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Zusammenfassung

Das Zusammenspiel von Spektrum und Struktur von Graphen ist das Thema
der drei Kapitel dieser Arbeit.
Im ersten Kapitel werden die Eigenwerte von zwei komplexwertigen Ma-

trizen, von denen eine die prinzipale Submatrix der anderen ist, in Beziehung
gesetzt mit Hilfe eines annihilierenden Polynoms. Dies wird erweitert zu Ma-
trizen, deren Einträge Polynome oder rationale Funktionen in Lambda sind.
Die Erweiterung kann zudem als Generalisierung anderer bereits bekannter
Techniken, die die Verkleinerung einer Matrix ohne Verlust der spektralen In-
formation zum Ziel haben, aufgefasst werden. Einige Aspekte, die für die
mögliche Anwendung zur Verringerung des numerischen Aufwands gewöhn-
licher Eigenwertprobleme relevant sind, werden diskutiert.
Das zweite Kapitel betrachtet die Erweiterung des bekannten Konzepts der

Equitable Partition auf komplexe Matrizen. Es enthält eine Methode, um
ein Eigenproblem in die zwei (im nicht trivialen Fall) kleineren unabhängigen
Eigenprobleme des Frontdivisors und des dazu komplementären Faktors zer-
legt. Das Verfahren ist einfach, stabil und hat eine Komplexität von O

(
N2
)
.

Für die Behandlung mehrerer solcher Zerlegungen, die geordnet sind im Sinne
des "feiner als", wird eine Möglichkeit vorgeschlagen vorhandene Hermitizität
zu erhalten. Mögliche Generalisierungen der Equitable Partition werden be-
trachtet und ein einfaches Verfahren zum Auffinden einer Equitable Partition
einer komplexen Matrix wird angegeben.
Das dritte Kapitel behandelt isospektrale und unitär äquivalente Graphen.

Vorgestellt wird eine einfache Methode zur Erzeugung von Paaren von unitär
äquivalenten Graphen, die sich als eine Verallgemeinerung des bekannten GM-
Switchings auffassen lässt. Weiterhin wird eine Algebra betrachtet, die von
der Adjazenzmatrix erzeugt wird und in einer ähnlichen Beziehung zur 1-
dimensionalen Weisfeiler-Lehman-Methode steht wie die von dieser Matrix
erzeugte Algebra kohärenter Konfigurationen zur 2-dimensionalen. Diese Al-
gebra enthält unter anderem die Gradmatrix, verschiedene Laplace-Matrizen
und die Seidel-Matrix des Graphen. In einfacher Weise können Graphpaare
erzeugt werden, die bezüglich dieser Algebra simultan unitär äquivalent sind.
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Abstract

The interplay between spectrum and structure of graphs is the recurring theme
of the three more or less independent chapters of this thesis.
The first chapter provides a method to relate the eigensolutions of two ma-

trices, one being the principal submatrix of the other, via an arbitrary an-
nihilating polynomial. This is extended to lambda-matrices and to matrices
the entries of which are rational functions in one variable. The extension may
be interpreted as a possible generalization of other known techniques which
aim at reducing the size of a matrix while preserving the spectral information.
Several aspects of an application in order to reduce the computational costs of
ordinary eigenvalue problems are discussed.
The second chapter considers the straightforward extension of the well known

concept of equitable partitions to weighted graphs, i.e. complex matrices. It
provides a method to divide the eigenproblem into smaller parts corresponding
to the front divisor and its complementary factor in an easy and stable way with
complexity O

(
N2
)
. The exploitation of several equitable partitions ordered

by refinement is discussed and a suggestion is made that preserves hermiticity
if present. Some generalizations of equitable partitions are considered and a
basic procedure for finding an equitable partition of complex matrices is given.
The third chapter deals with isospectral and unitary equivalent graphs. It

introduces a construction for unitary equivalent graphs which contains the
well known GM-switching as a special case. It also considers an algebra of
graph matrices generated by the adjacency matrix that corresponds to the
1-dimensional Weisfeiler-Lehman stabilizer in a way that mimics the corre-
spondence of the coherent closure and the 2-dimensional Weisfeiler-Lehman
stabilizer. The algebra contains the degree matrix, the (combinatorial, sign-
less and normalized) Laplacian and the Seidel matrix. An easy construction
produces graph pairs that are simultaneously unitary equivalent w.r.t. that
algebra.
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Chapter 0

Introduction

The motivation for this thesis is the utilization of the entire spectrum of matri-
ces as a tool for graph and network analysis. Two aspects will be considered.
The first one is the wish for exploiting structure in order to save computational
costs in the case of large networks. The second aspect is the determination of
a network by the spectrum of its representing matrices.
Our main interest here are matrices arising from empirical networks. The
spectral investigation of those usually employs only selected parts of the spec-
trum, prominently the few largest (in modulus) eigenvalues as in the various
forms of spectral clustering since those are computable with moderate effort.
Using for instance variants of the power iteration, one may additionally ex-
ploit sparsity to find those few eigenvalues. The theoretical analysis of large
graphs usually assumes some global structure, e.g. a factorization as a graph
product, or considers specific classes of graphs e.g. trees. A complementary
approach considers ensembles of random graphs. With those assumptions the
whole spectrum can often be described. The spectra of empirical networks
seem to lie somewhere in between. The deviation even from slightly advanced
theoretical structures is often to far to exploit those for spectral computation.
On the other hand, there is typically structure on a smaller scale [4], [5], which
indicates that spectral analysis may reveal important structure. However those
structures typically cause large eigenspaces for certain eigenvalues, which is a
problem for iterative methods for the computation of spectra like the power
iteration
It is well known that many structural features must be shared by two graphs
having the same spectrum, for instance the number of vertices, edges and
triangles or more generally the number of walks of any given length. Al-
though a network is in general not determined by its spectrum, the fractions
of graphs sharing the same spectrum is believed to be rather small for large
graphs [79], [36].
The first two chapters consider two ways to derive the spectrum of a matrix
using structural information. One aims at controlling the change of the spec-
trum of a given matrix after adding or removing some vertices and the other
exploits the spectral relation of a matrix and a quotient obtained of it by a
careful coarsening of its vertex set. The third chapter considers the equivalence
of graphs w.r.t. matrix representations and their spectra.
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Chapter 0 Introduction

Notational Remark: Eigenvalues, Roots and Multiplicities Let f (λ) be a
complex valued function and let X be a complex square matrix. By ρ (f (λ))
we denote the multiset of roots of f (λ) and by σ (X) we denote the multiset
of eigenvalues of X. We frequently use the identity σ (X) = ρ (det (X− λI)).
Let α = {x, x, x, y, y, z} and β = {x, y} be multisets. We indicate the multi-
plicity by superscripts and use the value 0 to distinguish an object which is
not an element, i.e. β =

{
x1, y1, z0

}
. We join two multisets by adding up the

multiplicities, i.e. α+β =
{
x4, y3, z1

}
, and we remove a subset by subtraction,

i.e. α − β =
{
x2, y1, z1

}
. When we add up n copies of the same multiset γ

we may abbreviate with γn, i.e. α+ α = α2. To denote the multiplicity of an
element c in a multiset γ we use mc (γ). When we refer to an element λ in the
spectrum of a square matrix X, we may abbreviate mλ

(
σ
(
X
))

with mλ (X).

2



Chapter 1

Perturbation of Matrices by Adding or Removing
Nodes

In this chapter we aim at a relation between the spectrum of a matrix and the
spectrum of one of its principal submatrices using an annihilating polynomial
for one of the two and the spectrum of a third matrix which is derived thereof.
The size of the third matrix is the product of the difference in size of the
first and second one and the incremented degree of the polynomial. It is
intrinsically expressible as a lambda-matrix, which allows for some flexibility
in computing its spectrum. The technique works for complex matrices and
is easily generalized to complex lambda-matrices. It utilizes a generalization
of the adjoint matrix in order to apply the method of Schur complements to
lambda-matrices.

1.1 Introduction

Let A and M be matrices of size N and N + 1, respectively, s.t. A is a
principal submatrix of M obtained by removing a row and a column with the
same index. In the interpretation of weighted adjacency matrices of graphs A
is obtained by deleting a node of M. One might equivalently say that M is
obtained by adding a node to A. Let λ1 ≤ . . . ≤ λN and µ1 ≤ . . . ≤ µN+1 be
the eigenvalues of A and M, respectively. For the hermitian case the Cauchy
interlacing theorem states that µi ≤ λi ≤ µi+1, i = 1, . . . , N , and by induction
it is easy to see that

µi ≤ λi ≤ µi+s, i = 1, . . . , N (1.1)

holds for hermitian matrix M of size N + s with eigenvalues µ1 ≤ . . . ≤
µN+s and A obtained by deleting s accordingly indexed rows and columns of
M [45], [35]. Unfortunately, sound generalizations of (1.1) are not straight-
forward. They can be done, for instance, by reformulation as a sufficient and
necessary condition for an imbedding problem on normal matrices considering
suitable orderings on C, e.g. [27], [75], [63]. However, orderings necessary to
generalize (1.1) as a relation between spectra of arbitrary matrices and their
submatrices might be impracticable. In [55] (1.1) is generalized by restriction
to the class of totally nonegative matrices.
By (1.1) we have the following

Corollary 1. Let A and M be hermitian matrices s.t. A is a principal sub-
matrix of M. Then |mλ (A)−mλ (M)| ≤ s ∀λ ∈ R.

3



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

Note the symmetry in A and M. (1.1) and corollary 1 provide bounds on
eigenvalues and multiplicities. For hermitian matrices some part of the spec-
trum of M (or A) may already be determined if some eigenvalues of A (or
M) have high multiplicity and the number of added (removed) nodes is small.
Further information may determine the spectrum completely.
Motivated by those results we proved a generalization of corollary 1 for gen-
eral complex matrices and developed a method that allows to determine the
spectrum of a complex matrix M by the spectrum of a principal submatrix A,
the roots of an annihilating polynomial for A and the spectrum of a lambda-
matrix of size less than M. In a similar way the spectrum of M together
with a scalar polynomial and a matrix polynomial determines the spectrum of
A. The determination is not only for a fraction or the distinct values but the
complete multiset of eigenvalues. Since a version of the adjoint of a matrix is
utilized we refer to it as an adjoint technique. We give a short outline of the
main idea.
Assume that the spectrum of A is known and that we are given an annihilating
polynomial a (x) for it, i.e. a (A) = 0, for instance the characteristic or the
minimal polynomial. From a (x) we derive a polynomial p (x, y) s.t.

p (λ,A) (λIN −A) = a (λ)

as described below. The node set of M of size (N + s) is partitioned into two
parts whereas the first one of size N induces A. This yields a partition of
M =

(
A B
C D

)
into a 2× 2 block matrix. Using a (x), p (x, y) and the partition

of M we obtain the matrix

L (λ) = C p (A, λ) B + a (λ) (D− λIs)

of size s× s the entries of which are polynomials in λ. According to theorem 2
below the spectrum of M is completely determined by

σ (M) = σ (A)− ρs (a) + ρ (det (L)) . (1.2)

Thus, given a (x) the spectrum of M is reduced to some known terms and a
polynomial eigenvalue problem (PEP) posed by L (λ) of degree (m+ 1) where
m is the degree of the polynomial a. By a well known technique this PEP
can be transformed into a standard eigenvalue problem of size s (m+ 1). Our
method is particularly useful when s (m+ 1)� (N + s). For the converse case
of determining the spectrum of the submatrix A given the spectrum and an
annihilating polynomial of M a similar formula holds according to theorem 3.
After having found a proof for (1.2) in the case of hermitian M, proving the
generalization to complex M seemed rather tedious due to technical subtleties
for instance arising from the fact that our initial ansatz explicitly uses eigen-
vectors although complex matrices might be defective. Eventually, a short
proof was found using the properties of p (x, y; a) and well known manipula-
tions of determinants. However, in order to motivate the use of p (x, y; a) and

4



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

since it allows for the recovery of eigenvectors, the exposition starts with the
eigenvector ansatz.
By chance, the author noticed a recent method by Bunimovich and Webb
for sharpening spectral bounds and reducing the size of graphs weighted by
rational functions called isospectral graph reduction [13], [14]. We give a refor-
mulation of one of their results, compare [12, Theorem 3.5. on page 5], using
our terminology to be developed below, which covers one essential idea in their
work.

Theorem 1 (Bunimovich, Webb). Let W be the field of complex rational func-
tions in λ. Let A ∈WN×N , B ∈WN×s, C ∈Ws×N , D ∈Ws×s and

M =

(
A B
C D

)
∈W(N+s)×(N+s).

Assume
det (M) 6≡ 0 and det (A) 6≡ 0. (1.3)

Let the entries mvw (λ) of

MBW =M+ λI(N+s). (1.4)

be arc weights of a digraph Γ s.t. the arc pointing from vertex v to vertex w
has weight mvw (λ). Let an arc pointing from v to w be present in Γ if and
only if mvw (λ) 6≡ 0. Let

ABW = (A+ λIN ) and DBW = (D + λIs) .

Denote the entries of ABW by avw. Suppose that the directed subgraph of Γ
underlying the nonzero structure of the submatrix ABW of MBW is acyclic,
with loops allowed and let

Ã = (λIN − diag (ABW ))−1 (ABW − diag (ABW )) .

Let n be the smallest natural power s.t. the nilpotent matrix Ã vanishes. Let

LBW (λ) = C

n−1∑
k=0

Ãk (λIN − diag (ABW ))−1 B +DBW

and
L (λ) = LBW (λ)− λIs.

Then the spectrum of LBW , that is the roots of det (L), coincides with the
spectrum ofMBW , that is the roots of det (M), with the possible exception of
elements of the set

N =

N⋃
i=1

{λ0 ∈ C|avv (λ)− λ has a root at λ0 or avw has a pole at λ0}.
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Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

The matrix LBW can be interpreted as the weighted adjacency matrix of a
graph which has less nodes than Γ. If a subset of the vertex set of Γ induces an
acyclic graph, it is called a structural set [12]. Note that for undirected graphs
structural set are always independent sets (with arbitrary loops, though). Note
also that a single vertex is a structural set, thus a graph may be reduced to
any positive size. For brevity we omitted that a further inspection on the
known set N will eventually reveal the complete spectrum ofMBW . In order
to incorporate theorem 1 we developed a framework which generalizes their
and our approach. It will, for example, allow for the reduction via a subgraph
of Γ which has the same non zero weight on each arc except for arbitrary loop
weights. The strength of this more general framework comes from the fact that
it relies on algebraic properties of the weighted adjacency matrix instead on
combinatorial ones alone.

The structure of the chapter The rest of this chapter is organized as fol-
lows. Since our initial motivation was the possible reduction of a large standard
eigenproblem to a small polynomial eigenproblem in order to safe computa-
tional costs, we give a short and incomplete introduction to lambda-matrices
and the solution of polynomial eigenproblems. The two main points are that
any standard eigenvalue problem may be interpreted as a root problem for the
determinant of a (monic) linear lambda-matrix and that any root problem of
a lambda-matrix with invertible leading coefficient can be transformed into a
standard eigenproblem without effort. After that starting with two examples
we develop the reduction technique using the eigenvector ansatz and prove
our main result for spectra of complex matrices and then for latent values
of lambda-matrices. In both cases we also consider a converse variant of the
method which uses an annihilating polynomial of a matrix to reduce the eigen-
problem of a principal submatrix. We then generalize our approach to a wider
set of exploitable polynomials and to matrices the entries of which are com-
plex rationale functions in λ. We conclude by considering aspects regarding
applications.

1.2 Matrix Polynomials and Lambda-Matrices

In this section we only recall well known facts about lambda-matrices, which
can be found for example in [47], [33] or [53].

1.2.1 Eigenvalues of Polynomial Matrices

The expression
d∑

k=0

AkX
k (1.5)

6



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

with Ak ∈ CM×N , k = 0, . . . , d and X ∈ CN×N is called a matrix polynomial
(or a polynomial matrix ). It is a generalization of the ordinary polynomial,
which arises for M = N = 1. We are only interested in the square case
M = N and the special indeterminate X = λI. The expression

L (λ) =

d∑
k=0

Akλ
k , Ak ∈ CN×N , k = 0, . . . , d (1.6)

is called a lambda-matrix. The problem of finding numbers λ and vectors v 6= 0
s.t. det (L (λ)) = 0 and L (λ) v = 0 is known as the polynomial eigenvalue
problem (PEP). The so-called generalized eigenvalue problem corresponds to a
lambda-matrix of degree d = 1. A generalized eigenvalue problem with A1 = I
is called an emphordinary eigenvalue problem. The roots of det (L (λ)) are
called the latent values of L (λ). Note that there is a difference between an
eigenvalue and a latent root. The constant lambda-matrix A0 for instance has
no latent values although it certainly has eigenvalues. However, in practical
applications the latent values of A1λ + A0 are usually called eigenvalues to
the generalized eigenproblem given by the matrix pencil (−A0,A1). Simi-
larly, in the context of polynomial eigenproblems one usually calls the multiset
ρ (det (L (λ))) the spectrum and its elements the eigenvalues of the PEP posed
by the lambda-matrix L (λ). We will adopt this convention when the context
is clear. However, in order to prevent confusion we will always stick to the
notation

σ (X) = ρ (det (λI−X))

for a square matrix X the entries of which are functions in λ where ρ (det (X))
refers to the multiset of latent roots of X.
A lambda-matrix is called regular if ∃ λ ∈ C s.t. det (L (0)) 6= 0 and singular
otherwise, which is a generalization of the same notions for constant matrices.
If and only if det (L (0)) is independent of λ and not zero we call the lambda-
matrix unimodular.

(
1 −λ
0 2

)
is an example of a non constant unimodular matrix.

There are several notions of unimodularity. Note that we do not require that
the determinant has to be in the set {−1, 1}, but we allow for any value in
C \ 0. Unimodular matrices are of great practical importance since they allow
for elementary operations on lambda-matrices without changing the spectrum.
Since det (L (0)) = det (A0) a PEP has eigenvalue zero if and only if A0 is
singular. Using the reversed lambda-matrix

Lrev
(

1

λ

)
=

(
1

λ

)d
L (λ) =

d∑
k=0

Ad−k

(
1

λ

)k
(1.7)

one sees that a PEP may have infinite eigenvalues only if Ad is singular. A
lambda-matrix is called monic if Ad = IN . Obviously, a lambda-matrix with
regular leading coefficient shares all properties of a monic lambda-matrix up
to a multiplication by an invertible constant matrix. Due to the possibility of

7



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

infinite values solutions of PEPs are sometimes given as pairs of numbers with a
certain ratio, λ = α

β , where β = 0 corresponds to an infinite eigenvalue. Using
such a pair the generalized eigenproblem Av = λBv becomes βAv = αBv.
Since our intended application does not involve infinite eigenvalues we will
not use this extended notation. In fact, applying the reduction method of
this chapter to eigenproblems of complex matrices results in a lambda-matrix
which is monic (up to a scalar factor).

1.2.2 Linearization of Polynomial Eigenvalue Problems

We are interested in the solution of PEPs, especially monic PEPs, i.e. we want
to find λ ∈ C and 0 6= v ∈ CN s.t.

L (λ) v = 0 with L (λ) =
d∑

k=0

Akλ
k , Ak ∈ CN×N (1.8)

in particular with the further restriction

Ad = IN .

There are algorithms that work directly on this problem, for instance [66]
or [83]. Another and perhaps the best known way to solve PEPs is via so-
called linearizations, which transform the PEP into a generalized eigenproblem
Z0w = −λZ1w of size dN that is equivalent to it. Any admissible linearization
can be expressed as

Z1λ+ Z0 = X (λ)

(
L 0
0 I

N
(
d−1
) )Y (λ) (1.9)

with unimodular matrices X (λ) and Y (λ). Considering the determinant on
both sides one sees that the eigenvalues of a PEP are exactly the eigenvalues
of its linearization. A thorough treatment of linearizations can be found e.g.
in [3], [57], [40], [39] or [52]. The classical approach utilizes block companion
matrices, which are well known for scalar polynomials. The widely used so-
called first companion form is given by

Z0 =


−Ad−1 · · · −A1 −A0

I 0 0
. . .

...
0 I 0

 ,

Z1 = −


Ad 0

I
. . .

0 I

 and w =


λd−1v

...
λv
v

 . (1.10)

8
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In case of a monic PEP we essentially end up with an ordinary eigenvalue prob-
lem. It is easy to see that any solution of (1.8) provides a solution for (1.10)
and that any solution of (1.10) obeys the block structure of the companion
form and therefore immediately provides a solution for (1.8).
It is a disadvantage of the companion form that it in general does not re-
flect special properties of the PEP like all coefficients being hermitian. More
general linearizations allow for instance transformations into block symmetric
generalized eigenproblems so that in the case of hermitian lambda-matrices the
linearization is also hermitian although moniticity is not preserved in general.
Algorithms for the linear (generalized) eigenproblem may be found for example
in [61], [34] or [72].

1.2.3 Miscellaneous Facts: Annihilating Polynomials, Triangularization
and Extension to Rational Functions

By the Cayley-Hamilton theorem any lambda matrix is annihilated by its char-
acteristic polynomial. To be more precise, the formal expression

det (L (λ)− tI) =
∑
i

ai (λ) ti ∈ R [t]

vanishes for all λ if we replace the indeterminate t by L (λ) and the coefficients
ai (λ) by ai (λ) I. As a consequence for any lambda-matrix there exist annihi-
lating polynomials in R [X] where R is the ring of complex scalar polynomials
in λ.
It is known, [33], [77] and possibly [76], that for any regular lambda-matrix
L (λ) there are unimodular matrices U (λ) and V (λ) and an upper triangular
lambda-matrix T (λ) of the same degree as L, i.e. T (λ) =

∑d
i=0 Tiλ

i with Ti

upper triangular, s.t.
U (λ)L (λ)V (λ) = T (λ) .

It is easy to see that for any triangular lambda-matrix T the polynomial

N∏
i=1

(T − TiiI)

where Tii denotes the i-th diagonal entry of T vanishes.
Let W denote the field of all complex rational functions in one variable. Ev-
ery element in W can be expressed as a fraction of two elements of C [X],
the commutative ring of complex polynomials, with the convention that fac-
tors shared by the numerator and denominator are removed. By the following
standard technique several results for lambda-matrices may be extended to
matrices with entries in W. LetM (λ) ∈WN×N with entriesMij (λ) =

pij(λ)

qij(λ) .
Let Qi (λ) be the least common multiple of all denominators in row i. Let
Q (λ) = diag (Qi (λ)) = Qi (λ) δij , then QM is a lambda-matrix. Since

9
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det (QM) = det (Q) det (M) the latent roots of M and QM coincide with
the exception of the latent roots of Q. Several variants of this technique may
be considered, for instance Qi (λ) being just the product

∏
j qij (λ), which cor-

responds to the polynomial extension in [13], or employing a column wise defi-
nition and right multiplication of Q or choosing simply Q (λ) =

∏
ij qij (λ) IN .

