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Referat: In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des
Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buch-
holz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden
verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer
gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative
Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf
gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann
eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörun-
gen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung
durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hin-
tergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht über-
prüft.
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1. Introduction

The description of the very early stages of development of the universe is an intricate
problem in theoretical physics. Due to the expansion of the universe it is clear that
general relativity is necessary to describe spacetime, while the very high energy
density in the early universe calls for a description of matter in terms of quantum
field theory. The field of cosmology has therefore been and continues to be a major
source of progress in the development of quantum field theory on curved spacetimes
as a theoretical tool.

Since the discoveries of some peculiar effects, most prominently the Hawking and
Unruh effects and cosmological particle creation it has been clear that quantum
field theory on curved spacetime yields genuinely new results in comparison to
standard quantum field theory on flat spacetime. On a theoretical level however
also genuinely new problems arise. In standard quantum field theory a wealth of
states with well understood physical meaning has been characterised. This is linked
to two circumstances which are absent in quantum field theory on curved spacetime.
Firstly, there is a unique Poincaré invariant state called the vacuum and secondly the
states in the vacuum Fock space can be understood in terms of a well defined particle
interpretation. In quantum field theory on curved spacetimes no Poincaré symmetry
exists and the effect of cosmological particle creation shows that particle number is
no longer a concept strictly linked to a state, which makes particle interpretation on
general spacetimes ambiguous as a whole.

In standard quantum field theory a treatment of quantum fields and states in
terms of the vacuum Fock space is common. However, limitations of the Fock space
formalism become apparent not only on curved spacetimes, but also in the context of
thermodynamics. The theoretical framework of statistical physics derives macroscopic
thermodynamics from the underlying microscopic theory and has been very successful
in doing so. However, the attempt to reconcile statistical physics with quantum
field theory leads to a problem. The principal object defining a state in terms of
statistical physics is the density matrix which is a well defined object on a quantum
mechanical Hilbert space of countable dimension and thus for quantum systems in a
finite volume. Thermal equilibrium is described by Gibbs density matrices which act
on the vacuum Fock space for a quantum field theory. Taking the thermodynamic
limit of infinite volume causes the trace of Gibbs density matrices to diverge which
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1. Introduction

means that the thermodynamic limit does not lead to a well defined state in the
vacuum Fock space.

The simplest cosmological models that are usually taken as a starting point for
cosmological investigations are the Friedmann-Robertson-Walker spacetimes, where
the basic models are simply fluid dynamical and the thermodynamical models. As
the energy density in the early universe is very high, a high temperature is to be
expected and therefore a treatment of matter in terms of thermal quantum field
theory seems to be in order. Because of this the theoretical treatment of cosmology
is also afflicted by the limitations of the vacuum Fock space formalism of quantum
field theory.

Standard treatments of the cosmology of the very early universe circumvent the
obstacles outlined above by following a rather heuristic and ad hoc procedure. The
problem of thermal quantum field theory is usually avoided altogether and a Hilbert
space treatment is applied without a proper definition of its context. The present
work will take a different route by sticking to a clear mathematical framework and
using mathematical tools designed specifically for the treatment of thermal quantum
field theory in curved spacetimes. In the course of this investigation the fitness of
these tools for the treatment of physical problems as well as the validity of certain
standard procedures applied in the standard literature on cosmology of the very
early universe will be reflected.

To overcome the limitations of the vacuum Fock space approach to quantum field
theory the algebraic approach to quantum field theory has turned out to be successful.
In this context the fundamental objects of interest are not field operators and density
matrices on a Fock space but an abstract algebra of observables and states on this
algebra, which are given by positive normalised functionals. There is a well defined
connection between the algebraic treatment and the vacuum Fock space picture, in
the case of Minkowski spacetime. In this sense algebraic quantum field theory can be
seen to embody the standard approach to quantum field theory. However, algebraic
quantum field theory goes considerably beyond the vacuum Fock space approach
in that thermodynamic equilibrium states in the thermodynamic limit are included
in the extended set of states on the algebra of observables. It also shows that the
vacuum Fock space is in no way unique. For any state on the algebra there is a
Hilbert space representation where the state is represented as a cyclic vector and for
many states the Hilbert space of this representation is a Fock space.

On the other hand the large state space in algebraic quantum field theory leads
from the problem of a scarcity of states to the opposite problem of an excess of
states. Many states that are valid from the algebraic point of view can be regarded
as unphysical for various reasons. Some states do not even admit n-point functions
while the n-point functions of others have unacceptable singularity structure. The
investigation of suitable restrictions for physically acceptable states is therefore an
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ongoing endeavour. A related question, especially for quantum field theories on
curved spacetimes, is the question of physical interpretation and classification of
states. The present work will be heavily concerned with this question, especially
with the identification of suitable thermal states on curved spacetimes.

States of thermodynamic equilibrium in Minkowski spacetime are defined by a
certain transformation behaviour of expectation values under time translation, the
KMS condition. For the KMS condition to be well defined, the time translations
must induce a one-parameter group of automorphisms on the algebra of observables
which is the case if and only if they are a symmetry of the field theory. This is
generically the case if they are a one-parameter group of isometries of spacetime,
which holds true for static spacetimes. For quantum field theories on non-stationary
spacetimes, time translations do not generically induce automorphisms on the algebra
of observables which implies that KMS states cannot generically be defined.

The universe is known to expand, which means that spacetimes in cosmological
models are non-stationary. Therefore, the impossibility to define KMS states on these
spacetimes is relevant to the present work. As an illustration why global thermal
equilibrium states cannot be expected to exist in an expanding spacetime, one may
consider a universe filled with electromagnetic radiation with a black body intensity
spectrum. The expansion of spacetime causes a redshift of the radiation, which
implies a change of temperature linked to the black body spectrum. A similar effect
is to be expected in the quantum treatment, which means that a thermal equilibrium
state with the same temperature in the whole spacetime is no appropriate model for
an expanding universe.

Therefore, a concept of thermality is needed which implements the possibility
of different temperature at different spacetime points. A concept of local thermal
equilibrium states, which are designed to be as similar as possible to KMS states
while allowing temperature to vary in spacetime has been developed for Minkowski
spacetime by [11]. The class of states identified in that work were dubbed local
thermal equilibrium, or LTE, states. A straight forward generalisation of this class
of states to general spacetimes has been proposed in [40] and [13] and worked out in
more detail in [42]. The states described in those works are conventionally called
extrinsic LTE states and some interesting results could be achieved for these states,
e.g. in [43], where they were shown to satisfy quantum energy inequalities.

The present work will investigate extrinsic LTE states and the LTE concept in
general in the context of cosmology of the early universe. The cosmological model
treated here sticks close to the derivation of the temperature perturbations in the
cosmic microwave background via cosmological perturbation theory. The temperature
fluctuations of the cosmic microwave background are derived from the quantum state
of perturbations during inflation and the fact that the observed spectrum fits the
observations well is regarded as a major confirmation of the concept of inflation.
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1. Introduction

This model appears to be an ideal test case for thermal quantum field theory on
curved spacetime and especially LTE because on the one hand it is rather simple
such that a scalar field model suffices for the most part and on the other hand it
leads to a non-trivial thermal state which offers the possibility to test the descriptive
power of concepts of local thermality.

The investigation of the LTE concept in the present work will not be limited to the
cosmological scenario but some additional questions will be considered. Especially
the question whether the extrinsic LTE concept is applicable to spacetimes with a
different topology of the space-like hypersurface is investigated.

Another topic the present work will make contact with is the work on “super-
statistics” (e.g. [2]) in statistical mechanics where seemingly non-standard statistics
emerging from a mixture of thermodynamic equilibrium states with different temper-
atures are investigated. As such mixtures of thermal equilibrium states occur very
naturally in quantum theory, it seems that quantum theory provides a motivation for
an in depth investigation of superstatistics. The interpretation of thermal observables
as random fields which is common in cosmological perturbation theory as well as
superstatistics is also natural for LTE states and will therefore be implemented in
the present work. The question whether there is a prescription to decide if the
statistics given for some model stem from a mixture of states with generic Bose or
Fermi statistics translates to the question of identifying mixtures of KMS states in
quantum field theory. Having such a method would be very valuable especially for
the treatment of thermal quantum field theory on curved spacetimes. Therefore, this
question will be addressed in the present work.

All the investigations on the topic of LTE states in the present work are related to
the question of the connection between microscopic and macroscopic observables in
thermal quantum field theory as an overarching topic. The extrinsic LTE condition
contains a macroscopic interpretation of microscopic observables which will be
investigated in the present work. The general difficulty of identifying a suitable
connection between microobservables and macroobservables implies a considerable
obstacle for alternatives to the extrinsic LTE concept. This point will be briefly
discussed.

The present work is organised in three chapters. In Chapter 2 the necessary
technical background for the following work is assembled. It does not contain
significant original work, however the presentation is in many cases adapted to the
requirements of the present work. Chapter 3 contains a discussion of the LTE concept,
the focus lying on the extrinsic LTE condition for curved spacetimes. Several models
are investigated and some considerations towards an extension or alternative to the
extrinsic LTE concept are proposed. In chapter 4, the last major chapter parts of
cosmological perturbation theory are discussed from a technical point of view and
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also in the light of the LTE concept. The work closes with conclusions and outlook.
Some rather technical proofs are deferred to appendix A.

It is customary to use the first person plural in scientific works, even those written
by a single author. The present work will conform with this tradition, however a
brief reflection on the implication seems in order. The plural should not be mistaken
as a pluralis auctoris that is meant to imply agreement with the reader. Instead,
by using the plural, I wish to acknowledge first the work of others, on which my
work is founded and without which it would have been impossible, and second the
discussions with and creative input by many other researchers, without which many
of the ideas in this work might never had fallen into place. In summary, the use of
“we” should be understood as a reference to the inherently collective character of
scientific research.
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2. Technical Background

This chapter contains a description of the technical background on which this work is
founded. We will start with the construction of the free scalar quantum field theory
on a general globally hyperbolic spacetime. Relying on the principles of algebraic
quantum field theory we will especially focus on the locally covariant framework for
quantum field theory and local observables. A brief discussion of quantum states
and state spaces will be conducted and it will be explained how they fit into the
general covariant framework.

Next we will explain the concept of local thermal equilibrium states in flat space-
time. The subsequent description of the concept of local thermality developed for
cosmological spacetimes will be complemented by a reflection on the local covariance
principle.

The last part of this chapter constitutes an introduction to the formalism of
cosmological perturbation theory. As this formalism is a highly developed technical
tool that must be properly introduced to render even the notation of this work
understandable, it is inevitable that the corresponding section is rather lengthy while
not containing original results. We use units where ~ = c = kB = 1.

2.1. The Free Scalar Field on a Globally Hyperbolic
Spacetime

2.1.1. Construction of the Scalar Field

Our treatment in this section is generic and contains no new results. We follow
especially closely the treatment in [42] as we work in the same basic setting. We
consider a spacetime described by a four-dimensional, smooth and oriented semi-
Riemannian manifold (M, g) where the metric tensor g has the so-called Lorentzian
signature (+ − −−). As the existence of other connected components does not
influence the physics in one connected component we assume for simplicity that the
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2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime

spacetime be connected. As usual, all curvature quantities will be the ones derived
from the unique Levi-Civita connection. We furthermore define

Rρ
λµν = ∂µΓρνλ + ΓρµτΓτλν − ∂νΓ

ρ
µλ − ΓρντΓτλµ

Rµν = Rλ
µλν ,

where Γ are the usual Christoffel symbols of the Levi-Civita connection. Our sign
conventions corresponds to (−+ +) according to the scheme of [30] which implies
the following signs in the Klein-Gordon operator and the Einstein equation.

Pm,ξ = �+m2 − ξR = gµν∇µ∇ν +m2 − ξR

Gµν = 8πTµν .

To have a unique notion of future and past, the spacetime is furthermore required
to be time oriented.

Definition 2.1.1.
A Lorentzian manifold (M, g) is called time orientable if there exists a globally
defined smooth time-like vector field tµ, i.e. ∀p ∈M : g(p)(t, t) = gµν(p)tµ(p)tν(p) >
0. A time-like vector v ∈ TpM is called future oriented if g(p)(t, v) > 0.

In order for the Cauchy problem to be well-posed we require the spacetime to be
globally hyperbolic.

Definition 2.1.2.

• A smooth curve c : R ⊃ I → M is called a causal curve if ∀s ∈ I :
g(c(s))(ċ(s), ċ(s)) ≥ 0.

• A point p ∈M is called an endpoint of the curve c if for every neighbourhood
U of p there exists an s0 such that c(s) ∈ U either for all s > s0 or for all
s < s0.

• A causal curve is called inextendible if it has no endpoint.

• A hypersurface Σ ⊂M is called a Cauchy surface if it is intersected exactly
once by every inextendible causal curve.

• A spacetime (M, g) is called globally hyperbolic if it contains a Cauchy surface.
It is then time orientable and diffeomorphic to Σ× R as shown in [3].
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2. Technical Background

From the requirement that the spacetime be globally hyperbolic it follows from
Leray’s theorem (e.g. [1]) that there are uniquely determined distributional advanced
and retarded fundamental solutions E± to the Klein-Gordon operator Pm,ξ = �+
m2 − ξR with m, ξ ∈ R+

0 .

∀f ∈ C∞0 (M) : Pm,ξE
±f = E±Pm,ξf = f

supp(E±f) ⊂ J±(supp(f))

From these advanced and retarded fundamental solutions we can derive the
antisymmetric fundamental solution E = E+−E−, sometimes called the “commutator
function”, which is needed to axiomatise the scalar field. This distribution can be
interpreted as an antisymmetric bilinear form on C∞0 in the usual way

E(f, g) :=
∫
M

f(x)(Eg)(x)dgx

where dgx denotes the volume element corresponding to g. By definition E obviously
is a distributional bisolution to the Klein-Gordon equation

∀f ∈ C∞0 (M) : Pm,ξEf = EPm,ξf = 0

which implies E(f, Pm,ξg) = E(Pm,ξf, g) = 0.

Now we can define what we mean by a free scalar quantum field on a globally
hyperbolic spacetime.

Definition 2.1.3.
For f ∈ C∞0 (M) the symbols φ(f) with the following properties

• Linearity: ∀f, g ∈ C∞0 (M), α ∈ C : φ(αf + g) = αφ(f) + φ(g)

• Hermiticity: φ(f)∗ = φ(f)

• Klein-Gordon equation: φ(Pm,ξf) = 0

• Commutation relations: [φ(f), φ(g)] = −iE(f, g)1

together with the identity generate a unital *-algebra A(M, g) over C. In this context
the symbol φ is called a free scalar quantum field.

We will not concern ourselves with the construction of a Hilbert space as is done
in [49] thus the φ(f) are up to now formal symbols that are not yet given any
mathematical or physical meaning.
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2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime

2.1.2. Algebra of Wick Products

To give mathematical meaning to the symbols φ(f) it is customary to define some
topological *-algebra, the Hermitian elements of which can be interpreted as observ-
ables. An algebra which is often considered is the Weyl algebra described in [49],
which can be interpreted as generated by exponentials of the φ(f), the so called
Weyl symbols. This algebra has the additional property that it is a C∗-algebra which
allows the application of highly developed formalism.

We will however need an algebra whose elements are closer to the concept of
n-point functions, as such observables turn out to fit for the description of local
thermality. To make precise the type of objects that should comprise our algebra
we must take a detour and look for states in which we can define appropriately
regularised n-point functions. To permit such an investigation it is useful to start
from the unital *-algebra A(M, g) generated by the symbols φ(f) and the identity
as defined above. Compared to the Weyl algebra this algebra has the drawback that
Hilbert space representatives of the φ(f) are usually unbounded and one has no
preferred choice of topology. We will see that the algebra we are looking for is an
enlargement of A(M, g).

Definition 2.1.4.
A continuous linear functional ω : A(M, g)→ C on a topological *-algebra A(M, g)
is called a state if it fulfils

• Normalisation: ω(1) = 1

• Positivity: ∀A ∈ A(M, g) : ω(A∗A) ≥ 0

If no topology is chosen, the continuity requirement is dropped.

For later use we remark the following connection between states and representations
of the algebra.

Theorem 2.1.5. (GNS construction)
Let A(M, g) be a *-algebra and ω : A(M, g)→ C a state. Then there is a Hilbert
space Hω, a representation πω : A(M, g)→ (Hω) (where L (Hω) denotes the linear
operators on Hω) and a vector |Ψω〉 ∈ Hω such that

∀A ∈ A(M, g) : ω(A) = 〈Ψω|πω(A) |Ψω〉 (2.1.1)

and {πω(A) |Ψω〉 |A ∈ A(M, g)} is a dense subspace of Hω, i.e. |Ψω〉 is cyclic.
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2. Technical Background

For any second triple (H′ω, π′ω, |Ψ′ω〉) fulfilling equation (2.1.1) there is an isometric
isomorphism U : Hω → H′ω with

∀A ∈ A(M, g) : π′ω(A) = UπωU
−1 (2.1.2)

|Ψ′ω〉 = U |Ψω〉 . (2.1.3)

For definiteness we call two representations related by (2.1.2) and (2.1.3) strongly
unitarily equivalent while representations related only by (2.1.2) will simply be called
unitarily equivalent.

A state is uniquely determined by the set of its n-point functions

W ω
n (f1, . . . , fn) := ω(φ(f1) . . . φ(fn))

where these objects can in principle have unacceptable properties. The first restriction
we therefore impose on states is that the n-point functions be distributions in all
their arguments.

The next restriction is largely a matter of simplifying the treatment. From
the commutation relation one sees that the part of the n-point functions that is
antisymmetric under the transposition of arguments is fixed. The symmetric parts
of the n-point functions can be understood in a very similar way to moments of
a probability distribution. It is well known that the only types of probability
distributions that are determined only by a finite number of non-vanishing cumulants
are linear and Gaussian distributions. In the present work, we will mostly restrict to
Gaussian states, also called quasifree states, with vanishing one-point function; these
states are uniquely determined by their two-point functions.

The requirement that the two-point function be a bidistribution does not enforce
a degree of regularity that is sufficient for our treatment. As we want to consider an
algebra of appropriately regularised n-point functions we want to restrict to states
with similar singularity structure. The singularity structure should be compatible
with the one of the Minkowski vacuum. In a heuristic, physical sense the restriction
we have in mind can be thought of as restricting the “short-distance” or “ultraviolet”
behaviour of the two-point function. In a deeper sense it can be seen as a supplement
for the spectrum condition that is implemented on Minkowski spacetime. On the
mathematical level the condition can be linked to the microlocal description of
singularities. This latter view is not suitable for the type of very explicit calculations
aimed at in the present work, therefore we will stick to the older yet in our case more
useful treatment of the singularity condition.

First we will need some additional geometric apparatus.
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2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime

Definition 2.1.6.
For a point x ∈M let expx : TxM→M be the exponential map. For any point there
is a star-shaped neighbourhood on which expx is a diffeomorphism. Let Ñ ⊂ TxM
star-shaped such that for all y ∈ Ñ the restriction expx |Ñ is a diffeomorphism. Then
N = expx(Ñ) is called a convex normal set and for any two points from this set
there is a unique geodesic connecting them.

A globally hyperbolic manifold is not in general a convex normal set but any point
in any smooth semi-Riemannian manifold has a convex normal neighbourhood [32].

Definition 2.1.7.
Let N ⊂M be a convex normal set and x, y ∈ N . Then

σ(x, y) := g(y)
(
exp−1

y (x), exp−1
y (x)

)
= g(x)

(
exp−1

x (y), exp−1
x (y)

)
is called the squared geodesic distance.

The symmetry of σ stems from the definition of the exponential map, its smoothness
(on N×N) in both arguments is obvious from the smoothness of all functions involved
in its definition. As our metric is Lorentzian σ will vanish if x and y are light-like
related. To avoid problems connected to this fact, we define

σε(x, y) := σ(x, y) + 2iε (T (x)− T (y)) + ε2

where T is a globally defined time function whose existence is guaranteed by the
time orientability of (M, g).

Now we can introduce a distribution that characterises the singularity behaviour
we want to restrict to

Definition 2.1.8.

• The Hadamard parametrix to order k ∈ N is given by

Hk,ε(x, y) := v−1(x, y)
σε(x, y) + 1

L2

k∑
j=0

vj(x, y)
(
σ(x, y)
L2

)j
ln
(
−σε(x, y)

L2

)

where L is a free parameter defining a length scale and the vj(x, y) are given
by the recursion

2gµν(∇µσ)(∇νvj+1) + (�σ + 4j)vj+1 = −L2

max(0, j) + 1Pm,ξvj

with initial conditions v−2(x, y) = 0 and v−1(x, x) = 1.
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• A state ω is called a Hadamard state if

∀N ⊂M convex normal, k ∈ N ∃Rω
k ∈ Ck(N ×N) ∀ f, g ∈ C∞0 (N)

W ω
2 (f, g) = lim

ε→0+

1
4π2 (Hk,ε(f, g) + Rω

k (f, g))

where functions are interpreted as distributions in the usual way.

To define an enlarged algebra containing Wick products we refer to the definition
of [9]. Taking the GNS representation corresponding to a Gaussian Hadamard state
ω, we define

: φ(f) :ω=πω(φ(f))

: φ(f1) . . . φ(fn+1) :ω= : φ(f1) . . . φ(fn) :ω πω(φ(fn+1))

−
n∑
j=1

: φ(f1) . . . φ̂(fj) . . . φ(fn+1) :ω W ω
2 (fj, fn+1). (2.1.4)

It was shown in [9] that the ω-Wick monomials defined above can be interpreted
as distributions of only one f ∈ C∞0 by composing them with a map that “restricts
to the diagonal” x 7→ (x, . . . x). The closures with respect to the respective Hilbert
space topologies of *-algebras generated by the Wick monomials of different states
were shown in [21] to be isomorphic, such that we get a state independent enlarged
algebra W(M, g) ⊃ A(M, g) to which all Gaussian Hadamard states carry over and
which has a well defined topology.

As we will deal with some non-Gaussian states in the following, we would like
to point out that it was shown in [39] that the truncated n-point distributions for
non-Gaussian Hadamard states are smooth except for the two-point distribution.
This implies that the singularity structure of all n-point distributions of a non-
Gaussian Hadamard state is the same as for a Gaussian Hadamard state. This allows
carrying over the definition of ω-Wick monomials to non-Gaussian Hadamard states,
which finally means that all Hadamard states carry over to the enlarged algebra
W(M, g).

It is obvious that the definition of ω-Wick monomials essentially implies a renor-
malisation by subtraction of the n-point function of the reference Hadamard state
ω. This renders the physical significance of these monomials rather questionable,
as it is not clear in general which state should be picked for the renormalisation.
Indeed in the special case of a spacetime that is Minkowski at early and late times
but expands in between, it can be shown that the Minkowski vacuum of the early
universe corresponds to a state with finite particle density in the late universe. This
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2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime

means that such a “state subtraction” renormalisation is not locally covariant as
n-point functions of states are dependent on the whole spacetime. To characterise the
physically significant elements ofW(M, g) we will introduce an additional covariance
requirement.

2.1.3. Local Covariance Principle

The need for a requirement of general covariance on observables in quantum field
theory on curved spacetime was first discussed in the context of the energy-momentum
tensor by Wald [48]. In [21] a covariance requirement was proposed for Wick
polynomials. A general framework for local covariance in quantum field theory was
proposed in [10] using the language of category theory. As we will refer to this
framework of local covariance in some detail, we will give the necessary definitions
here. For a more detailed explanation and the definition of further structure, which
we omit here, we refer to the original publication.

First we will define the categories that are needed in the following. We make use
of the auxiliary definition

Definition 2.1.9.

• A subset N ⊂M of an oriented, globally hyperbolic Lorentz manifold (M, g)
is called causally convex if any causal curve c : [a, b]→M with c(a), c(b) ∈ N
fulfils ∀ t ∈ [a, b] : c(t) ∈ N .

• Two subsets N1, N2 ⊂M of an oriented, globally hyperbolic Lorentz manifold
(M, g) are called causally separated if there is no causal curve c : [a, b]→M
which intersects both of them.

Also we will in the following be interested in the algebra generated not only by the
Wick products of the field φ but also of its covariant derivatives to arbitrary order. It
is clear that the definition (2.1.4) can be extended to include derivatives in a straight
forward manner. We will call the resulting topological *-algebra Wd(M, g). We will
use the following categories:

Man:
Obj(Man): 4-dimensional, oriented, time oriented, globally hyperbolic Lo-
rentz manifolds.
HomMan: orientation- and time-orientation-preserving isometric embeddings
with causally convex image.

Test:
Obj(Test): C∞0 (M) for all (M, g) ∈ Obj(Man).
HomTest: push-forward maps for all ψ ∈ HomMan.
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Alg:
Obj(Alg): Wd(M, g) for all (M, g) ∈ Obj(Man).
HomAlg: injective, unit-preserving *-homomorphisms.

Sts:
Obj(Sts): convex sets of states for all Wd(M, g) ∈ Obj(Alg).
HomSts: positive maps which are duals to any α ∈ HomAlg.

The composition of morphisms is always given by the usual composition of maps.
The identity morphisms are obvious. Also there is a canonical covariant functor
T : Man→ Test associating to every manifold its corresponding test function space
and to every isometric embedding the corresponding push-forward. Next we will
define a number of category theoretical objects.

Definition 2.1.10.

• A covariant functor Q : Man → Alg is called a locally covariant quantum
field theory.

• A locally covariant quantum field theory Q is called causal, if all pairs of
morphisms ψj ∈ HomMan((Mj, gj), (M, g)) j ∈ {1, 2} with causally separated
images fulfil

[(Qψ1)(Q(M1, g1)), (Qψ2)(Q(M2, g2))] = {0}

• A locally covariant quantum field theory Q fulfils the time slice axiom if for
all ψ ∈ HomMan((M1, g1), (M2, g2)) with ψ(M1) containing a Cauchy surface
ofM2 it holds

(Qψ)(Q(M1, g1)) = Q(M2, g2)

• A natural transformation Φ : T → Q is called a locally covariant quantum
field.

• A contravariant functor S : Man→ Sts is called a locally contravariant state
space.

As we will use some results of [35] which are specific for locally covariant conformal
quantum field theories, we will also review the differences in the definition here. First
we need to clarify terminology.

18



2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime

Definition 2.1.11.

• Let (M1, g1) and (M2, g2) be globally hyperbolic spacetimes. A smooth
injective map ψ :M1 →M2 is called a conformal embedding if there is a map
Ω : ψ(M1)→ R+ called the conformal factor, such that ψ∗g1 = Ω−2g2|ψ(M1).

• Let (M1, g1) and (M2, g2) be globally hyperbolic spacetimes, ψ :M1 →M2 a
conformal embedding with conformal factor Ω, then ψλ∗ : C∞(M1)→ C∞(M2)
defined by ψλ∗ (f) = Ω−λψ(f) is called the λ-weighted push-forward map.

Now we can define the modified categories

CMan:
Obj(CMan): 4-dimensional, oriented, time oriented, globally hyperbolic
Lorentz manifolds.
HomCMan: orientation- and time-orientation-preserving conformal embed-
dings with causally convex image.

Test:
Obj(Testλ): C∞0 (M) for all (M, g) ∈ Obj(Man).
HomTestλ : λ-weighted push-forward maps for all ψ ∈ HomMan.

Obviously Man is a subcategory of CMan. Also there are canonical covariant
functors T λ : CMan→ Testλ associating to every manifold the corresponding test
function space and to every conformal embedding the corresponding λ-weighted
push-forward.

Definition 2.1.12.

• A covariant functor C : CMan→ Alg is called a locally covariant conformal
quantum field theory. Note that every locally covariant conformal quantum
field theory C contains canonically a locally covariant quantum field theory
QC := C|Man.

• A natural transformation Φλ : T 4−λ → C is called a locally covariant confor-
mal quantum field with weight λ.

• A covariant functor Z : CMan→ Sts is called a locally contravariant confor-
mal state space. Note that every locally contravariant conformal state space
Z contains canonically a locally contravariant state space SZ := Z|Man.

In the following it will be useful to define the notion of the representative of a locally
covariant (conformal) quantum field (theory) or a locally contravariant state space
for a certain spacetime (M, g). Let us for this purpose define the subcategories
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Mang:
Obj(Mang): 4-dimensional, oriented, globally hyperbolic embedded Lorentz
submanifolds of (M, g), embedded orientation- and time-orientation-preser-
vingly, causally convex and isometrically.
HomMang : orientation- and time-orientation-preserving isometric embeddings
with causally convex image.

Definition 2.1.13.

• Let Q (C) a locally covariant (conformal) quantum field theory then Qg =
Q|Mang (Cg = C|Mang) is called its representative on the spacetime (M, g). Let
Φ a locally covariant quantum field and Tg = T |Mang then Φg = Φ|Tg : Tg → Qg

is called the representative of Φ on (M, g).

• Let S (Z) a locally contravariant (conformal) state space then Sg = S|Mang

(Zg = Z|Mang) is called its representative on the spacetime (M, g).

The restriction to the diagonal of locally covariant Wick products in the sense
defined above are now required to be locally covariant quantum fields that only differ
from the restriction to the diagonal of ω-Wick products by a smooth function. This
can be achieved by renormalising by subtraction of 1

4π2Hk,ε(f, g) for a large enough k
to account for the possible derivatives instead of W ω

2 (f, g) in (2.1.4). We are dealing
with Gaussian states and their mixtures and are therefore only interested in the
Wick squares in the following. We thus remark more precisely that k must at least
be half the total number of derivatives involved in the Wick square in question.

It should be noted that the definitions of derivatives of covariant Wick squares
still contain ambiguities. These can be understood as renormalisation ambiguities
and have the form of local curvature terms, as shown in [21].

As explained above there are no locally contravariant states, as states depend non-
locally on the whole spacetime. It was shown that the sets of Hadamard states on all
spacetimes (M, g) ∈ Obj(Man) form a locally contravariant state space. This follows
from the formulation of the Hadamard condition in terms of wavefront sets [22]. For
the discussion of certain types of physical phenomena, e.g. thermodynamics, one
should define appropriate subsets of the sets of Hadamard states for an appropriate
subcategory of Man that form again a contravariant state space. One may keep this
principle goal in mind, although the concept of states of local thermal equilibrium is
still far from achieving it.
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2.2. Local Thermal Equilibirum

2.2. Local Thermal Equilibirum

States of thermal equilibrium are rather limited in their capacity to describe ther-
modynamical situations. The description of situations where the thermodynamic
functions of state are not constant and homogeneous but change throughout space-
time, is a first step to the description of non-equilibrium systems. The concept of
local thermal equilibrium (LTE) states introduced in [11] takes exactly this step, still
neglecting the effects of matter flows but describing non-constant functions of state.
The principal strategy to describe suitable states of local thermal equilibrium rests
on two pillars: A set of thermal reference states and a set of thermal observables.
The thermal observables are then used to compare a state locally to a reference
state.

2.2.1. Global Thermodynamic Equilibrium - KMS States

As a first step we will introduce the set of thermal reference states. It was shown
in [19] that thermodynamic equilibrium states can be characterised by the KMS
condition for the time translation. The KMS condition was then refined in [8] to
encompass a description of thermal equilibrium in Minkowski spacetime by observers
who are not in the rest frame with respect to which equilibrium is defined. We will
call this condition the relativistic KMS condition. In the following we will however
refer to both KMS states and relativistic KMS states in different contexts, therefore
we will define both types of states.

As a preliminary step we will define what a static spacetime is, as the KMS states
we are interested in can only be defined on such spacetimes.

Definition 2.2.1.
A spacetime (M, g) is called static if it admits a globally non-vanishing, irrotational1,
time-like Killing field.

To fix notation for the definition of the KMS conditions let (M, g) be a globally
hyperbolic static spacetime and t a time coordinate such that t-translations χt(x) =
expx(ut) with g(u, u) = 1 are isometries of the metric. For φ(f) ∈ A(M, g) a
generator of the algebra let αt(φ(f)) = φ(ft) with ft(x) = f(χ−1

t (x)); αt is then
a one-parameter group of A(M, g)-isomorphisms. For Minkowski spacetime all
translations are isometries of the metric and we can thus analogously define αa for
any a ∈ R4 as a group of A(R4, η)-isomorphisms. We will define (r)KMS states as
Gaussian for simplicity.

1A vector field is irrotational, if it is orthogonal to a foliation of spacetime by Cauchy surfaces.

21



2. Technical Background

Definition 2.2.2.

• A Gaussian state ωβ is called a KMS state with inverse temperature β > 0
with respect to t if for all A,B ∈ A(M, g) there exists a function FAB analytic
in the strip {z ∈ C | 0 < Im(z) < β} and continuous on the boundaries such
that

ωβ(Bαt(A)) = FAB(t) ωβ(αt(A)B) = FAB(t+ iβ)

• For (M, g) being Minkowski spacetime a Gaussian state ωβ is called a rKMS
state with inverse temperature β > 0 in the rest frame given by the future
pointing time-like unit vector e if for all A,B ∈ A(M, g) there exists a function
FAB analytic in R4 + i (V +(0) ∩ V −(βe)) and continuous on the boundaries
such that

ωβ(Bαa(A)) = FAB(a) ωβ(αa(A)B) = FAB(a+ iβe)

We will often use shorthand notation β := βe. We will not use the underlined
notation whenever the context is clear.

Note. In general, a KMS condition can be defined for any one-parameter group of
symmetries. As the thermal interpretation of states is however linked to the time
translation the general notion of a KMS condition is never relevant in the present
work. Therefore the term “KMS condition” will always refer to the KMS condition
with respect to the time translation.

It should be noted that the rKMS condition is more restrictive than the KMS
condition, as it can only be applied to Lorentz invariant systems and requires stronger
analyticity of the two-point function. As Lorentz invariance is a specific characteristic
of Minkowski spacetime, rKMS states do not in general exist in generic globally
hyperbolic, static spacetimes.

As we are dealing with Gaussian states here and thus each state is uniquely
characterised by its two-point function, it suffices for our means to express the
KMS and rKMS conditions in terms of the two-point function. For simplicity we
will assume states that are invariant under spatial rotations in the rest frame of
equilibrium and translations. We will furthermore assume the existence of exactly one
(r)KMS state per β or β respectively. This means we will not deal with phenomena
like phase transitions and moreover we will ignore the chemical potential for massive
fields. The latter is of course a severe restriction on the set of KMS states we
consider.

The requirement of uniqueness implies extremality, meaning that a (r)KMS state
cannot be decomposed into other (r)KMS states. This yields the symbolic form
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of the two-point function, suppressing the smearing functions, for a KMS state in
Minkowski spacetime

W β
2 (x, y) =

∫ e−i(x
µ−yµ)pµ

(2π)3(1− e−βp0)ε(p
0)δ(pµpµ −m2)d4p

where ε(x) =


−1 for x < 0

0 for x = 0
1 for x > 0

is the sign function.

The symbolic form of the two-point function for a rKMS state is correspondingly

W β
2 (x, y) =

∫ e−i(x
µ−yµ)pµ

(2π)3(1− e−βµpµ)ε(p
0)δ(pµpµ −m2)d4p

On a general static spacetime the two-point function of a KMS state can be
constructed by a procedure detailed and applied for a special spacetime below.

Next we want to define mixtures of KMS and rKMS states, as these are the
reference states we will use in the following. It should be noted that a mixture of
Gaussian states need not be Gaussian. In fact the non-Gaussianities of mixtures of
KMS states are the only ones that occur in the present work. Therefore, the fact the
mixtures of KMS states are not Gaussian will be mostly ignored.

Definition 2.2.3.
Let dµ(β) be a probability measure on R+ ∪ {0} for KMS states, on V +(0)∪ {0} for
rKMS states, with the respective Borel σ-algebras. Then W µ

n =
∫

W β
n dµ(β) are well

defined distributions. The state ωµ with n-point functions W µ
n is called a mixture of

(r)KMS states. One usually writes ωµ =
∫
ωβdµ(β) which is a well defined integral

on state space. If the support of dµ(β) is compact we call the mixture compact.

We would like to extend mixtures of KMS and rKMS states to the algebra
Wd(M, g) which can be achieved for all Hadamard states as we have seen above.
From the result of [38] it follows that mixtures of KMS states are Hadamard for
a free scalar field on any stationary globally hyperbolic spacetime, which allows
extending mixtures of KMS states to the algebra Wd(M, g). We will use the set of
all mixtures of rKMS states as the set of reference states for Minkowski spacetime.
For other static spacetimes we will use the set of all mixtures of KMS states with
respect to some time coordinate which must be specified separately.

For KMS and rKMS states we shall assume in the following that

∀A ∈ Wd(M, g) : β 7→ ωβ(A) continuous.
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As we have already excluded phase transitions by our uniqueness assumption, this
requirement is in general not expected to impose additional restrictions on the set of
states we consider. We also note that translation invariance of the KMS and rKMS
states in Minkowski spacetime implies for any local observable A(f) ∈ Wd(R4, η) and
for any mixture of (r)KMS states ωµ that if ωµ(A) is regular, ωµ(A(x)) is independent
of x ∈ R4. The case of regular ωµ(A) is the only relevant one for the observables and
states considered in the present work.

