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Referat: 

Diffusion weighted imaging (DWI) and dynamic susceptibility contrast-enhanced 

(DSC) perfusion-weighted imaging (PWI) are commonly employed in clinical 

practice and in research to give pathophysiological information for patients with acute 

ischemic stroke. DWI is thought to roughly reflect the severely damaged infarct core, 

while DSC-PWI reflects the area of hypoperfusion. The volumetric difference 

between DWI and DSC-PWI is termed the PWI/DWI-mismatch, and has been 
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suggested as an MRI surrogate of the ischemic penumbra. However, due to the 

application of a contrast agent, which has potentially severe side-effects (e.g., 

nephrogenic systemic fibrosis), the DSC-PWI precludes repetitive examinations for 

monitoring purposes. New approaches are being sought to overcome this 

shortcoming. 

BOLD (blood oxygen-level dependent) signal can reflect the metabolism of blood 

oxygen in the brain and hemodynamics can be assessed with resting-state fMRI. The 

aim of this thesis was to use resting-state fMRI as a new approach to give similar 

information as DSC-PWI. This thesis comprises two studies: 

In the first study (see Chapter 2), two resting-state fMRI methods, local methods 

which compare low frequency amplitudes between two hemispheres and a k-means 

clustering approach, were applied to investigate the functional damage of patients 

with acute ischemic stroke both in the time domain and frequency domain. We found 

that the lesion areas had lower amplitudes than contralateral homotopic healthy 

tissues. We also differentiated the lesion areas from healthy tissues using a k-means 

clustering approach. 

In the second study (see Chapter 3), time-shift analysis (TSA), which assesses time 

delays of the spontaneous low frequency fluctuations of the resting-state BOLD signal, 

was applied to give similar pathophysiological information as DSC-PWI in the acute 

phase of stroke. We found that areas which showed a pronounced time delay to the 

respective mean time course were very similar to the hypoperfusion area.  

In summary, we suggest that the resting-state fMRI methods, especially the time-shift 

analysis (TSA), may provide comparable information to DSC-PWI and thus serve as a 

useful diagnostic tool for stroke MRI without the need for the application of a contrast 

agent. 
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1. General Introduction 

As the second leading cause of death and major cause of disability in the world 

(Donnan et al., 2008; Mathers et al., 2009), stroke is the rapid loss of brain function 

due to disturbance in the blood supply to the brain. Stroke can cause permanent 

neurological damage, complications, and death. Acute ischemic stroke is caused by 

the blockage of blood vessel in the brain. Therapeutic decisions must be made quickly 

after stroke onset, where minutes can make the difference between benefit and harm 

to the patient. The rapid diagnosis is crucial for patient outcome after stroke onset. 

Diffusion weighted imaging (DWI) and dynamic susceptibility contrast-enhanced 

(DSC) perfusion-weighted imaging (PWI) are commonly employed in clinical 

practice and in research to give pathophysiological information for patients with acute 

ischemic stroke (Sorensen et al., 1996; Wardlaw, 2010; Merino and Warach, 2010; 

Dani et al., 2011). DWI is thought to roughly reflect the severely damaged infarct 

core due to cytotoxic edema which is caused by the breakdown of sodium-potassium 

pumps, while DSC-PWI reflects the area of hypoperfusion due to hemodynamic 

compromise in the brain. The volumetric difference between DWI and DSC-PWI is 

termed the PWI/DWI-mismatch, and has been suggested as an MRI surrogate of the 

ischemic penumbra (Karonen et al., 1999; Schlaug et al., 1999) (Fig 1.1). The cerebral 

blood flow (CBF) damage in the mismatch area is potentially reversible. If normal 

CBF is restored in time, the ischemic damage in the penumbra can be minimized, 

otherwise long-term hypoperfusion in penumbra will eventually lead to infarction. 

Therefore the ischemic penumbra is regarded as the prime target for any treatment 

approach after acute ischemic stroke onset. 

 

Figure 1.1: An example of DWI, DSC-PWI and PWI/DWI-mismatch area. 

However, the mismatch concept for identifying the penumbra has been challenged as 

being frequently inaccurate due to the lack of good quantification of perfusion at low 
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perfusion levels and its susceptibility to alterations of the arterial input. Due to the 

application of a contrast agent, which, though effective to induce a transient change in 

MRI signal due to magnetic susceptibility effects (Villringer et al., 1988), has 

potentially severe side-effects (e.g., nephrogenic systemic fibrosis), the DSC-PWI 

precludes repetitive examinations for monitoring purposes. New approaches are being 

sought to overcome this shortcoming. 

Resting-state functional magnetic resonance imaging (rsfMRI) is a noninvasive 

imaging technique which does not require contrast agent application and is of 

relatively low cost, while still maintaining high temporal resolution. Therefore, the 

resting-state fMRI is increasingly applied to research questions regarding brain 

disorders (Li et al., 2002; Greicius et al., 2004). BOLD (blood oxygen-level 

dependent) signal can reflect the metabolism of blood oxygen in the brain and 

hemodynamics can be assessed with resting-state fMRI (Tong et al., 2010). 

The aim of this thesis is try to use resting-state fMRI as a new approach to give 

similar information as DSC-PWI. Specifically, we aim to apply the resting-state fMRI 

approach to differentiate the lesion area from healthy tissues in patients with acute 

ischemic stroke.  

 

1.1. Introduction of stroke and stroke MRI  

1.1.1. Introduction of stroke 

1.1.1.1. Stroke overlook 

The definition of stroke from the World Health Organization (WHO) is: a clinical 

syndrome characterized by rapidly developing clinical symptoms and / or signs of 

focal, and at times global (applied to patients in deep coma and those with 

subarachnoid hemorrhage), loss of cerebral function, with symptoms lasting more 

than 24 hours or leading to death, with no apparent cause other than that of vascular 

origin. Simply, a stroke is the rapid loss of brain function due to disturbance in the 

blood supply to the brain. 
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Stroke can cause permanent neurological damage, complications, and death. Stroke 

prevention is a primary goal of community and personal health programs. Stroke has 

become the second leading cause of death and major cause of disability in the world 

(Donnan et al., 2008; Mathers et al., 2009). Identification of stroke risk factors and 

implementation of activities to eliminate or diminish their impact are essential to the 

reduction of stroke morbidity and mortality (WHO Task Force, 1989). In the report of 

the WHO Task Force on stroke and other Cerebrovascular Disorders, it is pointed out 

that stroke risk factors include arterial hypertension, diabetes mellitus, heart disease, 

transient ischemic attack (TIA) and completed stroke, obesity, platelet 

hyperaggregability, alcoholism, smoking, elevated blood lipid levels, hyperuricemia, 

infections, as well as genetic and familial factors. It also reported that risk factor 

reduction is an important step in preventing stroke and becomes an imperative for 

clinicians and public health officers to address (WHO Task Force, 1989). 

Strokes can be classified into two major categories: ischemic stroke and hemorrhagic 

stroke. An ischemic stroke is caused by temporary or permanent occlusion or stenosis 

of a feeding artery, extracranially or intracranially, or (more rarely) of a vein or dural 

sinus, while a hemorrhagic stroke is the result of the rupture of an artery (e.g., due to 

an aneursym or an arteriovenous malformation) or arteriole in the brain parenchyma. 

It is difficult to distinguish clinically between ischemic and hemorrhagic stroke, and 

their relative occurrence varies from country to country (WHO Task Force, 1989; 

Donnan et al., 2008). 

1.1.1.2. Stroke diagnosis 

Therapeutic decisions must be made quickly after stroke onset, minutes can make the 

difference between benefit and harm to the stroke patient. Immediate stroke diagnosis 

is extremely important after stroke onset and is typically achieved by a combination 

of neurological examination and neuroimaging.  

The most widely used stroke scale for neurological examination is the National 

Institutes of Health Stroke Scale (NIHSS). The NIHSS measures stroke severity by 

assessment of several aspects including level of consciousness, paresis, aphasia, 

sensory symptoms, facial palsy, limb movement ability, dysarthria and so on. The 

NIHSS scores range from 0 (no symptoms) to 42 (maximum points in all categories). 

If the NIHSS score is larger than 25 the stroke patient is in a serious medical 
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condition.  

Neuroimaging is used to determine subtypes and causes of stroke. The most 

commonly used imaging techniques for acute ischemic stroke diagnosis in the clinic 

are cranial computed tomography (CCT) and magnetic resonance imaging (MRI). 

While in most hospitals CCT is performed due to its widespread availability and ease 

of use, MRI provides more detailed pathophysiological information and is becoming 

more and more important. In the following I will introduce stroke MRI techniques 

which are of interest to our study.  

 

1.1.2. Stroke MRI 

For diagnosing acute ischemic stroke, stroke MRI which includes fluid attenuated 

inversion recovery (FLAIR), T2*-weighted imaging, diffusion weighted imaging 

(DWI), and dynamic susceptibility contrast-enhanced (DSC) perfusion-weighted 

imaging (PWI) is commonly employed to provide detailed pathophysiological 

information of the affected brain areas. 

1.1.2.1. Diffusion-weighted imaging (DWI) 

Molecular diffusion refers to the random translational motion of molecules, also 

called Brownian motion, that result from the thermal energy carried by these 

molecules (Le Bihan et al., 2001). In the human brain, water molecules are constantly 

in random motion in gray matter or cerebrospinal fluid (CSF) which means the 

diffusion is the same in all direction. In white matter, however, there are barriers to 

water molecules diffusion, such as membranes, which the molecules cannot readily 

penetrate. This causes diffusion to be anisotropic, i.e., diffusion is faster in some 

directions than others. The diffusion path of water molecules therefore reflects the 

structure of human brain (gray matter, white matter and CSF) due to the different 

diffusion property in these tissues.  

Diffusion-weighted imaging (DWI) can measure the Brownian motion of water 

molecules. The sequence was first described by Stejskal and Tanner (Stejskal and 

Tanner, 1965). They applied a spin echo sequence coupled with a symmetric gradient 
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pulse, which could measure the displacement of water molecules in a direction of a 

period of time. The acquisition time of this sequence was 6–8 minutes and could only 

measure the diffusion in one direction (Stejskal and Tanner, 1965). After the 

introduction of ultrafast echo planar imaging (EPI) by Mansfield (Mansfield, 1977; 

Mansfield, 1984), the measurement of water diffusion with imaging methods became 

possible. EPI is the fastest scanning techniques in clinical applications. It shortens 

considerably the time required to form an image: within 30ms it can acquire a single 

image and within tens of seconds it can collect the native spatial data, which is 

required for image reconstruction. The benefits of rapid data collection using EPI are 

indispensable in collecting water diffusion image despite the lower signal-to-noise 

ratio (SNR). The first whole-body diffusion images were acquired by Le Bihan and 

colleagues (Le Bihan, et al., 1986; Le Bihan, et al., 1988). Moseley and colleagues 

were the first to demonstrate the clinical importance of diffusion imaging by detecting 

ischemic tissue within minutes after onset of a stroke in an experimental animal 

model (Moseley et al., 1990). Warach and colleagues were first to detect human 

ischemia by using diffusion imaging (Warach et al., 1992). 

In the presence of a magnetic field gradient, the transverse magnetization of protons 

who experience different magnetic field strengths get “out of phase” resulting in an 

attenuation of the MR signal. This attenuation depends on the diffusion coefficient 

and the strength of the magnetic field gradient. The signal loss (S/ S0) is 

mathematically described as follows: 

0

b ADCS
S e− ⋅=                                                                (1) 

Where S0 represents signal intensity when b = 0; b is a diffusion-sensitive factor, also 

called b-value, which is calculated as: b=Γ2G2δ2 (Δ-δ/3). The b-value is a 

sequence-specific variable and depends on the gyromagnetic ratio (Γ), the strength of 

the diffusion gradient (G), the duration of the gradient pulse (δ) and the time interval 

between both gradient pulses (Δ). The apparent diffusion coefficient (ADC) is a 

tissue-specific variable which can reflect the structure characteristics of the tissue. 

The ADC represents the water molecular movement along the direction of the 

diffusion gradient. When the ADC value is increased, representing an increase of 

water diffusion, the DWI signal is lower, and vice versa. 

Due to the alteration of water diffusion in the ischemic infarct area, DWI is now 
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commonly applied in the clinic to detect the ischemia. Indeed, DWI is very sensitive 

to detect signs of acute cerebral ischemia. In acute stroke, due to cytotoxic edema, 

which is caused by the breakdown of sodium-potassium pumps, DWI can detect signs 

of brain damage earlier than T2 weighted imaging. The presence of cytotoxic edema 

indicates that the sodium - potassium pumps have lost normal function, extracellular 

water has entered the cell, and intracellular water is increased. Since diffusion of 

intracellular water is more restricted than that of extracellular water due to diffusion- 

limiting structures such as cell membranes and microparticles, this leads to an overall 

decline of the diffusion coefficient and hence an increased signal on DWI in ischemic 

area. Figure 1.2 gives an example of DWI in a patient with acute ischemic stroke. The 

area with higher intensity in DWI reflects the infarct core (Fig 1.2). 