1.3 Examples Considering Complex Matrices

1.3.1 First Example: Independent Set

To get familiar with the notation we consider the most basic example for
our method and assume an empty principal submatrix. However, the results
already generalize to submatrices which are constant diagonal. A more repre-
sentative example will be given in the next subsection.
Consider the constant zero matrix 0N of size N . Its minimal polynomial is
given by

minpol (x; 0N ) = x.

We add a node by appending a row and a column, which results in the block
structured matrix

M =

(
0 b
c′ d

)
∈ C(N+1)×(N+1)

with b, c ∈ CN×1 and d ∈ C. If c = b and d ∈ R then M is hermitian. If A is
the adjacency matrix of a graph, the nodes inducing A, i.e. all initial nodes,
form an independent set. Let

(
λ,
(
v
w

))
be an eigenpair of M s.t. the partition

of the eigenvector conforms with the block structure of M. Due to the partition
the eigenproblem M

(
v
w

)
= λ

(
v
w

)
splits into a system of two equations

bw = λv

c′v + dw = λw.

Multiplying the last equation by λ, inserting the first one and performing some
simple manipulations yields

L (λ) w =
[
λ2 − dλ− c′b

]
w = 0. (1.11)

Note, that w = 0 implies λ = 0 for any eigenvector of M. If λi 6= 0, i = 1, 2,
which is equivalent to c′b 6= 0, the corresponding eigenvectors of M are given
by
(

b
λi

)
, i = 1, 2. The remaining N -1 eigenvalues of M can be determined

to be zero using dim (ker (c′)) ≥ N -1. Since m0 (0N ) = N , there is a (N -1)-
dimensional subspace V of the eigenspace to the eigenvalue 0 which is also a
subset of ker (c′). Any vector of the form

(
v
0

)
with v ∈ V is an eigenvector

of M to the eigenvalue 0. Therefore m0 (M)-1 ≥ N -1. In the hermitian case
we can refer to corollary 1 and m0 (0N ) = N for the same result. Excluding
c′b = 0 we end up with the simple formula

σ (M) =
{

0N−s
}

+ ρ (det (L)) (1.12)

10



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

with s = 1. In the case c′b = 0 the matrix M becomes defective and our ansatz
relying on eigenvectors does not apply properly. However, since defectiveness
is an extremely sensitive matrix property in the sense that it might get lost
even for tiny perturbations, it is not surprising that (1.2) is also correct for the
case c′b = 0 as will be proven below. Recall that we cold have solved (1.11)
by solving the eigenproblem for (

d c′b
1 0

)
.

Note that for large N the costs for constructing this matrix are linear in N
while those of finding its spectrum are fixed and small.
As indicated by (1.12) the above scheme easily carries over to the more general
case of adding s ≥ 1 nodes. In order to notate this generalization properly, w
becomes the vector w ∈ Cs, b, c′ and d become matrices B ∈ CN×s, C ∈ Cs×N
and D ∈ Cs×s and the coefficients in the polynomial of (1.11) become square
matrices. Thus, we have

L (λ) w =
[
λ2 −Dλ−CB

]
w = 0. (1.13)

instead of (1.11).
As shown in the previous section the spectrum of the lambda-matrix L is
equivalent to the spectrum of its first companion form. For our example we
have

det

[(
D CB
I 0

)
− λ

(
I 0
0 I

)]
= 0, (1.14)

which is a standard eigenproblem of size 2s× 2s. In the more general case of
complex matrices with minimal polynomial of degree m ≥ 1 we essentially will
end up with a polynomial in λ of degree m + 1 with matrix coefficients. The
linearization, for example by the first companion form, will be of size (m+ 1) s.
We now prove (1.12) for the general case s ≥ 1 which employs (1.13).

Proof of (1.12). Considering

0 = det (M− λIN+s) = det

(
−λIN B

C D− λIs

)
,

we set

0 = det

(
−λIN B

C D− λIs

)
λs

= det

(
−λIN λB

C λD− λ2Is

)
= det

(
−λIN λB

C λD− λ2Is

)
det

(
IN B
0 Is

)
= det

(
−λIN 0

C CB + λD− λ2Is

)
.

11
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Therefore,
σ (M) + {0s} =

{
0N
}

+ ρ (det (L)) .

remarks If M shows a scaled identity, rIN , instead of 0 in its upper diagonal
block, we may consider the sift M− rI(N+s), which implies the shift A− rIN .
The original eigenvalues of M and A are recovered by a simple back shift.
Equivalently, one can apply the general method using a polynomial of the form
a (x; rI) = r1x− r0 ,

r0
r1

= r, yielding the lambda-matrix

L (λ; a) = -r1Isλ
2 + (r1D− r0Is)λ+ r1CB + r0D (1.15)

and the relation

σ (M) =

{(
-r0

r1

)N -s}
+ ρ (det (L)) . (1.16)

1.3.2 Second Example: Quadratic Annihilating Polynomial

In this section we show how to utilize an annihilating polynomial of degree two
for a principal submatrix to simplify the eigenproblem of a matrix. This case
already captures the most important aspects of the general procedure.
Let

a (x; A) = r2x
2 + r1x+ r0 = r2 (x− ρ1) (x− ρ2) , r2 6= 0 (1.17)

be an annihilating polynomial for A, with roots ρ1 and ρ2. Adding s nodes to
A by appending rows and columns results in the block structured matrix

M =

(
A B
C D

)
∈ CN×N .

Let
(
λ,
(
v
w

))
be a right-eigenpair of M s.t. the partition of the eigenvector

conforms with the block structure of M. Due to the partition the eigenproblem
M
(
v
w

)
= λ

(
v
w

)
splits into a system of two equations

Av + Bw = λv (1.18)
Cv + Dw = λw. (1.19)

Note from (1.18) that w = 0 implies that v is an eigenvector of A. Multiplying
the latter equation by λ and inserting the former one yields

CAv + CBw + λDw = λ2w. (1.20)

Multiplying again by λ and making the same substitution gives

CA2v + CABw + λCBw + λ2Dw = λ3w. (1.21)

12
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A linear combination, r2(1.21)+r1(1.20)+r0(1.19), according to (1.17) yields.

C a (A; A) v + C [r2A + (r2λ+ r1) Is] B + a (λ; A) (D− Is) = 0 (1.22)

The first term on the left-hand side cancels and after rearranging we obtain
the cubic PEP

L (λ) w =

3∑
k=0

Akλ
kw (1.23)

with coefficients

A0 = r2CAB + r1CB + r0D

A1 = r2CB + r1D − r0Is

A2 = r2D − r1Is

A3 = −r2Is, (1.24)

which gets monic after divison by -r2 and is therefore equivalent—by linearization—
to a standard eigenvalue problem of size 3s× 3s.
We now proof the formula

σ (M) + {ρs1, ρs2} = σ (A) + ρ (det (L)) . (1.25)

Proof of (1.25). Consider

det

(
A− λIN B

C D− λIs

)(
r2λ

2 + r1λ+ r0

)s (1.26)

= det

(
A− λIN

(
r2λ

2 + r1λ+ r0

)
B

C a (λ; A) (D− λIs)

)
= det

(
A− λIN

(
r2λ

2 + r1λ+ r0

)
B

C a (λ; A) (D− λIs)

)
× det

(
IN

((
r2λ+ r1

)
IN + r2A

)
B

0 Is

)
= det

(
A− λIN 0

C L (λ)

)
. (1.27)

The roots of the left-hand side, (1.26), are given by σ (M) + {ρs1, ρs2} and the
roots of the right-hand side, (1.27), are given by σ (A) + ρ (det (L)).

The term
((
r2λ+ r1

)
IN + r2A

)
in the second postmultiplication may be mo-

tivated by the middle term of the left-hand side of (1.22).

Remarks Since a (x; A) annihilates A, the minimal polynomial of A must
divide it. However, it is not required that all roots of a (x; A) are eigenvalues
of A. The condition that the leading coefficient should not vanish is not
essential. For r2 = 0 (1.23) automatically turns into (1.15) as can be observed
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from (1.24). However, in this case the factorization in (1.17) does not apply
and one has to replace the pair ρ1 and ρ2 by the actual root - r0r1 . When that
is taken into account, then (1.25) turns into (1.16).
The example of this subsection covers the case of exploiting a clique, a set of
mutually adjacent vertices, of size N in a simple graph Γ of size (N + s) in
order to compute the spectrum of its adjacency matrix M. This corresponds
to A = JN − IN and, for instance, a (x) = (x−N + 1) (x+ 1). Using (1.25),
(1.23) and (1.24) one reduces the eigenproblem of M to a cubic lambda-matrix
of size s the linearization of which has size 3s. However, since for A the
eigenvector jN to the eigenvalue (N -1) is known, we can deflate it by an unitary
transformation Q s.t.

Q′AQ =

(
Ã 0
0 N -1

)
(1.28)

Since the multiplicity of (N -1) is 1 all eigenvalues of Ã are given by the second
eigenvalue of A, hence Ã = −IN-1. We consider

M̃ =

(
Q′ 0
0 Is

)
M

(
Q 0
0 Is

)
=

(
Q′AQ Q′B
CQ D

)
, (1.29)

which has the following form

M̃ =



-IN-1

0 x · · · x
...

...
. . .

...
0 x · · · x

0 · · · 0 N -1 x · · · x

x · · · x x

D...
. . .

...
...

x · · · x x


(1.30)

If we utilize a 2 × 2 block partition of M̃ such that Ã becomes the upper
diagonal block, we may apply (1.16) to reduce the eigenproblem of M̃ to that
of a quadratic lambda-matrix of size (s+ 1) the linearization of which has
size 2 (s+ 1). Particularly in the case of s > 2 this might be an advantage
compared to the straightforward reduction. However, in general we might not
deflate each known eigenpair of A. For example, the deflation of an eigenvalue
-1 of the submatrix JN − IN does not allow for the use of a linear polynomial
a (x) if N ≥ 3. Hence, the lambda-matrix of the transformed and repartitioned
problem would still be cubic.
If additionally the graph is regular, we may consider the adjacency matrix
of the complement graph. In this case we obtain a quadratic lambda-matrix
without incrementing its size. We only have to take into account some simple
relations between the spectrum of a regular graph and its complement. Note
that it is in general harmful to deflate an eigenpair of M since this typically
changes the spectrum of submatrices completely.
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1.4 The Main Theorem

1.4.1 Useful Identities

Polynomial Identities and the Adjoint Let q (x) =
∑m

k=0 rkx
k be an uni-

variate complex polynomial. We define

Definition 1. pk (y, z) =
∑k

i=1 y
i−1zk−i , k ∈ N.

The identity y pk (y, z)− pk (y, z) z = yk − zk is easily proven. In the commu-
tative case, yz = zy, we have

(y − z) pk (y, z) = yk − zk. (1.31)

We also define

Definition 2. p (y, z; q) =
∑m

k=1 rk pk (y, z).

Thus for commuting y and z

(y − z) p (y, z; q) = q (y)− q (z) . (1.32)

p can be obtained by the formal substitution

xk → 1

k + 1

k∑
i=0

yizk−i

in the first derivative of q (x). An important relation holds for commuting y
and z s.t. q (z) 6= q (y) = 0. In this case

(y − z)−1 = p (y, z; q)
1

q (z)
.

Our variables will usually be of the form y = X and z = λI with square
matrix X and complex scalar λ. Let char (x; X) and minpol (x; X) be the
characteristic and the minimal polynomial of X, respectively. The functions

B (λ) = p (λI,X; char) (1.33)

and
C (λ) = p (λI,X; minpol) (1.34)

are called the adjoint matrix and the reduced adjoint matrix, respectively, by
Gantmacher [28, equations (31) and (55) on pp. 84/91]. B (0) is also known as
the adjoint or the adjugate of X up to different sign conventions. It turned out
that the method in this chapter is most easily understood by just considering a
generalization of (1.33) and (1.34) to all annihilating polynomials of X, which
also works for an extension of X to matrices the entries of which are functions
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in lambda. We conclude with the following observation [28]. If a (x; X) is any
annihilating polynomial of X, then we have according to (1.32)

(X− λI) p (X, λI; a) = − a (λ; X) I. (1.35)

If λ is an eigenvalue of X, then the right-hand side of (1.35) vanishes, which
implies that the columns of p (X, λI; a) are eigenvectors of X to the eigenvalue
λ.

Block Determinants and the Schur Complement Let R be a commutative
ring with identity. We recall four properties of determinants of block matrices
with elements in R. A and D are square matrix blocks not necessarily of the
same size. Each I stands for an identity matrix. B, C and X are rectangular
of suitable size. All partitions are conformable. Let n = dim (D) and µ ∈ R.

• det (AX) = det (A) det (X).

• det

(
A 0
C D

)
= det

(
A B
0 D

)
= det (A) det (D),

• det

(
A µB
C µD

)
= det

(
A B
µC µD

)
= µn det

(
A B
C D

)
,

• det

(
A B
C D

)
det

(
I X
0 I

)
= det

(
A AX + B
C CX + D

)
.

A common application of the last relation assumes that A is invertible and
uses X = −A−1B in order to be able to apply the first relation. In this case
the lower right matrix block on the right-hand side becomes D − CA−1B,
which is also called a Schur complement [18], [86]. Our method may be seen
as an application of the technique of Schur complements to lambda-matrices
with the help of a generalization of the adjoint for obtaining an inverse.

1.4.2 A Recursion

Let M be a complex square matrix partitioned into a 2 × 2 block form. We
consider the block partitioned eigenproblem

M

(
v
w

)
=

(
A B
C D

)(
v
w

)
= λ

(
v
w

)
, (1.36)

which leads to

Av + Bw = λv (1.37)
Cv + Dw = λw (1.38)

Multiplying the last equation by λ and inserting the first one yields

CAv + CBw + λDw = λ2w. (1.39)
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Repeating the last step we get a sequence of equations. The k-th element reads
as

CAkv + C

k∑
i=1

λi−1Ak−iBw + λkDw = λk+1w, (1.40)

which is equivalent to

CAkv + C pk (A, λ) Bw + λkDw = λk+1w. (1.41)

When we utilize a linear combination of these equations s.t. the term involving
v vanishes, we will obtain a PEP.

1.4.3 The Associated Lambda-Matrix

Let

a (x; A) =
m∑
k=0

rkx
k , rm 6= 0 (1.42)

be an annihilating polynomial of A, which implies

λ ∈ σ (A)⇒ λ ∈ ρ (a (x; A)) .

We consider a linear combination of (1.40) or equivalently (1.41) with k =
0, . . . , d using the coefficients rk of (1.42). Since a (A; A) = 0, the term

C

m∑
k=0

rkA
kv in

m∑
k=0

rkλ
k+1w = λ a (λ; A) w

vanishes, and we are left with

0 =
m∑
k=0

rk

[
C

k∑
i=1

λi−1Ak−iB + λkD− λk+1Is

]
w =

[
m+1∑
k=0

Akλ
k

]
w (1.43)

where

Am+1 = −rmIs,

Ak =

m−1−k∑
i=0

rk+1+iCAiB + rkD− rk−1Is , k = 1, . . . ,m,

A0 =
m−1∑
i=0

ri+1CAiB + r0D, (1.44)

which is a monic (up to a constant factor) PEP of degree m + 1 that can be
solved by linearization. We call

L (λ; A,B,C,D, a) =
m+1∑
k=0

Akλ
k = C p (A, λI; a) B+a (λ; A) (D− λI) (1.45)
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the associated lambda-matrix and (1.43) the associated PEP for the block
structured matrix M =

(
A B
C D

)
with annihilating polynomial a (x; A). Note

that for hermitian (real) M the associated lambda-matrix is hermitian (real)
if a (x; A) is real.

1.4.4 The Main Theorem for Complex Matrices

Theorem 2. Let A ∈ CN×N be annihilated by the polynomial

a (x; A) =

m∑
k=0

rkx
k , rm 6= 0

of degree m. Let B ∈ CN×s, C ∈ Cs×N , D ∈ Cs×s and

M =

(
A B
C D

)
.

Let
L (λ; A,B,C,D, a) = C p (A, λI; a) B + a (λ) (D− λI)

be the associated lambda-matrix. Then, L has a linearization as a standard
eigenproblem and the spectra of A and M are related by

σ (M) = σ (A)− ρs (a (λ)) + ρ (det (L (λ))) .

Proof. According to (1.44), the first coefficient of L is -rmIs. Thus, multi-
plication by the unimodular matrix - 1

rm
Is yields a monic lambda-matrix with

monic linearization using the first companion form.
The spectrum of M are the roots of

det
(
M− λI(N+s)

)
= det

(
A− λIN B

C D− λIs

)
.

Thus,

0 = det

(
A− λIN B

C D− λIs

)
det (a (λ) Is)

= det

(
A− λIN a (λ) B

C a (λ) (D− λIs)

)
= det

(
A− λIN a (λ) B

C a (λ) (D− λIs)

)
det

(
IN p (A, λ; a) B
0 Is

)
= det

(
A− λIN 0

C C p (A, λ; a) B + a (λ) (D− λIs)

)
= det (A− λIN ) det (L (λ))

and therefore,

σ (M) + ρs (a (λ)) = σ (A) + ρ (det (L (λ))) .
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Since L has a linearization as a standard eigenproblem, infinite eigenvalues are
excluded. Obviously, if we impose the rather harmless restriction rm = -1,
then we may already build up a monic linearized form of L. In this case the
reduction procedure would involve only complex matrices and scalar polyno-
mials. However, utilizing lambda matrices allows for a larger set of available
algorithms and may be used to exploit hermiticity or other structural proper-
ties.
We may reformulate the eigenvalue problem of M as the equivalent latent root
problem of M−λI, which leads to a generalization of theorem 2 in section 1.6.

1.4.5 Recovery of Eigenvectors

We give three relations between right-eigenvectors of A, those of the asso-
ciated lambda-matrix L and those of the complex matrix M. The case of
left-eigenvectors is similar. Let a (x; A) ∈ C [x] be the annihilating polynomial
for A used to construct the associated lambda-matrix. As in the recursion
above any eigenvector of M =

(
A B
C D

)
to an eigenvalue λ can be partitioned

as
(
v
w

)
where w is an eigenvector of L to the same eigenvalue λ or vanishes.

Using (1.36),(1.37) and (1.38) one sees that(
λ,

(
v
0

))
is an eigenpair of M if and only if(

λ,v
)
is an eigenpair of A and v ∈ ker

(
C
)
. (1.46)

According to (1.37) we have

(A− λIN ) v = -Bw. (1.47)

Assuming w = 0 turns (1.47) into an eigenproblem of A which may be solved
to check for eigenvectors of M with vanishing lower vector block according
to (1.46). Additionally, one can insert any eigenpair (λ,w) of the associated
lambda-matrix and solve the system, which becomes underdetermined for λ ∈
σ (A), to find v.
However, any λ /∈ ρ (a (x; A)) implies λ /∈ σ (A) hence non vanishing w and of
course a (λ) 6= 0. Premultiplication of (1.47) by p (A, λIN ; a) and division by
a (λ) leads to

v =
1

a (λ)
p (A, λ; a) Bw, (1.48)

which directly relates v to w. Note that v is not an eigenvector but a first
eigenvector block, therefore the scaling by 1

a(λ) must not be omitted.

1.5 The Spectrum of a Principal Submatrix

Let A ∈ CN×N be a principal submatrix of M ∈ C(N+s)×(N+s). Theorem 2
allows for the exploitation of an annihilating polynomial for A to determine
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the spectrum of M. Now we consider the converse, i.e. we will exploit an
annihilating polynomial for M to obtain information about the spectrum of
its principal submatrix A. We largely maintain the notation of the previous
sections and start with the 2× 2 block matrix

M =

(
A B
C D

)
.

Let

Π1 =

(
IN 0
0 0

)
and Π2 =

(
0 0
0 Is

)
(1.49)

be block matrices which are partitioned conformably to the partition of M.
Let (

Mk
)
ij

= ΠiM
kΠj , i, j = 1, 2 (1.50)

denote the blocks of the conformally partitioned k-th power of M. Using(
Mk+1

)
ij

=
(
Mk
)
i1

(
M1
)

1j
+
(
Mk
)
i2

(
M1
)

2j
, i, j = 1, 2 , k ≥ 0 (1.51)

it is easy to prove that for k ≥ 1

(
Mk
)

11
=
(
Mk−1

)
11

A +
k−2∑
i=0

(
Mi
)

22
BDk−2−iC (1.52)

(
Mk
)

21
=

k−1∑
i=0

(
Mi
)

22
CAk−1−i. (1.53)

Note that each term in the expansion of the recursion on the right-hand side
of (1.52) either ends on C followed by a power of A, including A0 = IN , or is
Ak, and note that each summand on the right-hand side of (1.53) ends on C
followed by a power of A, again including IN .
Now, let a (x; M) =

∑m
k=0 rkx

k be an annihilating polynomial for M and let(
λ,v

)
be an eigenpair of A. Since a (M; M) = 0, we have(

0
0

)
= a (M; M)

(
v
0

)
=

( ∑m
k=0 rk

(
Mk
)

11
v∑m

k=0 rk
(
Mk
)

21
v

)
,

which gives the following two equations for v.