2.2.2. Local Thermal Observables

The local thermal observables are used to compare states to the reference states.
As we want to compare states in terms of their thermal behaviour, the thermal
observables should have a thermodynamic significance. To have a “gradual” concept
one may also want the thermal observables to be endowed with some sort of hierarchy.
The set of thermal observables that was considered in [11] is indeed hierarchical in
that a natural hierarchy of subsets can be considered. Thereby a “degree of local
thermality” can be measured. However in [12] and [23] extended sets of observables
were considered which still include the hierarchy of sets considered in [11], but focus
on the description of states with a maximal degree of local thermality.

We will first define the basic set of thermal observables on Minkowski spacetime.
Then we will discuss the extended set of observables for the massless field. In the
last part we will discuss the topic of thermal observables in curved spacetimes.
The last point will need careful attention as these observables are not uniquely
fixed by the requirement of covariance and the known thermal observables in flat
spacetime. Also we lack a general physical principle on a generic spacetime to identify
thermal observables. This leaves considerable freedom in the definition of thermal
observables.

One would want the local thermal observables to have good localisation properties
and one would want their expectation values to be bounded by the energy in some
suitable sense. The latter requirement led [11] to base the selection of the basic
thermal observables for Minkowski spacetime on the work on H-bounds, especially
in the context of the operator product expansion as investigated in [6]. From this
approach one can conclude that the normal products of the fields can be approximated
by pointwise definition of observables in the form sense, which makes them tractable
candidates for local thermal observables. In our case of a free scalar field and
Gaussian states the normal products simply reduce to the Wick square and its
balanced derivatives (for consistency with later chapters we use the index η to denote
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the Minkowski metric), defined in the form sense as

θη,µ(x+ ζ, x− ζ) =ðµ : φ2
η : (x+ ζ, x− ζ)

:=∂ζµ (φη(x+ ζ)φη(x− ζ)− ω∞ (φη(x+ ζ)φη(x− ζ))1) (2.2.1)

θη,µ(x) := lim
ζ→0

θη,µ(x+ ζ, x− ζ) (2.2.2)

Here and sometimes in the following the balanced derivatives are not written as
evaluated in a state, for readability. This expression is purely formal and always has
to be understood in the form sense, which means that the expression only makes
sense evaluated in a state.

In the following it will be helpful to introduce the notion of thermal macroobserv-
ables. The basic idea is to define

Ψ(β) := ωβ(ψ(x)) (2.2.3)

for any local thermal observable ψ(x) and then by a slight overload of notation define
ωµ(Ψ(β)) :=

∫
Ψ(β) dµ(β). The formal foundation for this is that the macroobserv-

ables can be defined as limits of certain central sequences of local observables, as
detailed in [12]. Let f ∈ C∞0 (R4) with

∫
f(x) d4x = 1, (xn ∈ R4)n∈N a sequence

tending rapidly to spacelike infinity and define the series fn(x) = n−4f
(
x
n
− xn

)
.

Then any A ∈ A(M, g) commutes with ψ(fn) for almost all n, thus (ψ(fn))n∈N is
a central sequence. Then one can define Ψ = lim

n→∞
ψ(fn) where the limit exists in

all mixtures of (r)KMS states and defines a central observable. Due to the mean
ergodic theorem we have

ωµ(A∗ΨA) =
∫
ωβ(A∗A)ωβ(ψ(x)) dµ(β)

which makes the connection to the expression Φ(β) = ωβ(φ(x)) given above, now
seen to be the central decomposition of Ψ.

The linear space Tη spanned by the identity and the balanced derivatives θη,µ(x)
is the basic set of local thermal observables which we consider in the following.
The space of balanced derivatives evaluated at some point x will be denoted by
Tη,x. We note that the balanced derivatives vanish for n = |µ| odd, since the part
antisymmetric in ζ is subtracted in the definition of the normal product. Alternatively
we could use a symmetrised Wick square to begin with and then correspondingly
subtract the symmetrised vacuum expectation value. There is a canonical hierarchy
given by the maximal degree of derivative n. We denote the spaces that are spanned
by all balanced derivatives up to a maximal degree n by Sn,η.
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It is clear that the spaces of thermal microobservables defined above have a straight
forward interpretation as spaces of macroobservables. However, the space Tη,x does
not include observables like the entropy current Sµ(x) and the phase space density
Np(x). One might want to include such observables into the set of thermal observables
as they are of considerable physical relevance. It turns out that these observables
can be approximated arbitrarily well by elements of Tη in a suitable sense. This was
sketched in [11] and further elaborated in [12] for the massless field. The case of
massive fields was investigated in [23].

In the case of massless scalar fields it suffices to consider compact mixtures of
(r)KMS states to get a suitable topology in which to take the closure of Tη,x. It
is also illustrative to consider the macroobservable point of view in this case. Let
B ⊂ V +(0) be the compact support of the measure describing some compact mixture
of KMS states. We can then define a seminorm

τB(Ψ(β)) = sup
β∈B

Ψ(β)

for all mixtures whose measures are supported in B and all Ψ(β) ∈ Tη. As the
functions β 7→ Ψ(β) are by assumption continuous, the supremum is well defined.
Calling the closure of Tη with respect to this family of seminorms T τη and the
evaluation of these for at a point T τη,x we can formulate the following lemma that
follows directly from Lemma 3.1 in [12].

Lemma 2.2.4.
Let Ψ(β) be a smooth solution of �βΨ(β) = 0 in the compact B ⊂ V +. Then

∀β ∈ B : Ψ(β), ∂βνΨ(β) ∈ T τη

Using this lemma it was shown in [12] that the entropy current Sµ and the phase
space density Np are indeed included in T τη.

For massive fields however the situation is more complicated as some interesting
examples discussed in [23] cannot be described using only compact mixtures of KMS
states. For the situation of non-compact mixtures of KMS states a more general
class of topologies is defined of which the seminorm topology defined above is a
special case. This general class of topologies includes also topologies which allow
the approximation of important thermal observables like the entropy current and
the phase space density in the case of the massive scalar field. As we will not use
these observables for the case of a massive field we will not introduce the topologies
needed for this case, but simply refer the interested reader to [23].

Last in this section we will discuss the topic of thermal observables on a generic
globally hyperbolic spacetime. We have introduced the balanced derivatives of the
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Wick square as local thermal observables but as discussed before the derivatives
of Wick squares have been constructed on general globally hyperbolic spacetimes
as locally covariant quantum fields. This means we have natural candidates for
the local thermal observables on general globally hyperbolic spacetimes. On the
downside Wick products as locally covariant quantum fields are only unique up to
renormalisation ambiguities, which on the upside are restricted to locally constructed
geometric quantities.

The renormalisation ambiguities are however not the only ambiguities involved in
the identification of thermal observables, because the correct thermal observables on
curved spacetimes might not actually be the covariant Wick products corresponding
to the balanced derivatives, but could be modified by adding any term which has
the correct tensor covariance properties and vanishes on Minkowski spacetime. This
ambiguity is considerably larger than the renormalisation ambiguity and could only
be reduced by introducing an independent physical criterion of local thermality on
a generic globally hyperbolic spacetime. A step towards such a physical criterion
has been made by the investigation of an Unruh detector model in [41] and [42],
but the extension of the detector model to curved spacetimes was only sketched
roughly and the fixing of ambiguities has not been discussed in this context. The
work on local thermal equilibrium for the free dirac field in [25] indicates that one
should indeed not use simply the covariant balanced derivatives of Wick squares but
modified observables in generic curved spacetimes.

We will thus propose a definition for the local thermal observables that implies
considerable ambiguity. First we fix the definition of the Hadamard-Wick square.
As pointed out above the Wick products can be interpreted as Ck(M) functions in
two variables. By restriction to the diagonal one is left even with C∞(M) functions
of one variable.

: φ2
g :k (x, y) = lim

ε→0+
(φg(x)φg(y) + φg(y)φg(x)− Hg,k,ε(x, y)1− Hg,k,ε(y, x)1)

: φ2
g : (x) = lim

y→x
: φ2

g :k (x, y)

where k ≥ 0 is needed and the index g denotes the metric. For the definition of
a balanced derivative with |ν| = n we need k ≥ n

2 . We denote a partition of a
multiindex as α ∪ λ = ν, so the sum below should be understood as the sum of all
partitions.

θg,ν = ðν : φ2
g : (x) := lim

y→x

∑
α∪λ=ν

Cg,α⊂ν,α (∇x −∇y)λ : φ2
g :k (x, y) +Dg,ν1 (2.2.4)

where the index α ⊂ ν is simply meant to distinguish on the basis of what ν is,
and how α is embedded in it. We assume that all Cg,α⊂ν,α be purely geometric
quantities that vanish in Minkowski spacetime except for the coefficient of the term
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for λ = ν, which has to fulfil Cη,ν,∅ = 1 on Minkowski spacetime. From the symmetry
of : φ2

g :k (x, y) it follows that the balanced derivatives vanish for n odd. Therefore
we imply Cg,α⊂ν,α = 0 whenever |α| is odd and Dg,ν = 0 whenever |ν| is odd.

Despite our very general definition we will for the most part of this work ignore
the ambiguity in the definition of the local thermal observables and will work with
the simple form

θg,ν = ðν : φ2
g : (x) := lim

y→x
(∇x −∇y)ν : φ2

g :k (x, y). (2.2.5)

We will however refer several times to the principal ambiguity that is possible in the
definition of local thermal observables.

The linear span of the identity and all balanced derivatives interpreted as locally
covariant quantum fields is denoted by T , the span of all balanced derivatives up to
a maximal degree n interpreted as locally covariant quantum fields is denoted by Sn.
The linear span of the identity and all balanced derivatives on the spacetime (M, g)
interpreted as functions in x is called Tg, the span of all balanced derivatives on the
spacetime (M, g) up to a maximal degree n is called Sn,g. We will also call the Sn,g
and Tg the representatives of the Sn and T on the spacetime (M, g).

It should further be noted that T as well as the Sn do not depend on the ambiguities
in the definition of balanced derivatives. The exact definition of balanced derivatives
is then only a matter of physical interpretation of the observables, i.e. a question
of which observables on two different spacetimes are assumed to describe the same
physical entity. In this sense, altering the tone compared to an argument that was
made by [44], the point of view taken in the present work is: The balanced derivatives
on different spacetimes are assumed to correspond to each other, whereas the physical
correspondence of all other observables in the respective linear spaces is dictated by
these.

If certain observables, which one wants to physically correspond on different
spacetimes, can be constructed as “linear combinations” of thermal observables
with possibly tensorial coefficients, one might expect this to have an impact on
the definitions of the local thermal observables. As an example, one may want
the trace of the energy-momentum tensor on different spacetimes to be seen as
representative of the same physical entity. As this observable can be constructed as
linear combination of the Wick square and the identity one may feel compelled to
define the first thermal observable in such a way that the linear relation between the
three observables becomes identical on all spacetimes. However, one would thereby
imply that the physical relation between these observables was geometry independent,
thereby potentially enforcing the loss of physical meaning. It is not very remote
to expect that linear relations between observables on Minkowski spacetime do not
carry over to general spacetimes as such a situation occurs for numerous classical
relations. Therefore we will abstain from any such arguments.
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2.2. Local Thermal Equilibirum

2.2.3. LTE on Flat Spacetime

For Minkowski spacetime we have now specified all we need to give a definition of
LTE states. In fact this definition can even be straight forwardly generalised to
generic static spacetimes. For non-static globally hyperbolic spacetimes we face an
additional problem, which will be considered in the next subsection.

Definition 2.2.5.
Let tη be a linear space of thermal observables. A state ω is a local thermal equilibrium
or LTE state at some point x if there is a mixture of (r)KMS states represented by
a probability measure dµx(β) such that

∀A(x) ∈ tη,x : ω(A(x)) =
∫
ωβ(A(x))dµx(β)

A state is said to be an LTE state in an open region O if it is LTE ∀x ∈ O. We will
denote LTE states for tη = Sn,η, Tη, T

τ

η as n,∞, τ -LTE states, respectively.

An important consequence of the LTE condition is the fulfilment of certain
dynamical equations by the thermal macroobservables, as pointed out in [12]. These
equations follow from the Klein-Gordon equation and the application of the LTE
condition for the micro-observables

ηνλ∂xν∂
ζ
λθη,µ(x+ ζ, x− ζ) =0 (2.2.6)

⇒ ∂νω (θη,νµ) (x) =0 (2.2.7)

�xθη,µ(x+ ζ, x− ζ) =−�ζθη,µ(x+ ζ, x− ζ)− 4m2θη,µ(x+ ζ, x− ζ) (2.2.8)

⇒ �ω (θη,µ) (x) =− ω (θη,ννµ) (x)− 4m2ω (θη,µ) (x) = 0 (2.2.9)

where the last equality is the only one that uses the LTE condition as input. Therefore
equation (2.2.7) holds for any state as it holds on the operator level, while the second
equality of (2.2.9) is specific to ∞-LTE states. For n-LTE states the equation for
the balanced derivative of highest order has the general form of (2.2.9) without the
last equality. These equations are also fulfilled for observables in the extended set of
thermal observables T τη.

Some insight about mixtures of (r)KMS states can be gained by an investigation
of the two lowest order balanced derivatives. Consider a set of thermal observables
containing at least the space S2,η. The expectation values of the two balanced
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derivatives of lowest order in an rKMS state for a massless field were given in [11]

Θ =ωβ (θη) = 1
12β2 (2.2.10)

εµν =− 1
4ωβ (θη,µν)=

π2

90(β2)3

(
4βµβν − ηµνβ2

)
(2.2.11)

For a KMS state we get

Θ =ωβ (θη) = 1
12β2 (2.2.12)

εµν =− 1
4ωβ (θη,µν)=

π2

90β4

(
3δ0
µδ

0
ν − δiµδjνδij

)
(2.2.13)

This allows us to derive “temperature candidates” with T = 1
β

T0 =
√

12Θ (2.2.14)

T20 = 4

√
30
π2 ε00 (2.2.15)

T2i = 4

√
30
π2 δ

ijεij (2.2.16)

which are by definition identical for a KMS state. However, for a general rKMS
state and mixed temperature states these temperature candidates will not in general
coincide. While ε is still traceless, giving T20 = T2i =: T2, we will in general observe
T0 6= T2. We can show for a general measure dµ(β) on R4 that T0 ≤ T2

T 4
0 =

(∫ 1
β2

0 − ~β2
dµ(β)

)2

≤
∫ 1(

β2
0 − ~β2

)2dµ(β)

≤
∫  1(

β2
0 − ~β2

)2 + 4~β2

3
(
β2

0 − ~β2
)3

 dµ(β) = T 4
2 (2.2.17)

where the first inequality follows from Jensen’s inequality.

For the case that all temperatures are taken to have the same rest frame this
relation can be understood in terms of moments of a temperature distribution, if we
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2.2. Local Thermal Equilibirum

assume the temperature to be a random field and µ̃(T ) its probability distribution
corresponding to the measure µ(β). Let Mi be the i-th moment and Ki the i-th
cumulant of the distribution µ̃(T ). Then by definition of moments and cumulants

T 2
0 =M2 = K2

1 +K2

T 4
2 =M4 = K4

1 + 6K2
1K2 + 3K2

2 + 4K1K3 +K4

If we assume the cumulants to fulfil Kn ∝ εn for some small ε we can recover
approximations for the first cumulants from the even moments we get from the
thermal observables. The assumption Kn ∝ εn holds for random variables that are
composed of a large number of stochastically independent random variables with the
same distribution by the central limit theorem. For an ensemble of classical identical
non-interacting particles this assumption seems reasonable so it should have some
validity for our model. In our example of only two thermal observables we get

K1 ≈
4

√
6M2

2 −M4

5 (2.2.18)

K2 ≈
M4 −M2

2√
30M2

2 − 5M4
(2.2.19)

In the massive case the expectation values of the thermal observables no longer
have such a simple interpretation. Also ε, which corresponds to the thermal part of
the energy-momentum tensor, is not trace free as the model is no longer conformally
invariant.

Θ = 1
12β2

6
π2

∞∫
0

ρ2

(exp (
√
ρ2 +m2β2)− 1)

√
ρ2 +m2β2dρ (2.2.20)

δijεij = π2

90β4
90
π4

∞∫
0

ρ4

(exp (
√
ρ2 +m2β2)− 1)

√
ρ2 +m2β2dρ (2.2.21)

εµµ =m2Θ (2.2.22)

Lemma 2.2.6.
Θ and δijεij increase monotonously as functions of T , decrease monotonously as
functions of m and are always non-negative.
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Proof. The integrands are positive everywhere and the integration range is positive,
thus the positivity is trivial. For monotonicity, we first note that both functions
are continuous for all m and T as the integrals are majorised by the respective
m = 0 special cases. The derivative with respect to m or T of the integrand is also
continuous except for m = 0 thus we can interchange derivation and integration.
This yields

∂mΘ =− m

2π2

∞∫
0

ρ2
((√

ρ2 + m2

T 2 + 1
)

exp
(√

ρ2 + m2

T 2

)
− 1

)
(

exp
(√

ρ2 + m2

T 2

)
− 1

)2 (
ρ2 + m2

T 2

) 3
2

dρ < 0

∂m(δijεij) =− mT 2

π2

∞∫
0

ρ4
((√

ρ2 + m2

T 2 + 1
)

exp
(√

ρ2 + m2

T 2

)
− 1

)
(

exp
(√

ρ2 + m2

T 2

)
− 1

)2 (
ρ2 + m2

T 2

) 3
2

dρ < 0

∂TΘ = 2
T

Θ− m

T
∂mΘ > 0

∂T (δijεij) = 4
T

(δijεij)−
m

T
∂m(δijεij) > 0

This implies monotonicity for all T ≥ 0 and m > 0. This can be extended to the
point m = 0 due to continuity.

Thus from a physical point of view the corresponding observables are still reasonable
“temperature measurement devices”. However the dependence on temperature is
no longer given by a simple power law as in the massless case. This suggests that
numerical methods are needed to establish a relation between the expectation values
of the thermal observables and cumulants of the temperature distribution. Conversely,
one might opt for choosing more complicated microobservables in order to have more
tractable macroobservables.

2.2.4. LTE in Cosmological Spacetimes

As explained above there is a serious problem defining LTE states for non-static
globally hyperbolic spacetimes. On such spacetimes no globally isometric time
evolution exists, which precludes the definition of KMS states. Thus it is not clear
which states should be chosen as thermal reference states or on a heuristic level
how to gauge the thermal measurement apparatus. A heuristic concept which seems
straight forward is to gauge the measurement apparatus in a “Minkowskian region” of
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2.2. Local Thermal Equilibirum

spacetime and then use the Minkowski scale for measurements of thermal observables.
If one decides to adopt this strategy, one is lead to the so-called “extrinsic LTE states”
put forth first in [40][13]. A state is in this context called an extrinsic LTE state, if
the expectation values of the thermal microobservables in this state are identical to
the expectation values of the corresponding observables on Minkowski spacetime in
a mixture of (r)KMS states. This means that the macroobservable interpretation of
corresponding microobservables are assumed to be identical. The correspondence of
microobservables on different spacetimes is given by the concept of locally covariant
quantum fields as explained above.

Let the components of some tensor T with respect to some tetrad e be denoted
as T |e. For two tensors S and T of the same rank, possibly defined on different
spacetimes, two tetrads e and f and points x and y defined on the appropriate
spacetimes, let S|e(x) = T |f(y) denote componentwise identity. This identity is in
general without mathematical context and is to be simply understood as an identity
of numbers.

Definition 2.2.7.
Let t be a linear space of locally covariant thermal observables. Let eg be a tetrad
defined in a neighbourhood of x ∈ M and let eη(0) be that canonical Minkowski
coordinate tetrad. A state ω is an extrinsic local thermal equilibrium or extrinsic
LTE state at some point x ∈M if there is a mixture of rKMS states represented by
a probability measure dµx(β) such that

∀A ∈ t : ω(Ag(x))
∣∣∣
eg(x)

=
∫
ωβ(Aη(0))

∣∣∣
eη(0)

dµx(β)

A state is said to be an LTE state in an open region O ⊂ M if it is LTE ∀x ∈ O.
We will denote extrinsic LTE states for t = Sn, T as (extrinsic) n,∞-LTE states,
respectively.

The choice of the origin in Minkowski spacetime is arbitrary and implies no loss
of generality due to the translation invariance of Minkowski KMS states. Also the
choice of tetrad is arbitrary and as shown in [44] choosing another tetrad will simply
lead to a Lorentz transformation of the temperatures of the mixture of Minkowski
rKMS states that is used for comparison.

This concept of thermality on curved spacetimes has had some success. It was used
to investigate the KMS states in the static portion of de Sitter spacetime in [40][13]
and to derive energy inequalities in quantum field theory on curved spacetimes for
non-minimally coupled fields in [43]. The existence of extrinsic LTE states for definite
temperature on a Cauchy surface in Friedmann-Robertson-Walker spacetime was
proved in [42].
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The principle of local covariance fixes the space of thermal observables unam-
biguously, thus providing an important ingredient to a concept of local thermality
on curved spacetimes. However the physical, macroobservable, meaning of the mi-
croobservables is not fixed by the local covariance principle, which has profound
implications for the extrinsic LTE condition. It is not clear which microobservables
should really physically correspond to the thermal microobservables on Minkowski
spacetime, but the extrinsic LTE condition depends on this correspondence. It should
more generally be noted that the principle of local covariance gives no justification for
the direct comparison of macroobservables given as expectation values for quantum
field theories and their states on different spacetimes. From a heuristic point of view
this amounts to gauging a set of measurement devices in Minkowski spacetime and
then transferring the measurement devices and the scales into another spacetime. It
is by no means ensured that the readings of the scales are sensibly connected to the
physical processes in this spacetime, even more so as the curvature sensitivities of
the measurement devices are unknown.

In this work we will highlight some problems that arise in the context of the
extrinsic LTE condition. In light of the principal problem outlined here, we will take
the point of view that the problems can be traced back, not to choosing the local
covariance principle to acquire a space of thermal observables, but to the ambiguity
in the choice of thermal observables i.e. of physical interpretation, and to the direct
comparison of expectation values on different spacetimes.

2.3. Linear Scalar Cosmological Perturbations

Cosmological perturbation theory is a special case of perturbation theory in general
relativity. The present work will only be concerned with linear perturbation theory,
which means that only the tree level and the first order in the perturbations are
considered and higher orders are neglected. The basic idea is to split all quantities
up into a background part and a perturbation. In the case of geometric quantities,
most prominently the metric, this is nontrivial due to the role of diffeomorphism
covariance in general relativity. It turns out that only part of this covariance survives
in the setting of linear perturbation theory, which is interpreted as covariance
under infinitesimal diffeomorphisms and labelled gauge freedom. For physically
unambiguous results it is reasonable to define gauge invariant quantities.

Using a 3 + 1 decomposition of the background metric, it is possible to classify
perturbations by their transformation behaviour under symmetries of the spatial
section. This will lead to the definition of scalar, vector and tensor perturbations. In
the present work we will only be concerned with scalar perturbations, thus vector
and tensor perturbations will be dropped, after they have been identified.
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2.3. Linear Scalar Cosmological Perturbations

The treatment in this section mostly follows [47] where no other sources are cited.

2.3.1. Robertson-Walker Cosmology

First we describe the basic properties of the background spacetime. As we are aiming
for the description of a cosmological situation, the background spacetime is taken to
be the simplest model which is thought to describe the universe on very large scales.
Following the cosmological principle that no place in the universe is special if one
considers only large scales, one is lead to the conclusion that spatial homogeneity
and isotropy are appropriate simplifying assumptions for a simple approximate
cosmological model. From these assumptions it follows that the spacetime is globally
hyperbolic and the spatial section Σ must be a maximally symmetric space, which
implies an at least 6-dimensional symmetry group of the spacetime. As in general
singularities are possible, the spacetime is in general homeomorphic to I × Σ where
I ⊂ R is some open, possibly unbounded, set. These spacetimes are called Robertson-
Walker spacetimes.

Remarkably, a global comoving time t can be defined in Robertson-Walker space-
times and, using t as a time coordinate and canonical coordinates for the spatial
section, the line element takes the form

ds2 = dt2 − a2(t)ds2
Σ

where ds2
Σ symbolises the line element of the spatial hypersurface. The spatial

hypersurfaces defined by a fixed value of the time coordinate are Cauchy surfaces of
the spacetime, thus this choice of coordinates obviates the foliation of the spacetime
by Cauchy surfaces. It is furthermore clear that Robertson-Walker spacetimes are
static if and only if a(t) = const., which makes them one of the simplest examples of
non-static spacetimes. As the most accurate available measurements by WMAP [51]
indicate that the spatial section of the universe is indeed flat with only an uncertainty
of about 0.01 the critical density, we will assume ds2

Σ = d~x2 in the following.

An important alternative set of coordinates can be acquired using the time coor-
dinate η(t) =

t∫
t0

dt′

a(t′) with some fixed time t0. This obviously implies adη = dt and
leads to the line element

ds2 = a2(η)
(
dη2 − d~x2

)
Using these coordinates one can immediately see that the spacetime is conformally
equivalent to Minkowski spacetime, thus η is called conformal time. In the following
we will mostly work with conformal time.
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For some given quantity X we will denote the derivative with respect to comoving
time as Ẋ and the derivative with respect to conformal time as X ′. We also denote
H = ȧ

a
and H = a′

a
.

The time dependence of the scale factor a depends crucially on the matter model
coupled to the spacetime via the Einstein equations which do in this case reduce to
the Friedmann equations

3H2 =8πGρ

Ḣ =− 4πG(ρ+ p)

In these equations ρ and p are the energy density and the pressure respectively, the
only two free parameters of a matter model that is compatible with a Robertson-
Walker spacetime. Assuming a linear equation of state ρ = wp with constant w to
hold, we can derive the dynamics of the matter

ρ̇+ 3H(1 + w)ρ = 0 ⇒ ρ ∝ a−3(1+w)

If we assume the matter content to consist of components with different equations
of state it is clear that the component with the lowest w will dominate for a very
large a, while the component with the highest w will dominate for very small a. As
the universe expands, i.e. H > 0, we can expect the component with largest w to
dominate at early times, while the component with the lowest w should dominate at
late times. Plugging the matter dynamics into the first Friedmann equation we get

ȧ =
√

8πGρ0

3 a−
1+3w

2 ⇒ a ∝
{

eHt for w = −1
t

2
3(1+w) else

where the special case w = −1 amounts to a matter model that is equivalent to an
effective cosmological constant.

A naive extrapolation backwards in time leads to a singularity a = 0 with infinite
energy density, as long as there are other matter components except a cosmological
constant. The singularity theorems by Hawking and Penrose suggest that the
singularity is not a defect of this simple model but a generic feature of expanding
universe models. As the laws of physics that hold at very high energy density are
unknown, it is customary to exclude at least the region where the energy density is
of the order of the Planck scale from the cosmological standard model.

To add some context to the following explanation of the formalism, we will give
a short overview of the main stages of development of the universe according to
the cosmological standard model. The background model is assumed to be purely
classical, such that quantum effects only play a significant role for the evolution of
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perturbations. The first phase of cosmological evolution is the phase of inflation.
It is thought to have lasted from t ≤ 10−35s to t ≈ 10−33s ∼ 10−30s. Within this
time span the scale factor is supposed to have increased by a factor of ∼ 1030 in
an approximately exponential fashion a(t) ∼ eHt which implies w ≈ −1. Such an
exponential expansion can be modelled by a homogeneous classical scalar field with
large potential energy, as will be detailed below.

The phase of inflation was originally introduced to solve two problems, the horizon
problem and the flatness problem. First we turn to an explanation of the horizon
problem. Assuming the matter content of the universe to fulfil w ≥ 0 even to very
early times, we can draw the conclusion that at the time of hydrogen recombina-
tion, when the cosmic microwave background emerged, only the matter in rather
small regions had ever been in causal contact and only there had the possibility to
equilibrate. There is thus no explanation for the isotropy of the cosmic microwave
background over large angles. A suitably rapid and large increase in size of the
universe at an early stage can enlarge the regions of causal contact such that one
region of causal contact fills all of the sky. The flatness problem consists simply of
the question why the universe is to such a good degree spatially flat. A phase of
inflation would decrease the magnitude of scalar curvature greatly, thus increasing
the range of initial data compatible with the observed flatness.

A number of authors have formulated criticism of the inflationary scenario on
different grounds. We will not consider these objections here but simply take the
inflationary scenario for granted as a part of the cosmological standard model.

After the inflationary phase, the general matter model is assumed to consist of three
components, namely radiation with w = 1

3 , which dominates the evolution for roughly
the first 80, 000 years of the universe, matter with w = 0 which dominates in the time
span from 80, 000 years to about 5 billion years and finally a cosmological constant or
“dark energy” with w ≈ −1 which dominates since an age of the universe of 5 billion
years. However these transition times have no immediate physical importance.

A time which is physically very significant, especially for our purposes, is the
time of hydrogen recombination. As the spacetime expands, the temperature of the
classical matter decreases and at some point temperature will be so low that the
energy of photons will not suffice to ionise hydrogen atoms. The period of time within
which this transition occurs all over the universe is called the time of recombination,
although strictly speaking the prefix “re” is misplaced, as no neutral atoms have
stably existed before. During the time of recombination the mean free path of
photons increased to infinity, such that photons after recombination can be assumed
to be free particles for cosmological purposes. The epoch before recombination is
called the tight coupling regime, while the epoch after recombination is called the
regime of free streaming.
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As the photon energy distribution follows a thermal spectrum and there are small
temperature inhomogeneities, the time of recombination is really a time span in the
order of magnitude of 100, 000 years. The phase of recombination occurred around
400, 000 years after the initial singularity.

2.3.2. Mathematical Background

This section will be dedicated to the explanation of the mathematical background of
linear perturbation theory and gauge invariance. The approach taken here differs
slightly from the usual treatment in the literature. We are following the presentation
of [36] because it leads to a quite appealing formulation of the foundations of linear
perturbation theory and gauge transformations. The key element for our description
of linear perturbations and gauge freedom is the interpretation of perturbed quantities
as one-parameter families of tensor fields.

Definition 2.3.1.

• Let O ⊂ R an open neighbourhood of 0 and let T : O → Γ(T rsM) a smooth
one-parameter family of smooth r-s-tensor fields. Then T0 := T (0) is called the
background quantity and δT := d

dλ
T (λ)|λ=0λ is called the linear perturbation.

• Let Φ : O → DiffM a smooth one-parameter family of diffeomorphisms
generated by the vector field X, i.e. Φ(0) = idM, X = d

dλ
Φ(λ)|λ=0 and for the

pull-back (T rs Φ)(0) = idΓ(T rsM). Then we define δ̃T := d
dλ

(
(T rs Φ)(λ)T (λ)

)
|λ=0λ

as the transformed perturbation while the background quantity is unchanged
T̃0 := (T rs Φ)(0)T0 = T0.

The above definition has the benefit that it is mathematically concise and yields
the transformation law of the perturbations under gauge transformations in a very
transparent way.

δ̃T = d

dλ

(
(T rs Φ)(λ)T (λ)

)∣∣∣
λ=0

λ

= d

dλ

(
(T rs Φ)(0)T (λ)

)∣∣∣
λ=0

λ+ d

dλ

(
(T rs Φ)(λ)T (0)

)∣∣∣
λ=0

λ

=δT + λLXT0 =: δT + LξT0

In this equation ξ = λX is often interpreted as an “infinitesimal vector field” to justify
the linearisation. In any case the linearisation is seen to be essentially a linearisation
of the Taylor expansion in λ of one-parameter families of tensor fields. Using the
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Levi-Civita connection and local coordinates with respect to the background metric
g0 to express the Lie derivative we get

δ̃T
ρ

σ = δT ρσ + ξα∇αT0
ρ
σ −

r∑
n=1

(∇αξ
ρn)T ρ̂nσ +

s∑
n=1

(∇σnξ
α)T ρσ̂n

where the multiindices σ̂n and ρ̂n are equal to the multiindices σ and ρ respectively,
except that the index at the n-th position, i.e. σn or ρn respectively, is replaced
by α. Due to the metric compatibility of the Levi-Civita connection this yields an
especially simple transformation law for the metric perturbation δg given by

δ̃gµν = δgµν +∇µξν +∇νξµ

It is customary to classify metric perturbations using a 3 + 1 decomposition of the
background spacetime into spatial section and time direction if the background metric
is sufficiently symmetric. In our case the background metric is a Robertson-Walker
metric with flat spatial sections therefore such a decomposition is indeed beneficial.
The perturbations are decomposed into scalar, vector and tensor part, dependent on
their transformation behaviour under the symmetry group of the spatial section.

Let γ denote the metric of the spatial section Σ and let X|i denote the application
of the Levi-Civita connection of (Σ, γ) on X expressed in the coordinates of the 3 + 1
decomposition. In this context, δg00 =: s1 is considered scalar; δg0i =: s2|i + v1i is
decomposed into a pure gradient scalar part s2 and a divergence free vector part
v1 with v1

i
|i = 0; δgij =: s3|ij + s4γij + v2i|j + v2j |i + tij is decomposed into two

scalar parts, one pure gradient s3 and the trace s4, the gradient of a divergence free
vector part v2 with v2

i
|i = 0 and a trace and divergence free tensor part tij with

tii = tij |i = 0.

Counting the degrees of freedom, one naively gets 4 scalar, 4 vector and 2 tensor
degrees of freedom. However, vector fields ξ used for gauge transformations, can
be decomposed into a scalar part ξs = ξ0∂0 + ξ|i∂i and a vector part ξv = xi∂i with
xi|i = 0, with two components each. This means that the gauge freedom reduces
the degrees of freedom such that 2 gauge invariant degrees of freedom of every type
remain. The total number of degrees of freedom is 10 without considering symmetries
and 6 if the freedom to choose coordinates is considered. These degrees of freedom
are simply the linearised version of the 10 degrees of freedom of the metric, which
reduce to only 6 degrees of freedom if coordinate ambiguity in the guise of the Bianchi
identity is considered.

An important point of this decomposition is that the different types of perturbations
do not mix under gauge transformations. As implicitly claimed above, this can be
traced back to an analogous decomposition of the gauge vector fields. We will state
this fact in the following lemma.
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Lemma 2.3.2.
Let ξ = ξ0∂0+(ξ|i+xi)∂i be a vector field where xi|i = 0, and let δg be decomposed into
scalar, vector and tensor part as explained above. Then, decomposing δ̃g = δg+ Lξg0
in the same way, one sees comparing the scalar perturbations s̃n = fn(ξ0, ξ, s), for
vector perturbations ṽn = gn(~x,v) and for the tensor perturbation t̃ = t, where the
functions fn, gn may include time derivatives of the arguments. This means, the
different types of perturbations are not mixed by gauge transformations.

Proof. The proof can be done by direct calculation.

δ̃g00 =δg00 + 2(ξ0)′ + 2Γ0
00ξ

0 + Γi00(ξ|i + xi)

δ̃g0i =δg0i + ξ′|i + x′i + Γ0
0iξ

0 + Γj0i(ξ|j + xj) + ξ0
|i

δ̃gij =δgij + ξ|ij + xi|j + ξ|ji + xj |i

One immediately sees that the gauge transformation terms can be linked to the
perturbations such as to fulfil the claim, if Γi00 = Γ0

0i = 0 holds. This does indeed
follow from the fact that the 3 + 1 decomposition implies that (g0)0i = 0 and (g0)00
depends only on time. This proves the claim.

2.3.3. Technical Framework and Formulae

In the following the necessary formulae for a basic treatment of cosmological questions
in the context of linear perturbation theory are derived. As the perturbations of the
cosmic microwave background are explained as an effect of quantum fluctuations in
the early universe, the perturbations will be quantised at some point. This gives rise
to questions in the context of more rigorous quantum field theory some of which are
discussed in this work.

As explained above, the background metric used for cosmological perturbation
theory is a Robertson-Walker metric with flat spatial section. As we restrict now to
scalar perturbations, the perturbed metric can be expressed using conformal time
as

ds2 = a2(η)
(

(1 + 2A)dη2 + 2B|idηdxi −
(
(1 + 2D)δij + 2E|ij

)
dxidxj

)
where A, B, D and E are functions of all coordinates. It should be noted that
A, B, D and E are not exactly the same as the sn used above, but differ by a
factor of 2a2(η). This yields slightly different behaviour under gauge transformations.
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2.3. Linear Scalar Cosmological Perturbations

As we restrict to scalar perturbations we also restrict to scalar gauge vector fields
ξ = ξ0∂0 + ξ|i∂i. This yields transformation laws

Ã =A+Hξ0 + (ξ0)′ B̃ =B + ξ0 − ξ′

D̃ =D +Hξ0 Ẽ =E + ξ

Obviously any two of the perturbations can be brought to vanish except A and D, as
they are both only changed due to ξ0. This means if A and D can both be brought
to vanish in some gauge, this has a physical implication. An often used gauge is
the conformal gauge, where Bc = Ec = 0. To separate physical contents from gauge
effects, it is useful to work with gauge invariant variables. As we have four scalar
perturbations and two gauge parameters we can derive two gauge invariant scalar
perturbations. The ones usually defined in the literature are the Bardeen potentials

Ψ =A− 1
a

(
(B − E ′)

)′
φ =D −H(B − E ′)

For the Einstein equation it is necessary to calculate the Einstein tensor, which
is not gauge invariant. However Gµ

ν − 8πGT µν can be cast into a gauge invariant
form, as it vanishes in any gauge. This implies that the Einstein equations can be
formulated using only gauge invariant variables. This means we can calculate the
Einstein tensor and the energy momentum tensor in some arbitrary gauge, and the
resulting Einstein equations will be true for any gauge. This means we can replace
the perturbation variables in the Einstein equations by gauge invariant variables
that are equal to them in the chosen gauge. The resulting equation, containing only
gauge invariant variables, still holds in any gauge.