 

Figure 1.2 DWI in acute ischemic stroke: the area with higher signal intensity (red arrow) 

indicates the infarct core. 

1.1.2.2. Dynamic susceptibility contrast-enhanced perfusion-weighted imaging 

(DSC-PWI) 

The term perfusion refers to blood passing through the capillary network where 

exchange of oxygen and nutrients to the tissue cells occurs. Perfusion imaging is an 

imaging technique which is built on the basis of this flow effect. Perfusion imaging 

techniques have become important in diagnosis and treatment in clinical practice of 

several clinical entities.   

In magnetic resonance imaging, there are two common methods for perfusion imaging: 

One method uses MR pulse sequences which are sensitive to the movement of water 

molecules. The basic idea is to use water protons as an endogenous tracer. This 
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method is known as arterial spin labeling (ASL). Another method is based on the use 

of an injected contrast agent that changes the magnetic susceptibility of blood and 

thereby the MR signal which is repeatedly measured during the first-pass of the 

contrast agent bolus. This method is known as dynamic susceptibility 

contrast-enhanced perfusion-weighted imaging (DSC-PWI).       

ASL uses water molecules in blood as intrinsic diffusion marker, the proton spins of 

the arterial water are labeled by changing the magnetic state prior to reaching the 

imaged volume. When the labeled spins enter the imaged region after a time delay, 

the labeled blood spins exchange with unlabelled spins in the tissue and a “labeled” 

image is acquired (Alsop and Detre, 1996). The signal from a given voxel in the 

labeled image represents a sum over both blood and tissue spins. The exchanging 

process leads to decreased signal in the tissue. In addition to the “labeled” image, a 

“control” image is acquired without labeling the arterial water spins. The local blood 

flow perfusion can be quantitatively determined by comparing between the “labeled” 

image and the “control” image (Borogovac and Asllani, 2012). ASL does not require 

injection of a contrast agent, and the values of blood flow can be obtained 

quantitatively. However, if the time delay until the labeled spins reach the imaged 

volume is long (as it is the case in stroke), the signal decays dramatically resulting in 

poor signal-to-noise ratio. Therefore, particularly in the situation of an acute ischemic 

stroke which is characterized by delayed blood perfusion, ASL has a poor 

signal-to-noise ratio and relatively low spatial resolution.  

Dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI) 

technique can track the signal change in the area of interest by injecting a 

paramagnetic contrast agent as an intravenous bolus (Villringer et al., 1988; Rosen et 

al., 1990). When the contrast agent passes through the vascular system of the brain, 

the difference in magnetic susceptibility between the spaces within and outside the 

capillaries will establish local magnetic field gradients. This local magnetic field 

heterogeneity leads to the above mentioned dephasing of protons and a pronounced 

signal drop in T2- and T2*-weighted MR pulse sequences. i.e. the so-called "negative 

enhancement". The development of fast echo planar imaging (EPI) has made it 

possible to image the entire brain and allow to observe the transit of the contrast agent 

bolus through the brain at a temporal resolution of about one second. DSC-PWI is 

characterized by good signal-to-noise ratio and reflects microvascular perfusion of the 
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brain tissue. 

The signal decrease in brain tissue after contrast agent injection is a function of the 

local cerebral blood volume (CBV). The signal-time curve is used to determine the 

contrast agent concentration-time curve which is given in Figure 1.3 (Wardlaw, 2010). 

The concentration of the contrast agent is calculated as follows: 

0

( )( ) ln S tC t
S

∝                                               (2) 

where  is the contrast agent concentration in the tissue,  is the signal 

intensity and  is the signal intensity before arrival of the bolus (Rosen et al., 

1990). 

( )C t ( )S t

0S

The blood supply and hemodynamic changes of the brain tissue can be extracted from 

the perfusion concentration-time curve, and thus information on regional cerebral 

hemodynamics can be obtained. Some important physiological and 

pathophysiological parameters can be calculated: relative regional cerebral blood 

volume (CBV) can be simply calculated as proportional to the area under the contrast 

agent concentration-time curve; mean transit time (MTT) is calculated as 

/ , the normalized first moment of the concentration-time curve; the 

relative regional cerebral blood flow (CBF) is CBV/MTT. These three parameters are 

linked by the equation CBV = CBF × MTT as illustrated in Figure 1.3. In addition, 

other parameters have been derived which also describe the hemodynamic status of 

the brain tissue, such as the time from bolus arrival to maximal peak concentration 

(MPC), i.e., time to peak (TTP) and the full width at half maximal (FWHM) of the 

concentration-time curve (Fig 1.3). 

0
( )tC t dt

∞

∫ 0
( )C t dt

∞

∫
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Figure 1.3 Concentration-time curve obtained during the first pass of a contrast agent bolus 

through the brain in DSC-PWI (Wardlaw, 2010). 

For the evaluation of acute ischemic stroke, usually, the most frequently used 

parameters are MTT, CBF, and CBV. Especially MTT is very sensitive to brain 

ischemic lesions. Due to the blockage of arterial inflow into the ischemic area, the 

passage of blood through the brain is prolonged and therefore, MTT in the ischemic 

lesion area is longer than the contralateral values in normal tissues (Latchaw et al., 

2009). Figure 1.4 gives MTT maps of a patient with acute ischemic stroke: the area 

with higher intensity is the hypoperfused area (Fig 1.4). 
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Figure 1.4 A MTT map from DSC-PWI: the area with higher intensity (red arrow) indicates the 

area of hypoperfusion. 

The major drawback of DSC-PWI is that it requires the application of a susceptibility 

contrast agent which comes with potentially severe side-effects (nephrogenic systemic 

fibrosis) and precludes repetitive examinations for monitoring purposes.  

1.1.2.3. Mismatch concept: ischemic penumbra 

The occlusion of an arterial vessel will lead to a decrease in cerebral blood flow in the 

affected brain regions. All these areas will be identified by perfusion weighted 

imaging. In those areas which are most heavily affected, cytotoxic edema will occur 

which is identified by diffusion weighted imaging. The difference between those two 

is termed “mismatch” or “tissue at risk”. It is a MR surrogate parameter of the 

ischemic penumbra (Schellinger et al., 2001). If reperfusion occurs in time, this area 

may be saved or damage is minimized, if no reperfusion occurs, this area may 

undergo permanent damage, i.e. infarction. Reperfusion can either occur 

spontaneously or it may be induced by thrombolysis with recombinant tissue 

Plasminogen Activator (rtPA). The relationship between tissue and risk, reperfusion 

and damage is illustrated in Figure 1.5.  
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Figure 1.5 Illustration of mismatch concept after acute ischemic stroke onset. 

 

1.2. Introduction of resting-state functional magnetic resonance imaging and 

methods 

1.2.1. Introduction of resting-state fMRI 

Since the advent of BOLD (blood oxygenation-level dependent) functional magnetic 

resonance imaging (fMRI) (Ogawa et al., 1990; Kwong et al., 1992), research efforts 

concentrated mostly on identifying regions activated by performance of a cognitive 

task or by administration of a stimulus. Such a stimulus-response pattern is central to 

cognitive neuroscience research. Through such studies we can understand localized 

brain involvement in a cognitive function as well as the pathological functions 

associated with brain disorders. In this task-based model of fMRI, the resting-state 

was used as baseline control state.  

Resting-state is a condition in which the participant does not perform any active task 

and is instructed to remain still and not think of question systematically or try not to 

think of any questions, with eyes closed or open while fixating a cross. Although there 
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is still some controversy about the “functional meaning” of the resting-state, a large 

number of studies have shown that the BOLD signal which is measured by 

resting-state fMRI (rsfMRI) is of physiological and pathological importance. 

Biswal and colleagues found that the presence of synchronized low-frequency 

fluctuations (LFF) (0.01-0.08 Hz) could be used to assess functional connectivity 

between left and right primary motor areas in baseline resting-state (Biswal et al., 

1995). The functional connectivity patterns were very similar to activation maps 

during bilateral hand movement. It was concluded that the low-frequency fluctuation 

of BOLD signal in resting-state was neurophysiologically significant (Biswal et al., 

1995). Similar functional connectivity between bilateral symmetrical regions in the 

brain is also present in bilateral auditory cortex (Cordes et al., 2001), bilateral visual 

cortex (Lowe et al., 1998; Kiviniemi et al., 2000; Kiviniemi et al., 2004; Cordes et al., 

2000), bilateral amygdala (Lowe et al., 1998), bilateral thalamus (Stein et al., 2000), 

bilateral hippocampus (Stein et al., 2000), as well as the language network, including 

Broca’s and Wernicke’s areas (Hampson et al., 2002). In several studies a decreased 

functional connectivity of low-frequency fluctuations in resting-state was reported. 

For example, Li and colleagues found that the synchronization of the low-frequency 

fluctuations within the hippocampus decreased in Alzheimer disease (AD) (Li et al., 

2002). Greicius and colleagues (Greicius et al., 2004) found the functional 

connectivity of rsfMRI data between motor task blocks decreased in mild cognitive 

impairment (MCI) among default mode network (DMN), which included the 

following brain areas: posterior cingulate cortex (PCC), medial prefrontal cortex 

(MPFC) and hippocampus etc. For both neurologists and patients, resting-state fMRI 

was easy to operate and compare among different studies when compared to task 

fMRI. Unlike positron emission tomography (PET) or single-photon emission 

computed tomography (SPECT) which requires injection of radionuclide into the 

patient’s body, resting-state fMRI does not require radionuclides and is of relatively 

low cost, while still maintaining high temporal resolution. Therefore, resting-state 

fMRI was increasingly applied to research questions regarding brain disorders. 

The neural processes which are reflected in low-frequency oscillations in resting-state 

fMRI are still not fully understood. In addition to lots of indirect evidences about the 

relationship between low-frequency fluctuations (LFF) of BOLD signal in 

resting-state fMRI and spontaneous neural activity (Biswal et al., 1997a; McCormick, 
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1999; Li et al., 2002; Leopold et al., 2003), some studies have provided more direct 

evidences. Logothetis and colleagues (Logothetis et al., 2001) simultaneously 

recorded local field potentials (LFPs) of neural activity, the single- and multi-unit 

spiking activity, as well as fMRI BOLD signal from the visual cortex of monkeys. 

They found that LFPs yield a better estimate of BOLD responses than the multi-unit 

responses. The results suggested that BOLD signal reflects the energetically 

expensive synaptic activity such as that related to the LFP signals. Another study 

which recorded spontaneous BOLD signal in different visual cortical layers of rats 

found highest BOLD signal in the deeper layers during resting-state, particularly layer 

4 which has higher spontaneous neuronal activity and lower synaptic density (Pelled 

and Goelman, 2004).  

 

1.2.2. Introduction of processing methodologies for resting-state fMRI data analysis 

As mentioned above, the low frequency fluctuations (LFF) of BOLD signal in 

resting-state fMRI directly reflect spontaneous neuronal activity. In the past decades, 

with the increasing application of resting-state fMRI in research, the analytic 

methodologies for resting-state fMRI data, which describe and summarize the 

functional organization of the brain, have increased dramatically.  

1.2.2.1. Functional Connectivity 

Functional connectivity is a widely used approach in resting-state fMRI data analysis. 

Seed-based functional connectivity analysis is the most commonly used method, 

which calculates the correlation between the average time course of an a priori 

region-of-interest (ROI), or “seed region”, and the time course of all other voxels in 

the brain.  

The seed-based functional connectivity analysis was first applied to resting-state 

fMRI data by Biswal and colleagues (Biswal et al., 1995). They used a seed region in 

the motor cortex to perform seed-based functional connectivity analysis and found 

that resting-state functional connectivity map showed similar patterns to activation 

maps obtained with bilateral hand movement. Early studies of resting-state functional 

connectivity analysis focused on describing neural systems including: the motor 
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network (Lowe et al., 1998; Xiong et al., 1999), the visual cortical network (Cordes et 

al., 2000; Lowe et al., 2000; Hampson et al., 2004), the language network (Hampson 

et al., 2002). Greicius and colleagues (Greicius et al., 2003) were the first to use 

seed-based functional connectivity analysis by seeding a region in the posterior 

cingulate cortex (PCC) and found that PCC showed significant resting-state 

connectivity with medial prefrontal cortex (MPFC) and bilateral inferior parietal 

cortex (IPC). These regions comprise the default mode network (DMN) which had 

been proposed by Raichle and colleagues (Raichle et al., 2001) based on PET studies. 

Raichle and colleagues found that the regions in DMN exhibit higher metabolic 

acitivity or are more active than other brain regions in resting-state brain (Raichle et 

al., 2001). 