0 =

m∑
k=0

rk

(
Mk
)

11
v (1.54)

0 =
m∑
k=0

rk

(
Mk
)

21
v (1.55)
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If v ∈ ker (C) then we obtain by (1.52) and (1.54)

0 = a (λ; M) v,

Since we may have chosen a (x; M) to be the characteristic polynomial of M
or one of its divisors, this implies that λ is an eigenvalue of M. Thus,

v ∈ ker (C)⇒ λ ∈ σ (M) , (1.56)

which can also be deduced from (1.46). If v /∈ ker (C) then Cv 6= 0 and we
obtain by (1.53) and (1.55)

0 = Π2 a (M; M) Π1v =
m∑
k=0

rk

(
Mk
)

21
v

=
m∑
k=0

rk

k−1∑
i=0

(
Mi
)

22
CAk−1−iv (1.57)

=
m∑
k=0

rk

k−1∑
i=0

(
Mi
)

22
λk−1−iCv (1.58)

= Π2 p (M, λ; a) Π2Cv (1.59)

=

m−1∑
k=0

(
m−1−k∑
i=0

rk+i+1

(
Mi
)

22

)
λkCv (1.60)

and therefore,

λ ∈ ρ

(
det

[
m−1∑
k=0

(
m−1−k∑
i=0

rk+i+1

(
Mi
)

22

)
λk

])
. (1.61)

For convenience we will use the abbreviations

Kk = Kk (a,M) =
m−1−k∑
i=0

rk+i+1

(
Mi
)

22
. (1.62)

and

K (λ) =

m−1∑
k=0

Kkλ
k = Π2 p (M, λ; a) Π2. (1.63)

Thus,
v /∈ ker (C)⇒ λ ∈ ρ (det (K (λ))) . (1.64)

We summarize that
λ ∈ σ (M) ∪ ρ (det (K (λ)))

for any eigenpair
(
λ,v

)
, hence for any eigenvalue of A. Thus, the eigenvalue

problem of A is ’reduced’ to some extend to that of M and a latent root prob-
lem of the lambda-matrix K (λ) of size s. Theorem 3 below gives a stronger
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result.
Note that K (λ) is monic (up to the factor rm), which excludes infinite eigen-
values. More important for the next theorem is the fact that moniticity ensures
regularity. Since K (λ) is of finite size and finite degree and monic, det (K (λ))
is a polynomial of finite degree at least 1, hence ρ (det (K (λ))) is finite.

Theorem 3. Let

M =

(
A B
C D

)
be a 2×2 block matrix of size (N + s) with A ∈ CN×N , B ∈ CN×s, C ∈ Cs×N
and D ∈ Cs×s. Let

a (x; M) =
m∑
k=0

rkx
k

be an annihilating polynomial for M. Let
(
Mk
)

22
be the lower diagonal block

of the conformally partitioned matrix Mk, which is the k-th power of M, and
let

Kk =
m−1−k∑
i=0

rk+i+1

(
Mi
)

22

K (λ) =
m−1∑
k=0

Kkλ
k.

Then
σ (A) = σ (M)− ρs (a (λ; M)) + ρ (K (λ)) .

Proof. Let M = (N + s) and let

p (λ,M; a) =

(
P11 (λ) P12 (λ)
P21 (λ) P22 (λ)

)
where we employ a partition which is conformable to that of M. Recall that
P22 (λ) = Π2 p (M, λ; a) Π2 = K (λ). By the theorem of Cayley-Hamilton K (λ)
with any fixed λ is annihilated by its characteristic polynomial

char (x;K (λ)) = det (xIs −K (λ))

where the coefficients of char depend on λ, and we have

K p (0,K; char) = − char (0;K) Is = (−1)s+1 det (K) Is. (1.65)

According to (1.32) and since a (M; M) = 0, we have

(λIM −M)

(
P11 P12

P21 K

)
= a (λ; M) IM . (1.66)
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We postmultiply both sides with(
(−1)s det (K) IN 0
p (0,K; char)P21 Is

)
(1.67)

and set
P0 = (−1)s det (K)P11 + P12 p (0,K; char)P21

reaching

(λIM −M)

(
P0 P12

0 K

)
= a (λ; M)

(
(−1)s det (K) IN 0
p (0,K; char)P21 Is

)
. (1.68)

Since Km−1 = rmIm for the leading coefficient of K, we have det (K) 6≡ 0,
i.e. the matrix (1.67) is regular. The lower left matrix block in the second
matrix on the left-hand side of (1.68) vanishes because of (1.65). From (1.68)
we deduce

det (λIM −M) det (P0) det (K (λ)) = (a (λ))(N+s) (−1)sN det (K (λ))N

(1.69)
and by considering the upper left diagonal block

(INλ−A)P0 = a (λ) (−1)s det (K (λ)) IN ,

hence,

det (INλ−A) det (P0) = (a (λ))N (−1)sN det (K (λ))N . (1.70)

Multiplying (1.69) on either side by det (INλ−A) and canceling terms which
are equal according to (1.70) yields

det (λIM −M) det (K (λ)) = (a (λ))s det (λIN −A) . (1.71)

Considering the roots of the polynomials in (1.71) we find

σ (M) + ρ (det (K (λ))) = ρs (a (λ)) + σ (A) , ∀ λ ∈ C

Eigenvectors We can recover eigenpairs (λ,v) of A with v ∈ ker (C) from
eigenpairs of M using (1.46). In order to do so, one has to consider the whole
eigenspace to a given eigenvalue of M, take into account the subspace of all
eigenvectors whose first block is in ker (C) and remove the subspace of those
whose first block vanishes.
For those eigenvectors which obey v /∈ ker (C) we can utilize (1.59) in the form
of

K (λ) w = 0 , w = Cv. (1.72)

A latent vector w of the lambda-matrix K to a given latent root can be inserted
in the second equation of (1.72) in order to solve it for eigenvectors v of A.
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1.6 Generalization to Lambda-Matrices, Isospectral Graph
Reduction and Further Generalizations

Our previous results in particular theorem 2 which hold for complex matri-
ces will be generalized to matrices the entries of which are univariate func-
tions. We remind the reader of the formal difference between an eigenvalue
and a latent root. One instance of our notation may need further description.
Since the annihilating polynomial of a lambda-matrix has coefficients which
are polynomials in lambda, it is an element of (C [λ]) [x]. However, when the
indeterminate x is replaced by an element of C [λ], we interpret the resulting
function as an element of C [λ].

1.6.1 The Main Theorem in the Case of Lambda-Matrices

Theorem 4. Let A (λ) be a lambda-matrix of size N . Let f (λ) be a polynomial
in λ with complex coefficients. Set

A1 (λ) = A (λ) + f (λ) IN .

Let

a (x;A1 (λ)) =
m∑
k=0

rk (λ)xk

be an annihilating polynomial of A1 with coefficients in C [λ]. Let A be the left
upper principal submatrix of

M (λ) =

(
A (λ) B (λ)
C (λ) D (λ)

)
,

which is a lambda-matrix of size N + s. Let

ā (λ) = a (f (λ) ,A1 (λ)) ∈ C [λ] .

and let the associated lambda-matrix be given as

L (λ) = C (λ) p (A1 (λ) , f (λ) ; a)B (λ) + ā (λ)D (λ) .

Then
ρ (det (M)) = ρ (det (A))− ρs (ā) + ρ (det (L)) .

Proof.

0 = det

(
A B
C D

)
det (a (f,A1) Is)

= det

(
A1 − fIN a (f,A1)B
C a (f,A1)D

)
det

(
IN p (A1, f ; a)B
0 Is

)
= det

(
A 0
C

[
C p (A1, f ; a)B + a (f,A1)D

] )
= det (A) det (L)

24



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

and therefore,

ρ (det (M)) + ρs (a (f,A1)) = ρ (det (A)) + ρ (det (L)) .

Since we may choose D to have any degree and any leading coefficient, the
leading coefficient of L may be singular. Putting that aside, theorem 2 can
be seen as a corollary of theorem 4. The freedom in decomposing A as a
sum allows for some flexibility in finding suitable annihilating polynomials.
After the next subsection we give two further possible generalizations of such
a decomposition.

1.6.2 Principal Submatrices of Lambda-Matrices

Theorem 5. Let A (λ), a lambda-matrix of size N , be a principal submatrix
of the lambda-matrixM (λ), which is a 2×2 block matrix of size M = (N + s)
partitioned as

M (λ) =

(
A (λ) B (λ)
C (λ) D (λ)

)
.

Let f (λ) be a polynomial in λ with complex coefficients. Set

M1 (λ) =M (λ) + f (λ) IM . (1.73)

Let

a (x;M1 (λ)) =
m∑
k=0

rk (λ)xk

be an annihilating polynomial ofM1 with coefficients in C [λ]. Let

p (x,M1 (λ) ; a) =

(
P11 (x, λ) P12 (x, λ)
P21 (x, λ) P22 (x, λ)

)
(1.74)

be partitioned conformable toM, abbreviate

ā (λ) = a (f (λ) ;M1 (λ)) and K (λ) = P22 (f (λ) , λ)

and let K (λ) be regular. Then

ρ (A) = ρ (M)− ρs (ā) + ρ (K) .

Proof. Since
(M1 − fIM ) p (f,M1; a) = - a (f ;M1) IM ,

we have

M
(
P11 P12

P21 K

)
= -āIM . (1.75)
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Since the lambda-matrix K is of finite size, of finite degree and regular, its root
set is of finite size. For the following we fix a λ which obeys

λ /∈ ρ (K) . (1.76)

Thus, K (λ) is invertible. We postmultiply both sides of (1.75) with(
IN 0

-K−1P21 Is

)
(1.77)

and set
P0 = P11 − P12K−1P21.

This yields

M
(
P0 P12

0 K

)
= -ā

(
IN 0

-K−1P21 Is

)
. (1.78)

From (1.78) we deduce

det (M) det (P0) det (K) = (-1)M āM (1.79)

and by considering the upper left diagonal block

det (A) det (P0) = (-1)N āN . (1.80)

Multiplying (1.79) on either side by det (A) and canceling terms which are
equal according to (1.80) yields

det (M (λ)) det (K (λ)) = (-1)s (ā (λ))s det (A (λ)) . (1.81)

We have proven that equation (1.81) is valid for all λ obeying assumption
(1.76). Since both sides of (1.81) are finite polynomials, we may drop this
assumption. Hence,

ρ (M) + ρ (det (K)) = ρs (ā) + ρ (A) , ∀ λ ∈ C

Note the slight difference in the proof of theorem 5 compared to that of the-
orem 3, which is actually a corollary. A similar argument is used in the next
subsection.

1.6.3 Isospectral Graph Reduction

In this subsection we consider a formal extension of theorem 4 which unifies our
approach and a result by Bunimovich and Webb [14], which we reformulated
as theorem 1. We call a matrix X (λ) the entries of which are functions in λ
regular if ∃ λ s.t. X (λ) is defined and det (X (λ)) 6= 0.
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Lemma 1. Let W be the set of all complex rational functions in λ. Let A ∈

WN×N , B ∈ WN×s, C ∈ Ws×N , D ∈ Ws×s and M =

(
A B
C D

)
. Let A and

M be regular. Find a scalar function f
(
x
)
, matrices Ai ∈WN×N , i ∈ {1, 2, 3}

and a polynomial a (x) with coefficients in W s.t.

• A1 +A2 = A

• A3 is regular

• a
(
A−1

3 A1

)
= 0N

• A−1
3 A2 = −f (λ) IN .

Then

ρ (det (M)) + ρs (a (f (λ)))− ρ (det (A)) =

ρ
(
det
[
C p
(
A−1

3 A1, f (λ) ; a
)
A−1

3 B + a (f (λ))D
])

with the possible exception of elements of

N =
{
λ |A−1

3 or A3 or A1 orM or a (f (λ)) is not defined
}
.

Proof. We use the abbreviations X̃ = A−1
3 X and ã

(
λ
)

= a
(
f
(
λ
))
. Assume

that M and A1 are defined. Assume that A3 is invertible, i.e. A3 is defined
and det (A3) 6= 0. Assume that ā

(
λ
)
is defined. For all λ not violating those

assumptions the following equations are valid

0 = det (M) det (ãIs)

= det (A3) det

(
Ã1 − fIN ãB̃
C ãD

)
= det (A3) det

(
Ã1 − fIN ãB̃
C ãD

)
det

(
IN p

(
Ã1, f ; a

)
B̃

0 Is

)

= det (A3) det

(
Ã1 − fIN 0

C C p
(
Ã1, f ; a

)
B̃ + ãD

)

= det

(
A 0

C C p
(
Ã1, f ; a

)
B̃ + ãD

)
.

The approach of Bunimovich and Webb arises with the assumption that

A is a triangular matrix (up to a suitable permutation)
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and the choice

f ≡ 1, A2 = diag (A) , A3 = -A2 and a (x) = xn.

Theorem 4 arises with the restriction

M∈ C [λ](N+s)×(N+s)

and the choice

f (λ) ∈ C [λ] , A2 = -f (λ) IN , A3 = IN and a (x) = a (x;A+ f (λ) IN )

That is, a (x) may be any annihilating polynomial of A+ f (λ) IN .

Example LetA ∈WN×N be principal submatrix ofM =
(A B
C D

)
∈W(N+s)×(N+s).

Let A be regular and decomposable as

A (λ) = w (λ) J− T (λ) (1.82)

where w (λ) ∈W, J = jN j′N is the matrix with all entries 1 and T = tvvδvw is
a diagonal matrix with entries 0 6= tvv (λ) ∈W. Let

g (λ) =
∑
v

1

tvv (λ)
. (1.83)

One easily verifies that a
(
wT −1J ;wT −1J

)
= 0 for

a
(
x;wT −1J

)
= x2 − g (λ)w (λ)x. (1.84)

Finally, let

L = C
(
wT −1JT −1 + (1− gw) T −1

)
B + (1− gw)D. (1.85)

Then, according to lemma 1, we have

ρ (det (M)) + ρ (1− gw) = ρ (det (A)) + ρ (det (L)) . (1.86)

1.6.4 Further Generalizations

Natural generalizations may employ other properties of determinants in order
to reduce the size of eigenproblems. An example is the well known rule for
equally sized N ×N matrices blocks A, B, C and D. Assuming

AB = BA. (1.87)

we have

det (M) = det

(
A B
C D

)
= det (DA− CB) . (1.88)
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IfM is, for instance, a standard monic linear eigenproblem, then (1.88) trans-
forms it into a monic quadratic eigenproblem.Although, this might be gener-
alized to other pairs of commuting blocks and to k× k block matrices, the as-
sumptions are quite restrictive. In particular, they depend on the off-diagonal
block B.
As a conclusion for this section we consider a generalization which may point
out the main aspects of theorem 4 and lemma 1. We considerM =

(A B
C D

)
of

size (N + s). W.l.o.g. we aim at canceling the right upper off-diagonal block
using properties of A but imposing as little assumptions on the other blocks as
possible. As an ansatz we pre- and postmultiply with conformally partitioned
matrices with non singular diagonal blocks s.t.(

X 0
0 Is

)(
A B
C D

)(
IN Y
0 Z

)
=

(
XA XAY + XBZ
C CY +DZ

)
. (1.89)

Thus, in case of
XAY + XBZ = 0 (1.90)

one has
det (M) det (Z) = det (A) det (CY +DZ) . (1.91)

Although, there is some flexibility in choosing X , Y and Z, it is not entirely
trivial which conditions on A might be useful and there is still a dependency on
B. However, A = q (λ) IN with arbitrary q (λ), for instance, allows for Y = B
and Z = q (λ) Is.

Canceling B In order to get rid of any dependency on B in solving (1.90)
one can set

Z = −h (λ) Is (1.92)

with arbitrary non zero function h, which allows to impose the factorization

Y = RXB (1.93)

and the following equation for h (λ), R and X

XAR = h (λ) IN . (1.94)

Since h (λ) and X have to be regular, AR must not be singular.

Smith Form (1.94) is for example solvable via the Smith form. One can
employ a factorization of X and R as follows

XAR = X1X2AR1R2 = X1SR2 (1.95)

If A is regular, there are unimodular matrices X2 and R1 s.t. S = X2AR1 is
a diagonal matrix s.t. the diagonal element with largest degree, say g (λ), is
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divided by all other diagonal elements, gii. Thus, one may choose h to be a
multiple of g, say

h (λ) = q (λ) g (λ) (1.96)

and X1 and R2 to be diagonal matrices with diagonal entries xii and rii s.t.

xii (λ) gii (λ) rii (λ) = h (λ) . (1.97)

The General Adjoint Technique In order to apply the adjoint technique to
equation (1.94) one may factorize

R = UP. (1.98)

The crucial step is decomposing XAU as

XAU = F − f (λ) IN (1.99)

with arbitrary f (λ) and finally introducing an annihilating polynomial a (x;F)
for F of degree m > 0 s.t. a (F ;F) = 0.
The quadruple (X ,U , f (λ) , a (x)) provides a solution for (1.90) via

Y = U p (x; a)XB and Z = a (f (λ)) Is.

However, it is easy to see that all quadruples (X1,X2, f (λ) , a (x)) with X2X1 =
X are equivalent.
In conclusion, one may find a reduction ofM via a regular principal submatrix
A if one finds a regular matrix X , a shift factor f (λ) and a polynomial a (x)
the coefficient of which are functions in λ s.t. a (XA+ f (λ) IN ) = 0.
Thus, in a sense, the ansatz (1.89) corresponds to lemma 1. It would be
interesting to find other ways to solve (1.90) with or without restrictions on
B. It may also be worth to exploit more complex pre- and postmultipliers in
(1.89), possibly with mild conditions on B, C or D.

1.7 Application

The main advantage of our method is the reduction of eigenproblems w.r.t.
their size. A feasible application is given in the work of Bunimovich and
Webb, who use their reduction method to possibly sharpen spectral bounds for
matrices with coefficients inW [λ]. The initial motivation for us is the reduction
of costs for computing the spectrum of a complex matrix M ∈ C(N+s)×(N+s)

by exploiting a large highly structured principal submatrix A ∈ CN×N . We
call A large if s is small compared to N and highly structured if the degree
m of its minimal polynomial (or any other known annihilating polynomial)
is small, which implies eigenvalues of high (geometric) multiplicity. A rough
quantitative criterion for the feasibility of our method is provided by

κ < (N + s) (1.100)

where
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Definition 3. κ := (m+ 1) s.

In this case, the size of the eigenvalue problem posed by the linearization of the
associated lambda-matrix L, i.e. κ, is smaller than that of the eigenproblem
of M. κ may be used as a general measure of reduction for given s and N
and we will do so in our considerations below. However, κ clearly does not
capture important computational aspects such as numerical stability, sparsity
or hermiticity. For instance, as already pointed out, the linearization of an
hermitian eigenproblems will in general not be hermitian. Which is a great
disadvantage since available algorithms are more numerous, faster and more
reliable for hermitian problems. However, this might be compensated if κ is
small enough.

Costs for Constructing the Associated Lambda-Matrix We aim at an upper
bound for the costs of computing the coefficients Ak of the associated lambda-
matrix L by counting the number of elementary FLoating-point OPerations
(FLOP) without distinction between summation and multiplication, which are
the only operations needed. The matrix-manipulations are considered in the
straight forward way without refering to sophisticated methods such as the
Strassen algorithm or exploitation of sparsity.
The costs for computing Ai+1B given A and AiB are less then 2sN2 FLOPs.
The costs for multiplying C and AiB are less then 2s2N FLOPs. Thus the
costs for computing the m matrices CAiB are less then 2sN (m (N + s)−N).
The costs for a linear combination of D and I are s2 + 2s FLOPs. Since the
costs for multiplying a matrix of size s × s with a constant and adding the
result to another matrix of the same size are 2s2 FLOPs, the additional costs
for computing Ak≤m are 2 (m− k) s2 FLOPs.
Therefore, the costs for computing all coefficients of the associated lambda-
matrix are less then

cost = 2sN (m (N + s)−N) +
m∑
k=0

[(
s2 + 2s

)
+ 2 (m− k) s2

]
= 2s (m+ 1)N2 − 4sN2 + 2s2mN + (m+ 1) s [2 + (m+ 1) s]

= 2κN2 − 4sN2 + 2sκN − 2s2N + κ2 + 2sκ

= 2 (κ− 2s)N2 + 2s (κ− s)N +O
(
κ2
)
. (1.101)

When (1.100) applies, we get cost ≤ O
(
κN2

)
. The costs for solving, for

instance by linearization, the polynomial eigenproblem posed by L is O
(
κ3
)

FLOPs, whereas finding the spectrum of M amounts for O
((
N + s

)3) FLOPs.
Thus, for small κ the costs for constructing L dominate those for solving it
and are less than the costs for solving the original eigenproblem. This curios
effect may be illustrated by the example given above

M =

(
0 b
c′ d

)
, L =

(
d c′b
1 0

)
(1.102)
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Here, the linearization of L can be solved exact by hand. However the con-
struction is linear in N due to the scalar product c′b.
The storage costs for L are obviously of orderms2. We implicitly assumed that
we temporarily keep all matrices AiB while constructing L. This amounts for
additional storage of order msN . Thus, when (1.100) applies, the total storage
costs are of order κN , whereas the storage for M is of order (N + s)2. The
analysis shows that our method is efficient if (1.100) applies.

Cliques and Independent Sets Our method crucially depends on feasible
principal submatrices which are hard to detect for an arbitrary matrix of size
M = (N + s). Even the modest assumption, s = 1, yields M possible can-
didates. However, assuming m = 1 might be very useful for sparse matrices.
According to (1.100) our method efficiently applies if there is a set of more
then 1

2M nodes which are independent and without loops i.e. which induce an
empty principal submatrix. The initial eigenproblem then reduces to a monic
quadratic lambda-matrix the linearization of which has size 2s as shown in our
first example in section 1.3.1. We call such a set a large independent set. Note
that proper subsets of a large independent sets may still be large independent
sets. Although finding a maximum independent set is a hard task and still
bad approximated, even a simple greedy algorithm might be practicle in the
more modest task of finding a large independent set if such sets exist and are
sufficiently large [2], [78], [19].
A similar reasoning applies to cliques in a graph, which are combinatorially
equivalent to independent sets on its complement. However, exploiting them
to find the spectrum of an adjacency matrix easier requires cliques of size more
then 2

3M since here m = 2. Thus, cliques and independent sets are not equiv-
alence w.r.t. their spectral properties. As already discussed in section 1.3.2,
we can circumvented that asymmetry by similarity deflation of the eigenvector
jN of the clique and repartition or, in the case of a regular graph, by just
considering its complement, which both amounts to reducing the degree of the
minimal polynomial.