The calculation of the perturbation of the Einstein tensor in conformal gauge is
tedious and has been done in [47], therefore we will not redo it here but simply give
the result. We remark that in conformal gauge Ac = Ψ, Dc = Φ and Bc = Ec = 0.
This means that the Einstein tensor will only contain Ac and Dc which can be straight
forwardly replaced by the Bardeen potentials in the full Einstein equation. In the
following, the indices denoting conformal gauge will be suppressed for readability
and all expressions containing only the perturbations A and D are to be understood
in conformal gauge.

δG0
0 =− 2

a2

(
3H(HA−D′) +4D

)

δG0
i = 2

a2 (HA−D′),i

δGi
j =− 2

a2

(
(2H′ +H2)A+HA′ −D′′ − 2HD′ + 1

24(A+D)
)
δij + 1

a2 (A+D)|i|j
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The last expression can be considerably simplified by subtracting the trace

δGi
j −

1
3δG

k
kδ
i
j = 1

a2

(
(A+D)|i|j −

1
3(A+D)|k |kδij

)

For the matter model we will only discuss the case of a scalar field. In [47] more
general fluid matter models are discussed and some interesting applications are
briefly shown. For the present work however the application to the scalar field model
suffices, as this is the only model where a quantum treatment of the perturbations
occurs. We will also be concerned with part of the perturbation theory which is
usually treated classically and we will investigate this topic from the point of view of
quantum field theory on curved spacetimes. However in said case it is customary to
use the Boltzmann equation and not the Einstein equation as one is interested in a
photon spectrum. Thus our restriction to the scalar field case still suffices to keep
the treatment self-contained.

We use the general field equation

�φ = −∂V
∂φ

(φ) =: −V,φ

where V (φ) is some potential. Strictly speaking the potential must not be dependent
on the metric, otherwise the suggested form of the energy momentum tensor

T µν = ∂µφ∂νφ− δµν
(1

2∂
λφ∂λφ− V (φ)

)
would be wrong. If, for instance V (φ, gµν) = Ṽ (φ)− ξ

2Rφ
2, which is only the simplest

form of coupling the field to gravity, the energy momentum tensor would include an
additional term

T µν =∂µφ∂νφ− δµν
(1

2∂
λφ∂λφ− Ṽ (φ)

)

+ ξ
[
Gµ
νφ

2 + 2δµν
(
φ�φ+ ∂λφ∂λφ

)
− 2

(
φ∇µ∂νφ+ ∂µφ∂νφ

)]
It is clear that such a modification could have a significant impact.

For now we will follow the standard treatment and assume the potential to be
independent of the metric. In keeping with the idea of linear perturbation theory also
the scalar field is decomposed into a background part and a perturbation φ = φ0 +δφ.
The background field is assumed to be spatially homogeneous such that one gets

T 0
0 = 1

2a2 (φ′0)2 + V (φ0)

T ij =
(
− 1

2a2 (φ′0)2 + V (φ0)
)
δij
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2.3. Linear Scalar Cosmological Perturbations

The gauge transformation behaviour of the field perturbation is

δ̃φ = δφ+ ξ0φ′0

which implies the following gauge invariant perturbation

χ = δφ− φ′0(B + E ′)

Again in conformal gauge δφc = χ; in the following the subscript indicating conformal
gauge will be suppressed and whenever expressions contain δφ they are to be
understood in conformal gauge. Inserting φ = φ0 + δφ in the formula for the
energy-momentum tensor we get the linear perturbation

δT 0
0 = 1

a2

(
− (φ′0)2A+ φ′0δφ

′ + V,φa
2δφ

)

δT 0
i = 1

a2φ
′
0δφ,i

δT ij = 1
a2

(
(φ′0)2A− φ′0δφ′ + V,φa

2δφ
)
δij

The idea of perturbation theory is to assume the equations to hold order by order.
This means we will have a background Einstein equation and a perturbation to
the Einstein equation which will be assumed to hold separately. The background
Einstein equations are

−3H′ =4πG(φ′0)2 + 8πGV (φ0)a2

−H′ − 2H2 =− 4πG(φ′0)2 + 8πGV (φ0)a2

−H′ +H2 =4πG(φ′0)2

and the background Klein-Gordon equation reduces to

φ′′0 + 2Hφ′0 + V,φ(φ0)a2 = 0 (2.3.1)

The perturbation Klein-Gordon and Einstein equations will lead to a set of three
independent equations. We start with the equation

δGi
j −

1
3δG

k
kδ
i
j = 1

a2

(
(A+D)|i|j −

1
3(A+D)|k |kδij

)
= 0

which implies A+D = 0 up to an irrelevant homogeneous term. In gauge invariant
notion this becomes Φ = −Ψ. The 0-i-equation of the Einstein equations becomes

HA+ A′ = 4πGφ′0δφ ⇔ Ψ′ +HΨ = 4πGφ′0χ (2.3.2)
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again up to a homogeneous term. For the last Einstein equations we take

−δG0
0 −

1
3δG

k
k = 2

a2

(
3H(HA+ A′)−4A

)
+ 2
a2

(
(2H′ +H2)A+ 3HA′ + A′′

)

= 2
a2

(
A′′ + 6HA′ + (2H′ + 4H2)A−4A

)

=− 8πGδT 0
0 −

8πG
3 δT kk = −8πG 2

a2V,φa
2δφ

Then we can use the Klein-Gordon equation and the 0-i-equation to recast this in
the form

A′′ −4A+ 6HA′ + (2H′ + 4H2)A = 2
φ′0

(A′ +HA)(φ′′0 + 2Hφ′0)

⇒ Ψ′′ −4Ψ + 2
(
H− φ′′0

φ′0

)
Ψ′ + 2

(
H′ − φ′′0

φ′0
H
)

Ψ = 0 (2.3.3)

The perturbation of the Klein-Gordon equation is

χ′′ −4χ+ 2Hχ′ + V,φφ (φ0)a2χ = 4φ′0Ψ′ − 2V,φ (φ0)a2Ψ (2.3.4)

The coupled differential equations (2.3.2), (2.3.3) and (2.3.4) govern the dynamics
of the gauge invariant perturbations Ψ and χ. We will investigate in this work
the quantisation of perturbations using these equations. Especially the constraint
equation (2.3.2) will play a major role.

In the standard treatment one usually defines a field

u = aχ+ zΨ where z = aφ′0
H

(2.3.5)

which fulfils the equation of motion

u′′ −4u− z′′

z
u = 0. (2.3.6)

This field is then usually quantised and the Fourier transform of its associated
two-point function, the so-called power spectrum, is derived. The power spectrum is
later used to derive the spectrum of temperature perturbations of the cosmological
background radiation. To achieve a reasonably well defined model, some assumptions
have to be made about the inflationary period. In the context of this work it suffices
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2.3. Linear Scalar Cosmological Perturbations

to elaborate the “slow-roll” model. We define the so-called slow-roll parameters

ε = 1− H
′

H2 = 4πGz
2

a2 (2.3.7)

δ = 1 + ε− z′

zH
(2.3.8)

where ε also implement the background Friedmann equation, and assume them to
be small. Noting

z′′

z
=
(

2 + 2ε− 3δ + 2ε2 − 3εδ + δ2 − δ′

H

)
H2

and remembering that the inflationary model implies an approximate de Sitter phase
with H ≈ −1+ε

η
this implies the approximate equation of motion

u′′ −4u− 2 + 4ε− 3δ
η2 u = 0.

For simplicity, ε and δ are usually treated as constants, which means that the
equation of motion is that of an almost minimally coupled scalar field in de Sitter
spacetime.

Next it is assumed that the ultraviolett asymptotics of the two-point function are
fixed in such a way that the state is compatible with the Hadamard condition. It is
then argued heuristically that the power spectrum tends to that of the Bunch-Davies
state during the inflationary period. The property in question here is in fact the
infrared stability of de Sitter spacetime which has been studied to some degree. While
there is no final consent about this, this assumption can be taken for granted for a free
field as long as it is not massless. This finally yields the so-called “scale-free power
spectrum”, which is simply the infrared limit power spectrum of the Bunch-Davies
state.

ω
(
ũ(~k)ũ(~k′)

)
= 2π2

k3 Pprim(k)δ(~k − ~k′) ⇒ Pprim(k) ∝ k3δ−4ε

Quite oddly, one writes Pprim(k) = kn−1, where the spectrum calculated here is
approximately the so-called Harrison-Zel’dovich spectrum for which n = 1.

In the present work the quantisation procedure will be investigated in some detail,
showing that the choice of field to quantise is ambiguous. However, the field u which
is usually chosen for quantisation will be seen to be among the preferred options for
fields to quantise. It would be preferable to formulate a sound quantum theory for
the linear perturbations that takes into account gauge issues and provides a well
founded quantisation mechanism. However, such an endeavour is beyond the scope of
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this work. In [17] an algebraic quantum theory for linear perturbations of the metric
has been formulated for vacuum spacetimes. However, the very procedure applied
in that article prevents a coupling to matter and thus a treatment of cosmological
problems.

2.3.4. The Boltzmann Equation

In this subsection we will introduce the necessary formalism to derive the tempera-
ture perturbations of the cosmic microwave background from the primordial power
spectrum. This means that the evolution of the perturbations after the end of
inflation is to be described. To describe the photon fluid after the era of inflation
one uses the Boltzmann equation. The Boltzmann equation in the form derived in
the present subsection will be used in the following derivation of the Sachs-Wolfe
effect and in section 4.2.

There are two main procedures to motivate the Boltzmann equation in the literature.
The treatment that is pursued for example in [15] is rather heuristic and uses a
classical mechanics analogy. The treatment in [47] is in contrast rather technical but
sheds more light on the geometrical background. We will therefore follow the latter
approach. The description is purely classical and light is not modelled as waves but
as classical particles traveling on null geodesics. Thus one essentially looks for the
Liouville operator corresponding to geodesic motion.

First of all we note that the cotangent bundle T ∗M of spacetime can be interpreted
as a symplectic manifold with a symplectic form ωg expressed in natural bundle
coordinates (xµ, pν), which are Darboux coordinates in the symplectic setting, as

ω = dxµ ∧ dpµ −→ ωg = dxµ ∧ d(gµνpν)

The second equality uses the metric isomorphism to define a corresponding symplectic
form ωg on the tangent bundle TM. On the tangent bundle the Hamiltonian function
for geodesic motion can be expressed as

L = 1
2gµνp

µpν

which yields the Hamiltonian vector field as solution to iXgωg = dL. The Hamiltonian
vector field in this case is the geodesic spray

Xg = pµ
∂

∂xµ
− Γµνλpνpλ

∂

∂pµ

With some additional geometric apparatus one can show that the collisionless
Boltzmann equation is LXm,gf = 0 where Xm,g = Xg|Φm and

Φm = {v ∈ TM|v future directed, g(v, v) = m2}
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2.3. Linear Scalar Cosmological Perturbations

can be interpreted as the mass shell. As this is done in some detail in [47] we will
not repeat the argument here. Note that Xg can be cast in the form

Xg = pµeµ − ωµν(p)pν
∂

∂pµ

where overlines denote tetrad indices. The tetrad used in this setting is the canonical
lift of the tetrad given by

e0 = 1− A
a

∂η ei = 1−D
a

∂i

in conformal gauge to a tetrad on T (TM). This canonical lift is defined via the
identification of TxM and its basis with its tangent space. The restriction to Φm in
terms of this tetrad is given as

Xm,g = pµeµ − ωiνp)pν
∂

∂pi

where ωiν(p) are the connection forms. In keeping with the idea of perturbation
theory we assume the phase space density f(x, ~p) = f0(η, p) + δf(η, ~x, p, p̂). Now
we can separate the background terms from the perturbation in LXm,gf . In the
linear term we use the “comoving momentum” q = ap instead of the “conformal
momentum”, given by the tetrad components of p. Additionally we Fourier transform
from ~x to ~k and use µ = k̂ · p̂. Denoting the background part and the perturbation
by X̃g(f) =:

(
X̃g(f)

)
0

+
(
X̃g(f)

)
1
, we get

a

p0

(
X̃g(f)

)
0

= f ′0 −Hp
∂f0

∂p
(2.3.9)

a

p0

(
X̃g(f)

)
1

=
(
δ̃f
′
− Ã′q∂f0

∂q

)
+ ikµ

(
δ̃f − Ãq∂f0

∂q

)
+ (Ã− D̃)′q∂f0

∂q
(2.3.10)

This can be recast in a gauge invariant form, which is however more complicated
than with the quantities treated so far, as δf is a function on a subspace of the
tangent bundle. The details are explained in [47] and we just give the gauge invariant
form here.

F = δf − q∂f0

∂q

(
H(B + E ′) + p̂i(B + E ′),i

)
In the following we drop the tildes from the Fourier transform; as we use only the
Fourier transformed quantities in the following, no confusion should arise.
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It is then customary to define the background rescaled bolometric phase space
density

Λ =

∞∫
0
Fq3dq

4
∞∫
0
f0q3dq

(2.3.11)

where the factor 1
4 is multiplied to allow an interpretation as a background rescaled

temperature perturbation due to the Stefan-Boltzmann law. Observing
∞∫
0

∂f0

∂q
q4dq = −4

∞∫
0

f0q
3dq

one gets, integrating equation (2.3.10) and using (2.3.11)

a
∞∫
0

1
p0

(
X̃g(f)

)
1
q3dq

4
∞∫
0
f0q3dq

= (Λ + Ψ)′ + (ikµ)(Λ + Ψ)− (Ψ− Φ)′

The second ingredient to the Boltzmann equation is a description of non-gravi-
tational interaction. In the case of the photon fluid we expect strong interaction
with charged particles as long as the photon energy is high enough. The process
that is most important for photon energies close to the ionisation energy is Thomson
scattering with electrons. As the last interaction before decoupling is overwhelmingly
likely to be a Thomson scattering, it suffices to consider this process for an adequate
description of decoupling and free streaming. We will not derive the scattering am-
plitude in the usual form here. A quite accessible derivation is given in [47]. We will
assume Λ to be scalar, which means that it only depends on η, k and µ. Furthermore
we will use cylindrical moments defined by Λ(η, k, µ) =

∞∑
l=0

(−i)lλl(η, k)Pl(µ).

The full Boltzmann equation with Thomson scattering is

(Λ + Ψ)′ + (ikµ+ τ̇)(Λ + Ψ) = (Ψ− Φ)′ + τ̇
(
λ0 + Ψ− iµλ1 − 1

10P2(µ)λ2
)

(2.3.12)

where τ̇ = nfeσTa with nfe being the density of free electrons and σT the Thomson
cross section. As the cross section is strongly dependent on photon energy and thereby
temperature, it is evident that τ̇ is strongly time dependent in the temperature range
where the average photon energy drops below the ionisation energy of hydrogen. (To
be more precise one should note that the extreme excess of photons over electrons
actually lowers the temperature of decoupling by almost two orders of magnitude
below the ionisation energy of hydrogen.)
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2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations

The Sachs-Wolfe effect, first described in [37], provides an explanation for the
large angle part of the angular spectrum of temperature fluctuations of the cosmic
microwave background. In the previous subsections almost all necessary tools for
the derivation of the Sachs-Wolfe angular spectrum of perturbations have been
collected. In this subsection the angular spectrum will be derived for completeness.
The Sachs-Wolfe angular spectrum will only briefly be referenced in the remainder
of this work but its derivation highlights an interesting point which plays a role in
all semiclassical treatments of gravity. The treatment in this section largely follows
[47] and [15].

The temperature fluctuations of the cosmic microwave background are fundamen-
tally random, so the theory of cosmological perturbations cannot predict a certain
map of the sky with hot and cool spots. However, the randomness of the fluctuations
can be quantified in the sense that the angular correlation of temperature fluctua-
tions can be investigated. So the questions that can be answered by cosmological
perturbation theory are of the type: “Randomly taking 1, 000 pairs of points in
the sky where each pair are an angle of one degree apart, how strongly are the
measured pairs of temperatures of the cosmic microwave background at the two
points correlated?” Therefore the principal object of investigation is the statistical
autocorrelation of temperature fluctuations at different angles of measurement

C(η, ~x, p̂ · p̂′) :=
〈

∆T (p̂)
T

∆T (p̂′)
T

〉

:=
∫ d3kd3k′

(2π)6 ei~x(~k−~k′)
〈
(Λ + Ψ)(η,~k, p̂)(Λ + Ψ)∗(η,~k′, p̂′)

〉
where p̂ and p̂′ are directions of measurement, i.e., telescope alignments, (~x, η) marks
the spacetime location of the telescope and Λ + Ψ = ∆T

T
by definition. In this

expression Λ is interpreted as a random variable with vanishing expectation value,
because the background temperature is chosen such that the mean of the fluctuation
vanishes.

As the object of interest is an angular correlation, considering an angular expansion
is rather natural. An expansion in spherical harmonics is given by∫ d3k

(2π)3 e
i~x~k(Λ + Ψ)(η,~k, p̂) =

∑
l,m

alm(η, ~x)Ylm(p̂)

where the alm are again understood as random variables. Due to spatial homogeneity
and isotropy these random variables satisfy

〈alm(η, ~x)a∗l′m′(η, ~x)〉 = δll′δmm′Cl(η)
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which bears two important implications. Firstly, it suffices to consider an expansion
of C(η, ~x, p̂ · p̂′) in cylindrical moments and secondly the variance of the cylindrical
moments is constrained by their relation to the correlation of the alm. The expansion
in cylindrical moments is

C(η, p̂ · p̂′) =
∞∑
l=2

2l + 1
4π Cl(η)Pl(p̂ · p̂′)

In the following, the Ψ added to Λ at measurement time is ignored, as it only affects
the moment C0, because of the independence of Ψ on µ.

The correlations of the temperature fluctuations are assumed to stem from pri-
mordial fluctuations, which means that the correlation function is decomposed as

〈
Λ(η,~k, p̂)Λ∗(η,~k′, p̂′)

〉
=
〈
u(η,~k)u∗(η,~k′)

〉 Λ(η,~k, p̂)
u(η,~k)

Λ∗(η,~k′, p̂′)
u∗(η,~k′)

(2.3.13)

where the quotients Λ
u
are assumed to evolve deterministically. The autocorrelation

of u is then identified with the Fourier transform of its two-point function. So
essentially the quantum expectation value at the end of inflation is interpreted as
the autocorrelation of a classical random field. This is a generic way of doing a
quantum-classical transition in a semiclassical setting, where the present case is
still peculiar when compared to semiclassical electrodynamics or the semiclassical
Einstein equation, as pointed out by [33]. In the latter cases, a quantum expectation
value is interpreted as a classical quantity, or to make an analogy to the present case,
as a classical expectation value. In the present case however, the quantum two-point
function is interpreted as a classical autocorrelation, i.e. statistical information on
pairs of points. In [33] the troublesome features of the quantum-classical transition are
discussed in some detail. In the present work the usual procedure is not questioned.

To get an expression for Λ
u
at present time, it is necessary to solve the Boltzmann

equation formulated above. However, to achieve this a model for the time dependence
of the Thomson cross section, i.e., some information about τ̇ is needed. Before
addressing this problem, consider the general solution of equation (2.3.12)

Λ + Ψ =
η∫

0

[
τ̇

(
λ0 + Ψ− iµλ1 −

P2(µ)
10 λ2

)
+ (Ψ− Φ)′

]
e−ikµ(η−η′)−τ(η′,η)dη′

(2.3.14)

where τ(η′, η) =
η∫
η′
τ̇ dη′′ and τ̇ e−τ(η′,η) is called the visibility function. The visibility

function is a probability density for the time of last scattering of photons in such
a fashion that the model of all photons being last scattered at a fixed time η∗
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implies τ̇ e−τ(η′,η) = δ(η′ − η∗). This approximation is called the sudden decoupling
approximation and leads to an explicitly calculable spectrum. In this approximation

(Λ + Ψ)(η, µ, k) =
(
λ0(η∗) + Ψ(η∗)− iµλ1(η∗)−

1
10P2(µ)λ2(η∗)

)
e−ikµ(η−η∗) + ISW

where ISW :=
η∫
0

(Ψ−Φ)′e−ikµ(η−η′)−τ(η′,η)dη′ is responsible for the so-called integrated
Sachs-Wolfe effect. If decoupling is modelled not as instantaneous but the time
of decoupling is instead smeared out, the results change slightly but qualitatively
remain largely the same, as indicated in [15].

To extract the cylindrical moments at late times from the solution, it is necessary
to expand e−ikµ(η−η∗) into Legendre polynomials. This yields

e−ikµ(η−η∗) =
∑
l

(−i)l(2l + 1)jl(k(η − η∗))Pl(µ)

−iµe−ikµ(η−η∗) =
∑
l

(−i)l(2l + 1)j′l(k(η − η∗))Pl(µ)

(−i)2P2(µ)e−ikµ(η−η∗) =
∑
l

(−i)l(2l + 1)1
2
(
3j′′l + jl

)
(k(η − η∗))Pl(µ)

which leads to the moments
λl(η, k)
2l + 1 = (λ0(η∗, k) + Ψ(η∗, k))jl(k(η − η∗)) + λ1(η∗, k)j′l(k(η − η∗))

+ 1
20
(
3j′′l (k(η − η∗)) + jl(k(η − η∗))

)
λ2(η∗, k) + ISWl (2.3.15)

for l ≥ 2.

To calculate the cylindrical modes of the variance of the temperature fluctuations
from (2.3.15), a mode form of equation (2.3.13) is needed. This can be achieved
using the relation between Legendre polynomials and spherical harmonics. Inserting
(2.3.9) we get

〈
Λ(η,~k, p̂)Λ∗(η,~k′, p̂′)

〉
= 2π2δ(~k − ~k′)Pprim(k)

k3
Λ(η,~k, p̂)
u(η, k)

Λ∗(η,~k′, p̂′)
u∗(η, k′)∫

ei~x(~k−~k′)
〈
Λ(η,~k, p̂)Λ∗(η,~k′, p̂′)

〉
d3kd3k′

= 2π2
∫ Pprim(k)

k3
Λ(η,~k, p̂)
u(η, k)

Λ∗(η,~k, p̂′)
u∗(η, k) d3k
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= 2π2
∫ ∞∑

l=0

∞∑
l′=0

(−i)l−l′Pprim(k)
k3

λl(η, k)Pl(k̂ · p̂)
u(η, k)

λ∗l (η, k)Pl(k̂ · p̂′)
u∗(η, k) d3k

= (2π)3
∫ ∑

l,l′
il
′−l4πPprim(k)

k3

∑
m,m′

|λl(η, k)|2Ylm(k̂)Y ∗lm(p̂)Yl′m′(k̂)Y ∗l′m′(p̂′)
|u(η, k)|2(2l + 1)(2l′ + 1) d3k

= (2π)3
∞∫
0

∞∑
l=0

4π
2l − 1

Pprim(k)
k

l∑
m=−l

|λl(η, k)|2Y ∗lm(p̂)Y ∗lm(p̂′)
|u(η, k)|2 dk

= (2π)3
∞∫
0

∞∑
l=0

Pprim(k)
k

∣∣∣∣∣λl(η, k)
u(η, k)

∣∣∣∣∣
2

Pl(p̂ · p̂′)dk

This finally leads to

(2l + 1)2

4π Cl =
∞∫
0

Pprim(k)
k

∣∣∣∣∣λl(η, k)
u(η, k)

∣∣∣∣∣
2

Pl(p̂ · p̂′)dk

for l ≥ 2

To calculate λl
u

it is necessary to relate the Bardeen potentials and cylindrical
modes of the temperature fluctuations at decoupling to the field u. To do this
requires an investigation of the evolution during the phase of tight coupling, which is
done in some detail in [47] and [15]. As this investigation takes up a lot of space and
is unrelated to the present work it will not be reproduced here. For the Sachs-Wolfe
effect one restricts to the first term in equation (2.3.15) and gets the expression

λl(η, k)
u(2l + 1) = K0(η)jl(k(η − η∗))

where K0(η) is some function of cosmological parameters at the time of measurement,
whose form is relevant for quantitative but not qualitative understanding of the
result. This leads to

Cl(η) = K ′1η)
∞∫
0

1
k
ei~x(~k−~k′)δ(~k − ~k′)Pprim(k)jl(k(η − η∗))j∗l (k′(η − η∗))dk

= K1(η)
∞∫
0

kn−2|jl(k(η − η∗))|2dk

= K2(η)
Γ(3− n)Γ(2l+n−1

2 )
[Γ(4−n

2 )]2Γ(2l−n+5
2 )
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where K1(η) and K2(η) are again functions of time whose exact forms are irrelevant
for the present qualitative treatment. (Indeed, in a quantitative treatment, this
prefactor contains a free parameter that is fixed by measurement.) For n = 1 the
result ist thus l(l + 1)Cl = K3(η), which accounts for the so-called Sachs-Wolfe
plateau for low l, i.e., large angles, in a plot of l(l + 1)Cl versus l.
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3. Towards a Refinement of the LTE
Condition on Curved Spacetimes

This chapter is devoted to pointing out some open questions connected to the
extrinsic LTE condition. We will especially remark inconsistencies of the extrinsic
LTE condition with native thermality conditions, i.e. the native (conformal) KMS
condition, in two simple models. We will furthermore show that extrinsic S4 states
for a massless field show a temperature behaviour which is very different from the
temperature behaviour of an analogous classical ensemble. We will also illustrate,
referring to a specific model, that the LTE condition is very difficult to check when
a two-point function is explicitly given.

In the light of the described problems and open questions we will review the
extrinsic LTE concept. Aiming to modify the LTE condition as little as possible,
we argue that certain minimum requirements should be met in order to address the
problems. An explicit modification of the LTE concept on curved spacetimes is put
forward and discussed in the context of the problems. We will point out that the
suggested modification still leaves open some problems and questions which seem
to be solvable only with additional physical input. We will however illustrate the
modified condition with a simple example to show how it can be applied to address
at least some of the problems.

3.1. Non-Minimal Coupling

This section is devoted to the study of the simple model of scalar field in Einstein
static spacetime R× S3. Our investigation shows that the properties of KMS states
on the Einstein static spacetime are fundamentally incompatible with the extrinsic
LTE condition. Furthermore we argue that the coupling to curvature needs to be
considered in the context of local thermal equilibrium on curved spacetimes, if the
KMS states are interpreted as reasonable thermodynamic equilibrium states.

For our investigation we must derive the two-point function for maximally sym-
metric KMS states on the Einstein static spacetime. To achieve this we follow a
generic recipe to derive KMS two-point functions. First we establish the commutator
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3.1. Non-Minimal Coupling

distribution on the Einstein static spacetime then we derive the KMS two-point
function using Fourier transform in time direction and some functional analytic
argument. Having determined the KMS two-point function we calculate balanced
derivatives, where we regularise using the zero temperature KMS state. This means
we determine the balanced derivatives up to a state independent, purely geometric
term.

The special case m = 0 and ξ = 1
6 of this model has been investigated in [46]. Only

the first thermal observable was considered there. Our treatment will be somewhat
different and more general than the one in [46]. We will also focus on different
aspects of the model than said work.

3.1.1. Commutator Distribution

According to theorem 3.3.1 in [1] the advanced/retarded fundamental solutions to
a wave equation on a globally hyperbolic manifold are the unique fundamental
solutions with past/future compact support. This means that it suffices to check
that a fundamental solution is supported only for t > t′ or t < t′ to show that it is
the advanced/retarded solution. Due to [40] we know that advanced and retarded
solutions can be constructed from a bidistribution E that weakly fulfils the following
initial value problem

(�x +m2 − ξR)E(t, x; t′x′) = 0 (3.1.1)

δ(t, t′)E(t, x; t′x′) = 0

δ(t, t′)∂tE(t, x; t′x′) = −iδ(t, t′)δ(x, x′)

The solution to this initial value problem is thus the commutator distribution we are
looking for.

Lemma 3.1.1.
Denoting ωn =

√
m2 + n(n+ 2) + 6ξ and ∆t = t− t′ the bidistribution

E(t, χ, θ, φ; t′, χ′, θ′, φ′) =
∞∑
n=0

1
2ωn

(
e−iωn∆t − eiωn∆t

)
n∑
l=0

l∑
m=−l

Ynlm(χ, θ, φ)Y ∗nlm(χ′, θ′, φ′) (3.1.2)

weakly fulfils the initial value problem (3.1.1).
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

Proof. The result from [24] ensures that we can interchange integration and infinite
summation in this case, such that the smearing integrals of the test function can be
moved into each summand which allows for partial integration.

To see that the E given above fulfils the Klein-Gordon equation, we use that

(−4S3 +m2 + 6ξ)Ynlm(χ, θ, φ) = ω2
nYnlm(χ, θ, φ)

We then smear
∫
E(t, χ, θ, φ; t′, χ′, θ′, φ′)(�x +m2 + 6ξ)f(t, χ, θ, φ)dtdΩ, interchange

integration and the summation over n and use partial integration to apply the
derivatives on the summands. The boundary terms vanish for all summands, as f is
compactly supported. It is obvious that the result vanishes.

For the initial conditions first note that

Ef (t, t′, χ, θ, φ) :=
∫
E(t, χ, θ, φ; t′, χ′, θ′, φ′)f(t′, χ′, θ′, φ′)dΩ′

is a convergent series, as well as its termwise time derivative. This follows from the
fact that for n > 0 and any ∆t we have∣∣∣∣ 1

2ωn

(
e−iωn∆t − eiωn∆t

)∣∣∣∣ ≤ 1
∣∣∣∣−i2

(
e−iωn∆t + eiωn∆t

)∣∣∣∣ ≤ 1

and the completeness relation for the hyperspherical harmonics

∞∑
n=0

n∑
l=0

l∑
m=−l

Y ∗nlm(χ, θ, φ)Ynlm(χ′, θ′, φ′) = δS3(χ, θ, φ;χ′, θ′, φ′)

This implies that by interchangeability of integration and summation Ef and its
termwise time derivative are majorised by f . (To be precise, for some values of m
and ξ the n = 0-Term has to be subtracted for this claim to be true. However as
one is a finite number of terms, this poses no problem in the following argument.)
This implies that the derivative of Ef is given by its termwise derivative. Given
this, it is clear that E fulfils the first initial condition δ(t, t′)E(t, x; t′x′) = 0 as
this can easily be seen to hold termwise for Ef . For the second initial condition
δ(t, t′)∂tE(t, x; t′x′) = −iδ(t, t′)δ(x, x′), calculation of termwise derivative of Ef
and then termwise application of the delta distribution yields the desired equality∫
δ(t, t′)∂tEf (t, t′, χ, θ, φ) = −if(t, χ, θ, φ).

Comparing the commutator distribution (3.1.2) to the Fourier transformed Minkow-
ski commutator distribution, one sees that it is a straight forward adaption of the
latter, where the expansion in plane waves has been substituted for an expansion in
hyperspherical harmonics.
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3.1. Non-Minimal Coupling

3.1.2. KMS Two-Point Function

To acquire the KMS two-point function from the commutation distribution we use a
generic recipe which is generally applicable. The idea is to use the Fourier transform
of the KMS condition for the two-point function. This leads to a distributional
relation, which has to be treated with some care, but finally leads to an expression
of the KMS two-point function in terms of the commutator distribution. We will
briefly review the origin of the recipe before applying it to our case.

We begin by fixing our notation

gτ (t′, χ′, θ′, φ′) :=g(t′ − τ, χ′, θ′, φ′)

F β
f,g(τ) :=W β

2 (f, gτ )

Gβ
f,g(τ) :=W β

2 (gτ , f)

Ef,g(τ) :=Ef,gτ

which obviously implies F β
f,g(τ)−Gβ

f,g(τ) = Ef,g(τ). Fourier transforming this relation
with respect to τ and using the KMS condition we get

Ẽf,g(ε) = F̃ β
f,g(ε)− (2π)− 1

2

∫
Gβ
f,g(τ)e−iετdτ (3.1.3)

= F̃ β
f,g(ε)− (2π)− 1

2

∫
F β
f,g(τ + iβ)e−iετdτ

= F̃ β
f,g(ε)− (2π)− 1

2

∫
F β
f,g(τ)e−iετe−βεdτ = (1− e−βε)F̃ β

f,g(ε) (3.1.4)

It should be noted that these Fourier transforms are in general distributions, even if
the original expressions are smooth functions. The resulting relation (3.1.4) is thus
to be understood in the sense of distributions and not straight forward to solve for
F̃ β
f,g(ε). If however Ẽf,g(ε) is regular for a neighbourhood of ε = 0 one can explicitly

give a solution using the principal value

F̃f,g(h) =
(
Ẽf,gP

1
1− e−β·

)
(h) + (2π) 1

2 cf,gδ(h)

where h is a test function and the ambiguity stems from the fact that (1 − e−βε)
is of order ε1 which annihilates the delta distribution. The full argument that the
ambiguity is given only by this delta distribution is given in [5]. To see that the
above expression is indeed a solution to (3.1.4), it remains to show that (1− e−βε)
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

is a multiplicator for it, which it is obviously by definition. Then we can apply the
inverse Fourier transform to get the distribution

Ff,g(h′) =
(

(2π)− 1
2

∫
eiε·Ẽf,gP

1
1− e−βεdε

)
(h′) + cf,g

where we assume the test function h′ normalised for simplicity, such that cf,g does
not get a prefactor. Next we need regularity of this distribution at τ = 0, such that
the limit

W β
2 (f, g) = Ff,g(0)

is well defined. We will see that the two requirements are fulfilled in the case
considered here.

Lemma 3.1.2.

• Ẽf,g(ε) vanishes in a neighbourhood of ε = 0, except for m = ξ = 0.

• Ff,g(τ) is regular at τ = 0.

The two-point function is

W β
2 (f, g) =

∫ ∞∑
n=0

1
2ωn

(
e−iωn∆t

1− e−βωn −
eiωn∆t

1− eβωn

)∑
l,m

f ∗nlm(t)gnlm(t′)dtdt′

(1− δωn,0) (3.1.5)

Proof. Shifting the integration t′ → t′′ = t′ − τ , we essentially get ∆t→ ∆t− τ in
E. This yields

Ẽf,g(ε) =
∫
e−iετ

∞∑
n=0

1
2ωn(2π) 1

2

(
e−iωn(∆t−τ) − eiωn(∆t−τ)

)∑
l,m

f ∗nlm(t)gnlm(t′)dτdtdt′

=
∫ ∞∑

n=0

(2π) 1
2

2ωn

(
e−iωn∆tδ(ε− ωn)− eiωn∆tδ(ε+ ωn)

)∑
l,m

f ∗nlm(t)gnlm(t′)dtdt′

which is obviously regular in a neighbourhood of ε = 0 because ∀n : ωn > 0 as
required for the explicit construction of the solution to (3.1.4). As it even vanishes
for ε = 0 the principal value can be ignored here and does not add complication.

We get

Ff,g(τ) =
∫ ∞∑

n=0

1
2ωn

(
e−iωn(∆t−τ)

1− e−βωn −
eiωn(∆t−τ)

1− eβωn

)∑
l,m

f ∗nlm(t)gnlm(t′)dtdt′ + cf,g
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3.1. Non-Minimal Coupling

which inherits the property of regularity at τ = 0 from the same property of Ef,g(τ),
which can be seen by a straight forward majorant property.

This finally leads to the well defined two-point distribution

W β
2 (f, g) =

∫ ∞∑
n=0

1
2ωn

(
e−iωn∆t

1− e−βωn −
eiωn∆t

1− eβωn

)∑
l,m

f ∗nlm(t)gnlm(t′)dtdt′ + cf,g

However there is one special case which has to be considered, namely the case of
m = ξ = 0. In this case the summand for n = 0 in the commutator distribution
takes the form

E0(x, x′) = lim
n→0

1
4π2ωn

(
e−iωn∆t − eiωn∆t

)
= −i∆t2π2

where Y 2
000 = 1

2π2 was used. Now we use f(t) =
∫
dµS3f(t, χ, θ, φ) and h(t) = f(t)−

g(t), and without loss of generality we demand for simplicity
∫
f(t)dt =

∫
g(t)dt = 1.