While these initial studies were focused on studying functional connectivity of 

established brain network system in the absence of any cognitive task, more recent 

research into resting-state functional connectivity has taken advantage of its strengths 

in order to address topics that are beyond the practical scope of task-based fMRI 

(Margulies et al., 2010). For example, Margulies and colleagues (Margulies et al., 

2009) used functional connectivity analysis to detect the functional subdivisions 

within the precuneus in both humans and monkeys. They found three distinct patterns 

of functional connectivity within the precuneus of both species, with each subdivision 

suggesting a discrete functional role. Their finding provided support that resting-state 

functional connectivity may reflect underlying anatomy (Margulies et al., 2009). 

Similar analysis has been performed with placement of seed regions throughout 

particular brain regions to detect subdivisions including: subdivisions detection in 

anterior cingulate cortex (Margulies et al., 2007), striatum (Di Martino et al., 2008), 

amygdala (Roy et al., 2009), medial temporal lobe (Kahn et al., 2008), and 

cerebellum (Krienen and Buckner, 2009). All these studies suggest that functional 

connectivity analysis of resting-state data is an effective method to study functional 

neuroanatomy.   

Another commonly used approach is to correlate the average time course of several 

pre-selected ROIs distributed in different brain areas. Calculating the correlation 

matrix between a set of ROIs from resting-state data is the foundation of more 

advanced graph theory-based techniques. Graph theory is a well-developed 

mathematical tool whose aim is to characterize various aspects of a network structure 
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and provide tools to describe aspects of the network configuration itself (Diestel, 2005; 

Achard et al., 2006)  

Another method named effective connectivity, as opposed to functional connectivity, 

which addresses causal interactions between different brain regions using fMRI data. 

Sridharan and colleagues (Sridharan et al., 2008) applied Granger causality analysis in 

fMRI data, which could elucidate the dynamic interactions between selected regions 

based on temporal precedence of time courses, and found that right fronto-insular 

cortex is likely to play a critical and causal role in switching between the 

central-executive network (CEN) and the default mode network (DMN) in three task 

states. Granger causality analysis was also used on resting-state fMRI data to address 

interaction of the default-mode network (Uddin et al., 2009). However, Smith and 

colleagues pointed that the lag-based fMRI causality analysis may be biased by 

hemodynamic variability and the lack of this variability confound for the studied brain 

regions should be demonstrated when interpreting the lag-based causality results 

(Smith et al., 2012a).  

In summary, functional connectivity analysis is one of the primary analytic strategies 

for resting-state data. The straightforward statistics and comprehensible results have 

made it a widely applied technique. However, its primary drawback is high 

dependence upon selecting ROIs including the size and the shape which may affect 

the results (Shehzad et al., 2009; Van Dijk et al., 2010). ROIs are generally selected 

via task data or neurophysiological knowledge of researchers, which might not be 

applicable in some cases. Further, the time courses of pre-selected ROIs include noise. 

Although some strategies are applied to remove noise effect, these corrections can 

also affect the data (Murphy et al., 2009). 

1.2.2.2. Independent component analysis (ICA) 

The drawback of selecting a priori ROI for functional connectivity analysis was 

solved by another prominent analysis which depends more on the data itself than 

interference of a priori knowledge from researchers: Independent component analysis 

(ICA). Assuming the brain is organized into a number of functionally discrete 

networks, an optimal functional connectivity technique would determine the signals 

unique to each network. The aim of independent component analysis (ICA) is to 

address the problem of determining distinct components within a set of signals with 
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minimal a priori assumptions. Many software tools provide the tool for ICA 

calculation. For example, MELODIC which is built in FSL 

(http://www.fmrib.ox.ac.uk/fsl) is used to perform probabilistic ICA; GIFT can 

perform group ICA analysis based on SPM (http://www.fil.ion.ucl.ac.uk/spm); 

BrainVoyager 2000 (http://www.brainvoyager.com/BrainVoyager.htm) offers 

cortex-based ICA analysis; and ICA reliability can be calculated by ICASSO 

(Himberg et al., 2004). 

As a convenient and well developed method, ICA has drawn a lot of interests among 

resting-state fMRI researchers. ICA can decompose the resting-state fMRI data into 

either spatially independent components or temporarily independent components. The 

spatially independent component analysis (sICA, also referred to as ICA in the 

following) is the more widely applied method in resting-state fMRI study due to the 

small number of volumes acquired in most resting-state fMRI dataset. ICA assumes 

that fMRI datasets are composed of mixed independent signals from a number of 

independent sources, and it could decompose fMRI data into several independent 

components (ICs) with no prior knowledge of fMRI data property. The spatial 

patterns of ICs represent the different brain functional networks and non-functional 

components, e.g. head motion and noise, which users are required to differentiate 

from the functionally meaningful networks. ICA is a complementary analysis to the 

traditional seed-based functional connectivity analysis and has been used to detect 

brain networks in resting-sate fMRI study (Li et al., 2009).  

ICA is commonly used to detect resting-state networks in the brain due to its 

exploratory, data-driven procedure. Kiviniemi and colleagues used ICA to analyze the 

fMRI data of 15 anesthetized children and found the visual network in each subject 

(Kiviniemi et al., 2003). Greicius and colleagues adapted ICA to derive the default 

mode network (DMN) in a more data-driven fashion (Greicius et al., 2004). Several 

resting-state networks were already detected using ICA across studies, subject groups, 

as well as different age groups (Van De Ven et al., 2004; Beckmann et al., 2005; De 

Luca et al., 2006; Fransson et al., 2007). These ICA-derive resting-state networks 

showed consistency across participants (Damoiseaux et al., 2006), scan sessions 

(Chen et al., 2008; Zuo et al., 2010b), as well as acquired data on different days (Zuo 

et al., 2010b). For example, Zuo and colleagues found moderate-to-high short-term 

(intrasession < 45min) and long-term (intersession: 5 – 16 months) test-retest 
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reliability for resting-state networks derived by ICA (Zuo et al., 2010b). Among many 

resting-state networks, the default-mode network showed particularly robust 

reproducibility and cross-research selection reliability (Franco et al., 2009; Meindl et 

al., 2010).  

ICA has also been used to address clinical questions. Greicius and colleagues adopted 

ICA and found that patients with Alzheimer’s disease (AD) showed decreased 

resting-state activity in the posterior cingulate and hippocampus compared to healthy 

controls (Greicius et al., 2004). Sorg and colleagues used ICA and also found that the 

default mode network (DMN) and the executive attention network demonstrated 

reduced network-related activity in patients at risk for AD (Sorg et al., 2007). Other 

studies which applied ICA to identify alteration of connectivity in clinical populations 

include: lateral prefrontal networks abnormality in Huntington’s disease (Wolf et al., 

2008), DMN deficit in mild cognitive impairment (Qi et al., 2010), DMN and 

sensori-motor network changes in lateral sclerosis (Mohammadi et al., 2009), 

contribution of subgenual cingulate cortex and thalamus abnormally increased in 

depression (Greicius et al., 2007), and impaired attention network in temporal lobe 

epilepsy (Zhang et al., 2009). In addition, connectivity analysis with ICA allowed to 

distinguish between patients and controls in a study on schizophrenia (Jafri et al., 

2008).  

In addition to identifying resting-state networks in the brain, ICA is capable of 

removing noise (e.g., scanner noise, physiological noise and head motion artifacts) 

from the fMRI dataset. After decomposing fMRI data into several ICs, there are some 

non-functional components which could be removed in a denoising procedure to 

improve quality of resting-state fMRI signal and resting-state networks’ patterns. 

ICA-based denoising procedure is data-driven and unaffected by the temporal 

sampling rates (Thomas et al., 2002; Perlbarg et al., 2007; De Luca et al., 2006; 

Tohka et al., 2008; Starck et al., 2010). For example, Thomas and colleagues found 

increase in BOLD contrast sensitivity values of activated voxels after adopting 

ICA-based noise reduction (Thomas et al., 2002). 

In contrast to spatially independent component analysis (sICA), temporal ICA is not 

commonly used partly because this ICA requires a large number of samples to 

function well (Smith et al., 2012b). In a recent study, Smith and colleagues found that 
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multiple “temporal functional modes” of spontaneous brain activity are quite different 

from resting-state networks and may have greater biological interpretability. With the 

application of fast scanning sequences (Moeller et al., 2010; Feinberg et al, 2010) for 

acquiring fMRI data, temporal ICA should be able to derive ever richer and more 

interpretable mapping of the brain’s functions and networks in the future (Smith et al., 

2012b).  

Despite the promising perspective, ICA also raises some issues which one should be 

aware of. Firstly, the number of components in the data has to be decided before 

running an ICA algorithm, different numbers of components can be extracted for 

different individuals, further complicating the challenge (Zuo et al., 2010b). Secondly, 

the reproducibility of ICA is another challenging issue. Due to the ICA algorithm, the 

results of ICA are variable overtime. Therefore reproducibility of ICA results should 

be tested especially in clinical studies. Thirdly, the assumption of ICA is the 

independence of different sources. This assumption is wrong as fMRI BOLD signals 

throughout the brain are interconnected. In a recent study, Daubechies and colleagues 

pointed out that the ICA algorithms used in fMRI data analysis did not select for 

independence (Daubechies et al., 2009). Another issue of the ICA algorithm is how to 

select meaningful components. Generally near 50 to 100 ICs could be decomposed 

from resting-state fMRI data. Each independent component represents a functional 

network or artificial noise. Correctly selecting resting-state networks among ICs 

requires good background knowledge of functional neuroanatomy. Researchers have 

to visually check near 100 ICs in order to select plausible components which are 

prone to subjective errors. Some methods have been developed to select resting-state 

networks automatically and efficiently, e.g., template matching (Greicius et al., 2004; 

Seeley et al., 2009) or classification analysis to select noise ICs (De Martino et al., 

2007; Tohka et al., 2008). However, a brain network template is required when using 

these automatically selecting methods and the selected resting-state networks could be 

constrained by the pattern of templates (Zuo et al., 2010b). Therefore, novel methods 

for automated ICA dimensionality and group-level analysis are areas of ongoing 

developments (Margulies et al., 2010). 

1.2.2.3. Clustering 

Although the data-driven approach (ICA) could solve the problem of selecting a priori 
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ROI for functional connectivity analysis, ICA still raises some issues which include 

the assumption of independence across components and how to estimate the number 

of components and select the meaningful networks. One approach which is used to 

overcome these issues is the application of clustering techniques which search for 

patterns in resting-state fMRI data. Clustering is generally used to classify the data 

into several clusters. The observations in one cluster are more similar to one another 

than the observations from different clusters.  

Hierarchical clustering approaches are widely employed to resting-state functional 

connectivity data (Cordes et al., 2002; Salvador et al., 2005; Thirion et al., 2006; 

Cohen et al., 2008). Hierarchical clustering approaches, which are based on the single 

link (nearest neighbor) method to find clusters highly correlated, are appropriate 

similarity measures to group voxels into clusters for functional connectivity. 

Hierarchical clustering methods proceed by stages producing a binary cluster tree or 

dendrogram. At each stage in the cluster tree, objects with similar features are linked. 

The number of clusters at the final stage can be determined by selecting a linkage 

inconsistency threshold, which is one method to find the natural cluster divisions in 

the data set (Cordes et al., 2002). Cordes and colleagues applied hierarchical 

clustering to frequency-specific inter-voxel correlations and detected functional 

connectivity patterns which resemble known neuronal connections including 

sensorimotor cortex, auditory cortex, fusiform gyrus and primary visual cortex. They 

also found that the corresponding voxel time series in detected clusters do not show 

significant correlations in the respiratory or cardiac frequency band (Cordes et al., 

2002). Salvador and colleagues used hierarchical clustering and multidimensional 

scaling of the mean partial correlation matrix, which was calculated between any two 

brain regions according to anatomical location, to identify six major systems in 

healthy volunteers - corresponding approximately to four neocortical lobes, medial 

temporal lobe and subcortical nuclei - that could be further decomposed into 

anatomically and functionally plausible subsystems (Salvador et al., 2005). Cohen and 

colleagues performed voxelwise hierarchical clustering on the basis of the eta2 index, 

which quantifies the similarity between functional connectivity patterns for every 

voxel pair. They showed that functional area boundaries could be reliably detected in 

individual subjects as well as in group data by hierarchical clustering on resting-state 

fMRI data. 
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Another commonly used clustering method is k-means clustering, which aims to 

partition observations into k clusters with each observation belongs to the cluster with 

the nearest mean (Mezer et al., 2009; Bellec et al., 2010). Mezer and colleagues used 

the k-means clustering approach to time-dependent measures of functional 

connectivity and revealed that clusters of similar BOLD fluctuations were found in the 

cortex but also in the white matter and sub-cortical gray matter regions (thalamus). 