Bound on Multiplicities According to theorem 2 and 4 and the notation
therein we have the following two relations

σ (M) + ρs (a (λ; A)) = σ (A) + ρ (det (L (λ))) (1.103)
σ (A) + ρs (a (λ; M)) = σ (M) + ρ (det (K (λ))) . (1.104)

We assume that a (λ; A) and a (λ; M) are the minimal polynomials of their
corresponding matrices. Let λ denote an arbitrary eigenvalue of A or M, let
cλ (A) (cλ (M)) denote its exponent in the minimal polynomial of A (M),
which is zero if it is not an eigenvalue, and let dλ (L) and dλ (K) denote its
multiplicity in the set of latent roots of those two lambda-matrices. Then we
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have

mλ (M) + scλ (A) =mλ (A) + dλ (L) ≥ 0 (1.105)
mλ (A) + scλ (M) =mλ (M) + dλ (K) ≥ 0. (1.106)

Adding both equations yields

scλ (A) + scλ (M) = dλ (L) + dλ (K) (1.107)

Since dλ (L) and dλ (K) are nonnegative, we have

mλ (M)−mλ (A) = dλ (L)− scλ (A) ≤ scλ (M) (1.108)
mλ (A)−mλ (M) = dλ (K)− scλ (M) ≤ scλ (A) (1.109)

hence,
|mλ (M)−mλ (A)| ≤ smax (cλ (M) , cλ (A)) . (1.110)

which is a generalization of corollary 1. As an application one can think of an
eigenvalue λ s.t cλ (M) ≤ 1. If A is a principal submatrix which happens to be
hermitian, i.e. cλ (A) ≤ 1, then we have |mλ (M)−mλ (A)| ≤ s. The author
is not aware of the same or better bounds elsewhere.

Shrinking the Degree of the Annihilating Polynomial and Deflation of
Eigenpairs According to (1.100) it is an advantage if m is small. There-
fore, it is desirable to decrease the degree m of a (x; A), the given annihilating
polynomial for A. One way to do so is using σ (A) and ρ (a) to cancel linear
factors of a s.t. no multiplicity of a given root exceeds the corresponding eigen-
value multiplicity. Of course, for diagonizable matrices the spectrum already
determines the minimal polynomial, which is, in a sense, the optimal choice
for a. However, for further reduction we aim at exploiting given eigenpairs of
A to reduce κ = (m+ 1) s.
Let v be a real eigenvector of the real matrix X with eigenvalue λ. In order to
exploit this eigenpair we can employ, for instance, the following Householder
transformation

H = I− 2
(v + β |v| e) (v + β |v| e)′

(v + β |v| e)′ (v + β |v| e)
(1.111)

where β ∈ {−1, 1} is arbitrary and e is the indicator vector for the position
on the diagonal where the deflated eigenvalue will occur, usually the first or
the last one. This generalizes to the complex case (compare section 2.2.1) and
to the case of deflating several eigenpairs at once with minor adjustments. In
fact, it is well known that for a complex square matrix X with eigenvector λ
there is always an invertible transformation Q s.t.

X̂ = Q-1XQ =

 X̃
0
...
0

x · · · x λ

 , σ
(
X̂
)

= σ (X) = σ
(
X̃
)

+ {λ} .
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The most important observation here is that any annihilating polynomial of
X is an annihilating polynomial for X̃ since we applied a similarity transfor-
mation. This implies

degree of minpol
(
x; X̃

)
≤ degree of minpol

(
x; X

)
(1.112)

In the case of X being IN , N > 1 the bound is trivially tight. However, it is
easy to see that equality does not hold, for instance, if λ is an eigenvalue of X
with multiplicity 1. Note that the usual application of a deflation exploits the
smaller size of X̃ compared to X and its partial independence of the lower di-
agonal block because of the upper right zero off-diagonal block. Thus, seeking
for the spectrum of a matrix X, one would usually deflate a given eigenpair
by a similarity transformation to reach a reducible matrix. In contrast, in our
method a similarity transformation on M =

(
A B
C D

)
is potentially harmful, for

it changes the spectrum of its principal submatrices A in an unpredictable
way.
Fortunately, there are cases where we can exploit known eigenpairs via defla-
tion. Let

(
v
w

)
be a vector partitioned conformally with M =

(
A B
C D

)
. We

distinguish three not disjoint cases

(i) v = 0 and
(

0
w

)
is an eigenvector for M to the eigenvalue λ

(ii) v is an eigenvector of A to the eigenvalue λ

(iii) v is an eigenvector of A and
(
v
w

)
is an eigenvector of M.

In the first case there is a deflating similarity transformation which is the
identity on A. Here, s, the size of the associated lambda-matrix L, can be
reduced.

M̂(i) =

(
IN 0
0 Q-1

)(
A B
C D

)(
IN 0
0 Q

)
=



A

x · · · x 0
...

. . .
...

...
x · · · x 0

x · · · x

D̃

0
...

. . .
...

...
x · · · x 0

x · · · x x · · · x λ


(1.113)

Let M̃ be obtained by removing the last row and the last column of M̂(i).
We can apply our method to M̃ to find the spectrum of M except the one
eigenvalue λ which is already known. Since we removed a column of BQ and
of D̂ = Q-1DQ and a row of Q-1C and of D̂ but still can utilize the same
annihilating polynomial of A, we decreased κ by (m+ 1)

In the second case, (ii), we can employ a block diagonal similarity transforma-
tion s.t. the block corresponding to A is a deflating similarity transformation
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on A.

M̂(ii) =

(
Q-1 0
0 T-1

)(
A B
C D

)(
Q 0
0 T

)
=



Ã

0 x · · · x
...

...
. . .

...
0 x · · · x

x · · · x λ x · · · x

x · · · x x

D̂
...

. . .
...

...
x · · · x x


(1.114)

Here, the matrix T is an arbitrary invertible transformation. If we repartition
M̂(ii) s.t. Ã becomes the upper left diagonal block, then we have incremented
s. However, under certain conditions a linear factor corresponding to the root
λ can be canceled, which means that we can decrement the degree m of the
annihilating polynomial. A sufficient condition for this to be allowed is given
as an easy corollary.

Corollary 2. Let A be a complex square matrix of size N . Let a (x; A) be
an annihilating polynomial for A. Let λ be an eigenvalue of A. Let cλ (ρ (a))
denote the multiplicity of λ as a root of a (x) and let mλ (A) denote the multi-
plicity of λ as an eigenvalue of A. Finally, let Q be a similarity transformation
s.t.

Â = Q-1AQ =

 Ã
0
...
0

x · · · x λ


where Ã is square of size (N − 1). If

cλ (ρ (a)) ≥ mλ (A)

then there is a divisor ã (x) of the polynomial a (x) such that

a (x) = ã (x) (x− λ)

and ã (x) is an annihilating polynomial for Ã.

Incrementing s by repartition of M̂(ii) and incrementing m by canceling a
factor in a decreases κ if s ≥ m. In the special case when

(
v
0

)
happens to be

an eigenvector of M, the transformation in 1.114 yields

M̂(ii)* =

(
Q-1 0
0 Is

)(
A B
C D

)(
Q 0
0 Is

)
=



Ã

0 x · · · x
...

...
. . .

...
0 x · · · x

x · · · x λ x · · · x

x · · · x 0

D
...

. . .
...

...
x · · · x 0


(1.115)

Here, one may just remove the row and column intersecting at the position of
the deflated eigenvalue λ without increasing s.

35



Chapter 1 Perturbation of Matrices by Adding or Removing Nodes

We now consider (iii). An arbitrary similarity transformation on M in order
to deflate the eigenvalue possibly destroys the spectrum of A. An exception to
this was given a few lines above. As a precaution we can, of course, treat (iii) as
a special case of (ii). As an alternative we can think of a Wielandt deflation [67],
which allows for manipulating the eigenvalues to the given eigenvectors. Note
that this method may have unpredictable effects on the minimal polynomial
if not handled with care. We therefore treat only a special case where M is
hermitian.
Let M be hermitian. Let λ be a simple eigenvalue, i.e. with multiplicity 1, of
A to the eigenvector v. and let µ be the eigenvalue of M to the eigenvector(
v
w

)
. Let

AW = A + γ0
1

|v|
vv′ with γ0

(
γ
)

= γ
|v|

|v|+ |w|
(1.116)

be the right upper block of the matrix

MW =

(
A B
C D

)
+ γ

1

|v|+ |w|

(
vv′ vw′

wv′ ww′

)
(1.117)

Then

σ (AW ) + {λ} = σ (A) +
{(
λ+ γ0

)}
(1.118)

σ (MW ) + {µ} = σ (M) +
{(
µ+ γ

)}
. (1.119)

This is shown as follows. Let V be a unitary eigenvector matrix for A with
first column being v. By unitarity v is orthogonal to all columns of V except
the first one. Therefore, all other columns of V are still eigenvectors of AW

to the same eigenvalue. One verifies using (1.116) that v is an eigenvector of
AW to the eigenvalue λ + γ0. A similar reasoning applies for M. Since AW

has an unitary eigenvector matrix, it is hermitian.
Thus, via the parameter γ we may shift λ and µ simultaneously without ef-
fecting the rest of the spectrum of either A or M. Assume that N ≥ 2 and let
λ′ be any eigenvalue of AW s.t. λ′ 6= λ, which exists since λ is simple. If we
choose γ s.t. λ + γ0 (γ) = λ′ then the number of distinct eigenvalues of AW

is less than that of A. Since for hermitian matrices the number of distinct
eigenvalues is the degree of the minimal polynomial, m is decremented.
Since did not change matrix sizes s is preserved. Thus, by Wielandt deflation
we can decrease κ by m.
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Equitable Partitions

This chapter deals with equitable partitions. We solve the practical problem of
removing the eigenvalues of the front divisor from the spectrum of a complex
matrix. Special cases like adjacency matrices of graphs can be derived without
difficulties. The eigenproblem is divided into two smaller eigenproblems by a
unitary block diagonal Householder transformation. The author is not aware
of this method elsewhere. The costs are quadratic in matrix size with small
constants. The back transformation of eigenvectors is easy. A procedure to
properly utilize several equitable partitions which are ordered by refinement is
discussed. Generalizations of equitable partitions and the necessary extensions
of the method are considered.

2.1 Introduction

Let A ∈ CN×N be a complex square matrix. Let Π = (c1, . . . , ck) be a simulta-
neous (disjoint and exhaustive) partition of its rows and columns, respectively,
into k cells. When A is seen as the weighted adjacency matrix of a graph, Π is
a partition of its node set. Let ni be the size of the i-th cell. Let Aij ∈ Cni×nj

be the matrix block in A induced by the i-th cell of rows and the j-th cell of
columns. We call A row equitable (or often just equitable) w.r.t. Π if

∀ 1 ≤ i, j ≤ k ∃ θij ∈ C s.t. Aij jni = θij jnj (2.1)

where jn = {1}n. In that case we will also speak of Π as an (row)equitable
partition of A. The discrete partition, which consists of N distinct, non empty
cells of size 1, is always equitable. We call A column equitable (w.r.t. Π) if A′

is row equitable (w.r.t. Π). It is easy to see that a row equitable hermitian
matrix is always column equitable. The matrix Θ = (θij) is known as the
quotient graph or the front divisor of A w.r.t. Π.
Equitable partitions are well known in graph theory, and the concept is studied
under several names e.g. front divisor [21], exact coloration [10], graph fibra-
tion [9], quasi-block-stochastic matrices [51], 1-dimensional Weisfeiler-Lehman
stabilizer [16]. See also [71], [84] and others. In applications A is often re-
stricted to be the (binary) adjacency matrix of a graph. In this case the
constant θij has the interpretation of denoting the number of neighbours in
cell j for any node in cell i. It is convenient to define an indicator matrix
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B = (bvi) ∈ {0, 1}N×k of a partition by

bvi =

{
1 , if node v is in cell i
0 , else . (2.2)

For instance the indiscrete (or singleton) partition, which has only one cell,
yields B = jN . The indicator matrix of the discrete partition (or partition of
singletons) is a permutation matrix. Using the indicator matrix we can express
(2.1) by

AB = BΘ. (2.3)

The most famous property of equitable partitions is that the characteristic
polynomial of a matrix is divided by the characteristic polynomial of its front
divisor i.e.

σ (Θ) ⊂ σ (A) .

Moreover, a simple premultiplication by B immediately lifts any (’column’ or
’right’) eigenvector of Θ to an eigenvector of A. Thus, given an equitable par-
tition a subset of the eigenpairs of A can be obtained by solving the (smaller)
eigenproblem of Θ. How one can use equitable partitions to actually reduce the
eigenproblem for the adjacency matrix of a graph completely to the eigenprob-
lem for two smaller matrices is shown for instance in [32]. The generalization
to complex matrices is straightforward. Using the normalized indicator matrix
B̃ = B

(
B′B

)− 1
2 there is always a matrix C ∈ CN×(N−k) s.t. Q =

(
B̃|C

)
is unitary. One shows that for B indicating an equitable partition of A the
matrix

Ã = Q−1AQ =

(
E G
0 F

)
gets reducible with E = B̃′ΘB̃ being similar to the front divisor and indepen-
dent of C. Since we applied a similarity transformation, the spectrum of A is
preserved. We will refer to F, which depends on the particular choice of C, as
a factor. One shows that all possible factors are similar and that

σ (A) = σ (E) + σ (F) .

Although it is sufficient to ensure that Q is invertible, the stronger requirement
of unitarity has numerical advantages and preserves hermiticity if present.
Due to the involved matrix-matrix-multiplication this approach yields a worst
case complexity which is cubic in N when today’s methods are applied. At
first glance this is acceptable for finding an equitable partition has a worst
case complexity of O

(
N3
)
. However, in the binary case, A ∈ {0, 1}N×N , the

available software, for instance nauty [60], is pretty fast on average. There
might also be some heuristics depending on the empirical background of a
given matrix. Furthermore, the complexity to prove (or disprove) that a given
partition is equitable requires only O (m) floating point operations where m
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is the number of non zero matrix entries. Therefore, it would be desirable to
exploit an equitable partition to reduce a matrix with computational costs that
are less then cubic in N .
There are at least two ways in speeding up the matrix-multiplication. One
may apply intriguing methods for fast matrix-multiplication e.g. Strassens al-
gorithm, or one may consider multiplications with special matrices e.g. Fourier
matrices, O

(
N2 logN

)
, diagonal matrices, O

(
N2
)
, or matrices of low rank r,

O
(
rN2

)
. Using block diagonal matrices with Householder matrices as diag-

onal blocks we follow the second approach reaching a complexity of O
(
N2
)
.

In fact, considering our slightly generalized notion of equitable partition ap-
plicable to complex valued rectangular matrices of size N1 × N2 we reach a
complexity of O (N1N2).
We sketch our main idea in the example case of the usual equitable parti-
tion (2.1). Given an equitable partition we find Householder matrices Hi s.t.

Hi jni ∝ eni = (1, 0, . . . , 0)′ and Hi eni ∝ jni .

Applying the Hi to the matrix blocks Aij yields[
HiAijH

′
j

]
enj ∝ eni .

Thus, after transformation each block
[
HiAijH

′
j

]
has block triangular form

with an upper left subblock of size 1. This implies that A is transformed
into an implicitly block triangular matrix. In the hermitian case we obtain
an implicitly block diagonal matrix with hermitian diagonal blocks. Implicitly
here means up to a known permutation.
The chapter is organized as follows. First, we recall some properties of unitary
elementary matrices, which are generalizations of the well known Householder
transformation. Then, as an outline for the main ideas behind our method we
consider three well established techniques for numerical computations all of
them using Householder matrices: the deflation of an eigenpair, the deflation
of a singular value and the QR decomposition of a rectangular matrix. Then
we show how to efficiently block triangularize a matrix exploiting (2.1). We
then give an example and some further remarks. After that we discuss a
generalization of equitable partitions which is three-fold

• we replace the jni in (2.1) by a vector v (i) ∈ Cni associated to the i-th
cell

• we may allow a violation of (2.1) for some pairs (i, j).

• we consider different partitions for the column and row set of A ulti-
mately enabling us to treat rectangular matrices.

We end the chapter with partitions which have a perturbed equitability and
some remarks regarding the search for equitable partitions.
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2.2 Extended Householder Transformations

Applying a diagonal matrix or a rank-1 matrix to a vector both yields a com-
plexity of O (N). Hence the same complexity pertains to matrices which are
finite linear combinations of diagonal and rank-1 matrices and particularly for
the class of elementary matrices [44], which are rank-1 updates of the identity.
Another class of matrices which are important for applications are unitary
matrices because their inverse is available without floating point operations
and all their eigenvalues have norm 1, which ensures numerical stability. The
intersection of both classes, the unitary elementary matrices, combine those
properties making them a powerful tool in numerical computation. Those ma-
trices are sometimes called Householder matrices although this term may also
denote a subclass of it.
This section aims at the transformation given by definitions (7) and (6) as one
example of established complex generalizations of real Householder matrices
[43], [54] and introduces extended Householder matrices as a block diagonal
version of it. These two transformations will be the main tool of our method
and used throughout the rest of the chapter.

2.2.1 Unitary Elementary Matrices

An complex elementary matrix has the form

Definition 4. E (u,v, σ) = IN − σuv′ ∈ CN×N .

Unitary elementary matrices are necessarily [73] of the form

Definition 5. U (u, γ) = E
(
u,u, 2 (u′u)+

1+iγ

)
, γ ∈ R,

where |u| =
√

u′u and c+ =

{
c−1 , c 6= 0
0 , c = 0

for c ∈ C.

Using the definition, it is easy to verify that

U′ (u, γ) = U (u,−γ) and U (cu, γ) = U (u, γ) for 0 6= c ∈ C. (2.4)

We seek an unitary elementary matrix mapping x 6= 0 in the direction of y 6= 0
i.e.

U (u, γ) x + αy = 0 with 0 6= α ∈ C, (2.5)

which implies that u is a linear combination of x and y. Namely,

x + αy = 2
(u′u)+

1 + iγ

(
u′x
)
u. (2.6)

Since according to (2.4) scaling of u does not change U (u, γ), we are free to
choose u = x + αy, which yields

1 + iγ = 2
(
u′u
)+

u′x. (2.7)
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Using the property of being unitary in (2.5) we find

|x| = |α| |y| , (2.8)

thus, |x| and |y| determine the norm of α and we have

γ = Im
(
αy′x

) (
x′x + Re

(
αy′x

))+
. (2.9)

Using the abbreviation β = α
|α| we obtain

U
(
x + β

|x|
|y|

y,−Im
(
βx′y

) (
|x| |y|+ Re

(
βx′y

))+)
x + β

|x|
|y|

y = 0. (2.10)

Fortunately, we only have to consider the special case y = eN = (1, 0, . . . , 0)′.
Abbreviating

H (x, β) = U

(
x + β |x| eN ,−Im

(
β x1

)(
|x|+ Re

(
β x1

))+
)
, (2.11)

we observe the properties

H (x, β) x = −β |x| eN , H′ (x) eN = − β̄

|x|
x. (2.12)

Although its norm is determined to be 1, the particular choice of β is arbitrary
so far. We may choose

Definition 6. β (x) =

{
exp

(
2πi arg

(
x1
))

, x1 6= 0
1 , x1 = 0

, x ∈ CN ,

which ensures selfadjointness of H (x, β) because then Im
(
β x1

)
= 0 and thus

γ = 0 in (2.11). It also supports numerical stability since it maximizes the
norm of x + β |x| eN in (2.11). We will henceforth use the matrix

Definition 7.

H (x) = H (x, β (x)) = I− 2
(x + β |x| eN ) (x + β |x| eN )′

(x + β |x| eN )′ (x + β |x| eN )
.

This is equivalent to

H (x) = I− |x|
|x|+ |x1|

(
x

|x|
+ βeN

)(
x

|x|
+ βeN

)′
, β = β (x) . (2.13)

Using the definition one easily shows that H (x) is independent of a scaling of
its argument x,

H (µx) = H (x) , µ 6= 0. (2.14)
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It is a crucial observation that H (x) does in general not ’commute’ with a
permutation matrix P acting on the entries of x

H (Px) 6= PH (x) P′ in general. (2.15)

However, equality does hold in (2.15) when the first entry is fixed. In particular,
H (jn) is even independent of any permutation of its argument.
The matrix H (x) provides a numerical stable transformation since it is unitary,
and it is easy to apply and most easily inverted since it is elementary and
selfadjoint.

2.2.2 Extended Householder Matrices

We introduce elementary block diagonal matrices which are of the form

E (u,v,Π, σ) = diag

(
E
(
u
(
1
)
,v
(
1
)
, σ1

)
, . . . ,E

(
u
(
k
)
,v
(
k
)
, σk

))
(2.16)

where each diagonal block is an elementary matrix. The vectors u and v are
of the same length N . The subvectors u (i) (v (i)) are induced by the i-th cell
of the labeled partition Π = (c1, . . . , ck) of the entries of u (v). We will only
use the special case

Definition 8. H (x,Π) = diag

(
H
(
x
(
1
))
, . . . ,H

(
x
(
k
)))

and refer to it with extended Householder matrix. The labeling of Π already de-
termines the entries of x (i). To avoid ambiguity and since the matrix H

(
x
(
i
))

crucially depends on the first entry of x (i) we explicitly specify that the se-
quence of the entries of x (i) already is such that the permutation ΦΠ of def-
inition 9 below is the identity, which implies that the entries of x are ordered
s.t. Π entails an explicit block structure on x. Thus, x (i) is simply the i-th
vector block of ΦΠ (x).
Extended Householder matrices should not be confused with block Householder
transformations, which are of the form IN−XY′ with X,Y ∈ CN×k or variants
of that and are a compact way to describe products of Householder matrices
[8], [23]. They are used to replace matrix-vector by matrix-matrix multipli-
cations to save communications on memory distributed parallel computers.
Actually, extended Householder matrices can be described as a special case of
that. When x is a vector canonically partitioned by Π with indicator matrix
B, form x̃ by

x̃ (i) = x (i) + β (x (i)) |x (i)| eni .

Set Z = diag (x̃) B and X =
√

2 Z (Z′Z)−
1
2 . Then

H (x,Π) = I−XX′.
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However, describing H (x,Π) that way, i.e. ignoring its special structure, is
not an advantage.
Since multiplying an elementary matrix of size N to a vector of length N has
complexity O (N), the complexity for multiplying an extended Householder
matrix to a vector is also linear in its size, hence the complexity of multiplying
a rectangular matrix of size N1 ×N2 from the left and from the right each by
an extended Householder matrix of appropriate size is of order O (N1N2).

