) and unknown transcript structures and strand (loci from
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Figure C.1: Example heatmaps of differentially expressed probes without row scaling. The figure is identical
to Figure 6.3, except that values have not been centered and scaled in any direction. A: based on q=0.1.
B: based on q=0.2. See Figure 6.3 for further details. (Continued from previous page.)
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the tiling array experiments, ncRNA predictions, and caRNAs [188]).

Because different annotations may overlap, I used Gencode v14 as primary annotation and comple-
mented this with the manually collected annotations to maximize the information content. Analogous
to the enrichment analysis, probes needed at least 95% overlap with a particular annotation item
(e.g., exon or intron) to be considered.

For each probe p ∈ sdiff, I determined whether p is located in a locus with known transcripts
(protein-coding, non-coding, or pseudogenes, as described before). Probes were mapped to a
particular gene if it was located in (i) an exon of at least one annotated splicing variant (only for
protein-coding transcripts because non-coding and pseudogene transcripts may exist in an unspliced
and/or spliced version), (ii) the UTR of that gene, or (iii) in a putative previously unrecognized
exon (no overlap with annotated exons but located in an exon of at least two spliced ESTs). Probes
located exclusively intronic of a protein-coding gene (i.e., no overlap with annotated exons and less
than two overlaps with exonic ESTs) were classified as putative intronic transcripts and therefore
added to the non-coding list. If multiple introns overlapped, I used the cluster of overlapping introns
as loci.

Importantly, I considered only sense and discarded antisense overlap because the transcript structure
is not known for transcripts that are antisense to annotated transcripts unless they map to known
antisense transcripts, which were already included in the various annotation sources as listed above.
However, for annotation items with an unknown reading direction (e.g., loci from the tiling array
experiments, ncRNA predictions, caRNAs [188]), I ignored the strand information and considered
all overlaps in sense direction to not misleadingly lose relevant hits.

I tested the full annotated gene associated with a particular probe p ∈ sdiff for significance rather
than only the overlapping transcript(s) itself, due to the difficulty and uncertainty of distinguishing
among individual splicing variants. If a probe mapped to multiple distinct annotated genes, I tested
each gene individually but recorded the ambiguity in order to not lose any potentially relevant
signals.

For each differentially expressed probe pi ∈ sdiff that overlapped with a particular differential
expression candidate i (i.e., a locus with known or unknown transcript structure) in sense direction,
I then identified the set of probes palli that also overlapped with i with the criteria as described
above (with respect to their genomic location such as exonic or intronic) and recorded the fraction
of probes for which the expression level change was in the same direction as pi (i.e., up- or
downregulated as compared to the control group). I reasoned that if a particular gene is differentially
expressed, the probes that map to this gene (regardless of whether they are deemed as significantly
expressed) should at least have an expression level change in the same direction as the differentially
expressed probe. I then used a one-tailed binomial test to identify differentially expressed loci with a
significance threshold of p = 0.05. Because significance can only be achieved with a set of at least
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five other probes, I separately recorded cases when the test could not become significant because
not enough probes have been designed and when more than 50% of the overlapping probes had a
expression level change in the same direction (1 out of 1, 2 out of 3, 3 out of 4, . . . ). Additionally,
I recorded transcripts that achieved borderline significance (4 out of 5, 5 out of 6, and 6 out of 7).
These loci should be treated with caution, however, because they may contain an increased amount
of false positives.

For probes located in loci with unknown transcript structure(s), I checked if the probe overlaps with
spliced ESTs. If more than one spliced EST overlapped with the probe, I used the full overlapping
EST cluster as locus rather than the original locus for the subsequent significance test.

Lastly, for each of the four classes (three types of known transcripts and unknown transcripts), I
filtered the list and only retained loci for which either the binomial test was significant or for which
at least one probe had a q-value smaller than 0.05. Although this strict procedure may eliminate
potentially relevant signals, it reduces the number of false positives due to the relatively high initial
q-value.

C.3 Functional Characterization of Differentially Expressed Loci
and Overlap with Known AD-Associated Loci

C.3.1 Functional Characterization of Differentially Expressed Loci

In the GO-TermFinder web interface, I did not exclude any GO evidence codes and selected the
UniProt-GOA gene association file. Because the GOA group annotates to the primary protein
accession instead of the gene accession, individual Ensembl IDs may have multiple protein accessions,
and GO-TermFinder ignores them due to the ambiguity. Because this affected a substantial amount
of Ensembl IDs and therefore unnecessarily reduced the size of the dataset (both in the background
list and the list of differentially expressed loci), as a workaround (as suggested by John Matese1), I
first manually converted Ensemble IDs into UniProtKB accession numbers using the UniProt ID
Mapping tool (http://www.uniprot.org/, last accessed in August 2013). Because I identified full
genes in the differential expression analysis rather than particular isoforms, I retained all UniProtKB
accession numbers if a particular Ensembl ID mapped to multiple UniProt IDs. For differentially
expressed pseudogenes, only 2 out of 29 could be mapped, and an enrichment analysis was therefore
not possible.