They found high similarities between the BOLD clusters and the neuroanatomical 

appearance of brain regions. They also showed strong correlation between head 

movements and clustering quality, which suggested that non-functional contributions 

(head motions, the underling microvasculature anatomy and cellular morphology) to 

the BOLD time series could also account for symmetric appearance of signal 

fluctuations (Mezer et al., 2009). Bellec and colleagues (Bellec et al., 2010) 

implemented k-means clustering repetitively in bootstrapping the available datasets to 

quantify the stability of resting-state networks. Seven resting-state networks, which 

included the default mode network, sensorimotor network, visual and fronto-parietal 

networks, were identified and exhibited a good agreement with the previous findings 

(Damoiseaux et al., 2006).  

Van den Heuvel and colleagues used spectral clustering, which makes use of the 

spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality 

reduction before clustering in fewer dimensions, to partition whole-brain grey matter 

on the basis of voxelwise functional connectivity in 26 participants. They revealed 

seven resting-state networks which included motor/visual, auditory and attention 

networks and default mode network and also found these networks showed large 

overlap with other resting-state studies using both seed-based analysis and ICA. (Van 

den Heuvel et al., 2008). 

The application of clustering approaches is not restricted to resting-state studies. 

Beckmann and colleagues applied clustering methods to magnetic resonance diffusion 

tractography and identified nine subregions with distinctive connectivity profiles in 

cingulate cortex (Beckmann et al., 2009). Palomero-Gallagher and colleagues used 

hierarchical clustering analysis of receptor binding according to the degree of 

similarity of each area's receptor architecture task activation to evaluate the validity of 

the four-region mode in human cingulate cortex (Palomero-Gallagher et al., 2009). 
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Although clustering approaches have been successfully applied to resting-state data to 

detect subdivisions in the brain, some limiting factors still affect its application. The 

most significant limiting factor is how to define the number of clusters when 

classifying the data due to the unknown true number of clusters. Researchers have 

employed different methods to find optimal cluster numbers. Given the complexity of 

the question, and the varying possible levels of dimensionality, it is unlikely that 

clustering will escape the involvement of human judgment, as users have to assess the 

suitability of the clustering results against known or hypothesized networks or 

functional subdivisions (Margulies et al., 2010). 

1.2.2.4. Local methods 

Both the model-driven and data-driven methods have their issues. Correlation-based 

techniques which have been the dominant class of methods for analyzing resting-state 

fMRI data rely on the selection of a region of interest (ROI) and can not fully 

characterize the local dynamics. The independent component analysis (ICA) needs the 

assumption of statistic independence. Recently, some methods which can quantify 

local function of brain are introduced and widely implemented in resting-state fMRI 

studies. 

To characterize regional activity of human brain during resting state, one method is 

introduced: amplitude of low frequency fluctuations (ALFF). ALFF is defined as the 

total power within the low frequency range (for example: 0.01- 0.1 Hz) (Zang et al., 

2007). For a timeseries x(t) (3), ALFF is calculated as the sum of amplitudes within a 

specific low frequency range (4) (Zuo et al., 2010a). 
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Before Zang and colleagues, low frequency fluctuations (LFF) had already been 

noticed in resting-state fMRI study. Biswal and colleagues found LFF to be higher in 

gray matter than in white matter (Biswal et al., 1995). It was also reported that low 

frequency oscillations (LFO) had the highest magnitude in visual regions (Kiviniemi 
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et al., 2003). The areas within the default mode network (Gusnard and Raichle, 2001) 

exhibited higher LFO amplitudes during resting state than other areas (Yang et al., 

2007; Zang et al., 2007; Zou et al., 2008; Zuo et al., 2010a). Moreover, in healthy 

individuals, ALFF of visual cortices in eyes-open condition was significantly higher 

than that in eyes-closed condition (Yang et al., 2007). Zuo and colleagues revealed 

significant and highly reliable ranking orders of LFO amplitudes among anatomical 

parcellation units (Zuo et al., 2010a). Due to its easy implementation, ALFF has also 

been applied in clinical studies. Children with attention deficit hyperactivity disorder 

(ADHD) showed decreased ALFF in inferior frontal cortex and increased ALFF in 

anterior cingulate cortex and left sensorimotor cortex. Patients with schizophrenia 

showed reduced ALFF in lingual gyrus, cuneus and precuneus and increased ALFF in 

left parahippocampal gyrus (Hoptman et al., 2010). All these studies indicated that 

ALFF may be suggestive of regional spontaneous neuronal activity and can be 

considered as a potential bio-index in neuroimaging studies. 

Some issues should be noticed: several physiological and neural factors can impact 

LFO amplitudes, e.g., Biswal and colleagues observed that LFO amplitudes were 

suppressed by hypercapnea (Biswal et al., 1997b). Some studies showed that ALFF 

measures are susceptible to possible artifactual findings in the vicinity of blood 

vessels and cerebral ventricles (Zou et al., 2008; Zuo et al., 2010a). Zou and 

colleagues proposed fractional amplitude of low frequency fluctuations (fALFF) to 

solve this problem (Zou et al., 2008). fALFF is defined as the total power within the 

low-frequency range (0.01–0.1 Hz) divided by the total power in the entire 

detectable frequency range, which is determined by sampling rate and duration. As a 

normalized index of ALFF, fALFF can provide a more specific measure of 

low-frequency oscillatory phenomena (Zou et al., 2008) 

Another method which can also characterize the local activity of BOLD signal is 

regional homogeneity (ReHo). ReHo was proposed as a voxel-wise measure of the 

synchronization of the timecourses of neighboring voxels (Zang et al., 2004). Several 

resting-state fMRI studies have demonstrated brain regions that consistently show 

higher ReHo than others (He et al., 2004; Zang et al., 2004; Long et al., 2008), the 

pattern of which is consistent with the default mode network during resting-state 

revealed by positron emission tomography (PET) study (Gusnard and Raichle, 2001). 

With the advantage of having easy implementation, ReHo analysis has been used to 
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investigate functional modulations in the resting-state in many brain disorders 

including schizophrenia (Liu et al., 2006), ADHD (Cao et al., 2006), AD (He et al., 

2007), remitted geriatric depression (Yuan et al., 2008), Parkinson’s disease (Wu et 

al., 2009), epilepsy (Mankinen et al., 2010), and autism (Paakki et al., 2010). 

However, some parameters can affect the results of ReHo analysis: the magnitude of 

spatial smoothing and the size of cluster (7, 19, or 27 voxels, respectively) to be 

measured. Zang and colleagues suggested that a larger magnitude of spatial 

smoothing and a larger size of cluster yielded more significant differences between 

left and right finger movements (Zang et al., 2004). Zuo and colleagues pointed out 

that spatial smoothing of resting-state fMRI time series artificially enhances ReHo 

intensity and influences its reliability (Zuo et al., 2013). Therefore one should be more 

careful in selecting parameters when using ReHo as a complementary method to 

model-driven method in resting-state studies.  

In summary, local methods are potentially useful in measuring local activity of human 

brain during rest and can be applied as complementary methods to other methods in 

resting state studies. 
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2. Study1: Tissue-Differentiation in Stroke using resting-state fMRI1

In the following section, two resting-state fMRI methods were applied to differentiate 

the lesion areas, which include the infarct core and the hypoperfusion area, from 

healthy tissues in patients with acute ischemic stroke. Local methods which compare 

low frequency amplitudes of power spectrum between two hemispheres and a 

k-means clustering approach of functional connectivity matrix were implemented to 

investigate the functional damage of patients with acute ischemic stroke both in the 

time domain and frequency domain. 

 

2.1 Introduction  

As been introduced in Chapter 1, DWI and DSC-PWI are employed in clinical 

practice and in research to identify pathophysiological patterns in patients with acute 

ischemic stroke. DWI is thought to roughly reflect the severely damaged infarct core, 

while DSC-PWI reflects the area of hypoperfusion. Their volumetric difference is also 

termed the PWI/DWI-mismatch, and has been suggested as an MRI surrogate of the 

ischemic penumbra. 

While in some centers PWI/DWI information is already used for clinical decision 

making (e.g., for the indication of fibrinolysis (Röther et al., 2002)), its clinical utility 

is still controversially discussed and new approaches are being sought to overcome 

shortcomings. This includes the application of contrast agent for PWI (Villringer et al., 

1988; Rosen et al., 1990), which has potentially severe side-effects (e.g., nephrogenic 

systemic fibrosis), and also precludes repetitive examinations for monitoring purposes. 
                                                        

1 This chapter is an expanded version of the following poster, presented at the 

Organization for Human Brain Mapping conference (2011): Lv, Y., Margulies. D.S., 

Long, X., Rohr, C., Winter, B., Endres, M., Villringer, K., Fiebach, J., Villringer, A. 

Tissue-Differentiation in Stroke using resting-state fMRI. Poster presented at 17th 

Annual Meeting of the Organization for Human Brain Mapping, June 26-30, 2011, 

Quebec City, Canada. 
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Furthermore, the mismatch concept for identifying the penumbra has been challenged 

as being frequently inaccurate due to the lack of good quantification of perfusion at 

low perfusion levels and its susceptibility to alterations of the arterial input, e.g. when 

a carotid stenosis is present and also the difficulty in differentiating metabolically 

compromised brain areas from those in which blood flow is still sufficient to maintain 

normal cellular function and metabolism. 

In searching for metabolic phenomena that may enable a novel methodology for 

detecting tissue state of ischemia, low-frequency fluctuations (LFF) have previously 

been shown to reflect the severity of cerebral ischemia (Mayevsky and Ziv, 1991), are 

specific to grey matter (Biswal et al., 1995; Zuo et al., 2010a), and can distinguish it 

from surrounding tissue and vascular signal. Previous resting-state studies have also 

demonstrated that brain regions can be parcellated based on unique patterns of 

functional connectivity in resting-state fMRI (Cohen et al., 2008; Margulies et al., 

2007, 2009; Mezer et al., 2009; Bellec et al., 2010). Here we propose resting-state 

fMRI, which is based on the assessment of spontaneous local fluctuations of the 

BOLD signal, as a new approach to give pathophysiological information in the acute 

phase of stroke. We hypothesized that resting-state fMRI could enable differentiation 

of brain regions disturbed by stroke (including the infarct core and hypoperfusion 

areas) from healthy tissue. Furthermore, we also explored the potential for 

differentiating areas within the mismatch region which are truly at risk (metabolically 

compromised), from those which still maintain potential function. 

 

2.2. Subjects/ Materials and Methods 

2.2.1. Participants 

Data was acquired from 12 patients with acute ischemic stroke one-day post-stroke 

onset. Informed consent was obtained from all participants prior to scanning, and all 

protocols were approved by the Charité Institutional Review Board EA4/026/08. 

2.2.2. MR data acquisition  

MR data was acquired on a Siemens Tim Trio 3 Tesla scanner located at Charité 
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Benjamin Franklin Hospital. The MRI scanning protocol followed the study protocol 

of a prospective clinical study on the value of the mismatch concept in ischemic 

stroke (1000+) (Hotter et al., 2009): 

(1) Diffusion-weighted imaging (DWI) session: 50 axial slices, TE = 93.1 ms, TR = 

7600 ms, 192x192 matrix, 2.5mm slice thickness, 90º flip angle, 14 diffusion 

volumes; 

(2) Perfusion-weighted imaging (PWI) session : 21 axial slices, TE = 29 ms, TR = 

1390 ms, 128x128 matrix, slice thickness/gap=5/0.5 mm; 

(3) Fluid attenuated inversion recovery (FLAIR) session: 25 axial slices, TE = 100 ms, 

TR = 8000 ms, 232x256 matrix, 5mm slice thickness, 130º flip angle; 

(4) Resting-state fMRI session: 34 axial slices, 64x64 matrix, voxel dimensions = 

3x3x3mm+1mm gap, 90º flip angle, TE = 30 ms, TR = 2300 ms, 150 whole-brain EPI 

volumes. 

 

2.2.2. Data Analysis: 

2.2.2.1. Data preprocessing 

Preprocessing of fMRI data was performed using both FMRIB Software Library (FSL: 

http://www.fmrib.ox.ac.uk/fsl) and Analysis of Functional NeuroImaging (AFNI: 

http://afni.nimh.nih.gov/afni) including removing first 4 volumes to allow for signal 

equilibration and to allow the subjects to get used to scanning noise, slice timing 

correction for interleaved acquisition, motion correction (by aligning each volume to 

the mean image using Fourier interpolation). Further image preprocessing comprised 

of spatial smoothing using a Gaussian kernel of FWHM 6 mm and removing the 

linear trend. The data were then temporally filtered using a band-pass filter (0.01-0.1 

Hz). 

2.2.2.2. Making mask 

For all stroke patients we manually drew infarct core (from diffusion-weighted image)  
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and then made the mask of its symmetric areas. (Fig. 2.1) 

 

Figure 2.1: Infarct core (from DWI)  and its symmetrical masks (red) of 12 stroke patients. 