Then we get the smeared form

E0
f,g = −i

2π2

∫
h(t)tdt

We also get
∫
g
τ
(t)tdt =

∫
g(t)tdt+ τ which leads to

E0
f,g(τ) = −i

2π2

(∫
h(t)tdt− τ

)

Ẽ0
f,g(ε) = −i

2π2

(
δ(ε)

∫
h(t)tdt− iδ′(ε)

)
which is obviously irregular at ε = 0. We can however still solve (3.1.4) using a trick.
We make the ansatz that F̃ β

f,g(ε) is a series, then we separate the summand n = 0
from the rest of the series on both sides of the relation and assume the relation to
hold separately. The rest of the sum can then be treated as before and only the
n = 0 term remains to be dealt with. The simple form of Ẽ0

f,g(ε) allows for a straight
forward ansatz for F̃ β,0

f,g (ε). The equation we have to fulfil in the distributional sense
is

F̃ β,0
f,g [(1− e−β·)u] = Ẽ0

f,g[u] = −i
2π2

(
u(0)

∫
h(t)tdt− iu′(0)

)
which motivates the ansatz

F̃ β,0
f,g (ε) =

∞∑
k=0

akδ
(k)(ε)
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

A straight forward calculation yields

F̃ β,0
f,g (ε) = cf,gδ(ε) +

(
−i

2π2β

∫
h(t)tdt− 1

4π2

)
δ′(ε)− 1

4π2β
δ′′(ε)

F β,0
f,g (τ) = cf,g +

(
1

2π2β

∫
h(t)tdt− i 1

4π2

)
τ + 1

4π2β
τ 2

This term is regular for τ = 0, such that we get a well defined two-point function.
Thus, in the special case m = ξ = 0 we simply eliminate the summand for n = 0
from the two-point function.

Last we turn to the task of determining cf,g. We follow the procedure described
in [23]. This means we want our states to be extremal, meaning they shall not be
expandable in other time translation invariant states. Thus they are primary and
fulfil the weak cluster property (see [20]). As we also want the one point functions
to vanish for simplicity, we are led to the following expression for the weak cluster
property

lim
T→∞

1
2T

T∫
−T

F β
f,g(τ)dτ = 0

Again these limits can be interchanged with the sum to get

lim
T→∞

1
2T

T∫
−T

1
2ωn

eiωnτ

1− e−βωn
∑
l,m

f̃nlm(ωn)g̃nlm(−ωn)dτ − (ωn → −ωn) + cf,g

= lim
T→∞

sin (ωnT )
2ω2

nT

1
1− e−βωn

∑
l,m

f̃nlm(ωn)g̃nlm(−ωn)dτ − (ωn → −ωn) + cf,g = 0

which means that the condition is fulfilled if cf,g = 0. This finally proves the
claim.

We want to give a simpler symbolic form of the two-point function, which will be
of use when calculating the balanced derivatives. Consider s = arccos

(
XY√
X2Y 2

)
for

vectors in R4. The restriction of this function to S3 will be denoted with s too and
is the geodesic distance on the hypersphere. Using this, we get

n∑
l=0

l∑
m=−l

Y ∗nlm(χ, θ, φ)Ynlm(χ′, θ′, φ′) = n+ 1
2π2 Un(cos s) = n+ 1

2π2
sin ((n+ 1)s)

sin s
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3.1. Non-Minimal Coupling

where Un are the Chebyshev polynomials of second kind. This yields the symbolic
form

W β
2 (x, x′) =

∞∑
n=0

n+ 1
4π2ωn

(
2 cos (ωn∆t)
eβωn − 1 + e−iωn∆t

)
sin ((n+ 1)s)

sin s (1− δωn,0) (3.1.6)

3.1.3. Balanced Derivatives

Note that

〈: φ(x)φ(x′) :〉β = 〈φ(x)φ(x′)〉β − 〈φ(x)φ(x′)〉∞ + 〈: φ(x)φ(x′) :〉∞
We ignore the last term for now and only calculate θβ(x, x′) := 〈φ(x)φ(x′)〉β −
〈φ(x)φ(x′)〉∞. The last term is obviously independent on temperature and only
yields a purely geometric contribution.

θβ(x, x′) =
∞∑
n=0

n+ 1
2π2ωn

cos (ωn∆t)
eβωn − 1

sin ((n+ 1)s)
sin s (1− δωn,0)

This easily yields

Θ = θβ(x, x) =
∞∑
n=1

n2

2π2ωn−1(eβωn−1 − 1)(1− δωn−1,0) (3.1.7)

To get an understanding of Θ we will prove the following estimate.
Lemma 3.1.3.
Θ fulfils the following estimate

Θ ≤ 1
2π2(eβω0 − 1)(1− δω0,0)− 1√

3π2
e−

β
2

+ 1√
3π2

(
2
β2 −

1
β

)
e−β + 1√

3π2

1
cosh

(
β
2

)
− 1

(3.1.8)

Proof.
For n > 1

β
+ 1 and

[
n ≥ 5

4 ⇒ 2
√

n+1
n−1 −

n
n−1 ≥ 1

]
we have

e−
βn
2 (eβωn−1 − 1) ≥ e

β
2 (2
√
n2−1−n) − e−

βn
2 ≥ e

β
2 (2
√
n2−1−n) − e−

β
2 (2
√
n2−1−n)

= 2 sinh
(
β

2
(
2
√
n2 − 1− n

))
≥ β

(
2
√
n2 − 1− n

)

≥ 2
√

n+1
n−1 −

n
n−1 ≥ 1
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

and for n ≥ 2 we have n
ωn−1

< 2√
3 . This yields

Θ =
∞∑
n=1

n2

2π2ωn−1(eβωn−1 − 1)(1− δωn−1,0)

≤ 1
2π2(eβω0 − 1)(1− δω0,0) + 1√

3π2

b 1
β

+1c∑
n=2

n

(eβωn−1 − 1) + 1√
3π2

∞∑
n=d 1

β
+1e

n

e
βn
2

= 1
2π2(eβω0 − 1)(1− δω0,0)− 1√

3π2
e−

β
2

+ 1√
3π2

b 1
β

+1c∑
n=2

n
( 1
eβωn−1 − 1 − e

−βn2
)

+ 1√
3π2

e−
β
2(

1− e−β2
)2

where the last equality is due to the geometric series. To further simplify the
remaining sum we note for 5

4 ≤ n ≤ 1
β

+ 1

1
eβωn−1 − 1 ≤

e−
βn
2

β(n− 1)

n

(
1

β(n− 1) − 1
)
e−

βn
2 ≥ (n+ 1)

(
1
βn
− 1

)
e−

β(n+1)
2

To see that the latter inequality holds, note that

n

(
1

β(n− 1) − 1
)
e−

βn
2 ≥ (n+ 1)

(
1

β(n) − 1
)
e−

β(n+1)
2

⇔ n2 − βn2(n− 1) ≥
(
n2 − 1− βn(n2 − 1)

)
e−

β
2

⇔ βn2 − (βn− 1)n2 ≥ −(βn− 1)n2e−
β
2 + (βn− 1)e−

β
2

⇔ βn2 − (βn− 1)n2(1− e−
β
2 ) ≥ (βn− 1)e−

β
2

⇐ βn2 − βn2(1− e−
β
2 ) ≥ βe−

β
2

⇔ n2 ≥ 1
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3.1. Non-Minimal Coupling

This allows the estimate

Θ ≤ 1
2π2(eβω0 − 1)(1− δω0,0)− 1√

3π2
e−

β
2

+ 1√
3π2

(
2
β2 −

1
β

)
e−β + 1√

3π2

1
cosh

(
β
2

)
− 1

Although this estimate is not straight forward to interpret it is obvious that
the decay property for β →∞ is exponential, as all terms include exponentials of
−β, in the last term disguised as cosh. One might have guessed this from formula
(3.1.7) however it should be noted that our estimate does away with the infinite
sum, leaving no doubt about the expressiveness of the result. This decay property
is incompatible with the quadratic decay in the temperature observed for the Wick
square in Minkowski spacetime. This illustrates that the extrinsic LTE temperature
is incompatible with the KMS temperature on Einstein static spacetime.

Furthermore, we can investigate the β → 0 asymptotics in the special case m = 0
and ξ = 1

6 . We calculate

Θ =
∞∑
n=1

n

2π2(eβn − 1) = 1
2π2

∞∑
n=1

∞∑
k=1

ne−βkn = 1
4π2

∞∑
k=1

1
cosh(βk)− 1

→ 1
2π2

∞∑
k=1

1
β2k2 = 1

12β2

which shows that the high temperature asymptotics matches the behaviour for the
massless field in Minkowski spacetime. Heuristically this can be understood in the
sense that high temperatures correspond to short wavelengths and the geometry
mainly influences long wavelengths as these probe larger patches of space.

In the general case one can see that the β → 0 asymptotics are the same, by
looking at the difference

Θξ= 1
6
−Θ = 1

2π2

∞∑
n=1

(
n

(eβn − 1) −
n2

√
n2 + a(eβ

√
n2+a − 1)

)

→ 1
2π2

∞∑
n=1

(
1
β
− n2

β(n2 + a)

)
= 1

2π2β

∞∑
n=2

a

n2 + a

where the sum converges for any a = m2 + 6ξ − 1. Thus the difference is of lower
order in β than the asymptotics of Θξ= 1

6
which means that the asymptotics of the

two quantities are the same.
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

Next we calculate the components of the thermal energy-momentum tensor for
the KMS states on Einstein static spacetime. The 00-component is straight forward
to calculate

ε00 =
∞∑
n=1

n2ωn−1

2π2(eβωn−1 − 1)(1− δωn−1,0) (3.1.9)

To calculate εii we can take different routes. The simplest is to set θ = θ′ and φ = φ′

such that s = ∆χ. We get

εχχ =
∞∑
n=1

n2(n2 − 1)
6π2ωn−1(eβωn−1 − 1)(1− δωn−1,0) (3.1.10)

We will show by a calculation in normal coordinates that one can take εχχ = εii,
i.e. the other components are given straight forwardly by multiplying εχχ with the
appropriate angular functions to yield −gijεij = 3εχχ.

The angular dependence stems only from the terms Un(X̂Ŷ ) where X and Y are
vectors in an ambient R4. We will pick our coordinates such that the vector X̂ + Y is
identified with the coordinates φ = 0, θ = χ = π

2 . Defining the auxiliary coordinates
α1 = φ, α2 = θ − π

2 and α3 = χ− π
2 we then get

X̂ =


cosα3 cosα2 cosα1
cosα3 cosα2 sinα1
cosα3 sinα2
sinα3

 Ŷ =


cosα3 cosα2 cosα1

− cosα3 cosα2 sinα1
− cosα3 sinα2
− sinα3


Denoting the normal coordinates by x we have

α1 =x1 +O(x4)

α2 =x2 −
1
6x

2
1x2 +O(x4)

α3 =x3 −
1
6x

2
1x3 −

1
6x

2
2x3 +O(x4)

and using the Taylor series of sin and cos we get

X̂Ŷ = 1− 2~x2 + 2
3(~x2)2 + 4

3
(
x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3

)
+O(x5)

Now we use the series expansion of the Chebyshev polynomials

Un(z) =
bn2 c∑
r=0

(
n+ 1
2r + 1

)
zn−2r(z2 − 1)r
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3.2. Conformally Static Spacetimes

where we first note that (X̂Ŷ )2 − 1 = −4~x2 +O(x3) = O(x2). This means that the
index r provides an ordering by orders in x in our case. Thus it suffices to look at
the first two terms

Un(X̂Ŷ ) =(n+ 1)(1− 2~x2) + (n− 1)n(n+ 1)
6 (−4~x2) +O(x3)

=n+ 1− 2
3n(n+ 1)(n+ 2)~x+O(x3)

Now we get ∂2
xi
Un(X̂Ŷ )

∣∣∣
x=0

= −41
3n(n+ 1)(n+ 2) which leads to the same result as

we calculated for εχχ.

This finally yields

Tr(ε) =
∞∑
n=1

n2(ω2
n−1 − (n2 − 1))

2π2ωn−1(eβωn−1 − 1)(1− δωn−1,0)

=
∞∑
n=1

n2(m2 + 6ξ)
2π2ωn−1(eβωn−1 − 1)(1− δωn−1,0)

= (m2 + 6ξ)Θ = (m2 − ξR)Θ (3.1.11)

where the last sign is due to our sign convention of the curvature. This shows another
incompatibility of the extrinsic LTE condition with the KMS condition on Einstein
static spacetime. The extrinsic LTE condition would demand that the trace of the
thermal energy-momentum tensor be independent on ξ, as is the case in Minkowski
spacetime. Especially for m = 0 the trace would have to vanish for all ξ, which is not
the case. This deviation goes beyond a mere difference in temperature definition and
may be seen as indicative of a need for a modified definition of thermal observables.
A modified thermal energy-momentum tensor has been proposed in [45], whose trace
for KMS states on Einstein static spacetime has the same form as for KMS states on
Minkowski spacetime for conformal coupling. Although this feature is not general,
the modified thermal reference observables proposed in [45] are well motivated and
yield interesting results for static spacetimes.

3.2. Conformally Static Spacetimes

In this section we will discuss the question, whether conformal KMS states of a
conformally invariant free field on a conformally static spacetime should be considered
thermal states and which implication this bears for the expectation values of thermal
observables. We will introduce a model already discussed by [4] and specialise to the
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

conformally invariant field to argue that conformally KMS states might indeed be
interpreted as thermal with some caution. We will then calculate the expectation
values of thermal observables on a general conformally flat spacetime and discuss
some problems arising in this context.

We will also investigate the consequence of the extrinsic LTE condition on the
dynamical equations of the thermal observables. The resulting equations lead to
questionable results which are qualitatively radically different from the classical
temperature behaviour. This problem can be remedied by adjusting the definition
of thermal observables, as we will show. However, such an adjustment of thermal
observables leads to a physical interpretation which is still very different from
the classical case. We will therefore argue that from the point of view of the
correspondence principle a modification of the extrinsic LTE concept is more desirable
than a simple redefinition of thermal observables.

3.2.1. Conformal KMS States

In this chapter we will use the tools for conformal quantum field theories introduced
earlier. To fix terminology we define

Definition 3.2.1.
Let ds2 the line element of a static spacetime (M, g) and Ω :M→ R+ a smooth
function called the conformal factor, then the spacetime (M, g̃) with line element

d̃s
2 = Ω2(x)ds2

is called conformally static. If the spacetime (M, g) is Minkowski spacetime, the
spacetime (M, g̃) is called conformally flat.

Summarising lemmas 2.2. and 2.4. of [35] one can use

Lemma 3.2.2.
Let (M, g) and (M, g̃) two spacetimes which are conformally related, i.e. d̃s

2 =
Ω2(x)ds2 with Ω : M → R+ a smooth function. This implies that the spacetimes
are diffeomorphic to each other. Let C a locally covariant conformal quantum field
theory, QC the corresponding locally covariant quantum field theory, S the locally
contravariant state space of Gaussian Hadamard states corresponding to QC. Then
the representatives Sg and Sg̃ are canonically isomorphic with

W̃ ω̃(f, g) = W ω(Ω3f,Ω3g) ⇔ W̃ ω̃(x, x′) = Ω−1(x)Ω−1(x′)W ω(x, x′)

where the identification of f and g on the different spacetimes is done via conformal
coordinates d̃s2 = Ω2(x)ds2.
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3.2. Conformally Static Spacetimes

This lemma essentially implies that for any locally covariant conformal quantum
field theory C the locally contravariant state space S of Gaussian Hadamard states
corresponding to the locally covariant quantum field theory QC contained in C
can be canonically extended to a locally contravariant conformal state space Z
which contains S. Note that the relation between two-point functions also holds for
non-Gaussian states, but additionally analogous relations have to hold for the other
n-point functions. On the practical side the lemma provides a simple prescription
to explicitly construct two-point functions for states of a conformal field theory
on a conformally static spacetime. We will use this prescription in the following
definition.

Definition 3.2.3. Let (M, g) be a static spacetime and (M, g̃) a conformally static
spacetime with d̃s2 = Ω2(x)ds2. Let C be a locally covariant conformal quantum field
theory, Z its corresponding locally contravariant conformal state space of Gaussian
Hadamard states. For the KMS state ωβ ∈ Zg with two-point function W β(f, g) we
call ω̃β ∈ Zg̃ defined by the two-point function

W̃ β(f, g) := W β(Ω3f,Ω3g) ⇔ W̃ β(x, x′) := Ω−1(x)Ω−1(x′)W β(x, x′)

a conformal KMS state. In this case β will not be straight forwardly interpreted
as the inverse temperature.

This definition can be straight forwardly extended to mixtures of conformal KMS
states, where the conformal relation of n-point functions commutes with taking
the mixture. This means that the mixture of conformal KMS states is related by
conformal transformation to the corresponding mixture of the corresponding KMS
states.

The model which serves us as motivation is a conformally flat Robertson-Walker
spacetime that is flat in the asymptotic time-like future and past.

ds2 =
(

1 + ε2

2 + 1− ε2
2 tanh(ρη)

)(
dη2 − d~x2

)

This line element implies a(η)→ ε for η → −∞ and a(η)→ 1 for η →∞. On this
spacetime we consider a conformally coupled scalar quantum field(

�+m2 − 1
6R

)
φ = 0

where we can make a mode decomposition in spatial direction and rescale the field
modes χp(η) = a(η)φp(η) to get the equation

χ′′p + (p2 +m2a2)χp = 0
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

Thus in the massless case which will concern us here, we get a generic harmonic
oscillator equation for the modes χp. This means that the modes of the field φ are
simply scaled with a−1.

As the asymptotic initial state we choose a KMS state with the two-point function

W β
2 (x, y) = 1

ε2

∫ 1
(2π)32p

(
e−i(x

0−y0)p

1− e−βp −
ei(x

0−y0)p

1− eβp

)
ei(~x−~y)~pd3p

The KMS inverse temperature is εβ, as can be seen by rescaling p = εq and x = x′

ε
.

The inverse temperature εβ is also what is measured by the LTE observables as is
best seen in rescaled coordinates. As the field is conformally invariant, the two-point
function of the state corresponding to the above given KMS initial state is

W β
2 (x, y) = 1

a(x0)a(y0)

∫ 1
(2π)32p

(
e−i(x

0−y0)p

1− e−βp −
ei(x

0−y0)p

1− eβp

)
ei(~x−~y)~pd3p

which is the two-point function of a conformal KMS state. This means that the
asymptotic final state is also a KMS state with two-point function

W β
2 (x, y) =

∫ 1
(2π)32p

(
e−i(x

0−y0)p

1− e−βp −
ei(x

0−y0)p

1− eβp

)
ei(~x−~y)~pd3p

corresponding to the KMS inverse temperature β. This means the temperature is
redshifted with a as is the case for a classical fluid of massless particles. Ignoring the
intermediate state, the initial and final states of this model reproduce exactly the
behaviour that would classically be expected for a fluid in thermodynamic equilibrium.
The temperature evolution in the intermediary region is identical to the behaviour
of a classical ideal gas of massless particles in an initial state of equilibrium in an
expanding spacetime. One could therefore expect that the state should be interpreted
as thermal all along.

If one deforms the spacetime to be some general Robertson-Walker spacetime
in the future, propagates the state to this region and then also deform the past
arbitrarily, one gets a conformal KMS state on a general Robertson-Walker spacetime.
This procedure could even be extended to arbitrary conformally flat spacetimes and
the resulting state will always correspond to a conformal KMS state. One could
therefore argue that in general conformal KMS states for the conformally invariant
field on conformally flat (or more generally, conformally static) spacetime may be
considered thermal states.

Indeed the temperature measured by the local thermal observables in conformal
KMS states conforms with the correspondence principle, as for large temperature,
i.e. small a(t)β, the curvature terms can be neglected. Thus a simple redshift, the
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3.2. Conformally Static Spacetimes

temperature behaviour for a classical fluid, is recovered in the semiclassical limit, as
long as it is justified.

We will now calculate a trace relation for the first two thermal observables as
we have done in the case of the Einstein static spacetime. In the following we will
denote quantities for the static spacetime as usual and respective quantities for the
corresponding conformally flat spacetimes with tildes. For the Ricci tensor and scalar
the following relations hold

R̃µν =Rµν + 1
Ω
(
− 2∇µ∂νΩ− gµνgαβ∇α∂βΩ

)
+ 1

Ω2

(
4∂µΩ∂νΩ− gµνgαβ∂αΩ∂βΩ

)

R̃ = 1
Ω2

(
R− 6�Ω

Ω

)
Considering the case of conformally coupled massless field, the two-point functions
of conformal KMS states are related to two-point functions of KMS states on the
static spacetime by

W̃ β
2 (x, y) = 1

Ω(x)Ω(y)W
β

2 (x, y)

using conformal coordinates. However the label β should in the case of the conformally
static spacetime not be interpreted as the physical inverse temperature. Inserting a
constant conformal factor or calculating Θ rather suggests Ω(x)β, possibly modified
by a geometric term, to be the physical inverse temperature. We define Θ and ε
via the difference θ̃(x, y) := W̃ β

2 (x, y)− W̃ ∞
2 (x, y) as in the Einstein static case, so

we again ignore the curvature term for the time being as its explicit form has little
relevance for now.

Lemma 3.2.4.
The trace of the thermal energy-momentum tensor for a conformal KMS state on a
conformally static spacetime is

ε̃µµ = 1
Ω4

(
εµµ + 1

2

(�Ω
Ω + gµν

∂µΩ∂νΩ
Ω2

)
Θ
)

(3.2.1)

Proof.
We start with the definition of the trace of the thermal energy momentum tensor

ε̃µµ(x, y) := −1
4(∇̃x − ∇̃y)µ(∇̃x − ∇̃y)µθ̃(x, y)

= 1
2

(
− �̃x + g̃µν∂xµ∂

y
ν

)( 1
Ω(x)Ω(y)θ(x, y)

)
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

then we calculate

�̃x
( 1

Ω(x)θ(x, y)
)

= 1
Ω4(x)

√
|g|
∂xµ

(
Ω2(x)gµν

√
|g|∂xν

( 1
Ω(x)θ(x, y)

))

= 1
Ω4(x)

√
|g|
∂xµ

(
gµν

√
|g|
(
Ω(x)∂xν θ(x, y)− (∂xνΩ(x))θ(x, y)

))

= 1
Ω4(x)

(
Ω(x)�xθ(x, y)− (�xΩ(x))θ(x, y)

)

This leads to

ε̃µµ(x, y) = 1
2Ω4(x)Ω2(y)

(
Ω(y)

(
− Ω(x)�xθ(x, y) + (�xΩ(x))θ(x, y)

+ gµν
(
Ω(x)∂xµ∂yνθ(x, y)− (∂xµΩ(x))∂yνθ(x, y)

))

+ gµν
(
− Ω(x)(∂yµΩ(y))∂xν θ(x, y) + (∂xµΩ(x))(∂yνΩ(y))θ(x, y)

))

and thus we get in the limit x = y

ε̃µµ = 1
2Ω4

(
−�x + gµν∂xµ∂

y
ν + �Ω

Ω + gµν
∂µΩ∂νΩ

Ω2 − gµν ∂µΩ
Ω (∂xν + ∂yν )

)
θ(x, y)

∣∣∣
x=y

Now we can use εµµ = 1
2(−�x + gµν∂xµ∂

y
ν )θ(x, y)

∣∣∣
x=y

and (∂xν + ∂yν )θ(x, y)
∣∣∣
x=y

= 0
where the latter follows from the canonical commutation relations at equal times.
This finally yields the result

ε̃µµ = 1
Ω4

(
εµµ + 1

2

(�Ω
Ω + gµν

∂µΩ∂νΩ
Ω2

)
Θ
)

In the case of conformally flat spacetimes we get the simple expression

ε̃µµ = 1
2Ω2

(
− 1

6R̃ + gµν
∂µΩ∂νΩ

Ω4

)
Θ (3.2.2)
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which is obviously incompatible with the requirements of the external LTE condition.
This means, analogously to the Einstein static case, that the LTE condition is in
general incompatible with the conformal KMS condition. In this case the incompati-
bility persists, if we choose the modified reference observables proposed by [45]. As
before, the question which concept of thermality is physically more viable has to be
addressed. This will be done in the rest of the section.

The trace relation is also in general different from the result acquired for KMS
states in the Einstein static spacetime. If we interpret conformal KMS states as
reasonable thermal states for conformal quantum field theories on conformally flat
spacetimes, this leads to the conclusion that, even ignoring the geometric terms, a
general expression for the trace of ε in terms of Θ is not straight forward for thermal
states. This will be of importance later, when we discuss a modified approach to
local thermal equilibrium states on curved spacetimes.

3.2.2. Extrinsic LTE in de Sitter Spacetime

Considering the special case of a massless field with arbitrary coupling to curvature on
de Sitter spacetime we can highlight another difficulty of the extrinsic LTE concept.
In the following we will not consider conformal KMS states, but take the extrinsic
LTE condition for granted and consider a space of thermal observables containing
S4. In this case the de Sitter equivalent of equation (2.2.9) simplifies for the two
balanced derivatives of lowest order.

As we are dealing in the following with balanced derivatives of order 4, it is
important to point out that the extrinsic LTE concept is not straight forwardly
applicable in the case of higher orders of derivative than 2. This is due to the fact
that on a curved spacetime the resulting tensor fields are not symmetric in the tensor
indices, as they are on Minkowski spacetime. Therefore the expectation values cannot
be equated without additional input. We will for simplicity assume the balanced
derivatives straight forwardly symmetrised for the following consideration.

To derive the generalised forms of the equations (2.2.6)-(2.2.9) we have to find a
suitable definition for the point split quantities θg,µ(x+ ζ, x− ζ). However, it is not
a priori clear what x+ ζ should mean, as it was in flat spacetime. To avoid referring
to normal coordinates we will thus slightly modify the treatment that was done for
flat spacetimes. We therefore note

∂zνf(z + ζ, z − ζ) =
(
(∂xν + ∂yν )f(x, y)

)
|x=z+ζ,y=z−ζ

∂ζνf(z + ζ, z − ζ) =
(
(∂xν − ∂yν )f(x, y)

)
|x=z+ζ,y=z−ζ
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

in flat spacetimes. This reformulation allows a translation of equations (2.2.6)-(2.2.9)
into a more general form. In the following we use abbreviations

∇±µ := ∇x
µ ±∇y

µ �± := gµν∇±µ∇±ν

The curvature terms stemming from the Hadamard parametrix will be denoted by
Cx
µ(x, y) := P x

m,ξ∇µθg(x, y), Cµ(x) := Cx
µ(x, y)|x=y = Cy

µ(x, y)|x=y. In the de Sitter
model we investigate, these curvature terms have no coordinate dependence which
simplifies the calculations a lot. The equations for the Wick square are

gµν∇+
µ∇−ν θg(x, y) = 0 (3.2.3)

⇒ gµν∇µω (θg,ν) (x) = 0 (3.2.4)

(�+ +�−)θg(x, y) = − 4(m2 − ξR)θg(x, y) + 4C (3.2.5)

⇒ �ω (θg) (x) = − ω (θg,νν) (x)− 4(m2 − ξR)ω (θg) (x) + 4C (3.2.6)

Obviously a generalisation of these equations to higher order thermal observables is
not straight forward, as the derivatives do not commute. Equations (3.2.3) and (3.2.4)
can be generalised to non-symmetrised thermal observables, as they are symmetric in
x and y and gµν∇+

µ∇−ν = �x −�y such that the geometric terms that are produced
by interchange of derivatives cancel out. However a version using only symmetrised
thermal observables is less straight forward to give. Things are even worse for
equations (3.2.5) and (3.2.6) in the general case, ever more so if symmetrisation is
required. In the de Sitter model the fact that R and C are constant greatly simplifies
the treatment.

Due to these difficulties, we will not give a general version of these equations for
symmetrised thermal observables here but rather restrict to the scenario we are
interested in, which requires only the calculation of the equations for the second
order thermal observable, which however implies a trace of the fourth order thermal
observable. This means we have to calculate the effect of symmetrisation. We define
the symmetrised thermal observables as

θg,ν(x, y) := ∇−(ν) : φ2
g :k (x, y). (3.2.7)

where the brackets indicate symmetrisation.

We collect some calculational tools that will be needed in the following
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Lemma 3.2.5.
The following relations hold

(a) Elementary relations

[∇−α ,∇+
β ] = [∇x

α,∇x
β]− [∇y

α,∇
y
β]

[∇−α ,∇−β ] = [∇x
α,∇x

β] + [∇y
α,∇

y
β]

(b) Relations relevant for generalisation of equations (3.2.3) and (3.2.4)

∇+
λ [∇−ρ ,∇−µ ]∇−ν θ(x, y)|x=y = Rα

νµρ∇λθα

∇−µ [∇+
λ ,∇−ν ]∇−ρ θ(x, y)|x=y = Rα

ρνλ∇αθµ

[∇+
λ ,∇−µ ]∇−ν∇−ρ θ(x, y)|x=y = Rα

νµλ∇αθρ +Rα
ρµλ∇αθν

(c) Relations relevant for generalisation of equations (3.2.5) and (3.2.6)

∇+
λ [∇+

ρ ,∇−µ ]∇−ν θ(x, y)|x=y = Rα
νµρ∇λ∇αθ + (∇λR

α
νµρ)∇αθ

∇−µ [∇+
λ ,∇−ν ]∇+

ρ θ(x, y)|x=y = Rα
ρνλθµα + (∇µR

α
ρνλ)∇αθ

∇−λ [∇−ρ ,∇−µ ]∇−ν θ(x, y)|x=y = Rα
νµρθλα + (∇λR

α
νµρ)∇αθ

[∇+
λ ,∇−µ ]∇−ν∇+

ρ θ(x, y)|x=y = Rα
νµλ∇α∇ρθ +Rα

ρµλθνα

[∇−λ ,∇−µ ]∇−ν∇−ρ θ(x, y)|x=y = Rα
νµλθαρ +Rα

ρµλθνα

Proof.
All relations are shown by straight forward calculation in appendix A.1.

Now we derive the dynamical equations, using the above formulae.
Lemma 3.2.6.
The dynamical equations for θµν and θµνλ are

∇λθ
λ
µν = 0 (3.2.8)

�θµν +
(32

3 + 48ξ
)
H2θµν = − θλλµν + 2

3H
2gµνθ

λ
λ + 2H2

(
gµν�−∇µ∇ν

)
θ

+ 4Cµν (3.2.9)
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Proof.
The proof is done by straight forward application of the relations from lemma 3.2.5.
The calculations can be found in appendix A.2.

The physical meaning of equations (3.2.3) and (3.2.8) is not straight forward in
the de Sitter case. In the case of the free massless field in Minkowski spacetime the
implication of this type of equation was demonstrated in [12] to be straight forward,
as the balanced derivatives ∇− can be understood in the sense of derivatives of the
macroobservables with respect to the inverse temperature β.

Using an appropriate extended set of thermal observables a similar result was
found by [23] for the massive field. In this case the argument was more indirect
however, as the balanced derivatives do not directly translate into derivatives of
macroobservables with respect to β, but these derivatives of macroobservables were
themselves found to be macroobservables contained in the extended set of thermal
observables. This in turn allowed to simply pick suitable allowed macroobservables
to extract physical meaning, completely prescinding from the balanced derivatives
used to construct the space of observables.

A treatment analogous to the massive case would be desirable in the case of LTE
on curved spacetimes in general and on de Sitter spacetime especially. However, the
extrinsic LTE concept can only offer carrying over the framework from Minkowski
spacetime to general spacetimes. Still it is not reasonably clear, whether a straight
forward simultaneous extension of the microobservable and macroobservable interpre-
tations from Minkowski spacetime to curved spacetimes in the spirit of the extrinsic
LTE condition is possible. This will be explored later in this subsection.

Next we investigate the implications of equations (3.2.5) and (3.2.9) in the extrinsic
LTE framework. First we note that using the extrinsic LTE concept, the traces
Θλ
λ and Θλ

λµν vanish, as they do for the massless field in Minkowski spacetime.
Furthermore we want to restrict to spatially homogeneous isotropic states, which
implies that the thermal observables will only be dependent on time and not on
space. The following consideration will be simplified by picking coordinates with
comoving time, such that

ds2 = dt2 − e2Htd~x2.

As we are interested in the 00-component of Θµν , we are left with the equations

Θ̈ + 3HΘ̇ + 48ξH2Θ = 4C (3.2.10)

Θ̈00 + 3HΘ̇00 +
(32

3 + 48ξ
)
H2Θ00 = 6H3Θ̇ + 4C00 (3.2.11)
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Defining the numbers α± = 3
2 ±

√
9
4 − 48ξ we get the solution to equation (3.2.10)

as

Θ = A+e
−α+Ht + A−e

−α−Ht + C

3H tδξ,0 + C

12ξH2 (1− δξ,0) (3.2.12)

This obviously leads to an oscillatory solution for ξ > 3
64 . Thus, depending on the

relation between C and A±, negative values for the squared temperature are possible,
which is not physically sensible. In these unphysical cases, extrinsic local thermal
equilibrium is unstable, as a state initially in extrinsic LTE will after a finite time
exhibit physically unacceptable temperature behaviour. This “life time” of LTE is
dependent on temperature, as the prefactors A± may be temperature dependent.
If one fixes A± through an initial condition on the temperature and considers the
comparison to Θ ∝ T 2, which holds for Minkowski spacetime, this suggests that A±
will be larger for large temperatures, such that the life time of LTE is shorter.

It should be noted that finite life time of LTE can occur for conformal coupling
ξ = 1

6 . In fact, C = 3
4π2

(
(1 − 6ξ)2 − 1

30

)
H4, which is negative for the conformally

coupled field, such that the life time of LTE is limited for any temperature in this
case.

Now we turn to the solution of equation (3.2.11). Defining γ± = 3
2 ± i

√
101
12 + 48ξ

we get the general solution

Θ00 = A00,+e
−γ+Ht + A00,−e

−γ−Ht − 9
16H

2α+A+e
−α+Ht − 9

16H
2α−A−e

−α−Ht

+ 3C
H3(16 + 72ξ)δξ,0 + 3C00

(8 + 36ξ)H2 (3.2.13)

Again there is a wide range of parameters within which this result is oscillatory and
also a wide range where the life time of LTE is finite.

However, taking the two results together, an additional obstacle for the extrinsic
LTE condition becomes apparent. As shown in equation (2.2.17) a necessary condition
for Minkowski KMS states for the massless field and thus also for extrinsic LTE
states is

(12Θ)2 ≤ −120
π2 Θ00

Of the exponents α± and γ± the one with the largest real part is α+, such that the
exponential e−α+Ht dominates for small t, whereas the constant terms dominate for
large t. Thus for small t

Θ2 → A2
+e
−2α+Ht −Θ00 →

9
16H

2α+A+e
−α+Ht
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

This means, as long as A+ is nonzero, the inequality will always be violated for some
suitably small t.

If we define γ =
√

101
12 + 48ξ, denote the constant and linear term of Θ by B(t),

the constant term of − 5
6π2 Θ00 by B̂ and − 5

6π2A00,± =: Â± this inequality for the case
A+ = 0 is

A2
−e
−2α−Ht + 2A−B(t)e−α−Ht +B2(t) ≤ (Â+e

−iγHt + Â−e
iγHt)e− 3

2Ht

+ 15
32π2H

2α−A−e
−α−Ht + B̂

A necessary condition for this to hold true for all times is that α− = 3
4 which is

equivalent to ξ = 9
256 , a value for the coupling to curvature which has no precedent.

Still the oscillatory prefactor on the right hand side, which will periodically be
negative, even if it is chosen to be real cannot be accounted for on the left hand side
by any real choice of A−. Thus it is impossible to fulfil the inequality for all t.

This means that in general the inequality can at most be fulfilled in the future of a
Cauchy surface, where equality holds on the Cauchy surface and the two sides of the
inequality become ever more unequal later. As the geometric terms are negative for
some choices of ξ, Θ will become negative at some time for these cases, which means
that it will only be an extrinsic LTE state for a finite time span. This result is very
remote from the classical picture, where essentially a redshift would be expected.
Although particle production effects are to be expected, the behaviour seen here
goes considerably beyond a small perturbation. One should also note that, while the
finding of instability under time evolution remains, the quantitative result changes if
Θ0

0 or even Θ00 is considered instead of Θ00. This calls into question the standard
extrinsic LTE condition and suggests at least a careful choice of thermal observables
to compare. One may for instance expect that only observables with as many upper
as lower tensor indices should be compared as then the effect of the metric should
cancel out.