2.3 Three Well Known Techniques Using Householder Matrices

2.3.1 Deflating an Eigenpair

A scalar λ and a vector v ∈ CN with |v| 6= 0 form an right-eigenpair of the
square matrix A ∈ CN×N if and only if

Av = vλ. (2.17)

Given an eigenvector the corresponding eigenvalue is uniquely determined.
Eigenvectors are not unique, even if the eigenspace associated to λ is 1-dimensional
and even if they are normalized due to an arbitrary phase factor which is still
present as an arbitrary sign flip in the real case. The transformation

Ã = H (v) AH′ (v) (2.18)

yields a block triangularization of A because

ÃeN =
−β̄ (v)

|v|
H (v) Av =

−β̄ (v)

|v|
λH (v) v = λeN ,

which implies

Ã =

(
λ
0

X

)
with X ∈ CN×(N−1). (2.19)

2.3.2 Deflating a Singular Value

A scalar λ is called a singular value of the matrix A ∈ CN1×N2 if and only if
there exist vectors u1 ∈ CN1 , u2 ∈ CN2 s.t.

|u1|Au2 = u1λ |u2| , |u2|A′u1 = u2λ |u1| (2.20)

with 0 6= |u1| , |u2| and 0 ≤ λ ∈ R. The normalization of u1 and u2 excludes
the null vector. The norm of λ is already determined by (2.20). Choosing
the phase of λ to be zero is a convenient restriction and ultimately yields the
uniqueness of the multi set of singular values for a given matrix. If u1 and
u2 are normed to unit length, they are called a left and right singular vector,
respectively. Singular vectors are not unique, since there is at least an arbitrary
phase vector. The transformation

Ã = H (u1) AH′ (u2) (2.21)
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yields a block diagonalization of A because ÃeN2 = eN1λ and Ã′eN1 = eN2λ i.e.

Ã =

(
λ 0
0 X

)
with X ∈ C(N1−1)×(N2−1). (2.22)

2.3.3 QR-Decomposition

Suppose we have a pair of vectors, u1 and u2, at hand which may not be
singular vectors i.e. may not obey (2.20), but fulfill the weaker condition

|u1|Au2 = u1λ |u2| and u1,u2 6= 0. (2.23)

for some λ ∈ C. For later purposes it will be inconvenient to fix the phase
of λ. Note that (2.17) arises out of (2.23) for u1 = u2 = v. Using the same
transformations as above we may not obtain block diagonal form, but since

H (u1) AH′ (u2) eN2 = eN1λ (2.24)

block triangular form of Ã is ensured. (2.24) being a consequence of (2.23) is
essential to our approach. It is easy to find a pair of vectors obeying (2.23).
One may for instance set u1 to be a multiple of Au2 with arbitrarily chosen
u2 that is not the null vector. Moreover, for the choice u2 = eN2 the vector
u1 is given by a multiple of the first column of A. This is the basic idea of
the common Householder approach to the QR-decomposition, which aims at a
factorization of A into a product of an unitary and an upper triangular matrix.

2.4 Block Triangularizing by Equitable Partitions

2.4.1 Suitable Indexing

Let Π0 = (c1, . . . , ck) be a simultaneous partition of the row and the column
set of the complex N ×N matrix A0 into k < N cells. If Π0 is an unlabeled
equitable partition we may choose a labeling arbitrarily. Let A0,ij be the
matrix subblock of A0 induced by the i-th row and the j-th column cell. If we
choose a permutation Φ of the node set of A0 s.t.

i < j and v ∈ ci and w ∈ cj implies Φ (v) < Φ (w) ,

then the implicit block structure of A0 becomes explicit. We call Φ′A0Φ
where Φ is the permutation matrix representing Φ suitably indexed. To avoid
ambiguity we may define a standard permutation ΦΠ0 .

Definition 9. Let Π0 = (c1, . . . , ck) be a labeled partition of [1, . . . , N ]. The
permutation ΦΠ0 : [1, . . . , N ]→ [1, . . . , N ] is defined by
∀ i, j ∈ [1, . . . , k] ∀ v, w ∈ [1, . . . , N ]

(i) i < j and v ∈ ci and w ∈ cj implies ΦΠ0 (v) < ΦΠ0 (w)
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(ii) v < w and v, w ∈ ci implies ΦΠ0 (v) < ΦΠ0 (w).

Let ΦΠ0 be the matrix form of ΦΠ0 . Definition 9 is chosen s.t. ΦΠ0 = IN
if and only if Π0 entails an explicit block structure with accordingly labeled
blocks on A0. We will denote by Π the partition of

A = Φ′Π0
A0ΦΠ0

(2.25)

which corresponds to the partition Π0 of A0. Since permutations are unitary
transformations,

σ (A) = σ (A0) . (2.26)

Therefore, we can restrict our discussion to suitably indexed matrices w.l.o.g.

2.4.2 Block Triangularization

Let Aij be the matrix subblock of the suitably indexed matrix A induced by
the i-th row and the j-th column cell of the (labeled) equitable partition Π
with indicator matrix B. Let ni = |ci| and

N = diag (n1, . . . , nk) = niδij = B′B. (2.27)

We have with jn = {1}n

∀ 1 ≤ i, j ≤ k Aijjnj = jniθij . (2.28)

Note that (2.28) is a variant of (2.23). When we apply the same partition Π
conformably on the rows and columns of

Ã = H (jN ,Π) AH (jN ,Π) , (2.29)

then each of its blocks has the form

Ãij = H (jni) AijH
(
jnj

)
. (2.30)

Using relations (2.12) and condition (2.28) we obtain

Ãijenj = eniθij

√
ni√
nj
, (2.31)

which shows that each block is block triangular s.t. the upper left diagonal
subblock is always a scalar. Again note the similarity to (2.24). We interpret
E = N

1
2 ΘN- 1

2 ∈ Ck×k, i.e. eij = θij
√
ni√
nj
, as a normalized version of the front

divisor Θ = (θij)
The special structure of each block of Ã allows for an explicit block triangu-
larization. There are readily available permutations Ω s.t.

Ω′ÃΩ =

(
E G
0 F

)
(2.32)

where we call F a factor. Those permutations are any bijective extension to
[1, . . . , N ]→ [1, . . . , N ] of the function Ω0 that we define via its inverse
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Definition 10.

Ω−1
0 : [1, . . . , k]→ dom (Ω0) ⊂ [1, . . . , N ] ,

Ω−1
0

(
i
)

= 1 +
i−1∑
j=1

nj .

Ω0 just maps the first nodes of the cells canonically into the first k positions
of all nodes. To avoid ambiguity we explicitly define a standard extension of
Ω0.

Definition 11. Let Π = (c1, . . . , ck) be a labeled partition of the ordered set
[1, . . . , N ] s.t. i < j and v ∈ ci and w ∈ cj implies v < w. Let ni = |ci|. The
permutation ΩΠ : [1, . . . , N ]→ [1, . . . , N ] is defined by

ΩΠ

(
mi +

i−1∑
j=1

nj
)

=


i , mi = 1

k − i+mi +
i−1∑
j=1

nj , mi = 2, . . . , ni
, i = 1, . . . , k.

We summarize this section in the following theorem

Theorem 6. Let Π = (c1, . . . , ck) be a labeled equitable partition of the square
matrix A of size N . Let A be suitably indexed according to Π. Let B be the
indicator matrix and let Θ be the corresponding front divisor. Then

AΠ = Ω′ΠH (jN ,Π) AH (jN ,Π) ΩΠ =

(
E G
0 F

)
is block triangular with

E =
(
B′B

) 1
2 Θ

(
B′B

)- 1
2

and
σ (A) = σ (E) + σ (F) .

Proof. The theorem follows from the construction of H (jN ,Π) and ΩΠ and
the observation that H (jN ,Π) ΩΠ is unitary.

Since
A′Π = Ω′ΠH (jN ,Π) A′H (jN ,Π) ΩΠ, (2.33)

partitions which are simultaneously row and column equitable lead to a block
diagonalization. Furthermore, since A′ = A implies A′Π = AΠ, equitable her-
mitian matrices are diagonalized with diagonal blocks being again hermitian.
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2.4.3 Recovery of Eigenvectors

Let Π0 be an equitable partition of A0. Let vΠ be an eigenvector of the reduced
problem AΠ to the eigenvalue λ i.e.

AΠvΠ = Ω′ΠH (jN ,Π)′AH (jN ,Π) ΩΠ = λvΠ. (2.34)

Then
v = H (jN ,Π) ΩΠvΠ (2.35)

and
v0 = ΦΠ0v (2.36)

are eigenvectors of A and A0, respectively, to the same eigenvalue λ, which
can be seen by premultiplication of H (jN ,Π) ΩΠ to (2.34) and using (2.25).
We put the main idea in the following theorem, which is easily proved the same
way.

Theorem 7. Let A, Π and AΠ be the same as in theorem 6. Let the columns
of VΠ be right-eigenvectors of AΠ. Then the columns of

V = H (jN ,Π) ΩΠVΠ (2.37)

are eigenvectors of A to the same eigenvalues, respectively.

2.4.4 Example

One verifies that

A0 =



1 2 3 3 3 2
2 4 3 1 2 1
3 3 1 4 1 1
3 1 4 0 2 3
3 2 1 2 3 2
2 1 1 3 2 4


is row equitable w.r.t. Π0 = (1|2, 6|3, 4, 5). Using the permutation

P0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

 ,

we can transform it into the suitably labeled form

A = P′0A0P0 =



1 2 2 3 3 3
2 4 1 1 2 3
2 1 4 3 2 1
3 1 3 0 2 4
3 2 2 2 3 1
3 3 1 4 1 1

 ,
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which is row equitable w.r.t. Π = (1|2, 3|4, 5, 6) with front divisor

Θ =

 1 4 9
2 5 6
3 4 6

 .

One can use
H1 = H (j1) = −1,

H2 = H (j2) = − 1√
2

(
1 1
1 −1

)
,

H3 = H (j3) = − 1√
3

 1 1 1

1 1+
√

3
−2

1−
√

3
−2

1 1−
√

3
−2

1+
√

3
−2


and H (j6,Π) = diag (H1,H2,H3) to transform A s.t.

Ã = H (j6,Π) AH (j6,Π) =



1 4√
2

0 9√
3

0 0

4√
2

5 0 6
√

2√
3

0 0

0 0 3 0 -3+
√

3 -3-
√

3
9√
3

6
√

2√
3

0 6 0 0

0 0 -3+
√

3 0
√

3-1 -6
0 0 -3-

√
3 0 -6 -

√
3-1


.

Using the permutation P̃ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 we obtain the matrix

AΠ = P̃′ÃP̃ =



1 4√
2

9√
3

0 0 0

4√
2

5 6
√

2√
3

0 0 0

9√
3

6
√

2√
3

6 0 0 0

0 0 0 3 -3+
√

3 -3-
√

3

0 0 0 -3+
√

3
√

3-1 -6
0 0 0 -3-

√
3 -6 -

√
3-1


,

which is reducible. Since A is hermitian, the partition Π is row and column
equitable and we actually obtain a block diagonal form. Note that both blocks
are hermitian although the front divisor Θ is not hermitian. One verifies that

E =


1 4√

2
9√
3

4√
2

5 6
√

2√
3

9√
3

6
√

2√
3

6

 = diag (1, 2, 3)
1
2 Θ diag (1, 2, 3)−

1
2 .
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Let F denote the lower diagonal block of AΠ. Let VE and VF be the eigen-
vector matrices of E and F, respectively. Then one verifies that

V = P′0H (j6,Π) P̃′
(

VE 0
0 VF

)
is an eigenvector matrix of A. Note that the transformation is not difficult
and that V needs more storage than VE and VF together. Note that P0 (via
definition 9), H and P (via definition 11) are determined by Π0 which can be
stored as a vector. Due to the small size the blocks of H (j6,Π) were given
explicitly as dense matrices. For larger problems one would prefer the usual
sparse form as a rank-1-update of the identity.

2.4.5 Exploiting an Ordered Set of Equitable Partitions

Let Π and Π′ be two partitions of the same set S. We call Π′ a refinement of
Π if any two elements v and w which are not in the same cell of Π must not
be in the same cell of Π′. Thus, the refined Π can be interpreted as a partition
of the cells of Π′. The refinement relation induces a partial ordering on the set
of all partitions of S. In this subsection we consider a subset of all equitable
partitions of the node set of a matrix s.t. the refinement relation induces a
total order. We do not consider the exploitation of equitable partitions which
are not related by refinement.
Let {Πα}α=1,...,A be an ordered set of equitable partitions of A with front
divisors Θα s.t. Πα is a refinement of Πα−1 for 2 ≤ α ≤ A. Let Bα be the
indicator matrices for the partition Πα of the elements of the set. Let Πγ

α

be the partition induced by Πα on the cells of Πγ with α > γ. Let Bγ
α be

the corresponding indicator matrix. Let B0
α = Bα and Bα

α = I. From the
properties of indicator matrices and those of refinements it is easy to see that
the following two rules apply where juxtaposition is considered as to stand for
the usual matrix product

Bγ
α = Bγ

γ+1B
γ+1
γ+2 . . .B

α−1
α , α ≥ γ (2.38)

and simply
B0
α = B0

γB
γ
α , α ≥ γ. (2.39)

Using ABα = BαΘα we observe

AB0
α = AB0

γB
γ
α =B0

γB
γ
αΘα (2.40)

=B0
γΘγB

γ
α (2.41)

The equality of (2.40) and (2.41) gives an overdetermined system of equations.
However, since B0

γ is an indicator matrix there are just some repeated lines
and we can deduce

ΘγB
γ
α = Bγ

αΘα. (2.42)
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Thus, Θα is a front divisor of Θγ , which is a front divisor of A. We there-
fore have a kind of a chain of front divisors which induces a chain of spectra
inclusions

σ (A) ⊂ σ (Θγ) ⊂ σ (Θα) , γ < α. (2.43)

It is obviously desirable to exploit such chains for block triangularization. We
consider two ways to do that. The first one operates on the chain of the unnor-
malized front divisors. Although this is maybe the more intuitive approach, we
recommend the second one, which operates on the normalized front divisors
and has numerical advantages.
Suppose we apply our block triangularization method using Π1. As shown
above this results in a matrix of the following form where N1 = B′1B1

Ã =

(
E1 G1

0 F1

)
, E1 = N

1
2

1 Θ1N
− 1

2
1 .

However, at this point we seem to stuck, for in general the matrix blocks of
E1 induced by the indicator matrix B1

2 do not have constant row sum.

Proceeding On Theta We may consider replacing E1 by Θ1, which can be
done by a similarity transformation utilizing N1(

N
− 1

2
1 0
0 I

)(
E1 G1

0 F1

)(
N

1
2

1 0
0 I

)
=

(
Θ1 N

− 1
2

1 G1

0 F1

)
.

Although this seems to be a clever solution, there are drawbacks. Suppose,
for a moment, A is hermitian. Applying our method we will always obtain
a normalized hermitian front divisor and a hermitian factor. But proceeding
on the unnormalized front divisor the next transformation will in general not
yield hermitian blocks. It might even introduce off-diagonal blocks. We give a
short example for this undesired effect. The following hermitian matrix 4 1 1

1 2 3
1 3 2

 (2.44)

has equitable partitions Π1 = (1|2, 3) and Π2 = (1, 2, 3) and we have Π1
2 = (1|2)

Using H1 = H (j1) and H2 = H (j2), which are given explicitly in the example
above, we obtain(

H1 0
0 H2

) 4 1 1
1 2 3
1 3 2

( H1 0
0 H2

)
=

 4
√

2 0√
2 5 0

0 0 -1

 (2.45)

We may utilize N1 =
(

1 0
0 2

)
to get(

N1 0
0 1

) 1
2

 4
√

2 0√
2 5 0

0 0 -1

( N1 0
0 1

)- 1
2

=

 4 2 0
1 5 0
0 0 -1

 (2.46)
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When we proceed on the unnormalized front divisor
(

4 2
1 5

)
we obtain

(
H2 0
0 1

) 4 2 0
1 5 0
0 0 −1

( H2 0
0 1

)
=

 6 -1 0
0 3 0
0 0 -1

 (2.47)

Of course, the initial matrix is actually diagonizable, but that is not mirrored in
the reduced form, due to the transformation in (2.46) being not hermitian. This
is clearly undesirable if one thinks of larger matrices and further refinements.

The Alternative Our proposed alternative approach allows for the applica-
tion of a hermitian transformation at each step. It is based on a simple obser-
vation. Let Θ be a front divisor via the partition Π. Let N be the diagonal
matrix with diagonal entries the size of the cells of Π and let E = N

1
2 ΘN- 1

2

be the normalized front divisor. Let Π′ be a an equitable partition of Θ, which
is assumed to be suitably labeled. Introduce d = N

1
2 j and let d (i) denote the

i-th block of d according to partition Π′. Then

Θijjnj = jniλij ⇔ Eijd (j) = d (i)λij (2.48)

where the blocks are induced by the cells of Π′. Recall definition 7. We have

H (d (j)) EijH (d (j)) enj = λij

√
ni√
nj

eni . (2.49)

Thus, we can obtain the normalized front divisor for Θ by working only on its
own normalized version E. Moreover, we have

σ (H (d,Π) E H (d,Π)) = σ (H (jN ,Π) Θ H (jN ,Π)) . (2.50)

This enables us to compute the normalized front divisors successively by uni-
tary transformations.
In our example we should therefore proceed from (2.45) with the computation

of d1 = N
1
2

1 j =
( 1√

2

)
and then use H (d1) = −1√

3

(
1
√

2√
2 -1

)
to obtain

(
H (d1) 0

0 1

) 4
√

2 0√
2 5 0

0 0 -1

( H (d1) 0
0 1

)
=

 6 0 0
0 3 0
0 0 -1

 . (2.51)

In a sense, the transformation in (2.51) combines the transformations in (2.46)
and (2.47) in a way that avoids loss of unitarity.
We briefly complete our notation. By Eγ

α we denote the normalization of Θα

seen as a front divisor of Θγ . However, we are mostly interested in Eα = E0
α,

which is the normalization of Θα seen as a front divisor of A. As declared
above we recommend the successive reduction that operates on the normalized
front divisors, which allows for an entirely unitary transformation. Considering
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that, we refer with Fγ
α to the factor which arises from the one-step-reduction

of Eγ by Πγ
α.

In each step of the successive reduction we subdivide the current upper left
diagonal block into a 2×2 block matrix with zero lower left block. Considering
the development of the block diagonal we obtain the following sequence starting
with A.

(A) , (E1,F1) ,
(
E2,F

1
2,F1

)
,
(
E3,F

2
3,F

1
2,F1

)
, . . . , (EA,F

A-1
A , . . . ,F1) .

Since the used transformations are unitary we have

σ (A) = σ (Eα) +
α∑
γ=1

σ
(
F
γ-1
γ

)
∀α, 1 ≤ α ≤ A.

2.4.6 Discussion

Searching for a triangular form is a standard technique in matrix computations
since such a form usually corresponds to a (partial) decoupling of subsystems
which allows for parallelization and reduces error caused by interference. A
possible approach uses two steps. First, one searches for suitable permuta-
tions to block triangularize a (sparse) matrix, [74] or [62], which is finding the
weakly connected components of the directed graph underlying the structure
of non zero elements. Second, one computes a complete triangularization for
each diagonal block by applying suitable transformations, as for example in the
QR-decomposition or the Schur decomposition. Our approach can be seen as
an intermediate step which exploits some algebraic rather then combinatorial
structure of the matrix. We utilize a cheap transformation instead of a permu-
tation to block triangularize a row equitable matrix yielding the advantage of
being applicable to non sparse matrices. The used transformations are numer-
ically stable, easily reversed and computationally cheap as will be seen below.
Note that although complex matrices can be processed, all computations are
real in the case of real matrices.

Computational Costs of the Transformation The costs for forming the
extended Householder matrix are the accumulated costs for forming its di-
agonal blocks, which are matrices of rank one added to the identity ma-
trix. Therefore they are bounded by

∑
iO
(
n2
i

)
≤ O

(
(
∑

i ni)
2
)

= O
(
N2
)
.

Applying a suitably sized elementary matrix from either side to a M × N
matrix accounts for costs of order O (MN). Hence the transformation of
each matrix block Aij of A accounts for O (ninj). Since the transforma-
tions of the blocks are independent from each other, the total costs are of
order

∑
ij O (ninj) = O

(∑
ij ninj

)
= O

(
N2
)
, which is for large N negligible

compared to the costs for solving the complete eigenproblem, O
(
N3
)
. The

recovery of the eigenvectors is done by (a permutation of rows and) only a
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left multiplication of an extended Householder matrix. Therefore, the costs for
that are also bounded by O

(
N2
)
.

Since the transformations of the blocks Aij are independent, the whole trans-
formation is parallelizable to some extend. However, one has to take into
account that the sizes of the matrix blocks are fixed and in general not equal.

Matrix Compression Instead of simplifying eigencomputations and related
problems, our block triangularization also has an application in matrix com-
pression. Given the final matrix P̃ÃP̃′, and Π0 we are able to recover ΦΠ,
H (jN ,Π), ΩΠ and therefore A easily. Recall that all three transformations
are numerical stable and applicable with O

(
N2
)
costs. The storage of Π0

requires at most storing an integer array of length N . It is easy to see that
k ≤ (N -1) for the number of cells of Π0 is sufficient to ensure that P̃ÃP̃′ has at
least (N -1) zero entries. Of course, matrices in applications may be extremely
sparse in which case the transformed matrix may actually have less zeros then
the initial matrix. However, even for sparse matrices the eigenvector matrix
tends to be rather dense, whereas the transformed eigenvector matrix bears
the same block triangular form as the transformed matrix.
The applicability as a compression method (at least for the eigenvector ma-
trix) has in some sense a negative implication. Because of its efficiency one
expects that the structure it exploits should be rather rare. Indeed, non triv-
ial equitable partitions are exceptions for random matrices. This is plausible
from the reasoning that a small perturbation on a single entry of an equitable
matrix may cause a cascade effect leaving a matrix with only trivial equitable
partition. However, given an empirical background equitable partitions are
frequent. For instance, any automorphism on a matrix, i.e. a permutation it
commutes with, induces a partition, where the cells are given by the orbits of
the permutation. The induced matrix blocks apparently must be of constant
row (and column) sum. The existence of non trivial automorphisms is not
necessary for equitable partitions as can be deduced from our example above.

Normalized and Unnormalized Front Divisor The normalization of the front
divisor is inherent in our method. That this should not be considered an arte-
fact can be seen from the discussion above concerning the exploitation of several
equitable partitions ordered by refinement and the preservation of hermiticity.
In the generalization to weighted equitable partitions below the normalized
front divisor will also have an invariance property. Thus, although Θ seems to
be more intuitive, E is perhaps more suitable for a practical application. How-
ever, when dealing with rational (integer) matrices, the unnormalized front
divisor may be preferable since it is also rational (integer), whereas the nor-
malization of the front divisor in general introduces irrational numbers due to
the involved square root.