 

Figure 2.2: Infarct core (from DWI) , hypoperfusion area (MTT map from PWI) and mismatch 

areas (PWI – DWI) of three patients.  

For three stroke patients with mismatch areas we manually drew the masks of the 

affected hemisphere, the infarct core (from DWI) , hypoperfusion area (mean transit 

time (MTT) map from PWI) and mismatch areas (PWI – DWI) respectively (Fig. 2.2) 
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2.2.2.3. Normalization 

All the fMRI data and masks were coregistered to individual FLAIR images and 

subsequently spatially normalized to the Montreal Neurological Institute (MNI) 

template using statistical parametric mapping (SPM5 

http://www.fil.ion.ucl.ac.uk/spm).  

2.2.2.4. Analysis 1 & 2: Interhemisphere comparison of power spectrum 

We extracted the average time-series of the infarct core  and its symmetrical mask and 

calculated the power spectrum within the masks for each patient. Then a paired t-test 

was performed between power spectrum of infarct core and its contralateral healthy 

area. 

For three stroke patients with mismatch areas, we calculated voxel-wise amplitude of 

power spectrum at each frequency point in the low frequency range (0.01 – 0.1Hz, 31 

frequency points) and then voxel-wise interhemispheric subtraction was performed 

individually at homotopic voxels.  

2.2.2.5. Analysis 3: Clustering  

For three stroke patients with mismatch areas, the correlation matrix of time-series for 

each mask (affected hemisphere, hypoperfusion areas and mismatch areas) was 

calculated using Pearson’s correlation between each pair of time-series. The 

correlation matrix was then classified into 2, 3, 4 and 5 clusters by k-means clustering 

algorithm.    

 

2.3. Results 

2.3.1. Results of Analysis 1 & 2: Interhemisphere comparision of power spectrum 

When we compare the power spectrum across the whole frequency band of the infarct 

core with its contralateral homotopic area, the amplitude in the contralateral 

homotopic area is higher than that of the infarct core. Two significant differences 

appeared at: 0.018 Hz (p = 0.025) and 0.027 Hz (p = 0.049). (Fig 2.3)  
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When we perform voxel-wise interhemispheric subtraction at 31 frequency points for 

the three stroke patients with mismatch areas, there is one frequency point that 

showed maximal difference between two hemispheres for each patient, i.e. the 

maximal number of voxels in this frequency point have lower amplitude in the lesion 

area (infarct core and hypoperfusion areas) than homotopic voxels in contralateral 

healthy areas (Fig 2.4). Patient 1 at 0.024 Hz frequency point. Patient 2 at 0.024 Hz 

frequency point. Patient 3 at 0.027 Hz frequency point. Then we calculated the 

number of voxels in the infarct core and hypoperfused areas that have lower 

amplitude at this frequency point (Table 2.1). 

 

Figure 2.3: Paired t-test results between the power spectrum of infarct core (red) and its 

contralateral homotopic area (black). 

Table 2.1: The number of voxels in infarct core (IC) and hypoperfusion areas (HA) 

that have lower amplitude than its homotopic voxels. 

Number of 
voxels 

Infarct 
core (IC) 

Showed lower 
amplitude in IC

hypoperfusion 
area (HA) 

Showed lower 
amplitude in HA

Patient 1 2895 2236 34382 22135 

Patient 2 4581 5588 40685 31109 

Patient 3 3916 3132 12373 9548 

Table 2.1: The results were calculated at one frequency which has the largest number of voxels 

showed lower amplitude in the lesion area than the homotopic area for each patient. Patient 1 at 

0.024 Hz. Patient 2 at 0.024 Hz. Patient 3 at 0.027 Hz.  
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Figure 2.4: Results of voxelwise interhemispheric subtraction at one frequency which have the 

largest number of voxels showed lower amplitude (blue color) in the lesion area (infarct core and 

hypoperfusion area) than contralateral homotopic area. Patient 1 at 0.024 Hz. Patient 2 at 0.024 Hz. 

Patient 3 at 0.027 Hz. 

 

2.3.2. Results of Analysis 3: Clustering  

When the “affected hemisphere” was used as a mask, in all three patients, the lesion 

areas (infarct core and hypoperfusion area) appeared as one cluster in the three-part 

cluster analysis (Fig. 2.5). 

When we classified the hypoperfusion areas and mismatch areas, the clustering results 

were highly similar. In the two-cluster results of the perfusion-disturbed areas, one 

cluster covered part of the infarct core which overlapped with perfusion-disturbed 

areas (Fig. 2.6c, yellow cluster). We hypothesized that this yellow cluster may be 
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functionally compromised while the red cluster represents less severely affected 

tissue.  

 

Figure 2.5: The three-cluster results of the disturbed hemisphere for three patients (Cluster). Light 

green cluster almost covered the disturbed areas including the infarct core (DWI) and 

hypoperfusion area (MTT map from PWI). 

 

2.4. Discussion 

In this study, we used resting-state fMRI to investigate the functional damages of 

stroke patients both in the time domain (clustering of functional connectivity matrix) 

and the frequency domain (interhemisphere subtraction). We wanted to differentiate 

brain regions affected by acute ischemic stroke from healthy tissues and differentiate 

areas within the mismatch region which are truly at risk (metabolically compromised) 

from those which still maintain potential function. The results in the frequency 

domain analysis, i.e. interhemisphere amplitude subtraction, showed that the lesion 

areas which include the infarct core and hypoperfusion area of patients with acute 

ischemic stroke have lower amplitudes than contralateral homotopic healthy tissues 

(Fig 2.4, Table 2.1). The results from clustering of the functional connectivity matrix 

in affected hemisphere in stroke patients showed that the lesion areas affected by the 

ischemic stroke (infarct core and hypoperfusion areas) appeared as one cluster (Fig 

2.5). All these promising results suggest that the resting-state approach may detect the 
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functional damages in lesion areas of stroke patients and may serve as a useful 

diagnostic tool for stroke MRI to assist diagnosis and treatment of patients with acute 

ischemic stroke. 

 

Figure 2.6: The two-cluster results of perfusion disturbed areas (c) of one patient. One cluster (c, 

yellow cluster) covered part of the infarct core (a) which overlapped with perfusion disturbed 

areas (b). 

The infarct core had significant lower amplitude of the power spectrum than the 

contralateral homotopic area at two frequency points: 0.018 Hz (p = 0.025) and 0.027 

Hz (p = 0.049) (Fig 2.3). Both frequency points are within the low-frequency band 

(0.01-0.1Hz) which is normally used in resting-state fMRI data preprocessing and 

treated as meaning oscillations. Voxel-wise interhemisphere subtraction (Fig 2.4) for 

three patients with mismatch areas showed the maximum difference at one frequency 
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for each patient (Table 2.1, Fig 2.4). These three frequency points are near the 

frequency (0.027 Hz) which also showed a significant difference in the infarct core 

(Fig 2.3). Zuo and colleagues revealed that there are symmetrical ranking orders of 

low-frequency oscillations (LFO) amplitudes among anatomical parcellation units 

across hemispheres (Zuo et al., 2010a). Our results of interhemisphere amplitude 

differences reflected that the ranking orders changed due to stroke. However, the 

reason that significant interhemisphere amplitude differences appear in a frequency 

near 0.027 Hz still needs to be further explored. 

We found that the lesion areas (infarct core and hypoperfusion area) belonged to a 

single cluster when we clustered the affected hemisphere into three clusters (Fig 2.5), 

which revealed that clustering of resting-state fMRI data could reflect the functional 

difference between the lesion areas and healthy regions within the affected 

hemisphere. Thus clustering of resting-state data seems very promising to 

differentiate the lesion areas from healthy tissues. 

The functional disturbance in the mismatch areas is in principle reversible. Some of 

these regions are truly at risk (metabolically compromised) while some still maintain 

potential function. When clustering hypoperfused areas and mismatch areas (Fig 2.6), 

the results show that one cluster (yellow) covered the infarct core, which suggests that 

this region is severely compromised. Our results reflect that the clustering method of 

resting-state fMRI data can differentiate the areas which are severely affected from 

the areas which still maintain function within the mismatch area. 

One primary limitation is that the clustering methods took hours to parcellate the 

affected hemisphere of stroke patients, even with lower voxel resolution (4 × 4 × 4 

mm3). Immediate stroke diagnosis is extremely important after stroke onset which 

makes it not yet feasible to apply the clustering approach in the setting of acute 

ischemic stroke.  

In summary, in this study, we successfully used resting-state fMRI methods to 

differentiate the lesion areas from healthy tissues and to differentiate areas of the 

mismatch region that are functionally intact from apparently damaged tissue. All these 

results suggest that resting-state fMRI has the potential in providing useful 

pathophysiological information in acute ischemic stroke. 
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3. Study 2: Identifying the perfusion deficit in acute stroke with resting-state 

fMRI2

In Study 1 (Chapter 2), we successfully used two resting-state fMRI methods: (1) 

interhemisphere comparison of low frequency power spectrum amplitude and (2) 

clustering approach, to differentiate the lesion areas from healthy tissues and to 

differentiate areas of the mismatch region that are functionally intact from apparently 

damaged tissue. However, clustering consumes long time for calculation, which made 

it difficult to be applied in the acute phase of stroke because the therapeutic decisions 

must be made as quickly as possible after stroke onset. In this section, a simple 

resting-state method was applied to give similar pathophysiological information as 

DSC-PWI in the acute phase of stroke. 

 

3.1. Introduction  

In a recent study, Tong and colleagues collected resting-state fMRI (rsfMRI) and 

near-infrared spectroscopy (NIRS) data concurrently on six human subjects. They 

correlated resting-state BOLD signals with time-shifted oxyhemoglobin concentration 

(Δ[HbO]) and found that the spatio-temporal pattern of LFOs detected by NIRS and 

fMRI evolves temporally through the brain in a way that resembles cerebral blood 

flow dynamics. These results suggested that cerebral blood flood (CBF) dynamics 

may be assessed with resting-state fMRI (rsfMRI) (Tong et al., 2010). 

In hypoperfused areas the disturbance of CBF could affect the arrival of BOLD signal. 

BOLD signal in hypoperfused areas might have a time lag compared to normal tissues. 

In this study, we hypothesized that resting-state fMRI should contain information 

                                                        
2 This chapter is an expanded version of the following published article: Lv, Y., 

Margulies, D.S., Cameron, Craddock R., Long, X., Winter. B., Gierhake, D., Endres, 

M., Villringer, K., Fiebach, J., Villringer. A., 2013. Identifying the perfusion deficit in 

acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol 

73(1), 136-140. 
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similar to the measures obtained from DSC-PWI, such as mean transit time (MTT) or 

time to peak (TTP). Here, we investigated the time delay in BOLD signal of 

individual voxels using rsfMRI data as a new approach to give similar 

pathophysiological information as DSC-PWI in the acute phase of stroke without the 

need for contrast agents.  

 

3.2. Subjects/ Materials and Methods 

3.2.1. Participants 

Data was acquired from 17 patients with acute ischemic stroke (age = 35 – 92 years; 

mean = 68.4 years; 9 males and 8 females) and 38 healthy participants. 17 patients 

were scanned one-day post-stroke onset (2 – 30 hours (15.3±9.2 hours)). Informed 

consent was obtained from all participants prior to scanning, and all protocols were 

approved by the Charité Institutional Review Board EA4/026/08. Due to severe 

motion confounds in 6 patients, 11 patients were included for final analysis. 

 

3.2.2. MR data acquisition  

17 patients and one healthy participant’ MR data was acquired on a Siemens Tim Trio 

3 Tesla scanner located at Charité Benjamin Franklin Hospital. The MRI scanning 

protocol followed the study protocol of a prospective clinical study on the value of the 

mismatch concept in ischemic stroke (1000+) (Hotter et al., 2009). For each 

participant the diffusion-weighted imaging (DWI) session (lasted 2 minutes and 18 

seconds), the perfusion-weighted imaging (PWI) session (lasted about 2 minutes), as 

well as the resting-state fMRI session (lasted 5 minutes and 50 seconds) were 

acquired as described in “2.2.2. MR data acquisition”. 

In addition to the MRI scanning session, physiological examination, the acute 

National Institute of Health Stroke Scale (NIHSS), also collected for each patient with 

acute ischemic stroke. 
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The resting-state fMRI sessions of another cohort of healthy participants (n = 37) 

were acquired in 3T Siemens Tim Trio system scanner located at Max Planck Institute 

for Human Cognitive and Brain Sciences in Leipzig, Germany. The parameters of 

resting-state fMRI session were as follows: TE = 30ms, TR = 2300ms, flip angle = 

90º, matrix=64x64, voxel dimensions = 3x3x4mm, 200 whole-brain EPI volumes. 