Last it will be illustrated that a straight forward simultaneous extension of the
microobservable and macroobservable interpretations from Minkowski spacetime to
curved spacetimes in the spirit of the extrinsic LTE condition is not possible. To
show this, equation (3.2.3) for de Sitter spacetime will be treated using a straight
forward extension of the macroobservable interpretation from Minkowski spacetime.
This point of view simply leads to the equation

∇µ

(
∂µβ

1
β2

)
(x) = 0 (3.2.14)

if we assume a “pure temperature” state for simplicity.
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3.2. Conformally Static Spacetimes

Using Γµµν = 3Hδ0
ν , assuming homogeneity and isotropy, i.e. β(x) = β(t) and

restricting to the simple case ~β = ~0 we get the simple equation

β̇0 −Hβ0 = 0 ⇒ β0(t) = β0(0)eHt

This equation implies T ∝ a−1, a simple redshift, compatible with the correspondence
principle. However this result is in general not compatible with

Θ = 1
β2

0
= A+e

−α+Ht + A−e
−α−Ht + C

3H tδξ,0 + C

12ξH2

which is the solution to equation (3.2.5). These equations were derived on the level
of microobservables, i.e. local quantum observables, however their interpretation in
the framework of extrinsic LTE amounts to straight forwardly extend the macroob-
servable interpretation from certain microobservables in Minkowski spacetime to
corresponding locally covariant microobservables in curved spacetime. This extension
of the macroobservable interpretation leads to inconsistencies even in the simple
model of a massless scalar field in de Sitter spacetime.

One way to try and overcome these inconsistencies is to adjust the definition of
the thermal observables in de Sitter spacetime, as indicated in (2.2.4). However, a
comparison to the difference between the cases of massive and massless fields on
Minkowski spacetime may lead one to the expectation that such simple adjustments
are not sufficient, but instead one would have to turn to suitable extended spaces of
thermal observables, which include macroobservables that are suitable functions of
β. As in the case of the massive field in Minkowski spacetime it is then not at all
clear which series of balanced derivatives approximates the function one is interested
in. Also identifying the meaningful physical quantities, like thermodynamic state
variables, as functions of β and even more as series of balanced derivatives is not
straight forward.

Under any circumstances the extrinsic LTE concept seems to be inconsistent,
as equation (3.2.14) allows for a solution which exhibits exactly the temperature
behaviour of a classical radiation fluid in an expanding universe, while equation
(3.2.5) yields a solution, which is much less straight forward. However, in light of
the above considerations about extended sets of observables, one could expect an
equation like

∇µ

(
∂µβΘ

)
(x) = 0 (3.2.15)

to hold on an extended set of macroobservables Θ, which includes the macroobservable
1
β2 , such that indeed a classical-like behaviour would be physically realised in quantum
field theory.
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

An investigation of suitable extended sets of thermal observables and the implica-
tion of the macroobservable point of view in terms of metric dependence of thermal
observables is beyond the scope of this work. We will instead propose a modification
of the extrinsic LTE concept, which is as minimal as possible but addresses the
problems discussed in this work. This is necessary from our point of view because a
solid foundation on the level of microobservables is necessary for any considerations
about macroobservables to be meaningful at all.

3.3. Massive Fields

In this section we will discuss the general massive case of the model of a scalar field
in a spacetime which is asymptotically flat in the far future and past. The initial
state is taken to be a pure temperature KMS state and it is checked whether the final
state satisfies the KMS condition or whether it is at least a suitable mixture of KMS
states. To this avail the two-point function of the state in the limit of future infinity
is calculated using the Bogoliubov coefficients for the model at hand. This model
has been investigated in [28], however that treatment contained mistakes which are
corrected here.

3.3.1. Properties of the Model

The model discussed in this section is a conformally flat Robertson-Walker spacetime
that is flat in the asymptotic future and past.

ds2 =
(

1 + ε2

2 + 1− ε2
2 tanh(ρη)

)(
dη2 − d~x2

)

Towards past infinity the scale factor converges to a(−∞) = ε and for future infinity
the limit is a(∞) = 1. This model can be interpreted as a very simplistic inflationary
scenario, where ε fixes the magnitude of inflation and ρ quantifies the speed of
inflation. The implications of this metric as a model for inflation are best illustrated
by calculating the Hubble parameter H = a′

a2 as a function of the scale factor a.

We get

H = a′

a2 = ρ
(1− a2)(a2 − ε2)

(1− ε2)a3

which can be interpreted particularly easily in a doubly logarithmic visualisation.

One can see in figure 3.1 that the Hubble parameter H quickly rises to a maximum,
then decays as H ∼ a−1 until the “end of inflation”, where H quickly drops again.
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Figure 3.1.: Scale factor visualisation for ε = 10−30 and ρ = 1s−1

On this spacetime we consider a conformally coupled scalar quantum field which
is decomposed in modes in spatial direction and rescaled χp(η) = a(η)φp(η) to get
the equation

χ′′p + (p2 +m2a2)χp = 0

The metric becomes flat for time-like past and future infinity, but it is not
asymptotically flat. For the sake of asymptotic considerations, we define asymptotic
spacetimesMin/out, which are isometric copies of Minkowski spacetime. However it
is of significance that the volume elements of the asymptotic spacetimes are different,
because the scale parameter asymptotes to different values. EssentiallyMout can
be understood as the ordinary Minkowski spacetime, while the metric ofMin is a
Minkowski metric scaled by ε2.

On the asymptotic spacetimesMin/out one can consider Minkowski equations of
motion which emerge as limits of the equation of motion for past and future infinity.
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

Correspondingly, field algebras and state spaces can be defined on the asymptotic
spacetimes. These state spaces contain unique Poincaré invariant vacuum states,
whose associated GNS representation is the well known vacuum Fock space. These
states can be interpreted as asymptotic vacuum states in this model, emerging as
past and future time-like infinity limits of certain states in the bulk [4]. It should be
noted that this is not identical to the usual notion of asymptotic vacuum states in
asymptotically flat spacetimes, as the spacetime considered here is not asymptotically
flat. Due to the well defined limits of n-point functions one can nevertheless attach
meaning to the states on the asymptotic spacetimesMin/out as asymptotic initial or
final states.

3.3.2. Bogoliubov Transformation

To fix notation with respect to the asymptotic spacetimes and their corresponding
vacuum states, let the limit of some quantity X for the asymptotic past and future
be denoted as X

∣∣∣
in/out

. Such limits of mode functions or two-point functions can be
interpreted as mode functions or two-point functions on the asymptotic spacetimes
Min/out. The mode functions χin/out

p for asymptotic vacuum states are simply plane
waves in the respective asymptotic limit. This means, by definition χin

p (x0)
∣∣∣
in

=
χout
p (x0)

∣∣∣
out

= e−iωpx
0 . In this subsection the slightly more general case of a free

scalar field in a conformally flat, spatially homogeneous and isotropic spacetime that
is flat in the far future and past will be discussed without reference to the specific
spacetime. The general idea in treating this kind of problem is to calculate the
Bogoliubov coefficients that relate the “in”-modes and “out”-modes.

The Bogoliubov transformation for a spatially homogeneous and isotropic spacetime
can be expressed as

χin
p = Apχ

out
p +Bpχ

out∗
p

where the consistency condition for the Bogoliubov coefficients

∀p : |Ap|2 − |Bp|2 = 1

must be fulfilled. To calculate the Bogoliubov coefficients solutions for the “in”-
and “out”-modes at the same time t0 are needed. The model that is considered here
has the advantage that solutions for all times have already been calculated in [4].
The general solution to the problem considered here will be given in terms of the
Bogoliubov coefficients, which allows straight forward calculation of results as soon
as the Bogoliubov coefficients are known.
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3.3. Massive Fields

As the initial state we choose a KMS state with the two-point function

W β,in
2 (x, y)

∣∣∣
in

= 1
ε2

∫ 1
(2π)32ωin

p

(
e−i(x

0−y0)ωin
p

1− e−βωin
p
− ei(x

0−y0)ωin
p

1− eβωin
p

)
ei(~x−~y)~pd3p

where we define ωin
p =
√
p2 + ε2m2. The KMS inverse temperature is εβ, as can be

seen by rescaling p = εq and x = x′

ε
analogous to the massless case. As this is only

the asymptotic expression for the far past, the modes χin
k are used to express this

two-point function in a form that holds for all times. Also the time dependence
of the scale factor has to be taken into account, such that the resultant two-point
function is

W β,in
2 (x, y) = 1

a(x0)a(y0)

∫ 1
(2π)3

(
χin
k (x0)χin∗

k (y0)
1− e−βωin

p
− χin∗

k (x0)χin
k (y0)

1− eβωin
p

)
ei(~x−~y)~pd3p

It can be checked that this expression does indeed fulfil the Klein-Gordon equation
in both arguments.

The next step is to find the form of this two-point function in the limit t→∞.
This can be achieved by applying a Bogoliubov transformation. Using x = z + ζ,
y = z − ζ and |Ap|2 = |Bp|2 + 1 the late time limit of the two-point function is

W β,in
2 (x, y)

∣∣∣
out

=
∫ 1

(2π)3

(
χin
k (x0)χin∗

k (y0)
1− e−βωin

p
− χin∗

k (x0)χin
k (y0)

1− eβωin
p

) ∣∣∣∣∣
out
ei(~x−~y)~pd3p

=
∫ 1

(2π)3

((
|Ap|2χout

k (x0)χout∗
k (y0) + ApB

∗
pχ

out
k (x0)χout

k (y0)

+BpA
∗
pχ

out∗
k (x0)χout∗

k (y0) + |Bp|2χout∗
k (x0)χout

k (y0)
) 1

1− e−βωin
p

+
(
|Ap|2χout∗

k (x0)χout
k (y0) + A∗pBpχ

out∗
k (x0)χout∗

k (y0)

+B∗pApχ
out
k (x0)χout

k (y0) + |Bp|2χout
k (x0)χout∗

k (y0)
) 1
eβω

in
p − 1

)∣∣∣∣∣
out

ei(~x−~y)~pd3p
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=
∫ 1

(2π)32ωout
p

((
|Ap|2e−i(x

0−y0)ωout
p + ApB

∗
pe
−i(x0+y0)ωout

p

+ A∗pBpe
i(x0+y0)ωout

p + |Bp|2ei(x
0−y0)ωout

p

)( 1
eβω

in
p − 1

+ 1
)

+
(
|Ap|2ei(x

0−y0)ωout
p + ApB

∗
pe
−i(x0+y0)ωout

p

+ A∗pBpe
i(x0+y0)ωout

p + |Bp|2e−i(x
0−y0)ωout

p

) 1
eβω

in
p − 1

)∣∣∣∣∣
out
ei(~x−~y)~pd3p

=
∫ 1

(2π)32ωout
p

((
2
(
2|Bp|2 + 1

)
cos

(
2ζ0ωout

p − 2~ζ~p
)

+ 2
(
ApB

∗
pe
−i2z0ωout

p + A∗pBpe
i2z0ωout

p

)
ei2

~ζ~p
) 1
eβω

in
p − 1

+ 2|Bp|2 cos
(
2ζ0ωout

p − 2~ζ~p
)

+ e−i2(ζ0ωout
p −~ζ~p)

+
(
ApB

∗
pe
−i2z0ωout

p + A∗pBpe
i2z0ωout

p

)
ei2

~ζ~p

)∣∣∣∣∣
z0→∞

d3p (3.3.1)

Obviously the oscillatory terms dependent on z0 are problematic as they seem to
prevent a reasonable limit for z0 →∞. To permit a well defined limit and thus an
unambiguous calculation of the thermal observables, it is necessary to show that
these terms have a well defined limit for z0 →∞. If ωout

p were substituted by p in
the terms e±i2z0ωout

p and A∗pBp were a Schwartz function in p the desired convergence
would follow as a property of the Fourier transformation. In the case at hand, the
arguments from the proof of the Fourier transform’s automorphism property on
Schwartz space can be adapted to show a suitable decay property of the terms in
question, as will be shown below.

3.3.3. Thermal Observables

In this subsection the thermal observables will be calculated. To achieve this goal,
several limits have to be interchanged and especially the limit z0 →∞ must be well
defined for the thermal observables. All these problems are solved in the case that
|Bk| fulfils certain L1-properties in k, which are slightly weaker than the requirement
that |Bk| be rapidly decaying. The needed property is given in the following definition.

82



3.3. Massive Fields

Part of the present section is joint work with J. Zschoche, which will be indicated by
[52]. Especially the proofs of lemmas 3.3.2 and 3.3.3 were found by J.Zschoche and
are presented here in the interest of a self-contained treatment.

Definition 3.3.1. [52]
A function f : R+ → C is of essentially rapid decay if

∀n ∈ N :
(
(1 + ·)nf

)
∈ L1(R+)

A function f : Rk → C is of essentially rapid decay if

∀n ∈ N :
(
(1 + | · |)nf

)
∈ L1(Rk)

To justify the chosen terminology note that rapidly decaying functions decay also
essentially rapidly, while the converse is not true. Multiplying an essentially rapidly
decaying function with a polynomially bounded function yields again an essentially
rapidly decaying function.

As an example for a polynomially bounded function that is essentially rapidly
decaying while not rapidly decaying one can consider a “comb function” where the
teeth increase quadratically in height but shrink exponentially in width

ferd(x) :=
∞∑
k=1

k2χ(k − e−k, k + e−k)(x)

where χ(k−e−k, k+e−k) is the characteristic function of the interval [k−e−k, k+e−k].
One can see that ferd is indeed essentially rapidly decaying by calculating

∫
R+

(1 + x)nferd(x)dx =
n∑
j=0

(
n

j

) ∞∑
k=1

k2
k+e−k∫
k−e−k

xjdx

=
n∑
j=0

(
n

j

) ∞∑
k=1

k2

j + 1
(
(k + e−k)j+1 − (k − e−k)j+1

)

As every summand that does not cancel out has at least one factor e−k the geometric
series can be used to get a finite sum for this expression. This illustrates the
convergence of the integrals and thus the essentially rapid decay. Adding any rapidly
decaying function to the comb yields again an essentially decaying function, as does
the multiplication with any polynomially bounded function.

The essentially rapid decay property is equivalent to a property that seems weaker
at first glance, as is shown in the following lemma.
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

Lemma 3.3.2. [52]
If a function f : R+ → C fulfils

∃p ∈ N ∀n ∈ N :
(
(1 + ·)nf

)
∈ Lp(R+)

then it is of essentially rapid decay.

Proof.
The proof is done using the Hölder inequality.

||(1 + ·)nf ||1 = ||(1 + ·)n+1f(1 + ·)−1||1 ≤ ||(1 + ·)n+1f ||p||(1 + ·)−1|| p
p−1

= ||(1 + ·)n+1f ||p
(
||(1 + ·)−

p
p−1 ||1

) p−1
p <∞

As
∫
R+
|(1 + x)−

p
p−1 |dx is finite for any p > 1, the L1-property for the monomial of

order n follows from the Lp-property for the monomial of order n+ 1, independently
of p, which proves the claim.

The main mathematical result which will be used in the present treatment is given
in the following lemma.

Lemma 3.3.3. [52]
Let φ : Rn → R a non-negative polynomially bounded function and

φ̃r(x) = lim
ε→0

∫
Rn
φ(p)eipx−ε|p|dnp

Then φ̃r ∈ C∞(Rn) if and only if φ is of essentially rapid decay.

Proof.
Let t > 0 and define operators for f : Rn → C

(∆i
1(t)f)(x) := f(x+ tei)− f(x− tei)

(∆i
n(t)f)(x) := [∆i

1(t)(∆i
n−1(t)f)](x) =

n∑
k=0

(−1)k
(
n

k

)
f(x+ (n− 2k)tei)

Application to f(x) = eipx with p ∈ Rn yields

∆i
n(t)eipx = eipx

n∑
k=0

(−1)k
(
n

k

)(
e−itp

i
)k(

eitp
i
)n−k

= eipx(2i sin(tpi))n
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If φ̃r ∈ C∞(Rn) all derivatives exist and

M̃s :=
∣∣∣∣∂2s
i φr

∣∣∣
x=0

∣∣∣∣ = lim
t→0

∣∣∣∣∣(∆i
2s(t)φr)(0)
(2t)2s

∣∣∣∣∣ <∞
which allows the estimate

M̃s = lim
t→0

lim
ε→0

∫
Rn

(
sin(tpi)

t

)2s

φ(p)e−ε|p|dnp ≥ lim
t→0

lim
ε→0

∫
BR(0)

(
sin(tpi)

t

)2s

φ(p)e−ε|p|dnp

= lim
t→0

∫
BR(0)

(
sin(tpi)

t

)2s

φ(p)dnp =
∫

BR(0)

(
pi
)2s

φ(p)dnp

for all R > 0. As the last Integral is monotonically growing in R but bounded by M̃s,
the limit R→∞ is well defined and also bounded by M̃s. This proves the existence
of all even pi-moments, and thus all pi-moments and by iteration all moments. This
implies that φ is of essentially rapid decay. The backwards direction is trivial by the
dominated convergence theorem.

For the following treatment only a certain class of states is relevant, which is
defined in the following.

Definition 3.3.4.
Let (M, g) a spatially flat FRW spacetime, Qg the representative of a locally covariant
scalar quantum field theory Q on (M, g). A state is called a Hadamard-Lüders-
Roberts state or HLR state if it is a pure, Gaussian, homogeneous and isotropic
Hadamard state on Qg.

Note that the requirement that the states be pure refers to the states on Q(M, g),
i.e. the algebra corresponding to all of the spacetime. Restrictions of pure states
on Q(M, g) to subregions of the spacetime are not pure in general, which bears
profound consequences like the Hawking and Unruh effects.

It was shown in [29] that HLR states can be specified by two functions. Let
φp(t) the mode functions of the fields, where it follows from the homogeneity and
isotropy of spacetime and state that these modes only depend on p = |~p|, and let
πp(t) =

√
|g|g00∂0φp(t). These complex functions are polynomially bounded in p and

have to fulfil

∀t, p : φ∗p(t)πp(t)− φp(t)π∗p(t) = i (3.3.2)

which encodes the canonical commutation relations. The fact that the state is pure
is encoded in the fact that the two-point function can be completely defined by
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

giving φp(t) and πp(t) fulfilling (3.3.2) on a Cauchy surface. The implication of the
Hadamard condition will be investigated in the following.

In the following construction some procedure is needed to identify states on different
spacetimes in a way that allows carrying over Bogoliubov coefficients. To achieve
this we will state a straight forward corollary of the work of [29].

Lemma 3.3.5. [52]
Let (M, g), (M′, g′) and (M′′, g′′) spatially flat FRW spacetimes, such that (M′′, g′′)
is an isometrically, orientation and time orientation preservingly embedded sub-
manifold of the other two manifolds, in both cases containing a Cauchy surface
of the spacetime it is embedded into. Call these embeddings ψ and ψ′. Any HLR
state defined on all of (M, g), (M′, g′) can be completely defined by suitable initial
conditions in ψ(M′′, g′′), ψ′(M′′, g′′) (because it contains a Cauchy surface), and
thus by an HLR state in (M′′, g′′). This yields a well defined method of identifying
HLR state defined on all of (M, g) with HLR state defined on all of (M′, g′).

Let ω1 and ω′1 HLR states identified via their initial conditions on the Cauchy
surfaces within ψ(M′′, g′′), ψ′(M′′, g′′) as outlined above and ω2 and ω′2 HLR states
identified accordingly. Then the Bogoliubov coefficients relating ω1 and ω2 are the
same as the Bogoliubov coefficients relating ω′1 and ω′2.

Note that the identification of states given by this lemma is by no means general
in any sense. If two spacetimes are isometric in two disjoint regions each containing
Cauchy surfaces, states identified in one region will in general not be identified in
the other region. This is an example for the fact that locally contravariant states do
not exist in general, and is essentially the reason why the result of this section is not
trivial. However, as the focus lies on Bogoliubov coefficients here, this caveat is no
obstacle for the following treatment.

After these preparations it can now be shown that Bp is of essentially rapid decay
in p for a certain class of models.

Theorem 3.3.6. [52]
Let (M, g) a spatially flat FRW spacetime, Qg the representative of a locally covariant
scalar quantum field theory Q on (M, g). Let ω1 and ω2 HLR states on Qg. Then
the Bogoliubov coefficient Bp corresponding to the Bogoliubov transformation from ω1
to ω2 is of essentially rapid decay in p.

Proof.
The idea for this proof stems largely from Nicola Pinamonti, [34].

As (M, g) is a spatially flat FRW spacetime its metric can be given as

ds2 = a2(η)
(
dη2 − d~x2

)
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in suitable coordinates, where η is defined on some open set I ⊆ R. Let η1, η2 ∈ I
and η1 < η2 and define a spacetime (M′, g′) by the metric

ds2 =
(
1− σ(η) + σ(η)a2(η)

)(
dη2 − d~x2

)
where σ(η) is a smooth function with ∀η > η2 : σ(η) = 1 and ∀η < η1 : σ(η) = 0
and η is defined in the open set (−∞, sup I). The spacetimes (M, g) and (M′, g′)
then conform with the assumptions of Lemma 3.3.5 for some neighbourhood of a
Cauchy surface in the region η > η2, such that HLR states on these spacetimes can
be identified in the sense of this lemma, especially preserving their relation in terms
of Bogoliubov coefficients. It thus suffices to show essentially rapid decay for Bp

corresponding to the Bogoliubov transformation from ω′1 to ω′2.

To prove the claim it is preferable to calculate in the Minkowski section of (M′, g′),
i.e. at η < η1. In this flat region there is a unique Poincaré invariant vacuum ω′∞ and
as a first step we will treat the Bogoliubov transformation from ω′1 to the vacuum.
In this case it is necessary to be cautious with the distribution character of the
two-point function, therefore we take(

W
ω′1

2 −W ω′∞
2

)
(f, g) =

∫ ∫ ∫ 1
(2π)32ωp

(
|B1,p|2e−i(x

0−y0)ωp + A1,pB
∗
1,pe
−i(x0+y0)ωp

+A∗1,pB1,pe
i(x0+y0)ωp + |B1,p|2ei(x

0−y0)ωp
)
ei(~x−~y)~pf(x)g(y)d4x d4y d3p

as can be derived from equation (3.3.1). This expression is a Schwartz distribution
as A1,p and B1,p are polynomially bounded. This implies that derivatives in x and y
can be defined in the weak sense.

Taking the expectation value of the point split energy density

ω(T00)(x, y) := 1
2
(
W ω

2 (∂0f, ∂0g) + δijW ω
2 (∂if, ∂jg) +m2W ω

2 (f, g)
)

the difference for the states at hand is(
ω′1(T00)− ω′∞(T00)

)
(f, g) =

∫ ∫ ∫ 1
(2π)34ωp

((
ω 2
p + ~p2 +m2

)
|B1,p|2e−i(x

0−y0)ωp

+
(
− ω2

p + ~p 2 +m2
)
A1,pB

∗
1,pe
−i(x0+y0)ωp

+
(
− ω2

p + ~p 2 +m2
)
A∗1,pB1,pe

i(x0+y0)ωp

+
(
ω2
p + ~p 2 +m2

)
|B1,p|2ei(x

0−y0)ωp
)
ei(~x−~y)~pf(x)g(y)d4x d4y d3p

=
∫ ∫ ∫ ωp

(2π)3 |B1,p|2 cos
(
(x0 − y0)ωp

)
ei(~x−~y)~pf(x)g(y)d4x d4y d3p
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where the prefactors in the terms containing A1,pB
∗
1,p vanish. To apply lemma 3.3.3

some further manipulations are necessary. First, lim
ε→0

e−εp can be inserted in the
p-integral, and because f and g have compact support and |B1,p|2 is polynomially
bounded, the term

h(p) :=
∫ ∫ ωp

(2π)3 |B1,p|2 cos
(
(x0 − y0)ωp

)
ei(~x−~y)~pf(x)g(y)d4x d4y

is a Schwartz function, which allows interchanging the limit ε → 0 with the p-
integration. With the additional regularising term e−εp the integrations can be
interchanged such that the p integration is the innermost integration. As the
difference of expectation values of the energy density is smooth, the smearing with
test functions can be dropped to yield(

ω′1(T00)− ω′∞(T00)
)
(x, y) =

∫ ωp
(2π)3 |B1,p|2 cos

(
(x0 − y0)ωp

)
ei(~x−~y)~pd3p

Setting x0 = y0 leads to an expression which fulfils the assumptions of lemma 3.3.3,
which proves that |B1,p|2 and thus by lemma 3.3.2 finally |B1,p| is of essentially rapid
decay.

The same holds for the corresponding coefficient B2,p for ω′2. Recalling some
relations for Bogoliubov coefficients one sees

χ1
p = A1,pχ

∞
p +B1,pχ

∞∗
p χ2

p = A2,pχ
∞
p +B2,pχ

∞∗
p ⇒ χ∞p = A∗2,pχ

2
p −B2,pχ

2∗
p

χ1
p =

(
A1,pA

∗
2,p −B1,pB

∗
2,p

)
χ2
p +

(
B1,pA2,p − A1,pB2,p

)
χ2∗
p

The Bogoliubov coefficient B12,p := (B1,pA2,p − A1,pB2,p) corresponding to the
transformation from ω′1 to ω′2 is of essentially rapid decay, as the coefficients A1/2,p
are polynomially bounded. This concludes the proof.

The following lemma shows the connection of essentially rapid decay of Bk to the
well-definedness of the limit z0 →∞.

Lemma 3.3.7.
All functions in this lemma are understood to be complex valued. Let f ∈ L1(R+)
and define

∀x ∈ R : Fm[f ](x) :=
∞∫
0

f(p)eix
√
p2+m2

dp

Then Fm[f ](x) ∈ C0(R).
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3.3. Massive Fields

Proof.
The idea of the proof is to adapt the proof of the corresponding theorem for the
Fourier transform (see e.g. Satz V.2.2 in [50]).

First we show continuity of Fm[f ] using the definition in terms of limits of sequences.
Let (xn)n∈N a convergent series with lim

n→∞
xn = x, then

∀p ∈ R+ : lim
n→∞

∣∣∣∣eixn√p2+m2 − eix
√
p2+m2

∣∣∣∣ = 0

By the convergence theorem of Lebesgue it then follows that

lim
n→∞

|Fm[f ](xn)−Fm[f ](x)| ≤
∞∫
0

|f(p)| lim
n→∞

∣∣∣∣eixn√p2+m2 − eix
√
p2+m2

∣∣∣∣ dp = 0

The limit can be interchanged with the integral, because the integrand is majorised
by 2 |f(p)| ∈ L1(R+). This proves continuity of Fm[f ].

Now we turn to the proof that Fm[f ] vanishes for x → ∞. Because C∞0 (R+) is
dense in L1(R+) and because of the inequality

∀f ∈ L1(R+) : ||Fm[f ]||∞ ≤ ||f ||1

it is sufficient to show

∀g ∈ C∞0 (R+) : lim
x→∞
|Fm[g](x)| = 0

Let R ∈ R+ and g ∈ C∞0 (R+) then by partial integration

|Fm[g](x)| =
∣∣∣∣∣∣
∞∫
0

g(p)eix
√
p2+m2

dp

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∞∫
0

1
ix

√
1 + m2

p2 g(p) d
dp
eix
√
p2+m2

dp

∣∣∣∣∣∣
= 1
|x|

∣∣∣∣∣∣
∞∫
0

eix
√
p2+m2 d

dp

(√
1 + m2

p2 g(p)
)
dp

∣∣∣∣∣∣
= 1
|x|

∣∣∣∣∣∣
∞∫
0

eix
√
p2+m2

(
−m

2

p2
1√

p2 +m2 g(p) + 1
p

√
p2 +m2g′(p)

)
dp

∣∣∣∣∣∣
≤ 1
|x|

∞∫
0

(∣∣∣∣∣m2

p2
1√

p2 +m2 g(p)
∣∣∣∣∣+

∣∣∣∣∣1p
√
p2 +m2g′(p)

∣∣∣∣∣
)
dp
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≤ 1
|x|

(∣∣∣∣∣
∣∣∣∣∣m2

p2
1√

p2 +m2 g(p)
∣∣∣∣∣
∣∣∣∣∣
1

+
∣∣∣∣∣
∣∣∣∣∣1p
√
p2 +m2g′(p)

∣∣∣∣∣
∣∣∣∣∣
1

)

In the limits x→ ±∞ this expression decays like |x|−1, which means that it converges
to 0, if the remaining integrals exist. However the fact that g ∈ C∞0 (R+) ensures the
existence of the integrals, where the divergence of the prefactors at p = 0 are not
problematic, as g has compact support on the open set R+.

To conclude the proof, note that for a series (gn)n∈N ⊂ C∞0 (R+) that converges to
f ∈ L1(R+) we get

|Fm[f ](x)| = |Fm[gn](x) + Fm[f − gn](x)|

≤ |Fm[gn](x)|+ |Fm[f − gn](x)|

≤ |Fm[gn](x)|+ ||Fm[f − gn]||∞

≤ |Fm[gn](x)|+ ||f − gn||1

where the first term vanishes in the limit x→ ±∞ and the second term vanishes in
the limit n→∞. This proves the claim.

The thermal observables in the out-region are given by

Θout
µ = lim

z0→∞
lim
ζ→0

∂ζµ
(
W β,in

2 −W ∞,out
2

) ∣∣∣
out

(z0, ζ)

where the uniform convergence properties necessary for the interchange of the limits,
differentials and integrals in this context hold if the L1-properties used in Lemma
3.3.7 are fulfilled. Especially it suffices that Bp decays essentially rapidly because
∀p ∈ R+ : |Ap| =

√
|Bp|2 + 1 ≥ 1.

For the terms containing A∗pBp and its complex conjugate to not contribute to the
expectation values of thermal observables up to order n in the limit z0 → ∞ the
property

∀k ≤ n :
(
p 7→ p2+kA∗pBp

)
∈ L1(R+) (3.3.3)

is needed. This property follows from the fact that Bp is of essentially rapid decay,
so the expectation values of the balanced derivatives can be calculated as

Θout
µ =

∫ 1
(2π)3ωout

p

(
2|Bp|2 + 1
eβω

in
p − 1

+ |Bp|2
)

lim
ζ→0

∂ζµ cos
(
2ζ0ωout

p − 2~ζ~p
)
d3p (3.3.4)
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The spacetime model

ds2 =
(

1 + ε2

2 + 1− ε2
2 tanh(ρη)

)(
dη2 − d~x2

)

considered here has been treated in [4], where also the Bogoliubov coefficients were
calculated. The term relevant to the present work is

|Bp|2 =
sinh2

(
π(ωout

p −ωin
p )

2ρ

)
sinh

(
πωout

p

ρ

)
sinh

(
πωin

p

ρ

)

⇒ lim
p→∞
|Bp|2 = lim

p→∞
e−

πωin
p
ρ = lim

p→∞
e−

πp
ρ = 0

Thus, in this specific model, Bp is even of rapid decay in p.

Plugging the explicit form of |Bp|2 into the definition of the thermal macroobserv-
ables (3.3.4), it is not at all obvious, whether the state is a KMS state, a mixture
of KMS states or no KMS thermal state at all. By a numerical calculation it could
be checked, whether the first thermal macroobservables are the same as for some
KMS states, but a mixture of KMS states cannot be ruled out in the same way. The
only intermediary result in equation (3.3.4) of the present section will be further
investigated in a later section. For now the conclusion is that there is no apparent
way except for numerical calculations to make headway on the interpretation of this
result.

3.4. Towards an Alternative Concept

This section will be dedicated to a constructive critique of the LTE condition,
especially the extrinsic LTE condition on curved spacetimes. First of all, the
problems and open questions found in the previous sections will be discussed and it
will be argued that such problems are unacceptable. This leads us to argue that a
refinement of the LTE condition is necessary that should fulfil certain requirements
to address the problems discussed above.

Next, a refinement of the LTE condition is proposed that enables one to address
the problems pointed out before. Remaining weaknesses and problems of the refined
condition will be discussed and two main problems will be identified. A solution
to the first problem for a spacetime is necessary for the refined condition to be
reasonable at all on that certain spacetime, and a partial solution will be given, which
allows an application of the refined condition to conformally static spacetimes.
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In the last part of this section it will be argued that the second problem can be
solved gradually, where an optimal solution is desirable to minimise ambiguity of
the refined condition. A partial solution in the special case of Minkowski spacetime
will be demonstrated. The refined condition on Minkowski spacetime in the form
presented here is thus not as exact as the original definition of LTE, meaning that
some states which are not in LTE according to the LTE condition cannot be excluded
as LTE states with the condition discussed here. An argument will be given why the
refined condition is nevertheless useful as a tool to probe thermal states which are
locally close to equilibrium.

3.4.1. Problems and Open Questions Concerning LTE

The previous sections have shown a number of problems of the LTE concept, especially
the extrinsic LTE concept on curved spacetimes. In the following these problems
will be reviewed and their perceived severety is commented upon.

The first problem discussed in section 3.1 is the inconsistency of the extrinsic
LTE condition with the native KMS condition in static spacetimes. The same
incompatibility was found in section 3.2 to the conformal KMS condition for a
conformally invariant field in a conformally flat spacetime. In the Einstein static
spacetime it was shown that the KMS condition is included in the extrinsic LTE
condition in the limits of large temperature and small curvature. This is expected
as large temperatures corresponds to mainly short wavelengths which probe little
of the geometry. In the conformally flat case the inclusion of the conformal KMS
condition in the extrinsic LTE condition is expected as the spacetime approaches
Minkowski spacetime.

If the extrinsic LTE condition is to be upheld unchanged despite this problem,
one has to draw the conclusion that the (conformal) KMS condition on other
spacetimes than Minkowski spacetime has no thermodynamic relevance. Although an
experimental examination of this question is not possible, one could try to establish an
axiomatic concept of thermality from first principles, possibly extending the approach
of [18][27] using adiabatic accessibility to gravitating systems. The point of view that
an LTE concept with suitably modified observables should be preferred as a concept
of thermality is taken in [45], where some interesting results for static spacetimes
are presented. However, the modified observables do not solve the problems in
conformally flat spacetime.

A subsidiary problem that emerges if one relies on the extrinsic LTE states is that
the coupling to curvature ξ, which has no parallel on Minkowski spacetime, has to be
dealt with. It is very doubtful in this context, whether the freedom in the definition
of thermal observables as detailed in equation (2.2.4) is sufficient to restore the basic
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idea of the extrinsic LTE condition, namely the comparison of expectation values on
different spacetimes. As explained before, a comparison to the difference between
the cases of massive and massless fields on Minkowski spacetime may lead one to
the expectation that such simple adjustments are insufficient to achieve a convincing
macroobservable interpretation.

The second problem, discussed in section 3.2 of this work, is the blatant violation
of the correspondence principle in the case of extrinsic LTE in de Sitter spacetime.
Especially in the case of conformal coupling the results (3.2.12) and (3.2.13) for
the time dependence of temperature are different from classical behaviour to an
unacceptable degree. Also the instability of extrinsic LTE that was found, represents
a huge departure from the classical behaviour. Even the limit of high temperature
does no good in resolving this problem, which makes it particularly unacceptable. If
one considers the modified observables proposed in [45], the correspondence principle
is also violated.

However, it was also seen that the extrinsic LTE concept as applied in equation
(3.2.14) reproduces the time dependence of temperature for the classical conformally
coupled field. The latter finding could be investigated more closely and the expression
for the trace from (3.2.2) could be substituted into equation (3.2.6) and geometric
terms could be accounted for in the spirit of equation (2.2.4). This could be used
to argue in favour of a modified extrinsic LTE condition. Such an effort would not
address the other problems, however it may give a hint which direction a refined
condition should take. It is therefore discussed in subsection 3.4.4.

The third problem is not a problem of principle but rather a technical inconvenience.
The LTE condition is not straight forward to check, especially in the case of non-trivial
temperature mixtures. This is especially true for massive fields, where the thermal
integrals cannot be analytically solved in general. Although this is not a principal
obstacle for the use of the LTE concept, it greatly infringes its usefulness. Therefore
this problem should be taken seriously, not as calling the sensibility of the LTE
concept into question but as strongly recommending an amendment. This holds true
even for the simple case of mixtures of KMS states which are not straight forward
to identify from the results of thermal measurements or even the full two-point
function.

We contend that these problems point to the necessity for a refinement of the LTE
condition. Such a refined LTE condition should have several properties to achieve
the desired improvement without introducing too much ambiguity that threatens to
render such a condition arbitrary. The properties we would like to achieve include

(a) In flat spacetime the refined LTE condition should be implied in the original
LTE condition.
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(b) The refined condition should be easier to check than the original one for a
given state.

(c) The refined condition should be easier to generalise to curved spacetimes.

One might be interested in the stricter requirement that the refined condition be
equivalent to the original condition for flat spacetimes. It is clear that such a
requirement is rather difficult to fulfil. The draft for a refined condition presented
here does not fulfil such a requirement of equivalence in general. We will point
out, what type of further work could achieve such an equivalence. An example
that illustrates which kind of unwanted effects are possible for our condition will be
given to emphasise the need for further improvement of the condition. However, an
equivalence is achieved if one restricts to mixtures of KMS states for a massless field
with the same rest frame as reference states for the original LTE condition.

3.4.2. Dynamic Equations

The investigation of the correspondence principle in section 3.2 made heavy use
of a generalisation of the dynamic equations (2.2.7) and (2.2.9). Such generalised
equations are derived from equations (3.2.3)-(3.2.6),

gµν∇+
µ∇−ν θg(x, y) = 0 (3.2.3)

⇒ gµν∇µω (θg,ν) (x) = 0 (3.2.4)

(�+ +�−)θg(x, y) = −
(
4m2 − 2ξR(x)− 2ξR(y)

)
θg(x, y) + 4C(x, y) (3.2.5')

⇒ �ω (θg) (x) = − ω (θg,νν) (x)− 4(m2 − ξR(x))ω (θg) (x) + 4C(x) (3.2.6')

by applying the relations from lemma 3.2.5. As such equations are derived using only
the Hadamard property of the states, they are a good starting point for a refinement
of the LTE condition.