53



Chapter 2 Equitable Partitions

2.5 Generalizations

This section introduces three ways of generalizing equitable partitions. This
will at first be done separately considering each of them as a possible gener-
alization of the established concept of (row) equitability to avoid notational
confusion as long as possible.

2.5.1 Relaxing the Constant Vector

Let Π be a labeled simultaneous partition of the row and the column set of
A into k cells. It entails an explicit block structure on A when rows and
columns are suitably indexed. W.l.o.g. we assume such an indexing. Let ni
denote the size of cell i. Let {v (i)}i=1,...,k be a set of non zero vectors such

that v (i) ∈ Cni . Let v =

 v (1)
...

v (k)

. We call the pair [v,Π] a weighted (row)

equitable partition if

∀ 1 ≤ i, j ≤ k Aijv (j) = v (i) θij (2.52)

where Aij is the matrix block of A induced by row cell i and column cell j
and Θ = (θij) is called the front divisor of A w.r.t. [v,Π]. The choice [ jN ,Π]
corresponds to the classical notion of equitability. When we apply the same
partition Π conformallly on the rows and columns of

Ã = H (v,Π) AH (v,Π) (2.53)

where H (v,Π) is an extended Householder transformation, then each of its
blocks has the form

Ãij = H (v (i)) AijH (v (j)) . (2.54)

Hence

Ãijenj = eniθij
|v (i)|
|v (j)|

β
(
v
(
i
))

β
(
v
(
j
)) , (2.55)

which shows that each block is block triangular s.t. the upper left diagonal
subblock is always a scalar. The special structure of each block of Ã allows
for an explicit block triangularization. In order to obtain that form, one may
use ΩΠ from definition 11. Analogous to (2.32) one obtains

Ω′ΠÃΩΠ =

(
E G
0 F

)
(2.56)

where F ∈ C(N-k)×(N-k) is called a factor and

E = NβN
1
2 ΘN- 1

2 N′β ∈ Ck×k with Nβ = diag
(
β
(
v
(
1
))
, . . . , β

(
v
(
k
)))
(2.57)
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is a normalized version of the front divisor Θ. Because of the block triangular
structure we have

σ (A) = σ (E) + σ (F) .

We think that weighted equitable partitions are in a way a straightforward
generalization of equitable partitions and its exploitation in section 2.4. We
therefore just mention that hermiticity is again preserved, that eigenvectors
can be recovered by left multiplication of H (v,Π) P and that the complexity
is still of order O

(
N2
)
. Instead, we consider subtleties which are due to some

freedom in the entries of the v (i).

Scaling a Weighted Equitable Partition Let {v (i)}i=1,...,k and the labeled
partition Π = (ci, . . . , ck) define a weighted equitable partition of A with front
divisor Θ. Replacing v (i) by µiv (i), µi ∈ C \ {0}, still yields a weighted
equitable partition of A, but with different front divisor. In contrast, using
(2.57) one verifies that the normalized front divisor E is independent of such
a scaling. However, only the absolute value of its entries eij are unique. Due
to the definition of β its phase might depend on the indexing of the elements
of v (i). We do not provide a general rule how to determine a unique phase in
order to avoid expensive computations but this flaw might be rather harmless
in most applications. In particular, this dependency is irrelevant if all entries
have the same phase factor, as in the case of the unweighted equitable partition.

Quasi-Block-Stochastic Matrices and Pseudo-Regular Graphs The con-
cept of quasi-block-stochastic matrices of Kuich [51] as a generalization of
quasi-stochastic matrices [37] bears a close resemblance to weighted equitable
partitions. The minor difference is that for quasi-block-stochastic matrices it
is required that the first entry of each v (i) has to be 1, which is a way to make
the normalized front divisor unique. Kuich also describes how to exploit this
structure to trangularize a (real) matrix by a (real) similarity transformation
using a theorem of Haynsworth [38] and it seems that he implicitly thinks of
transformations that are computationally cheap, but doing so he seems not to
consider unitarity or other precautions for numerical stability.
Another similar concept is used by Fiol and Carriga and is called pseudo-regular
partitions. It considers matrices with positive eigenvector v [58, pp. 278/9].
The partition Π of the matrix is pseudo-regular if [v,Π] is weighted equitable.
Since v is fixed up to a positive scale factor, the pseudo-quotient (i.e. front
divisor) is unique.

2.5.2 Allowing Non Equitable Blocks

Let Pbt (A) be the set of all labeled partitions of A ∈ CN×N that induce a
block triangular form i.e. if t denotes the number of cells of such a partition
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Π̄ ∈ Pbt, we have after suitable permutation

Φ′Π̄AΦΠ̄ =

 A11 . . . A1t

. . .
...

0 Att

 .

We explicitly include t = 1 and we allow that Aii is again block triangular.
Let Π̄ ∈ Pbt with diagonal blocks Aii, i = 1, . . . , t, and let Π be a refinement
of Π̄. We consider the restriction of Π to the i-th cell of Π̄, which induces a
partition of Aii. If each diagonal block Aii is equitable w.r.t. the corresponding
restriction of Π we call Π block-wise (row) equitable. In other words we call
a partition Π block-wise (row) equitable if it is a refinement of a partition
in Pbt and (row) equitable on each diagonal block induced by that coarser
partition. We give an example of a block-wise equitable but not equitable
partition. Consider

A =


-2 1 3 0
-7 5 4 0
0 0 2 3

0 0 0 5


One verifies that Π = (1, 2, 3|4) is not equitable, for the upper right off-diagonal
block is not a constant column. However, Π is block-wise equitable.
Since we allow for non constant row sum on some blocks we have to generalize
the notion of a front divisor. We do so by defining the (normalized) front
divisor for arbitrary partitions.

Definition 12. Let Π = (c1, . . . , ck) be a partition of A ∈ CN×N and let
ni = |ci|. Let Aij be the matrix block of A induced by row cell i and column
cell j. Let en be the column vector of length n which is zero on each position
except the first one where he shows 1. Let

eij = e′ni
H (jni) AH

(
jnj

)
enj =

∑
v,w Aij,vw
√
ninj

.

Let
θij = eij

√
nj√
ni
.

Then
E = (eij) and Θ = (θij)

are called the normalized front divisor and the (unnormalized) front divisor,
respectively.

Note that definition 12 implies

θij =
1

ni

∑
v,w

Aij,vw =
1

ni
jniAijjnj ,
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which can be interpreted as the average row sum of the matrix block Aij . It is
applicable to any partition of A and is equivalent to that used in [35, corollary
2.1.] for symmetric matrices.
Let Π be a block-wise equitable partition s.t. it is equitable on the diagonal
blocks of the coarser block triangular partition Π̄. In order to exploit Π one has
to reduce each diagonal block induced by Π̄ separately. We give an example.
Let A =

(
A11 A12
0 A22

)
be suitably labeled. Let Π be a partition s.t. all matrix

blocks induced by Π on A11 and A22 have constant row sum, but with no
restriction on the induced subblocks of A12. Therefore, Π is block-wise equi-
table. For i = 1, 2 let Qi be a unitary transformation that block triangularizes
Aii exploiting its equitable partition given by the corresponding restriction of
Π, i.e.

Q′iAiiQi =

(
Ei Gi

0 Fi

)
.

Then

Ã =

(
Q′1 0
0 Q′2

)(
A11 A12

0 A22

)(
Q1 0
0 Q2

)
=


E1 G1 X11 X12

F1 X21 X22

0 E2 G2

F2


is the corresponding reduced matrix. The normalized front divisor w.r.t. Π
is given by

(
E1 X11
0 E2

)
. Because of the block triangular structure the spectrum

of the normalized front divisor is contained in the spectrum of A. However,
due to the relaxation that the partition may induce some non equitable matrix
blocks, not all eigenvectors of the front divisor can be lifted to those of A
simply by multiplication with the indicator matrix.

2.5.3 Separating Row and Column Partition

Let Π1 be a labeled partition of the row set and Π2 a labeled partition of the
column set of A ∈ CN1×N2 with k1 and k2 cells, respectively. They entail an
explicit block structure on A when rows and columns are suitably indexed. If
each of those blocks Aij has constant row sum i.e.

∀ 1 ≤ i ≤ k1 ∀ 1 ≤ j ≤ k2 Aijjnj = jniθij (2.58)

we call the pair Π1 and Π2 a splitted row equitable or just a splitted equitable
partition w.r.t. A with front block Θ = (θij). Interpreting Π1 (Π2) as a parti-
tion of the column (row) set of A′, we call this pair splitted column equitable
w.r.t. A if it is row equitable w.r.t. A′. Note that (2.58) is a variant of
(2.23). Since reorderings can be obtained by cheap application of permutation
matrices, which are unitary, we may assume w.l.o.g. that A is already suitably
indexed.
When we apply the same partitions Π1 and Π2 on the rows and columns of

Ã = H (jN1 ,Π1) AH (jN2 ,Π2) (2.59)
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then each of its blocks has the form

Ãij = H (jni) AijH
(
jnj

)
(2.60)

hence
Ãijeni = enjθij

√
ni√
nj
, (2.61)

which shows that each block is block triangular. Since the first diagonal block
is always a scalar, there are readily available permutations ΩΠ1 and ΩΠ2 s.t.

Ω′Π1
ÃΩΠ2 =

(
E G
0 F

)
(2.62)

where E ∈ Ck1×k2 with eij = θij
√
ni√
nj
.

Thus, exploiting a row equitable partition we always obtain a block triangu-
larization. We call a matrix of the form

(
E G
0 F

)
weak upper block triangular.

We call the block triangularization strong for the special case k1 ≤ k2. It is
easy to see that partitions which are simultaneously splitted row equitable and
splitted column equitable yield a block diagonalization, i.e. G = 0 in (2.62).
In this case, the singular values of the front block are contained in the set of
singular values of A, i.e.

σ
(
Θ′Θ

)
= σ

(
E′E

)
⊂ σ

(
A′A

)
for splitted row and column equitable partition.

However, if A and Θ are square matrices, the spectrum of the latter is in
general not a subset of the former, since H (jN1 ,Π1) is not the inverse of
H (jN2 ,Π2) if Π1 6= Π2. Thus, the characteristic polynomial of a matrix is in
general not divided by the characteristic polynomial of one of its front blocks.

2.5.4 The General Case and Quasi-Equitable Partitions

Let A ∈ CN1×N2 . Let Pbt be the set of all pairs (Π̄1,Π̄2), where Π̄1 is a labeled
partition of the row set and Π̄2 is a labeled partition of the column set of A, s.t.
the cells of these partitions induce (after suitable indexing) a block triangular
form on A. Let (Π̄1,Π̄2)∈ Pbt. Let Π1 be a refinement of Π̄1 with k1 cells and
Π2 a refinement of Π̄2 with k2 cells. Let A be indexed s.t. Π1 and Π2 entail
an explicit block structure. Let v1 ∈ CN1 and v2 ∈ CN2 s.t. the vector block
v1 (i) induced by the i-th row cell and the vector block v2 (j) induced by the
j-th column cell are non zero and

Aijv2 (j) = v1 (i) θij (2.63)

for all matrix blocks Aij which are subblocks of diagonal blocks of the block
triangular form given by (Π̄1,Π̄2)∈ Pbt. We call Θ = (θij) with

θij =
v1 (i)′Aijv2 (j)

v (i)′ v (i)
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a front block. We call a quadruple [v1, π1,v2,Π2] that obeys the conditions
above a general row equitable partition with front block Θ = (θij). Considering
the discussions in this section we have that

Ã = H (v1,Π1) AH (v2,Π2)

is a block triangular refinement of the block triangular form induced by (Π̄1,Π̄2)∈
Pbt after an appropriate reindexing. When we impose the three further condi-
tions

(i) v1 = jN1 and v2 = jN2 ,

(ii) Π̄1 and Π̄2 are singleton partitions,

(iii) N1 = N2 = N , Π̄1 = Π̄2 = Π̄, Π1 = Π2 = Π and v1 = v2 = v,

the classical equitable partition arises. Withdrawing condition (i), (ii) or (iii),
we obtain weighted, block-wise or splitted equitable partitions, respectively.
Although general equitable partitions can be exploited for (refined) block tri-
angularization of rectangular matrices, this notion is too general for the pur-
pose of eigenvalue computation. We therefore introduce a less general concept
which we call quasi-equitable partitions. Those are given by the general equi-
table partitions which obey condition (iii). For quasi-equitable partitions we
have

σ (Θ) ⊂ σ (A) . (2.64)

and we may call the front block a front divisor.

2.5.5 Relaxations of Equitable Partitions

In our notion of quasi-equitable partitions the spectrum of the front divisor Θ
is always a subset of the spectrum of the given matrix A. There are concepts
in network analysis which can be described as generalizations of (2.1) which
abandon that relation. For instance, Kate and Ravindran introduced epsilon
equitable partitions for (an adjacency matrix A of) a simple graph [49]. Let
Π = (c1, . . . , ck) be a partition of the node set of A. Let Aij be induced by
the i-th row cell and the j-th column cell. Let rij = Aijjnj be a column vector
of length ni = |ci|. If

∀ 1 ≤ i, j ≤ k max
1≤v,w≤ni

|rij,v − rij,w| ≤ ε ≥ 0

then Π is called ε-equitable. The classical equitable partition arises for ε = 0.
Another relaxation of (2.1) can be employed to describe the concept of regular
equivalence [10]. It is defined by the restriction that for a partition Π any
vector rij = Aijjnj must have either no zero entry or all entries zero i.e.

∀ 1 ≤ i, j ≤ k
∏
v

rij,v = 0⇒
∑
v

|rij,v| = 0.
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Both concepts are used to partition the node set of a graph (=assigning roles)
according to structural properties and to derive a smaller graph (the quotient
or image graph) which gives a condensed representation of essential relations
between the cells (=roles) of that partition. However, in both generalizations
there is no notion of a front divisor in the sense of spectra inclusion.
The concept considered in [11] can be described as a generalization of B in
(2.3) which relaxes the requirement that there is only one entry per row for
the indicator matrix. In order to obtain the generalization of (2.3) one assumes
that a (partial) solution for the eigenproblem is available.
We will briefly consider another relaxation of equitable partitions. The main
idea is as follows. By an equitable partition a matrix A can be unitarily
transformed into the form

(
E G
0 F

)
where E is the normalized front divisor. If

the equitability is relaxed A is transformed into the form
(
E G
D F

)
. Our aim is

to bound the norm or the rank of D.

Relaxation Let A ∈ CN×N , let Π = (c1 . . . , ck) be a partition and let

rij = Aijjnj and dij = rij − θijjni with θij =
j′ni

rij

ni
. (2.65)

We call Π δ-equitable iff
√∑

ij d′ijdij = δ. One shows easily that equitable
partitions are always 0-equitable since then rij is a constant vector. The pa-
rameter δ is a measure for the deviation of a partition from being equitable.
In order to see that we now derive two certain matrices ∆ and D.

∆ =

 d11 · · · d1k
...

. . .
...

dk1 · · · dkk

 ∈ CN×k. (2.66)

Let d̃1
ij denote the first entry of

d̃ij = H (jni) dij .

Using the properties of H (jni) and dij it is easy to see that

d̃1
ij = e′ni

d̃ij = 0.

We denote the vector of length
(
ni -1

)
that is obtained by removing the first

entry of d̃ij with d̃−ij and define

D =

 d̃−11 · · · d̃−1k
...

. . .
...

d̃−k1 · · · d̃−kk

 ∈ C(N-k)×k. (2.67)
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Thus we have

H (jN ,Π) ∆ =

(
0kk
D

)
.

Since H is unitary, ∆ and D have the same singular values, which yields for
δ-equitable partitions

|D|F = |∆|F =
√

trace (∆′∆) = δ. (2.68)

where |·|F denotes the Frobenius norm, which is the square root of the sum of
the squared singular values. After some lengthy calculation or by inspection
one sees that

AΠ = Ω′ΠH (jN ,Π) AH (jN ,Π) ΩΠ =

(
E G
D F

)
where E ∈ Ck×k with eij = 1√

ninj
θij = 1

ni
j′ni

rij . Let

σ̃ = σ (E) + σ (F) . (2.69)

σ̃ and σ (A) are different in general for δ 6= 0, but the deviation can be bounded
in terms of δ. As an example we consider the bound of Weyl [25] for hermitian
matrices. In this case we have G = D′ and

AΠ =

(
E 0
0 F

)
+

(
0 D′

D 0

)
. (2.70)

We interpret the second matrix on the right-hand side as a perturbation. We
can bound its largest absolute eigenvalue, i.e. its largest singular value, by
δ. Let µ1 ≤ . . . ≤ µN and λ1 ≤ . . . ≤ λN be the elements of σ̃ and σ (A),
respectively. Since σ (AΠ) = σ (A)

|µi − λi| ≤ δ , 1 ≤ i ≤ N (2.71)

by the Weyl inequalities. Many more general but less convenient eigenvalue
bounds are known, e.g. [26]. One can think of other characterizations for
approximate equitable partitions which have moderate computational costs,
for instance the number of nonzero columns of ∆, which upper bounds the
rank of D, or the spectral norm of ∆ and D, δspec, which is the largest singular
value. This implies δspec ≤ δ. However, the computation of δspec is typically
more costly then that of δ.

2.6 Finding Equitable Partitions

We consider the search for an equitable partition according to (2.1). If the con-
sidered matrix is binary than one can utilize existing software, e.g. nauty [60],
saucy [22] or bliss [48], which are developed for a more advanced task. They
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label a graph canonical or compute its automorphism group and hence are
able to solve a concrete graph isomorphism problem. The computation of
the equitable partition is only implemented as a generally cheap and fast and
most of the time very effective subroutine in order to prune the search tree.
However, although they also consider vertex and edge labelings, they do not
process weighted graphs, i.e. matrices with arbitrary real or complex entries.
We will describe a basic approach for finding equitable partitions of a matrix
A of size N which is rather algebraic. If A is a binary matrix, a combinatorial
description in terms of counting and coloring is preferable. That can be found
e.g. in [50].
Let Π be partition. We call a partition which is equivalent to Π or for which
Π is a refinement weakly coarser than Π. Note that all partitions are weakly
coarser than the discrete partition, which is always equitable. We call a parti-
tion strongly coarser than Π when it is weakly coarser than Π but not equivalent
to Π. Now let Π with k cells be equitable with indicator matrix B, and let the
elements of the set E be the columns of B. Let the nonnegative integer t be a
time step. Let the elements of the set E (t) be the columns of B (t) which is an
indicator matrix for the partition Π (t) with kt cells, and let Π (t) be weakly
coarser than Π.
The complex matrix V (t) = AB (t) is of size N × kt. Let {ai} (α, t) be the
distinct entries of column α of V (t). Let ei (α, t) be a binary vector which
indicates each position of column α of V (t) where the entry ai (α, t) occurs by
a one. Let the union of those indicator vectors over all distinct entries of all
columns of V (t) with E (t) be the set

E (t+ 1) = E (t) ∪
⋃
α

⋃
i

ei (α, t) .

It is easy to see that Π (t) is weakly coarser than Π (t+ 1). We show that
Π (t+ 1) is weakly coarser than Π. Since Π (t) is weakly coarser than Π, every
column of B (t) lies in the span of the columns of B, which is an invariant
subspace according to (2.3). Thus every column of V (t) is a linear combination
of the columns of B. Since those are binary vectors, the elements of E (t+ 1)
lie also in the span of the columns of B by construction.
It is easy to see that E (t+ 1) is uniquely determined by E (t). We have

kt ≤ kt+1 ≤ k (2.72)

since E (t) ⊂ E (t+ 1) ⊂ E . By (2.3) it is also easy to see that

E (t)=E (t+1) ⇔ E (t)=E (s) ∀ s ≥ t ⇔ kt=kt+1 ⇔ Π (t) is equitable.

Let
T = min (t|kt = kt+1) . (2.73)

We call Π (T ) the coarsest equitable partition w.r.t. Π (0). If B (0) = jN we
call Π (T ) just the coarsest equitable partition. When the coarsest equitable
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partition w.r.t. Π (0) is found, we may impose a refinement on Π (T ) in order to
find other equitable partitions. A more careful analysis reveals that a labeling
for the elements of E (t) induces a labeling for the elements of E (t+ 1). This
can be seen from the following reasoning. An ordering of the columns of B (t)
induces an ordering for the columns of V (t), and since the possible values for
the ai are known and we therefore can impose an ordering on them a priori,
this induces an ordering on the ei, hence for E (t+ 1).
One can process the columns of B (t) one at a time. As soon as the set E (t)
increases a refined partition can be imposed. Columns which have already
been considered and which have not changed after a refinement do not have to
be considered twice. Thus, it is sufficient to consider single cells once. When
a fast-matrix vector multiplication is available, the columns of B (t) may be
processed in parallel considering a vector w (t) which is a linear combination
of those. In order to be discriminating, the coefficients obviously have to be
distinct (or zero else). That distinctness is not sufficient can be seen from the
following example.

A=

 0 1 2
1 4 0
2 0 5

, E (t)=


 1

0
0

 ,

 0
1
1

, w (t)=

 -1
1
1

 → Aw (t)=3

 1
1
1

. (2.74)

Here, the particular choice of w (t) does not lead to a refinement. However,
this is an exceptional case. Any other vector in the span of E (t) in (2.74) which
is not a multiple of (−1, 1, 1)′ works fine. In application, at a given time step
t one may choose a random linear combination of the columns of B (t) (see
also [69]). If no refinement is obtained one may try another set of coefficients
and eventually consider each column of the current indicator matrix B (t) sep-
arately to ensure equitability.
When dealing with real or complex entries of A in practical numerical com-
putations, we have to take rounding errors into account. This means that we
should refrain from imposing a refinement if the computed difference of two
distinct entries in a column of V (t) is too small. In order to cope this problem,
we employed a procedure in our numerical experiments which is basically as
follows. Consider a column of V (t), divide the entries according to the current
partition and sort them within each cell. If and only if the difference of con-
secutive elements of a given cell is greater than a certain reasonable threshold
then impose a refinement. This procedure is designed to guarantee that any
non refined partition found numerically is weakly coarser than the coarsest eq-
uitable partition w.r.t. B (0). However, it would be desirable to achieve that
in a more efficient way.
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Isospectrality of Graphs

In this chapter we introduce a family of graph matrices which contains e.g.
the adjacency matrix, the Laplacian or the Seidel matrix. We generalize the so
called GM-switching technique and give general constructions for isosepctral
graphs which may or may not utilize edge switching. They can be used to
find graph pairs which are unitary equivalent (implying isospectral) w.r.t. the
introduced matrix family.