 

3.2.3. Data Analysis 

3.2.3.1. Data preprocessing 

Preprocessing of resting-state fMRI data including 17 acute ischemic stroke patients 

and one healthy participant was performed using both FMRIB Software Library (FSL: 

http://www.fmrib.ox.ac.uk/fsl) and Analysis of Functional NeuroImaging (AFNI: 

http://afni.nimh.nih.gov/afni) including removing first 4 volumes to allow for signal 

equilibration and to allow the subjects got used to scanning noise, slice timing 

correction for interleaved acquisition, motion correction (by aligning each volume to 

the mean image using Fourier interpolation). Six patients were excluded because of 

either large head motion (>6mm) or consistent head shaking. Further image 

preprocessing comprised spatial smoothing using a Gaussian kernel of FWHM 6 mm 

and removing the linear trend. The data were then temporally filtered using a 

band-pass filter (0.01-0.1 Hz). 

In order to overlay resting-state fMRI data results in images with lesion areas, the 

DWI and the MTT map from DSC-PWI scans were coregistered to the individual’s 

mean functional image.  

For the new cohort of 37 healthy participants, the first 10 volumes of the resting-state 

functional images were discarded to ensure signal equilibrium and participants' 

adaptation to the scanning condition. Slice timing, head motion correction and spatial 

normalization to MNI space with 2×2×2 mm were conducted. Data were then 

temporally filtered using a band-pass filter (0.01-0.1 Hz). 

3.2.3.2. Time-shift analysis (TSA)  

We regressed the effect of head motion (using six motion parameters: three rigid body 
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translations and three rotations) from the resting-state fMRI data of all participants, 

and calculated the global average time course as reference time course. For each voxel 

in the brain, we extracted the time course of this voxel, and then we shifted the time 

course from -3 TR to 3 TR, i.e. from -6.9s to +6.9s. During the shifting, we calculated 

the correlation coefficients between the shifted time course of each voxel and the 

reference time course at each TR. For patient 3 and patient 4 (see Fig 2), which 

showed hypoperfusion in the MTT map from PWI scan across almost half the brain, 

we modified the analysis and correlated the time course of each voxel with the 

average time course of only the healthy hemisphere. Then for each voxel we 

identified the maximal correlation value and assigned the time-shift value which 

showed maximal correlation to the reference time course to this voxel. After the 

calculation, each voxel was assigned a value based on the time-shift required to the 

maximal correlation coefficient (Fig 3.1). So for each participant, we got a time-shift 

map. If the time-shift value is smaller than zero, it means the BOLD signal in this 

voxel has a time delay to the reference time course. If the time-shift value is larger 

than zero, it means the BOLD signal in this voxel precedes the reference time course. 

 

Figure 3.1: Illustration of the basic methodology for the time-shift analysis (TSA). 

To test the stability of TSA result in healthy brain, we ran TSA on the new cohort of 

37 healthy participants. Time-shift analysis (TSA) was not only performed for each 

participant to get individual time-shift map, but the group average TSA result was 

also calculated. 
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3.2.3.3. Clinical validation  

Four experts in lesion delineation of the Division of Academic Neuroradiology at 

Charité Hospital, Berlin, traced the hypoperfusion regions (MTT) and TSA for each 

patient independently. Two drew the masks based on the MTT maps from PWI and 

the other two drew masks based on TSA delay results for each patient. Overlap was 

calculated using the Dice coefficient (DC), which calculates the ratio of the 

intersection with respect to the union of each pair of masks. In order to evaluate the 

similarity in mask volume, we also calculated the correlation coefficient (CC) of the 

volume size across the four maps across all patients. We calculated DC and CC for 

inter-rater MTT, inter-rater TSA, as well as between modalities respectively. 

3.2.3.4. Time-shift analysis (TSA) on resting-state data with reduced volumes  

The scanning time of the resting-state fMRI session was longer than the 

perfusion-weighted imaging (PWI) session (6 minutes vs. 2 minutes). To assess how 

the scanning time length might affect the TSA results we re-preprocessed and re-ran 

TSA on resting-state fMRI data with fewer volumes, i.e. simulating shorter 

acquisition times: we calculated the time-shift value on resting-state data from 30 

volumes to 130 volumes in increments of 10 volumes each time. We also calculated 

spatial correlation of the TSA results between full scan session and decreased 

volumes (from 30 to 130) to check the results quality. 

3.2.3.5. Correlation with clinical information 

We calculated the correlation between the degree of overlap and the scanning time 

(hours after stroke onset), the maximal head motion as well as the acute National 

Institute of Health Stroke Scale (NIHSS) across patients. 

 

3.3. Results 

3.3.1. Time-shift analysis (TSA) results 

A synopsis of findings in all 11 patients is provided in Table 3.1 and Figure 3.2. In all 
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11 patients with acute ischemic stroke TSA showed areas with a pronounced time 

delay to the respective mean time course (Fig 3.2). Overall, these areas corresponded 

to the areas of hypoperfusion as identified by MTT maps and not to the infarct cores 

which are reflected in the DWI image.  

Table 3.1 shows the clinical information for these 11 patients with acute ischemic 

stroke, such as scanning time (hours for post-stroke onset), NIHSS scores in acute 

phase of stroke and vessel occlusion. Table 3.1 gives further information about 

maximal head motion, as well as the degree of overlap between modalities for each 

stroke patient. 

Figure 3.2 shows the TSA results of 11 stroke patients and one healthy participant. 

For each patient with acute ischemic stroke, the upper row in the figure is the DWI 

image reflecting the infarct core; the middle row is the MTT from PWI session which 

shows the hypoperfusion area; the third row is the delay results of TSA. We used 

three colors to indicate the 3 delay values (-1TR red, -2TR orange, -3TR yellow). We 

found that the area which showed a pronounced time delay to the respective mean 

time course was very similar to the hypoperfusion area in perfusion MRI.  
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Table 3.1: Patient information 

Patient 

# 

Age  

/ sex 

Timea 

(hr) 

NIHSS  

in 

acute 

phase 

Max. 

motion 

(mm)

Results of magnetic resonance angiography 
Brain mask 

for TSA 

Degree of 

overlapb

(DC) 

1 
35/ M 

15 6 2.42
occlusion in M2 of MCA on the left side, 

and dissection of left ACI 
whole  

0.67 

2 52/M 30 4 1.58 stenosis of the left M2 of MCA whole  0.48 

3 
83/M 

5 26 0.71
occlusion in M2 of MCA on the right side 

(multimorbid patient) 
healthy 

hemisphere 
0.40 

4 
52/M 

10 0 0.41 95% stenosis of the left ACI 
healthy 

hemisphere 
0.63 

5 
68/M 

9 4 2.18
posterior MCA territory on the left side 

with a corresponding hypoperfusion 
whole  

0.66 

6 67/M 2 2 2.80 occlusion in P2 of PCA on the left side whole 0.61 
7 78/F 24 12 4.69 occlusion in M2 of MCA on the right side whole 0.66 
8 77/M 26 4 0.89 occlusion in P3 of PCA on the left side whole 0.31 
9 77/M 22.75 11 0.97 no occlusion whole 0.33 

10 69/M 16 17 2.29 occlusion in M1 of MCA on the right side whole 0.70 
11 82/F 9 2 5.41 occlusion in M2 of MCA on the right side whole 0.34 

 

aHours post-stroke onset 

bOverlap between hypoperfusion area and TSA results as measured with Dice coefficient 

DC: Dice coefficient 

TSA: Time shift analysis 

NIHSS = National Institute of Health Stroke Scale 

MCA = Middle cerebral artery 

PCA = Posterior cerebral artery 

ACI = Internal carotid artery.  
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Figure 3.2: Time-shift analysis (TSA) results of 11 stroke patients and one healthy control with 

time-shift range from –3 TR to +3 TR. In 11 patients, areas affected by the ischemic stroke 

(hypoperfused) show a pronounced time delay to the global mean time course. In one healthy 

control, the time lagged areas were approximately symmetrically distributed within ventricular 

areas. -1, -2, -3 in color bar indicates -1 TR, -2 TR, -3 TR time shift. 

Detailed time-shift analysis (TSA) results for each patient with acute ischemic stroke: 

Both the pronounced mismatches in patient 2, patient 6, patient 8 (Fig 3.3) and the 

smaller mismatch in patient 5, patient 7, patient 9 as well as patient 10 (Fig 3.4) are 

clearly apparent: the areas which showed time delays to global mean corresponded to 

the areas of hypoperfusion as identified by MTT maps and not to the infarct cores 

reflected in DWI.  
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Figure 3.3: Detailed time-shift analysis (TSA) results of 3 stroke patients (2, 6, 8) with a time-shift 

range from -3 TR to +3 TR. In these 3 patients who have large mismatch areas, the areas which 

showed time delays to global mean corresponded to the areas of hypoperfusion as identified by 

MTT maps and not to the infarct cores which are reflected in DWI. -1, -2, -3 in color bar indicates 

-1 TR, -2 TR, -3 TR time shift. 

 

Figure 3.4: Detailed time-shift analysis (TSA) results of 4 stroke patients (5, 7, 9 and 10) with 

time-shift range from -3 TR to +3 TR. In these 4 patients who have small mismatch areas, the 

areas which showed time delays to global mean corresponded to the areas of hypoperfusion as 

identified by MTT maps and not to the infarct cores which are reflected in DWI. -1, -2, -3 in color 

bar indicates -1 TR, -2 TR, -3 TR time shift. 

In patient 1 (Fig 3.5), in addition to the TSA delay results which overlap with MTT 

maps from PWI, the TSA map also showed a time delay in medial prefrontal areas 

which probably is caused by head motion during the scanning. The maximal head 

motion of this patient was 2.42 mm. 
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Figure 3.5: Detailed time-shift analysis (TSA) results of stroke patient 1 with time-shift range 

from -3 TR to +3 TR. In this patient there is also a time delay in medial prefrontal areas which 

probably is caused by head motion. -1, -2, -3 in color bar indicates -1 TR, -2 TR, -3 TR time shift. 

An additional methodological consideration is illustrated in patient 3 and patient 4 

(Fig 3.6), who suffered very large infarctions covering the MCA territory shown in 

the middle row of Figure 3.6: the hypoperfusion area in the MTT map covers almost 

half of the brain. As the whole brain mask would have been too “contaminated” by 

signal from hypoperfused tissue, we chose to use the average time course from only 

the “healthy” hemisphere as the reference time series. The result from patient 4 shows 

a high degree of overlap (DC=0.67) with areas specific to the perfusion deficit within 

the affected hemisphere, while patient 3 shows a low degree of overlap (DC=0.40), 

likely caused by the large infarct core (DWI). 
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Figure 3.6: Detailed time-shift analysis (TSA) results of 2 stroke patients (patient 3 and patient 4) 

with time-shift range from -3 TR to +3 TR. These two patients have large hypoperfusion area 

which occupied almost the whole hemisphere, the average time course from only the “healthy” 

hemisphere was used as reference time course in TSA analysis. -1, -2, -3 in color bar indicates -1 

TR, -2 TR, -3 TR time shift. 

Large head motion in patient 11 likely caused a low degree of overlap (DC = 0.34). 

The maximal head motion displacement of this patient was 5.4 mm and there were 

many spikes in the head motion curve of this patient (Fig 3.7). The results in this 

patient indicated that the head motion seriously affected the TSA results. 

 

Figure 3.7: Detailed time-shift analysis (TSA) results of stroke patient 11 with time-shift range 

from -3 TR to +3 TR. Head motion curve of this patient is given in the right. -1, -2, -3 in color bar 

indicates -1 TR, -2 TR, -3 TR time shift. 

When we calculated the time delay of each voxel’s time course in the healthy brain, 

the areas showing a clear time delay to the global mean were symmetrically 

distributed and located largely within the ventricles (Fig 3.2, Fig 3.8), while smaller 

time delays were identified in adjacent white matter.  
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Figure 3.8: Detailed time-shift analysis (TSA) results of one healthy control with time-shift range 

from -3 TR to +3 TR. The time lagged areas were approximately symmetrically distributed within 

ventricular areas. -1, -2, -3 in color bar indicates -1 TR, -2 TR, -3 TR time shift. 

To test the stability of TSA result in healthy brain, we ran TSA on another cohort of 

37 healthy participants. The group average TSA result showed a similar pattern as 

presented in the healthy control in Figure 3.8: the areas showing a clear time delay to 

the global mean were symmetrically distributed and located largely within the 

ventricles, while smaller time delays were identified in adjacent white matter (Fig 

3.9).  

 

3.3.2. Clinical validation results: 

In order to validate the TSA approach for clinical application purposes, four experts in 

stroke imaging manually outlined lesions on MTT and TSA maps independently. We 

calculated both the CC of the number of voxels included in the lesions between the 

masks across patients, and the DC for calculating the degree of overlap in each 

individual patient, which were then averaged: Inter-rater MTT: CC=0.95, DC=0.66; 

inter-rater TSA: CC=0.93, DC=0.70. The between modalities results were: CC=0.79, 

DC=0.53. 
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Figure 3.9: Group average of time-shift analysis (TSA) results of 37 healthy controls with 

time-shift range from -3 TR to +3 TR, the time lagged areas were approximately symmetrically 

distributed within ventricular areas. 