The principal input to these equations that specialises to LTE states and thus
makes the fulfilment of these equations nontrivial and expressive, is a sequence of
trace relations like (3.1.11) and (3.2.2),

Θµ
µν =

∑
α∪λ=ν

Cm2,ξ,|ν|,αΘλ (3.4.1)

However, assuming that (conformal) KMS states are LTE states for models where
they exist and just comparing (3.1.11) and (3.2.2) no general rule for the form of such
trace relations is apparent. It is possible to calculate trace relations whenever there
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is a suitable class of thermal reference states, however it would be very unsatisfactory
to restrict to such models. The least one would want are trace relations for any free
scalar field on conformally flat spacetimes. Assuming the trace relation (3.1.11) to
be general for static spacetimes one may combine it with (3.2.2) to conjecture

Θ̃µ
µ = −4

Ω4

(
m2 − ξR̃ + 1

2

(
gµν

∂µΩ∂νΩ
Ω2 − �Ω

Ω

))
Θ̃ + C (3.4.2)

where we follow the notation of section 3.2 and C is the generic curvature term that
stems from the Hadamard renormalisation. Analogous relations could be assumed
for the traces of higher order observables. However, guessing a general trace relation
is somewhat problematic without additional physical input and the predictions of
such a model will have to be treated with some caution.

In fact the trace conditions are indeed the only ingredient making the equations
LTE specific, so in fact requiring the trace relations is equivalent to requiring the
equations to be fulfilled. However, as the observables involved in the trace relations are
of higher order, the equations may still be easier to check in many cases. Furthermore,
some physically meaningful results have been derived from the dynamic equations in
the case of Minkowski spacetime by [12], therefore stating the refined LTE condition
in terms of these equations seems preferable.

Assuming the dynamic equations for the thermal observables as defining of LTE
yields a condition that is compatible with the KMS condition on static spacetimes and
the conformal KMS condition on conformally static spacetimes. It is also compatible
with the setting of local covariance, as the equations are formulated in a covariant
manner, in contrast to the extrinsic LTE condition. From the covariant form of
the thermodynamic equations of state one can derive the “standard” form of the
equations of state using the non-covariant classic thermal observables, which leads to
the occurrence of geometric terms. Therefore, the fact that the dynamical equations
are dependent on the geometry of spacetime is to be expected.

If the two-point function of a state is given, it can be straight forwardly checked
whether the thermal observables fulfil the dynamic equations. Thus, the condition
suggested here is easier to check than the original LTE condition, especially for
massive fields and on curved spacetimes. Although equations (3.2.5')-(3.2.6') are
quite painstaking to generalise to higher order balanced derivatives as seen in 3.2
and finding appropriate trace relations remains problematic, taking the dynamical
equations for the thermal observables as starting point addresses the requirements
(b) and (c) with some success.
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3.4.3. Positivity Inequalities

The question investigated in this subsection is, which additional conditions are
necessary to fulfil requirement (a). The dynamic equations on Minkowski spacetime
are fulfilled by any translation invariant state and these do not all have a reasonable
thermal interpretation. As an illustrative example of what can go wrong, one can
define positive two-point functions for certain indefinite normalised premeasures that
induce a “pseudomixture” of temperatures. An explicit example of such a state for a
massless field on Minkowski spacetime is given in the following lemma

Lemma 3.4.1.
The bidistribution

W sign
2 :=

∫ (
2δ(β − α)− δ(β − 2α)

)
W β

2 dβ

defines a Gaussian Hadamard state ωsign for the massless scalar field.

Proof.
As the Hadamard property follows straight forwardly and the Klein-Gordon equation
is satisfied in both arguments, only positivity of the two-point function remains to
be shown. It suffices to examine the symbolic form

W sign
2 (x, y) =

∫ 1
(2π)32p

(
2
( 2
eαp − 1 −

1
e2αp − 1

)
cos

(
(x0 − y0)p− (~x− ~y)~p

)

+ e−i(x
0−y0)p+i(~x−~y)~p

)
d3p

=
∫ 1

(2π)32p

(
2
( 1
eαp − 1 + eαp

e2αp − 1

)
cos

(
(x0 − y0)p− (~x− ~y)~p

)

+ e−i(x
0−y0)p+i(~x−~y)~p

)
d3p

As ∀~p ∈ R3 : 1
eαp−1 + eαp

e2αp−1 > 0 the two-point function is clearly positive. This
proves the claim.

But the expectation values of the thermal observables are

12ωsign(θ) = 2
α2 −

1
4α2 = 7

4α2

−120
π2 ωsign(θ00) = 2

α4 −
1

16α4 = 31
16α2
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which obviously violates the necessary condition (12Θ)2 ≤ −120
π2 Θ00 shown in equation

(2.2.17). The fact that ωsign is Gaussian while generic mixtures of KMS states are
non-Gaussian plays no role here, as we are only interested in thermality with respect
to the thermal observables derived from the two-point function. To restrict to sensible
mixtures of KMS states, such situations must be excluded. This means we have
to impose positivity inequalities on the thermal macroobservables. As even for the
massless field the thermal macroobservables for mixtures of rKMS states present
a special case of a multidimensional moment problem, no positivity inequalities
are readily available. For the massive field the situation is even more complicated,
because the macroobservables corresponding to the balanced derivatives are not
simple functions of the inverse temperature.

Lemma 3.4.2.
For rKMS states of the massless scalar field let

fa(β0, β) := 1
(2a− 1)!∂

(2a−2)
β0

1
β2

0 − β2 ∝ Θ 0...0︸︷︷︸
2a−2

These functions fulfil

∀a ∈ N, β0 > β : faa+1(β0, β) ≥ fa+1
a (β0, β) (3.4.3)

Proof. The proof is done in appendix A.3.

Using Jensen’s inequality as in equation (2.2.17) we can extend these inequalities
to mixtures of rKMS states and thus get a necessary condition for LTE states. As
this is only a necessary condition for mixtures of rKMS states, it can be improved and
we conjecture the stricter inequality faa+1 ≥ fa+1

a + fa
2

1 fa − fa
2+a

1 , which is however
still not a sufficient condition. Finding a sufficient condition is a problem related
to the multidimensional moment problem, so this problem in the general case of
mixtures of rKMS states is far beyond the scope of the present work. However, a
necessary condition alone still yields a definite exclusion principle. If a state does
not fulfil these inequalities it is definitely not thermal.

For mixtures not of rKMS states but KMS states for the massless field the proved
and conjectured inequalities are identical and equivalent to the usual positivity
inequalities of the one-dimensional moment problem. The solution to the one-
dimensional moment problem states that the inequalities are necessary and sufficient
in this case. This does not imply, however, that whenever one of the sets of
inequalities is fulfilled, the state can be understood as a mixture of KMS states,
because for mixtures of rKMS states there need not be a reference frame, for which
all non-diagonal components of the higher order balanced derivatives vanish.
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For the massive field, it is more difficult to prove necessary conditions even for
KMS states. The present work will only consider the simpler case of KMS states.
This implies that any balanced derivative has only one independent component. We
pick the following representation of this components

θ2n(z) := lim
ζ→0

(4ζ)nθ(z + ζ, z − ζ)

which means for a KMS state

θβ,2n = lim
ζ→0

(4ζ)n
∫ cos

(
2ζ0ωp − 2~ζ~p

)
(2π)3ωp

(
eβωp − 1

)d3p

=
∞∫
0

(−4)np2n+2

2π2
√
p2 +m2

(
eβ
√
p2+m2 − 1

)dp

= 1
β2n+2

∞∫
0

(−4)nρ2n+2

2π2
√
ρ2 +m2β2

(
e
√
ρ2+m2β2 − 1

)dp
This motivates

ga(m,β) = 1
β2a

∞∫
0

q2a(
e
√
q2+m2β2 − 1

)√
q2 +m2β2

dq ∝ Θβ,2a−2

and we state the following

Conjecture 3.4.3.

∀a ∈ N :
(
ga(m,β)
ga(0, β)

)a+1

≤
(
ga+1(m,β)
ga+1(0, β)

)a
(3.4.4)

This claim is not straight forward to prove, as the integrals involved cannot
be solved analytically in general. Some considerations towards a proof of this
inequality and supplementary inequalities can be found in appendix A.4. Numerical
calculations indicate the correctness of these relations as illustrated below. In the
following illustrations

hn(mβ) := gn+1
n (m,β)
gnn+1(m,β)

will be plotted for some n and it can be seen that the functions appear to decay
monotonously. If one takes the numeric results for granted, the graphics given here
together with the considerations in appendix A.4 suffice to prove conjecture 3.4.3.
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Figure 3.2.: Graphs of hn for some n

For the more general case of a free scalar field with arbitrary mass and coupling
to curvature on a conformally static spacetime, no general recipe for a derivation
of adequate “positivity” inequalities is apparent. For static spacetimes a strategy
similar to the one pursued for the massive field may work and for conformally static
spacetimes rescaling of the thermal observables with different powers of the scale
factor may lead to reasonable inequalities.

It is not a priori clear that positivity inequalities are preserved under the dynamics
of the thermal observables. Indeed the result of [12] that the region of definition of
LTE states is always a future light cone implies that the dynamic equations can have
a past bounded domain of definition. In the simple example of the heat bang states
discussed in [11] the thermal observables diverge on the boundary of the domain of
LTE.

Two open questions in this context are, whether there must always be a singularity
of some sort on the boundary of the domain of LTE for nontrivial ∞-LTE states
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

and whether the domain of LTE can be future bounded. An investigation of these
questions would be of some relevance to the assessment of the results for extrinsic
LTE states in section 3.2. In this case the domain of LTE can be future bounded
but no singularities occur, as the states are Hadamard states defined on the whole
spacetime.

The difficulties in deriving suitable inequalities in a more general setting are
closely linked to the difficulties concerning the macroobservable interpretation. If
explicit representations in terms of series of balanced derivatives which correspond
to macroobservables which are simple (inverse) powers of β can be given, these
series have to fulfil the inequalities for the massless field in Minkowski spacetime.
However it is not clear whether such powers are contained in a suitably extended
set of thermal observables, which is the prerequisite for the existence of convergent
series approximating them.

3.4.4. Macroobservable Interpretation

Another interesting question needs to be pointed out. The interpretation of the
proposed refined LTE condition in terms of macroobservables is not clear in general.
This can be understood as a scale problem in the sense that the relation between
macroscopic and microscopic theory is unclear. The problem can partly be blamed
on the fact that the foundation of thermodynamics in curved spacetimes is much
less understood than it is in flat spacetime. This makes it difficult to decide whether
thermodynamic relations that emerge from a macroobservable interpretation on a
curved spacetime are thermodynamically acceptable.

The extrinsic LTE condition implies a macroobservable interpretation for the
microobservables as the expectation values of microobservables on Minkowski space-
time bear a macroobservable interpretation by definition (2.2.3). However, it was
illustrated in the previous sections of this chapter that this macroobservable interpre-
tation comes with some serious questions. Also the macroobservables corresponding
to the balanced derivatives for the massive field in Minkowski spacetime are not
straight forward to interpret and an extended set of thermal observables is necessary
to derive physically meaningful results as done in [23].

Recalling the considerations in section 3.1 it seems not reasonable to transfer
macroobservable interpretation between spacetimes with different geometry or at
least topology of the Cauchy surface. Thus on static spacetimes it seems reasonable
to extract the macroobservable interpretation from KMS states. For the conformally
static spacetimes the results of section 3.2 seem somewhat peculiar at first. Plugging
the trace relation (3.2.2) into equation (3.2.6) the resulting equation for a spatially

100



3.5. An Application

homogeneous and isotropic state in the case of conformal coupling is

Θ̈ + 3HΘ̇ + 2H2Θ = 4C

which yields the result

Θ = A2e
−2Ht + A1e

−Ht + C

2H2 .

This in conjunction with the solution of equation (3.2.14) suggests setting A1 = 0
and interpreting Θ− C

2H2 ∝ 1
β2 for the massless conformally coupled field. However,

the non-vanishing trace (3.2.2) also implies that the macroobservable interpretation
cannot be simply carried over from Minkowski spacetime, unless the trace is accounted
for, e.g. by taking εµν − 1

4gµνε
λ
λ as the microobservable to identify with the εµν

macroobservable on Minkowski spacetime. If this is done, consistency of such
identifications with the dynamic equations must be checked. As noted above a
full consideration of the macroobservable interpretation is beyond the scope of this
work. For sake of illustration the case of the thermal energy-momentum tensor of a
conformally coupled massless field in de Sitter spacetime will be investigated in the
following section.

As a general remark, one should note that the equations derived from equations
(3.2.3) and (3.2.4) are valid for all Hadamard states and are in their final form
without further input. Equations (3.2.5') and (3.2.6') on the other hand require trace
relations, which are encoded in the macroobservable interpretation if one exists. This
means that the quest for a macroobservable interpretation suffers from the difficulties
of identifying suitable trace relations. Part of the difficulty identifying suitable trace
relations is that these relations are assumed for the whole domain of definition of the
state, which requires them to be compatible with dynamics in a suitable sense.

Section 3.2 as well as this subsection can be understood as an investigation into
the question what constitutes compatibility with dynamics, where the focus lies on
states resembling KMS states in the sense that they are spatially homogeneous. Of
course the trace relation that was proposed as potentially compatible with dynamics
very probably encompasses also spatially inhomogeneous states, however we refrain
from identifying an example here.

3.5. An Application

In this section we will apply the LTE-equations and positivity inequalities to check
whether the final state of the massive field found in section 3.3 corresponds to a
well defined mixture of KMS states. However, as checking the positivity inequalities
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3. Towards a Refinement of the LTE Condition on Curved Spacetimes

meets the same technical difficulties as the proof of said inequalities, only graphical
evidence will be given.

For the model at hand let

ga(ε,m, ρ, β) = 1
β2a

∞∫
0

q2a
√
q2 +m2β2

(
2B(q, ε,m, ρ) + 1
e
√
q2+ε2m2β2 − 1

+B(q, ε,m, ρ)
)
dq ∝ Θβ,2a−2

B(q, ε,m, ρ) =
sinh2

(
π(
√
q2+m2β2−

√
q2+ε2m2β2)

2βρ

)
sinh

(
π
√
q2+m2β2

βρ

)
sinh

(
π
√
q2+ε2m2β2

βρ

)
Defining r := βρ and M := βm the parameter β is eliminated in the inequalities and
only three free parameters remain.

Again one meets considerable technical difficulties if one tries to check inequalities
(3.4.4). Therefore only numerical evidence will be presented here to indicate whether
these inequalities are probably fulfilled or violated. For the numerics to be meaningful
some remarks about appropriate orders of magnitude of the model parameters seem
in order.

If one is interested in an inflationary scenario, one may pick ε = 10−30, implying
an expansion by 30 orders of magnitude. To gauge which order of magnitude is
reasonable to choose for the other parameters, recall that the inverse temperature
before inflation is given by εβ. If one assumes the temperature before inflation to be
reasonably below the Planck scale, for example at the supposed GUT scale, one is
lead to εβ ∼ 103, i.e. β ∼ 1033 in Planck units. In SI units the temperature before
inflation is thus of the order of magnitude Tin ∼ 1029K, which would correspond to a
temperature after inflation of the order of magnitude of Tout ∼ 0.1K if the field were
massless. If one assumes a mass m ∼ 10−17, which is the order of magnitude of the
Higgs mass m ∼ 100GeV/c2, one is lead to M ∼ 1016. The choice of r determines
the range of the Hubble parameter. In the present model the Hubble parameter
during the expansion starts out as Hmax ∼ r

εβ
and decreases to Hmin ∼ r

β
. As the

time scale for inflation is usually assumed to be smaller or equal to ∆t ∼ 1014 in
Planck units or ∆t ∼ 10−30s in SI units, and the order of magnitude of inflation is
assumed above ε−1 & 1030 one may assume Hmin ∼ (ε∆t)−1 & 1016 in Planck units,
which implies r & 1049.

In the numerical calculations the parameters will be chosen near the orders of
magnitude described above. In the following illustrations

hn(M, ε, r) := gn+1
n (ε,m, ρ, β)
gnn+1(ε,m, ρ, β)
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is plotted for n = 1 and n = 2 for two parameter sets. It can be seen that all the
curves are monotonously increasing, in contrast to the behaviour seen in figure 3.2.

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

M

0.0000

0.0001

0.0002

0.0003

0.0004
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ǫ = 10−30, r = 1049

ǫ = 10−35, r = 1059

Figure 3.3.: Plot of h1 for two different sets of parameters

The numerics thus seem to indicate that the resulting states at late times of the
model investigated in section 3.3 may not be valid mixtures of KMS states as they
apparently violate (A.4.2) from which the positivity requirement (3.4.4) follows,
which might consequently be violated at least for some range of values for M . This
result is very peculiar, as it indicates that a simple mass term may be sufficient to
destroy thermality under some geometric circumstances, not only in the sense that
a mixture of thermal states emerges but really leading to a state that has no valid
thermal interpretation.

In the context of cosmological particle creation this may be interpreted in the
sense that the particles that are created by the expansion of spacetime are, in general,
not in thermal equilibrium and even destroy thermal equilibrium states for certain
ranges of the m

Tout
-ratio. As the effect seems to occur for a large ratio, corresponding
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Figure 3.4.: Plot of h2 for two different sets of parameters

to “low temperature”, this effect is not very surprising. It is however interesting in a
physical sense that for standard inflaton models the m

Tout
-ratio is to be considered

“large” as the above estimate illustrates and therefore this effect can be expected to
play a role for the inflaton field. This is due to the fact that the true temperature for
early times in the model considered here is Tin = 1

εβ
, which means that many orders

magnitude of inflation require a small β, which in turn leads to a large M .

It may be interesting to investigate more realistic inflation models in a similar
thermal context to see how generic the described effect is.
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In this chapter, some points in the context of cosmological perturbation theory are
discussed in the light of a more rigorous approach to quantum field theory. The focus
of this investigation lies on the derivation of the cosmic microwave background’s
spectrum of temperature inhomogeneities.

As was explained in section 2.3 three relevant epochs are to be distinguished
for this derivation. The first relevant epoch is the inflationary universe, which is
assumed to present the origin of the inhomogeneities which give rise to perturbations
of the background temperature. The second epoch is the phase of tight coupling,
which is mostly relevant for the coupling of the photon fluid to the dark matter
distribution, thus giving rise to the matter inhomogeneities that lead to cosmological
structure formation. Furthermore, fluid dynamic interactions, especially sound waves
in the coupled fluid, are responsible for the spectrum of temperature inhomogeneities
of the photon background at small angles. For the spectrum at large angles only
the distribution of inhomogeneities and the interactions in the time shortly before
recombination are relevant, as discussed in 2.3.5. The last relevant epoch is the
time of free streaming, which is the time span from recombination until present day,
within which the mean free path of the photons is approximated to be infinite.

Of these phases the first and third can be straight forwardly approached from the
point of view of algebraic quantum field theory, whereas the second phase cannot
be treated in a fully rigorous way with existing methods, because it involves field
interactions. Even for the treatment of the other phases there is however one caveat.
As the spacetime in algebraic quantum field theory is assumed a classical entity,
whose dynamics are determined by the matter content of the spacetime, a full
quantum treatment is impossible in this theoretical framework. The dynamics of
spacetime are treated in a semiclassical setting. A semiclassical approach is implicit
to cosmological perturbation theory, in the sense that the background quantities are
assumed classical.

This chapter consists of two sections. In the first section, the quantisation of the
field perturbation in the inflationary phase will be investigated. The second section
discusses the derivation of the perturbation spectrum in the phase of free streaming
in the context of the LTE framework.
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4. Cosmological Perturbation Theory

4.1. Dynamics of Perturbations in Inflation

In this section the coupled dynamical system of the field and metric perturbation in
the era of inflation are investigated under the principal angle of the quantisation of
perturbations. As the dynamical system includes a constraint, the treatment of this
constraint is a recurring topic of this section. The treatment in the present work
takes a straight forward approach and does not make contact with existing literature
on quantisation of dynamical systems with constraints.

The first subsection of this investigation is a review of the dynamical system in
a spatial mode setting. Taking a naive approach, which ignores the question of
appropriate treatment of the constraint, an ambiguity in the choice of quantisation
is found and discussed.

In the second subsection the dynamical system of the modes is discussed in the
context of symplectic geometry. Especially the impact of the constraint equation on
the symplectic structure is investigated. The result of this investigation is discussed
in the context of the quantisation ambiguity, where the quantisation procedure sticks
rather close to the concept of generic Dirac quantisation.

The last subsection briefly reviews the previous analysis from the point of view
of algebraic quantum field theory. However, this investigation remains closely tied
to the quantisation procedure discussed in the preceding subsections, so the more
intricate questions related to quantum systems with constraints, such as existence of
fundamental solutions and the likes, will not play a role here.

4.1.1. CCR Quantisation is Ambiguous

In this subsection the dynamical system consisting of equations (2.3.3), (2.3.4) and
(2.3.2) is recast in a spatial mode setting. The first objective is to simplify and unify
the notation of the equations.

The dynamical system for the gauge invariant field perturbation χ and the Bardeen
potential Ψ is

Ψ′′−4Ψ+2
(
H− φ′′0

φ′0

)
Ψ′+2

(
H′ − φ′′0

φ′0
H
)

Ψ = 0

χ′′−4χ+ 2Hχ′+ V,φφ a
2χ = 4φ′0Ψ′ − 2V,φ a2Ψ

Ψ′+ HΨ = 4πGφ′0χ
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4.1. Dynamics of Perturbations in Inflation

For simplified and homogeneous display of the equations, the following calculations
use the parameter z = aφ′0

H and the slow-roll parameters ε and δ as defined in (2.3.7)
and (2.3.8). With the additional use of of the Klein-Gordon equation (2.3.1)

φ′′0 + 2Hφ′0 + V,φ(φ0)a2 = 0

for the background field φ0, a number of useful relations can be shown.

z′

z
=(1 + ε− δ)H z′′

z
=
(

2 + 2ε− 3δ + 2ε2 − 3εδ + δ2 − δ′

H

)
H2

H′

H
=(1− ε)H H′′

H
= (2− 4ε+ 2εδ)H2

φ′′0
φ′0

=(1− δ)H φ′′′0
φ′0

=
(

2− ε− 3δ + εδ + δ2 − δ′

H

)
H2

V,φ a
2 =− (3− δ)H

2z

a
V,φφ a

2 =
(

(3− δ)(ε+ δ) + δ′

H

)
H2

ε′

ε
=2(ε− δ)H

These relations can be used to unify the notation for the dynamical system such
that only a, H, δ, ε and z are used.

Ψ′′−4Ψ+2δHΨ′+ 2(δ − ε)H2Ψ = 0 (4.1.1)

χ′′−4χ+ 2Hχ′+
(

(3− δ)(ε+ δ) + δ′

H

)
H2χ = 4Hz

a
Ψ′ + 2(3− δ)H

2z

a
Ψ (4.1.2)

Ψ′+ HΨ = εHa
z
χ (4.1.3)

The aim is now, to eliminate the dependence on Ψ from equation (4.1.2). To achieve
this, firstly equation (4.1.3) is inserted into equation (4.1.2) and equation (4.1.1) is
inserted into the derivative of equation (4.1.3). This yields

χ′′ −4χ+ 2Hχ′ +
(
−ε+ 3δ − εδ − δ2 + δ′

H

)
H2χ = 2(1− δ)H

2z

a
Ψ (4.1.4)

4Ψ + (1− 2δ)HΨ′ + (1 + ε− 2δ)H2Ψ = εHa
z

(χ′ + (1− δ)Hχ)
(4.1.5)
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Now Ψ′ is eliminated from equation (4.1.5) using equation (4.1.3), which leads
to

4Ψ + εH2Ψ = εHa
z

(χ′ + δHχ) (4.1.6)

Applying the operator 4 + εH2 in equation (4.1.4) and inserting equation (4.1.6)
yields an equation for χ only

(4+ εH2)χ′′ + 2H(4+ εδH2)χ′ +
(
−42 +

(
−2ε+ 3δ − εδ − δ2 + δ′

H

)
H24

+
(
−ε+ δ − εδ + δ2 + δ′

H

)
εH4

)
χ = 0 (4.1.7)

This equation is a fourth order partial differential equation but it nevertheless
tractable using the Fourier transformation. Considering the mode decomposition of
the field, the equation reduces to a second order ODE which can be interpreted as a
Klein-Gordon mode equation with additional inverse powers of the mode number in
the “effective mass term” of the modes. The full system of equations in the mode
setting is

Ψ′′k + 2δHΨ′k +
[
2(δ − ε)H2 + k2

]
Ψk = 0 (4.1.8)

χ′′k + 2Hk
2 − εδH2

k2 − εH2 χ
′
k +

[
k4 +

(
−2ε+ 3δ − εδ − δ2 + δ′

H

)
H2k2

+
(
ε− δ + εδ − δ2 − δ′

H

)
εH4

]
1

k2 − εH2χk = 0 (4.1.9)

Ψ′k +HΨk = εHa
z
χk (4.1.10)

Lemma 4.1.1.
Ψ and χ cannot both fulfil ordinary CCR.

Proof.
For the proof of this lemma it is easiest to investigate equal time CCR. We will start
from the CCR for Ψ in the form

[Ψ(x),Ψ(y)]
∣∣∣
x0=y0

= [Ψ′(x),Ψ′(y)]
∣∣∣
x0=y0

= 0

[Ψ(x),Ψ′(y)]
∣∣∣
x0=y0

= iδ(~x− ~y)
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To calculate the commutation relations of χ we derive from equations (4.1.3) and
(4.1.5) the relation

χ′ = −δz
εa

Ψ′ +
z
(
4+ (ε− δ)H2

)
εHa

Ψ (4.1.11)

which can then be used to compute the commutation relations

[χ(x), χ(y)]
∣∣∣
x0=y0

= 0

[χ′(x), χ′(y)]
∣∣∣
x0=y0

=
z2
(
4x + (ε− δ)H2

)(
4y + (ε− δ)H2

)
(εa)2H

[Ψ(x),Ψ(y)]
∣∣∣
x0=y0

−
δz2

(
4y + (ε− δ)H2

)
(εa)2H

[Ψ′(x),Ψ(y)]
∣∣∣
x0=y0

−
δz2

(
4x + (ε− δ)H2

)
(εa)2H

[Ψ(x),Ψ′(y)]
∣∣∣
x0=y0

= 0

[χ(x), χ′(y)]
∣∣∣
x0=y0

=
z2
(
4y + (ε− δ)H2

)
(εHa)2 [Ψ′(x),Ψ(y)]

∣∣∣
x0=y0

− δz2

(εa)2 [Ψ(x),Ψ′(y)]
∣∣∣
x0=y0

= − i
z2
(
4x + εH2

)
(εHa)2 δ(~x− ~y)

This proves the claim.

As a direct corollary it is not possible for Ψ and χ to both be in a Hadamard
state. As χ does not fulfil a normal Klein-Gordon equation but a dynamic equation
of fourth order, it is not to be expected that the CCR or the Hadamard condition
are of any significance in this case. The field Ψ however fulfils a Klein-Gordon type
equation, so at first glance it seems reasonable to assume standard CCR for this
field as a means of quantisation and treating χ as a derived field whose commutation
relations as derived from the CCR for Ψ bear no significance.

However, in the standard approach, quantisation is done by assuming CCR for
the field u = aχ+ zΨ defined in equation (2.3.5). As u also fulfils a Klein-Gordon
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type equation, this approach is equally valid from the simplistic point of view taken
in this subsection. However, this approach leads to an inequivalent quantisation,
as shown in the following lemma, which also makes more explicit what the CCR
quantisation of u implies for the commutation relations of Ψ.

Lemma 4.1.2.
If standard CCR for u and [Ψ(x),Ψ(y)]

∣∣∣
x0=y0

= [Ψ′(x),Ψ′(y)]
∣∣∣
x0=y0

= 0 are imposed,

[Ψ(x),Ψ′(y)]
∣∣∣
x0=y0

= i
ε2H2

4πz2
1

|~x− ~y|

Proof.
The commutation relations for Ψ are derived in an indirect way. Using equation
(4.1.3) the following relations can be derived

u = z

εH
Ψ′ + 1 + ε

ε
zΨ

u′ = z

εH
4Ψ + (1 + ε− δ)Hu

[u(x), u′(y)]
∣∣∣
x0=y0

=− z2

ε2H24y[Ψ(y),Ψ′(x)]
∣∣∣
x0=y0

(4.1.12)

Now the last relation can be recast in the form

iz2

ε2H24y[Ψ(y),Ψ′(x)]
∣∣∣
x0=y0

=δ(~x− ~y) = δ(~y − ~x)

which is the distributional differential equation for the fundamental solution of the
Laplacian. This is straight forward to solve and yields

[Ψ(x),Ψ′(y)]
∣∣∣
x0=y0

=iε
2H2

4πz2
1

|~x− ~y|

which implies the claim.

It is obvious that commutation relations for Ψ are quite different from the CCR
and even non-local. Thus, if u is quantised with standard CCR, this implies that Ψ
cannot be interpreted as a local scalar quantum field at the same time. This means
that CCR quantisation for Ψ and u yield inequivalent quantum field theories. The
following subsection investigates the classical dynamical system in some depth to
control this ambiguity.
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It is also interesting to note that, if there is an argument that favours the choice of
u as the variable to canonically quantise, the fields Ψ and χ, which bear well-defined
physical meaning, have to be interpreted as non-local. Such a situation may point to
an underlying non-commutativity of spacetime, leading to non-locality. This point
will be referred to in the outlook in chapter 5.

4.1.2. Canonical Symplectic Form

In this subsection the dynamical system of the modes is reviewed from the angle
of symplectic geometry. To this avail, the dynamical system has to be cast in
Hamiltonian form, which implies the identification of the Darboux coordinates of
the symplectic form. To achieve this, it is necessary to use the action presented e.g.
in [7] and derive the corresponding Hamiltonian system. Then the impact of the
constraint on the symplectic structure is discussed.

For the treatment of a dynamical system with second class constraints several
methods exist. The dynamical variables, including the Lagrange multipliers, may be
combined into a reduced set of dynamical variables in such a way that the resulting
Lagrangian contains no constraints and only depends on the new variables. This is
the strategy which is pursued in the standard literature on cosmological perturbations
during inflation. However, finding an appropriate reduced set of dynamical variables
is not a straight forward task and is usually done by simply choosing the appropriate
ansatz to begin with. As the resultant dynamical system is a generic Hamiltonian
system, quantisation is straight forward.

A second method consists in the straight forward construction of a Hamiltonian
containing the Lagrange multipliers and the subsequent application of a standard
procedure to eliminate the Lagrangian multipliers. This procedure does not lead to
an obvious reduction of phase space, however it can be seen that the phase space
is not symplectic and the maximally symplectic subspace whose complement has
a dimension which is identical to the number of constraints. This procedure has
the disadvantage that the geometry of the phase space is unclear and therefore
quantisation of the dynamical system is not straight forward.

Yet another method consists in ignoring the constraints at first, to produce an
“unconstrained Hamiltonian” with a corresponding canonical symplectic form. Then
the constraints are used to derive the so-called Dirac bracket from the Poisson bracket
of the unconstrained system. The tensor corresponding to the Dirac bracket will be
called the “Dirac form” in the present treatment. The Dirac form is degenerate in a
number of dimensions corresponding to the number of constraints and symplectic
in the remaining dimensions. The present treatment will pursue the derivation of
the Dirac bracket to shed some light on the quantisation of the system. The classic
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reference for this method is [14] but it is treated to varying degree of detail in many
standard textbooks.

As a first step it is convenient to rescale the fields Ψ and χ so they have the same
dimension. Therefore we define the rescaled fields

ψ := zΨ λ := aχ

The Lagrangian given in [7], equation (10.68) is given here in terms of the rescaled
variables, suppressing the total divergences and simplifying by setting Φ = −Ψ and
L := 44(B − E ′) (note the different notation). From the treatment in [7] it is clear
that the terms introduced by switching to gauge invariant variables cancel out.

L = 1
2ε
[
−3(ψ′)2 + 6(ε− δ)Hψ′ψ + (ε− 3ε2 + 6εδ − 3δ2)H2ψ2 +ψ4ψ

]

+ 1
2

[
(λ′)2 − 2Hλ′λ+

(
1− 3ε− 3δ + εδ + δ2 − δ′

H

)
H2λ2 + λ4λ

]

+ 4Hψ′λ+ 2(1− 2ε+ δ)H2ψλ+ zL

[
−1
ε
ψ′ + ε− δ

ε
Hψ +Hλ

]

The next step in the treatment is to consider the “unconstrained Lagrangian”,
thus setting L = 0. We will additionally switch to a “mode Lagrangian”.

L0,k = 1
2ε
[
−3(ψ′k)2 + 6(ε− δ)Hψ′kψk + [(ε− 3ε2 + 6εδ − 3δ2)H2 − k2]ψ2

k

]

+ 1
2

[
(λ′k)2 − 2Hλ′kλk +

[(
1− 3ε− 3δ + εδ + δ2 − δ′

H

)
H2 − k2

]
λ2
k

]

+ 4Hψ′kλk + 2(1− 2ε+ δ)H2ψkλk

Note that the mode Lagrangian is not the Fourier transform of the Lagrangian, as
a Fourier transformation would not map products of functions to products of their
Fourier transforms but to convolutions. The Lagrangian for the modes is instead
designed to produce the correct dynamic equations for the modes.

From the mode Lagrangian one calculates the canonical momentum modes

Πk = ∂L0,k

∂ψ′k
= −3

ε
ψ′k + 3ε− δ

ε
Hψk + 4Hλk

⇔ ψ′k = −ε3Πk + (ε− δ)Hψk + 4
3εHλk
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4.1. Dynamics of Perturbations in Inflation

κk = ∂L0,k

∂λ′k
= λ′k −Hλk

⇔ λ′k = κk +Hλk
which allows the derivation of the unconstrained Hamiltonian for the modes

H0,k = − ε

6Π2
k + (ε− δ)HΠkψk +

(
−1

2H
2 + 1

2εk
2
)
ψ2
k

+ 1
2κ

2
k +Hκkλk +

[
1
6

(
−7ε+ 9δ − 3εδ − 3δ2 + 3 δ

′

H

)
H2 + k2

]
λ2
k

+ 4
3εHΠkλk − 2(1− δ)H2ψkλk

As the canonical variables of the unconstrained Hamiltonian are the Darboux
coordinates of the canonical symplectic form on the unconstrained phase space, the
symplectic form corresponding to the Poisson bracket takes the standard form.

∀η : (ωαβ)α,β(η) =
(

02 12
−12 02

)

The constraint equation implies a projection to a subspace of the phase space.
Contrary to the projection to an energy hypersurface this projection constrains
the accessible phase space for all solutions of the dynamical system so it can be
interpreted as a genuine reduction of phase space. The primary constraint given by
equation (4.1.10) in canonical variables reads

C1 = Πk −Hλk = 0 (4.1.13)
and a secondary constraint can be derived as

C2 := − 1
H
{C1,H0,k} −

1
H
∂C1

∂η
= κk −

εH2 − k2

εH
ψk + δHλk = 0 (4.1.14)

using the first constraint. The tertiary constraint vanishes

C3 = {C2,H0,k}+ ∂C2

∂η
= 0

applying the first two constraints, so there are exactly two geometrically independent
constraints, which means that the phase space dimension is reduced by two. It is
worth emphasising that these constraints are fulfilled by all valid solutions of the
dynamical system, so all solutions of the dynamical system can be described as living
on a two dimensional reduced phase space.

For the treatment of constraints it is of great importance, whether they are first
or second class constraints. In the case discussed here, only second class constraints
occur, due to the following lemma.
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4. Cosmological Perturbation Theory

Lemma 4.1.3.
The constraints (4.1.13) and (4.1.14) are second class constraints for k 6= 0.

Proof.
To fix notation let (Mab)a,b denote the matrix with components Mab. If the con-
straint matrix (Cab)a,b :=

(
{Ca, Cb}

)
a,b

is invertible, the constraints are second class
constraints. Using the definition of the Poisson bracket

{f, g} := ∂f

∂ψk

∂g

∂Πk

+ ∂f

∂λk

∂g

∂κk
− ∂f

∂Πk

∂g

∂ψk

− ∂f

∂κk

∂g

∂λk

one gets

C12 = {C1, C2} = εH2 − k2

εH
−H = − k2

εH
which yields, due to antisymmetry

(Cab)a,b = k2

εH

(
0 −1
1 0

)
which is invertible as long as k 6= 0.

First class constraints usually occur in the context of gauge theories so one might
expect that a full treatment of scalar perturbation theory, not using gauge invariant
variables might be significantly more complicated, especially when it comes to
quantisation. Such a more extensive investigation is not attempted in the present
work.