3.1 Introduction

Let Γi, i = 1, 2, be two (di-)graphs with adjacency matrices Ai, respectively.
Let X (Γi) be any matrix representation e.g. adjacency matrix, Laplacian or
Seidel matrix for Γi. We call Γ1 and Γ2 isospectral w.r.t. X if

σ (X (Γ1)) = σ (X (Γ2)) . (3.1)

In that case we also say that X (Γ1) and X (Γ2) are isospectral. We call Γ1

and Γ2 unitary equivalent w.r.t. X if there exists a unitary matrix Q s.t.

X (Γ2) = Q′X (Γ1) Q. (3.2)

We call both, the matrix pair and the graph pair, isomorphic if there is even
a permutation matrix Q s.t. (3.2). In fact, in that case it would be somewhat
more appropriate to speak of X (Γi), i = 1, 2, as two isomorphic representations
of the same graph Γ1 = Γ2. That no polynomial algorithm is known which can
decide if two given arbitrary graphs have isomorphic matrix representations is
at the heart of the famous graph isomorphism problem [64]. It is easy to see
that

isomorphic ⇒ unitary equivalent ⇒ isospectral.

The second implication is a tautology for undirected graphs, which can be di-
agonalized by unitary matrices. However, the pair

(
0 0
0 0

)
and

(
0 1
0 0

)
shows that

it can in general not be reversed for directed graphs. The first implication is
well known to be in general not reversible. Counter examples are given by
isospectral or cospectral graphs which are not isomorphic. The smallest pair
of isospectral but not isomorphic graphs (w.r.t. the adjacency matrix) is given
by the complete bipartite graph K1,4 and the union of the cycle of length 4, C4,
and an isolated node K1, with spectrum {-2, 0, 0, 0, 2} [20]. Thus, although the
spectrum of the adjacency matrix is a graph invariant, a property of a graph
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that is independent of its representation, it does not distinguish all graphs.
The same is true for other well known graph matrices, like the combinatorial
Laplacian or the normalized Laplacian. An example of a set of graphs which
are isospectral w.r.t. the latter graph matrix is the night sky Ns,r. Each ele-
ment of Ns,r has r edges and is the union of s star graphs with at least two
vertices s.t. the number of all vertices is r + s. Since the spectrum w.r.t. the
normalized Laplacian of a star graph with n ≥ 2 vertices is

{
-1, 0n-2, 1

}
, each

element of Ns,r has spectrum
{(

-1
)s
, 0r-s, 1s

}
w.r.t. the normalized Laplacian.

It is easy to see that e.g. N2,4 has two nonisomorphic elements. A much more
general construction is given in [15].
An intriguing example of a graph invariant is the 2-dimensional Weisfeiler-
Lehman-stabilizer or its equivalent, the coherent algebra generated by the ad-
jacency matrix A, the all-ones matrix J and the identity I, which we will
denote by WL2 (I,A,J). It is the closure of {I,A,J} w.r.t. complex conju-
gate transposition (i.e. adjoint), complex linear combination, the usual matrix
product and the Hadamard-Schur (or point-wise) product [24], [41].

Structure of the Chapter We introduce the matrix algebra WL1 (I,A,J)
generated by {I,A,J} and the closure operator WL1 defined below, which
corresponds to the 1-dimensional Weisfeiler-Lehman-stabilizer. Before that we
recall a classical construction for isospectral graphs, Seidel switching, and its
substantial extension by Godsil and McKay. We give a slight generalization
for the latter and a general construction for unitary equivalent graphs. Later,
we show that it can be used to produce graphs which are simultaneous unitary
equivalent w.r.t. WL1 (I,A,J).

3.2 Isospectral graphs

3.2.1 Seidel-Switching

Using edge switching to produce isospectral graphs was proposed by Seidel [82].
The idea is as follows. Suppose A is the adjacency matrix of a graph Γ without
loops. The matrix S = J− 2A− I is called the Seidel matrix of Γ. We have

svw =


0 , v = w
-1 , (v, w) is an edge in Γ
1 , (v, w) is not an edge in Γ

.

Suppose a disjoint partition of the vertex set, V = V1 ∪ V2, which induces a
block partition of

A =

(
A11 A12

A21 A22

)
and S =

(
S11 S12

S21 S22

)
.
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Since Q =
(
I 0
0 −I

)
is orthogonal, the graph Γ̃ represented by the Seidel matrix

S̃ = QSQ =

(
S11 -S12

-S21 S22

)
has the same Seidel spectrum as Γ. It is easy to verify that the adjacency
matrix of Γ̃ is given by

Ã =

(
A11 J−A12

J−A21 A22

)
. (3.3)

We can describe that construction by a partition of the vertex set of Γ into
two sets V1 and V2 indicated by Q. The graph Γ̃ is obtained by removing all
present edges between V1 and V2 and turning all nonpresent edges between
that pair into present ones. This operation is often called edge switching.

3.2.2 GM-Switching and Q-Switching

The transformation of A into Ã in (3.3) of the last subsection does in general
not correspond to a similarity transformation, hence does not preserve the
adjacency spectrum. However, if A22 is of even size n and has constant row
and column sum r and the sum of each row in A12 and the sum of each column
in A21 is n

2 , i.e. in the case of simple graphs V2 is a (r,n2 )-regular set [17], then
one verifies that the transformation of A to Ã can be described by the unitary
transformation

(
I 0
0 Q(n)

)
, where

Q (n) =
2

n
Jn,n − In. (3.4)

A generalization of that idea leads to the well known construction of Godsil
and McKay [31] [81] called GM-switching [36], which produces pairs of graphs
that are isospectral with respect to the adjacency matrix and its complement.
In this subsection we describe a slightly more general version, which we denote
by Q-switching. Before that we point out the essential difference. A key
observation is that the clever transformation used in GM-switching is block
diagonal in correspondence with a partition of A. Each diagonal block is of
the form Q (n) with the exception of one block which shows the identity matrix
I. A trivial reformulation interprets the diagonal elements of I as Q (1), which
corresponds to a refined partition of A. However, we show that the occurrence
of Q (1) as a diagonal block is not necessary. Another line of generalization
can be found in [1].
Let Π = (c1, . . . , ck) be a partition of the first N positive integers [1, . . . , N ]
s.t. v ∈ ci, w ∈ cj and i < j implies v < w. Let ni = |ci|. Define the unitary
block diagonal matrix

Q =

 Q (n1) 0
. . .

0 Q (nk)

 with Q (n) =
2

n
Jn,n − In (3.5)
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and let

A =

 A11 · · · A1k
...

. . .
...

Ak1 · · · Akk

 and Ã = QAQ =

 Ã11 · · · Ã1k
...

. . .
...

Ãk1 · · · Ãkk


be matrices partitioned by Π s.t. the matrix blocks Aij and Ãij are induced
by the i-th row cell and the j-th column cell. We have Ãij = Q (ni) AijQ (nj).
Since Q is unitary, Ã and A are unitary equivalent.
In order to derive a construction for isospectral adjacency matrices, we aim at
finding conditions on a binary A s.t. a transformation by Q results in a binary
matrix again. First, we consider some general properties of the transformation
M̃ = Q (ni) MQ (nj) on an arbitrary rectangular matrix M ∈ Cni×nj . Then,
we consider the special case where M and M̃ are binary.

Complex case We define

s′ =
1

ni
j′ni

M
(
Q (nj)− Inj

)
∈ C1×nj

z =
1

nj
(Q (ni)− Ini) M jnj ∈ Cni×1,

∆ = M̃−M and vol (M) = jniMjnj .

The function vol (·) might be evaluated for any matrix in the obvious interpre-
tation that it just sums up all entries. We collect some properties

(i) ∆ = jnis
′ + zj′nj

,

(ii) s is a constant vector ⇔ s = 0 ⇔ M is column regular,
z is a constant vector ⇔ z = 0 ⇔ M is row regular,

(iii) s′jnj = 0 = j′ni
z and vol (∆) = 0.

(iv) M̃ + M̃ = Q (ni)
(
M + M̃

)
Q (nj) = M + M̃

Proof. (i), (ii), (iii) and (iv) are easily verified using the definition of Q (n), s,
z and ∆.

From (i) we conclude that rank (∆) ≤ 2. The next proposition distinguishes
the three possible values for the rank of ∆.

Proposition 1. • ∆ = 0 ⇔ M is row and column regular.
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• rank (∆) = 1 ⇔ M is either row or column regular.

• rank (∆) = 2 ⇔ M neither row nor column regular.

Proof. All three statements follow from (i) and (ii).

The Binary Case From now on we additionally assume that M and M̃ are
(0,1)-matrices which implies ∆ ∈ {-1, 0, 1}ni×nj . Considering a fixed row (col-
umn) of ∆ and using (i) we see that s (z) has at most three different entries,
say a ≤ b ≤ c (d ≤ e ≤ f). According to proposition 1 we distinguish three
cases.

Proposition 2. M is row and column regular ⇔ M = M̃

Proof. This follows from the first statement in proposition 1.

Proposition 3.
M is row regular and not column regular ⇔ a = -1, c = 1 ∧ d = e = f = 0.
M is column regular and not row regular ⇔ a = b = c = 0 ∧ d = -1, f = 1.

Proof. If M is row regular and not column regular, then z = 0 and s 6= 0 by
(ii). Since s′jnj = 0, we have a = -1 and c = 1. The second assertion is proved
analogously.

We consider the structure of a row but not column regular binary matrix M
s.t. the transformed matrix is also binary. Since a = -1, c = 1 and z = 0, there
is a permutation matrix P and possibly a row and column regular matrix B
s.t.

s′ =
(
−j′k1 ,0

′
k2 , j

′
k1

)
P with 2k1 + k2 = nj , k1 ≥ 1 , k2 ≥ 0 (3.6)

and
M = (J,B,0) P , M̃ = (0,B,J) P (3.7)

Considering s it is easy to see that vol (B) = 1
2k2ni. Thus, each column and

each row of B contains as many zeros as ones. We summarize

B ∈ {0, 1}ni×k2 has constant row and column sum, vol (B) =
k2ni

2
. (3.8)

One shows that conditions (3.6) and (3.8) suffice to ensure that a binary matrix
block M = (J,B,0) P with first and third subblock of equal size transforms
into the binary matrix block M̃ = (0,B,J) P.
The case of a column but not row regular matrix M is analogous. One may
exploit that M is column regular if and only if M′ is row regular.

Proposition 4.
M is neither row nor column regular ⇔ a < 0 < b = c ∧ d < 0 < e = f
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Proof. ’⇒’. By proposition 1 rank (∆) = 2. The assumption a = b = c implies
s = 0, which implies rank (∆) ≤ 1. Analogous for the assumption d = e = f .
By (i) and disregarding multiplicity of elements, we have

{a+ d, b+ d, c+ d, a+ e, b+ e, c+ e, a+ f, b+ f, c+ f} ⊂ {-1, 0, 1} .

By that inclusion the assumption a < b < c implies d = e = f , hence it implies
rank (∆) ≤ 1. A similar argument applies for the assumption d 6= e 6= f .
Therefore, both s and z have exactly two different entries. By (iii) both entries
in each vector are of different sign.
’⇐’. By proposition 1. a 6= b∧d 6= e implies rank (∆) = 2 according to (i).

Now we consider the structure of a neither row nor column regular binary M.
By proposition 4 and (i), a+ d = -1, 0 = a+ e = b+ d, b+ e = 1. Hence, there
are two permutations Pi and Pj s.t.

∆ = P′i

(
−J 0
0 J

)
Pj

where the left upper diagonal block of ∆ is of size mi ×mj . This implies

M = P′i

(
J B
C 0

)
Pj and M̃ = P′i

(
0 B
C J

)
Pj . (3.9)

with conformable partitions and

B ∈ {0, 1}mi×(nj−mj) and C ∈ {0, 1}(ni−mi)×mj with
{

1 ≤ mi < ni
1 ≤ mj < nj

.

(3.10)
By (iv) and proposition 1, M + M̃ is row and column regular. Therefore, B
and C are row and column regular with

δrow (B) +mj = δrow (C) +
nj
2

and

δcol (C) +mi = δcol (B) +
ni
2
. (3.11)

where δrow (·) and δcol (·) give the constant row and column sum, respectively.
By (iii) we also have,

mimj = (ni −mi) (nj −mj) . (3.12)

One verifies that conditions (3.11) and (3.12) with (3.10) are already sufficient
to ensure that the result of the transformation of a binary matrix block M
formed as on the left side of (3.9) is again binary.

We remark that the partition Π of A is equitable if and only if Q′AQ = A,
which follows from proposition (2). Since every partition of J is equitable,
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Q always commutes with J. Therefore, every pair of graphs obtained by Q-
switching is simultaneous unitary equivalent w.r.t. any polynomial in I, A and
J. We also remark that we implicitly assumed that the presence (nonpresence)
of a loop at vertex i is indicated by a one (a zero) at diagonal position ii to
achieve strictly binary adjacency matrices. If the presence of a loop is indicated
by an other number, we may impose the restriction that diagonal blocks of A
always have to be row and column regular or simply not allow loops.
GM-Switching arises by the restriction that there exists at least one i s.t.
ni = 1 and that all matrix blocks having more than one row and more than
one column must be row and column regular. To avoid some trivial cases one
may add the assumption that there is at least one k s.t. nk is even. Although
nonisomorphism of the obtained graph pair is not guaranteed, it is a typical
outcome [31].
In the next section we give three other constructions for unitary equivalent
graphs the first two being generalized by the third one.

3.2.3 Further Constructions

Proposition 5. Let Q =

(
Q1 0
0 Q2

)
and Q+ =

 Q1 0 0
0 Q2 0
0 0 Q2

 be

unitary. Let

A =

(
A11 A12

A21 A22

)
and Ã = Q′AQ =

(
Ã11 Ã12

Ã21 Ã22

)
be adjacency matrices partitioned conformable with Q. Let

A+ =

 A11 A12 A12

A21 A22 A22

A21 A22 A22

 and Ã+ =

 Ã11 Ã12 Ã12

Ã21 Ã22 Ã22

Ã21 Ã22 Ã22

 .

Then Ã+ = Q′+A+Q+

Proof. Exploit that Ãij = Q′iAijQj for i, j ∈ {1, 2}.

Note that Q1/2 may itself be block diagonal and that the construction may
be applied repeatedly. When Q yields a Q-switching on A, then Q+ yields
a Q-switching on A+. The construction can be described conveniently by a
Khatri-Rao product [56].

A+ =

 1 1 1

1 1 1
1 1 1

 ◦( A11 A12

A21 A22

)
and Q+ =

 1 0 0

0 1 0
0 0 1

 ◦( Q1 0

0 Q2

)
(3.13)

From this description generalizations can be inferred easily.
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Proposition 6. Let Ai ∈ {0, 1}ni×ni be adjacency matrices and Qi ∈ Cni×ni

be unitary matrices, i = 1, 2 and let B ∈ {0, 1}n1×n2 s.t.

Ãi = Q′iAiQi ∈ {0, 1}ni×ni , i = 1, 2, B̃ = Q′1BQ2 ∈ {0, 1}n1×n2 . (3.14)

Let

A =

(
A1 B
B′ A2

)
, Ã =

(
Ã1 B̃

B̃′ Ã2

)
and Q =

(
Q1 0
0 Q2

)
.

Then A and Ã are adjacency matrices and Ã = Q′AQ.

Proof. Exploit (3.14).

If both triples Ai, Qi and Ãi, i = 1, 2, correspond to a Q-switching, then the
choice B = J is always possible. Choosing B to be all ones works also, for
instance, in the case of Q1 = In1 and regular A2 and regular Ã2 which implies
JQ2 = J.
A construction generalizing the previous two is given in the following lemma.

Lemma 2. Let U = {Q1, . . . ,Qk} be an ordered set of unitary matrices of sizes
n1, . . . , nk, respectively. Let A be a set of k2 distinct subsets Aij, 1 ≤ i, j ≤ k.
Let the elements of each subset be ordered pairs of binary rectangular matrices
(Aij, Ãij), both of size ni × nj, s.t. Ãij = Q′iAijQj. Choose any sequence of
numbers of the integer interval [1, k] to form a word ω of length N . Denote the
number at the i-th position of ω by ωi. Let A+ (Ã+) be a block matrix with
block ij of size nωi × nωj , 1 ≤ i, j ≤ N . For all pairs ij choose a matrix pair
in Aωiωj and let Aωiωj (Ãωiωj ) be the matrix block at ij of A+ (Ã+). Replace
the i-th 1 of the diagonal of the identity IN by Qwi and each off-diagonal zero
by a suitably sized all-zero matrix block to form the block diagonal matrix Q+.
Then

Q′+A+Q+ = Ã+. (3.15)

Proof. Since Q+ is block diagonal the ij matrix block of (3.15) is given as
Q′ωi

AωiωjQωj = Ãωiωj , which conforms to the properties of A.

In order to build the sets U and A we may exploit the structure of some known
graph pair as indicated by propositions 5 and 6. Note that U does not have
to be known to construct the pair A+ and Ã+. It is convenient that a pair of
suitably sized zero matrices is always an appropriate element of a set Aij . If all
elements of U are block diagonal with diagonal blocks of the form 2

nJnn − In,
then the set A can be constructed using the properties of Q-switching.
For a more concrete application of the construction consider isospectral pairs(
Ai, Ãi

)
of adjacency matrices of regular simple graphs of sizes Ni, respec-

tively. By hermiticity, regularity and isospectrality there are unitary matrices
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Qi s.t. Ã = Q′iAiQi with Qij = j. Therefore, we can construct A+ and Ã+

by

A+,ii = Ai, Ã+,ii = Ãi and A+,ij = Ãij ∈ {0NiNj ,JNiNj}∀ i 6= j.

Thus, by lemma 2 any according pair of generalized compositions [68] obtained
from a family of isospectral pairs of regular simple graphs is unitary equivalent.

3.3 Algebras of Graph Matrices

This section introduces families of graph matrices generated by the adjacency
matrix, which generalize some well studied examples of such families using
ideas and notation from [24] and [41]. The next three subsections provide
some basic definitions and introduce the closure operators WL0, WL1 and
WL2. The following section gives some properties of the first two algebras
and particularly shows that the construction of lemma 2 can be used to build
graphs which are simultaneous unitary equivalent w.r.t. those algebras.

3.3.1 C-Valued Functions on a Set

Let X be a finite set and let L (X) be the set of C-valued functions on X. Since
C is a C-algebra, L (X) is a C-algebra under pointwise operations. We may
identify L (X) with the vector space C|X| equipped with an additional pointwise
multiplication and entries indexed by the elements of X. The multiplicative
identity1 is given by

j ∈ L (X) , j (x) = 1 ∀x ∈ X.

A subalgebra is called unital if it contains j. A vector v ∈ L (X) can be
interpreted as a coloring of a subset of X, where v (x) = c 6= 0 indicates that
the element x ∈ X belongs to a given subset and is colored with color c and
v (x) = 0 indicates the non presence of x in the given subset. Let V be a
subalgebra of L (X). Let v ∈ V with entries v (x) ∈ {ci} , ci ∈ C, ci 6= ci′ 6=i.
Using

pi (z) =
∏
i′ 6=i

(
z − c′i

)
z

we find a decomposition of v as a linear combination of idempotents, namely
v =

∑
i,ci 6=0 ciei (v) with ei (v) = 1

pi(ci)
pi (v) ∈ V indicating all elements of

X colored with ci 6= 0 by v. The intersection of all those idempotents for all
elements in V gives a unique set of idempotents E = {ei}, |E| ≤ |X|, which
are primitive w.r.t. V and are a basis of V seen as a vector space. We call V
a non excluding subalgebra if ∀x ∈ X ∃ v ∈ V s.t. v (x) 6= 0. By the following
lemma non excluding is equivalent to unital for subalgebras of L (X).

1When we consider the algebra L (X ×X) we will denote the multiplicative identity by J
with J (x, y) = 1 ∀ (x, y) ∈ X ×X for notational convenience.
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Proposition 7. Let V be a subalgebra of L (X). Let E denote the set of
all primitive idempotents w.r.t. V. Let j ∈ L (X) be the constant function
assigning 1 to every element of X. The following properties are equivalent.

• (i) V is non excluding.

• (ii) V contains j.

Proof. ’(ii)⇒(i)’ is obvious. ’(i)⇐(ii)’. Since V is non excluding, there exists
v ∈ V s.t. v (x) 6= 0. Therefore, ∀x there exists a primitive idempotent e ∈ E
s.t. e (x) 6= 0, hence

∑
e∈E e = j.

Let f be the set of all multivariate functions C × . . . × C → C. By (simulta-
neous) pointwise application we extend f to the set of multivariate functions
L (X)× . . .×L (X)→ L (X) on L (X) denoted by fL(X). It is easy to see that
a subalgebra of L (X) is closed w.r.t. fL(X) if and only if it contains j.

Definition 13. Let U ⊂ L (X). Clos (U) denotes the closure of U w.r.t. linear
combination and pointwise multiplication.

Clos (U, j) is closed w.r.t. fL(X) and it is the smallest unital subalgebra of L (X)
containing U. By interpreting the idempotent basis of a unital subalgebra as a
partition of the set X, the lattice of unital subalgebras of L (X) is isomorphic
to the lattice of partitions of X [41, lemma 1.1, p. 210].

3.3.2 Generalized Adjacency Matrix

We now consider the vertex set V (Γ) and the edge set E (Γ) of a graph Γ.
Without any additional partition they constitute the trivial unital subalgebras
of L (V ) and L (E), respectively. A more advanced approach considers the
unital subalgebra of L (V × V ) given by Clos (A,J), where A denotes the
adjacency matrix of Γ and J the multiplicative identity in L (X ×X). The
idempotents are given by A and J−A The spectrum of that algebra, i.e. the
spectra of the matrix realizations of its elements, is basically equivalent to the
spectrum of the generalized adjacency matrix. This matrix algebra is given by
Clos (A, I,J) [46] [30] [80]. The idempotent basis of the generalized adjacency
matrix is given by I, A (Γ) and A

(
Γ̄
)
, where I ∈ L (X ×X) assigns 1 to

the elements of the set {(x, y) |x, y ∈ X,x = y} and Γ̄ denotes the complement
graph of Γ. The generalized adjacency matrix is closely related to the main
spectrum and the main angles [65], which is due to the following result in [80,
contained in theorem 3, p. 4/5,].