 

3.3.3. Time-shift analysis (TSA) results on resting-state data with reduced volumes: 

As the resting-state fMRI session (6 min) was longer than standard PWI scans (2 min), 

we tested the impact of decreasing the scan length on the TSA results. Decreasing the 

scan length used for the analysis (in increments of 10 volumes), we found that 184 

seconds (with 80 volumes left) still showed similar results to the full scan session (Fig 

3.10). Some patients even showed similar results just with 50 volumes remaining (115 

seconds). We also calculated spatial correlation of the TSA results between full scan 

session and decreased volumes (from 30 to 130), which was monotonically increasing 

(Fig 3.11). In future data acquisition, such parameters may prove valuable to making 

practical decisions about acquisition length in clinical settings. 
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Figure 3.10: Time-shift analysis (TSA) results of 80 resting-state volumes for each stroke patient 

with time-shift range from -3 TR to +3 TR.  In all 11 patients, areas affected by the ischemic 

stroke show a pronounced time delay to the global mean time course. The affected area is similar 

to the area of hypoperfusion. The color bar refers to: -1 TR, -2 TR, -3 TR time shift. 

 

Figure 3.11: Spatial correlation of the TSA results between full scan session and decreased 

volumes (from 30 to 130). 

 

3.3.4. Other results: 

For 11 patients with acute ischemic stroke we also calculated the MTT (mean transit 

time) and TTP (time to peak) difference between the ipsilateral hypoperfusion area 

and contralateral healthy regions (Table 3.2): TTP range from 0.4 to 15.7s (6.1±4.5s), 

MTT range from 0.4s to 4.3s (2.3±1.2s).  
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Table 3.2: The average difference between the ipsilateral hypoperfusion area and 

contralateral healthy regions for MTT and TTP values in 11 stroke patients 

Patient 

# 

TTP delaya (s) 

(within # TR) 

MTT delayb (s) 

(within # TR) 

1 3.1 (2 TR) 1.3 (1 TR) 
2 2.7 (2 TR) 3.6 (2 TR) 
3 15.7 (7 TR) 2.3 (1 TR) 
4 0.4 (1 TR) 0.4 (1 TR) 
5 3.0 (2 TR) 0.8 (1 TR) 
6 10.1 (5 TR) 2.7 (2 TR) 
7 5.4 (3 TR) 2.1 (1 TR) 
8 2.4 (2 TR) 1.8 (1 TR) 
9 6.6 (3 TR) 4.3 (2 TR) 

10 9.8 (5 TR) 3.8 (2 TR) 
11 8.2 (4 TR) 2.3 (1 TR) 

aThe average TTP difference between ipsilateral hypoperfusion area and contralateral healthy 

regions.  

bThe average MTT difference between ipsilateral hypoperfusion area and contralateral healthy 

regions.  

TTP: Time to peak 

MTT: Mean transit time  

TR: Repetition time, in this study, TR = 2.3s 

To assess whether the scanning time (hours after stroke onset), the maximal head 

motion or the acute National Institute of Health Stroke Scale (NIHSS) affect the 

degree of overlap between lesion on mean transit time (MTT) map and TSA results, 

we calculated the correlation between these indices. There was no correlation between 

post-stroke scanning time and degree of overlap (r = -0.23, p = 0.50), acute NIHSS 

and degree of overlap (r = -0.06, p = 0.86), maximal head motion and degree of 

overlap (r =0.15, p = 0.65). 
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3.4. Discussion 

In this study, we successfully used rsfMRI to identify hypoperfused areas in acute 

stroke. We suggest that an assessment of time delays of the spontaneous low 

frequency fluctuations of the BOLD signal may provide comparable information to 

parameters of contrast based perfusion MRI such as MTT (Ostergaard et al., 1996), 

and thus serve as a useful diagnostic tool for stroke MRI without the need for the 

application of a contrast agent. We show that TSA maps corresponded to the 

PWI-MTT defined areas, and not to the DWI lesion.  

Previous DSC-PWI studies have reported delays of MTT in stroke in the range of 0-8s 

(Schellinger et al., 2006), with a difference between the affected and non-affected 

hemisphere of 0.4-5.6s (1.3±1.9s) (Mihara et al., 2003). In our study, we also 

calculated the average difference between the ipsilateral hypoperfusion area and 

contralateral healthy regions for MTT and TTP values in 11 acute ischemic stroke 

patients. The MTT delays ranged from 0.4s to 4.3s (2.3±1.2s) (Table 3.2), suggesting 

that the time shift range which we employed for TSA (±6.9s) in this study was 

reasonable.  

The primary limiting factor for clinical application of the current approach is its 

sensitivity to head motion. Six patients had to be excluded from further analysis due 

to motion artifacts. We applied regressing out the head motion effect and ICA-based 

denoising approaches to make our data viable for each patient. However, the 

ICA-based approaches did not improve our results considerably. From the TSA delay 

results of patient 11 one can notice the serious head motion effect to TSA, as shown 

in Figure 3.7. The maximal head motion displacement of this patient was 5.4 mm and 

there were many spikes in the head motion curve. Still the time delay result looked 

plausible in this patient (Fig 3.7). Thus, to be clinically viable, it would be valuable to 

find effective ways to manage head motion, such as prospective motion correction 

during scanning and reducing scanning time of data acquisition, i.e. the scanning time 

can be reduced to ~3 minutes as shown in Figure 3.10: when only 80 volumes were 

scanned TSA delay results of 11 patients still showed similar results to the full scan 

session (150 volumes). In future studies, real-time motion estimation or real-time 

TSA assessment could facilitate decisions regarding repeating or prolonging the 
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measurement - viable clinical options, as no contrast agent application is necessary. 

The other issue of the TSA method is that with low temporal resolution (TR=2300ms) 

we can hardly compare the time delay value (-1, -2, -3 TR) to MTT delay value. 

Further improvement of the method may be achieved by acquiring resting-state fMRI 

data at a higher temporal resolution. The whole brain resting-state fMRI data could be 

acquired within 400ms or 300ms (Moeller et al., 2010; Feinberg et al, 2010), thus we 

could increase the time-shift numbers when TSA is applied on such fast resting-state 

fMRI data. With more time-shift delay values for voxels in the brain, the time-shift 

delay values should be closer to the MTT delay values, which is likely to further 

improve the precision of hypoperfusion assessment.  

Another limiting factor in this study is that MRI data was acquired from patients with 

ischemic stroke within a wide time range, i.e., 2-30 hours (15.3±9.2 h) after stroke 

onset. Since the important clinical decisions (e.g. thrombolysis) should be made 

within 3-9 hours (only 4 patients in our study), the TSA approach should clearly be 

validated for this time window before any clinical decisions be based upon it.  

The current findings suggest TSA as a promising new approach to assessing 

hemodynamics in stroke. Although it is just a first step, this straightforward measure 

provides strong evidence that there is key information about tissue perfusion that can 

be extracted from resting-state fMRI data. The other interesting non-invasive 

approach for perfusion imaging, arterial spin labeling (ASL), so far has been 

hampered by poor signal-to-noise ratio in situations of long transit times (Petersen et 

al., 2006). In a recent study, Bokkers and colleagues used an improved 

pseudocontinuous labeling scheme in ASL, which has increased the signal-to-noise 

ratio because it has a higher labeling efficiency and enables the combined use of the 

body transmit coil with the multidetector coils, to detect perfusion deficits in patients 

with acute ischemic stroke and showed that ASL can depict large perfusion and 

perfusion-diffusion mismatches in correspondence with DSC-PWI. However, ASL 

still missed 7 out of 39 perfusion lesions (Bokkers et al., 2012). Hence given the 

hitherto unsatisfactory “performance” of ASL in the clinical situation the 

development of new non invasive alternatives is highly desirable. In our study, 

perfusion lesions were detected in all 11 patients by the time shift analysis.  

In summary, we believe that resting-state fMRI appears to be sensitive for detecting 
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severe hypoperfusion area in acute stroke, and holds promise to provide a valuable 

alternative to current techniques, opening a new place for resting-state fMRI in acute 

stroke diagnostics.
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4. General discussion and outlook 

In this thesis, I have investigated the application of resting-state fMRI methods in 

acute ischemic stroke. In Chapter 2, we successfully applied a clustering method that 

parcellated brain regions based on unique patterns of functional connectivity using 

spontaneous brain activity in resting-state fMRI to differentiate the lesion areas 

(infarct core plus hypoperfusion area) from healthy tissues and to differentiate areas 

of the mismatch regions that are functionally unique from apparently damaged tissues. 

In Chapter 3, perfusion lesions were successfully detected in all 11 patients by 

time-shift analysis (TSA). We suggest that an assessment of time delays of the 

spontaneous low frequency fluctuations of the BOLD signal may provide comparable 

information to parameters of DSC-PWI such as MTT and thus serve as a useful 

diagnostic tool for stroke MRI without the need for the application of a contrast agent.  

Compared with the clustering method, the time-shift analysis (TSA) approach showed 

more promising prospects owing to its simple implementation, less time-consuming 

computation, as well as better results. Aside from the contrast agent usage, there are 

advantages of resting-state fMRI: rsfMRI enables the possibility of conducting 

multiple scanning sessions without potential harm to the patient. If the patient has 

moved during contrast agent injection, the information is lost. With rsfMRI one 

simply repeats the data acquisition. Although this is not yet a final evidence of the 

utility of TSA for resting-state fMRI data, it is rather a first step towards that goal. 

Our study is the very first approach using resting-state fMRI and with newer pulse 

sequences at much higher temporal resolution (Feinberg et al., 2010; Moeller et al., 

2010), we envision much improved performance in the near future. 

However, there remain some limiting factors for clinical application of the TSA 

approach such as: (1) with low temporal resolution (TR=2300ms) we can hardly 

compare the time delay values to the mean transit time (MTT) delay values from 

DSC-PWI; (2) head motion; (3) white matter and cerebral spinal fluid (CSF) effect. In 

the future, our research will focus on optimizing the time-shift analysis (TSA) method 

as outlined subsequently.  
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4.1. Optimization of time-shift analysis (TSA) method 

4.1.1. Fast scan sequence for resting-state fMRI scanning 

With the development of fast scan sequences for BOLD contrast (Moeller et al., 2010; 

Feinberg et al., 2010), resting-state fMRI whole brain dataset could be acquired at 

much higher temporal resolution. Feinberg and colleagues used the multiplexed-EPI 

pulse sequence which combines two forms of multiplexing: temporal multiplexing (m) 

utilizing simultaneous echo refocused (SIR) EPI and spatial multiplexing (n) with 

multibanded radio frequency pulses (MB) to achieve m×n images in an EPI echo 

train instead of the normal single image. They successfully reduced EPI scan time to 

achieve a TR of 400 ms for whole brain fMRI at a 3 Tesla MRI scanner (Feinberg et 

al., 2010). By using this new sequence, we could acquire whole brain resting-state 

fMRI data in shorter time. During TSA with the same time range we can increase the 

time shift numbers and thus there will be more time-shift delay values for voxels in 

the brain. Thus the TSA time delay values should be closer to the MTT delay values 

or to the real delay values of cerebral blood flow in the hypoperfusion area. 

This fast scan sequence has been installed at the Max Planck Institute for Human 

Cognitive and Brain Sciences. We have acquired resting-state fMRI dataset to test its 

quality. I will show some results of one testing experiment in the following part. 

In this testing scanning, we acquired the data from one healthy participant (24 years 

old, female) with five resting state fMRI sessions, the parameters were as follows: 

(1) First resting-state fMRI session: TR = 2300 ms, 150 whole-brain EPI volumes, 90º 

flip angle (FA); 

(2) Second resting-state fMRI session: TR = 1150 ms, 300 whole-brain EPI volumes, 

90º flip angle; 

(3) Third resting-state fMRI session: TR = 766 ms, 450 whole-brain EPI volumes, 90º 

flip angle;  

(4) Fourth resting-state fMRI session: TR = 460 ms, 750 whole-brain EPI volumes, 

90º flip angle;  
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(5) Fifth resting-state fMRI session: TR = 460 ms, 750 whole-brain EPI volumes, 45º 

flip angle; 

Other parameters were the same for five sessions: 30 axial slices, 64x64 matrix, voxel 

dimensions = 3x3x3mm+1mm gap, TE = 30 ms 

We preprocessed the five resting-state fMRI session in the same way as described in 

“3.2.3.1. Data preprocessing”. Then we performed time-shift analysis (TSA), 

functional connectivity analysis with a seed region of interest (ROI) located in the 

posterior cingulate cortex (PCC). We also assessed the signal-to-noise ratio (SNR) to 

test the quality of resting-state fMRI data with different temporal resolution. 