In the present case, the constraints are first class constraints for the zero mode
k = 0. This implies, that the physical phase space for the zero mode has dimension
zero, as primary constraints reduce the dimension by two each, and not only by one,
as second class constraints. In the present work, no separate treatment of the zero
mode is performed. A complete formulation of the Dirac bracket on the full phase
space of all modes is nevertheless possible, as will be seen below.

The Dirac bracket is derived from the Poisson bracket and the constraint matrix
as

{f, g}D := {f, g} − {f, Ci}(C−1)ij{Cj, g}

and a straight forward calculation yields the mode Dirac form

(ωαβD,k)α,β =


0 εH

k2
εH2

k2 − εδH2

k2

− εH
k2 0 0 1− εH2

k2

− εH2

k2 0 0 H− εH3

k2
εδH2

k2 −1 + εH2

k2 −H + εH3

k2 0

 (4.1.15)
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4.1. Dynamics of Perturbations in Inflation

which obviously diverges for k → 0. The Dirac bracket on all modes is defined as



f1
f2
f3
f4

 ,

g1
g2
g3
g4




D

:=
∫



f1(~k)
f2(~k)
f3(~k)
f4(~k)

 ,

g1(~k)
g2(~k)
g3(~k)
g4(~k)




D,k

d3k (4.1.16)

where all the functions fi and gi are Schwartz functions in k. As the mode Dirac
form given in equation (4.1.15) behaves like k−2 for k → 0 and the volume element
of the integral in equation (4.1.16) gives a factor of k2 the limit of the integrand for
k → 0 is finite. Thus the integrand is a Schwartz function and the integral is well
defined. In the remainder of this subsection the treatment is performed in terms of
modes but for the following subsection the full Dirac form will play a role.

It is straight forward to check that in coordinates1

f1 := ψk + εδH
k2 − εH2 Πk + εH

k2 − εH2κk f2 := λk −
1
H

Πk

f3 := 1
H

Πk f4 := k2

k2 − εH2κk

the mode Dirac form is of standard form

(ω̃αβD,k)α,β =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


which conforms to the expectation that there are two dynamical degrees of freedom
in the system at hand. This implies that it suffices to canonically quantise one
appropriate pair of canonically conjugate variables. These variables can be chosen
freely and only need to fulfil the requirement {X,P}D = 1. This freedom implies
the application of the constraints as well as symplectomorphisms. To make a
connection to the previous subsection, the possible canonically conjugate variables
P for X = uk = ψk + λk and for X = 1

z
ψk will be the centre of attention here.

Considering X = uk the corresponding conjugate variable has to fulfil

−εH
k2

∂P

∂ψk
+ εH
k2

∂P

∂λk
+ εH2

k2
∂P

∂Πk

+ k2 − εH2 − εδH2

k2
∂P

∂κk
= 1

1The coordinate singularity for k2 = εH2 can be circumvented by picking other coordinates; the
coordinates given here serve only as an example.
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which is indeed fulfilled by

P = u′k = (ε− δ)Hψk +
(

1 + 4
3ε
)
λk −

ε

3Πk + κk

which implies that the standard quantisation procedure is indeed justified.

For X = 1
z
ψk the corresponding conjugate variable has to fulfil

εH
zk2

∂P

∂λk
+ εH2

zk2
∂P

∂Πk

− −εδH
2

zk2
∂P

∂κk
= 1

which can be fulfilled by

P = αX ′ = −αH
z
ψk + 4

3
αεH
z

λk −
αε

3zΠk

namely if α = z2k2

ε2H2 . This result is peculiar in that it includes a prefactor of k2.
A comparison with equation (4.1.12) shows that the treatment of this subsection
reproduces the result of the previous subsection with respect to the relation of the
commutators (or in the classical setting Dirac brackets). However, the treatment in
the present subsection allows to take the point of view that the standard treatment of
quantising u is canonical in the sense of Dirac quantisation, while the straightforward
CCR quantisation of Ψ is not.

As a closing remark for this subsection, we would like to consider the general
solution to X = Aψk +Bλk and P = X ′. These requirements lead to the equation

εH
k2 (AB′ − A′B) + k2 − εH2

k2 B2 + (1− ε)εH
2

k2 AB + ε2H2

k2 A2 = 1

εH(AB′ − A′B) + (k2 − εH2)B2 + (1− ε)εH2AB + ε2H2A2 = k2

Demanding that A and B do not depend on k, the k-dependent terms can be treated
separately and yield B2 = 1. If A and B are additionally required to be real, the
only solutions to this equation are B = 1 and B = −1. This yields

A′ ∓ εHA2 − (1− ε)HA±H = A′ ∓ (A∓ 1)(Aε± 1)H = 0

which can be cast in a simpler form using D := A∓ 1

D′ ∓D(Dε± (1 + ε))H = 0

such that one receives a Bernoulli differential equation. This type of equation is
solvable with trivial solution D = 0 and a nontrivial solution which can be found by
using E = 1

D
leading to

E ′ + (1 + ε)HE = ∓εH
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4.1. Dynamics of Perturbations in Inflation

a readily solvable linear equation. The solution for A is

A = ±

1− a2

H

 η∫
η0

ε(η′)a2(η′) dη′ +K

−1


where K and η0 account for one free constant. The standard choice of dynamical
variable amounts to picking the trivial solution A = B = 1, however the present
treatment suggests that there is a one-parameter family of possible choices. All these
possible choices imply the same classical dynamics, as different choices of dynamical
variables are related by symplectomorphisms on phase space. Therefore all choices
lead to the same quantum system in terms of the algebra of observables. As there is
no obvious mechanism at the current stage of development to justify a particular
choice of dynamical variables from the one-parameter family, it is an interesting
problem to investigate the dynamical systems these potential variables fulfil. In
the context of the dynamic equations for the different fields one can then consider
whether they suggest preferred states, whether these preferred states are equal and
whether the corresponding two-point functions have the same infrared asymptotics.
This seems to be an interesting investigation in its own right, however these questions
will not be investigated in the present work.

4.1.3. The Algebraic Point of View

In this subsection the results of this section will be reviewed in the context of algebraic
quantum field theory. The general pattern that will be followed is the same as in the
previous subsections. First the system without constraint2 is considered and then
the impact of the constraint on this system is investigated. The present subsection
does not provide additional information on the dynamical system but clarifies the
impact of the constraint on the level of algebraic quantum field theory.

As we will deal with the quantum system here and not the classical system, the
question whether quantisation commutes with reduction comes into play. In the
present setting, reduction on the classical level can be split up into two parts. First
the Poisson bracket on phase space is replaced by the Dirac bracket, which induces a
presymplectic form, and in the second step a projection to the symplectic subspace
is performed. It is not clear how the first part of the reduction procedure should be
implemented on the quantum level, while the second part of the reduction procedure
gives rise to a well defined algebraic procedure, such that quantisation commutes
with the second part of reduction by construction.

2We speak only of one constraint here, as the second constraint is derived from this constraint as
a secondary constraint.
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4. Cosmological Perturbation Theory

Starting out from the dynamical system for Ψ and χ is unsuitable for a consideration
from the point of view of algebraic quantum field theory as the system contains
coupling of the fields, which undermines a completely rigorous treatment with current
methods. Instead it would be preferable to start from a system of two independent
free scalar fields. To achieve this, it is necessary to apply the constraints to arrive at
a dynamical system for Ψ = a2

HzΨ and u.

Ψ′′−4Ψ+
(
−2ε+ δ + εδ − δ2 − δ′

H

)
H2Ψ = 0 (4.1.17)

u′′− 4u+
(
−2− 2ε+ 3δ − 2ε2 + 3εδ − δ2 + δ′

H

)
H2u = 0 (4.1.18)

and the constraint takes the form

Ψ′ + (1 + ε− δ)HΨ = εa2

z2 u = 4πGu (4.1.19)

Ignoring the constraint, Ψ and u are free scalar fields and the symplectic space
P of their modes is straight forward. Now in the present treatment the reduction
of phase space is done in two steps. First the Poisson bracket is replaced by the
degenerate Dirac bracket, leading to a space D with a symplectic subspace. Then a
projection to the maximal symplectic subspace is performed by factoring out the
primary and secondary constraint, leading to a symplectic space D/C.

To tackle the problem of quantisation, it is useful to take the spatial Fourier
transform of the fields, as this allows to make direct contact with the previous
treatment. In this context, the Dirac form is defined as in equation (4.1.16), where
the mode Dirac form is of course different from the one given in equation (4.1.15),
as we are working with different coordinates on the symplectic space here. However,
it can be expected that the limit k → 0 should be of the same order of divergence as
in equation (4.1.15) because the coordinates are related by a k-independent linear
transformation. Therefore the integral can be expected to exist. The constraint in
mode form is

C1,k := Ψ̃
′
k + (1 + ε− δ)HΨ̃k − 4πGũk = 0

and the Dirac bracket of the constraint with an arbitrary initial value set is


f
(1 + ε− δ)Hf

0
−4πGf

 ,

g1
g2
g3
g4




D

= 0 (4.1.20)
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The algebras of observables for Ψ and u, the Weyl algebras AΨ/u, can be con-
structed in the standard way. The algebra of the full system is then given as the
tensor product algebra A = AΨ ⊗ Au. Now the constraint cannot be simply inter-
preted as a relation in this algebra that has to be factored out to restrict to the
constrained system, because it is incompatible with the commutation relations. As
discussed above, applying the constraint is not very complicated on the level of field
modes; on the level of the Weyl algebra the Weyl relations have to be replaced with
the modified relations derived from the mode Dirac forms, profoundly changing the
algebra.

For the thus acquired algebra AD corresponding to D the constraint defines a non-
trivial ideal, as the Dirac form is constructed to be degenerate in exactly this sense.
This is in contrast to A which, as a Weyl-Algebra corresponding to a non-degenerate
Poisson form, is simple. The Weyl operators are defined with respect to a set of
mode initial values

Ŵ (Ψ̃′, Ψ̃, ũ′, ũ)
and the Dirac-Weyl relation is
Ŵ (f1, f2, f3, f4)Ŵ (g1, g2, g3, g4)

= exp

 i2


f1
f2
f3
f4

 ,

g1
g2
g3
g4




D

 Ŵ (f1 + g1, f2 + g2, f3 + g3, f4 + g4) (4.1.21)

This makes it possible to formulate the constraint on the level of the Dirac-Weyl
algebra AD as

∀f ∈ S (R3) : Ŵ (f, (1 + ε− δ)Hf, 0,−4πGf) = 1

where S (R3) denotes the space of Schwartz functions. The constraint is compatible
with the Dirac-Weyl relation (4.1.21) by virtue of equation (4.1.20). The secondary
constraint can be calculated and cast into a similar form on the level of the algebra.
The constraint relations defined two ideals on the algebra and are factored out. The
resultant algebra is denoted as AD/C ′ and corresponds by construction to the reduced
phase space D/C. This is illustrated in the following diagram, where it should be
noted, that the connection between A and AD is not clear on the purely algebraic
level. Instead AD is constructed using results on the classical level.

P D D/C

A AD AD/C ′

Dirac

Quantisation

Reduction

Quantisation Quantisation

? Reduction
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4. Cosmological Perturbation Theory

States from the state space S of the tensor product algebra A can be freely chosen,
for instance it is possible to pick states which have the Hadamard property for both
fields. The simplest states of this kind are simply tensor products of Hadamard states
for the single field algebras AΨ/u. When the constraint C ′ is applied, the resultant
algebra AD/C ′ has a very different state space Sc. In the construction applied here,
the isomorphism AD/C ′ ' Au is implied, which permits a canonical injective, unit
preserving C∗-homomorphism α : AD/C ′ → A. The dual map to this homomorphism
is a positive map α′ : S → Sc which means that states on A give rise to states on
AD/C ′ by simply restricting to their action to Au ⊂ A.

The explicit form of the relations between states in S and states in Sc is greatly
simplified by our choice of dynamical variables. If one chooses different dynamical
variables, like Ψ and χ, the construction of a corresponding algebra A′ is much more
troublesome and a simple relation between A′ and A′D/C ′ ' AD/C ′ need not exist.

4.2. LTE States in Cosmology

In the present section, the post-inflationary evolution of large scale perturbations
mainly during the epoch of free streaming is treated. For simplicity of the treatment
polarisation is ignored such that the photon fluid can be modelled by a Klein-Gordon
field model. In this context the extrinsic LTE concept can be used to describe thermal
properties of the fluid. The first part of this section will show some limitation of the
extrinsic LTE concept for the description of temperature fluctuations in terms of
cylindrical modes. The second part highlights another limitation of the LTE concept,
which prevents a description of the Sachs-Wolfe effect by LTE states.

4.2.1. The Link to Fluid Dynamics

The temperature fluctuations are described by the angular spectrum of the autocor-
relation of the background rescaled bolometric phase space density Λ as introduced
in (2.3.11). If one attempts to describe the temperature fluctuations in terms of
LTE states it is thus desirable to express the cylindric moments of Λ in terms of
thermal observables. As the concept of extrinsic LTE, defined in subsection 2.2.4, has
been established only with a very limited set of thermal observables, only the three
moments of lowest order can be linked to thermal observables. However, even taking
the extrinsic LTE concept for granted for all balanced derivative, it is not straight
forward to define the cylindric moments in terms of the balanced derivatives.

To link the first three cylindric moments of Λ to LTE observables it is useful
to consider the energy-momentum tensor of a perturbed fluid, express the Fourier
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4.2. LTE States in Cosmology

transforms of its components in terms of cylindric moments and compare it to
the energy-momentum tensor of a scalar field in an extrinsic LTE state. In the
following, conformal gauge is used for simplicity. To convert to gauge free notation
the components of the energy-momentum tensor have to be replaced by their gauge
invariant counterparts.

The general form of the energy-momentum tensor of a fluid with phase space
density f(η, ~x, p, p̂) is [16][47]

T µν(η, ~x) =
∫
pµpνf(η, ~x, p, p̂) d

3p

p0(~p)
where pµ = p·p̂µ. For the massless case and using f(η, ~x, p, p̂) = f0(η, p)+δf(η, ~x, p, p̂)
this yields

T µν(η, ~x) =
∫
p̂µp̂νdΩp

∞∫
0

f0(η, p)p3dp+
∫
p̂µp̂ν

∞∫
0

δf(η, ~x, p, p̂)p3dpdΩp

The background part fulfils the equation of state for a fluid of massless particles
p0 = 1

3ρ0. The linear perturbation of this quantity can now be Fourier transformed
to be comparable to the moments of

Λ =

∞∫
0
δfq3dq

4
∞∫
0
f0q3dq

(2.3.11')

The linear perturbation of the energy-momentum tensor in terms of Λ is

δ̃T µν(η,~k) = 4(T0)0
0

4π

∫
p̂µp̂νΛ(η,~k, p̂)dΩp

where one uses p̂0 = 1, which holds in the massless case.

Now one can restrict to perturbations of scalar type, implying Λ(η,~k, p̂) = Λ(η,~k, µ)
which yields the components

δ̃T 0
0(η,~k) = 4(T0)0

0
4π

∫
Λ(η,~k, µ)dΩp = 4(T0)0

0λ0(η,~k)

k̂iδ̃T 0
i(η,~k) = −4(T0)0

0
4π

∫
µΛ(η,~k, µ)dΩp = i

4
3(T0)0

0λ1(η,~k)

(
k̂ik̂

j δ̃T ij(η,~k)− 1
3 δ̃T

0
0(η,~k)

)
= 4(T0)0

0
4π

∫ (
µ2 − 1

3

)
Λ(η,~k, µ)dΩp

= − 8
15(T0)0

0λ2(η,~k)
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As explained in [16][47] the scalar perturbations of the energy-momentum tensor
of a fluid have the form

δ̃T 0
i = ik̂ikÃ ⇔ δT 0

i = A|i

δ̃T ij(η,~k) = −δij δ̃p+
(
−k̂ik̂j + 1

3δ
i
j

)
k2B̃

⇔ δT ij(η, ~x) = −δijδp+B|i|j −
1
3δ

i
j4B

Interpreting δp = 1
3δT

0
0 and using “rescaled” Fourier transforms as in [47]

λl(η, ~x) :=
∫
ei
~k~xλl(η,~k)

(−k)l d
3k

one can thus derive using k̂ik̂i = −1

T 0
0(η, ~x) = 4(T0)0

0λ0(η, ~x) (4.2.1)

−kÃ = 4
3(T0)0

0λ1(η,~k) ⇒ δT 0
i(η, ~x) = 4

3(T0)0
0λ1(η, ~x)|i (4.2.2)

−4
3k

2B̃ = − 8
15(T0)0

0λ2(η,~k) ⇒ δT ij(η, ~x)− 1
3δT

0
0(η, ~x) (4.2.3)

= 2
5(T0)0

0

(
λ2(η, ~x)|i|j −

1
3δ

i
j4λ2(η, ~x)

)
(4.2.4)

Having expressed the perturbations in terms of moments of Λ, the next step is
to compare these results to the components of the energy-momentum tensor for a
suitable “perturbative LTE” model. As calculated explicitly in [43], the expectation
value of the renormalised energy momentum tensor for 2-LTE states on curved
spacetime is given not only by the thermal expectation values Θ and ε but depends
also on the conformal anomaly Q and on renormalisation ambiguities Cµν . The
explicit form is

〈Tµν〉 =εµν +
(1

4 − ξ
)
∇µ∇νΘ + ξ (Rµν + (4ξ − 1)Rgµν) Θ

+
(

12ξ − 5
2

)
Qgµν + Cµν (4.2.5)

For the present work it is useful to split this tensor into three parts, calling εµν
the equilibrium contribution, fµν =

(
1
4 − ξ

)
∇µ∇νΘ + ξ (Rµν + (4ξ − 1)Rgµν) Θ the

flow contribution and Gµν =
(
12ξ − 5

2

)
Qgµν + Cµν the geometric contribution.
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The geometric term Gµν can be heuristically interpreted as a dark energy contri-
bution, but the only point that will be made here is that it is state independent.
Because of its state independence, the geometric term may be rightfully ignored, if
one is only interested in the state dependent thermal or fluid dynamic part. As the
geometric term stems from quantisation and relatively contributes ever less with
increasing temperature, it can be regarded as a typical quantum effect that cannot
be expected to be comparable to the results of the wholly classical fluid dynamic
approach, therefore it is also from a utilitarian point of view sensible to disregard
this term in the present treatment.

The flow contribution will be omitted in the present treatment, implying that the
fluid is assumed to be close to equilibrium.

Using the form of εµν in terms of β given in equation (2.2.11), temperature
perturbations around a background temperature in the LTE setting can be linked to
the first two moments λ0 and λ1 of the photon phase space density perturbation, which

are the most relevant at the end of inflation. Taking β =
(
β0
~0

)
(η) +

(
δβ0−→
δβ

)
(η, ~x)

and expanding only to first order in δβ we get

ε00 =π
2

30
1
β4

0

(
1− 4δβ0

β0

)
(4.2.6)

ε0i =4
3
π2

30
1
β4

0

δβi
β0

(4.2.7)

εij =1
3
π2

30
1
β4

0

(
1− 4δβ0

β0

)
δij (4.2.8)

If these components are interpreted in a tetrad, the extrinsic LTE condition as
proposed for tetrads in [38] can be straight forwardly applied. The tetrad components
can then be compared to the stress-energy tensor for a perturbed fluid, the linear
terms of which are given in equations (4.2.1)–(4.2.4). This comparison gives the
following identification of quantities

ρ = π2

30
1
β4

0
= 3p (4.2.9)

λ0(η, ~x) = δβ0
β0

(4.2.10)

λ1(η, ~x)|i = δβi
β0

(4.2.11)
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λ2(η, ~x)|i|j = 1
3δ

i
j4λ2(η, ~x) (4.2.12)

One sees that, in keeping with the standard literature on cosmological perturbation
theory, the reference frame is not the rest frame of the perturbed matter (which may
indeed vary from point to point as the perturbation δβ is assumed to be position
dependent as opposed to β0) but the rest frame of the background. Additionally, one
can see that in the present approach −→δβ must be a pure gradient and thus only two
scalar degrees of freedom are present. Under these circumstances it is not surprising
that equation (4.2.12) implies that λ2(η, ~x) is spatially homogeneous in this model, as
can be easily checked using the Fourier transformation, so it can be set to 0 without
loss of generality.

One might expect a possibility for a nontrivial λ2 to arise, if the flow contribution
is considered, but the freedom is very limited. As all quantities involved except−→
δβ are scalar, the only non-gradient terms that could appear in −→δβ are of the form
A(~x)−→δβ or A(~x)~∇B(~x). However, only the perturbation quantities are dependent on
~x, so such terms do not occur in the linear approximation. Therefore −→δβ is a pure
gradient also in the more general setting, only two scalar degrees of freedom are
allowed and thus λ0, λ1 and λ2 can by no means be independent.

As an aside, this implies that the restriction to perturbations of scalar type enforces
a β which is of scalar type.

Linking higher moments to LTE observables is not as straight forward. Let
δ0 := δβ0

β0
and ~δ :=

−→
δβ
β0

and consider

f = 1
epβ0(1+δ0−p̂~δ) − 1

f0 = 1
epβ0 − 1 δf = f − f0

Then one can gets

4Λ =

∞∫
0
δfp3dp

∞∫
0
f0p3dp

= 1(
1 + δ0 − p̂~δ

)4 − 1

Obviously the cylindrical moments of Λ in p̂ are the same if we ignore the summand
−1, except for the zeroth moment. This means one can simplify the task to the
description of moments of Λ =

∞∫
0
fp3dp, if one additionally ignores prefactors which

are the same for all moments.

Let ν be a multiindex of an even number of n indices, p̂~δ = δ cosϑ. Then we
have

λν ∝
∫
p̂{ν}

∞∫
0

pn+1

epβ0(1+δ0−δ cosϑ) − 1dpdΩ ∝
∫ p̂ν
βn+2

0 (1 + δ0 − δ cosϑ)n+2dΩ
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The last form can be compared to

λl ∝
∫ Pl(cosϑ)
β4

0(1 + δ0 − δ cosϑ)4dΩ

which holds for l > 0 as explained above. It turns out that for l > 2 the moments
cannot be produced in a straight forward manner in terms of LTE observables.

In reference to the argument made above, one sees that the perturbed LTE states
investigated in this subsection carry, if restricting to linear perturbations, only two
scalar degrees of freedom, such that there are at most two independent moments
of Λ. This is a quite general feature of the LTE approach which has a significant
impact on the range of applicability of the LTE concept. Mixtures of KMS states are
not suited to achieve more degrees of freedom because in fact the perturbations are
to be interpreted as random fields all along, which in the LTE context is modelled
by a temperature mixture whose distribution can be interpreted as the distribution
of the random field.

4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect

In the previous subsection the limited number of degrees of freedom was identified
as principal problem in the treatment of temperature fluctuations of the cosmic
microwave background in terms of LTE states. The first, most obvious problem when
trying to approach the development of temperature fluctuations more rigorously is
the impossibility to account for scattering in the tightly coupled fluid. One may
take the result of the usual semiclassical calculation for the time of last scattering
for granted as an initial value for the epoch of free streaming (for which a free field
treatment is adequate) but then the problem of limited degrees of freedom arises.

To show the problem in applying LTE states in the context of scalar cosmological
perturbation theory, it suffices to consider the simple case of the Sachs-Wolfe effect.
The usual treatment in terms of the Boltzmann-Equation will be briefly referred
to and adjusted for the present treatment. A problem when trying to describe
the effect by LTE states is that the extrinsic LTE concept has not been shown to
be applicable to perturbed FRW spacetimes and more importantly it is not clear
whether an analogue of the phase space density can be found in a suitable extended
set of observables. If such an observable were identified the next problem would arise
in that it would fulfil the free Boltzmann equation for Minkowski spacetime, due to
the extrinsic LTE property. To tackle this problem, it will be shown that the Sachs-
Wolfe spectrum, except for the integrated Sachs-Wolfe effect, can be qualitatively
reproduced in a treatment without metric perturbations. The “sudden decoupling
approximation” detailed in 2.3.5 can be substituted by an equivalent initial value
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formulation. This initial value problem allows further simplification as it is also well
defined on Minkowski spacetime. This last finding allows one to use the wide range
of known facts about LTE states on Minkowski spacetime.

In cosmological perturbation theory the evolution of the temperature fluctuations
of the cosmological background radiation is described by the linear perturbation of
the Boltzmann equation. Recalling equation (2.3.12) the linear perturbation of the
Boltzmann equation with Thomson scattering is

(Λ + Ψ)′ + (ikµ+ τ̇)(Λ + Ψ) = (Ψ− Φ)′ + τ̇
(
λ0 + Ψ− iµλ1 −

1
10P2(µ)λ2

)
As explained above, one would like to eliminate the metric perturbations from the
equation. Simply ignoring metric perturbations yields the equation

Λ′ + (ikµ+ τ̇)Λ = τ̇
(
λ0 − iµλ1 −

1
10P2(µ)λ2

)
which is qualitatively equivalent to the full Boltzmann equation except for the term
(Ψ− Φ)′ on the right hand side, which causes the integrated Sachs-Wolfe effect. The
fact that Λ + Ψ is substituted to Λ has a great impact on the physical interpretation
of the results, even changing the sign of the measured red/blueshift. However, for an
understanding of the structure of the equation and its solution this is not significant.
As explained in 2.3.5 the standard treatment essentially adds Ψ to the monopole
moment, which is quite close to ignoring it as a separate quantity.

The following treatment will be simplified by suppressing the metric perturbations,
thus also ignoring the integrated Sachs-Wolfe effect. It should be noted that this
omission is in the present context meant to have the associated physical implication,
so in the following the physical scenario is that of an unperturbed FRW metric.

The solution of simplified Boltzmann equation is analogously to (2.3.14)

Λ(η) =
∫ η

0
τ̇ e−τ(η′,η)

(
λ0(η′)− iµλ1(η′)− 1

10P2(µ)λ2(η′)
)
eikµ(η′−η)dη′

where τ(η′, η) =
∫ η
η′ τ̇ dη

′′ and τ̇ e−τ(η′,η) is the visibility function. As in the standard
treatment, the sudden decoupling approximation is given by τ̇ e−τ(η′,η) = δ(η′ − η∗),
where η∗ is the time of decoupling. Using this approximation one gets

Λ(η) =
(
λ0(η∗)− iµλ1(η∗)−

1
10P2(µ)λ2(η∗)

)
e−ikµ(η−η∗) (4.2.13)

very similar to the result of the standard treatment.

However, at this point still two obstacles hinder the application of the LTE concept.
Firstly, the scattering term in the Boltzmann equation is problematic to account for
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in the context of axiomatic QFT. Apart from the unsolved question of summability
of perturbation series, little rigorous results exist for thermodynamics in interacting
theories. Secondly, even on FRW spacetimes the knowledge about existence of LTE
states is quite limited and as discussed in the present work there are some open
questions. Therefore it would be desirable to enable the use of the existing techniques
for LTE states on Minkowski spacetime. This goal will be pursued below.

The next step is to recast the problem into a form that is tractable in the setting of
axiomatic QFT and especially LTE. The sudden decoupling approximation models a
situation where all photons are last scattered exactly at the time of decoupling η∗. As
this last interaction of the photons is Thomson scattering, the angular spectrum of
the photon fluid is given by the cross section of Thomson scattering. Afterwards the
photon fluid simply streams freely without any interaction. The described situation
corresponds to an initial value problem of the free Boltzmann equation

Λ′ + ikµΛ = 0

Λ(η∗) = λ0(η∗)− iµλ1(η∗)−
1
10P2(µ)λ2(η∗) (4.2.14)

Indeed (4.2.13) solves the initial value problem (4.2.14), so this reformulation of the
dynamical problem is justified.

The initial value problem (4.2.14) shows no dependence on the metric. This is due
to the fact that only the background Boltzmann equation is dependent on the scale
parameter a(η), while the linear perturbation part of the Boltzmann equation is only
dependent on the linear perturbations of the metric. The background Boltzmann
equation

f ′0 −Hp
∂f0

∂p
= 0

is solved by any function of the form

f0(η, p) = g0(a(η)p)

where a Planck type distribution

f0 = 1
(2π)3

1
eγa(η)p − 1

is to be expected for a thermal state according to the correspondence principle.

If a split of the phase space density into background part and perturbation is done
in Minkowski spacetime, the background equation is simply

f ′0 = 0
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which allows arbitrary functions of p. For a thermal state one would expect the usual
Planck spectrum

f0 = 1
(2π)3

1
eβp − 1

which is trivially allowed. The Boltzmann equation for the linear perturbation is
exactly the same as in (4.2.14) where however Λ is to be interpreted differently from
the case in curved spacetime because it is defined using the bolometric background
phase space density, which differs in both cases.

Thus, the initial value problem (4.2.14) is also a valid initial value problem for the
Boltzmann equation on Minkowski spacetime. This means that the angular spectrum
produced by the Sachs-Wolfe effect can be reproduced in the context of an initial value
problem on flat spacetime, although again the physical interpretation of the objects
is changed. The extrinsic LTE concept is not immediately helpful in this context, as
Λ has not been described in a QFT setting, such that its identification with a phase
space density observable, if such an observable were available on FRW spacetimes,
would be completely unjustified. The aim of the following investigation is to check
whether the initial value problem (4.2.14) is compatible with an interpretation of Λ
as the phase space density of an LTE state.

Taking f(η, ~x, ~p) as the phase space density for a massless scalar field, the dynamic
equations implied by the LTE condition are, following [12]

f ′(η, ~x, ~p) + p̂i∂if(η, ~x, ~p) = 0 ⇒ f̃ ′(η,~k, ~p) + ip̂ · k̂kf̃(η,~k, ~p) = 0

f ′′(η, ~x, ~p)−4f(η, ~x, ~p) = 0 ⇒ f̃ ′′(η,~k, ~p)− k2f̃(η,~k, ~p) = 0

where the latter equation emerges from the trace relations that hold for the balanced
derivatives in LTE states. If a splitting f(η, ~x, ~p) = f0(η, p) + δf(η, ~x, ~p) is assumed,
as in the case of cosmological perturbation theory it turns out that f0(η, p) = f0(p)
as detailed above and f0 = 1

(2π)3
1

eβp−1 can be assumed as the cosmic microwave
background is as a first approximation thermal with sharp temperature. As

(Λ + 1) =

∞∫
0
fp3dp

4
∞∫
0
f0p3dp

the equations that hold for f also hold for (Λ + 1), which in turn only deviates from
Λ in the monopole moment.
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As in the cosmological case Λ will be assumed to be of scalar type, Λ(η, k, µ),
which leads to the equations

(Λ + 1)′ + iµk(Λ + 1) = 0 (4.2.15)

(Λ + 1)′′ + k2(Λ + 1) = 0 (4.2.16)

⇒ k2(µ2 − 1)(Λ + 1) = 0 (4.2.17)

where the last equation can be derived from the first two equation and makes explicit
the constraint nature of equation (4.2.16) stemming from the trace relations. The
refined constraint equation (4.2.17) shows that the trace relations pose a serious
restriction on initial conditions for the Boltzmann equation that are valid in the
context of LTE. (Λ + 1) is, by equation (4.2.17), of the form

(Λ + 1) = A(η, k)δ(µ− 1) +B(η, k)δ(µ+ 1) + C(η)δ(k)

=
∑
l

2l + 1
2

(
A(η, k) + (−1)lB(η, k)

)
Pl(µ) + C(η)δ(k) (4.2.18)

It is obvious that this is incompatible with the initial condition Λ(η∗) = λ0(η∗) −
iµλ1(η∗) − 1

10P2(µ)λ2(η∗). The term C(η)δ(k) is homogeneous and thus can be
interpreted as part of the background. The cylindric moments in the LTE setting show
a peculiar pattern, in that all the even respectively odd moments are essentially equal,
the greater moments even increasing in magnitude. This is obviously incompatible
with the requirement from the initial value given by the Thomson cross section that
the modes decrease for large l, only the first three moments being relevant. Again
the LTE condition implies only two scalar degrees of freedom to be freely chosen,
which is due to the fact that the temperature vector field only has two scalar degrees
of freedom and determines the state completely.

This incompatibility can be assessed under different angles. On the one hand one
may take the point of view that the incompatibility is not surprising as a validity
of the Thomson scattering initial condition in the LTE concept would imply a
compatibility with a non-interacting treatment at all times. However, the initial
condition is produced by interaction, so one would not a priori expect that it can
similarly be produced in a free model. On the other hand one might expect the
interaction of the photon fluid to lead to a thermalisation of the fluid and therefore
produce a state of at least local thermal equilibrium in the limit of vanishing cross
section. Such an effect can be calculated for the classical ideal gas, where the limit
of point interactions, which implies vanishing cross section, leads to an equilibrium
state. However, in the case at hand the interacting fluid consists of two components,
a charged plasma and a photon fluid and their interaction ends due to physical
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circumstances and not as a formal limit. Taking the vanishing of traces of thermal
expectation values as indicative of local thermal equilibrium, in keeping with the LTE
concept, one can say that there is no reason to expect the respective traces to vanish
separately for two formerly interacting matter components after the interaction ends
due to cooling of the ensemble by spacetime expansion.

In the present subsection an incompatibility of the LTE framework on Minkowski
spacetime with a derivation of the Sachs-Wolfe effect has been shown. On a curved
spacetime one may expect the constraint equation (and also the Boltzmann equation)
to take a different form, if one follows the considerations of chapter 3. However, the
qualitative situation of an overdetermined system remains, so one cannot expect a
successful reconciliation other than by chance. The general problem of a limited
number of scalar degrees of freedom persists also in modified approaches to LTE.
An explicit treatment of the full system appears impossible at the current stage of
development of the extrinsic LTE concept on curved spacetimes. If, however, the λl
are assumed to be LTE observables (one could argue that in the above context all
even moments are equal as well as all uneven moments, if C is assumed to vanish)
the framework developed in [42] suggests directly carrying over the conclusion to
curved spacetime.

To describe the Sachs-Wolfe effect, a less restrictive framework for non-equilibrium
thermodynamics than LTE is needed. Especially the trace relations leading to the
constraint equation (4.2.16) would need to be substituted by a weaker requirement.
However, the consideration of appropriate weaker requirements is beyond the scope
of the present work.
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5. Conclusion and Outlook

The limitations of the LTE concept described in the present work are twofold. Firstly,
in chapter 3 some evidence was presented that the extrinsic LTE concept leads to
an interpretation of thermal observables which is inconsistent with interpretation
connected to the intrinsic KMS condition. It was shown that the extrinsic LTE
condition is unstable and its macroobservable interpretation leads to unacceptable
thermodynamics even in a simple non-stationary spacetime model. Additionally it
was made clear that simply ignoring the coupling of the scalar field to curvature as
is done in the current state of the extrinsic LTE condition appears not reasonable
as it leads to inconsistencies in both cases. Also the question of symmetrisation of
balanced derivatives and the cited inconsistency in the Dirac field case found by [25]
were briefly mentioned.

Therefore we concluded that the extrinsic LTE concept, despite its successes, needs
to be adjusted. Some additional clues as to which properties are desirable for a
modified LTE condition were found by investigating conformal KMS states and a
simple model for an expanding spacetime. We drew the conclusion, that the modified
thermal observables put forth in [45] provide only a partial solution to the problems
identified. Therefore we proposed a stronger emphasis on the dynamical equations
for LTE observables analogous to those investigated in [12] for Minkowski spacetime.
We identified a hierarchy of trace relations and positivity relations as the essential
missing links towards a consistent graded LTE concept as the one in Minkowski
spacetime.

We proposed furthermore a tentative trace relation for conformally static space-
times as well as a draft for positivity inequalities, however these cannot be considered
satisfactory. The problem of suitable positivity inequalities is related to the mul-
tidimensional moment problem, a problem in mathematics currently not solved in
a satisfactory manner, which is all the more disappointing as suitable positivity
inequalities would be a welcome tool to identify mixtures of KMS states. The
problem of missing trace relations occurs because no macroobservable interpretation
is implied in the dynamical equations alone, as opposed to the extrinsic LTE concept
which includes a built-in macroobservable interpretation.

The absence of a macroobservable interpretation of the balanced derivatives
is a problem which appears in a weaker form already for the massive field in
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Minkowski spacetime as the thermodynamic integrals cannot be solved analytically. If
satisfactory trace and positivity relations can be identified in a model, one may pursue
a path similar to the one outlined in [23] to find thermal observables with a sensible
macroobservable interpretation corresponding to a certain classical thermodynamic
quantity. This would imply a transition to an extended set of thermal observables
where the topology needed to extend the set of thermal observables suitably can in
general be expected to be at least as weak as the one considered by [23]. This is due
to the fact that in the Minkowski case a stronger topology is only sufficient for the
subset of measure zero of the parameter space where m = 0.