Proposition 8. Let Γ1 and Γ2 be a pair of simple graphs with adjacency ma-
trices A (Γ1) and A (Γ2), respectively. The following statements are equivalent.

• Γ1 and Γ2 are isospectral w.r.t. A, have and the same main angles.

• Γ1 and Γ2 are isospectral w.r.t. A and J−A

• There exists an orthogonal Q s.t. QTA (Γ1) Q = A (Γ2) and Qj = j.
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3.3.3 Matrices as Endomorphisms

We can interpret matrices in C|X|×|X| as linear maps acting on L (X). Let
MX be the set of all C-endomorphisms acting on L (X) seen as a vector space.
By interpreting the composition of endomorphisms as a product, MX is a C-
algebra equivalent to the usual matrix algebra of square matrices indexed by
X×X, which is the vector space C|X|×|X| additionally equipped with the usual
matrix multiplication. A subalgebra containing I, the multiplicative identity
on MX , is called unital. We equip L (X) with the usual inner product given
by

〈v,w〉 =
∑
x∈X

v (x)w (x) with v,w ∈ L (X) . (3.16)

The complex conjugated transpose of M ∈MX , denoted by M′, satisfies

〈v,Mw〉 = 〈M′v,w〉 ∀ v,w ∈ L (X) . (3.17)

The matrix M′ defined by (3.17) is also called the adjoint of M.

Definition 14. Let U ⊂MX . WL0 (U) is the smallest (by inclusion) subalge-
bra of MX containing U that is closed w.r.t.

• the complex conjugated transpose.

L (X) can be embedded in MX as the subalgebra DX = D (MX) that is given
by all diagonal matrices. By the bijective map

diag : L (X)→ DX ⊂MX , v 7→ v (x) δxy, x, y ∈ X (3.18)

with inverse
diag−1 : DX → L(X), D 7→ Dj (3.19)

DX is isomorphic to L (X). For convenience we define the following operation:

Definition 15. deg : MX → DX , M 7→ δxy
(∑

z∈X Mxz

)
, x, y, z ∈ X.

Since we can rewrite deg (M) = diag (Mj), deg is the identity on DX . Note
that deg (M diag (v)) = diag (Mv). A subalgebra M ⊂ MX is called closed
w.r.t. fL(X) iff its subalgebra of diagonal matrices seen as a subalgebra of
L (X) is closed w.r.t. fL(X). Therefore,M is closed w.r.t. fL(X) if and only if
it is unital, i.e. contains I.
Concluding this section we introduce the closure operators WL1 and WL2.

Definition 16. Let U ⊂ MX . WL1 (U) is the smallest subalgebra of MX

containing U that is closed w.r.t.

• the complex conjugated transpose

• the function deg.
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Definition 17. Let U ⊂ MX . WL2 (U) is the smallest subalgebra of MX

containing U that is closed w.r.t.

• the complex conjugated transpose

• the Hadamard (i.e. entry-wise) product.

WL2 (U) is a subalgebra ofMX and a subalgebra of L (X ×X). By the identity
deg (M) = I ◦ (M J), WL1 (I,U .J) is a subalgebra of WL2 (I,U ,J). Note that
WL2 (I,U ,J) is a coherent algebra.

3.4 Properties and Constructions

3.4.1 Simultaneous Unitary Equivalence

We aim at constructing pairs of (possibly directed) graphs that are simulta-
neous unitary equivalent w.r.t. families of matrices which are generated by a
subset of {I,A,J}, i.e. the identity w.r.t. the usual matrix multiplication, the
adjacency matrix and the all-ones matrix, by use of the WL0 or WL1 closure.
By the following lemma, which crucially depends on Spechts theorem [70],
isospectrality and unitary equivalence are equivalent notions for those matrix
families.

Lemma 3. Let U be a subset of {I,A,J} where A is an adjacency matrix. Let
k ∈ {0, 1, 2}. Two graphs are isospectral w.r.t. WLk (U) if and only if they are
simultaneous unitary equivalent w.r.t. WLk (U).

Proof. ’⇒’. Simultaneous isospectrality implies simultaneous equality of traces.
Since all three closure operators respect the complex conjugated transpose and
the usual matrix multiplication simultaneous unitary equivalence is implied by
Spechts theorem. ’⇐’. Trivial since unitary transformations preserve the spec-
trum.

We will also exploit the following four lemmas for simultaneous unitary equiv-
alent matrix sets.

Lemma 4. Let U1 and U2 be matrix sets which are simultaneous unitary equiv-
alent by the unitary transformation Q and let J ∈ U1 and J ∈ U2 be corre-
sponding matrices, i.e.

Q′U1Q = U2 and Q′JQ = J,

where J is the all-ones matrix. Then Q can be chosen s.t.

Qj = Q′j = j.
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Proof. Since Q′JQ = J we have JQ = QJ. Multiplication from the left to j
yields (j′Qj) j = (j′j) Qj. Therefore, j is an eigenvector of Q to the eigenvalue
λ = 1

N j′Qj. In a similar way starting from JQ′ = Q′J one shows that j is an
eigenvector of Q′ to the eigenvalue λ̄. By unitarity of Q we have |λ| = 1. Since
Q′U1Q = U2 and |α| = 1, α ∈ C, imply (α′Q′)U1 (αQ) = U2, we may choose
Q s.t. λ = 1.

The next lemma is a kind of converse for the previous one.

Lemma 5. Let U1 and U2 be sets of matrices which are simultaneous unitary
equivalent by the unitary transformation Q with Qj = j. Then WL0 (U1, I,J)
and WL0 (U2, I,J) are simultaneous unitary equivalent.

Proof. It suffices to show that Q′IQ = I and Q′JQ = J. The former is trivial
and the latter follows from j = Qj = Q′j.

Since the transformation guiding a Q-switching has always j as an eigenvector,
we have by lemma 5 that graph pairs obtained by Q-switching are always
simultaneous unitary equivalent w.r.t. WL0 (I,A,J). The next lemma shows
that a certain block structure of simultaneous unitary equivalent matrix sets
induces a block diagonal form for the unitary transformation.

Lemma 6. Let E be an idempotent diagonal matrix, i.e. a matrix with all en-
tries z e r o except possibly some o n e s on the diagonal. Let P be a permutation
s.t. on the diagonal of P′EP from the upper left downwards there are all o n e s
first and then all z e r o s. Let U1 and U2 be simultaneous unitary equivalent
by the unitary transformation Q and let E ∈ U1 and E ∈ U2 be corresponding
matrices, i.e.

Q′U1Q = U2 and Q′EQ = E.

Then P′QP is an explicitly 2 × 2 block diagonal matrix with upper left block
given by P′EQEP.

Proof. After applying a suitable simultaneous permutation at the rows and
columns of the elements of U1 and U2 the matrix E has the desired form.
Thus, w.l.o.g. we may assume P = I for the rest of this proof. Let

E1 = E , E2 = I−E and Qij = EiQEj , 1 ≤ i, j ≤ 2.

We have
Q′EQ = E = QEQ′.

It follows from the left-hand side that Q12 = 0 and Q′11Q11 = I and from the
right-hand side that Q21 = 0 and Q′22Q22 = I.

There is a much less restrictive sufficient condition for the unitary transforma-
tion to be block diagonal (after suitable permutation) as can be seen from the
following remark, which is given without proof.
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Remark 1. Let Ui, i = 1, 2, and Q be as in lemma 6 and let Xi ∈ Ui, i = 1, 2,
s.t. X2 = Q′X1Q. Let Xi be conformally partitioned 2× 2 block matrices s.t.
all blocks are zero except the upper right diagonal block which has full rank.
Then Q is block diagonal conformable to the partition of X1/2.

Lemma 7. Let U1 and U2 be sets of matrices which are simultaneous unitary
equivalent by the unitary transformation Q. Let Q be block diagonal. Let the
block structure of Q be described by the partition Π with cells ci. Let Ei be a
binary diagonal matrix which has entry 1 at position vv if and only if v ∈ ci.
Then WL0 (U1,Ei) and WL0 (U2,Ei) are simultaneous unitary equivalent.

Proof. It suffices to show that Q′EiQ = Ei which follows from the properties
of Q and Ei.

3.4.2 WL0-Closure

We consider the subalgebra of WL0 (I,A,J) which is generated by linear com-
binations of all nonnegative powers of A. At least for undirected graphs it is
known as the adjacency algebra [7, definition 2.4, p. 9] [6, section 6.2, p. 70].
Since Al

ij gives the number of directed walks of length l from node i to node
j [20, theorem 2.2.1, p. 24], we have [85, theorem 2.1, p. 3]

Proposition 9. Let Γ be a digraph with at least two nodes and adjacency ma-
trix A. ∃f (x) ∈ C [x] s.t. f (A) is positive if and only if Γ is strongly connected.
WL0 (A) contains a positive matrix if and only if Γ is weakly connected.

Proof. ’⇒’. If Γ is not strongly connected, then A is reducible. Therefore,
all nonnegative powers of A and also their linear combinations are also re-
ducible, hence there is at least one position which is always zero. If Γ is not
weakly connected, then A is proper block diagonal and hence all elements of
WL0 (A) are proper block diagonal.’⇐’. If Γ is strongly connected, then by
the Perron-Frobenius theorem A has a unique (up to scaling) pair of a positive
left-eigenvector v and a positive right-eigenvector w corresponding to the same
simple positive eigenvalue. Since the eigenvalue is simple, there is a polynomial
f s.t. f (A) = wv′. The Perron-Frobenius theorem can be employed similarly,
when Γ is weakly connected since then (A + A′) is irreducible.

The next result is due to Hoffman [42].

Proposition 10. Let Γ be a digraph of at least two nodes with adjacency matrix
A. ∃ f (x) ∈ C [x] s.t. f (A) = J if and only if Γ is strongly connected and A
is row and column regular.

Proof. Let N be the number of nodes of Γ. ’⇒’. By proposition 9, Γ is
connected. Since J is a polynomial in A, both matrices commute. Since
JAj = (j′Aj) j, AJj = NAj is a constant vector, hence A is row regular.
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The column regularity is proved similarly. ’⇐’. By regularity j′ and j are left-
eigenvector and right-eigenvector, respectively, to the same eigenvalue 1

N j′Aj.
By Perron-Frobenius this eigenvalue is simple since all entries of j are positive.
Therefore, there is a polynomial f (x) ∈ C [x] s.t. f (A) = jj′ = J.

By proposition 9, J ∈WL0 (A (Γ)) implies that Γ is weakly connected, but it
does not imply regularity. A counterexample is the directed graph with two
nodes connected by a single arc with adjacency matrix

(
0 1
0 0

)
, which generates

the whole 2× 2 complex matrix algebra. However, weakly connectedness does
not imply J ∈ WL0 (A (Γ)). Counterexamples are all non regular connected
undirected graphs according to proposition 10.
Unitary equivalence w.r.t. WL0 (I,A,J) implies unitary equivalence w.r.t.
WL0 (I,A), since the latter is a subalgebra of the former. The converse holds
for regular connected undirected graphs by proposition 10 but is not true in
general.

Construction Using lemmata 2, 4 and 5 we can build a pair of graphs which
are simultaneous unitary equivalent w.r.t. WL0 (I,A,J) when another graph
pair with that property is provided. We give an example.
Let Γi, i = 1, 2, be graphs of size N which are simultaneous unitary equivalent
w.r.t. WL0 (I,A,J) by the transformation Q, which does not have to be known
explicitly. According to lemma 2 consider the 9 sets Aij , 1 ≤ i, j ≤ 3, with

Aij =
{

(F (Γ1) ,F (Γ2)) |F ∈WL0 (I,A,J) and F
(
Γ1/2

)
binary

}
,∀1 ≤ i, j ≤ 2,

A13 = A23 = {(0Nn,0Nn) , (JNn,JNn)} ,A31 = A32 = {(0nN ,0nN ) , (JnN ,JnN )}

and arbitrary set A33 of pairs of identical n × n binary matrices. The graph
pair with adjacency matrices

(
A+, Ã+

)
, which are obtained by choosing an

element of Aij for all 1 ≤ i, j ≤ 3 according to lemma 2, is simultaneous
unitary equivalent w.r.t. WL0 (I,A,J). By lemma 4 the unitary matrix

Q+ =

 Q 0 0
0 Q 0
0 0 In


satisfies Q+j = j.
The sets Aij , 1 ≤ i, j ≤ 2 contain e.g. (J−A (Γ1)− I,J−A (Γ2)− I) and
(A (Γ1) ,A (Γ2)). The sets A13 and A23 (A31 and A32) can be extended by all
pairs of binary matrices of size N ×n (n×N) which are related via left (right)
multiplication of Q.
An extension to the utilization of families of graph pairs that are isospectral
w.r.t. WL0 (I,A,J) is straightforward.
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3.4.3 WL1-Closure

We start with a basic proposition.

Proposition 11. Let Γ be a digraph with at least two nodes and with adjacency
matrix A. WL1 (A) contains I if and only if Γ has no isolated nodes.

Proof. ’⇒’. If G contains isolated vertices, then Γ is disconnected and A is
block diagonal. Since WL1 (A (K1)) ≡ 0, I 6∈ WL1 (A).’⇐’. If Γ contains no
isolated vertices, then deg (A + A′) has no zero diagonal element. Therefore
its determinant is not zero, and by use of its characteristic polynomial and
the Cayley-Hamilton theorem I is contained in the span of positive powers of
deg (A + A′).

The following lemma shows the strong relation between the WL1 algebra and
equitable partitions.

Lemma 8. The idempotent orthogonal basis for the subalgebra of diagonal
matrices of WL1 (I,A,J) (WL1 (I,A)) indicates the coarsest row and column
equitable partition of a digraph Γ with adjacency matrix A.

Proof. We consider WL1 (I,A,J). The case WL1 (I,A) is proven similar. Let
the subalgebra of diagonal matrices be denoted with D (WL1 (I,A,J)). Let
the idempotent orthogonal basis be denoted with

E = {Ei} ⊂ D (WL1 (I,A,J)) ⊂WL1 (I,A,J) ,

which has the property
∑

i Ei = I. If E does not indicate a row equitable
partition of an arbitrary matrix M ∈ WL0 (I,A,J), then there is a pair ij
s.t. deg (EiMEj) ∈ D (WL1 (I,A,J)), which is orthogonal to Ei′ 6=i, is not a
multiple of Ei. That contradicts E being a basis of the diagonal subalgebra.
Therefore, the idempotent basis E indicates a row equitable equitable parti-
tion. The same argument applies for column equitability.
Now, let E indicate a row and column equitable partition of A, which is equiva-
lent to deg (EiAEj) being a multiple of Ei and deg (EjA

′Ei) being a multiple
of Ej ∀i, j. It is easy to see that E indicates a row and column equitable
partition for J and for any matrix in the span of E . By induction the same
partition is row and column equitable for all M ∈ WL1 (E ,A,J) since this is
true for the generating set. Therefore, equitable partitions E are stable in the
following sense. If and only if E indicates an equitable partition, then it is an
idempotent basis for the diagonal subalgebra of WL1 (E ,A,J).
Finally, let E be the coarsest row and column equitable refinement of I. Then
WL1 (I,A,J)=WL1 (E ,A,J) as an equivalence of sets.

We now give a version of proposition 10 for the WL1-closure.

Proposition 12. Let Γ be a digraph with adjacency matrix A. WL1 (A) con-
tains J if and only if Γ is strongly connected.
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Proof. ’⇒’. If Γ is not strongly connected, then A is proper block diagonal, and
therefore all matrices in WL1 (A) are proper block diagonal, which contradicts
J ∈ WL1 (A). ’⇐’. By proposition 11, I ∈ WL1 (A). Let E = {Ei} be a set
if idempotent diagonal matrices indicating the coarsest equitable partition of
A. By lemma 8 we have E ⊂ WL1 (A). Let M =

∑N
n=1 An. E also indicates

an equitable partition of M. Let

Mij = EiMEj and Mijj = mijEij.

Since Γ is strongly connected, M is positive, hence mij > 0 ∀i, j. Therefore,
mii is a simple eigenvalue of Mii with unique eigenvector Eij by the theorem
of Perron-Frobenius2, hence WL1 (A) contains EiJEi. And since

1

mij
EiJEiMijEjJEj = EiJEj 6= 0,

we have J =
∑

ij EiJEj ∈WL1 (A).

Lemma 9. Let Γ1 and Γ2 be a pair of graphs with coarsest column and row
equitable partition Π1 and Π2, respectively. Then Γ1 and Γ2 are simultaneous
unitary equivalent w.r.t. WL1 (I,A,J) if and only if there is a suitable indexing
of Γ1 and Γ2 s.t. Π1 = Π2 = Π with equal front divisors and there is a unitary
matrix Q with Qj = j s.t.

A (Γ2) = Q′A (Γ1) Q

which is block diagonal when partitioned conformable with Π.

Proof. ’⇒’. Let E = {Ei} be the idempotent basis for the diagonal subalge-
bra of WL1 (I,A,J) and let Q be the simultaneous unitary transformation.
According to lemma 8, E (Γ1) and E (Γ2) can be obtained by applying Π1

and Π2 to I. Since E is an idempotent basis and since deg (E) − E = 0
for each element E ∈ E (Γ1), we have Q′E (Γ1) Q ⊂ E (Γ2) and by exchange
of Γ1 and Γ2, Q′E (Γ1) Q = E (Γ2). Therefore, there is an indexing s.t.
E (Γ1) = E (Γ2) ∀E ∈ E . By lemma 6 Q is block diagonal w.r.t. the partition
Π indicated by the set E . Since Π is row and column equitable, corresponding
matrix subblocks of A (Γ1) and A (Γ2) have constant row and column sum,
which must be equal by isospectrality. Therefore, Q can be chosen s.t. Qj = j.
’⇐’. Since Qj = j we have Q′JQ = J. Let E = {Ei} be a set of idempo-
tent diagonal matrices indicating Π and let Γ1 and Γ2 be indexed w.r.t. Π.
Since Π is equitable, deg (X) is a linear combination of E for each element
X ∈WL1 (I,A,J) by lemma 8. Therefore and since Qj = j,

deg
(
Q′XQ

)
= deg (X) ∀X ∈WL1 (I,A,J) .

Thus, Γ1 and Γ2 are simultaneous unitary equivalent w.r.t. WL1 (I,A,J) by
the transformation Q.

2Although Mii is reducible when Ei 6= I, but it contains only one non vanishing irreducible
diagonal block, which is all positive.
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Construction Analogous to the example at the end of the last subsection we
can build a pair of graphs which are simultaneous unitary equivalent w.r.t.
WL1 (I,A,J) when another graph pair with that property is given. Using
lemma 9 we can also exploit the coarsest equitable partition of such a pair to
obtain smaller graphs by the removal of cells.

Further Properties The algebra WL1 (I,A,J) is sufficient to distinguish all
trees by spectrum, i.e. there are no trees isospectral w.r.t. WL1 (I,A,J) [59],
and it contains several well known graph matrices. For instance,

• the adjacency matrix for the complement: J−A− I

• the Seidelmatrix: J− 2A− I

• the combinatorial(-) and signless(+) Laplacian: deg (A)±A

• the normalized Laplacian: I− (deg (A))−1 A

The latter one makes use of fL(X). Thus, lemma 2 and lemma 9 provide
constructions for graph pairs which are unitary equivalent (isospectral) w.r.t.
those graph matrices. However, the existence of at least one graph pair which
is non isomorphic but simultaneous unitary equivalent w.r.t. WL1 (I,A,J) is
required to prevent triviality. This is done by the following proposition.

Proposition 13. Any pair of isospectral regular simple graphs is WL1 (I,A,J)-
isospectral.

Proof. Since the adjacency matrices of simple graphs are self adjoint (symmet-
ric), they can be diagonalized by unitary transformations. Therefore, they are
unitary equivalent. By regularity both graphs have the same eigenvalue r to
the shared eigenvector j. From that it follows that the unitary transformation
between both matrices must commute with J.

Examples of isospectral regular simple graph pairs are well known, e.g. [20].

3.4.4 WL2-Closure

For the extension to the coherent algebra WL2 (I,A,J) one has to consider
that this algebra seen as a vector space has a basis which is orthogonal and
idempotent w.r.t. the point-wise product and contains diagonal matrices which
sum up to I. This subset indicates a partition which is obeyed by all basis
elements [41]. Therefore the simultaneous unitary transformation between two
coherent algebras must be a bijective map between the two bases and also
between the diagonal subsets of the bases. It is therefore block diagonal and has
(as a matrix) a constant eigenvector. Examples of how this properties can be
used to construct graphs simultaneous unitary equivalent w.r.t. WL2 (I,A,J)
can be derived from the direct sum and the wreath product in [24, G 2.1, p. 42
and G 4.1, p. 45].
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3.4.5 Combined Graph Matrices

We conclude this chapter with the following theorem

Theorem 8. Let A (Γ) denote the adjacency matrix of a digraph Γ. Let E (Γ)
denote a set of binary diagonal matrices which sum up to I and indicate the
coarsest equitable partition of Γ, and let B (Γ) denote the idempotent orthogonal
(w.r.t. point-wise product) basis of its coherent closure WL2 (I,A,J). Let Γ1

and Γ2 be two digraphs. The simultaneous unitary equivalence of Γ1 and Γ2

w.r.t. WLk (I,A,J) is equivalent to the simultaneous equivalence of the set

• {A,J} for k = 0,

• {E ,A,J} for k = 1,

• B for k = 2.

Proof. ’k = 0’. The algebra can be generated by {I,A,J,A′} using only matrix
product and linear combination. Unitary equivalence w.r.t. A is equivalent to
unitary equivalence w.r.t. A′ and that w.r.t. I is trivial. ’k = 1’. According to
(8), the algebra can be generated by multivariate polynomials in {E ,A,A′,J}
and unitary equivalence w.r.t. A implies that of A′. ’k = 2’. Obvious, since
B is a basis.

Using a result from [29] those sets may be combined into a single matrix. The
unitary equivalence w.r.t. this matrix is equivalent to the unitary equivalence
of the corresponding algebra. For instance, in the case of WL0 (I,A,J) we
may consider the unified graph matrix

0 I J A
0 0 I 0
0 0 0 I
0 0 0 0

 .
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