The SNR in the “short TR session” was lower than in the “long TR session”, while 

the functional connectivity map showed no difference among these sessions. The TSA 

time delay results are given in Figure 4.1. For each session, the time range was the 

same (-6.9s ~ 6.9s) when running TSA. The time-shift numbers were increased with 

TR decreasing, e.g. time-shift ranged from -3TR to 3TR with TR = 2300ms while 

from -15TR to 15TR with TR = 460ms. In all five resting-state fMRI sessions, the 

areas showing a clear time delay to the global mean were symmetrically distributed 

and located largely within the ventricles, while smaller time delays were identified in 

adjacent white matter (Fig 4.1). These results were very similar to the results showed 

in Chapter 3: Figure 3.8, Figure 3.9. As we expected, there were more time-shift delay 

values in the maps based on the “short TR session” than the one based on the “long 

TR session.  
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Figure 4.1 Time-shift analysis (TSA) results for five resting-state fMRI sessions with different TR. 

The time range were the same (-6.9s ~ 6.9s), while time-shift numbers were different across 

sessions. The time lagged areas were approximately symmetrically distributed within ventricular 

areas. The values of the color bar indicates time shift values (e.g. In TR=766ms, -9 means the time 

shift value was -9TR). 

 

4.1.2. Other improvements for TSA optimization  

The primary limiting factor for the clinical application of the TSA approach seems to 

be the susceptibility to head motion. As we discussed in Chapter 3, real-time motion 

correction during scanning and reducing scanning time would be effective ways to 

solve this problem. In the future, we can reduce the scanning time to 3 minutes and 

observe the head motion during scanning, which may improve the TSA time delay 

results. 

Secondly, we could optimize the reference time course for TSA. For example, we 

could choose the average time course of a homotopic region contralateral to the 

hypoperfused area in the healthy hemisphere as the reference time course, which may 

be better for assessing the time delay values in the hypoperfusion area. 

Further potential improvements of the method include removing the effect of white 

matter and CSF. As shown in Figure 3.2 (Chapter 3), the area showed a time delay to 
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the reference time course not just in the hypoperfusion area but also in the ventricular 

area and in the white matter. In future research, we may segment the anatomical 

image, extract time courses from white matter and CSF and then regress out the effect 

of white matter and CSF from the BOLD signal. We should further more validate our 

approach for a 3-9 hours time window which is relevant for therapeutic decisions. 

Another aspect of future work may be the combination of resting-state fMRI and 3D 

arterial spin labeling (ASL) fMRI technique. The other interesting non-invasive 

approach for perfusion imaging, arterial spin labeling (ASL), so far has been 

hampered by poor signal to noise in situations of long transit times. In a recent study 

which applied ASL to reflect the perfusion deficits of acute ischemic stroke patients, 

ASL still missed 7 out of 39 perfusion lesions (Bokkers et al., 2012). But the authors 

also pointed out that the perfusion deficit volume in 7 missed patients was very small 

and the 3D whole brain ASL may resolve this problem. ASL can also provide 

perfusion information of healthy participants which we can use to compare with TSA 

time delay results in healthy controls. The combination of resting-state fMRI and 3D 

ASL may further improve the accuracy of perfusion deficit assessment. 

 

4.2. Heart beat acts as bolus for measuring perfusion shifts in BOLD-fMRI  

As we introduced in Chapter 1, in dynamic susceptibility contrast-enhanced 

perfusion-weighted imaging (DSC-PWI), the contrast agent passage causes the signal 

fall in brain tissue which increases with the perfused cerebral blood volume (CBV). In 

our study, we found that the cerebral blood perfusion information may be included in 

the resting-state fMRI BOLD signal. We propose to use the heart beat as bolus for 

measuring perfusion shifts in BOLD-fMRI in future studies.  

BOLD fMRI signal includes information such as the response to heart beat, the 

response to respiration, other low frequency oscillations, vascular response to neural 

activity etc. If we can extract the BOLD signal response to the heart beat, after each 

heart beat we could calculate the time delay of the BOLD signal response at every 

voxel in the brain. The time delay value in the hypoperfusion area should be lagged 

from normal tissues. Therefore, by simultaneously recording the electrocardiogram 
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(ECG) and resting state fMRI BOLD signal we may assess the perfusion deficit more 

accurately.  

  

4.3. Other thoughts for future research 

Following are some ideas for future investigation: 

(1) Longitudinal study. We can acquire the MRI data not only in the acute ischemic 

phase, but also one day, two days, one week, one month, 90 days and half a year after 

stroke onset to monitor the perfusion deficit and help the recovery of patients. 

(2) Real-time processing of MRI data. It took only ten minutes or even less to 

complete preprocessing and the TSA on resting-state fMRI dataset. Therefore, it 

seems possible to perform the analysis during MRI scanning and provide the time 

delay results of BOLD signal and ASL perfusion data immediately after scanning.  

(3) In studies on an animal model of stroke, we can precisely control the time of 

stroke onset, position of vessel blockage, as well as the degree of damage, which will 

further improve our methods and help clinical diagnosis and treatment of acute 

ischemic stroke. 

(4) Application of resting-state fMRI methods in other brain diseases. For example, 

the study of perfusion disturbance caused by cerebral hemorrhage, traumatic brain 

injury or brain tumor. 
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As the second leading cause of death and major cause of disability in the world 

(Donnan et al., 2008; Mathers et al., 2009), stroke is the rapid loss of brain function 

due to disturbance in the blood supply to the brain. Stroke can cause permanent 

neurological damage, complications, and death. Acute ischemic stroke is caused by 

the blockage of a blood vessel in the brain. Therapeutic decisions must be made 

quickly after stroke onset, where minutes can make the difference between benefit 

and harm to the patient. The rapid diagnosis is crucial for patient outcome after stroke 

onset. Diffusion weighted imaging (DWI) and dynamic susceptibility 

contrast-enhanced (DSC) perfusion-weighted imaging (PWI) are commonly 

employed in clinical practice and in research to give pathophysiological information 

for patients with acute ischemic stroke (Sorensen et al., 1996; Wardlaw, 2010; Merino 

and Warach, 2010; Dani et al., 2011). DWI is thought to roughly reflect the severely 

damaged infarct core due to cytotoxic edema which is caused by the breakdown of 

sodium-potassium pumps, while DSC-PWI reflects the area of hypoperfusion due to 

hemodynamic compromise in the brain. The volumetric difference between DWI and 

DSC-PWI is termed the PWI/DWI-mismatch, and has been suggested as an MRI 

surrogate of the ischemic penumbra (Karonen et al., 1999; Schlaug et al., 1999). The 

cerebral blood flow (CBF) damage in the mismatch area is potentially reversible. If 
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normal CBF is restored in time, the ischemic damage in the penumbra can be 

minimized, otherwise long-term hypoperfusion in penumbra will eventually lead to 

infarction. Therefore the ischemic penumbra is regarded as the prime target for any 

treatment approach after acute ischemic stroke onset. 

However, the mismatch concept for identifying the penumbra has been challenged as 

being frequently inaccurate due to the lack of good quantification of perfusion at low 

perfusion levels and its susceptibility to alterations of the arterial input. Due to the 

application of a contrast agent, which, though effective to induce a transient change in 

MRI signal due to magnetic susceptibility effects (Villringer et al., 1988), has 

potentially severe side-effects (e.g., nephrogenic systemic fibrosis), the DSC-PWI 

precludes repetitive examinations for monitoring purposes. New approaches are being 

sought to overcome this shortcoming. 

Resting-state functional magnetic resonance imaging (rsfMRI) is a noninvasive 

imaging technique which does not require contrast agent application and is of 

relatively low cost, while still maintaining high temporal resolution. Therefore, 

resting-state fMRI is increasingly applied to research questions regarding brain 

disorders (Li et al., 2002; Greicius et al., 2004). The BOLD (blood oxygen-level 

dependent) signal used in rsfMRI reflects oxygen metabolism as well as 

hemodynamics (Tong et al., 2010). 

The aim of this thesis was to use resting-state fMRI as a new approach to give similar 

information as DSC-PWI. Specifically, we aim to apply the resting-state fMRI 

approach to differentiate the lesion areas from healthy tissues in patients with acute 

ischemic stroke. This thesis comprises two studies: 

In the first study (see Chapter 2), two resting-state fMRI methods, local methods 

which compare low frequency amplitudes between two hemispheres and a k-means 

clustering approach, were applied to investigate the functional damage of patients 

with acute ischemic stroke both in the time domain and frequency domain. In the 

second study (see Chapter 3), time-shift analysis (TSA), which assesses time delays of 

the spontaneous low frequency fluctuations of the resting-state BOLD signal, was 

applied to give similar pathophysiological information as DSC-PWI in the acute 

phase of stroke.  
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More specifically, with these two studies we have found that: 

1. The lesion areas which include the infarct core and the hypoperfusion area of 

patients with acute ischemic stroke had lower amplitudes than contralateral 

homotopic healthy tissues in the low frequency range. (see Fig 2.3 and Fig 2.4). 

2. Using a k-means clustering approach on resting-state fMRI data, the lesion areas 

(infarct core and hypoperfusion area) belonged to a single cluster, which reflected 

that the clustering method could differentiate the lesion areas from healthy tissues 

(see Fig 2.5). The results suggest that k-means clustering is a promising approach 

to be developed further. 

3. Using time-shift analysis (TSA), areas which showed a pronounced time delay to 

the respective mean time course were very similar to the hypoperfusion area in 

patients with acute ischemic stroke, while the areas showing a clear time delay to 

the global mean were symmetrically distributed and located largely within the 

ventricles and white matter in healthy controls (see Fig 3.2). The results suggest 

that an assessment of time delays of the spontaneous low frequency fluctuations 

of the BOLD signal may provide comparable information to parameters of 

DSC-PWI such as mean transit time (MTT), and thus serve as a useful diagnostic 

tool for stroke MRI without the need for the application of a contrast agent. 

Lesion areas (infarct core and hypoperfusion area) had significant lower amplitude of 

power spectrum near 0.027 Hz than contralateral homotopic area. However, the 

reasons why significant interhemisphere amplitude differences appear in a frequency 

near 0.027 Hz still needs to be further explored. 

Even though we could differentiate lesion areas from healthy tissues using clustering 

methods on resting-state data for patients with acute ischemic stroke, one primary 

limitation is that clustering methods took hours to parcellate the affected hemisphere 

of stroke patients, even with lower voxel resolution (4 × 4 × 4 mm3). Immediate 

stroke diagnosis is extremely important after stroke onset which makes it not yet 

feasible to apply the clustering approach in the setting of acute ischemic stroke.  

Compared with the clustering method, the time-shift analysis (TSA) approach, with 

simple implementation, less time-consuming computation, as well as better results, 
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showed more promising prospects for clinical practice. However, the primary limiting 

factor for clinical application of the TSA method was the susceptibility to head 

motion, e.g. six patients were excluded from further analysis in our study due to 

motion artifacts. Thus, to be clinically viable, it would be valuable to find effective 

ways to overcome head motion, such as prospective motion correction during 

scanning and reducing scanning time of data acquisition. Real-time motion estimation 

could facilitate decisions regarding repeating or prolonging the measurement—viable 

clinical options, as no contrast agent application is necessary. 

The other limiting factor of the TSA method is that with low temporal resolution 

(TR=2300ms) we can hardly compare the time delay values to mean transit time 

(MTT) values from DSC-PWI. Further improvement of the method may be achieved 

by acquiring resting-state fMRI data at a higher temporal resolution. The whole brain 

resting-state fMRI data could be acquired within 400ms or 300ms (Moeller et al., 

2010; Feinberg et al, 2010), allowing to increase the time-shift numbers. With more 

time-shift delay values for voxels in the brain, the time-shift delay values will be 

closer to the MTT delay values, which is likely to further improve the precision of 

hypoperfusion assessment. 

In summary, resting-state fMRI appears to be sensitive for detecting severe 

hypoperfusion areas in acute ischemic stroke, and holds promise to provide a valuable 

alternative to current techniques, opening a new place for rsfMRI in acute stroke 

diagnostics. 

Article and presentation included in this thesis: 

Lv, Y., Margulies, D.S., Cameron, Craddock R., Long, X., Winter. B., Gierhake, D., 

Endres, M., Villringer, K., Fiebach, J., Villringer. A., 2013. Identifying the perfusion 

deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann 

Neurol 73(1), 136-140. 

Lv, Y., Margulies. D.S., Long, X., Rohr, C., Winter, B., Endres, M., Villringer, K., 

Fiebach, J., Villringer, A. Tissue-Differentiation in Stroke using resting-state fMRI. 

Poster presented at 17th Annual Meeting of the Organization for Human Brain 
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