However, as the modified LTE concept proposed in the present work comes with
at least one serious problem, namely the missing trace relations, one may expect
that a further refinement of the concept would be necessary if it were not to be
discarded altogether. Indeed, the second limitation of LTE illustrated in section 4.2
of the present work would affect the proposed modified LTE concept in qualitatively
the same way as the standard LTE concept. A concept of local thermal equilibrium
which does not encompass a state describing the temperature fluctuations of the
cosmic microwave background may be regarded as too restrictive. The treatment
in section 4.2 suggests that a general idea for a less restrictive concept of thermal
states which stays close to LTE may be to assume the equations derived as balanced
derivatives of equation (3.2.4) but substitute the second set of equations derived
from equation (3.2.5') by suitable restrictions on initial values.

The source of the problem described in section 4.2 could also be traced to the fact
that only the photon fluid is considered and the charged plasma is ignored. If one
assumes that the interacting fluid is in local thermal equilibrium, the failure of the
photon fluid to be locally thermal may be mirrored by a non-termality of the plasma
such that a full treatment of the system would be compatible with local thermal
equilibrium.

Additionally the backreaction of the fluid on spacetime was ignored in section 4.2,
so another question which could be investigated, is whether the resulting state of the
photon fluid is locally thermal an the perturbed spacetime. However, the fact that
the deviation from local thermal equilibrium is not a phenomenon of large scales
but occurs pointwise, it seems unlikely that the perturbations of the metric resolve
this incompatibility. Heuristically speaking, one may expect the spectrum given by
equation (4.2.18) to hold for local thermal equilibrium at points where the spacetime
curvature vanishes. However, the spectrum enforced by Thomson scattering makes
no reference to curvature such that at least in this case the incompatibility can be
expected to remain.

The present work leads to some open questions related to the LTE concept on
curved spacetimes. In section 2.2.3 it was shown that a finite number of balanced
derivatives suffices to approximate the cumulants of a temperature distribution in
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case a suitable decay property holds for the sequence of cumulants. It would be
interesting to investigate whether decay property like Kn ∝ εn can be proved to
follow from a set of physically justified conditions via the central limit theorem.

In light of section 3.1 it would be interesting to investigate the β-dependence of
the expectation values of LTE observables for KMS states of the static hyperbolic
spacetime R × H3. If the limit of small temperatures would deviate from a β−2

behaviour also in that case, this would imply that the incompatibility of intrinsic
KMS and extrinsic LTE condition is not only a topological effect but also has
geometric roots. If one takes seriously the conformal KMS states as thermal states,
their incompatibility with the extrinsic LTE condition leads to the expectation that
such a deviation may occur.

As already remarked, it would be interesting to have some means to decide which
boundary properties LTE states on curved spacetimes should have. On Minkowski
spacetime it has been shown in [12] that the region of LTE for the massless field may
be past but not future bounded. If one would regard this qualitative behaviour as a
desirable feature also for the conformally invariant field on curved spacetimes, the
result of section 3.2 would render the extrinsic LTE concept even more unacceptable.
An interesting side question is whether LTE states always become singular on the
border of the domain of LTE, as is the case for the heat bang states. The derivation
of the domain property in [12] seems to hint at this. If this property indeed holds
true for Minkowski spacetime and one regards it as a desirable feature also for curved
spacetimes, this would further undermine the extrinsic LTE concept.

The spacetime model considered in section 3.3 does exhibit typical features ex-
pected to be found in an inflationary model, however inflation in this model is not
characterised by a de Sitter phase. In order to stay closer to usual models of inflation
it would be interesting to investigate the model which fulfils

H = ρ
(1− a2)(a2 − ε2)

(1− ε2)a2 ⇔ ds2 = dt2 −
(

1 + ε2

2 + 1− ε2
2 tanh(ρt)

)
d~x2

however the Klein-Gordon equation for this model is not as straight forward to
solve.

Another question which appears worthy of investigation, is whether the state of
movement of the observer should be built into the LTE concept in some more detail,
by taking into account non-inertial observers. As an example the Minkowski vacuum
is seen as a thermal state by a uniformly accelerated observer, due to the Unruh
effect. If the observer does however measure the LTE temperature at some point on
his world line the generic LTE concept would have him measure zero temperature.
In [41] and [42] the LTE observables were linked to inertial Unruh detectors, which
should however react to non-inertial motion according to the Unruh effect. Therefore
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that work might give a hint on how to implement non-inertial observers. In a curved
spacetime, geodesic movement takes the place of inertial movement, so one should
interpret the extrinsic LTE concept and also the modified concept proposed in the
present work as describing geodesic observers.

In the present work some ideas have been presented that illustrate that only
some LTE observables can be reconstructed as cylindric moments of the phase space
density. However, for KMS and LTE states, e.g. the heat bang states described
in [12], the two-point function of the state connected to some phase space density
f(t, ~x, ~p) can be constructed as

W f
2 (x, y) =

∫
2 cos

(
(x0 − y0)ωp − (~x− ~y)~p

)
f

(
x0 + y0

2 ,
~x+ ~y

2 , ~p

)
d3p+ W ∞

2 (x, y)

One might tentatively extend this construction to a more general class of phase
space densities not necessarily stemming from LTE states, however positivity and
Hadamard property of the state have to be ensured for this construction to make
sense. Positivity and exponential decay for |~p| → ∞ of the phase space density are
sufficient conditions to get a valid Hadamard two-point function. However, in cases
where the phase space density does not satisfy the LTE constraint equation, as is the
case for the Sachs-Wolfe density investigated in section 4.2, the thermal observables
derived from the two-point function constructed in this manner will not fit the LTE
picture in the sense that traces of thermal observables may be non-vanishing and
positivity inequalities may be violated.

Other approaches to thermal quantum field theory on curved spacetimes have been
and are still investigated. On Robertson-Walker spacetimes a class of states called
“almost equilibrium states” have been investigated in [26] and it was found that these
states include the states of low energy described by [31] as ground states. These
states are designed to minimise a free energy functional and were shown to satisfy
the Hadamard condition; their relation to LTE states has not been investigated.

Currently a concept developed by N. Pinamonti and R. Verch, called “local KMS
states” is under investigation. As this concept is related rather closely to the KMS
condition in case the spacetime admits KMS states, it is to be expected that no
incompatibility analogous to the one described in section 3.1 arises. However, local
KMS states for non-stationary spacetime may lead to more trouble, as the requirement
that the two-point function be the real limit of a function in time which is complex
analytic in a strip-shaped domain can be expected to restrict applicability to analytic
spacetimes. Additionally a requirement of polynomial boundedness in time direction
built into the local KMS condition might imply restrictions on the time dependence
of the spacetime metric. On Minkowski spacetime local KMS states are closely
related to LTE states, but their relation to extrinsic LTE states has not yet been
investigated.
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The present work investigates parts of the formalism of linear perturbation theory
in its application to the derivation of the spectrum of temperature perturbations of the
cosmic microwave background. It has been clarified in section 4.1, how the reduction
of the dynamic equations of the perturbations to a single Klein-Gordon equation is
justified. It was found that the field u, which is usually quantised, is among the fields
for which canonical commutation relations can be assumed. This implies that Ψ and
χ are non-local fields, which could be interpreted as indicating a non-commutative
spacetime structure, implying non-locality of the field and thus making a connection
to deformed field algebras. It would be interesting to pursue this point further, also
in the context of different approaches like deformation quantisation.

Additionally, it was found that a one-parameter family of composite fields exist,
which all yield conjugate pairs with their time derivatives and whose quantisation
should be investigated. The classical dynamics of all fields of the family are equivalent,
in the sense that they are described by the same geometric structure on phase space.
However, it is not clear how picking another field than u from this family impacts
the form of the dynamical equation, the identification of a “preferred state” and the
infrared asymptotics of this state’s two-point function.

It would be interesting to investigate a similar model of linear perturbation theory
where the scalar field is not minimally coupled to curvature, for example with
V (φ) = Ṽ (φ) − 1

2Rφ
2 as a simple model of a metric dependent potential. As it is

not clear, which composite fields are valid under these circumstances, a Hamiltonian
treatment with constraints as in section 4.1 appears reasonable. However a suitable
form of the second perturbation order of the action has to be identified, which
involves very tedious calculations, which are however simplified by the premise that
all terms in the action can be calculated in conformal gauge, because the gauge
degrees of freedom only account for the constraints, which can be easily derived from
the Einstein equations. For the suitable composite fields the dynamics and especially
the infrared asymptotics of the two-point function for a preferred state would be of
some interest.
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A. Technical proofs

A.1. Proof of Lemma 3.2.5

Following are the necessary calculations to prove lemma 3.2.5.

(a) Elementary relations

[∇−α ,∇+
β ] = [∇x

α −∇y
α,∇x

β +∇y
β] = [∇x

α,∇x
β]− [∇y

α,∇
y
β]

[∇−α ,∇−β ] = [∇x
α −∇y

α,∇x
β −∇

y
β] = [∇x

α,∇x
β] + [∇y

α,∇
y
β]

(b) Relations relevant for generalisation of equations (3.2.3) and (3.2.4)

∇+
λ [∇−ρ ,∇−µ ]∇−ν θ(x, y)|x=y = ∇+

λ

(
Rα

νµρ(x)∇x
α −Rα

νµρ(y)∇y
α

)
θ(x, y)|x=y

=
(
Rα

νµρ(x)∇+
λ∇x

α −Rα
νµρ(y)∇+

λ∇y
α

+ (∇x
λR

α
νµρ(x))∇x

α − (∇y
λR

α
νµρ(y))∇y

α

)
θ(x, y)|x=y

= Rα
νµρ∇λθα

∇−µ [∇+
λ ,∇−ν ]∇−ρ θ(x, y)|x=y = ∇−µ

(
Rα

ρνλ(x)∇x
α +Rα

ρνλ(y)∇y
α

)
θ(x, y)|x=y

=
(
Rα

ρνλ(x)∇−µ∇x
α +Rα

ρνλ(y)∇−µ∇y
α

+ (∇x
µR

α
ρνλ(x))∇x

α − (∇y
µR

α
ρνλ(y))∇y

α

)
θ(x, y)|x=y

= Rα
ρνλ∇αθµ
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[∇+
λ ,∇−µ ]∇−ν∇−ρ θ(x, y)|x=y =

(
Rα

νµλ(x)∇x
α∇x

ρ +Rα
ρµλ(x)∇x

ν∇x
α

−Rα
ρµλ(x)∇y

ν∇x
α −Rα

νµλ(x)∇x
α∇y

ρ − (x↔ y)
)
θ(x, y)|x=y

=
(
Rα

νµλ(x)∇x
α∇−ρ +Rα

ρµλ(x)∇x
α∇−ν

+Rα
νµλ(y)∇y

α∇−ρ +Rα
ρµλ(y)∇y

α∇−ν
)
θ(x, y)|x=y

= Rα
νµλ∇αθρ +Rα

ρµλ∇αθν

(c) Relations relevant for generalisation of equations (3.2.5) and (3.2.6)

∇+
λ [∇+

ρ ,∇−µ ]∇−ν θ(x, y)|x=y = ∇+
λ

(
Rα

νµρ(x)∇x
α +Rα

νµρ(y)∇y
α

)
θ(x, y)|x=y

=
(
Rα

νµρ(x)∇+
λ∇x

α +Rα
νµρ(y)∇+

λ∇y
α

+ (∇x
λR

α
νµρ(x))∇x

α + (∇y
λR

α
νµρ(y))∇y

α

)
θ(x, y)|x=y

= Rα
νµρ∇λ∇αθ + (∇λR

α
νµρ)∇αθ

∇−µ [∇+
λ ,∇−ν ]∇+

ρ θ(x, y)|x=y = ∇−µ
(
Rα

ρνλ(x)∇x
α −Rα

ρνλ(y)∇y
α

)
θ(x, y)|x=y

=
(
Rα

ρνλ(x)∇−µ∇x
α −Rα

ρνλ(y)∇−µ∇y
α

+ (∇x
µR

α
ρνλ(x))∇x

α + (∇y
µR

α
ρνλ(y))∇y

α

)
θ(x, y)|x=y

= Rα
ρνλθµα + (∇µR

α
ρνλ)∇αθ

[∇+
λ ,∇−µ ]∇−ν∇+

ρ θ(x, y)|x=y =
(
Rα

νµλ(x)∇x
α∇x

ρ +Rα
ρµλ(x)∇x

ν∇x
α

−Rα
ρµλ(x)∇y

ν∇x
α +Rα

νµλ(x)∇x
α∇y

ρ + (x↔ y)
)
θ(x, y)|x=y

=
(
Rα

νµλ(x)∇x
α∇+

ρ +Rα
ρµλ(x)∇−ν∇x

α

+Rα
νµλ(y)∇y

α∇+
ρ −Rα

ρµλ(y)∇−ν∇y
α

)
θ(x, y)|x=y

= Rα
νµλ∇α∇ρθ +Rα

ρµλθνα
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∇−λ [∇−ρ ,∇−µ ]∇−ν θ(x, y)|x=y = ∇−λ
(
Rα

νµρ(x)∇x
α −Rα

νµρ(y)∇y
α

)
θ(x, y)|x=y

= Rα
νµρθλα + (∇λR

α
νµρ)∇αθ

[∇−λ ,∇−µ ]∇−ν∇−ρ θ(x, y)|x=y =
(
Rα

νµλ(x)∇x
α∇x

ρ +Rα
ρµλ(x)∇x

ν∇x
α

−Rα
νµλ(x)∇x

α∇y
ρ −Rα

ρµλ(x)∇y
ν∇x

α + (x↔ y)
)
θ(x, y)|x=y

=
(
Rα

νµλ(x)∇x
α∇−ρ +Rα

ρµλ(x)∇−ν∇x
α

−Rα
νµλ(y)∇y

α∇−ρ −Rα
ρµλ(y)∇−ν∇y

α

)
θ(x, y)|x=y

= Rα
νµλθαρ +Rα

ρµλθνα

A.2. Proof of Lemma 3.2.6

The calculation essentially amounts to sorting the derivatives into the desired order
for each term of the symmetrised expressions and collecting the terms that arise due
to interchange of covariant derivatives. We start out with the calculations necessary
to get equation (3.2.8). First we note gλρ∇+

λ∇−ρ θ(x, y)|x=y = 0, which will simplify
the calculations significantly.

gλρ∇+
λ∇−(ρ∇

−
µ∇−ν)θ(x, y)|x=y = 1

6g
λρ
(
∇+
λ∇−ρ∇−µ∇−ν + 2∇+

λ∇−µ∇−ν∇−ρ

+ (µ↔ ν)
)
θ(x, y)|x=y

= 1
6g

λρ
(
∇+
λ [∇−ρ ,∇−µ ]∇−ν + 3[∇+

λ ,∇−µ ]∇−ν∇−ρ + 3∇−µ [∇+
λ ,∇−ν ]∇−ρ

+ 3∇−µ∇−ν∇+
λ∇−ρ + (µ↔ ν)

)
θ(x, y)|x=y

= 1
6g

λρ
(
Rα

νµρ∇+
λ∇−α + 3Rα

νµλ∇+
α∇−ρ + 3Rα

ρµλ∇+
α∇−ν + 3Rα

ρνλ∇+
α∇−µ

+ (µ↔ ν)
)
θ(x, y)|x=y
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As we are interested in the case of de Sitter spacetime, we can further simplify these
expressions. Using Rα

µνρ = H2
(
δαρ gµν − δαν gµρ

)
we get

gλρRα
νµλ∇αθρ = gλρRα

νµρ∇λθα = H2
(
gµν∇λθ

λ −∇νθµ
)

gλρRα
ρµλ∇αθν = −3H2∇µθν

Using ∇λθ
λ = 0 we get

gλρ∇+
λ∇−(ρ∇

−
µ∇−ν)θ(x, y)|x=y = 11

3
(
∇+
µ∇−ν +∇+

ν∇−µ
)
θ(x, y)|x=y

= 22
3
(
∇x
µ∇x

ν −∇y
µ∇y

ν

)
θ(x, y)|x=y = 0

due to symmetry of θ(x, y) under exchange of x and y. This concludes the derivation
of equation (3.2.8).

For the derivation of equation (3.2.9) note that θλλµν = gλρ∇−(λ∇−ρ∇−µ∇
−
ν)θ(x, y)|x=y

and �θµν = gλρ∇+
λ∇+

ρ∇−µ∇−ν θ(x, y)|x=y are two of the desired terms. Therefore we
process the sum of these terms using the commutation relations for the covariant
derivatives from the previous lemma. We calculate

gλρ∇+
λ∇+

ρ∇−µ∇−ν θ(x, y)|x=y = 1
2g

λρ
(
∇−µ∇−ν∇+

λ∇+
ρ +∇+

λ [∇+
ρ ,∇−µ ]∇−ν

+ [∇+
λ ,∇−µ ]∇−ν∇+

ρ +∇−µ [∇+
λ ,∇−ν ]∇+

ρ + (µ↔ ν)
)
θ(x, y)|x=y

= gλρ
(1

2
(
∇−µ∇−ν +∇−ν∇−µ

)
∇+
λ∇+

ρ θ(x, y)|x=y

+Rα
νµλ∇α∇ρθ +Rα

µνλ∇α∇ρθ +Rα
ρνλθαµ +Rα

ρµλθαν

+ 1
2
(
∇λR

α
νµρ +∇λR

α
µνρ +∇µR

α
ρνλ +∇νR

α
ρµλ

)
∇αθ

)
As we are interested in the case of de Sitter spacetime, we can further simplify these
expressions. Using Rα

µνρ = H2
(
δαρ gµν − δαν gµρ

)
we see that

∇νR
α
ρµλ = 0

gλρRα
νµλ∇α∇ρθ = H2

(
gµν�−∇µ∇ν

)
θ

gλρRα
ρνλθαµ = −3H2θµν
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This finally yields

gλρ∇+
λ∇+

ρ∇−µ∇−ν θ(x, y)|x=y = 1
2
(
∇−µ∇−ν +∇−ν∇−µ

)
�+θ(x, y)|x=y

+ 2H2
(
gµν�−∇µ∇ν

)
θ − 6H2θµν

Next we turn to the more tedious calculation of θλλµν

gλρ∇−(λ∇
−
ρ∇−µ∇−ν)θ(x, y)|x=y = 1

12g
λρ
(
∇−λ∇−ρ∇−µ∇−ν + 2∇−λ∇−µ∇−ν∇−ρ

+ 2∇−µ∇−λ∇−ν∇−ρ +∇−µ∇−ν∇−λ∇−ρ + (µ↔ ν)
)
θ(x, y)|x=y

= 1
12g

λρ
(
∇−λ [∇−ρ ,∇−µ ]∇−ν + 3[∇−λ ,∇−µ ]∇−ν∇−ρ + 5∇−µ [∇−λ ,∇−ν ]∇−ρ

+ 6∇−µ∇−ν∇−λ∇−ρ + (µ↔ ν)
)
θ(x, y)|x=y

= 1
2
(
∇−µ∇−ν +∇−ν∇−µ

)
�−θ(x, y)|x=y

+ 1
12g

λρ
(

4Rα
νµλθαρ + 4Rα

µνλθαρ + 8Rα
ρνλθαµ + 8Rα

ρµλθαν

+
(
∇λR

α
νµρ +∇λR

α
µνρ + 5∇µR

α
ρνλ + 5∇νR

α
ρµλ

)
∇αθ

)
We can again use the explicit form of the curvature tensor on de Sitter spacetime to
get the result

gλρ∇−(λ∇
−
ρ∇−µ∇−ν)θ(x, y)|x=y = 1

2
(
∇−µ∇−ν +∇−ν∇−µ

)
�−θ(x, y)|x=y

+ 2
3H

2
(
gµνθ

λ
λ − θµν

)
− 4H2θµν

Using equation (3.2.5) and specialising to our case m2 = 0 we thus get

�θµν + θλλµν = − 2
(
∇−µ∇−ν +∇−ν∇−µ

)(
12ξH2θ(x, y)− C(x, y)

)
|x=y

+ 2H2
(
gµν�−∇µ∇ν

)
θ + 2

3H
2gµνθ

λ
λ −

32
3 H

2θµν

= −
(32

3 + 48ξ
)
H2θµν + 2H2

(
gµν�−∇µ∇ν

)
θ + 2

3H
2gµνθ

λ
λ + 4Cµν
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A.3. Proof of Lemma 3.4.2

A.3. Proof of Lemma 3.4.2

First we show two auxiliary results.

Lemma A.3.1.
Let

ha(y) := y4a+2 + 3y4a+1 − (2a2 + a)y2a+3 − 3y2a+2 + 2(2a2 + a− 1)y2a+1 − 3y2a

− (2a2 + a)y2a−1 + 3y + 1

then

∀a ∈ N, y > 1 : ha(y) ≥ 0

Proof.
The proof is done by double induction in a. For the induction step it suffices to show

∀a ∈ N, y > 1 : ja(y) := ha+1(y)− y4ha(y) ≥ 0

which is then again done by induction, where for the induction step we show

∀a ∈ N, y > 1 : ja+1(y)− y2ja(y) ≥ 0

Combining all this we have to show

h1(y) ≥ 0

h2(y)− y4h1(y) ≥ 0

∀a ∈ N, y > 1 : ha+2(y)− y2ha+1(y)− y4ha+1(y) + y6ha(y) ≥ 0

First we calculate

h1(y) = y6 − 3y4 + 4y3 − 3y2 + 1 = (y2 − 1)3 + 2(y − 1)2(2y + 1) ≥ 0

and

h2(y)− y4h1(y) = 3y9 + 3y8 − 14y7 + 18y5 − 4y4 − 10y3 + 3y + 1

= (y − 1)2(y + 1)(3y6 + 6y5 − 5y4 − 2y3 + 5y2 + 4y + 1) ≥ 0

141



A. Technical proofs

The proof of the last inequality is very tedious. Therefore we skip the initial
sorting of terms.

ja+1(y)− y2ja(y) = ha+2(y)− y2ha+1(y)− y4ha+1(y) + y6ha(y)

= 4ay2a+3(y2 − 1)3 + y2a+3(y2 − 1)2(3y2 − 7)

+ (3y + 1)(y2 − 1)(y4 − 1)

≥ y2a+3(y2 − 1)2
(
3(y2 − 1) + 4(a− 1)

)
≥ 0

This concludes the proof of the first auxiliary result.

Lemma A.3.2.

∀a ∈ N, 0 < x < 1 : 1
x

+ (2a2 + a) ((1 + x)2a + (1− x)2a)
(1 + x)2a+1 − (1− x)2a+1

≥ − 2x
1− x2 + (2a2 + a− 1) ((1 + x)2a−2 + (1− x)2a−2)

(1 + x)2a−1 − (1− x)2a−1

Proof. We begin the proof by multiplying with all the denominators and setting
A := 1 + x and B := 1− x to get the equivalent inequality

AB(A2a+1 −B2a+1)(A2a−1 −B2a−1)

+1
2(2a2 + a)(A−B)AB(A2a +B2a)(A2a−1 −B2a−1)

+1
2(A−B)2(A2a+1 −B2a+1)(A2a−1 −B2a−1)

+1
2(2a2 + a− 1)(A−B)AB(A2a−2 +B2a−2)(A2a+1 −B2a+1) ≥ 0

Expanding all the terms, dividing by B4a+2 and defining y = A
B

this is equivalent to

y4a+2 + 3y4a+1 − (2a2 + a)y2a+3 − 3y2a+2 + 2(2a2 + a− 1)y2a+1 − 3y2a

−(2a2 + a)y2a−1 + 3y + 1 ≥ 0

which was proved to be true ∀a ∈ N, y > 1 in lemma A.3.1 where y > 1 ⇔ 0 <
x < 1. This proves the claim.
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Now we proceed to prove Lemma 3.4.2. The statement is trivial for β = 0. For
β > 0 we have, using x = β

β0

fa(β0, β) = 1
(2a− 1)!∂

(2a−2)
β0

1
β2

0 − β2

= (2a− 2)!
2β(2a− 1)!

(
1

(β0 − β)2a−1 −
1

(β0 + β)2a−1

)

= 1
2x(2a− 1)β2a

0

(
1

(1− x)2a−1 −
1

(1 + x)2a−1

)

This yields

(2xβ2a
0 )a+1

(
1− x2

)2a2+a
fa+1
a (β0, β) = 1− x2

(2a− 1)a+1

(
(1 + x)2a−1 − (1− x)2a−1

)a+1

(2xβ2a
0 )a+1

(
1− x2

)2a2+a
faa+1(β0, β) = 2x

(2a+ 1)a
(
(1 + x)2a+1 − (1− x)2a+1

)a

and because ∀a ∈ N, 0 < x < 1 : (2xβ2a
0 )a+1

(
1− x2

)2a2+a
> 0 we can define

ga(x) := 2x
(2a+ 1)a

(
(1 + x)2a+1 − (1− x)2a+1

)a

− 1− x2

(2a− 1)a+1

(
(1 + x)2a−1 − (1− x)2a−1

)a+1

and it remains to show that ∀a ∈ N, 0 < x < 1 : ga(x) ≥ 0.

Taking the derivative of ga(x) yields

g′a(x) :=
[

1
x

+ (2a2 + a) ((1 + x)2a + (1− x)2a)
(1 + x)2a+1 − (1− x)2a+1

]

· 2x
(2a+ 1)a

(
(1 + x)2a+1 − (1− x)2a+1

)a

−
[
− 2x

1− x2 + (2a2 + a− 1) ((1 + x)2a−2 + (1− x)2a−2)
(1 + x)2a−1 − (1− x)2a−1

]

· 1− x2

(2a− 1)a+1

(
(1 + x)2a−1 − (1− x)2a−1

)a+1
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Due to lemma A.3.2 this implies

∀a ∈ N, 0 < x < 1 : g′a(x) ≥
[

1
x

+ (2a2 + a) ((1 + x)2a + (1− x)2a)
(1 + x)2a+1 − (1− x)2a+1

]
ga(x)

As ga is a smooth function of x with ∀a ∈ N : lim
x→0

ga(x) = lim
x→0

g′a(x) = 0 and

∀a ∈ N, 0 < x < 1 : 1
x

+ (2a2 + a) ((1 + x)2a + (1− x)2a)
(1 + x)2a+1 − (1− x)2a+1 ≥ 0

this proves the claim.

A.4. Idea of Proof for Conjecture 3.4.3

First a supplementary inequality will be proved, which is of some value for certain
parameter values.

A relation which can be proved for strictly non-vanishing mass m > 0 is

∀a ∈ N :
(
ga(m,β)
g0(m,β)

)a+1

≤
(
ga+1(m,β)
g0(m,β)

)a
(A.4.1)

which obviously holds true by Jensen’s inequality, as g0(m,β) > 0 and thus β2a ga(m,β)
g0(m,β)

can be interpreted as mode integral of the probability measure

dµm,β(q) = 1
g0(m,β)

(
e
√
q2+m2β2 − 1

)√
q2 +m2β2

dq

Obviously relation (3.4.4) follows from (A.4.1) if

g0(m,β) ≤ ga+1
a (0, β)
gaa+1(0, β) =

[
ζ(2a)Γ(2a)

]a+1[
ζ(2a+ 2)Γ(2a+ 2)

]a
which can never hold for all a at finite m as the right hand side exponentially
converges to 0 for increasing a. However, if one is only interested in a small number
of moments for a sufficiently large mass of the field and low temperature of the state
the estimate (A.4.1) can be usable. For example, if one is only interested in the first
inequality one needs only g0(m,β) ≤ 5

12 which is fulfilled for βm > 1.5 as can easily
be checked numerically.
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Now we make some remarks concerning a strategy to prove conjecture 3.4.3.
Defining M := βm it would suffice to show

∀a ∈ N : d

dM

ga+1
a (M,β)
gaa+1(M,β) ≤ 0 (A.4.2)

For the case a = 0 relation (A.4.2) can easily be seen to hold. Additionally the
relation

∀a ∈ N,M ≥ 0 : ga+1
a (M,β)
gaa+1(M,β) ≤

gaa−1(M,β)
ga−1
a (M,β) (A.4.3)

holds by Jensen’s inequality for the probability measure

dµa,m,β(q) = q2a−2

ga−1(m,β)
(
e
√
q2+m2β2 − 1

)√
q2 +m2β2

dq

One easily sees that lim
M→∞

g0(M) = 0 so it is sufficient to show

∀a ∈ N,M ≥ 0 : d

dM

ga+1
a (M,β)
gaa+1(M,β) 6= 0
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B. Introduction to Probability
Theory

This appendix will present some fundamental notions of probability theory in a very
condensed form. Proofs of lemmas and theorems are omitted and can be found in
standard literature. The aim of this appendix is to define expectation values and
correlations of random fields in a self contained form. First the necessary spaces and
structures will be introduced, then random fields are defined and last the concept of
integration on measure spaces will be explained to enable the definition of expectation
values.

Definition B.0.1. (σ-algebra)
Let Ω be a set and P(Ω) its power set, i.e. the set of all subsets of Ω. A subset
F ⊂ P(Ω) is called a σ-algebra if

• Ω ∈ F

• If A ∈ F , then Ω\A = Ac ∈ F .

• If ∀n ∈ N : An ∈ F , then ⋃
n∈N
An ∈ F .

The elements of F are called measurable sets and (Ω,F ) is called a measurable
space.

Lemma B.0.2. (generating set)
For every C ∈ P(Ω) there is a σ-algebra σ(C) such that for any σ-algebra F containing
C the relation C ⊆ σ(C) ⊆ F holds. σ(C) can be formally defined as the intersection
of all σ-algebra F containing C and is called the σ-algebra generated by C. C is
called a generating set for σ(C).

Definition B.0.3. (Special σ-algebras)

• Let I be an index set and for all i ∈ I let (Ωi,Fi) be a measurable space.
Let Ω = ∏

i∈I
Ωi denote the cartesian product and πi : Ω → Ωi the canonical

projections. Then ⊗
i∈I

Fi := σ

(⋃
i∈I
π−1
i (Fi)

)
is a σ-algebra on Ω called the

product-σ-algebra.
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• Let (Ω,F ) be a measurable space and Ω̃ ⊂ Ω. Then TrΩ̃⊂Ω(F ) := {A∩ Ω̃|A ∈
F} is a σ-algebra over Ω̃ and is called the trace-σ-algebra.

• Let On be the set of all open subsets of Rn, then Bn := σ(On) is called the
Borel σ-algebra. One usually denotes B1 =: B.

Note.
The Borel-σ-algebras are compatible with the trace- and product-σ-algebra in the
sense that the relation

n⊗
i=1

B = Bn and for k < n the relation TrRk⊂Rn(Bn) = Bk

hold. These properties are very useful for the definition of integration and simplify
the following treatment significantly.

Definition B.0.4. (measure, measure space, probability space)
Let (Ω,F ) be a measurable space, µ : F −→ [0,∞] a map.

• µ is called a measure if it satisfies

(a) µ(∅) = 0

(b) For pairwise disjoint measurable sets An ∈ F the property µ
( ⋃
n∈N
An
)

=∑
n∈N

µ(An), called σ-additivity, holds.

(Ω,F , µ) is then called a measure space.

• A measure µ is called a probability measure, if µ(Ω) = 1. One usually denotes
µ = P. (Ω,F ,P) is then called a probability space.

Notation. • An ↗ A ⇔ ∀n ∈ N : An ⊆ An+1 ∧ A = ⋃
n∈N
An

• An ↘ A ⇔ ∀n ∈ N : An ⊇ An+1 ∧ A = ⋃
n∈N
An

Lemma B.0.5. (Properties of measures)
Let (Ω,F , µ) be a measure space, then

(a) µ is continuous from below and above, i.e. for An,A,B ∈ F

• An ↗ A ⇒ lim
n→∞

µ(An) = µ(A)

• An ↘ A ∧ ∃n ∈ N : µ(An) <∞ ⇒ lim
n→∞

µ(An) = µ(A)

(b) µ is sigma-subadditive, i.e. µ
( ⋃
n∈N
An
)
≤ ∑

n∈N
µ(An)

(c) µ is isotonous, i.e. A ⊂ B ⇒ µ(A) ≤ µ(B)
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Definition B.0.6.
Let (Ω,F , µ) be a measure space, then µ is called concentrated on Ω̃ ∈ F if
µ(Ω\Ω̃ = 0.

Definition B.0.7. (Measurable map)
Let (Ω,F ) and (Ω′,F ′) measurable spaces. f : Ω −→ Ω′ is called measurable if
∀A ∈ F ′ : f−1(A) = {ω ∈ Ω|f(ω) ∈ A} ∈ F . A measurable map f : (Ω,F ) −→
(Rn,Bn) can be integrated using the Lebesgue integral.

Definition B.0.8. (Real valued random variable, random vector)
Let (Ω,F ,P) be a probability space, then a measurable map X : (Ω,F ) −→ (R,B)
is called a real valued random variable on Ω and a measurable map V : (Ω,F ) −→
(Rn,Bn) is called a real valued random vector on Ω.

Note.
A random variable is a one-dimensional random vector and due to the properties of
the Borel-σ-algebras real valued random vectors can be interpreted as collections
of real valued random variables. Therefore the following statements on real valued
random vectors are also applicable for real valued random variables and vice versa.

Definition B.0.9. (Real vector valued stochastic process, random field)
Let (Ω,F ,P) be a probability space and T a totally ordered set, then a collection
of real valued random vectors {Vt|t ∈ T} is called a real vector valued stochastic
process. If X is a topological space, a collection of real valued random vectors
{Vx|x ∈ X} is called a real vector valued random field. A stochastic process is a
special case of a random field, therefore random fields are used in the following for
generality. In the following all random variables, random vectors, stochastic processes
and random fields will be real valued thus this will no longer be explicitly mentioned.

Definition B.0.10. (Distribution of a random vector)
Let (Ω,F ,P) be a probability space and V a random vector on Ω, then the probability
measure PV := P ◦ V −1 on (Rn,Bn) is called the distribution of the random vector.
The existence of the distribution is guaranteed by the fact that the random vector is
a measurable map.

Note.
For applications it usually suffices to characterise a random vector V by its distribution
PV and the probability space (Rn,Bn,PV ). From this point of view, the underlying
probability space (Ω,F ,P) is no longer of interest and two random vectors V and
W of the same dimension are called distributionally equivalent, if their distributions
coincide PV = PW , even if their underlying probability spaces are different. This is
particularly interesting for the integration theory.
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Definition B.0.11. (Expectation value, correlation)
All random variables in this definition are defined on the probability space (Ω,F ,P).

• Let X be a random variable, dPX its distribution, then its expectation value
is defined as

〈X〉 :=
∫
Ω

X(ω)dP(ω) =
∫
R

xdPX(x)

if this integral exists. It is obvious, that the expectation values coincide for
distributionally equivalent random variables.

• Let V be a random vector, dPV its distribution and V1, . . . , Vn its components,
then the correlation1 of the components is defined as

〈V1 . . . Vn〉 :=
∫
Ω

X1(ω) . . . Xn(ω)dP(ω) =
∫
Rn
x1 . . . xndPV (x1, . . . , xn)

if this integral exists.

• Let X be a random field whose parameter space X is a Lie group, Az ⊆ X a
subset containing the neutral element of the group and Ay ⊆ X a subset of
finite volume

∫
Ay
dXy <∞. Using the indicator function 1Ay , the function

Az → R

z 7→

∫
Ay

1Ay(y ∗ z)dXy


−1 ∫
Ay

〈XyXy∗z〉1Ay(y ∗ z)dXy

is called the autocorrelation2 function of X on Ay, if it exists.

Note.
In general, for a random vector V with components V1, . . . , Vn on a probability space
(Ω,F ,P),

〈V1 . . . Vn〉 6=
∫
Rn
x1 . . . xndPV1(x1) . . . dPVn(xn)

thus the knowledge of the distributions of the individual random variables is not
sufficient but the distribution of the random vector is needed for the definition of
the correlation.

1As is common in the literature on cosmological perturbation theory, we use the term “correlation”
as it is used in signal processing and not as it is used in stochastics.

2The term “autocorrelation” is also defined as used in signal processing and not as used in
stochastics.
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Correction of Lemma 3.1.2

The “two-point function” for KMS states

W β
2 (f, g) =

∫ ∞∑
n=0

1
2ωn

(
e−iωn∆t

1− e−βωn −
eiωn∆t

1− eβωn

)∑
l,m

f ∗nlm(t)gnlm(t′)dtdt′(1− δωn,0)

that has been presented in lemma 3.1.2 is not a valid two-point function in the case
m = ξ = 0. In that case the expression

W β
2 (f, f) =

∫ ∞∑
n=1

1
2ωn

(
e−iωn∆t

1− e−βωn −
eiωn∆t

1− eβωn

)∑
l,m

f ∗nlm(t)fnlm(t′)dtdt′

is not necessarily positive such that the positivity requirement for states is violated.
For m = ξ = 0 no KMS states exist due to the vanishing energy of the zero mode
which implies an infrared problem.

This error has been pointed out to me by Professor Fredenhagen, who reviewed
this thesis.

Note that all following results of section 3.1 are unaffected by this mistake, as the
special case m = ξ = 0 is not significant for any result. Especially the incompatibility
with the form of the extrinsic LTE condition considered here persists, as this condition
postulates independence of the thermal functions on ξ. Therefore a restriction to the
parameter space m2 + 6ξ > 0 does not undermine any of the results of section 3.1.
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