1Director of the Princeton University MicroArray database at the Lewis-Sigler Institute for Integrative Genomics

http://www.uniprot.org/
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Figure C.2: Results of the GO terms enrichment analysis for putative differentially expressed protein-coding genes. A: Biological process, B: Molecular
function, C: Cellular component. See text for further details. (Continued from previous pages.)
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Figure C.3: Results of the GO terms enrichment analysis for putative differentially expressed non-coding genes and transcripts. For non-coding loci
originating from introns, I selected the surrounding gene for the GO terms enrichment analysis (if available). A: Biological process, B: Molecular function,
C: Cellular component. See text for further details. (Continued from previous pages.)
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C.3.2 Overlap with Known AD-Associated Loci

Table C.1 lists differentially expressed loci that overlap either in sense or antisense direction with
known AD-associated genes according to a manually created list collected by Uwe Überham, based
on publications of Bossers et al. [476], Bertram et al. [506], Tan et al. [507], Ravetti et al. [508],
Colangelo et al. [509], and Ginsberg et al. [510].

C.4 Splice Site Conservation Analysis

The protein-coding background set consisted of RefSeq annotated coding transcripts (∼120,000
transcripts with ∼347,000 unique splice sites) and the non-coding background of the Gencode v14
long non-coding RNA set (∼21,300 transcripts with ∼63,000 unique splice sites).

Each splice map was based on the 46-way multiz alignment from the UCSC Genome Browser. It
contained the exact aligned genomic coordinates for all available species and the corresponding
MaxEntScan score for each listed splice site. The MaxEntScan can be considered as a similarity
measure for a splice site motif, and scores > 3 strongly indicate strongly that a splice site is
functional [115, 511]. We considered an aligned splice site in a particular species as functional if
either annotated by RefSeq or an EST or if MaxEntScan > 3.

We assessed the significance of the observed values as follows. First, we drew 1,000 random samples
from the corresponding background set and randomly selected the same number of genes as in the
set of differentially expressed genes. The significance of the observed signal was then calculated as
the fraction of the random background samples that had a value equal or higher (if the signal had
a value higher than the background) and equal and lower (if the signal had a value lower than the
background) than the signal, respectively. I used a threshold of 0.05 for significance.
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Table C.1: Overlap with known AD-associated genes. The table lists all differentially expressed loci that
overlap either in sense or antisense direction with known AD-associated genes according to various references.
AD gene: Gene name with reported AD association as reported by the reference. Ensembl ID: Ensembl
ID of the AD gene. Signal origin: Characterization of the location from which the signal (differentially
expressed probe) originates from. Reg. in AD: Is the transcript downregulated (−) or upregulated (+) in
AD in the Alzheimer Custom Array? Overlap direction: Direction of overlap with the reported gene
from the literature. For more details, see text.

AD gene Ensembl ID Signal origin Reg.
in AD

Overlap
direction Reference

APOA2 ENSG00000158874 exon of protein-coding gene + sense [506]
MME ENSG00000196549 intron of protein-coding gene + sense [506]
MYOZ3 ENSG00000164591 exon of protein-coding gene + sense [476]
GRIA1 ENSG00000155511 intron of protein-coding gene − sense [476]
NEDD9 ENSG00000111859 intron of protein-coding gene − sense [510]
ADCYAP1R1 ENSG00000078549 intron of protein-coding gene + sense [506]
CAV1 ENSG00000105974 intron of protein-coding gene + sense [506]
NRG1 ENSG00000157168 intron of protein-coding gene + sense [506]
SLC18A3 ENSG00000187714 exon of protein-coding gene + sense [506]
CALHM1 ENSG00000185933 exon of protein-coding gene + sense [506]
TCF7L2 ENSG00000148737 intron of protein-coding gene + sense [506]
ADAM12 ENSG00000148848 intron of protein-coding gene + sense [506]
BDNF ENSG00000176697 exon of protein-coding gene − sense [506], [509]
ATXN8OS ENSG00000230223 antisense lncRNA + sense [506]
SAMD4A ENSG00000020577 intron of protein-coding gene − sense [507]
FOS ENSG00000170345 intron of protein-coding gene + sense [510]
TGFB3 ENSG00000119699 exon of protein-coding gene − sense [507]
LIPC ENSG00000166035 intron of protein-coding gene + sense [506]
IGF1R ENSG00000140443 intron of protein-coding gene + sense [506]
TP53 ENSG00000141510 exon and intron of protein-coding gene + sense [506]
RUNX1 ENSG00000159216 intron of protein-coding gene + sense [506]
RBM3 ENSG00000102317 exon of protein-coding gene − sense [507]
STARD7 ENSG00000084090 intron of protein-coding gene + antisense [476]
TTN ENSG00000237298 antisense lncRNA − antisense [508]
EFNA5 ENSG00000184349 RNAz prediction, intronic ncRNA + antisense [506]

ABCB1 ENSG00000085563 exon/intron boundary of protein-coding
gene + antisense [506]

SLC22A18 ENSG00000254827 intron of protein-coding gene + antisense [476]
GAB2 ENSG00000254420 antisense lncRNA + antisense [506]
C18orf10 ENSG00000150477 exon of protein-coding gene − antisense [476]
RUNX1 ENSG00000159216 intron of protein-coding gene + antisense [506]
MCM3AP ENSG00000215424 antisense lncRNA + antisense [506]
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Figure C.4: Results of the splice site conservation analyses based on the fraction of alignable genes. The
figure is identical to Figure 6.6, except that the fraction of alignable genes is shown rather than the fraction
of conserved genes. For more details, see Figure 6.6.
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Figure C.5: Results of the splice site conservation analyses based on the fraction of conserved genes among
alignable genes. The figure is identical to Figure 6.6, except that the fraction of conserved genes among
alignable genes is shown rather than the fraction of conserved genes. For more details, see Figure 6.6.
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